Get the Best from Ceramic Cartridges

Garage-Door Opener Uses Tunnel Diode

How to Scribble a Circuit

Silent Listening For Your TV

Trans-Switch Doubles Your Scope's Value

Build This Base-Dip Oscillator

See page 4
Facts Make Features

1. 200,000 ohms per volt D.C. for greater accuracy on high resistance circuits. 20,000 ohms per volt A.C.

2. 5µA suspension meter movement. No pivots, bearings, hairsprings, or rolling friction. Extremely RUGGED. Greater sensitivity and repeatability.

3. 62 ranges, usable with frequencies through 100 Kc. Temperature compensated. 1½% D.C. accuracy, 3% A.C.

Low voltage ranges and high input impedance make the 630-NS especially useful in transistor circuit measurement and testing. Input impedance, at 55 volts D.C. and above, is higher than most vacuum tube voltmeters.

The unit is designed to withstand overloads and offers greater reading accuracy. Reads from 0.1µa on 5µa range. Special resistors are rigidly mounted and directly connected to the switch to form a simplified unit. Carrying cases with stands are priced from $9.90.

Triplet Electrical Instrument Company, Bluffton, Ohio

Model 630-NS VOLT-OHM-MICROAMMETER

New and the First

$99.50

Suggested U.S.A. user net

62 Ranges

D.C. Volts
0-0.6-3-12-60-300
1000 at 100,000 ohms/volt.
0-0.3-1.5-6-30-150
600 at 200,000 ohms/volt.
0-0.150 at 60µa

A.C. Volts
0-3.12-60-300-1200 at
10,000 ohms volt.
0.15-6-30-150-600 at
20,000 ohms volt.

DB
-20 to 77 in 10 ranges.

D.C. Microamperes
0.6 at 300 MV.
0.6-60 at 150 MV.
0.12 at 300 MV.

D.C. Milliamperes
0.6-60 600 at 150 MV.
0.12-120 at 300 MV.

D.C. Amperes
0.6 at 150 MV.
0.12 at 300 MV.

Ohms
0-1K-10K (4.4-44-440
at center scale)

Megohms
0-10-100 (4.400-44.000-
440,000 ohms center scale)

Output: Condenser in series with A.C. Volt ranges.

The World's Most Complete Line of V-O-M's. Available from your Triplet Distributor's Stock

www.americanradiohistory.com
Now **NINE WAYS** to Train at Home in ELECTRONICS

1 INDUSTRIAL-MILITARY ELECTRONICS
Learn Principles, Practices, Maintenance of Electronic equipment used today in business, industry, defense. Covers Electronic controls and measurement, computers, servos, telemetry, multiplexing, many other subjects.

2 RADIO AND TELEVISION SERVICING
Learn to service and maintain AM-FM Radios, TV sets, Stereo Hi-fi, PA systems, etc. A profitable, interesting field for part-time or full-time business of your own.

3 FCC LICENSE
Prepares you quickly for First Class License exams. Every communications station must have one or more FCC-licensed operators. Also valuable for Service Technicians. You train at home.

4 COMPLETE COMMUNICATIONS
A comprehensive training course for men seeking careers operating and maintaining transmitting equipment in Radio-TV Broadcasting or mobile, marine, aviation communications. Prepares you for FCC License.

5 MOBILE COMMUNICATIONS
Training in installation and maintenance of mobile equipment and associated base stations like those used by fire and police, taxi companies, etc. Prepares you for First Class FCC License exams.

6 MARINE COMMUNICATIONS
Shipboard transmitting equipment, direction finders, depth indicators, radar are all covered in this course. You prepare for your First Class Radiotelephone License with Radar Endorsement.

7 AVIATION COMMUNICATIONS
For men who want careers working with and around planes. Covers direction finders, ranges, markers, loran, shoran, radar, landing systems, transmitters. Prepares you for FCC License exams.

8 MATH FOR ELECTRONICS
A short course package of five carefully prepared texts that take you from basic arithmetic review through graphs and electronic formulas. Quick, complete and low in cost.

9 BASIC ELECTRONICS
An abbreviated, 26-lesson course covering Automation-Electronics, Radio-Television language, components and principles. Ideal for salesmen, hobbyists and others who find it valuable to be familiar with the fundamentals of this fast-growing industry.

Pick Your Field and Train with the Leader nri

Perhaps you're working in Electronics now and feel the need for an FCC License or more math... perhaps you're a hobbyist trying to decide between a career in Automation or Communications... perhaps you're a beginner who left school early, but are thinking about the career possibilities of building a spare-time or full-time business of your own servicing radios and television sets. Worker, hobbyist or beginner... whatever your desire, there's Electronics training for everyone among the nine specialized courses NRI now offers. You can choose "short courses," specialized training in fields of Communication or intensive training for career positions.

Special Equipment Included

Specializing in Electronics makes it possible for NRI to provide a variety of courses to fit the needs of most any ambitious man; courses built around NRI's time-proved "learn-by-practice" method that makes learning easier, faster, better. Most NRI courses include—at no extra cost—special training equipment to give shop and laboratory experience in your home. And all equipment is yours to keep. As the oldest and largest school of its kind, NRI has nearly half a century of experience training tens of thousands of men of all ages and varying educations for successful careers in Electronics. Check the course of most interest to you and mail the coupon now. Find out about Electronics opportunities, NRI training, NRI trial plan, convenient terms. NRI TRAINING, Washington 16, D.C.

Mail Coupon TODAY

- NRI Training
- Washington 16, D.C.

Please send me 64-page Catalog on training at home with NRI. I am interested in the course checked below. (No salesman will call.)

- [] Industrial Electronics
- [] Complete Communications
- [] Radio-TV Servicing
- [] Mobile Communications
- [] FCC License
- [] Marine Communications
- [] Math for Electronics
- [] Aviation Communications
- [] Basic Electronics

Name _______________________________ Age ______
Address __
City ___________________ Zone ______ State ________

NRI Training

www.americanradiohistory.com
Over 55 Years of Electronic Publishing

EDITOR-IN-CHIEF AND PUBLISHER
Hugo Gernsback

EXECUTIVE EDITOR
M. Harvey Gernsback

MANAGING EDITOR
Fred Shunaman

TECHNICAL EDITOR
Robert F. Scott, W2PWC

ASSOCIATE EDITOR
Peter E. Sutheim

EDITORIAL ASSOCIATE
J. Owen

EDITORIAL ASSISTANT
Ramona Goldman

SERVICE EDITOR
Jack Darr

TECH. ILLUSTRATION DIRECTOR
Wm. Lyon McLaughlin

ART ASSOCIATE
Fred Neinast

DIRECTOR OF PRODUCTION
Elizabeth Stalcup

DIRECTOR, ADVERTISING SALES
Frank T. Baker

EASTERN SALES MANAGER
John J. Lanson

CIRCULATION MANAGER
G. Aliquo

DIRECTOR, NEWSSTAND SALES
Joseph I. Bund

---on the cover---
(Story on page 34)
Exterior and interior views of a home built base-dip oscil-
lator. Its unique tuning sys-
tem covers 2.8 to 31 mc with
a single coil.
Color original by
Habershaw Studios

Gernsback Publications, Inc.
EXECUTIVE, EDITORIAL, ADVERTISING OFFICES
154 W. 14 St., New York 11, N.Y.
Telephone AL 3-7755

CHAIRMAN OF THE BOARD
Hugo Gernsback

PRESIDENT
M. Harvey Gernsback

SECRETARY
G. Aliquo

Radio-Electronics is indexed in
Applied Science & Technology Index
(formerly Industrial Arts Index)

 trademarks registered U. S. Pat. Office

--- semi-annual index ---
72 Index for January—June 1963, inclusive

--- editorial ---
Hugo Gernsback 23 After the Computer, What?

--- audio-high fidelity-stereo ---
Herman Burstein 28 Get the Best From Those Ceramic Cartridges
That can be quite a bit
Robert F. Scott 40 Music All Over the House—Without Wires
Details on the G-E HMDS and Westinghouse Mobil
Sound distribution systems
Jack Darr 62 Using Shielded Cables
70 Column Speaker Enclosure
Building a 36-inch, 5-speaker unit

--- electronics ---
Rufus P. Turner 32 How to Scribble a Circuit
All you need is a pencil and paper
Richard H. Dorf 39 Those Crazy Values
43 What's Your EQ?
Dellroye D. Darling 48 What's Different About Industrial Electronics
Nothing that should throw a radio-TV technician

--- general ---
27 Blind Learn Electronics in Special School
Glen F. Stilwell 31 Soldering Simplified
Gordon E. Kaye 46 Which Dry Battery for You?
52 Electronics Teaching Aids

--- radio ---
John F. Cleary and Erich Gottlieb 37 Tunnel-Diode Remote-Control Transmitter
Open your garage door with this rig
Robert F. Scott 50 New Accessories Improve Citizens Band Operation
Eliminate noise and transmission line losses at your
CB station

--- television ---
Edward Finkel 24 Log Periodic V
A new approach to broad-band TV antennas
Sam Hamilton 42 Silent TV Listening
No sound from the TV but you can hear every word
Jack Darr 53 Service Clinic Diagnosis
Logic in TV servicing

--- test instruments ---
Robert F. Sanford 34 Base-Dip Oscillator (Cover Feature)
Continuous reading from 2.8 to 31 megacycles
Dave Stone 44 Trans-Switch—Electronic Scope Switch
All-transistor unit increases the value of your scope
66 Cantenna Dummy Load and Transistor Dc Multimeter
Equipment Report: HN-31 and Motorola S1052B

--- the departments ---
43, 96 Corrections
18 Correspondence
101 New Books
95 New Literature
99 New Patents
78 New Products
96 New Semiconductors & Tubes
6 News Briefs
97 Noteworthy Circuits
90 Technicians’ News
86 Technotes
93 Try This One
A NEW WORLD OF OPPORTUNITY AWAITS YOU WITH
N.T.S. ALL-PHASE HOME TRAINING IN ELECTRONICS

You can install and maintain electronic circuitry in missiles and rockets...specialize in micro-waves, radar and sonar.

You can succeed in TV-Radio Communications...prepare for F.C.C. License, service advanced satellites for industry and defense.

You can service and repair the electronic "brains" of industry—computers, data processing, and other automation equipment.

You can become a highly paid TV-Radio Technician, an electronics field engineer, or succeed in your own sales & service business.

The N.T.S. Master Course enables you to do more, earn more in ELECTRONICS-TELEVISION-RADIO

Yet N.T.S. Training costs no more than other courses far less complete

There's a good reason why N.T.S. Master-Training opens a wide new world of opportunity for you in Electronics, Television, Radio.

Everything you learn, from start to finish, can be applied directly to all phases of the Electronics industry.

As a result, the N.T.S.-Trained Technician can move ahead faster, in any direction—from TV-Servicing to Radio Communications to Space-Missile Electronics and Automation for industry and defense. You can go anywhere pay is highest and opportunity unlimited.

Electronic circuitry, for example, is one of science's miracles that is basic to the entire field of Electronics. It is used in satellites, computers and space capsules as well as in today's television sets and high fidelity equipment. N.T.S. shows you how to service and repair electronic circuitry for all electronic applications.

You work on many practical job projects. You build a short-wave, long-wave superhet receiver, plus a large-screen television set from the ground up. N.T.S. training kits contain all the parts you need...at no extra cost. (See box at right.) You also receive a professional Multitester to use during training and on the job.

ONE LOW TUITION. You need training related to all phases of Electronics. Industry demands it. Only N.T.S. provides it...in ONE Master Course at ONE low tuition.

RESIDENT TRAINING AT LOS ANGELES

If you wish to take your Electronics-TV-Radio training in our famous Resident School in Los Angeles — the oldest and largest school of its kind in the world—write for special Resident School catalog and information, or check coupon.

You ENROLL BY MAIL AND SAVE MONEY. No salesmen means lower costs for us, lower tuition for you.

START NOW. A whole new world of opportunity awaits the man with Electronic Home-Training from National Technical Schools—a recognized leader in technical training for 58 years.

MAIL COUPON NOW FOR FREE BOOK AND ACTUAL LESSON!

NO OBLIGATION.
NO SALESMAN WILL CALL.

NATIONAL TECHNICAL SCHOOLS
WORLD-WIDE TRAINING SINCE 1905

National Technical Schools, Dept. RG-63
4000 S. Figueroa St., Los Angeles 37, Calif.

Please Rush FREE Electronics-TV-Radio "Opportunity" Book and Actual Lesson. No Salesman Will Call.

Name ________________ Age ________________

Address ____________________________

City __________________ Zone ______ State ________________

□ Check if interested ONLY in Resident Training at L.A.

High school home study courses also offered. Check for free catalog. []

RADIO-ELECTRONICS published monthly at Concord, N. H., by Gernsback Publications Inc. Second-class postage paid at Concord, N. H. Copyright © 1963, by Gernsback Publications Inc. All rights reserved under Universal, International and Pan-American Copyright Conventions. SUBSCRIPTION RATES: U.S. and possessions: Canada: $5 for 1, $6 for 2, $12 for 3 years. Pan-American countries: $6 for 1, $11 for 2, $15 for 3 years. Other countries: $6.50 for 1, $12 for 2, $16.50 for 3 years. Postmaster send form 3579 to 154 W. 14th St., New York 11, N. Y.
Electronic Frog's Eye Is New Computer Device

An electronic "frog's eye" model may be the forerunner of a new generation of information processing devices, states Donald J. Parker, manager of RCA's Applied Research activities. The model consists of six panels of electronic circuitry, each 40 inches square and 4 1/2 inches thick, representing the six layers of the frog's retina. It is the first computerlike device, states Parker, that abstracts features from its environment by parallel instead of serial processing. Former devices operated in the sequential, or scanning, method. The cells which make up the "frog's eye" are in parallel, and if some of them become inoperative, the effectiveness of the device is only slightly reduced. In a serial type device, the breakdown of one cell might well put the whole equipment out of action.

An important feature of the real frog's eye is that it screens out things not interesting to the frog before they reach the brain. He may see a fly moving toward him or a sudden shadow which might be a hawk swooping down toward him, but he never sees a fly moving away from him, and is not affected by a shadow caused by a cloud moving across the sun. These features could well be applied to certain machines, such as those designed to read radar screens. They would be able to select only targets moving in a certain direction, for example.

Similarly, the frog's eye model abstracts the features from the scene before it, beginning with the 1,600 photocells on the first layer, which is a contrast detector, and screening them through the succeeding five layers, to display the final results on a panel of colored lights. Red lights show the edges the frog sees; green, the moving convexities or corners which the eye decided were going in the right direction at the right speed to bring to the frog's attention. Yellow lights show the leading and trailing edges of selected objects, and white lights display the effects of general dimming caused by things like a bird swooping down to gulp the frog.

Satellites May Track Animals

Tiny radios, attached to a goose's chest, a deer's neck or the wing of an albatross, tell scientists where the creatures migrate. Describe their route, speed and altitude, tell how rapidly their wings beat and how fast they breathe on their way.

These transmitters have been used for several years, says Prof. Dwain W. Warner of the Museum of Natural History at the University of Minnesota. They weigh less than 1 ounce and do not disturb the animal. But these studies, Professor Warner points out, must end when the scientist goes home for the night. Next year, if an animal satellite proposal now under government consideration is approved, the tracking system may work this way:

Six or more animals of a herd or flock starting to migrate would each be furnished with its own transmitter and power supply. The group would have its own radio frequency, and about every 103 minutes its signals would reach an 18,000-mile-per-hour satellite, in orbit over the North and South poles. Signals from the satellite will be relayed to a ground station and recorded on tape.

Twenty-four such receiving stations, says Professor Warner, could cover the earth, scanning 1,600 miles on each orbit and keeping round-the-clock vigil on animal travel.

New Color Tube?

A patent has been issued for a new type of beam-indexing color tube. It differs from Philco's "Apple" in that it uses X-rays as the index beam. The color strips appear to be laid down the same way as in the Philco Apple.

Patentee is David M. Goodman, senior research scientist at NYU Engineering Research Div. He claims that his tube can be produced at about half the price of the present shadow-mask tube for equal brightness and resolution, and that though receiver circuitry might be more expensive, costs would not be excessive and could be reduced rapidly with increased production.

TV Station Is All-Robot

WTEV Providence, on the air since January of this year, is fully...
3 More Big Training Advantages

DeVry Tech Exclusive!

Now Prepare for GOOD JOB OPPORTUNITIES IN ELECTRONICS Faster—with

1. METER—Transistorized, Portable AC-DC Multimeter
2. SCOPE—5-inch New Streamlined Commercial-Type Oscilloscope
3. ELECTRO-LAB™—For 3-Dimension Circuit Building

To help you get ready FAST— and THROUGHLY— for good-paying job opportunities in the fast growing Electronics field, DeVry Technical Institute now presents the newest and finest training advantages in its over 30 years of experience. Now... AT HOME... in your spare time, you prepare with “industry-type” home laboratory equipment. To provide real PRACTICAL EXPERIENCE, you build a quality Transistorized Meter and a 5-inch industrial-type Oscilloscope... work with small, 3-dimensional circuits on DeVry’s new Design Console... use highly instructive home training movies... and follow up-to-date lessons with many time-saving fold-out diagram sheets.

Little wonder DeVry men qualify for such fine opportunities in Space-Missile Electronics, Automation, Computer Work, Radio-TV, Industrial Controls, and other fields.

You learn PRACTICAL techniques important in today’s Space Age industry, because you build many compact circuits with the streamlined Electro-Lab, using exclusive solderless “modular connectors.” You perform over 300 construction and test procedures in all! Your self-built test equipment has function-grouped controls, meter scales color-keyed to the panel markings—much like instruments used on today’s jobs. What’s so important, the home laboratory and the test equipment are YOURS TO KEEP!

MAIL COUPON FOR FREE FACTS

DESVRY TECHNICAL INSTITUTE
3141 Belmont Ave., Chicago 41, Ill., Dept. RE-6-T
Please give me your two free booklets, "Pocket Guide to Real Earnings" and "Electronics in Space Travel"; also include details on how to prepare for a career in Electronics. I am interested in the following opportunity fields (check one or more):

☐ Space & Missile Electronics ☐ Communications
☐ Television and Radio ☐ Computers
☐ Microwaves ☐ Broadcasting
☐ Radar ☐ Industrial Electronics
☐ Automation Electronics

Name_________________________ Age__________
Address_______________________

City___________________________ State_______
☐ Check here if you face military service.

Canadian residents: Write DeVry Tech of Canada, Ltd., 970 Lawrence Avenue West, Toronto 19, Ontario.

JUNE, 1963

www.americanradiohistory.com
Available from all authorized ARCO distributors

Electrolytic Capacitor

CTM 3410

Available from all authorized ARCO distributors

Electrolytic Capacitor

CTM 3410

ARCO Electronics, Inc.
Made in USA

1401 Values... The largest selection of exact replacement twist-mount & tubular electrolytics

- 99.99% high purity aluminum foil electrolytics at no extra cost!
- Choose from stock any single, dual, triple or quadruple capacitance - voltage combination for replacement in television, radio, and other electronic equipment
- Made to withstand high ripple and high surge voltages
- Designed for 85°C high temperature operation
- Greater shelf and operating life because only premium grade ingredients are used
- Built and tested to meet EIA Specification RS-154
- Individually packaged with mounting plates for your convenience
- Unconditionally Guaranteed.

ARCO Electronics Inc.

IEEE Convention Meets

The first IEEE International Convention, held in New York City during the last week of March, was attended by 70,432 engineers and scientists from more than 40 countries.

The convention was actually a continuation of the former IRE Annual Convention, since the AIEEE (American Institute of Electrical Engineers) had held their annual winter meeting in January. Next year's convention will be a truly combined effort of the two organizations.

Subjects presented in 250 papers at 54 sessions ranged from a selection of communications frequencies for use on the moon to the use of ultrasonics in diagnosing heart trouble.

 Probably the chief subject was the comparatively new laser, to which a special evening panel session was devoted. Computers and computer science ran it a close second, while communications, once practically the only subject discussed at the annual conventions, was dealt with in a few scattered sessions.

Electro-optical Amplifier

A new transistorlike device, in which signals are carried by light from the input to the output circuit, was revealed by International Business Machines Corp.

The new optical transistor is made of gallium arsenide. Some of the energy of the incoming electric signal is converted into light, passing through the base, or middle section, of the device to the collector, where the light is absorbed and frees electrons which go into the external circuit as output current. The gallium arsenide of which the base is composed is translucent to light of the frequency developed in this device.

The advantage of the optical transistor is that light moves much faster than electric charges to the base. For high-frequency operation (Continued on page 12)
Now is the time to come to the aid of your party!

The more you enjoy outdoor living, the more you'll enjoy the Electro-Voice Musicaster—world's finest weather-proof loudspeaker system.

A Musicaster will add to your fun wherever you are. Whether you're dancing under the stars, swimming in the pool, or relaxing around the barbecue in the backyard, music from a Musicaster adds the pleasure of outdoor high-fidelity music from your present Hi-Fi system, radio, phonograph or TV set.

It's easy to connect for permanent use outside, or you can simply move your Musicaster into the recreation room for year-'round pleasure.

Designed for indoor-outdoor use, the E-V Musicaster obtains high-fidelity response from a heavy-duty weather-proofed speaker mounted in a rugged aluminum die-cast enclosure. This combination insures long-lasting satisfaction under all conditions.

Now is the time to come to the aid of your outdoor party... with an Electro-Voice Musicaster. It's easy to install... send for full information and the name of your nearest E-V sound specialist.

ELECTRO-VOICE High-Fidelity Speaker System... it's Weather-proofed!

P.S. If your school, church or club needs a tough, high-quality, all-purpose speaker, the smart choice is an Electro-Voice Musicaster.

SPECIFICATIONS:
Frequency Response: 60-13,000 cps
Dispersion: 120°
Power Handling Capacity: 30 watts program
Impedance: 8 ohms
Size: 21½" H x 21½" W x 8½" D
Weight: 31 lbs. net
Price: $54.00
Musicaster II available with additional tweeter to extend response to 18,000 cps. Price: $75.00

Electro-Voice, Inc. Dept. 634E
Buchanan, Michigan
Please send me your booklet, "How to Enjoy High-Fidelity Outdoors."

Name
Address
City
State

www.americanradiohistory.com
BIG-SYSTEM MUSCLE...

SMALL-SYSTEM PRICE!

NEW JERROLD Challenger
TV DISTRIBUTION SYSTEM
ENGINEERED FOR THE NEW COLOR-TV ERA

- Designed for TV shops, dealers' showrooms, small apartments and motels
- Feeds up to 32 TV and FM sets
- No controls or adjustments
- New "Quick-Disconnect" plug-in outlets

Here's the distribution system to sell to TV and FM dealers for their color-TV showrooms... perfect too for the small apartment building or motel that's been needing an antenna system but couldn't afford one before. It's also ideal for your own service shop.

The JERROLD "Challenger" Amplifier, Model ACL-200, delivers 20db minimum gain over the low band, 19db over the high band. Flat response—unique in a low-price amplifier, but necessary for good color TV. Easy to install, no controls to adjust. Famous JERROLD quality is built in to stay.

Model ACL-200, $38.97 net

See your JERROLD distributor or write Jerrold Electronics, Distributor Sales Division, Philadelphia 32, Pa.
What Job Do You Want In Electronics?

Whatever it is, Cleveland Institute can help you get it!

Yes, whatever your goal is in Electronics, there's a Cleveland Institute program to help you reach it quickly and economically. Here's how: Each CIE program concentrates on electronics theory as applied to the solution of practical, everyday problems. Result... as a Cleveland Institute student you will not only learn electronics but develop the ability to use it! This ability makes you eligible for any of the thousands of challenging, high-paying jobs in Electronics. Before you turn this page, select a program to suit your career objective. Then, mark your selection on the coupon below and mail it to us today. We will send you the complete details... without obligation... if you will act NOW!

Electronics Technology
A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a 1st Class FCC License.

Industrial Electronics & Automation
This exciting program includes many important subjects as Computers, Electronic Heating and Welding, Industrial Controls, Servomechanisms, and Solid State Devices.

Broadcast Engineering
Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

First Class FCC License
If you want a 1st Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

Electronic Communications
Mobile Radio, Microwave, and 2nd Class FCC preparation are just a few of the topics covered in this "compact" program... Carrier Telephony too, if you so desire.

Mail Coupon TODAY For FREE Catalog

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE-80
Cleveland 14, Ohio

Please send FREE Career Information prepared to help me get ahead in Electronics, without further obligation.

CHECK AREA OF MOST INTEREST—

- Electronics Technology
- First Class FCC License
- Industrial Electronics
- Electronic Communications
- Broadcast Engineering
- other

Your present occupation________________________ Name__________ Age__________

Address_____________________________________

City________________________ Zone____ State____

Approved for Veteran's Training under Korean GI Bill. RE-80

Accredited Member

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE-80
Cleveland 14, Ohio

JUNE, 1963
The wind blows just as hard over your rooftop as it does over the police station...

The exceptional popularity of our Magnum 27 Citizens Band Base Antenna is due in part to its towering resistance to the elements. Nothing short of a tornado will damage it or impair performance. Here’s why:

The “Maggie” is mechanically identical to our ASP-350 Professional Base Antenna—designed specifically, and field-proven in thousands of effective installations, to meet the super-critical requirements of police, fire departments and essential industrial users of two-way radio.

Same rugged, heavy-walled aluminum tubing, with telescope-interlock feature for instant assembly and no bending . . . same quality solid aluminum radials . . . same accurate, hand-finished workmanship throughout.

“Maggie” matches its professional twin in performance, too. End-fed, ½ wavelength. Through exceptional improvement of signal-to-noise ratio, operating gain is 6 db. over any single element omnidirectional CB antenna made. Very low noise. Signal pattern is intensified greatly by low radiating angle.

We’ve told you what we know. Your friends with the biggest signals on the air can tell you better. So can your CB dealer—see him soon.

M-81 MAGNUM CB base antenna
The finest brand for every band!

“Stripes of Quality”

COMING NEXT MONTH IN RADIO-ELECTRONICS

SPEED COLOR SETUP AND SERVICE -- A color TV can be set up in 20 minutes.

BETTER ANTENNAS FOR SHORT-WAVE DX -- Verticals are best and easiest to build.

LEAKAGE CHECKER FOR YOUR VTVM -- It can be added with an hour’s work.

NEW TRICKS WITH DIODES -- 2-way amplifiers to speech scramblers.

JULY ISSUE (on sale June 18)

(Continued from page 8)

in a conventional transistor, the base must be made extremely thin, to shorten the time required for the passage of electric charges. These extremely thin base regions are hard to construct. In the optical transistor, they can be very much bigger.

The new optical transistor. Electric current enters the device at the emitter. In the region of the junction between emitter and base, light is emitted due to recombination of electrons and holes. The light passes across the base region and creates electron-hole combinations as it is absorbed near the junction between base and collector. As shown, the base is biased negative with respect to the emitter, and the collector is negative to the base.

The experimental device is the work of Richard F. Rutz of IBM’s Thomas J. Watson Research Center. Units made so far have a low current gain, but show a power gain as high as 50 at liquid nitrogen temperatures.

Color Going Up, Say Set Makers

Color TV set sales will climb to about 2.5 million by 1967, say 14 leading TV set and tube makers, while black-and-white sales sink to 4 million by ’68.

The manufacturers were interviewed by Lionel D. Edie & Co., surveying for an unnamed firm. Detailed findings may not be made public.

Total TV sales, the study predicts, will stay in the 7-million range for about 5 years, with color’s share of the sales growing steadily.

Governments Study ESP

 Extrasensory perception, or telepathic communication, is the subject of serious study by both the United States and the Russian governments, states Nilo Lindgren in the magazine *Electronics*. The Air Force Cambridge Research Laboratories, he says, have been quietly conducting scientific experiments in ESP at their Communications Sciences Laboratory at Hanscom Field. The project even has
Enter General Electric's ONE-O-ONE Contest. 101 prizes given every month... $10 to $100 with a Grand Prize of $500 in cash. See your General Electric tube distributor for complete rules and official entry blank.

Get this book FREE with the purchase of G-E tubes. Here's 101 Tele-Clues to help make TV repair easier and more profitable for you. Your General Electric tube distributor will give it to you for free in appreciation of your purchase of G-E tubes and electronic equipment. Enter the ONE-O-ONE Contest. Get 101 Tele-Clues. See your General Electric Distributor today.

Progress Is Our Most Important Product

GENERAL ELECTRIC

Another Accent on Value from G-E ELECTRONICS Distributors
Harman-Kardon Shatters Old Concepts of Economy-Class Public Address Amplifiers!

New performance and versatility standards with the "CA" SERIES COMMANDER

Unprecedented! 5 New Commanders... every one with CERTIFIED POWER RATING! Now you can plan a job accurately, get the results you expect! Versatile! Inputs for High and Low Impedance Mics—with on-chassis socket for plug-in mic matching transformer! Every quality or cable length requirement is now satisfied! Expandable! Add Mic Channels as Needed! Space provided on medium and high power models for two additional mic channels. Up to four mic inputs now possible! Fidelity! Socket for an optional plug-in mag phono-tape head preamp with genuine built-in RIAA and NARTB equalization. Works in aux channel; avoids loss of a mic input! Adaptability! Every Commander can be set up for precedence operation, essential for background music systems, special and emergency announcements, etc. CA-12 has MIX-MUSIC-PAGE switch; all others function automatically! Flexible! Optional area speaker selector assembly installs in CA-35/65/100 to provide selective paging and musicasting to any or all of 8 areas! It's impossible... to add here the numerous other MAJOR features of this remarkable new economy class public address line. But, a big new free catalog tells you the whole story about Commander and provides valuable, revealing information about public address amplifiers generally...Send for it.

Harman-Kardon, Inc. Desk RE-6 Commercial Sound Div. 55 Ames Court, Plainview, L.I., N.Y. Rush me the new p/a catalog that tells me the things I ought to know about public address amplifiers.

Name_________________________Address_________________________
City_________________________State_________________________

A subsidiary of THE JENNOLD CORPORATION
its own specialized equipment—a computerlike device called Veritac. The Russians, he says, have worked for years on what they call "biological radio communications." In laboratories in Moscow, Leningrad and Omsk, Russian scientists are said to have discovered that ESP is a form of electromagnetic radiation on a series of wavelengths in the centimeter, millimeter and shorter wavelengths. All these frequencies share in carrying the single messages, possibly something in the manner of our coded RACEP system.

CALENDAR OF EVENTS
5th National Radio Frequency Interference Symposium, June 4-5: Bellevue-Stratford Hotel, Philadelphia.
National Electronic Packaging and Production Conference (NEP / CON), June 4-6: New York Coliseum, New York City.
1963 Chicago Spring Conference on Broadcast and TV Receivers, June 17-18: O'Hare Inn, Chicago.
EIA Annual Convention, June 18-20: Pick-Congress Hotel, Chicago.

Publisher Passes

Milton Sleeper, pioneer in radio publications, died Jan. 31. Sleeper was one of the earliest in the field. He started his career, as did many others, on one of Gernsback's publications—Electrical Experimenter—in that magazine's early years. Later, he wrote books on radio and started the publication FM, which for many years was the only FM magazine in the field.

With the beginnings of interest in better music, he founded the magazine High Fidelity, later selling it and starting a second magazine, High Fidelity Music in the Home, which after a short existence was also sold.

He is survived by his wife, Mrs. Ethel Sleeper.

One-Station FM

In the last 8 months, 35,000 Americans have bought FM radios without knobs or dials. The sets don't need any, because they receive only one station.

Audition Corp., a New York firm under the direction of radio veteran Emmet Poons, sells the sets through FM stations by mail order. Special uses include weather radios for steamship and tugboat use, and medical broadcasts for doctors, with waiting-room music for office hours!

Forward Air Control in 37-Lb Command Pack

A parachutist-carried command pack, weighing only 37 lb and including four separate two-channel transceivers, was demonstrated by Sylvania. The total size of the pack is 11 x 16 x 10 inches.
What Does F.C.C. Mean To You?

What is the F. C. C.?

F. C. C. stands for Federal Communications Commission. This is an agency of the Federal Government, created by Congress to regulate all wire and radio communication and radio and television broadcasting in the United States.

What is an F. C. C. Operator License?

The F. C. C. requires that only qualified persons be allowed to install, maintain, and operate electronic communications equipment, including radio and television broadcast transmitters. To determine who is qualified to take on such responsibility, the F. C. C. gives technical examinations. Operator licenses are awarded to those who pass these examinations. There are different types and classes of operator licenses, based on the type and difficulty of the examination passed.

What are the Different Types of Operator Licenses?

The F. C. C. grants three different types (or groups) of operator licenses - commercial radio-telephone, commercial radioteleGRAPH, and amateur.

COMMERCIAL RADIO-TELEPHONE operator licenses are those required of technicians and engineers responsible for the proper operation of electronic equipment involved in the transmission of voice, music, or pictures. For example, a person who installs or maintains two-way radio or television broadcast equipment must hold a radiotelePHONE license. (A knowledge of Morse code is not required to obtain such a license.)

COMMERCIAL RADIO-TELEGRAPH operator licenses are those required of the operators and maintenance men working with communications equipment which involves the use of Morse code. For example, a radio operator on board a merchant ship must hold a radioteleGRAPH license. (The ability to send and receive Morse is required to obtain such a license.)

AMATEUR operator licenses are those required of radio "hams" - people who are radio hobbyists and experimenters. (A knowledge of Morse code is necessary to be a "hams").

What are the Different Classes of RadiotelePHONE Licenses?

Each type (or group) of licenses is divided into different classes. There are three classes of radiotelePHONE licenses, as follows:

1. **First Class RadiotelePHONE License**: No previous license or on-the-job experience is required to qualify for the first class examination for this license. The examination consists of F. C. C. Elements I and II covering radio laws, F. C. C. regulations, and radiotelephone operating principles.

