Specialized Test Equipment Pays Off in Hi-Fi Service

See page 40
WORLD'S LARGEST SELLING
AND WORLD'S NEWEST

Hand Size V-O-M's

MODEL 310
World's Largest Selling Volt-Ohm-Milliammeter

MODEL 310-C
World's Newest Volt-Ohm-Milliammeter

Hand Size and Lightweight, but with the features of full-size V-O-M's.

20,000 OHMS PER VOLT DC; 5,000 AC (310)—15,000 AC (310-C).

Exclusive Single Selector Switch speeds circuit and range settings. The first miniature V-O-M's with this exclusive feature for quick, fool-proof selection of all ranges.

Self-Shielded Bar-Ring instrument; permits checking in strong magnetic fields. Fitting interchangeable test prod tip into top of tester makes it the common probe, thereby freeing one hand. Unbreakable plastic meter window. Banana-type jacks—positive connection and long life.

Model 310—$37.50 Model 310-C—$44.50 Model 369 Leather Case—$3.20

All prices are suggested U.S.A. User Net, subject to change

THE TRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO

310-C Plus Features
1. Fully enclosed lever range switch
2. 15,000 Ohms per volt AC (20,000 O/V DC same as 310)
3. Reversing switch for DC measurements

Models 100 and 100-C
Comprehensive test sets. Model 100 includes: Model 310 V-O-M, Model 10 Clamp-on Ammeter Adapter; Model 101 Line Separator; Model 379 Leather Case; Model 311 leads. ($67.10 Value Separate Unit Purchase Price.)
Model 100—U.S.A. User Net $64.50
Model 100-C—Same as above, but with Model 310-C. Net $71.50

Uses Unlimited: Field Engineers, Electrical, Radio, TV, and Appliance Servicemen, Electrical Contractors, Factory Maintenance Men, Electronic Technicians, Home Owners, Hobbyists

The World's Most Complete Line of V-O-M's Available from Your Triplett Distributor's Stock

www.americanradiohistory.com
The Natrometer was invented and patented by J. E. Smith, the man who founded National Radio Institute half a century ago. He knew men had to get their hands on actual parts if they were to learn radio effectively at home. Like so many other Electronic innovations, the Natrometer is now just a relic of the past. In its place is an impressive array of NRI training equipment you use in your own home to build, experiment, explore, discover... to bring to life the theory and practice of Electronics, TV-Radio you read about in “bite-size” programmed lesson texts (as simple, direct and well-illustrated as 50 years of home-study teaching experience can make them). That's why the best way to train at home is the practical, thorough, absorbing NRI way. Whatever your interest in Electronics... whatever your education... before you decide on any home-study school investigate NRI's extensive list of training plans and interesting training methods. NRI is the oldest and largest school of its kind. Mail coupon for catalog. No salesman will call. National Radio Institute, Washington, D.C. 20016.

JUNE, 1964

WHATEVER HAPPENED TO
THE REMARKABLE NATROMETER?

50 YEARS OF LEADERSHIP IN ELECTRONICS TRAINING

NATIONAL RADIO INSTITUTE
Washington, D.C. 20016

Please send me your catalog. I have checked the field(s) of most interest to me. (No salesman will call.) Please PRINT.

- TV-Radio Servicing
- Industrial Electronics
- Complete Communications
- FCC License
- Math for Electronics
- Basic Electronics
- Electronics for Automation
- Aviation Communications
- Marine Communications
- Mobile Communications

Name_________________________Age_________________________
Address_______________________
City_________________State____Zip_____________________

ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL

www.americanradiohistory.com
Radio-Electronics

SEMI-ANNUAL INDEX

JUNE 1964 VOL. XXXV NO. 6

Over 55 Years of Electronic Publishing

EDITORIAL

25 World's Biggest Radio Telescope

Hugo Gernsback

AUDIO-HIGH FIDELITY-Stereo

29 Electronic Slide Changer

Walter G. Landrieu

Quickly built, this device flips to the next slide during pause in taped comments

30 Servicing FM Stereo Circuits

Leonard Feldman

Don't let them scare you away—at least not for financial reasons

COVER STORY

40 Start An Audio Service Business?

Larry Eugene

There's much to be said for a specialized shop

62 Equipment Report: Sony 600 and Eico 2536 Stereo Tape Recorder and FM Stereo Receiver

ELECTRONICS

26 SCR Basics For Experimenters

Carl Henry

No theory—just plain practical circuits

36 Double Bridge Sensitivity

James E. Pugh, Jr.

Two buildable versions of a high-efficiency dc variable voltage supply

37 Transistors Control High-Power Dc

Alvin F. Rymsha

Gated-beam tubes can be used as mixers, gates, timers, limiters

54 The Versatile 6L7N6

Leo G. Sands

60 Troubles in Transistor Ignition System Hookup?

GENERAL

33 What's Your EQ?

33 What's New

Pictorial reports of new developments

50 Parallel-R Calculator

Melvin S. Lieberman

Knob-twirling is more fun (and faster) than pencil-pushing

52 "Second Phone"—Ticket to CB Service Profits!

Jim Kyle

How to apply for a license, where to send, how to take the exam

TELEVISION

34 Reconditioning TV Sets for Profit

Walter R. McCarty

Important pointers from a shop with long experience on used sets

48 Installing and Troubleshooting Uhf TV

Homer L. Davidson

Second of three parts: converting sets to uhf

48 Aligning TV I.F.'s

Jack Darr

Stagger-tuned ones—using only a single frequency at a time

57 Service Clinic

Jack Darr

Shaping sweep waveforms

TEST INSTRUMENTS

39 Measuring Nanoamperes

J. Queen

Two-transistor circuit for tiny currents

46 Test Set Aids Two-Way Radio Jobs

Basil Barbee

Toteable box of tricks is worth building if you do them often

63 Equipment Report: GC Electronics 36-802 and Triplet 3490-A

An automatic tube tester and a transistor analyzer

THE DEPARTMENTS

60, 83 Corrections

20 Correspondence

86 New Patents

20 New Books

76 New Products

72 New Semiconductors & Tubes

6 New News Briefs

82 Noteworthy Circuits

80 Technicians' News

74 Technotes

84 Try This One

50 50 Years Ago

A NEW WORLD OF OPPORTUNITY AWAITS YOU WITH N.T.S. ALL-PHASE HOME TRAINING IN ELECTRONICS

You can install and maintain electronic circuitry in missiles and rockets...specialize in micro-waves, radar and sonar.

You can succeed in TV-Radio Communications...prepare for F.C.C. License, service advanced satellites for industry and defense.

You can service and repair the electronic "brains" of industry—computers, data processing, and other automation equipment.

You can become a highly-paid TV-Radio Technician, an electronics field engineer, or succeed in your own sales & service business.

The N.T.S. Master Course enables you to do more, earn more in ELECTRONICS • TELEVISION • RADIO

Yet N.T.S. Training costs no more than other courses far less complete

There's a good reason why N.T.S. Master-Training opens a wide new world of opportunity for you in Electronics, Television, Radio.

Everything you learn, from start to finish, can be applied directly to all phases of the Electronics Industry.

As a result, the N.T.S.-Trained Technician can move ahead faster, in any direction—from TV-Servicing to Radio Communications to Space-Missile Electronics and Automation for industry and defense. You can go wherever pay is highest and opportunity unlimited.

Electronic circuitry, for example, is one of science's miracles that is basic to the entire field of Electronics. It is used in satellites, computers and space capsules as well as in today's television sets and high fidelity equipment. N.T.S. shows you how to service and repair electronic circuitry for all electronic applications.

You work on many practical job projects. You build a short-wave, long-wave superhet receiver, plus a large-screen television set from the ground up. N.T.S. training kits contain all the parts you need...at no extra cost. (See box at right.) You also receive a professional Multimeter to use during training and on the job.

ONE LOW TUITION. You need training related to all phases of Electronics. Industry demands it. Only N.T.S. provides it...in ONE Master Course at ONE low tuition.

RESIDENT TRAINING AT LOS ANGELES

If you wish to take your Electronics-TV-Radio training in our famous Resident School in Los Angeles—the oldest and largest school of its kind in the world—write for special Resident School catalog and information, or check coupon.

MAIL COUPON NOW FOR FREE BOOK AND ACTUAL LESSON!

MAIL COUPON NOW FOR FREE BOOK AND ACTUAL LESSON!

NAME ___________________________ AGE _____

ADDRESS ___________________________

CHECK IF INTERESTED ONLY IN RESIDENT TRAINING AT L.A.

HIGH SCHOOL HOME STUDY COURSES ALSO OFFERED. CHECK FOR FREE CATALOG.

New Ultrasonic Transducers Work to 1,000 Megacycles

Two new types of ultrasonic transducers, made of cadmium sulfide, have been developed by Dr. Norman Foster of Bell Telephone Labs. The devices, Dr. Foster says, are more efficient and have greater bandwidths than other transducers in the 100- to 1,000-mc range.

A diffusion-layer transducer, one of the new types, is made by diffusing copper from an evaporated copper electrode into a conductive cadmium sulfide block. The copper impurity in a thin surface layer produces a high-resistivity region across which the electric field necessary for piezoelectric transducer action is developed. The cadmium sulfide block is large enough to need no bonding.

The other kind, an evaporated-layer transducer, is formed by depositing a thin layer (up to 7 microns thick) of cadmium sulfide on a suitable ultrasonic propagation material such as quartz. The cadmium sulfide film is evaporated in vacuum onto the heated surface of a quartz bar, which has been previously plated with a conductive coating such as copper. To reduce conductivity of the cadmium sulfide film, it is overplated with copper and subjected to a heat treatment which causes the films to recrystallize, increasing the resistivity. The film can now act as a piezoelectric transducer.

Wayne R. Johnson, Vice President and Technical Director of Winston Research Corp., looks over the new TV tape recorder. Slightly modified conventional TV receiver is off-the-air signal source and playback monitor. Camera is for live recordings.

Home TV Recorder Around The Corner

A revolutionary home TV tape recorder that can be on the market by Christmas 1965 has been developed by Winston Research Corp., a subsidiary of Fairchild Camera & Instrument Corp. Technical writers and members of the press agreed that its performance is quite acceptable and comparable to a professional machine. Estimated cost will be $500 or less. With a small portable TV camera costing around $150, home movie fans could take hour-long movies and play them back immediately through the recorder and TV set. Housewives could record off-the-air programs during a busy time of the day and play them back at a more convenient time. Cost of an hour-long tape ($15 to $25, depending on production volume) would be considerably less than for an equivalent 8-mm home movie.

The recorder uses ¼-inch tape moving at 120 ips across stationary playback and recording heads. It takes 11-inch, 9,000-foot reels of 0.5-mil instrumentation-quality tape. There are four tracks. Each records 15 minutes. The recorder automatically reverses itself at the end of each track, records in the opposite direction and cuts off automatically when the four tracks have been recorded.

Video response is flat to 2 mc. Video, audio and sync signals are tapped off a conventional receiver and fed to the recorder electronics. Multiplexing fits all information on the same track. On playback, the signals from the tape are split and fed to corresponding receiver circuits. A TV service technician or skilled electronic experimenter can adapt almost any TV set to the recorder.

The electronics in the laboratory model uses 50 entertainment-type silicon transistors. This may be reduced 25 to 35% in production models.

New Computer System Is World's Most Flexible

A computer system which offers a configuration tailored to meet the needs of any user, from the smallest to one requiring a system bigger than the world's present largest computer, was revealed by International Business Machines at its Poughkeepsie plant.
Men of most All Ages — from many walks of Life have profited by DeVry Electronics Training

Electronics training has given job opportunities to thousands of men of most ages. Many went on for years looking for the "big break," and never even thought they had a chance in electronics. Then, sooner or later, an item in the paper, a coupon in a magazine, a word of advice from a friend — led them to Electronics. It's an ideal field for the lad just graduated, the man just married, the man looking for a "second chance."

DeVRY TECH STANDS BACK OF EVERY DeVRY MAN — EVEN AFTER HIS TRAINING!

Thorough, practical training has made DeVry outstanding for 32 years. Equally important is DeVry Employment Service, which is always available to our trained men. In addition, DeVry Consultation Service helps our men with any technical problem they may face at any time.

DeVry Technical Institute
Chicago • Toronto
Accredited Member of National Home Study Council

SEND FOR FREE BOOKLETS

DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill., Dept. RE-6-U

Please give me your two free booklets, "Pocket Guide to Real Earnings" and "Electronics in Space Travel"; also include details on how to prepare for a career in Electronics. I am interested in the following opportunity fields (check one or more):

- [] Space & Missile Electronics
- [] Television and Radio
- [] Microwaves
- [] Radar
- [] Automation Electronics
- [] Communications
- [] Computers
- [] Broadcasting
- [] Industrial Electronics
- [] Electronic Control

Name ____________________________ Age ______
Address __________________________ Zone ______ Apt ______
City ____________________________ State ____________

[] Check here if you are under 16 years of age.

Canadian residents: Write DeVry Tech of Canada, Ltd.
270 Lawrence Avenue West, Toronto 19, Ontario 2086

JUNE, 1964

www.americanradiohistory.com
GOOD NEWS FOR EASTERN TV SERVICEMEN...

CASTLE TV TUNER - EAST HAS MOVED TO NEW LOCATION WITH IMPROVED FACILITIES

In Long Island City near Postal Concentration Center to provide faster service by mail.

All other U.S. and Canadian Servicemen will get the same fast service from CASTLE-CHICAGO and CASTLE-CANADA.

ALL MAKES ALL LABOR AND PARTS (EXCEPT TUBES) ONE PRICE $9.95

ONE LOW PRICE INCLUDES ALL UHF, VHF AND UV COMBINATION TUNERS

Simply send us your defective tuner complete; include tubes, shield cover and any damaged parts with model number and complaint. 90 Day Warranty.

<p>Exact Replacements are available for tuners unfit for overhaul. As low as $12.95 exchange. (Replacements are new or rebuilt.)</p>

*UV combination tuner must be of one piece construction. Separate UHF and VHF tuners must be dismantled and the defective unit only sent in.

IBM board chairman Thomas J. Watson, Jr., called the event the most important product announcement in the company's history. The announcement was in keeping with the company's estimate of the product's importance. There was an all-day press conference at Poughkeepsie, with press people from all parts of the continent, some brought by special train from New York City. At the same time, conferences were held in large cities throughout the United States and other countries in which IBM has headquarters.

System 360, as the new computer is called, spans the performance range of present IBM computers. It uses combinations of internal and external equipment, which can be tailored into a configuration to suit almost any user. Possible combinations in the central processor number 19, and more than 40 types of input and output equipment can be combined with these. The processing power of the largest configuration is approximately 50 times greater than the smallest.

This is reflected in the rentals, the lowest suggested one being $2,700 per month, and the highest about $115,000, with comparable purchase prices from $133,000 to $5,500,000. Deliveries are expected to begin in the third quarter of 1965.

The system uses an interesting type of small integrated-circuit module, in which glass-protected transistor or diode chips are added to prefabricated circuit units.

Tells Engineers How To Avoid Obsolescence

Engineers do not have to worry about technical obsolescence if they simply keep on going to school for some 40 years after receiving their engineering degree. This secret was revealed to engineers of the IEEE by E. H. Freiburg of General Electric, in a panel discussion on electrical engineering education at the recent EEC Convention.

Our highly industrialized, technically based society, Mr. Freiburg has said, must abandon its concept of "sequential" lives in which 16 or 20 years of school is followed by 40 years of work and 20 years of retirement. The modern--and necessary--pattern will be 16 or 20 years of school followed by 40 years of work and school.

Superconductive Generator Produces Huge Currents

An electric generator, operating at the Westinghouse Research Laboratory, is supplying 800 amperes of electric current, used to energize large superconducting magnets. The remarkable thing about the generator is that it is only 4 inches in diameter.

The reason for this astonishing performance is that the generator is made of superconducting material having no resistance. As shown in the drawing, the generator is a series of flat plates of niobium, or other superconducting material, connected together by superconducting wire. A group of permanent magnets rotates above the plates, creating a magnetic field that sets up a current in the conductors. The whole equipment is operated inside a vessel of liquid helium at -455°F.

Another version of the generator uses electromagnets instead of permanent ones, and an alternating current to produce a rotating magnetic field as in an ac motor. This makes a superconducting generator with no moving parts.

CALENDAR OF EVENTS

10th Annual Radar Symposium, May 26-28; Fort Monmouth, N. J.

International Symposium on Global Communications (GLOBECOM '67), June 2-4; University of Pennsylvania and Sheraton Hotel, Philadelphia, Pa.

National Telemetering Conference, June 2-4; Biltmore Hotel, Los Angeles, Calif.

Symposium on Optics, June 8-10; Statler-Hilton Hotel, New York, N. Y.

4th National Symposium on Electromagnetic Compatibility, June 9-11; Los Angeles, Calif.

Chicago Spring Conference on Broadcast & TV Receivers, June 13-14; O'Hare Inn, Des Plaines, Ill.

San Fernando Valley Radio Club Hamfest and Picnic, June 21; Sunset Farms, Sylmar, Calif.

Statewide CB Jamboree, Housatuck Valley CB Radio Club, June 21; Lake Quassapaug Pavilion, Route 6A, Middlebury, Conn.

"Indefinable Something" — High Fidelity?

The high-fidelity components industry has decided "regretfully" that it is impossible at this time to define high fidelity. The statement comes from Victor Pomper, executive vice president of H. H. Scott, Inc., and a director of the Institute of High Fidelity, Inc.
How to select high-reliability capacitors

Much of today's electronic gear is used in places where a shutdown because of failure can be astronomically expensive—or it could be downright dangerous to life and limb. In these places it is essential that high reliability components be used. But how does one select truly highly reliable components? The surest method is to bank on the reputation of the manufacturer and to have an intimate knowledge of types of products available.

Take the case of tubular electrolytic capacitors. The standard Mallory TC type has been used for years in literally millions of radios and TV sets with unfailingly successful results. But the new TPG (Tubular Premium Grade) type is engineered and manufactured to vastly more critical standards. These standards apply to the aluminum foil, to the electrolyte, the all-welded construction, safety vent, and to the extra testing required.

Then there are computer grade filter capacitors. Mallory computer grade types have proven their ability to be better than new after twenty years of continuous service. Standard ratings are available "off-the-shelf" up to 115,000 mfd.

When it comes to Mylar* capacitors one may select from dipped, molded, wrapped, and umpteen other styles. There are dual-dielectrics, plain Mylar, Metallized Mylar, etc. Mallory PVC and the all-new GEM series utilize 100% Mylar dielectric, but these are commercial types. For high reliability applications, one needs the new ELECTRON metallized Mylar type available in up to 10 mfd @ 100 WVDC. And in the smallest package by volume available anywhere. ELECTRON capacitors are metallized with aluminum...not zinc as are virtually all other types. Capacitor cartridges are sealed in pre-molded cases with high-density epoxy and the cases are rectangular to better withstand vibration and occupy minimum space.

Tantalum capacitors to meet the most extreme standards of reliability are stock items with Mallory: solid electrolyte, plain and etched foil, wet slug types and 200°C high capacity types (even radiation resistant types).

Whenever you need a truly high reliability capacitor, call your Mallory Distributor. Just ask him for a copy of the 1964 Mallory General Catalog and you'll be able to make a selection from the hundreds of types listed.

*Registered Trademark E. I. du Pont de Nemours
for peanuts, we'll build any of the 115 products shown in this catalog...

but, why miss all the fun?

Kit building is lots of fun. Besides it enables you to enjoy the best equipment available at a substantial savings. The new 1964 EICO catalog opens the door to kit building enjoyment. Browse through it and you'll find superb values in high fidelity and mono components like the new Classic stereo FM MX receivers, amplifiers and tuners 4-track stereo tape decks test instruments for bench, tube caddy & ham shack economically-priced speaker systems new CB radio kit and ham gear.

For free 1964 catalog, use coupon:

The consensus of the manufacturer members of the IHF is that it is impractical and impossible to arrive at a meaningful definition. Mr. Pomper likened the task to that of finding capsule definitions of "metaphysical" terms like "beauty" or "truth".

A definition of high fidelity, he said, "would do more harm than good for the industry and the public," and added that it would set boundaries for hi-fi performance. "I don't think high fidelity can be defined," he said.

Integration Slow But Sure
In Electronics Field

Modular circuitry may well take over about 70% of the electronics used in military equipment and 50% of consumer equipment circuitry within the next 10 years.

That was the consensus of a panel that discussed expected technological advances during the next 10 years before an audience of 2,000 people at an evening session of the IEEE. The panel, consisting of Patrick Haggerty, Texas Instruments; J. E. Brown, Zenith; Leonard C. Maier, General Electric; Harry Knowles, Westinghouse; Robert Noyce, Fairchild Camera & Instrument, and Lester Hogan, Motorola, agreed that progress in the consumer field would be much slower than in the military, and did not expect to see much integrated circuitry in ordinary radios and TV sets for the next 3 or 4 years. Brown of Zenith pointed out, however, that Zenith had already introduced a hearing aid containing micro-miniature solid-state circuitry, and that the modular components increased the efficiency of the hearing aid while cutting its cost.

All agreed that the most immediate and the greatest advance would be in military equipment, since the reliability and small size of the integrated components adapts them particularly to military needs. They agreed also that, in the long run, solid-state integrated circuitry can be produced at lower cost than present-day conventional equipment. However, at the present time, cost is higher.

Tom Gootee Passes

Thomas Gootee, known to readers of this and other electronic magazines under both his own name and his pen-name, Jordon McQuay, died March 12. He had written a large number of articles for this magazine, including the first detailed description of the operation of radar to appear in an American magazine. He also wrote an early series on semiconductors and one on antennas. His more recent pieces were devoted to new developments in communications, both in the military and civilian fields.

Before World War II Mr. Gootee was an engineer in the studios of the National Broadcasting Company in Chicago. He was also an author of radio scripts and other fiction.

In World War II, he was one of the earliest group to be assigned to radar, and was sent to England early in the war for special radar training. Returning with the rank of lieutenant, he worked in the Signal Corps' Publications Agency at Fort Monmouth, and was especially active in an effort to improve the style and clarity of Signal Corps manuals and other publications. Retiring as Captain, he took a civilian position as Technical Information Officer in the office of the Chief Signal Officer at Washington, leaving only a few years ago to join a commercial engineering firm.

Computer Educator Hits
Lag in Teaching Skills

The director of education at Honeywell Electronic Data Processing, Mr. Arnold E. Keller, says that while modern electronic office equipment demands greater sophistication and training, "our school systems largely content themselves with teaching the office skills of the quill and green-eyeshade era." As a result, graduates have to spend more time and money in private courses which, Mr. Keller said, can and should be included in the commercial high school curriculum.

Two factors in obsolete skills training: lack of teacher knowledge of new equipment, and high cost of obtaining such equipment. Mr. Keller says that the new concepts of new machines can be taught now, and that "we eventually will find a way to move the equipment into the classroom."

Live TV from Moon
Via Tiny Camera

Viewers on earth may get their first live TV closeup of the moon via a hand-held television camera being developed by RCA for the Apollo manned lunar mission.

Smaller than a carton of cigarettes and weighing 4 1/4 lb., the TV camera will use a 70° wide-angle lens for on-board viewing or a 90° to 35° zoom lens for scenes taken through a window of distant objects. It may be mounted in two positions in the command module, and installed in stations for different angles of the astronauts and spacecraft during lift-off, earth orbit, lunar trajectory and lunar orbit.
Sit right down in this high-paying job... after you get your FCC License

It's true. There are hundreds of high-paying, challenging jobs for men with official proof of their electronics skill and knowledge... the Commercial FCC License. And the quickest, easiest, most economical way to get your license is Cleveland Institute of Electronics Home Study. Will it work for you? Cleveland Institute is so sure of it they make this exclusive promise: "Should you fail to pass your Commercial FCC License examination after completing one of our licensing programs, we will refund all your tuition payments." The offer is as straightforward as it sounds... you get your FCC license or your money back!

You'll be amazed how fast, how easily you can learn electronics with a Cleveland Institute Check-Point Plan of Home Study. Facts and concepts are presented in small, easy-to-understand segments, then reinforced with clear explanations and examples. Through this modern, proven method, you will learn at your own pace... and remember what you learn!

So pick the program that fits your career objective, mark your choice on the coupon, and mail it today. We'll send you, without obligation, complete details on Cleveland Institute home study. Act right now... there will never be a better time to start towards a high-paying, interesting job in electronics.

Mail Coupon TODAY For FREE Catalog

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE-92
Cleveland, Ohio 44114

Please send FREE Career Information prepared to help me get ahead in Electronics, without further obligation.

CHECK AREA OF MOST INTEREST:
- Electronics Technology
- Industrial Electronics
- Broadcast Engineering
- First Class FCC License
- Electronic Communications
- Advanced Engineering

Your present occupation ____________________________ Age ______

Name ____________________________ (please print)

Address ____________________________

City ____________________________ State ______ Zip ______

Approved for Veteran's Training under Korean GI Bill. RE-92
Announcing... 'THE PRISM'... Brach's all new COLOR Indoor Antenna

THE FIRST AND ONLY RABBIT EAR DESIGNED FOR COLOR TELEVISION

- 300 Ohm Folded Dipole
- Perfect match and maximum transfer of signal
- Eliminates "color shift" and cancellation of "color burst" caused by standing waves on lead-in
- Smartly styled to fit any home decor. Available in chrome or simulated gold.

MANUFACTURING CORP.
Division of General Bronze Corp.
200 CENTRAL AVENUE
NEWARK 3, NEW JERSEY

Power Sent by Radio Over 25-Foot Distance

Wireless-power transmission of several hundred watts was reported to the recent IEEE convention by W. C. Brown of Raytheon Co. In one experiment, an electric fan was operated at 25 feet by microwave power, transmitted from a parabolic antenna, picked up by an efficient receiving antenna and rectified by special high-efficiency semiconductor rectifiers. Today's technology, Mr. Brown stated, would probably allow sending more than 100,000 watts of power 5 miles through the air.

Integrated Circuit Used In Hearing Aid

The first hearing aid to use a microminiature circuit has been announced by Zenith.

Mr. E. M. Kinney, president of Zenith Hearing Aid Sales Corp., said the new amplifier was developed jointly by Zenith Radio and Texas Instruments, Inc. Solid-state circuitry, he said, "enables us to produce a six-transistor hearing aid weighing only 1/4 oz, with battery." Ten of these tiny circuits can be stacked in a space the size of a safety-match head.

Size reduction permits such features in the new Arcadia aid as a coil that allows the user to hear telephone conversation without room noises.

Brief Briefs

Laser light, used to detect tiny particles in the upper atmosphere, may be as important in weather prediction as radar, says Dr. Myron G. H. Ligda of Stanford Research Institute, Menlo Park, Calif.

Sony Corp. has been licensed to sell in the United States television sets and tubes using the Chromatron principle.

Texas Instruments announces silicon-encapsulated silicon transistors. These will replace epoxy-encapsulated transistors as well as more conventional types.

Ruby lasers are now being supplied for regular manufacturing work. The Sippican Corp. of Marion, Mass., is using a number of units developed by Lear Siegler for microwelding.

The International Space Conference has set up a distress frequency for spacemen—20,007 mc.
Want a magic formula for success in electronics?

You won't find it here!

If you work in electronics, you know why we can't offer you an easy way to success. There isn't any. Electronics is a demanding field. To earn more money, you need more technical education—especially in the areas of electronics that have changed so much in the last few years. Getting more education isn't easy, especially if you hold down a full-time job and have family obligations.

CREI Home Study Programs offer you a practical way to get more education—and the right kind of education—without going back to school. You benefit almost immediately because you study the material technical organizations want their employees to know. You choose the specialty that matches your interests and employment objectives. CREI Programs cover every major area of electronics from communications to servomechanisms and computers, even nuclear engineering technology. And you study at home, set your own pace, apply your knowledge daily on the job.

You're eligible if you work in electronics and have a high school education. Our FREE book gives all the details. For your copy, mail coupon today or write: CREI, Dept. 1406 B, 3224 Sixteenth St., N. W., Washington 10, D. C.

SEND FOR FREE BOOK

The Capital Radio Engineering Institute.
Dept. 1406 B, 3224 Sixteenth St., N. W.
Washington 10, D. C.

Please send me FREE book describing CREI Programs in Electronics and Nuclear Engineering Technology. I am employed in electronics and have a high school education.

Name
Age

Address

City., Zone State

Employed by

Type of Present Work

Check: ☐ Home Study ☐ Residence School ☐ G. I. Bill

E-4

JUNE, 1964
Sylvania Business Aids Build Prestige & Profits

Your Sylvania Distributor can brighten your display window, add a gleam to your showroom, build your technical library, help your service department. How? He can supply you with tube caddies...showroom displays...display counters...service stickers...illuminated signs...tech manuals...workbenches...pocket guides...banners...clocks...etc., etc. Some items are free; others are offered to you at cost plus handling. All are designed to help you build sales and prestige. You can see the complete selection in the new folder, "Be Money Ahead With Sylvania's Business Aids"—FREE from your Sylvania distributor.
WHAT IS THE COMMON DENOMINATOR OF AN ANCIENT EGYPTIAN PYRAMID AND A MODERN ELECTRONICS CAREER?

A STRONG FOUNDATION!

The Egyptian pyramid was built on a strong foundation. What about your electronics career?

Advancement in electronics depends on a solid understanding of basic principles. If you are handicapped by a poor understanding of these vital "basics," you need training—the strong foundation training offered by Grantham School of Electronics.

Beginning at the beginning, Grantham training progresses in a logical, step-by-step manner up through the complex theory of the Missile Age—and all of the math you will need is taught as an integral part of our lessons. Because we present these all-important basic principles with maximum penetration, you will learn to think and reason electronics rather than relying on half-understood concepts and rote-memory.

The Grantham program is made up of three consecutive steps, and each completed step increases your value as an electronics man. The following is a "thumb-nail sketch" of the Grantham 3-step program for electronics advancement:

- Course I leads to attainment of your First Class F.C.C. License and may be completed in the classroom or through home study.
- Course II gives you practical experience on a great variety of "live" electronic equipment in the Grantham Student Laboratory.
- Course III offers Advanced Electronics Training (including microwave and radar) and prepares you to advance to senior-technician status.

Get complete details in our free 44-page booklet. Mail coupon, or telephone the school nearest you; phone numbers and addresses are listed below.

GRANTHAM SCHOOL OF ELECTRONICS

Los Angeles Division 1505 N. Western Ave., Los Angeles, Calif. 90027 Phone: HO 7-7727
South Gate Division 9320 Long Beach Blvd., South Gate, Calif. 90280 Phone: 564-3421
Garden Grove Division 12732 Garden Grove Bl., Garden Grove, Cal. 92640 Phone: 530-0795
Seattle Division 408 Marion Street, Seattle, Wash. 98104 Phone: MA 2-7227
Kansas City Division 3123 Gillham Road, Kansas City, Mo. 64109 Phone: JE 1-6320
Washington Division 821 — 19th Street, N.W., Washington, D.C. 20006 Phone: ST 3-3614

[Mail in envelope or paste on postal card]

National Headquarters Office 44-G Grantham School of Electronics 1505 N. Western Ave., Hollywood 27, Calif.

Gentlemen:

Please send me your FREE 44-page booklet, "CAREERS IN ELECTRONICS."

Name ___________________________________ Age ________
Address __
City __ State __________

I AM INTERESTED IN: [] HOME STUDY [] RESIDENT CLASSES

(PLEASE PRINT)

www.americanradiohistory.com
Greatest 1-2 Signal Punch in the Industry—from Winegard

Winegard’s 2-Nuvistor Colortron Antenna Amplifiers

Take your choice of Winegard’s 2-nuvistor Colortron or single-transistor Red Head antenna amplifiers—both great—both trouble-free!
Both work with any TV or FM antenna. Here’s the story!

COLOTRON ANTENNA AMPLIFIER . . . ONLY $39.95
EXCELLENT FOR COLOR • WON’T OVERLOAD • TAKES UP TO 400,000 MICROVOLTS OF SIGNAL

FINEST ANTENNA AMPLIFIER MADE . . . Because the COLOTRON amplifier takes up to 400,000 microvolts of signal input, strong local signals won’t overload and cause interference on distant fringe stations. It takes 20 times more signal input than any transistor antenna amplifier and without compromising its ultra low noise ability to pull weak signals out of the snow.

A special “lifesaver” circuit gives the 2 nuvistor an expected life of 5 to 8 years. It’s the only amplifier that’s completely weather-proof—nothing exposed, even terminals are protected. Install it and forget it! Fits any TV or FM antenna.

