G-LINE FOR TV REMOTE ANTENNAS
BUILD A DIRECT FREQUENCY METER
PA AMPLIFIER INCLUDES LECTERN

Biggest Radio Telescope Scooped Out Of Earth See page 4

HUGO GERNSBACH, Editor in-chief
FACTS MAKE FEATURES:

1. Comprehensive overload protection.
2. One selector switch minimizes chance of incorrect settings.
3. Polarity reversing switch.

Additional protection is provided by Model 630-PLK's new transistorized relay circuit. Transistorized overload sensing device does not load circuit under test, eliminating the possibility of damaging circuit components. A special meter shorting feature on "off" position offers high damping when moving tester. The exclusive patented Bar Ring Movement provides self-shielding and is not affected by stray magnetic fields. Wider spread scales, and unbreakable clear plastic window assure maximum readability. Diode network across meter protects against instantaneous transient voltage.

TRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO

RANGES

DC Volts: 0-2.5-10-50-250-1,000-5,000 at 20,000 ohms/volt; 0-0.25 at 100 microamperes.

AC Volts: 0-5-250-1,000-5,000 at 5,000 ohms/volt.

Decibels: -20 to +11, +27, +40, +51, +75, "O" DB at 1 MW or 600 ohm line.

DC Microamperes: 0-100 at 250 Mv.

DC Milliamperes: 0-10-100-1,000 at 250 Mv.

DC Amperes: 0-10 at 250 Mv.

Ohms: 0-1,000-10,000 (4.4.44 at center scale).

Megohms: 0-1-100 (4,400-440,000 at center scale).

Output Volts (AC): 0-3-10-250-1,000 at 5,000 ohms/volt; jack with condenser in series with AC ranges.

CARRYING CASE

THE WORLD'S MOST COMPLETE LINE OF V-O-M'S, AVAILABLE FROM YOUR TRIPLETT DISTRIBUTOR'S STOCK.
IF YOU ARE ONE OF THE FORTUNATE PEOPLE who own 4-track stereo tape playback equipment, you know the thrill of the near-perfect fidelity, the unsurpassed sound of tape. Now you have an exceptional opportunity to build an outstanding collection of superb stereo tapes at great savings. Through THE COLUMBIA STEREO TAPE CLUB, the most generous offer ever made by the Columbia Stereo Tape Club!

By joining now, you may have ANY FOUR of the magnificently recorded 4-track tapes described here — sold regularly by the Club for up to $39.80 — for only $5.98!

TO RECEIVE YOUR 4 PRE-RECORDED STEREO TAPES FOR ONLY $5.98 — simply fill in and mail the coupon today. Be sure to indicate which Club Division best suits your musical taste: CLASSICAL or POPULAR.

HOW THE CLUB OPERATES: Each month the Club's staff of music experts chooses outstanding selections for both Divisions. These selections are described in the Club Magazine, which you receive free each month.

You may accept the monthly selection for your Division . . . or take any of the wide variety of tapes offered in the Magazine to members of both Divisions . . . or take no tape in any particular month. Your only membership obligation is to purchase 5 tapes from the more than 150 to be offered in the coming 12 months. Thereafter, you have no further obligation to buy any additional tapes . . . and you may discontinue your membership at any time.

FREE TAPES GIVEN REGULARLY. If you wish to continue as a member after purchasing five tapes, you will receive — FREE — a 4-track stereo tape of your choice for every two additional tapes you buy.

The tapes you want are mailed and billed to you at the regular Club price plus a small mailing and handling charge.

SEND NO MONEY — just mail the coupon today to receive your four pre-recorded 4-track stereo tapes — ALL 4 FOR ONLY $5.98!

IMPORTANT NOTE: All tapes offered by the Club must be played on 4-track stereo tape-playback equipment. If your tape recorder does not play 4-track stereo tapes, you may be able to convert it simply and economically. See your local service dealer for complete details.

COLUMBIA STEREO TAPE CLUB, Dept. 424-1, Terre Haute, Indiana.

SEND NO MONEY — mail coupon to receive 4 tapes for $5.98.

SEND ME THESE FOUR TAPES (Fill in numbers below)

[] CLASSICAL [] POPULAR

I understand that I may select tapes from either Division. I agree to purchase five selections from the more than 150 to be offered in the coming 12 months, at the regular Club price plus a small mailing and handling charge. Thereafter, if I decide to continue my membership, I am to receive a 4-track pre-recorded tape of my choice, plus five for every two additional selections I accept.

[] CLASSICAL [] POPULAR

I agree to purchase four pre-recorded tapes at a Club price of $7.95 (occasional Original Cast recordings somewhat higher), plus a small mailing and handling charge.

Name (PLEASE PRINT)

Address

City . Zone . State .

This offer is available only within the continental limits of the U.S.

Columbia Records Division of Columbia Broadcasting System, Inc., 1964
Editorial

Space Handicaps

Hugo Gernsback

Audio-High Fidelity-Stereo

The MC's P.A.
All-in-one amplifier, mike and speaker is reading desk, too
Leon A. Wortman

Line Voltage and Amplifier Distortion
Harold Reed

Professional Stereo Line Amplifier
For studio or elaborate home systems
Harold Reed

Audio Report: An FM Stereo Tuner and a Speaker System
Scott 310E and Electro-Voice EV Two

Electronics

The Bridged-T
How to design and use a little-known notch circuit with many applications
Jerry L. Ogden

Reactance Tables
Ernest T. Thiersch

Trimming Resistors and Capacitors
Martin H. Patrick

Auto-Photo Timer
Correct enlarger exposures automatically
Joseph Giannelli

New Approach to Transistor Circuit Design
After all, transistors can be voltage amplifiers
Irving M. Gottlieb

General

What's Your EQ?

Marvelous Electronic Diaper Change Indicator
David W. Cramp

Automotive Alternators—How to Keep Them Working
Charles J. Schauers

Television

Biggest Telescope on Earth Is IN The Earth
Radar 'scope may help protect us from future ICBM's
Eric Leslie

Improve FM Reception with a Wide-Band Detector
Replace the detector transformer to reduce distortion
Lloyd Vincent

Radio

TV Power Supply Troubles
Jack Darr

The G-Line
How this ultra-low-loss line works and how to make it bring TV down a mountain
Owen G. Patrick

Service Clinic
How TV color circuits work
Jack Darr

A Day at the Bench
Even if the roof doesn't leak, capacitors do
Warren Roy

Test Instruments

Simplest Direct-Reading Frequency Meter
One transistor, a meter and not much else
I. Queen

Simple RF Wattmeter for CB
Has other uses, too—such as low-power audio or ham measurements
Lyman E. Greenlee

Equipment Report: Sencore CR-125 and International Crystal C-12B
A flexible picture-tube tester and a CB frequency meter

The Departments

33, 53, 88 Corrections
92 New Patents
6 News Briefs
89 Technotes
18 Correspondence
95 New Products
104 Try this One
107 New Books
101 New Semiconductors & Tubes
99 Technicians' News
106 New Literature
103 50 years Ago

A NEW WORLD OF OPPORTUNITY AWAITS YOU WITH N.T.S. ALL-PHASE HOME TRAINING IN ELECTRONICS

You can install and maintain electronic circuitry in missiles and rockets...specialize in micro-waves, radar and sonar.

You can succeed in TV-Radio Communications...prepare for F.C.C. License, service advanced satellites for industry and defense.

You can service and repair the electronic "brains" of industry—computers, data processing, and other automation equipment.

You can become a highly-paid TV-Radio Technician, an electronics field engineer, or succeed in your own sales & service business.

The N.T.S. Master Course enables you to do more, earn more in ELECTRONICS•TELEVISION•RADIO

Yet N.T.S. Training costs no more than other courses far less complete

There's a good reason why N.T.S. Master-Training opens a wide new world of opportunity for you in Electronics, Television, Radio. Everything you learn, from start to finish, can be applied directly to all phases of the Electronics Industry.

As a result, the N.T.S.-Trained Technician can move ahead faster, in any direction—from TV-Servicing to Radio Communications to Space-Missile Electronics and Automation for industry and defense. You can go wherever pay is highest and opportunity unlimited.

Electronic circuitry, for example, is one of science's miracles that is basic to the entire field of Electronics. It is used in satellites, computers and space capsules as well as in today's television sets and high fidelity equipment. N.T.S. shows you how to service and repair electronic circuitry for all electronic applications.

You work on many practical job projects. You build a short-wave, long-wave superhet receiver, plus a large-screen television set: from the ground up. N.T.S. training kits contain all the parts you need...at no extra cost. (See box at right:) You also receive a professional Multimeter to use during training and on the job.

ONE LOW TUITION. You need training related to all phases of Electronics. Industry demands it. Only N.T.S. provides it...in ONE Master Course at ONE low tuition.

MAIL COUPON NOW FOR FREE BOOK AND ACTUAL LESSON!

NO OBLIGATION.
NO SALESMAN WILL CALL.

MAIL COUPON NOW FOR FREE BOOK AND ACTUAL LESSON!

NO OBLIGATION.
NO SALESMAN WILL CALL.

RESIDENT TRAINING AT LOS ANGELES

If you wish to take your Electronics-TV-Radio training in our famous Resident School in Los Angeles—the oldest and largest school of its kind in the world—write for special Resident School catalog and information, or check coupon.

19 BIG KITS YOURS TO KEEP
Sonar Doppler Navigates Surface Vessels

A Doppler navigator that automatically and continually plots a ship's position underwater has been developed by Raytheon for the Navy. This works much like the Doppler radar now used to guide airplanes (Radio-Electronics, August 1962, p. 42).

As the ship moves forward through the water, sound waves are beamed to the ocean's floor in four directions corresponding to the cardinal points of the compass. The returning echoes, changed slightly in pitch from the frequency of the original beam, are compared with the outgoing sound. The change is called the Doppler effect and is a direct measure of the motion of the vessel in the respective directions.

This change occurs only when the ship moves. The bottom echo from the sound signal beamed ahead of the vessel strikes the receiver sooner than it would if the ship were standing still. Therefore, the pitch is slightly higher. Echoes from the beams directed astern and to port and starboard of the ship likewise change in pitch in proportion to the motion of the vessel in these directions.

These differences in frequency are processed and compared electronically. The outputs are fed into step motors which drive the plotting pen over a standard US Coast and Geodetic Survey or Navy Hydrographic Chart. The result is a precise tracing of ink across the face of the chart, the contact point of the pen being the actual position of the vessel with respect to the surface of the earth.

An earlier underwater Doppler radar was mentioned in Radio-Electronics, February 1963, on page 16.

Child Bites Cheater Cord, Lives, But Loses Two Teeth

Joyce Ellen Cartwright, age 2, of Old Hickory, Tenn., pulled the cord out of the family TV set, put it in her mouth and bit it. Her mother reports that she saw her about 2 feet off the floor, coming down. "I thought she had climbed up on something and fallen off," Mrs. Cartwright said.

At the hospital, it was discovered that the child had third-degree burns at the corner of her mouth and partly down her throat. She had swallowed two of her teeth and a fragment of the TV cord.

Apparently the back of the set had been removed for some reason (possibly amateur troubleshooting) and the set was being operated with a simple cheater cord.

Precision Holes Bored With Laser Guidance

A system in which a beam of laser light acts as a "radar" to show the position of a boring-tool spindle is described by Sperry Gyroscope Co. of Canada. The device would be used to bore holes as small as 1/20 inch—about the size of a pinhead—in tungsten and molybdenum steels. Tolerance would be 20 times finer than at present, about 5 millionths of an inch, or a quarter of the wavelength of red light.

To achieve these tolerances, a beam of laser light from the boring-tool spindle strikes the wall of the hole and is reflected to the spindle. Checking the elapsed time indicates the precise time the light has traveled, and thus can be used to show the radius of the hole. The radius indicated is compared with the desired radius and, if necessary, the spindle repositioned automatically to make the necessary corrections. The operation occurs on each revolution of the borer—up to 6,000 times a minute.

Miniature Gas Laser Emits Visible Light

A helium-neon gas laser only 5 cm long and 1 mm in diameter has been developed by Eugene I. Gordon and Alan D. White of Bell Telephone Labs. Due to its shortness, the new laser oscillates at only one frequency. Larger gas lasers tend to operate at several frequencies simultaneously and are hard to stabilize against frequency fluctuation. The smaller lasers are much less susceptible to vibration and thus more stable.

The combination of stability and single-frequency oscillation makes it possible to use the laser as a very precise measuring instrument. If one of the end mirrors is connected to a positioning device, very slight changes in position will cause the laser to shift frequency. Displacements considerably less than one-millionth of an inch can be detected and, with an oscilloscope, readily measured.

Changing the spacing between the end mirrors varies the frequency

New nautical navigator's sonar devices continuously bounce four simultaneous signals off ocean floor. Returning echoes are compared with transmitted signal. Combined results make ink trace on ship's chart, showing ship's exact position.
Men of most All Ages — from many walks of Life have profited by DeVry Electronics Training

Electronics training has given job opportunities to thousands of men of most ages. Many went on for years looking for the "big break," and never even thought they had a chance in electronics. Then, sooner or later, an item in the paper, a coupon in a magazine, a word of advice from a friend — led them to Electronics. It's an ideal field for the lad just graduated, the man just married, the man looking for a "second chance."

DeVry Technical Institute
Chicago • Toronto
Accredited Member of National Home Study Council

Electronics training has done so much for so many men, and DeVry Tech offers practical programs to suit almost anyone 17-55. You can train in one of our modern laboratories, day or evening. Or, you can keep your present job and train at home — even earn while you learn! No previous technical experience is required to get started. Send for our free booklets today and find out how you, too, may prepare for a bright, more profitable tomorrow — in electronics.

SEND FOR FREE BOOKLETS
DeVry Technical Institute
4141 Belmont Ave., Chicago 41, Ill. Dept. RE-2-U
Please give me your two free booklets, "Pocket Guide to Real Earnings" and "Electronics in Space Travel"; also include details on how to prepare for a career in Electronics. I am interested in the following opportunity fields (check one or more):

- Space & Missile Electronics
- Television and Radio
- Microwaves
- Radar
- Automation Electronics
- Communications
- Computers
- Broadcasting
- Industrial Electronics
- Electronic Control

Name_________________________Age__________
Address________________________Apt.__________
City_________________________Zone__________State__________

Check here if you are under 16 years of age.

Canadian residents: Write DeVry Tech of Canada, Ltd.
970 Lawrence Avenue West, Toronto 19, Ontario 2286
Now! Castle Offers You the Biggest Bargain in TV Tuner Overhauling!

All Makes All Labor and Parts (Except Tubes) One Price

9.95

One Low Price includes All UHF, VHF and UV Combination Tuners

In a decade of experience overhauling TV Tuners of ALL MAKES, Castle has developed new handling and overhauling techniques which give you...

Fast Service

A recent study at our Chicago Plant revealed that all tuners accepted for overhauling, over 30% were completed and shipped within Seven Hours...all others within 24 Hours.

- Simply send us your defective tuner complete; include tubes, shield cover and any damaged parts with model number and complaint. 90-Day Warranty.
- Exact Replacements are available for tuners unfit for overhaul. As low as $12.95 exchange. (Replacements are new or rebuilt.)

UV combination tuner must be of one piece construction. Separate UHF and VHF tuners must be dismantled and the defective unit only sent in.

Dr. Eugene I. Gordon demonstrates the new laser. Spacing between end mirrors shown by dividers is 4 inches; length of active discharge tube is 2 inches. The mirror at Dr. Gordon's right is attached to a piezoelectric crystal. A voltage applied to the crystal changes its length, moves the mirror slightly, tuning the laser.

To increase laser gain so that the very short lasers could be made to oscillate, the helium 4 gas used in earlier lasers was replaced with the lighter helium 3 isotope, and the diameter of the laser discharge tube was reduced to 1 mm.

Mysterious Marine Sounds Traced Back to Whales

Ten years ago, Bell Laboratory oceanographers detected underwater sounds at 20 cycles or less, so strong as to rise 30 or 40 decibels above the level of background noise. These subsonic pulses, heard in pairs at the rate of about 3 a minute, moved about randomly at speeds varying between 2 and 8 knots.

Recent observations with hydrophones lead some scientists to believe that they may be the heartbeats of whales. According to Dr. Richard A. Walker of Bell Laboratories, the blue whale has a heart which weighs ½ ton, pumps 8 tons of blood and develops a useful output of about 10 horsepower. Such a heart could produce the powerful acoustical pulse that has puzzled the oceanographers.

Walker believes the sound may occur only when the whale's mouth is open to scoop up the tiny marine animals on which it lives. When its mouth is closed, its tons of flesh muffle the heartbeat.

Trucking Company Saves With Mobile Radio

Savings of as much as 70% in driver-to-office communication expenses have been reported by trucking companies after installing two-way radios, according to Outercom Electronics Corp., manufacturers of mobile radio equipment.

According to one trucking company, a telephone call by a driver used to occupy an average of 12 minutes, much of which was spent parking the vehicle. Four drivers earning $2.90 per hour and making only 3 calls per day each, would cost the company $174 per month. To this must be added the actual cost of the calls and the extra mileage added driving to the nearest telephone. These expenses totaled $312 monthly.

Installing mobile radios saved $222 of that and added the extra profits from deliveries made in the time during which the trucks would otherwise be tied up making phone calls.

World's First Computer Becomes an Antique

UNIVAC I, Serial No. 1, which went into operation for the Bureau of the Census in March 1951, has been retired and presented to the Smithsonian Institution.

UNIVAC I was developed by J. Presper Eckert and Dr. J. W. Mauchly of the University of Pennsylvania, following work they had done with electronic devices to compute trajectories of artillery missiles during World War II. The Eckert-Mauchly Co. had affiliated with Remington Rand before UNIVAC was completed.

The computer was operated first in the Remington Rand plant in Philadelphia, processing data from the 1950 census. In 1952 it was transferred to the Census building at Suitland, Md., from which it operated practically continuously 24 hours a day, 7 days a week until its final run.

Electronics Editor Dies; Worked on Radio News

G. C. Baxter Rowe, who was associated with Gernsback Publications
RCA...Pioneer and developer of Color TV...Announces a new concept in outdoor antennas

Now the most trusted name in color TV brings you and your customers a whole new outdoor antenna line packed with top-value features. RCA puts together in a single line the best of all-channel yagi and multiple cross-driven element antenna types. You'll satisfy every customer's demand for sharpest color or black-and-white TV reception with this new RCA Series 200, 300 and 400 antennas.

RCA's electro-lens director system absorbs maximum incoming signal power, gives extremely high gain across capacitively coupled the VHF band, offers excellent forward gain on the front end.

In addition to phasing low and high band directors for best high band performance, RCA and only RCA positions high band driven elements directly below low band driven elements. Through capacitance thus existing, RCA antennas feed energy directly into the transmission line from high band driven elements. An RCA exclusive!

A permanent gold anodized finish defends every RCA antenna's glossy finish from weather corrosion. Wrap-around mast clamp aligns antenna on mast, prevents boom crushing.

Just call your RCA Victor distributor. He'll tell you and show you all about new RCA 200, 300, 400 antennas—and that's plenty! Call now—sell soon!

RCA PARTS AND ACCESSORIES, CAMDEN, N.J.

THE MOST TRUSTED NAME IN ELECTRONICS
First to deliver uniform, peak performance on all UHF channels

BLONDER-TONGUE GOLDEN DART

- Unique use of Log Periodic principle.
- Polar pattern & 10 db gain uniform across entire UHF spectrum— for sharp, ghost-free pictures.
- Full bandwidth, flat response (± 1/2 db) on all channels—excellent for black & white and color TV.
- Completely pre-assembled—nothing to snap-out, no screws to tighten—mounts to mast in seconds.
- Smallest, most compact of all UHF antennas (17" long by 2½” deep)—easy to piggyback with any VHF antenna.
- Rugged unitized welded construction—no movable joints.
- For deep fringe area reception, stack two Darts with sturdy, easy-to-use stacking bars.
- Supported by intensive advertising program.

Now you can offer a complete UHF installation—antenna, UHF converter or TV booster (if needed)—from the leader in UHF.

Get details on the exciting new Blonder-Tongue UHF Dart today.

Europe Heard on Broadcast Band

Low sunspot activity has made trans-Atlantic broadcast-band dx again possible this winter. Among European stations heard in the New York area in December were Monte Carlo on 1466 and Rome 1 on 845 kc. Best reception time was from 1 to 2 am EST, although reception was also possible sometimes around 5 pm. Most stations sign off at 6 or 7 pm but Rome and several others operate 24 hours a day.

European broadcasters in the 150–260-kc long-wave band have also been received. Best heard station is Paris on 164 kc, which operates on a 24-hour schedule.

Trans-Atlantic dx in these bands should be possible till late February and again next fall and winter. A very selective receiver is necessary.

The World Radio Handbook lists European broadcasters and their schedules.

GI's Get Commands Via New Lightweight Radio

A new signal system devised by the Army Electronics Research & Development Laboratories in Fort Monmouth, N.J., will make it possible to supply receivers to every infantryman in certain combat groups. Transmitters would be supplied to the sergeants, who would thereby be able to keep in touch with their squads, even in the '20's, died in Port Chester, N.Y., at the age of 66. During the period with Gernsback, he was associate editor on Radio News. Later, he was an editor with the firm of John F. Rider, and from 1949 till his retirement in 1962, was associate editor of Electrical Engineering, the magazine of the American Institute of Electrical Engineers.
A Return to the Fundamental Concept of High Fidelity:
SOUND OF UNCOMPROMISING QUALITY!

Before you make the final choice of speakers for your high fidelity system, take a moment to review your goals. What comes first—size, cost, or performance? If performance is of prime importance, then you owe it to yourself to look at—and listen to—Electro-Voice Deluxe component speakers. Granted, they are not the smallest or the least expensive speakers you can buy, but their design is predicated on the need for quality reproduction above all other considerations.

Your ear is the final arbiter of speaker system quality, but it may help you to know what's behind the unequalled popularity of E-V in the component speaker field. It begins with the finest engineering laboratory in the industry, finest not only in equipment, but also in the size of its staff and in its creative approach to electro-acoustics.

The basic design for E-V Deluxe components was laid down over a decade ago, and, despite numerous detail improvements, this approach is just as valid today. It begins on a firm foundation: the rigid die-cast frame that provides a stable basis on which this precision instrument can be assembled. It is this frame that assures that each E-V Deluxe speaker will forever maintain its high standard of performance by maintaining perfect alignment of all moving parts.

Added to this is a magnetic assembly of generous proportions that provides the “muscle” needed for effortless reproduction of every range at every sound level. In the case of the SP15, for example, four pounds, ten ounces of modern ceramic magnet (mounted in an efficient magnetic assembly weighing even more) provides the force needed for perfect damping of the 15-inch cone.

Within the gap of this magnetic system rides the unique E-V machine-wound edgewise-ribbon voice coil. This unusual structure adds up to 18% more sensitivity than conventional designs. Production tolerances on this coil and gap are held to ±.001 inch! The voice coil is wound on a form of polyester-impregnated glass cloth, chosen because it will not fatigue like aluminum and will not dry out (or pick up excess moisture) like paper. In addition, the entire voice coil assembly can be made unusually light and rigid for extended high frequency response.

In like manner, the cone material for E-V Deluxe components is chosen carefully, and every specification rigidly maintained with a battery of quality control tests from raw material to finished speaker. A specially-treated “surround” supports the moving system accurately for predictably low resonance, year after year, without danger of eventual fatigue. There’s no breaking-in or breaking down!

Now listen—not to the speaker, but to the music—as you put an E-V Deluxe component speaker through its paces. Note that bass notes are neither mushy nor missing. They are heard full strength, yet in proper perspective, because of the optimum damping inherent in the E-V heavy-magnet design.

And whether listening to 12-inch or 15-inch, full-range or three-way models, you'll hear mid-range and high frequency response exactly matched to outstanding bass characteristics. In short, the sound of every E-V Deluxe component speaker is uniquely musical in character.

The full potential of E-V Deluxe component speakers can be realized within remarkably small enclosure dimensions due to their low-resonance design. With ingenuity almost any wall or closet can become a likely spot to mount an E-V Deluxe speaker. Unused space such as a stairwell can be converted to an ideal enclosure. Or you may create custom cabinetry that makes a unique contribution to your decor while housing these remarkable instruments. The point is, the choice is up to you.

With E-V Deluxe component speakers you can fit superlative sound to available space, while still observing reasonable budget limits. For example, a full-range speaker such as the 12-inch SP12 can be the initial investment in a system that eventually includes a T25A/8HD mid-range assembly, and a T35 very-high-frequency driver. Thus the cost range from $70.00 up to $220.00, as you prefer—and every cent goes for pure performance!

Write today for your free Electro-Voice high fidelity catalog and list of the E-V audio specialists nearest you. They will be happy to show you how E-V Deluxe component speakers fulfill the fundamental concept of high fidelity with sound of uncompromising quality!

ELECTRO-VOICE, INC.
Dept. 244E, Buchanan, Michigan
WHY bother with makeshift twist-prong capacitor replacements?

When you substitute capacitor sizes and ratings, you leave yourself wide open for criticism of your work... you risk your reputation... you stand to lose customers. It just doesn't pay to use makeshifts when it's so easy to get the exact replacement from your Sprague distributor!

Get the right SIZE, right RATING every time with improved SPRAGUE TWIST-LOK® CAPACITORS!

Over 1,690 different capacitors to choose from!

The industry's most complete selection of twist-prong capacitors, bar none. Greater reliability, too. Exclusive Sprague cover design provides a leak-proof seal which permits capacitors to withstand higher ripple currents.

though the men were widely scattered,

The receivers weigh 9 ounces, and the transmitter 15 ounces. The 9-ounce receiver has 13 transistors and 7 diodes together with batteries good for 24 hours.

With the receiver clipped on his helmet or in his pocket, each member of the squad, even though in a relatively remote location, can be as closely in touch with the leader as in the past, when it was often necessary to remain so close that a single enemy shell could wipe out an entire squad.

Rise In Engineering PhD’s And MS’s While BS’s Decrease

The number of doctor's and master's degrees in engineering continues to increase, as it has been doing for the past 6 years, but the number of bachelor's degrees continues to decline.

A report released by the US Office of Education and announced jointly by the American Society for Engineering Education and the Engineering Manpower Commission of the Engineers Joint Council, stated that during the past 6 years engineering doctorates increased in number at least three times as fast as the total number of doctorates in all of the major academic fields.

Degrees have increased on the master's level also, at twice the rate of increase for the total number of master's degrees awarded in the US.

Bachelor's degrees, however, continue to decline in number, but preliminary figures indicate that the total engineering enrollment rose slightly this fall. Thus, a reversal of this trend is hoped for.

New Phone Cable Links Canada, South Pacific

A 9,400-mile, 72.8-million-dollar trans-Pacific telephone cable linking Canada with British dominions in the Pacific was opened early in December 1963.

The new route, the first telephone cable to be laid across the Pacific, includes more than 300 deep-sea repeaters, laid in depths up to 3 miles, to amplify the signal as it travels. Besides the telephone circuits, the new cable (known as COMPAC) includes facilities for telegraph, telex and phototelegraph services, as well as a music circuit capable of carrying broadcast programs.

It provides for 76 two-way speech channels (80 later), any one of which could be used for 22 teleprinter channels. The route of the line is from Vancouver to Keawaula,
YOUR FIRST CLASS COMMERCIAL F.C.C. LICENSE

Your Ticket To A Better Paying Job And Greater Job Security

We train you — prepare you to pass the FCC exam for your first class FCC license. The leading course of its kind, Grantham FCC License Preparation is available in resident classes in Los Angeles, Calif.; South Gate, Calif.; Seattle, Wash.; Kansas City, Mo.; and Washington, D.C. Or, if you prefer, our specialized training is available in your own home from our Home Study Department, Kansas City, Mo. Regardless of where or how you study with Grantham, you are taught right and prepared quickly for your first Class FCC license.

Grantham Students Get Their Licenses

Following is a list of a few of the many students who have completed our FCC license preparation recently and obtained their first Class FCC licenses:

Edwin Keister, 1201 Dennis Ave., Silver Spring, Md.
Herbert Braswell, 416 E. Bellefonte Ave., Alexandria, Va.
Floyd R. Henderson, 3219 Andrina St., Los Angeles, Calif.
Gerald D. Herbert, Route 6, Bloomfield, Iowa.
William Seymour, 6924 - 32nd St., N.W., Washington, D.C.
Irvin Griffin, 2421 W. Lexington St., Baltimore, Md.
David H. Klempel, Lambert, Montana.
Denis Christopherson, 4402 Waite Lane, Madison, Wis.
Irvin Griffin, 2421 W. Lexington St., Baltimore, Md.
Wayne A. Taylor, 4111 Nicholson St., Hyattsville, Md.
William I. Brink, 13 Meade Ave., Babylon, L.I., N.Y.
Irvin Griffin, 2421 W. Lexington St., Baltimore, Md.
David H. Klempel, Lambert, Montana.

Grantham School of Electronics

This 44 page booklet, “Careers in Electronics,” contains full details on how Grantham training can prepare you for your first Class FCC license and for a successful electronics career. For your free copy, complete the coupon below and mail it to our National Headquarters Office (address in coupon), or write or telephone one of our teaching divisions which appear to the left. You’ll be glad you did!

To: GRANTHAM SCHOOL OF ELECTRONICS
NATIONAL HEADQUARTERS OFFICE
1505 N. WESTERN AVE., LOS ANGELES, CALIF., 90027

Please send me your FREE 44 page booklet telling how I can get my commercial F.C.C. license quickly and can continue into advanced electronics if I wish. I understand there is no obligation and no salesman will call.

Name ____________________________ Age ______
Address ___________________________
City _______________________________
State ______________________________
I AM INTERESRED IN: ☐ HOME STUDY ☐ RESIDENT CLASSES 44-B

FEBRUARY, 1964
try this with any other cartridge
(at your own risk)

No way to treat a cartridge, for sure—That is, any cartridge except the Sonotone models featuring the new Sono-Flex® needle. No more bent or broken needle shanks caused by flicking off some lint, dropping the arm, or scraping it across the record.

The newly developed Sonotone Sono-Flex® needle to the rescue! Gripped in a resilient butyl rubber mount, you can flex this needle shank in a 360-degree orbit without breaking. Pluck it—flick it—bend it—bump it—it will continue to perform as good as new.

Moreover, the Sono-Flex brings advantages in performance never before offered by any replacement cartridge: Higher compliance, wider and flatter frequency response, lower IM distortion, and longer needle and record life.

Sonotone Sono-Flex® increases your profits two ways

☐ Sonotone cartridges are better than ever, easier to sell, because they're better performers. Further, you eliminate callbacks because of broken needle shanks. Sonotone needles are standard right now in these Sonotone cartridges models: 9TAF, 16TAF, 916TAF and the Velocitone Mark IV.

☐ Sono-Flex opens up lucrative needle replacement business for upgrading these Sonotone cartridges models: 9T, 9TA, 9TV, 9TAV, 16T, 16TA, 16TAF and 916TA, original equipment in over a million phonographs. Replacement is fast, simple—requires no tools—assembly snaps into position easily, and gives immediate proof of better performance plus abuse-proof, longer needle life.

See your distributor today and ask for Sonotone cartridges with the Sono-Flex® needle.

SONOTONE CORPORATION Electronic Applications Division Elmsford, New York
In Canada: Atlas Radio Corp., Ltd., Toronto • cartridges • speakers • batteries • microphones • hearing aids • headphones

Hawaii (thus including the US), and then to Suva, Auckland and Sydney, Australia.

With the Atlantic link, laid in 1961, operators in London will be able to dial directly into the inland phone system of Australia, and eventually into Montreal, Vancouver and Auckland, as automatic exchanges are set up.

Acoustics of Large Halls Simulated by Ultrasound
Program material recorded on tape and played back at 10 times its normal speed through ultrasonic equipment makes it possible to build models of concert halls one-tenth size and modify them for the best acoustics. The method was devised by Professor Spandock of Technological University in Munich, Germany.

A similar system, using water and ordinary soundwaves, has been used before, but since sound travels only five times as fast in water as in air, the models could not be scaled down as far as these new ones can.

Alaskan Court Stenos Are All-Electronic
Tape recorders are taking over from the ancient court stenographer in several Alaskan courts, reports Soundsciber Corp., manufacturer of special “tamper-proof” recording equipment.

The Alaskan system uses five microphones, one each for the judge, the clerk, the witness and each attorney. The mikes are monitored so that all are taped at the same level. A written record can be typed off by a typist. This eliminates the necessity for a highly skilled court reporter, and also eliminates the possibility of mistake or misinterpretation by the reporter. If there is any doubt about what was said, the original record can be played again.

Alaskan officials believe that the system saves nearly $250,000 annually and cuts appeal time by 75%.

Brief Briefs
“Whistlers,” those low-frequency noises produced by thunderstorms and traveling along the earth’s magnetic lines of force, can produce variations in the strength of very low frequency (vlf) radio signals.

This discovery was made by Michael Trimpi of Stanford U. at a vlf Research Station in Antarctica. Beginning April 19, 1964, the Restricted Radiotelephone Operator permit, now valid for limited operation of certain standard and FM broadcast stations, will no longer be valid. Limited operators will have to hold, as a minimum, a Third-Class Radiotelephone Operator permit, endorsed for broadcast operation. END
Choosing and using audio attenuators

Ever notice that a hi-fi rig sounds best about mid-range on the level (volume) control? Man, those drums, fifes, bugles and train whistles sound GREAT! But, oh, those grouchy neighbors. Somehow they fail to appreciate three or four solid hours of this "pure" sound.

Fear not! There's a simple way to keep true hi-fi sound as well as your neighbors. All you need is an audio attenuator (a fancy name for audio control). There are two basic types of audio attenuators: T pads and L pads.

If yours is the ultimate in hi-fi rigs you need a T pad. It maintains a constant impedance between the amplifier and the speaker. You simply turn the amplifier up to optimum performance (somewhere around mid-range) (pretty doggone loud) and control listening level with the T pad. The "fi" is very "hi" but the level is reasonable and so are the neighbors.

Not all of us can afford the "ultimate". Budgets being what they are, we make a few compromises. Not that our hi-fi doesn't sound great—it does. It's just that it won't break the picture window. We may be able to get by with an L pad. This presents a constant impedance only to the amplifier. Strangely enough, an L pad often seems to improve the performance of an inexpensive speaker. Try it—you'll see!

If you have stereo, try an LL pad. That's a pair of L pads with a common shaft. You can balance your rig at the amplifiers and control level at the speakers with only one knob.

How about money? Mallory T, L, and LL pads will handle an "ear-busting" 15 watts of audio power! But if yours is the usual 10 watt system you'll need only an RT or RL pad... same extreme quality—only smaller and more economical.

Speaking of economy, try the new Mallory RR 50 Stereo Control. It does a terrific job on most popular stereo outfits. Just what you need for the recreation room or patio.

The whole point of this "tip" is to let you know that your Mallory Distributor has exactly the audio attenuator you need. All kinds of values and several price ranges. He's your "one stop" source for all of your electronic requirements. Stop in soon.
Was your name part of this hard-sell ad in TV GUIDE?

If you took advantage of the offer, February 8th TV Guide tells every reader in your neighborhood that you are the expert on whether they should repair or replace their TV set. And a helpful free booklet titled "Fix or Buy?" is in your hands for distribution free to your customers. National advertising in TV Guide, the booklet, plus a banner advertising the booklet for your store—a triple-barreled way to hit your very best prospects. Specials like this are available regularly through your participating Sylvania Distributor. They show that he is sincerely concerned with raising your profits and your prestige—and so is Sylvania. You can expect more than the highest-quality tubes when you deal with your Product-Plus Sylvania Distributor.
"It's a lifesaver."

We didn't say it. A lot of technicians have used these very words to describe PHOTOFACT. One particular letter (unsolicited) says it like this:

"I wouldn't think of being in business without PHOTOFACT. It's a lifesaver."

Others say they're sunk without PHOTOFACT. We don't really expect anyone to "drown" without it, but we do know it saves time and saves trouble and floundering around. We do know it often means all the difference between making a profit and not.

There are over 40 "lifesaving" features in every PHOTOFACT Folder, time-saving features to show you the way to fast TV-radio troubleshooting. (Really keeps you on top of those tough-dog jobs.)

Users don't measure PHOTOFACT by its pennies-per-page cost. It's the time-saving, profit-making worth of PHOTOFACT that counts.

Of course, you can get along without PHOTOFACT—a few do—and maybe they're making a living. But it's the hard way.

Doesn't it make good sense to see your Sams Distributor today for details on an Easy-Buy PHOTOFACT Library and Standing Order Subscription?

Or use the coupon below.

A PHOTOFACT LIBRARY PAYS ITS OWN WAY—

Now, more than ever, it pays to own PHOTOFACT—the world's finest TV-radio service data. Now, you can start or complete your PHOTOFACT Library this Easy-Buy Way:

- **FREE** with your order for 180 Sets—a deluxe 4-drawer file cabinet worth $38.95
- Only $10 down
- 30 months to pay
- No interest or carrying charges
- Prepaid transportation
- Add-on privilege of a year's advance subscription to current PHOTOFACT on the same Easy-Buy contract
- Save 30¢ per Set—special $1.35 price applies on Easy-Buy (instead of the regular $2.25 price).

4 Ways to Select Your PHOTOFACT Library:

1. Complete your present PHOTOFACT Library.
2. Order a PHOTOFACT "Starter" Library—180 Sets (Sets 301 to 480—coverage from 1955 to 1960—only $11.36 per month).
3. Order by brand name and year—see the handy selection chart at your Distributor.
4. Order a complete PHOTOFACT Library—get FREE file cabinets, plus a selection of invaluable books and Electronics Courses.

SEE YOUR SAMS DISTRIBUTOR FOR FULL DETAILS, OR MAIL COUPON ▲
Darr's 3-Phase Problem

[We have received more than two dozen letters on the 3-phase power problem, published in the October issue. All of them feel that Darr was as baffled by the problem as the local "industrial technician." But only two have tried to guess what the difficulty was. The rest content themselves with pointing out that it is possible to get 230 or 115 volts single-phase, from a 3-phase line. Some of them simplify the matter by assuming a 4-wire line, or even a transformer with a secondary Y-connected.