2. **Second Class RadiotelePHONE License**: No on-the-job experience is required for this examination. However, the applicant must have already passed examination Elements I and II. The second class radiotelephone examination consists of F. C. C. Elements III. It is mostly technical and covers basic radiotelephone theory (including electrical calculations), vacuum tubes, transmitters, amplifiers, power supplies, amplitude modulation, frequency modulation, measuring instruments, transmitters, receivers, antennas, and radiotelephone equipment.

3. **Third Class RadiotelePHONE License**: No on-the-job experience is required to qualify for this examination. However, the applicant must have already passed examination Elements I, II, and III. (If the applicant wishes, he may take all four elements at the same sitting, but this is not the general practice.) The first class radiotelephone examination consists of F. C. C. Elements I, II, and III. It is mostly technical covering advanced radiotelephone theory and basic television theory. This examination covers generally the same subject matter as the Second Class examination, but the questions are more difficult and involve more mathematics.

Which License Qualifies for Which Jobs?

The **THIRD CLASS radiotelephone license is of value primarily in that it qualifies you to take the second class examination. The scope of knowledge covered by a third class license is extremely limited.**

The **SECOND CLASS radiotelephone license qualifies you to install, maintain, and operate any type of radiotelephone equipment except commercial broadcast station equipment.**

The **FIRST CLASS radiotelephone license qualifies you to install, maintain, and operate every type of radiotelephone equipment (except amateur, of course) including all radio and television broadcast equipment in the United States, and in its Territories and Possessions. This is the highest class of radiotelephone license available.**

How Long Does it Take to Prepare for F. C. C. Exams?

The time required to prepare for F. C. C. examinations naturally varies with the individual, depending on his background and aptitude. Grantham training prepares the student to pass F. C. C. exams in a minimum of time.

In the Grantham correspondence course, the average beginner should prepare for his second class radiotelephone license after from 300 to 350 hours of study. This same student should then prepare for his First Class license in approximately 75 additional hours of study.

Grantham offers exactly the same course in resident (classroom) training in four major cities in the United States. This is one of the "A"s of the Grantham training program. House study students may, for any reason, transfer to classroom training simply by paying the balance of their home study tuition, they may then apply this entire amount to the resident class of their choice.

In the Grantham resident course, you prepare for your first F. C. C. License in 8 weeks, 12 weeks, 20 weeks, or 30 weeks, depending on which class schedule you select.

What is the Grantham Approach?

In electronics the same basic principles apply regardless of one's specialization within the field. Just, in teaching electronics the same principles to a specific application gives the subject a frame of reference and makes it easier for the student to learn. To have your certificate Ohm's or Kirchhoff's laws, for example, without relating them to specific applications would be like learning a language phonetically without being able to understand or speak it. The Grantham course, therefore, teaches you basic electronics as it relates to the field of communications.

Why Choose Grantham Training?

In the short time necessary to complete the course, you will acquire a knowledge of electronics -- of the laws and theories of electronics, and their applications to the operation of practical equipment. These "basics" are presented in a logical, step-by-step manner, with the necessary math integrated into the course, from the viewpoint that you have no prior knowledge of the subject. In fact, everything in the course is prepared from this viewpoint and nothing is taken for granted where your education is concerned. Thus, as a Grantham graduate, you are prepared to begin working at the technical level in any phase of electronics.

Should You Memorize or Understand?

If you believe that electronics can be learned through memorizing by rote, our course is not for you. But, if you want to be able to think and reason electronics, we believe no other home study course offers so much knowledge and services in relation to time and money expended as Grantham does.

Is Grantham Training Accredited?

Grantham School of Electronics is accredited by the Accrediting Commission of the National Home Study Council. This Commission has been approved by the U.S. Office of Education as a "nationally recognized accrediting agency" under the terms of Public Laws 82-530 and 83-964.

Two "Door-Openers" to Employment

(1) First Class Commercial F. C. C. Licencet: The Grantham course prepares you to pass the examination for this license, which is actually a "diploma" instead of a license to certify qualified technicians. It assures a prospective electronics employer that you are a man with the necessary knowledge to "build" with his company.

(2) Pre-Employment Exam Given By Industry: You are qualified to pass an excellent pre-employment exam on the exams which many industrial electronics firms require of a potential employee.

For further details concerning F.C.C. licenses and our training, send for our FREE booklet, "Careers in Electronics." Clip the coupon below and mail it to the School.

Get your First Class Commercial F.C.C. License quickly by training at

GRANTHAM SCHOOL OF ELECTRONICS

1505 N. Western Ave., Hollywood 27, Calif.

Gentlemen:

Please send me your free booklet telling how I can get my commercial F.C.C. license quickly. I understand there is no obligation and no salesman will call.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I am interested in:</th>
<th>Home Study</th>
<th>Resident Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mail coupon now — NO SALESMAN WILL CALL —

JUNE, 1963

Mail in envelope or paste on postal card.

(TO: GRANTHAM SCHOOL OF ELECTRONICS
NATIONAL HEADQUARTERS OFFICE
1505 N. Western Ave., Hollywood 27, Calif.

Gentlemen:

Please send me your free booklet telling how I can get my commercial F.C.C. license quickly. I understand there is no obligation and no salesman will call.

Name: __________

Age: __________

Address: __________

City: __________

State: __________

I am interested in: [] Home Study [] Resident Classes

3-G

MAIL COUPON NOW — NO SALESMAN WILL CALL —

JUNE, 1963

www.americanradiohistory.com
The transceivers consist of a uhf unit with two channels between 250 and 350 mc, intended chiefly for ground-to-air communication; a 110 -140 mc unit; one with a range from 38 to 50 mc, and a 4- to 20-mc transceiver. This lowest-frequency unit uses an external antenna, and can communicate up to 300 miles (500 miles under favorable conditions). The others are comparatively short range, and have their own whip antennas carried in an accessory case, which forms the top section of the command pack.

The equipment is designed for commando use, and enables a parachutist to operate a forward control command post, controlling both aircraft and ground troops and coordinating with more distant base stations.

FCC Takes $ Action

FCC's Safety & Special Radio Services Bureau has imposed $300 in forfeitures against Vincent R. Banville, Sr., Fort Lauderdale, Fla., Citizens-radio licensee, for unauthorized communications, improper identification and false call signal.

This is the first monetary forfeiture action taken by the FCC under Section 510 of the Communications Act of 1934, as amended, and section 1.80 of the rules.

Teenagers

Born 15 years ago this month were the transistor, June 30, and the long-playing record, June 21.
CREI GRAD ROY A. REICHERT makes an adjustment on the prototype of a programmable power supply which he designed and built in his capacity as Senior Technical Aide, Bell Telephone Labs, Murray Hill, N. J.

If you are employed in electronics

WE WANT TO SEND YOU THE FREE BOOK
that started this man on the way to a rewarding career

Today Roy A. Reichert has a well-paying, exciting position in space age electronics. But he held a routine job when he sent for our free book, "Your Career in Electronics and Nuclear Engineering Technology".

From this 58-page book, he discovered the real reason why some men move ahead in electronics while others stand still. He learned the vital importance of advanced knowledge of electronics to a man who cannot be satisfied with an uninteresting, low-paying job. He found out why CREI Home Study Programs are recognized by leading organizations as particularly effective preparation for a career in advanced electronics. Mr. Reichert is just one of thousands of men in every phase of electronics who profited from reading this book. Send for free copy. Use coupon or write: The Capitol Radio Engineering Institute, Dept. 1406A, 3224 16th St., N.W., Washington 10, D.C.

JUNE, 1963
SNAP...
in seconds...
all the power to bring
in weak channels
(without overloading)
on strong channels

NEW BLONDER-TONGUE ABLE-2

The new two transistor ABLE-2 is no ordinary booster—it performs better, longer than other home boosters available today. It's well worth the slightly higher price. The toughest weak signal problems are no match for the ABLE-2. List $44.95

2 TRANSISTORS for more power on weak channels—handles up to 30X more signal voltage than one-transistor models without overloading
3-SET SPLITTER delivers sharp, clear pictures up to 3 sets with power to spare (TV, FM, COLOR)
'MIRACLE MOUNT' means fastest, easiest installation of any mast mounted booster
REMOTE AC POWER SUPPLY, stripless 300 ohm terminals and other features

Also available—New ABLE-1—Top Quality mast mounted 3-set TV/FM booster similar to ABLE-2, but with only one transistor. Recommended for weak signal areas only. List $39.95

engineered and manufactured by
BLONDER-TONGUE
9 Alling St., Newark 2 N.J.

Canadian Div: Benco Television Assoc., Ltd., Tor., Ont.

home TV accessories • closed circuit TV systems • UHF converters • master TV systems

Correspondence

Orchids from England
Dear Editor:

May I compliment you on the continued excellence of your magazine, which I have been taking without one missing number for 12 years. It has greatly assisted me in my post as radio and television service engineer, by its practical approach to all types of service. I have built test instruments from many of your articles, and the gear's in constant use on our service bench.

Your magazine is very highly respected by all the service engineers of my acquaintance, and by the Lecturers of our technical college.

Do you have anything on ham TV transmission using a flying-spot technique for transmitting film or slides? There seems to be a dearth of ham-TV information on this side of the Atlantic.

J. A. Walton, A.M.I.S.M.
Ribbleton, Preston, Lancs, England

[Thank you! On page 48 of our May 1962 issue, you'll find a TV camera you can build—though not a flying-spot type. Page 26 of CQ magazine for March 1963 offers "A Flying Spot Scanner," using mainly parts from two junked 630-type TV receivers.—Editor]

Lack of Good Technicians
Dear Editor:

Regarding the doubt of technician shortage, expressed in the letters in the April 1963 issue—I'm getting weary of hearing the same sob story: "Completed courses in electronics, but cannot find job, don't want job for less than $100 a week, can't go where the openings are."

Yes, there is a shortage of technicians—good technicians. To qualify as a good technician, a man should have completed a good basic course and have had at least 2 years of experience. But to get that experience, he must be willing to work long hours for low pay, and to go where the work is.

Sitting home drinking beer and moaning the lack of $100-a-week jobs under one's nose is not the way.

I got my start by completing a course and working as a radio shop flunky. Then I went on to be a TV field service man, TV benchman, shift TV transmitter man, maintenance man, maintenance supervisor, and finally my present posi—
PHOTOFACT® SERIES FOR SPECIALIZED SERVICING!

Here's timely service data coverage on specialized equipment—complete, uniform, authoritative PHOTOFACT service data now available only in handy bound-volume form. Take advantage of our money-saving Standing Order Subscription offer for any of the Specialized PHOTOFACT Series described below.

New Auto Radio Series
Six to eight of these bound volumes issued each year, to bring you complete PHOTOFACT service data coverage of Auto Radios. Each volume covers 40-50 popular late models. Regular price per volume, $2.95—only $2.65 when purchased on a Standing Order Subscription—you save 30¢ per volume!

New Transistor Radio Series
Twelve to fifteen of these volumes issued each year—complete PHOTOFACT coverage of Transistor Radios. Each volume covers 40-50 popular late models. Regular price per volume, $2.95—only $2.65 when purchased on a Standing Order Subscription—you save 30¢ per volume!

New Tape Recorder Series
Two volumes issued yearly, to bring you complete PHOTOFACT coverage of all important, late model Tape Recorders. Regular price per volume, $4.95—only $4.65 when purchased on a Standing Order Subscription—you save 30¢ per volume!

New CB Radio Series
Two to three volumes issued yearly—complete PHOTOFACT coverage of all popular CB Radio models. Regular price per volume, $2.95—only $2.65 when purchased on a Standing Order Subscription—you save 30¢ per volume!

SAVE 30¢ PER VOLUME

SIGN UP TODAY FOR A STANDING ORDER SUBSCRIPTION TO THE PHOTOFACT SPECIALIZED SERIES

With a Standing Order Subscription to receive the new PHOTOFACT Specialized Series of your choice as issued, you pay only $2.65 for the Auto Radio, Transistor Radio and CB Radio Series, instead of the regular $2.95 price; only $4.65 for the Tape Recorder Series, instead of the regular $4.95 price! Get the world's finest specialized servicing data and enjoy extra savings with a Standing Order Subscription. Sign up with your Sams Distributor, or send coupon now.

SAVE WITH A STANDING ORDER SUBSCRIPTION!

June, 1963

Howard W. Sams & Co., Inc., Dept. 6-F3
4300 W. 62nd St., Indianapolis 6, Indiana

Enter my Standing Order Subscription for the following:

☐ Auto Radio Series ☐ CB Radio Series
☐ Transistor Radio Series ☐ Tape Recorder Series

My Distributor is:

Shop Name

Attn.

Address

City Zone State

SEND COUPON
In Hicksville, E-6, Monitoring (2), adjustable. Inputs: ratio: better
dynamic stereo microphone, two speakers noise
tape
Continental 181/2" AC
Canada
4 speeds:
For 71/2 hi-meter type.
16,000 watts.
sterile military installations, batteries
and many of them seem to be nearly immortal. By
use of Darlington, and similar, amplifiers, contacts carrying only a few mi-
crowampere3s can control power relays which in turn can control many kilo-
water. First cost of transistors, in many instances, is actually less than the first
cost of a sensitive relay performing the same function. Sustaining cost of a
properly designed and used transistorized amplifier—the cost of maintenance and
repairs from the time that the device is put into use until it is thrown away—is
ever known and often zero.

Whether to use a sensitive relay, a vacuum tube or a transistor, in a given
circuit, can be decided only by a study of the exact operating conditions. In
a surprising number of instances, at least two of the alternatives will do the job
equally well. Then, "you pays your money, and you takes your choice."

Ronald L. Ives

Palo Alto, Calif.

Admires Tesla

Dear Editor:

You could not possibly have se-
lected for your "Inventors of Radio" a
more distinguished, prolific and worthy
inventor than Nikola Tesla, who for so
many years was misunderstood, even
ridiculed, by so many professional en-
engineers and scientists, over whom
was thrown by his advanced thinking. Only
since his death have his great contribu-
tions to science and technology been
properly appreciated.

I prize highly an autographed, 36-
page paper of his, published in The
Century Magazine, June 1900: "The
Problem of Increasing Human Energy,
with special reference to the Harnessing
of the Sun's Energy." This should be
added to Mr. Bartlett's references.

My correspondence with Tesla was
given many years ago to Kenneth M.
Swezey, 163 Milton St., Brooklyn,
N. Y., who is probably the best living
authority on Tesla, and who has col-
lected much information about him.

Benjamin F. Miessner
Miami Shores, Fla.

[The correspondence with Mr. Telsa has
since been given by Mr. Swezey to the
Manuscript Division, New York Public
Library.—Editor]
The Star-Spangled Banner

Francis Scott Key

John Stafford Smith

With spirit o—say! can you see, by the dawn's early light,

Piano

What so proud ly we build of the twilights last,
glancing? Where broad stripes and bright stars, thru the perilous

Two things you're sure to hear at a public event

Wherever people gather, wherever words and music must be heard with perfect fidelity, you're sure to hear University...largest selling P.A. loudspeakers in the world.

University is Public Address. The reasons can be summed up in two words, high audibility—"High A", that special engineering factor built into University P.A. speakers to give them an extra degree of intelligibility, a clean, crisp, sound no other P.A. speakers can match. You hear the proof at political rallies and conventions, in the great churches, stadiums and arenas, in hospitals, factories, missile bases—everywhere from Presidential inaugurations to Little League play-offs.

You can't lose a P.A. customer when you have the superiority of over 62 different University speaker products in every price range behind you. Write Desk J-6 for our latest P.A. catalog:

Send all equipment for service to our newly located Service Dept., 9500 W. Reno, Oklahoma City, Okla.
Beyond the performance level of these two units, possible improvement is merely marginal and very expensive. That's why with EICO's ST97 and ST70 you strike the optimum balance of cost and performance—each costs less than $100 as a kit. You can also get the ST70 and ST97 factory-wired for $149.95 each—and you couldn't find comparable wired units at the price.

If high power isn't your primary need, you can get superb sound for even less with EICO's ST40, the 40-watt counterpart of EICO's outstanding ST70. The ST40, essentially equal to the ST70 in all but power, costs $79.95 as a kit, $129.95 factory-wired.

ST70 DATA: As the center of your stereo system, the ST70 accommodates all program sources. It even has separate inputs for both turntable and record changer, preamplified tape signals and tape head with correct equalization for both fast and slow tape speeds. A center channel output feeds directly on a center channel speaker or, where desired, extension speakers throughout your house without any additional amplifier. Critical parts—filter capacitors, rectifiers, output tubes—all operate well below their ratings to assure long, trouble-free life. Ovresize output transformers deliver full rated power all the way down to 35 cps. And as a kit builder, you'll like the spacious layout. We got rid of all those tight places. Kit $99.95. Wired $149.95 (includes metal cover).

SPECIFICATIONS ST70

ST97 DATA: Building the ST97 FM stereo tuner requires no instruments, no critical adjustments. The front end and IF stages are fully pre-wired and pre-aligned. The tunable coils of the stereo demodulator are factory-adjusted. With four IF stages plus a stable, sensitive front end, the ST97 pulls in clear stereo even under fringe conditions, and EICO's filterless zero-phase shift stereo detector (patents pending) maintains reliable channel separation. EICO's unique traveling tuning eye makes tuning simple and precise. Stereo stations are automatically identified by a pilot light. Semi-kit $99.95, Wired $149.95. (Includes metal cover and FET.)

SPECIFICATIONS ST97
- *Actual distortion meter reading of derived left or right channel output with a stereo FM signal fed to the antenna input terminals.

See these superb components at high fidelity dealers everywhere. For FREE 32-page catalog, 36-page Stereo Hi-Fi Guide (enclose 25c for handling) and dealers name, write: EICO ELECTRONIC INSTRUMENT CO., INC., 3300 Northern Boulevard, Long Island City, New York.
AFTER THE COMPUTER, WHAT?

...The Intellectron May Replace Most Computers...

A computer, according to the dictionary, is a machine which reckons and calculates. Modern electronic computers do just that. They also must be instructed by man exactly what to do, i.e., they must be programmed first. They cannot operate by themselves, and, most important, they cannot think. They are at best excellent ultra-rapid calculators.

Says Dr. Philip M. Morse, Professor of Physics and director of the Computation Center of the Massachusetts Institute of Technology: "The present state of computer design compares to automobile design of 1913."

In the 1962 meeting of the Conference on Self-Organizing Systems in Chicago and New York, sponsored by the Office of Naval Research and the Armour Research Foundation, the talks centered on machines, devices and systems that could "learn" from experience and conduct themselves accordingly. The main obstacle, the speakers confessed, was lack of information on how the human nervous system operates during thinking processes. This, in their opinion, points to the long paths that lie ahead of true "thinking machines."

Animal experiments have revealed that single "bits" of information are stored at various points in the brain. All or most are scanned when one tries to recall certain pertinent information. Some speakers pointed out that the human brain contains more than 10 billion memory units, which makes it almost hopeless to construct a like electronic "brain" without some units failing.

What, then, can we reasonably expect in the foreseeable and the more distant future? Most scientists today are not too hopeful that present types of computers can be made to "think" or reason by themselves.

Says Dr. Marshall C. Yovits of the Office of Naval Research: "Some of the much-publicized systems, allegedly capable of learning or recognizing, must be taken with a grain of salt!"

Let us therefore— with our present limited knowledge—first explore the only successful thinking machine in existence: the human brain. We had best start with an infant and review some of the processes by which he learns to think. An infant, isolated in darkness in a totally silent room, fed mechanically for some years, will never learn how to think properly. It will grow up an idiot or be feeble-minded.

Compare this with a normally brought-up child. It gets its most important impressions via the eyes and ears. (We disregard for the moment the senses of taste, odor and touch.) We also believe today that all senses are neuro-electric. The brain, we know, stores all impressions from the outside world in the 10 billion odd memory cells as electric impressions. Slight impulses, we also know, are impressed on the brain cells by photoelectric means. Sound impulses are recorded via audio, much as sounds are recorded on phonograph records, but instead of on a spiral groove, the recording is registered on millions of fixed memory cells.

Mark well that what we said above is only the nearest approximation to the subject. More important is the subject of learning and understanding. Thus, comparatively little of what the infant learns the first year stays with him into manhood. It is the constant repetition that probably counts. It would seem that the very young child learns only slowly—a long and tedious process. Possibly his memory cells are not ready for permanent recording in depth. They probably must first grow and become sensitive enough for the various multiplex impressions. Then we must never forget that we have to do with a continuously living organism that also has inherited genes which will affect his thinking processes. There also is the important factor, only vaguely understood as our intellect, the ability to reason, perceive or understand; the ability to perceive relations, differences, etc., distinguished from will and feeling. There is much more than this, but we cannot here cite all textbook facts on this vast subject.

The present discussion was started only to try to compare a living brain with the requirements of a future mechanism that can duplicate the vast functions of a living organism.

This is a formidable undertaking that will take not only great ingenuity but many years. Also, it requires a number of breakthroughs in some areas which are not even dreamed of today.

But we should not despair, because certain advantages of an "electronic brain" are lacking in a biological one. Thus we have distinct advantages in electronic speeds, compared with biologic nerve impulses which are excessively sluggish—millions of times slower.

Nor do we have to wait 18 to 20 years for our electronic brain to "grow up" and mature. The human learns practically nothing while it sleeps for one-third of its life, while its electronic counterpart can work at much higher speeds for a 24-hour day.

Still, it too takes a considerable time to digest, file and cross-file facts in its billions of memory cells, once these have been perfected even in a rudimentary fashion.

We cannot hope to create a thinking machine with present-day magnetic memories alone. The future memories must record in addition with photoelectric means as well as with audio waves. In other words, the future electronic brain must see as well as hear. The other three senses may be added later when required.

It is easy to understand that the true thinking electronic brain is light-years away from the present-day computer. As a matter of fact, we had better disregard computers that must be constantly programmed. We urgently need a new term to describe the future thinking machine. Even the electronic brain falls far short of what is needed.

For want of a better term, we suggest the name intellectron. We believe it means what it says.

Let us caution that even when all breakthroughs and numerous obstacles have been conquered, the future intellectron must still learn millions upon millions of facts, like any bright youth. This takes time. It cannot be done instantly. Brahms symphony cannot be recorded in seconds.

Nor can the history of the United States be recorded in seconds, if the thinking machine is to digest, understand and evaluate properly all material that is constantly fed. Personally, we would be surprised if a fully completed intellectron could be turned out in a year, because of the long recording time.

Mass-produced, such machines could all be turned out by the thousands to lower their cost. Mass production would require mass instruction, too, at the same time, but it would

(Continued on page 46)
LOG PERIODIC V

Complete information on the new high-gain all-channel TV antenna concept

CERTAIN LIMITATIONS HAVE BEEN INHERENT in TV antenna design for so long that they have been accepted as axiomatic. No commercial antenna has had uniform high gain over the complete vhf TV band. It has been assumed that an all-channel antenna is not possible except by a compromise design that gives up a little bandwidth to get a little gain, or vice versa. The gain curves of modern TV receiving antennas are studied with peaks and valleys that show, only too well, how they depend on frequency.

Most antennas for fringe-area reception are based on the Yagi design.

* Executive vice president, sales and engineering, JFD Electronics Corp.

By EDWARD FINKEL*

The Yagi has high gain and high front-to-back ratio. But it is essentially a narrow-band antenna—it cannot cover the entire vhf TV band from 54 to 216 mc. A simple Yagi is most effective for a single channel, a spread of only 6 mc. Modified Yagis, with dipoles cut for the center of the low and high bands and an array of various-size parasitic elements for broadening bandwidth, generally have good gain at the high end of each band and degenerate at the low end. This is the fate of any antenna burdened with a large number of parasitic elements. These lower the characteristic impedance at the low end of each band, and make for signal-sapping standing waves and impedance mismatches between the antenna and the transmission line.

For more than 8 years, a group of antenna scientists at the Antenna Research Laboratory of the University of Illinois has been experimenting with vhf and uhf antennas that have no theoretical limitations on bandwidth—are frequency-independent. Various experiments led Prof. V. H. Rumsey and J. D. Dyson to the log spiral antennas. Out of this research came the sharply directional, yet broad-band, conical spiral antenna now being used for satellite tracking.

Prof. R. H. Du Hamel next tried and succeeded in developing a linearly polarized antenna based on the conical spiral, and Prof. Paul Mayes with R. C. Carrel and D. E. Isbell further developed this design to the point where it was basically suitable for television. JFD antenna engineers worked with the University of Illinois scientists to develop the final versions of the log periodic V, or LPV, antenna for television. The LPV promises to revolutionize the TV antenna field. Although it is now designed to cover uniformly both the low and high vhf TV bands and the FM band in between, a frequency spread of 4 to 1, this antenna type can easily be extended to include uhf. The unique thing about it is that within each TV band its impedance, gain, reception pattern and front-to-back ratio are virtually constant. The gain for each channel is as high as that furnished by a comparable sized, single-channel Yagi.

Log periodic concept

Essentially, the LPV antenna incorporates two separate design concepts: the log periodic factor, which deter-
mines the size and spacing of the elements; the forward V shape of the elements, which permits multi-mode operation and determines its directionality. Let us first consider the periodic function.

The basic planar log periodic antenna is an array of dipoles in which the length of each element bears a fixed ratio to the length of the preceding element. This ratio is called the scale factor and is designated by the Greek symbol \(\tau \) (tau). The spacing between adjacent dipoles may also be fixed by a ratio, \(\sigma \) (sigma). These relationships are shown in Fig. 1, where \(h \) denotes element half length and \(d \) represents the spacing between dipoles.

The actual values of \(\tau \) and \(\sigma \) were derived from many experimental models and tests and finally selected from tables which combine these test results. The directivity of the antenna increases with increasing \(\tau \), and \(\sigma \) must be small to obtain higher mode (harmonic) operation, important for high-band reception. (The mode desired multiplied by sigma should equal 0.2 to 0.4.) Since, for TV, the third mode is desired (as will be explained later), a good value for sigma is 0.085.

Each of the dipoles in the antenna is equal to an adjusted half-wavelength at a different frequency, making the dipole resonant to that frequency. The scaling factors \(\tau \) and \(\sigma \) are so chosen that the desired frequency range is covered with elements whose resonances overlap. Thus, as the frequency changes, resonance moves smoothly from one dipole to the next.

Typical values of \(\tau \) and \(\sigma \) are 0.9 and 0.085, respectively. These in fact are the actual values used in one of the many experimental models developed in the JFD laboratories. This is a seven-element antenna, 92 inches overall, with \(h \), the half length of the longest element, 56 inches, approximately one-quarter wavelength at channel 2. Lengths of all other elements are determined by the equation in Fig. 1. A diagram of this antenna is shown in Fig. 2.

In designing the larger LPV models it was necessary to depart slightly from the log periodic formula, to make the antennas commercially and mechanically practicable.

Fundamental operation

Just as the largest dipole of the LPV antenna corresponds to a half-wavelength on channel 2 many of the other dipoles more or less correspond to the half-wavelengths of the other channels in the low TV band. Although one particular dipole—the one closest to the resonant length—absorbs the greatest amount of signal at any particular received frequency, the adjacent elements also absorb signal energy. How much is shown in Fig. 3, a curve representing the distribution of current at the terminals of each dipole of a nine-element LPV antenna on channel 5. Note that while maximum energy is absorbed by one dipole, No. 5, two other elements, Nos. 4 and 6, absorb 60% as much, and even elements 3 and 7 absorb substantial amounts of signal (30%).

The resonant or near-resonant dipole together with those adjacent elements that contribute substantial signal energy at the received frequency, plus the crossed phasing harness, constitute the "active cell" for that channel. As the frequency of reception increases, the active region moves toward the front of the antenna; for each channel a different active cell is formed.

The tau and sigma used in the design of an LPV are the key in providing a wide active reception region for every channel. When these two factors are selected properly, the dipoles of the active cell present a low impedance at their terminals, resulting in high energy absorption. This low impedance results from a combination of element length and the spacing determined by the log periodic equations, as well as the thickness of the elements.

High-band operation

For channels 7 through 13, the large elements at the rear of the antenna constitute 3/2-wavelength dipoles. Therefore, they resonate to the received frequency at the third harmonic mode. The large elements at the rear of the antenna are 3/2 wavelength at channel 7. As the frequency increases toward channel 13, the 3/2 wavelength elements, and therefore the active region, shifts toward the apex of the antenna. The actual gain realized by third-harmonic operation is shown in Fig. 4, the VHF gain curves for the JFD LPV-11, an 11-element antenna. From these curves it is apparent that there is an average increase of 3 1/2 db in gain on the high band vs the low band. This is in accordance with good TV antenna design, which requires greater gain on the high band because of the greater transmission signal losses at these frequencies.

![Diagram of channel 5 currents on individual elements of a nine-element LPV antenna.](https://www.americanradiohistory.com)

Fig. 3—Distribution of channel 5 currents on individual elements of a nine-element LPV antenna.
In all other respects, operation is the same as on the low band. Active cells embracing several elements for each channel and low impedance at the received frequency are basic to the antenna.

A close inspection of Fig. 4 shows that the gain of the LPV-11 is uniform across all channels for each band. This guarantees good color TV reception. For color fidelity, the gain on the brightness and color carriers within each channel must be nearly the same. Obviously this can only hold true if the antenna has a flat gain response curve for the entire channel.

If the input impedance of an antenna varies appreciably from that of the transmission line at any point in the bandwidth of the antenna, a mismatch will exist between the antenna and downlead. Such a mismatch decreases signal power to the TV set and introduces standing waves along the line. This leads to further signal reduction and ghosts.

The LPV is unique in that it maintains essentially constant impedance across the full bandwidth of the antenna. An important reason for this is that the input impedance of the LPV depends primarily upon the impedance of the feeder network, which can be easily controlled. In the JFD LPV series, the feeder consists of a crossed network of solid bars whose diameter, length and spacing are determined to give an exact match to 300-ohm transmission line. That this is the case is proved by measurements of the VSWR which are consistently in the area of 1.2 to 1.

Directivity, front-to-back ratio

As important as high gain and constant impedance are in fringe-area reception, the antenna would be worthless without good directional sensitivity. Even in the heart of cities, directivity is needed to reject the ghost-causing interference signals that bounce from building to building. In fringe areas, interfering signals from adjacent channels picked up by the antenna from the rear and sides cause venetian-blind and herringbone effects, fading and other picture distortions.

Yagi antennas obtain good directional sensitivity and high front-to-back ratios with parasitic elements (directors and reflectors). The LPV obtains its sharp forward pattern from the V-ing of the elements and the phase-reversed feeder.

Consider Fig. 5, a simplified diagram of a four-cell LPV antenna, front-fed, using a twisted phasing harness. Note that because the elements of the adjacent dipoles are not fed in parallel, they are in phase opposition. This effectively cancels reception from the sides. Furthermore, the length of the harness plus the space between adjacent elements adds up to produce a 360° phase shift between the signals reaching the first and those being picked up by the second element (or between any two adjacent elements) in the forward direction (toward the feedline, at the small end of the antenna). This 360° phase shift actually puts both waves in phase for additive signal strength.

Toward the rear, on the other hand, there is only a single 180° phase shift, due to the crossed harness. This effectively cancels reception from adjacent elements towards the rear.

The signal finds itself in somewhat the position of a motorist going down an avenue that has phased traffic lights. Arriving at the front (small end) of the antenna, it finds each element in turn phased in its favor, and gives up a maximum of its energy to the antenna. If it arrives from the rear, it finds each alternate element phased against it, and is effectively cancelled out.

Directional sensitivity is increased and reception from the rear further reduced by V-ing the elements forward. A straight half-wave dipole receiving a signal three times its resonant frequency has a radiation pattern like that shown in Fig. 6-a. The signal sensitivity is dissipated in three forward lobes. If the elements of this same dipole are directed forward into a V, the pattern becomes Fig. 6-b. The two side lobes are brought together and merged with the center lobe as the elements are brought toward each other. The rearward lobes are "phased out" in the feedline.

Reception patterns for the complete LPV TV antenna are shown in Fig. 7-a for the low band, sharpening up to 7-b on the high band. This type of pattern is maintained throughout the FM band too. In actual tests the LPV-11 with 9 active cells and 2 directors maintained a front-to-back ratio of 35 db, with a gain of 8 db across the low band and 11½ db across the highs. In comparison, a somewhat longer Yagi antenna, adjusted to a front-to-back ratio of 25 db at the middle of its band, fell to 15 db at the edges, and more important, had a bandwidth of only 7%, at a gain equal to that of the LPV.

Although reflector elements are unnecessary for the LPV, directors are desirable to "peak up" the high end of the upper vhf band, particularly for fringe-area reception. The director spacing is determined experimentally since it must not affect the input impedance of the antenna itself. Laboratory tests recommended a spacing of approximately half the distance between the two shortest active elements of the antenna. Director length is shorter than the
shortest active elements—theoretically, it should be 0.46 multiplied by the half-wavelength of the frequency to be “peaked”.

City and far fringe

Since the frequency independence of the LPV depends on the scaling of the cells, any number of intermediate cells may be narrowed without affecting the essential characteristics of the antenna. To narrow an antenna, a smaller value of \(\tau \) is chosen, so that the shortest element is approached faster, omitting some elements in between. Narrowing the cells will reduce the gain but will not affect the front-to-back ratio, directivity and constant-impedance characteristics, which do not depend on the number of elements used, only on the adherence to the proper scaling factors and equations.

When a shortened LPV is used in a strong-signal area, the increased signal strength will compensate for the fewer total signal-absorbing elements. At the same time, it is no less important that suburban and city viewers use an antenna with high front-to-back ratio and low \(\text{VSWR} \) to eliminate ghosts caused by signal reflection from tall buildings.

There are presently six models in the LPV series made by JFD. The shortest, the LPV-4, contains 4 active cells and is recommended for use up to 50 miles from the TV transmitting antenna; in other words, in city and most suburban areas. The largest is the LPV-17 with 8 active cells and 10 passive elements. This one is designed for use up to 175 miles from the transmitter under virtually ideal conditions. Between these two are four other models for any reception area.