Colortron Amplifiers are Available in 2 Models for TV

FOR TV—Model AP-200N—twin nuvistor, takes up to 400,000 microvolts, input 300 ohm, output 300 ohm, $39.95 list.

FOR TV—Model AP-275—twin nuvistor, takes up to 400,000 microvolts, output 75 ohm, $44.95 list.

Red Head Transistor Amplifier . . . ONLY $29.95
FOR COLOR AND BLACK & WHITE • MOST RELIABLE TRANSISTOR ANTENNA AMPLIFIER EVER MADE.

Winegard’s Red Head Transistor antenna, you won’t have transistor “pop-out” because of its special advanced circuit that protects against lightning flashes, precipitation static and power line surges. Has high pass interference filter, 2-set coupler, fully AC—no polarity problems. Tremendously effective in remote areas where all signals are less than 20,000 microvolts. Uses latest low noise MADT transistor. Bright red amplifier housing gives lasting product identification. The Red Head supersedes Winegard’s famous MA-300 amplifier.

FOR TV OR FM—Model No. RD-300, single transistor, takes up to 20,000 microvolts, 300 ohm input and output, $29.95 list.

Stereeotron Amplifiers are Available in 2 Models for FM

FOR FM—Model AP-320, twin nuvistor, takes up to 200,000 microvolts, input 300 ohm, output 300 ohm, $39.95 list.

FOR FM—Model AP-375, twin nuvistor, takes up to 200,000 microvolts, input 300 ohm, output 75 ohm, $44.95 list.

Write for technical data or ask your Winegard distributor.

YOU GET AN EXTRA BONUS OF QUALITY AND VALUE FROM WINEGARD

You will receive a BONUS Warrantyotion.

Winegard ANTENNA SYSTEMS

WINEGARD COMPANY • 3013F KIRKWOOD BLVD. • BURLINGTON, IOWA

There’s a Winegard Quality Antenna for Every Reception Need

COLOTRON ANTENNA
Model C-44 • Gold Anodized • $44.95

COLOTRON ANTENNA
Model C-43 • Gold Anodized • $51.90

COLOTRON ANTENNA
Model C-42 • Gold Anodized • $38.95

COLOTRON ANTENNA
Model C-41 • Gold Anodized • $24.95

www.americanradiohistory.com
A lot of technicians use just these words to describe PHOTOFACT. One typical letter (unsolicited) puts it like this:

"The PHOTOFACT Library has cut my servicing time in half and has more than paid for itself already. In the best words—PHOTOFACT keeps my business in the black." Saving time is the key to bigger profits in electronic servicing. PHOTOFACT does just that—slows down the clock so you get up to twice as many repairs done each day—and boosts your earnings.

There are over 40 time-saving features in every PHOTOFACT Folder which will help speed your TV-Radio troubleshooting. (Best, too, for cutting time on these tough-dog jobs.)

Users don't measure PHOTOFACT by its pennies-per-page cost. It's the PHOTOFACT Library that counts. Of course, you can get along without PHOTOFACT—a few do—and maybe they're making a living. But it's the hard way.

Doesn't it make good sense to see your Sams Distributor today for details on an Easy-Buy PHOTOFACT Library and Standing Order Subscription? Or use the coupon below.

SEE YOUR SAMS DISTRIBUTOR FOR FULL DETAILS, OR MAIL COUPON ▲

Howard W. Sams & Co., Inc., Dept. REF-6
4300 W. 62nd St., Indianapolis 6, Indiana

☐ Send FREE Photofact Cumulative Index
☐ Send full information on Easy-Buy Plan
☐ Enter my Photofact Standing Order Subscription

My Distributor is_____________________

Shop Name__________

Attn.

Address__________________________

City__________ Zone__________ State_______
NEW FROM JFD

The Dramatic Products and You Need for Full Profits in

Nineteen months ago JFD made history

Now meet the new TV antennas, converters, and

Today begins the JFD 1964-1965 campaign of sales events and product introductions!

Exciting new Log-Periodic antennas from the JFD Antenna Research and Development Laboratories with the engineering advances to help you make the sales others can't in the complex new VHF/UHF/FM age.

NEW FROM THE NOTED JFD CHAMPAIGN, ILLINOIS LABORATORIES —
NEW LOG-PERIODIC LPV ANTENNAS FOR ANY AND ALL BANDS . . . EVERY RECEPTION NEED!

NEW! THE FIRST COMBINATION VHF/UHF/FM ANTENNA — THE LOG-PERIODIC ALL-VU — WITH SINGLE LEAD-IN

Tomorrow's antenna today. The most advanced application of the Log-Periodic formula—receives all FCC authorized television channels (VHF 2 to 13 and UHF 14 to 83) plus all FM/FM Stereo frequencies. This is the first single all-channel antenna using a single down-lead to achieve this performance break-through! So advanced it includes VHF-UHF Splitter to provide separate lead-ins to today's VHF, UHF, and FM stereo set terminals! Available in five gold anodized aluminum models.

NEW! LOG-PERIODIC ZIG-A-LOG FOR "PROBLEM" UHF AREAS

This exotic all-new UHF series obsoletes bulky parabolics and wind-prone stacked bowtie-reflectors. Packs more long-distance pick-up sensitivity per element. Another ahead-of-theindustry antenna advance that puts you in command of new UHF antenna business in your town. In two gold anodized aluminum models.

NEW! LOG-PERIODIC LPV FOR UHF CHANNELS 14 TO 83 (PLUS VHF 7 TO 13)

Developed by the same team of scientists and engineers that broke tradition with the JFD VHF Log-Periodic LPV. Delivers the high-gain, ghost-free signal needed in complex UHF for best channel 14 to 83 reception—plus channels 7 to 13. Available in four gold anodized solid aluminum rod, models—

BACKED BY EXCLUSIVE EXHIBITION AT THE NEW YORK WORLD'S FAIR HOUSE OF GOOD TASTE!

In 1964 and 1965, JFD puts the prestige and drawing power of the biggest attraction of all time behind every JFD Log-Periodic LPV TV/FM antenna you sell—the New York World's Fair!

This powerful new marketing force will be at work building record Log-Periodic LPV Sales and Profits for you!
Promotions
Today's VHF, UHF, FM Markets!
with the revolutionary Log-Periodic LPV antenna... amplifiers that will make new history for JFD dealers and distributors!

All-new precision engineered UHF converters, antennas, TV amplifiers for VHF, UHF and FM that are as powerful as they are saleable.

Backed up by the greatest promotion ever—the JFD World's Fair Festival!
This is the kind of extra-ordinary product and promotion support you can expect as a member of the creative JFD marketing team.

NEW! THE FIRST FM/FM STEREO LOG-PERIODIC
Makes even smallest high-fi system pour forth FM sound as it was never heard before. Features unique new Log-Periodic LPL dipole that outperforms FM antennas twice the size. Another new antenna breakthrough through JFD engineering leadership. Available in three area-engineered gold alloyed aluminum models. Model LPL-FM8, for 28% more gain, model LPL-FM10 for 52% more gain than the best 10 element yagi.

NEW! ANTENNA AMPLIFIERS FOR VHF, UHF AND FM
All-new solid state circuitry for drift-free, distortionless amplification—extra reliability. Mounts on any antenna crossarm for up to 16 db of additional noise-free gain. Uses printed circuitry that is sealed against weather effects. AC power supply, located at set, also serves as multi-set coupler. “OFST” Offset Free-Space Terminals insure maximum signal transfer. Fully warranted. Available in VHF, UHF, and FM/FM stereo models. In both transistor and Nuvistor models.

NEW! UHF CONVERTERS
The first all-transistorized UHF converter. Lower noise, higher reliability, excellent 300 ohm impedance match—outperforms any tube-type converter. Absolutely drift-free because of its heat-less solid state circuitry. Instant start-up. Consumes less power than conventional tube-types. Elegantly styled. Dial light illumination on UHF channel scale for convenient tuning. Only 6" X 7" X 2½". In two models

PLUS!—
Every JFD VHF, UHF or VHF-UHF Log-Periodic LPV you buy between March 1, 1964 and August 31, 1965 earns you valuable JFD Fair Festival Certificates which you can:
1. Trade in for FREE World's Fair Adult Admission Tickets (worth 150 points) or...
2. Trade in for FREE 3-day, 2-night Fair Week-ender holiday (worth 3,000 points) or
3. Redeem for $1.25 cash for each 150 points, from JFD.

LICENSED UNDER ONE OR MORE OF U. S. PATENTS 2,958,081; 2,958,879; 3,011,168; 3,108,260 AND ADDITIONAL PATENTS PENDING IN U.S.A. AND CANADA. PRODUCED BY JFD ELECTRONICS CORPORATION UNDER EXCLUSIVE LICENSE FROM THE UNIVERSITY OF ILLINOIS FOUNDATION.

THE KNOW-HOW OF THE WORLD'S NEWEST AND FINEST ANTENNA LABORATORIES IS BUILT INTO EACH JFD LPV ANTENNA YOU SELL!
The Log-Periodic concept is the result of six years of intensive electronic studies at the Antenna Research Laboratories of the University of Illinois and JFD. Located in Champaign, Illinois (home of the University of Illinois), the vast new JFD research center is the largest and most complete of its kind.

Professor Paul Mayes of the Antenna Research Laboratories of the University of Illinois, the originator of the Log-Periodic V-dipole antenna concept.

JFD ELECTRONICS CORPORATION
15th Avenue at 62nd Street, Brooklyn, N. Y. 11219

JFD Electronics-Southern Inc., Oxford, North Carolina
JFD International, 64-14 Woodside Ave., Woodside 77, N. Y.
JFD Canada Ltd., 51 McCormack Street, Toronto, Ontario, Canada

www.americanradiohistory.com
Correspondence

Univac I Not First Computer

Dear Editor:

I take exception to the paragraph on page 8 (News Briefs, "World's First Computer Becomes An Antique," February issue) stating that the Univac I was the world's first computer as of March 1951. I know from personal experience that this is completely incorrect, because I worked on the second computer, EDVAC, which was in the same building as the first one, the ENIAC, which I believe was used starting late 1945 to generate firing tables for the Army in the last days of World War II.

RAYMOND V. GORMAN
IBM Data Systems Div.
Kingston, N. Y.

Ultrasound Stopped Readers

Dear Editor:

In the May issue of Radio-Electronics, there was an article "Ultrasound Stopped Burglars" by John H. Fasul. I am very interested in getting more information about this system and would be grateful if you could give me the name and address of the company who manufactures the equipment.

JOHN CHMIELNICKI
Paterson, N. J.

Fuse Resistance Changes with Temperature

Dear Editor:

The article entitled "Fuses—Are They Resistors?" by Frank G. Stiver in your December 1963 issue brought to mind an application I made of the resistance inherent in fuses.

The article presents resistance figures for fuses of various ratings. This, however, is somewhat imprecise. The resistance of a fuse is a function of the current flowing through it (actually the temperature of the fuse element) so that one must specify at what current the fuse resistance is measured. This property can be used to advantage in nonlinear feedback circuitry.

A few years ago I constructed an oscillator circuit which used a 5-µa fuse in an age loop. One of the fuses I used had resistance values that varied from 265 ohms, at 0.5 ma to 495 ohms at 5.5 ma—an almost 2-to-1 variation.

Unfortunately, this variation of resistance could be used in many other applications, such as temperature-sensing and gain control schemes.

KENNETH WORKMAN
Tucson, Ariz.

Switched Switch Connections

Dear Editor:

There are two small errors in the "Speaker Switching Circuit" on page 95 of the March 1964 issue. When the switch is thrown into position 2, there is only one 16-ohm load on the 8-ohm tap of the transformer. In position 3, the external speaker remains on the 16-ohm tap, instead of being switched to 8 ohms.

W. R. MANCHER
Pittsburgh, Pa.
119 INDEPENDENT SERVICEMEN ASSURED THEIR LIFE’S FUTURE with the LAFAYETTE ASSOCIATE STORE PROGRAM

What Are You Waiting For--

You're in business for yourself, probably an independent serviceman like those other 119 businessmen. You have a basic knowledge of radio, television or electronics, and most of all you have ambitions to become a true success story—with your own profitable business, a respected place in your community, and security for your family.

You owe it to yourself, and your family, to investigate the Lafayette Associate Store Program.

This Is What We Offer You:

1. Business Stability—Lafayette Radio Electronics has been in business for 43 years. You'll cash in on this established reputation.

2. Product Diversification—You can sell the tremendous variety of products that Lafayette offers—hi-fi stereo, citizens band, tape recorders, radios, tools, radio and T.V. parts, hobby supplies, and much more. You'll attract more customers than you ever thought possible.

3. Advertising Support—Year 'round advertising, publicity, public relations and promotional campaigns have established Lafayette and its franchised dealers as America's primary source for hi-fi and electronics.

4. Protected Territory—Yours will be the ONLY franchised Lafayette Radio Electronics Associate Store in your marketing area.

5. Marketing Guidance—Our program helps you set up a complete operation. We'll help you select the right location, or evaluate your present one, design your store for maximum profit and assist in selecting your inventory. We'll show you how to deal with customers, how to hold a loyal following, how to build a successful business and maintain it. We will always be available to help you in any way possible. In short, we want you to be a Lafayette Success Story.

We are looking for a limited number of men who want to become part of America's largest and most successful Electronics Associate Store program, who are willing to invest $10,000 to $30,000 to make a new business career for themselves.

Mail the coupon for complete information without obligation. What are YOU waiting for?

Lafayette Radio Electronics Corporation Dept. JF4-2
111 Jericho Turnpike, Syosset, L. I., New York
Mr. Robert Laub
Please send me full information on how I can own my own profitable business. I understand there is no obligation.

Name ________________________________
Address ________________________________
City __________________________ Zone ______ State ____________
Mohammed Ulysses Fips. (Why don't you start a fan club?)
I like your magazine so much that I am renewing my subscription for 3 years.

By the way: the two 12AU7's (three sections used) in Philip Stein's "Audio Sweep Generator (September 1963, page 28) can be replaced by a single 6AV11 triple-triode rectifier.

Joshua Levin
Flushing, N.Y.

[Delighted to hear you enjoy Radio-Electronics. (We do, too.) Actually, Mr. Fips has quite a large—though unofficial—fan club. Many readers we never hear from at any other time of year seem to stream out regularly to praise or criticize each annual offering. Is there a popular rally for Mr. Cramp's work, too?—Editor]

PC Boards for R-E Projects Still Available
Dear Editor:
We checked our stock and found that we still have a number of printed-circuit boards for these projects:

- Twin-Coupled Amplifier (November 1957)
- Flip-Top Radio (May 1961)
- 4-Channel Radio-Control (transmitter and receiver) (November 1960)
- Transistor Stereo Preamplifier (October 1962)

Ariel Stiebel
Detroit Electronic Corp.
13000 Capital Ave.
Oak Park, Mich.

"m" versus "M"

Dear Editor:
In a 1959 letter, not intended for publication, I referred to the unfortunate letter "m" which is badly overused by being used as an abbreviation for many things and suggested its burden be reduced by using "Mc" for megacycle instead of "mc." The fundamental reason for this change is that Mega is a multiplier, and therefore the symbol representing it ought to be a capital letter. The second reason is that in Europe, the capital M has long been standard for Mega. By adopting Mc then, you might have been in the lead in the US.

From your detailed reply it emerged that for reasons of consistency R-E had adopted the "M" for mega except for megacycles, when "mc" was used.

I do not know if you are aware that the following year, the IRE in its Proceedings, September 1960, page 1539, published its official decision to adopt "Mc" for megacycle.

With "Mc" thus becoming the official US symbol, it would seem that R-E's continued use of "mc" is an example of everybody being out of step but our Journal.

I see from page 43 of the February '64 issue re "p" for pica that you are flexible and do adopt modern abbreviations sometimes. Do please therefore review the earlier suggestion. Incidentally, some of your readers may not be aware that the picofarad, long a friend of technicians in Britain, has a pet name. It is "puf!"

While on the subject, what about Kc for Kilocycle? That would make all the multipliers capital letters and even justify being out of step with the rest. Perhaps your readers would like to comment on this last item. P. G. A. H. Voigt
Ottawa, Canada

[Mr. Voigt will be happy to learn that the US Bureau of Standards has adopted the International System of Units and will employ it in all its publications "except where use of these units would impair communications." Incidentally, among terms adopted by the Bureau of Standards is the hertz (abbreviated Hz), for cycles per second. So the discussion on "Mc" vs "mc" may become academic in the near future.—Editor]

Criticizes Test CRT Story

Dear Editor:
Please send Art Margolis down to the bottom of the class for his test CRT article ("Ease Service and Sales with a Test CRT."

January '64, page 32). Surely the first thing to do for a dark picture, as in his 16-inch G-E, is to check CRT base voltages. His outside man should have cleared the CRT even if he couldn't find the fault.

It doesn't just take 3 minutes to fit the test CRT; the set has to be brought into the house and taken back. Judging by the incompetence of his outside man, the trouble could well have been a broken lead to the CRT screen.

Don't capacitors have resistance? I always thought they had lots of—meg-ohms, in fact—and that the only things without resistance are bits of wire.

P. M. Levdon
Nottingham, England

Art Margolis replies

The first thing we do for a dark picture tube is not to check for CRT base voltages. We check for cathode emission. In most cases voltages are not at fault—lowered emission is. Incorrect CRT voltages are rare. Rare TV diseases. because of their very rarity, cause an occasional incorrect diagnosis. Perhaps you skill in diagnosis would have precluded the error. At any rate, in that case, we did err at first glance. That's the way it goes.

On our bench, which is where the episodes in the article took place, fitting the test CRT doesn't take any longer than 3 minutes in most cases.

A fast practical test of leakage in a capacitor is its resistance. On a vtvm, a good capacitor will read infinite. Any reading even in the megohm range means leakage and indicates replacement.

End
FHR
FUNDAMENTAL HARMONIC RESONANCE... GC'S EXCLUSIVE DESIGN PROCESS!
Colormagic elements resonate on the fundamental harmonics within both the high and low bands. Colormagic FHR outperforms the average second harmonic TV element by producing a tight, laser-linked directivity of signal...higher gain! It's in the elements!

GC "GOLD-GUARD" anodizing process guards against pitting, chipping, rust and corrosion...makes the Colormagic series the best protected, all-weather line available!

Compare! Colormagic Antenna Systems offer pencil-point polar patterns...laser-linked directivity...flat plateau response curve...no traps or peaks...excellent for color or black & white TV reception.

GC "SOLID-SEMBLED" construction insures quick, easy installation...rigid-lock elements snap securely into place!

15 All-New Colormagic Combo-Couplers permit cross-direction reception of UHF-VHF-FM antenna combinations...each unit encased in high-impact polystyrene case...supplied with stainless Steel mounting strap. Complete sales program available.

See your GC Distributor! He'll fill you in on this "prestige" package. CONSIDER THE ELEMENTS INVOLVED! ...then GO COLORMAGIC. If not stocked locally, write us for name of Distributor nearest you.

GC ELECTRONICS CO.
Division of Textron Electronics, Inc.
Western Plant: 3225 Exposition Place, Los Angeles 18, Calif.
MAIN PLANT: 400 S. Wyman St., Rockford, Ill., U.S.A.

JUNE, 1964
The International Executive 750-H introduces a transceiver that is quickly adaptable to all types of mobile or base installations.

The remote console, which is normally installed under the auto dash, has a new companion speaker console. It may be combined with the remote unit or mounted separately. The speaker makes a perfect base when the remote console is used on a desk. Provision has also been made for adding an S/meter.**

What's more, the Executive 750-H is loaded with extra performance features; such as, 23-crystal controlled channels, illuminated channel selector dial, a new speech clipper, increased selectivity, new connections for easy cabling.

The Executive 750-H is complete with crystals, mounting rack for the remote console, trunk mounting rack for the set, push-to-talk microphone, power cable kit, plus all necessary connecting cables. Operates on 6 vdc, 12 vdc, or 115 vac.

Your International dealer has a liberal trade-in plan. **Step up to an Executive 750-H today!**

Performance—Construction—Design—Components

S/meter available as an accessory item.

WRITE TODAY FOR OUR 1964 CATALOG.
WORLD'S BIGGEST RADIO TELESCOPE

...What It Is For—What It Will Do...

WE RECENTLY had the privilege of visiting the Arecibo Ionospheric Observatory (its official name), the giant radio telescope that we pictured on our Feb. 1964 cover and described in technical detail in the article on page 36 of that issue.

Because of its stupendous vastness, its ever greater technical complexity, and because of its potentialities as a key for unlocking much of our still unknown universe—almost universally uncomprehended—we should like to say a little more (in simple language) about its raison d'être.

Like the great pyramid of Cheops, whose real purpose was unknown and for thousands of years understood by only a small minority (it was to be the Pharaoh's tomb), the Arecibo Observatory and its purpose is a dark secret for most of the American population. Few have heard about it. Even in Puerto Rico it is a total enigma. It is vaguely known as "a big radar." No one, even among the most intelligent people, knows that the observatory is really the biggest single thing in all of Puerto Rico.

Located 12 miles south of Arecibo in the north of Puerto Rico, some 62 miles from San Juan, the observatory is in an almost perfect wilderness in the hills. It was the brainchild of Professor William E. Gordon of Cornell University who was appointed director of the facility.

Erected at a cost of almost 9 million dollars, the Arecibo Ionospheric Observatory (AIO) was constructed over a period of almost 4 years, under contract with Air Force Cambridge Research Laboratories by Cornell University and the US Army Corps of Engineers.

Its chief physical feature is its 1,500-foot diameter bowl, blasted out of the rock, in a natural depression. It is a spherical cap—not quite a half sphere. It required the removal of 300,000 cubic yards of rock and earth to fashion the bowl in the valley. The lower part of the bowl is completely lined with heavy, mesh wire on metal cables. Total dish surface is about 18.5 acres.

Figures or even photographs mean little in helping us visualize the huge size of this bowl that could hold 403,000 humans standing upright, without undue crowding. Suspended high over the center of the bowl is the 500-ton triangular "feed system" measuring 200 feet on a side. It has a 340-foot crescent-shaped arm which can be rotated horizontally over the bowl. Attached to the arm is a 96-foot "line feed" pointing down to the bowl and positioned 435 feet over it. Its purpose is to steer and reflect incoming as well as outgoing radio waves.

The rôle of the Observatory is threefold.

1. It will vastly increase our knowledge of the earth's ionosphere, which can be called "the curved electronic mirror in the sky." Composed of electrically conducting ionized gas, it envelopes the earth from a distance of 200 miles out to a distance of several thousand miles. Without the ionosphere, much of our broadcasting and radio communication would not be possible.

The Department of Defense believes that better knowledge of our ionosphere would greatly assist it in tracking enemy I.C.B.M.'s.

2. The Observatory's future rôle of listening in to distant star electronic emissions is vitally important to Radio Astronomy. Only very recently (1964) have scientists listened in to radio star emissions that originated 10 billion years ago! This knowledge helps us to interpret the age of the universe.

3. A.I.O. now makes it possible to beam more powerful radio and radar signals to the various planets of the solar system with greater precision.

The Observatory can beam the world's strongest radar signals into space—2½ million watts at peak power. Since A.I.O. opened last November, its scientists have sought to contact the solar system's largest planet, the giant Jupiter 400 million miles distant. So far, however, the experiment has been inconclusive, probably because of that planet's deep, gaseous envelope that could have absorbed the radar energy completely. No reflected signals from Jupiter could be detected at A.I.O. This in no way discourages associate director Dr. G. H. Pettengill, who is an old hand at reflecting radar beams successfully from planets. He was among the first to bounce radio emissions from Venus, when he still was connected with MIT's Millstone Hill radar installation. ("Road to Universe opened", RADIO-ELECTRONICS, May 1959, page 47.)

Dr. Pettengill will try again with the giant Jupiter this Fall, using either different radio frequencies or different waveforms, and new ways of processing the returned signals.

Right now, Pettengill and his associates must solve one of the most important and pressing space problems: What is the actual consistency of the lunar surface? Late in March, Moscow scientists declared that the moon is deeply covered with meteoric dust, making any landing by humans hazardous. This has been predicted by a number of scientists as well as the present writer for many years.

Pettengill expects that much new information about the lunar surface consistency can be obtained with the A.I.O. radar sometime in the near future. If a deep quicksand-like dust layer actually exists, the NASA scientists who are building the lunar space capsule must alter their design, so that the capsule with its human explorers will not sink out of sight into a sea of impalpable dust.

How does one "listen in" to the world's "biggest ear"?

It was K. Jansky, who in Dec. 1931 was the first to discover that radio waves were reaching the earth from some source in space. This in time became the present art of Radio Astronomy, or listening in on the radio emissions of distant stars. Jansky listened in with the usual earphones, because that was the only means we had to hear the distant radio noises in those days.

Nowadays all this has been changed radically. Humans no longer "listen in" directly with their ears to distant stars. At A.I.O. modern data processing equipment now does the task of humans. Here the latest computers with their associated oscilloscopes and accurate time recorders are used.

The equipment records all signals automatically, filtering out unwanted noises. Then the equipment records all signals as well as the exact time on special typewriters. Inasmuch as the computers can work around the clock, the scientists are free to do other essential work—or sleep. All "listening in" is done automatically by the computers. Next day, or later, the scientists read the recorded data and interpret the results—a long and painstaking job.

—H.G.
SCR Basics For Experimenters

By CARL HENRY

ALTHOUGH SILICON CONTROLLED RECTIFIERS have been available for some time, their high price has discouraged experimenters. Now that prices are dropping, single units are available for as little as $3. Considering the marvelous properties of the silicon controlled rectifier, this opens a whole new field for electronic experimenters.

The first of the practical circuits in this article is a light trigger circuit to convert either electronic or standard flashguns to slave operation. The SCR has a high voltage breakdown, and so can be used where more than 200 volts is applied across it, as in this trigger circuit. Few transistors will work here, and those that will are expensive. Once turned on, the internal resistance of the SCR is low enough to fire the flash circuit (or standard flash bulbs) in a time so short that, for normal photography, it is not worth considering.

The circuit (Fig. 1) is based on the variable resistance of a cadmium sulfide cell. When a burst of light causes a sudden decrease in the resistance of R1, transistor Q is triggered on. This sends a current through the SCR gate circuit. The SCR conducts and fires the flash circuit. Note that the transistor (an n-p-n type) is direct-coupled by its emitter to the gate of the SCR. This type of coupling is necessary because of the low input impedance of the SCR gate circuit.

This circuit illustrates the use of the SCR as a static switch. That is, in any circuit where a switch is used, an SCR can replace it. However, this is true only for those circuits where the switching action of the SCR, once in operation, causes the voltage to drop below the value required to maintain a holding current action, and resets the SCR. Otherwise the SCR will turn on but not turn off. (Like a thyatron.)

Resistor R3 is a surge limiting resistor. If you experiment, be sure to use such resistors, and use diodes to protect the SCR where possible. I find that even very short transients can be damaging if the SCR is not protected. Use a diode in the gate circuit to prevent a reverse voltage from being applied to the gate, wherever possible. Two diodes back-to-back across the line will prevent line transients from ruining the SCR. So-called "contact protectors" work well in these protective applications.

Fig. 2 illustrates a second type of SCR circuit. Here the amount of current passed by the SCR controls the speed of a drill motor or the heat of a soldering iron. Just the ticket for slowing down that electric drill to prevent softening plastics, or to lower the heat in your soldering iron when working on delicate circuit boards. The basic circuit was originally developed by General Electric. One of its features is that it provides constant torque when used with a drill motor. Excessive use of a motor at low speed slows it down instead of increasing it.

Fig. 1—Circuit of photoflash slave. R2 can be replaced by suitable fixed resistor if slave is to be used with a particular flash unit.

Fig. 2—Small-appliance control is good for drills, mixers, sewing machine motors or light soldering iron.
speeds is not a good idea, since the motor may overheat.

The circuit basically is of the phase-control type, very similar to the older thyatron circuit. The gate circuit of the SCR is supplied with the positive half of the ac input, the negative half being blocked by diode D to protect the SCR gate from reverse voltage. As this positive voltage increases to some value determined by the setting of S1 and R2, sufficient voltage is applied to the gate to turn on the SCR. The SCR is turned on for some portion of the positive half-cycle, and supplies pulsating dc to the load.

Switch S1 selects either a hi or lo speed function, and R3 is switched in or out, determining how late in the half-cycle the gate firing can be set. With R3 out of the circuit, gate firing can be completely prevented by setting R2 to its minimum position. The controlled device is plugged into either J1 or J2.

The maximum load is of course determined by the rating of the SCR. Here a G-E type C22B was used, for which a maximum load of 880 watts is recommended. This SCR is a press-fit type, the case being the anode connection. I mounted the SCR on a small block of aluminum, and mounted the block on standoff insulators. I installed two receptacles, since I intended to use the unit as a lamp dimmer. It works very well, by the way, and control two small spotlights to any degree of brightness or dimness desired. Remember not to exceed the maximum load rating of the SCR when using large photo loads.

Don't be misled into thinking that a simple zero-to-maximum control is possible with SCR's in dc circuits. The schematic of Fig. 3 is the third practical circuit. It demonstrates that complete control, as in the case of thyatrons, transistors and vacuum tubes, is not possible with a simple SCR circuit. A simple battery charging circuit, it again relies on phase control. The output current, not the voltage, is varied by R. This will mean that a voltmeter on the output, or any high-impedance low-current device, will indicate either a voltage or no-voltage condition. With heavy loads, such as battery charging, however, the output current can be varied from a maximum of 8 to a minimum of 1 amp.

Fig. 3 makes a nice simple charger circuit, and considering the number of parts and the amount of control possible, it works well. This circuit was constructed in a Bud Minibox, and then modified into the next circuit I am going to discuss.

Figs. 4 and 5 show the low-voltage supply modified to operate HO model trains. The SCR is a natural for this field. In fact, General Electric has announced their Astrac model train control system, a unique and interesting application of the SCR. In the Astrac system, each model engine to be controlled is equipped with a small module containing two silicon controlled rectifiers. Each has a tuned circuit in its gate lead. The track is fed with ac instead of the conventional dc. A transistor oscillator supplies the keying signal, superimposed on the ac track voltage, to the particular engine you wish to operate. As many as five engines may be operated at the same time at five different speeds. When each engine receives the proper signal, determined by the resonant circuit in its gate lead, the SCR in the engine is turned on, and the engine motor receives pulsating dc power from the track. Engines can be reversed by supplying a second frequency to the other SCR on the engine module, which in turn supplies a reverse voltage to the engine motor.
Small-appliance control of Fig. 2, built into aluminum box.

output voltage.

For creeping and slow operation of model engines, pulsating dc works better than filtered dc. For this reason, C is removable from the circuit. The output is variable from 2 volts to 12. Fig. 5, a control circuit worked out by G-E engineers, offers better control than the simple phase-control circuit shown in Fig. 4. On the positive half-cycle of SCR values of resistance, depending on whether high-, medium- or low-power SCRs are to be tested. Battery BATT2 and resistor R3 provide a variable gate current, while lamp 3 indicates its intensity.

To test an SCR, first connect it to terminal posts J1, J2 and J3. Set S1 to REVERSE, and observe any leakage on lamp 2. Then set S1 to NORMAL with R3 anode voltage, the capacitor charges to the firing point of the SCR in a time determined by the time constant \((R1 + R2)C\), and the increasing anode voltage. On the negative half-cycle, D1 blocks the gate circuit while D2 resets the capacitor for the next charging operation. Two of these circuits, paralleled back-to-back and with the potentiometers tracking and ganged, will give complete control of the entire ac cycle.

If you do much work with SCR circuits, you will probably want to use the circuit of Fig. 6 for testing the SCRs themselves. It is difficult to test an SCR with an ohmmeter, since some method must be provided to turn it on, and a holding current must be maintained. In Fig. 6, the job is done like this: Battery BATT1 supplies the main SCR current, with provision being made for reverse testing. Lamp 1 indicates by its brightness the amount of anode current, and lamp 2 any reverse current. Normally lamp 2 should never burn; if it does, the SCR is defective.

Resistor R1 and switch S2 check the holding current feature of the SCR. It may be necessary to select different

Fig. 6—Simple SCR test circuit gives qualitative check on performance. Defective units show up immediately.

at minimum. R3 can be calibrated in terms of current. Advance R3 until lamp 1 indicates current flow in the SCR, noting the gate current flow at the same time. Check the manufacturer’s specifications for the SCR under test to see if the triggering point lies within the proper range. The holding current is checked by operating S2 and noting whether the SCR continues to conduct when the switch is released. Check the maker’s specifications for the minimum value of holding current. Resistor R1 can be made variable, and calibrated in terms of holding current if a more accurate check is desired.