Jack Darr is now "reconstructing the crime" with the help of the original photocell unit, and will (in an early issue, we hope) give a full report on the situation by a local electrical authority. Meanwhile, Mr. Austin's guess, below, appears to be the most reasonable solution we have received to date.—Editor]

Dear Editor:

Jack Darr's 3-phase problem—"What's your EQ?"—October 1963 can be encountered in every detail in one—and only one-type of 3-phase distribution system. At one time, the groundedelta circuit shown in the drawing was very common in small towns and outlying city areas where the 3-phase load was small compared to the lighting load.

It was used principally because 3-phase motors were commonly wound for 220 volts at that time, while lighting and appliances were strictly 110-volt. Because this is the only configuration that will give a 2-to-1 voltage ratio on a 3-phase system, it was used in the interests of customer and power-company economy. It also came into play as a stopgap measure when a small customer demanded 3-phase service in an area with predominantly single-phase users.

This hookup can still be found, principally in farm towns where population and electrical load are declining, forcing power companies to make do with long-outmoded distribution systems.

Considering the speed with which Mr. Darr's "3-Phase Club" formed, perhaps it is only fair to say that his basic problem was technically accurate, and a situation that does occur when an inexperienced technician encounters this system. I have had to correct similar installations myself, including a few for the old hands!

Since the neutral is very rarely carried through to a 3-phase motor, the technician would probably have encountered a 3-wire line. If so, he made two basic mistakes. First, he should have tried a different phase. Second, it would be a violation of industry practice and electrical codes to pick up a current-carrying ground from the frame of the motor or a conduit. At best, it would be a noisy and erratic current path. At worst, the conduit may open up and put 110 volts on the whole frame of the motor, setting up a highly dangerous situation.

It would seem, then, that Mr. Darr's solution was the practical one, even though his explanation is technically inaccurate.

EUGENE AUSTIN
Lincoln, Neb.

A Man Who Got the Best

Dear Editor:

After reading Herman Burstein's "Get the Best from Those Ceramic Cartridges" (June, page 28), I tried his suggestions. I ran my cartridge as an "amplitude device" to the tuner input of my amplifier. I had been using it as a "velocity device" across a low-value resistor, feeding the magnetic input. It wasn't bad.

But loading the cartridge with 1,800 pf and using the tuner input gives me as good bass and better treble, with a couple of bonuses. The amplifier no longer "blocks up" on heavy signals.

(Continued on page 23)
HAS THE SPACE AGE OUTDATED YOUR KNOWLEDGE OF ELECTRONICS?

TURN PAGE FOR ANSWER
WHAT HAPPENS TO TRANSISTORS IN THE VAN ALLEN BELT? HOW ARE VACUUM TUBES USED IN SPACE? WHY CAN'T REGULAR LUBRICANTS BE USED ON MOVING PARTS IN A SPACECRAFT? TO WHAT EXTENT HAS THE SPACE EFFORT CHANGED RELIABILITY STANDARDS?

The answers to these questions reflect the changes taking place with space applications of electronics. For space electronics involves new and different uses of electronic principles. Conventional systems and components are frequently outdated. Technical breakthroughs come almost daily. Space electronics is as different from the electronics you know as the superheterodyne receiver is from the crystal set.

WHAT DOES THIS CHANGE MEAN TO YOU?

It means specialized knowledge of space electronics is essential for a career in this field. Nearly every major electronics organization and a good many of the smaller companies have become part of the space program. Guiding space vehicles, communicating with them through space and processing the vital information they gather demands knowledge that did not exist when you studied electronics. And this knowledge can't be acquired on the job, unless you are one of the few men privileged to work for a key space engineer or scientist.

Developments in space electronics are affecting almost every area of electronics. For instance, the same techniques used in the space program are used in electronic packaging to reduce computers and television sets to a much smaller size. So knowledge of space electronics is an asset to a man in any field of electronics.

No question about it, for your career in electronics, you must supplement your present knowledge and experience with considerable new knowledge of space electronics.

CREI CAN HELP YOU PROTECT YOUR FUTURE

CREI now offers a new Home Study Program planned to help you protect your future in electronics by updating your education to space age requirements.

CREI's Program in Space Electronics enables you to study at home, on your own schedule through methods developed in CREI's 36 years of experience in technical education through home study.

Long and painstaking effort has been devoted to the preparation of this program. CREI faculty members have visited 14 government and private technical organizations in the space effort to determine exactly what knowledge of electronics they want in men they employ. Engineers and scientists from some of these organizations have been retained as consultants to supply the technical material that makes up the program.
CREI ANNOUNCES A UNIQUE HOME STUDY PROGRAM IN SPACE ELECTRONIC ENGINEERING TECHNOLOGY

with your choice of these specialties

SPACE DATA SYSTEMS includes analog and digital computers, information theory, data acquisition and processing.

SPACE TRACKING SYSTEMS includes microelectronics, space propagation, masers, lasers, infrared techniques.

SPACECRAFT GUIDANCE AND CONTROL includes inertial navigation, space radar, star tracker systems, tracking networks.

- The first educational program developed specifically to help electronics men apply their experience to the space effort.
- Content of program developed to meet employment requirements as determined by consulting government and private organizations in the space field.
- Text material prepared with the help of engineers and scientists holding key positions in leading space-oriented organizations. (Names on request.) You study exactly the material technical organizations in the space effort want their employees to know.

YOU ARE ELIGIBLE FOR THIS PROGRAM IF YOU WORK IN ELECTRONICS AND HAVE A HIGH SCHOOL EDUCATION.

FREE BOOK GIVES FULL INFORMATION. TEAR OUT AND MAIL POSTPAID CARD or write CREI, Department 1401-B, 3224 Sixteenth Street, N. W., Washington, D. C. 20010

The Capitol Radio Engineering Institute
Founded 1927 Accredited Member of the National Home Study Council
Dept. 1401-B, 3224 Sixteenth St., N. W.
Washington, D. C. 20010

Please send me FREE book describing CREI Home Study Programs including new Program in Space Electronics. I am employed in electronics and have a high school education.

Name ___________________________ Age
Address __________________________
City __________________ Zone ______ State ______
Employed by ______________________
Type of present work ______________________
Check: [] Home Study [] Residence School [] G.I. Bill
NOW CREI OFFERS SPECIALIZED EDUCATION IN EVERY IMPORTANT AREA OF ELECTRONICS

SPACE DATA SYSTEMS (NEW)
SPACE TRACKING SYSTEMS (NEW)
SPACECRAFT GUIDANCE AND CONTROL (NEW)
COMMUNICATIONS
AERONAUTICAL AND NAVIGATIONAL
TELEVISION
AUTOMATION AND INDUSTRIAL NUCLEAR
SERVOMECHANISMS AND COMPUTERS

FREE BOOK GIVES COMPLETE INFORMATION ON CREI HOME STUDY PROGRAMS INCLUDING NEW PROGRAMS IN SPACE ELECTRONICS. TEAR OUT AND MAIL POSTPAID CARD FOR YOUR COPY TODAY.

The Capitol Radio Engineering Institute
3224 Sixteenth Street, N. W.
Washington, D. C. 20010
(Continued from page 18)
and there's no more tendency to start rumbling on low bass. My thanks to Mr. Burstein and Radio-Electronics.
J. E. CARTER
Jacksonville, Fla.

Safer Clock Relay
Dear Editor:
Reference article “Relay Prevents Clock Confusion” in “Try This One” (page 107, October 1963): Wouldn’t a momentary contact spst switch connected from the armature to the top of the relay coil in parallel with the N.O. contacts be a safer and more convenient way to energize the relay than “depressing the armature... manuvers”?

MSGT. CYRUS N. WELLS, JR.
Novato, Calif.

[Sure would. We thank you, Sgt. Wells, and Mr. Allen A. Gault of Baltimore who also came up with this solution.—Editor]

...But the Meaning Depends on the Viewer
Dear Editor:
“The Pattern Depends on the Probe” by Cunningham in the November issue was quite interesting. But it all depends on how a man gets used to his scope.
The smear shown in picture “a” is what I trace for—I use that direct probe. If I can pick up that smear at the tuner but lose it somewhere in the video circuit, there’s the trouble.
How many TV service technicians who own a high-voltage probe really take the time to use it with their meters? The insulated screwdriver has taken over the job quite well.
PETER LIEGON
Malden, Mass.

Long-Time Reader
Dear Editor:
My career in wireless began when I subscribed to Modern Electrics back in 1912 when I was 12. It was the inspiration which Mr. Hugo Gernsback’s magazine afforded me which triggered my interest. I have been professionally in “wireless” since 1918. I wonder how many others were so affected by Mr. Gernsback’s magazines and stories?
E. B. REDDINGTON
Staff Engineer
EIA
Washington, D.C.

Announcing the new line of world-famous Schober Organ Kits...

ASSEMBLE YOUR OWN ALL-TRANSISTOR
SCHOBER ELECTRONIC ORGAN

Designed by organists for organists, the new Schober Recital Organ actually sounds like a fine pipe organ. The newly-invented Schober Library of Stops provides you with an infinite number of extra voices so that you can instantly plug in the exact voices you prefer for a particular kind of music. Thirteen-piston, instantly resettable Combination Action makes the
Recital Organ suitable for the most rigorous church and recital work. The Schober Reverbatape Unit gives you big-auditorium sound even in the smallest living room. An instrument of this caliber would cost you $2000 to $6000 in a store. Direct from Schober, in kit form (without optional percussions, pistons, Reverbatape Unit) costs you only $1500.

New, All-Transistor Schober Recital Organ
32 voices, 6 couplers delight professional musicians—make learning easy for beginners.
Standard console, pedals, keyboard corded exactly to pipe-organ specifications.
Printed circuit construction and detailed, illustrated instructions make for easy assembly... no previous experience necessary.
Highly accurate church and theatre pipe tone in 5 pitch registers make every kind of organ music sound “right”.
Optional: Combination Action, Schober Reverbatape Unit, Repetitive Theatre Percussions.
All-transistor circuitry makes possible full 3-year guarantee.

New All-Transistor Schober Console
Here’s the most luxurious “home-size” organ available today... with the same circuitry and musical design as the impressive Recital Organ. Full 61-note manuals, 17 pedals, 22 stops and coupler, 3 pitch registers, and authentic theatre voicing leave little to be desired. Musically much larger than ready-made organs selling for $1800 and more... the Console II, in kit form, costs only $850.

New Schober Spinet
The Schober Spinet is among the very smallest, genuine electronic organs; only 9½ inches wide, it will fit into the smallest living room or playroom— even in a mobile home. Yet it has the same big-organ tone and almost the same variety of voices as the larger Console II. The Schober Spinet far exceeds the musical specifications of ready-made organs selling for $1000 and more. In easy-to-assemble kits... only $550.

Here’s why you should build a Schober Organ!
You cannot buy a finer musical instrument for over twice the price. You get the finest in musical and mechanical quality.
It’s easy to assemble a Schober Organ. If you can read and use your hands, you can easily make your own superb organ. Everything you need is furnished... including the know-how; you supply only simple tools and time— no knowledge or experience is required.
You can build the organ section by section... so you don’t need to spend the whole amount at once.
You can begin playing in an hour, even if you’ve never played before— with the ingenious Pointer System available from Schober.
Thousands of men and women—teenagers, too—have already assembled Schober Organs. We are proud to say that many who could afford to buy any organ have chosen Schober because they preferred it musically.

Schober Organ Kits are sold in the U.S. only by... THE SCHOBER ORGAN CORPORATION
43 West 61st Street, New York, N.Y., 10023
Dealers in Canada, Australia, Hong Kong, Mexico, Puerto Rico and the United Kingdom.

SEND FOR FREE SCHOBER BOOKLET
... Describes the exciting Schober Organ and optional accessories in detail; it includes a FREE 7-inch sampler record of music you can hear before you buy.
Also available: 10-inch high-quality, long-playing record... fully illustrates two of these models with different kinds of music. Price is refunded with purchase of first kit.

The Schober Organ Corp., Dept. RE-29
43 West 61st St., New York, N.Y., 10023
[I please send me, without cost or obligation, the Schober Organ booklet and free 7-inch "sampler" record.
Enclosed find $2.00 for 10-inch quality, LP record of Schober Organ music. ($2.00 refunded with purchase of first kit.)

Name ____________________________
Address __________________________
City ___________________ State ________ Zip No. ________

February, 1964
Build your own
top quality Eico Kits
and save up to 50%

New Tape Deck
Eico Classic 2400 stereo/mono 4-track tape deck. Kit $199.95; wired $269.95 (Incl. oil finish walnut base)

New 3" Portable Scope
Eico 430 General Purpose 3" Scope. Kit $65.95; wired $99.95

New TV/FM Sweep Generator
Eico 369 TV/FM Sweep generator, with built-in post injection marker adder. Kit $89.95; wired $139.95

New CB Transceiver
Eico 777 dual conversion 6 crystal-controlled channels, 5-watts. Kit $119.95; wired $189.95

New Stereo Rcvrs.
Eico Classic 2536 36-watt FM-MX Stereo Receiver. Kit $154.95; wired $209.95 (Incl. F.E.T.)
New Stereo Tuner Eico Classic 2200 FM-MX Stereo Tuner. Kit $92.50; wired $119.95 (Incl. F.E.T.)
New Stereo Tuner Eico Classic 2200 FM-MX Stereo Tuner. Kit $92.50; wired $119.95 (Incl. F.E.T.)

New Tube Testers
Eico 667 Dynamic Conductance Tube & Transistor Tester. Kit $79.95; wired $129.95. Eico 628 Tube Tester. Kit $44.95; wired $59.95

EICO
Electronic Instrument Co., Inc.
131-01 39th Avenue, Flushing, N.Y. 11352
Please send me [] New 1964 catalog G-2
[] Name of nearest Eico dealer
Name ____________________________
Address ____________________________
City ____________________________
State ____________________________
Zone ____________________________
SPACE HANDICAPS

...To Remain Alive In Space Is Difficult...

Humans, who all their lives have lived in the protective blanket of the earth’s atmosphere, find it difficult to dissociate themselves from it entirely; that is, to live in a perfect vacuum.

An entirely new environment, as well as new physical laws, which will always be full of surprises for man, exist in space or on the moon.

Once he leaves his comfortable, pressurized space cabin and ventures out into the harsh vacuum of space in his clumsy space suit, he must learn all over again how to live.

In this article we do not wish to go into too great detail about the weightlessness and dangerous, often deadly, radiation from the sun, such as ultraviolet, infra-red, X-rays and others not too well understood as yet. (There are still other, nonsolar forms of radiation, such as cosmic rays and neutrons, all more or less deadly if humans are not insulated against them or are exposed to them too long.)

On the moon, the direct heat from the sun can reach a temperature higher than 200°F and a low during the lunar night of -250°F! On top of all this, a man in a space suit gives out as much heat as does a 150-watt lamp and it is continuous! This calls for portable air conditioning if one is to survive.

However, even if there is no air in space or on the moon, a man in a space suit need not necessarily broil or freeze to death. His white space suit will, first of all, reflect a large percent of the solar radiation. He can simply turn his back to the sun periodically. This then heats his freezing back and cools his front. Remember, too, that the inside of the space suit must contain a layer of pressurized air without which a human cannot live. Indeed, if an accidental puncture of the pressurized space suit occurs and if that puncture is not closed immediately, the man must perish within minutes in the lowered air pressure. He will literally blow up, because his body interior air puffs up his body like a balloon. A similar phenomenon occurs when we bring a deep-sea fish to the surface. Robbed of the tons of ocean pressure, the fish dies quickly from internal organ injuries.

We shall now speak of another hazard, too often forgotten: the invisibility of man in space. Space is practically dead black. The sun shines harshly in an inky-black sky. Starlight does not appreciably change that sky. Without air to diffuse the light rays, any object not directly in the sun becomes invisible.

Thus men walking in single file cannot see the men ahead. They would have to walk abreast. A man entering into the shadow of a large rock or cave becomes totally invisible from all sides—he just seems to disappear. The effect will be the same when spacemen must work outside a space ship to make repairs. If a man is in the shadow of the ship, as he often must be, his co-workers cannot see him. Two-way radios do not always help to find the missing man quickly, particularly if he has floated some distance and his companions are behind him. Remember, he is now invisible and today’s two-way radios are not too directional.

This calls for (1) illuminated spacemen, and (2) highly directional two-way radios usually built into the space suit.

Both these points have been neglected so far. In the matter of illumination, a high-intensity pulsing light should be affixed to the top of the spaceman’s helmet as well as to his back. It would be operated by a simple lightweight electronic pulser and a few batteries. To keep them re-charged one could attach solar cells to the front and back of the spaceman. In the vacuum of space, solar cells receive more radiation; there may be an increase of up to 20% in output. These can then be used instead of batteries for constant electrical energy output. As one moves away from the sun in interplanetary space, the solar cells are no longer efficient. Thus, near the planet Neptune the output of a solar cell is less than one tenth of one percent of that on the earth.

The solar cells could furnish electricity directly as long as the spaceman is in the sun. But when he is in shadow, he will have to rely on the batteries for power.

As a safety standby in case of flasher failure, the spaceman should be provided front and back with high-efficiency luminous markers as well.

—H.G.
Meeting-hall voice booster is all-transistor

A MASTER OF CEREMONIES USUALLY needs two things: a good story and a PA system. I don't have a good story at the moment but I do have a good PA system to offer. It's complete in one package, compact and economical. All-transistor, it includes preamplifier, power amplifier, loudspeaker, microphone, choice of AC power supply or long-life battery pack, and a lectern. Because of the choice of AC power supply or long-life amplifier, loudspeaker, microphone, transistor, it includes preamplifier, power package, compact and economical. All-PA system. I don't have a good story at the moment but I do have a good PA system to offer.

The chassis measures 5 x 7 x 2 inches. It contains a three-stage preamplifier transformer-coupled to a push-pull 6-watt amplifier and a 117-volt AC power supply for operation from house current. One 12-volt “lantern” battery provides power when AC power lines are not accessible. For mobile work, a car battery is a convenient way to obtain power.

The three-stage preamp can be built from scratch, or a ready-made unit purchased from a mail-order house. For those who prefer to “roll their own” all the way, a wiring diagram for an equivalent circuit is shown in Fig. 1. Fig. 2 shows the simple modifications made to the ready-made amplifier to adapt it for preamplifier use. The commercial “preamplifier” was made to be used as a small power amplifier. Therefore, it is equipped with an output transformer to match a speaker voice coil. However, in this application it must match the push-pull input of the large-signal power output stage. Either replace the transformer provided with the ready-made part or designed by the user.

cord with a plug for the cigarette lighter is a convenient way to obtain power.

The chassis can be built from scratch, or a ready-made unit purchased from a mail-order house. For those who prefer to “roll their own” all the way, a wiring diagram for an equivalent circuit is shown in Fig. 1. Fig. 2 shows the simple modifications made to the ready-made amplifier to adapt it for preamplifier use. The commercial “preamplifier” was made to be used as a small power amplifier. Therefore, it is equipped with an output transformer to match a speaker voice coil. However, in this application it must match the push-pull input of the large-signal power output stage. Either replace the transformer provided with the ready-made part or designed by the user.
Close up of amplifier–power supply chassis. This version uses prewired amplifier as preamp and driver.

unit, or add another in cascade. I chose to add rather than replace. This simplified construction and provided a convenient way of introducing negative feedback. Either approach involves the same investment: one transformer.

Construction of the lectern or podium is, of course, up to you. My unit is shown simply as a guide. The speaker is an 8-inch unit rated at 10 watts. A mid-range speaker was selected for maximum efficiency at voice frequencies. A wide-range speaker with extended high-frequency response is not desirable because of its tendency to produce excessive “spill” or feedback.

Cut and assemble the compartment first. Use ¾-inch plywood to keep cabinet vibration down. The outside dimensions of this section are 10 x 22 x 6 inches. Make the cutout for the speaker with a sabre or coping saw. Placement of the cutout is not critical. Acoustic isolation between the speaker and the microphone is essential for high audio output without feedback howl problems. Insulating materials (glass wool, rockwool, etc.) should be attached to the interior surfaces of the speaker compartment. The “feedback” control (basically a tone control designed to attenuate treble) is vital in eliminating “howl” at high volume settings.

After the speaker compartment is completed, add the side extensions. Cut two side pieces from ¼-inch plywood. Glue and nail these to the sides of the speaker compartment. The back piece is ¾-inch plywood, glued and nailed in position. Cut the bottom piece from ¼-inch plywood or masonite. Strips of wood approximately ¾ x ¾ x 10 inches add bracing at the joints formed by the sides and the bottom. They are important.

The sloping board on which the speaker rests his manuscript is made of ¼-inch plywood. Braces of ¾ x ¾ stock are glued and nailed inside the lectern to support the sloping board. Install the braces so that the sloping board recedes ½-inch to provide a stop for the user’s paper.

The amplifier chassis and the lantern battery are installed and secured inside the lectern, beneath the sloping board. A rectangular cutout in one side of the lectern provides easy access to the controls while the equipment is in use. Note that switch S1 has three positions. All power is off when the switch is at its center position. The clockwise position connects the amplifier to the ac power supply. The counter-clockwise position disconnects the power supply from the circuit and connects the amplifier to the batteries.

Filter capacitor C10 is in the circuit regardless of the power connection. It filters ripple when the amplifier is ac-operated and helps prevent the howl that can develop as the batteries age and their internal impedance rises.

The microphone must be a high-output type (crystal, ceramic or reluctance). A “boom” for the microphone is easily constructed from lighting fixture components. I used a gooseneck extension with male threading at both ends. A ¾-inch hole was drilled in the center of a 2 x 2-inch piece of metal to accommodate one end of the threaded gooseneck. That assembly is then bolted to the sloping board. The microphone is attached to the free end of the gooseneck in any convenient way (depends on the case of the specific mike). The result is a very neat, professional-looking flexible boom.

Sanding, sealing and painting or staining give the final commercial touch. Screw-in 6-inch legs can be installed to raise the lectern to the proper height above the conventional dining table. They can be removed quickly without tools should the user find the added height incorrect. Portability can be improved with a hinged cover. My capabilities as a carpenter ran out at this point!
LITTLE HAS BEEN PUBLISHED ON BRIDGED-T (or T-notch) filters. This useful breed of circuit can attenuate or "notch out" an undesired frequency, as in harmonic-distortion analyzers and communications receivers. Used in a feedback amplifier, it can also select a "peak" or a desired frequency while rejecting all others.

A few years ago, the bridged-T filter gained new popularity in several amateur and communication receivers. There, the purpose was to attenuate an interfering carrier. (The bridged-T works from audio to higher radio frequencies.)

Fig. 1-a shows a typical bridged-T filter, designed for 455 kc. The inductor and capacitors resonate at the frequency to be notched out. Shunt resistor R has a unique function: it determines the amount of attenuation in the notch. Usually, with the optimum value of R, the notch depth is about 45 db. (That is, the output at the notch frequency is about 45 db down from the input voltage.) R has an optimum value for maximum rejection, and any other value will give less notch depth and more bandwidth.

The bandwidth of the bridged-T filter depends also on the Q of the inductor. Fig. 1-b shows typical bandwidth curves for two inductors, one having a Q of 1, the other a Q of 100. The higher the Q, the narrower the bandwidth and the tighter the skirt selectivity.

The formula for resonance in this circuit is

\[f = \frac{1}{2\pi} \sqrt{\frac{2}{LC}} \]

and, for maximum null at the frequency of interest,

\[R = \frac{X_L}{R_s} \]

where \(R_s = X_L/Q \).

The nomogram was developed to simplify the calculation of bridged-T filters. Easy to use, it makes the task of "turning the mathematical crank" to get an answer a lot simpler. First select a coil. Either calculate, measure, read out of a catalog or guess the inductance, and enter this information on the L scale. Next, set the frequency of operation on the f scale. Using a straightedge, connect the two points just marked, and read out the value of the capacitors required for resonance on the C scale.

If the Q of the coil is known, calculate the value of \(R_s \) according to the formula given above. Enter this on the \(R_s \) scale. Connect the point on the \(R_s \) scale and the point last crossed on the unmarked line between the L and R scales. After connecting these two points, read the R column to find the approximate value of the shunt resistor.

It's rare that the junkbox will yield a coil of known Q. In this case, construct the filter, insert a potentiometer, and "tune" for a null. It is good to do this even when the resistor value has been calculated, because according to Murphy's law, "if any error can possibly creep into any calculation, it will invariably do so."
To Use The Bridged-T Nomo

Mark off the inductance of the coil on the L scale, and set the intended frequency of operation on the f scale. With a straightedge, connect these two points. The line will intersect the C scale at the capacitance required to resonate with the inductor at f.

Knowing the frequency and selecting a suitable capacitance, you can find the proper inductance value in the same way.

If you know the Q of the coil, calculate \(R_s \) according to the formula \(R_s = X_L/Q \). Mark this value on the \(R_s \) scale, and now draw a line from this point to the point where the line you drew to find \(L \) intersects the ungraduated line between the \(L \) and \(R \) scales. Extend the \(R_s \) line beyond that point and into the \(R \) scale. Read off the approximate value of shunt resistor \(R \) from the \(R \) scale.

The example shown on the nomogram is for the filter of Fig. 1-a.

The filters of Fig. 2-a and 2-b are electrically identical. If the inductor chosen has a center tap, use it. In that case, the single capacitor has one-half the value determined in the nomogram, and the value of the shunt resistor is doubled (assuming no change in the value of the inductor).

Using the filter

A bridged-T filter may be connected with either side as an input. The shunt resistor is connected to a point which is at ac ground. The impedance of the filter presented to an input source is approximately equal to the shunt resistor, and the source should have an impedance of less than that value. The output should be loaded lightly—that is, look into a high impedance.

A simple filter system that can be used with nearly any 455-ke i.f. amplifier is shown in Fig. 3. The variable capacitor is used to tune the notch over a small range to an interfering carrier. The 90,000-ohm resistor may be replaced with one of 22,000 ohms in series with a 75,000-ohm potentiometer. This provides variable notch depth and selectivity.

Another use for the T-notch is in high-fidelity AM tuners, where 10-ke heterodyne whistles are often disconcerting. The circuit of Fig. 4 can be used to attenuate 10 kc. Of course, the values shown on the schematic are only examples, and may be changed to suit the junkbox by using the nomogram.

Reversing the notch

Although the bridged-T is very good for rejection filtering, it cannot be
directly wired for use in bandpass circuits. However, consider the basic voltage amplifier with negative feedback (Fig. 5). If, classical theory has it, we want to eliminate some frequency, we feed back that same frequency 180° out of phase with the input and the frequency cancels out. Conversely, if we want to amplify only one frequency, we feed back all except the desired frequency.

However, we must know the phase shift through the filter itself. Fig. 6 shows it at various frequencies. Near the center (resonant) frequency, the phase shifts rather violently from +90° to −90°, passing through the point of zero phase shift at the resonant frequency. Therefore, for a tuned bridged-T, the phase shift can be assumed to be zero.

Practical circuitry

The circuit of Fig. 7 is the result of research into an inexpensive selective i.f. amplifier. The bandwidth of the amplifier at various levels is shown in the table, but can be spread by reducing the value of filter resistor R1.

<table>
<thead>
<tr>
<th>Level</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>−6db</td>
<td>800 cycles</td>
</tr>
<tr>
<td>−20db</td>
<td>1.8 kc</td>
</tr>
<tr>
<td>−40db</td>
<td>9.5 kc</td>
</tr>
</tbody>
</table>

The amplifier is normally fed from a mixer circuit through the input transformer T1. (If you cannot get double-tuned transformers for transistors, use the scheme of Fig. 8.) The amplifier may also be fed from a converter or another i.f. amplifier. The first two transistors, Q1 and Q2, are connected in a form of the Darlington circuit (super-alpha pair). Usually, the Darlington circuit has both collectors tied together, but here it is more stable when the collector of the first transistor is decoupled for ac.

The secondary windings of the two i.f. transformers are returned to ground. If the bias were fed in series with the windings to the base of the transistors, the low dc resistance of the filter would change the operating points erratically. This is because, for dc, the bases of Q1 and Q3 would be connected together. The same components are used in either biasing scheme.

The phase difference between the two points to which the filter is connected must be 180°. The secondary of T1 is assumed to have zero phase shift. The coupling capacitor to the base of Q1, and transformer T2, each have equal and opposite phase shifts, which cancel out. The first transistor is an emitter follower (no phase shift) and the second transistor has a phase shift of 180°. Therefore, the total phase shift of the circuit with feedback is 180°, which is correct.

If, by accident, the secondary of T2 is reversed, the amplifier will oscillate.

The last transistor (Q3) is a class-B detector, and gives an additional 10 db gain. This transistor also functions as an age amplifier, with the age voltage taken from the collector. The 6,800-ohm resistor and the 3-µF electrolytic decouple the age and determine the time constant. The dc is then fed through the 47,000-ohm resistor to the base of Q1. If age is not desired, these three components may be eliminated, and a 62,000-ohm resistor connected from the base of Q1 to the −9-volt line. A 50-µV input gives an audio output of 0.2 volt, peak to peak. Just at the point where the detector begins to saturate, the audio output reaches 1.5 volts peak to peak.

No attempt has been made to apply this circuit to vacuum tubes, but there is no reason it shouldn't work equally well.

REFERENCES

2. Selected Semiconductor Circuits, NAVSHIPS 93484

Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>90,000 ohms (see text)</td>
</tr>
<tr>
<td>R2</td>
<td>4,700 ohms</td>
</tr>
<tr>
<td>R3</td>
<td>47,000 ohms</td>
</tr>
<tr>
<td>R4</td>
<td>50 ohms (use 47- or 51-ohm resistor)</td>
</tr>
<tr>
<td>R5</td>
<td>560 ohms</td>
</tr>
<tr>
<td>R6</td>
<td>270 ohms</td>
</tr>
<tr>
<td>R7</td>
<td>6,800 ohms</td>
</tr>
<tr>
<td>R8</td>
<td>1,200 ohms</td>
</tr>
<tr>
<td>R9</td>
<td>39,000 ohms</td>
</tr>
<tr>
<td>R10</td>
<td>130 ohms</td>
</tr>
<tr>
<td>R11</td>
<td>10,000 ohms</td>
</tr>
<tr>
<td>R12</td>
<td>6.8K 10%</td>
</tr>
<tr>
<td>C1</td>
<td>0.04 pf disc ceramic</td>
</tr>
<tr>
<td>C2</td>
<td>100 pf ceramic or silver mica</td>
</tr>
<tr>
<td>C3</td>
<td>3 µF, 10-volt electrolytic</td>
</tr>
<tr>
<td>C4</td>
<td>10 µF, 10-volt electrolytic</td>
</tr>
</tbody>
</table>

Fig. 7—Practical high-selectivity i.f. amplifier. Bridged-T network provides 100% negative feedback at all frequencies except 455 kc.

Fig. 8—How to wire four single-tuned i.f. transformers for use as T1 and T2. See parts list.
LOW B-PLUS: EASY TO DISCOVER—A QUICK jab with a voltmeter. What causes it, though? The answer, as usual in TV service, is plural. Low B-plus voltage can be due to a weak rectifier, either tube or "dry." But it can also be due to an overload, heavy leakage or short somewhere in the distribution network. How can we find out which—quickly?

First, of course, replace the rectifier. Easy with a tube, not so easy with others, unless they're plug-ins. If the rectifiers aren't easy to get at, we can use other shortcut tests. Let's take the tube types first.

Replace the tube. If this doesn't cure the trouble, check the input filter capacitor. This acts as a reservoir for the charge fed into it by the rectifier. So, if we lose capacitance here (C1 in Fig. 1), down goes the output voltage. For a quick check, to save pulling a chassis, put a tube-base test adapter under the rectifier tube. Now we can read the voltage at the cathode (or filament, on 5U4's, etc.). Also, we can shunt a good capacitor across the input of the filter. If we leave the voltmeter hooked to the cathode while this is done, we can see the voltage jump back to normal if the old capacitor is open. Be sure to use test capacitors with at least a 450-volt rating! (About 40–60 μF is the right size.)

If the input capacitor is OK, then our low B-plusmust be due to an overload. Something is drawing too much current. What's causing this? One of three things: a shorted tube (not the rectifier—we've already changed that), capacitor leakage, or—we'll get to the third in a minute. Let's try the more common troubles first.

A shorted tube should be caught in tube testing. We can break the B-plus circuit at the rectifier cathode and insert a 0–500 dc milliammeter, as in Fig. 2. Now we can pull tubes, one at a time, watching for the current to drop back to normal. We can also disconnect the various branches of the B-plus network, watching the drain on the meter. If the overload suddenly disappears, you've found the villain. You can also "ohmmeter" this trouble out, by checking resistance along that particular line.

Voltage readings will help pin down shorts and leakage. Look for overheated resistors—a sure clue!

Final word on this process: be sure to check all tubes before you start disconnecting wires! I remember one set that blew two big 5U4's very rapidly. Dead short in the B-plus. After hauling the thing 5 miles to town, I found the trouble: a dead-shorted 6BQ7 in the tuner! This makes one feel very intelligent! So now I check all tubes before I make any diagnoses of "shorted filter capacitors"! Quick check: connect an ohmmeter across B-plus to show the short, then lift tubes from the sockets, one at a time.

Now for the third cause: incorrect grid bias on one of the high-current tubes—the horizontal output, vertical output and audio output tubes. The rest will not draw enough current, unless they are shorted, to drop voltage much.

However, the 6BQ6 draws 100 ma; the 6CM7, 70 ma, and the 6AQ5 (audio or vertical), 100 ma. If these tubes lose drive or bias, they can pull enough cur-

Fig. 1—Basic circuit of typical transformer type power supply.

Fig. 2—Where to hook a milliammeter to read total B-plus drain.
suspected units, or even shunt rectifiers each. Less than 100 volts each means many other stages are fed from this. A trouble. You can shunt capacitors across the doubler capacitors Cl and C2 in Fig. 3-Stacked B-plus circuits have troubles all their own. Audio output tube here is part of voltage divider, drops about half of 270 volt B-plus. Tube bias affects plate voltage in most other sections of set.

rent to cause trouble. In the mysterious cases where everything's all right but nothing works, try checking the bias on all of these tubes. A drop of 5 volts grid bias can cause a 100-ma change in plate current on some types.

Stacked-B circuits can cause some obscure troubles, too. Look at Fig. 3. Here, the audio output tube cathode is the source of the 130-volt line. Note how many other stages are fed from this. A defect in the audio stage can show up as sync trouble, sound trouble, video i.f. overload, looking exactly like age trouble, and even cause the CRT to black out if that 130 volts happens to be used for its bias!

Watch out for grid voltages on the audio tube. Notice the two 1-megohm resistors in the 6W6 grid? These form a voltage divider across the 270-volt line. The voltage at the junction is the grid bias of the audio output tube. If one of these drifts in value, away goes the grid bias, and off goes the 130-volt line! Leakage in the coupling capacitor can be responsible for this, too. You'll get the “volume control affects the picture” symptom: the leakage will put the 1-megohm control into the audio grid dc circuit, and its setting will change the bias, thus changing the 130-volt line again!

Transformerless circuits

Voltage-doubler circuits are used in “transformerless” TV sets. They give higher dc voltages without a power transformer. The full-wave circuit of Fig. 4 is not found too often any more. The ac line must “float,” and the circuit requires extra parts.

Low output voltage can be due to weak rectifiers or partly open (weak) capacitors. To check, measure the dc voltage across each rectifier, also across the doubler capacitors C1 and C2 in Fig. 4. You should get about 135 volts across each. Less than 100 volts each means trouble. You can shunt capacitors across suspected units, or even shunt rectifiers across suspected weak ones, watching the polarity, of course. If this brings the voltage up, the original is below standard. Replace it.

In this circuit, an open filter capacitor, C3, will not cause much voltage drop. All it will do is increase the ripple. Partly open capacitors in the doublers drop the B-plus; “weak” rectifiers are usually seleniums. Silicon types tend to short out abruptly and completely, instead of losing voltage output.

The half-wave doubler circuit of Fig. 5 is one that puzzles novices (and a few old heads, too). When they see the electrolytic capacitor connected “direct to the ac line,” they wonder if their instructors knew what they were talking about! However, the “shunt rectifier” on the other side takes care of that. There silicon rectifiers replace seleniums, the B-plus voltage will be higher, because of the lower rectifier drop. Be careful. Don't wind up with too much voltage on your filter capacitors!

Check the surge voltage, the peak dc voltage when the set is turned on, cold. If this exceeds the working voltage rating of the capacitors, increase the value of the surge resistor. If capacitors are replaced in such circuits, always use new ones with higher voltage ratings.

Obscure troubles

Now let's look at some more obscure troubles. The real cause for these is usually too much impedance in the power supply. The ideal supply would have zero impedance between B-plus and ground. There could then be no coupling of circuits in the supply, and no feedback. Practical circuits can have impedances as low as 1 ohm or even less. Main cause of too much impedance is loss of capacitance in filter capacitors, or a high power factor, which reduces the filtering efficiency.

The scope is the best way to check for this. If the power supply has a low impedance, it won't develop much “signal” across it. Checking at the rectifier cathode in a good B-plus supply, we see, as in Fig. 6, a ripple of about 20 volts peak to peak. At the output, after filtering, the ripple is down to less than 2 volts p-p (Fig. 7). This is a transformer supply with full-wave rectifier; ripple frequency, 120 cycles. Notice that every
this is due to horizontal sweep frequencies developing across the increased impedance. This much ripple can cause instability, hum and other troubles.

If the output filter capacitor opens completely, we can see some real troubles! Fig. 9 shows this waveform, at the same point. "Ripple" is now a whopping 120 volts p-p, and the waveform itself is so jittery that it was hard to photograph. This was taken at 30-cycle sweep.

The same waveform, at 7,875-cycle sweep, shows the reason for the failure of the set’s horizontal circuits, which went into violent "squegging" as soon as this capacitor failed. Feedback, through the increased impedance of the power supply, was so high that the whole sweep circuit was disrupted. This is the horizontal-frequency component in the waveform of Fig. 9. Fig. 10 expands the sweep so that the horizontal pulses can be seen.