Since element spacing and \(\text{V-ing} \) are critical, special mechanical innovations were needed to assure antenna rigidity. The crossarm is made of extra-heavy-gage aluminum, 1 inch square. Every element has sleeve reinforcements to prevent bending. The phasing harness is made of 1/8-inch solid aluminum rod, cold-welded into position. Other mechanical features are “flip-quick” construction for ease in erection, gold alodining and the inclusion of a double U-bolt assembly.

A fortunate dividend in the LPV design is its “compatibility” with uhf. When and if combination vhf-uhf antennas find an increasing market, it is almost certain that the LPV will be one of the leading all-band designs.

blind learn electronics in special school

THE EDUCATION OF THE BLIND IS A SPECIALIZED PROCESS THAT CALLS FOR APPARATUS DESIGNED FOR TACTUAL DEMONSTRATIONS, BOOKS PRINTED IN BRAILLE AND SPECIALLY TRAINED INSTRUCTORS. These photos were taken at the New York Institute for the Education of the Blind, 999 Pelham Parkway, New York 69, N. Y. The oldest school of its kind in the Western Hemisphere, it was founded in 1831. Instruction is shown under the guidance of Bob Gunderson, blind radio engineer, inventor, and editor of the Braille Technical Press. He developed specialized auditory test equipment for teaching electronics to the blind, making measurements in the laboratory, repairing electronic equipment and tuning a radio transmitter (Radio-Electronics, March 1951, “Blind Improve Test Gear”).

Training at the institute consists of a graded academic program, manual training (machine shop and woodwork) and electronics, along with a physical education program including rowing, wrestling and track.
RECENT REVIEWS OF SOME CERAMIC cartridges have hailed them as equal to
all but the finest magnetic pickups in fre-
quency response, distortion, compliance,
and stereo separation. Moreover, the
ceramic cartridge has several distinct
features. One of these is that the
can dispense with the preamplification
required for magnetic cartridges because
they lack preamplification. Quality can
be improved with a good ceramic.

Unfortunately, you can't simply
connect a quality ceramic pickup to an
amplifier and be certain that good re-
sults will automatically follow. An ac-
cquaintance recently purchased a highly
tuned ceramic pickup for his portable
stereo phonograph. He complained that
the new cartridge lacked bass. I sug-
gested that he solder a .001-µF capacitor
in parallel with the cartridge leads for
each channel. He reported next day that
bass was fine.

In a while we'll find out why it was
necessary to alter the load across the
cartridge by adding capacitance. In-
correct loading deprives a ceramic cartridge
of the chance to show how well it can perform. Incorrect loading may reduce
bass, it may permit excessive signal in-
put, or may exaggerate treble response.
A ceramic cartridge can be used in
two ways:
1. As an amplitude device (which it is by nature), producing a signal propor-
tional to the amplitude of the record
groove. In this case, the cartridge is con-
ected to the high-level input jack of an
amplifier.

2. As a velocity device, so that,
like a magnetic pickup, it produces a
signal proportional to the speed of the
wiggles in the groove. This speed de-
pends not only on the amplitude of the
groove but also upon the recorded fre-
cency. A suitable loading network con-
verts the ceramic pickup into the equiva-
 lent of a true velocity device. The signal
is then fed into an input jack intended
for a magnetic cartridge.

We'll examine how loading prob-
lems can arise whichever way a ceramic
cartridge is used.

Amplitude device

We usually look at RIAA playback
equalization from the viewpoint of the
magnetic cartridge, which requires a
large amount of bass boost and treble
cut, as shown by curve A in Fig. 1. But
from the viewpoint of an amplitude-re-
sponsive cartridge, RIAA playback
equalization calls for a large amount of
bass cut and moderate treble boost, as
shown by curve B in Fig. 1.
When used as an amplitude device, the ceramic pickup is fed into the high-level input of an amplifier. But a high-level input provides no equalization, whereas Fig. 1 shows that equalization is necessary. The answer is that the ceramic cartridge is considered to be a self-equalizing device with respect to the RIAA curve. Let's see if this is so.

First, treble boost. Like other physical devices, the ceramic pickup has a resonant frequency, in this case near the high end of the audio spectrum. Through proper design, including damping, the resonance is controlled so that it approximates the required treble boost of curve B. Hence the cartridge is indeed self-equalizing for treble.

Now, bass cut. The ceramic cartridge is itself a capacitance, typically ranging from about 300 to 600 pf, although sometimes going a good deal higher. Together with the load resistance presented by the amplifier, the cartridge capacitance plus other circuit capacitances (that of the connecting cable and the input capacitance of the amplifier) form a simple bass attenuation circuit, as in Fig. 2-b. The ceramic cartridge is not completely self-equalizing in the bass region but is very much dependent on the load resistance. It is also moderately dependent on other circuit capacitances.

It works out that if the circuit capacitances in conjunction with the load resistance have a time constant of about 1,200 μsec, response will generally approximate the RIAA bass cut. Assume that the cartridge capacitance is 450 pf, while other circuit capacitances amount to 150 pf—both fairly typical values. Total capacitance is therefore 600 pf. Dividing 1,200 μsec by 600 pf yields a required load resistance of 2 megohms. Fig. 3 shows the approximation to RIAA bass cut when the circuit impedances have a time constant of 1,200 μsec. (The "bulge" in response in the middle of the bass range can be reduced by using a more complex load network, consisting of capacitance as well as resistance. This network will vary with each cartridge and its values should be obtained from the manufacturer. However, the bulge is not usually big enough to be serious.)

When a manufacturer designs an amplifier for use with a specific ceramic pickup, as in a self-contained phonograph, he provides the correct load resistance. Typically, load resistances are 1 to 3 megohms in self-contained phonographs using ceramic pickups. But, if the user substitutes a different cartridge, there is good chance that the load resistance will no longer be appropriate. If too large, bass will be excessive; if too small, deficient.

The situation is likely to be worse when you feed into an amplifier not specifically intended for use with a ceramic cartridge. Almost always, the high-level input of an amplifier for general use has an input load of ½ megohm, far too small for any ceramic pickup. The result is too much bass cut. Our 1,200-μsec curve (solid line in Fig. 3) is 3 db down at 130 cycles and follows the desired RIAA curve quite closely from there down to very low frequencies. But if the total circuit capacitance is 600 pf and the load resistance only ½ megohm (300-μsec time constant), bass will start to drop (be 3 db down) at about 500 cycles instead of 130, and be almost gone below 60 cycles.

This problem has two solutions: Increase the load resistance, or increase the circuit capacitance. The second solution has the charm of greater convenience, because it doesn't require going inside the amplifier. Besides, if you greatly increase the load resistor, you increase the resistance between grid and ground of the first tube, and therefore the danger of hum pickup.

The desirable solution usually is to wire a capacitor in parallel with the cartridge leads. A miniature low-voltage capacitor can be used, making it feasible to mount it right in the tone arm.

How do you calculate the value of the added capacitor? Here is an example. Assume that the cartridge capacitance is 500 pf, according to its manufacture. Because the cable to the amplifier is short, you estimate the other circuit capacitances amount to only 100 pf. Total capacitance is therefore 600 pf. If the load resistance is ½ megohm, and if a time constant of 1,200 μsec is desired, the total capacitance should be 1,200 divided by ½ which equals 2,400 pf. Therefore it is necessary to add 1,800 pf, this being the difference between the required 2,400 pf and the existing 600 pf. If you want a little more bass to compensate for speaker deficiencies, you might use a larger capacitor, say 2,000 pf (.002 μf).

Putting a capacitor across the cartridge may have a double advantage. It helps reduce the overall signal level and also minimizes distortion caused by overloadning the amplifier. The equivalent circuit of the various capacitances in our last example is shown in Fig. 4 from the viewpoint of overall signal attenuation. The cartridge forms one leg of a capacitive voltage divider, while all the other capacitances form the second leg. The values in Fig. 4 produce almost 14 db signal attenuation, a reduction to nearly one-fifth of the original level. Considering that ceramic pickups may turn out as much as 1 volt on peaks.
(some even more), while many an amplifier requires 0.2 volt or less at the high-level input to be driven to full output (some need as little as .05 volt), a 14-db reduction is useful. On the other hand, some ceramic cartridges produce only about 0.2 volt on peaks, while some amplifiers need more than 0.2 volt. In such cases, it may be necessary to increase the load resistance instead of adding a capacitor to obtain full bass response.

Velocity device

As part of the purchase of a ceramic pickup or as an accessory, you can usually obtain from the same manufacturer a plug-in adapter that contains an R-C network to convert the pickup into a velocity device. You plug the cable from the cartridge into the adapter, and plug the adapter into the magnetic input jack of an amplifier.

If you have no adapter, you can transform the cartridge into a velocity device very simply by putting a small load resistor across the cartridge; for example, one of 10,000 ohms. This causes the cartridge signal to rise with frequency, in the manner of a magnetic pickup, because the cartridge capacitance in series with the small load resistor forms a high-pass filter throughout the audio spectrum.

However, the transformation is not quite that simple—for two reasons:

As pointed out earlier, the cartridge has built-in treble resonance, which is desirable when it is used as an amplitude device. But the resonance is no longer needed and is undesirable when the pickup is used as a velocity device. To compensate, the signal should rise with frequency only to about 5,000 cycles, leveling off thereafter. That is, the time constant of all the circuit capacitances and the load resistor should be about 32 µsec.

For example, if the cartridge and other circuit capacitances total 600 pf, the appropriate load resistor in megohms works out to 0.03 (that is, 32 divided by 600). The nearest standard value of 51,000 ohms would be suitable. The load resistor across the magnetic input jack of many amplifiers is around this value, for example 47,000 ohms, and such a resistor could do the job if it weren't for problem 2:

The signal from the cartridge is apt to be great enough to overload the phonograph amplifier. Therefore it is frequently necessary to reduce the signal voltage by converting the load resistor into a voltage divider, as in Fig. 5. A 10-to-1 voltage division is probably a good starting point.

Because of these two problems, if you intend to use the ceramic pickup as a velocity device, your best course is to buy the adapter made by the manufacturer of the cartridge (unless you are inclined to experiment). The network in such adapters is usually more sophisticated than the one shown in Fig. 5, providing smoother frequency response.

Some audio amplifiers have a special input jack designed for a ceramic pickup. What they usually do is to feed the signal through a very small capacitor, as in Fig. 6, thus converting the pickup into the equivalent of a velocity device. The capacitor, say 50 pf, together with the usual magnetic load resistance of about 47 to 68 thousand ohms, acts as a high-pass filter that causes response to rise with frequency throughout the audio range. The small value of this capacitor also reduces overall signal output, preventing distortion. However, nothing is done about the cartridge's treble resonance, and the result is overbrilliant response. Thus, if the ceramic pickup is to be used as a velocity device, the best course is to use the adapter designed by the manufacturer of the cartridge rather than by the manufacturer of the amplifier.

"Magna-Miler", an electronic low-tire-pressure warning device for heavy-duty vehicles, has been announced by Magnavox. The photo shows the indicator mounted on the dashboard of a trailer-truck cab. Each wheel (inset) is fitted with a tiny mercury-battery transistor transmitter actuated by a pressure switch on the tire valve stem. When the pressure of any tire falls below a preset level, the transmitter radiates a signal through an axle-mounted antenna. The dashboard warning device picks up the signal and flashes a light or sounds a buzzer.

To find the particular tire, the driver lifts off the indicator receiver and walks around the truck, holding the receiver near each tire in turn. A light on the indicator flashes red when he reaches the soft tire.

Among advantages claimed for the new system are reduced down-time on the road, and elimination of dangerous and wasteful running on soft tires.
Cleanliness is the first requirement of easy soldering. Make frequent and diligent use of wire brush, sandpaper and scraper to get area to be soldered spotless. For this purpose fasten a small angle on the end of the wire brush and sharpen it for use as a scraper.

Keep the tip of the soldering iron bright for best work. A small scrubbing brush mounted on a piece of plywood will help. Steel wool or a thick felt pad also works.

To hold small articles to be soldered use a double-headed clamp made by fastening two spring-type clothespins together, end to end. Wooden clothespins won't cool the work and thus prevent easy soldering. For good soldering, the area to be soldered must be as hot as the iron.

Wrap a length of wire solder around your soldering iron (or gun) cord to prevent it from kinking and possibly wearing and shorting. It has an additional advantage—if you need a bit of solder in a hurry some can be taken from this supply. Wire solder can also be used to keep a coil of insulated hook-up wire and antenna lead-in from tangling, or to take up slack in a drop cord.

A third hand is often needed in soldering. Make it easy on yourself by winding wire solder on an empty spool which has been fastened with a small bolt and angle bracket, to a wooden spring-type clothespin. An additional clothespin fastened to the first one provides a means of feeding the solder to the iron and there are no burned fingers.

For light work an “instant hot” soldering gun is preferable. Be sure that the tips are tight in the gun or it won't heat. For larger work use a heavy-duty iron.
Two views of a scribbled circuit. The paper clips act as contacts to the graphite film. On the right is the "rear" side of the parallel-T circuit.

how to scribble a circuit

Make working thin-film circuits with pencil and paper

By RUFUS P. TURNER

When radio was much younger, we made a grid resistor by drawing a pencil line on a piece of paper and fastening a pigtail to each end. I never completely abandoned the trick. It has often served when I needed a resistor after the stores were closed.

You can make a capacitor the same way. Pencil a solid black square on one side of a piece of paper (this is one plate), then turn the paper over and draw an identical square (the second plate) on the other side over the first square.

This works because a lead pencil mark is conductive. For a given grade of lead, the longer, narrower or lighter the line, the higher the resistance. The shorter, blacker or wider the line, the lower the resistance. Capacitor plates may be made fairly low-resistance by blackening the squares until they shine.

By this simple technique, the experimenter can produce extremely inexpensive thin-film R-C circuits of all kinds. Compared to a printed circuit, this is indeed a scribbled circuit—but it is A-OK, as you can quickly verify.

Component values may be adjusted exactly and in the simplest manner imaginable—with a pencil and eraser.

You try one

No special hard-to-get pencil is needed. An ordinary lead pencil lays the required film of graphite on the paper. However, I find that grade HB is best. (The F's are too soft and the H's too hard.) Just ask for an HB pencil—or for HB leads if you use an automatic pencil.

Use a fairly hard or stiff grade of thin, white paper like that used for better-grade letterheads. The soft kind soaks up moisture more readily and is easily scuffed by the pencil. Carefully fill in all parts of the scribble so that no gray or white freckles remain. Bear down hard, blackening the scribble until it shines like metal.

Resistors For a resistor, draw a straight line, using a ruler or other straightedge. This shape allows easiest adjustment of resistance.

A single, shiny, black line the width of a "thin lead" (.036 inch) has an initial resistance of 300,000 ohms per inch. A similar line ½ inch wide is 7,000 ohms per inch. When you finish, the resistance will probably be too low, but you can increase it by lightly rubbing the scribble with a soft eraser, watching the ohmmeter all the while. If the resistance is too high, blacken the line more or widen it. I have made scribbled resistors from a few hundred ohms to 1,000 megohms.
Capacitors

For a capacitor, draw a solid blacked-in square or rectangle on one side of the paper. Then turn over, and draw an exact duplicate on the other side over the first square. Be careful, or much of the first square will be rubbed off. The best precaution is to place the paper on a smooth, hard, highly glazed surface (such as a sheet of glass)—the pencil lead does not transfer readily to such a surface.

The capacitance of this 2-plate capacitor is equal to:

$$C = \frac{kA}{4.45t}$$

where $C =$ capacitance in pf, $A =$ area of one plate in square inches, $k =$ dielectric constant of the paper, $t =$ thickness of paper in inches. The dielectric constant (k) of paper lies between 3 and 6. The average value of 4.5 is a good approximation. To obtain the value of t, you will need to check the paper thickness with a micrometer. If you don't have one, you have an alternative—scribble a sample capacitor using 1-square-inch plates, check its capacitance with a bridge or capacitance meter, and use this capacitance (C_s) to determine the size of the capacitor you want. (Capacitance varies directly with the plate area, A—doubling A doubles C, and vice versa. If C_s represents the desired capacitance, then the required area $A_s = C_s / C$, in square inches.)

If capacitance is too high, carefully erase a small amount of the scribble, watching the bridge or capacitance meter all the while. Conversely, if capacitance is too low, add a little black area to each plate. I have scribbled and adjusted two-plate capacitors from 10 pf (μf) to .02 pf.

To be sure, there is a certain amount of Q-reducing resistance in the plate of a scribbled capacitor. But this is minimized by making the plate black, shiny and unbroken. In many R-C circuits, this resistance will be insignificant compared to the external resistance connected in series with the capacitor.

Attaching Leads

In a scribbled R-C circuit, resistor lines and capacitor squares run into each other and provide all connections except input and output terminals. The latter, however, and the pigtails of single (out-of-circuit) resistors and capacitors must be provided.

There are many ways of attaching leads to the graphite film of a scribbled circuit. All involve pressure contact. Paper clips are good for temporary connections. If the clip makes undesired contact with a scribbled electrode on the other side of the paper, slip a small insulator of paper under it (see photos). Another way is to lay a thin wire pigtail on the scribble surface and tape it solidly in place. Eyelets and pinch type paper fasteners are other possibilities.

Through-connectors

Making a connection between electrodes on opposite sides of the paper poses the same problem as with printed circuits. The only entirely satisfactory method seems to be to punch a hole and insert a tight-fitting eyeclet.

Protecting

After a scribbled circuit is completed, spray it with Krylon or a similar protective coating.

Packaging

Scribbled circuits can range from postage-stamp size up. They may be used flat, mounted for protection and rigidity between cardboard or plastic cards. Or for convenience, some of them may be rolled up, like a tubular capacitor, provided a paper or cellophane "skin" is laid on each side to prevent short circuits—and only if the rolling does not bring the plates of separate capacitors opposite each other. After tightly rolling, bind the unit with tape, or pot it, if you like.

Typical Circuit

Fig. 1 shows a scribbled version of the immensely useful parallel-T null network. This thin unit takes the place of three capacitors and three resistors. Fig. 2 shows its measured frequency response. In this circuit $C_1 = C_2 = \frac{1}{2} C_3$. This accounts for the larger size of C_3 in the drawing. Since C_1 and C_2 are connected, their plates are scribbled as a single large plate on the top surface of the paper to provide a simplified connection. In this circuit also $R_1 = R_2 = 2R_3$. The null frequency $f = 1/(6.28RC)$.

Many other R-C circuits can be scribbled. Your only task (and it is an interesting one) is to locate the electrodes in the proper position and on the correct side of the paper.
This unique, transistorized instrument is an up-dated version of the familiar grid-dip oscillator used by hams, experimenters, and engineers. It departs from the usual grid-dip oscillator in two ways. First, it is completely transistorized. Second, the novel tuning system eliminates plug-in coils. The single-range dial reads from 2.8 to 31 mc. Because of its construction, I call the instrument a base-dip oscillator (bdo).

Like a grid, this unit can be used to find resonant frequencies of tuned circuits, align circuits without turning on the power, identify parasites, check antennas for resonance, and tune traps and filters. In a pinch it can also be used as a signal generator or a sensitive tuned rf detector.

As a resonant circuit placed near the bdo’s oscillator tank circuit is tuned to the same frequency, the level of oscillation will change. This change can be noted by reading the current flowing in the oscillator’s control circuit. In vacuum tubes, a reliable measurement is the control-grid current. With transistors, the base voltage is measured. Therefore, as the oscillator tank circuit is placed near another tuned circuit at the same frequency, the current flowing in the base circuit is decreased, thus the name “Base-Dip Oscillator.”

A simple, straightforward transistor circuit is employed (Fig. 1). The oscillator is an Armstrong type, one of the most easily adjusted circuits. Feedback necessary for oscillation is reasonably constant over the entire frequency range, reducing the adjustments needed to keep the meter within its range.

Bias is supplied to the transistor through coil L2, bleeder system R1 and R2. C2 bypasses the cold end of L2 to

Fig. 1.—Circuit of the simple instrument.
provide the ac ground. Temperature stability of the collector current and a wide range tolerance of the battery voltage is provided by R3 with C4 bypassing the emitter to ground. You should have no difficulty getting the oscillator to work properly but, if the unit does not oscillate, try reversing the leads of coil L2.

The meter circuit is unusual in that it has full sensitivity regardless of the level of oscillation or setting of range control R5. It is in a bridge circuit with R5 acting as one side of the bridge and the base detector circuit acting as the other side. The detector measures the rf voltage on the base of the transistor, giving a dc output proportional to the level of oscillation. A similar voltage is obtained by adjusting the potentiometer. Thus, when the meter is set within range, a small change in the level of oscillation is indicated by a large downward reading of the meter when the tank circuit is externally loaded by a tuned circuit.

The detector network is a voltage doubler, comprising diodes D1 and D2 and capacitors C5 and C6.

Construction details

To build the bdo, start with the mechanical assembly. I used a 3 x 4 x 6-inch aluminum box as chassis and case. The photos show the location of all parts.

The key point in the novel tuning arrangement is the simultaneous tuning of both capacitance and inductance of a resonant L-C circuit. The simplest method of varying the inductance of a coil is to slip some paramagnetic material such as a ferrite core (to increase inductance) or some diamagnetic material such as a brass core (to decrease inductance) in and out of the coil form. I used a 1 1/2-inch length of 3/4-inch-diameter ferrite core cut off the end of a standard broadcast-band transistor radio antenna rod.

To tune inductance and capacitance simultaneously, the shaft of the variable capacitor must be coupled mechanically to the movable ferrite core that is to be inserted and withdrawn from the coil form. Very positive tuning can be obtained with a rack- and-gear assembly that converts the rotary motion of the shaft to the necessary linear motion of the core material. The tuning mechanism has five parts or subassemblies: (1) rack guide and coil support bracket, (2) rack and slug assembly, (3) oscillator coil and supporting block, (4) gear, (5) capacitor.

The brass bracket (Fig. 2) is designed to fit on the shaft end of the tuning capacitor. The coil assembly fits on...
The ferrite plates until square through gear. The assembly consists of slug the core press piece of plastic into which the rack is joined into a second slug assembly. This guiding action rack No. 24 into the gear. Next, its meshing bracket are two tab with the square hole guides the the coil form. Remember, the interior of the tubing must be kept completely clear as the ferrite slug travels the whole length of the tubing. A 3-turn link (L2) is wound in the same direction and in between 3 turns of the main coil at the capacitor end.

Circuit layout and wiring is straightforward and parts placement is not critical. Keep interconnecting wires as short as possible. Use a phenolic board (1 1/4 x 1 1/2 inches) supported by two brackets for mounting most of the circuit components. As you can see in the photos, the board is mounted on the coil side of the variable capacitor and space for mounting the circuit components is left on either side of the pheno-

The coil-form assembly (Fig. 4) consists of a 1/2-inch bakelite tube mounted in a 1-inch long bakelite block which has been drilled to accept the tubing. The assembly is mounted with two 4-40 screws to the bracket in such a way that the center of the tubing and square guide hole on the tab of the bracket are coaxially aligned.

Final assembly (Fig. 5) of the tuning unit is best done this way: With the gear in place on the capacitor shaft, insert the ferrite rod-rack assembly through the coil form with the rack meshing the gear and through the square hole in the tab of the bracket until the plastic coupler nearly touches the gear. Then rotate the capacitor to its fully open position and tighten the gear setscrew. Next, with the capacitor plates fully meshed, adjust the coil form in and out of the mounting block so that its end is flush with the end of the ferrite rod. Then cement the coil form in place. Now check for backlash. If excessive, eliminate by adjusting the bracket so the rack presses more firmly into the gear.

Coil L1 is made up of 15 turns of No. 24 enameled wire evenly spaced for 1 1/2 inches, starting at the extreme outer end of the tubing. Ends of the winding are held by cementing or dop-

The flat portion of the bracket while the tab with the square hole guides the rack during the in-out travel of the slug assembly. This guiding action gives a second point of support to the rack end of the assembly, assuring a constant mesh between the rack and gear and keeping backlash to a minimum.

The ferrite slug and rack are joined into an assembly (Fig. 3) by a simple home-made plastic coupler. It is made by forming a hole in the center of a 1/4-inch long, 3/4-inch diameter piece of plastic into which the rack is press-fitted and cemented. The ferrite core is then cemented end to end with the plastic piece, thus completing the slug and rack assembly.

The coil-form assembly (Fig. 4) consists of a 1/2-inch bakelite tube mounted in a 1-inch long bakelite block which has been drilled to accept the tubing. The assembly is mounted with two 4-40 screws to the bracket in such a way that the center of the tubing and square guide hole on the tab of the bracket are coaxially aligned.

Final assembly (Fig. 5) of the tuning unit is best done this way: With the gear in place on the capacitor shaft, insert the ferrite rod-rack assembly through the coil form with the rack meshing the gear and through the square hole in the tab of the bracket until the plastic coupler nearly touches the gear. Then rotate the capacitor to its fully open position and tighten the gear setscrew. Next, with the capacitor plates fully meshed, adjust the coil form in and out of the mounting block so that its end is flush with the end of the ferrite rod. Then cement the coil form in place. Now check for backlash. If excessive, eliminate by adjusting the bracket so the rack presses more firmly into the gear.

Coil L1 is made up of 15 turns of No. 24 enameled wire evenly spaced for 1 1/2 inches, starting at the extreme outer end of the tubing. Ends of the winding are held by cementing or dop-

Many electronic circuits require encapsulation—potting. It protects them against high humidity, dust, grime, etc. However, many potting compounds have one great fault—one time the circuit or component has been potted, it cannot be repaired. There is just no way of locating the component covered by an opaque protective coating and getting it out for repair. It's like trying to find a pebble cast into a brick!

But now things are different. A transparent potting compound is available. Made by Dow Corning, it is called Sylgard 182. It sets in 15 minutes at 150°C, in 3 days at 25°C. Its most important feature is shown in the photo. You can see just where every part is in the circuit is located. And if one needs replacement, take a sharp knife and cut away the encapsulating material. Then replace the defective component, pour in some new Sylgard 182, let it set, and you're back where you started from.

Fig. 3—Rack is cemented to ferrite core.

Fig. 4—Details of the coil-form assembly.

Fig. 5—The completed capacitor-coil assembly.

www.americanradiohistory.com
Tiny tone-modulated R/C transmitter has 75-foot range

By JOHN F. CLEARY and ERICH GOTTLIEB

The tunnel diode has received a great deal of publicity in the 4 years since its invention. First, glowing reports on its future had it advertised as the answer to all prayers. As commercial devices became available, the circuit designer soon found that, without a really good understanding of the tunnel diode's operation, he was unable to make it perform any function stably. His first experimental amplifier was oscillating, and conversely his first oscillator was amplifying!

The years 1960 and '61 saw a number of articles explaining some of the intricacies in the tunnel diode's behavior, and produced the first tunnel diode manual.1

One of the most attractive uses of the tunnel diode is in low-power oscillators. Here it excels because of its small size, low power requirements and extreme circuit simplicity. Its excellent frequency stability, an important asset for oscillator usage, has been illustrated in a two-part article in Electronic Design Magazine.2 The article pointed out that a simple series-parallel tunnel-diode oscillator circuit could provide very stable sine wave oscillations even when subjected to large variations of temperature and voltage. The three remote control transmitters discussed in this article use such an oscillator, with stability further improved by a quartz crystal.

These 27.255-mc transmitters were designed to operate as portable garage-door openers in conjunction with a five-transistor superregenerative tone-select receiver ("CB Receiver Opens Garage Door," January 1963, page 26). With this receiver the transmitters have a range of around 75 yards.

The circuit

The basic circuit in Fig. 1 is unique in that it uses a single tunnel diode to oscillate both at 27.255 mc and at 1,300 cycles. It is self-modulating. A tunnel diode can oscillate at several frequencies simultaneously with appropriate tank circuits having greater impedances than the negative resistance of the tunnel diode. All one need do is to bias it (from a low-resistance dc voltage divider) in its negative-resistance region. This means that for the IN3716 (4.7 ma) diode in Fig. 1, the bias is set at about 130 mv and 2.5 volts by R2. The voltage from the 1.34 volt mercury cell is dropped to 130 mv by R1 and R2. Under these bias conditions, the tunnel diode, in conjunction with C2, L1 and C3 (the tone oscillator circuit) and L2, C4 and the crystal (27.255 mc), will oscillate at those frequencies. Modulated output is coupled by C5 to the whip antenna. C1 is an rf bypass across the bias supply. The photos show parts placement for the circuit of Fig. 1.

Although this circuit is attractive, experiments showed that the tunnel diode oscillates harder at the audio-tone-frequency than at the rf carrier frequency and that this simple circuit has a tendency to "unlock." This results in "sideband splatter" over too wide a frequency range and possible violation of the FCC Rules and Regulations governing interference. A separate audio oscillator allows one to feed just enough modulation power to the rf oscillator to limit the necessary side-band power and still attain the required range, but without "sideband splatter." Two such circuits are shown in Figs. 2 and 3. In Fig. 2, a 2N2840 unijunction transistor operates as a relaxation oscillator providing positive pulses to modulate the crystal-controlled tunnel oscillator. One of the most useful circuits is a tone-modulated receiver that uses the tunnel diode.

Fig. 1—Circuit of self-modulated tunnel-diode transmitter.

JUNE, 1963
diode oscillator. The tone frequency is a function of the time constant of C3, R5 and the unijunction characteristics, while R4 determines the modulation index. Since the modulation is in the form of short pulses, the duty-cycle of the modulated envelope is low, insuring against "sidelband splatter".

This tunable diode crystal oscillator, developed by R. L. Watters, is extremely stable and will oscillate only at the series-resonant-mode frequency of the quartz crystal. Locking action is unusually positive when the oscillator loading is not too heavy.

The circuit in Fig. 3 uses the same crystal oscillator but sinusoidal modulation is provided by a 2N2712 transistor used in a Hartley oscillator. Modulation percentage is again controlled by R4.

Construction

The 27-mc tank coil (L1 in Figs. 2 and 3) has an inductance of approximately 200 nanohenries. It consists of 6 turns of No. 16 enameled wire wound with an inside diameter of \(\frac{1}{8} \) in and an overall length of \(\frac{1}{2} \) inch. Turns are approximately \(\frac{1}{8} \) inch apart. The tank circuit L1-C1 is not grounded as in Fig. 1. It is positioned parallel with the crystal holder and the chassis top, and on the opposite side of the antenna jack. One end of the coil runs directly to the outside crystal terminal while the other is held rigidly in place by C1, C5, and the tunnel diode. The transformer in Fig. 3 (UTC type SO-9) is secured in place with contact cement.

Since the tunnel diode will oscillate at more than one frequency, short connecting leads are important. All capacitors are fixed so that the inductance must be spread or squeezed to lock the diode to the crystal frequency. Depending on stray capacity and inductance present, some cut and try around the values given may be required.

The battery holder must be cut down if it is to fit into the case. This is a "tailoring" job and requires the removal of both metal solder terminals as well as cropping the bakelite base as close to the battery as possible. This also is clearly shown by the photographs. Not shown is the single 4-40 screw securing the holder, from the bottom, in place. Be sure the screw is so located as to avoid a short circuit with the holder terminals.

To insure a common low-impedance point for all grounds, line the inside-top of the box chassis with a small piece (1/4" x 1/4") of sheet copper. This is held in place by the antenna jack and crystal holder. All ground returns are soldered directly to the copper.

The transmitters in Figs. 2 and 3 were built into the same box chassis as Fig. 1. Location of the crystal (PR Type Z-9R, Texas type HC-6/U or equivalent), battery holder, switch, and the antenna jack are identical for all units. Since coil L1 of Fig. 1 is not used in the transmitters in Figs. 2 and 3, the additional space provides plenty of room for the respective modulator components.

Antenna

Since only microwatts are available to the antenna, and since a transmission range of at least 75 yards was desired at the outset, a short vertical antenna was all but useless. Adding L2 as

Fig. 2 — Transmitter with unijunction modulator.

Fig. 3 — Hartley oscillator supplies control tone in this circuit.
a loading coil (in Figs. 2 and 3) to the existing straight wire gave a dramatic increase in range. Total antenna length is a compromise of ease of handling, transmission range and safety to bystanders as well as the operator.

Antenna construction is straightforward as shown in Fig. 4. This is easier to construct than the earlier one shown in the photograph. L2 consists of 50 turns of No. 24 Formvar or enamel wire tightly wound on a ½ x 1¼-inch polystyrene, Teflon or equivalent insulator. After securing and soldering to each end lug, clip off the lug ends and file the rough edges smooth. A drop of cement at each end of the coil prevents loose wires.

Conclusions

Total current drain from the 1.34-volt mercury cell is 12 ma for the circuit of Fig. 1. With the intermittent type of operation normally encountered in remote control applications, such as opening a garage door, excellent battery life can be expected with this battery rated at 1,000 milliampere hours. The circuit of Fig. 2 adds only 0.5 ma, while the circuit of Fig. 3 draws an additional 4.0 ma.

As a result of crystal control, excellent frequency stability can be expected in the circuits of Figs. 2 and 3. Even without the crystal, surprisingly good stability will result from tunnel-diode oscillators if all electrical stability requirements have been met, good engineering construction practices have been followed, sufficient circuit shielding is used, and antenna coupling is loose. Hand-held tunnel-diode oscillator transmitters, both AM and FM, have been designed and constructed for higher-frequency operation. Line-of-sight transmission ranges of 200 yards or more have been achieved.

There is no reason why this simple transmitter could not be designed for more complex remote control functions. Two possibilities that come to mind are two or more continuous audio tones modulating the carrier. An AM–FM duplex type of operation using a single tunnel diode is not inconceivable. By substituting a microphone and a one-transistor preamp (such as shown on page 41 of reference 1) for the tone network, the transmitter can be voice-modulated.

those crazy values

By RICHARD H. DORF*

IF YOU WORK WITH ELECTRONICS REGULARLY, you know that, if you want a resistor one size larger than 47,000 ohms, it will turn out to be 56,000. But have you ever wondered why such odd numerals as 12, 15, 16, 18, 19, 20, 21, 22, 23, 33, 39, 47, 56, 68, and 82 (followed by various quantities of zeroes) are used for resistor values? Offhand, it would appear that a highly influential but totally unremembered government official settled on these figures at about 4 AM after a night of cards and women, and the electronic world has been stuck with them since.