I believe you will find this simple checker much more conclusive than an ohmmeter, and much easier to use.

[Though not listed in the main 1964 catalog, the G-E C22B is stocked by Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill., along with other SCRs in the line. They are listed in a recent supplement. Newark Electronics Corp., 223 W. Madison St., Chicago 6, also carries the complete G-E line, listed on page 65 of the 1964 catalog No. 75.—Editor]
By WALTER G. LANDRIEU

VARIOUS SCHEMES HAVE BEEN DEVELOPED to synchronize a slide or film-strip projector with commentary recorded on a tape recorder. Most use low- or high-frequency tones or a photoelectric circuit to control the changer. But this device needs no such extras.

This system uses the silent period between commentaries to operate the slide-change solenoid or relay. When the silent period exceeds a preset limit, say 4 seconds, the switching circuit operates automatically.

The circuit of my slide actuator is shown. The slide mechanism is tripped by momentarily closing the control loop between terminals A and B. V1-a is an audio amplifier that is fed a signal of at least 1 volt rms tapped off the recorder's voice coil or line output. V1-b is the relay control tube. It is set up so RY1 is energized when there is no audio signal at the input jack.

V1-a's input circuit is set up so the grid can become only slightly more positive than the cathode. (The grid-cathode circuit acts as a diode that conducts on positive half-cycles. Neglecting the internal grid-cathode resistance during conduction, the grid and cathode are at the same potential and plate voltage is constant during the positive half-cycle).

How it works

When a signal is being supplied by the recorder, V1-a's grid follows negative swings and V1-b's average plate current drops to the point where RY1 drops out (releases), opening contacts 1-2 and closing 3-4. RY2's coil is energized through 3-4 and its contact (5-6) closes. The control loop is held open by 1-2.

When a silent period occurs, C1 begins to discharge through R1 and R2. A large negative voltage develops across R2 and cuts off V1-b for a period of time determined by the values of C1 and R2.

When the silent period exceeds the predetermined limit, C1 has discharged to the point where V1-b begins to conduct and re-energizes RY1. Although this breaks RY2's supply circuit, this relay does not release until C3 has discharged through its coil. Now, the control loop is closed through 1-2 and 5-6 and the slide-change solenoid is energized. (The duration of the energizing pulse is determined by C3's capacitance and RY2's coil resistance.) The circuit returns to its original state when RY2 opens.

Do not omit the neon lamp. It clamps V1-a's plate voltage, so strong input signals cannot drive V1-b hard enough to energize RY1 and trigger the unit erratically.

The control unit, called the Silen-tact, is built into a small metal box. Relays, tube, power transformer and filter capacitor are above the chassis. The remaining components are below (see photos). The relays - European types - pull in at around 4 ma and release at 1. Comparable American types can be used.

Sole "operating control" on front panel is on-off switch. Operation is completely automatic.

In author's version, chassis is bent up from sheet metal and mounted vertically. A more compact layout should be practical.
Servicing FM Stereo Circuits

Need expensive equipment? No! You can use a stereo station as a signal source

By LEONARD FELDMAN

FM stereo transmitter of New York City's WQXR-FM. Like other multiplex FM transmitters, it is a source of precise 19-kc signal for tests.

MORE AND MORE ELECTRONIC TECHNICIANS are being called on to service and align FM stereo multiplex circuits as the popularity of FM stereo broadcasting grows. The service technician has been reluctant to purchase the expensive ($275 and up!) multiplex generators which, he has been led to believe, are necessary for proper multiplex servicing and testing. As a result, many technicians have turned away customers.

The fact is that nearly every trouble in multiplex circuitry can be analyzed and corrected by using the very finest multiplex generating equipment available free of charge—the FM stereo transmitter! Checked out by the FCC, the FM stereo broadcast station transmits a crystal-controlled 19-kc pilot signal as well as the composite audio signal consisting of main channel—left plus right (L + R), and subchannel—left minus right (L - R)—sidebands. These two elements of transmission can be used to service and align multiplex adapters or the multiplex section of FM stereo receivers. All you need is a good FM tuner. It doesn't even have to be equipped for stereo reception. Simply tap off, with low-capacitance shielded cable, at the output of the ratio detector or discriminator (Fig. 1). Be sure the cable is connected before any high-frequency de-emphasis components.

Your "tuner-generator" should be equipped with an outdoor antenna, so that the composite stereo signal recovered will be as free of noise and as strong as possible. For problems involving loss of separation, distortion, etc., the composite signal thus obtained can be used directly. For oscillator alignment, subcarrier restoration or anything having to do with self-contained 38-kc subcarrier circuits, it will be necessary to construct a small one-tube 19-kc amplifier (Fig. 2). This circuit will amplify the crystal-controlled 19-kc signal from the station and will isolate this signal from the rest of the audio composite signal. It provides a stable, accurate source of variable-amplitude 19-kc signal. Attempts to use your bench audio oscillator for this signal source would be doomed to failure, since the frequency needs to be within 1 cycle of 19 kc and must not drift or even change phase.

Types of multiplex circuits

FM stereo circuits may be classified in two broad categories: matrix types and switching types. Fig. 3 is a block diagram of the matrix variety. A typical switching-circuit block diagram is shown in Fig. 4. Matrix circuits, popular when stereo FM first came upon the scene, have largely been abandoned in favor of the simpler switching circuits, which require fewer, less accurate filter components and are therefore less expensive to manufacture.

Whether you are servicing a matrix or a switching circuit, a large-amplitude 38-kc signal is needed at the input to the demodulating diodes. In most circuits, the rms value of the 38-kc voltage will be 5 volts or more. This may be made available in one of two ways: either the circuit contains a local oscillator (oscillating at 19 kc and subsequently doubled to 38 kc, or oscillating directly at 38 kc) which is synchronized with the incoming 19-kc pilot signal from the station, or the 19-kc pilot itself...
can be stripped away from the rest of the composite signal (much as was done for the test jig of Fig. 2), amplified and doubled without any built-in local oscillator.

Absence of this 38-kc signal, or its presence in reduced amplitude, will result in extremely distorted output and no separation of left and right channels. In circuits having a local oscillator, it is easy enough to determine whether the oscillator is functioning merely by observing the waveform at the grid or plate of the oscillator stage. If it is oscillating, you will see a clean sine wave.

Once oscillation has been established, this sine wave can be observed all the way along through amplifiers and doublers, right up to the demodulation circuit, where the waveform will appear as in Fig. 5. The inequality of adjacent sine waves indicates the presence of some 19-kc components resulting from imperfect doubling. This component will not seriously affect performance and can be ignored.

In circuits not having local oscillators (and hence dependent on the incoming 19-kc signal to create the large-amplitude 38-kc carrier needed for detection), signal tracing is similar, except that the 19-kc amplifier of Fig. 2 will be required. Apply a signal of about 0.1 volt rms to the input of the multiplex circuit and trace its progress through the 19-kc and 38-kc amplifiers and doublers, all the way up to the demodulating diodes. If all is well with these stages, at least 3 to 5 volts of 38-kc voltage will appear at the head end of each of the demodulating diodes.

A good check to perform on this circuit is to vary the amplitude of the 19-kc input signal with the potentiometer shown in Fig. 2. (It is understood, of course, that the 19-kc amplifier test fixture must be hooked up to a tuner tuned to stereo when these tests are made.) Check for a 19-kc signal at the output of the test fixture before assuming that the multiplex circuitry itself is at fault. As the potentiometer is varied to provide an output greater than 0.1 volt, there should be no significant increase in 38-kc voltage at the demodu-

lating diodes. Further, as the 19-kc input is decreased, no significant decrease in 38-kc voltage should result until the 19-kc input is attenuated considerably. This test proves that all tuned circuits are peaked up to their maximum, and that the 38-kc voltage at the demodulators is stable and adequate for the job.

Unsynchronized oscillators

Referring again to circuits containing their own local oscillators, the test fixture of Fig. 2 is most useful in tracing loss-of-synchronization problems. The mere presence of large-amplitude, 38-kc signals at the detectors of such a circuit does not insure proper performance or stereo separation. If, on applying a 0.1-volt rms 19-kc signal from the test fixture to the circuit, you hear a low-frequency motorboating sound, the self-generated oscillations are not being synchronized by the incoming pilot signal. Assuming that there are no faulty components in the path from the input to the point where the sync voltage is applied to the local oscillator, the cure is a simple touchup of the oscillator alignment, which will be dealt with shortly.

To determine positively that synchronizing voltage is getting all the way to the oscillator, disable the oscillator itself by removing the tube. This will prevent mistaking the oscillation itself for the incoming synchronizing voltage. If the tube is a multipurpose type, such as a dual triode, the oscillator is best disabled by connecting a very large capacitor (such as a 1-µF electrolytic of high enough voltage rating) from the plate of the oscillator section to ground.

Multiplex circuit alignment

Most of the troubles in FM stereo reception not attributable to faulty parts or low signal strength may be traced to improper alignment of the tuned circuits in the multiplex portion of the receiver. This general step-by-step alignment procedure is applicable to both amplifier-doubler and oscillator-doubler types:

1. Apply a 0.1-volt rms 19-kc signal to the input of the circuit. Observe the 38-kc waveform at the input end of either demodulation diode. (Some more elaborate circuits use diodes in a bal-

Fig. 2—Simple two-stage 19-kc amplifier connected to any FM tuner tuned to stereo station provides low-cost source of exact 19-kc pilot tone.

Fig. 3—Block diagram of typical matrixing type of stereo decoder.

Fig. 4—Typical switching multiplex circuit looks like this. Only one filter is required.

Fig. 5—38-kc voltage at input to demodulating diodes may look like this. Residual 19-kc signal is common and usually harmless.

C1, C3—470 pf, mica or ceramic
C2, C4—0.039 µf, paper, mylar, ceramic
C5—0.01 µf
C6—1 µf
L1, 12-decades-tuned coil, 1.3 to 2.1 mH (Miller 4414 or equivalent; Allied stock No. 60 G 994, $1.97 plus postage)
R1, R2—3.3 megohms, 1/2 watt
R3—pot, 50,000 ohms, linear
R4—22,000 ohms, 1/2 watt
12AX7 tube
9-pin miniature socket
Aluminum knobs, 3 1/2 x 2 1/2 x 1 1/2 inches (Ford 3001 A or equivalent)
Miscellaneous hardware
It should not be observed at the point where the 38-kc voltage is applied to the diode bridge.)

2. In nonoscillator types, 38 kc should be visible. In oscillator types, you should see a waveform similar to that of Fig. 5. (It may not be truly 38 kc, but some frequency close to it.) In the latter case, the waveform may look like Fig. 6. The fuzziness showing above the primary waveform is the small component of synchronizing pilot signal not being locked by the oscilloscope at the fundamental rate of local oscillation.

3. Tune the plugs of every tuned circuit but the 67-kc filter for a minimum, locked waveform. In nonoscillator types, the 38 kc will pass through a definite peak as each tuned circuit is varied. For oscillator types, tune the oscillator tank circuit first, until the fuzziness shown in Fig. 6 disappears. This indicates oscillator "lock-in." Then tune the 38-kc doubler tuned circuit for an increase in 38-kc amplitude. Finally, tune any earlier 19-kc traps or tuned circuits closer to the input. It may be necessary to retune the oscillator itself as the other circuits are peaked, to bring it back into synchronization, as some grid-plate tuned-circuit combinations are highly interdependent. This is even more true in transistor multiplex circuitry.

4. Remove the 19-kc input signal and substitute a 67-kc signal of 0.1-volt rms amplitude. The signal you inject should be very close to 67 kc, but the exact frequency is not as critical as in the case of the 19 kc. You can use regular audio oscillator. Observe the waveform at the output of the 67-kc or bandpass filter and adjust the coil until the 67-kc amplitude is a minimum. The null should be sharp and positive. This alignment step takes care of any interference between SCA (private subscriber broadcasts, such as "Storecast," etc.) which may be going on simultaneously with a stereo broadcast on the same station.

5. Connect the multiplex circuitry to a source of FM stereo and tune in a station broadcasting stereo. Separation should be apparent even before the final touchup. If the particular station is kind enough to place the announcer on one channel or the other, as many now do, it is an easy matter to adjust any controls for best separation. To do this, turn the balance control of your stereo amplifier to the channel where the announcer isn't, and finalize the setting of the separation control for a null, or minimum sound.

Many multiplex circuits do not have a special separation control, but rely instead upon final local-oscillator touchup for optimum separation. This can be done while listening to stereo, but will seldom require more than a fraction of a turn of the oscillator tank circuit slug in either direction if all the previously alignment steps were followed carefully.

The waveform in Fig. 7 represents the signal you might observe at an instant when stereo is being broadcast, with your scope applied to the head end.

Fig. 7—Composite waveform applied to switching demodulator in switching type adapters looks like this, with constant sine-waves on each channel. Speech or music information varies rapidly, of course.

Tiny 19-kc amplifier can be fastened on chassis or case of FM tuner used for test purposes.

of one of the demodulator diodes. Naturally, the upper and lower modulations about the stable, 38-kc large-amplitude signal will not stand still long enough for you to see such a well-defined sine wave at top and bottom. But careful observing, even under music conditions, will enable you to see that the modulation along the top edge is different from that along the bottom edge. You will also note that the modulation "fuzz" represents only a small percentage (from about 10% to 30% maximum) of the total waveform amplitude. This tells you at a glance that your internally produced 38-kc carrier is strong enough not to be overmodulated by the incoming audio signals.

Multipath distortion

Because of the nature of the FM stereo signal, many service calls in which the complaint is distorted reception are due not to the circuitry at all, but rather to the nature of the incoming signal itself. Often, separation and noise suppression are normal, meaning that signal strength is adequate, but distortion is equally present. The form of the distortion is usually hissy "S" sounds when the announcer speaks, or breakup of high frequencies in music. This trouble is nearly always caused by multipath reception, or signal reflections, and is analogous to ghosts on TV. It doesn't take much theorizing to appreciate how such reflections will upset things after you realize how perfectly the 19 kc must be synchronized with the rest of the incoming signal. A reflected 19 kc, arriving microseconds after the intended one, upsets the delicate phase relationship, and—in extreme cases—causes the local oscillator to waver back and forth between primary and reflected pilot.
signals. The result is the type of distortion just described. The solution: nothing but a well oriented outdoor FM antenna. The need for a good antenna has been stressed repeatedly in connection with FM stereo and we don't want to belabor the point. Unfortunately, the average FM stereo listener has been led to believe that if his signal strength is adequate (that is, no background noise, hiss, etc.), he doesn't need an outdoor antenna. This just isn't so. Often, in metropolitan areas, proximity to a station only increases the problem. If the signal is strong, so are the reflections from nearby structures or elevated terrain. Weaker signals are better off.

Stereo signal indicators

Of late, many multiplex circuits have been incorporating some sort of indicating device to show the listener when a station is broadcasting stereo. Usually, these circuits consist of one or more tuned circuits responsive to 19 kc only, followed by rectification and dc amplification. The resulting voltage is used to ignite a neon lamp (Fig. 8), close an "eye" tube or switch on a light via a relay. These circuits can be tested easily with your 19-kc amplifier fixture described earlier. Remove the neon lamp from its holder and connect a dc voltmeter between the high side of the lamp socket and chassis ground. In the absence of any 19 kc, voltage at the lamp will usually be about 45 to 50. As 19 kc is applied (as it would be by a stereo signal) to the input of the multiplex circuit, the voltage at the neon tube socket should rise to well above 70 volts dc, the firing point of most neon bulbs. Unless there is a component failure, such as diode D in Fig. 8, simple alignment of any 19-kc tuned circuits will usually restore a defective indicator. The neon bulb itself can be checked by connecting it—in series with a 100,000-ohm resistor—across 117 volts ac.

Certainly, no article of this length could hope to cover all theills that might befall an FM stereo circuit. But now that you know the blocks involved and the general procedure to be used, you will find it easier and pleasanter to familiarize yourself with this newest element of consumer electronics. If the thought of expensive test equipment was what prevented you from entering this field, take heart—you can get along without.

Maximum Power

Load R3 is matched for maximum power output from the generator or battery. However, it is desired to obtain maximum power in a new load to be connected between A and B. What must be the value of the new load, and what is the power it expends?—H. D. Varadarajan

Music—Intercom Trouble

In a combination background music and intercom system, the speaker is connected so that when switch S1 is depressed it will stop the music and connect the speaker to the input of the intercom amplifier to initiate a call. However, the circuit as shown here is not usable in the CALL position. What is the trouble symptom and why does it happen? What can be done to correct it?

Capacitance effects of wiring and switches are unobjectionable. For simplicity, switching for talkback from the intercom is not shown.—Wayne Lemons

No Volts

A full-wave power supply has two silicon rectifiers in series on each side. Each diode has a piv rating of 400 volts. A 1,000-ohms-per-volt, rectifier type ac voltmeter on its 300-volt range, with the hot test lead plugged into the output jack to block the dc component, is connected in turn across each diode to determine whether the ac voltages across the two diodes are equal. They seem to be: the meter reads zero across each diode. Why?—Basil Barbee

WHAT'S YOUR EQ?

Conducted by E. D. Clark

Three puzzlers for the student, theoretician and practical man. Simple? Double-check your answers before you say you've solved them. If you have an interesting or unusual puzzle (with an answer) send it to us. We will pay $10 for each one accepted. We're especially interested in service-stikers or engineering stumpers on actual electronic equipment. We get so many letters we can't answer individual ones, but we'll print the more interesting solutions—ones the original authors never thought of.

Write EQ Editor, Radio-Electronics, 154 West 14th Street, New York, N.Y. 10011

Answers to this month's puzzles are on page 61.
RECONDITIONING
TV SETS
for PROFIT

Fixing up and selling trade-ins can be a real moneymaker. Be sure you can tell the good ones from the bad ones!

By WALTER R. McCARTY *

IN A BUSY TV SERVICE SHOP, RECONDITIONING used TV sets for resale is often an unwelcome interruption to the normal repair routine. But it can be one of your most rewarding profit sources.

There is only one hitch. If the reconditioned set should fail during the warranty period, the profit dwindles away and may disappear completely. You will have a dissatisfied customer on your hands, and that can be a pretty bad blow to your shop's reputation.

By using a special procedure and checklist we developed for the purpose, we find that our reconditioning is fast and thorough enough to prevent recalls.

Our sales personnel have more confidence in selling the sets, the customer is sure of getting "like-new" performance, and the shop, by turning out a better job initially, has more time to devote to other customer services.

The first decision you will have to make is whether the set is worth reconditioning. One of the biggest mistakes you can make here is to squeeze every possible penny of profit out of the trade-in. If you turn the set over to the service department for just a patch-up repair so it can be sold as quickly as possible, you risk a very unhappy customer and a flock of callbacks.

Somewhere along the line you must decide how long you will guarantee the parts and labor in the reconditioned set. Generally a 30-day unconditional warranty covering all parts and labor is enough. If a new picture tube is installed, the standard new picture-tube warranty will apply. If the old picture tube is good enough, a 6-month half-and-half picture-tube warranty is acceptable. That way, if the picture tube fails within 6 months after the sale of the reconditioned set, the cost of a new tube and of labor is shared equally by you and the customer.

The sales and the service department should decide which sets are to be reconditioned. If you have a sales manager, selling the set will be his problem. The brand name is important, as is the style (portable, table model, console, etc.). In some areas, some styles and makes will sell better than others.

It is up to the service manager or the service technician to decide whether the set is technically worth reconditioning. Here is where the "dogs" should be eliminated. As a technician, you will know approximately what to expect from each make and model. Unfortunately, the best-selling TV sets, namely the portables, are the ones that most often prove to be "dogs." If you have any doubts, better eliminate the set at the beginning rather than after many frustrating and unprofitable hours, either trying to get it working so you can sell it, or trying to repair it after it's been sold.

We regularly get rid of more than half of the sets traded in to us, usually to

*TV service manager, Balje Griffith Firestone, Odessa, Tex.

Cleaning tuner thoroughly is a must. Alignment and tracking are checked after cleaning and after all shields are back in place. Sheet taped to wall details reconditioning process as guide to technician.

Horizontal output stage voltages being recorded on checklist. Instrument at right of set (technician's hand is on the knob) is shop-built checker designed especially for quick horizontal-output measurements.
rental agencies or other shops who are better able to bear possible damage to their reputations.

Reconditioning the TV

When a set has been selected for reconditioning, we identify it with a checklist tag attached to a knob. Each technician has an outline of the complete reconditioning procedure above his bench to guide him step by step through the process. Here is a guide to the steps we follow in getting a set back into shape.

1. Replace any obviously defective parts. For the sets that seem to be free from actual defects, or when there is some doubt, follow the checklist for important tests and inspections.

2. Check all tubes on a tube checker. Replace all gassy, shorted and weak tubes. Keep the boxes (see Step 9).

3. Check CRT and replace if advisable. Indicate CRT checker reading on form if CRT is not replaced, and note model number of checker. At an average cost of $17 for a rebuilt picture tube, it is usually wise to replace one unless it is exceptionally good. Being able to say "new picture tube" can ease the sale of the reconditioned set.

4. Clean and lubricate tuner. Scrub contacts with chlorothane and apply contact cleaner and lubricant. Spraying tuner only is unacceptable. Check tracking and slug channels as necessary. Scrub contacts with a brush. A Maybelline mascara brush (10¢) with bristles cut down to about 1/4 inch makes an excellent tool.

5. Clean controls as required (spraying OK) or replace. Check control ranges, particularly vertical height and linearity.

6. Check B-plus. Make necessary repairs to bring within 10-20% of spaces. Enter voltage on form.

7. Measure horizontal output tube operating potentials with vtm, vom or analyzer as a check for:
 a. Screen voltage. Condition of screen resistors.
 b. Grid voltage. Horizontal oscillator, coupling capacitor, drive control, etc.
 c. Cathode current. Approximately 100 ma or less for 6BQ6; check tube manual for others. Adjust Horiz. Lin. coil (if any) for minimum current. Enter measurements on form.

Many sets come back in a very short time with horizontal output stage failures. Measuring voltages and currents and fixing anything suspicious during the reconditioning process has been found to be very effective in reducing these failures. The "analyzer" referred to is a horizontal output analyzer of our own design.

8. Check sound circuit and adjustments. Speaker, too.

BALIE GRIFFITH TIRE CO.

TV Set Reconditioning Check List

1. Repair Obvious Defects.
2. Check All Tubes.
3. Picture Tube OK _______ uA.
 □ Replaced.
4. Clean and Lube Tuner.
 □ Adjust Tracking.
5. Clean Controls.
6. Power Supply OK (B+ 10%) _______ Volts.
 □ Screen Voltage _______ Volts
 □ Grid Voltage _______ Volts
 □ Cathode Current _______ MA
8. Sound Circuits OK.
10. Alignment OK.
 □ Aligned RF.
 □ Aligned IF.
 □ Aligned Sound.
11. One Hour Air Check.

Technician ________________________________

JUNE, 1964

Aligning a reconditioned set is seldom necessary, but goes quickly with proper equipment. Set with clear, sharp picture sells fast.

Checklist used in author's service shop.

Completely reconditioned set carries two tags. Card at top is picture-tube warranty. At lower left, shop checklist, completed and signed. This set will have one-year picture-tube warranty and 30-day unconditional parts and service warranty.
9. Put back old tubes (except shoted ones) replaced in Step 2, one by one, noting effect. Use old tubes when no difference in performance is apparent. This is optional. In some cases, as experience will direct, it may be wiser to leave the new tubes in.

10. Observe picture and determine if rf or i.f. alignment is necessary or advisable. Perform as required.

11. Air check one hour minimum. After air check, tap tubes, especially damper, and recheck all adjustments and picture quality until satisfactory.

12. Sign checklist form. Form will be filed with set owner's record when set is sold. Whenever possible, same technician will be expected to perform subsequent repairs on set. In a shop with several technicians, this step can be very effective and create some competition between them to see who does the best job.

When reconditioning is complete, the checklist form remains with the set until sold. We also write the set's model and serial numbers across the top of the form for sales record convenience, and a code number that gives the salesman the repair cost so he can determine how much expense to recover in the sale. From the sales point of view, the checklist form filled out and signed by the technician is impressive testimony of the thorough reconditioning procedure. The picture-tube warranty card (if a new tube was installed) is taped to the top of the set and filled in when the set is sold.

By doing a good job, the service department will increase customer satisfaction, sales department confidence and store reputation. And if it's done right the first time, chances are there'll be no need to do it over.

END

double bridge sensitivity

Simple trick makes Wheatstone bridge more useful

Fig. 1

THE WHEATSTONE BRIDGE HAS MANY APPLICATIONS: sensing light and temperature changes, humidity, etc., as well as the more common resistance and capacitance measurements. Here's a simple variation that doubles the sensitivity of the usual circuit.

All you have to do is make two opposite arms of the bridge into "sensing"; or transducer, elements, instead of one as is usually done.

Fig. 1 shows the standard four-arm Wheatstone bridge. When the ratio of R1 to R2 equals the ratio of R3 to R4, the bridge is balanced. The voltage at A is the same as the voltage at B, and hence there is no voltage across (and no current through) the detector. If R1 changes, the voltage at A changes also, but the voltage at B stays nearly the same. Now there is a voltage across the detector; its polarity is determined by the direction of the change in R1. If R1 drops, point A becomes positive with respect to B. If R1 rises, A goes negative.

Now hold R1 fixed and make R4 the sensing element (Fig. 2). Exactly the same relationships hold, and you can prove to yourself that, as R4 rises and falls, the voltage at A with respect to B changes exactly as it did when R1 was the variable. In other words, R1 and R4 have the same effect on the bridge.

The next logical step is to vary both R1 and R4, and you might guess that, if both are subjected to the same changes (two identical thermistors, for instance, both in the same spot), the net change in the detector's indication will be twice as great as it was when only one element was varied. And that is exactly what happens (Fig. 3).

Besides doubling the sensitivity to a single change (both variable elements working together), this bridge is useful for getting an *additive* reaction. For example, one thermistor can detect indoor temperature changes, and the other, outdoor changes. The detector voltage will then vary with both. (A differential circuit, with R4 and R5 used as sensing elements, also suggests itself. Such a device could be used to show the difference between two conditions, such as inside and outside temperature.—*Editor*]

If you need a balance control, use an ordinary variable resistor in the R2 or R3 arm of the bridge.

For those who like their theory laced with a little math, here are the equations that bear out the idea.

The equation for detector voltage \(E_d \) is

\[
E_d = E \left(\frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4} \right)
\]

For convenience, let's make the supply voltage \(E \) 2 volts and the detector resistance large compared to the arm resistances.

1. When the bridge is balanced, \(R_1 = R_2 = R_3 = R_4 = 1 \) ohm (or any other value).

\[
E_d = 2 \left(\frac{1}{1} \right) - 2 \left(\frac{1}{1} \right) = 0 \text{ v.}
\]

2. Now make \(R_1 = 0.5 \) ohm and \(R_2 = R_3 = R_4 = 1 \) ohm.

\[
E_d = 2 \left(\frac{0.5}{0.5} \right) - 2 \left(\frac{1}{1} \right) = 0.66 - 1 = -0.33 \text{ v.}
\]

3. Next, make \(R_1 = R_2 = R_3 = 1 \) ohm and \(R_4 = 0.5 \) ohm.

\[
E_d = 2 \left(\frac{1}{1} \right) - 2 \left(\frac{0.5}{1} \right) = 1 - 0.66 = 0.33 \text{ v.}
\]

4. Finally, \(R_1 = R_4 = 0.5 \) ohm and \(R_2 = R_3 = 1 \) ohm.

\[
E_d = 2 \left(\frac{0.5}{0.5} \right) - 2 \left(\frac{0.5}{1} \right) = 1.33 - 0.66 = 0.66 \text{ v.}
\]

—James E. Pugh, Jr.

RADIO-ELECTRONICS

www.americanradiohistory.com
Transistors Control
High-Power DC

In many high-power DC applications, such as motor speed control, battery charging, metal plating, model train control, you need to vary the dc voltage smoothly and efficiently from zero to maximum. The silicon controlled rectifier does the job nicely, but it's expensive compared to most power transistors. These circuits control even storage-battery output—they do not need the interrupted source an SCR needs. And these circuits have no switching-transient interference.

The circuits in this article use no SCR's—just ordinary power transistors, run at their maximum current rating, rather than at their maximum power rating.

As a series regulator, the pass transistor (Q3 in Fig. 1) must dissipate a fairly high power if a wide variation is required. For example, if a supply must be adjustable between 0 and 30 volts at 5 amperes, at 1 volt out the transistor must drop 29 volts at 5 amperes, or 145 watts. That's a very respectable power, usually beyond a single transistor's rating.

But if the transistor is cut off, there is zero current at maximum volts—zero power; if saturated, 5 amperes at almost zero volts—like nearly zero power. Since many loads are affected only by average power, if we switch the series pass transistor between cutoff and saturation, it dissipates very little power and we are limited only by its maximum current rating. By varying the duty cycle (the length of time the transistor is conducting), the average output voltage and current may likewise be varied. A storage capacitor can be used to smooth the output if required, since the "raw" output is a series of pulses.

There are a few factors to be considered:

1. The transition time between cutoff and saturation must be extremely short. While the transistor is switching, its power rating is being exceeded. The switching time should be in the microsecond region.

2. Peak-current limiting should be provided. The power supply transformer impedance may be enough; otherwise, a choke or a limiting resistor may be necessary.

3. Since the output is a square wave or pulse, some loads may not work well with any reasonable amount of filtering you can build into the supply. In addition, reverse voltage damping may be needed for inductive loads (a good idea for any switching device).

The circuit of Fig. 1 is the simplest possible, but has limitations. A smooth transition from zero output is difficult because of the hysteresis of the Schmitt trigger. The trigger must supply a large base current to the pass transistor (Q3), limiting the maximum current output unless a high-beta transistor is used.

In this circuit, a bridge rectifier supplies dc to the circuit and the load. Potentiometer R1 samples the full-wave rectified waveform and provides a variable input to the Schmitt trigger (Q1 and Q2). As the voltage rises on each half cycle, Q1 conducts at the preset point, instantly switching Q2 off and permitting the voltage at its collector to rise to the supply voltage.

The base of Q3 is connected to

Ref: 470 ohm (352 ohm ceramic)
D1, D2, D3, D4—1N537 (to 1.25 amp) or 1N1115 (to 3 amp)
D5—1N538
G1, Q2—2N395
G3—2N1334
R1—10,000 ohms
R2—220,000 ohms
R3—3,300 ohms
R4—330 ohms
R5—10,000 ohms
R6—120 ohms
T—24-volt "selenium rectifiers" transistors; current rating depends on desired output current. Knight 620331, Stancor RT-201 or equivalent to 1.25 amp; Knight 620333, Stancor RT-204 to 3 amp

Fig. 1—Simplest switching-control circuit uses 60-cycle ac switching signal, taken across R1 and squared off by Schmitt trigger, Q1 and Q2.
this point and current will flow through R7 to the base, turning on Q3, which saturates and appears as a virtual short circuit. The output voltage rises to maximum.

When the voltage across R1 falls to a sufficiently low value, Q1 is cut off and Q2 is turned on, bringing the base of Q3 to nearly ground potential and cutting it off. The output voltage falls to zero. By adjusting R1, the length of time during each half cycle that Q3 is turned on may be varied.

Since the trigger switches on to a slightly lower voltage than that required to turn it on, it is impossible to reduce the "on" time to a very narrow pulse. The circuit will step from 0 to about a 15% duty cycle as a start, and only about 90% as a maximum. Fig. 2-a illustrates this. The circuit of Fig. 1 should control up to about 3 or 4 amperes, maximum.

The minimum-width pulse can be narrowed by speeding the voltage fall time—by using a sawtooth to drive the trigger, rather than a half sine wave. Fig. 2-b illustrates the improvement. The circuit of Fig. 3 includes this improvement, and can control more current.

An inexpensive unijunction transistor is used to generate a free-running sawtooth (it could be synced to the line). This sawtooth is applied to the trigger. The adjustment is now very smooth from zero throughput an extremely narrow pulse to nearly 100% output. Actually, at some point above maximum, the trigger will lock up and hold the output full on. In this circuit, trigger Q3 does not drive the pass transistor directly, but a Darlington driver, Q4. This permits controlling up to 30 amperes if a 2N2152 is used. At 30 volts output, this represents nearly a kilowatt! The driver must supply a base current of about an ampere, so a 2N1954 or similar device is used.