The moral is simple. The B-plus circuit is a basic part of the set, as basic as the 117-volt ac line! Unless it’s in good shape, nothing is going to work right! Take the very small amount of time necessary to be sure that it’s in good shape. One jab with a voltmeter and another with a scope and you’ve got it made!

END

reactance tables

By ERNEST T. THIERSCH

I use inductive and capacitive reactances quite often and have gotten tired of calculating out a particular value each time I need it. This goes for using nomographs or slide rules too. To avoid this I drew up the two charts shown here. I use them so often that I thought others would find them useful too.

My original calculations were carried to many more digits, but three are enough for my needs and better than much of my test equipment.

INDUCTIVE REACTANCE

<table>
<thead>
<tr>
<th>L (henries)</th>
<th>1.00</th>
<th>2.00</th>
<th>3.00</th>
<th>4.00</th>
<th>5.00</th>
<th>6.00</th>
<th>7.00</th>
<th>8.00</th>
<th>9.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>62.8 kΩ</td>
<td>125.6 kΩ</td>
<td>188.4 kΩ</td>
<td>251.2 kΩ</td>
<td>314.0 kΩ</td>
<td>376.8 kΩ</td>
<td>439.6 kΩ</td>
<td>502.4 kΩ</td>
<td>565.2 kΩ</td>
</tr>
<tr>
<td>15</td>
<td>94.2 kΩ</td>
<td>188.4 kΩ</td>
<td>282.2 kΩ</td>
<td>376.0 kΩ</td>
<td>479.8 kΩ</td>
<td>583.6 kΩ</td>
<td>687.4 kΩ</td>
<td>791.2 kΩ</td>
<td>895.0 kΩ</td>
</tr>
<tr>
<td>20</td>
<td>125.6 kΩ</td>
<td>240.8 kΩ</td>
<td>334.4 kΩ</td>
<td>428.2 kΩ</td>
<td>521.9 kΩ</td>
<td>615.6 kΩ</td>
<td>709.3 kΩ</td>
<td>803.0 kΩ</td>
<td>896.8 kΩ</td>
</tr>
<tr>
<td>25</td>
<td>157 kΩ</td>
<td>309.6 kΩ</td>
<td>413.2 kΩ</td>
<td>516.9 kΩ</td>
<td>620.5 kΩ</td>
<td>724.2 kΩ</td>
<td>827.9 kΩ</td>
<td>931.5 kΩ</td>
<td>1035.2 kΩ</td>
</tr>
<tr>
<td>30</td>
<td>188.4 kΩ</td>
<td>360.0 kΩ</td>
<td>463.6 kΩ</td>
<td>567.2 kΩ</td>
<td>670.8 kΩ</td>
<td>774.4 kΩ</td>
<td>878.0 kΩ</td>
<td>981.6 kΩ</td>
<td>1085.2 kΩ</td>
</tr>
</tbody>
</table>

When multiplying f or L by 10, divide X by 10.

CAPACITIVE REACTANCE

<table>
<thead>
<tr>
<th>C (µF)</th>
<th>1.59</th>
<th>2.00</th>
<th>3.00</th>
<th>4.00</th>
<th>5.00</th>
<th>6.00</th>
<th>7.00</th>
<th>8.00</th>
<th>9.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 pf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 pf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000 pf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When multiplying C by 10, multiply Xc by 10.

Fig. 8—Ripple at output with weak output filter capacitor (capacitance below normal). Peak-to-peak voltage up to about 24. Thickening of trace due to horizontal-frequency "hash" developed across impedance of weak output filter.

Fig. 9—Same power supply, output filter completely removed (or open). Scope sweep set at 30 cycles. Blurring caused by continual motion of scope trace. Peak-to-peak voltage now about 120.

Fig. 10—Same conditions as Fig. 9, with scope sweep at half horizontal scanning frequency (7,875 cycles). This is a horizontal-frequency component of ripple. Feedback through power supply impedance threw horizontal oscillator off completely, and raster disappeared!

FEBRUARY, 1964
HAVE YOU EVER OWNED A DIRECT-READING FREQUENCY METER? Very handy thing. This instrument can be read to about 1% or better, except near zero. It uses a single transistor powered by a small mercury or dry cell. A 4½-inch meter indicates frequency to three decimals.

Many technicians rely on their scope to compare the ac line (or other standard) with the unknown frequency. This method is precise on certain related frequencies. For example, you can easily recognize a frequency of exactly 300 cycles, but how about 320 or 340? (If the unknown is not stable, you may even have difficulty measuring 300 cycles.) With a direct-reading frequency meter, you have only to read the result from a meter scale.

Transistor Q flattens the peaks of the incoming signal to produce a square wave. This is differentiated by C1-C4 and the low shunt resistance of the meter (an R-C network), and the resulting pulses are rectified. The charge on C5 (and hence the voltage across it) is proportional to the pulse rate, which is the same as the input frequency. Meter M, connected across C5, reads the voltage there. Thus M's reading is directly proportional to frequency over a wide range.

The input signal amplitude must be sufficiently high. The instrument saturates at about 5 volts input. Before you make a measurement, be sure you are applying about 5 volts. The input im-

Rear view (upside down, to show the subchassis). Plenty of room—big meter fixes size of case.

Circuit of the frequency meter.

Tiny subchassis is a 1½ x 3-inch piece of perforated phenolic board.

R—120 ohms
C1—0.006-µf paper
C2—0.002-µf mica trimmer
C3—560-pf mica
C4—250-pf mica trimmer
C5—2 µf at 3 volts, electrolytic
Q—2N107
T—miniature output transformer: 500-ohm primary, 3.2-ohm secondary (Argonne AR-119 or equivalent)
M—20-µa dc meter
D1, D2—1N34
S1— indifferent jack
S2, S3—spdt toggle switch
BATT—1.2- or 1.5-volt mercury or dry cell
Transistor socket
Aluminum chassis, 2 x 5 x 7 in.
Miscellaneous hardware

By I. QUEEN EDITORIAL ASSOCIATE

Simplest

direct-reading frequency meter

Read audio frequencies from 200 to 20,000 cycles right off the meter

By I. QUEEN EDITORIAL ASSOCIATE

Rear view (upside down, to show the subchassis). Plenty of room—big meter fixes size of case.

Circuit of the frequency meter.

Tiny subchassis is a 1½ x 3-inch piece of perforated phenolic board.
We often need to trim off a resistor by using another in parallel with it. Then the trial-and-error method starts. A handy time-saving setup to have about the bench is shown in Fig. 1. Used in conjunction with an ohmmeter, you simply adjust the potentiometers until you arrive at the required resistance reading, flick a switch and read the correct parallel value on the same scale.

Another handy device used for the same purpose is the resistor-capacitor chart shown in Fig. 2. To find the correct resistance value of resistors in parallel, place a straightedge on the chart so that one value is covered on the vertical column, R, and the other value on the horizontal column, R. The combined value will be the point where the line crosses the diagonal, R_{total}.

Example: what value resistor would I use in parallel with 4 ohms to reduce it to 3 ohms? Placing the straightedge on the chart, we find that the line crosses 12 ohms, which is 3. Now add the remaining resistance, 3 ohms, proceeding as before, to the 3 ohms (combined resistance of 4 and 12 ohms), arriving at an answer of 1.5 ohms.

Any combination of resistances within reason can be used with this chart. For example, 6 becomes 60,000 ohms. Placing the straightedge across 6 and 12, we find the answer 4 which becomes 40,000 ohms. Thus the combined resistance of 60,000-ohm resistor in parallel with a 120,000-ohm resistor is 40,000 ohms.

The capacitors C_1-C_4 shown determine the calibration of this instrument. A higher capacitance increases the meter reading. The values shown were suitable for my instrument, but slightly different values may be needed for others.
Transmission lines and electrical cabling are carried on this 700-foot catwalk (photographed during construction), which also provides access for personnel. The waveguide and electrical wiring had not been installed when this photograph was taken.

BIGGEST telescope on earth is IN the earth

By ERIC LESLIE

THE WORLD'S BIGGEST RADAR-RADIO telescope, illustrated on our cover, is a partly natural, partly artificial spherical hollow in the hills 12 miles south of Arecibo, Puerto Rico.

Why such a telescope? And why at Arecibo? What is the new instrument expected to accomplish?

Its chief purpose is to study the ionosphere. Satellites and rocket probes as well as radar soundings have given us many new facts about this region whose several layers surround the earth at distances ranging from less than 50 to more than 250 miles. The study has been limited by the small amount of information that could be obtained from existing instruments.

Prof. William Gordon of Cornell University envisioned a system using an extremely powerful transmitter and an antenna of much higher gain than any in existence. He believed that it would be possible to study the changes in the ionosphere by the back-scattering of free electrons from the various layers at uhf. This would make it possible to measure electron density and temperature, determine auroral ionization and detect transient currents in the ionosphere. Prof. Gordon suggested that the antenna would probably have to be a stationary dish in a natural bowl in the earth. It should be near the equator, he said, so that the solar system would be included in the scanning angle.

The Armed Forces are very much interested in all information obtainable about the ionosphere, as an aid in ICBM detection and decoy discrimination. Therefore, funds were supplied by the Advanced Research Projects Agency as part of the Project Defender Program for exploring ICBM defense techniques. The Air Force Cambridge Research Laboratories was assigned to provide technical management. The laboratories immediately suggested that instead of the usual parabolic reflector a spherical one be used, with a phased-line feed. This would make it possible to direct the beam over an angle of 20° from the zenith, a much wider angle than would be possible with a parabolic antenna.

The Arecibo site was selected for several reasons. It is within 18° of the Equator and thus in a favorable position to scan the ecliptic, in which the sun and the planets move. There was a natural bowl of very nearly the correct size and shape. The temperature varies very little, so structural materials would not be greatly affected by climatic changes. The sheltered area among higher hills is protected from heavy winds, and the location is relatively remote from sources of man-made interference.

Even though the bowl was nearly perfect, 300,000 cubic yards of material had to be blasted from some spots, while 200,000 cubic yards were added in others. The big reflector was then constructed of sheets of ½-inch galvanized steel mesh, placed on a cable grid that...
How signals are beamed into the vertical bowl to produce a parallel beam. The shape and slotting of the line feed control the amplitude and the phase of the energy radiated at each point along its length. The vertical angle of the beam can be varied by moving the line feed along the feed arm.

The reflector is shaped and slotting of the line feed control the amplitude and the phase of the energy radiated at each point along its length. The vertical angle of the beam can be varied by moving the line feed along the feed arm.

The line feed is so shaped that signals from different parts of it reach the reflector bowl with different intensities. The lengths of its radiating slots are calculated to vary the phase of these signals so that a beam of parallel rays will be reflected from the bow. The line feed is suspended from a crescent-shaped track called the feed arm, so the vertical angle can be varied. The feed arm in turn is suspended from a circular azimuth track girder, approximately 129 feet in diameter. Thus, the line feed can be positioned in azimuth within 1 minute of arc, and in elevation to within 0.8 minute of arc.

The structure which holds this transmitting and positioning equipment is a triangular platform, 216 feet on a side, suspended from three concrete towers. Each of these is 700 feet from the center of the reflector, and rises 468 feet above its upper edge. The transmitting line, 1,300 feet of waveguide, carries power from the transmitter building just outside the bowl to the line feed.

Two ingenious waveguide joints were necessary to get power to the line feed: a rotary joint to take care of antenna rotation, and a crescent-shaped one for the linear joint. This is a piece of waveguide 160 feet long inside the larger curved waveguide on the lower surface of the feed arm.

The transmitter can be operated as a continuous-wave radar at 150 kw or as a pulsed radar with a peak power of 2.5 megawatts. The transmitter is now operating at 430 mc, although it is expected to operate later at 40 mc, and probably also at a frequency of 900 mc or higher.

Though most of its time will be spent studying the ionosphere, the new telescope will have other uses. With 40,000 times the power of the Millstone Hill radar in Massachusetts, which first detected reflected signals from the planet Venus, it should be able to contact Venus, Mars or Mercury whatever any one of them is in the field of view. Millstone Hill had to wait till Venus was near its closest approach to the earth. Moreover, the new telescope will be able to produce directly observable signals, instead of having to sort them out of background noise with the help of a computer. It will probably also be able to make contact with Jupiter and Saturn when they are in favorable positions. It may also improve the accuracy with which we can determine the astronomical unit of distance, and we may even be able to observe the atmosphere of the sun with radar.
This picture (unretouched) was made by exposing the same paper six times, through a movable mask, from the same negative. The left-most strip was made with the enlarger diaphragm wide open; exposure turned out to be about 1/2 second. Each successive strip to the right was made with smaller and smaller aperture and correspondingly longer exposure. The rightmost one took 45 seconds. But the exposure time was "figured" automatically by the Auto-Photo Timer: notice the uniformity of contrast and tone.

Those of you who mix photography and electronics have very likely run into one of the biggest headaches in making good enlargements: correct exposure. This timer will expose your paper correctly even with changes in diaphragm setting. And it compensates for different papers and negative densities.

The Auto-photo uses a kind of photoelectric feedback, utilizing the light reflected from the paper on the enlarger easel to control the length of the exposure. Fig. 1 is the circuit diagram.

PC is a photoresisitive element so placed that it "sees" the photographic paper. Its resistance varies from a few thousand ohms in bright light to a few megohms in darkness. PC and R17 act as a voltage divider to vary the voltage on the grid of V1-a. V1 is arranged as two cathode followers with a diode and a relay coil between them. When S1 is set to expose, the enlarger lamp is on. The photocell picks up the light and establishes a dc voltage on V1-a's grid. Because of the shape of the photocell and the way it's mounted, it integrates the light over the paper surface quite well.

As long as V1-a's cathode is more positive than V1-b's, D1 cannot conduct and RY1 remains unenergized (lamp on). C2 is now charging to the voltage set by R7 through R9-R10. This rising voltage is compared with that at the cathode of V1-a, and when the cathode of V1-b becomes 5 volts more positive than V1-a's cathode, D1 is energized and the enlarger lamp extinguished. RY2 then shorts out the cell.
voltage, to prevent V1-a's cathode from going to its high dark voltage and de-
energizing RY1 and causing it to oscil-
late. Since the cathode of V1-b has to be 5 volts above the cathode of V1-a to
energize RY1, zero time must be con-
considered from this 5-volt level, and not
from zero volts. R15 sets up the proper
level for this purpose—important at
low cell voltages (high light levels and
short exposures).

The voltage drop across the cell is
not linear with varying light values. This
is partly due to the cell itself and the
value of R17. To make sure that the
charge voltage across C2 tracks
perfectly with the cell voltage at various
light values, a plot of cell voltage vs
incident light was made. This plot shows
correct exposure for each increment of
light, and was made from many trial
exposures at various light levels.

R17 was chosen empirically, until
it gave a curve that could easily be
duplicated ("tracked") with a capaci-
tor's charge curve (see Fig. 2). The charge voltage on C2 was then made to
agree with the plot of Fig. 2. The volt-
age across R7 is used to calibrate the
top end of the charge curve near 95% of the applied voltage. This is the region
where the longer exposures are made.
Remember that decreasing light causes
an increase in cell voltage.

When the enlarger lamp is auto-
matically extinguished, put S1 in the
RESET position, which shunts 100 ohms
across C2, discharges it, opens the lamp
circuit and de-energizes RY1. You are
now ready for your next exposure.

A COMPOSE position is provided on
S1 to turn on the enlarger lamp for set-
ing up, focusing and diaphragm adjust-
ments. Returning S1 to RESET will
extinguish the lamp so that you can put
photographic paper in the easel. Switch
to EXPOSE, and you will have another
correct exposure.

The neon bulb connected to the

cathode of V1-a and the junction of R1
and R2 serves as an indicator which
ignites when light value falls beyond the
reliable range of the unit. A 1-minute
exposure requires a surprisingly small
amount of light (much less than .01
foot-candle), and this seems more than
adequate for even the most severe en-
larging conditions.

Construction

The whole unit is housed in a Bud
5 x 4 x 3-inch Minibox, labeled with
decals. [This box is very compact and
you'll have to be careful with your lay-
out to fit all parts into it. We suggest
using a 6 x 5 x 4-inch such as the Bud
CU-2107-A or equivalent to simplify
parts placement. The two relays, power
transformer, 12AU7 are above the sub-
chassis. S1 and R9 are on the front panel.

The photocell is external and
plugs into the side of the unit. A ¼-inch
thick 3⅞ x 4⅞-inch plate, mounted on
two posts, is used as a subchassis. The
jacks and receptacle can be laid out on
the side of the box once the other com-
ponents are mounted. The neon indica-
tor is mounted with cement (Miracle
Adhesive) on top of T, directly under
the opening at the top of the box. C2 is
mounted beneath T.

The Sigma 4F and 11FZ relays
must be insulated from the chassis plate.
A piece of thin fiber on both sides will
do the trick, with the mounting holes
drilled oversized. Two pieces of ⅛ x
1½-inch curtain rod are drilled and

Fig. 2—Plot of cell voltage (measured at J1) vs exposure time, using a 150-watt
enlarger lamp and Kodak G2 paper. The charge rate of C2 is adjusted to
match this curve as closely as possible.
tapped for 6-20 screws. Mount the ends to the inside of the box with flat-head screws. The other ends support the chassis plate.

The photocell is mounted inside a 3/4-inch copper tube bent into a half-round so that the seeing end is 3 inches off the photographic paper, and mounted on the easel to look into the center of a 5 x 7 image. The seeing end must be outside the projected image so that it doesn't cast a shadow on the photographic paper. Once this is done, mount the tubing permanently to the easel, solder the cell to 3 feet of shielded phone cable and pull the cable through a hole in the bottom of the tube. Secure the cell in the seeing end with a small wooden wedge and install a 13A Cinch phone plug on the other end of the phone cable. Paint the tube a flat black.

Mount filter capacitor C1 from the bottom of the chassis plate—its would stand too high if mounted on top. Fasten with a makeshift strap soldered to the case of T.

Calibration and test

Before applying power, recheck wiring and diode polarities. Set S1 to RESET and check for the voltages indicated on the schematic. Read the voltages with a vtvm, J4 open-circuited.

To set up Sigma 4F relay RY1 for proper operation, place a .010-inch shim between armature and pole and adjust the normally open contacts so that this circuit is closed when the armature is pressed lightly. Adjust spring tension so that the relay energizes with about 5 volts across the coil (measured with a vtvm). Do this by plugging the photocell into J4, shading the cell so that about 15 volts appears at J1 and switching S1 from RESET to EXPOSE. With the voltmeter across the coil, the relay should click in at 5 volts.

Now you can make adjustments to set the charge curve of C2 so it will track with the plot of Fig. 2.

Attach the photocell to your easel and set R9 to a center position. Be sure that your enlarger lamp is 150 watts, and that your safelight illumination does not fall on the easel. All other lights are out. Set S1 to COMPOSE and adjust the enlarger for a 5 x 7 image, with no negative in place. Adjust the enlarger diaphragm until 10 volts appears at J1. Set S1 to RESET, then to EXPOSE. The enlarger lamp should go out in 2 seconds. If you do not have a stopwatch, find a windup clock with a loud tick. Listen to the "tick-tock" and you will find that every "tock" is a 1/2-second interval—four "tocks" for every 2 seconds. Repeat the RESET and EXPOSE switching, adjusting R15 until the lamp goes out in 2 seconds.

To calibrate the high end, adjust the enlarger diaphragm until 33 volts appears at J1 with S1 in the COMPOSE position. Return S1 to RESET, then to EXPOSE. The lamp should now extinguish in 60 seconds. If not, adjust R7, repeating the test until it does. If you have trouble getting 33 volts at J1 even with the enlarger diaphragm fully closed, put a negative in your enlarger to cut out more light.

To calibrate the mid-range, set S1 to COMPOSE and adjust the enlarger diaphragm for 25 volts at J1. Set S1 to RESET, then to EXPOSE. The lamp should extinguish in 25 seconds—if not, adjust R9.

Since the adjustments of R7, R9 and R15 are interdependent during calibration, repeat the adjustments until they agree within 15% to 20% of the plot of Fig. 2.

The NE-2 should fire when approximately 36 volts appears at J1. Select a different value of R2 if necessary.

Operation

R9, mounted on the front of the box, has its rotation marked off in 10 numbered positions. This serves as a calibration control for various paper types. R9 works independently of R7 and R15 once the unit is calibrated. Just select a position on R9 that gives the correct exposure for a particular paper, and make a note of it. If you change paper grade or manufacturer, place R9 in the correct new position and leave it there.

A 150-watt enlarger lamp has a Kelvin rating of about 2,800. A higher-wattage bulb has a higher Kelvin rating, decreasing the sensitivity of the photocell. You may have to trim resistances R6—R10 if you use another lamp.

WHAT'S YOUR EQ?

Three puzzlers for the student, theorist and practical man. Solve? Double-check your answers before you say you've solved them. If you have an interesting or unusual puzzle (with an answer) send it to us. We will pay $10 for each one accepted. We're especially interested in service stationists or engineers stumped on actual electronic equipment. We get so many letters we can't answer individual ones, but we'll print the more interesting solutions—one of the original authors never thought of.

Write EQ Editor, Radio-Electronics, 154 West 14th Street, New York, N. Y.—10011.

Answers to this month's puzzles are on page 62.

Neon-Bulb Circuit

In the circuit shown, one neon lamp requires a minimum of 74 volts for ionization and four in series require a minimum of 296. After ionization, the drop across each lamp is 59 volts and the total current 0.3 ma.

Assuming that the lamps are non-conducting when switch S is closed (because 266 volts is not enough to start conduction), what change will occur when a vtvm with an input resistance of 10 megohms is connected across terminals A and B? Also, what reading will the voltmeter have and what will happen when the voltmeter is disconnected from the circuit?—Kendall Collins

The Innocent Black Box

A black box has only two terminals. When I use an ohmmeter to check the resistance in the R X 1 range, the meter reads 25 ohms. When I change the range to R X 10, the meter reads only 10 ohms. The meter has been recently checked for calibration and is good. The black box does not contain any voltage source. What does it contain?—H. D. Varadarajan

A No-Signal Stinker

In this old Stromberg-Carlson radio (1210), there is no signal through the 6SC7 stage. The tube is new and good. B-plus voltages are OK, all resistors and capacitors are good, and measurements close to rated values. What's wrong?—Jack Durr

40

RADIO-ELECTRONICS
FM reception today offers the near-ultimate in high-fidelity listening. In many hi-fi tuners, FM as well as AM, the detector is the chief source of distortion. There was a time when this distortion was of little concern but, with today's audio amplifiers virtually distortionless, detector distortion has taken on new importance. Anything that can improve the detector stage is well worth the effort. But what can be done to improve the FM detector?

Basically, the trouble stems from a discriminator or ratio-detector transformer that does not have enough bandwidth to handle the i.f. signal. Fig. 1 shows the response characteristic of a typical discriminator or ratio detector, commonly called the S-curve. Note that the curve is linear up to a certain point (A) on either side of the center frequency, f. Beyond this point, the curve is no longer linear and the detector output is not proportional to the frequency deviation. When the if signal swings into this non-linear area, distortion appears in the output.

There are two reasons why the if signal might swing too wide for the existing detector transformer: If the FM station overmodulates on peaks, the signal will exceed the linear portion of the average transformer (Fig. 2-a). Unfortunately, there are FM stations that do overmodulate—some inadvertently, a few deliberately. The second and more frequent cause of excessive signal swing is a detector transformer with a linear portion not wide enough to accept a heavily modulated, but not overmodulated, signal. The effect is essentially the same as that of the overmodulated signal. There, the signal was too wide for a standard transformer. Here, the transformer is not wide enough for a standard signal. There is a fine difference between the two, but the effect is the same. When the signal swings beyond the linear portion, the output is distorted (Fig. 2-a).

Surprisingly enough, the standard FM signal can be wider than it is usually considered to be. An FM signal which is being modulated 100% by a 15-kc tone has significant sidebands as far as 120 kc away from the center frequency. Thus, to hold distortion to a minimum, a transformer with a linear portion at least 240 kc wide is required. Stereo multiplexing places even more stringent demands upon the high-frequency response of both the transmitter and receiver.

Another type of distortion closely related to these two occurs when a signal that could fall entirely within the linear portion of the curve is forced to swing into one of the nonlinear areas by the receiver being mistuned, because of human error or oscillator drift. This is shown in Fig. 2-b. Also, music is not a single note but a combination of many. The high-frequency components can "ride" on the stronger low fre-

Fig. 1—S-curve of a typical FM detector. Distortion occurs if the FM signal swings past the linear portion into the shaded areas.

Fig. 2—S-curve of a wide-band transformer compared with a standard one. The heavy part of each curve represents its linear portion. In (a), the swing, represented by the horizontal bar, is too great for the standard transformer and distortion occurs on both positive and negative peaks. In (b), the signal is tuned off center and distortion occurs on one peak. In both cases, the output of the wideband transformer is not distorted.
is generally equivalent to 70% to 75% we should have a transformer with a
Fig. 4—Typical discriminator type of FM detector.
To this, add 20 kc to allow for oscillator drift, overmodulation, etc. This means we should have a transformer with a linear portion at least 250 kc wide.
Discriminator and ratio-detector transformers are usually described in terms of peak-to-peak separation, if any mention of bandwidth is made. The linear portion of a transformer's curve is generally equivalent to 70% to 75% of the peak-to-peak separation. Thus, the greater the peak-to-peak separation, the better the overall performance of the receiver. Not only will the distortion be lower, but the effects of oscillator drift will be lessened. Tuning will be easier and less critical, and the capture ratio of the tuner will be improved. Consequently, there will also be better separation of adjacent signals.

Improved transformers available
In the past the service technician or audiophile has been able to do very little about the bandwidth of his discriminator or ratio-detector transformer. But recently transformers with greater bandwidths have been developed. The Stanwyck Winding Co. has marketed a transformer (S-626) which has a peak-to-peak separation of 325 kc and a linear portion 250 kc wide. Thordarson-Meissner makes a transformer (17-3487) with 400-kc peak-to-peak separation. The Scott FM tuners use a discriminator with a 2-mc bandwidth.
The J. W. Miller Co. is now marketing a wide-band ratio-detector transformer (1465-WB) with 800-kc peak-to-peak separation, and a wide-band discriminator transformer (1464-WB) with 500-kc separation. These two units are readily available and can be used to improve the performance of many FM tuners and radios in use today. Using the Miller 1465-WB for ratio-detector circuits and the 1464-WB for discriminator circuits (because they offer the greatest bandwidth of any of the replacement transformers presently available), I have replaced many older transformers. The results have proved to be well worth the effort.

Improvement noted
Three hi-fi FM tuners and five FM radios have been improved this way. Two of the radios and one of the tuners were AM-FM combinations. AM circuitry in an FM receiver has no effect upon the FM detector stage, even though some sets use it stages common to both signals.
The degree of improvement depends largely on the bandwidth of the old transformer. In the Eico HF-90 FM tuner, which already had a transformer with 600-kc peak-to-peak separation, the improvement was rather subtle. It was noticeable only on very loud passages and also on one of the local stations that frequently overmodulates. The improvement in the AM-FM radios was immediately obvious. Even the other two FM tuners showed a marked freedom from high-frequency breakup on the louder passages.
None of the receivers was realigned—at least not immediately after the new transformer was installed. Instead, the new wide-band transformer was aligned with the frequency to which the IF section of each particular receiver was peaked. This was done so that any improvement resulting from realignment would not be credited to the new transformer. (Eventually several of the receivers were completely realigned for optimum performance. But the improvements mentioned were noted before that.)

Installing a new transformer
The existing detector transformer can be replaced with a wide-band transformer by any qualified service technician. The charge should be modest. If the receiver is several years old, check the overall receiver alignment while it is on the bench. With a little care and caution, the replacement can be made by anyone who can read schematics and has had at least a little experience with a soldering iron, such as building a kit.

A word or two of warning: Do not disturb the lead dress of any wires in the set except those going to the detector transformer! Even these should not be moved any more than necessary. Also, while the physical arrangement of the terminals on the bottom of the old and new transformers may appear identical, the internal connections to these terminals can be and often are different. Therefore, the new transformer should be wired according to the schematic and not according to the previous physical connections.

Three basic FM detector circuits are used in hi-fi equipment today. These are the discriminator (Fig. 4), and the balanced and unbalanced ratio detector (Fig. 5). The terminal numbers shown are those of the wide-band transformers. Fig. 6 shows the terminal arrangement on the bottom of the transformer.

Fig. 5—Two types of ratio detectors: a—balanced, b—unbalanced.

Fig. 6—Base-terminal arrangement of Miller 1464-WB and 1465-WB transformer.
A ratio-detector transformer should of course, be replaced with a ratio-detector transformer, and a discriminator with a discriminator type. (The one exception might be the discriminator that is preceded by only one limiter stage. The use of a ratio detector, with the required circuit changes, would be an improvement over the original design.) If there is any doubt about which type of detector a set uses, check the connection of the diodes to the existing transformer. If the plates of both diodes are connected to the transformer secondary, it is a discriminator. If the plate of one diode and the cathode of the other diode are connected to opposite ends of the transformer secondary, it is a ratio detector.

Alignment

Once the new transformer has been installed, all that is left to do is to touch up the alignment of either the new transformer only or the entire receiver. Just which should be done depends on the test equipment available, the experience and ability of the individual and the age and condition of the receiver.

The audiophile whose experience has been limited to kit building probably does not have the equipment or the knowledge to make a complete i.f. alignment. If it is warranted either by the age or condition of the set, or the demand for absolute optimum performance, it can be done by a qualified service technician. On the other hand, if the set is in good condition, a slight touchup of the adjustments of the new transformer can be made fairly easily by the average audiophile, without using test equipment, if the procedure given here is followed carefully.

First, allow the receiver to warm up for 20 or 30 minutes. Then tune in a very weak signal. If there is no weak signal, or the audio is the loudest. Many receivers have a meter, an "eye" or some other similar tuning indicator. It can be used in the normal way to determine when the receiver is precisely tuned to the incoming signal. For even greater accuracy, hook a vtm to the limiter grid. You'll find it much easier to spot the peak. To avoid mistuning, it is wise to recheck the setting of the tuning control one or two times during alignment. It will prevent mistuning caused by tuner drift—you'll be sure you're accurately tuned to the station while aligning.

Now adjust the bottom slug (the primary) of the new detector trans-
former for the loudest audio. Probably no more than one turn in either direction will be required. It is wise to note how far and in which direction the slug has been tuned, so that it can be returned to its original setting if necessary. Do not rely on the tuning indicator at this point. Instead, adjust for maximum audio.

Next, adjust the top slug for minimum noise and maximum audio. Particular attention should be given to the "hissing" sound referred to as noise. As the top slug is tuned through the proper point, this noise will drop off sharply and will then begin to increase again after the point has been passed. The change in audio amplitude around this point is nearly so pronounced as the change in noise level. This sharp null in the noise represents the point at which the transformer secondary is properly tuned. Chances are good that the top slug will not have to be turned more than a quarter turn in either direction.

There is usually some interaction between the two adjustments. It is possible that the slugs will have to be adjusted alternately several times. The final adjustment should be made to the top slug. If the receiver does not null and peak as just described, the entire section probably needs realignment.

Bandwidth of i.f. stages

With the new wideband ratio-detector or discriminator transformer installed and aligned, the question of whether to increase the bandwidth of the i.f. transformers might arise. While there are ways to do this, it is doubtful that it is necessary or even advisable. H. H. Scott while using an extremely wide, 2-mc detector circuit in its FM tuners, still uses the standard 150-ke i.f. bandwidth. This is a good compromise between low distortion and good selectivity. Certainly a 150-ke i.f. bandwidth does not nullify the benefits of a wideband detector or discriminator. Nothing can be obtained for nothing, of course, and there is one penalty for installing the wideband circuit. Audio output drops appreciably. This is not an important factor in my case, but might be important to listeners in fringe areas.

Installing a wideband ratio detector or discriminator is easy and simple. The improvement in receiver performance, especially in reduced distortion, is more than worth the time and effort for those who desire the best in high-fidelity FM reception.

Fig. 7-H-pad for signal attenuation. Values are given for three degrees of attenuation. Two or more pads can be cascaded if necessary.

Educational Television May Nudge Out Textbooks?

Educational TV may be as commonplace as textbooks by 1970, believes Stanley Lapin of Adler Electronics. Speaking to the Third Annual Educational Television Conference, Mr. Lapin stated that the FCC ruling opening 30 channels in the 2,500-mc band for ETV eliminates two major barriers—high costs and insufficient channels. He told the conference that a two-channel ETV system in the 2,500-mc range can be installed in a large city for as little as $2.25 per student. Student costs would probably run higher in smaller population units, though equipment for 2,500 mc would be substantially cheaper than previously available ETV systems.

Meanwhile, Robert E. Lee, FCC Commissioner, told the same conference that educators are not using the television available to them—neither closed circuit TV nor the present channels now allotted to ETV. "The FCC," he said, "has set aside valuable frequencies and pleaded with educators that they be used."

R-E Abbreviations

RADIO-ELECTRONICS is adopting the modern abbreviation "pf" for "microfarad". (The "p" in this case is short for pico, meaning "very small." Both the "p" and the "u" represent 10^-12.) This abbreviation has been coming into more and more common use in the past year or two, and is especially handy for people who do not have the character "u" on their typewriter keyboards.

We are also using "Q" instead of "V" to designate transistors. While usage has been split on this, "Q" is now used by the majority of American publications.

Music to Type By

Young stenos who have grown up listening to music while doing their homework can transcribe recorded dictation the same way—if they happen to work for Equitable Life Assurance Society. Built by McGraw-Edison's Voice-writer Division, the firm's system puts a music background on an office network of 43 transcribing machines, so the boss's voice has a canned-music accompaniment.
High-quality unit has continuous bass and treble compensation

By HAROLD REED

MOST PROFESSIONAL AUDIO INSTALLATIONS (and some home systems) use line (intermediate) amplifiers to make up for losses between preamps and power amplifiers, and to insure plenty of drive voltage for the power amplifiers. In broadcast studies these are often called program amplifiers.

When stereo came in, many outfits simply doubled everything, although this wasted space, power and money. Moreover, the gain of the channels was often unequal and had to be compensated somehow.

The design shows a four-tube professional stereo line amplifier with separate bass and treble tone controls in each channel.

The two channels are identical, part for part, so only one need be described. The input signal enters through T1, a wide-range input transformer that steps up the 500/600-ohm line impedance to about 50,000 ohms. It passes on to V1—a through the Baxandall type tone control network (which can be bought complete and prewired as Centralab C3-300). Part of V1-a’s output is fed back to the input of the network, since the Baxandall circuit is a feedback system. V1-b is a straight “gain” stage, and V2-a drives the output line (again 500/600 ohms) through T2, a stepdown transformer. R10 provides a feedback loop around V1-b and V2-a. R23 serves as an output level control, and also terminates the output properly.

Construction details

The original amplifier, built for the Navy, was on a 2 x 13 x 7-inch aluminum chassis fastened to a 10⅛ x 19-inch rack-mount panel. This allowed room for the VU meter and switch, which appear in the photos but are not part of

Circuit of the stereo line amplifier.
the amplifier and are not in the schematic. If you build the amplifier, you can use a much smaller chassis. While layout is not especially critical, you are dealing with relatively low-level audio, and since this is a stereo amplifier, there may be crosstalk problems if you take gross liberties in layout and wiring. Use the usual precautions in building the amplifier. Particularly, keep the signal transformers well away from the power transformer. In the original, shielded leads were used between input transformer secondaries and tone controls.

All external connections except ac power are made to the barrier terminal strip on the back of the chassis.

Performance

Each channel has a voltage gain of 42, or 32.5 db. Used with a G-E VR-22 stereo cartridge and a G-E stereo preamp with 32 db gain, the line amplifier delivers about 2 volts output across 500 ohms. A 50,000-ohm to line transformer was used at each preamp output, giving a voltage stepdown of 20 db.

Hum and noise are 75 db below 2 volts out. Distortion was 0.5% at 50 and 1,000 cycles, and 0.8% at 15,000 cycles. Frequency response is down 1.3 db at 50 cycles, 0.5 db at 15,000 cycles, taking 1,000 cycles as 0-db reference. The tone controls give bass boost and cut of 11 db at 100 cycles. Treble boost and cut are 10 db and 12 db, respectively, at 10,000 cycles. Negative feedback in each channel is 13 db.

The amplifier also works well with Fisher PR-6 preamplifiers, which give a gain of 40 db in this service. Using the PR-6's, the line amplifier will drive low-sensitivity amplifiers—ones that require 1.5 volt or more input—to full output with R23 and R24 turned only about a third of the way up.

The stereo line amplifier, though useful almost anywhere, is especially suited for stereo PA systems.

R1, R8, R11, R18—1,800 ohms
R2, R5, R12, R15—270,000 ohms
R3, R13—250,000 ohms
R4, R14—2,200 ohms
R6, R16—50,000 ohms
R7, R17—470,000 ohms
R9, R19—100,000 ohms
R10, R20—82,000 ohms
R21—3,300 ohms
R22—1,500 ohms
R23, R24—potentiometer, 500 ohms
(Rohmte AB type CU5011 or equivalent)
All fixed resistors 1/2 watt, 10%
C1, C5—electrolytic, 20–20 µf, 25 v, 20 µf, 450 v (author used 20–20/450, 20/250)
C2, C4, C6, C8—0.1 µf, 400 v, paper
C3, C7—0.02 µf, 400 v, paper
C9—electrolytic, 20–20–20 µf, 450 v
T1, T3—input transformer, 500-ohm pri to 50,000-ohm sec (UTC A-11)
T2, T4—plate-to-line transformer, 15,000-ohm pri to 500-ohm sec (UTC A-24)
T5—power transformer, 650 vct, 40 ma or higher; 6.3 v, 2 a or higher
TC1, TC2—Centralab C3-300 tone control (includes R-C network and pots). Available from many parts stores and mail-order houses even though not in all catalogs. Network alone, less pots, is PC-190
V1, V3—12AX7-A
V2, V4—12AU7
F—fuse, 122 v, 1 a
S—spst toggle switch
Chassis—2 x 13 x 7 inch aluminum

FEBRUARY, 1964
Like a glass of water without the glass. This single, unshielded transmission line is nonradiating, and has extremely low loss.