But the fact is that they make much more sense than the values before the last (big) war. They were nice, round figures like 10, 20, 30, 40, you remember. Today resistors are better than ever, and so are the values. If you are old enough to remember 1941 and before, the resistors were almost twice today's size, and the rough, uninsulated surface was covered with three colors of paint, which you read for a value in a body-end-dot sequence. Today's ½-watters are only ⅛ inch long and ⅛ inch in diameter, beautifully cylindrical, totally insulated, and neatly marked with four shiny colors in obvious sequence for the value and tolerance. Incidentally, they're more stable, moisture-proof, and heat-resistant.

But those crazy values! Well, they're not so crazy. They are designed to help the engineer and technician find a standard resistor that will come within 10% of any value which a circuit may need.

Consider the old values, and let's talk about 20% tolerance, since that's how they were made. A 1,000-ohm resistor with its plus tolerance might be as high as 1,200 ohms. The next size, 2,000 ohms, might be as low as 1,600. But there was a gap between 1,200 and 1,600 where you couldn't get a standard value that would give you a resistance guaranteed within ±20% of nominal. At the other end of the scale, a 9,000-ohm resistor with its −20% tolerance might be as low as 7,200 ohms; an 8,000-ohm unit with its +20% might be as much as 9,600 ohms. So in that range it would make little difference which of two or three different values you used, meaning that too many values were available!

The modern values are chosen so that the ±10% tolerance of any value slightly overlaps the −10% tolerance of the next higher standard value. For instance, 39,000 ohms +10% is 42,900 ohms; 47,000 −10% is 42,300 ohms. You will find about the same overlap between any two modern values. Since the values now proceed approximately according to a geometric progression (each value is about 1.2 times that of the next lower one), percentage tolerances have about the same meaning and the same effect on circuit performance (which is generally affected in percentage terms and not arithmetically) at any value of nominal resistance.

The capacitor manufacturers also have tried to standardize on these values (.01, .012, .015, .022, etc.) but for some reason they have had less success. Perhaps it is because in most circuits exact capacitor values have less effect than resistor values. Except in tuning and timing circuits, few designers would bother with choosing between .012 or .015uF. If .01uF weren't right, their next normal step would be to try .022. So full use of new values would be unnecessary.

So if you haven't already done it, memorize these numbers: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82. That's the price you pay for the benefits of better resistor values!
music all over the house
—without wires

Transmitter chassis uses many parts that are the same as those used in home receivers.

Two new units pipe sound from TV, phono or radio all over home.

HOME MUSIC DISTRIBUTION SYSTEMS ARE slowly but surely gaining popularity. Several manufacturers of built-in intercoms now have one or more models that include radio and phono as well. Two radio-TV manufacturers have followed the trend and have developed home music distribution systems as accessories for their sets. The Westinghouse Mobil Sound is a wireless system that radiates the TV audio signal to any broadcast receiver in the house. The G-E HMDS (Home Music Distribution System) uses an FM carrier-current (wired-wireless) transmitter and special receivers.

The G-E system

This consists of the SP30 transmitter and SP20 receiver. It operates on either 250 or 300 kc, and can be changed from one channel to the other by flipping a switch on the transmitter and receiver. The alternate channel is used to avoid interference with a neighbor's HMDS system.

Fig. 1 shows the circuit of the transmitter. Two jacks are provided for

![Image of a transmitter circuit](https://www.americanradiohistory.com/pics/4_1.jpg)

Fig. 1—Simple transmitter circuit feeds output into power line.
inputs from phonograph and radio. The signal is amplified and fed to the reactance tube (V2-a), which modulates the oscillator (V2-b) at an audio rate. The 6AU6-A rf output stage takes the modulated signal from V2-b's plate and feeds it into the power line through line-matching transformer T2. The transmitter operates on 300 kc with Si open and 250 kc when it is closed.

The other half of V1 drives the NE-2L modulation indicator. It amplifies the audio signal from V1-a's plate. The ac voltage across the 56,000-ohm plate resistor causes the neon lamp to fire. The level control should be set so the lamp just flashes weakly on loud passages.

Fig. 2 is the circuit of the SP20A receiver. The FM signal is picked up from the power lines by T1 and amplified by V1. The limiter removes any residual AM and passes a clean FM signal to the discriminator. The demodulated audio signal is then amplified in the 6AV6-6CU5 amplifier.

The receiver is tuned to 300 kc when Si is open. Closing it shunts a capacitor across each tuned circuit to tune it to 250 kc.

The HMDS service notes state that ac-de radios with silicon rectifiers and light dimmers with silicon controlled rectifiers may create interference in the system. A .05-µf 1,600-volt capacitor shunted across the rectifier will eliminate interference from ac-de radios. Interference from other sources can usually be eliminated with an ac line filter placed close to the source. Check the ac line filter to see if there is a capacitor across the input side. If so, it must be smaller than .01 µf. Otherwise, it will short out the signal.

Mobil Sound

This system consists of a Mobil Sound transmitter (Fig. 3) and the user's own AM radios throughout the house as needed. The transmitter is an AM oscillator that can be tuned to any clear frequency between 600 and 1000 kc in the broadcast band. Its small printed-circuit chassis and the radiating loop are mounted on the TV set's rear cover.

The audio modulating signal for the Mobil Sound transmitter is taken from the high side of the TV set's volume control and fed to the transistor's base through the .01-µf capacitor. The supply voltage (+23 volts) is tapped off the cathode biasing resistor of the set's audio output stage. The system is intended primarily for Westinghouse sets.
Have you ever wanted to watch a late TV show, but had to call it off because other members of the family had retired? Does TV disturb those who wish to read or study? Is there someone in your home with a hearing defect who must turn up the volume, causing discomfort to others?

These are common problems in many homes but, if the TV sound could be confined to only those who wish to hear it, there would be no problem at all.

One easy solution is headphones. But this ties the listener to the set and leaves connecting wires all over the place.

The best solution is to use electromagnetic induction to "transmit" the audio portion of the program and little audio receivers and individual headsets to receive the sound. It's simple to set up—all you do is connect a loop of wire into the speaker circuit of your TV (it can also be used for radio and record players). This loop becomes a transmitting antenna that radiates the sound from your TV. Loop size depends upon the area you wish to cover, but make it as large as possible. It may be installed in the attic or on the basement ceiling. If this is not possible, mount it on the wall or under the rug. For a wall-mounted loop, I use 10 turns of ordinary hookup wire around the limits of the wall. You can even wind a loop right on the back of the TV. For this you'll need at least 20 turns. But remember, the larger the loop, the greater the listening area and the louder the received sound. Also, a small loop requires more power than a large one for the same amount of coverage.

Fig. 1 shows how to connect the loop to the TV. Mount the potentiometer on the side of the cabinet or right on the back panel. If you use the back panel, make sure the leads from the control are long enough to allow for removing the back for repairs.

You can use a switch in place of the pot if you wish. I prefer the pot as either sound or silent listening can be given preference in volume.

The receiver is a small transistor amplifier. It is very similar to a hearing aid, the only difference being the receiver has a pickup coil where a hearing aid would have a microphone.

It is possible to get somewhat limited reception without any amplifier at all with only an earphone. This can be further improved by connecting the earphone to a small loop 7 inches in diameter with 20 turns of No. 18 wire. We use this system when we haven't enough amplifiers to go around. To get away from the dangling cord and get more freedom of movement, the coil is worn like a halo.

Building the receiver

Designed to hang on the ear, the receiver is completely self-contained. Its chassis is a piece of soft pliable plastic. I cut mine from a squeeze bottle and suggest that you make a cardboard template to get the shape and size right before cutting the plastic. If you prefer a ready-made chassis with an earphone already attached, try the Lafayette AR-50 earphone. You may have to crowd the components a little, but they should all fit nicely.

The plastic chassis and battery contacts are shown in Fig. 2. Bend the lugs on the negative battery contact at right angles and insert them in slits D in the base. Then bend them over to hold the contact in place. Insert the lower end of the positive contact through slit B in the base.

Pass the lip of the earphone, to which the eartip mold is attached, through hole A in the plastic base, then
The whole receiver fits behind your ear.

Snap the cartip mold back in place. If the plastic chassis is too thick for the mold to snap onto the earphone, en-

The pickup coil I used is a spool type coil ½ inch deep, ½ inch in diameter, and wound full of No. 40 enameled wire on the spool winder of a sewing machine.

Another possible pickup coil is a small high-impedance iron-core unit. Its length should be greater than its diame-
ter. I’ve used one other coil successfully. It was wound around four ¾ inch strips of transformer lamination. Use No. 40 enameled wire and wind enough for about 500 ohms dc resistance.

Coupling capacitor C is a subminiature electrolytic—any value between 1 and 6 μF will work. Almost any p-n-p small-signal audio transistors can be used for V1 and V2. The earphone is a high-impedance magnetic unit. The two-transistor receiver draws 1.5 ma. Removing the battery turns it off.

Cement all components to the plastic chassis with clear nail polish. Solder all leads to anchor points made by loop-
ing short lengths of wire over the com-
ponent leads and through small holes in the chassis. Once the unit is completed and you are sure it works, coat the whole assembly with a liberal layer of clear nail polish, but be sure you don’t get any on the battery terminals.

Of the many advantages of silent listening, the important one is you have one ear free for other sounds around the house which you otherwise would not hear.

END

Fig. 3—Circuit (left) and component ar-
rangement (above) for the receiver.

large hole A to pass the mold.

The receiver circuit is in Fig. 3. Those who prefer a ready-made ampli-

VOLTMETER PUZZLE

The circuit below is a full-wave doubler bias supply for a push-pull class-

AB1 amplifier. If capacitor C1 were to open, what would happen?—Edward R.

BEECH

THAT FOUR-BULB PUZZLER

A number of our readers have called our attention to the fact that 6-volt (or fractionally higher rating) Zener diodes would give better results in the circuit (March, page 59) than

thermistors, since they would not use any power until the bulb failed, and

that, when it failed, the voltage drop across the Zener diode would be a

closer approximation to that of the bulb than would be the case with a ther-

mistor.

CORRECTION

A number of readers caught the error in the answer to the question

"How Much Voltage" in this column of the April issue. The error was in

equation 4. It should have read

\[
\begin{align*}
2/3(0.3E_i) + 0.1E_i &= 10 \\
0.2E_i + 0.1E_i &= 10 \\
0.3E_i &= 10 \\
E_i &= 33.33 \text{ volts}
\end{align*}
\]

Our thanks to all the readers who spotted the error.

END

What’s your eq?

Three puzzlers for the student, theorician and practical man. They

may look simple, but double-check your answers before you say you’ve

solved them. If you’ve got an interesting or unusual answer send it to

us. We are especially interested in service stinkers or engineering stum-

pers on actual electronic equipment. We are getting so many letters we

can’t answer individual ones, but we’ll print the more interesting solu-

tions (the ones the original authors never thought of). We will pay $10

and up for each one accepted. Write EQ Editor, Radio-Electronics, 154

West 14th St., New York, N.Y.

Answers for this month’s puzzlers are on page 76.

VOLTMETER PUZZLE

Voltmeters B, C and D show zero

volts. What is the voltage reading on

voltmeter A and voltmeter E?—Kend-

dall Collins

HOW MANY DIODES?

What is the lowest number of
diodes required to obtain full-wave rectification?—Richard L. Koelker

JUNE, 1963

Doubling in Capacitors

The circuit below is a full-wave
doubler bias supply for a push-pull class-

AB1 amplifier. If capacitor C1 were to

open, what would happen?—Edward R.

BEECH

THAT FOUR-BULB PUZZLER

A number of our readers have called our attention to the fact that

6-volt (or fractionally higher rating) Zener diodes would give better results in the circuit (March, page 59) than

thermistors, since they would not use any power until the bulb failed, and

that, when it failed, the voltage drop across the Zener diode would be a

closer approximation to that of the bulb than would be the case with a ther-

mistor.

CORRECTION

A number of readers caught the error in the answer to the question

"How Much Voltage" in this column of the April issue. The error was in

equation 4. It should have read

\[
\begin{align*}
2/3(0.3E_i) + 0.1E_i &= 10 \\
0.2E_i + 0.1E_i &= 10 \\
0.3E_i &= 10 \\
E_i &= 33.33 \text{ volts}
\end{align*}
\]

Our thanks to all the readers who spotted the error.

END

WHAT'S YOUR EQ?

Three puzzlers for the student, theorician and practical man. They

may look simple, but double-check your answers before you say you’ve

solved them. If you’ve got an interesting or unusual answer send it to

us. We are especially interested in service stinkers or engineering stum-

pers on actual electronic equipment. We are getting so many letters we

can’t answer individual ones, but we’ll print the more interesting solu-

tions (the ones the original authors never thought of). We will pay $10

and up for each one accepted. Write EQ Editor, Radio-Electronics, 154

West 14th St., New York, N.Y.

Answers for this month’s puzzlers are on page 76.

VOLTMETER PUZZLE

Voltmeters B, C and D show zero

volts. What is the voltage reading on

voltmeter A and voltmeter E?—Kend-
dall Collins

HOW MANY DIODES?

What is the lowest number of
diodes required to obtain full-wave rectification?—Richard L. Koelker

JUNE, 1963

Doubling in Capacitors

The circuit below is a full-wave
doubler bias supply for a push-pull class-

AB1 amplifier. If capacitor C1 were to

open, what would happen?—Edward R.

BEECH

THAT FOUR-BULB PUZZLER

A number of our readers have called our attention to the fact that

6-volt (or fractionally higher rating) Zener diodes would give better results in the circuit (March, page 59) than

thermistors, since they would not use any power until the bulb failed, and

that, when it failed, the voltage drop across the Zener diode would be a

closer approximation to that of the bulb than would be the case with a ther-

mistor.

CORRECTION

A number of readers caught the error in the answer to the question

"How Much Voltage" in this column of the April issue. The error was in

equation 4. It should have read

\[
\begin{align*}
2/3(0.3E_i) + 0.1E_i &= 10 \\
0.2E_i + 0.1E_i &= 10 \\
0.3E_i &= 10 \\
E_i &= 33.33 \text{ volts}
\end{align*}
\]

Our thanks to all the readers who spotted the error.

END
TRANS-SWITCH—
electronic scope switch

8-transistor unit is a cinch to build

The Trans-Switch is an all-transistor scope attachment that lets you display two different waveforms simultaneously on your scope screen. You can, for instance, compare an audio amplifier’s input and output signals so any distortion or phase shift can readily be noted. Or you can compare input and output waveforms of a square-wave converter, pulse amplifier, delay circuit or the like. Generally, any two signals in the audio range that are related to each other can be fed into this switching unit for comparison or matching.

Eight transistors are used in the Trans-Switch (see schematic). All are inexpensive. The other components are standard miniature types, and overall cost of construction is nominal. Layout and construction are not critical—you can build this unit in almost any manner you desire. All components shown in the photos are miniature types but can be replaced with standard-size equivalents if compactness is not important.

How it works
The heart of the circuit is the switching amplifiers V1 and V2. First, V1 conducts. Its input signal is amplified and fed to the scope, while V2 is cut off. At the end of the period determined by switching frequency control S1, V1 is driven into cutoff and V2 conducts to pass its input signal to the scope. This switching action is too rapid for the eye to follow and results in two simultaneous traces on the scope screen.

The switching frequency is generated by V7 and V8 arranged in a multivibrator circuit. S1 selects different timing capacitors to change the R-C time constant and produces switching frequencies of approximately 1, 2.5, 4 and 15 kc. The output pulse at V7’s collector is 180° out of phase with the output pulse obtained from V8’s collector. At any one instant V5’s base is driven with a negative pulse from V7, and V6 receives a positive pulse from V8. During the next instant the pulse polarities reverse to place a positive signal at V5’s base, and a negative pulse at the base of V6.

Transistor pairs V3 and V5 and V4 and V6 are squaring circuits that convert the multivibrator’s pulses to fast-rising square waves to drive the emitters of V1 and V2. When a negative pulse is fed to V5’s base, it produces a positive square wave at V3’s output which drives V1 into conduction. At the same time, the positive pulse at V6’s base produces a negative square wave at V4’s output which drives V2 into cutoff. Then the switching action reverses itself. Any signals fed into the base circuits of V1 and V2 are sent on to the scope as the transistors alternately conduct and produce two distinct signal waveforms on the scope screen.

The check position on S1 is for checking the condition of the battery. It allows power to be applied to the unit, but disables the multivibrator by removing the timing capacitor, and allows only a single trace to appear on the scope screen. If the battery is in good condition, any signals at the input jacks will be amplified and appear on the single trace. Power requirements are only 3 to 4 ma at 6 volts, so the battery will last a long time.

POSITIONING potentiometer R3 moves the two traces closer or farther apart, or it can be used to put one trace on top of the other. The input signal level to each amplifier stage is controlled by CHANNEL GAIN potentiometers R1 and R5.
Construction

A 4 x 5 x 6-inch steel cabinet with an attached back panel was on hand, and all the circuitry, with the exception of the jacks and potentiometers, was mounted on two perforated boards and attached above and below the shelf. The pots, input and output jacks and switch S1 are mounted on the front panel. Although layout and lead dress are not critical, the use of small low-voltage components and close placement of transistors will result in short lead lengths.

The upper board contains the circuitry for transistors V1 through V6. V1 and V2 are mounted at the front of the board close to the input controls. V5 and V6 are mounted at the back of the board. The flexible leads of these transistors are wired directly into the circuit.

The lower perforated board contains the multivibrator transistors V7 and V8, whose short rigid pins require sockets. Timing capacitors C4 through C7 are small ceramic or mica units mounted close to S1 to provide direct wiring. Leads from coupling capacitors C9 and C10 go through the shelf to connect to the circuitry on the upper board.

A C-bias battery was selected for the convenient mounting feature of its flat shape, and is fastened with brackets to the top of the enclosure.

The constructor can vary the layout by mounting all the components on a single board, or larger components can be substituted. Coaxial type jacks were used for their small size, but any good quality jack can be used. Be sure to grip the flexible leads of the transistors with long-nose pliers to dissipate excess heat while soldering.

Checkout and use

After the unit is assembled, insert a milliammeter in series with the negative battery lead. Turn S1 to the 1 kc position and note whether the current drain is in the normal range of 3 to 4 mA. If it is appreciably higher, switch to power off immediately and recheck the wiring, and transistors if necessary, to determine the defect.

If the drain is normal, leave S1 in the 1 kc position and connect a lead from the oscilloscope jack to the scope’s dc input jack. The dc input connection is recommended since most inexpensive scopes have better square-wave response without the coupling capacitor used in the ac position. Set the scope’s sync selector to internal and note a square wave appearing on the screen. If it is not perfectly symmetrical, or has some spikes riding on it, don’t be too concerned; they do not affect the operation of the switching unit.

Connect a lead from the switcher’s sync jack to the scope’s external sync jack and rotate its sync-selector switch to the external position. Two distinct traces will appear on the screen, and rotating R3 will move them closer or farther apart. Note the appearance of the two traces at all settings of S1, except in the check position. Return S1 to the 1 kc position, connect the audio generator, set at 10 kc, to the channel 1 input jack. Rotate the gain control for this channel to its full open position and adjust the generator output for a sine wave on one of the two traces. Run a parallel lead from the audio generator to the channel 2 input jack, and adjust its gain control for a sine wave on the other trace. Then adjust the positioning control to superimpose both waveforms to obtain a single trace. If the waveforms mesh perfectly, it indicates that both amplifier stages are identical as far as phase shift is concerned.

Become thoroughly familiar with the action of all controls and experiment with the sweep frequency ranges on the scope, as well as the amplitude controls of both Trans- Switch and scope. The selection of the switcher’s best switching frequency setting depends upon the frequency of the signal fed into it. As a rule of thumb, use the 1 kc setting for input signals between 10 and 25 kc, the 2.5-kc position for signals between 1.0 and 10 kc, the 4-kc setting for signals in the 100 to 1,000-cycle range, and the 15-kc setting for frequencies below 100 cycles. In any case, adjust S1 for the smoothest waveform traces possible. At all positions, the switching action may show up as a light wave on one of the two traces.
background haze if the scope’s intensity control is turned up, but it hardly shows at the usual intensity level.

Once you are thoroughly familiar with the controls, put the unit to practical use. An amplifier can be tested by injecting a signal from an audio generator into the amplifier’s input and the channel 1 input at the same time. The amplifier’s output can be terminated in its usual resistive load, and the output signal picked off to feed the channel 2 input.

Connections between Trans-Switch and scope are the same as those for the checkout; J4 to the scope’s vertical amplifier dc input, J3 to the scope’s external sync jack, the scope set to external sync. Adjust the channel gain, positioning, scope gain control, S1 and the scope’s sweep frequency switch for equal-amplitude signals on both traces. The signals can now be compared for any possible distortion, or superimposed for phase-shift comparison. Adjustments to the amplifier can now be made and the results, relative to the input signal, can be readily observed on the scope.

In all applications, bear in mind the Trans-Switch input impedance is dependent upon the setting of the gain controls, so a high-impedance connection to the input jack may have to be isolated with a pad or small capacitor to avoid loading the equipment being checked. As a general tool and useful oscilloscope attachment, the Trans-Switch is hard to beat for all audio work.

After the Computer, What?

Continued from page 23

still take a year to produce an intellectron.

In addition, after completion, the intellectron must still **continue to learn** new facts from time to time—just as humans must—if it is not to fail behind in its general knowledge. Yet with all these “human” accomplishments, the intellectron will still be a machine.

Then what good are these intellectual machines? They will be able to do thousands of tasks and replace humans who will rarely compete with them. You could give verbal orders to them and count on getting back correct evaluated answers from their encyclopedic memories, either **verbally** or typed out neatly in a variety of languages.

They will become invaluable in commerce, business, science, literature, and in all the arts. They will be robots, but intellectual robots.* —H.G.

which dry battery for you?

There is a best dry battery for every job.

This article will help you pick it out.

by GORDON E. KAYE*

Dry batteries are made in three common types, commonly called zinc-carbon, alkaline and mercury. The zinc-carbon battery is further divided into four varieties. These were described in the article “What Is A Dry Battery?” in the May, 1963, issue. Each of these types has its own best applications, due to its composition or the proportions of the elements used in its mix. The table illustrates some typical consumer applications and the reasons for choosing correct battery types for them. There are hundreds of other industrial, military and commercial devices using dry batteries.

A rather special application is that of voltage standard. The industrial-grade mercury battery may be used as a voltage-reference source. (Some varieties of mercury cells made with a manganese dioxide blend are not suitable as a voltage reference. The MnO2 causes a reading of 1.4 volts. This can be spotted easily.) At intermittent drains up to 1 ma, it is within 1% of its original 1.357 volts for a period of 2 to 10 years. Aged cells, after 3 years, can have a long-term stability of 0.1%.

Direct measurements may be made on these cells with ordinary voltmeters. Voltage potentiometers are not needed, except where more precise readings are required and calibration against a primary standard is called for. You can attain short-term accuracies in the order of one part in a million, especially if the temperature is a stable 120°F, and the cell has been aged. The average open-circuit voltage of these cells doesn’t seem to drift over the years, as shown in Fig. 1.

Selecting a battery type

The simplest economic viewpoint

Fig. 1—Chart shows excellent shelf-life of mercury cells and batteries.
Fig. 2.—Expected shelf-life of the three battery systems at 70°F. Storage at 120°F reduces shelf-life to one-fourth the values shown.

Fig. 3.—Comparative costs per watt-hour of the three battery systems at different load levels.

Fig. 4.—Life-span of cells discharged into 60-ohm loads for 8 hours per day at 70°F.

Fig. 5.—Comparative watt-hour per pound ratings of the three primary cell systems.

JUNE, 1963

in dry-battery use is the cost of delivered energy per hour (cost per watt-hour). Not so obvious is the inclusion of a shelf-life factor (Fig. 2) as well as a quality-rating factor. The latter would be important in high-quality appliances such as battery-operated tape recorders, cameras, wristwatches or light meters. If equipment is left unused for a long time, leakage and loss of capacity can raise battery operating costs. Equipment damage and undelivered energy are valid charges against a cell system.

The chart in Fig. 3 compares the cost per watt-hour for the AA penlight cell in the three dry-cell types. Various current rates are shown against costs, based on list prices for top-grade cells. It can be seen that heavy loads raise energy costs appreciably. There is an economical cell size for each application. Also, the alkaline systems are less costly in heavy-duty, long continuous service, especially where voltage levels are to remain high (Fig. 4). Shelf life and leakage factors also tend to favor these systems.

Zinc-carbon cells and batteries are more economical initially and are favorable in lightly loaded, intermittent applications. They are less costly in the larger cell sizes due to a higher efficiency when operating at nominal rates. Watt-hour ratings per pound (Fig. 5) are decisive in many applications where weight and bulk must be kept to a minimum. The dry-battery products manufactured today represent the accumulation of 70 years of industrial electrochemical experience, beginning with Leclanché and continuing right through to the advanced-design mercury cell. The number of batteries required per product is reduced, battery efficiencies are higher, and their operating costs are consequently lowered. An example of this is seen in the compact, modern transistor radio.

Selecting the right battery, however, requires that you consider battery capabilities in terms of application requirements. Regardless of the application, there is a correct cell or battery design for maximum performance. The table and charts will, we hope, assist you in your selection.
what's DIFFERENT about Industrial Electronics

A lot less than you think

By DELROY D. DARLING

Many radio and TV service technicians have considered going into industrial servicing, but most of us are a little frightened of what might be expected of an industrial technician. We had the same problem when television first became popular. Wise radio technicians familiarized themselves with the new art, and were ready when the time came. But what are the differences and similarities between the TV-radio service field and the industrial electronic technician's job?

Basic principles

A good knowledge of the basic principles of electricity and electronics is necessary to good servicing in either field. There are no "new" principles in industrial electronics, but the old ones are applied in new or different ways. The industrial man will probably need an even better basic knowledge than the radio-TV man. There are important similarities between different makes and models of TV sets. An experienced man uses this as a time-saver. Many routine repair jobs are done more by experience than by troubleshooting (example: bad filters, selenium rectifiers).

The industrial technician usually has to work with a wide variety of equipment, intended to perform many jobs. Although he may become familiar with much of the equipment in "his"

plan, new controls are continually being added. Many will have to be thought out and their principles of operation studied before an intelligent troubleshooting procedure can be arrived at. A basic knowledge of electronics, circuit tracing, etc., is essential here.

The industrial technician will be called on to recommend equipment for specific jobs. He may also have to adapt existing controls to new applications. This borders on engineering, and will give him plenty of opportunities to test his knowledge and ability.

Complex circuits

The first comment of many radio-TV technicians when they see a large industrial control is "Boy! What a mess of stuff! How do you know where to begin?" The panel they're looking at probably contains fewer tubes and parts than a TV receiver; it's just larger.

Few industrial control circuits are as complex as a TV set. Many are much simpler than an ac-dc radio. Although the capacitors, resistors and transformers may be large, they operate just like the ones in smaller equipment. The laws of reactance, resistance and impedance work the same here as they always did. A word of caution, though. If we make a mistake in replacing a resistor in a TV set, the cost of another resistor may be only 15¢. A similar mistake in repairing a motor control might ruin equipment worth many dollars.

Another point works in favor of the industrial technician. Most manufacturers include with their service information and diagrams (which invariably accompany a new piece of equipment) a complete description of its operation. Industrial circuits usually lend themselves to step-by-step explanations of how they work.

Test equipment

Most of the test equipment used by the industrial technician is familiar to the radio-TV technician. Multimeters, scopes, tube testers, etc. are essentially the same in both fields. Industrial equipment may be more ruggedly built, because of the conditions under which it is used. Some of the instruments, such as ammeters, ac voltmeters, etc., are highly specialized, and may have only one range. But their operation should be no mystery to a TV technician.

One or two "new" instruments are worth mentioning, for example the recording oscillograph. It is simply a meter designed to record its readings on
moving chart paper. The movement of the meter hand (which carries a pen) is similar to the vertical sweep on a scope, while the movement of the paper chart is equivalent to the horizontal sweep. This instrument is used for recording various waveforms and electrical quantities, such as the voltage applied to resistance welders, over a period of time. Another is the industrial or lab type scope, which often has dc coupling, driven sweep and other features not usually found in TV service instruments.

Gas-filled tubes

Gas-filled tubes such as thyatrons and ignitrons differ greatly from vacuum tubes familiar to the TV man. It is common knowledge that a gas tube, once allowed to conduct or "fire," will not stop conducting until the anode (plate) supply is cut off. For this reason, most industrial circuits using these tubes operate on ac, rather than dc B-supply, as in a TV set.

This use of ac supply leads to complications, such as phase relationship between tubes with their anodes returning to opposite sides of the line, etc. The industrial technician must have a good working knowledge of ac theory if he is to understand these circuits.

Large tubes, such as ignitrons, may handle thousands of watts of power. They produce a lot of heat and must be water-cooled. The cooling equipment is also under the care of the industrial technician. So it helps to be part plumber, or at least to be able to tell him where you think the trouble is.

Mechanical knowledge

Most industrial controls operate with or are part of machinery of some kind. The operation of the control may be so bound up with that of the machine that it is difficult to tell whether a given trouble is mechanical or electronic. Mechanical skill is a big help in these cases.

Most TV technicians are pretty good at fixing remote tuner drives, record changers and similar mechanisms. This ability will go a long way to help them understand production machinery. The industrial man has the opportunity (and the need) to learn a lot about machinery in the course of his work. For example, if you are going to repair a spotwelder control panel, you must know a little about resistance welding.

Voltages and currents

TV technicians are accustomed to working with high voltages. However, familiarity breeds contempt. Most ignore the fact that accidental contact with the secondary of a power transformer can mean death. Most are used to getting minor shocks.

A nonchalant attitude toward electricity can be fatal for an industrial man. Although most of the equipment he works on may have no higher than 460 volts, these voltages come directly from the line, and there is plenty of power available. There is an old proverb: "It's the current that kills you." This is definitely true. The high voltage supply in a TV set may not be able to deliver enough current, even at 18,000 volts, to cause more than an unpleasant "bite". A few hundred volts from a heavy power line can give an unwary technician his last thrill.

A very important part of the industrial technician's tool kit is a padlock. It is used to lock disconnect switches off while repairs are being made. Don't trust others to remember that you are inside the cage working. Someone who doesn't know the situation may turn the power back on, causing a serious accident.

But don't let this frighten you. In spite of all the opportunities for a service technician to electrocute himself, he is still safer at work than he is driving home afterward. Simple, commonsense caution is all that is needed.

Working conditions

Like the TV technician, the industrial man works part of the time relaxed, and part of the time under pressure. "Must be done by Saturday" jobs are common in any TV shop. The industrial man gets a different kind of pressure. Most industrial electronic controls are vital to production. Failure for even one hour can mean hundreds or thousands of dollars lost.

For the first half hour, the foreman keeps the technician company. Then the superintendent steps in to do some over-the-shoulder looking. The pressure gets worse. If the equipment is "down" long enough, the boss may even come in from the golf course, and then the perspiration flows freely. But it's all part of the job. Keep quiet and keep working.

Something can be done to help prevent these unpleasant situations. A good system of preventive maintenance allows most routine work to be done when the equipment is not in use, and will prevent many production breakdowns.

The industrial technician has compensations for this extra pressure. For one thing, he doesn't have to argue irate customers into paying him for his work. His employers usually have a pretty good idea of the difficulties under which he works. He has better working hours, usually getting off at a time that allows him the evening with his family. He has fringe benefits, too: opportunity to take advantage of training programs, a steady wage, and a number of other things that most TV technicians do without.

To sum it up, industrial electronic repair is interesting, rewarding work. It pays good wages, offers a challenge to the mind and opportunities for advancement. Radio and TV repair can offer these things, too. Which field suits a man better depends mainly on the man himself.
NEW ACCESSORIES IMPROVE CITIZEN'S BAND OPERATION

Added amplifier overcomes transmission-line losses and effectively places transceiver at antenna base. Aril and squelch circuits quiet receiver circuit when channel is not in use.

By ROBERT F. SCOTT
TECHNICAL EDITOR

Fig. 1—Circuit of the ME-82 antenna amplifier.

A number of new accessories can be used to improve the efficiency and operation of a CB station. Two of these—a remote antenna amplifier and a combination automatic noise limiter and squelch—are especially valuable to the CB'er who wants more from his equipment.

The Black Box model M-82 Citizens-band antenna amplifier is a unique accessory made by the Antenna Specialists Co. of Cleveland, Ohio. It is a four-tube unit that operates as a receiving preselector and booster with a minimum gain of 20 db, and as a modulated rf amplifier with a power input of 4.9 watts when transmitting.

The Black Box consists of a control unit (30-volt ac power supply and rf decoupling network) and the antenna amplifier. The control box (3 x 4 x 5 inches) is inserted in the lead-in close to the transceiver and is plugged into the ac power line. The amplifier is mounted on the mast within 10 feet of the antenna. The transmission line (RG-58/U) carries the rf signal to and from the antenna and also carries the operating voltage up to the amplifier.

The circuit is shown in Fig. 1. The modulated rf signal from the transmitter appears across the tuned circuit in the cathode return of V1-a, a grounded-
grid amplifier. The grid is biased by a negative voltage at the junction of R5 and R6. C10 grounds the grid for rf.

A part of the incoming rf signal is rectified in half of V3, and the extracted audio is fed through transformer T3 to the grid of audio amplifier V1-b. The rf voltage at V1-a's plate drives V2, the modulated rf amplifier. V2 is screen-grid-modulated by V1-b operating as a cathode follower. The amplified and re-modulated rf signal is tapped off tank coil L5 and fed to the antenna through a short length of transmission line.