Several other changes: inexpensive silicon planar epitaxial transistors are used in the trigger for better temperature stability and reliability. They cost less than equivalent germanium devices would. These could not have been used as well in the first circuit to drive a p-n-p pass transistor since the drive pulse is inverted and only about 85% of maximum output could have been obtained. (Of course, if an n-p-n pass transistor had been used, the silicon planar would have been all right.)

The output transistors in both circuits run surprisingly cool, considering the power involved. More to the point, the circuits can be built from common parts. The trigger is no more complex than the one for an scr, and possibly simpler. The transistors were chosen for economy. The circuit can be used at higher voltages if you choose higher-voltage transistors.

If the transistors are modified for different current levels, sufficient base current must be provided to oversaturate the pass transistor at the highest

Wiring of author's experimental model. This board includes only control components: transformer and bridge rectifier are not shown. "R6-a" is extra 470-ohm resistor shunted across R6 to reduce its value slightly.

Fig. 3—Improved, higher-power circuit uses unijunction (Q1) to generate sawtooth pulses for more efficient operation. Driver stage (Q4) supplies enough current to "swing" even large power transistors.

Diagram:

- **2N2660** sawtooth osc
- **2N2713** (2) unijunction trigger
- **2N1954** driver
- **2N1252** control

Diagram chart:

- **Q1-** 100 µf, 50 volts, electrolytic
- **Q2—0.1, µf, paper
- **C3—470 pF, ceramic or mica
- **C4—1,000 µF, 25 volts, electrolytic
- **D1, D2, D3, D4—1N4148 or Motorola M4322 to 6 amp
- **R5—1N538
- **2N2160 unijunction
- **Q2, Q3—2N2713, 2N2714
- **Q4—2N1954, 2N235
- **Q5—2N1073 or 2N1061 to 10 amp, 2N2152 (to 30 amp)
- **R1—1000 ohms
- **R2—1,000 ohms
- **R3—input 100,000 ohms, linear
- **R4—47,300 ohms
- **R5—10,000 ohms
- **R6—56 ohms
- **R7—4,700 ohms
- **R8—680 ohms
- **R9—3,300 ohms

Notes:

- 1N4001 "selenium rectifier", 80 volts 10 amp, equivalent to 10 amp; Stancor RT-1975 or equivalent to 12 amp
Only the series pass transistor needs to be mounted on a heat sink.

Current level required. During the cut-off cycle, the base must be slightly reverse-biased to insure complete cut-off. Power transistors with high collector leakage (I_{leak}) may require a very low value for R₈ (R₁₁ in Fig. 3), and should be avoided. The silicon diode from base to emitter of the power transistor prevents the back bias from exceeding the base-emitter breakdown (V_{BE}) rating of the transistor.

Design notes

Any power transistor will serve as Q3 in Fig. 1 and Q5 in Fig. 3. The 2N2152 is a low-cost 30 amp 170-watt transistor. I used a 2N1073, which will handle 10 amps—I just happened to have one. The criteria to check, once the maximum current is decided upon, are high beta and low leakage. A leaky transistor will limit the lowest output that can be obtained; a low-beta unit will require a high base drive and may overheat on high currents. You can always use a heavier transistor, and there will probably be better beta holdup over the current range.

The circuit of Fig. 1 will control up to 4 amps if the output transistor has a high beta. Base current must be supplied from the Schmitt, which is somewhat limited in current capacity. Power capability will be about beta/10 amperes, provided the maximum current rating of the power transistor is not exceeded, so a transistor with a beta of over 40 could handle 4 amperes.

Regulation of the voltage supplied to the load is related to only one function of the control circuit: saturation resistance of the pass transistor (Q3 in Fig. 1 or Q5 in Fig. 3), provided it is saturated. This means supplying enough base drive. Typically, the resistance will be less than 0.1 ohm. If an infinite (perfectly regulated) supply were used, the regulation would be perhaps 2 to 3 volts up to 30 amp. Remember that the beta of most transistors drops at high currents, so we must not assume a transistor is saturated. If it stays cool, it is OK. If it gets hot, it is not being saturated. The actual regulation will depend also on drop in the transformer winding, rectifiers and storage capacitors.

MEASURING NANOAMPERES

DC amplifier plus microammeter measures leakage current, high resistances, makes great "tvpm"

Conventional dc meters are available down to about 15 microamperes full scale. For still weaker currents, a dc amplifier may be added ahead of the meter. For example, with a gain of 100, the full-scale reading of 15 µA meter becomes 1.5 µA or 150 nanoamperes. This way, you can measure such weak dc as the output of a thermocouple or the reverse flow through a silicon diode.

Fig. 1 shows a very stable balanced transistor amplifier. Temperature effects are largely balanced out because the transistors are affected equally and oppositely. These transistors (Texas Instruments) cost less than $1.50 apiece. Because of their low cost, you may wish to obtain several and use those with highest gain. I had no trouble obtaining a gain of 100 from the circuit of Fig. 1. Several transistors all provided the desired gain.

To read volts, connect a multiplier resistor in series with the instrument. Since my full scale is 0.2 µA, I need 5 megohms for full deflection when 1 volt is applied. This is, in other words, a 5-megohm/volt circuit. To measure 20 volts full scale I need 100 megohms. This instrument is about 10 times better (higher input impedance) than a conventional vtm, on this particular range.

To measure high resistance, connect it in series with a dc source and measure the resultant current. For example, assume that you use 1.5 volts in series with an unknown resistor, and that the deflection is 100 nanoamps (mid-scale). By Ohm's law, the resistor is 1.5/0.1 µA or 15 megohms. Again, the instrument performs better than an ordinary vtm. My vtm ohms scale indicates only 9 megohms at mid-scale.

For all parts for my nanoamp meter (except the d'Arsonval instrument) are mounted on a perfboard and a metal box which houses the 0–20-µA meter. If desired, the auxiliary calibration circuit may also be mounted in the meter box, or it may be plugged in.—I. Queen

Bass-Reflex Enclosures

Design and Construction

That's the title of a booklet just published by Electro-Voice, attacking the problem of bass-reflex enclosure in a semi-novel way. Though ducts in bass-reflex enclosures have long been used to compensate for small internal volume, this booklet shows how using fairly long ducts makes it possible to reduce enclosure size to near absolute minimum volumes.

A chart gives the duct lengths for enclosures of various sizes used with various speaker models, and make it possible for the user to select the largest duct possible for a given cabinet volume. The booklet also offers useful hints—some not widely known.

While the figures are based on Electro-Voice speakers, tolerances appear to be rather wide, and there is little question that the information can be used with all good speakers.

The booklet is available at 25¢ from Electro-Voice, Inc., Buchanan, Mich.
Start An Audio Service Business?

If you’re just getting into service, or thinking of expanding, consider specializing in hi-fi.

By LARRY EUGENE

Have you considered the advantages of specializing in hi-fi audio? Virtually every home today has a “hi-fi”, so-called, whether it be an elaborate custom system or a table radio with two speakers. This equipment will eventually require service.

Stereo—first tapes, then discs and finally FM multiplex—has brought its own service problems. Transistors are replacing tubes in all kinds of audio equipment. Tape is starting to compete with discs. It is beginning to appear that only a specialist can keep up with new developments in the field.

But before you rush out to put up a sign, “No TV Servicing,” take a good look at what you need to be a specialized service agency in audio, with a number of authorized service agency (a.s.a.) franchises.

Most important is mechanical know-how. According to Leonard March, president of Electronic Engineers, Inc., of Chicago, whose specialized shop is featured on our cover this month, “80% of changer and tape recorder problems are mechanical. It has been our experience that most electronic technicians are weak when it comes to mechanics. There’s an entirely different set of skills involved in mechanical servicing, and unfortunately very little time is spent on these skills in most electronic schools.”

March’s associate, Jerry Man, adds: “Our solution is to train our own men in mechanics. In a specialized shop such as ours, we have the best training laboratory available. Not only does the technician handle a much higher volume of units with mechanical service problems, but because each of our technicians specializes in certain equipment, he is able to accumulate in a short time the experience that might otherwise require years.”

As one technician at Electronic Engineers put it, “Servicing phonos and recorders is almost like servicing automobiles—you’ve got to be a good mechanic.”

Next important item is the test equipment your specialized shop will require. You will need some lab-quality, professional test units. To move audio jobs rapidly and still maintain high standards, such equipment is a must. Remember: test equipment should be better than the units being serviced with it.

Basic test units you probably have include an audio oscillator, rf signal generator, vm, vtvm and oscilloscope. For an additional $2,500, you can add equipment for servicing tape recorders, record changers, stereo amplifiers and tuners with the highest efficiency and minimum callbacks.

This supplementary equipment includes a wow and flutter meter, distortion analyzer, a multiplex generator and an electronic counter. Also useful are standard level alignment tapes, 3-ke test records and tapes, a head demagnetizer, and spring scales (postal type will do). A tape viewer for checking track spacing is handy, but not essential.

Wow and flutter meter. Measures speed variation of tape recorders and phonographs and sound movie projectors. (Radio-Electronics published a story on a build-it-yourself flutter meter on page 24 of the March 1964 issue.)

Distortion analyzer. This versatile piece of test equipment should be purchased as soon as possible. Some types are for harmonic distortion only, others for intermodulation distortion only, and some measure both kinds. With them you can check distortion in any device, even phonograph pickups and tape recorders, by using test records and tapes. Most such meters also include sensitive ac vtvm’s to measure 10 mv or less.

Multiplex generator. Essential for properly aligning and repairing FM stereo equipment. It is expensive, but you cannot do without it if you expect to service multiplex units properly. Following Electronic Engineers’ successful average charge for alignment and repair ($23.50 plus parts) you will soon re-
cover its cost. If you select a model with an rf output, you can transmit a signal throughout your shop, providing a single multiplex test source for all your technicians.

Spring scale. Wow in tape recorders can be caused by erratic or incorrect holdback and takeup tensions. An ordinary 8-ounce postal scale can be used to check them. A larger scale can be used for pinch roller pressure.

Digital counter. Used to check tape recorders for speed accuracy. (See “Cover Story” box.)

Alignment tapes. Available in three standard speeds: 3 1/4, 7 1/2 and 15 ips. Use them for checking head alignment and for adjusting playback response and level.

Special tools for special operations are usually supplied by the equipment manufacturers.

Stocking parts

Since tape recorder and record changer parts are seldom universal, you will need a much more extensive parts inventory than for TV service. Electronic Engineers estimates that for each manufacturer whose equipment they service as an a.s.a., they have a parts inventory of between $700 and $1,000, their cost.

This requires not only capital, but storage space. Electronic Engineers uses banks of storage drawers arranged by category of parts, such as “belts,” “spindles,” “capstans,” etc. Within these categories they arrange the drawers by manufacturer. Thus, if you need a V-M spindle, you go to the “spindle” section, then look for V-M and the appropriate part number. Electronic Engineers also has an inventory card on each of the approximately 21,000 parts they stock.

As an a.s.a. you will depend on manufacturers for parts lists and technical data. Be sure to find out what arrangements he has to supply you with this vital information.

The growing hi-fi market has attracted many foreign manufacturers.

Our cover this month shows an Ampex F4460 tape recorder being checked for speed accuracy by Paul Zurales, a technician in the shop of Electronic Engineers, Inc., Chicago, Ill. Equipment shown: At top, Hewlett-Packard electronic (digital) counter, just below it, a Hewlett-Packard distortion analyzer; small unit on bench at left, a Varo Flutter Meter.

Advantages of an electronic counter in checking tape recorder speed, according to Electronic Engineers, are high accuracy, fast work and simplicity. A 3-kc tape is played on the recorder. The signal is fed into the digital counter, which gives an exact reading of the frequency in cycles. (Each of the columns on the counter represents one digit, and has numbers from 1 through 9 and zero. The impulse from the tape lights up the proper number in each column.) Percent of speed is then readily calculated. For example, if the counter reads 30.030 cycles, the deviation is 1.0% (rms). Commonly acceptable speed deviation for professional machines is 0.2% fast or slow; for home-type units, 3% fast and 1% slow.

To check turntable speed accuracy with the digital counter, the same procedure is followed, except that a 3-kc test record is used as source.

Tape recorder service is a large part of total business. Here, technician adjusts mechanical linkage on Wollensak.

They need authorized service agencies (a.s.a., for short) in the US. They are more likely to appoint as their a.s.a. the shop that specializes in audio.

Moreover, foreign firms often need stateside quality-control inspection. Transportation over long distances takes its toll, often in hidden damage. An initial quantity of tape recorders was shipped to Electronic Engineers by air. Inspection revealed no problems. Later shipments to the States did not undergo quality-control inspection, and a rash of in-warranty service calls resulted. “We found that every one of the units, which had been shipped by surface, had lost their lubricants as a result of many weeks in the hot holds of ships,” March says. “We now handle all stateside Q.C. inspection for this manufacturer.” Last year, he was invited to visit Japan to conduct seminars on quality control. He was there for a month, and helped set up Q.C. procedures in seven factories.

Among the most important advantages of being an a.s.a. is the extra discount on parts you get from your manufacturers. It enables you to handle servicing jobs for distributors and dealers. By discounting the parts to them, you make it economical for them to give their specialized service jobs to you, because they can make a profit on the parts. And in time, they will come to you just for parts which you stock.

Most makers send out regular service bulletins to all a.s.a.’s. As field complaints reveal problems, they are written up and passed on to you. In this way, you benefit from the experience of every other a.s.a.
You also will benefit from manufacturer advertising and referrals. You will be able to participate in Red Book listing programs and local advertising. Occasionally, national advertising lists authorized agencies around the country. All these programs are effective, because the owner of an expensive tape recorder, for example, prefers to have it serviced by an authorized agency.

Purchasers of new equipment in your area, of course, will be referred to you. These new prospects then become familiar with your service during the warranty period, or else call you after it expires, since your name was given to them as the a.s.a. in their area.

The in-warranty service jobs invariably are not profitable. But if you accept them as inevitable, and handle them as efficiently as possible, you can use them to build goodwill and gain new customers. Remember that the impressions the customer receives during the warranty period will influence him greatly in deciding where to take his equipment for repair later.

What does a manufacturer look for in an a.s.a.? In the early days, the only question asked was, "Can you service?" Now he is very much interested in the shop's integrity. The unfavorable publicity generated by a small minority of service shops has caused the manufacturer (as well as the public) to be cautious about service agencies. He looks for a shop that has a reputation for satisfying its customers. He also is interested in the caliber of personnel. Quality and amount of test equipment receives careful scrutiny. Orderliness and space are factors, too, since they are signs of an efficient shop.

Finally, a manufacturer seeks a shop that has adequate insurance to protect the customer's property. Too often shop owners neglect this item, but it can prove to be a serious obstacle to receiving appointment as an a.s.a.

You don't have to start big. As an example, Electronic Engineers started out in 1950 with only $200 capital. Gradually, over several years, they moved toward specialization, taking on service responsibilities for manufacturers of changers and tape recorders. Now TV servicing represents less than 1% of their total volume. V-M was their first servicing franchise. Their first tape recorder franchise came from Ampex. They are also fully licensed and equipped to service CB and ham equipment.

They now are the authorized service agency for 85 manufacturers. Annual volume is $250,000, at least 50% of which comes from tape recorders. Parts inventory is valued at $60,000 at cost. Electronic Engineers has 15 employees, working in recently expanded, air-conditioned facilities, which now total 12,500 square feet. Each man has his own U-bench with 36 square feet of space, his own tools and bank of test equipment.

At E. E. all technicians specialize—on tuners, domestic recorders, foreign recorders, professional recorders, etc. A unit that comes back is assigned to the original technician. Thus, he learns from his mistake. If it's new repair work, he soon becomes familiar with the vagaries of that particular unit. Says Jerry Man: "We find this internal specialization definitely produces greater proficiency and motivates a personal interest."

Does Electronic Engineers have a minimum? "Definitely, yes. There must be a minimum charge. For example, to check a tape recorder, our minimum is $7.50. This means we'll troubleshoot the unit, locate the problem and correct it. We then quote the cost of parts to the customer. Nine times out of ten, he says, 'Go ahead, fix it.' Of course, we already have 'fixed it.' If he says no, we remove the new parts and return the unit to him as received. The minimum charge has covered our labor and we haven't lost anything. In our opinion, this is the only way to do it. In the long run, it costs the customer no more, and it builds better customer relations because there is a clear understanding.

They also emphasized the importance of turning down certain jobs, "If a customer won't agree to our minimum charge, we politely refuse the job," March explained. "We're interested only in bona fide jobs that can be scheduled through the shop."

Their seasons break down this way: First quarter, heavy in-warranty jobs; second quarter, slow; third quarter, slow and then picks up; fourth quarter, peak volume (fall and pre-Christmas business). To maintain level volume during the off season, they use direct-mail promotions. Their last one was a "special" in cleaning, lubricating and adjusting any portable phonograph or home tape recorder. Results exceeded all expectations. The mailing consisted of an 8½ x 11 sheet listing exactly what work would be done. Price for the phonograph special was $9.99 plus parts; for the recorder special, $12.95 plus parts. It was sent to their list of regular customers only.

If you're now making a fair profit out of your service operation, and the volume keeps you busy enough, you may be better off to leave well enough alone. On the other hand, if you're looking for ways to increase your volume without jeopardizing your profit ratio and you're an adventurer at heart, consider audio service.

E.E. technician at work on a Scott stereo amplifier. On top shelf, Heath intermodulation distortion meter (left), B & W harmonic distortion meter, Heath audio oscillator (left), bottom) and Fisher multiplex generator complete the setup.

Ordinary postal scale is handy for measuring back and takeup tensions in tape recorders. Capstan roller pressure can also be checked.
WHAT'S NEW

FUEL CELL BECOMES OXYGEN DETECTOR in recent discovery by Westinghouse Research Laboratories. Normally, cell generates electricity when oxygen is fed to one side and hydrogen to the other, but without normal fuel supply, cell can detect 1 part per million of oxygen. Here, W. M. Hickam of Westinghouse monitors amount of oxygen removed by his lungs with fuel-cell detector (in metal "can"). Discovery could be useful in medical and biological research, diagnosing lung disease and measuring oxygen exchange.

LASER ROD's precise finishing is demonstrated in this shot through a laser rod. Camera looked through almost 20 inches of as-drawn Corning neodymium-doped soda lime silicate laser glass, 1½ inches in diameter, with ends polished flat to 1/10 wavelength and parallel to 10 seconds of arc. Display rod, in man's hands, is about 1 inch in diameter and almost 2 feet long, finished to same specifications.

MAP OF MANHATTAN ISLAND and neighboring parts of New York City are fired directly onto inside of CRT faceplate. Specialy prepared tube was part of Corning Glass Works display at recent IEEE convention in New York, demonstrating company's technique of making large complex internal graticules for CRT faceplates. Firing patterns on inner rather than outer surface eliminates parallax error.

FIFTEEN YEARS OF ELECTRONICS displayed here on new IBM "System/360" console: vacuum tubes, used in first electronic computers, gave way to transistors, which in turn are yielding to tiny transistor chips (50,000 in a thimble) used in System/360 computers. Chips are mounted, with diode chips, printed resistors and "wiring"; on the little module block lying among them.
Installing & Troubleshooting UHF TV

PART II
Installing uhf adapters in existing sets

By HOMER L. DAVIDSON

VHF-ONLY SETS WILL NEED UHF TUNERS added as uhf appears in your area, and you can make a few bucks by installing them.

The RCA DK71, DK86 tuners and the Admiral 100 and 200 are add-on types. All holes are drilled for a corresponding mounting bracket. Figs. 1 and 2 show the two types. The DK86, the latest RCA tuner, has three tubes: a 6AF4 oscillator, and two i.f. amplifier tubes. The converted uhf signal is fed directly into the i.f. strip of the TV receiver. Fig. 3 shows the i.f. section of the tuner. The circuit of the DK86 is shown in Fig. 4.

An advantage of the DK71 and DK86 tuners is that they can be installed in any TV receiver with a 41-me i.f.

If you have a non-RCA brand to convert to uhf, one of the first requirements is a means of actuating the wafer-switch assembly which fits on the rear of the vhf tuner. If only a small piece of shaft sticks out at the back of the tuner, the shaft must be lengthened. Grind a piece of brass volume-control shaft down on one side so the shaft will fit into the wafer assembly. Place a piece of tubing over the two end pieces as shown in Fig. 5. (Tubing from an old auto antenna mast works fine.) Now sweat the two together. Be sure the flat
side matches the wafer switch and is rotated correctly to align itself with the uhf tuner shaft when installed in the rear of the uhf tuner. The uhf tuner should be turned to the "uhf" position or to an unused channel.

Hook it up

After the switch is mounted, mount the uhf tuner itself, either on the side of the cabinet or through the front panel. Several mounting brackets are provided with each tuner.

Then select the B-plus lead going to the uhf chassis (generally a red wire). Cut the wire or extend it to terminal No. 9 on the uhf assembly. Take the B-plus lead wire that was cut in two and extend it to terminals 10 and 11. Strip the red lead back about 3/4 inch and use it as a jumper between 10 and 11. Solder the green wire to the acg connection and the brown lead to the heater terminal. This tuner is for a parallel heater hookup.

Remove the i.f. link cable from the jack on top of the uhf tuner. Most of these are soldered in, but some use a phono plug. Plug the top link cable from the switch assembly into the jack or connection that held the i.f. cable. Plug the i.f. cable into the jack on the uhf assembly. If there is no plug on the i.f. cable, install a phono plug here. Dress the uhf antenna cable away from metal portions of the chassis and cut it to length. Tape up all wires going to the chassis to the i.f. cable. This may seem like a lot of hard work, but it assures another sale on a new or good used uhf receiver that would not sell in a uhf market otherwise.

In a DK86 there are two more tubes to check in case of snow. A snow adjustment coil, is located at the top rear of the i.f. section. First tune to an unused portion of the uhf band. Adjust the coil for maximum snow. The other coils should be adjusted only under very "snowy" conditions.

A few hints on this tuner: The plastic gear shaft, where the indicator knob mounts, is easily stripped. People will try to turn the tuner beyond its stops and strip the plastic gears. Also, be very careful with the wafer assemblies; they break very easily.

If the tubes and crystal mixer have been replaced and the picture is still snowy, check the shielded cable connections. These will sometimes break off at the assembly switch. Make sure the wafer switch assembly contacts are clean. Check the antenna connections to the uhf tuner itself. Last, check the variable capacitor for shorted plates in the cavity sections.

"Wow" is defined in the glossary of hi-fi terms as a periodic variation in speed which can adversely affect the low frequencies of recorded material. It can often be a headache to the hi-fi listener.

In reproducing sound it is important that the speed of both the recording and playback machines be held constant. Any speed variations will distort the recorded material.

One way to indicate speed variations or wow in the hi-fi system is to play back a constant frequency, for example, a test record or tape made for this purpose. A recorder may be checked by using the audio tone from WWV if a stable tone is not available from other sources.

For more accurate wow indications than are possible by ear, the system output is fed to a frequency discriminating network and detector similar to that used in FM receivers. The detected difference between the highest and lowest frequencies can then be expressed as a percentage of the average speed.

However, a more simple check of wow can be made with a test recording, an audio oscillator and a scope. With the output of the pickup connected to the horizontal input, the output from the test recording can be seen. The audio oscillator is fed to the vertical input of the scope. Tuned to the same frequency as that from the test recording, the 1-to-1 Lissajous pattern will remain stationary. Any shift in frequency will make the pattern shift or change, depending on the amount of speed variation from the drive motor.

A regular or rhythmical pattern shift will indicate a drive-mechanism fault. Further examination of the worm, gear teeth or drive wheels may pinpoint what parts are causing the speed variation. Irregular speed variations can be caused by loose power connections or poor line-voltage regulation. Automatic appliances such as air conditioners, refrigerators and heating systems can also cause line-voltage variations.—A. G. Sydnor

DETECTING TURNTABLE WOW

In a future article, we plan to examine top-of-the-set converters. END

June, 1964
Test Set Aids Two-Way Radio Jobs

Rugged, portable test box measures current, voltage, field strength, provides speaker and audio test tone

TO PARAPHRASE THE OLD ADAGE ABOUT a radioman's sanity, "You don't have to use a test set to service two-way radio, but it helps." Most large communications equipment manufacturers make test sets for their equipment, and at least one makes a "universal" set supposed to fit them all, but I chose to build my own. Why?

1. It saved money. 2. I incorporated the features I wanted, one or more of which were lacking in every test set I had seen. 3. The case matches several other pieces of my equipment, and 4. I like to design and build things.

After many years of servicing two-way equipment, I wanted a test set that would include:

1. A 50-µa meter for receiver and transmitter troubleshooting and alignment.
2. A voltmeter for measuring plate voltages up to at least 700 volts.
3. Means for measuring the final plate current of transmitters.
4. A weatherproof loudspeaker with volume control.
5. A switch for keying the transmitter during tests.
6. A 1,000-cycle tone generator for modulation adjustments and general testing.
7. A relative field strength meter for getting the utmost radiated output from a transmitter consistent with rated input.
8. Means for connecting this apparatus to the equipment under test with the greatest ease and speed.

The finished product is shown with part of its case in the photo below. The antenna for the field-strength meter is supported by a fuse clip and a hole through the partition in the case lid.

The 50-µa meter, M, serves as the basic movement for all voltage and current measurements. Most two-way gear has metering sockets for a 50-µa meter for all necessary measurements.

The 20-megohm multiplier resistor, R9, consists of two 10-megohm precision resistors in series (for adequate voltage rating), and converts the basic 50-µa movement into a 1,000-volt, 20,000-ohms-per-volt voltmeter for plate-voltage measurements, either through banana jack J1 on the panel or through the function switch S4 and test cables. For plate-current measurement, R10 is switched in series with the meter to increase the total resistance to 20,000 ohms (or to convert it to a 1-volt voltmeter). Then it measures accurately the final plate current of transmitters such as Motorola and RCA. These have a built-in shunt across which 1 volt would correspond to a full-scale reading of 100, 250, or 500 ma, depending on the particular model of equipment under test. This information is given in the instruction books.

A 3-volt range is provided by multiplier R8, a 60,000-ohm precision resistor. This range is accessible only through banana jack J6. G-E equipment, for which the 3-volt range is required, has individual pin jacks for metering rather than a single multi-contact socket.

The 1,000-volt scale is hand-drawn below the 50-µa scale already on the meter face. The 3-volt scale is drawn above the existing scale. Because of the nonlinearity of most 50-µa movements, a scale drawn for one make of meter does not necessarily work accurately with another make, so no paste-on scale is provided with this article.

Since weather conditions in the field are occasionally moist, every component of the test set should be as nearly weatherproof as possible. The speaker cone is particularly susceptible to moisture, so the speaker in the test set is a Quartz heavy-duty unit with waterproof cone, like the ones used in drive-in theaters. A 20-ohm potentiometer, R6, serves as a volume control for the speaker. An spst toggle switch (S3) is connected across the microphone push-to-talk circuit so that the transmitter may be left on while tuning, leaving both hands free. Of course, to avoid interference with other stations, the carrier should be kept off except when absolutely necessary.

The tone generator is powered by a self-contained 6-volt battery (Batt), and consists of a 2N169 Colpitts oscillator (Q1) at approximately 1,900 cycles, and a 2N107 voltage amplifier and buffer (Q2) direct-coupled to a pair of 2N438's or 2N448's in parallel (Q3 and Q4) as an emitter-follower. Oscillator coil L1 is one winding of a small surplus audio transformer which happened to have the right inductance. If the inductance is other than 0.37 henry, C1 and C2 may be changed to another value to put the frequency near 1,000 cycles. The only critical characteristic of L1 is

Cables tuck into compartment at right; antenna fits into lid.

RADIO-ELECTRONICS
its Q. If this is too low, it will prevent oscillation. You may want to select a value for R4 that gives least distortion.

A drain of only 7 ma from the battery makes for long life. For dependability the battery should be replaced about once a year whether it needs or not. While incorporated primarily for testing and adjusting audio circuits of FM transmitters, the tone generator is also used for modulating broadcast transmitters during frequency checks, for pair identification in cables, and wherever a fixed audio tone is useful. It puts 3.5 volts rms into 600 ohms with negligible distortion.

An rf choke (RFC), a 1N34 (D), a .01-µf capacitor (C5), and a 250,000-ohm rheostat (R7) convert the basic 50-µa meter into a relative field-strength meter. After a little experience, the meter permits a quick rough check of transmitter output without any direct connections. The meter tells you when you have adjusted the transmitter and antenna so that the most power is being radiated. If placed a few feet from the transmitting antenna, it does not detune the antenna.

Half a pair of TV rabbit-ears fitted with a banana plug fits into J1 on the panel. Some adjustment of the sensitivity of the field-strength meter is possible by telescoping the rabbit-ear. For higher-powered rigs it may be necessary to turn down sensitivity control R7. (This control is not visible in the photographs; it was added after the pictures were made.) The peak-inverse voltage rating of the diode is not exceeded at any full-scale meter reading.

A 2-pole 11-position rotary switch, S4, connects the 50-µa meter to the various circuits to be metered, at the same time inserting the necessary multiplexer resistors. The switch is ceramic-insulated to prevent leakage under humid conditions. For connection to the equipment under test, an 11-pin male receptacle, J4, is provided on the panel. All connections necessary for metering Motorola, RCA and similar equipment with metering sockets are made through J4. Since Motorola equipment predominates in this area, the pin connections were made to correspond with Motorola's metering sockets so that a straight-through cable may be used for connection. Adapter cables can be made up for other makes.

The first seven switch positions, except the fifth (marked "4-"), connect the negative side of the meter to pins 1 through 6 of the receptacle, while grounding the positive side, for reading grid currents of limiters and oscillators in receivers and the various stages of transmitters. The fourth position ("4-\)) reads discriminator output in receivers, while "4-" also reads discriminator output, but with reversed polarity. In

JUNE, 1964

Circuit of the test set.

www.americanradiohistory.com
the eighth position of S4, marked “7 & 8” on the panel, the meter with its 1-volt multiplier is connected across pins 7 and 8 of J4 for measuring final plate current in conjunction with the shunt provided in transmitters. Position 9 (TRANSIT) shorts the meter movement to damp vibrations while hauling. Position 10 grounds the negative side of the meter and connects the positive side to the field-strength meter components described previously. In position 11, the negative side of the meter is grounded and the positive side is connected through the 1,000-volt multiplier R9 to pin 7 of J4 for plate-voltage measurements.

J3 is a standard mobile microphone receptacle for plugging in a microphone to operate the transmitter from the trunk of the car or wherever it may be installed. J2 connects to the output of the tone generator for using this part of the instrument separately. J5 is a common terminal for all the circuits in the instrument. J6 connects to the meter when the switch is in EXTERNAL VOLTS position through a 60,000-ohm multiplier resistor R8. This connection provides a 3-volt range for testing G-E equipment, which has individual pinjacks for metering rather than a metering socket for all circuits, and requires a 3-volt range. Since J5, the common terminal, is not actually “grounded” to anything with no test cable in J4, voltages negative with respect to ground may be measured by reversing the leads to J5 and J6. J7 connects to the 1,000-volt multiplier for plate-voltage measurements on G-E and other equipment with no common metering socket.

S2 switches pin 10 of J4, the audio pin connecting with either receiver output or transmitter input to either the speaker, mike receptacle J3, or the tone generator.

The components are all assembled on an 8 x 9-inch Masonite panel, heavily lacquered on both sides after the decals are applied. The photograph shows parts placement. The panel is mounted in 1/4-inch plywood carrying case 8 x 12 1/4 x 4 1/4 inches inside. This leaves a 3 x 8-inch compartment for test cables. The case is finished inside and out with several coats of Duco enamel for protection against moisture and rough handling. All eight corners are fitted with brass protectors. The cover, 1 inch deep inside to provide clearance for the control knobs, is attached with half-hinges for ready removal. It is kept closed by a latch from war-surplus equipment. A carrying handle removed from the counter tube tester completes the hardware, all of which except the copper guards is mounted with 6-32 screws and nuts. The nuts are recessed into the wood inside and soldered to the screws to prevent loosening.

When you have to align (and don't unless you have to!) this one-at-a-time approach is pretty simple

ALIGNING TV I.F.'S

ALIGNING VIDEO I.F.'S AND TUNERS IN TV sets can be a touchy problem. Far too many times we have to say, “It's a beautiful curve. Just like the book. Only one little trouble: it won't work!” Let's take this problem one step at a time and see if we can't make some sense out of it.