My wife (bless her un-electronics-oriented little heart) had been chipping away for quite some time with "Why can’t we have all those good TV channels the Cinch Joneses get?"

My explanation that we live in a valley, walled in by mountains, while the Joneses, though a mere 5 miles away, are in the open; that the "good channels" are 100 airline miles from the both of us, but they could receive them and we could not, cut little or no ice at all.

"Well, you're in electronics, so do something about it" was her understanding reply.

When neighbor Bill added his "Say, why don't you—" to hers, the ground was freshly plowed and ready to seed. Perhaps I could make like a modern-day Merlin and conjure up those "good channels," thus making Number One happy. I must admit that, in addition to the stimulus of the challenge, I too liked Perry Mason.

There were acceptable signals from San Francisco, San Jose, Sacramento and Oakland atop a 600-foot hill known locally as Saddle Mountain. The big problem was how to transport all that flickering drama over some 3,400 feet of rough terrain to our house on the floor of Carmel Valley.

I began to consider common forms of transmission lines, and found that none were right for us. Coaxial lines, even the more recent types developed for community antenna distribution systems have fairly high losses in the upper vhf. These lines are also expensive and require messenger support, which means frequent poles and special equipment.

The relatively high loss of 3,400 feet of this line would also require an antenna-site amplifier, which means duplexing power and rf on the transmission lines. Open wires are not as lossy as coaxial lines, but they too present problems, not the least of which is radiation.

If lines with spacers are used, there will be losses in the dust and moisture bridges formed at each spacer. Open-wire lines (without spacers) were considered—two wires under tension, separated only at the supporting poles—but this type of line will modulate the signal, causing video flutter somewhat like sound bars. This is due to a rapid impedance variation when the lines “sing” in gentle winds. Also, this type of line is subject to bird-perching, which usually results in the conductors being shorted together.

I finally decided to abandon the usual lines and techniques and to investigate waveguides. Not the rectangular or round “plumbing” usually associated with the term, but the external waveguide, a “surface waveguide,” as it was termed by George Goubau, who developed it at Fort Monmouth in 1953.

The G-line, as it came to be called, is just a single insulated wire. When rf power is properly given to and taken away from this single conductor, it responds with some amazing results. Its loss is very low, approximately 6 db/mile over the vhf TV band. This means the output voltage from a 1-mile line is half that of the input. Unlike coax or open-wire line, its loss does not increase with frequency. It does not radiate. Its impedance is approximately 300 ohms, and it is inexpensive.

G-line is not a panacea for all situations. For those of you who live in an area given to long periods of snowfall, read no further, for this and heavy ice loading on the line will increase attenuation severely. Rainfall and fog, however, affect the line very little.

If a situation requires abrupt sharp turns, the line can make it, but the rf cannot, and will spit right off the turns. This doesn’t mean you can’t make turns with the G-line. It just means that you have to make the turns gently, with a large radius.

The G-line’s last shortcoming is that it must be held clear of all objects for a radius of a half wavelength at its lowest operating frequency. This includes buildings, poles, the ground, metals and foliage.

Since the name G-Line is a trade mark used by Surface Conduction, Inc. for their products which are also protected by patents, we have asked for and received permission to publish this article under this name. The permission was given in view of the fact that it represented a private study proving both the ingenuity of the author and the reality of the G-Line.
A complete transmission system requires one conductor and cannot detach itself, the electric field becomes imprisoned by the same inner conductor (Fig. 3). Thus the electric field lines are continous from inner to outer conductor; field lines are straight. In (b), discontinuity occurs in dielectric at boundary between plastic and air (their dielectric constants are different) and lines curve. Drawing (c) shows how field lines begin to curve back onto center conductor as outer conductor is moved farther away.

Examining the electric field within a longitudinal section of solid-dielectric coax line, you can better understand the role of the insulation Goubau found so necessary. The electric field lines vary in direction and magnitude with the distance along the line. The entire pattern, maintaining relationships shown in Fig. 1, moves away from the source at nearly the speed of light. Notice particularly that the electric lines are shown beginning on charges on the surface of a conductor and extending to charges on the opposite conductor.

All of this is just another way of saying that there is a difference in potential and that electric lines of force are depicted as beginning and terminating on charged bodies. That is, they begin and terminate on charged bodies if the transmission line is not to radiate. Herein lies the problem, for what we plan to do is to expand the outer conductor gradually, until it becomes so large that, in effect, it doesn’t exist electrically.

Normally this would mean that the electric lines of force beyond this point would have only one body on which to begin or end, and hence could detach themselves from the conductor and join heads to tails, forming closed loops that move away from the wire, taking all the energy with them. That is, if the outer conductor is removed, we expect the inner conductor to become an antenna. This is true if the dielectric before and after expanding the outer conductor is the same (air, as an example). However, our example is a solid-dielectric line, and the secret to the operation of the surface waveguide lies in continuing this solid dielectric after the outer conductor is removed.

Where the outer conductor has an increased diameter, the dielectric is no longer all solid; it is part air and part solid. The speed with which the charges move on the surface of conductors depends, among other things, on the surrounding dielectric. The charges, to which the electric lines are attached, tend to move with a greater velocity on the surface of the outer conductor than on the inner conductor, thus forcing the electric lines to curve (Fig. 2).

If we continue this process, gradually making the outer conductor larger and larger, the electric lines will bend in an arc so that they begin at a charge of one polarity on the inner conductor and end with an opposite charge on the same inner conductor (Fig. 3). Thus the electric field becomes imprisoned by one conductor and cannot detach itself, whereupon the expanded outer conductor is unnecessary and can be omitted.

In practice, the enlarged portion of the outer conductor is called a launcher. A complete transmission system requires one at each end of the line. The one at the receiving end has been called a catcher.

All this seems to suggest that these launchers should be exponentially shaped. Experiments show that this form is not necessarily best, and in any case, not many of us have the wherewithal to construct such a gadget. I decided to corrupt the optimum in favor of a design that was easy to make and

The launcher in the foreground feeds 1,250 watts of VHF power via G-line to a small directional array halfway up the medium-wave tower in the background. This installation is in Munich, Germany.
Ideally, the line should be constructed from wire with an overall diameter twice that of the conductor itself. However, variation from this formula does not change the performance greatly.

Our launchers were made with four \(\frac{3}{4} \)-inch x 6-foot aluminum tubes located between and along the diagonals of two 12-inch x .060 inch aluminum squares (Figs. 6, 7). Two small squares of \(\frac{3}{4} \)-inch Plexiglass or Lucite with holes in their centers to admit the bared end of the wire form the insulator block. A knockout punch cut relief holes in the centers of the two aluminum plates. The entire sandwich was secured by 1-inch 6-32 machine screws.

The size, height, weight and whether or not “deadmen” will be used at the terminals of the G-line will depend on the particular circumstances. Saddle Mountain’s two 1,700-foot catenaries were suspended between 6 x 6-inch x 10-foot posts set in the ground 3 feet and tied back to expandable anchors. These supports were later found to be far more rugged than necessary since this line required only a 200-lb stress.

Put one up

The wire I used in our system is No. 6 aluminum with a black commercial-grade polyethylene jacket (Fig. 5). Aluminum was selected because this system consisted of two 1,700-foot spans and here the weight is important. Any plastic-insulated wire will do, such as common No. 14 or No. 12 solid-copper house wire. Rubber-insulated and so-called “weatherproof” wire should not be used; those dielectrics are lossy and absorb power.

The bared end of the G-line is passed through the hole in the launcher insulator (Fig. 8). A slotted bolt connector is slipped over the wire at the rear of the launcher and the wire is then formed around a small cable “thimble” and once again passed through the wire connector.

Once the connector is in place, the nylon tether is secured to the thimble and the G-line is ready to raise.

In our system, 72-ohm coaxial feed lines are used to and from the launchers. Weather-tight transformers such as Jerold’s model TO-374 or Taco’s Magi-Mix No. 1597 match the G-line’s 300-ohm impedance to that of the coaxial line.

Even though transformation to an intermediate impedance of 72 ohms between the G-line and the TV set required a transformer at both ends, it was well worth the small additional cost to be able to run the interconnecting line next to water pipes, on the ground and through walls with complete freedom. With 300-ohm line, a transformer should still be used, even though the impedance of the G-line matches that of the ribbon. A 300-ohm line is balanced, and the G-line is inherently unbalanced.

Our system has been in operation more than 6 years. It has survived winds over 80 mph and has withstood the tests of time and weather with complete success. Its entire cost was less than that of the set we couldn’t use without it and everybody’s happy. Now don’t let a little thing like a mountain range stand between you and Perry Mason!

"Get a load of what I found in your set, Mrs. Broadway – dead about 3 years, I’d say!"
SIMPLE RF WATTMETER for CB

A load as well as a meter, device reads rms power from dc to about 50 mc.

By LYMAN E. GREENLEE

THE SIMPLEST COMBINED DUMMY-LOAD- and-"wattmeter" is still a light bulb. But, by itself, a bulb is not an accurate meter. The best you can do is guess at the transmitter power.

This little instrument combines a small pilot lamp with a pair of solar cells and a microammeter. Fig. 1 shows the schematic. The meter reading depends on only the light output of the bulb, which in turn depends on only the power the bulb gets from the transmitter.

Two selenium self-generating solar cells are connected in parallel and mounted close to the pilot lamp. The rf current lights the bulb, and the dc output from the solar cells goes to microammeter R M through the rf choke, bypassed by C to remove any stray rf from the microammeter. Observe polarity when you wire the solar cells.

Mount the assembly in a light-tight case. R is a 1,000-ohm calibrating pot shunting the meter (M), and is adjusted only when calibrating the instrument to set the 0-500 microammeter to full scale. After calibration, it may be locked in position permanently, and will not be disturbed unless recalibration is necessary. A burned-out pilot bulb may be replaced without recalibrating the instrument, if it is of the same make and type as the original.

The pilot light is mounted in a socket which is a flush fit inside a rubber grommet. To change bulbs, pull out the socket. A clip holds the coax line and socket in place on the front panel. Wrap bulb and socket with a small piece of plastic tape to make sure the bulb will not work loose. I bent a U-shaped piece of tin-can metal and soldered it to the back of R to act as a reflector and to confine the light from the bulb to the solar cells. The only purpose of the reflector is to increase the reading of the microammeter. If the meter can be made to read full scale without it, leave it off. Mount the solar cells close to the bulb, as shown in the photo.

There is some variation in solar cells. Before using them, check each one by connecting it directly to the microammeter. A good cell should give a full-scale reading when held close to a 60-watt light bulb. If it doesn't, the cell is weak and will not work in the wattmeter.

Wiring is simple and not critical, since the leads carry direct current. Mount C and RFC exactly as shown in the photo, with C across the meter.

Calibration

Fig. 2 shows the calibrating circuit. Calibrate the instrument by adjusting the rheostat, taking readings of the ac voltameter and milliammeter and comparing with the corresponding readings of the microammeter. First, set the rheostat to apply full rated voltage to the bulb. Adjust R so that the microammeter reads full scale. Calculate wattage by multiplying voltage and current. Example: If the ac meters read 6 volts and 120 ma, the power is 0.72 watt (6 X 0.12 = 0.72). With a No. 40 bulb, set the microammeter to full scale with 1 or 1.2 watts maximum input to the pilot lamp. With a 46 bulb, the maximum level should not exceed 2 watts. These wattage levels can be exceeded by 25% or

SUITABLE PILOT BULBS

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage</th>
<th>Current (amps)</th>
<th>Max. Watts of design voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 or 47</td>
<td>6-8</td>
<td>0.15</td>
<td>1.2</td>
</tr>
<tr>
<td>46</td>
<td>6-8</td>
<td>0.25</td>
<td>2.5</td>
</tr>
<tr>
<td>1447</td>
<td>18</td>
<td>0.15</td>
<td>2.7</td>
</tr>
<tr>
<td>1449</td>
<td>15</td>
<td>0.20</td>
<td>2.8</td>
</tr>
<tr>
<td>1487</td>
<td>12-16</td>
<td>0.20</td>
<td>3.2</td>
</tr>
<tr>
<td>432 or 433</td>
<td>18</td>
<td>0.25</td>
<td>4.5</td>
</tr>
<tr>
<td>1458</td>
<td>20</td>
<td>0.25</td>
<td>5.0</td>
</tr>
</tbody>
</table>

These levels can be exceeded by 25% without danger of burnout. Choose a bulb your transmitter will light to average brilliance.

Fig. 1-Circuit of wattmeter. Meter reading depends on light output of bulb.

Fig. 2-The calibrating circuit.

The wattmeter. Scale should be calibrated in watts. At top, cable ends in phono plug; adapter, top left, fits screw type coax connector. Other end of coax is soldered directly to lamp socket terminals, visible above clamp at bottom of case.
more. But for maximum bulb life, calibrate within manufacturer’s rated limits. After determining the full-scale maximum position and adjusting R, continue calibrating by varying the rheostat to reduce the current to the bulb. Plot points on a graph like Fig. 3 for the various microammeter readings. Vary the rheostat to reduce the reading of the microammeter to even values such as 450, 400, 350 µA, etc. For each of these checkpoints, read voltage and current, multiply to get wattage, and transfer this wattage value to the graph. Do not reset R.

The instrument can be used for checking power output or alignment, either with or without modulation. Plug the meter into the antenna jack, turn on the transmitter and take a reading. Don’t leave the meter connected to the transmitter for a long time because heat from the lamp may affect the sensitivity of the solar cells. Ventilation inside the closed meter box is not good, so take a reading and disconnect the meter.

By installing a phono plug on the end of the coax line and making up an adapter to an Amphenol connector, the wattmeter will fit virtually all CB transceivers. This adapter can be made up by soldering a Switchcraft 3501-FP phono jack to an Amphenol UG-203/U plug. The end of the Amphenol sleeve must be reamed out until the Switchcraft jack is a press fit into the sleeve. Use a short length of bare wire to connect the center prong of the Amphenol plug.

A transmitter with a maximum output of less than ½ watt will not give a satisfactory reading with a 5-watt pilot lamp such as the type 1458. If it is hard to get a reading, make sure the bulb is not burned out and that the transmitter will actually light a bulb similar to the one in the wattmeter.

Marvelous Electronic Diaper Change Indicator

By DAVID W. CRAMP

A real haggard-looking guy was waiting for me when I opened the shop one Saturday morning.

“Boy, am I glad to see you,” he said. “You’re the only TV guy who can help me.”

“Well, I’ll try,” I told him. “What seems to be the difficulty?”

“I hate to change diapers,” he said. “Diapers?” I asked. “You sure you got the right place?”

“Yeah, I got the right place. I heard of you. It’s like this. All day long my wife watches the soap operas on TV. She don’t move from the set and she has it turned up as loud as it’ll go. Even the commercials. Now our new baby is very little and isn’t housebroken yet. Every night when I get home my wife is glued to the set and the baby is crying away only you can’t hear him on account of the loud TV. I go in to say hello to the baby and find him wet and crying. I feel sorry for him and change his diaper which hasn’t been changed since I left for work.

“I tell my wife she should change the baby’s diapers when she cries and she says she does every time she hears him cry but she can’t hear him on account of the loud TV.

“Why don’t you get her to turn the set down?” I asked.

“I suggested that, but we live in a duplex with cardboard walls and she says she has to keep our set turned up or she hears the set next door and that lady is stupid and has lousy programs on all day and my wife can’t concentrate on her own programs with all that noise from the next apartment.”

“Would your wife change the baby’s diapers if she was able to tell when he was wet?” I asked.

“Oh, yes! Deep down she really loves the little fellow and she could duck out and change him during some of the less interesting commercials.”

“Well, then.” I reassured him, “you can relax. Your troubles are over. I’ll be over Monday night and fix you up.”

“Oh, thank you, sir!” He practically gurgled as I backed up to keep him from licking my hand in gratitude.

Monday night I went over to his house with a little black box, a dozen new diapers with a two-pronged connector sewed in one corner of each one, and a crystal microphone. We put one of the new diapers on the baby and I hooked up the other stuff and we turned on the TV set and waited. Nothing happened so after we waited 15 minutes I had the guy feed the baby a bottle of warm water. Ten minutes later the set started to howl.

“What’s that?” the man asked.

“That tells you that your baby needs changing,” I told him.

We checked and sure enough, the diaper was wet.

“Now,” I said, “you tell your wife every time she howls she is to go to the baby’s room, unplug his diaper from this wire leading from this little black box and that’ll stop the howling. Then get her to put one of these diapers on the baby and plug it into the little black box.”

“Will it work every time?” he asked.

“Every time,” I assured him. “As long as your wife uses these diapers I brought and they’re dry when she puts them on the baby.”

Well, he begged me to tell him how the indicator worked but I refused, because I wanted to keep it a secret until I could apply for a patent. Now that everything is set I can reveal the secret.

First, I bought a dozen diapers. Then I took some fine wire from the secondary of an old transformer and soaked off the insulation with acetone. I cut 24 three-foot lengths of this wire and soldered one end of each wire to a separate prong on the male ends of 12 two-pronged connectors. My wife wove the two wires from each connector through a different diaper and sewed the connector to a corner of the diaper. She was very careful not to allow the wires to come closer than ½ inch to each other. Then I made up the circuit shown below.

The relay stayed open so long as the diaper remained dry. As soon as the diaper was wet by the baby, the salt in the urine formed an electrolyte, completing the circuit between the wires and sending a feedback howl started and kept going until the diaper was unplugged. A new dry diaper kept the circuit open until the next wetting.

Where do you write to find out about getting the Nobel Prize?
AUTOMOTIVE ALTERNATORS

HOW TO KEEP THEM WORKING

If you own a car or work on mobile radio gear this article is must reading.

By CHARLES J. SCHAUERS

Anyone who has enough electrical gear in his car to draw a lot of current from his auto battery will find an alternator valuable. Even with the engine idling, the alternator provides several times the current delivered by the ordinary dc generator. This has made it popular with radio amateurs, CB radio operators, police departments, the military and anyone else whose car is packed with current-gobbling air conditioners, spotlights, radios, etc. In many late-model cars, alternators are standard equipment.

An alternator is not complicated. It is easier to work with than an ordinary generator—think of it as a sort of “inside-out” generator. That is, the armature is stationary and the field revolves within it. Its output is three-phase ac which is instantly converted to dc by built-in silicon diode rectifiers.

Instead of a commutator, the alternator uses slip rings. These, their brushes and the bearings are the only parts that wear. Fewer moving parts mean fewer troubles. The small slip-ring brushes used carry only an excitation voltage and last much longer than the load-carrying brushes on generators.

The design of the alternator permits current to be taken directly from the stationary armature and insures long operating life for the unit—as much as 3 to 10 times the normal life of a dc generator.

The new Leece-Neville alternator (now in stock at distributors in every principal city) is the 6000 series rated at 40 amperes. Designed specifically for passenger cars, it replaces the old dc generator.

As simple as any electromechanical device can be, the 6000 is a medium-duty unit that delivers 5 to 10 amperes at curb idle (500 rpm). It consists of a pair of end housings, a ceramic brush holder, a stator, rotor, six tiny rectifiers...
held between a pair of heat sinks, a cooling fan and a drive pulley. Four through-bolts, equally spaced around the periphery of the unit, hold the assembly together. Fig. 1 is a cutaway view of the alternator and Fig. 2 shows how it looks from the rear assembled. Fig. 3 shows it mounted in a car.

Construction

The drive-end and slip-ring housings are rugged, lightweight die-cast aluminum. The drive-end housing supports the stator and rotor at one end, and will hold the alternator when mounted on the engine. If desired, the slip-ring end housing, stator and rectifiers may be easily removed for testing. The drive-end housing is mounted on the engine and holds the rotor in position. This speeds service, since the entire alternator assembly does not have to be taken out and replaced.

The slip-ring housing supports the opposite end of the main components, and also contains the ceramic brush holder and silicon rectifiers, which are held in an extended air scoop to enhance cooling. Since the scoop may interfere with installation, the through-bolts can be loosened and the entire slip-ring housing rotated to a different quadrant to eliminate mounting problems.

Two brushes—one insulated and one grounded—provide the electrical connection between the slip rings and the field terminal and ground. The brushes are in a molded ceramic holder that inserts in the slip-ring housing only one way, holding the brushes perpendicularly in line with the rotor shaft to avoid improper installation and possible regulator damage.

The insulated brush contacts the field terminal through the brush spring. The ground brush contacts a ground strap attached to the brush holder. One of the two brush-holder retaining screws goes through the strap and holder into the brush end housing, making a ground connection to the housing.

The powdered bronze-graphite brushes are interchangeable to reduce inventory problems. If field current exceeds 5 amperes, the compression coil type brush springs collapse as a further safety measure.

Voltage output is developed in the stator, which consists of a laminated steel frame and three windings. The enameled copper-wire windings are wound into slots machined in the inner diameter of the frame. The design of the windings makes the stator self-current-regulating so a separate current regulator is not needed.

A lead is connected between the junction of the three stator windings and a terminal on the brush end housing. This neutral terminal provides a convenient method for reaching the connected ends of the windings for testing stator continuity and ground. It also energizes the load relay on 12-volt regulator systems using a charge indicator light.

The rotor is a solid steel shaft with two 6-fingered pole pieces, a field coil and a slip-ring assembly mounted on it. The two pole pieces overlap to encase the field coil, making it in effect, a 12-pole rotor. The current flowing through the field coil provides the stator with the required voltage and current.

The slip rings consist of a pair of 1-inch-wide brass sleeves supported by a bakelite insulator that separates them from the rotor shaft and each other. The two ends of the rotating field coil are attached to them, so they serve as a connection between the coil and the brushes.

If the field coil, pole pieces or shaft needs replacement, a complete rotor assembly must be installed. The slip-ring assembly can be replaced but the rotor components cannot.

Six silicon diodes are mounted on two metal heat sinks. These diodes convert the ac output of the alternator to usable dc. Three positive diodes on one heat sink connect directly to the alternator output terminal and are insulated from the other housing. The other heat sink, with three negative diodes, connects directly to the alternator housing and ground side of the system. One positive and one negative diode are connected to each of the three stator windings (Fig. 4). A ceramic capacitor is connected between the insulated heat sink and ground, to reduce voltage surges and protect the diodes from damage while the alternator is operating.

In typical negative-ground systems, output from each stator winding leaves the alternator by way of the positive diodes and the output terminal and returns through the negative diodes. In a positive-ground system, the flow is the opposite. The rectifiers permit flow in only one direction, eliminating the need for a circuit breaker or cutout relay.

A cooling fan is mounted on the drive end of the rotor shaft. It draws cooling air over the rectifiers. The rotor shaft is supported on the drive end by a ball bearing, and on the slip-ring end by a roller bearing. Both are prelubricated, and require no regular service.

The regulator

A load relay and a double-contact voltage regulator make up the two parts of the regulator, which is installed in the same location as the original regulator on the car. A series of openings in the regulator's base make the installation easy.

The load relay opens and closes the main charging circuit between the alternator and battery, and also energizes the alternator field coil by connecting the field circuit to the battery. The relay consists of a magnetic switch that is operated by voltage obtained either from the alternator neutral terminal or from the battery. If used on a system with a dash ammeter, the relay is energized when the ignition switch is closed. If used on a system with a charge indicator light, it is energized when the alternator starts to charge. Besides its other functions, the load relay is also a safety device that disconnects the battery from

Fig. 3—Two sketches showing how an alternator is mounted in a car.

Fig. 4—Electronic circuit of alternator for negative-ground systems.
the alternator when the system is not operating.

The voltage regulator controls the alternator output by governing the flow of field current, thereby limiting the charging voltage to prevent overcharging the battery and subsequent damage to lights and accessories. The double-contact regulator does this two ways. If current flow is high or alternator speed is relatively low, it operates on its upper contacts to insert resistance into the field circuit and reduce the current flow. If current flow is low or alternator speed is relatively high, it operates on its lower contacts to ground the insulated end of the field and interrupt the current flow.

Maintenance

The maintenance required by the 6000 series alternator is much, much less than for an automotive dc generator. However, any electromechanical device requires maintenance periodically. If maintenance instructions are followed implicitly, an alternator will give excellent service.

If you run into trouble in the charging system, remove the F-lead from the alternator and attach a jumper from terminal F to terminal B. This takes the regulator out of the circuit and allows full-field operation. With the engine idling, the alternator should show a high rate of charge in the full-field condition. If it does not, the battery, system wiring or the regulator should be suspect.

If the alternator does not show a high rate of charge when running full-field, it should be removed from the vehicle immediately.

Disassemble the alternator according to the instructions furnished by the manufacturer. Then check the rotor to see whether it is open or shorted. Do this by measuring the resistance of the coil with an ohmmeter on the slip rings. Resistance should be between 3.8 and 4.2 ohms for the 12-volt and 1.9 to 2.1 ohms for the 6-volt alternator.

If you find the brush springs are collapsed when you remove the brushes, the rotor probably has a shorted coil and the entire rotor should be replaced.

Never measure the rotor coil resistance at the field terminals; it will not be a true reading. This is due to the variability of the slip-ring and brush contact resistance when the alternator is not operating.

Clean the rotor if it checks out OK. Brush it with a good cleaning solvent. Remove the solvent by brushing with kerosene and wiping the rotor dry. Never dip the entire rotor into a cleaning bath.

Inspect the slip-ring assembly. If it is defective, replace it. Do not try to repair it. Next, inspect the slip-ring brushes. If they are burned, broken or cracked, replace them. Replace brushes that are \(\frac{3}{4} \) inch long or shorter (due to wear).

Disconnect the silicon rectifier section from the stator by unsoldering each diode. The test recommended by Leece-Neville is to hook up a 24-volt battery in series with a 24-volt test lamp. If the test bulb lights when applied to the individual rectifier in one direction (forward), and does not light in the other direction (reverse), the rectifier is OK. If the lamp lights in both directions, the rectifier is shorted. If the lamp does not light in either direction, the rectifier is open. The procedure recommended by the manufacturer for replacing the rectifiers should be followed to a "T."

Before resoldering the rectifiers to the stator, check the stator for grounds. You do this the same way you would check an armature in the old dc generator. A lamp in series with 117 volts and a pair of test leads are used for the check. Touch the test prods to each stator lead and the stator core. If the lamp does not light, everything is OK—there are no grounds.

The same test lamp can be used to check stator winding continuity. Each of the three stator phases is checked separately and should show a closed circuit.

After a complete electrical check and visual examination, clean the stator in the same manner as the rotor.

Radio noise

A properly operating alternator creates little or no radio interference. Sometimes, however, the regulator may act up and create an annoying clicking noise. This can be eliminated by replacing the regulator or cleaning and readjusting the old one according to service instructions furnished with the unit.

If a new regulator does not make for quiet operation, connect a 10-ohm resistor in series with a 0.1-\(\mu \)F capacitor across the regulator voltage terminals. Never try a capacitor across any regulator terminals without a resistor in series or burned points will result.

Coaxial type capacitors in the regulator supply leads will help reduce conducted noise.

The author acknowledges with much gratitude the assistance and material provided by Leece-Neville Co. and Mr. James E. Stratton to make this article possible.

Correction

Mr. Geisler noticed that he had supplied the wrong diagrams for Figs. 9 and 10 of the "Transistor Power Amplifier Directory" (October 1963, page 34) at about the same time that errors in these circuits were reported by Capt. W. B. Bernard of Longboat Key, Fla., and Richard J. Wolfski of Bytom, Poland. The correct diagrams for Figs. 9 and 10 are shown.

Note that 1.5-volt batteries have been added to both circuits. They must be disconnected when the amplifiers are not being used.

If the alternator has undergone a complete overhaul, replacing the bearings is a must.

The alternator is reassembled by starting at the end of the disassembly instructions and working back. Then install the alternator in the car and check charging under full-field condition. Recheck the voltages, readjust the fan belt, and when you're sure everything is right, give the customer a wide smile.
SUBJECT THIS MONTH IS OFF-COLOR troubles. No, we're not going to tell dirty jokes! We're talking about off-color response from the color circuits. Since we have two signal paths for the video information, one for the brightness and the other for the color, we can have all kinds of troubles!

Look for what is there, and for what isn't. In some of the older circuits, the color amplifiers were hooked up so that you lost the color amplified by that particular tube. For example, if the red amplifier went out, no reds. The picture went blue-green. Most later models, because of the dc coupling used in color video circuitry, seem to increase the color. If the red amplifier goes out, the red gets brighter. Here's a "Tristance". We pulled tubes from an RCA CTC9 chassis to see what would happen, and this is what we found. (See Fig. 1.)

6CG7, green amplifier: picture turned bright green and lost focus.

6CG7, red, blue amplifiers: picture turned bright purple, lost focus.

12AZ7, X and Z demodulators: no effect at all on black and white picture, total loss of color signal on color.

You might repeat this test on the next color set you service; the results will tell you about what's going to happen if a given tube goes out. Of course, these are all tube triodes: if only one half goes out, as is common in some of these tubes, you'll lose only the color associated with the one tube. Most likely, instead of losing the color, you'll lose control over it. The screen will show more of that color.

If the dead tube has been getting weaker for quite a while, the color-temperature controls may have been adjusted to make up for that. So, when the new tube is installed, you'll have to check the color temperature, at least, and probably readjust it. Always keep the "Kine Guin" (RCA's name) as low as possible, for maximum life on the Big Bottle. Happy hue-hunting!

Hourglasses and onions

This Philco makes an hourglass-shaped pattern on the screen. If I reverse the line plug, the thing changes to an onion shape. When the line plug is pulled out, the raster flashes back to normal for a split second before it goes out. Everybody I ask says they never saw such a thing, but I've got it, and I get slightly vivid thinking of it! I need help!—M. S., Wooster, Ohio

Hang on, help's on the way! This pattern (Fig. 2) is obviously due to some kind of a 60-cycle influence. The basic cause is the horizontal oscillator going into and out of oscillation at a 60-cycle rate. Somewhere, a 60-cycle sine wave is getting into your horizontal oscillator. From the amplitude characteristics, I'd say that it looked as if the plate supply was raw ac!

So, up scope and after 'em! Trace the B-plus supply lines to your horizontal oscillator to see where this is getting in. Since this seems to be a 60-cycle pattern, and your power supply is a voltage doubler (which would show a 120-cycle pattern), I'd say there was some heater-cathode leakage somewhere.

This could be in the oscillator tube, the ac tube or even in the horizontal output tube. I'd substitute every tube that is in any way associated with the horizontal circuits, and even in the sync circuits. Also, I'd bridge filters. If this didn't help, and some of the filters were multiple units, I'd disconnect some and try shunting with individual units. Of course, this needs to be done only if the scope shows the 60-cycle waveform on the B-plus supply lines. After you find the 60-cycle waves, leave the scope hooked at that point, and start shunting capacitors, etc., until you find something that will take them out.

Be sure to replace the 10DE7 vertical output tube and the damper; heater-cathode leakage in either could cause this trouble. Also, stray leakage to chassis from the horizontal oscillator grid circuit could be the villain.

Toy-train transformer

I have a toy-train transformer with a dc circuit for powering special gadgets. The train runs OK, but I don't get any dc: none of the gadgets works—no whistle, etc. I've taken the transformer apart, but I can't find the rectifier! Could (Continued on page 57)
TRAIN WITH THE LEADER

No matter how much or how little education you have, one of NRI's nine career-training courses can help you toward more interesting work, a more profitable future. For nearly half a century, NRI has maintained the confidence and respect of students, graduates and the Electronics Industry by constantly providing the best possible home-study training at a cost most anyone can afford.

SPECIAL EQUIPMENT INCLUDED

Specializing makes it possible for NRI to provide a variety of courses to fit the needs of any ambitious man interested in TV-Radio, Electronics-Automation. Courses built around NRI's time-proved “Learn-by-practice” method make learning easier, faster, more interesting. Most NRI courses include—at no extra cost—special training equipment to give shop and laboratory experience in your own home. All equipment is yours to keep. As the oldest and largest school of its kind, NRI has nearly 50 years of experience training tens of thousands of men of all ages and varying educations. Read on the other side of this page what NRI offers, then check the course of most interest to you and mail the postage-free form today. Find out about Electronics opportunities, NRI training, NRI trial plan, convenient terms.

CUT OUT AND MAIL

Now NRI offers you 9 ways to prepare for advancement or turn your hobby into a new career in TELEVISION-RADIO ELECTRONICS-AUTOMATION

You train at home in your spare time with the oldest and largest home study school of its kind

SEE OTHER SIDE

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY

National Radio Institute
3939 Wisconsin Avenue
Washington 16, D. C.
Join the Thousands Who Trained for Success with NRI

Thousands of NRI graduates throughout the U. S. and Canada are proof that it’s practical to train at home. NRI graduates are in every kind of Electronics work. Here are five typical success stories. Catalog tells more about what NRI graduates do and earn. Mail the postage-free form.

“I HAD A PROMOTION BEFORE I FINISHED the Communications Course,” reports Ronald L. Ritter, 173 Helms Dr., Eatontown, N. J., “as well as the satisfaction I could handle a job of responsibility.” He works for the U. S. Army Electronic Laboratories, Ft. Monmouth. He received one of the highest grades in Army proficiency tests.

SPARE TIME EARNINGS OF $3,800 in one year reported by Emerson A. Breda, 1620 Larkin Ave., San Jose 29, California. He has a Radio-TV Servicing shop as completely equipped as you would want for a full-time business. Says Mr. Breda, “The training I received from NRI is the backbone of my progress.”

“THE FINEST JOB I EVER HAD” is what Thomas Bilak, Jr., RFD 2, Cayuga, N. Y., says of his position with the G. E. Advanced Electronics Center at Cornell University. He writes, “Thanks to NRI, I have a job which I enjoy and which also pays well.”

HAS SERVICE BUSINESS OF HIS OWN. Don House, 3012 2nd Place, Lubbock, Texas, went into his own full-time business six months after finishing the NRI Radio-TV Servicing course. “It makes my family of six a good living,” he states. “We repair any TV or Radio. I would not take anything for my training with NRI. I think it is the finest.”

MARINE RADIO OPERATOR is the job of E. P. Searcy, Jr., 1916 Fern St., New Orleans, La. He works for Alcoa Steamship Company, has also worked as a TV transmitter engineer and holds FCC Radio-Telephone License. He says, “I can recommend NRI very highly.”

TELEVISION-RADIO SERVICING
Learn to service black-and-white and color TV sets, AM-FM radios, stereo hi-fi, PA systems, etc. A profitable, interesting field for part-time or full-time business of your own.

INDUSTRIAL-MILITARY ELECTRONICS
Learn Principles, Practices, Maintenance of Electronic equipment used today in business, industry, defense. Covers Electronic controls and measurement, computers, servos, telemetry, multiplexing, many other subjects.

COMPLETE COMMUNICATIONS
A comprehensive training program for men seeking careers operating and maintaining transmitting equipment in Radio-TV Broadcasting or mobile, marine, aviation communications. Prepares you for FCC License.

FCC LICENSE
Prepares you quickly for First Class License exams. Every communications station must have one or more FCC-licensed operators. Also valuable for Service Technicians. You train at home.

BASIC ELECTRONICS
An abbreviated, 26-lesson course covering Automation-Electronics, Radio-Television language, components and principles. Ideal for salesmen, hobbyists and others who find it valuable to be familiar with the fundamentals of this fast-growing industry.

MATH FOR ELECTRONICS
A short course package of carefully prepared texts that take you from basic arithmetic review through graphs and electronic formulas. Quick, complete and low in cost.

AVIATION COMMUNICATIONS
For men who want careers working with and around planes. Covers direction finders, ranges, markers, loran, shoran, radar, landing systems, transmitters. Prepares you for FCC License exams.

MARINE COMMUNICATIONS
Shipboard transmitting equipment, direction finders, depth indicators, radar are all covered in this course. You prepare for your First Class Radiotelephone License with Radar Endorsement.

MOBILE COMMUNICATIONS
Training in installation and maintenance of mobile equipment and associated base stations like those used by fire and police departments, taxi companies, etc. Prepares you for your First Class FCC License exams.
Let's get one thing straight before we start. There were quite a few troubles in an old RCA KCS-40. Now I've got them down to one: the horizontal oscillator's off frequency. I've got four pictures on the screen, sidewise. The oscillator is running the control pushbutton on top, and it ought to work as well as ever. You can even use small silicon TV replacement rectifiers, since the current drain is pretty small.

Glass replacement for 21MP4

What tube would you recommend to replace the 21MP4 metal kine? I'd like to use an all-glass tube.—A. J. K., Milwaukee, Wis.

The 21YP4 or 21YP4A will replace the 21MP4 metal tube. This is a very common conversion. Most technicians are glad to get a chance to eliminate any metal-cone tube, because of the shock hazard. Be sure to ground the external coating on the new tube.

Horizontal off-frequency

I had quite a few troubles in an old RCA KCS-40. Now I've got them down to one: the horizontal oscillator's off frequency. I've got four pictures on the screen, sidewise. The oscillator is running on the fourth harmonic. I can adjust coils and things and get it down to about two pictures, but no further. Any suggestions?—R. H. N., Great Lakes, Ill.

Let's get one thing straight before we start. Four complete pictures on the screen would not indicate that the oscillator was running on its fourth harmonic, but on the "1/4th" harmonic: 3937.5 cycles! The fourth harmonic would be 4 times 15,750 cycles, 63,000 cycles! This might sound academic, but it is important. Why? Because the frequency of operation indicates the nature of the defect in such cases.

If the frequency is far below normal, too slow, it means that one of the frequency-determining parts in the circuit is far too big! The coil (for example) is set for far too much inductance, or a too-big capacitor has been installed. Symptom on the screen: four pictures, not overlapping but complete.

If the oscillator frequency is too high, one of the parts is smaller than it should be. This is a more probable situation. A capacitor has opened up, some turns in a coil are shorted, etc. Symptom: multiple overlapping images. You can plainly see that parts of each picture are actually overlaid on the rest.