During reception the incoming signal appears across tank coil L5 and is fed through C22 to the cathode of V4-b operating as a grounded-grid amplifier. The amplified signal across L5 is then fed to the grid of amplifier V4-a through C28. The signal is then fed from the plate of V4-a through tuned circuit L3-C7 to the transmission line going to the transceiver.

The second half of V3 serves as a T-R switch. In transmission, this section of the tube develops a high negative voltage across R11. This biases both sections of V4 to cutoff.

The relay is used to return the circuit to straight-through operation, bypassing the amplifier, when the Black Box system is not being used. It also returns the system to normal operation if power fails in the amplifier.

The power supply in the amplifier consists of transformer T2 with a 30-volt primary and 6.3-volt and high-voltage secondaries. L2, C1 and C2 provide rf isolation, and C6 blocks dc.

The control unit is simply a 30-volt ac power supply shutting the transmission line between the transceiver and antenna-mounted amplifier. Network L1-C29 prevents rf voltages on the line from being transmitted to ground or attenuated by the power transformer. C16 is a dc blocking capacitor that prevents dc from being fed into the transceiver's rf circuits.

When receiving, the M-82 boosts the signal at the antenna at least 20 db. This more than compensates for losses in the transmission line and brings the signal up to a level where it over-rides noise generated on the transmission line and in the transceiver's front end. When transmitting, the booster compensates for losses in the transmission line and effectively places your transceiver within 10 feet of the antenna.

Anl and squelch

The Lafayette HE-55 Squelcher and Seco 530 Signal Filter are two electrically identical receiving accessories that can be used with almost any tube type superhet receiver with a reasonable amount of i.f. gain. They are a combination of a carrier-controlled base stations, their greatest value is in mobile installations that are constantly plagued by ignition noise and interference from power lines, electrical signs and other devices. They are installed by breaking one lead in the receiver's detector circuit and connecting five leads. Hams and SWL's will recognize the circuit as the TNS (Twin Noise Squealer) developed around 10 years ago.

Fig. 2 shows the HE-55 or 530 connected to the detector and first audio circuit of a typical superhet. R1, R2 and R3 are now a part of the detector load. Audio and a dc voltage proportional to signal strength are developed across these resistors. The circuit is arranged so the audio from the detector passes through C1, R4, V1-a and C3 to the volume control. V1 is a series type automatic noise limiter and V2 is the squelch and anl control tube. It controls the conduction through V1 by varying the relative voltages on the plate of V1-a and cathode of V1-b.

The SQUELCH control is normally adjusted so V1-a's plate is slightly more positive than V1-b's cathode when a signal is coming in. The diodes conduct and the signal passes through to the volume control.

Static or ignition noise with a fast rise time develops a negative pulse across R3 that drives V2-b toward cutoff so its plate and V1-b's cathode rise in proportion to the noise amplitude. V1-a's cathode is positive with respect to its plate for the duration of the noise pulse so the diodes cut off, chop a hole in the audio and prevent the noise from reaching the speaker.

Simultaneously, the negative-going pulse from the detector is fed to V1-a's plate through C1 and R4. This increases the effective positive voltage on V1-b's plate and provides faster and more positive noise elimination.

The audio fed to V2-a's grid is amplified and then filtered by C2-R7 so the dc voltage on V1-a's plate follows the modulation envelope and varies with average signal strength. Thus, the average voltage on V1-a's plate is optimum for efficient noise squelching, regardless of the percentage of modulation of the incoming signal.

When no signal is coming in, there is little or no dc voltage (negative) across the detector load. Now, V1-b's cathode is positive with respect to V1-a's plate so the diodes are cut off and the receiver is silent. The SQUELCH control is usually set so the background noise is barely discernible when no signal is coming in. As soon as a carrier comes on the air the squelch opens and the audio modulation is heard.

New Solid Capacitor Contains No Electrolyte

A tantalum capacitor, only .065 inch in diameter and less than 0.2 inch long, with a capacitance of 0.1 µF and a working voltage of 125, has been announced by General Instrument Corp. The new capacitor, called Hi-VolTan, has no electrolyte. It consists of a needle-thin tantalum wire, electrochemically coated with an ultra-thin film of tantalum pentoxide, which is the dielectric. A metallic outer connection to this dielectric completes the capacitor. Compared with solid electrolytic tantalum devices, Hi-VolTan withstands higher voltages, is much smaller, has a higher Q and higher dielectric resistance (more than 150,000 megohms at 100 volts) and greater stability with variations in temperature, frequency and voltage. The capacitor is being put out initially in four series, up to .003 µF at 125 working volts and at 100 working volts; from .003 to .005 at 50, and from .005 to .01 at 25 working volts.

JUNE, 1963

END
Electronics Teaching Aids

THE PHOTOS SHOW THREE NEW DEVICES intended to aid in teaching electronics. One, being held by John R. Meagher, is an RCA "Dynamic Demonstrator". A large-scale volt-ohm-milliammeter, it will be offered in kit form for use in classroom demonstrations and instruction. The kit can be assembled easily by students to demonstrate its functions and operations, and its practical use as a test instrument.

The second device is actually a series of building blocks—electronic blocks that fit together to form such circuits as phono amplifiers, power supplies and many others. They come with a text and represent a complete course in basic electronics. Electronic Aids Inc., Baltimore, Md., makes this teaching aid. Circuit leads are color coded to simplify circuit explanations. A teacher can tell quickly how far a student has advanced simply by the number of the block he has just finished studying.

Third and last shows what may be the largest transistor radio ever made. It is EICO's transistor radio demonstrator kit. When completed it measures \(40\frac{3}{4} \times 27\frac{3}{4} \times 3\frac{1}{2} \) inches. It is designed to be assembled in class by the teacher or students. By learning while building, the class sees how the circuitry is assembled, how the transistors work, where they go in a radio and what each component does. Since the parts may be slipped in and out, the demonstrator can be used to show what happens when various components in the set break down.

Eico also makes a companion transistor portable in kit form. As the teacher assembles the demonstrator, students can work along with him on their own regular-size models.

END
SERVICE CLINIC
Conducted by JACK DARR
SERVICE EDITOR

This column is for your service problems—TV, radio, audio or general and industrial electronics. We answer all questions individually by mail, free of charge, and the more interesting ones will be printed here.

If you’re really stuck, write us. We’ll do our best to help you. Don’t forget to enclose a stamped, self-addressed envelope. Write: Service Editor, Radio-Electronics, 154 West 14th Street, New York 11, N.Y.

WILL YOU GENTLEMEN PARDON ME IF I get away from the customary technical content of this column and take a short ride on my favorite hobby horse? In fact, I’d like to have you join me. At the very beginning, I’d like to state that this is going to be a definite case of “Don’t do as I do; do as I say!” For I have made some very embarrassing departures from the principles I am going to advocate here!

To me, the major difficulty in our profession has always been diagnosis. You’ll agree that the typical TV repair job is 95% diagnosis and 5% execution. The total amount of work you do on any job depends on the accuracy of your diagnosis.

Here’s another controversial statement: It does not depend so much upon the accuracy of your measurement equipment as upon the interpretation of its readings! The most valuable piece of test equipment in any shop is that mass of blue mud between your ears! So, from the depths of over 30 years of experience, and a vast amount of practice in making stupid mistakes, let me hold forth on some of the basic principles I discovered during that time.

There is a key word in this connection: logic! We must be able to think logically: to observe conditions found in the circuit and draw from them a set of logical conclusions. We must avoid, at all costs, the too-common practice of making snap judgments. Over-quick decisions lead to a sort of mental short circuit and inhibit our thinking processes.

We must be able to fulfill the three conditions of scientific analysis of a problem: “open eyes, open ears, open mind!”

I know it’s hard to keep yourself from getting in a diagnostic rut. The trained TV technician, seeing a set not operating properly, automatically starts running over in his mind all of the things that could cause such troubles. Like an IBM card sorter, our minds run rapidly through the lists, and come up with a set of cards that could contain the answers. However, as in detective stories, all we have now is a set of possibilities, not a definite answer!

In this, as in any similar profession, a negative answer is as valuable as a positive one. If we find out that a suspected part is not causing our trouble, we have valuable information: we’ve reduced the number of suspects by one. If we replace a certain tube and the trouble is still there, we know that it wasn’t the cause, even though it turned out in the last case with similar symptoms. We check that off and go on through out list of suspects, knowing that we have reduced it by that much.

About the most common complaint in TV work is “I’ve tried everything in that circuit and it still doesn’t work!” This kind of set can provide some of our most annoying problems. However, it usually indicates a mental block or preconceived idea in the diagnosis. If we can back away and look at the problem logically, we will see that one fact is very prominent. For example, we have a set with “horizontal oscillator output trouble.” No high voltage, sweep, etc. So, we replace all the parts, and still no by no sweep, etc.

What is the key fact that we are unable to see, in cases like this? A logical analysis of the trouble and of the tests made up to this point, parts replaced, etc., will point to only one thing, if we can get rid of our fixed notions: The trouble is not in that stage! All tests made so far have given negative results; that is, they have failed to restore the set to operation. Therefore, the trouble must be elsewhere! (We will omit the case where, hours or days later, one of the “good” replacement parts turns out to have been bad.)

Very red-faced, I must admit that the “Yuletide effect” puzzler on page 43 of the August 1961 issue is a perfect example. Human nature being what it is, I hate to admit it, but this one stuck me for something like 10 days! Not for lack of thinking about the trouble, not for lack of adequate test equipment, but simply because I knew the trouble had to be in the horizontal oscillator output stages.

Always be willing to admit that there is a distinct possibility that your original diagnosis was completely wrong, or wrong because of insufficient experimental evidence, and you’re well on the way to becoming a master diagnostician in this field!

There is one thing I’d like to add in closing. We really ought to change the quotation in the beginning to read like this, for “commercial use”: “Open eyes, open ears, open mind, mouth tightly shut!” This is especially important when customers insist on an immediate diagnosis in the home. Keep your oral orifice tightly closed until sufficient evidence has been accumulated to prove the validity of initial guess. (For that’s what it is—a guess, until you’ve had a chance to make some actual tests!) It is also very wise to leave yourself a loophole, even then. Say “It seems to be the —. Let me check it and find out.” Best method: confine yourself to noncommittal grunts and “hmm’s.” Did you ever watch an old doctor examining a patient? If you ask him what the trouble is, he never says quickly, “It’s gallstones, appendicitis, etc.” He just looks wise, says, “Hmmm!” and keeps his mouth shut until he knows! We’d all be a lot better off if we did likewise!

Picture size vs raster size

Why is the picture on a TV screen smaller than the raster? I’ve noticed this on several makes; not at top or bottom, just on the sides.—W. T., Benson, Sask., Canada.

The actual picture on a TV screen is always smaller than the raster by the amount of horizontal blanking. Fig. 1

(Continued on page 58)

JUNE, 1963

Fig. 1 — Picture tube is cut off during blanking time, making picture smaller than raster.
RCA introduces a new easy way to learn electronics at home

Learn faster, remember more with this revolutionary new “learning method”. And RCA Institutes, Inc. is first to bring it to you!

Forget all your old ideas about learning! If you have a natural inclination or ability in the exciting field of electronics, that's all you need to prepare yourself to join the thousands of other successful electronic students who are building profitable careers right now! RCA's new learning method, RCA “Autotext” helps you do the rest! This new easy way to learn electronics uses the latest scientific development in the field of home training! You learn more quickly, and with less effort!

How does RCA “Autotext” work? “Autotext” is a system of programmed instruction, scientifically planned so that as you read a series of statements, questions, and answers, you automatically learn almost without realizing it. Each step of this new method is carefully coordinated with illustrations, complete kits, and service practice lessons. It's fun to learn this new RCA way!

We'll prove it to you! Interested in Electronics? No previous knowledge or experience? RCA “Autotext” is your answer! Right now RCA Institutes offers you a complete Home Training Course using the “Autotext” method called “Introduction to Electronics”. And you get a complete set of theory lessons, service practice lessons, and all the kits you need. Most important of all, it takes almost all of the effort out of learning the groundwork of the electronics field.

FREE OFFER! We'll send you complete information on amazing new RCA “Autotext” along with a FREE SAMPLE of a lesson to prove to you how easy it is to learn this new way. Send the attached postage-paid card and check “Autotext”.

RADIO-ELECTRONICS
Wide choice of Home Training courses in Electronics:

In addition to the new Introduction to Electronics, RCA Institutes offers this complete selection of Home Training Courses:

- Electronic Fundamentals
- TV Servicing
- Color TV
- Communications Electronics
- FCC License Preparation
- Mobile Communications
- Automation Electronics
- Computer Programming
- Transistors
- Electronic Drafting
- Electronic Fundamentals (in Spanish)

All RCA Institutes Home Training Courses are complete step by step easy-to-understand units. You get prime quality equipment in the kits furnished to you, and all of it is top grade. It's yours to keep and use on the job, and you never have to take apart one piece to build another.

Liberal Tuition Plan. RCA Institutes Home Study Courses, including the new "Introduction to Electronics" Course, are available under a liberal tuition plan. This plan affords you the most economical possible method of home study training. You pay for lessons only as you order them. If, for any reason, you should wish to interrupt your training, you can do so and you will not owe a cent until you resume the course. No long-term obligations!

Personalized Instruction. With RCA Institutes Home Training, you set your own pace in keeping with your own ability, finances and time. RCA Institutes recognizes the fact that no two students are alike in learning ability. RCA Institutes Home Training helps students to learn at their own speed in the most effective manner. Your lesson assignments are individually graded by technically trained personnel, and helpful comments are added where required. You get theory, experiment, and service practice beginning with the very first lesson. All lessons are profusely illustrated—a complete training package in every way.

CLASSROOM TRAINING

RCA Institutes Resident Schools in New York City, Los Angeles and RCA Technical Institute in Cherry Hill near Camden, N. J., offer classroom training that will prepare you to work in rewarding research and production positions in many fields of electronics. No previous technical training required for admission. You are eligible even if you haven't completed high school.

Free Placement Service. RCA Institutes Resident School graduates are now employed in important jobs at military installations, with important companies such as IBM, Bell Telephone Labs, General Electric, RCA, in radio and TV stations and in communications systems all over the country. Many other graduates have opened their own businesses. A recent New York Resident School class had 92% of the graduates who used the FREE Placement Service accepted by leading electronics companies, and had their jobs waiting for them on the day they graduated!

Coeducational Day and Evening Courses are available at Resident Schools. You can prepare for a career in electronics while continuing your normal, full-time or part-time employment. Regular classes start four times a year.

SEND POSTCARD FOR FREE ILLUSTRATED BOOK TODAY! SPECIFY "AUTOTEXT", HOME STUDY OR CLASSROOM TRAINING.

RCA INSTITUTES, INC. Dept. RE-63
A Service of Radio Corporation of America,
350 West 4th St., New York 14, N. Y.
Pacific Electric Bldg., 610 S. Main St., Los Angeles 14, Calif.

The Most Trusted Name in Electronics
The New Concept
in Receiving Tube Reliability
and Performance!

The quality of Mullard electron tubes can be attributed to their design and manufacture . . . for built into each tube, at the very outset, are basic components and features which will insure long life and performance . . . engineering achievements such as coiled heaters, unique grid designs and special cathode materials. Each tube reflects advanced techniques in glass-to-metal sealing, evacuation control and precise electrode spacing.

But today, quality cannot be measured by performance or long life alone. New exciting circuits require a new concept of receiving tube reliability, for they demand more from a tube. The 10M tube has been engineered to satisfy this new concept.

Each 10M tube is subjected, individually, to a comprehensive laboratory test procedure based on extremely tight and stringent parameters for contact potential, cathode stability, grid cut-off, grid emission, heater current, transconductance, interelectrode leakage . . . to insure tube-to-tube uniformity . . . to insure that all electrical specifications are met . . . to insure section-to-section uniformity . . . to insure that each tube will operate in a circuit exactly as it was designed to perform and at levels kept within the closest possible tolerances. Each 10M tube is guaranteed to provide this exact performance . . . is guaranteed for 10,000 hours within a two-year period . . . is guaranteed for uniformity.

The 10M tube is the new concept of receiving tube reliability and performance.

IEC International Electronics Corporation
83 Spring St., New York 13, N. Y.
6272 W. North Ave., Chicago, Ill. • 4260 Lankershim Blvd., N. Hollywood, Calif.

10M tubes are available today to satisfy your tube requirements . . . and are now in stock at your local IEC distributor. For further information and name of your local IEC distributor, contact your nearest IEC office.

(Continued from page 53)

shows this. Notice, in the waveform for one single scanning line below, that the signal cuts off the picture tube during horizontal blanking time. This is to keep the sync from showing in the picture, also to kill retrace lines.

Total time for one line, blanking and all, is 63.6 µsec. Blanking time is 10 µsec, leaving 53.6 µsec for video information. So we set up a TV raster to show only the video information. The blanking period is always off-screen, with approximately half at each side.

Arcing in CRT

We have a Sparton 23V5 in the shop, with a 21ATP4 in it. The complaint is a snapping noise, caused by arcing in the CRT; it blows the hv fuses. Seems to be between grids 2 and 4. The focus control was open, and we had a zero reading on grid 4. Since it was replaced, we read 600 volts there. The arcing continues, however. Do you think this could be a defective CRT?—W. R. S., Annapolis, Md.

This is always a possibility. There is one trick which I have used in similar cases: place the set so that the picture tube is face down. Apply voltage between the elements, and

Fig. 2—Spark gap used by Zenith to prevent internal CRT arcing. Eyelets are slapped over CRT base pins between any two elements that might arc over.

tap the neck gently. Actually, your arcing couldn’t be between the grids themselves because of the spacing, but between one of the grids and an adjacent side rod in the gun structure. There is a distinct possibility that a tiny flake of conductive material is lodged somewhere, reducing the spacing.

You might try reducing the voltage applied to G4; many of these tubes focus with much less than 600 volts. In fact, they are often grounded. Zenith has a clever way of eliminating this (not the arcing, but the danger of damaging other parts). They use a tiny spark gap installed on the base of the CRT (Fig. 2). The gap between the ends of the wires is much less than a gap inside the gun, so if there is any flashover, it takes place harmlessly outside of the gun.

I believe I would check this CRT very carefully, while the tube is hot, for shorts or leakage. Incidentally, if you happen to have one of the “CRT harnesses” used with Hickok and similar tube testers for checking CRT’s, try hooking this up and running a short check. This uses a fairly high voltage, and I’ve accidentally burned off several shorts with it!

24AJP4 replacement

What picture tube will replace a type 24AJP4?—L. D., Martin, S. D.

A 24AE4P should be a good replacement. A 24ASP4, 24ANP4 and a few others are good prospects. There is only one thing to watch out for in making a replacement like this

www.americanradiohistory.com
Hammond organ

A Hammond organ has a very noisy pedal-volume control. When the slider is pulled out, it makes a loud buzz and popping noise. I can't get into the thing; I'm afraid of tearing it up!—P. Q., Waldo, Ark.

This is actually a variable capacitor. Two brass cups are slid into and out of each other by the metal shaft you see on the front panel over the manuals (Fig. 3). If these cups touch each other, you will get a very loud noise and a buzz. In several cases, the outer cup has cracked and warped, allowing the inner (movable) cup to touch it.

To cure this, take the shield off. This is a round aluminum can fastened to the underside of the top of the organ cabinet by friction fit. Very carefully pull the can back and down, out of the clip, exposing the two cups. You'll be able to see where they are touching.

Bend the outer can back to round, and move the control several times, to be sure it isn't touching. No voltage, you can check it with the organ on.

Checks and rejuvenates all picture tubes without adaptors or accidental tube damage

From Sencore, designers of the famous Mighty Mite Tube Tester and other valuable time savers, comes another industry best. An all new method of testing and rejuvenating picture tubes. Although the method is new, the tests performed are standard, correlating directly with set-up information from the RCA and GE manuals.

Check these outstanding features and you will see why this money making instrument belongs on top of your purchasing list for both monochrome and color TV testing.

Checks all picture tubes thoroughly and carefully; checks for inter-element shorts, cathode emission, control grid cut-off capabilities, gas, and life test.

Automatic controlled rejuvenation. A Sencore first, preventing the operator from over-rejuvenating or damaging a tube. An RC timing circuit controls the rejuvenation time thus applying just the right amount of voltage for a regulated interval. With the flick of a switch, the RC timer converts to a capacity type welder for welding open cathodes. New rejuvenation or welding voltage can be re-applied only when the rejuvenate button is released and depressed again.

Uses DC on all tests. Unlike other CRT testers that use straight AC, the CR125 uses well filtered DC on all tests. This enables Sencore to use standard recommended checks and to provide a more accurate check on control grid capabilities. This is very important in color.

No interpretation chart. Two "easy view" neon lights clearly indicate shorts between any element. A chart is included for interpretation of shorts, if desirable.

This chart is not necessary for normal testing on the CR125.

No adaptor sockets. One neat test cable with all six sockets for testing any CRT. No messy adaptors, reference charts or up-dating is required. The Sencore CR125 is the only tester with both color sockets. (Some have no color sockets, others have only the older type color socket.)

No draggy leads. A neat, oversized compartment, in the lower portion of the CR125 allows you to neatly "tuck away" the cable and line cord after each check in the home.

SPECIAL INTRODUCTORY OFFER
WORTH $500

Most Sencore products are sold by recommendation. So that you will be first in your area to buy and recommend the CR125, this coupon is worth $5.00 on the purchase of the CR125 when presented to your parts distributor.

Why not save $5.00 now? Herb Bowden President

Sencore, Inc.
426 S. Westgate Drive
Addison, Illinois

JUNE, 1963
Sylvania's exclusive LIFE-BOOST Cathode is putting new life into tubes—and sales. This latest evidence of Sylvania leadership in tube technology offers benefits you can really sell: it virtually eliminates performance slump, a major cause of profit-stealing callbacks. Besides stability, it produces significantly better tube life and uniformity. 90 types already have LIFE-BOOST, with more on the way...and it's being heavily promoted in national magazines and by mail.

Trademark

give you these 2 big bonuses:

S&H GREEN STAMPS...with the Service 'n Save Plan

Here’s another big reason to go with Sylvania. S&H Green Stamps, exclusive with participating Sylvania Distributors, are given free to dealers with the purchase of Sylvania receiving tubes. They add up fast, especially when they're combined with stamps from the grocer and other merchants who give S&H Green Stamps. And the family can select gifts from a 144-page S&H Catalog full of everything from home furnishings to furs.

GO WITH SYLVANIA—TO PROFIT!

SYLVANIA

JUNE, 1963

www.americanradiohistory.com
It's FUN To Build
THIS SUPERLATIVE
SCHOBER ORGAN
EASILY ASSEMBLED
...AT HALF THE USUAL COST!

By JACK DARR

using
shiedled
cables

In audio work, certain "low-level" circuits must be kept isolated as much as possible. These include grid, volume-control, mono and stereo pickup leads. A low-level circuit is one which is connected to the input of high-gain audio stages so that any noise or hum picked up by the wire will be amplified many times. To prevent this, we surround the wire with a woven metal shield. The interference is picked up by the shield and kept out of the sensitive circuit.

In most cases, the shield is grounded to the chassis. In some special cases, the shield should be grounded at only one end. This prevents the formation of "hum loops" caused by currents flowing through chassis and shield. Shielding should never be used for a return path for current-carrying circuits. The currents flowing through the shield can cause hum and other noises, by inductive transfer to the "hot" or shielded wire.

There are a few tricks which will be of assistance to the experimenter when handling shielded cable. The photos show some of them.

The proper way to make a pigtail on shielded cable is shown in Photo 1. Bend the wire sharply at the point where the pigtail is to be made. Using a sharp-pointed pick, work the fine strands of the shield apart and pull a loop of the inner conductor out through the hole. In this way, the shield remains "braided" and will make a much neater joint, as the strands will not frazzle out.

Photo 2 shows shielded cable "fanned" for making a joint. This is slightly exaggerated for purposes of illustration. This is two-conductor shielded cable that might be used for stereo pickups. In use,
the shielding would be tacked to the chassis as close to the connection as possible. To connect shielded wires to the small phono plugs, the center conductor goes to the pin while the shield is wrapped around the groove in the outer shell of the plug.

Three steps in splicing shielded cable are shown in Photo 3. Bottom, wires are prepared. Shield is fanned out and wires clipped off about 1/2 inch (to allow shields to overlap) and a simple lap joint is made. Center, a short piece of braided spaghetti has been slipped over the bare wires. This should be put on before soldering wires. (It was left off in the first view to show the joint.) Top, completed joint; shield braids have been overlapped and very lightly tucked with solder in several places. To make this joint properly, solder lightly. Never leave soldering-iron tip on joint long enough to Overheat the plastic insulation of center conductor. This can cause shorts.

Photo 4 shows microphone cable, a jacketed shielded cable prepared for connection to an Amphenol type microphone plug. Note the method of stripping wire back. The center conductor is tinned before insertion into the plug at right. The small spring provides a ground for the shield. The shielding braid is tuck-soldered to the end of this. It also helps prevent cable breakage at the plug.

End
WHY THE Winegard COLOTRON DESIGNED ESPECIALLY FOR COLOR TV

Genuine GOLD ANODIZED Finish for permanent protection

The world's BEST performing VHF all channel TV antenna, size for size and dollar for dollar, is the Winegard Colortron. The Colortron is more nearly perfect than any other all channel antenna made. It is the only all channel antenna you can buy that carries a factory written guarantee of best performance.

HERE'S WHY COLOTRON IS BEST

1. A perfect all channel, high gain TV antenna would have the following characteristics:
 - the sensitivity of a well-engineered cut channel yagi of equal physical length on each of the 12 channels.
 - sharp directivity. A single frontal lobe and absolutely no pick-up of signal from back or sides on any channel.
 - it would have an exact 300 ohm non-reactive impedance on every VHF channel 2 through 13.

2. There are several basic designs for high gain, all channel TV antennas. For practical reasons, only two of these are used today.
 a. The all channel yagi that incorporates only 2 driven elements—but many directors. This design was invented by John R. Winegard in 1954. Until then, the high efficiency of the yagi was limited to single channel antennas.
 b. The all channel antenna that incorporates a multiplicity of driven elements in a single plane. These are End-Fire arrays.

This basic design was first used for TV in 1952. Some end-fire antennas are called "log periodic".

IT IS A SCIENTIFIC FACT that a single ½ wave director element * will absorb 4 times more signal energy from a TV wave than a ½ wave driven element **. Because of this indisputable fact, the Winegard Colortron all channel yagi uses multiple directors to get its gain—not multiple driven elements.

To obtain a near perfect impedance match across the entire VHF TV band, it takes only two driven elements. More than two driven elements will not improve the match any more than extra wheels would improve a car. The only purpose of driven elements on a TV antenna is to transfer the signal energy to the line.

As every antenna engineer knows, a well-engineered cut-to-channel yagi (with but one driven element and many directors) is superior to any other design when peak performance is desired on a single channel. The same fact holds true for best results in all channel reception... the yagi design is the most efficient, sensitive ever created on a size for size basis.

* Directors are elements connected electromagnetically (not by means of phasing lines) to the driven elements.
** Driven elements are connected together with phasing lines and the transmission line is attached to these elements.

Winegard all channel yagi patents —
U.S. Pat. 2,700,105 — 2,955,289 / Canada — 511,934
Antenna is World's BEST

NOW WHAT ARE THE BASIC DIFFERENCES BETWEEN THESE TWO TYPES OF ALL CHANNEL ANTENNAS?

One big difference is in SENSITIVITY. The Winegard Colortron patented yagi with multiple directors has far more ability to absorb signal power from a TV wave than multiple driven element antennas. In fact, all fringe-type antennas with multiple driven elements have one or more directors out front. Why add directors if the multiple driven elements are supposed to be so efficient? The reason is obvious... directors are added to get the gain they can't get with extra driven elements.

Another big difference is in DIRECTIVITY. The Winegard Colortron patented yagi has far better directivity characteristics than multiple driven element antennas and the directivity pattern is essentially the same on every channel. The Colortron has no signal pick-up from the sides (as you can see above). It offers no receiving surface to side signals and has no complex phasing problems to cause extra pick-up lobes. It has minimum pick-up from the back.

On the other hand, multiple driven element antennas have large side lobes because the driven elements are always out of phase at some frequencies in the TV band—particularly on the high band.

The Winegard Colortron excels, too, by having the best 300-ohm-match in the industry—an average VSWR of better than 1.5 to 1 across both bands.

In addition to its performance superiority, the Winegard Colortron has the finest quality construction and permanent gold anodizing for weather protection. A personal examination of a Colortron tells this quality story far better than words.

(The polar patterns and frequency response curves above have been illustrated to give you a basis of comparison between Winegard's popular Colortron Mod. C-42 and a highly advertised multiple driven element antenna which we have tested (along with other models in this line.) Constant testing of all new outdoor TV antennas proves to our satisfaction that no other design equals or excels the Winegard Colortron in quality or performance. We are so positive of this performance superiority that we put a written guarantee on it.

For technical data sheets write today!

Nationally advertised month after month.

Winegard ANTENNA SYSTEMS
3013-6 KIRKWOOD - BURLINGTON, IOWA
Cantenna Dummy Load
(Heathkit HN-31)

and

Transistor DC Multimeter
(Motorola S1052B)

MANY SERVICE TECHNICIANS HOLDING FCC licenses service CB, police, emergency, commercial and amateur transmitters. For this a nonradiating dummy load to permit off-the-air testing is essential. Appropriate dummy loads, particularly those with reactances low enough to be suitable for the spectrum above 25 mc, are scarce and expensive. The Heathkit "Cantenna" dummy load presents a highly satisfactory solution at a modest price.

The Cantenna (see Fig. 1 and the photographs) consists of a nonreactive 50-ohm resistor (R1) plus a diode rectifier to permit reading the voltage developed across it. The resistor is a carbonylum type with silver-plated ferrules at each end. By itself it has negligible reactance at any frequency below the kilomegacycle range. It is cleverly mounted in a coaxial mount with silver-plated straps so that there is a minute amount of inductance or capacitance. This assembly fits into an ordinary 1-gallon "syrup can" filled with transformer or mineral oil to cool the resistor. (The oil is not supplied with the kit.)

The circuit for measuring the voltage consists of a voltage divider (R2, R3) and a diode and is contained in a little shielded box on the lid. There is a large coax fitting to accept a cable from the transmitter and a phono jack for a voltmeter or vtvm.

The dummy can be used with rf power up to 1 kw. Fig. 2 gives the range of power vs the time the load can be safely used. Heathkit specifies a vswr of less than 1.5 up to 300 mc and less than 2 up to 400 mc.

The Cantenna kit is extremely simple to put together. A little over an hour does it, and it requires no calibration or adjustment of any sort. If you need a fairly accurate measure of the rf voltage developed across the load, it will be necessary to calibrate the dc output of the diode with a reliable rf voltmeter. In most cases a relative indication of power output is sufficient, and no calibration is required. The dc output is from less than 1 volt to around 20 volts, depending on the power.

The resistor has a 10% tolerance but the one in our sample measured very close to 50 ohms. By our measurements, the swr was practically 1.00 below 30 mc, hence the Cantenna can be used to calibrate an swr bridge. As a matter of fact, in the 6-meter band the swr was in the region of 1.1. Hence little error would result if it were used as a calibration standard even there. The swr in the 2-meter and the 150- to 170-mc commercial band measured about 1.25.

Within the specified range the Cantenna is one of the most nonreactive loads available. It is well enough shielded so that at power levels up to 250 watts (the highest available for tests) there was negligible radiation. It should be a highly useful accessory for any service shop that works with transmitters requiring a load in the 50-ohm region.—Joseph Marshall

The S1052B

Here's a dandy little instrument that is completely portable, yet gives accurate measurements of rf voltages, dc voltages, direct current and resistance. A cable and power supply are available to operate the meter from an ac supply. With an rf probe, rf signals from 1 kc to 400 mc can be measured.

Three input arrangements are used when measuring voltage, current or resistance. For voltage, the arrangement shown in Fig. 3 is used. It is a voltage divider made up of a series of resistances in ratios of 1, 3, 10, 30, 100, etc. Taps on the attenuator, corresponding to the range selector switch settings, apply a dc voltage to the amplifier input through an overload protection circuit.

Fig. 2—Dummy antenna can handle full kilowatt for short time, up to 200 watts indefinitely.

At left, completed dummy load. At right, details of "insides".

www.americanradiohistory.com
Replacing selenium with silicon rectifiers

Ever wonder about replacing those old selenium rectifiers with modern silicon rectifiers? Stop wondering. It's being done every day and you can do it too! Take a typical TV voltage doubler circuit for example.

1. You know the seleniums are bad or you wouldn't have started . . . right? Right.

2. Forget about the terrific size difference between the new silicon rectifiers and those old seleniums. Silicon rectifiers are smaller because they're **much** more efficient.

3. Remove the old seleniums and toss 'em in the trash can. Install the new silicon rectifiers FOLLOWING POLARITY VERY VERY CAREFULLY. The slick way is to use a Mallory VB500 (you'll have one less solder connection to make and the circuit is right on the rectifier). Or you could use a pair of 1N2095's or A500's. Either way those Mallory rectifiers will give you the best service you'll ever get.

4. Output voltage (B+) will **usually** be higher because silicon rectifiers are more efficient. So, you'll probably need a dropping resistor in series with the one already there. Turn the set on and check with a voltmeter. Suppose B+ reads 20 volts higher than the schematic calls for. Divide this increase by load current (perhaps 500 ma) to get the value of the resistor you'll need. (40 ohms in this case.) Now multiply the voltage increase by current to get wattage rating (10 watts in this case).