Last month (“In and Around the Video I.F.”) we saw how to set up and calibrate a signal generator for video alignment. This time, let's get to work and actually walk through a video alignment. First, let's be sure we know why and when to align.

Why do we align, anyhow? To make the stages pass the wide band of signal frequencies we need to get a complete TV signal, both picture and sound. They're 4.5 mc apart, so this takes some doing. The natural response of a tuned circuit would be far too narrow unless we did something to make it broader. Unfortunately, when we broaden it, we lose gain (Fig. 1). So we have to add more stages to get back the gain.

The old sets used overcoupled transformers. Hard to align, and not too much bandwidth either. Now we use stagger-tuned circuits. In these, each circuit peaks at a different frequency, and “holds up the curve.” Each circuit has a peaked response at a certain frequency. So, this raises the overall curve around that frequency. (One other advantage: since no two circuits are peaked at the same frequency, we don't have oscillation in the i.f. strip.)

The response curve actually means “amplitude vs frequency.” It tells us what the output of the i.f. is at any given frequency within the bandpass limits. Fig. 2 shows a typical i.f. response. Note the position of the frequencies on the curve, and this basic fact: here, we work in percentages.

We use an odd little system in transmitting TV signals: vestigial sideband. That means that we modulate the picture carrier with the signal, then chop off almost all of one sideband (modulation frequencies plus or minus the carrier frequency) because the information in one sideband is the same as that in the other. Our i.f. response must match this characteristic. So, we put the picture carrier part way up one side, so that the sideband that is transmitted falls on the high-gain part of the curve and gets amplified. The partial (vestigial) sideband falls on the sloping-down part, but we don't need it anyhow.

The sound signal is 4.5 mc away, and, since this is FM, we don't need a lot of amplitude. We can get that back later on, by amplifying it some more. If we let the sound carrier get too big going through the video i.f., it interferes with the picture signal. So, we keep it down on one side of the curve until we get ready to use it.

When to align

A lot of sets are realigned when they really don't need it. Far too many of us decide that a set needs alignment and start twisting screws and slugs. This leads only to trouble! Two axioms in all alignment work: First, be sure that the set is in good condition before you start any alignment. Second, be sure that it needs it! To find this out, you must hook up the proper test equipment; you can't judge this by eyeball" or even on a test pattern! No one can.

Because of the design and construction of TV i.f. amplifier stages, you'll find very little actual drift. If you're setting up your alignment equipment and test a good-grade TV set about 8-10 years old—one that you know hasn't been touched, you'll be surprised how close it will be to perfect align-

END
By JACK DARR
SERVICE EDITOR

The main cause of misalignment is "screwdriver drift!" To find out whether a set really needs alignment, test it! Connect the alignment equipment and run a sweep curve, check marker positions, etc. Did you know that this kind of test setup is also a very useful way to check for i.f. gain? Just try replacing a tube in the i.f. under these conditions. If the curve rises, very perceptibly, the old tube was weak.

After a little practice, we'll be able to tell by the setting on our signal generator output just about how well the circuit is working. We used to do this with radios, and we can do it just as easily with TV sets.

Aligning stagger-tuned i.f.'s

The first step, as in all alignment, is to get the set working. Check all tubes, voltages, etc., and be sure that you can get at least part of a picture or sound through it. Always remember this: no TV set ever suddenly jumped out of alignment! If it was working and quit, some part has failed. This will not change the alignment, unless the part happens to be an i.f. transformer!

Replacing an i.f. or tuner tube may throw alignment off very slightly, but it will never change the alignment so far that you can't get picture and sound through it. (Try it and see!) So, make this a firm rule: Never touch any of the alignment adjustments until you have found and fixed all the other troubles—even then, not until you have a full set of alignment test equipment connected so you can see just what you're doing.

Let's see how to do it. Set's working, but it "just doesn't look right." Streaking, ringing, echoes after black objects, and so on, or maybe the sound won't come in where the best picture is. In color TV sets, maybe we get a good black-and-white picture but can't get the color to stay in, and so on. These can all be signs of misalignment. (Of course, they can be signs of other troubles too, but you fixed them first, didn't you? If you didn't, go to it now!)

To align a stagger-tuned i.f., we need an accurate rf signal generator, a bias box and a vtvm. The bias box is the first thing we set up. A fixed bias "locks" the gain of the i.f. stages so that it won't change with changes in signal. A shift in bias could obscure the gain changes we're looking for. Fig. 3 shows a typical i.f. stage. Connect the negative terminal of the bias box to the i.f. agc return as shown. The alignment instructions will tell you about how much voltage to start with.

We feed the signal generator into the input of the i.f., at point A. You should couple very loosely here. Often, just clipping the signal generator lead to an insulated wire or to the body of a resistor near the stage you're working on is enough. We connect a dc vtvm across the video detector load resistor, at point B.

What we're going to do is feed single signals into the input, and peak each of the tuned circuits for maximum response on the vtvm. Ordinarily, we'll get a negative-going dc voltage at the video detector output with an increase in signal strength. But check the polarity of the diode.

To be sure that you're actually getting a signal through the circuit, set up the generator on any of the alignment frequencies given in the alignment instructions, and see if this gives us a reading on the meter.

Turn the rf output up and down; if the dc voltage "follows," we're OK so far. If it doesn't, try reducing the negative bias from the bias box slightly. You may have the i.f. stages cut off.

Now, we're ready to go. Best way, in most sets, is to begin at the last i.f. and work toward the input. In this case, we'd set up for a 45.75-mc signal and align the secondary of the output i.f. transformer for a peak on the meter. Keep the reading as low as possible. If your meter reading goes too high, it'll be hard to find the exact peak. Keep it down to 1–2 volts by cutting down the rf signal input. Adjust each of the tuned circuits in turn. Here, we have nine of them. Six are "gain" circuits, adjusted for maximum response. The rest are traps.

Traps are resonant circuits included to take out frequencies we don't want (the sound from the channel above, and so on). So we adjust these to a minimum. An "absorption trap" takes out undesired signals by furnishing a very low-impedance path to ground. To set a trap properly (and this will always be noted in the alignment instructions), feed in a large rf signal, get a reading on the meter, then tune the trap for the lowest possible reading.

The reading may not go to zero, but get it as low as you can. Tune for maximum dip; then increase the output of the signal generator and recheck for minimum.

The scope as output indicator

You can use the scope in the same way as the vtvm, although the meter is a wee bit easier to read for very fine adjustments. Simply use a modulated rf signal input and tune each circuit for maximum height of the audio pattern on the screen. You can use this for setting traps, too. Just tune for minimum pattern height.

With this process finished, you ought to get a good picture and sound. Take the alignment equipment off and check the set on the air.

Fig. 3—Generalized video i.f. strip shows usual tuned circuits—both "trap" and "pass" types—that have to be adjusted exactly to the indicated frequencies. To keep age from compensating for changes in signal level due to alignment operation, bias box is used to clamp bias.

JUNE, 1964
Parallel-R Calculator

Need an odd resistance value? This instrument makes the job easy.

If you need odd resistance values frequently, this nomogram and instrument (Fig. 1 and 2) can save you considerable time. They will also solve parallel-inductance and series-capacitance problems. The nomogram is useful for determining quickly the power shared by resistors in parallel and can be used independently of this instrument. It can be used similarly for series-capacitor voltages.

Construction of the calculator is simple, and you need not follow the layout I used. [The original high-precision parts give 1% or better accuracy, but they're expensive. Ordinary wirewound pots and 1% resistors will do for everyday bench use, depending on the accuracy required for the particular application.—Editor]

When it is completed, set potentiometers R1, R2 and 2Rf for zero resistance. Put the dials on at a setting of 100 (not zero), so the dial range is from 100 to 1,100. R1, R2 and 2Rf are connected so that clockwise rotation (increasing dial number) increases resistance. The limit resistors R3, R4 and R5 are one-tenth the value of potentiometers R1, R2 and 2Rf (Fig. 2). This limits the maximum current through the meter and makes a dial-reading change of 10 to 1 coincide with a resistance change of 10 to 1. Although the unit can be used for any application where the basic formula is 1/Xf = 1/X1 + 1/X2 the three dials are labeled R1, R2 and 2Rf, because the instrument is used most frequently for parallel resistances.

The circuit has two arms. One is a simple series circuit, the other series-parallel. The two arms have the meter common to them. The batteries are connected so that current from these two arms flows through the meter in opposite directions. The combined total resistance of the series-parallel arms, R1, R3 and R2, R4 is half of arm 2Rf. Batt 2 has twice the voltage of Batt 1, so current flow in these two arms will be equal for equal dial settings. This arrangement allows all of 2Rf to be used instead of half, as would have been the case were Batt 2 equal to Batt 1 and the total resistances of the two arms equal. With this circuit, dial 2Rf will read twice the actual Rf value, so it is labeled 2Rf. This permits a more accurate reading, since any dial reading will be divided by 2.

I decided to use a 100–0–100 μa movement, because it would give a fine null reading. Since the power requirements are very small, a penlight cell is used. With 1.5 volts and 100 μa the total maximum resultant resistance in arms R1, R3 and R2, R4 must be 15,000 ohms (1.5V/0.0001a = 15,000 ohms). Therefore each arm must be 30,000 ohms. Since a 15,000-ohm potentiometer of this type was not available, a 30,000-ohm pot was used for 2Rf. With double the resistance being used, it was necessary to double the voltage to provide equal currents in both arms for equal settings.

The total resistances of the two arms is such that, with the voltages used, the currents for maximum and minimum potentiometer settings are 83 μa and 1 ma. A normally closed pushbutton (S2) connects the shunt R6 across the meter. This shunt protects the meter for any settings of R1, R2 and 2Rf which will cause the greatest unbalanced current flow.

To check for accuracy, I set dial R1 to 1,100, and dial R2 to all the EIA values in turn from 110 through 1,000 ohms. The measured values were compared with the computed values as a percentage error. This instrument's accuracy is good enough to allow it to be used as a companion for a 1½ Wheatstone or other type of bridge, when it is built with the parts shown in the parts list.

The instrument is simple to use. If you need to find a parallel value (two known resistors in parallel), set R1 to one value and R2 to the other. Adjust

By MELVIN S. LIEBERMAN

Inside the case. Parts placement is not critical.
2R_f for a null (zero reading). Press the INCREASE SENSITIVITY switch (S2) and finish the 2R_f dial null setting. The 2R_f dial is exactly what it is labeled: twice the resultant resistance; therefore, divide its reading by 2. The answer is the resultant resistance.

Should you need some odd value of resistance (a more common case), set the 2R_f dial to twice this desired value. Now there will be many possible combinations of dials R1 and R2 which will give a null and, therefore, satisfy the requirement. Set either R1 or R2 to some convenient value and determine the null with the other dial to satisfy the requirement.

The R1, R2 and 2R_f dials may be divided or multiplied by multiples of 10, as long as all three dials are treated alike. This instrument may be used for any number of parallel resistors by computing values two at a time. The meter scale has low on the left side and high on the right side of "0". This indicates that the setting of dial 2R_f is low or high when the meter pointer is to that side of zero (center).

The use of the percent-total-watts nomogram (Fig. 2) can best be illustrated by an example. Suppose you need a 3-watt resistor of some specific value. Many combinations of resistors will produce that value, but only one will share the wattage in the correct proportion. For a 3-watt resistor, the power distribution will best be 1 and 2 watts, or 331/3% and 662/3% of the total. On the nomogram, draw a single line from zero to the 662/3%, 331/3% point. On the instrument, choose a combination of R1 and R2 that satisfies R_f (remember that the dial on the instrument will be 2R_f) and whose abscissa and ordinate intersect this 662/3%, 331/3% line. The lowest value of R1, R2 will dissipate the highest wattage, and the largest value of R1, R2 will dissipate the lowest wattage. END

Fig. 2—Nomogram gives percent of total power dissipated in each resistor of parallel pair. Range can be extended by multiplying both scales by multiple of 10. Nomogram can be used independently, without calculator.

Suppose you have two paralleled resistors, R1 and R2, 300 ohms and 900 ohms, respectively. Mark off R1 at 30 on the horizontal (R1) scale, and R2 at 90 on the vertical (R2) scale. Now find the point where the 30 and 90 lines intersect. Lay a straightedge between that point and the origin 0 (upper left corner). The line drawn along the straightedge will fall on or along one of the percent lines, and you can read off the percent of total power dissipated by each resistor.

Remember that the higher percentage applies to the lower resistance value, and vice-versa.

Fig. 1—Calculator circuit.

Fig. 1—Calculator circuit.

<table>
<thead>
<tr>
<th>R1, R2, 2R<sub>f</sub></th>
<th>Pots. 30,000 ohm, 7%, 10-turn, linearity 0.1%, (Special—RCA, Clarostat 9255 or equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2R<sub>f</sub></td>
<td>3000 ohm, 0.1% (Eastern Precision Resistor Co. or equivalent); 1% units usable with slight loss of accuracy (IRC 9140, Daven 1174, RPC type AA)</td>
</tr>
<tr>
<td>R3, R4</td>
<td>3000 ohm, 0.1% (Eastern Precision Resistor Co. or equivalent)</td>
</tr>
<tr>
<td>R5</td>
<td>62 ohm, 1% watt, 5 or 10%</td>
</tr>
<tr>
<td>S1</td>
<td>S2—Pushbutton, normally closed (Grayhill 2202 or equivalent)</td>
</tr>
<tr>
<td>BATT 1</td>
<td>1.5 volt dry cell</td>
</tr>
<tr>
<td>BATT 2</td>
<td>2-ref 1.5 volt dry cells in series</td>
</tr>
<tr>
<td>M-100</td>
<td>0-100 μA meter (Weston 506 or equivalent)</td>
</tr>
<tr>
<td>Case</td>
<td>2-section, 7 x 3 x 3 in. (Add Mallory CU-300BA or equivalent)</td>
</tr>
<tr>
<td>Dial</td>
<td>3 Beckman Duodials (model 8B or equivalent)</td>
</tr>
<tr>
<td>Substitute dials must have at least 11 turns—10-turn dials will not do</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous hardware:

- Battery holder
- Substituted dials must have at least 11 turns—10-turn dials will not do

| JUNE, 1964 | 51 |
For much CB work, you must hold a Second-Class FCC Radiotelephone License

By JIM KYLE, KEG-3382

IN THE NOVEMBER 1963 ISSUE OF Radio-Electronics, we said that, contrary to most peoples' belief, you could do *almost anything* to a CB transceiver without an FCC Second-Class Radiotelephone license ("Servicing CB Transceivers," p. 46). But that still isn't *everything*. You can't make any adjustments or repairs that might affect the transmitting frequency, nor can you make on-the-air checks or tune-ups without that ticket. Since such jobs do come up, you are still somewhat handicapped until you get your license.

The first step is to write the FCC office nearest to you (a list of field offices accompanies this article) and ask them for the latest schedule of examination dates and a set of application forms for the Commercial Radiotelephone Operator license.

The second step is to do a little studying. If you happen to be a ham operator already, you'll have no trouble with the theory portion of the Second Class examination. However, the questions dealing with rules and procedures may give you some static.

The examination for Second-Class licensees (which is all you need) consists of three separate tests: Element I, Element II and Element III. Each element contains enough questions to give you a fair test; almost all of the them are multiple-choice, but a few require you to draw or correct typical schematics.

Element I, "Basic Law," is required of all commercial licensees. It deals with such things as distress messages and secrecy of communications.

Element II, "Basic Operating Practice," is the one most likely to cause you difficulties since, as a service technician, it falls completely outside your experience. Typical questions might include such items as "Which of the following stations may be operated by the holder of a radiotelephone Third-Class operator permit?: 1. Standard broadcast. 2. TV. 3. Relay. 4. F.M. 5. None of these." (The correct answer is 3.) Or "Which of the following is the proper meaning of the word 'Roger'?: 1. My transmission is ended and I expect a response from you. 2. This conversation is ended and no response is expected. 3. I have received all of your last transmission. 4. Your last message received, understood, and will be complied with. 5. None of these." (Again, the correct answer is 3.)

The best way to prepare for these questions is memorization! The study guide published by the Federal Government is available from the Superintendent of Documents, Washington 25, D.C. Even better for study purposes are the "Q&A" books published by Sams and Rider; one of these is in the library of almost every city. The "Q&A" books include rather complete discussions of the various questions.

Element III is the theory portion of the test. It consists of 100 questions. Usually the last five consist of schematics which either you must draw or which have been drawn but contain errors and must be corrected. A few typical Element III questions are: "The heat dissipation in watts of a 20-ohm resistor carrying ½ ampere of current is: 1. ½ watt. 2. 5 watts. 3. 1 watt. 4. 20 watts. 5. None of these." (proper answer—2.) Or the much more complicated "Operation on a frequency lower than the resonant frequency of an available Marconi antenna may be accomplished by: 1. Adding inductance in series with the antenna. 2. Adding capacitance in series with the antenna. 3. Cannot be done. 4. Adding capacitance in parallel with the antenna. 5. Adding inductance in parallel with the antenna." (proper answer—1.)

The third step in getting the license, of course, is to take the exam. That schedule you wrote for will show the dates, times and places of examinations for the coming 3 months or so. Pick your time and place and try to get there early. You'll need to take along a pencil and pen, and a check or money order for $4, payable to "Federal Communications Commission."

Fill out your application forms in advance, and when you get to the examination point give them to the examiner. He will give you the packet of exam papers, and from there it's up to you. Plan about 3 hours—1 hour per element. If you've studied well, you won't need all this time—but frequently it may even take a little longer.

Tips on taking the exam

My standard procedure when taking an FCC exam is first to scan through the exam paper, then calculate how many questions I can *fail* and still pass. Since a 75% score is the dividing line, this means I can miss 12 questions on a 50-question exam or 24 out of 100.

Then I go through again, answering only those questions I am sure of. This done, I count the unanswered ones.

If there are fewer left unanswered than the number I can safely miss, I feel "home safe" and go back a third time, answering with the first guess (amazingly, this is often the right answer—the subconscious frequently supplies the answer though the conscious mind refuses..."

"SECOND PHONE"

Ticket to CB Service Profits!

RADIO-ELECTRONICS
to recognize it.

If, however, I still have some to do I go back and think—dig into the memory—work at it. A typical example was a field-strength problem on the First-Class exam. I knew I knew how to work it but, because of “exam jitters,” couldn’t remember the right way. I worked the problem five times in five different ways. The fifth time, my answer was one of the five printed on the answer sheet so I turned it in. I still don’t know if it was right or not—but that question marked the magic number on that test, and I passed the exam.

Once you’ve taken the test, you have another 2 weeks or so to wait. If you passed everything, your license will come in the mail. If you passed Elements I and II but failed Element III, you’ll get a Third-Class license; this means the next time you try you won’t have to take I and II over again.

So now (let’s hope) you have your license. What do you do with it?

Oscillator checks

One point made in the earlier article is that it is perfectly all right to make voltage measurements and do other troubleshooting on a CB transmitter oscillator, but that didn’t help, you could not adjust frequency or do any tuning that might affect frequency.

Now—you have your Second-Class ticket. Suppose the complaint is low output but the oscillator voltages are all normal. Try retuning the oscillator plate circuit to get the maximum negative voltage at the grid of the following stage (buffer or final). In some circuits, tuning the output circuit will “pull” the oscillator frequency itself, perhaps causing off-frequency operation. So be sure to measure the frequency after the adjustment to make sure it hasn’t wandered beyond tolerance. For this, you’ll need a frequency meter.

The International Crystal model C-12B, made especially for CB service, is one of the easiest to use. Also suitable are the Lampkin model MCM, and various other meters made by DuMont, Eltec Laboratories and Gertsch. The BC-221 is not accurate enough without a complex measuring technique.

Specialized equipment like this is very easy to use. For example, to measure frequency with C-12B, connect the meter to the transceiver, set the rotary switch on the meter to the channel you want to measure, key the transmitter on and read the deviation in cycles per second from the meter scale.

Air checks

One further use you’ll have for your Second-Class license is actual transmitting tests with an antenna. Not all antennas (not many, even) present the pure resistive impedance of a dummy load. So to give a more valid indication of transmitter performance, it is wise to check operation with the transceiver connected to the antenna with which it will be used. Here, an SWR (standing-wave ratio) meter is useful. These are often combined with power meters, and the two functions are both very useful in adjusting the transmitter output network and the antenna matching network (if there is one) for maximum power transfer.

But—you can make such tests legally only with that Second-Class license!

With this article is a list of FCC Field Offices to which you can write for forms. Why put it off?

FCC FIELD OFFICES

Address correspondence to “Engineer in Charge, Federal Communications Commission,” and follow that with the appropriate address from:

ALASKA: Room 53, US Post Office Building, Anchorage
CALIFORNIA: Mkt 50, 849 S. Broadway, Los Angeles 32
COLOMBIA: 521 New Customhouse, 955 Battery St., San Francisco
COLORADO: 521 New Customhouse, 19 St., Denver
DISTRICT OF COLUMBIA: 718 Jackson Place, NW, Washington
FLORIDA: 312 Federal Building, Miami
GEORGIA: 718 Atlanta National Building, Atlanta
HAIGHT: 505 US Customhouse, Court House & Post Office, Halahole
ILLINOIS: 826 US Court House, 219 S. Clark, Chicago
LOUISIANA: 600 Federal Office Building, New Orleans
MARYLAND: 800 McHenry Bldg., Baltimore
MASSACHUSETTS: 1600 Customhouse, Boston
MICHIGAN: 1029 Federal Building, Detroit

www.americanradiohistory.com
VERSATILE 6BN6

You may have to think hard to find something you can’t do with this tube!

Because of its unusually sharp cut-off characteristics and extremely high transconductance, the 6BN6 has many applications besides the one for which it was specifically

FM limiter

The 6BN6 tube is used in FM tuners and in many TV receivers as a combination FM discriminator and limiter. It is also used as a limiter only, when followed by a discriminator or ratio detector (Fig. 1).

The i.f. signal fed to grid 1 alternately drives plate current to maximum and to cutoff. Hence, amplitude modulations and noise pulses are erased and the amplitude of the output signal cannot exceed a specific level regardless of how hard the grid is driven.

A single fixed resistor can be used in the cathode circuit to obtain about 1 volt negative bias for both grids 1 and 3. But since the bias is critical, a variable cathode resistor (R2) and limiting resistor (R1), shown in the diagram, is recommended.

The greatest advantage of the 6BN6 as a limiter over conventional two-stage limiters is its short time constant. In ordinary limiters the grid leak and capacitor lengthen the time constant. They are not required with a 6BN6. Hence the gated-beam limiter clips noise impulses instantaneously and is said to produce far better noise immunity than any other FM limiter.

FM discriminator/limiter

A single 6BN6 can do the work of two pentodes, two diodes and a triode, customarily used in FM receivers as cascode limiter, Foster-Seeley discriminator and audio amplifier. The gated-beam discriminator is claimed by many government and industrial experts to be superior to any other type.

In the circuit of Fig. 2, all these functions are performed by a single 6BN6. Bias is adjustable as before so that the tube can be set to the optimum operating point.

Grid 1 is driven by the i.f. signal from the preceding i.f. amplifier. Resistor R3 broadens the selectivity of the input i.f. transformer.

Grid 3 is excited by the same signal because of space-charge coupling. This causes the signal voltage to develop in the resonant circuit, L1-C1, which is shielded from the input i.f. transformer. When the grid 1 signal is at a level of about 2 volts rms, the signal at grid 3 has a level of about 4 volts rms. The signal at grid 1 leads the signal at grid 3 by 90° when L1-C1 is tuned to the frequency of the incoming signal.

When the incoming signal changes in frequency, with frequency modulation, the phase relationship between the signals at the two control grids changes.

The incoming i.f. signal causes grid 1 to open and close its gate. Plate current can flow only when the gate formed by grid 3 is open. Because of the high Q of L1-C1, the grid 3 gate opens and swings high during a positive excursion of the incoming i.f. signal, and the plate swings high during the negative excursion. The plate signal is to be used as either an AND or an OR gate.

By LEO G. SANDS

The 6BN6 gated-beam tube is one of the most interesting available to the experimenter. Many TV sets and FM tuners use it, as do some mobile radio equipment. But few who service equipment using this unique tube have given it much thought.

Its schematic symbol is the same as that of a pentode: three grids. Like a pentode, the 6BN6 control grid is nearest the cathode. But what would ordinarily be a screen grid is an accelerator grid. And in lieu of the suppressor grid, the 6BN6 has a second control grid known as a quadrature grid. Let’s call these grids 1, 2 and 3.

In a pentode, grid 3 has very little effect on plate current and is usually connected to cathode or to ground. But in the 6BN6, grid 3 has about the same effect on plate current as grid 1 (control grid). When grid 1 or 3 is made only slightly positive, plate current will reach maximum. Making these grids more positive will not cause plate current to rise any higher. Plate current can be cut off completely by making either grid 1 or 3 slightly negative. Hence the tube can be used as either an AND or an OR gate.

![Fig. 1](https://www.americanradiohistory.com/images/versatile-6bn6-fig1.png)

Fig. 1—The 6BN6 as a limiter for FM tuners. Bias should be adjusted for optimum performance with R2.

![Fig. 2](https://www.americanradiohistory.com/images/versatile-6bn6-fig2.png)

Fig. 2—This circuit is typical of kind of FM-limiter-detector-rolled-into-one found in many TV sets and some FM tuners.

RADIO-ELECTRONICS
Mobile radio use

The 6BN6 is also used in mobile radio communications receivers as a combined FM discriminator/limiter. Fig. 4 shows a circuit in a typical receiver.

Note that the cathode is grounded. Under no-signal conditions, grids 1 and 3 are at zero potential. When a signal is present (even noise), bias for grid 1 is developed across R1 and R2. The test point (TP) is used for receiver alignment purposes.

Since this discriminator operates at 1650 kc instead of 10.7 or 4.5 mc as in FM tuners and TV receivers, respectively, a small capacitor, C2, is used to obtain sufficient signal at grid 3.

The peak audio output voltage is around 16 when a fully modulated FM signal is received and the plate supply is about 270-300 volts.

Combination FM/AM detector

AM ham receivers can be converted to receive both narrow-band FM and AM signals by replacing the diode detector and first af amplifier triode with a 6BN6. A practical circuit is shown in Fig. 6. When S1 is set to the FM position, the avc voltage is grounded. In the AM position, the quadrature tuning circuit (C1-L1) is grounded out. C1-L1 may be any convenient network operating at 455 kc. You can use a 455-ke i.f. trap or half of a 455-ke i.f. transformer.

Squelch circuit

The 6BN6 can also be used as a squelch-controlled af amplifier. A possible circuit is shown in Fig. 7. Here the af signal from the detector is fed to grid 1. The squelch voltage is applied to grid 1.

When squelched, grid 1 is negative and the tube is inoperative because of the bias developed across R1 and R2. To open the squelch, a positive voltage must be applied to grid 1. This can be obtained from the screen of an avalanche-controlled i.f. amplifier as shown.

When no signal is being received, the avc voltage is low and the i.f. amplifier tube draws maximum screen current. Hence the voltage across R3 and R4 is low. An incoming signal raises the avc voltage, and screen voltage rises. Grid 1 of the 6BN6 tube now becomes positive and the tube allows the audio signal to get through.

This circuit is for an AM receiver (CB set, etc.). The positive voltage can also be derived by rectifying the i.f. signal as shown in the "alternate" portion of Fig. 7.

For FM receivers, the positive voltage can be obtained by rectifying the signal as before or by employing a noise amplifier and rectifier as in Fig. 8. When noise is present, in the absence of a signal, the noise produces a negative voltage which biases grid 1 to cutoff. When the noise is quieted by a signal, the 6BN6 conducts.
Control and timing circuits

An AND circuit using a 6BN6 tube is shown in Fig. 11. The tube is cathode-biased to cutoff. When a positive voltage is fed to grids 1 and 3 simultaneously, plate current flows and the relay is energized.

By grounding the cathode and applying a small positive voltage to both grids (Fig. 12), an OR circuit is formed. Plate current can be cut off by applying a negative voltage to either grid 1 or 3. This causes the relay to drop out.

The sharp cutoff characteristics of the 6BN6 make it a good tube for electronic timing circuits. In the circuit shown in Fig. 13, grid 1 is biased to cutoff at about -4.5 volts by adjusting R1, which is across a 6-volt battery. Grid 3 is biased 3 volts positive by another battery. The relay is de-energized since plate current is zero.

When switch S is in the off position, capacitor C is charged to 9 volts by another battery. When set to the on position, the 9-volt positive charge in C is applied to grid 1. This voltage is in series-opposition to the -4.5 volts bias, making the grid 4.5 volts positive.

When the charge drops to 3.68% of full charge, or 3.3 volts, the voltage on grid 1 will have dropped to -1.2, and the relay will fall out. If the timing resistors are set to insert 1 megohm in one bank and 0.1 megohm in the other, this will occur in 1.1 seconds.

Due to variations in relay characteristics, tube, aging, etc., error is minimized by making grid 1 bias adjustable.

The possible applications for the 6BN6 are myriad. The circuits here are offered to stimulate ideas and as a take-off point for the experimenter. END
MULTIVIBRATORS and blocking oscillators make nice waveforms, but not the kind we want for TV sweep. So we add little R-C networks to come out with the kind of wave we have to have. Trouble in these circuits is pretty simple if you know what to look for and where to look for it. Let’s take a vertical oscillator-output circuit, for instance (Fig. 1).

This ought to look familiar—it’s used in lots of sets. We didn’t put any tube numbers in—they are all the same as far as this is concerned. The parts values are taken from a Dumont 306, if you’d like to know, which used half a 12AT7 and a 6S4. Makes no difference anyhow.

We’ve circled the saw-forming networks. More than you thought there were, huh? Note that some parts are actually part of more than a single network! The .0022-µf capacitor, for instance. Now let’s see what happens in an actual set if something goes sour in this circuit.

Troubles are no more complicated than a change in value of parts. Resistors get bigger or smaller, capacitors leak, and so on. A good starting place for tests is at the oscillator plate. We ought to see a peaked sawtooth, like Fig. 2-a. Be sure to use a low-capacitance probe for this. These circuits are all very-high-impedance, and even the

Fig. 1—Typical vertical deflection circuit.

![Diagram of typical vertical deflection circuit](image)

Fig. 2—Normal waveform on output tube grid or oscillator plate: equal spike and sawtooth amplitudes. Exact ratio may vary from set to set.

a—If time constant of output grid circuit increases (either R or C gets larger), saw flattens and spikes get longer.

b—Smaller much larger.
when you clip the scope on, to stop the picture. This is normal, and you can set it back after you disconnect the test equipment.

In Fig. 2-a, notice that the saw and spike parts of the wave are about the same in amplitude. This is good, and seems to be about normal for many sets. Now, what happens if part values change? Let's take the grid network, R and C in Fig. 1. If either part goes up in value, the saw flattens out and the spikes get longer (Fig. 2-b). But, you say, the capacitor can't get bigger "naturally." Right. But suppose the set's been in a shop where they can't read color codes or schematics, or can't read, period? There could be a 0.47 in there instead of the 0.047! (Don't think this can't happen! I've taken a few of 'em out!) Same results in either case, and only two parts to check. Here, the resultant waveform will always look something like Fig. 2-b.

Now, if the resistor gets smaller in value, we start losing the spike part of the wave, and the sawtooth gets steeper, as in Fig. 3. The original resistor here is 15,000 ohms. Fig. 3 shows the resulting waveform as this resistor is reduced in value.

Notice that we keep losing more and more of the spikes as the resistor gets smaller, until finally we have nothing but a pure sawtooth. What effect does that have on the picture? You'll see bad distortion: loss of height, and vertical linearity, beyond the ability of the controls to correct. In quite a few cases, bad waveform affects sync or hold, and the picture rolls very quickly, if sync disappears for a moment.

The same trouble can happen in the feedback network (the string of resistors and capacitors connected between the output tube plate and the oscillator tube grid). The purpose of this is to feed back a pulse from the output to the input, to keep the oscillator running. The R-C networks here not only shape the pulse (from a "peaky" sawtooth to a spike), but regulate its amplitude. After all, we're coming from about 1,200-volt peak pulse down to about 50 or 60 volts, and we have to cut down somewhere. This network does it—see the shunt resistor to ground, the 68,000-ohm unit? (Fig. 1.) That's a part of it, and the impedance of the capacitors and resistors does the rest.