Funny snow

I've got a funny one on an Emerson 1120D TV: it's got a built-in antenna on the back cover. I replaced a tube in it and it worked. Channels 11 and 13 come in fine, but channel 2 has white flecks all over the screen! When I took the back off to see what was the matter, they disappeared; put the back on again, and there they are. Finally, I disconnected one side of the antenna, and everything works fine! Now, give me an explanation for this, so I'll know what's going on the next time!—R. L. B., Baltimore, Md.

This is "spike" radiation from the horizontal sweep, getting into the built-in antenna, which is very close to the horizontal sweep cage, yoke, etc., on one side of the set. I'd say that you probably disconnected the half of the antenna closest to the sweep.

You got the snow on the low channel, but not on the two high ones. This is natural, as the low channels are much more susceptible to pulse interference than the high ones. You can verify this by checking the difference in auto ignition-noise pickup between low and high channels, on any kind of antenna.

There are several cures for this condition. The most obvious is a bit of shielding on the horizontal sweep system. Try wrapping the yoke leads in metal foil, grounding this with a wrapping of bare wire at each end. Rabbit-ears on top of the cabinet, or one of those "under-the-rug" antennas would also cure the trouble, in this one set, which seems to be a mild case.

In severe cases of this trouble, clean up all the flyback shielding. Once in a while you'll find a set where some genius has left the flyback shield off entirely! Make a new one out of copper screen or any suitable metallic material, and wrap the yoke leads. In a few cases, a severe corona discharge from the bell of the picture tube, the high-voltage rectifier socket, and so on, causes trouble.

IT PAYS TO USE AEROVOX!

Profit from Experience

...use a single Aerovox exact replacement electrolytic capacitor every time!

Your customers don't have to look into the back of their sets to know they can rely on your skills and integrity for dependable service—they know from experience. They may never know what brand of capacitors you use, for example. But you know from your own experience that you simply can't afford costly callbacks or dissatisfied customers by using makeshift or inferior replacements. That's why it pays to use a single Aerovox exact replacement capacitor every time.

There's just no substitute for the quality produced through years of continuous research and development by experienced Aerovox engineers, and our advanced manufacturing and quality control techniques. What's more, you have the most trusted and complete line of 'lytics to choose from to fill all of your service needs. Take the AFH, PR and PRS capacitors, to mention just a few of the most widely used types.

Yes, you protect your reputation and your profits by specifying Aerovox only when you order from your regular Aerovox distributor salesman or counterman.

AFH twist-prong 'lytics feature 85°C operation, improved sealing, high-purity aluminum foil construction throughout, ruggedized prongs and mounting terminals. Tops for filter audio bypass in TV-radio and amplifiers.

...use a single Aerovox exact replacement electrolytic capacitor every time!

AFH twist-prong 'lytics feature 85°C operation, improved sealing, high-purity aluminum foil construction throughout, ruggedized prongs and mounting terminals. Tops for filter audio bypass in TV-radio and amplifiers.

...use a single Aerovox exact replacement electrolytic capacitor every time!

AFH twist-prong 'lytics feature 85°C operation, improved sealing, high-purity aluminum foil construction throughout, ruggedized prongs and mounting terminals. Tops for filter audio bypass in TV-radio and amplifiers.
Clean all the parts well. Check all solder joints first, to be sure they’re well rounded off and not loose. Then spray with corona dope. Corona dope is not a substitute for sloppy workmanship!

CRT diagnosis

Can you tell whether a CRT is bad by observing the video information at its input? This assumes that sweep and high-voltage circuits are working properly.

—J. V. C., Houston, Tex.

Yes and no! If your scope showed a signal of about 50 volts p-p at the input of the CRT (Fig. 4) and, at the same time, you had other symptoms — dim raster, loss of focus, smearing and haziness and very low contrast—I would say this would help. However, in a matter involving CRT replacement, with the attendant expense, be sure to use all the clues available before you make up your mind.

Capehart CX-33 conversion

I have a Capehart CX-33, which uses a 170-AR picture tube; this tube is shorted. Can I replace this tube with a 21ZP4? I’m going to mount it on the wall. Will the present horizontal output transformer work with the new tube, and what additional drive and high voltage will I need to scan the new tube?—F. K., Newark, N. J.

This should be a practical conversion. Your original 170-AR picture tube has a deflection angle of 70°, and so does the 21ZP4B. The rated high voltage for this chassis is 11 kv, which should be sufficient to operate the larger tube. You might get slightly better results with the type 21ZP4B, which also has a 70° deflection angle.

Your major problem will probably be width. This should be fairly easy however, if you overhaul the horizontal output stage carefully, and put it into first-class condition. If it is insufficient, try adding a small capacitor across the damper tube, about a 200 pf, with a voltage rating of at least 5 kv, and adjusting width and horizontal linearity coils. Check the plate current of the 6BG6 output tube after all adjustments have been completed. It should not be over 100 ma. Check the screen resistor, and adjust the screen voltage to not over 350. (You might get a little more width, if the screen voltage is less than 350 at present, by raising it to that figure. Not over it, though!)

Sheraton flyback replacement

I can’t find any information on a Model T-5410 Sheraton TV. Needs a new flyback. Can you tell me who made this set, and where I can get the flyback?—W. L. W., Jackson, Tenn.

This set, I’m fairly sure, was originally made by Video Products Corp., and you’ll find the service data for it in Sams Photofacts 218, Folder 10, under Chassis 250XL.

The flyback can be replaced by a Triad D-43 or Merit HVO-25, if the original part number was ET-119.

Stewart-Warner: bigger CRT

Can I convert a Stewart-Warner 9104A TV set from a 12LP4 to a 16LP4, or to a 17ATP4? Would I have to use a new flyback and vertical output transformer?—J. W., Columbus, Ohio.

If you use the 16LP4 on the Stewart-Warner you won’t have to make very many changes in the chassis. Stewart-Warner, along about that period, was noted for conservative design. In other words, you ought to have plenty of reserve to drive the larger tube with the original parts, assuming they are all in good shape.

The 12LP4 and the 16LP4 both have the same basting and deflection angle; the only difference lies in the the amount of ultor voltage required: 12LP4 specifies 11,000, and the 16LP4, 12,000. However, I have seldom found too much difference in brightness with the high voltage off only 1,000 volts. Besides, I think you can push the old Stewart-Warner up to 12 kv without too much trouble, by increasing the drive, etc. You could even raise the output by such measures as cutting the 6BG6 screen resistor down a little to raise the screen voltage. Watch your cathode current, though; don’t let it get above 105 ma, or you’ll shorten the tube life.

Conversion to the 17ATP4 would be quite a lot more difficult, and I would not recommend it for the added ¾ inch or so of screen width. This is a 90° tube and you definitely would have to change the yoke, flyback and vertical output transformer, and probably the horizontal and vertical output tubes, too. In addition, the horizontal drive would have to be increased by something like 40%, and you might find yourself rebuilding the horizontal oscillator stage, too! Therefore, the 16LP4 would be a much more practical conversion.
Here's your only "middleman"...

when you buy a Heathkit!

Just a few postage stamps from Uncle Sam is all it takes to move your Heathkit from factory to you. There's no one in between... no distributors... no dealers... no one to add expensive, unnecessary cost. What does this mean to you? It means you have eliminated middleman profits... received more for your money! It means that you have put your money in the product, not its distribution. It means you get better quality and better performance at lower cost... the traditional Heathkit benefits.

And there are other advantages to dealing directly with the factory. You enjoy close, personal contact with the people who designed and built your kit... people who are interested in its performance as a finished product. Free consultation services and personal assistance are available to answer any questions you may have about the selection, construction, and use of any Heathkit. Original replacement parts and factory repair are at your service should you ever need it. Fast, to-your-door delivery is another convenience.

Add to these the significant savings of do-it-yourself assembly and you'll see why Heathkit equipment is world-famous for quality and value... your best buy in electronic kits!

FEBRUARY, 1964

A Superb Example of Heathkit Quality... The NewSB-300 SSB Amateur Receiver. Only $265.00!

Check these Features!
- Professional styling & features at 60% savings!
- Complete coverage of 80 through 10 meter amateur bands with all crystals furnished, plus provision for VHF converters
- Prebuilt, calibrated linear master oscillator (LMO) • 25 KC per tuning knob revolution offers bandspread equal to 10 feet per megacycle • Built-in crystal calibrator • 2.1 KC crystal bandpass filter • Stability of 100 CPS after initial warmup • Wiring harness & two heavy-duty circuit boards for easy assembly.

Check these Specifications!
Frequency range (megacycles): 3.5 to 4.0, 7.0 to 7.5, 14.0 to 14.5, 21.0 to 21.5, 28.0 to 28.5, 29.0 to 29.5, 29.5 to 30.0.

Intermediate frequency: 3.395 megacycles.
Frequency stability: 100 CPS after warm-up. Visual dial accuracy: Within 200 CPS on all bands. Backlash: No more than 50 CPS. Sensitivity: Less than 1 microvolt for 0.6 db signal to noise ratio for SSB operation. Modes of operation: Switch selected: LSB, USB, CW, AM. Selectivity: SSB: 2.1 kc at 6 db down, 5.0 kc at 60 db down. CW: 2.5 kc at 0 db down (crystal filter available). AM: 5.75 kc at 0.6 db down, 10 kc at 60 db down (crystal filter available as accessory). CW: 400 cps at 6 db down, 2.5 kc at 0 db down (crystal filter available as accessory). SSB: 2.1 kc at 6 db down (crystal filter available as accessory). Bandspread: SSB: 25 KC per tuning knob revolution offers bandspread equal to 10 feet per megacycle.

Audio response: SSB: 350 to 2450 cps nominal at 6 db. CW: 200 to 3500 cps nominal at 6 db. AM: 200 to 3500 cps nominal at 6 db.

Antenna input impedance: 50 ohms nominal. Muting: Open

U.S. POSTAGE
MICh
PB METER

FEBRUARY, 1964
THE SCOTT 310E IS THE MOST SENSITIVE, versatile, complex and high-priced tuner in the renowned Scott line with the single exception of the 4310 Broadcast Monitor, virtually the same except for VU meters and some facilities useful chiefly in broadcast service. It is quite possibly the most elaborate and flexible tuner on the market for handling stereo multiplex reception and its aberrations.

The 310 contains the same rf and i.f. section as several other tuners in the line. An extremely well designed cascode rf stage and mixer, three wide-band i.f. amplifiers, two limiters and a wide-band ratio detector yield an IHF sensitivity in the region of 2 µV and a practical high-fidelity sensitivity at least as good as that of any other tuner on the market. To minimize cross-modulation and overload distortion, age is applied to the rf and one i.f. stage. Where maximum sensitivity is needed, a switch reduces the age to a minimum.

The capture ratio is among the best and the selectivity good enough to make adjacent-channel reception possible. This portion of the tuner has had several years of use in previous Scott tuners and has earned them a reputation among the top two or three on the market.

No matter how sensitive the tuner, multiplex stereo reception presents problems. The 310E is notable for the quite elaborate measures it takes to deal with them. The multiplex is a rather complex version of the switching type circuit, employing a 6U8, two 12AU7s and eight diodes, and delivers as good stereo as I have heard.

Three additional double triodes and five diodes, plus two relays, are used in an automatic switching and muting system. There are switched high-frequency rolloff filters for both the main and subchannel. This system provides automatic interchannel noise suppression and automatic switching of mode of operation, plus adjustments to make marginal signals tolerable, offering a so-far unprecedented flexibility and convenience of operation.

To begin with, there is an interchannel muting or "squelch" circuit with a threshold control on the panel. This can be adjusted to receive the weakest signal capable of giving any semblance of high-fidelity, or to work on extremely strong stations only. In any event, it will provide interstation noise muting in fringe as well as primary areas. It can also be adjusted to mute the receiver if a signal fades below any chosen threshold level. Normally it would be adjusted to mute the receiver when any signal falls below a level that yields high-fidelity quality. A relay does the actual switching, without any objectionable transients. A small pilot light indicates when the squelch is operating.

A switch provides a choice of three modes of operation. In the first position, the 310E is strictly a monophonic receiver. All programs, mono or stereo, are played back monophonically. In the second position the tuner switches automatically for mono or stereo programs. If a station changes from mono to stereo, or vice versa, the tuner automatically accommodates itself to the changes. In the third position it becomes a stereo-only receiver, responding only to stations broadcasting stereo and passing over any monophonic programs.

One big problem with stereo reception, especially in the fringe areas, is that signal levels are often too low for good stereo reception, or may fade below the good-signal threshold from time to time. It is often possible to receive the same program satisfactorily in the mono mode. Hence most tuners provide a switch so the tuner can be switched to mono under such circumstances.

The 310E has a uniquely satisfactory answer to this problem. There is a Stereo Threshold circuit with a control on the front panel. This can be adjusted so that when a stereo signal falls below any desired level, the tuner automatically switches to mono. If the signal again rises to a satisfactory level, the tuner switches back to stereo automatically. Thus the program is heard with the least amount of noise and without interruption. The shift from stereo to mono is far less noticeable than a sharp increase in noise and distortion would be. This control circuit also works through a relay which is free of transients. (There is occasionally an increase in distortion for a short time just before the control trips.)

The 310E provides means for dealing with marginal stereo reception if you insist on listening to it. Sensitivity can be increased by throwing the agc switch to the partial position. The subchannel is the most likely to be marred by noise; to offer relief from this the function switch has a position that switches a high-frequency rolloff filter into the subchannel audio. There is a sacrifice in stereo separation. For even noisier situations, you can switch a filter into the main channel to attenuate the high-frequency noise, multiple-path distortion, etc., without affecting channel separation.

It takes some time to learn how to operate all this wealth of control circuitry to best advantage. Once it is mastered, it certainly does offer just about every imaginable way of dealing with either stereo or mono reception problems, and makes reception just about as noise-free as possible. These advantages are accompanied by a surprising lack of "bad features." I found it possible to set the two relays chattering by some combination settings of both the squelch and stereo threshold, but apparently this is not likely to happen in actual use. The relays make an audible click as they go in and out but it would not normally be heard over program material.

As in all Scott tuners, the tuning is very smooth and—with the tuning meter...

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usable sensitivity (IHF)</td>
<td>1.9 µV</td>
</tr>
<tr>
<td>Cross-modulation rejection</td>
<td>65 db</td>
</tr>
<tr>
<td>Signal-to-noise ratio</td>
<td>65 db</td>
</tr>
<tr>
<td>Harmonic distortion</td>
<td>0.5%</td>
</tr>
<tr>
<td>Drift</td>
<td>0.0%</td>
</tr>
<tr>
<td>Frequency response</td>
<td>30 to 15,000 cycles, +1 db (IHF measurements made only from 30 to 15,000 cycles. Tuner actually has wider frequency range.)</td>
</tr>
<tr>
<td>Capture ratio</td>
<td>2.2 db</td>
</tr>
<tr>
<td>Selectivity</td>
<td>50 db</td>
</tr>
<tr>
<td>Stereo separation</td>
<td>35 db or higher (IHF does not give frequency—Ed/Ed.)</td>
</tr>
<tr>
<td>Audio hum:</td>
<td>66 db below 1 watt audio output</td>
</tr>
<tr>
<td>AM suppression</td>
<td>60 db</td>
</tr>
<tr>
<td>Tone bandwith</td>
<td>2 µHz</td>
</tr>
<tr>
<td>Dimensions (with optional cabinet)</td>
<td>13 ½ x 5 ¼ x 13 ½ inches</td>
</tr>
</tbody>
</table>

FM STEREO TUNER

SCOTT 310E and Electro-Voice EV Two

A SPEAKER SYSTEM

Scott 310E and Electro-Voice EV Two
Most people prefer to build Heathkits because of the extra savings and knowledge realized through do-it-yourself assembly! Heathkit construction manuals are world-famous for their clarity and attention to detail with simple step-by-step instructions, large pictorial diagrams for easy assembly, plus complete information on the use and maintenance of your instrument for effective and dependable results in every application.

But, many people prefer to buy Heathkit units factory assembled because they recognize the high quality and performance they provide at low cost! You even save over other comparable factory built units because you buy direct from the manufacturer, eliminating middleman profits and expensive distribution costs!

Whichever way you prefer to buy Heathkits, you'll find their dependable time-proven circuitry, top-grade components and latest design features the perfect answer to your test equipment needs! Compare these Heathkit favorites with any other and you'll see why Heathkit is your best buy!

Heathkit Laboratory AC VTVM...for Precision AC Work!
- 10 Volt ranges—0.01 to 300 volts RMS full scale
- ±1 1/2 DR
- 10 CPS to 5000 CPS frequency response
- 10 Megohm input impedance for high accuracy
- Calibrated DB scale for audio measurements
- VU type ballast damping of meter movement

Heathkit IMW-11...5 lbs.
Assembled IMW-21...5 lbs...$33.95
Assembled IMW-22...5 lbs...$39.95

SPECIFICATIONS—Frequency response: ±1 db at 10 cps to 100 cps, ±2 db at 100 cps to 1 mc, all ranges. Ranges: VOLTS:Ten ranges from 0.01 to 300 volts RMS full scale. Decibels: Total range—50 to 14 db. Meter scale—12 to -2 db (0 db = +1 mwa in 1000 ohms). Two switch-selected ranges from —50 db to 4.5 db in 10 db steps. Input impedance: 10 megohms shunted by 22 µuf. on ranges 10 to 300 volts, 10 megohms shunted by 22 µuf. on ranges .01 to 3 volts. Tube complement: (1) 6C7, (1) 6L7.

Heathkit Variable-Voltage Regulated Laboratory Power Supply
- Ideal for all types of circuit design & development work
- Furnishes B+, bias and filament voltages
- DC output variable from 0 to 400 volts
- Panel meters monitor output voltage and current
- Rugged, well-rated components throughout for dependability and long life

Heathkit IM-11 VTVM...World's Largest Selling VTVM!
- Finest quality components throughout for long life and dependable performance
- Single test probe convenience 7 AC, 7 DC and 7 Ohms ranges
- Large, easy-to-read 4½" 200 UA meter
- 1% Precision resistors for high accuracy

Kit IM-11...5 lbs...$24.95
Assembled IMW-11...5 lbs...$29.95

SPECIFICATIONS—Meter scales: DC & AC (RMS): 0.05, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500 volts full scale. AC peak-for-peak: 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 40, 140, 400, 1400, 4000. Resistance: 10 ohm center scale 1, 10, 100, 1000, 10k, 100k, at max. Measurement 1 ohm to 1000 megohms with internal battery. Battery: 4½" 200 UA movement. Multitaps: 1% precision type. Input resistance DC: 11 megohms (1 megohm in probe) on all ranges. Circuit: Balanced bridge (push-pull) using triode tubes. Accuracy: ±3% DC, ±5% of full scale. Frequency response: ±1 db, ±1 db per octave at 1 me (800 ohm source). Tubes: 12AU7, 6C5. Battery requirement: 4½" V or 1.5V Y 10 D.

- 1.5 volt, size "C" flashlight cell. Power requirements: 105-150 volts, 50/60 cycle AC 10 watts. Dimensions: 7½" H x 41/2" W x 4½" D.

Heathkit "Extra-Duty" Lab 5" Oscilloscope...Professional styling & features at low cost!
- Full 5 MC bandwidth—ideal for Color TV servicing
- Heath patented sweep circuit—10 CPS to 500 KC
- Push-pull vertical & horizontal output amplifiers
- Finest oscilloscope value in the industry!

Kit 10-12...24 lbs...$76.95
Assembled 10-12...24 lbs...$126.95

SPECIFICATIONS—(Vertical) Sensitivity: 0.05 volts RMS per inch at 1 kc. Frequency response (refered to 1 kc levels): ±1 db at 1 cps to 2.5 mc; ±2 db at 5 mc; ±5 db at 25 mc; ±10 db at 50 mc; ±20 db at 100 mc; ±30 db at 250 mc; ±40 db at 500 mc; ±50 db at 1 kmc. Accuracy: Within 5% of full scale. Power requirements: 105-125 volts 50/60 cycles AC at 80 watts fused. Dimensions: 14½" H x 8½" W x 11" D.

Heathkit "Extra-Duty" Lab 5" Oscilloscope...Professional styling & features at low cost!
- Full 5 MC bandwidth—ideal for Color TV servicing
- Heath patented sweep circuit—10 CPS to 500 KC
- Push-pull vertical & horizontal output amplifiers
- Finest oscilloscope value in the industry!

Kit 10-12...24 lbs...$76.95
Assembled 10-12...24 lbs...$126.95

FREE 1964 CATALOG
See these and over 250 other exciting Heathkits available in easy-to-build kit form. Save 50% or more by doing the easy assembly yourself! Send for your free catalog today!
The E-V Two

THE ELECTRO-VOICE TV TWO’S ARE NOT small as bookshelf speakers come today, and not light. But they supply precisely what is missing in a few of the smaller speakers—the awesomeness and presence which is a good fundamental, low-distortion bottom-end response yields.

The EV Two is the middle-priced member of a new line of three acoustic-suspension systems. The EV One is a thin-line system with a 10-inch woofer. The EV Two and Four share the same 12-inch woofer and the same cabinet. The Four has a mid-range speaker as well as a compression horn-loaded tweeter; the Two has the woofer and tweeter only. The Four is priced at $134, the Two at $106; and both are available in kit form for $94 and $80, respectively. The low- and high-end response are virtually identical; the difference is largely in the mid-range.

The response of the Two’s we tested is smooth and virtually free of distortion at moderate levels down to about 40 cycles. They go considerably lower, though doubling distortion is noticeable below 40 cycles (on sine waves but not on music). The middle and high end seem more assertive than in the AR’s and KLH’s. This, and a more alive, less tautly damped bottom, are the features which most immediately distinguish this new line from the older acoustic suspension systems. The transient response is good enough so that the sounds is not as “dry” as in the AR’s. This I suppose is in keeping with what is almost a traditional Electro-Voice emphasis on vibrancy and liveness of tone, and offers an overall sound quality intermediate between that of the older acoustic-suspension systems and that of typical bass-reflex or ducted-port types. It should appeal to many.

Instead of a continuously variable pad for controlling the balance between woofer and tweeter, these speakers have a slide switch that provides three high-end curves. Middle position is flat, and the other two offer a boost or drop from 2,000 to 5 db at 20,000 cycles. This seems to me a sensible simplification. Actually this is about as close as most people ever come to balance and assures a more uniform response from the pair than usually achieved with continuous controls. It offers much less opportunity for misadjustment.

The Two’s are not small. They are slightly larger than AR-3’s—14 x 25 x 13½ inches. They weigh about 40 pounds apiece. Their design is simple and tasteful, and they can be used either vertically or horizontally. The name plate can be rotated accordingly.

In brief, the EV Two’s produce a quite spectacular sound, with a big low-dawn bass, sharp and rather assertive high end and an overall tone quality that is the best, to my ears, that Electro-Voice has yet produced.—Joseph Marshall

SPECIFICATIONS

(All specifications are the manufacturer’s)

<table>
<thead>
<tr>
<th>Type of system</th>
<th>2-way, shelf-size, acoustic suspension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speakers</td>
<td>12-inch cone woofer; ring-diaphragm compression-loaded horn tweeter</td>
</tr>
<tr>
<td>Frequency response</td>
<td>30 to 15,000 cycles</td>
</tr>
<tr>
<td>Crossover</td>
<td>800 cycles</td>
</tr>
<tr>
<td>Rated impedance</td>
<td>8 ohms</td>
</tr>
<tr>
<td>Power capacity</td>
<td>30 watts</td>
</tr>
<tr>
<td>Size</td>
<td>14 x 25 x 13½ inches</td>
</tr>
<tr>
<td>Finish</td>
<td>Choice of wood veneers, finished 4 sides</td>
</tr>
<tr>
<td>Available in kit form</td>
<td>prefinished 4 sides</td>
</tr>
</tbody>
</table>

Neon-bulb circuit

The purpose of the voltmeter is to start the four neon lamps on a voltage lower than the combined firing voltage of four lamps. For several microseconds after the vtvm is connected across terminals A and B, the IR drop across both the ballast resistor and the voltmeter is low, and as a result, most of the supply voltage is applied to three lamps. This voltage level is above the combined firing voltage of three lamps and the lamps fire.

When the three unbridged lamps are lit, the rise in current produces an IR drop that exceeds 74 volts across the 10-megohm voltmeter resistance. This causes the bridged lamp to fire. After four lamps have fired, the maintaining voltage across each lamp is 59, and the IR drop across the ballast resistor is 30 volts. For practical purposes, the voltmeter reading is 59 volts. When the voltmeter is disconnected, the lamps will continue to glow and the total current will decrease by approximately 6 microamperes.

The Innocent Black Box

The black box contains a flashlight bulb. An ohmmeter allows a high circuit current of 50 to 80 ma (normally) for reading low ohms in the R × 1 range. This heats the lamp filament and the meter reads hot resistance. But in the R × 10 range, current is very low and meter reads almost cold resistance.

No-signal stinker

Only one possibility here. (Note that there is no voltage drop across those big plate resistors!) Grid voltage is zero, cathode voltage zero, so the tube isn’t blocked. The tube heater is not burning! Since the tube is good, this is probably a socket trouble. This is a metal tube, so you wouldn’t see it at first; you’d have to wait for it to get warm. Check: measure heater voltage on the ends of the base pins, not on the socket terminals.
Ready for final inspection—

with Heathkit®

quality test apparatus!

Line up those faulty, suspected or question-able electronic components encountered in daily service work and give them a complete and thorough test with accurate, dependable Heathkit test instruments! Heathkit test equipment is recognized nation-wide for its value and performance at low cost. Latest design features and quality components team-up to bring you complete up-to-date test facilities that are unsurpassed in their field. As the world's largest kit manufacturer Heath brings you extra savings through volume purchasing in addition to savings realized by buying direct! Equip your lab or service shop with Heathkit now and enjoy the finest at the lowest cost!

Heathkit Deluxe Capacitor Checker
• Safely tests all capacitor types—including miniature electrolytics • Low bridge voltage • Direct reading scale—no involved calculations • Measures capacity or resistance directly with internal standards • 16 switch-selected leakage testing voltages • Calibrated power factor control • "Eye" tube indicator • Measures "L", "C", or "R" with external standard • Easy to build and operate with complete instructions furnished • An instrument no test bench should be without!

SPECIFICATIONS—Test circuit: AC bridge, powered through special bridge transformer by an internal 60 cycle supply or by an external audio generator with 10 volts output. Upper frequency limit: 10 kc. Capacitance, 4 ranges: 10 ufd out to .005 ufd; 1000 ufd to .006 ufd; .1 ufd to 50 ufd; 20 ufd to 1000 ufd. Capacitance leakage DC test voltages from 3 to 600 volts in 1 volt steps. Resistance, 3 ranges: 1000 ohms to 5000 ohms; 5000 ohms to 500 k. ohms; 50 k. ohms to 50 megohms. Comparator circuits: External standard L, C, or R; Max. Ratio 50:1. Power supply: Transformer-operated, half-wave rectifier. Power requirements: 105-125 volts AC; 50/60 cycles, 30 watts. Dimensions: 8½" high x 6½" wide x 5" deep.

Kit TT-11...7 lbs.$29.95

Heathkit Mutual Conductance Tube Tester
• Finest tube tester value in the industry!
• Provides complete and thorough tests of all tube types • Indicates Gm to 24,000 micromhos • Ultra-sensitive grid current test • Direct reading ohmmeter leakage test • Built-in switch-operated calibration circuit • Constant current heater supplies • Life test • Built-in adapter for coax-patron, nuvistor, novar & 10-pin miniature tube types • Tube data subscription service available.

Kit TT-1A...34 lbs.$149.95

FREE CATALOG
Send for your Free copy today! Fully describes over 250 exciting Heathkits at savings of 50% or more! Choose from the world's largest selection of quality instruments in easy-to-assemble kit form!

HEATHKIT
by Heathkif

HEATH COMPANY
Benton Harbor, Mich. 49023

Please send free 1964 Heathkit Catalog.
Enclosed is $____ plus postage.

Send model(s).

Name__________
Address__________
City__________State__________Zip__________

Buy Now! See Order Blank Page!
Meanwhile, back at the shop...the rainy-day blues

By WARREN ROY

IT WAS A GOOD DAY FOR ANTENNA WORK—raining cats and dogs. But, fortunately, not a single antenna call was on the books. My partner Luke was making house calls—his week for them—and I was at the bench trying to put a dent in the congestion sitting there. My only real problem was to decide which set to hit first—the G-E whose vertical hold had drifted away, the RCA with horizontal pulling, the Crosley with a partially negative picture or the tape recorder with a frying noise.

Eeny, meeny, miney, mo, it was the Crosley, a model J-21TKMF. The job ticket showed that I had made the house call. Trouble was, all strong local stations produced a picture that was slightly or partially negative. Substituting tubes did no good, so the set was brought to the shop.

Plugged in, turned on and antenna hooked up, it showed the same symptoms as during the house call. Contrast and fine tuning had no effect on the negative. Yet, if I turned the age control from side to side, I could eliminate the trouble on the affected channels, but then there would be no picture at all on the weaker stations. Obviously, the trouble was somewhere in the age system.

A check with the scope at the age amplifier grid showed that not enough video was getting through, yet the video amplifier was delivering. The fault had to be somewhere between the video amplifier plate and the age amplifier grid. It was, after a half hour of lifting capacitors, a leaky 51-pf ceramic (Fig. 1). I replaced it and discovered a new problem. I couldn’t get anything but snowy pictures on all channels. No matter how the AGC LEVEL control was adjusted, still no snow.

A careful check showed no other fault in the circuit but, if a bias box was connected to the age line, a normal picture would appear. At this point, I got the notion that perhaps the AGC LEVEL control wasn’t giving me enough range. To check this, I temporarily jumped the 12,000-ohm resistor in series with the control. Now I could set the control for a good picture on all channels. For safety’s sake, I replaced the 12,000-ohm unit with a 6,800-ohm resistor. Now a normal picture could be tuned in on any channel.

Well, now that this one was out of the way it was time to check the horizontal pulling in the RCA. In the meantime, I left the Crosley running, just to make sure nothing else went wrong. Then just before shutting down a bit later, I’d touch up the linearity and height, check the focus and wipe off the kine faceplate.

RCA 700 series color set

So it’s down the bench to the next one... This too looked like age trouble: horizontal pulling here and there, noticeable enough to disturb any normal viewer. The bias box came out again for a quick check. Disable the age, hook in the box. No change. So it really is horizontal pulling, after all.

Over came the scope. And there was the clue: hash at the horizontal oscillator grid. Tracing back down the line, it was coming through from the sync output, but how? The only thing along the line is an 82-pf ceramic, C611 (Fig. 2). It being on a printed-circuit board, it was easier to lift out the whole capacitor than just one end. The capacitor tester said the C611 was good, but since I already had it out, I replaced it with a new one anyway. Good thing I did, too. Once the new cap was in place, the horizontal pulling was gone. It took a bit of careful checking to find out why—slight leakage in the old capacitor that the checker didn’t reveal—but at least I knew that, when that set went back, it wouldn’t give the same trouble again.

Lunch time. But before I broke, I went back to the Crosley, noted it was still going strong. Tuned it up, turned it off and moved it over to the outgoing shelf. Luke would return it tomorrow.

Tape recorder fun

After lunch it looked like a chance for a little entertainment. I’d get to listen to a jazz tape or two while testing that RCA 7-TRC tape recorder. Customer brought this one. It’s supposed to be portable, but weighs about 60 pounds (tons?). The trouble was a kind of frying noise when playing prerecorded tapes. After playing one of Duke Ellington’s latest, I was sure it was in the machine and not on the tape. Off for the scope again, in what turned out to be a vain attempt to track down the hash.

It was everywhere in the playback circuit and nothing would reveal the source. Finally, I hooked up a little audio amplifier we keep around the shop and connected a length of shielded cable, with a loop of hookup wire at one end, to the amplifier. Moving the loop around near the recorder revealed the same hash coming through my amplifier. A little searching around showed the noise was loudest when the pickup coil was close to the normal level indicator lamp in the recorder. A new lamp stopped the frying. What the old lamp was doing to cause this noise I’ll never know; but it was doing a real good job. I played the other side of Duke Ellington and decided it sounded much better without the frying. Called the recorder...
From Parts...

To Picture In Just 25 Hours

Heathkit High Fidelity Color TV For As Low As $349

25 hours of relaxing, rewarding fun! That's all! And you've built the new Heathkit High Fidelity 21" Color TV with the finest color circuitry, components, and performance possible today. Goes together quickly, easily. No special skills or knowledge required! So simple anyone can build it! You'll enjoy 21 inches of beautiful, high fidelity picture that reproduces every color naturally, realistically, faithfully...you'll enjoy high fidelity sound that's sharp, clean...and you'll enjoy features and performance comparable only to units costing 50% more!

Compare these Heathkit features with others: 27 tube, 8 diode circuit with optional UHF; High definition RCA 70° 21" color tube with anti-glare, bonded-face safety glass; Automatic Color Control; Gated Automatic Gain Control for peak performance; 24,000 volt regulated picture power; Hi-Fi sound with outputs for speaker and hi-fi amplifier; Deluxe Nuvistor tuner with "push-to-tune" fine tuning for individual channels; 3-stage high gain video I.F.; Line meter for longer tube life and thermal circuit breaker for component protection; Degaussing coil and built-in dot generator for perfect picture adjustments; All critical circuits factory-built and tested; Can be custom mounted or installed in handsome walnut cabinet; One year warranty on picture tube, 90 days on parts.

Save On Maintenance Costs! In addition to the initial savings you realize by building this set yourself, you'll save on expensive repair bills too. The simple-to-follow Heathkit instruction manual contains circuit diagrams and a "Servicing Hints" section so you can easily make adjustments and replacements should it ever become necessary.

Versatile Installation! The chassis, tubes, and front panel of the Heathkit Color TV can be mounted in the handsome GRA-53-1 walnut-finished hardboard cabinet. Or if you prefer, it can be mounted in a wall or custom cabinet, and the sound signals fed to an external amplifier unit. Required custom mounting space dimensions: 24-3/4"D x 22-1/4"H x 28"W. In this case the GRA-53-3 Custom Mounting Kit should be ordered to provide physical support between the chassis and front panel.

Optional UHF! An optional UHF tuner is available for coverage of channels 14 to 82.

Kit GR-53, chassis and tubes, 118 lbs. $349.00
GRA-53-1, walnut cabinet, 70 lbs. $49.00
GRA-53-2, opt. UHF tuner, 3 lbs. $20.00
GRA-53-3, custom mounting kit, 10 lbs. $4.00

FREE 1964 CATALOG
See these and over 250 other exciting Heathkits available in easy-to-build kit form. Save 50% or more by doing the easy assembly yourself! Send for your free catalog today!

HEATH COMPANY
Benton Harbor, Mich. 49023

FEBRUARY, 1964
all signal no noise

The most noise-free recordings you have ever heard are to be made on the new transistorized Norelco Continental '401' Stereo Tape Recorder, the only recorder using the newly developed AC 107 transistors in its two preamplifiers. The only transistor specifically designed for magnetic tape head preamplifiers, the AC 107 utilizes specially purified germanium to achieve stable over large collector-emitter voltage swings and despite large variations in source resistance.

Hear the new transistorized Norelco Continental '401' • 4-track stereo/mono record and playback • 4 speeds: 7/16, 33/4, 17/8 and the new 4th speed of 15/16 ips which provides 32 hours of recording on a single 7” reel. The most noise-free recordings you have ever heard are to be made on the new all-transistorized Norelco Continental '401' Stereo Tape Recorder, the only recorder using the newly developed AC 107 transistors in its two preamplifiers. The only transistor specifically designed for magnetic tape head preamplifiers, the AC 107 utilizes specially purified germanium to achieve stable over large collector-emitter voltage swings and despite large variations in source resistance.

Hear the new transistorized Norelco Continental '401' • 4-track stereo/mono record and playback • 4 speeds: 7/16, 33/4, 17/8 and the new 4th speed of 15/16 ips which provides 32 hours of recording on a single 7” reel. The most noise-free recordings you have ever heard are to be made on the new all-transistorized Norelco Continental '401' Stereo Tape Recorder, the only recorder using the newly developed AC 107 transistors in its two preamplifiers. The only transistor specifically designed for magnetic tape head preamplifiers, the AC 107 utilizes specially purified germanium to achieve stable over large collector-emitter voltage swings and despite large variations in source resistance.

The drifting-off report from the customer convinced me that something in the vertical circuit had changed in value so instead of reaching for the scope I went to the ohmmeter. Fifteen minutes of resistance checks didn’t turn up a thing, until I remembered that height control. Sure enough, when the variable resistor was removed (Fig. 3), it was not the 2 megohms it was supposed to be, but about 500,000 ohms. In series with the vertical hold control, it altered the vertical frequency enough to throw vertical sync so far off that the hold control couldn’t keep the picture still.

A new control from the parts shelf, and the set was working like a dream. Now I had everything back under control, so I thought I’d sit back a while and wait for Luke to return with the day’s new batch of shop work. So I sat back and tuned in a soap opera. Right then the picture disappeared behind a curtain of snow. Checked the antenna and tuner, nothing wrong. Glanced over at another set on the bench and discovered it too showed a snow storm. “I guess you just can’t escape it,” I muttered to myself. “It’s a day for antenna work after all—on my own!”
TAKE Heathkit's Deluxe Transistor Stereo Amplifier

ADD the Deluxe Transistor AM-FM Stereo Tuner

ENJOY Total "Transistor Sound" Performance

Each instrument with its characteristic sound reproduced realistically, faithfully, naturally. This is "transistor sound." No faltering, no fading, no compromising...just the quick, clean sound that only transistors can reproduce. You enjoy this totally different dimension in stereo listening with the total transistor performance of the Heathkit deluxe 70-watt Stereo Amplifier and matching AM, FM, FM Stereo Tuner.

Added performance features and luxurious decorator styling. You enjoy "extras" like the unique "push-push" on/off switch, concealed secondary controls to prevent accidental system changes, automatic switch-to-stereo feature of the tuner, and pre-built, prewired encapsulated component modules in the amplifier for quick, easy assembly. You enjoy handsome matched tan vinyl-clad steel cabinet styling with polished aluminum trim and soft refracted lighting...complements any decor! Both units are easy to build...easy to own! Just a few of the reasons why you should move up to this all-transistor duo. Consider the AA-21 Amplifier...