5. But suppose B+ voltage *isn't* higher. This is a clue that something's wrong with the filter capacitors. Check them out with a capacitance bridge or try this very simple deal. Parallel a good TC62 (10 mfd @ 350 WVDC) across each filter in turn. If you get a marked B+ increase you need some replacement electrolytics. We'd suggest a Mallory FP, WP, W, or TC of the proper rating.

6. If you'd like a lot more detail on this replacement arrangement, drop us a line and we'll send a folder by return mail. Meanwhile see your Franchised Mallory Distributor for all Precision Mallory Components . . . batteries, capacitors, controls, switches, resistors, semiconductors and vibrators.
By far the BEST VALUE obtainable in either wired or kit form... compare and you’ll agree "THE BEST BUY IS EMC."

EMC Model 211 Tube Tester — The smallest, lowest priced, domestic made tube tester on the market. It is completely flexible and obsolescent proof. It opens each section of multi-purpose tubes separately, checks all octal, tetrode, 9 prong and miniature tubes for shorts, leakages, opens, interments as well as for quality. Quality is indicated directly on the two color meter dial using the standard emission test. Comes complete with instructions and tube charts in ring bound manual.

- Wired: $22.90
- Kit: $14.90
- CRT Picture Tube Adapter: $4.50

**EMC Model 109 — Voltmeter— Features 20,000 OHMS volts DC sensitivity and 10,000 OHMS per volt AC sensitivity. Uses a 4½, 40 microammeter, with 3 AC current ranges, and 3 resistance ranges to 20 megohms, 5 DC and AC voltage ranges to 3000 volts and 3 DC current ranges; also 5 DB range.

- Model 109 — With carrying strap. Weight 2 lbs. 5 oz.
- Size: 5¼" x 6¼" x 2½" deep. Shipping weight: 3 lbs.
- Model 109K — Kit Form.
- Model INV — 30,000 Volt Probe for Model 109 7.95

Yes, tell me more, send me FREE a detailed catalog of the Complete EMC Line. Dept. RE-645

SPECIFICATIONS

Voltage ranges (11 megohms input resistance): 0-100; 300 mv; 0-1, 3, 10, 30, 100, 300, and 1,000 volts

Current ranges: 0-1, 3, 10, 30, 100 and 300 μA

0-1, 3, 10, 30, 100 and 300 ma

- Resistance ranges: 10, 100, 1000, 10,000, 100,000 and 1 megohm center scale

- Accuracy: voltage ranges, 3% of full scale current ranges, 3% of full scale resistance ranges, 5% at center scale

- Meter: 0-200-μA movement.
- Weight: 7½ lb
- Size: 10½ x 6½ x 5¾ inches

Motorola’s S1052B — a compact and versatile instrument.

For measuring current, the input circuit changes to the arrangement shown in Fig. 4-a. Now there is a series of shunt resistances through which the measured current flows. The resulting voltage drop across the shunt in use is applied to the amplifier input. A 100-mv drop across the shunt gives a full scale meter reading. Half-watt resistors are used for the 1-μA to 3-ma ranges and 1-watt resistors for all other current ranges.

For resistance measurements, the input circuit is different again (Fig. 4-b). Here the voltage from the battery in the meter is reduced by a voltage divider. This gives about 0.15 volt in series with 10 ohms on the $R \times 1$ scale. Additional resistors are inserted in series with this basic 10-ohm resistor on the higher ranges.

The heart of the instrument is a 10-

transistor amplifier consisting of five differential direct-coupled push-pull stages. There is 60 db of negative feedback to insure stable gain. The feedback also increases the amplifier's input impedance to reduce loading on the multimeter's high-impedance input circuitry. Because of its design, the amplifier can handle both negative and positive voltage inputs. — Warren Roy
AN EXCITING NEW APPROACH TO DESIGN AND CONSTRUCTION, AM • FM • SSB • DSB

The amateur, experimenter, and hobbyist will discover a new and easier way to build a wide variety of communication and electronic gear with International AOC units . . . individually wired oscillators, preamplifiers, detectors, etc., each tested and mounted on miniature metal chassis.

For example, the eight AOC units (illustrated) have been assembled to make a 6 meter converter. Each circuit may be removed to make modifications, or build other equipment.

PREAMPLIFIERS • MIXERS • OSCILLATORS • INTERMEDIATE FREQUENCY AMPLIFIERS • DETECTORS
• DISCRIMINATORS • BUFFERS • POWER AMPLIFIERS • MODULATORS • FREQUENCY MULTIPLIERS
• SPEECH AMPLIFIERS • RECTIFIERS • REGULATORS • POWER TRANSFORMERS • OSCILLATOR BRIDGES

AOC units permit custom building for a wide range of frequencies, modes, and power. RF coils are available from 200 kc to 450 mc. IF transformers are available from 262 kc to 10.7 mc. Transmitter power to 100 watts. Matching cases from 4 to 16 inches in length, complete with hardware.

If you are planning to build a receiver, transmitter, converter, or other electronic equipment use International AOC units.

AOC units are moderately priced from $2.00 up.

International Crystal Mfg. Co., Inc.
18 North Lee
Oklahoma City, Oklahoma

Please rush details on AOC units.

City __________ Zone ______ State ______

Name ________________________________
Address __

FOR COMPLETE DETAILS MAIL COUPON TODAY!
column speaker enclosure

COLUMN SPEAKERS (COLUMN-TYPE speaker enclosures with a vertical array of four or more speakers) are generally used in PA work and in background music systems where the performance or appearance of horns is objectionable.

When the speakers are in a vertical row, the enclosure produces a radiation pattern with a wide horizontal angle and a narrow vertical angle. When mounted at a carefully selected height in an auditorium or concert hall, the narrow beam passes over the heads of those closest to the stage and gradually becomes more effective for those farther back.

The diagram shows construction details of a 36-inch column enclosure described in Radio, Television & Hobbies (Sydney, Australia). The unit was designed for five 6-inch dual-cone speakers for wide-range performance.

Major parts are cut from a 3 x 4-foot sheet of ½- or ¾-inch plywood with hardwood veneer. The 5½-inch speaker holes are laid out along the center line and spaced as shown. The ½-inch vent holes are drilled in vertical rows that just clear the speaker frames. The top, bottom, sides and front are held together with glue and screws in 1-inch square battens. All inside surfaces except the front panel are lined with glass fiber or other sound-absorbing material and a curtain of similar material is draped loosely around the speakers.

The end grain on the front of the enclosure can be covered by the molding holding the grille cloth. The end grains of the top and bottom edges are covered with ¼-inch strips of matching hardwood or the top and bottom can be cut ½ inch longer than specified and the ends covered with veneer tape. For information on exterior modifications and finishing, see Designing and Building Hi-Fi Furniture, by Markell, Gernsback Library Book No. 79.

Converting a recorder to slow speed

By I. QUEEN
EDITORIAL ASSOCIATE

MY WOLLENSAK T-1500 RECORDER HAS two speeds: 7.5 and 3.75 ips. I use 7.5 almost exclusively because of its better fidelity, particularly on music. Recently I considered the possibility of converting the slower speed to 1⅞ ips. This would make the machine compatible with some of the new miniaturized recorders. Also, it would extend playing time for long speeches or radio programs. The conversion was not difficult.

The first step is to remove the white top panel, held by five painted screws and two plated screws on the perforated grill. Pry the panel at the rear to remove it. Now remove the pulley wheel (see figure) from the motor shaft. It has two rims, 1 inch for 7.5 ips and ½ inch for 3.75 ips. Saw off the bottom (⅛-inch) portion, leaving the ¼-inch motor shaft itself to drive the rubber idler wheel. This reduces the speed to 1⅞ ips as desired. When you replace the sawed-off pulley, you have completed the conversion.

Your speed switch will now set the recorder to either 7.5 or 1⅞ ips. The very low speed cannot offer the fidelity of faster speeds, but speech quality is remarkably good. Music does have some wow. The slow speed makes it possible to pack as much as 1 hour of playing time on a 3-inch reel.

Possibly other makes of tape recorders can be converted in a similar manner.
FOR PEOPLE ON THE GO!

Heathkit FM radio - the perfect companion

Wherever you go...this summer or any season...take the finest in listening enjoyment with you. While driving, thrill to the static-free, full fidelity of the new Heathkit FM Car Radio. 10-transistor circuit: under-dash tuner with separate power amplifier delivers 10 watts at less than 1% distortion. (Kit GR-41, 7 lbs., for 12v neg. gnd., $7 mo., $64.95) At the beach, in the cottage, or at home, the new Heathkit FM Portable Radio offers you sensitive, clear, quiet FM reception wherever you are. 10-transistor, 4-diode, battery-powered circuit: listen to its built-in speaker, use headphones, or connect it to your hi-fi system. (Kit GR-61, 6 lbs., less battery, $5 mo., $47.95)

FREE 1963 HEATHKIT CATALOG
Over 250 exciting do-it-yourself kits for Stereo/Hi-Fi, TV, Electronic Organs, Marine, Educational, Amateur Radio, Test & Lab, Home & Hobby. Easy to build, save up to 50%! Send for your free copy today.

HEATH COMPANY, a subsidiary of Daysstrom
Benton Harbor 20, Michigan

Please Send My FREE 1963 Heathkit Catalog
Name.__
Street.__
City_________________________________Zone__State_________

Prices & specifications subject to change without notice. Dealer and export prices slightly higher.
1963 SEMI-ANNUAL INDEX

RADIO-ELECTRONICS

January-June, 1963 of Vol. XXXIV

ELECTRONICS (Continued)

Regulator, Flash-Tube (Pat) Jan 10
Silicon Rectifier Adapter (Pat) Feb 9
Solid-State Device Combines Tube and Transistor Features (NB) Feb 12
Start Your Car On Hot Days Feb 20
Sun-Tracking Robot Furnace (Jaski)* Jan 16
Switching (van den Bosch) Jan 60
TV-For Last (Pat) Jan 52
Teaching Aids for High School Jun 30
Telephone Carries 100 Conversations on Single Wire Feb 8
Telephone Repeaters (WN) Jan 39
Temperature (Pat)* Feb 110
Temperature Control, 2-Position (Pat) Feb 110
Tools, New Scientific, Teach Kids to Think Mar 31
Tuners, Watch Out for this One Jan 6 12
Ultrasonic Waves Rotated by Magnetic Field (NB) Mar 10
Vacuum Chambers, Open-Ended Mar 76
Vena Lacks Magnetic Field (NB) May 18
Voltage Source, Regulated Heater (NC) Oct 12
Watch (Pat) Jan 69
Wavesform Tell Story (Middletown) Mar 53

Fixed Bias in All Stages (Travis)* Apr 24
FM "Hand" Has High Gain and Quality Apr 32
Applications Frozen (NB) Mar 6

Multiplex Store" Apr 5

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Multiplex" Apr 5

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6

Stereo "Hand" Has High Gain and Quality Apr 32

Applications Frozen (NB) Mar 6
Just mail coupon to:

COYNE SCHOOL PUBLICATIONS
Dept 63-RE
1455 W. Congress Parkway, Chicago 7, Illinois

You will receive COYNE'S 7-Volume Applied Practical TV-RADIO-ELECTRONICS set for TWO WEEKS FREE TRIAL. Include "Patterns & Diagrams" book FREE.

Name:__________________________
Address:________________________
City:____________________State:

CHECK HERE if you are sending $24.95 in full payment. Same TWO WEEKS MONEY BACK Guarantee applies.

FREE BOOK—FREE TRIAL COUPON!
DIFILM® BLACK BEAUTY®

MOLDED TUBULAR CAPACITORS

The world's most humidity-resistant molded capacitors. Dual dielectric—polyester film and special capacitor tissue—combines best features of both. Exclusive HCX® solid impregnant produces rock-hard section—nothing to leak, or drip. Tough case of non-flammable phenolic—cannot be damaged in handling.

DIFILM ORANGE DROP®

DIPPED TUBULAR CAPACITORS

Especially made for exact, original replacement of radial-lead tubulars. Ideally suited for printed wiring boards. Dual dielectric combines the best features of both polyester film and special capacitor tissue. Exclusive HCX® solid impregnant—no oil to leak, no wax to drip. Double dipped in bright orange epoxy resin to beat heat and humidity.

TWIST-LOK®

ELECTROLYTIC CAPACITORS

The most dependable capacitors of their type. Built to "take it" under torrid 185°F (85°C) temperatures—in crowded TV chassis, sizzling auto radios, portable and ac-de table radios, radio-phono combinations, etc. Hermetically sealed in aluminum cases for exceptionally long life. Withstand high surge voltages. Ideal for high ripple selenium rectifier circuits.

ATOM®

ELECTROLYTIC CAPACITORS

The smallest dependable electrolytics designed for 85°C operation in voltages to 450 WVDC. Small enough to fit anywhere, work anywhere. Low leakage and long shelf life. Will withstand high temperatures, high ripple currents, high surge voltages. Metal case construction with Kraftboard insulating sleeve.

GERA-MITE® CERAMIC CAPACITORS

Tiny, tough, dependable in practically every application. Low self-inductance of silvered flat-plate design gives improved by-pass action in TV r-f circuits. Higher self-resonant frequency than tubular ceramics or micas. Tough moisture-proof coating. Designed for 85°C operation.

NOW APPEARING DAILY AT YOUR FAVORITE SPRAGUE DISTRIBUTOR!

For a permanent reference to this world-renowned galaxy of star performers, ask your Distributor for a copy of Sprague's handy Hanging Wall Catalog C-457, or write Sprague Products Company, 81 Marshall Street, North Adams, Massachusetts.
HOW can you prove you've heard hard-to-receive short wave stations?

This question, and many others about tape quality, tape use, and tape recording for fun, education, and profit, are answered in Tarzian Tape's new booklet, "Lower the Cost of Fun With Tape Recording."

It's free when you mail the coupon below.

Open-ended vacuum chamber

A high simplified illustration of how the open-ended continuous-vacuum machine works.

AN ENDLESS CONVEYOR THAT TAKES parts from open air through a vacuum chamber and back to the atmosphere again from high-level vacuum was demonstrated by Western Electric Co. at its Engineering Research Center, Princeton, N. J. The chamber was used to sputter thin films of tantalum for making thin film integrated circuits.

The vacuum chamber uses a series of locks (chambers of increasing vacuum). A certain amount of air enters through each lock, but pumps remove it faster than it leaks in. Thus each chamber is at a higher vacuum until, at the central chamber, the correct vacuum for the sputtering process is reached. The highest-vacuum chamber contains some gas—a very small amount of argon. A potential between 500 and 5,000 volts is maintained between the object to be sputtered and a sheet of tantalum. Argon atoms striking the tantalum knock off tantalum ions, which are deposited as pure tantalum metal in a very thin film on ceramic or glass blanks. The film is etched away to form a complete circuit. By coating portions of the circuit with a resist, and introducing a small amount of nitrogen into the chamber, the exposed tantalum becomes tantalum nitride, which has a high resistance. Thus the tantalum may be both a conductor or a resistor. It may also be treated with gas to form an excellent dielectric, after which another layer of metal can be deposited on top of it to form capacitor plates. Thus the same layer of tantalum may be a conductor, resistor or a portion of a capacitor.

The new continuous process machine is expected to produce large quantity lots of miniature circuits at a much lower cost at present.

What's Your EQ?

Doubling in Capacitors

Nothing much. Removing C1 changes the full-wave doubler to a modified half-wave doubler as shown below.

\[\text{IITVAC} \]

Ripple would be at 60 cycles instead of 120, and regulation would be poorer. However, since there is virtually no load, output voltage would not change.

Voltmeter Puzzle

Two Wheatstone bridges are connected in parallel. To balance the bridges, R1 must equal the internal resistance of voltmeter A and R2 must equal the internal resistance of voltmeter E. The zero reading on voltmeters B, C and D shows that the bridges are balanced. Therefore, the value of 1,000 ohms for R1 shows that the internal resistance of voltmeter A is 1,000 ohms. Also, a value of 1,000 ohms for R2 shows the internal resistance of voltmeter E to be 1,000 ohms. When the internal resistance of voltmeter A and voltmeter E is known, the voltage drop across the meters can be easily calculated. The reading of each voltmeter is 1 volt, equal to the voltage across the meter.

How Many Diodes?

Only one diode is needed, in a quarter-bridge circuit as shown. This circuit, while not efficient, is sometimes used as an instrument rectifier (Conant Labs). For the given conditions, the output voltage is \(E_{out} = \frac{1}{2} E_{in}. \)
NOW EVERYONE CAN QUICKLY
Set up and Service Color TV

1. PATTERN DISPLAY STANDARD
 - Shows correct pattern in window viewer for visual guide

2. PATTERN SELECTOR
 - Produces each pattern individually for quick, easy convergence

3. AUTOMATIC DECONVERGENCE
 - Simplifies static and dynamic convergence. No digging into set

4. COLOR SELECTOR
 - Produces each color one at a time for accurate color set-up

5. COLOR GUN KILLER
 - Automatically enables the technician to actuate any combination of the 3 guns

6. DEMODULATOR ALIGNMENT
 - Makes alignment extremely simple, without going into the color set

New! B&K Model 850 COLOR GENERATOR

Most Complete, Most Versatile, Portable Instrument for Use in the Home and in the Shop
Makes Color TV Set-up and Service Easier, Faster than ever!

Now every service technician can be ready to set-up and service color TV with amazing new ease and speed! New advanced design simplifies the entire operation, saves time and work in every installation. Eliminates difficult steps in digging into the color TV set. Gives you new confidence in handling color.

Produces Patterns, Burst, and Colors Individually
- Provides dot pattern, crosshatch, vertical lines, horizontal lines, burst signal, and individual colors—one at a time—on the TV color set—for fastest, easiest check. Unique window-viewer on front of the instrument panel shows you each pattern as it should be—gives you an exclusive display standard to use as a sure guide for quick, visual comparison.

Provides Accurate, Individual Color Display
- Produces Green, Cyan, Blue, B—Y, Q, Magenta, R—Y, Red, I, Yellow, and Burst—one at a time. All colors are crystal-controlled and are produced by a precision delay-line for maximum accuracy. Each color is individually switch-selected—no chance of error.

Provides Accurate NTSC-Type Signal
- Color phase angles are maintained in accordance with NTSC specifications.

Makes Convergence and Linearity Adjustments Easy
- Highly stable crystal-controlled system with vertical and horizontal sync pulses, assures the ultimate in line and dot stability.

Simplifies Demodulator Alignment
- The type of color display produced by this instrument provides the ultimate in simplicity for precise demodulator alignment.

Provides Automatic Deconvergence
- Eliminates the necessity for continual static convergence adjustments. The instrument automatically deconverges a white into a color dot trio without digging into the color set to mis-adjust the convergence magnets. It also deconverges a white horizontal or vertical line into red, green and blue parallel lines. This greatly simplifies dynamic convergence adjustments.

Provides Exclusive Color Gun Killer
- Front-panel switch control makes it easy to disable any combination of the three color guns. Eliminates continuous adjustment of the background or screen controls, or connection of a shorting clip inside the receiver. The switch also selects the individual grids of the color tube and connects to a front-panel jack to simplify demodulator alignment.

Provides Switch-Selected R.F. Signals
- Factory-tuned, for channels 3, 4, and 5—for open channel use in your area.

Model 850 also includes other features that make it invaluable for home and shop use. Net, $199.95

See Your B&K Distributor or Write for Catalog AP20-E

B & K MANUFACTURING CO.
Division of DYNASCAN CORPORATION
1801 W. BELLE PLAINE AVE. • CHICAGO 13, ILL.
Canada: Atlas Radio Corp., 50 Wingold, Toronto 19, Ont.
Export: Empire Exporters, 233 Broadway, New York 7, U.S.A.

JUNE, 1963
NEW PRODUCTS

PORTABLE UHF CONVERTER. Adds all uhf stations to present sets. Planetary drive, switched tuner with 3-gang tuning element. Built-in uhf/vhf coupler permits connection to existing antenna with screwdriver. 111/4 x 5 3/8 x 3 in. Model A, 110-125 volts, 50/60 cycle ac, 10/12 watts at nominal line voltage. Built-in 117-volt ac power receptacle, 6-t connecting cord. Model B same as above, less 61344 resistor i.f. amplifier circuit and ac outlet.—Standard Kollman Industries, Inc., 2085 N. Hawthorne Ave., Melrose Park, Ill.

EDUCATIONAL LAB KIT, model PL-1, for children 7 to 14. 15 electronic circuits, code oscillator to transmitter to receiver; complete Interna-
tional Morse Code, FCC Rules and Regulations governing ham licensing.—PACO Electronics Co., Inc., 70-31 84 St., Glendale 27, N. Y.

MICROMINIATURE SOLDERING IRON, catalog No. 1114. For light soldering. 20 watts, 1/4- and 3/16-in. diam. Xtradir tips. Replaceable element. Ventilated design, concave stainless steel mirror sends heat away from handle. Lightweight, flexible cord. 2-wire or 3-wire; 115 volts ac or dc; 12, 17 or 20 watts. 5 tip diameters and shapes.—Hexagon Electric Co., 186 W. Clay Ave., Roselle Park, N. J.

HAND-SIZE WELDING TORCH, Micro-flame. Fueled by 2 miniature compressed-gas cartridges, oxygen and butane. Welding flame 4,000°F. Easily obtainable gas cartridges contain 2-hour supply. Precision controls regulate gas mixture. Turn torch on and off.—Printed Circuits, Inc., 7800 Computer Ave., Minneapolis, Minn.

CHANNELLOCK SCREW/NUTDRIVERS. Chrome steel, polished plated blades locked into handles. Tips ground lengthwise for greater "end" strength. Handles shockproof, broadcast.—Champion DeArmnt Tool Co., Meadville, Pa.

COLOR-CODED TOOL SET. Model PS7: 2 nutdrivers (1/4, 5/16-in. hex); 2 all-purpose screwdrivers (3/16, 3/32-inch) 2 Phillips screwdrivers (No. 0, No. 1), Each 3½ in. long. Piggyback slip-over handle 1 x 3½ in. Model PS120 kit: 10 nut-
drivers, hex openings 3/32-3/8-in., torque amplifier. Both in see-through plastic cases.—Xcelite, Inc., Orchard Park, N. Y.

SHRINKABLE TUBING KIT. 6-inch lengths of 5 types FIT tubing, selection of FIT markers (preprinted 4-in. lengths to identify and protect wire and cable). FIT caps (short lengths semi-rigid tubing, sealed on one end, to terminate wires and cables). Instructions.—Alpha Wire Corp., 200 Varick St., New York 14, N. Y.

TEST POINT JACk, model SKT-6805. For 0-ohm in diam. probe. 187 in. long. Beryllium-copper lug extends through Teflon bushing with above-bushing height 187 in. Overall height of test-point jack. 504 in.; diameter 218 in. In any EIA color for color-coding.—Sealec Electronics, Mamaroneck, N. Y.

CAPACITANCE-RESISTANCE ANALYZER, model TE-46. Accuracy ±5%. 4 direct-reading scales for capacitance and resistance: 0.0002-0.005, 0.002-0.005, 2-50 and 50-2000 µf; 2-500.

edio Electronics Corp., 111 Jericho Turnpike, Syosset, N. Y.

VOLT-OHM-METER, model 680-NS. 200,000 ohms per vdc, 20,000 ohms per vac. 5-µa current measuring circuit for semiconductor leakage-current measurements. Suspension meter move-
ment, 63 ranges, mirror-scaled. Temperature-compensated, usable with frequencies through 100 kc. Current measurements 0.1 µa-12 amps.—Triplet Electrical Instrument Co., Harmon Rd., Bluffton, O.
SPECIAL INTRODUCTORY OFFER

SELECT ANY 3 SERVICING BOOKS FOR $2

CERTIFIED VALUE UP TO $17.45

with membership in the Gernsback Technician's Book Club

WHY THIS SPECTACULAR OFFER?

Gernsback Library is making this offer to persuade more members to join the helpful Technicians Book Club. As striking as this offer is—it is only an introduction to the many advantages club members receive. The club gives you the chance to acquire big gain prices—books by top technical writers on how to master fundamentals, learn new techniques that will help you and stay ahead in electronics. Here's the technical book buy of the year—not a collection of old or outdated volumes—but new books taken from the top of the Gernsback list of best sellers. Priced up to $2.95 each—total value $17.45.

WHAT THE CLUB OFFERS YOU

- Selection of the best modern electronics books by first-rank authors.
- Tremendous savings on each book—Club prices range from $3.25 up for books regularly priced at $4.60 and more.
- Chance to select one or more valuable books regularly.
- Opportunities to buy books not always available in your community.
- Attractive volumes—carefully printed—handsomely bound.
- Preselection privilege. A new bulletin regularly describes each selection and the alternates in detail.
- Budget-coddling payments. You agree to accept as few as 38 four additional books a year. You pay for the books only after you receive them—and then only at the special club price—discounts up to 27%.

Highlights from books you will be able to select in coming months:

- What you need to know about modern TV.
- All about transistors.
- Math for the electronic technician.
- Getting more out of the oscilloscope.
- Complete book on electricity for technicians.
- Picture book to help you solve tough TV problems.

HOW TO JOIN

Mail the coupon below and start membership with any 3 of the books listed below. SEND NO MONEY. We'll bill you $2—plus a few cents handling and mailing. If you're not satisfied with the books send them back and membership is cancelled.

Periodically you will receive a bulletin describing that month's choice and alternates.

You may select one or more books or reject all books when offered.

You agree to accept only 4 additional books in the next 12 months. You may cancel anytime after that.

Mail in the coupon below to Technicians Book Club, Dept. 63, 154 West 14th St., New York 11, N.Y. SEND NO MONEY NOW (unless you wish).

Choose the 3 books you want below for only $2.00

- Servicing Record Changers, By Harry Miles—Makes servicing changers easy. Complete text plus line drawings explain intricate mechanisms clearly. Reg. price $4.60.
- Basic Radio Course (revised ed.), By John T. Frye—The original sold out through eight printings! Everything—Ohm's law, capacitance, tubes, transistors and how they work in a receiver—practical servicing techniques—discussed in a lighthearted style that makes what's being taught stick. Reg. price $2.75.
- Understanding Hi-Fi Circuits, By Norman H. Crowhurst—Analyzes the hi-fi system so you can move into audio and hi-fi servicing. Covers inverter, driver and output stages, feedback, damping, matching, crossovers—and much more. Reg. price $5.00.
- Industrial Electronics Made Easy, By Tom Jaski—Operation and maintenance of industrial equipment, diode, inductive, inductive and microwave heating processes and applications. Control systems actuated by photoelectric, infrared, pressure, and other transducers. Reg. price $5.95.
- Basic TV Course, By George Kravitz—A book on TV as it is today. Even transistorized portables are discussed. A thorough practical discussion of circuit operation, sync methods, sweep systems, tuners, amplifiers, variations in power supplies. Presentation of technical detail in easy-to-follow writing style. Reg. price $3.75.
- TV and Radio Tube Troubleshoot, By Sid Heller—Trace any tube trouble to the source in minutes with this new sure-fire symptom analysis technique. Save servicing time. Reg. price $4.60.

ONLY 3 BOOKS TO A MEMBER PLEASE

TECHNICIAN'S BOOK CLUB
Gernsback Library Dept. 63
154 West 14th Street, New York 11, N.Y.

Enroll me as a member of the G/L Technician's Book Club. Start my membership with the 3 books I've checked for only $2.00 (plus a few cents postage). Thereafter send me a brochure describing the current selections which I may purchase at special discount prices if I wish. I understand that my only obligation is to purchase just 4 additional books within the next 12 months, and that I may cancel anytime thereafter. I also understand that I may cancel immediately, simply by returning these first 3 books within 10 days.

NAME __________________________
ADDRESS _______________________
CITY ___________________________
ZONE _______ STATE ________

JUNE, 1963
NEW MULTIPLEX VERSION OF FAMOUS SCOTT 310 "TELSTAR" FM TUNER

Scott's 310 tuner has long been admired for exceptional sensitivity and selectivity. It is used as a broadcast monitor by FM stations throughout America and was selected by Bell Laboratories for receiving signals from Telstar orbiting in outer space. The new 310E includes exclusive Scott Time-Switching multiplex circuitry, silver-plated front-end, Auto-Sensor for fully automatic reception, precision meter and many other exclusive features. Sensitivity is 1.5 μV! $279.95*

H. H. Scott, Inc. Dept. 570-6
111 Powdertmill Road, Maynard, Mass.

Rush me complete technical details on new 310-E FM Stereo Tuner.

Name
Address
City Zone State

TV-RADIO SERVICE

PROFESSIONAL technicians use Dave Rice's OFFICIAL ORDER BOOKS for every TV-RADIO service call

RADIO TELEPHONE LICENSE MANUAL $5.75

— helps you prepare for all U.S.A. commercial operator's license exams

Here are complete study-guide questions and answers in a single volume. Helps you understand every subject needed to obtain an operator's license.

$8.50

WORLD'S RADIO TUBES (Braun's Radio Tubes Vade Mecum). World's most authoritative tube book . . . $8.00

WORLD'S EQUIVALENT TUBES (Braun's Equivalent Tubes Vade Mecum). Over 32,500 comparisons . . .

$6.00

SURPLUS RADIO CONVERSION MANUALS Practical conversions of most popular surplus equipment, in 3 volumes. Send stamped envelope for list of contents . . . each $3.00

*Radiophone license manual from your favorite electronic parts distributor.

If he cannot supply, send us his name and your remittance, and we will supply foreign, add 10%.

EDITORS and ENGINEERS, Ltd.

Summerland, S. California

 downwards, 2 and 1 inch, respectively, at ambient temperatures 25°C. Ratings double at 25°C. AS-1; 5/16 in. long. max. diam. 3/32 in.; AS-1: 13/32 in. long. max. diam. 1/8 in. Both in precision tolerances ±3%--±5%.

MINIATURE PRECISION RESISTORS, models AS-1, AS-1. Dissipate 1/8 watt and 1 watt, respectively, at ambient temperatures 25°C. Ratings double at 25°C. AS-1; 5/16 in. long. max. diam. 3/32 in.; AS-1: 13/32 in. long. max. diam. 1/8 in. Both in precision tolerances ±3%--±5%.

CLERAM CAPACITORS. Molded. Operate without derating at 200 vdc. --55° to +150°C. Life-tested at 400 vdc. Type CK-6A: 10,250 pf, 0.1 in. thick x 0.2 in. square; MIL-C-11015/18

IM/HARMONIC DISTORTION METER, AC VTM, model 902, 4½-in. meter. Full-scale pointer deflection for 0.1% distortion (10 mv ac rms voltage). Linear scale. Precise readings down to 0.1% and 1 mv ac. Full-scale IM ranges to 30% distortion. 7 for harmonic distortion to 100%. 10 for ac voltage to 300 volts rms. ±5% for ac.

RAW_TEXT_END
Original Equipment Designers

Choose Tubes from Complete Stocks at Local RCA Distributor

Just call. And watch your RCA Industrial Tube Distributor perform on any of your OEM or replacement needs for RCA tubes. He carries large inventories. Latest tube types available immediately can help you meet emergency lab requirements, help keep your production schedules rolling.

He can also provide practical application data. When you need it, just ask him.

So. Get to know your local RCA Industrial Tube Distributor...for priority service on quality RCA tubes for color TV, black-and-white TV, AM-FM radio, Hi-Fi, Phonographs, and industrial and communications equipment of every description.

RCA ELECTRON TUBE DIVISION, HARRISON, N. J.

The Most Trusted Name in Electronics

For name and address of your local distributor write or call your nearest RCA Distributor Products Sales Office—New York, N. Y.: 36 W. 40th St., Midway Hill 9-7200; Needham Heights 84, Mass.: 80 "A" St., Hillcrest 4-8400; Washington 7, D. C.: 1725 "K" St. S.W. Federal 7-8500; Atlanta, Ga.: 134 Peachtree St., N.W., Jackson 4-7703; Cleveland, Ohio: 1621 Euclid Ave., CHand 1-3450; Chicago, Ill.: Merchandise Mart, 467-5600; Dallas 7, Texas: 7901 Carpenter Freeway, MElrose 1-3050; Kansas City 14, Mo.: 7711 State Line, EMerson 1-6462; Los Angeles 22, Cal.: 6811 E. Washington Blvd., RAymond 3-8501.

JUNE, 1963

81

www.americanradiohistory.com
FOR SHARP, CLEAR 2-WAY COMMUNICATION

Fixed or mobile, business or pleasure
Get the new, low-cost RCA MARK VIII
27-Mc Citizens Band Radio-Phone

Here's the LOW-COST C-B radio-phone for car, boat, home, office, or shop. High sensitivity receiver pulls in weak signals. 2½ watt speaker output delivers ample volume to overcome engine noise. Automatic noise suppressor minimizes ignition interference. Light and compact—only 3½ inches high, weight only 9 pounds; fits easily under the dashboard of even compact cars.

PLUS THESE PREMIUM FEATURES—RCA MARK VIII RADIO-PHONE

- 9 crystal-controlled transmit and receive channels
- Tunable receiver permits selection of all 23 C-B channels; dial marked in both channel numbers and frequency
- Exceptionally good voice reproduction—high intelligibility
- Excellent modulation characteristics
- Operates from standard 117-volt AC; separate 6- and 12-volt DC power supplies (optional) for mobile installations
- Electronic switching—no relay noise or chatter
- Illuminated "working channel" feature plus many more features to increase usefulness and efficiency.

AC Unit only $149.50*
DC Power Supplies, Where Needed, $39.95*

*Optional list price

The Most Trusted Name in Electronics

MAIL COUPON FOR MORE INFORMATION

RCA Electron Tube Division
Commercial Engineering Dept. F-33-R
415 South Fifth Street, Harrison, N. J.

Please send more information on the RCA Mark VIII 27-Mc 2-Way Radio-Phone.

Name_________________________Address_________________________
City_________________________Zone________State___________

RADIO-ELECTRONICS

All wires precut and stripped. Usable sensitivity 4.0 μv, signal-to-noise ratio 55 db, harmonic distortion 0.8%, drift 0.02%. Capture ratio 6 db, selectivity 32 db. FM distortion 0.3%, separation over 30 db. Kit-pack container acts as work table.