Troubles here usually affect the oscillator frequency first. They also ruin linearity, of course, but usually trouble seems to show up as poor hold before linearity gets too bad. For instance (a very common trouble), if that .0022-µf capacitor shorts out or gets leaky, the oscillator will slow down so far that you can get a stable picture only by settling for two complete pictures on the screen (30 cycles).

So use your scope, your eyes and your head when you find these mysterious troubles in "the vertical," and they won't be so hard after all! Be sure to check all new capacitors for leakage before you put 'em in.

Stereo earphones with 3-channel stereo

I hooked up a pair of stereo earphones to my own three-channel set. Got a horrible sound! The phones have a 3-wire "adapter." Checking the schematic of the amplifier, I see the C-terminus aren't ground, but the 4-ohm taps are! How can I hook these up without disturbing the feedback loops in the amplifier?—A. R., Westbrook, Me.

![Fig. 4-Adapters with common 4-ohm taps need this kind of headphone connection.](image)

Your original hookup is like Fig. 4: the center speaker is fed from a combination of L and R signals. Your "adapter" has a common ground lead. Tie it to the 4-ohm taps, which are ground, and then hook the phones to either the C or 16-ohm taps. Either tap will feed the phones from a 4-ohm source, but that shouldn't hurt anything. I don't think you'll have to disconnect the center speaker.

You might hook a 330-ohm resistor in series with each "hot" lead to the phones. Protects them from overload damage and improves signal-to-noise ratio.

Needs schematic

I'm just getting started in TV service, and I need some help. I'm trying to repair an old "Monarch" with poor horizontal sync, and I can't find a diagram for it. I am enclosing a tube and chassis layout. Can you help me find a schematic?—J. M. B., Lakewood, Calif.

I'm afraid I'm not going to be too helpful on that schematic; I can't locate anything at all under the name of "Monarch."

However, cheer up. All is not lost. This will happen to you many times in the future, as it does to all of us, so this is a good time to learn how to deal with such situations.

The experienced technician can almost always determine the type of oscillator circuit used from certain characteristics, such as the controls. In this case, your sketch shows a Hor, Freng and "Hor Waveform" controls on the back apron of the set. This means that the oscillator circuit must be the synchroguide type, as this is the only one using these two controls. If the horizontal hold control were a variable resistor on the front panel, and there were a ringing coil in the circuit, it would be a stabilized multivibrator, and so on.

In the April 1960 issue of this magazine, you'll find a very detailed article by R. D. Jacques (page 55) dealing with horizontal oscillators. It covers all the major types and their peculiarities. Use the methods outlined there, check the circuit out one piece at a time, and you'll find the trouble.

Tube to transistor conversion?

Enclosed is a diagram of a tube type hearing aid. I've been trying to change it to a transistor type, with no luck. I want to use the same parts and general diagram. How can I do this?—F. F., Elizabeth, N. J.

I hate to discourage you, but I don't think this is going to work. Tubes and transistors aren't that much alike. Parts aren't interchangeable; vacuum-tube circuits are high-impedance, transistors low-impedance. Transistor biasing is opposite to tube biasing. You'd have to replace nearly every part in the unit, so you might as well build a new one from scratch.

Several parts houses list small transistor audio amplifiers, ready-built, that could very easily do what you want. Look in the ads in the back of this magazine!
NOW THERE ARE TWO...

SB-400 TRANSMITTER

IN THE NEW HEATHKIT SB SERIES

Introducing the New SB-400 SSB Transmitter!
The new Heathkit SB-400 is the second in the sensational new series of Deluxe SSB Amateur equipment designed to bring you professional performance and features at tremendous savings! Following the same high standards set by the Heathkit SB-300 Amateur Receiver, the new SB-400 Transmitter offers a matching counterpart for complete transceive capability with a host of advanced-design features. Check the many features below and see why this new series has taken the Amateur Radio Field by storm!

- Built-in power supply • Complete transceive capability with SB-300 Receiver • Linear Master Oscillator frequency control • Built-in antenna change-over relay • All crystals supplied for complete 80-10 meter coverage • Automatic level control for higher talk power, minimum distortion • 180 watts PEP SSB, 170 watts CW • Crystal filter type SSB generation • Operates SSB (upper or lower sideband) & CW • VOX & PTT control in SSB operation, VOX operated CW break-in • Crystal controlled heterodyne oscillators • 1 kc dial calibration • 100 kc per dial revolution • Dial bandspread equal to 10 feet per megacycle • 500 kc coverage per bandwidth position • Switched 120 V AC for external antenna relay • Sturdy, lightweight, heavy-gauge aluminum construction throughout • Neat, modern "Low-Boy" styling! • Variable loading!

Easy to Assemble
The SB-400 features a prebuilt Linear Master Oscillator (LMO), prebuilt crystal SSB filter, two circuit boards, and three wire harnesses for easy assembly. Construction proceeds smoothly from start to finish with the complete, illustrated instructions furnished.

Sturdy Construction Throughout
Heavy-gauge aluminum construction throughout provides extra-strength and light weight. Complete shielding by partitioned chassis construction minimizes TVI and eliminates instability. Order your SB-400 today! Enjoy a new high in operating versatility and convenience with all the deluxe design features that guarantee finest amateur radio communications.

Kit SB-400 ... 30 lbs. ... $225.00

SPECIFICATIONS—Emission: SSB (upper or lower sideband) at 600 watts CW, 550 watts PEP SSB. Power output: 100 watts (60-15 meters), 80 watts (160-9 meters). Output impedance: 150 ohms. Frequency range: 10 to 20.25 MHz, 21.1 to 29.9 MHz, 29.9 to 30.0 MHz. Intermediate frequency: 3.395 megacycles. Frequency stability: 100 kc after warmup. Dial accuracy: Within 500 cps on all bands. Electrical dial accuracy: Within 5000 ppm on all bands. Backlash: No more than 50 kc. Sensitivity: Less than 1 microvolt 15 db signal plus noise-to-tolerance ratio for SSB operation. Modes of operation: Switch selected from SB-300, CW, AM, SSB (single sideband on lower sideband for SSB). Frequency response: 150 Hz to 15 kHz for SSB, 150 Hz to 5 kHz for CW. Another SB-300 SSB-300 receiver at 3.5 watts minimum (SSB). Operation may vary with different keying systems. Power requirements: AC 110 V, 60 Hz, 100 watts. Dimensions: 14 1/4" x 6 1/2" x 13 1/4" D.

This is #1... The SB-300 SSB Receiver... $265

The first in the new Heathkit SB series! A new dimension in quality features, smooth operation and performance, you never before thought possible in kit form!

- Professional styling and features at 60% savings! • Complete coverage of 80 through 10 meter amateur bands • All crystals included, plus provision for VHF converters. • Hermetically sealed 2 kc crystal bandpass filter • Built-in 100 kc crystal calibrator • Smooth, non-backlash vernier dial mechanism • 100 cps stability after initial warmup • 1 kc dial calibration—100 kc per dial revolution (provides bandspread equal to 10 feet per megacycle) • Provision for transceive operation with SB-400 Transmitter • Prebuilt linear master oscillator (LMO), wiring harness and two heavy-duty circuit boards for fast, easy assembly!

Kit SB-300 ... less speaker... 17 lbs. ... $265.00
SBA-300-1 Optional AM Crystal Filter (3.75 kc)... $19.95
SBA-300-2 Optional CW Crystal Filter (400 cps)... $19.95

SPECIFICATIONS—Frequency range (megacycles): 3.5 to 4.5, 4.5 to 5.5, 5.5 to 6.5, 6.5 to 9.5, 10.5 to 11.5, 12.5 to 13.5, 14.5 to 15.5, 16.5 to 20.5, 20.5 to 29.5, 29.5 to 30.0. Output: 100 watts on all bands. Frequency stability: 100 kc after warmup. Dial accuracy: Within 5000 ppm on all bands. Backlash: No more than 50 kc. Sensitivity: Less than 1 microvolt 15 db signal plus noise-to-tolerance ratio for SSB operation. Modes of operation: Switch selected from SB-300, CW, AM, SSB (single sideband on lower sideband for SSB). Frequency response: 150 Hz to 15 kHz for SSB, 150 Hz to 5 kHz for CW. Another SB-300 SSB-300 receiver at 3.5 watts minimum (SSB). Operation may vary with different keying systems. Power requirements: AC 110 V, 60 Hz, 60 watts. Dimensions: 14 1/4" x 6 1/2" x 13 1/4" D.

MORE TO COME!
WATCH FOR THE NEW HEATHKIT SB-100 TRANSCIEVER AND SB-200 LINEAR AMPLIFIER COMING IN THIS SERIES!

FREE CATALOG
See the wide array of Heathkit Amateur Radio Equipment available at tremendous dot-yourself savings! Everything you need in "mobile" or "fixed" station gear with full descriptions and specifications... Sent for Free copy!

HEATH COMPANY, Dept. 20-S-1
Benton Harbor, Michigan 49023
In Canada: Dymapak Ltd., Cooksville, Ontario
Please send Free 1964 Heathkit Catalog.
Name
Address
City
State
Zip
Price & Specifications subject to change without notice.
Troubles in Transistor Ignition System Hookup?

Some of our readers have written in about an apparent difficulty in the hookup of the transistor ignition system described by John R. Gyorki in the April issue (page 53). Not in the ignition system itself, but in the connections to the car's ignition switch. They complain that the circuit as shown in Fig. 3, page 54, will cause the starter solenoid to remain energized all the time, once the key is turned to the RUN position.

That isn't so. This confusion arises from mistaking the car's wiring diagrams! The average ignition switch is more complex than the simplified split-type in Figs. 3 and 4. These diagrams show only the switch contacts used to open the original ballast resistor while starting. This is not the contact used to energize the starter solenoid! Check your car's wiring diagram and see.

We checked circuits used in popular cars: Ford, Chevrolet, Pontiac, Buick, etc. Fig. 1 shows how they do this. Notice that Ford and Chevrolet (Fig. 1-a) use a special contact on the starter solenoid itself for shorting the ballast. Pontiac and others (Fig. 1-b) use entirely separate contacts on the ignition switch for shorting the ballast and operating the solenoid.

Note that the Ford and Chevrolet "short-out" circuit doesn't go anywhere near the ignition switch at all; it's done entirely by the isolated moving contact of the starter solenoid. In Pontiac, etc., when the switch is turned to START, contacts A and B short out the ballast resistor; returning to RUN leaves contact B entirely open. The starter solenoid is closed in this system by contact C alone. You can always tell on the late cars what system is used by just looking at the starter solenoid! There will always be the two big wires, one to battery, the other to the starter; however, if it has two small wires, and two small terminals, it's the Ford-Chev. jumper system.

If you build this system, check the wiring diagram of your car before installation, to see how this particular circuit is wired. I hooked the original unit up on my wife's car, a Ford, and ran it for about 10 days; it worked beautifully, and I had no trouble at all with it during that period.—Jack Darr

[Mr. Gyorki has, however, noticed an error in Fig. 4. His original drawing shows a lead running from the tap on the 1-ohm ballast resistor to the hot terminal on the starter motor. The tap should be connected to the shorting bar on the starting solenoid instead of to the starter. This system has been used on a 1963 Mercury for almost a year.—Editor]
Maximum Power
The first operation is to reduce the circuit to its equivalent Thevenin generator. To do this, we first find the Thevenin voltage at point A.

\[
E_T = E \times \frac{10}{10 + 10} = 50 \text{ volts} = E_{\text{ref}}
\]

Next, looking back into the circuit from points A and B, with E reduced to zero, we see \(R_n \) and \(R_{\text{int}} \) in parallel.

\[
10 \times 10
\]

Since the "internal resistance" is now 5 ohms, the new load must be 5 ohms for maximum power transfer. Using any of the power formulas, (I'R, for instance) the power in the new load is now found to be:

\[
P = \left(\frac{50}{10} \right)^2 \times 5 = 125 \text{ watts}
\]

No Volts
Silicon diodes have a very high back resistance, much higher than the 300-000-ohm resistance of the meter. The diode of a series pair that is not shunted by the meter has to withstand virtually all of the drop, since its back resistance is so much higher than that of the meter. The shunted diode then has a negligible drop across it. While the piv rating of the unshunted diode is temporarily exceeded during the test, it is undamaged due to its conservative rating.

Music—Intercom Trouble
Background music will overload the intercom amplifier when S is in call position. This occurs because of a built-in ground loop and the all-too-prevalent idea that a common or ground lead is "cold" just because it happens to be in the return circuit.

To make it easier to see how this ground loop occurs, we have taken the circuit and substituted a battery for the background music amplifier and a voltmeter for the intercom amplifier. Resistors are substituted for the speaker loads. With the arbitrary values shown, we can see that at point A there is a 1-volt drop across the parallel resistances of the ground wires. With the switch in the call position, this voltage drop will be indicated on the meter.

In the music-intercom system this voltage is fed directly into the intercom amplifier and amplified several hundred times.

The obvious and simple solution is to use a dpdt switch for S so that both sides of the speaker will be disconnected when a call is made.
SONY TAPE RECORDER TC-600

This recorder has some very good specifications and, although its price is above the "cheap" range, one does not readily believe such excellent specs for a four-track machine until they prove out. This machine fulfilled its promise. With it, you can tape your stereo discs and play them back without being able to detect any difference, which is saying something.

Cover has neat, secure clips to carry the twin mikes and their leads in a zippered plastic case providing maximum accessibility for all other leads.

The footaged indicator is a footage indicator, not merely a place spotter, and it keeps count with all normal tape movements. Independent control of left and right channels, so one can be operated in record while the other is in playback, enables the unit to be used for an endless variety of "special" effects.

Playback and record functions are completely separate, so that a recorded program can be monitored immediately. As well as avoiding disappointment in more serious uses, this feature makes possible the fascinating "confusion" game—allowing a person speaking into the mike to hear his own playback, so he cannot speak without stammering! The simple monitor/line-output controls provide maximum flexibility in use.

Microphone and auxiliary inputs can be mixed for combination and re-record effects. First-stage amplification uses transistors, while the main amplification uses tubes—a great marriage in this particular design. Of course, like all "professional" recorders, this one provides line output at normal line level; it does not feed loudspeakers directly. It can be used with any suitable amplifier. The mike is of very good, compared with most of the "inexpensive" types used with home recorders. Extremely good realism is possible for home recordings. I had my family "act natural" in front of the two-mike combination, and the playback was unbelievably real.

The owner's manual explains all the functions very well, and gives step-by-step procedure for loading tape, recording and playback in normal four-track stereo mode, mixing programs, providing "sound on sound" and using tape for teaching (by using one channel as "master" track and the other so the student can compare the sounds he makes with those he is attempting to copy). There are maintenance and lubrication data and a glossary of tape talk is included.

The Sony 600 will naturally take a little playing around to find out how to do various "extra" things you may want. But when you get to know it, you'll find it a very versatile instrument. It's a recorder with which familiarity brings confidence.—Norman H. Crowhurst

EICO 2536
FM STEREO RECEIVER

The Eico 2536 is a neat package—one of the smaller complete FM stereo receivers. Its sound is pleasing and its FM sensitivity adequate.

I like its looks: brushed aluminum panel, nice and thick, with neat brown markings screened on, and a blue-green light from the tuning eye and from a sector behind the clear plastic tuning dial. And I liked the simplicity of the controls and panel markings. (Which reminds me: Eico calls its channels 1 and 2 rather than A and B or L and R or Left and Right.)

The tuner in the 2536 performs very respectably. This might be expected —there are four 6AU6 i.f.—limiter stages. The front end is a dual triode (6AQ8), of which the first section is a grounded-grid rf amplifier, the second a reflex (self-oscillating) converter. A 6AL5 is the ratio detector.

The multiplex circuit is of the matrixing type. Separation seemed to equal that of any recent tuner. The i.f. and detector circuits are on one long etched circuit board, pre-wired and dropped into place, held to the main chassis by screws. The multiplex circuit is a similar board. The rest of the chassis is point-to-point hand-

www.americanradiohistory.com
wired, but it uses prepackaged ceramic circuits extensively, for tone control and filter networks, etc.

All wiring is neat and open and easily accessible for servicing.

But the 2536 does have several characteristics that made it—to me—fall somewhat short of perfection. Perhaps you'd learn to love them, or perhaps they'll drive you crazy in a few weeks. In any case, they ought to be mentioned.

One of these things is loud switching pops between source selector positions. This comes from interrupting dc: the tuner i.f.'s are disabled in the PHONO, TAPE and AUX position. But there is another pop between FM and FM STEREO. Why? (And these are loud—enough to make my speakers say "owf!" and for me to feel the pops in my chest!)

Number two: the stereo indicator.
To find out whether you're receiving stereo (other than by listening, of course), you must first have the selector in FM STEREO and then, as you tune each station, depress a spring-return slide switch. If the station is broadcasting stereo, the electron-ray tube (window next to the tuning dial in the photo; it's also used as a tuning indicator) loses its shadow. Not bad, except that depressing the switch makes another violent pop! in the speakers and momentarily kills the sound. And the edge of the slide switch bites into the fingertip. Silly to mention it, maybe, but it seems to me to be one of the things somebody should have noticed and corrected before the unit was marketed.

Third, tuning with the electron-ray tube. I often found it easier to tune by ear, which is a heresy today. On strong stations, the two-hump i.f. curve is apparent in the action of the ray tube. As you approach the center of the channel, the bright parts converge and then diverge; then converge again and finally diverge as you tune away from the station completely. The object of the game is to tune for a minimum between two maximums. On some weaker stations, the sound drops off clean on one side of center, but gets gritty with slight mistuning to the other side.

I missed a headphone jack. (I've come to like listening with phones, and, from all indications, other people have, too.) But the 2536 has a tape monitor switch, with appropriate jacks at the back, to permit you to monitor a tape recording off the tape as it's being made, if your recorder has separate playback heads. Also, there's a BLEND control: fully clockwise, the two channels are "jumped" together and the sound is monophonic; fully counterclockwise, a switch clicks and the control is out of the circuit altogether, for maximum stereo separation.—Peter E. Sulheim
Central now offers a wide choice of Home Training Programs to prepare you for a well paying career or advancement in your present job assignment.

Now you can train at home in spare hours with EXACTLY the specialized instruction you need to reach your goal in Electronics, Communications, Broadcast, Service, Automation or Industrial Electronics! New "Ready Reference Guide" tells at a glance the kind of training you need...it can save you much wasted motion and money! Central's courses are practical...job oriented...offering efficient, personalized service. Get this new free Guide. Let it help you select your "customized" training program! Rush coupon today!

COURSES IN THE VOCATIONAL EDUCATION DIVISION
Basic Principles • • • TV Servicing • • • Appliances
Wiring • • • Math • • • Algebra • • • Data Processing
Computer Programming • • • Business Automation

COURSES IN THE ENGINEERING TECHNOLOGY DIVISION
Fundamentals • Service Technology • Communications
Nuclear Technology • • • Commercial Broadcast
Microwave Technology • • • Industrial Automation

HOME LABORATORY COURSE AND EQUIPMENT KITS
78 Experiments in Electronics available separately...or together with any of Central's Home Study Courses.

NEW! Statement of Surety! Your satisfaction is assured when you enroll with Central...in writing! Your registration is refunded if you are not 100% satisfied upon satisfactory completion of your course and compliance with the enrollment agreement. Only Central, established in 1901, offers you this Surety! Diploma Awarded. Accredited by Nat'l Home Study Council.

Get Complete Information—No Obligation
Latest Edition Central has reorganized the home study training in Electronics and added completely new courses for the beginner and advanced student. Rush coupon today for your Ready Reference Guide...in ELECTRONICS, MATH, AUTOMATION.

The Triplet Analyzer 3490-A is not a transistor tester—it is an analyzer. It is for those seriously involved in semiconductor electronics—who must have an exact knowledge of the semiconductor's characteristics.

The 3490-A analyzer does not use alphabetized switches or special sockets to make limited tests. Charts are not needed—all tests are set up from actual characteristics and ratings. It can make more tests on a transistor than a tube tester can on a tube.

For example, you can test transistors in either a common-base or a common-emitter connection. Eight tests can be performed on both n-p-n and p-n-p transistors.

Collector voltages to 120 are available. Collector current goes as high as 30 amperes. Base or emitter input currents up to 3 amperes are possible.

Three separate meters make it possible to monitor the applied collector voltage as well as the input and output currents constantly during all tests.

A 2 1/4 x 4 1/2-inch piece of copper 1/4 inch thick is used as a heat sink for power transistor and diode tests.

Direct readings of ac beta (Hβ) and dc beta (hβ) are indicated directly on the meters. No mathematical calculations—just move decimal places according to the meter range being used (just as you do with a vom or vtvm).

The flexibility of this analyzer makes it possible to vary the input current, collector voltage and collector current to plot curves for individual transistors when the averaged curves published by the manufacturer are not exact enough. In this way the dc conditions for maximum ac beta can be found.

Reach-through or punch-through can also be found. The voltage on the open-circuited emitter is metered while the collector-to-base voltage is increased. The emitter voltage will remain within 500 mv or less of the base voltage until the reach-through potential is reached.

Diodes, too
The full-load forward-voltage drop of diodes, including rectifiers, is measured while average rated current flows through them. Peak inverse voltage (piv) can be applied to diodes under test. Reverse current flow through the diode is measured while the piv is applied. If a high current flows, the diode has changed its characteristics. (The diode may be usable if a "new" piv can be determined. Just increase the reverse voltage slowly until the current meter shows a slight deflection. The "new" piv is just below this point. The diode can still be used if the "new" piv is not exceeded.)

Along with clip leads and clamps (for holding power transistors to the heat sink), there is a 250-page Transistor Reference Book (M. W. Lads Publishing Co.). It lists the characteristics of more than 3,000 transistors. A cross-reference index using the Datadex system of identification by parameters simplifies substitution from available types of domestic and foreign transistors made by 64 manufacturers. List price of the 3490-A at this writing is $399.50.
master mathematics at home

learn more... learn faster... learn better... through bona fide programmed learning

- BASIC MATHEMATICS • WHOLE NUMBERS AND NUMERALS
- ALGEBRA I • ALGEBRA II • PLANE GEOMETRY • SOLID GEOMETRY • THE LANGUAGE OF ALGEBRA • TRIGONOMETRY • ANALYTIC TRIGONOMETRY • INTRODUCTORY CALCULUS I & II
- MANAGEMENT DECISION MAKING • VERBAL PROBLEMS • INTRODUCTION TO SETS, INEQUALITIES AND FUNCTIONS • DESCRIPTIVE STATISTICS

exclusive with Britannica Schools

A MEMBER OF THE ENCYCLOPEDIA BRITANNICA FAMILY

These 14 courses—developed by a group of skilled, carefully trained specialists in the fields of home study and mathematics—are offered by Britannica Schools in Programmed Learning format together with individualized, home-study guidance.

What is Programmed Learning? Considered by many educators as the finest way to teach mathematics that has been discovered, Programmed Learning is the technique used in teaching machines. Programmed Learning course material is presented in small, sequential segments, or "frames," each containing 1) a single piece of information closely related to the information preceding it; 2) a question to test your understanding of the information; and 3) a masked, correct answer. When you are ready to check your response to a frame, you simply move the mask. Thus, you proceed systematically through the course, frame by frame, at the pace best suited to yourself.

What is Britannica Schools? A division of world-famous Encyclopaedia Britannica family, Britannica Schools is the first new approach to learning at home in 50 years, because it is the first, and, to date, the only home study institution that offers courses utilizing Programmed Learning techniques. As a Britannica Schools enrollee, you also have your own, individual instructor who—through phased examinations and correspondence—reviews your progress, checks your grasp and retention of sections of the course material, and insures your complete mastery of the subject.

For full details on any Britannica Schools course in mathematics, fill out and send us the coupon today. No obligation. SOLD ONLY THROUGH THE MAIL.

BRITANNICA SCHOOLS Dept. RE-3
Division of Encyclopaedia Britannica Press, Inc.
14 East Jackson Boulevard, Chicago 4, Illinois

Please send me full details on the course(s) I have checked. I understand there is no obligation.

☐ Basic Mathematics
☐ Whole Numbers And Numerals
☐ Algebra I
☐ Plane Geometry
☐ Solid Geometry
☐ The Language Of Algebra
☐ Trigonometry
☐ Analytic Trigonometry
☐ Introductory Calculus I & II
☐ Management Decision Making
☐ Making Inferences
☐ Verbal Problems
☐ Introduction To Sets, Inequalities And Functions
☐ Descriptive Statistics

Name
Address
City, State
Zone
Age
Occupation

JUNE, 1964

Coming Next Month in Radio-Electronics

SWEEP ALIGNING TV I.F.'S
Jack Darr tells you when to, and when not to, align. He describes the process graphically and in complete detail, and—to forewarn you of any unexpected results—shows some terrible examples and tells why they occur. Best and most thorough story on sweep alignment to appear for some time.

BUILD A SELECTIVE PHOTOELECTRIC CIRCUIT
You have seen ordinary photocell units—how they can indicate when an object passes, or even count objects. This circuit is selective—you can make it count objects passing in one direction, but not in the other. It can count a mixed group of nickels, dimes and quarters and come up with the value of the quantity counted, instead of the number of coins. Has unlimited uses.

DIG THOSE PRIVATE BRANDS?
Who makes the Bradford? Or the Ambassador? Have you ever puzzled over private brand television receivers or radios? Next month—a complete rundown of the manufacturers of private label equipment for department stores, automobiles and others.

RESISTOR DECADE BOX FOR POWER
Have you ever watched your decade box smoke as you use it? Or have you wanted to make measurements that you knew your substitution box couldn't handle? This box measures from 1 to 1,000 ohms in 1-ohm steps and dissipates 10 watts on the lowest ranges. Typical measurements are made with from 20 to 90 watts dissipation. Ideal for the experimenter, hi-fi service shop or industrial electronics technician.

You'll find these and many other articles, features and regular departments in next month's RADIO-ELECTRONICS.

JULY ISSUE (on sale June 18)
are you ready

FOR THE NEW AGE OF ELECTRONICS SPECIALIZATION?

RCA Institutes Home Training can help protect your future and increase your earning power

Career Security is Today's Problem. Before you finish reading this, another significant step forward will be made in some field of Electronics. A new advance in nuclear instrumentation. A breakthrough in automatic controls. An important development in computer programming. And so on. How will this affect your future? Will your career in Electronics be secure? These are today's vital career questions.

RCA Institutes Specialized Training Is the Answer. Whatever field you may now be in, or no matter how advanced your present Electronics training may be, RCA institutes has a Home Training Course exactly suited to your needs. With RCA Institutes Specialized Training you can help to secure your present career and be in a better position to advance yourself. It's today's best career insurance.

Advanced Standing Available. If you are a person who works in Electronics, or who has had Electronics Training in the past, you may apply for Advanced Standing in any of the RCA Institutes Home Training Courses. If you are just starting out, you can also be assured of the same opportunities for professional success and security. RCA Institutes has Home Training Courses specifically designed to give you the required fundamental background on which to build a career.
HOME TRAINING

CHOOSE ANY OF THESE SPECIALIZED COURSES

- Automation Electronics
- Automatic Controls
- Industrial Applications
- Nuclear Instrumentation
- Digital Techniques
- Computer Programming
- Transistors
- Mobile Communications
- Communications Electronics
- FCC License Preparation
- Monochrome and Color TV
- Drafting

RCA Institutes Home Training Courses are complete, step-by-step, easy to understand units. You get top quality equipment, and all kits furnished to you are yours to keep and use on the job. Doesn't it make sense to protect the investment you've already made in your career, and look forward to a future of increased earning power? Send the attached postcard today for complete information. It won't cost you anything, and it may mean a great step forward to you. Act now!

JUST STARTING OUT IN ELECTRONICS? BEST HOME TRAINING TODAY IS RCA!

Full selection of beginning courses to choose from. Master the essentials of Electronics and go on to a profitable career now!

Faster, Easier Way to Begin — Exclusive With RCA Institutes.

If you are considering a future in electronics, now is the time to start! The RCA “AUTOTEXT” Instruction Method developed by RCA and introduced by RCA Institutes, will help you master the fundamentals of electronics almost automatically. It is a system of programmed instruction, which has been proved with thousands of students. Even people who have had trouble with conventional home training methods in the past, are finding it easier and more fun to begin their training this new way.

Liberal Tuition Plan. RCA Institutes liberal tuition plan affords you the most economical possible method of home training. You pay for lessons only as you order them. If, for any reason, you should wish to interrupt your training, you may do so and you will not owe one cent until you resume the course. No long-term obligations.

CLASSROOM TRAINING AVAILABLE

RCA Institutes Resident School in New York City and RCA Technical Institute in Cherry Hill (near Camden) New Jersey offer classroom training that will prepare you to work in rewarding research and production positions in many fields of electronics. No previous technical training required for admission. You are eligible even if you haven't completed high school.

Free Placement Service. RCA Institutes Resident School graduates are now employed in important jobs at military installations, with important companies such as IBM, Bell Telephone Labs, General Electric, RCA, in radio and TV stations and in communications systems all over the country. Many other graduates have opened their own businesses. A recent New York Resident School class had 91% of the graduates who used the FREE Placement Service accepted by leading electronics companies, and had their jobs waiting for them on the day they graduated!

Coeducational Day and Evening Classes. You can prepare for a career in electronics while continuing your part-time or full-time employment. Regular classes start four times a year.

SEND POSTCARD FOR FREE ILLUSTRATED BOOK TODAY! SPECIFY HOME STUDY OR CLASSROOM TRAINING.