Full 70 watts of continuous power, 100 watts music power at ±1 db from 13 to 25,000 cps. Additional features include 26-transistor, 10-diode circuitry for cool, "hum-free" operation, smooth power delivery, and fast effortless "transient response"...complete freedom from microphonicity; front-panel mounted controls with 5-position dual concentric source switch, 5-position mode switch, and dual concentric volume, bass and treble controls; circuit breaker protection of output transistors and AC power; and encapsulated preamplifier circuits in 6 epoxy-covered modules, all factory wired and sealed, ready for easy installation. Check the AJ-43 Tuner...

Enjoy extra convenience. Automatic switching to stereo; automatic stereo indicator light; filtered stereo tape recorder outputs for direct "beat-free" recording; Stereo Phase Control for maximum separation and minimum distortion; Automatic Gain Control for constant volume; 25-transistor, 9-diode circuitry for lower power consumption and cool operation; individual AM & FM tuning meters for pin-point tuning; effortless flywheel tuning; transformer operated power supply; and preassembled FM tuning unit and 4-stage FM I.F. circuit board for fast assembly.

Experience the "transistor sound" of tomorrow, with the total transistor performance of Heathkit's Deluxe Transistor Twosome today! You'll be delighted with the advanced features, advanced styling, advanced sound...all at a typical Heathkit value price. Order both units now!

Kit AA-21, amplifier, 29 lbs. $139.95
Kit AJ-43, tuner, 18 lbs. $119.95

FREE 1964 HEATHKIT CATALOG
See Heathkit's complete line of advanced stereo/hi-fi equipment as well as color TV, electronic organ, radios, amateur radio, test & lab, marine, and educational equipment. Over 250 in all...the world's largest selection! Send for yours now!

HEATH COMPANY
Benton Harbor, Mich. 49023

Enclosed is $ plus postage. Please send model (s)

Please send my Free 1964 Heathkit Catalog.

Name ____________________________
Address ____________________________
City ____________________________ State __________ Zip __________
HF-159

Buy Now! See Order Blank Page!
Flexible Pix-Tube Tester and CB Frequency Meter

THE "POPULATION EXPLOSION" IN PICTURE-TUBE TYPES has demanded greater flexibility in picture-tube testers. Instead of the fixed voltages of the first CRT testers, the modern instrument must have as many variables as a standard tube tester. The Sencore CR-125 is a good example.

Heater voltages are variable from 1 to 12 in 1-volt steps, with a color setting at 6.3 volts. G2 voltage can be set at 50 volts for the "low-G2" tubes, or 350 for the others. This is a necessity, since too much voltage on this element can damage a good tube! Variable grid bias checks the cutoff point on a tube and also checks open control grids. Shorts tests are made with the usual neon lamps. The three guns of a color tube may be tested separately.

The "rejuvenation" circuit, the technician's best friend in public relations, has some novel features. A three-step switch selects either normal, slightly higher or still higher heater voltage; for instance, 6.3, 7.5 and 9.0. The "rejuvenation" voltage is applied by the discharge of a large capacitor; pushing the REJ button discharges this capacitor through the tube elements in the usual way. However, the button must be released to recharge the capacitor. This eliminates one possibility of "overrejuvenation" or blowing out previously welded elements.

The voltage applied is regulated by the condition of the tube (its current drain, etc.).

Six CRT sockets are provided, on a three-foot cable: one for all standard CRT bases, plus one for each "special" base connection. The large base for color tubes is there, and a socket for the proposed new color tube, a smaller one. The special bases are labeled and are a different color.

A setup chart gives all data on heater voltage, bias and G2 setting, plus the need for the special sockets. As new tubes are issued, new setup charts will be sent to all registered owners of the CR-125.

The socket cables and line cord stow handily in a snap-lid compartment in the case. A well written instruction book gives a lot of information, plus a parts list and schematic. Much information we like to know is included: the meter, for instance, is scaled in the usual "BAD—GOOD," but the book gives the actual beam current corresponding to each sector: 0–200 µa, BAD; 200–300 µa, ?; and above 300 µa, GOOD. The high end of the meter scale is deliberately suppressed to take care of the occasional tube that will read high. A 0–500-µa meter movement is used.

I tried this instrument on several tubes, including an ancient 21AXP22 color tube, and got very good results. Properly used, the CR-125 can be a valuable addition to your instrumentation, make a lot of friends and save a lot of time.

-Jack Darr

International Crystal C-12B

IF YOU HAVE A FIRST- OR SECOND-CLASS Radiotelephone license and want to go into CB servicing as a specialty, you can now do it on the proverbial shoestring. All you need to start is one of the new low-cost frequency meters or standards such as the International Crystal C-12B and your basic radio test instruments.

The C-12B is a portable frequency standard for servicing transmitters, trans-
What makes Heathkit your best bet for kit value?

Advanced Engineering Design and Features

Heathkit products incorporate the latest in design features for outstanding performance and operating convenience. Each new kit design is put through several stages of rigid, precision-demanding tests that assure you of finest quality for extra years of reliable service.

Each Heath product group has its own staff of engineers and technicians who are specialists in electronic kit design. This is your assurance that your Heathkit will assemble in the easiest possible manner and meet or exceed its published specifications.

Complete, Easy-to-Follow Assembly Manuals

Heathkit construction manuals are world-famous for their clarity and attention to detail. Each step of assembly is so carefully detailed that it's almost impossible to make a mistake. Large pictorial diagrams guide you every step of the way...show where each part is connected. Heathkit manuals are complete!...separate sections include tips on the operation, use, maintenance and service of your kit to assure extra years of trouble-free service.

Extra Service for You

Free factory consultation service. An expert staff of technician-correspondents is ready to assist you in the selection, use and operation of your Heathkit. Should you experience any difficulty with your kit or its construction, just drop them a line and they will be happy to assist you in every way.

Factory service facilities. Factory-trained technicians in our modern, non-profit service department will thoroughly test and repair any Heathkit for a low minimum service fee as outlined in the kit manual.

Factory authorized service centers. An exclusive chain of Heathkit authorized service centers has been organized to provide fast, convenient, local service and parts replacement.

You Enjoy Biggest Savings

You buy direct. Dealing direct with the manufacturer eliminates extra "middleman" profit margins and high distribution costs. This makes it possible to bring you more real quality at minimum cost.

You cash in on quantity buying. The Heath Company is the world's largest manufacturer of electronic equipment in kit form. This dominant position in the field results in extra savings through volume buying that are passed on to you in the form of lower priced kits.

You save high labor costs. You do the easy assembly yourself following simple directions...it's like paying yourself several dollars an hour! It's actually fun to build your own equipment and you'll learn more about it as the assembly progresses.

World's Biggest Kit Selection

Over 250 kits to choose from! Whatever your interest, whatever your need, Heathkit has a kit for you. Select from a complete line of Stereo Hi-Fi music components and systems, Test and Laboratory instruments, Amateur Radio equipment and accessories, Marine electronics gear, Citizen's Band Radio, Educational kits, Automotive, and General Hobby items, including an Electronic Organ, Color TV, Garage Door Opener and many more!...all at savings of up to 50%!

Liberal Credit Plan

Heath's easy time-pay plan lets you order and build the kits you need now while you pay for them in easy, convenient monthly installments. You pay no money down on orders of $25 to $600...take as long as 18 months to pay. Liberal credit terms are also available on orders over $600. Simply drop us a line for details. As an extra feature you can "add-on" purchases of $25 or more after three payments on the original order.

Export Models Available

Export models are available on certain popular Heathkit items for 115/230 volt 50-60 cycle A.C. operation. Write for full details on the particular products in which you are interested.

--

What makes Heathkit your best bet for kit value?
Transmitter frequencies are measured by beating them against the standard crystal for the channel being checked. A direct-reading counter (audio-frequency meter) shows the frequency difference in cycles and whether the transmitter's frequency is within tolerance.

Transmitter power output up to 5 watts can be measured with ±0.25-watt accuracy. An auxiliary circuit measures transmitter's frequency is with tolerance.

The C-12B is a relatively simple instrument and is easy to use. Here, a small amount of the transmitter's output signal is tapped off the PK (pickup) box and fed into the frequency meter. In setting up, the first step is to test the self-contained batteries with the built-in voltmeter. The next step is to measure the transmitter's power output. (At least 1 watt output is needed for accurate modulation - percentage measurements and at least ½ watt is needed for accurate frequency measurements.)

The C-12B becomes an rf voltmeter that measures the voltage across the dummy load when the RF LEVEL control is fully clockwise and the selector switch is at RF. Readings of 20, 40, 60 and 80 indicate power outputs of approximately 1, 2, 3 and 4 watts, respectively.

The signals from the transmitter and the 1L4 crystal oscillator are heterodyned in a crystal mixer. A low-pass filter removes the input and sum frequencies. The difference frequency is amplified and converted to a square-wave voltage that is rectified to produce a meter reading directly proportional to frequency. A reading of 1,300 cycles or less indicates that the transmitter is within the required .005% tolerance.

A higher reading shows that the transmitter's crystal is beyond tolerance or that the oscillator must be retuned. To see if the transmitter's frequency is high or low, just press the HI-LOW switch. This shunts a capacitor across the standard crystal to shift its frequency a few hundred cycles. If the meter reading and the beat note heard in the phones-rises, the transmitter frequency is high. The note and meter reading fall if it is low.

Checking modulation

Before checking modulation percentage, establish a carrier reference by adjusting the RF LEVEL control so the meter reads 20. Then, with the FUNCTION selector set at MOD, speak into the mike and read modulation percentage. A reading of 1,300 cycles or less (the green area of the meter scale) indicates that the transmitter is within the required .005% tolerance.

A higher reading shows that the transmitter's crystal is beyond tolerance or that the oscillator must be retuned. To see if the transmitter's frequency is high or low, just press the HI-LOW switch. This shunts a capacitor across the standard crystal to shift its frequency a few hundred cycles. If the meter reading and the beat note heard in the phones-rises, the transmitter frequency is high. The note and meter reading fall if it is low.

Aligning receivers

When aligning the receiver's rf circuits, just advance the RF LEVEL control, turn on the C-12B and adjust the receiver's tuned circuits for maximum ave voltage.

The C-12B can be used to calibrate the shop's signal generator so it can be used as a source of modulated precision signals on the CB channels. Simply disconnect the dummy load and connect the generator's output terminals to the LOAD end of the PK box. (This connects the generator directly to the receiver's antenna terminals.)

After setting the C-12B and transmitter to the same channel, we depress the tester's power switch and tune the signal generator for zero beat in the set's speaker. The signal generator is now precisely tuned to the desired channel. We now release the tester's power switch and proceed to use the signal generator for receiver alignment.—Robert F. Scott
top performance with low voltage in FM-AM PORTABLE RADIOS

The HITACHI 2SA234 — 2SA235 are your best choice for use in many types of radios from 6 transistor pocket-portables to AM-FM stereo sets. They are germanium p-n-p dot mesa transistors with a cut-off frequency of 135 mc. Gain and S/N performance do not deteriorate at as low as 3 volts. This allows designs using as few as two standard flashlight cells, and longer effective battery life, a definite advantage over many more expensive transistor types. The very low common base output capacitance and HITACHI's careful attention to uniformity of manufacture, offer you stable, trouble free production runs of transistor radios. The performance/price ratio cannot be beat. Write us for production quantity quotations.

<table>
<thead>
<tr>
<th>HITACHI</th>
<th>2SA234</th>
<th>2SA235</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLLECTOR-BASE VOLTAGE</td>
<td>20 V</td>
<td>20 V</td>
</tr>
<tr>
<td>COLLECTOR CURRENT</td>
<td>10 MA</td>
<td>10 MA</td>
</tr>
<tr>
<td>COLLECTOR DISSIPATION</td>
<td>80 MW</td>
<td>80 MW</td>
</tr>
<tr>
<td>COMMON BASE OUTPUT CAP.</td>
<td>2.1 pf</td>
<td>2.1 pf</td>
</tr>
<tr>
<td>BASE SPREADING RESISTANCE</td>
<td>55 Ω</td>
<td>50 Ω</td>
</tr>
<tr>
<td>CUT-OFF FREQUENCY</td>
<td>120 MC</td>
<td>135 MC</td>
</tr>
<tr>
<td>POWER GAIN</td>
<td>26 dB</td>
<td>13 dB</td>
</tr>
<tr>
<td>10.7 MC</td>
<td>100 MC</td>
<td></td>
</tr>
</tbody>
</table>

HITACHI, Ltd.

666, 5th Ave., New York 19, N.Y., U.S.A. Tel: JUDSON 6-4757
100 California St., San Francisco, Calif., U.S.A. Tel: YUKON 1-7871

TOKYO, JAPAN CABLE ADDRESS: "HITACHY" TOKYO

FEBRUARY, 1964
Why Fred got a better job...

I laughed when Fred Williams, my old high school buddy and fellow worker, told me he was taking a Cleveland Institute Home Study course in electronics. But when our boss made him Senior Electronic Technician, it made me stop and think. Sure I'm glad Fred got the break... but why him... and not me? What's he got that I don't? There was only one answer... his Cleveland Institute Diploma and his First Class FCC License!

After congratulating Fred on his promotion, I asked him what gives. "I'm going to turn $15 into $15,000," he said. "My tuition at Cleveland Institute was only $15 a month. But, my new job pays me $15 a week more... that's $780 more a year! In twenty years... even if I don't get another penny increase... I will have earned $15,600 more! It's that simple. I have a plan... and it works!"

What a return on his investment! Fred should have been elected most likely to succeed... he's on the right track. So am I now. I sent for my three free books a couple of months ago, and I'm well on my way to Fred's level. How about you? Will you be ready like Fred was when opportunity knocks? Take my advice and carefully read the important information on the opposite page. Then check your area of most interest on the postage-free reply card and drop it in the mail today. Find out how you can move up in electronics too.
How You Can Succeed In Electronics
... Select Your Future From Five Career Programs

The "right" course for your career
Cleveland Institute offers not one, but five different and up-to-date Electronics Home Study Programs. Look them over. Pick the one that is "right" for you. Then mark your selection on the reply card and send it to us. In a few days you will have complete details... without obligation.

1. Electronics Technology
A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a 1st Class FCC License.

2. First Class FCC License
If you want a 1st Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

3. Broadcast Engineering
Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

4. Electronic Communications
Mobile Radio, Microwave, and 2nd Class FCC preparation are just a few of the topics covered in this "compact" program... Carrier Telephony too, if you so desire.

5. Industrial Electronics & Automation
This exciting program includes many important subjects such as Computers, Electronic Heating and Welding, Industrial Controls, Servomechanisms, and Solid State Devices.

An FCC License... or your money back!
In addition to providing you with comprehensive training in the area indicated, programs 1, 2, 3, and 4 will prepare you for a Commercial FCC License. In fact, we're so certain of their effectiveness, we make this exclusive offer:

The training programs described will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License... or your money back!

Cleveland Institute's new "Check-Point Plan" helps you learn faster and better
Cleveland Institute uses the new programmed learning approach. This "Check-Point Plan" presents facts and concepts in small, easy-to-understand bits... reinforces them with clear explanations and examples. Students learn more thoroughly and faster through this modern, simplified method. You too will absorb... retain... advance at your own pace.

Job placement service... another CIE extra to help you get ahead in electronics
Once enrolled with CIE, you will get a bi-monthly listing of the many high-paying interesting jobs available with top companies throughout the country. Many Cleveland Institute students and graduates hold such jobs with leading companies like these: American Airlines, American Telephone and Telegraph, General Electric, General Telephone and Electronics, IBM, Motorola, North American Aviation, New York Central Railroad, Raytheon, RCA and Westinghouse.

Electronics is a fast moving, dynamic industry... Cleveland Institute keeps you current
The Electron Bulletin is CIE's bi-monthly digest of new developments in the world's fastest growing industry. As a CIE student, you will get a free copy throughout your training to keep you up-to-date on Masers, Lasers, Solid State Devices, and other new inventions.

Full accreditation... your assurance of competence and integrity
Cleveland Institute of Electronics is accredited by the Accrediting Commission of the National Home Study Council. You can be assured of competent electronics training by a staff of skilled electronics instructors.

By ERVING M. GOTTLIEB

After we have more or less successfully bridged the gap between basic tube and transistor operational theory from a practical point of view, we find that most technical literature, instead of being helpful, unnecessarily widens this gap. We are often reminded of the similarities between tubes and transistors as amplifying devices. Yet the literature formulates the relationships between transistor parameters with respect to the grounded-base (also called "common-base") circuit. This configuration is equivalent to a grounded-grid tube, though the most common transistor circuit the grounded emitter is the equivalent of the ordinary grounded-cathode tube amplifier. In both tube and transistor amplifiers, we are vitally interested in the voltage gain, yet we are told to deal with the transistor as a current amplifier. If we are still not convinced, we collide head-on with a monstrosity such as:

\[
\text{Voltage gain} = \frac{-aR_i}{r_c(1-a) + R_c(r_e + r_i)}
\]

where
- \(a\) = short-circuit current multiplication factor for common-base circuit
- \(r_b\) = base resistance
- \(r_c\) = collector resistance
- \(r_e\) = emitter resistance
- \(R_i\) = load resistance.

(The minus sign indicates polarity reversal.)

Sadly enough, this is still an approximation, even if we could lay hold of the various elusive quantities contained in the equation. The temptation is overwhelming to ask, "Is this necessary?" Why not use \(g_m\) and \(g_m \times R_i\) instead, as with vacuum tubes? Indeed, why not?

First, let us try to find out how we got into the present state of affairs. The first transistors were point-contact devices, and functioned most stably and predictably in the grounded-base circuit. Thus the grounded- (common-) base configuration was considered the "natural" one. The input diode, unlike a tube in class-A operation, consumed current. Accordingly, the transistor was thought of as "current-actuated." This notion was reinforced by the fact that the injected charge carriers constitute current flow.

Then, when the junction transistor made the common-emitter circuit popular, the current-transference property was retained as the figure of merit of transistor action. An effort was made to reconcile tube and transistor design with the "duality" theory. In this concept, which depends on currents in transistors being equated to voltages across tubes, a parallel network for tubes, for example, would be dealt with in terms of an equivalent series circuit for transistors. Inductors for the one would become capacitors for the other, and so on. This approach does have mathematical validity. For most practical transistor applications, it becomes a complex patchwork, which attempts unsuccessfully to smooth the effects of a wrong turn made in the past.

A new trend of thought

We'll take a short pause while you object to our endeavor to treat the transistor like a tube. An oft-heard axiom is that in the transistor, the input current wave, rather than the input voltage wave, must represent the signal information. That is, to obtain an amplified voltage sine wave across the output load resistance, we must apply a current sine wave to the input circuit.

Let us imagine the transistor is new to us, and that we follow our intuition and think in terms of voltage gain. First, the circuit designer must part company with the physicist, in connection with the "current" approach. Rather than think of injecting a current into the base-emitter diode, let us consider that we impress a voltage across the base-emitter diode.

This is sound reasoning, for the transit of the charge carriers (current flow) in a forward-biased p-n diode is caused by an electric field. The current flowing through the base-emitter diode is due to, and governed by, the voltage...
Let RCA equip you with EVERYTHING YOU NEED FOR STEREO SERVICING

RCA—entertainment leader of the world—now offers you a complete set of test instruments to put you in the stereo servicing business. And now's the time to get in because it's growing bigger and more profitable by the day.

A. NEW! RCA WR-51A FM STEREO SIGNAL SIMULATOR
Generates signals necessary to service and maintain stereo multiplex FM receivers and adaptors. Generates... Choice of 4 FM signals—Left Stereo, Right Stereo, Special Phase Test, Monaural FM. Choice of 8 sine-wave frequencies (400 cps, 1Kc, 5Kc, 19Kc, 28Kc, 38Kc, 48Kc, 67Kc) available separately or for modulating FM signals... 100 Mc carrier tuneable ± 0.8 Mc to permit selection of a quiet point in the FM band. Choice of 3 composite stereo output signals—Left Stereo, Right Stereo, Special Phase Test. Choice of 3 sine-wave frequencies for composite stereo signals. Crystal controlled markers for receiver il and rf alignment. Zero-center meter for checking the balance of stereo amplifier output. **$249.50**

B. RCA WA-44C AUDIO GENERATOR
Generates sine-wave and square-wave signals over range of 20 to 200,000 cps to test audio systems. Can be used to measure intermodulation distortion, frequency response, input and output impedances, speaker response, and phase shifts. Less than 0.25% total harmonic distortion over range of 30 to 15,000 cps. **$98.50**

C. RCA WO-91A 5" OSCILLOSCOPE
A high-performance, wide-band scope—serves as a visual VTVM. Choice of wide band (4.5 Mc–0.053 volt rms/inch sensitivity) or narrow, high-sensitivity band (1.5 Mc–0.018 volt rms/inch sensitivity). New 2-stage sync separator provides solid lock-in on composite TV signals. **$249.50**

D. RCA WV-98C SENIOR VOLTMYST®
For direct reading of peak-to-peak voltages of complex waveforms, rms values of sine-waves, DC voltages, and resistance. Accuracy: 3% full-scale on both AC and DC, with less than 1% tracking error. Color-coded scales differentiate peak-to-peak from rms readings. New 0.5 volt full scale DC range for use with low-voltage transistor circuits. 6½" meter. **$79.50**

E. RCA WV76A AC VTVM
Measures voltages down to 0.001 volt. Decibel scale for measurements from -40 to +40 db. Built-in amplifier which may be used separately as a preamplifier. Typical applications include: frequency response tests of preamplifiers, power amplifiers and tone control circuits, signal tracing; measurements of audio level, power level and gain; amplifier balancing applications and general audio voltage measurements. **$79.95**

F. RCA WG-360A STEREO PHASE CHECKER
A quick, simple, positive way to check phase alignment of low and mid-range speakers in stereo systems. Completely “sound-powered”. Snag-proof recessed grille design. For use with a VOM, VTVM, or oscilloscope. **$14.95**

See Them all at your Authorized RCA Electronic Instrument Distributor
RCA Electronic Components and Devices, Harrison, N.J.

*User price (optional)

The Most Trusted Name in Electronics

FEBRUARY, 1964
impressed across the terminals of this diode.

In practical junction transistors connected in the grounded- (common-) emitter circuit, there is considerable departure from the assumed linear-output (or load-voltage) vs input-current curve. Even if this ideal relationship were exhibited by practical transistors, it would still be a permissible approximation to deal with input voltage. This is because the input-current vs input-voltage curve is substantially straight for values above the onset of conduction (Fig. 1).

The transistor is reminiscent of a tube operating in the positive control-grid region. Let's retain the same approach we would use with such a tube: A signal voltage is impressed at the input. What is the value of the amplified signal voltage developed across the load resistance?

Generally, the approach advocated in this article yields very satisfactory results. The more rigorous design approach (current input) is often frustrated by complex variables difficult to cope with, or nonprecise data. For example, such transistor parameters as r_e, r_b, alpha (and therefore beta) vary with operating point and temperature. Manufacturer's tolerances are generally quite sloppy, as compared with tube specifications, so circuit design by the classical formulas frequently requires a pretty healthy admixture of cut-and-try. I find that the transconductance method is most often quicker and better.

Why not use g_m?

The concept of transconductance is as applicable to the transistor as to the tube. Transconductance is a transfer function which defines the ratio of a change in output current to a small change in input voltage, while the voltage on the output electrode is maintained constant during the measurement. Thus we see that the higher the transconductance of an amplifying device, the greater the control of output...
current exerted by the grid, base or other control element.

It is a simple matter to insert a load resistance in the output circuit of an amplifier so that the current variations appear as voltage variations of greater amplitude than those applied to the input circuit. All this, of course, is "old hat," but it is important to recognize the universality of the transconductance parameter. Transconductance is readily derived from a simple procedure.

Let us connect a transistor as in Fig. 2. Although a p-n-p type is shown, the basic ideas apply to n-p-n transistors when you reverse the polarity of the bias supplies. The objective is to obtain data relating output current, \(I_o \), to input voltage, \(E_{in} \) (or \(V_{be} \)). We then plot a curve as in Fig. 3. This is analogous to a curve relating plate current to grid voltage in a tube. As with a tube, the slope of this output vs input voltage curve indicates the value of transconductance (figure of merit). Generally, such curves are not absolutely straight, so the measurement of slope requires judgment, and must inevitably be an average or approximate value.

![Fig. 2 — Simple circuit for obtaining data for transconductance graph. For small transistors, \(V_b \) and \(V_0 \) may be 1.5 and 4.5 volts, respectively.](image)

We know that for reasonably distortionless class-A operation, the choice of operating point, output load resistance and maximum input-signal amplitude must be such that only the fairly linear portion of the transconductance curve is involved. This presents no great problem. For most germanium transistors, these curves rapidly approach a straight line once the base-emitter diode is biased in excess of one-tenth to several tenths of a volt. (In silicon transistors, the onset of conduction occurs at a slightly higher value.)

As with tubes, transconductance is now derived from the ratio of a change in output current to the small change in input voltage responsible for it. If these quantities are graphically scaled off in amps and volts, the ratio is dimensionally in mhos. If one or the other quantity is plotted in terms of milli or micro units, we must affix the appropriate multiplying factor before our transcon-
FREE SCOTT CUSTOM STEREO GUIDE

New 24-page 1964 Custom Stereo Guide packed with photos, descriptions, and specifications of all Scott tuners, amplifiers, tuner/amplifiers, speakers, and kits. Also... articles and pictures on decorating your home with stereo, selecting a tuner and amplifier, and how FM multiplex stereo works. Send for your Scott Custom Stereo Guide today.

Rush me the new 1964 Scott Guide to Custom Stereo.

Name:

Address:

City:

H. H. Scott, Inc. 57002
111 Powdermill Road, Maynard, Massachusetts

EXPORT: Morhan Exporting Corp., 458 Broadway, N.Y.C.
CANADA: Atlas Radio Corp., 50 Wingold Ave., Toronto

Enroll NOW—Pay Later
Finance Plan and Easy Payment Plan. Also Part Time Employment help for students.

FREE BOOK Clip coupon or write for Free Illustrated Book, "Your Opportunities in Electronics." Describes all training offered. No obligation and No salesman will call. Act Now.

B. W. Cooke, President

3 PLANTS TO SERVE YOU BETTER

HERMETICALLY SEALED PRECISION GROUND
CUSTOM-MADE NON-OVEN CRYSTALS

Gold or silver plated, spring mounted, vacuum sealed or inert gas. High frequency stability. 10 million to 1500 megacycles. Meet all specifications. 1000KC to 10000KC (Fund. Freq.) $1.50 ea.

160KC to 2000KC (Fund. Freq.) $1.00 ea.

250KC to 5000KC (Fund. Freq.) $1.50 ea.

700KC to 15,000KC (Fund. Freq.) $1.50 ea.

15MC to 20MC (Fund. Freq.) $1.50 ea.

OVERTONE CRYSTALS

15MC to 30MC Third Overtone $3.85 ea.

30MC to 60MC Third or Fifth Overtone $4.10 ea.

65MC to 100MC Fifth Overtone $6.00 ea.

DRAKE 2-B Receiver Crystals $4.00

(All Channels—Order by Freq.)

SPECIAL ORDER TYPE CRYSTALS

For Motorola, GE, Genetec, Bendix, etc. Add $2.00 per crystal to above prices.

SUB-MINIATURE PRICES slightly higher

ORDER FROM CLOSER PLANT

TEXAS CRYSTALS

Division of

WHITEHALL

4117 W. Jefferson Blvd.
LOS ANGELES, CALIF.
Phone 213-731-2256
TWX 213-737-155

Fig. 3—Transconductance curve for a 2N109.
board amplifier is quickly evaluated by connecting oscilloscopes or vtvm's to the input and output circuits. The accuracy of this method improves as load resistance R_L is made smaller. For a majority of small-signal applications R_L, values up to several thousand ohms permit good results to be obtained.

To extend this approach further, we would like to see transistor manufacturers supply collector family curves with respect to input voltage rather than with respect to input current as is prevailing practice. In Figs. 4 and 5, we see the collector characteristics of an RCA 2N109 transistor displayed with input current and with input voltage as a variable parameter. Surprisingly, the load line in the latter instance traverses incremental collector curves which are quite evenly spaced. This indicates low distortion in class-A operation, provided we do not drive the transistor too close to zero collector current.

The author would be very grateful for comments and criticism pertaining to this admittedly "off-beat" analysis of transistor operation. In the meantime, give it a try and see if you don't agree that it deprives the transistor of a good deal of elusiveness!
RCA TRAINING

can be the smartest investment you ever made!

Start building a profitable career in electronics now!
NEW RCA “AUTOTEXT” will help you learn faster and easier!

If you’re considering a future in electronics, now is the time to start! A great new teaching aid—“AUTOTEXT” developed by RCA, and introduced by RCA Institutes, Inc., will help you master the fundamentals of electronics almost automatically! “AUTOTEXT” is a system of programmed instruction, proved with thousands of students. Even people who have had trouble with conventional home training methods in the past are finding it easier and more fun to learn this new way. All you need is an interest or inclination in electronics, RCA “AUTOTEXT” will help you do the rest! And the future is unlimited; the jobs are available! The important thing is to get started now!

Founded in 1909, RCA Institutes is one of the largest technical schools in the United States devoted exclusively to electronics. The very name “RCA” means dependability, integrity, and scientific advance. RCA Institutes offers the finest facilities of home training. A Service of the Radio Corporation of America, RCA Institutes, Inc. gives you the technical instruction you need to plan, build, and realize the career you want in today’s fastest growing field.

Investigate your future now at RCA Institutes. It can be the smartest investment you ever made.
HOME TRAINING COURSES

In addition to the new "Introduction to Electronics" RCA Institutes offers this complete selection of Home Training Courses:

- Electronic Fundamentals
- Communications Electronics
- Industrial Applications
- Electronic Fundamentals (in Spanish)
- FCC License Preparation
- Nuclear Instrumentation
- TV Servicing
- Mobile Communications
- Digital Techniques
- Color TV Servicing
- Automation Electronics
- Computer Programming
- Transistors
- Automatic Controls
- Drafting

Liberal Tuition Plan. All RCA Institutes Home Study courses are available under a Liberal Tuition Plan. This plan affords you the most economical possible method of home study training. You pay for lessons only as you order them. If, for any reason, you wish to interrupt your training, you can do so and you will not owe a cent until you resume the course. No other obligations! No installment payments required.

RCA Personal Instruction. With RCA Home Study training you set your own pace in keeping with your own ability, finances and time. RCA Institutes allows you ample time to complete the course. Your lesson assignments are individually graded by technically trained personnel, and helpful comments are added where required. You get theory, experiment, and service practice beginning with the very first lesson. All lessons are profusely illustrated. You get a complete training package throughout the entire course.

You Get Prime Quality Equipment. All kits furnished with the course are complete in every respect, and the equipment is top grade. You keep all the equipment furnished to you for actual use on the job...and you never have to take apart one piece to build another.

CLASSROOM TRAINING

in New York City and Cherry Hill, N. J. (near Camden) — You can study electronics in the city of your choice.

No previous technical training required for admission. You are eligible even if you haven't completed high school. RCA Institutes Resident Schools in New York City and RCA Technical Institute in Cherry Hill, N. J. offer training that will prepare you to work in rewarding positions on research and production projects in fields such as automation, transistors, communications, technical writing, television, computers, and other industrial and advanced electronics applications. If you did not complete high school, RCA will prepare you for such training with courses specially designed to provide the basic math and physics required for a career in electronics.

Free Placement Service. RCA Institutes graduates are now employed in important jobs at military installations with important companies such as IBM, Bell Telephone Labs, General Electric, RCA, and in radio and TV stations all over the country. Many other graduates have opened their own businesses. A recent New York Resident School class had 95% of the graduates who used the FREE Placement Service accepted by important electronics companies...and had their jobs waiting for them on the day they graduated!

Coeducational Day and Evening Courses. Day and Evening Courses are available at Resident Schools in New York City and Cherry Hill, N. J. You can prepare for a career in electronics while continuing your normal full-time or part-time employment. Regular classes start four times each year.

SEND POSTCARD FOR FREE ILLUSTRATED BOOK TODAY!

SPECIFY HOME STUDY OR NEW YORK OR CHERRY HILL, N. J. RESIDENT SCHOOL.

RCA INSTITUTES, INC. Dept. RE-24 A SERVICE OF RADIO CORPORATION OF AMERICA, 350 WEST 4TH ST., NEW YORK, N. Y. 10014

The Most Trusted Name in Electronics

February, 1964
EASY, ECONOMICAL, SURE way to
LEARN ELECTRONICS
Gernsback’s Basic Series Books

BASIC RADIO COURSE
Learn radio in this easy-to-understand, easy-to-read book. A perfect way to start your electronics career.
#104—$4.10

BASIC TV COURSE
Television as it is today. An excellent first reader in television electronics science.
#105—$4.10

BASIC TRANSISTOR COURSE
#111—$4.10

BASIC AUDIO COURSE
Audio high-fidelity systems from pre-amp to speaker. How and why audio systems work.
#106—$2.75

BASIC INDUSTRIAL ELECTRONICS COURSE
Just out! Breaks down complex industrial equipment into familiar devices.
#109—$4.10

BASIC MATH COURSE FOR ELECTRONICS
Takes math out of the dreary textbook world and into the exciting Electronics Age.
#100—$4.50

Buy Now From Your Electronic Parts Distributor or Fill Out Coupon:

10-DAY EXAMINATION

Name: ____________________________
Address: ____________________________
City: __________________ State: ____________

Remittance Must Accompany Order

Enclosed is $ ____________

Gernsback Library, Inc.
154 W. 14th St., New York, N. Y. 10011

noteworthy Circuits

Volume Limiter for Your TV

Do the kids drive you mad by turning up the TV volume till the house shakes? Here’s a little circuit that will put a stop to that problem. All you do is add a screwdriver-adjust potentiometer ahead of the volume control as in the diagram. You use this control as the volume limiter. Once installed, turn set volume all the way up and adjust the volume limiter control, located where the kids can’t get at it, to set the volume to the maximum level that will not disturb you. Now the volume cannot be turned up too far. For the volume limiter, use a pot with the same value as the existing volume control. Circuits of this type are commonly used in hotel and motel versions of standard TV.--Warren Roy

Re: Quick-Start Circuit

I enjoyed reading “Start Your Car Fast” (December 1962) and the related correspondence and ideas discussed in the February, April and August 1963 issues. However, the complicated circuits, switches and relays that have been recommended are not really necessary. Here is a simple circuit that my brother developed in 1935 for a 1933 Chevrolet.

R is a 10-ohm 10-watt resistor between the two batteries. (A 12-volt system requires a 20-ohm 10-watt resistor.) When starting, current drawn from the auxiliary battery is negligible,
For...

REMOTE CONTROL OPERATION

LIMITED SPACE INSTALLATION

you need the NEW MODEL 1000 EXECUTIVE TRANSCEIVER

If you are looking for a citizens band transceiver designed for limited space or remote operation, then you need International's Model 1000* transceiver... the very latest in the Executive series of fine two-way radios.

Engineered for flexible installation, the Model 1000* may be used in a car, boat or plane. Operates on 6 or 12 vdc and 115 vac. Features include: series gate noise limiter, high frequency crystal filter for reducing adjacent channel interference, delayed avc system, speech clipper amplifier and crystal filter. All frequency control circuits are housed in International's new (RMO) remote console.

The console, 2½" H x 7" W x 5" D, mounts under the dash. Nine receive and nine transmit crystal sockets are provided for the selection of any desired channel. The illuminated Channel Selector (an International exclusive) makes channel selection easy. Console panel provides: on-off switch, volume and squelch controls, channel selector, microphone receptacle, transmit and receive indicator lights.

Model 1000, complete with remote console, mobile mounting brackets for transceiver and console, cables, 1 set of channel & crystals, microphone, speaker. Cat. No. 600-115 $259.50

*Model 500, similar features but does not contain delayed avc, speech clipper amplifier and crystal filter. Cat. No. 600-114 $179.50
UNIVERSAL

From Factory To You at Lowest Prices

10% Off—on orders of 10 or over

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" x .050</td>
<td>$5.59</td>
</tr>
<tr>
<td>3" x .050</td>
<td>$6.47</td>
</tr>
<tr>
<td>3" x .070</td>
<td>$7.20</td>
</tr>
<tr>
<td>3" x .100</td>
<td>$9.76</td>
</tr>
<tr>
<td>3" x .125</td>
<td>$10.41</td>
</tr>
<tr>
<td>4" x .050</td>
<td>$10.41</td>
</tr>
<tr>
<td>5" x .070</td>
<td>$13.71</td>
</tr>
<tr>
<td>5" x .100</td>
<td>$16.60</td>
</tr>
<tr>
<td>5" x .125</td>
<td>$18.40</td>
</tr>
<tr>
<td>6" x .050</td>
<td>$18.40</td>
</tr>
</tbody>
</table>

PM SPEAKERS

Money Back Guarantee if not the Best at any Price

Top Quality with Alnico ±5 Magnets

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6"</td>
<td>$13.39</td>
</tr>
<tr>
<td>8"</td>
<td>$17.99</td>
</tr>
<tr>
<td>10"</td>
<td>$24.48</td>
</tr>
<tr>
<td>12"</td>
<td>$37.99</td>
</tr>
</tbody>
</table>

AUDIO OUTPUT TRANSFORMERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5060</td>
<td>$9.86</td>
</tr>
<tr>
<td>6060</td>
<td>$9.86</td>
</tr>
<tr>
<td>6064</td>
<td>$9.86</td>
</tr>
<tr>
<td>6066</td>
<td>$9.86</td>
</tr>
</tbody>
</table>

$200 HEARING AID For $2

Each HEARING AID is a Complete AUDIO AMPLIFIER and includes:

- CRYSTAL MICROPHONE
- 3 SUBMINIATURE TUBES

Top Item for Experimenter can be modified and converted to RECORDI NG—MICROPHONE—TRANSMITTERS—SECRET LISTENING DEVICES—MICROWAVE—Etc. 5 x 2 x 1 1/2. Shpg. Wt. 1 lb.