STEREO TAPE RECORDER, model 1055
4-track stereo and mono record/playback; 2-track stereo and mono playback; dual self-contained stereo power amps, professional type VU meter with A-B switch; record switch with record safety interlock; stereo preamp outputs; automatic shut-off, index counter, dual speaker output jacks, stereo-phono-radio inputs; "Eedit Guide", built-in head demagnetizer. For horizontal or vertical installation. Speeds 7½, 3¾ ips, 15 ips accessory kit available. 2 high-impedance mike inputs, 2 high-impedance, high-level phono-radio inputs, 2 high-impedance outputs, 2 4-16-ohm outputs for external speakers or low-impedance stereophones.

—Robert's Electronics, Inc., 5978 Bowcroft St., Los Angeles 16, Calif.

TRANSISTOR STEREO TAPE RECORDER, model 4726. 26 transistors, 26 diodes. Self-contained. 16 watts audio power per channel. 2 built-in monitoring speakers, 3 separate motors, 3 separate tapeheads, dual recording and playback amplifiers. 3 individual controls per channel. Automatic rewind, replay and shutoff. 3 individual inputs per channel with simultaneous internmix;

authentic sound-on-sound and echo effects; monitoring from recorded tape or preamp input; can connect permanently to tuner, record player and external speakers for simultaneous listen and record. Operates in vertical, horizontal or studio-angle position. Frequency response 20-20,000 cycles within 3 db at 7½ ips, 10,000 cycles at 3½ ips. Signal-to-noise ratio 60 db down, flutter and wow .15%. Bias frequency 85 kc, total harmonic distortion 1.0%—Vernon Audio Div., 144 E. Knightbridge Rd., Mount Vernon, N. Y.

ELECTRONIC ORGAN KIT, York: Theater type handshorable console for limited space. 2 full-size 61-note manuals, 25-note pedal keyboard, dual expression pedals, 40 multicolored stop tabs. Compact

www.americanradiohistory.com
RAD-TEL’S 1 for 1 TUBE SALE!*

*RAD-TEL’S SPECIAL OFFER

For every Rad-Tel quality Brand New TUBE you buy, as advertised—Rad-Tel will give you your choice of a Brand New 5U4 or 6J6 tube for only 29¢ each!

LIMITED TIME OFFER—ORDER NOW!

ONE YEAR GUARANTEE

ONE DAY SERVICE—OVER 500 TYPES IN STOCK

up to 75% OFF**

Rad-Tel’s Quality BRAND NEW TUBES

"Manufacturers Suggested List Price

FREE! Send for New Tube & Parts Catalog

Send for Trouble Shooting Guide

Be your own TELEVISION REPAIRMAN

The Original NOW YOU CAN

FIX YOUR OWN TV SET BOOK

You can fix your own TV if you have TV Fix It Book—because 80% of troubles are caused by tubes. This book explains, illustrates trouble and what tubes cause this trouble. Pinpoints in over 3000 layouts by model number, position and type tube causing trouble.

Order Form

Name:________________________
Address:_____________________
City:_________________State:_____

August 31st, 1963

Each tube attractively boxed & branded Rad-Tel

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>.79</td>
<td>6A21</td>
</tr>
<tr>
<td>1AX2</td>
<td>.62</td>
<td>6AV6</td>
</tr>
<tr>
<td>1B3</td>
<td>.79</td>
<td>6AW8</td>
</tr>
<tr>
<td>1DN5</td>
<td>.55</td>
<td>5AX4</td>
</tr>
<tr>
<td>1CL5</td>
<td>.79</td>
<td>6AX5B</td>
</tr>
<tr>
<td>1J3</td>
<td>.79</td>
<td>6BA5</td>
</tr>
<tr>
<td>1K3</td>
<td>.79</td>
<td>6BC5</td>
</tr>
<tr>
<td>177</td>
<td>.77</td>
<td>668C</td>
</tr>
<tr>
<td>15S</td>
<td>.75</td>
<td>6BE6</td>
</tr>
<tr>
<td>1T4</td>
<td>.72</td>
<td>6BF5</td>
</tr>
<tr>
<td>1US</td>
<td>.65</td>
<td>6BF6</td>
</tr>
<tr>
<td>1X2B</td>
<td>.62</td>
<td>6BG2</td>
</tr>
<tr>
<td>2AF4</td>
<td>.96</td>
<td>6BH8</td>
</tr>
<tr>
<td>3AL5</td>
<td>.45</td>
<td>6BR6</td>
</tr>
<tr>
<td>3AU6</td>
<td>.54</td>
<td>6BJ7</td>
</tr>
<tr>
<td>3AV6</td>
<td>.42</td>
<td>6BK7</td>
</tr>
<tr>
<td>3BL6</td>
<td>.63</td>
<td>6BL7</td>
</tr>
<tr>
<td>3BN6</td>
<td>.75</td>
<td>6BN6</td>
</tr>
<tr>
<td>3BU8</td>
<td>.78</td>
<td>6BG6</td>
</tr>
<tr>
<td>3BY6</td>
<td>.58</td>
<td>6B17</td>
</tr>
</tbody>
</table>

RAD-TEL TUBE CO. NOT AFFILIATED WITH ANY OTHER MAIL ORDER TUBE COMPANY

SAG 5 .54 6CJ5 .58 12AE6 .50 17AX4 .67
SAT8 .83 6CUC 1.08 12AL7 .64 17AYX .90
SBD 96 6CVS 1.13 12AF3 .63 17AFX .80
SBG7 1.01 6CY7 .71 12AF6 .67 17AXF .53
SBH9 83 6DA6 1.06 12AG7 .66 17AX6 .90
SCGB 81 6DE6 1.31 12AG7 .57 12AL6 .73
SCLB 76 6DF6 1.31 12AL8 .95 12ALG .50
SCQB 84 6DGL 1.21 12ALG .50 12ALH .99
SCUB 80 6DK6 1.59 12AT6 .50 12AL8 .85
SEUB 80 6DN6 1.55 12AT7 .76 21EX6 .49
SJ6 72 6DQ6 1.10 12AU6 .51 25A 1.70
ST 86 6DT5 1.02 12AU7 .61 25C .70
SU 1.54 6D73 1.54 12AV6 .41 25CA .59
SUB 84 6DT9 1.94 12AV1 .82 25CD .152
SUX 56 6EA8 1.79 12AX4 .67 25CF6 1.11
SX8 82 6EB5 1.73 12AX7 .63 25DN6 1.42
SY3 .46 6EB8 .94 12AY7 1.44 25EH5 .50
6AB4 .46 6EM5 1.77 12AZ7 .86 25LP5 1.50
SAG7 96 6EF7 1.82 12BF8 .68 25M5 1.80
SAGF 1.01 6EUF 1.79 12BG7 .60 25M4 .50
SAGS 70 6EVS 1.75 12BE6 .53 32J 1.55
SAGA 81 6EWG 1.71 12BE7 .60 32M 1.51
SA6H 1.10 6EY6 1.75 12BH7 .77 32M4 .42
SAGK 9.5 6F7G .99 12BG7 1.00 32Z 1.50
SALS 47 6F6R 1.70 12BM7 .60 33K 1.51
SAMS 86 6GH9 1.80 12BF8 .66 3236M 1.42
SAGB 53 6GKS 1.61 12BR7 .74 50C .55
SAGJ 60 6GKX 1.81 12BV7 .65 50FR 1.60
SAT 6 49 6GN8 1.94 12BY7 .77 50L .61
SAT7 86 6H6 1.86 12BZ7 .86 70L 1.70
SAU 85 6H6G 1.79 12BV9 .51 70Z 1.65
SAU6 52 6H7 1.10 12CR6 .67 80T 1.70

RADI-TEL TUBE Co.

Dept. RE-6

55 Chambers Street

Newark, N.J.

Total Tube(s) $__________

Total Parts $__________

Total Grand Total $__________

ENCLOSED IS $__________

Please rush order.

SEND: Book(s) Be Your Own TV Repairman $1.00 ea. #170

CHEATER CORD 29c ea. Lots of 3 - 25c ea. #154

Orders under $5.00 - Add $1.00 handling charge - plus postage.

FREE! Send FREE Tube and Parts List

Send FREE Trouble Shooting Guide

NAME:_____________________
ADDRESS:__________________
CITY:_________________STATE:_____

WWW.AMERICANRADIOHISTORY.COM

83
plete kit or smaller component kits consisting of tone generators, tone changers, pedal keyboard, manuals and console. Optional accessories: chimes, band box, glockenspiel, speakers, amplifiers. Played through hi-fi mono or stereo system or optional audio components.—Artisan Organs, 2476 N. Lake Ave., Atascadero, Calif.

TONE-ARM SWITCH, model 404. Connects 2 tone arms to mono or stereo equalizer, lets operator shift from one to the other. For broadcast, recording. In record cutting, provides groove noise information for controlling stylus heat.—Gray Research & Development Co., Box 12, Elmswood, Conn.

2-SPEED TURNTABLE. Identical to manufacturer's single-speed table except for 2-speed drive pulley. Available conversion kit (illus.) with rolloff positions for noisy records.—Gray Research & Development Co., Inc., Box 12, Elmswood, Conn.

RECORD CLEANER. Anti-static detergent, groove-generating applicator and needle brush in rigid plastic case.—Lektronstat Corp., 845 Evergreen Rd., New York 59, N. Y.

CERAMIC MICROPHONES, model CM-40 (illus.) and CM-41 Ceramitek. Swing type stand, 5-ft shielded cable, phone plug. Frequency range 45-20,000 cycles, sensitivity +40 db. CM-41: Magnetic driver, response 45-12,000 cycles, sensitivity +35 db. CM-40: Magnetic driver, response 45-10,000 cycles, sensitivity +35 db.

SPOT RECORDS. STR 180, RIAA Frequency Response, sets response of recording equipment, tests electrical systems and response of combined pickups and networks of phonographs. Spot frequencies with voice announcements included. STR 140, RIAA Pink Noise Acoustical Test Record, for acoustical tests measuring overall response of system, including speaker.—CBS Labs, Acoustics & Magnetics Dept., High Ridge Rd., Stamford, Conn.

5-INCH HI-FI SPEAKER, model WR8-BH. For bookshelf, stereo, mono or communications. Frequency range 45-20,000 cycles, impedance 8 ohms. Handles 20 watts average program material, peaks to 40 watts. Built-in core radiator matches Placement screwdriver, mirror, bottle of anti-static detergent.—Sonotone Corp., Elmsford, N. Y.

OUTDOOR SPEAKER SYSTEM, model C.L.C. U-brackets for vertical or horizontal mounting with screwdriver. Response 55-14,000 cycles, power rating 30 watts. Dispersion 90°, impedance 8 ohms. May be used indoors.—University Loudspeakers, 80 S. Kenisco Ave., White Plains, N. Y.

GENERAL-PURPOSE HEADSET for radio operators, hobbyists, communications work and language labs. Magnetic driver, response to 10,000 cycles. Rust-, moisture-proof. High-impact plastic frame, stainless steel.—Fels, Inc., 3054 Excelsior Blvd., Minneapolis 16, Minn.

STEREO DYNAMIC HEADPHONES, Type A. 7 oz. unit has vinyl-covered ear cushions, replaceable parts. Frequency range 20-15,000 cycles, impedance 1 ohm per channel.—R-Columbia Products Co., 208 St. Johns Ave., Highland Park, Ill.

PRINTED-CIRCUIT RADIO KIT, model KIT-150. Easy-to-read layout data for each component, cabinet and built-in antenna. Kit AS-555; five tubes for above radio.—Olson Electronics, Inc., 260 S. Forge St., Akron 8, Ohio.

CB RADIO, kit MW-33 Marine. For marine, fixed or mobile use. RF stage, 5 crystal-controlled transmitters/receive channels, half-lantern crystal filter, variable receiver tuning of all channels, 3-way power supply (6 or 12 volt, 117 volt). Adjustable squelch, automatic noise limiter. Max. allowable input (5 watts). Built-in tuning meter. Mike, ac and dc power cables; crystals for one channel.—Heath Co., Benson Harbor, Mich.

CB FILTER, model CB-T. Suppresses second harmonic generated by CB transmitters. Multisection filter circuit; 30-dB attenuation of signals above 28 mc, insertion loss 1 db. Special input and output tuning trimmers for exact matching of transmitter to antenna.—Gavin Instruments, Inc., Depot Square & Division St., Somerville, N. J.

All specifications are from manufacturers' data.

www.americanradiohistory.com
NEW ADDED FEATURES—NEW LOW COST

The Famous RCA

SENIOR VOLTOHMYST®

NOW AVAILABLE AS A KIT
FOR ONLY $57.95*

A3dec features for extra versatility. An improved kit version of the famous RCA SENIOR VOLTOHMYST®.

Most important new feature: A half-volt full-scale DC range for more accurate measuring of low voltages used in transistor circuits.

Extra plus feature: Pre-assembled, factory-tested DC/AC probe (WG-293D) included with every kit.

Other deluxe features:
- Big 6½" meter—one of the most readable ever designed
- Non-breakable sealed plastic case—no glass to crack or shatter
- Spring clips on handle to keep leads out of the way
- Precision multiplier resistors accurate to ±1%
- Rugged die-cast aluminum case with leather handle
- Brushed aluminum control panel with etched markings

MEASURES:
- AC voltages: 0.1 to 4200 volts peak-to-peak and 3.1 to 1500 volts rms
- DC voltages: 0.205 to 1500
- Resistances: 0.2 ohms to 1,000 megohms

RCA Senior VoltOhmyst WV-982, also available factory-wired and calibrated, $79.50*

OTHER OUTSTANDING RCA KIT VALUES

RCA VOLTOHMYST® KIT
WV-77E(K)

Only $29.95*

Famous VoltOhmyst® quality and performance at a low price! Special test features include:
- Separate 1.5-volt rms and 4-volt peak-to-peak scales for accurate low AC measurements
- Measures AC and DC voltages to 1500 volts, resistances from 0.2 ohm to 1,000 megohms
- Complete with ultra-slim probes, long flexible leads, special holder on handle to store leads

RCA WV-77E available factory-wired and calibrated: $43.95*

RCA WV-38A(K)
VOLT-OHM-MILLIAMMETER KIT

Only $29.95*

The V-O-M with the extras: 0.25-volt and 1.0-volt DC ranges • Big, easy-to-read 5½" meter • Non-breakable sealed plastic case—no glass to crack or shatter • Jacks located below switches to keep leads out of the way • Spring clips on handle to hold leads • Attractive, scuff resistant, rugged carrying case, only $4.95 extra

RCA WV-38A available factory-wired and calibrated: $43.95*

RCA SUPER-PORTABLE OSCILLOSCOPE
KIT WO-33A(K)

Only $79.95*

Now in kit form. A 'scope you can carry anywhere! Rugged and compact, yet weighs only 14 pounds. Just right for in-the-home and shop troubleshooting and servicing of black-and-white and color TV, radio, hi-fi components, tape recorders, etc. Ample gain and bandwidth for the toughest jobs. Scaled graph screen and internal calibrating voltage source for direct reading of peak-to-peak voltage. RCA WO-33A available factory-wired and calibrated: $129.95*

Call your Authorized
RCA Test Equipment Distributor

RCA ELECTRON TUBE DIVISION, HARRISON, N.J.

The Most Trusted Name in Electronics

*User Price (Optional)
BECOME A RADIO TECHNICIAN for only $26.95

BUILD2ORADIO

CIRCUITS AT HOME

with the New Progressive RADIO "EDU-KIT®"

All Guaranteed to Work!

PRACTICAL HOME RADIO COURSE

ONLY

$26 95

NOW INCLUDES

* 12 RECEIVERS
* 3 TRANSMITTERS
* 50 WAVE GENERATOR
* AMPLIFIER
* SIGNAL TRACER
* SIGNAL INJECTOR
* CODE OSCILLATOR

FREE EXTRAS

* SET OF TOOLS RADIIO & ELECTRONICS TESTER ELECTRIC SOLDERING IRON HOME SERVICE MANUAL & MEMBERSHIP IN RADIO-TV CLUB: CONSULTATION SERVICE: HI-FI GUIDE RADIO-TELEVISION LICENSED TECHNICIAN: RADIO BOOK PRINTED CIRCUITRY PLIERS-CUTTERS ALIGNMENT TOOLS CERTIFICATE OF MERIT VALUABLE DISCOUNT CARD

WHAT THE "EDU-KIT" OFFERS YOU

The "EDU-KIT" offers you an outstanding practical home radio course at a reduced price. Our kit is designed to bring Radio & Electronics to Your door. You learn radio theory, construction, servicing, basic Hi-Fi and TV repair, code, FCC amateur requirements. You will learn how to identify radio symbols, how to read and interpret schematics, how to mount and lay out radio parts, how to wire and solder, how to operate equipment and much, much more. Our kit contains hundreds of dollars for a radio course. You will receive a basic education in radio, world wide as long as you pay $26.95 per year.

THE KIT FOR EVERYONE

The Progressive Radio "EDU-KIT®" was specifically prepared for anyone who has an interest in Radio. The "EDU-KIT®" has been sold in several thousand copies throughout the United States. It has been used successfully by young and old in all parts of the country. The "EDU-KIT®" is used for training new Radio technicians for the armed forces, for Veterans and industry throughout the world.

TRAVELING TO THE WORLD

"EDU-KIT®" requirements. All instructions are in English, but the "EDU-KIT®" is not unprofessional. It is said to be the most modern methods of training in the world, the most modern methods of teaching the world.

THE KIT IS COMPLETE

$100 BUYS more at BROOKS

You can PROVE to yourself why "BROOKS" OFFERS the BEST BUYS at LOWEST PRICES SEND YOUR ORDER TODAY—10% off + Free Gift on orders of $10 & Over (ON DOLLAR BUYS)

| $1.00 | RADIO PARTS "JACK" | $1.00 | 950-UNIVERSAL MIDGET | 700-ALL TYPES TO $2.00 VALUE | 650-ROTOR SHAFTS | 510-ASSORT. ROTARY SWITCHES | 400-12 LAMPS INC. 500-4000-WATT | 200-ASSY. MIDGET | 100-ASSY. TERMINAL STRIPS | 20-PIECE | 10-PIECE | 5-PIECE | 1-PIECE | 0.5-PIECE |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ALL-TYPES TO $2.00 VALUE | 950-UNIVERSAL MIDGET | 700-ALL TYPES TO $2.00 VALUE | 650-ROTOR SHAFTS | 510-ASSORT. ROTARY SWITCHES | 400-12 LAMPS INC. 500-4000-WATT | 200-ASSY. MIDGET | 100-ASSY. TERMINAL STRIPS | 20-PIECE | 10-PIECE | 5-PIECE | 1-PIECE | 0.5-PIECE |

MARKET SCOOP COLUMN

| 100—PRECISION RESISTORS | 2—IBM COMPUTER SECTIONS | 3—IBM 2566 TUBES | 1000—ASST. HARDWARE KIT | TUBES, BULBS, SOCKET, HEADS, ETC. | 1000—SOLID BRASS SCREWS | 820—BLACK NICKEL SCREWS | 820—SILVER SCREWS | 820—SILVER SCREWS | 100—SILVER STANDARD METAL | 100—SILVER STANDARD METAL | 100—SILVER STANDARD METAL | 100—SILVER STANDARD METAL |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 100—PRECISION RESISTORS | 2—IBM COMPUTER SECTIONS | 3—IBM 2566 TUBES | 1000—ASST. HARDWARE KIT | TUBES, BULBS, SOCKET, HEADS, ETC. | 1000—SOLID BRASS SCREWS | 820—BLACK NICKEL SCREWS | 820—SILVER SCREWS | 820—SILVER SCREWS | 100—SILVER STANDARD METAL | 100—SILVER STANDARD METAL | 100—SILVER STANDARD METAL | 100—SILVER STANDARD METAL |

HARDY WAY TO ORDER—Simply pencil mark items wanted in squares and enclose with money order or check—You will receive a new copy of these Offers for re-orders. ON SMALL ORDERS—Include stamps for postage, extra refunded—LARGER ORDERS shipped express charges collect SAME DAY DELIVERY . . . SCIENTIFIC PACKING for minimum shipping cost.

FACTORY OR JOBBER CLOSE-OUTS WANTED. If you have the merchandise, we have the cash—No quantity too large, Phone or write today. Cash waiting.
Superior's New Model 820

TUBE TESTER

TESTS ALL MODERN TUBES
INCLUDING THE NEW

- NOVARS
- NUVISTORS
- 10 PINS
- 12 PIN COMPACTRONS

- Employs new improved emission circuit.
- Tests over 850 tube types.
- Tests 024 and other gas filled tubes.
- Employs new 4" meter with sealed air-damping chamber resulting in accurate vibrationless readings.
- Use of 26 sockets permits testing all popular tube types.
- Dual Scale meter permits testing of low current tubes.
- 7 and 9 pin straighteners mounted on panel.
- All sections of multi-element tubes tested simultaneously.
- Ultra-sensitive leakage test circuit will indicate leakage up to 5 megohms.

Model 820 comes complete with tube charts and instructions; housed in handsome, portable, saddle-stitched train case. Only

SHIPPED ON APPROVAL
NO MONEY WITH ORDER—NO C. O. D.

$38.50 277 it for 15 days before you buy. If completely satisfied then send $3.50 and pay balance at rate of $0.50 per month until total price of $38.50 (plus postage) is paid—No Interest or Finance Charges Added! If not completely satisfied, return to us, no explanation necessary.

MOB ELECTRONICS INC.
DEPT. D-600, 5994 Tenth Ave., New York 24, N.Y.
Please rush Model 820. If not satisfactory, I will return it on terms specified. Otherwise I will return check.

Name__________________________
Address________________________
City______State__________________

"Messenger" CB Transceivers...rated BEST IN Nation by Electronic Distributor Salesmen*

4 feature-packed "Messengers"...and Selective Call System outperform everything!

Compact, Hand-Held—100 milliwatt or 1 watt "Personal Messengers". Rugged and reliable—11 transistors, 4 diodes! Twice the sensitivity and 40% more range than similar units with conventional circuitry—more output than similar units at same rated inputs!

Mobile or Base Stations—performance proves Viking "Messenger" and new "Messenger Two". Punches your signal across the miles—high efficiency design makes full use of maximum legal power. Excellent receiver sensitivity and selectivity. Automatic "squish" control—5 or 10 channel coverage—easy to install anywhere.

Tone Alert—37 tone selective call system mutes speakers until one unit calls another—then automatically your stations receive audio note and indicator light flashes "On".

NEW! 4-color BROCHURE—write for your free copy!

E. F. JOHNSON CO.
2502 10th Ave., S.W., Waseca, Minnesota

Please rush "Messenger" details to:
NAME__________________________
ADDRESS_______________________
CITY______STATE________________

Manufacturers of the world's most widely used personal communications transmitters.

the oscillator base circuit. When it is depressed, it adds an 18,000-ohm resistor in parallel with the oscillator's 10,000-ohm base resistor. As long as the batteries are good, depressing the button has no effect. But when the batteries are weak, the oscillator stops and the radio does not operate, indicating it is time for new batteries. Trying this on other sets might give you a chance to recommend fresh batteries.

—Warren Roy

Muntz/Standard Coil

A Muntz set with a Standard Coil cascode tuner (6BQ7 and 6J6) lost channels 2, 4 and 5. All the others came in fine. Antenna and lead-in checked OK. No opens, no obvious troubles.

Replacing the 6BQ7 cured the trouble. It seems that it is tougher to get the lower channels through the tuner than the higher ones. A weak tube can often kill performance.—N. B. Brubaker

Disturbance Test Transistor Radio

Simply connect one end of a 100,000-ohm resistor to the ungrounded side of the radio's battery. Touch the free end to the base of each transistor in turn from output back to input. If the stage and all following stages are good, you'll hear a click. If not, you know where to look for the trouble.

If you get clicks all the way back to the antenna, but the set still won't work, the local oscillator is probably not working. Check for rf across its tank with a vtm and an rf probe.—E. L. Deschambault

Norelco Continental 400 Recorder

Slow rewind on these machines can be cured by making the felt disc beneath the right hand turntable the same diameter as the left one. This will increase the clutch action between drive wheel and turntable.

Incidentally, the erase head on this machine is susceptible to damage from many commercial head cleaners. The safest and simplest way to clean the head is to use alcohol or methylated spirits applied with Q-Tips. Use one end of the tip to apply cleaner and the other to polish the head bright.—David A. Hall

"Grip Cream" Cures Phono Slippage

The usual way to repair slipping phonograph motors and drives is to replace drive wheels, idler wheels, etc. There are times, though, when replacement does not cure the slipping. Neither does increasing spring tension, even if adjustments are possible. Then, too, in many cases the proper size wheels may not be available.

A simple and effective cure for this slippage is to go to the nearest bowling alley and buy a small jar of "grip cream". This is a preparation used by many bowlers to help them get a firmer grip and better control of their bowling ball. Apply a small amount of this grip cream to all rubber parts of the drive and idler wheels. Caution: use this cream very

www.americanradiohistory.com
sparing! If too much is applied, it can cause the wheels to stick together enough so that the motor will not start.

After this cream is applied, run the phono motor for a while to distribute an even coating on all parts. Set the motor and drive assembly aside for a day, and then try it once more. The motor should start readily. If not, too much of the cream has been applied.

This grip cream can also be used on slidding dial drive cords, and other devices, to increase friction.—Bernhardt J. Litke

Emerson 844 Portable Radio

This transistor radio motorboated badly, but installing a new triple-section filter capacitor did not help. Extra filtering made some difference, but did not eliminate the trouble.

I finally solved the puzzle by putting in separate single-unit capacitors instead of the multiple one used originally. The audio driver bypass shared the same can with the power filter, and coupling between sections caused feedback and motorboating.—Charles Andrews

Philco H-1716, H-1814, H-1816 Phonos

These stereo phonographs use two 6BQ5's in push-pull for each channel. The four 6BQ5 cathodes have a common 75-ohm bias resistor. They fail rather often, but a simple modification extends their life. Add individual resistors to supply partial bias as shown. The resistors are not critical—any standard value from 56 to 82 ohms, 1/2 watt, will do.—A. von Zook

Screen Resistor and Width Trouble

Most TV sets obtain the screen voltage for the horizontal output tube through a dropping resistor from the B-plus supply. A decrease in the value of the screen resistor increases the width because of the increased voltage on the screen. But in cases where the screen resistor is connected to the boosted B-plus, the problem is different.

In several sets where the complaint was insufficient width, with low voltage readings at the boosted B-plus points, the screen voltage still measured normal. After many hours of wasted time, the value of the screen resistor was checked and was about 3,000 ohms low. Replacing the screen resistor raised the boosted B-plus and cured the width troubles. The screen voltage still did not increase.—George P. Oberto

RCA 7-BT-9, 7-BT-10

The type 235 transistor used as the converter in these transistor sets is no longer available. As a replacement, use the 2N212. When the 235 is replaced with a 2N212, realign the radio for maximum performances.—W. C. Warren

JUNE, 1963

master mathematics
at home

learn more...learn faster...learn better
through bona fide programmed learning

BASIC MATHEMATICS • WHOLE NUMBERS AND NUMERALS
ALGEBRA I • ALGEBRA II • PLANE GEOMETRY • SOLID GEOMETRY
THE LANGUAGE OF ALGEBRA • TRIGONOMETRY
ANALYTIC TRIGONOMETRY • INTRODUCTORY CALCULUS I & II
MANAGEMENT DECISION MAKING • VERBAL PROBLEMS
INTRODUCTION TO SETS, INEQUALITIES AND FUNCTIONS
• DESCRIPTIVE STATISTICS

exclusive with
Britannica Schools

A MEMBER OF THE ENCYCLOPAEDIA BRITANNICA FAMILY

These 14 courses—developed by a group of skilled, carefully trained specialists in the fields of home study and mathematics—are offered by Britannica Schools in Programmed Learning format together with individualized, home-study guidance.

What is Programmed Learning? Considered by many educators as the finest way to teach mathematics that has been discovered, Programmed Learning is the technique used in teaching machines. Programmed Learning course material is presented in small, sequential segments, or "frames," each containing 1) a single piece of information closely related to the information preceding it; 2) a question to test your understanding of the information; and 3) a masked, correct answer. When you are ready to check your response to a frame, you simply move the mask. Thus, you proceed systematically through the course, frame by frame, at the pace best suited to yourself.

What is Britannica Schools? A division of world-famous Encyclopaedia Britannica family, Britannica Schools is the first new approach to learning at home in 50 years, because it is the first, and, to date, the only home study institution that offers courses utilizing Programmed Learning techniques. As a Britannica Schools enrollee, you also have your own, individual instructor who—through phased examinations and correspondence—reviews your progress, checks your grasp and retention of sections of the course material, and insures your complete mastery of the subject.

For full details on any Britannica Schools course in mathematics, fill out and send us the coupon, today.
No obligation. SOLD ONLY THROUGH THE MAIL.

BRITANNICA SCHOOLS Dept. RE-1
Division of Encyclopaedia Britannica Press, Inc.,
14 East Jackson Boulevard, Chicago 4, Illinois

Please send me the details on the course(s) I have checked. I understand there is no obligation.

[] Basic Mathematics [] Analytic Trigonometry
[] Whole Numbers And [] Introductory Calculus
[] Algebra I [] I & II
[] Algebra II [] Management Decision
[] Plane Geometry [] Making
[] Solid Geometry [] Verbal Problems
[] The Language Of [] Introduction To Sets,
[] Algebra [] Inequalities And
[] Trigonometry [] Functions
[] Descriptive Statistics

Name______________________________
Address____________________________
City__________________________Zone____State____
Age______________________________Occupation__________________________
1962-63
TV Replacements
Lead Stancor's

This 1963 Stancor Parade of Parts dramatizes our continuing program of providing an exact replacement transformer for your every need, available through your electronic parts distributor.

You can rely on him... and on STANcOR ELECTRONICS, INC.
3501 F. Addison, Chicago 18, Ill.

Where can you buy modern, handsomely clothbound books on servicing, test instruments, shop practice and electronic theory for less than 67 cents?

ON PAGE 79.

New NARDA Chapter

An Ohio chapter of the National Appliance & Radio-TV Dealers Association, consisting of some 200 members, has been established, according to Jules Steinberg, NARDA executive vice president.

President of the Ohio chapter, which includes members from several previously established local chapters in the state, is Charles D. Grove, of Alliance, Ohio.

A second meeting is scheduled for late June.

TESA Miami Officers

Miami—Apparently well satisfied with his first one-year term as president, TESA Miami re-elected Sam Kessler to head the organization for another year. Retained as first vice president (also a second term) is Robert Seymour. Other officers: second vice president, Julio Sera; recording secretary, Jack Norris; corresponding secretary, Daniel Prowler; treasurer (fifth term), Charles W. Minter.

Alameda County TRA

Alameda, Calif.—Allan D. Crawford of El Cerrito succeeded Lewis E. Hall as president of the Alameda County Television & Radio Association. Hall is ACTRA's delegate to the California State Electronics Association Council.

Other officers include John A. Edwards, first vice president; Norman W. James, Berkeley, second vice president; Fred W. Rock, San Leandro, secretary, and William R. Howard, San Leandro, treasurer.

Tri-City TSA Elects

Seattle—This year's officers of the Tri-City TV Service Association include Dick Hunt, president; Jim Davis, vice president; Jim May, secretary; and Oscar Schornhorst, treasurer. Trustees are Wes Stordahl, Carl Dubois and Mylo Candee.

New NATESA Affiliate

In Quincy, Ill.

A NATESA Charter was presented to TESA-Quincy (Illinois) recently, by Lyle Green, East Central vice president of NATESA. Vincent J. Lutz, TESA-St. Louis NATESA director and past NATESA president, and Sam Maksimuk, NATESA director from Chicago-TESA, spoke at the meeting.
Radio from the owner's home must strictly board for tee that would require licensing state. Licensing Around the Nation feel survey Fort in this actually engaged industry the Judiciary Committee speak this year. On one day, between in Licensing other methods, rental programs, real figures and convincing examples. Also sought is information about unusual business features—advertising methods, rental programs, contract service programs, trade-in deals, and any other successful procedure worth sharing.

Licensing Closer in Indiana?

Indianapolis—TV service licensing in Indiana came closer to reality early this year. On one day, between 120 and 150 service technicians from all over the state poured into the State Capitol to speak their minds about licensing. Of them, 60 testified before a (State) House Judiciary Committee public hearing in favor of the measure. Not one person at the hearing spoke against the bill.

"Licensing of the TV service industry by the State of Indiana is preferred by 9 out of 10 of the people actually engaged in doing service work in this state," said Jay R. Schupbach of Fort Wayne. His authority was a mail survey made last fall in an attempt to feel out attitudes to licensing.

Licensing Around the Nation

Harrisburg, Pa.—The Pennsylvania Federation of Television & Radio Service Associations has called for state-wide support from all parts of the industry to bring about passage of a licensing bill. The measure would create a state board of examiners of radio and TV service technicians.

Hartford, Conn.—A proposed bill that would require a state license for TV repairmen was considered at a hearing before the general law committee at the State Capitol recently. There was little opposition.

Under the proposal, an examining board for the trade would be established and the present necessity of obtaining licenses in the individual towns would be eliminated.

Sacramento, Calif.—While it is not strictly a licensing move, California legislators are proposing a controlling restriction: any person removing a TV or radio from the owner's home must give

JUNE, 1963

SONOTONE CERAMIKES

Whether you're a professional or a home recordist, there's a Sonotone "Ceramike"® to bring out the best in your tape recording equipment. So sensitive they pick up all the beauty of the original performance — so selective they screen out unwelcome intrusions — so rugged they withstand almost any abuse, even accidental dropping, and continue to provide topflight performance. The heart of every Ceramike is a rugged rubber-encased ceramic transducer — immune to extremes of temperature and humidity.