RCA INSTITUTES, INC. Dept. RE-64
A Service of the Radio Corporation of America,
350 West 4th St., New York, N. Y. 10014

The Most Trusted Name In Electronics

JUNE, 1964
33 Feet Long (NB) Atlantic: Invincible (NY)

36 Lightening Protection for Hams, Swi's and CB's (Oberlo)

Line Voltage and Automatic Distortion (Reed)

Lightening Transformer (Pat)

m'' versus "m" (Corre)

Marine Square: 2000 Derivative to Whales (NB)

Marvelous Electronic Data Change Indicator (Glenn)

M.C.'s P.A. (Wortman)*

Making Nanoparticles (Queen)*

MEDICINE

Detectors Safe for Patient (NB)

Diagnosis, This is (Jaski)

Full Cell Oxygen Detector (WN)

Lettering, Font (New)

Microscope Focus Through

Monitor, Physiological, Improves

Mother Heart Machine (WN)

Meters from Junkers (Weber)

Micro: All in One (Des*)

Movie Projectors, Servicing Sound (Darr)

Part IV—Lamps and mechanical problems

PRINTED CIRCUITS for Poor

New, Medicine Measuring "m" Lightning Protection for SCR

Records, SCR

Wattmeter for Sine-Wave Defibrillators (Kyle)

Magnetic Fluid

Eavesdropping

Bench Supply Basics

P.A. (Wó)

Projectors, Servicing

Lightning Protection Aviation,

-see (Winklepleck)

Wave(s)

Practice Oscillator

Radio

Line

Communication

Timer,

Nanoamperes

by

Purpose

Turntable

Broadcast

of Light

for

and

(by)

Radio

Dolphin

Signals

for Profit

(Cooper)

Directory

(Sinclair)

TV: Feb

March

April

May

June

July

August

September

October

November

December

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Television

Superconductive Generator

Sound Movie

Circuits,

Brightness

Amplifiers,

Part 2

Tuner -Way Jobs,

Test Instruments

Scot Trace

Heath 0-9 (Tech)

Transformer Failure (Tech)

Vertical Deflection Out (DuMont)

Vertical Drift (Precise 300) (Tech)

Sine-Square-Wave Generator (Heath)

Pickup (Heath AG-10) (Tech)

Vom, Fusing (Simpson) (Tech)

Vom, Larger Batter Life (Eico)

Tinsel Wire, Connectors (Tech)

Transformer, Toy-Train (CI)

Tube Litters, Handy (TDO)

Tube Pin Clipper, Old Pushers Make It (Tech)

Tubing, Sawing (TDO)

Tubes, Plastic Frame Stoppers (Mill)

Paperclip Anchor (TDO)

Prefer to Antique Connections (TDO)

Tape Tabs Mark (TDO)

Short (300), Distance

Simplest Direct-Reading Meter

Guns, Lights, Saw (Tech)

Grounding, Resistance

Solvent Aids (TDO)

Sonor Dipper Navigation, Surface Vessels (NB)

Solar—Ocean Floor Mapped with Photographs of Sound (NB)

Space Ship Power Plant (WN)

JUNE, 1964

71

www.americanradiohistory.com
Telescope, 15-Mile-High, gathers New Data (NB)
Voice of America broadcasts News (NB)
Start an Audio Service Business (Eugene)
Stereo: see Audio—High Fidelity—Stereo, FM Multiplex
Stethoscope (Carli)
Super Reception on Short Waves (Churchill)
Supergenerators Monitor Fire and Police Radio (Hawbaker)

Take-along Amplifier (Adamek)*
Apr 32

Tepee(s) and Tape Recorder(s)—see Audio—High Fidelity—Stereo

Telescope, Biggest, Tape(s) and Set Aids
Voltage Stereo Analyzer, Black Scope Face, Clamp Holds Audio Vertical Speaker Tape, Pay, NBC, VP Attacks (NB)
Recorder, Playback-Only, First Machine (PNW)

Test Records, British, Demonstrated Here (NB)
Tape Recorder, Home (NB)
Television—see Servicing, Television
Speaker Switching, Radio-TV (NC)
Towers Menace to Birds (Corres)
U Detent Tuner (NB)
Installing and Troubleshooting (Davidson)
Part 1—IHF tuners and converters are not hard to fix
Part 2—IHF tuning and converters in existing sets
Sets on Increase (NB)
Tuners, New (Lucas)
Vertical Linear Circuits, Unusual (PNW)
Vertical Sync Stabilizer Circuit (NC)
Volume Limiter (NC)

Terminal and Control Markings on Foreign Radios (Suthem)
Test Compactions on Your Checker (Elsick)

Test VISINGU(izes) the Following (Sugim)

Audio Switches (Steel)* (Corres)
Capacitor Checker, Olson KB-147-Ind.
Circuit (NC)
CB Checker* (Ken)
Color Generator, Sencore CG1261
Compactions, Test on Your Checker (Elsick)
CR Analyzer, Lafayette TF-46
Distortion Meter and Ac Voltm, Eico 9021
Dynamic-Conductance Tube and Transistor Tester?, Eico 657
Fluorescent Meter (Wagner), Eico 567
Frequency Counter, CT, Int. Crystal C-128
Frequency Meter, Simplest Direct-Reading (Queen)*
Inductance Bridge, Precise (Kruger)* (Corres)
Meters from Junk (Weber)
Microamperemeter Measuring (Queen)*
Organic Service Bench, Electronic (Kirk)
Picture-Test, Sencore CR-125
Probes, Pattern Depends on (Cunningham) (Corres)
Radio, Test Set, Old 2-Way Jobs (Barnes)*
R-C Sinewave Oscillator, New, Simple (Queen)*
Scope Faces, Clamp Holds Light Shield on (TIO)
Short Tester, Flatiron Is (TTO)
Signal Generator, Improving 30-8-348 (Wallace)
Stereo Analyzer, Black Box (White)* (Burke)
Substitute Box, Binary Logic, Capacitance (Math)
Swap on AM, Try Weaver* (Troyan)
Transconductance Tester (Pal)
Transistor(s)
Alignment Easy Way (Plaston)
Analyzer, Triplet 240-A-6
Radio Tester Hickok 810
Tube and Dynamic-Conductance Tester Eico 667
Quick-Checking Power (TTO)
Tube and Transistor Tester, Dynamic-Conductance Eico 667
Tube Tester, GC 36-802
Tube-Test Gizmo (TIO)
Voltage Calibrator (NC)
Vom, 6-inch Meter, Laserette TA-900
Vom, Triplet 630-NST (Corre)
Vom, Transistor, Transistor (NC)
V-2 Vom, Gurney Adaptor Measurements (TTO)
Vom, 61/2-Inch, Int. Crystal C-128
Ac. and Distortion Meter (Eico 922)
Poor Boy's (McCready)*
Wallmeter, Simple RF, for GD (Greenley)*
Test A(2) Radio Jobs (Barnes)*
Test Tapes and Records, R-E Guide to (Scott)

The Ignisor

A new component for electronic ignition systems, the Ignisor, is now being produced by Bendix.

An Ignisor is a transistor with a matched Zener diode connected between

dr., and collector, and housed in the same package. This of course takes less space, less time to install; is cheaper to make and cheaper to use than separate semiconductor components.

The new device comes in TO-3 and TO-41 (similar to TO-3 for shape and orientation of connections) packages with a variety of voltage and current ratings to suit particular applications. The diagram shows the simplest of several possible transistor ignition circuits suggested by Bendix for the Ignisors. The devices must be heat-sinked with a thermal resistance of about 2°C/watt.

Rectangular color CRT here

The long-awaited 23-inch rectangular color-TV picture tube is here. Motorola announced the new tube in a full-page ad in the Sunday, April 12 New York Times.

Compared to the standard 21-inch round tube, the new one has 274 square inches of viewing area, according to Motorola, instead of 261. The tube is 5.2 inches shorter than the conventional design. It is made by National Video Corp.

Tiniest diodes?

A diffused-junction diode with a double-glass hermetic seal may turn out to be the last of the conventional discrete diodes. It's difficult to imagine complete diode assemblies any smaller (see photo)—these are about .060 inch in diameter and .030 inch high.

The design is available from Hughes Aircraft Semiconductor Div. in 10 varieties covering ratings up to 100 volts and 300 ma with 2-nsec switching speeds. The diode consists of a glass ring, which contains the silicon die already sealed in a layer of glass, and two metal end caps. It can replace several dozen existing diode types.

Sylvania plans 90° color CRT

Samples of a new 90°, 90° rectangular color TV picture tube are expected to be available late in 1964, according to Merle W. Kramer, general manager of the Electron Tube Div. of Sylvania.

Testive specifications are being made available to manufacturers so they can get started on cabinet designs.

For the time being, Sylvania intends to continue producing its 21-inch 70° round tube.

END
WHY bother with makeshift twist-prong capacitor replacements?

When you substitute capacitor sizes and ratings, you leave yourself wide open for criticism of your work...you risk your reputation...you stand to lose customers. It just doesn't pay to use make-shifts when it's so easy to get the exact replacement from your Sprague distributor!

Get the right SIZE, right RATING every time with improved SPRAGUE TWIST-LOK® CAPACITORS!

Over 1,690 different capacitors to choose from! The industry's most complete selection of twist-prong capacitors, bar none. Greater reliability, too. Exclusive Sprague cover design provides a leak-proof seal which permits capacitors to withstand higher ripple currents.

JUNE, 1964
BECOME a RADIO TECHNICIAN

for only **$26.95**

BUILD 2 ORADIO

CIRCUITS AT HOME

with the New Progressive

RADIO "EDU-KIT®"

All Guaranteed to Work!

PRACTICAL HOME RADIO COURSE

only

$26.95

FREE EXTRAS

- SET OF TOOLS
- ELECTRIC WIRE STRIPPER
- ELECTRIC SOLDERING IRON
- TESTER EXTENSION CORD
- TESTER MANUAL & INTERPRETER
- SHOCK PROOF TV-RCX TRAY: CONSULTATION SERVICE & HI-FI GUIDE
- QUIZZES & TV BOOK - FOR LICENSE TRAINING
- RADIO BOOK - PRINTED CIRCUITRY - FLIERS-CUTTERS
- ALIGNMENT TOOLS - CERTIFICATE OF MERIT
- VALUABLE DISCOUNT CARD

WHAT THE "EDU-KIT" OFFERS YOU

The "EDU-KIT" offers you on unmatchable PRACTICAL HOME RADIO COURSE at a rock-bottom price. Our kit is designed to train Radio & Electronics Technicians, radio hobbyists, and all others interested in radio & TV. You will receive everything necessary to train for a career in radio & TV. You will receive every part necessary to train for a career in radio & TV.

BUILD2ORADIO

201 N. ST. LOUIS AVE.

HOLLYWOOD, CALIF.

WHAT THE "EDU-KIT" OFFERS YOU

The "EDU-KIT" offers you on unmatchable PRACTICAL HOME RADIO COURSE at a rock-bottom price. Our kit is designed to train Radio & Electronics Technicians, radio hobbyists, and all others interested in radio & TV. You will receive everything necessary to train for a career in radio & TV. You will receive every part necessary to train for a career in radio & TV.

ORDER FROM AD - RECEIVE FREE BONUS

$26.95

Radio & TV Parts Jackpot Worth $15

- Send "EDU-KIT®" Postpaid. Enclose full payment of $26.95.
- Send "EDU-KIT®" C.O.D. We will pay $26.95 postage.
- Send me $6.50 additional information describing "EDU-KIT®".

RADIO-ELECTRONICS

74

Zenith 16T20, 17T20

Complaint: Weak vertical hold, characteristic of this chassis.

Solution: Modify the vertical oscillator as shown in the schematics.—Jim Wilhelm

TECHNOTES

Series 1800 Emerson TV’s: Assorted Troubles

These sets, like any others, have certain distinctive troubles. Most prominent are these:

1. Vertical roll after set warms up. Traced to high-resistance leakage between plate and grid of vertical oscillator V7-b. Cleaning the printed circuit board clears up the trouble.

2. Shorted (or otherwise bad) 6CU5 audio output can cause balking agc and sync symptoms.

3. Faulty agc action and poor vertical sync, caused by bad C14 filter capacitor (0.47 µf from the i.f. agc line to ground).

4. No sound or picture: open video peaking coil L7-a and -b in output of video detector V6-b.—A. Rusland

Sneeze Changes TV Channels

I’m an inspector in a TV manufacturing plant that produces ultrasonically actuated remote control-equipped TV sets. One day while inspecting, I sneezed. The channel changed! I sneezed again. The channel changed again!

Ultrasonic noise components in sneezes and from air-powered screwdrivers and staplers sometimes trigger remote-control circuits to change a channel, mute the sound or even change the volume setting.—James J. Porten

Lost Color in Motorola TS-912

Intermittent loss of color in Motorola TS-912 chassis can be the fault of a misadjusted color killer control.

To adjust the killer control properly, the set should be thoroughly warmed up. Chroma and fine-tuning should be set to approximately their normal color-viewing position. Adjust the killer until color snow shows up in a black-and-white picture. Then back off until the color just disappears.—Havens Electric Co., via TSA (Albany, N. Y.) Newsletter

www.americanradiohistory.com
Watch Audio Gain in FM 2-Way Sensitivity Tests

Some technicians have trouble getting an acceptable sensitivity figure with FM two-way radios by aiming for 20-db noise reduction at the speaker terminals. If you use that approach, make sure you are not driving the last audio amplifier into limiting.

While it does not affect the actual sensitivity of the set, it will give you a completely wrong sensitivity figure. If you have to maintain the unit to a specification, say 1.5 or 2 μV, it will keep you looking in the wrong direction for quite a while.

To check for limiting in your set, watch the output meter while slowly turning the volume control from zero to full output. If the voltage follows smoothly all the way to the top, start looking somewhere else. If it seems to level off before you reach the end on the volume control, the audio amplifier is limiting. For this check, open the squelch control and use the noise voltage without any rf input.

To get an accurate figure, simply back off the volume control below the point where the output started to level off and check the sensitivity again. You will be surprised just how much difference this makes on some sets.

Since you are interested only in a 20-db reduction, irrespective of the actual level, and since it takes quite a few microvolts of rf input just to bring the level below limiting in your audio stage before any change can be noticed on the output meter, it is a good practice never to check sensitivity at full volume. This will improve not only your sensitivity figure but also its accuracy.—A. Wiegert

Hotpoint 21S501 “U” Line

This set had occasional horizontal bending or tear at top of raster. All voltages checked OK. The trouble was a leaky C74, .005 μF. Since this was one of those vertical chassis with the printed-circuit board covered by a grill, I also changed C75, 470 pf, to reduce the chance of further trouble. I used the tin snips to cut the grill.—Joseph K. Nicholson

[The printed-circuit board is protected by a perforated metal grill, a nonremovable part of the chassis. Holes in the grill make it possible to reach many of the parts, but without special tools, it is sometimes necessary to cut away part of the grill to reach certain parts.—Editor]

DuMont 304-A Scope

Used with jumpers on its “direct” (to CRT plates) input, there was no vertical deflection. I traced the trouble to an open blocking capacitor (C110 in the diagram). An open C110 could have the same effect. Replacing the bad part fixed the scope.—Clyde Rehberg

Quick Horizontal Efficiency Coil Adjustment

To adjust horizontal efficiency coils easily, connect a 400- to 450-ma pilot lamp in series with the plate of the horizontal output tube. Adjust the coil for minimum lamp brightness.—TSA (Albany, N. Y.) Newsletter

All your favorite Sencore Substitution Time-Savers in One Compact Unit

A complete range of carbon resistors, wire wound power resistors, capacitors, electrolytics, and universal selenium and silicon rectifiers.

Imagine, all of these hard to locate parts at your finger tips for on the spot substitution. Say goodbye to messy, crumpled parts, unnecessary unsoldering and soldering of components for testing purposes only. Save valuable servicing time and be sure, by substituting.

NEW . . . each section operates independently with a value close enough for every substitution need. Components in each section are isolated from chassis and from the other sections. For example, a complete power supply can be constructed using the RC121 Components only.

NEW . . . dual electrolytics provided. A new circuit enables you to substitute up to 25 single electrolytic values or 9 duals. Exclusive surge protector provides protection on both singles and duals for both you and the circuit.

You save space and money. Equivalent Sencore substitution-pieces purchased individually (H36, PR111, RS106, ES102) cost you $84.00

RC121 (all hand wired, all American made) only 39.95
RC121K (Kit) 27.95

www.americanradiohistory.com
BROAD-BAND VHF AMPLIFIER. Powerhouse, upgraded version of MLA Masterline series. Delivers very high output to large TV-FM distribution systems. Useful on older MATV systems where cable losses high and pictures substandard. Driven by broad-band or single-channel amplifier.—Blonder-Tongue Labs Inc., 9 Alling St., Newark, 2, N.J.

SINGLE-CHANNEL PREAMPLIFIER, Cablemaster. Model CMA for TV. Model CMA-FM for FM. Low-noise preamp, flat bandwidth provides excellent color reception. Weatherproof aluminum housing mast-mounted anywhere. Remotely powered with 18 to 20 volts dc, minimum gain 22 db on channels 2-13. CMA-FM, minimum gain of 18 db.—Blonder-Tongue Labs Inc., 9 Alling St., Newark, 2, N.J.

TV/FM SWEEP-MARKER GENERATOR, model 369. Post-injection marker, feeds only required sweep signal to input of circuit being aligned. At output, demodulator cable picks off signal, feeds demodulated signal to mixer stage where markers are added—combined signal then fed to scope. Sweep generator independent of marker generator. 5 ranges: 5.5-9, 7.5-19, 16-40, 32-85 and 75-216 mc. Tuning by 6:1 vernier dial and 330° scale. Output impedance 50 ohms. Requires sweep signal to TV or FM generator, feeds demodulated signal or external pilot subcarrier amplitude (variable ±66.0 cycles). Oscillator frequency 19,000 kc; stability ±3.0 cycles; power input pilot subcarrier 50 watts. Output level 0 db, 50 watts.—MLA Masterline Co., Inc., 131-09 39 Ave., Flushing, 4, New York.

STereo and MONO TAPE RECORDER, SONY model 500. 2 speeds, 2 infinite baffle speakers in split-lid of carrying case. Vertical or horizontal operation, stereo mixing of mike and line inputs for effects as "sing-along" recordings, sound-on-sound, automatic end-of-reel shutoff. Response 22 db 50-14,000 cycles at 7 ips, signal-to-noise ratio 50 db. Inputs: 2 microphone, 2 auxiliary. Outputs: two 600-ohm stereo line, two 8-ohm stereo external speaker, 600-ohm earphone jack. 110 watts, 110-117 volts ac, 60 cycles.—Superscope Inc., 8150 Vineyard Ave., Sun Valley, Calif.

LIGHTWEIGHT TAPE RECORDER, model 1600. VU meter, index counter, microphone. Records at 9/5, 3/4, 1/4 ips, 2 track, monaural.—Roberts Electronics Inc., 5978 Bowercroft St., Los Angeles 16, Calif.

CHANGER UNIT, Studiomatic record changer with Feather Action Tone Arm. Hinged cartridge adjusts automatically to external pressure, prevents excessive stylus force. Dusting pad rides ahead of stylus, muting switch takes out pickup noise during change cycle.—RCA Parts & Accessories, RCA, PO Box 654, Camden, N. J.

CB BASE STATION combines Eagle R-27 receiver and Eagle S-23 transmitter. R-27: rf gain control, selectivity switch, conoxide navigator front end, 12 tuned i.f. coils S-23: compression amplifier, clipper-filter stage, 23 channels, built-in SWR meter.—Browning Labs, Inc., Dept. A, 100 Union Ave., Lacoma, N. H. 03246

MICROPHONE, model 531, for ham, CB, mobile and base stations. High output —50 db. Wide temperature tolerance and immunity to humidity in Hi-Z ceramic element.—Dpdi control switch, Gray plastic case, rectangular hang-up bracket.—Astatic Corp., Conneaut, Ohio.

ALL-TRANSISTOR CAR RADIO, model 707 Karo. 7 tuned circuits with rf stage, tone control, hand wiring, 5 x 3-in. elliptical speaker.
CB BASE-STATION ANTENNA, Mark V, for 27-mc Citizens-band service. 2 in-phase elements with feed point internally at center of antenna. Maximum vswr 1.2:1 at 290 kc. wide. 52 ohms. Cage around lower half of antenna is part of lower radiating element and acts as electrical sleeve-no radials. 20 ft. tall, terminated in uhf series SO-239 connector. Upper part aluminum, lower galvanized steel pipe. Universal mast mounting kit.—B & K/

Mark Div. of Dynascan Corp., 1801 W. Belle Plaine Ave., Chicago, Ill. 60613

PARABOLIC ANTENNAS for uhf TV. Model D-13387-72 uses type F 75-ohm coaxial output for frequency ranges 470-525, 525-700, 700-800, 800-960 mc. Model D-13387-300 (shown): 300-ohm air dielectric terminals. Covers 800-1200 mc. 4-ft. diameter antennas of 1/4-in. steel wire construction, 1/4-in. cross-members and peripheral ring. Minimum gain 17 db over tuned reference dipole; front-to-back ratio 20 db minimum.—Defense & Industrial Div., TACO, Sherburne, N.Y.

SEMICONDUCTORS, Hall generators multiply magnetic field or device current to develop output voltage. Use as gauss meters, ammeters, wattmeters, function generators, choppers and position indicators. Voltages: 210 to 420 mv in 10-kilogauss field. Epoxy encapsulated. 0.375 x 0.375 x .023 in. One 225-mv unit is 0.55 x .05-in. disc. Ceramic-encased unit with linearity of 0.25% measures magnetic fields 3 thin-film devices with output of 1.3, 1.5, 1.1 volts for position indicators and contactless switches.—Special Products Dept., Westinghouse Semiconductor Div., Youngwood, Pa.

CERAMIC FUSES, Picofuse series 275 and 276. 078-in. diameter, 3½ in. long, up to 5 amps with interrupting capacity of 300 amps at 130 vdc. Fast-acting, cartridge shaped; 5 weigh 1 gram. Series 252, axial lead, 276 radial. Blowing characteristics, 100% 4 hr minimum, 200% 5 sec maximum. Can be soldered to within 1/4 in. of end or snapped into cdiode type mounting. Ratings: 10, 15, 20, 25, 30, 40, 50, 60, 75, 100 ma and 1, 1½, 2, 3, 4, 5 ampers at 130 volts.—Littelfuse, Inc., 800 E. Northwest Highway, Des Plaines, Ill.

ADAPTER, model A-106 converts model 1076 TV analyzer to crystal-controlled keyed, rainbow color display and more accurate horizontal syn-

"Believe it or not, I make over 90% of my broadcast tapes on the same Norelco model designed for your home," says Skip Weshner

"My tapes have to meet the broadcast standards of the leading FM stations around the country, whose other taped programs are normally recorded and played back on professional broadcast-studio consoles. My Norelco '401' gives me tapes that not only meet or exceed these standards, but on playback on the '401' I defy any listener to tell the difference between my live broadcasts and my taped ones!

"As to reliability, my Norelco has been on the firing line five nights a week, month after month, year after year, and has required less maintenance than any other recorder I've ever used. It handles tape more gently, too: it doesn't break tape, it doesn't spill tape, it doesn't stretch tape—not even the half-mil stuff I'm forced to use to get an hour's broadcast on a 7" reel.

"Although the '401' was designed for the operating convenience and for the pocketbook of the home user, in my book it has proved itself as a thoroughly professional instrument."

The Norelco Continental '401': 100% transistorized • 4-speed • 4-track stereo/mono, record/playback • completely self-contained with dual preamps, dual power amplifiers, two wide-range stereo-matched speakers and stereo dynamic microphone. (Two broadcast quality receivers can be used with simple adapter.)

At your hi-fi dealer's—or write to Dept. S-6, North American Philips Company, Inc., High Fidelity Products Division, 100 East 42nd Street, New York, N. Y. 10017

Norelco
Outperforms Finest Vacuum Tube Units

NEW SCOTT 312 SOLID STATE FM TUNER

... yet it's only $259.95!

Scott announces a top-performing solid-state FM stereo tuner at a modest price... a no-compromise tuner that exceeds the performance of conventional tube units... it's factory-guaranteed for 2 full years. Not just a redesigned unit, theScott 312 incorporates an entirely new approach to tuner circuit design:

Exclusive "Comparatron" provides foolproof silent automatic stereo switching. Momentary changes in signal strength will not cause stereo to switch in and out as do ordinary automatic devices.

"Flat-Line Limiting" circuits assure quiet, noise-free FM reception, impervious to outside electrical interference. There's actually less than 1 db difference in tuner output whether you listen to a strong local station or a weak distant one.

H. H. SCOTT, INC. Dept. 570-06
111 Powdermill Road, Maynard, Mass.

Please rush me complete information and specifications on the new Scott 312 FM solid-state tuner, plus Scott's full-color 24-page Guide to Custom Stereo for 1964.

Name ____________________________
Address __________________________
City ____________________________
State __________ Zip __________

COLOR TV ANALYZER model 900. tests for control-grid voltage, color gun screens voltage and current, focus voltage, cathode voltage and emission, control-grid emission current. Measures to 7,000 volts on focus grid of color tube. Speeds up purity, convergence and gray-scale tracking adjustments.—Mercury Electronics, 111 Roosevelt Ave., Mineola, N.Y.

CB FREQUENCY METER type 17A4, measures frequencies and field strength in 27-mc Citizens band. Self-contained battery. Accuracy 0.001% at room temperature. Indicates deviation in kc on calibrated meter. Can be equipped with up to 4 crystals for measuring up to 12 CB frequencies.—Budelman Electronics Corp., General Signal Corp., 375 Fairchild Ave., Stamford, Conn. 06902

PANEL METER, model 5E. ½ x ⅜ x 2⅞ in. Acrylic plastic window needs only 0.625 sq. in. of panel area. 0.85-in.-long dial with maximum of 25 divisions. Accuracy ±2% of full scale for dc instruments. ±3% for rectifier type ac. Ranges from 50 dc µ to 1 amp. 10 dc mv to 500 v, 10 ac volts to 300 volts (rectifier type).—Triplett Electrical Instrument Co., Bluffton, Ohio.

COLOR TV ANALYZER type 312. Provides information on all major specifications from manufacturers' data.
Join the Gernsback Electronics Book Club today, and get this outstanding practical two-volume work

only 99c

A $9.90 Value...Originally a $25 Training Course!

You agree to buy only four additional books during the next 12 months at low Club prices.

How to Fix Transistor Radios and Printed Circuits! by Leonard C. Lane

This two volume version treats every aspect of electronics, much of it never before available anywhere else in book form. Hundreds of illustrations aid understanding. Completely covers semiconductor fundamentals, how transistors work, transistor types, amplifiers, RF and IF stages, printed circuits, specific servicing methods and techniques, and many, many more subjects.

Here is a fabulous offer to introduce you to Gernsback Library's famous Electronics Book Club, specifically designed to help you increase your knowledge and earning power.

WHY YOU SHOULD JOIN

Whatever your interest in electronics - radio and TV servicing, audio and hi-fi, industrial or defense electronics, electronics as a hobby - you'll find that the Electronics Book Club will help you get the job you want, keep it, improve it, or make your leisure hours more enjoyable. By broadening your knowledge and skills, you'll build your earning power and electronics enjoyment as well.

WHAT KIND OF BOOKS ARE OFFERED?

From Gernsback Library and other leading publishers come the country's most respected books in the field of electronics. All are deluxe, hard-covered, attractive looking books of permanent value - books you'll want to own and keep in your personal, professional library.

HOW THE CLUB WORKS

Every two months, the Electronics Book Club will send you, ON APPROVAL, a significant new book on an important phase of electronics. Examine the book for up to 10 days. If you like it, keep it and send your check for the low club discount price - up to 27% off regular prices! If you are not completely satisfied, simply send it back and you owe nothing. You risk no money.

HOW TO JOIN

Simply fill out and mail the handy coupon today. You will be sent your two-volume set of "How to Fix Transistor Radios and Printed Circuits", worth $9.90. We will bill you 99c (plus a few cents postage) If you are not satisfied with the books, send them back within 10 days and membership is cancelled. Remember, your only obligation is to buy four additional books from the many offered during the next 12 months. The selections listed are typical of those you'll be able to buy at the special reduced club member's price.

GERNSBACK LIBRARY, INC.
154 West 14th Street, New York, N. Y. 10011

Please send me the two-volume set HOW TO FIX TRANSISTOR RADIOS AND PRINTED CIRCUITS for only 99c (plus a few cents postage) and enroll me as a member of the Electronics Book Club. I understand that I need accept only as few as four Electronics Book Club selections during the next 12 months, and I may cancel my membership any time after that.

Name
Address
City State Zip Code

We pay postage if you send your remittance with this coupon. You have the same return privilege.

Remittance enclosed.

JUNE, 1964
Electronic Associations, directors meeting of during March Nebraska, 80.

Our TREMENDOUS BUYING POWER able debate about the form (NARDA).

Chief topic at the meeting was the proposed merger with the National Appliance & Radio-TV Dealers Association (NARDA). There was considerable debate about the form that the merged association would take, particularly with regard to the relative dominance of the dealer division or the service division. Ultimately, the original "separate but equal" proposal was tentatively agreed on by both groups. (See "NEA Seeks Merger...", Technicians' News, April 1964, page 92.) However, definite and final action was reserved for a later meeting.

Other developments to come under scrutiny at the meeting were alleged price discrimination by a major tube manufacturer in establishing a dual price structure for different retailers in the Indianapolis area, and quality stabilization legislation.

NEA is endorsing and strongly supporting the quality stabilization bill, intended to establish minimum retail prices in the radio-TV industry.

$1000 REWARD TO ANYONE — Who can show us an Established Competitor who could sell and deliver all the items on this list at the prices and in the quantities that we do? HOW DO WE DO IT?

Our TREMENDOUS BUYING POWER & PURCHASING EXPERIENCE make it possible. We invest Thousands of Dollars (in just a single item) to create a good DOLLAR BUY, resulting in the AMAZING & EXCITING OFFERS that follow:

10% OFF & FREE GIFT ON ORDER OF $10 OR MORE — ON EVERYTHING

- UNIVERSAL 5" PM SPEAKER
- UNIVERSAL 4" PM SPEAKER
- ELECTROSTATIC 3" TWEETER SPEAKER for PM, III, PF, etc.
- 2 - UNIVERSAL 2 1/2" PM SPEAKER for PM, III, PF, etc.
- 3 - SPEAKER CABINETS for 1 1/4" to 3" speakers, all purpose.
- 3 - AUDIO OUTPUT TRANSFORMERS 600/6, 600/2000
- 3 - AUDIO OUTPUT TRANSFORMERS 300/6, 300/2000
- 15 - RADIO OSCILLATORS standard 4064
- 4 - I.F. COIL TRANSFORMERS ERS 100, 200, 300, 400, 500, 600
- 3 - I.F. COIL TRANSFORMERS ERS 200, 300, 500, 600, 800, 1000, etc., for audio radars
- 1 1/2 - MEG VOLUME CONTROL TROLS with switch, 1/2" shaft
- 5 - ASST. 4 WATT WOUND CONTROLS
- 10 - ASSORTED VOLUME CONTROLS with switch
- 5 - ASSORTED VOLUME TROLS
- 3 - ASSIST SIZES RADIO CHAS.-SIS PANS drilled & plated
- 3 - VARIABLE CONDENSERS all sets of 5 pins, 5 pins, 9 pins
- 50 - RADIO & TV SOCKETS all types 7 pins, 8 pins, 9 pins
- 50 - ASSORTED PRINTED CIRCUIT SOFTS panel type
- 50 - ASST. RADIO KNOBS all assorted popular types
- 20 - INSTRUMENT POINTER KNOBS assorted popular types
- 50 - ASSORTED TERMINAL STRIPS T, 2, 3, 4, 5, 6, 7, 8, 9, 10
- 100" - FINEST NYLON DIODE CORES best size, .020 gauge
- 20 - ASST. PILOT LIGHTS G4, 44, 47, 81, etc.
- 20 - PILOT LIGHT SOCKETS bayonet type, wired
- 3 - ELECTROLYTIC CONDEN- SERS 50/30-130
- 2 - ELECTROLYTIC CONDENSERS 130/110-400 volts
- 10 - ASST. RADIO ELECT- ROCYTIC CONDENSERS
- 5 - ASST. TV ELECTROLYTIC CONDENSERS
- 20 - CD ELECTRO CONDENSERS 10/10/10/10/100 volts
- 5 - ASST. SELENIUM RECTIFIERS 50mm, 100mm, 200mm, etc.
- 100 - ASSORTED 1/2 WATT RESISTORS some in 500
- 100 - ASSORTED 1/4 WATT RESISTORS some in 500
- 70 - ASSORTED 1 WATT RESISTORS some in 500
- 35 - ASSORTED 2 WATT RESISTORS some in 500
- 50 - PRECISION RESISTORS ass't list price 850 less 60%
- 20 - ASS'ED WIRE WOUND RESISTORS, 5 10 20 watt
- 50 - ASST. DISC. CARAMEL CONDENSERS popular numbers
- 50 - ASST. CARAMEL CON- DENSERS some in 500
- 50 - ASST. MICA CONDENS- ERS some in 500
- 10 - DIODE CRYSTALS 1N34
- 10 - ASST. DIODE CRYSTALS 5-1N60 and 5-1N64
- 2 - SILICON RECTIFIERS 200v, 250v 600v
- 5 -PNP TRANSISTORS general purpose, TO-5 case
- 5 - NPN TRANSISTORS general purpose, TO-5 case
- 50 - ASST. TUBULAR CONDENSERS .001 to .47 to 600v
- 100 - GOODTALL TUBULAR CONDENSERS .001 to .005

MARKET SCOOP COLUMN

- MAGNAVOX PIECE OF EQUIP. 1 MENT loaded with deluxe parts
- MAGNAVOX SET OF TUBES 1 12AF7 and 2-12AT7, the above
- 1000 - ASST. HARDWARE KIT 1 screws, nuts, washers, etc.
- 1000" - SPOOL HOOK-UP WIRE 1 25", solid, 100, 60/50 value
- 8-111T SELENIUM RECTIFIERS 1 65ma popular red type brand new
- TELEPHONE RECORDING DE 1
- VICE UNITS Routers or spindles
- STANDARD TELEPHONE PLUG 1
- STANDARD TELEPHONE JACK 1
- STARLITE TRANSISTOR RADIO 1
- $12 TALKING DOLL 25" TALL 5 doll is correct - blonde, brunette or redhead
- 10 - ASSORTED TUBES 1
- 10 - SYLVANIA TUBES 1 brand new stock, individual cards
- ALL AMERICAN TUBE KIT 11250, 13600, 13900, 13400, 5005, 3594
- 1-3 TOP BRAND 3545 TUBES 1

TELEPHONE

424-2539

www.americanradiohistory.com
end products would be so widely scattered that it would be impractical for distributors to stock replacement tubes.

Possibly G-E engineers can come up with some replacement tube, or maybe a compacton base carrying multiple sockets into which any desired combination of miniature tubes might be inserted.

How Many Transistors in a 6-Transistor Set?

There's more than one way to build a six-transistor radio. Might be worth looking into, suggests TEST a News, the St. Louis association's publication. Not all sixes perform at the same level.

At any rate, don't just count the number of "i.f." cans. One of the most recent "developments" (regressions?) has been to eliminate one i.f. stage (most sixes have two i.f.'s). Yet you may still find three shield cans: one contains the oscillator coil.

A six-transistor set with only one i.f. stage relegates the sixth transistor to the audio department. That way, the set gives lots of volume on local stations, but reception in low-signal areas is noticeably poorer.