Complete as illustrated in SCHEMATIC DIAGRAM (less Earphone & Battery)

UNIVERSAL RECORDING TAPE

3" MYLAR 300' | $4.49
3" MYLAR 600' | $2.39
3" MYLAR 900' | $2.84
4" MYLAR 1200' | $3.57
5" MYLAR 1500' | $5.07

SPEAKER BASSINE GRIFFLE CLOTH

most popular brown & gold design $1

EIGHT INSTRUMENTS IN ONE

- Out-of-Circuit Transistor Analyzer
- Dynamic In-Circuit Transistor & Radio Tester
- Signal Generator
- Signal Tracer + Voltmeter
- Milliammeter
- Battery Tester
- Diode Checker

Transistor Analyzer Model 212

Factory Wired & Tested — $18.50

Easy-To-Assemble Kit — $13.50

SPEAKER | BASSLINE GRIFFLE CLOTH

most popular brown & gold design $1

TV antenna at the top of page 44 of the December issue was incorrectly credited to Winegard. Here is a photo of the Winegard model C-42 Colorotron antenna which should have run in that position.
TECHNOTES

Improving Noisy CCTV Amplifiers

After several years of continuous service, even the best closed-circuit TV amplifier systems deteriorate. That's the time to see if you can improve on the original performance, not just restore it.

In many of the systems I've run across, I replaced a 6CB6 with an E180F (Mullard or equivalent). This special-purpose tube has a gold-plated grid and base pins, and a transconductance of 16,000 µhos with very low noise. The diagram shows a typical circuit.

To get best results, change several resistor values as shown in the table below. Even if the original tube isn't a 6CB6, or if the values in your circuits are different, the chart will be a guide.

<table>
<thead>
<tr>
<th>6CB6</th>
<th>E180F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>510,000 ohms</td>
</tr>
<tr>
<td>R2</td>
<td>150 ohms</td>
</tr>
<tr>
<td>R3</td>
<td>7,500 ohms</td>
</tr>
<tr>
<td>R4</td>
<td>3,000 ohms</td>
</tr>
<tr>
<td>R5</td>
<td>3,000 ohms</td>
</tr>
<tr>
<td>R6</td>
<td>1,500 ohms</td>
</tr>
<tr>
<td>R7</td>
<td>6,800 ohms</td>
</tr>
</tbody>
</table>

The same change makes a noticeable improvement in ordinary TV sets. —**B. C. Terrell**

RCA KCS45-49 Hint

A severe cogwheel effect in the picture on one of these chassis at high or normal brightness, that disappears at low brightness settings, is caused by core saturation in the horizons supply houses. —**Editor**

BUILD 2 RADIO CIRCUITS AT HOME

PRACTICAL HOME RADIO COURSE

ONLY $26.95

NOW INCLUDES

- **12 RECEIVERS**
- **3 TRANSMITTERS**
- **S.O. WAVE GENERATOR**
- **AMPLIFIER**
- **SIGNAL TRACER**
- **SIGNAL INJECTOR**
- **CODE OSCILLATOR**

FREE EXTRAS

- **SET OF TOOLS**
- **RADIO & ELECTRONICS TESTER**
- **DEBRIDING IRON**
- **AMATEUR LICENSE**
- **7 BANDS**

UNCONDITIONAL MONEY-BACK GUARANTEE

The Progressive Radio "EDU-KIT", Inc., has been sold to many thousands of individuals, schools, and organizations throughout the United States and Canada, and has been recommended by instructors in more than 3,000 high schools and colleges as the ideal training device for electronic technicians. It is recommended by many radio clubs and organizations as the ideal training device for all radio enthusiasts and students of electronics.

ORDER FROM AD—RECEIVE FREE BONUS RESISTOR AND CONDENSER KIT WORTH $3.00

1) Send "EDU-KIT" Package. It includes full plans and devices worth $29.95.
2) Send "EDU-KIT" C.O.D. I will mail you $26.95 plus postage.

3) Send your request for FREE additional information describing "EDU-KIT".

Progressive "EDU-KITS" Inc.

1155 Broadway, Dept. 217G
New York, N. Y.
WHAT CAN YOU DO WITH PHOTOCONDUCTORS?

Use headlights to open the garage door...build a model railroad crossing guard...make a light meter...or invent your own project, using the new Sylvania photoconductor kit. 52-page booklet, included, gives instructions and circuits for 20 fascinating do-it-yourself projects. Ask for Photoconductor Kit PCK-10 at Sylvania Electronic Distributors, or send $9.95 (plus 50¢ handling charge) to Dept. PCK-10, Sylvania Electric Products Inc., 1025 Westminster Drive, Williamsport, Pa., and we’ll send one postpaid.

In most sets, an S-shape weave in the picture has been corrected by changing that capacitor. So too has soft, unstable vertical hold. A dark, overloaded picture can be caused by a shorted C124. When open, it can be responsible for certain kinds of horizontal tearing.

I have recently made it standard operating practice to replace this capacitor in any set that still has the original.—Charles B. Randall

Wilcox-Gay Recordio R-804

Owners of this recorder may find a sudden loss of audio, heralded by smoke and the smell of a burning transformer. The fault is in the tiny F-4 silicon rectifier, which shorts out as a result of power-line surges. The little rectifier was probably used to save space, but isn’t suitable for this job—the voltage is too high.

The remedy is to put a fuse in the ac line and replace the F-4 with a miniature 75-ma selenium rectifier. Because of space limitations, you will have to mount the new rectifier directly on the five-lug terminal strip.—Robert E. Forschner

Longer Battery Life for EICO 555/565 Vom’s

If you use the resistance ranges on these meters frequently, the four penlight cells (size AA) will wear out in about a month. I replaced mine with a Mallory TR-146 mercury battery in series with a 100,000-ohm pot. The mercury battery has a much longer life than the zinc-carbon cells, and once its voltage does start to drop, the pot’s resistance can be reduced to compensate.

You can find space inside the case for the battery and the pot. Fig. 1 shows the original circuit, and Fig. 2 the modification.—Allan Glaser

Philco Chassis TV-440

Complaint: Horizontal weave.
Solution: Pins 3, 6 and 7 of the afc tube (a 6AL5) are tied together on the printed-circuit board, and the foil conductor is grounded to the chassis through a metal screw. This screw tends to loosen slightly, giving a ground path of greater than zero ohms resistance. The 6AL5 heater supply then gets into the horizontal circuit.

Tighten the screw to prevent recurrence, or, better yet, solder a jumper to the chassis.—Charles Andrews

Hotpoint 145202

Complaint: Plays a few minutes, then the raster leaves abruptly. Stability also affected by fine-tuning.

Cause: Dual selenium diode M2 (see diagram) becomes unbalanced. Change it, and be sure to use heat sink when soldering.—William Porter

PHILCO TECHREP DIV.
A Subsidiary of Ford Motor Company
P. O. BOX 4730 PHILADELPHIA, PA., 19134
An Equal Opportunity Employer
Brand New Tube Sale!

Low, low prices—compare

Save up to 75% off

*Manufacturers suggested list price

One Year Guarantee

RAD-TEL will replace any tube that does not give efficient performance for 1 Year from date of purchase.

One Day Service

Over 500 types in stock

Order types not listed

Free! Send for New Tube & Parts Catalog
Send for Trouble Shooting Guide

TUBE SUBSTITUTION BOOK

$1.25

Cheater Cord

RAD-TEL Tube Co.

55 Chambers Street, Newark, New Jersey 07105

Terms: 25% deposit must accompany all orders. Balance C.O.D. Orders under $5 will be handled charge plus postage. Orders over $5 plus postage. Approx. 8 tubes per lb. Subject to prior sale. No C.O.D's outside continental U.S.A.

FEBRUARY, 1964

<table>
<thead>
<tr>
<th>Qty. Type</th>
<th>Price</th>
<th>Qty. Type</th>
<th>Price</th>
<th>Qty. Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A4</td>
<td>.79</td>
<td>6A8</td>
<td>.87</td>
<td>6K6</td>
<td>.63</td>
</tr>
<tr>
<td>9A4</td>
<td>.82</td>
<td>6AV6</td>
<td>.41</td>
<td>6S4</td>
<td>.52</td>
</tr>
<tr>
<td>1A</td>
<td>.84</td>
<td>6AW8</td>
<td>.90</td>
<td>67A7</td>
<td>.99</td>
</tr>
<tr>
<td>1N5</td>
<td>.55</td>
<td>6AX4</td>
<td>.66</td>
<td>65H7</td>
<td>1.02</td>
</tr>
<tr>
<td>G3</td>
<td>.79</td>
<td>6AX5</td>
<td>.74</td>
<td>65J7</td>
<td>.88</td>
</tr>
<tr>
<td>1J</td>
<td>.79</td>
<td>6BC5</td>
<td>.50</td>
<td>65K7</td>
<td>.95</td>
</tr>
<tr>
<td>1R5</td>
<td>.77</td>
<td>6BC8</td>
<td>1.04</td>
<td>65N7</td>
<td>.65</td>
</tr>
<tr>
<td>15J</td>
<td>.75</td>
<td>6BC5</td>
<td>.65</td>
<td>65Q5</td>
<td>1.04</td>
</tr>
<tr>
<td>1T4</td>
<td>.72</td>
<td>6BF5</td>
<td>.90</td>
<td>6T4</td>
<td>.99</td>
</tr>
<tr>
<td>1U5</td>
<td>.65</td>
<td>6BF6</td>
<td>.44</td>
<td>6T8</td>
<td>.85</td>
</tr>
<tr>
<td>12B6</td>
<td>.82</td>
<td>6BG6</td>
<td>.50</td>
<td>6U6</td>
<td>.44</td>
</tr>
<tr>
<td>2A4F</td>
<td>.96</td>
<td>6BH6</td>
<td>.98</td>
<td>6V6G</td>
<td>.94</td>
</tr>
<tr>
<td>3A5L</td>
<td>.46</td>
<td>6BJ6</td>
<td>.65</td>
<td>6W4</td>
<td>.61</td>
</tr>
<tr>
<td>3A8A</td>
<td>.54</td>
<td>6BJ7</td>
<td>.79</td>
<td>6WS</td>
<td>.46</td>
</tr>
<tr>
<td>3AV6</td>
<td>.42</td>
<td>6BK7</td>
<td>.85</td>
<td>6X4</td>
<td>.41</td>
</tr>
<tr>
<td>3BC5</td>
<td>.63</td>
<td>6BL7</td>
<td>1.09</td>
<td>6X8</td>
<td>.50</td>
</tr>
<tr>
<td>3BN6</td>
<td>.75</td>
<td>6BR6</td>
<td>.74</td>
<td>7A8</td>
<td>.57</td>
</tr>
<tr>
<td>3BU8</td>
<td>.75</td>
<td>6BS7</td>
<td>.12</td>
<td>7AU5</td>
<td>.65</td>
</tr>
<tr>
<td>3BY6</td>
<td>.55</td>
<td>6BG7</td>
<td>1.00</td>
<td>7EY5</td>
<td>.75</td>
</tr>
<tr>
<td>3BZ6</td>
<td>.75</td>
<td>6B8U</td>
<td>.70</td>
<td>7Y4</td>
<td>.69</td>
</tr>
<tr>
<td>3CG6</td>
<td>.56</td>
<td>6BX7</td>
<td>1.11</td>
<td>8AU8</td>
<td>.90</td>
</tr>
<tr>
<td>3D4</td>
<td>.90</td>
<td>6BW5</td>
<td>.95</td>
<td>8A9B</td>
<td>.90</td>
</tr>
<tr>
<td>3DG4</td>
<td>.85</td>
<td>6BZ7</td>
<td>1.03</td>
<td>8B5Q</td>
<td>.60</td>
</tr>
<tr>
<td>3DK6</td>
<td>.60</td>
<td>6C4</td>
<td>.45</td>
<td>8C7G</td>
<td>.63</td>
</tr>
<tr>
<td>3DL6</td>
<td>.54</td>
<td>6CM6</td>
<td>.70</td>
<td>8C9M</td>
<td>1.06</td>
</tr>
<tr>
<td>3G5K</td>
<td>.99</td>
<td>6CG5</td>
<td>1.51</td>
<td>8CN7</td>
<td>.97</td>
</tr>
<tr>
<td>3K4</td>
<td>.63</td>
<td>6CG7</td>
<td>.61</td>
<td>8CS7</td>
<td>.75</td>
</tr>
<tr>
<td>3L5G</td>
<td>.75</td>
<td>6CG8</td>
<td>1.09</td>
<td>8CPE</td>
<td>.80</td>
</tr>
<tr>
<td>3V4</td>
<td>.63</td>
<td>6CL8</td>
<td>.79</td>
<td>8CF7</td>
<td>.56</td>
</tr>
<tr>
<td>4BQ7</td>
<td>1.01</td>
<td>6CM7</td>
<td>.99</td>
<td>9C6L</td>
<td>.79</td>
</tr>
<tr>
<td>4C6S</td>
<td>.61</td>
<td>6CN7</td>
<td>.70</td>
<td>11CY7</td>
<td>.75</td>
</tr>
<tr>
<td>4DT6</td>
<td>.55</td>
<td>6CG8</td>
<td>.92</td>
<td>12A4</td>
<td>.60</td>
</tr>
<tr>
<td>4G66</td>
<td>.70</td>
<td>6CS6</td>
<td>.57</td>
<td>12A5S</td>
<td>.60</td>
</tr>
<tr>
<td>5AN8</td>
<td>.90</td>
<td>6CS7</td>
<td>.59</td>
<td>12AD6</td>
<td>.57</td>
</tr>
<tr>
<td>5BZ6</td>
<td>.75</td>
<td>6DE7</td>
<td>.73</td>
<td>12AX4</td>
<td>.67</td>
</tr>
<tr>
<td>5CY8</td>
<td>.60</td>
<td>6DF6</td>
<td>.53</td>
<td>12A7D</td>
<td>.63</td>
</tr>
<tr>
<td>5DE6</td>
<td>.60</td>
<td>6DK7</td>
<td>.94</td>
<td>12AV8</td>
<td>.72</td>
</tr>
<tr>
<td>5G6L</td>
<td>.56</td>
<td>6DN8</td>
<td>.79</td>
<td>12A4X</td>
<td>.67</td>
</tr>
<tr>
<td>5G7</td>
<td>.56</td>
<td>6DF8</td>
<td>.79</td>
<td>12A56</td>
<td>.57</td>
</tr>
<tr>
<td>5G8L</td>
<td>.60</td>
<td>6DN6</td>
<td>.79</td>
<td>12A5X</td>
<td>.67</td>
</tr>
<tr>
<td>5H6</td>
<td>.56</td>
<td>6DP6</td>
<td>.79</td>
<td>12A6X</td>
<td>.67</td>
</tr>
<tr>
<td>5H7</td>
<td>.56</td>
<td>6DQ7</td>
<td>.79</td>
<td>12B5D</td>
<td>1.52</td>
</tr>
<tr>
<td>5K6</td>
<td>.56</td>
<td>6DR6</td>
<td>.79</td>
<td>12B5E</td>
<td>.52</td>
</tr>
<tr>
<td>5L6</td>
<td>.56</td>
<td>6DS8</td>
<td>.79</td>
<td>12B6E</td>
<td>.52</td>
</tr>
<tr>
<td>5M6</td>
<td>.56</td>
<td>6DV8</td>
<td>.79</td>
<td>12B6M</td>
<td>.56</td>
</tr>
<tr>
<td>5N6</td>
<td>.56</td>
<td>6DX8</td>
<td>.79</td>
<td>12B6T</td>
<td>.56</td>
</tr>
<tr>
<td>5P6</td>
<td>.56</td>
<td>6DZ8</td>
<td>.79</td>
<td>12B7E</td>
<td>.56</td>
</tr>
<tr>
<td>5R6</td>
<td>.56</td>
<td>6E6G</td>
<td>.79</td>
<td>12B7T</td>
<td>.56</td>
</tr>
<tr>
<td>5S6</td>
<td>.56</td>
<td>6E6H</td>
<td>.79</td>
<td>12B7F</td>
<td>.56</td>
</tr>
<tr>
<td>5T6</td>
<td>.56</td>
<td>6E6I</td>
<td>.79</td>
<td>12B7G</td>
<td>.56</td>
</tr>
<tr>
<td>5U6</td>
<td>.56</td>
<td>6E6J</td>
<td>.79</td>
<td>12B7H</td>
<td>.56</td>
</tr>
<tr>
<td>5V6</td>
<td>.56</td>
<td>6E6K</td>
<td>.79</td>
<td>12B7I</td>
<td>.56</td>
</tr>
<tr>
<td>5W6</td>
<td>.56</td>
<td>6E6L</td>
<td>.79</td>
<td>12B7J</td>
<td>.56</td>
</tr>
<tr>
<td>5X6</td>
<td>.56</td>
<td>6E6M</td>
<td>.79</td>
<td>12B7K</td>
<td>.56</td>
</tr>
<tr>
<td>5Y6</td>
<td>.56</td>
<td>6E6N</td>
<td>.79</td>
<td>12B7L</td>
<td>.56</td>
</tr>
<tr>
<td>6A4</td>
<td>.46</td>
<td>6E5S</td>
<td>.77</td>
<td>12A6G</td>
<td>.86</td>
</tr>
<tr>
<td>6A6</td>
<td>.46</td>
<td>6EM5</td>
<td>.77</td>
<td>12A7E</td>
<td>.86</td>
</tr>
<tr>
<td>6AC7</td>
<td>.96</td>
<td>6EM7</td>
<td>.82</td>
<td>12A84</td>
<td>.86</td>
</tr>
<tr>
<td>6A8</td>
<td>.82</td>
<td>6EN8</td>
<td>.79</td>
<td>12A9B</td>
<td>.86</td>
</tr>
<tr>
<td>6A5</td>
<td>.25</td>
<td>6EQ7</td>
<td>.59</td>
<td>12A9C</td>
<td>.86</td>
</tr>
<tr>
<td>6A5K</td>
<td>.95</td>
<td>6F5G</td>
<td>.69</td>
<td>12B3K</td>
<td>.86</td>
</tr>
<tr>
<td>6A5L</td>
<td>.79</td>
<td>6F8V</td>
<td>.79</td>
<td>12B5L</td>
<td>.86</td>
</tr>
<tr>
<td>6AM6</td>
<td>.80</td>
<td>6G3H</td>
<td>.80</td>
<td>12B5M</td>
<td>.86</td>
</tr>
<tr>
<td>6AN6</td>
<td>.55</td>
<td>6G5K</td>
<td>.61</td>
<td>12B5N</td>
<td>.86</td>
</tr>
<tr>
<td>6AS5</td>
<td>.60</td>
<td>6G6K</td>
<td>.61</td>
<td>12B6S</td>
<td>.86</td>
</tr>
<tr>
<td>6AT6</td>
<td>.49</td>
<td>6G68</td>
<td>.84</td>
<td>12B7S</td>
<td>.86</td>
</tr>
<tr>
<td>6AT8</td>
<td>.86</td>
<td>6G6H</td>
<td>.56</td>
<td>12B8S</td>
<td>.86</td>
</tr>
<tr>
<td>6AV8</td>
<td>.85</td>
<td>6J5ST</td>
<td>.51</td>
<td>12C0S</td>
<td>.56</td>
</tr>
<tr>
<td>6AU6</td>
<td>.52</td>
<td>6J5G</td>
<td>.71</td>
<td>12C0G</td>
<td>.67</td>
</tr>
<tr>
<td>6B6</td>
<td>.52</td>
<td>6J56</td>
<td>.71</td>
<td>12C0E</td>
<td>.67</td>
</tr>
<tr>
<td>6C6</td>
<td>.52</td>
<td>6J5F</td>
<td>.71</td>
<td>12C0D</td>
<td>.67</td>
</tr>
</tbody>
</table>

 emissive filament & end plate. Suitable for gas-filled tubes. 12 tubes. 256 tubes. Flat rate is $6.25. 256 tubes. $6.25.
New Patents

Radiolocation by Satellite

Patent No. 3,063,046

Frank W. Lohen, Glendale, and Glenn L. Brown, Los Angeles, Calif. (Assigned to Space-General Corp., Glendale, Calif.)

Shipwrecked survivors or lost nose cones can be quickly located with the aid of orbiting satellites. A constant-frequency signal, transmitted from a drifting lifesaver or other source, is recorded together with time markers generated in the satellite. Due to Doppler effect, the frequency undergoes maximum rate of change at the instant the satellite and the source are closest.

Later, the satellite passes over a receiving station and the signal is played back. The time markers show the exact instant when the frequency underwent its maximum rate of change. Calculation will disclose where the satellite was at that instant.

This idea is in many ways simpler than earlier ones.

Improved Regulator

Patent No. 3,099,790

Thomas G. Marshall, Jr., Franklin Park, N. J. (Assigned to RCA)

One common type of regulator uses a Zener diode in series with the base of a transistor (see diagram). Since the load voltage remains nearly equal to the diode voltage, the output is held constant. The transistor permits a larger current to be controlled than the Zener itself can handle.

Zener voltage, however, changes somewhat with diode current. This affects regulation. This invention utilizes a pilot lamp to maintain a steady current through the diode. Since the filament resistance rises with temperature, the circuit tends to remain constant even when the input is varied over a small range.

Self-Orienting Sun Battery

Patent No. 2,993,125

Charles W. Geer and William W. Jacquier, Los Angeles, Calif. (Assigned to Hoffman Electronics Corp.)

The output of a solar cell is maximum when it faces the sun directly. This panel of cells is arranged to track the sun automatically. It is mounted on a joint which permits tilting in any direction. Weights can be raised or lowered to adjust the center of gravity of the device.

A transparent tube with an absorbent liquid is filled with other. A reflecting shield is placed above this tube. If the sun's rays arrive obliquely, only the top end of the tube is heated. The ether vaporizes, then condenses on the cooler end of the tube. The ether then cools, condenses on the cooler side. This weight the panel till toward the sun. The absorber prevents the liquid from running to the low side.

END
MAIL THIS CARD TODAY

LAFAYETTE RADIO ELECTRONICS

1964 CATALOG NO. 640

1964 CATALOG NO. 640
INDEX PAGE 115

422 GIANT-SIZE PAGES

LAFAYETTE GIVES YOU MORE IN '64

MORE CATALOG- the biggest in our 43-year history; 422 giant-size illustrated pages.
MORE SELECTION- if it's in hi-fi or electronics, it's at Lafayette.
MORE SERVICE- more and more orders fully processed in 24 hours.
MORE BUYING POWER- choose from Lafayette's three Easy-Pay credit plans.

43 YEARS OF DEPENDABLE SERVICE AT LAFAYETTE'S TRADITIONALLY LOW PRICES

10 CONVENIENT LOCATIONS
SYOSSET, N.Y. 111 Jericho Turnpike (2 Blocks West of So. Oyst'r Bay Rd.)
MAIL ORDER and Long Island Sales Center. SYOSSET, L.I.
MAIC, N.Y. 165-08 Liberty Avenue 01F Merrick Rd.
NEW YORK 13, N.Y. 100 5th Avenue (Just North of Canal St.)
SCARSDALE, N.Y. 691 Central (Park) Avenue (1/2 Mile North of Ards ey Rd.)
BRONX 58, N.Y. 542 E. Fordham Road
NEWARK 2, N.J. 24 Central Avenue
PLAINFIELD, N.J. 139 W. 2nd Street
PARAMUS, N.J. 182 Route 17 (1 Mile North of Garden State Plaza)
BOSTON 10, MASS. 110 Federal Street
NATICK, MASS. 1400 Worcester Street Rt. 9 (Opposite Shopper's World)

Mail this card for your FREE 1964 Lafayette Catalog

FREE-LAFAYETTE'S 422 PAGE 1964-CATALOG-640

FREE-LAFAYETTE'S 422 PAGE 1964-CATALOG-640

FREE TO A FRIEND
1964 Lafayette Catalog
LAFAYETTE GIVES YOU MORE IN '64

MORE TAPE RECORDERS...
From miniature portable recorders to complete tape decks ... for fun at home to professional use, you'll find just the recorder you need at a popular Lafayette price.

LAFAYETTE PROFESSIONAL-TYPE 4-TRACK STEREO RECORDER
A complete recording studio in one case! Record 4-track stereo and monaural, plays 4 and 2-track stereo and 4-track monaural. Two matched stereo speakers. With 2 mikes, output cables, 7" take-up reel, 1200 ft. reel of tape.

HE-100L $169.95

MORE CITIZENS BAND...
Lafayette offers more transceivers, more Walkie-Talkies and more accessories than ever before.

LAFAYETTE 12-TRANSISTOR C.B. WALKIE-TALKIE
The walkie-talkie with more new features—variable noise squelch, separate microphone and speaker, push-pull audio output, 12-transistors, diode, thermistor. Available with optional plug-in 117V power pack. With carrying case, batteries, earphone, crystals.

HE-100L $39.95

MORE STEREO HI-FI...
You'll find a complete selection of stereo hi-fi equipment at Lafayette. All famous brands plus Lafayette's own top-rated components.

LAFAYETTE 24-WATT STEREO HI-FI PHONO SYSTEM
Outstanding performance at a budget price

MATCHED COMPONENTS
Garrard Autoslim 4-Speed Automatic Changer
Lafayette LA-224 24-Watt Stereo Amplifier
Empire 880 Diamond Needle Stereo Cartridge
2 Lafayette SK-124 2-Way Speaker Systems.

FREE with purchase of this system—record cleaning kit, stylus pressure gauge, all necessary hook-up wire and cable.

MORE HAM GEAR...
Amateurs everywhere make Lafayette their headquarters for all their gear ... from receivers and transmitters to the smallest accessory.

LAFAYETTE PROFESSIONAL-QUALITY 8-TUBE AMATEUR COMMUNICATIONS RECEIVER
4-band coverage—designed for today's crowded amateur bands. Outstanding bandspread, selectivity and sensitivity with built-in Q-multiplier and edgewise S-meter.

MORE THAN EVER BEFORE...
More Radios • More Test Equipment • More Tools
• More TV and Radio Tubes, Parts, Accessories
• More Cameras • More Optics
• More P.A. Equipment • More Books

NO MONEY DOWN...UP TO 24 MONTHS TO PAY
DEPTHSOUNDER. Recorder and indicator in single cabinet. Recorder scaled to 240 feet; flashing light indicator has normal scale of 120 feet but calibrated to 360 feet. Dual unit designed to use same transducer used in DE-112, DE-705A, DE-216 and DE-718A.—Raytheon Co.,Lexington, Mass.

BURGLAR ALARM FOR APARTMENT DWELLERS installs on inside of apartment door. No external wiring, no drilling through door, no exterior lock or key. 2 separate time-delay components permit occupants to leave or re-enter without sounding alarm. Time delay of 12-15 seconds after door opens cancelled by inserting proper key and turning to off. Alarm may then be reset to "Alert."—Dadco, PO Box 112, Hillside Manor Br., New Hyde Park, N. Y.

HEAVY-DUTY BUMPER MOUNT accepts all standard butt antennas with %-24 threads. Bronze die-cast base with heavy chrome plating.

Stainless steel bracket adjusts to vertical position regardless of placement on bumper.—Webster Mfg., 317 Roebening Road, S. San Francisco, Calif.

LOG PERIODIC UNIDIRECTIONAL ARRAYS. Trapezoidal, nonplanar feeds used with antenna or by themselves. Beamwidths changeable. Model ALP-100: frequency range 100 mc to 2,000 mc; gain 6 db; VSWR less than 3:1. 3-db and 10-db beamwidths 70° and 125° respectively. Average power 100 watts. Model DLP-100: same as ALP-100, but covers frequency range from 1-7 kmc.—Antenna Systems Inc., Grenier Field, Manchester, N. H.

INDOOR TV ANTENNA for color and black-and-white TV, VHF, uhf and FM. Two separate antennas; electrically lengthened or shortened to match station's frequency.—Gallo Electronics Corp., 12 Potter Ave., New Rochelle, N. Y.

ALL-CHANNEL YAGI TV ANTENNAS, models DG600, DG820, DG100. Separate Yagi sections for low and high vhf bands. DG820 peaked for extra gain on low band. DG700 additional di-rector.—Clear Beam Antenna Corp., PO Box 471, Caroga Park, Calif.

UNITARY HI-FI SPEAKERS, Sigma series, 7 new 8- and 12-inch models: SG-83, dual 8-in. cone; SG-84, 2-way 8-4 in. coaxial; SG-210, 3-element 12-in. coaxial; SG-88, 8-in. coaxial with through-bore, horn-loaded compression tweeter; SG-20, 3-element 12-in. coaxial; SG-222, multi-cell 12-in. horn coaxial; SG-225 (illus.), reflex horn coaxial.—Jensen Mfg. Co., 6601 S. Laramie, Chicago.

MULTIPLE SPEAKER SYSTEM. 18-inch woofer with bass response to 16 cycles. Hartley 200MS, 10-inch unit, handles middle and high frequencies. Crossover 400 cycles.—Hartley Products Co., 519 E. 162 St., Bronx, N. Y.

CONSOLE SPEAKER SYSTEM uses pair of electrostatic radiators for treble; lightweight woofer with high-compliance cone. Response 30 to beyond 20,000 cycles per second.—Neshaminy Electronic Corp., Furlong, Pa.

HI-FI CARTRIDGE, model M44. Non-scratch, retractile stylus tracks at 15° vertical angle, proposed as RIAA standard and used by major record companies to cut records. Reduces IM and harmonic distortion 72 to 90% compared to earlier versions. Frequency response flat 20-20,000 cycles; channel separation more than 25 db at 1,000 cycles.—Shure Brothers Inc., 222 Hartrey Ave., Evans-ton, Ill.

STEREORECORDER, Sony model 690, 4-track stereo and mono recorder. Vertical or horizontal operation, mike and line mixing, source and tape monitoring. 2 VU meters, sound-with-sound, sound-with-noise, separate monitor level controls, hysteresis-synchronous drive motor. 7½ and ¾ ips. Frequency response 30-18,000 at 7½ ips; signal-to-noise 50 db;Flutter and wow 0.17% or better at 7½ ips; bias frequency 100 kc; inputs: 2 high-level line, 2 mike or magnetic phono. Outputs: 600-ohm 6-dB lines. 600-ohm binaural earphone moni-tor.—Superscope Inc., Audio Electronics Div., 8150 Victory Blvd., Sun Valley, Calif.

TAPE RECORDER, Retro-matic 220, 2-speed quarter-track stereo recorder with 2-directional playback. Caption between 2 playback heads so tape pulled over head in forward or reverse playback. Automatic reverse playback controlled by timed silence-sensing device to detect end of program. Amplifier 6 watts per channel, 35-25,000 Hz.

FEBRUARY, 1964
This photo and caption (the price is an approximation) appeared in the September 1963 POPLULAR SCIENCE as part of an article entitled "The Low-Down on Hi-Fi Stereo." It is a picture of those high fidelity components which, according to a panel of experts, provide the best sound possible today.

The panel carefully considered return-for-the-money, but "where there was a more expensive component that produced a detectable improvement in sound, it was chosen."

These components are recognizable to hi-fi enthusiasts as the AR two-speed turntable, the Dynakit PAS-2 preamplifier, the Dynakit Stereo 70 dual power amplifier, and the AR-3 loudspeakers.

"They have been on demonstration as a system for several years at the AR Music Rooms, on the west balcony of Grand Central Terminal in New York City, and at 52 Brattle St., Cambridge, Mass. No sales are made there; you may ask questions if you like, but most people just come and listen."
at correct filament voltage from 1 to 12, all Hi-G-2 and Lo-G-2 picture tubes, including tubes that require 30 volts, 115" tubes and 12-, 22- and 23-in. tubes, also color.—BAK Manufacturing Co., 1801 W. Belle Plaine Ave., Chicago, Ill.

TEST OSCILLATORS. Metered outputs calibrated in either volts or ohms. Model 208A: monitor meter and output attenuator; 5-v to 2.5-volt signals into 600 ohms. Model 2084: meter and

at 0 to 5,000 ohms. Use as potentiometer or plate furnished with each control. Resistance values to 100 ohms. Model 411A: meter and output attenuator; 5-v to 2.5-volt signals into 600 ohms. Model 4114: meter and

attenuator calibrated in ohms, attenuator variable from 0 to 10 db in 1-db steps. Both oscillators’ frequency range 5 cycles to 560 kc; frequency stability usually better than 5 parts in 100; hum and noise less than 0.15%. At maximum output, distortion less than 1%.—Hewlett-Packard Co., 1501 Page Mill Rd., Palo Alto, Calif.

TUBULAR CAPACITORS, type DP119, Exceeds environmental requirements of MIL-C-14157. Operating temperature range 55 to 125°C, with no derating. Aluminum electrodes separated by Kraft-polyester-film dual dielectric. Sizes from 0.340 x 0.660 to 0.960 x 1.56 in. Capacitance range 0.001 to 0.047 mf at 200 to 600 vdc. Radial leads for printed boards and point-to-point wiring.—Cornell-Dubilier Electronics Div., 50 Paris St., Newark, N. J., N. J.

ULTRANIMIITE CAPACITORS. Sample kit USK-63: four UY02’s, two UY04’s, and two UY05’s, with capacitance ranges between 5 and 2,000 pf. Glass encapsulated, ceramic-fixed.

—Tied Electronics Corp., 15 Ave. at 62 St., Brooklyn 19, N. Y.

FLYBACKS. Exact replacements for recent Westinghouse TV’s. Part No. HO-366, exact replacement for 214 chassis and 20 models; Part No.

HO-369, 14 chassis and 72 models; Part No. HO-370, for 4 chassis and 28 models.—Stancor Electronics Inc., 3501 Addison St., Chicago, Ill.

UNIVERSAL 2-WATT WIREWOUND CONTROL. Model U93 shatter proof potentiometer with contact arm grounded to housing. Fiber adapter plate furnished with each control. Resistance values from 5 to 5,000 ohms. Use as potentiometer or

FEBRUARY, 1964

DOUBLE BONUS SALE

$25 00 WORTH OF

PLUS

FREE BONUS #1

FREE BONUS #2

FREE BONUS PAK

CHOOSE ANY $1.00 ITEM LISTED BELOW FREE

BOTH BONUS #1 AND #2 FREE WITH ANY $10.00 ORDER

Factory Tested

3 ONE WATT ZENERS, 6v, mild, axial leads...$1
154 WEST 14TH STREET, NEW YORK, N. Y. 10011

"TEXAS" 20W. TO CASE TRANSISTOR, 2N1099...$1

2 TOP HAT RECTIFIERS, stud, held...$1

10-WATT ZENER REGULATOR, silicide, axial...$1

2-amp SCR SILICON CIRCUIT, RECT. (unclamped...$1

2 N921 TRANSISTORS, miserr.-core, 2N722...$1

2 N333 TYPE POWER TRANSISTORS, TO92 case...$1

1 PHILCO 30-MC TRANSISTORS, TO1, pnp...$1

2 OASIS INST. SILICON TRANSISTORS, pnp, TO92...$1

1 CK72 TRANSISTORS, new aluminum case, pnp...$1

3 SILICON NPN 2N333, TRANSISTORS...$1

SUBMINIATURE 2N331 TRANSISTORS, df, pnp...$1

25 "EPOXY" SILICON DIODES, unclamped...$1

SWITCHING TRANSISTORS, npn, 0.5 to 1.5 victs...$1

7 CBS 35W PWR TRANSISTORS, 2N4084, pnp, stud...$1

15 PNP TRANSISTORS, axial, typ and case...$1

30 NPN TRANSISTORS, axial, typ, and case...$1

100-mc SB-100 TRANSISTORS, TO1 case...$1

1 CBS GERMANIUM DIODES, TO1 case...$1

2N3501 NPN SILICON TRANSISTORS, 1 watt...$1

2 CBS 30-WATT TRANSISTORS, npn, stud, 2N1200...$1

2 CBS 20-WATT TRANSISTORS, pnp, axial, 2N1301...$1

5 SUN BATTERIES TO 1½" dia., line sensitive $1

25 AMP SWITCHING TRANSISTOR, 700 case...$1

30 "KLP IN" DIODES, line INWRD, 2N287...$1

25 SEMI-KON-DUCTORS, transistors, DIODES, rect...$1

40-WATT TRANSISTORS, 2N711 type, 700 case...$1

15 AMP 1000pf AXIAL LEAD RECTIFIERS...$1

G GENERAL ELECTRIC 2N707 PNP TRANSISTORS...$1

4 GENERAL ELECTRIC 2N720 FP NPN TRANSISTORS...$1

HOFMAN SATELITE SILICON SILICON SUN CELL...$1

15 UPRIGHT SI0N MURR TRANSISTORS...$1

2 "MESA" 4-WATT TRANSISTORS, npn, silicon, 700...$1

4 TRANSISTOR CONTROLLED SILICON DIODES...$1

2-3-AMP SILICON STUD RECTIFIERS...$1

2 40-WATT POWER TRANSISTORS, threaded case...$1

500 MC "MESA" TRANSISTORS, TO1 case...$1

2-AMP SILICON POWER TRANSUDER RECTIFIER...$1

1 85 SILICON POWER PWR TRANSISTOR, 2N1210...$1

2-AMP SILICON POWER TRANSUDER RECTIFIER...$1

2 TRANSISTOR 1N429 ZENER REFERENCES...$1

1-150 WATT TRANSISTORS, 2N954, TO92 case...$1

1-300 PFIV SILICON STUD RECTIFIER...$1

2-355WATT TRANSISTOR FOR EQGT...$1

2-4N43 OUTPUT TRANSISTOR EQUALS, TO92 case...$1

2 130-MC. MESA TRANSISTORS, 2N9050, npn...$1

TRANSISTORIZED PHOTO CELL RELAY

2 TRANSISTORS...$1

WIRED...$1

PRINTED CIRCUIT...$1

ALARMS, ETC. $1

TERMS: send check, money order, Include postage & handling. 10% tax, if Ohio, on $1 and up. Allow 30 days for delivery.

POLY PAKS

P.O. BOX 4940
S. LYNNFIELD, MASS.
"PAK-KIND" OF THE WORLD

WANT BACK ISSUES?