7 sonotone ceramikes for tape recording

SONOTONE CERAMIKE "CMT-10A" MATCHED TWINS. Ideal for stereo applications. Each set is a selected matched pair exhibiting similar coloration, frequency response and output characteristics to within ± 2 db. Frequency response: 80 to 11,000 cps. Sensitivity: -56 db ± 2 db. 7' shielded cable with phone plug. List $35.50 per pair.

SONOTONE CERAMIKE "CMT-11A" MATCHED TWINS. Where greater sensitivity is desired. Same specifications as CMT-10A except—Frequency response: 80 to 9000 cps. Sensitivity: -63 db ± 2 db. List $35.50 per pair.

SONOTONE CERAMIKE "CM-10A." Natural clean reproduction over the full audible range — 60 to 11,000 cps. Sensitivity: -56 db ± 2 db. 7' shielded cable with phone plug. List $17.50.

MATCHING TABLE STANDS. Available with 5% No. 27 thread for floor stand mounting. List $5.00.

Next time you're ready for a tape recording session, think of Sonotone Ceramikes and select the one that will bring greater pleasure to you.

SONOTONE® CORPORATION

ELECTRONIC APPLICATIONS DIVISION • ELMSFORD, N. Y.

In Canada: Atlas Audio Corp., Ltd., Toronto • Cartridges • Speakers • Turntables • Microphones • Electron Tubes • Batteries • Hearing Aids • Headphones
little steps you can take by learning and earning with Gernsback Library books. Deluxe hard covered, fully illustrated, written to be understood.

THE OSCILLOSCOPE (revised edition)

How to use the scope in AM, FM and TV, tests and measurements. Make your scope work hard. Study waveforms, alignment, tests, measurements. Full chapter on scope experiments.

BASIC TRANSISTOR COURSE

Sure-fire way to learn transistors. Characteristics, audio amplifiers, detectors, AGC, i.f. amplifiers, front ends, types, circuit analysis.

INDUSTRIAL ELECTRONICS MADE EASY

What industrial equipment is, how it works. Chapters on generators, counters, maintenance, interference, control, switches, recording, transducers, tools.

THE PIONEER ELECTRONICS PUBLISHER

REMITTANCE MUST ACCOMPANY ORDER

GERSNBACK LIBRARY INC.
154 W. 14th St., New York 11, N. Y.

Enclosed is $ Please send me:

- **BASIC TRANSISTOR COURSE** $5.75
- **THE OSCILLOSCOPE** $5.20
- **INDUSTRIAL ELECTRONICS MADE EASY** $5.95

NAME
...

ADDRESS
...

CITY STATE
...

92

the owner a receipt including an estimate of total charges.

The estimate would be binding, too—the repairman would have no lien on the set when the actual charges exceed either the original estimate or a written revision, dated and signed by the set owner.

Springfield, Ill.— A bill to license radio and TV repairmen (the Electronic Service Act) has been introduced in the Illinois Legislature.

A technician would have to serve for 3 years as an apprentice before applying for a license. An advanced electronic technician would meet the same requirements and could also service color TV sets. Licenses would be in effect for 1 year and be subject to renewal.

UHF Station Tour

Cincinnati— About 75 technicians from the greater Cincinnati area participated recently in a tour of UHF TV station WCET (Channel 48, Cincinnati). The trip was arranged by TESA.

Following a tour of the station's facilities, Bert Neely, general manager of WCET, spoke about the station's history and about some of its early financial problems. The educational TV outlet's school programs are doing well now—some 50,000 school children each week watch the shows in classrooms.

RCA Gives TV Course with Tubes

Harrison, N.J.— Harold Stamm, manager of advertising and sales promotion of RCA's Electron Tube Div., announced that RCA is making available an eight-lesson course free of charge with the purchase of RCA entertainment tubes. The course, part of RCA's Project IV program, is called a Color TV Home Study Course.

CB Jamboree

Four Citizens-band clubs in Iowa and South Dakota are getting together for the "Sioux Empire Jamboree" June 22 and 23, at Lewis and Clark Lake, Yankton, S.D.

The participating clubs are Tri-State Flea-Watters, Inc. of Sioux City, Iowa; Little Sioux Radio Club, Cherokee, Iowa; Sioux Valley Radio Club, Smithland, Iowa, and S.E.C.C.A. of Sioux Falls, S.D. They'll be standing by on channels 9 and 11 at the Jamboree site.
Unbreakable Plug Handle

One accidental step on the bakelite handle of a phone plug and you have a nice mess of broken bakelite to sweep up. When this accident happens—don’t fret. Just slip a plastic test-clip insulator over the plug. It will make a snug fit and work very well, at least until you can attach a new plug.—John A. Comstock

Easy-in, Easy-out tubes:

A tube or two in a chassis often just refuses to leave its socket easily. They have frozen in the sockets because of oxidation on the tube pins.

Whenever we come across one of these stubborn tubes, we struggle to get them out, just like everyone else. But then we coat the tube pins with a thin layer of white petroleum jelly. On tubes with key-way bases, we coat the key too. We do this on every tube we remove for testing as well as every new tube we use for replacement. In the future they will be easy in and easy out. Don’t forget the picture tube. A hard-to-get-off socket can loosen the base from the neck of these tubes.

The thin coating of petroleum jelly will not cause leakage or other trouble. —George E. Molson

Miniature Solder Pot

Some heating elements of pencil type soldering irons are easily converted into a solder pot for small-pin plugs. Enlarge the tapped hole for the tiplets to accommodate the pin to be soldered. Mount the element in a miniature candleabra-base socket flush-mounted on a stabilizing base of large enough diameter or sufficient weight to prevent tipping. The size of the solder pot allows close work to be handled and, if the work is accidentally knocked over, there...
NEW! LAFAYETTE
13-TRANSISTOR 2-WAY
"WALKIE TALKIE" WITH SQUELCH

only 39.95 2 for 78.88

More fun . . . better performance . . . greater value, than ever. Superb
for fishing, hunting or business use. No age
restrictions or license requirements when used as
per Part 15 FCC regulations. Features: separate
microphone and speaker for better sending and re-
cieving, excellent noise squelch: crystal controlled
receive and transmit, positive action push-to-talk
switch and 46" telescoping antenna. As a bonus
feature, the HE-100 may be operated in the home
with an AC power pack. (Optional see below).
Saves batteries too! Includes crystals, earphone, leather
 carrying case and batteries.

NEW! AC POWER PACK
Converts 117VAC to 9V DC.
Plugs into HE-100.
HE-97
Net $3.75

Order a pair today!

LAFAYETTE Radio ELECTRONICS
Dept. IF-2, P.O. Box $3
Ryssels, L. L., N. Y.
Send me: Walkie Talkie (HE-100L)
AC Power Pack (HE-97).
Shipping charges collect, $ enclosed.
Name__________________________
Address_______________________
City Zone State_________________
NEW SEMI-CONDUCTORS & TUBES

Plastic transistors

A new, low-cost, highly reliable "plastic" transistor has been announced by G-E. Hermetic sealing is provided by a quartzlike layer formed over the silicon base pellet during manufacture. The outer epoxy shell is for protection only. The new transistors come in a wide variety of types. The 2N2711 and -12 are typical. Intended for standard broadcast rf, converter and i.f. work, they have ac betas of 55 and 169, respectively.

SC-3557 CRT

This is a high-brightness cathode-ray tube designed for military aircraft. Definitely one of the more compact CRT's, it measures only 5/8 inches long. Neck diameter is less than 1 inch, and screen diameter is 3 inches.

The high brightness is obtained with anode voltages up to 17,500. Grid 1's cutoff ranges between -33 and -77 volts. It's made by Sylvania.

8149, 8150

These tubes, identical except for mechanical structure (and hence also interelectrode capacitance) are rf beam pentodes in compactron envelopes, with 12-pin button bases. Both are made by Tung-Sol.

The 8149 is single-ended (base pins only). The 8150 is double-ended (has plate cap). Both tubes have an ICAS plate dissipation of 35 watts maximum, and can produce 40 watts rf (class C) up to 175 mc.

STOP!

WRECKING YOUR TV...

Inrush surge currents at 'Turn-On' destroy more TUBES, RECTIFIERS, and CAPACITORS than all other causes.

EFFECTIVE, AUTOMATIC REDUCTION of the punishing inrush currents is immediately provided by the . . .

WUERTH SURGISTOR®

Both feature a center-tapped heater for 3-cell or 6-cell operation (nominal 6 and 12 volts).

Typical operation as class-C amplifier at 175 mc:

- \(E_{in} \) = 380 volts
- \(E_{out} \) from \(E_{in} \) through 1000 ohms
- \(I_{in} \) = 78 volts
- \(I_{m} \) (peak) = 120 volts
- \(I_{n} \) = 160 ma
- \(I_{o} \) = 12 ma
- Driving power = 2 watts
- Output power = 40 watts

Correction

There is a mathematical error in the third line, third column of the article "Watch out for Transients" on page 28 of the April issue.

In converting rms voltage to the equivalent peak value, the author inadvertently used 1.77 instead of 1.41 as the conversion factor. Thus 400 volts rms equals 564, not 708, peak volts.

Our thanks to Thomas C. LaRoy of Dearborn, Mich., for reporting this rather obvious error.

"Loss of brightness could mean most anything, Swami."

WUERTH SUGISTOR®

No. 4100-2 100-275 watts, 117 v. $1.95 List
No. 8055-4 250-400 watts, 117 v. 2.95 List
Use SUGISTORS with your TV, Hi-Fi, Film Projector, or any device requiring inrush surge protection. SEE your distributor or dealer TODAY. Or, send order direct to us for prompt action.

WUERTH PRODUCTS CORP.
1931 Moffet St. Hollywood, Florida
Vlf Receiver Detects Atomic Blasts

Charged particles from a nuclear blast or a rocket motor generate low-frequency radio signals that can be detected at great distances. Similarly, thunderstorms and other atmospheric disturbances can be detected and tracked from afar. Fig. 1 shows a simple receiver that will detect missiles, atomic explosions and thunderstorms, and enable the operator to differentiate between them.

The receiver, described in Radio Constructor (London, England), covers from 4 to 5 kc. It feeds into high-impedance phones, recorder or scope. On a scope, thunderstorms appear as peaks of rising amplitude varying with distance and energy. A rocket causes a single signal of longer duration with a much sharper and more pronounced apex. A second stage firing at higher altitude produces noise bursts as vertical traces on the scope. You can learn to recognize various types of activity by recording and logging the signals as they occur and then checking papers for news of storms and rocket and atomic tests.

The loop antenna consists of 220 turns of No. 24 enameled wire wound around a framework consisting of two crossed 1 x 1 x 48-inch spars fastened together at right angles. Each end is capped with a ½ x ¼ x 2-inch strip glued across it. (Fig 2). The ends of the loop are brought to a terminal strip and bridged with a 0.02-mfd fixed tuning capacitor (C). The lead-in is not critical but must be kept away from power lines to prevent hum pickup.

To tune the loop, couple an audio signal generator to the loop terminals and a scope or vtm across the receiver’s output. Adjust the loop’s turns or tuning capacitor for maximum response in the range of 4 to 5 kc.

Simple Capacitance Measurement

If you don’t own a bridge or capacitance meter, you still can measure capacitance accurately and quickly with your vom (set to its 100-µa dc range) and square-wave generator. The only extras needed are a 1N34-A diode and a 16,000-ohm carbon resistor. The diagram shows the setup.

The method is so simple that only a demonstration will convince a skeptic of its excellence. Capacitances are read directly on the 1–100-µa scale. Response is linear, so no corrections or curves are needed. The square-wave output must be not less than 1.35 volts peak to peak, and the resistor must be as close to 16,000 ohms as possible. Only four frequencies are used (100
WALKIE-TALKIE
C-100 ALL-TRANSISTOR 2-WAY TRANSCEIVER KIT

Now! Enjoy real on-the-go communication between two or more stations up to ½ mile! Just press the button and you’re “on-the-air.” No license or exam required, no age limit. Operates up to 75 hours on low-cost battery. Handsome blue case, only 5½ x 2½ x 1½; telescoping 40” antenna. A breeze to build. Includes all parts, solder, easy wiring instructions (less battery). Wt., 9 ozs.

$9.95 Each only

$9.95

3 Y 013, Leatherette Carrying Case...96

3 Y 002, 9-Volt Battery...2.14

ALLIED RADIO
100 N. Western Ave., Chicago 80, Ill.

Hi-Fi COMPONENTS
TAPE RECORDERS
SLEEP LEARN KITS

LOW cost, high quality recording tape in boxes or cans.

FREE 1963 CATALOG

DRESSNER
1525 PIERRE T. PK, NEW HYDE PARK 17, N. Y.

ELECTRONICS

Engineering-Technicians
Bachelor of Science Degree, 30 Months

Save Two Years’ Time

Radio-Television Plus Color Technician (12 Months)
Electronics Engineering Technology (15 Months)
Electronics Engineering (B.S. Degree)
Electrical Engineering (B.S. Degree)
Mechanical Engineering (B.S. Degree)
Civil Engineering (B.S. Degree)
Architecture (B.S. Degree)

Approved for Veterans
DAY AND EVENING CLASSES
Write for Catalog and Registration Application. New Term Starting Soon.

HEALD’S
ENGINEERING COLLEGE
Established 1863
Van Ness at Post, RE
San Francisco, Calif.

98
Electronic Watch
Patent No. 3,010,075
Helmut Epperlein, Ersingen, Germany. (Assigned to Hamilton Watch Co., Lancaster, Pa.)
A soft iron bar is used with a balance wheel and hairspring to control this watch. It also contains a transistor blocking oscillator, whose tank consists of two windings over a magnetic core plus distributed capacitance (dotted lines).

Tunnel-diode Oscillator
PATENT NO. 3,041,582
Frank V. Altman, Inc., North Syracuse, and Chang S. Kim, East Syracuse, N. Y. (Assigned to General Electric Co.)
This circuit claims high efficiency and design flexibility. The crystal controls frequency and also bypasses the power supply, so that all of it appears across the tank. The dc bias is fixed by R in series with the battery.

3-Speaker Stereo
PATENT NO. 3,050,838
Emmanuel Bedini, Culver City, Calif. (Assigned to Stephens Trusonic, Inc., Culver City)
Stereo effects occur mainly at higher frequencies so there is no need for two expensive full-range speakers in a stereo system. Here a single full-range speaker is fed monophonically from L + R channels. The tweeters are connected for binaural effects.

Data Storage
PATENT NO. 3,023,334
Jack D. Kuebler, San Jose, Calif. (Assigned to Bell, Business Machines Corp.)
This odd-shaped metal tube stores bits of information as magnetization and uses an electron beam to read them out. A, B, C are horizontal portions, and D is vertical. The electron gun at A includes a cathode, grid, and anode grounded to the tube. A coil at D generates a downward field to deflect (clockwise) any electrons moving horizontally through it, according to well known physical laws.

Bibliography
BASIC MATHEMATICS
by Norman H. Crowhurst
4-volume 'picturated-text' course makes it easier than ever before possible to learn all the math you'll need to know to speed your progress in electronics—no short cuts—no gimmicks.

A KNOWLEDGE OF MATH SPEEDS YOUR PROGRESS IN ELECTRONICS—No matter what your plans are in electronics—mathematics plays a vital role. The more math you know, the easier it is to learn electronics. And, if you set your sights on being an advanced technician or an engineer, this course will speed you towards your goal.

Volume I—ARITHMETIC AS AN OUTGROWTH OF LEARNING TO COUNT—You gain the self-confidence you need to master mathematics. You build a solid foundation in mathematics without realizing that you are being introduced to subjects usually considered dry and difficult to master. $3.90

Volume II—INTRODUCING ALGEBRA, GEOMETRY, TRIGONOMETRY AS WAYS OF THINKING IN MATHEMATICS—Building on the solid foundation laid in Vol. I, you learn to apply algebra, geometry and trigonometry as better methods of solving a problem when the arithmetic begins to get involved. $2.85

Volume III—DEVELOPING ALGEBRA, GEOMETRY, TRIGONOMETRY, CALCULUS AS WORKING METHODS IN MATHEMATICS—This volume continues the search for new and better methods of calculating, and also introduces the group of "tools" already familiar. $2.90

Volume IV—DEVELOPING ALGEBRA, GEOMETRY, TRIGONOMETRY, CALCULUS AS ANALYTICAL METHODS IN MATHEMATICS—Once you've reached volume IV, you're ready to apply all that you've learned in the earlier volumes. You'll be able to find the right approach to each individual problem. You'll be ready for a career in which mathematics plays an important part. $4.90

Available at parts distributors, bookstores, or direct.

ORDER TODAY—10-DAY MONEY-BACK GUARANTEE

JUNE, 1963
BUSINESS AIDS

1,000 LETTERHEADS (8½ x 11) $8.95, 1,000 Envelopes (Size 10) $9.95, 1,000 Businesscards $4.95 with name, firm, address, phone. Mail copy and check: ALLOCCA ENTERPRISES, PO Box 4113, Santa Fe, N.M. Postage paid.

BUSINESS CARDS, LABELS, RUBBER STAMPS. Send for free descriptive literature, HEIGHTS INDUSTRIES, 6121 C Street, Capitol Heights 27, Md.

1,000 Business Cards, "Raised Letters," $3.75 postpaid. Samples. ROUTH, RE-6, 3910 Kipling, Greensboro, N. C.

WANTED

WRITERS! Wanted how-to electronic book manuscripts and other subjects; fiction, nonfiction. FREE brochures give tips on writing and publishing. Write Dept. RE-7, EXPOSITION, 386 Park Avenue So., New York 16, N.Y.

CASH PAID! Sell your surplus electronic tubes. Want unused, clean radio and TV receiving, transmitting, special purpose, Magnetrons, Kilstrons, broadcast types, etc. Want military & commercial lab/test equipment and communications equip-ment such as G.R., H.P. AN/UPN prefix. Also want commercial receivers and transmitters. For a fair deal write BARRY, 512 Broadway, New York 12, N.Y. Walker 5-7000.

G-R, H.P. & L&N, etc., Tubes, manuals, military electronics. ENGINEERING ASSOCIATES, 434 Patterson Road, Dayton 19, Ohio.

EDUCATION/INSTRUCTION

HIGHLY EFFECTIVE HOME-STUDY REVIEW for FCC Commercial Phone Exams. Free Literature! WALLACE COOK, Box 10634, Jackson 9, Miss.

MAILORDER COURSES. Fantastic discounts. SELMAR SCIENTIFIC, 14808 N. 30th Drive, Phoenix 23, Ariz.

LEARN WHILE ASLEEP. Hypnotize with your recorder, phonograph or amazing new Electronic Educator endless tape recorder. Catalog, details free. SLEEP-LEARNING ASSOCIATION, Box 24-RD, Olympia, Wash.

NEW CONCEPT OF LEARNING SELF-HYPNOSIS! Now on tape or record! Free Literature. Mr. MINLEY-SMITH CO., Dept. 15, Box 3038, San Bernardino, Calif.

FCC LICENSE in 6 weeks. First Class Radio Telephone. Results Guaranteed. ELKINS RADIO SCHOOL, 2603E Inwood, Dallas, Tex.

LEARN HYPNOSIS. Free illustrated catalogue. Write: HYPNOTIST, 8721 Sunset, Los Angeles 69RE, Calif.

COLLEGE HOME Study Courses from leading universities. Full credit towards Bachelor's or Master's degree. 5,000 course directory $2.00. COLLEGE RESEARCH, North Highlands 14, Calif.

SERVICES

METERS—MULTIMETERS REPAIRED and calibrated. BIGELOW ELECTRONICS, Box 71-B, Bluffton, Ohio.

PENDING SEARCHES, $6.00. Free "Invention Record"—Information. —MISS HAYWARD, 1029 Vermont, N.W., Washington 5, D.C.

TRANSISTORIZED products dealers catalog, $1. INTERNATIONAL, C.P.O. 1717, Tokyo, Japan.

ALL MAKES OF ELECTRICAL INSTRUMENTS AND TESTING equipment repaired. HAZELTON INTERMARK CO., 128 Liberty St., New York, N.Y.

TV TUNERS REBUILT AND ALIGNED per manufacturer's specification. Only $9.50. Any make UHF or VHF. We ship COD. 90-day written guarantee. Ship complete with tubes or write for free mailing kit and dealer brochure. J. W. ELECTRONICS, Box 510, Bloomington, Ind.

FOR SALE

General

INVESTIGATORS, SECURITY OFFICERS—Profes-sional surveillance and alarm systems. Free Literature. AMERICAN RECORDING CO., Box 332, Springfield, Va.

FOR SALE: Electronic Automobile Burglar Alarms, $10.00 each. ALVIN COTTRELL, Saunemin, Ill.

FREE INSTRUCTION MANUAL with purchase of 10 scale slide rule—$4.00. Illustrated, Self-Teaching Course—$2.00. Save Combination only $4.95 postpaid. No COD. ALSYNCO, Dept. RE-3, 171 So. Main, Natchez, Mass.

BEFORE You Buy Receiving Tubes, Test Equipment, Hi-Fi Components, Kits, Parts, etc. . . . send for your Giant Free Zalytron Current Catalog, featuring all STANDARD BRAND TUBES all Brand New Premium Individually Boxed, One Year Guarantee—all at BIGGEST DISCOUNTS in America! We serve professional servicemen, hobbyists, experimenters, engineers, technicians, WHY PAY MORE? ZALYTRON TUBE CORP., 461 Jericho Turnpike, Mineola, N. Y.

FREE CATALOG—name-brand tubes 65% dis-count, phono needles 80% or more discount, phono cartridges, picture tubes 75¢ inch, parts, parts kits, silicon and selenium rectifiers, transmitting tubes, 7V TV test tube $6.99, imported batteries, tube testers etc. Want to swap or sell tube inventory? Send us your offering. ARC-TURIS ELECTRONICS CORP.—Dept. R-E, 502 22nd St. Union City, N. J.

Electronics

MOBIL-RADIO SYSTEM. Base station, 9 units, new 120' antenna. $3500.00. ROFFERS CHEVROLET SALES, Ashland, Wisc.

CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans $2. RELCO, Box 10563, Houston 18, Tex.

RADIO PARTS Earphones, Microphones Testers. UNITA, 545 Fifth Ave., New York 17, N.Y. OX 7-8978.

TROUBLESHOOT FAST! Complete Signal Tracer Injector. Modify your radio in minutes. Still usable as radio. ISOPROBE kit and Easy instruc-tions. AM kit #121 $5.95. FM/AM Kit #221 $7.95. WALTRONICS, 1814 N. 8th, Milwaukee 13, Wisc.

SELF-SERVICE CONSOLE TUBE TESTERS. Originally $149.00. Reconditioned $19.95. FOB DEL- MAR ENGINEERING, 3606 Delmar Rd., Indianapolis 20, Ind.

DIAGRAMS Radio, Television, $1.00. SUPREME PUBLICATIONS, 1760 Balsam, Highland Park, Ill.

FREE LITERATURE keeping you informed on the latest work-saving, money-making test equip-ment. Learn how Easy Budget Payment Plan lets you pay out of increased earnings. Top engi-neered test instruments are priced for tremendous value. Write today. CENTURY ELECTRONICS, 352 Maple Ave., Westbury, N.Y.

CB TRANSMITTERS $6.00. Other bargains, send 10¢ for list. VANGUARD, 190-48—99th Ave., Hollis 23, N.Y.

RADAR. Largest surplus stock in the world. RA-DIO RESEARCH INSTRUMENT CO., 550 Fifth Ave- nue, New York 36, N.Y.

SAVE DOLLARS on radio, TV tubes, parts at less than manufacturer's cost, 100% guaranteed! No

A rather complete and up-to-date dictionary, covering the whole field of electronics, as well as physics terms relating to electronics.

This, the author's third book on the subject of speakers, is devoted largely to points not covered—or not completely covered—in the earlier publications. Will be read by all serious audio enthusiasts.

A new, nonmathematical treatment on the technician's level of tunnel-diode theory and circuitry. Also describes associated circuit components such as Hall-effect devices and ferrite isolators.

How to repair and align the latest transmitters and receivers.

A companion to the RCA Receiving Tube Manuals, this book describes more than 180 types of transmitting and related rectifier tubes.

OVER 11,000 DIRECT TUBE SUBSTITUTES, by H. G. Cisin. Harry G. Cisin, Publisher, Amagansett, N. Y. 5½ x 8½ in. 73 pp. Paper, $1.25.

There are three important sections: direct substitutes for USA tubes, substitutes for foreign tubes, and picture-tube substitutes for new and old models. A table of military VT equivalents is also given, as well as a short list of transistor replacements.

The radio amateur's technical bible, updated to meet current needs as a construction and reference manual, tube handbook, and text for class or home study. In addition to the usual thorough coverage of the theory, design and construction of trans-

Footnote: *This combination tuner must be of one piece construction. Separate UHF and VHF tuner with leads or gear drives must be dismantled and the defective unit sent in 30 Day Warranty.

CASTLE TV TUNER SERVICE, INC. 5715 N. Western Ave., Chicago 45, Illinois 653 Palisade Blvd., Catskill Park, New York In Canada: 136 Main St., Toronto 13, Ontario

*Major parts are additional in Canada.
LEARN ELECTRONICS
with these Low-Cost paperback books

GERNSBACK LIBRARY BASIC SERIES

BASIC RADIO COURSE (revised edition)
G/L #104 Learn radio: electron theory, Ohm's law, resistance, inductance, capacitance, circuits, tubes, transistors, receivers, servicing. A perfect way to start your electronics career.
only $4.10

BASIC TV COURSE
G/L #105 Thorough practical discussion of circuit operation. Forming the picture, antennas, tuners, video i.f., detectors, age, sync, sweep, low- and high-voltage power supplies, portable transistor TV.
only $4.10

BASIC TRANSISTOR COURSE
G/L #111 A sure-fire way to learn transistor fundamentals. Transistor triodes, characteristics, audio amplifiers, detectors, age, i.f. amplifiers, front ends, transistor types, circuit analysis.
only $4.10

BASIC AUDIO COURSE
G/L #66 Hi-fi from pre-amp to speaker. How and why audio systems work. Fully describes sound measurements, distortion, noise, attenuators, equalizers, speakers, mikes, sound recording.
only $275

BASIC INDUSTRIAL ELECTRONICS COURSE
G/L #109 The how and why of industrial electronics. Transducers, electronics systems, inspection, sorting, counting, power conversion.
only $410

BASIC MATH COURSE FOR ELECTRONICS
G/L #100 Gives electronics men a useful working tool in network algebra, math for dc and ac, complex numbers, logarithms.
only $450

THE PIONEER ELECTRONICS PUBLISHER

BUY NOW
From Your
ELECTRONICS
PARTS
DISTRIBUTOR
or
FILL OUT COUPON

10 DAY EXAMINATION

GERNSBACK LIBRARY INC.
154 W. 14th St., New York 11, N. Y.
Enclosed is $... Please send me
104 105 111 66 109 100
NAME...
ADDRESS...
CITY... STATE...

miters, receivers, modulators, power supplies, antennas and test instruments, special communications modes such as radioteletype and sideband are treated in sufficient detail for the reader to understand the principles, and to build and operate the equipment described.

Starting at the very beginning and proceeding slowly at first, it tells the beginner how and where to look for defects and how to repair home, auto, transistor and FM receivers, as well as phonographs.

A revised edition for physicists and engineers, with examples. Covers linear differential and partial linear differential equations. Laplace transforms. (The author is the McLachlan of the classic book Loud Speakers.)

Professional know-how for the technician and advanced kit builder, including troubleshooting, test instruments and measurements.

Based on class notes for college students, this book discusses tubes, transistors and the circuits using them. Heavy on math.

ABC'S OF RADIO-TELEPHONY, by Leo G. Sands. Howard W. Sam's & Co., Inc., 4300 W. 62 St., Indianapolis 6, Ind. 5 1/2 in., 96 pp. Paper, $1.95.
An expert discusses AM, FM and SSB for amateurs, Citizens banders and students.

NORTH AMERICAN RADIO-TV STATIONS GUIDE, by Vane A. Jones. Howard W. Sam's & Co., Inc., 4300 W. 62 St., Indianapolis 6, Ind. 5 1/2 in., 128 pp. Paper, $1.95.
Lists over 7,500 stations in U.S. and possessions, Canada, Cuba, Mexico and the West Indies. Gives frequency, power, network affiliations, antenna height, stereo-equipped stations. Alphabetical list gives AM, FM and TV stations by call letters; 14 maps show locations of vhf, uhf and FM stations.

Tubes and transistors are treated here from a practical standpoint, with emphasis on design and calculation.
No trances. Students from 50 states. Many and 1616 E. Juno, 92 pages are devoted to transistors.

Latest addition to the ARRL library. Sixteen chapters covering setting up the amateur station, fundamentals of receivers, transmitters, power supplies, antennas, and modulators and how to build them. A must for beginners.

HOW TO USE ELECTRONICS AS A SPRINGBOARD TO SUCCESS

A man with electronics know-how can have an outstanding career in industry!

Whether you want to become an expert in your present specialty or you have set your eyes on a high-paying managerial spot, business wants you. And E.G.S. offers 245 courses to help you!

Technical courses cover everything from electronics fundamentals to ultrasonics. Professional radio and electronics training kits available. Business courses cover marketing, production, sales, writing.

Send coupon for the free I. C. S. Success Kit. 3 valuable booklets that tell what I. C. S. can do for you.
SW INDEX

A complete 2 in 1 fact file for Professional and Amateur S.W.s. The World of Short Wave Radio at your fingertips:

I. WORLDWIDE FILE

By hour of the day, English Language Transmissions to all parts of the World. 1,500 hours of Programming a week—190 daily Newscasts: Lists Country/Service—Frequencies—Time of Newscasts—Area Beamed.

II. NORTHERN AMERICAN SERVICES FILE

By country or service—Lists time of English Language Transmissions, Frequency, Program. Describes Hours (including D.U.X., Mailbag, News etc.)—Addresses of Services.

SW Index is ideal for note or log keeping. The Complete, Professional Guide to Short Wave Listening!

$1 Postpaid

SAXITONE TAPE ADS

SAVING POSTAGE

SAVING POSTAGE

Save 1/2! On orders over $2.50

SAVING POSTAGE

SAVING POSTAGE

http://www.americanradiohistory.com
WORLD-WIDE ENGINEERING ASSIGNMENTS WITH ITT-FEDERAL ELECTRIC CORPORATION

Working in more than 30 countries across the free world, electronics technicians and engineers of ITT-Federal Electric Corporation install, service, maintain and manage an immense variety of electronic equipment and systems. These range from the 4,000 mile DEW Line across the frozen North, to the single instrumentation site on a lonely promontory jutting into the Ocean, down to the Pacific Missile Range.

But between these extremes, there’s much more — not only in terms of individual challenge and adventure, but in importance to the growth and welfare of other friendly nations. An example here is the microwave communications network linking 8 cities in South Vietnam.

Actually, at any point in time, FEC engineers and technicians are working on more than 100 active projects — installing, testing or operating almost every type of wire or wireless communication system in addition to radar, instrumentation and computer facilities, plus the multitude of ancillary systems and services supporting them.

The great number and diversity of our programs generates these valuable career advantages rarely found together in service engineering today:

FASTER PROGRESS
Your FEC assignment accelerates your progress by giving you a first-hand knowledge of some of today’s most advanced electronic systems and equipment.

Then, varying responsibilities add flexibility to your experience — you may teach navigational aids, direct emergency maintenance, supervise a radar installation, or become a field service administrator. And to help you forward faster, FEC reimburses you 100% for advanced study at leading universities and colleges or approved technical correspondence courses you complete.

ADVENTURE
An assignment may take you to Nepal — or to Africa, Alaska, Greenland, Europe, Canada or across the U.S. FEC field engineering operates in almost every climate and living condition in the world. Along with adventurous assignments in exotic countries, FEC field work often has a diplomatic side.

For instance, teaching native workmen how to operate systems you’re helping to install — a first-hand role in strengthening the good impression of our country by making friends abroad.

THE FUTURE
Every Federal Electric career is stabilized by FEC’s world-wide operations. And your future career is further enhanced by association with the parent company — International Telephone and Telegraph Corporation — whose current annual sales and revenues now exceed a billion dollars. When a field job is completed, FEC men have priority for openings in other field assignments, as well as at headquarters in Paramus, New Jersey. Then too, you may find a future with one of the many subsidiaries and divisions of ITT who also seek qualified technical talent.

There are always interesting positions at many levels with FEC. However, openings change from day to day. If you would like to receive further information on current opportunities, please write to: Mr. A. Sheridan, ITT — Federal Electric Corp. Room 89-MJ, Paramus Industrial Park, Paramus, N. J.

An Equal Opportunity Employer

ITT FEDERAL ELECTRIC CORPORATION
Critical inspections assure highest quality screen for RCA picture tubes

Because your customers judge a picture tube by its face, RCA makes certain that every Silverama® picture tube has a matchless complexion. Super-critical inspections at various stages of manufacture assure the virtually blemish-free television viewing surface your customers expect in an RCA Silverama.

At the screen inspection station in our Marion, Indiana picture tube plant (above), for example, an inspector uses transmitted light to check for pin-holes and other flaws in newly applied phosphor screens. The most minute imperfection—even the slightest variation in screen texture, color or smoothness—is cause for rejection of the bulb.

Screen inspections using both ultra-violet and transmitted light are but one phase of the exhaustive battery of visual, mechanical, and electrical quality control tests each Silverama must pass. The object: to maintain a product you can recommend and install with confidence in your customers' TV sets.

Envelope inspection. Picture tube envelopes are polished, and given a series of acid baths prior to reuse that delicately etch the interior of the glass to restore it to the peak of its optical capability. Then they are thoroughly inspected to meet the standards of the original new envelope.

Screen inspection. Every completed Silverama is re-inspected for screen quality and sharpness of focus at this special automatic testing station near the end of the production cycle. Each Silverama undergoes as many as 26 inspections before it is released for sale to your customers.