To manufacturers, the single i.f. stage means a simpler, cheaper set, easier and faster to assemble and align.

Another cost-cutting approach is to use a defective transistor instead of a diode as the detective. Under US regulations, a defective transistor used as a diode can still be called a transistor. Thus there are six-transistor sets on the market with only five amplifying transistors. The sixth is a defective one, ordinarily discarded, and costs the manufacturer nothing. He saves the cost of a diode.

It isn't a new trick—just a new wrinkle on a very old one. Remember the sets with dummy tubes?

Justifying Your Estimate Fee

If your customers gripe when you announce that you charge for an estimate, you might do what one shop in Tallahassee, Fla., did. Cited as the "Business Idea of the Month" in the January 1964 NATA'S Scope, the back of a business card printed for Ramn's TV & Radio Shop goes ten reasons why they charge for estimating:

1. To make estimates takes time. 2. Our income is rated by hourly pay. 3. Locating trouble is the greater part of any repair job. 4. We are definite in our diagnosis—no guesswork. 5. Our expense goes on whether we estimate or repair. 6. Our knowledge has been costly. We did not get it free.

7. Equipment must be maintained and estimating helps wear it out. 8. A TV, radio or phonograph must be made to operate in order to complete diagnosis. 9. Testing charges are waived when services are paid for. 10. We expect only what you expect if you work for a living.

Papers Sought for Automotive Electronics Conference

The First National Conference on Automotive Electrical and Electronics Engineering, sponsored by the Southwestern Michigan section of the IEEE, is seeking original papers on electronics as applied to vehicles and traffic. Deadline for 500-1000-word abstracts is July 15. Write: Chairman of the Papers Committee, Mr. E. A. Hanysz, General Motors Research Laboratories, G.M. Tech Center, Warren, Mich. Indicate the approximate time required for presentation and discussion.

The conference is to take place Sept. 22 and 23 in Detroit, at Wayne State University.

IMMEDIATE DELIVERY... SCIENTIFIC LIGHT PACKING... scientific lighting is not just for the laboratory. Its use is widespread in homes and industries, where it is an essential part of an efficient lighting system. Such lighting is not only practical and economical, but it also adds to the beauty of any room.

We offer a wide variety of scientific lighting fixtures, including track lighting, pendant lighting, and ceiling lighting. Our products are carefully selected to meet the needs of our customers, and we are always happy to provide samples and information on request.

MATERIALS USED: All our scientific lighting is made from the finest materials available, and we are proud to offer a full line of products that are designed to last for many years.

PACKAGING: We use only the best packaging materials to ensure that your scientific lighting arrives in perfect condition. Our packaging is custom designed to meet the needs of our customers, and we are always happy to provide samples and information on request.

WE SHIP WORLDWIDE: We ship our scientific lighting throughout the United States and Canada, and we are always happy to provide samples and information on request.

Contact us today to learn more about our scientific lighting products and services. We are always happy to help you find the perfect lighting solution for your needs.
This Special 5-VOLUME H. W. SAMS
Basic Electricity/Electronics
A PROGRAMMED LEARNING COURSE

First completely new Course to be pub-
lished in the last 10 years...using the
latest 5-step Programmed method for
quick, effective, positive learning...

This 5-volume series completely replaces
any prior publication. Primarily intended
for technician-level training; no prior
knowledge of electricity or electronics
required. Completion of the Course pro-
vides all the basic knowledge and pre-
paration for advancing into the study of
such specialized areas as Radio Communi-
cations, Industrial & Military Elec-
tronics, Radio & TV Repair, Electricity
& Power, etc. Easy, positive self-instruk-
tion is assured by the unique, ultra-
modern programmed-learning method
used in each volume.

Vol. 1. Basic Principles & Applications
Vol. 2. How AC & DC Circuits Work
Vol. 3. Understanding Tube & Transistor Circuits
Vol. 4. Understanding & Using Test Instruments
Vol. 5. Motors & Generators—How They Work

(Complete Set contains over 1300 pages; 1250
illustrations; 51 chapters; in sturdy slip case)

SPECIAL MONEY-SAVING
PRE-PUBLICATION PRICE!

5-Volume Set, ECY-50 (soft-cover in slipcase),
Special Prepublication Price, Only $17.95
(After Aug. 1, 1964, reg. price will be $19.95)

5-Volume Set, ECS-50 (hard-bound in slipcase),
Special Prepublication Price, Only $21.95
(After Aug. 1, 1964, reg. price will be $24.95)

ORDER NOW AND SAVE!
MAIL TODAY!

HOWARD W. SAMS & CO., Dept. RE-6
4300 W. 62nd St., Indianapolis 6, Ind.

Please send me the following:

[] ECY-50 5-Volume Set (soft-cover) at the
Special Prepublication Price of only $17.95.
[] ECS-50 5-Volume Set (hard-bound) at the
Special Prepublication Price of only $21.95.

Name
Address
City Zone State

My Distributor is

www.americanradiohistory.com
winding No. 27 Nichrome V wire on a mica strip approximately 0.8 in. wide and about 8 inches long (Fig. 2). This wire has a resistance of 3.228 ohms per foot, so you will need around 8 feet. You may be able to purchase enough wire from a local firm that repairs industrial electric heaters and elements. If not, write to Magnet Wire, Inc., 25 Walker St., or Industrial Heater Co., both in New York, N. Y.

Correction

In "Take-Along Transistor Amplifier" on page 32 of the April issue, the Knight transformer is suitable as T1, but the author used a Hammond 125-B, not a 147-N as mentioned. The 147-N was used as the output transformer in the author's version. Price for the 125-B, 147-N pair is $5.75 plus postage.

Larger versions of these transformers may give somewhat better response: the 125-D and 147-U, for which the price is $11.43 together plus postage.

The author tells us also that a 500,000-ohm pot as R1 will give better bass from most crystal and ceramic cartridges.
learn electronics

Buy and read GERNERSBACH LIBRARY’S famous Basic Series

Books that will give you all of the basic fundamentals in electronics: transistors, radio, TV, audio, industrial electronics and electronics math.

BASIC AUDIO COURSE

by Ronald Carl Hertzel

This accurate and readable book provides all of the basic material needed for a thorough understanding in the audio arts — written in a simple, practical style, with a minimum of mathematics. The text covers the nature and measurement of sound — including characteristics of speech and music measurements and audio contours, electronic power supply and audio amplifiers, electronic power supply, and sound recording. An excellent tool and reference work for the audio engineer, music lover as well as the industrial electronics who needs a knowledge of audio. 224 pages. Illustrated.

No. 66 — paperback — $2.75 clothbound — $5.99

BASIC MATH COURSE FOR ELECTRONICS

by Henry Jacobowitz

Gives you more than enough math to solve any problem that the practical working technician or experimenter is likely to come up against. Fine for the beginner, too. Discusses in simple, clear language — with plenty of numerical examples — Ohm’s law, how to express large and small numbers in powers of 10, accuracy, network algebra, graphs, figuring amplitude and phase, power in vacuum tubes, complex numbers, vectors, operators, logarithms and decibels, exponential and logarithmic, and much, much more. Unique in this fad. No. 100 — paperback — $4.00

BASIC TRANSISTOR COURSE

by John T. Frye

New revised and greatly enlarged — with new up-to-the minute chapters on Ohm’s law, resistors, capacitors, inductors, resistance, impedance, phase, resonance, filters, transistors, transistors, servomotors and much more. The original edition of this best seller went through eight printings and earned an outstanding reputation for its light-hearted treatment of this technical subject. The new edition carries on this tradition, while covering every aspect of radio from basic circuit theory to the latest transistor sets. A handy reference and the most refreshing "easy-to-read" book on the market.

No. 104 — paperback — $4.10 clothbound — $5.95

BASIC RADIO COURSE

by Alfred Hans

Is there an industry today that does not, in some way, use electronics? Or is not expanding its use of electronics? Obviously, not. And, it should be just as apparent that anyone who expects to keep up, or get ahead, in electronics must understand how to apply electronics to industrial operations. BASIC INDUSTRIAL ELECTRONICS COURSE shows you how to do it. It explains the "why and how" of modern, electronic circuits and systems that sense, measure, and automatically control today's complex industrial processes. Covers — in simple language with plenty of illustrations — transducers, electronic system building blocks, automated operations (such as inspection sorting, counting, machine control), electronic heating, welding and machining, electronic safety devices, and power conversion and control. 224 pages. Illustrated. Essentials of electronics, photographs and diagrams. No. 109 — paperback — $4.10 clothbound — $5.95

BASIC INDUSTRIAL ELECTRONICS COURSE

by Alfred Hans

Clear, easy-to-understand explanations of the circuits and systems that sense, measure, and control today's complex industrial processes. Includes — in simple language with plenty of illustrations — transducers, electronic system building blocks, automated operations (such as inspection sorting, counting, machine control), electronic heating, welding and machining, electronic safety devices, and power conversion and control. 224 pages. Illustrated.

No. 105 — paperback — $4.10 clothbound — $5.95

BASIC TV COURSE

by George Kravitz

This fresh, modern approach to TV gives you data on TV today — not TV as it was 10 years ago and in simple technicnician's language, with little math and a lot of common sense. Starting with the forming of the picture, the book shows how the picture tube works, the television signal, the television receiver, antennas and meters, how the video IF works, the video detector and AGC, the video amplifier at work, how the sync section works, how the sweep section works, horizontal output and high voltage supplies, and how the sound section works. Even includes a chapter on Transistor portable TV receivers. Must reading for the beginner, and an easy way to "up-date" for old timers. 224 pages. Illustrated.

No. 105 — paperback — $4.10 clothbound — $5.95

BASIC TRANSISTOR COURSE

by Paul K. Renken

Learn about and understand transistors, the most talked about scientific invention since the splitting of the atom. You will find all of the essentials of transistors in BASIC TRANSISTOR COURSE — a clear, easy-to-understand non-mathematical explanation of transistors. Tells what transistors are, how they work, how they behave with resistors, capacitors, coils and batteries. Starts with a simple treatment of semiconductor physics and proceeds in logical steps to transistor diodes, transistor circuits, transistor characteristics, audio amplifiers, detectors, AGC circuits, IF amplifiers, transistor types, and circuit analysis. Fascinating — as well as Basic — reading. 224 pages. Illustrated.

TRAINED TO TUNE

by Paul W. Haas

Revised with new chapters on TV receivers, audio, and industrial electronics. This book teaches you how to make repairs on your TV set — and other electronic devices — in a simple, practical style. 232 pages. Illustrated.

No. 111 — paperback — $4.10 clothbound — $5.95

Try This One

Cement Holds Parts

For economy, I often reuse parts unsoldered from printed circuits. The leads on these parts are usually too short to bend to hold the part in place on a new circuit board or vector board.

Use a little dab of rubber cement to hold such parts in place before soldering. This does not interfere with the circuit and the part can once again be removed by desoldering for future use.

—Tom Jaski

Splitting Pad Matches Multiple Antennas

In many rural areas, TV stations are located at great distances and in several directions. This sometimes means using several separate directional antennas, and then you need a way to couple them with as little loss and interference as possible. I have solved this problem by reversing a circuit used to attach several sets to one antenna.

One good coupler—matcher consists of a series loop of resistors, one to shunt each antenna and one for the output. The resistors are all of equal value, and the formula for calculating that value is

$$ R = \frac{NZ}{N-1} $$

where R is the value of each shunt resistor, Z is the desired impedance to match the set's input and N equals the total number of resistors.

RADIO-ELECTRONICS

Buy Now From Your Electronic Parts Distributor or Mail in the Coupon Below

<table>
<thead>
<tr>
<th>No. 66</th>
<th>No. 100</th>
<th>No. 109</th>
<th>No. 104</th>
<th>No. 111</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERNERSBACH LIBRARY, INC.</td>
<td>154 West 14th St., New York, N. Y. 10011</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enclosed is $_____. Please send me the book(s) checked at left.

Remittance Must Be Made to GERNERSBACH LIBRARY, INC.

Name

Address

City State

Mail coupon to

GERNERSBACH LIBRARY, INC.

154 West 14th St., New York, N. Y. 10011

www.americanradiohistory.com
For example, suppose you wanted to couple five 300-ohm antennas to a 300-ohm TV set input. You'd need six resistors.

\[R = \frac{6 \times 300}{6 - 1} = \frac{1800}{5} = 360 \text{ ohms} \]

Of course this can be used for any number of antennas, and any impedance.

—William R. Seabrook

[The writer's application for this pad is less common than the opposite one he mentions: matching several sets to one antenna. The same formula applies as long as all effective impedances are equal. Note, too, that the pad is inherently balanced, and cannot be used with a coaxial system unless baluns are used also.]

A broad-band booster at the set will help make up for losses in the matching pad.—Editor]

Auto Radio Fuses

It's a real nuisance to lose the fuse from an auto radio when you remove the unit for repair or inspection. To avoid this, tape the fuse right in the holder with a piece of masking tape as shown. Then, it'll always be there when the time comes to reinstall the radio. Furthermore, there'll never be a doubt as to what value fuse belongs in the line. —Ronald S. Newbower

Paperclip Wire Anchor

To reduce the effects of changing lead capacitance and inductive coupling effects in high-frequency circuits, anchor small wire leads with plastic paperclips like the ones shown. Cement the clip to the chassis or some part and slip the wire in place. The clips are made of high-dielectric plastic and do not cause serious losses. —John A. Comstock
See DYNAKITS on demonstration at N.Y. World's Fair.
AR-DYNA MUSIC ROOM
Better Living Center Room 224

DYNAKIT

high fidelity

N. Better Living Center
65MC to 100MC
2001KC to 2500KC

TWX Phone 213-4117

Address
City, State

Name

Room

Send for NEW FREE CRYSTAL CATALOG WITH NEW TRANSISTOR OSCILLATOR CIRCUITS

3 PLANTS TO SERVE YOU BETTER
HERMETICALLY SEALED PRECISION GROUND
CUSTOM-MADE NON-OVEN CRYSTALS
Gold or silver plated, string mounted, vacuum sealed or immersed under vacuum from instability. 10 milliwatt max. current cvzo. Meet mill. specs.

Price on Request

1801KC to 2000KC (Fund. Freq.) $5.00 ea.
2001KC to 2500KC (Fund. Freq.) $4.00 ea.
3001KC to 5000KC (Fund. Freq.) $3.50 ea.
5001KC to 7000KC (Fund. Freq.) $3.90 ea.
7001KC to 10,000KC (Fund. Freq.) $3.25 ea.
10,001KC to 15,000KC (Fund. Freq.) $3.75 ea.
15MC to 20MC (Fund. Freq.) $5.00 ea.

OVERTONE CRYSTALS

15MC to 30MC Third Overtone $3.85 ea.
30MC to 45MC Third Overtone $4.10 ea.
45MC to 60MC Third or Fifth Overtone $4.50 ea.
65MC to 100MC Fifth Overtone $6.00 ea.

DRAKE 2-8 Receiver Crystals

(All Channels—Order by Freq.) $4.00

OVEN-TYPE CRYSTALS

For Motorola, GE, Gonset, Bendix, etc.
Add $2.00 per crystal to above prices

SUB-MINIATURE PRICES slightly higher

ORDER FROM CLOSER PLANT
TEXAS CRYSTALS

Division of WHITMALL CORPORATION

DEPT. RE
1000 Crystal Drive
FORT MYERS, FLORIDA
Phone 813-6-2109
TWX 813-333-2830

AND

4117 W. Jefferson Blvd.
LOS ANGELES, CALIF.
Phone 213-771-2258
TWX 213-737-1315

new Patents

Stereophonic System
PATENT No. 3,105,113
Harry F. Olson, Piscataway, N. J. (Assigned to RCA)

Good stereo requires ample spacing between speakers. This patent shows how to increase the effective distance between two speakers placed inside a small table cabinet.

Low-Power Transmitter
PATENT No. 3,108,234
Arthur G. Burns, Yonkers Heights, N. Y. (Assigned to General Precision, Inc.)

The speakers are directed to project sound from the ends of the cabinet. The closeup view shows the acoustic waveguide built between speaker and cabinet. Sound must move through the narrow channels to reach the room. Regardless of which channel the sound traverses, the distance between speaker and point P will be the same (because of the 30' relationships). Therefore, P is a virtual source of sound, as judged by a listener.

In a typical setup, the cabinet was 30 inches wide, so the actual spacing between 8-inch speakers is only 20 inches. Yet the effective distance was 38 inches!

Long-Time Delay Circuit
PATENT No. 3,089,953
Joseph R. Herr, Palo Alto, Calif. (Assigned to Sylvania Electric Products, Inc.)

In this patent, a transistor makes long time delays possible without large capacitors: 30 seconds with the values shown.

When the switch is closed, the capacitor charges through the high resistance. The positive bias causes the transistor to conduct. When emitter current exceeds a critical value, it fires a 4-layer diode (D). Then full current flows into the relay winding to close the contacts.

The resistor in the base circuit is selected to limit base current to a safe value when diode fires.

Acoustic Transformer
PATENT No. 3,112,814
Stephen Yando, Cold Spring Mills, Houtzagen, N. Y. (Assigned to General Telephone & Electronics Labs, Inc.)

This transformer is suitable for stepping up acoustic pressure, and may be used in connection with ultrasonic delay lines or display devices. Seven wedge-shaped zinc elements are insulated from each other by Teflon. Each is divided into two parts by a thin transducer made of piezoelectric material, like lead titanate-lead zirconate. Each transducer is excited by a sawtooth generator putting out about 100 volts peak-to-peak.

Acoustic pulses originate at each transducer. The waves to the left are clipped out by a lead termination. Waves moving to the right meet at P and combine to form a pulse multiplied by v/s, where 7 is the number of wedges. The thickness (L) of the piezoelectric propagation sheet is equal to the height of each transducer for optimum matching. Each transducer must be thin if narrow pulses (w) are to be propagated. Here are typical values:

Propagation velocity 3,600 meters/sec
Sawtooth rise-time 3 usec
Output pressure 1 megavolt/sq mm
w = 3.6mm t = 0.75 mm

RADIO-ELECTRONICS
Tube-Transistor Gate

A low voltage controls much higher voltage in this hybrid circuit. A square wave, for example 0.5 volt at 500 kc, switches Q on and off. V conducts at the same rate, but provides much greater output. V may be both sections of a 567 in parallel (Fig. 1).

Alphabet Study Machine

This is a combination of a typewriter and a tape machine to aid youngsters to learn the alphabet. When the child presses a key, the letter is printed. After a delay time (which is under control) the letter is pronounced. This gives time for the child to pronounce it himself first, if he can. The sound is reproduced by a drum that carries as many tracks as typewriter characters. Each key selects the proper track. Upon pressing the upper-case shift key, the tape pronounces the words "upper case".

An important feature is that the machine remains locked after a key is pressed, until the machine has spoken.

"Maybe if you turned the cutty-corner control . . ."

JUNE, 1964
"Here it is. An all-channel UHF amplifier."

"So what?"

"So, Bob, it's the world's first two transistor UHF amplifier."

"Big deal."

"Gives twice the gain of those one transistor jobs."

"Go on, Harry. Go on."

"It's the first to deliver peak performance on all UHF channels."

"So what does it all mean to me?"

"Cleans up fuzzy pictures, brings in distant signals sharp and clear."

"Now you're really talking."

"Remote power supply, Miracle Mount for instant mounting, 300 ohm stripless screws."

"I'm sold. What's it called?"

"The Blonder-Tongue Able - U2. Only $44.95* at your TV dealer."

"Did you say Blonder-Tongue? Great! I can use it with my Blonder-Tongue Golden Dart UHF antenna."

"Hey, Charlie! Here it is. An all-channel UHF amplifier!"

"So what?"

Blonder-Tongue Laboratories, 9 Alling St., Newark 2, New Jersey

new Books

A guide to installing, operating and repairing equipment and antennas for the 450-470-mc band. Covers mobile, fixed and relay stations.

The chapters are very logically arranged according to symptoms, such as, "No Raster, Sound Present," or "Loss of Vertical Deflection." They are further subdivided into tests with step-by-step procedures where advisable. Ten double-page Service Charts aid in pinpointing troubles.

A complete treatise of the microwave maser for the person who has "some background in modern physics and elementary quantum concepts." Also covers the atomic properties on which microwave maser action is based.

Huge book to delight the hobbyist, experimenter and technician. Shows how to make useful projects for the home, shop and lab, and includes photos and schematics.

Advanced network synthesis using Fourier and other math methods.

Practical data and schematics of amplifiers, motor circuits, equalizers, switching, etc., including circuits in foreign tape recorders. Also discusses specialized techniques such as FM and digital recording.

www.americanradiohistory.com
Marine Radio for Pleasure Craft

$2.95 paperback

G/L No. 84

All about marine radio, including operation, receivers, transmitters, power supplies, accessories. Covers marine radar, depth sounders and direction finders. Complete section lists marine radio stations, shore regulations, FCC regulations, etc. By Harold McKay.

Available at your parts jobber or send remittance to Dept. 64D

GERNERBACK LIBRARY
154 W. 14th St., N.Y., N.Y. 10011

Radio-Electronics Market Center

SEMICONDUCTORS*NEW**

2N705, 2N711: Tungstul, VHF, 325 MC min.

PNP...1.25

2N906: VHF Planar Silicon...1.25

PNP and NPN transistors; Audio, IF, HF, HFI, etc.

Price...3/5.00

1N357: Tophat; silicon, Raytheon, etc...

Price...3.00

Zener Diodes - 12 volt: 1 amp.

Price...1.00

Zener Diodes - 15 volt: Transistor 2N3722

Price...1.00

NE 2A-Neon Bulbs

Price...8/5.00

DPST switch-Stackpole

Price...8/5.00

C.B. Transformer: 500 ohms, output to speaker, phones, and modulation at 4 watts

Price...1.50

5K & 10K volume control with switch-3.C. (CTS) Miniature Your Choice

Price...5/5.00

Parts for 2 Watt Audio Power amplifier, consisting of 3 transistors, including 1 power transistor, resistors, electrolytics, together with schematic. Miniature...3.00

Above amplifier completely assembled in module. Instructions $5.00

Preamp to match above with schematic...$1.50

Code Oscillator Module; completely assembled...$1.00

TRANSISTOR IGNITION SYSTEM: 6 to 12 volt negative ground, factory packed with instructions, simple installation...

21.95

455 K.C. transformer, 455 K.C. oscillator coil, sub-min.

Price...3/5.00

For 12 volt, 1 amp, REGULATED power supply, with schematic and instructions...

$8.75

S. C. R. stud rectifiers, silicon controlled 10 amp, 400 volt...

$1.00

S. C. R. Stud-3 amp-160 volt...

Electrolytics; all values, miniature...$1.00

In 91 Germanium Diode (GE)

Battery Clip for 9 volt transistor batteries with red & white wire leads...

$10/5.00

SCR-1 Silicon VHF (Transistor)

Mesa Transformer, 100 mc. NPN...

$1.00

WRITE FOR FREE ADDITIONAL CATALOG.

Minimum order $3 Prepaid Postage Free in U.S.A.

TRANSISTORS UNLIMITED COMPANY

Post Office Box 2242, Great Neck, L. I., N.Y.

11067-Pl 7-7221

Silicon Rectifier Sale

IMMEDIATE DELIVERY

FULLY GRO UN AMERICAN MADE FULLY TESTED

750 MA-SILICON "TOPHAT" DIODES

LOW LEAKAGE FULL LENGTH

PWR/RMS

<table>
<thead>
<tr>
<th>Type</th>
<th>50 PIV</th>
<th>100 PIV</th>
<th>150 PIV</th>
<th>200 PIV</th>
<th>250 PIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>125</td>
<td>150</td>
</tr>
</tbody>
</table>

ALL TESTS AC & DC & FWD & LOAD!

SILICON POWER DIODE STUDS

PWR/AMP

<table>
<thead>
<tr>
<th>Type</th>
<th>50 PIV</th>
<th>100 PIV</th>
<th>150 PIV</th>
<th>200 PIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>125</td>
</tr>
</tbody>
</table>

"SCR"

SILICON CONTROLLED RECTIFIERS "SCR"

PWR/AMP

<table>
<thead>
<tr>
<th>Type</th>
<th>50 PIV</th>
<th>100 PIV</th>
<th>150 PIV</th>
<th>200 PIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>125</td>
</tr>
</tbody>
</table>

Money Back guarantee. $2.00 min. order. Orders F.O.B. NYC. Include complete order. Ship charges plus C.O.D. orders 25% down.

Rent Stereo Tapes

FREE BROCHURE

Postpaid 2 to 5 day delivery (48 States)

co-s tereo-parti

1616-D TERRACE WAY, SANTA ROSA, CALIF.

LOW-COST BUSINESS AIDS FOR RADIO-TV SERVICE

Order books, invoice forms, job ticket books, service call books, cash books and statement books for use with your rubber stamp. Customer file systems, bookkeeping systems, many others. Write for FREE 32 PAGE CATALOG now.

DELRICH PUBLICATIONS
6556 Higgins Rd., Chicago, Ill. 60656

Treasure Finders

This page lists new transistor models detect buried gold, silver, coins, firearms. Locate Indian burial grounds, treasure beaches, shacks, ghost towns. FREE CATALOG.

RELCO Dept. RE-6; BOX 10563, Houston, Texas 77018

For Better Service

When ordering merchandise by mail, be sure to include your name and address. Print legibly. Don't send cash through the mail. Remit by check or money order.

Free Catalog!

144 PAGES ~ NEARLY 4000 BARGAINS

OPTICS ~ SCIENCE ~ MATH

EDMUND SCIENTIFIC CO.
Barrington, N. J.

SEND ME FREE CATALOG

Address

Clip and Mail Coupon Today

89

www.americanradiohistory.com
RAD-TEL'S MONEY BACK GUARANTEE

IF YOU ARE NOT COMPLETELY SATISFIED ON RAD-TEL'S QUALITY BRAND NEW TUBES!
ONE DAY SERVICE
OVER 500 TYPES IN STOCK

TUBE SUBSTITUTION BOOK

- Over 1,000 direct tube substitutes
- Only all-inclusive directory of electron tube equivalents
 - For USA electron tubes
 - Substitutes for foreign tubes
 - Picture tubes, newer models
 - Picture tubes, older models
 - Transistor replacements
 - Army-Navy, V. T. substitutes

$1.25

RA-D-TEL TUBE CO.

TV, RADIO AND HI-FI

55 CHAMBERS STREET, NEWARK, NEW JERSEY
07105

TERMSA
25% deposit must accompany all orders, balance C.O.D. Orders under $5 add $1 handling charge plus postage. Orders over $5 plus postage. Approx 8 tubes per 1 lb. Subject to prior sale. No C.O.D. outside continental U.S.A.

ORDER TYPES NOT LISTED

FREE! Send for New Tube & Parts Catalog

Send for Trouble Shooting Guide

Fast, Dependable service — Selling direct by mail for over 16 years

RAD-TEL TUBE CO.

DEPT. RE

55 CHAMBERS STREET

NEWARK, NEW JERSEY 07105

NAME:

ADDRESS:

CITY:

ZONE:

STATE:

RADIO-ELECTRONICS

SAVE UP TO 75% OFF

Manufacturer’s suggested list price

OUR 16th YEAR

FREE! Send for New Tube & Parts Catalog

Send for Trouble Shooting Guide

Fast, Dependable service — Selling direct by mail for over 16 years

RAD-TEL TUBE CO.

DEPT. RE

55 CHAMBERS STREET

NEWARK, NEW JERSEY 07105

NAME:

ADDRESS:

CITY:

ZONE:

STATE:

RADIO-ELECTRONICS

CHEATER CORD

Easy to work on set while panel is off.

8 ft., No. 154

29¢ Ea. Lots of 3 - 25¢ ea.

TUBE SUBSTITUTION BOOK

- Over 1,000 direct tube substitutes
- Only all-inclusive directory of electron tube equivalents
 - For USA electron tubes
 - Substitutes for foreign tubes
 - Picture tubes, newer models
 - Picture tubes, older models
 - Transistor replacements
 - Army-Navy, V. T. substitutes

$1.25

RAD-TEL TUBE CO.

TV, RADIO AND HI-FI

55 CHAMBERS STREET, NEWARK, NEW JERSEY
07105

TERMSA
25% deposit must accompany all orders, balance C.O.D. Orders under $5 add $1 handling charge plus postage. Orders over $5 plus postage. Approx 8 tubes per 1 lb. Subject to prior sale. No C.O.D. outside continental U.S.A.

FREE! Send for New Tube & Parts Catalog

Send for Trouble Shooting Guide

Fast, Dependable service — Selling direct by mail for over 16 years

RAD-TEL TUBE CO.

DEPT. RE

55 CHAMBERS STREET

NEWARK, NEW JERSEY 07105

NAME:

ADDRESS:

CITY:

ZONE:

STATE:

RADIO-ELECTRONICS

SAVE UP TO 75% OFF

Manufacturer’s suggested list price

OUR 16th YEAR

FREE! Send for New Tube & Parts Catalog

Send for Trouble Shooting Guide

Fast, Dependable service — Selling direct by mail for over 16 years

RAD-TEL TUBE CO.

DEPT. RE

55 CHAMBERS STREET

NEWARK, NEW JERSEY 07105

NAME:

ADDRESS:

CITY:

ZONE:

STATE:

RADIO-ELECTRONICS

SAVE UP TO 75% OFF

Manufacturer’s suggested list price

OUR 16th YEAR

FREE! Send for New Tube & Parts Catalog

Send for Trouble Shooting Guide

Fast, Dependable service — Selling direct by mail for over 16 years

RAD-TEL TUBE CO.

DEPT. RE

55 CHAMBERS STREET

NEWARK, NEW JERSEY 07105

NAME:

ADDRESS:

CITY:

ZONE:

STATE:

RADIO-ELECTRONICS

SAVE UP TO 75% OFF

Manufacturer’s suggested list price

OUR 16th YEAR

FREE! Send for New Tube & Parts Catalog

Send for Trouble Shooting Guide

Fast, Dependable service — Selling direct by mail for over 16 years

RAD-TEL TUBE CO.

DEPT. RE

55 CHAMBERS STREET

NEWARK, NEW JERSEY 07105

NAME:

ADDRESS:

CITY:

ZONE:

STATE:

RADIO-ELECTRONICS

SAVE UP TO 75% OFF

Manufacturer’s suggested list price

OUR 16th YEAR

FREE! Send for New Tube & Parts Catalog

Send for Trouble Shooting Guide

Fast, Dependable service — Selling direct by mail for over 16 years

RAD-TEL TUBE CO.

DEPT. RE

55 CHAMBERS STREET

NEWARK, NEW JERSEY 07105

NAME:

ADDRESS:

CITY:

ZONE:

STATE:

RADIO-ELECTRONICS

SAVE UP TO 75% OFF

Manufacturer’s suggested list price
For quality and service...**ARCOLYTIC**!

These superior quality electrolytic capacitors are made of 99.99% pure aluminum foil... designed to operate at 85°C, and withstand high ripple and surge voltages. All are made and tested to EIA RS-154. Premium grade materials and construction make Arcolytics last longer — on the shelf... and in the set! Over 1400 values to meet all requirements for tubular and twist-mount electrolytics — single, dual, triple or quad-ripple capacitance in voltage combinations for radio, tv and industrial electronics. All unconditionally guaranteed! No extra charge for this high quality. You can get your Arcolytics in any quantity within 24 hours from coast to coast. They're stocked in depth at Arco's reserve warehouses serving authorized Arco distributors throughout the nation. Call your Arco distributor today!

Community Drive, Great Neck, New York
It Depends on a Leakproof Stem Seal

The slightest leakage of air weakens the high vacuum of a TV picture tube...resulting in a costly callback and a dissatisfied customer for you. This is why RCA takes extra precautions to maintain the vacuum in Silverama picture tubes.

Potential trouble spots are the glass-to-metal lead-wire seals in the electron-gun stem assembly (below). At RCA, stem assemblies are batch tested for leakage in a supersensitive leak detector before they go into electron guns.

So sensitive is this detector that it can pinpoint a leak that would not affect tube performance for years...a leak so tiny that no other inspection method could hope to find it.

Yet the slightest sign of a leak is cause for rejection of a stem. This extra precaution is one more example of the care that goes into every phase of Silverama manufacture...and one more reason why RCA Silverama should be your first choice in replacement picture tubes.

Silverama is made with an all-new electron gun, finest parts and materials, and a glass envelope that has been thoroughly cleaned and inspected prior to re-use.

RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N.J.

The Most Trusted Name in Electronics