Back numbers of most issues of RADIO-ELECTRONICS are available upon request: This year's issues $50 Last year's issues $55 Previous year or earlier issues $1.00...

FREE Catalog of the world's finest electronic gov't surplus bargains

HUNDREDS OF TOP QUALITY ITEMS — Receipts, Transistors, Microphones, Inverters, Power Supplies, Motors, Photo, Amateur, Radios, Transducers, Amplifiers, Headsets, Tuners, etc., including many surplus items. Write for Free Catalog—Dept. XE.

FREE Catalog of the world's finest electronic gov't surplus bargains

FREE Catalog of the world's finest electronic gov't surplus bargains

FAIR RADIO SALES

2133 ELIDA RD. BOX 1105 LIMA, OHIO
Fill in coupon for a FREE One Year Subscription to OLSON ELECTRONICS Fantastic Bargain Packed Catalog — Unheard of LOW, LOW, DISCOUNT PRICES on Brand Name Speakers, Changers, Tubes, Tools, Stereo Amps, Tuners, CB, Hi-Fi's, and thousands of other Electronic Bargains. Credit plan also available.

NAME

ADDRESS

CITY

ZONE

STATE

If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS, INC.
744 Forge Street, Akron, Ohio 44308

ZIP stands for the Post Office Department’s new Zoning Improvement Plan. When renewing your RADIO-ELECTRONICS subscription, or sending us a change of address, please let us know what your ZIP Code is. We’ll add it to your address mailing plate... and you’ll get speedier delivery service from the Post Office. By the way, when writing to us, address: RADIO-ELECTRONICS, 154 West 14th St., New York, N. Y. 10011.

ELECTRONICS Engineering-Technicians

Bachelor of Science Degree, 30 Months
Save Two Years’ Time

Radio-Television Plus Color Technician (12 Months)
Electronics Engineering Technology (15 Months)
Electronics Engineering (B.S. Degree)
Electrical Engineering (B.S. Degree)
Mechanical Engineering (B.S. Degree)
Civil Engineering (B.S. Degree)
Architecture (B.S. Degree)

Approved for Veterans
DAY AND EVENING CLASSES

Write for Catalog and Registration Application. New Term Starting Soon.

Your Name

Address

City

State

98 RADIO-ELECTRONICS
Five Named to Calif. Radio-TV Repair Agency

Sacramento, Calif.—California Gov. Edmund Brown has named five members to serve 4-year terms on a new board aimed at curbing abuses in TV and radio repair.

The men are Keith V. Anderson, president of Handy Andy TV & Appliances; Earl C. Loughboro, Ventura; Mrs. Ruben E. Jimenez, Manhattan Beach; Miles J. Rubin, Los Angeles, and Thomas Schneider, Berkeley.

The new bureau was created in connection with the state licensing law, which requires registration of all persons engaged in electronic repair, and prohibits fraudulent repair and advertising practices.

Small-Business Subcommittee Hears TV Technicians' Story

Service technicians, reported Frank Moch, executive director of the National Alliance of Television & Electronic Service Associations (NATESA), follow a traditional formula in charging for services rendered. Approximately 60% of the total bill for a house call is for labor, 40% for service. Speaking before the distribution subcommittee of the House Select Committee on Small Business (Rep. James Roosevelt, chairman), Moch declared that there is a "gross fallacy" in this formula, and pointed out that legitimate markups on parts used, as is normal practice in other service trades, are "absolutely essential to survival of the servicer."

Moch quoted the Government's own statistic that TV-radio service people average less than $90 for a week that often runs as much as 86 hours.

The cause of this "continuing strangling of the very essential radio-TV service industry," Moch said, is rooted in the practice of certain wholesalers of selling at wholesale prices to the general public, thus putting themselves in competition with retail dealers and servicers. He quoted from two letters he received from the Federal Trade Commission and the Justice Department in answer to queries made "so we might know where we stand." The FTC cited two cases in
which a wholesaler was defined as "one who sells to the trade for resale." Yet in a later communication, Moch pointed out, the FTC claimed that a wholesaler, selling direct to consumers at prices that his dealers cannot meet, "is simply making use of his lawful competitive advantage."

The result of such deals, Moch declared, is to make the servicer look like "a real crook when he asks for suggested list prices."

In closing, Moch said, "the proven successful system of specialization which made of this nation a merchandising marvel, cannot be sold down the river to the advantage of a few people with the buying power of many small businessmen."

The organization formed for the purpose is called TAME: Television Accessories Manufacturers Institute. (The E is there apparently just to make a word out of the abbreviation.)

TAME is alarmed by the "great

1964 ALLIED CATALOG

save most on:
- Stereo Hi-Fi
- Famous Knights-
 Picks
- Tape Recording
- Phonographs
- CB Radio
- Amateur Gear
- P.A. Systems
- Test Instruments
- Electronic Parts,
 Tubes, Transformers, Tools, Books

444 Value-Packed Pages. World's largest selection of top
money-saving buys, including exclusive products available
only from ALLIED. Get fastest service, easy-
payment terms, satisfaction guaranteed or your money back.

Use the Allied Credit Fund Plan

ALLIED RADIO

ALLIED RADIO, Dept. 2-E
100 N. Western Aven., Chicago 80, III.

☐ Send FREE 1964 ALLIED Catalog

Name
Address
City State

MARKET SCOOP COLUMN

☐ TRANSISTOR RADIO KIT
 10 sets of parts (send translations)

☐ 177 50 - WEBSTER DIAMOND 1-CARD

☐ 4 11-BM COMPUTER SECTIONS
 loaded with valuable parts

☐ WESTERN ELECTRIC Piece of 5
 Broadcast with valuable parts

☐ 2 PRINTED CIRCUIT BOARDS
 Parts over 100-count guaranteed

☐ HEARING Aid Amplifier
 10 kits 300, 500, etc., too low

☐ 50 0.6 E. Flightlight Bulbs
 0.60, 5.7 volts

☐ 50 0.5 RCA Phone plugs
 500 white Phenolic plugs

☐ 10 Sylvania 1U4 TUBES
 120 volts, 0.5 ma.

☐ 100 - ASSORTED TUBES
 Radio, Television and Industrial

☐ 3 TOP BRAND 35W4 TUBES
 Delco, 101 uses

☐ 5 - Sylvania 6AK4 TUBES

☐ 10 TUNGSON 5U4 TUBES

☐ 100 ASSORTED TUBES
 Radio, Television and Industrial

☐ 3 TV CARTWHEEL CONDENSERS
 450V, 1000 mfd.

☐ 10 Assorted TV (#10) +
 Magnet wiring harness

☐ 10 G. E. EQUIPMENT SECTION
 with sockets, condensers, etc.

☐ CHAPUT ZU DI MITZLA "JACK" POT
 If it is not completely satisfied

BROOKS RADIO & TV CORP., 84 Vesey St., Dept. A, New York 7, N. Y.

RADIO-ELECTRONICS

100
New high-frequency power transistor

A new "overlay" transistor for uhf space communications is producing as much as 5 watts of rf at 500 mc, according to RCA, maker of the new device.

The heart of this transistor is a tiny checkerboard structure, far smaller than the head of a pin. It consists of a mosaic made up of 156 individual high-frequency transistors, microscopic in size. These units are integrated by a new overlay structure and applied on a silicon wafer by a photo-etch process. The device, branded TA-2307, is made up of 156 individual high-frequency transistors, microscopic in size.

Quick Way To Get Started

For less than 20¢ a day you can easily, by following simple instructions—simplified by 45 years of success in home training—prepare you for top earnings in an booming field. Earl Reid of Thompson, Ohio said: "Made $510 in one month spare time. NRI course is priceless." At no extra charge you can even get all parts for your own Appliances, Free. For spot trouble spots, speed and checks your work.

Get your Free Book and Free Sample Lesson! Mail coupon below, letter or postcard, now.

IMMEDIATE DELIVERY . . . SCIENTIFIC LIGHT PACKING for safe delivery at minimum cost, HANDY WAY TO ORDER - Pencil mark items & enclose with check or money order, add extra for shipping, extra refunded with advantage to customer. Trespass sheet will be returned with order, as your packing slip.

SHOP FOR THE NEWEST AND THE LATEST IN ELECTRONICS IN RADIO-ELECTRONICS MARKET CENTER

ON PAGE 101
I offer. Send name on coupon now!

among the first to cash in on Coyne's pio-
age prepaid. No salesman will call. Be
ties will be mailed to you, Free and post-
two weeks in Chicago without extra cost.
you get Free Certificate entitling you to
small monthly checks. Upon graduation,
same equipment. Pay less — and pay in

NO "KITS" TO PAY FOR-LOW COST-SMALL PAYMENTS
make it easy to learn — and quick-in spare hours.
photos and diagrams with their simple explanations

The basic home training you receive is not an old radio
graduate work in Chicago is free of all tuition charges.

Shops. And, we have not added one cent to the low,
finish with practical, personal training in our Chicago

Send Name

I

DEPT. 24-H5 CHICAGO 7, ILLINOIS

COYNE ELECTRICAL SCHOOL

Send for Free Book and Offer of Two Weeks Personal
Training on Actual Projects in the

102

COYNE PIONEERS
NEW WAY TO LEARN
TELEVISION

Men who want to open their own Radio-TV
Service Businesses, or get a big pay job in
Electrical, now, for the first time, take their basic training at home in spare
hours — then finish with TWO WEEKS of
personal training on actual projects in the
great shops of Coyne in Chicago.
NO EXTRA COST FOR TUITION
You, Coyne again leads the way. For men who can’t
spend six months or longer in our resident school, we
now give you all your basic training with slides
and diagrams in spare hours at home. Then, let you
finish with practical, personal training in our Chicago
Shops. And, we have not added one cent to the low,

CORNELL ELECTRONICS CO.
4217 University Ave.,
San Diego, Calif. 92105 — Phone: AT 1-792

QUIETROLE
Company
Spartanburg, South Carolina

the oldest, most
widely proved and
sold radio and TV
lubricant

2 oz. bottle LIST $1.49
4 oz. bottle LIST $2.54
8 oz. bottle LIST $5.07
12 oz. spray can LIST $2.79
3 oz. spray can LIST $1.79

QUIETROLE is your guarantee of the most
effective, quick elenter of noisy radio and TV controls — the
quality product that is a top value.

QUIETROLE is available for experienced representation.

COYNE PIONEERS
NEW WAY TO LEARN
TELEVISION

hermetically sealed in a ceramic-metal
case. All leads are isolated from the
package.

The upper photo shows the com-
plete structure with leads bonded on.
The lower closeup shows clearly the in-
dividual emitter elements, each 0.5 mil
square.

Miniature rectifier assemblies
This series of encapsulated power
rectifiers includes full-wave bridge, volt-
age-doubler and full-wave center-tap
configurations. The size of the tiny
plastic-case units is indicated in the
photo.

These point up what seems to be a
trend in "B-plus" rectification for elec-
tronic equipment, from tubes to seleni-
ums to individual silicons to "prepack-
aged" rectifier circuits such as these
(See "Silicon bridge rectifiers," "New
Semiconductors and Tubes," November
1963, page 98).

The full-wave bridge and full-wave
center-tap units are available with piv’s
of 25 to 1,000 volts and 1-amp output
current ratings. The doublers have the
same voltage ratings with a maximum
current of 0.5 amp.

Selenium logic diodes
But... selenium is not yet dead.

General Electric has just announced two

low-cost selenium logic diode types for
computer applications. They are to be
priced as low as 5 cents apiece in quan-
tity orders.

The diodes are produced in two-
four- and six-cell packages, designed
flexibly so that the units can be used
common-cathode, common-anode or
individually.

Where’s the rub? Simply that these
diodes are not nearly as fast as the more
elegant and expensive germanium or
silicon types. Reverse recovery time is
1.75 μsec; forward turn-on time, 1.5
their capacitance is high and their working temperature range limited—from 30 to 85°C.

The two types are similar except that one will carry up to 20 ma maximum and has a capacitance of 100 to 225 pf, while the other can carry only 10 ma maximum but has 15 to 40 pf capacitance.

Applications include digital circuitry at 50 kc or less, voltage stabilizing circuits, diode capacitor memory for circuitry at 50 kc or less, voltage stabilizing capacitance.

That one will carry up to 20 ma max from 30 to 85°C. Their capacitance is high and their leads.

Devices in one TO-5 package with six lead transistors, the 2N2871 and the 2N2872. They have two completely independent transistors, the 2N2871 and the 2N2872.

Typical switching speed is high as 165°C. Collector junction temperature can rise as high as 165°C.

Maximum collector current per unit at 1 inc. Power dissipation is 400 mw. The collector junction temperature can rise as high as 165°C.

Nothing appears to have been sacrificed for any other low-level saturation switching. Nothing appears to have been sacrificed by bringing two units into one case. Maximum collector current per unit at 25°C ambient is 100 ma, and total power dissipation is 400 mw. The collector junction temperature can rise as high as 165°C.

Breakdown voltages between all three elements of each unit are 60 for the 2N2871 and 110 for the 2N2872. Typical switching speed is 1 mc.

Dual transistors

Just as dual (and eventually triple) tubes made the scene in the early 1930's, so now dual transistors are becoming more familiar.

Hughes Semiconductors has announced two dual p-n-p silicon alloy transistors, the 2N2871 and the 2N2872. They have two completely independent devices in one TO-5 package with six leads.

The transistors are designed for chopper service, dc-to-ac conversion, or

\[\text{INTEGRAL CONNECTIONS (BOTTOM VIEW)} \]

The 2N2871, 2N2872

50 Years Ago

In Gernsback Publications

HUGO GERNBSACK, Founder

Modem Electrics..1908
Wireless Association of America..................1908
Electrical Experimenter...............................1918
Radio News..1918
Science & Invention................................1920
Practical Electronics................................1921
Television..1927
Radio-Graph...1929
Short-Wave Craft.....................................1930
Television News..1931

Some larger libraries still have copies of Modern Electrics and the Electrical Experimenter on file for interested readers.

In February, 1914, Electrical Experimenter

An Efficient Loose Coupler, by Eugene Dynner.

FEBRUARY, 1964
Radio-Electronics
HIGH FIDELITY-
TAPE RECORDER ISSUE

The March issue of Radio-Electronics will feature TAPE RECORDERS and HIGH FIDELITY. This exciting issue will contain a complete editorial section on tape recorders and high fidelity units and components, including a directory of accessories for the audiophile.

Here are just some of the features which will be in the issue:

Humless preamp you can build Four transistors solve the problem of preamplification and treble and bass compensation without introducing any signal from the supply lines.

Choosing the right tape What are the differences between tapes? Do particular machines do better with one type than with another that has equally good specs? What about "white box" tapes?

Test Records and Tapes There are a number of these on the market at the moment. How do they differ? What special features are offered? Which tape or record for you?

Vertical Tracking Angle Distortion Is it important in stereo recording? Will the new 15° stylus angle reduce or eliminate it?

Accessories for the Audiophile A wide range of items, from head demagnetizers to stylus gauges, are available to make life easy for the audio enthusiast. Who makes them? Where can they be obtained? And are there any new widgets the audiophile has not heard of yet?

MARCH ISSUE (on sale February 18)
ode lead is broken and a vorn, set to read current, is connected from A to B in the schematic. All other connections are straight through from male to female of the adapter. I used a piece of red spaghetti on A to show polarity.

To investigate a VR tube, turn the set off, pull the regulator tube, and put in the proper test adapter with tube on top, connect current meter, turn set on and read milliamperes. A tube manual will give you the maximum and minimum currents.

A word of caution! Don’t turn the set on with just the adapter but no gas tube. Some of the components might be damaged by excessive voltage.—Fred H. Horan

Feet for Home-made Gear

The little plastic caps you push down on to spray stuff out of aerosol cans make excellent “mar-less” feet for home-built equipment. The holes in them, though they don’t go all the way through, are just about right for 4-40 or 4-36 screws, but should be reamed out far enough and deep enough to countersink the screw head.

Wood screws can be used, of course, if you want to attach the feet to a wood cabinet.—James Wallace

Flatiron Is Short Tester

When you service a TV set that blows the customer’s fuses, plug it into his ac line through an extension cord with a series-wired outlet, and plug his electric iron into that outlet. If there is a short, the iron will heat up to full temperature just as it would if plugged directly into a wall outlet.

If the TV set is OK, the iron will get only barely warm.

This idea may save you a fuse-replacing trip to the basement.—Charles Andrews

Jobs look for YOU in ELECTRONICS

Learn FAST—Earn FAST
MTI’S Unique, Exclusive SELECT-A-SKILL Training Helps You PICK YOUR JOB. STARTS YOU EARNING RIGHT OFF.

Want to take advantage of Today’s Biggest Opportunities? Ready to step into a well-paid job that can mean from 25% to 60% MORE PAY? Interested in being YOUR OWN BOSS?—in a profit—abe sparetime or fulltime business? All this IS WAITING FOR YOU in ELECTRONICS—the world’s most exciting and fastest moving industry.

Why You Can GET READY SO MUCH FASTER with MTI Training

With MTI’s unique Exclusive SELECT-A-SKILL methods you waste no time on training you may never need. You choose the field you want—INDUSTRIAL ELECTRONICS, COMMUNICATIONS ELECTRONICS or RADIO and TV SERVICING. MTI gives you the specific training in that special field right at home or through resident classes in Jacksonville, under the personal supervision of top-ranking experts. Best of all, you LEARN BY DOING—by actually working out experiments and building electronic equipment with MTI’s SEVEN BIG OUTFITS and KITS that DON’T COST YOU ONE SINGLE CENT EXTRA!

An Accredited Member of the NHSC

MTI has already proved the outstanding value of its SELECT-A-SKILL home study training through the success of thousands of men of all ages. Most of them had no previous experience. Few had more than a high school education—many hadn’t gone that far. The coupon brings you MTI’s big, fascinating book, “Pick Your New World of Opportunity in Electronics,” plus the unique Select-a-Skill Opportunity Finder that takes the guess work out of your future—gives all the facts about the kind of jobs open, salaries and what you need to step into YOUR BIG OPPORTUNITY in double-quick time. Mail coupon NOW!

MAIL COUPON TODAY for FREE BOOK and SELECT-A-SKILL OPPORTUNITY FINDER

The coupon brings you MTI’s big, fascinating book, “Pick Your New World of Opportunity in Electronics,” plus the unique Select-a-Skill Opportunity Finder that takes the guess work out of your future—gives all the facts about the kind of jobs open, salaries and what you need to step into YOUR BIG OPPORTUNITY in double-quick time. Mail coupon NOW!
POWERFUL — 5-watt, 5-channel crystal-controlled channel, 100% all-transistor, the Cadre series of transceivers can be used in any vehicle, boat or office. They deliver sharp, clear reception over the greatest transmission range possible in the 27 mc citizens band. Five fixed crystal-controlled channels spell accuracy, fast communication contact. Sensitive dual superheterodyne circuit responds to weak signals. Tuned ceramic filters increase selectivity. Reception is clear, free of noise — automatic noise limiter defeats ignition noise; adjustable squeal eliminates annoying background signals. Extended range AGC provides uniform audio output. Solid state circuitry throughout means no heat problems, no tubes to burn out, ability to withstand vibration and shock. Negligible current drain, compact size.

Four Cadre 5 watt, 5-channel models:

<table>
<thead>
<tr>
<th>CADRE</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>501-5</td>
<td>$187.50</td>
</tr>
<tr>
<td>501-10</td>
<td>$219.95</td>
</tr>
<tr>
<td>501-20</td>
<td>$297.00</td>
</tr>
<tr>
<td>501-50</td>
<td>$397.00</td>
</tr>
</tbody>
</table>

For the finest CB transmission anywhere, weigh less than 9 lbs. Cadre 501-1, $29.95, go anywhere — operate anywhere. An optional accessory, (Cadre 501-1 Portable Power Cord and Mounting Kit-ideal for mobile and portable use—operates from 12 volt auto battery or special battery pack. $187.50 NEW! Cadre 520—dc only with dc power cord and mounting kit—ideal for mobile and portable use—operates from 12 volt auto battery or special battery pack. $240.95 PORTABLE — Power is only a part of the story with Cadre transceivers. These units go anywhere — operate anywhere. An optional accessory, (Cadre 501-1 Portable Pack) adapts Cadre 510, 515 and 520 for field use. The Portable Pack is a lightweight case which contains rechargeable battery supply, power cord, amateur radio, component parts. These units can be used for base or mobile application as well as in the field. Cadre 5-watt models in the Portable Pack weigh less than 3 lbs. Cadre 500-1, $28.85, Cadre 500-2, $10.95.

For the finest CB transmission anywhere, refer to Cadre. For literature write: Cadre 5-WATT ALL TRANSISTOR CB RADIOS 2135-250 Industrial Park No. 34, Plainview, N. Y. 11803

1964 RADIO ELECTRONIC MASTER catalog, now available at electronic parts distributors. Lists more than 175,000 components and accessories, more than 1,600 pages, containing the thousands of items displayed. List of distributors offering the catalog is available from the publisher — United Electronics Inc., 645 Stewart Ave., Garden City, N.Y. 11533.

AVAILABLE ORGAN LITERATURE listed in 16-page booklet. Includes pamphlets, books, magazines and recordings on organs, organ music, history and building — Organ Literature Foundation, Nashua, N. H. 03063.

SUBMINIATURE SQUARE TRIMMING POTENTIOMETERS described in 2-page catalog sheet. Specs for precision and military applications; physical drawings and tolerances; charts for standard resistances, resolution and power ratings — Techno-Components Corp., 18232 Parthenia St., Northridge, Calif.

POWER AND HAND CRIMPING TOOLS literature gives specs and descriptive photos. Also describes interchangeable heads used on each model — Prosser Industries, Inc., 900 East Ball Rd., Anaheim, Calif.

TRIMMER AND PRECISION POTENTIOMETERS described in 2-page catalog. Includes quick reference index, illustrations, features, electrical mechanical and environmental specs — Dale Electronics, Inc., Columbus, Neb.

EMITTER BYPASS (Transistor) described in Bulletin 54-20, 2 pages. Ceramic Transistor shown in ordinary radio circuit. Circuit diagrams. Set of curves compares selectivity of i.f. stage employing emitter bypass vs conventional transistor bypass — Clevite Corp., Engine Products Div., 232 Forbes Road, Bedford, Ohio.

HIGH-SPEED SWITCHING RELAYS (Micro-Snap), typical circuit applications and specs described in 6-page Relay Catalog F-5174. Includes relay definitions, circuit diagrams — James Electric, Inc., Chicago, Ill.

ZENER-DIODE DATA REFERENCE CHART B-108 lists about 500 types with dissipation ratings from 500 mw to 50 watts and Zener potentials from 3 volts to 500 volts. Illustrated Outline drawings, specs — National Transistor, 500 Broadway, Lawerence, Mass.

LOW-FREQUENCY CRYSTALS described in 5-page catalog. Specifications and characteristics. Curves and data on series resistance, frequency vs temperature, and voltage vs frequency — V.R. Inc., Northvale, N. J.

TRANSFORMER CATALOG describes standard, MIL-spec and custom transformers. Complete listings of manufacturer’s line of 60- and 400-cycle units. Engineering data on filament, filament/plate and plate transformers, power supply filter reactors, military-standard audio and medium power/medium-power transformers and reactors — Ferranti Electric Inc., Light Equipment Div., Industrial Park No. 1, Plainview, N. Y.

INDIUM ANTIMONIDE INFRA-RED DETECTORS. 16-page brochure for users of single-crystal photocoaxial diodes. Provides optimum methods for measuring parameters considered most important when specifying InSb infrared detector characteristics. Also discusses fabrication of detectors — Philco Corp., Special Products Operations, Lansdale Div., Lansdale, Pa.

INTEGRATED CIRCUIT SCHEMATICS featured in 6-page catalog. Includes flip-flop, half-adder, half-subtractor, slicer, and dual full/multiplexer, etc. and video amplifiers, etc. More than 500 all together, including molecular circuits manufactured by Fairchild Semiconductor and several new ones by Micromolecular Div., Siliconix, Motorola, Semiconductor Specialties, Inc., Attn: Hal Choisser, 5700 W. North Ave., Chicago 39.

HI-FI SPEAKERS AND KITS covered in 24-page catalog No. 165-J. Headphones, private stereo listening, speaker components and system kits. Illustrations, specs — Jensen Manufacturing Co., 6601 So. Laramie Ave., Chicago, Ill. 60638.

AIRCRAFT BATTERIES described in 4-page brochure. Lists specs, special data about nickel-cadmium batteries, and military and FAA-approved batteries — Sonotone Corp., Battery Div., Elmhurst, N. Y.

1964 ELECTRONICS CATALOG includes industrial electronics, professional and consumer computer equipment, component parts from 187 manufacturers. 400 pp., full specs, illustrations — Harvey Radio Co., Inc., 104 W. 43 St., New York, N. Y. 10036.

HIGH-FREQUENCY VARIABLE TRANSFORMERS described in 28-page bulletin P465H. Ratings and complete technical data for variable transformers which deliver continuously adjustable voltage from 400-800-1,600 cycle ac power lines. — Superior Electric Co., Dept. P465H, Bristol, Conn.

MIKE, SPEAKER, ACCESSORIES CATALOG. 8 pages, specs, photos. Covers special speakers, drivers, radial projectors, sound columns, microphone, headsets, private stereo and hi-fi speakers, mike adapters and fittings etc. — Atlas Sound, 1419-21 59th St., Brooklyn 18, N. Y.

INCANDESCENT PILOT LAMPS described in spec sheet. Also data about manufacturer’s line of incandescent pilot lights. Explains reliability, endurance, contains charts, illustrations. Also selection of voltage variation on lamp life, light output and test results of resistance, insulation, etc. — Consolidated Electric Products Inc., 60 Boston St., Salem, Mass.

TRANSISTORIZED POWER CONVERTER described in spec sheet. Converts engine current of 15 to house current. Illustrations — Stanley S. Wyman, Route 2, Bennington, Vt.

GUIDE TO STEREO HIGH FIDELITY. 164-page catalog of hi-fi components and accessories, including PA, amateur radio and CB products, audio drivers, speaker components and system kits. Photos, specs — Airex Radio Corp., 85 Cortlandt St., New York, N. Y. 10007.

Any or all of these catalogs, bulletins, or periodicals are available to you on request direct to the manufacturer, whose addresses are listed at the end of each item. Use your letterhead on request. Do not use postcards. To facilitate identification, mention issue number and page. Radio-Electronics on which the item appears.

UNLESS OTHERWISE STATED, ALL ITEMS ARE IN STOCK. ALL LITERATURE OFFERS ARE VOID AFTER SIX MONTHS.
Radio-Electronics

TELEVISION CAMERA KIT

$120.00

This kit comes to you complete with high frequency, PPR, and power supply kit, all made in the U.S.A. A must for the amateur who wants to go into high frequency television. Complete separate, complete instructions included. F.O.B. NYC. Includes first class postage in U.S. to any city.

LOW-COST BUSINESS AIDS FOR RADIO-TV SERVICE

Order books, invoice forms, job ticket books, service call books, cash books and statement books, for use with your rubber stamp. Customer file systems, bookkeeping systems, many items. Write for FREE 32 PAGE CATALOG now.

FREE CATALOG!

140 PAGES • NEARLY 4000 BARGAINS

OPTICS • SCIENCE • MATH

Comprehensive, unabridged edition. New edition, updated, illustrated, full color throughout. Over 140 pages of technical literature, 4000 bargains, prices in U.S. dollars. Durable, beautiful hardbound cover. 1000 pages of technical literature, including books, tools and equipment, experiments, theocrystals, electronics, astronomy, mathematics, etc.

FLIP AND MAIL COUPON TODAY!

EDMUND SCIENTIFIC CO., Barrington, N. J.

NAME

ADDRESS

CITY STATE ZIP

FREE STEREO TAPES

RENT

STereo PARTIES

3000 FREESTEREO TAPES

SPECIAL OF THE MONTH:

FREE ESTIMATE AND MAILING PACK.

Order books, invoice forms, job ticket books, service call books, cash books and statement books, for use with your rubber stamp. Customer file systems, bookkeeping systems, many items. Write for FREE 32 PAGE CATALOG now.

EDMUND SCIENTIFIC CO., Barrington, N. J.

NAME

ADDRESS

CITY STATE ZIP

FREE STEREO TAPES

RENT

STereo PARTIES
WANTED

QUICK CASH...for Electronic EQUIPMENT, COMPONENTS, unused TUBES. Send list now! BARRY, 312 Broadway, New York, N. Y. 10012, 212 WALKER 5-7000.

MANUFACTURE Cleaners—Polishes—Anything. Formula catalog, 10¢. KEMERON, Park Ridge, III.

Audio—Hi-fi

HI-FI COMPONENTS. Tape Recorders at guaranteed "We Will Not Be Undersold" prices. All Brands in stock. 15 day money back guarantee. 2 year warranty. Write for quotation on your requirements. No Catalog. HI-FIDELITY CENTER—1797 1st Ave., N. Y. N. Y. 10028.

WRITE for highest discounts on components, recorders, tapes, from franchised distributors. Send for FREE, complete specials. CARSTON, 125-R East 86, N. Y. N. Y. 10028.

LP'S LIKE NEW Top Labels $1.00 for lists. Re- funded first record. RECORDS Hillburn P. O. Hillburn, N. Y. 15.

4/STereo TAPES—bought, sold, rented, traded! Bargain closeouts! Catalog/COLUMBIA, 9561 Foxbury, Rivera, Calif.

SALE ITEMS—tapes—recorders—component quotes. BAYLA, Box 131 RE, Wantagh, N. Y.

WRITE for LOWEST QUOTATIONS. Components, Reconditioned, Catalogs, HI-FIDELITY SUPPLY, 2817 SC Third, New York 55, N. Y.

RENT STEREO TAPES—over 2,500 different—all major labels—free brochure. STEREO-PARTIES, 811-RE, Centralia Ave., Inglewood, Calif.

Tape recorders, Hi-fi components, Sleep-learning equipment, Tapes, Unusual values, Free catalog. DRESSNER, 1523 Jericho Turnpike, New Hyde Park 5, N. Y.

RECORDS! Discounts on all LP's. Free details. CITALY, Box 460, New York 17, N. Y.

CUSTOM HI-FI SLIMLINE SPEAKERS Floor models from $32.95 (prepaid) RIDEL HOUSE, C & M RECONE CO., 18 E. Trenton Ave., Morrisville, Pa.

ATTACH ADAPTOR to conventional Stereo Amplifier. Add two speaker cabinets. Wireless natural sound reproduced with full incremental locations. Unit encapsulated. Guaranteed. $39.95 Prepaid USA. STEREOGRAPH Dept. R., P. O. Box 3009, Huntsville, Alabama 35811.

RATES—55¢ per word ... minimum 10 words. Payment must accompany all ads except those placed by accredited advertising agencies. Misleading or objectionable ads not accepted. Copy for April issue must reach us before February 14th. Figure one word of city (New York), name of state (New Jersey). Sets of characters as in key (741-RE), also abbreviations. All capitalized words not normally considered such count as two words (Hi-Fi). ZONE NUMBER FREE.

Electronics

TV CAMERA components at lowest prices. Send 10¢ for money-saving list. VANGUARD, 190-48 99th Ave., Hollis, N. Y. 11423.

10 RADIO, TELEVISION DIAGRAMS. Our choice, $1.00. Plus 20¢ stamps, DIAGRAMS, Box 1151 RE, Manchester, Conn. 06042.

ELECTRONIC MANUFACTURER, Tax Exempt, offers engineering and production at 60% MILES ENGINEERING, Las Marías, Puerto Rico.

BRAND NEW TUBES. World's lowest prices on Radio, TV—industrial—special purpose tubes. Write for free parts catalog. UNITED RADIO CO., Newark, N. J.

CONVERT any television to sensitive, big screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans $2. RELCO, Box 10563, Houston 18, Tex.

DIAGRAMS FOR REPAIRING RADIOS $1.00. Talk- every mail—keep $8 profit. Everything furnished. CARSTON, 1797 1st Ave., N. Y. N. Y. 10028.

PROFESSIONAL ELECTRONICS PROJECTS— Organs, Timers, Computers, etc.—$1 up. Cata- log free. PARKS, Box 1665, Seattle, Wash. 98125.

CB TRANSISTORS $6.00. Other bargains, send 10¢ for list. VANGUARD, 190-48 99th Ave., Hollis 23, N. Y.

DIAGRAMS: RADIO, $1.00 T.V., $2.25, SCHE- matics, 618 4th St., Newark, N. J. 07107.

General

GIANT SURPLUS BARGAIN PACKED CATA- log. Featuring all STANDARD BRAND TUBES all American! We serve professional servicemen, hobbyists, experimenters, engineers, technicians. WHY PAY MORE? ZALYTRON TUBE CORP., 461 Jericho Turnpike, Mineola, N. Y.

BEFORE you Buy Receiving Tubes, Test Equip- ment, Hi-Fi Components, Kits, Parts, etc. ... send for your Giant Free Zaltrion Current Cata- log, featuring all STANDARD BRAND TUBES all Brand New Premium Individually Boxed. One Year Guarantee—all at BIGGEST DISCOUNTS in America! We serve professional servicemen, hobbyists, experimenters, engineers, tech- nicians. WHY PAY MORE? ZALYTRON TUBE CORP., 461 Jericho Turnpike, Mineola, N. Y.

SPEAKER RECONING. Satisfaction Guaranteed. C & M RECONE CO., 18 E. Trenton Ave., Mor- risville, Pa.

METERS—MULTIMETERS REPAIRED and cali- brated. BIGELOW ELECTROLOGY, Box 71-B, Bluffton, Ohio.

TRANSISTORIZED products dealers catalog. $1 INTERMARKET, CPO 1717, Tokyo, Japan.

ALL MAKES OF ELECTRICAL INSTRUMENTS ANTI-STATIC equipment repaired. HAZELTON INSTRUMENT CO., 128 Liberty St., New York, N. Y.
Students from 50 states, many foreign countries. Outstanding equipment.

Electronic Technician

A.S. Degree - 2 years

Electronics Engineer

B.S. Degree

Evening Courses Available

You can earn an A.S.E.E. degree at home. College level HOME STUDY courses taught so you can under-

EARN Electronics DEGREE

You can earn an A.S.E.E. degree at home. College level HOME STUDY courses taught so you can under-

B. S. Degree in 36 months

Small professionally-oriented college. Four-quarter year permits completion of B. S. Degree in three years. Summer attendance optional. Engineering (electrical of power option). Mechanical, Civil, Chemical, Aeronautical, Business Administration.

TRI-STATE COLLEGE

2424 College Avenue • Angola, Indiana

FEBRUARY, 1964

Vectors and basic field equations, for engineering students. Mathematical analysis of transmission lines, waveguides, antennas.

Practical information on setting up and using test equipment. Covers a wide range of measurements including amplifiers, transistor characteristics, bridges, etc.

UNDERSTANDING TRANSISTORS AND HOW TO USE THEM. Allied Radio Corp., Chicago 80, III. 5½ x 8½ in., 96 pp. Paper, $.50.

A practical book for beginners. How to build your own radio, wireless broadcaster, capacity relay, many other devices.
NEW 1964 GIANT CATALOG

100's of new items listed for first time

100's of pages packed with savings

Satisfaction GUARANTEED or your money back!

RUSH COUPON TODAY

FOR 37 YEARS THE OUTSTANDING
MONEY SAVING
BUYING GUIDE FOR:

- Stereo & Hi-Fi Systems and Components
- Tape Recorders
- Electronic Parts, Tubes, Books, Phonos & Records
- Ham Gear
- Test Instruments and Kits
- Cameras and Film
- Public Address
- Citizens Band
- Translator
- FM/AM Radios

BURSTEIN-APPLEBEE CO. Dept. RE, 1012-14 McGee St., Kansas City 6, Mo.

RUSH me the FREE 1964 B-A Catalog.

NAME __

ADDRESS __

CITY __________________________ STATE ______

COMING NEXT MONTH:

Radio-Electronics
HIGH FIDELITY
TAPE RECORDER ISSUE

MARCH ISSUE (SEE PAGE 104)
These superior quality electrolytic capacitors are made of 99.99% pure aluminum foil... designed to operate at 85°C, and withstand high ripple and surge voltages. All are made and tested to EIA RS-154. Premium grade materials and construction make Arcolytics last longer—on the shelf... and in the set! Over 1400 values to meet all requirements for tubular and twist-mount electrolytics—single, dual, triple or quad-ripple capacitance in voltage combinations for radio, tv and industrial electronics. All unconditionally guaranteed! No extra charge for this high quality. You can get your Arcolytics in any quantity within 24 hours from coast to coast. They're stocked in depth at Arco's reserve warehouses serving authorized Arco distributors throughout the nation. Call your Arco distributor today!

ARCO electronics inc.

Community Drive, Great Neck, New York

Branches: Dallas 7 • Los Angeles 35
It Depends on a Leakproof Stem Seal

The slightest leakage of air weakens the high vacuum of a TV picture tube...resulting in a costly callback and a dissatisfied customer for you. This is why RCA takes extra precautions to maintain the vacuum in Silverama picture tubes.

Potential trouble spots are the glass-to-metal lead-wire seals in the electron-gun stem assembly (below). At RCA, stem assemblies are batch tested for leakage in a supersensitive leak detector before they go into electron guns.

So sensitive is this detector that it can pinpoint a leak that would not affect tube performance for years...a leak so tiny that no other inspection method could hope to find it. Yet the slightest sign of a leak is cause for rejection of a stem. This extra precaution is one more example of the care that goes into every phase of Silverama manufacture...and one more reason why RCA Silverama should be your first choice in replacement picture tubes.

Silverama is made with an all-new electron gun, finest parts and materials, and a glass envelope that has been thoroughly cleaned and inspected prior to re-use.

RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N.J.

A GOOD TV PICTURE STARTS HERE

Stem assemblies are tested on a special high-vacuum leak detector. Detector is a helium mass-spectrometer, detecting passage of helium "tracer" gas through any of the glass-to-metal seals. A stem assembly passing this rigorous test is ready to become a vital part of an RCA Silverama® Picture Tube.