You can, now! You can carry the identical tubes that you find in most of the quality TV sets you're servicing. Chances are, you were not aware that these sets were designed around special Frame Grid tubes originated by Amperex.

For some time now designers have been using many Amperex Frame Grid tubes in their quality TV receivers and we can tell you now that even more Amperex tubes are being designed into the sets you'll be handling in the future.

Compare, if you will, the performance of Amperex Frame Grid tubes with conventional IF tubes: they provide 55% higher gain-bandwidth, increase TV set reliability by simplifying circuits and they make your servicing easier, faster and more profitable because their extraordinary uniformity virtually eliminates time-consuming realignment when you replace tubes. Technicians are finding Amperex THE line to carry.

<table>
<thead>
<tr>
<th>Frame Grid</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>2GK5</td>
<td>4GK5</td>
</tr>
<tr>
<td>2ER5</td>
<td>4EH7</td>
</tr>
<tr>
<td>3GK5</td>
<td>4EJ7</td>
</tr>
<tr>
<td>3EH7</td>
<td>4ESS</td>
</tr>
</tbody>
</table>

For optimum customer satisfaction and maximum profit operation for yourself, make room in your caddy right now for the identical, matchless-quality tubes designed into the original sets. Next time you visit your distributor look for the green-and-yellow box and ask about Frame Grid tubes for TV and other entertainment replacement applications. Amperex Electronic Corporation, 230 Duffy Ave., Hicksville, L. I., N. Y. In Canada: Philips Electron Devices Ltd., 116 Vanderhoof Ave., Toronto 17.
POWERMATE

rated No. 1

...the unquestioned leader in antenna-mounting preamplifiers

"Improved" models of other TV/FM antenna amplifiers may come and go, but Jerrold POWERMATE remains the one to beat.

Only POWERMATE delivers consistent high gain on both high and low bands—no "hills and valleys" to cause smearing and ghosting. And only POWERMATE offers the over-all reliability that cuts call-backs to the bone. Service-men and viewers, even in deepest fringe areas, agree that POWERMATE outperforms them all ... more customer satisfaction, more profit for you.

Are you getting your share of this POWERMATE-hungry market? See your Jerrold distributor today, or write Jerrold Electronics, Distributor Sales Division, Philadelphia 32, Pa.

JANUARY, 1963

A subsidiary of THE JERROLD CORPORATION
editorial

Hugo Gernsback 23 Television and Sound

audio-high fidelity-stereo

Philip de la Roza 37 Hearing Aid in an Aspirin Box!
A three-transistor unit you can build at home

M. E. West 45 Hi-Fi Enclosure from Your Old TV
Some minor modifications make it an excellent speaker cabinet

Eric Leslie 68 FM Stereo the Easy Way
Add this little adapter and use headphones

electronics

Donald L. Stoner 24 Cameraset That Think
They have light-sensitive brains

Jordan McQuay 28 Here Comes the Laser (Cover Feature),
Coherent light goes to work

39 What’s New
Pictorial reports of new developments

41 What’s Your EQ?
Answers on page 37

76 Guide to Semiconductor Terms

industrial electronics

Melvin S. Lieberman 42 Simple Coax Cable Tester
Check any length of cable with a twist of a switch

Paul C. Ziemko 74 Industrial Emergency Repair

radio

John H. Phelps 26 CB Receiver Opens Garage Door
27.255 mc with five-transistor superregen

Stanley E. Bammel 32 Transistor-Safe Power Supply
Build this simple device for powering transistor circuits

Leonard Geisler 33 Bandpass Crystal Tuner

Stanley Leinwoll 38 SW Propagation Forecast
Dec. 15—Jan. 15

television

34 Educational TV in Action

Larry Steckler 35 Tube Layouts in TV Sets
Truetone

Jack Darr 52 Service Clinic
Scope testing—when and how

test instruments

Daniel J. Horowitz 40 Test Transistors with Your Vtvm
Just build an adapter for your meter

Robert G. Middleton 46 Mixed Waveforms and Your Scope
More hints on how to get more out of your scope

F. J. G. van den Bosch 60 Electronic Switching
Theory and practice

Wayne Lemons 62 Equipment Report
Metro-Tel shorted-turn indicator and cones 230 tuned signal tracer

the departments

18 Correspondence 112 New Patents 106 Technotes
115 New Books 87 New Products 84 Try This One
77 New Literature 104 New Semiconductors & Tubes 105 50 Years Ago

Over 50 Years of Electronic Publishing

EDITOR-IN-CHIEF AND PUBLISHER
Hugo Gernsback

EDITORS
M. Harvey Gernsback
Robert F. Scott, W2PWF

MANAGING EDITOR
Fred Shunaman

TECHNICAL EDITOR
Larry Steckler

ASSOCIATE EDITOR
Hugo Gernsback

ILLUSTRATION DIRECTOR
Elizabth Stalcup

ART ASSOCIATES
Fred Neinast

DISTRIBUTION MANAGER
John J. Lamson

CIRCULATION MANAGER
Joseph L. Rand

Germback Publications, Inc.
EXECUTIVE, EDITORIAL, ADVERTISING OFFICES
154 W. 14 St., New York 11, N.Y.
Telephone AL 5-7755

CHAIRMAN OF THE BOARD
Hugo Gernsback

PRESIDENT
M. Harvey Gernsback

SECRETARY
G. Aliquio

Radio-Electronics is indexed in the Applied Science & Technology Index
(Formerly Industrial Arts Index)

"Trademark registered in U. S. Pat. Office"
START NOW! Break through the Earning Barrier that stops half-trained men. N.T.S. "All-Phase" training prepares you—at home in spare time—for a high-paying CAREER in Electronics—TV—Radio as a MASTER TECHNICIAN. One Master Course at One Low Tuition trains you for unlimited opportunities in All Phases: Servicing of TV—Radio—Hi-Fi; Repair—Sound Recording Specialist—Communications Technician—F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rocket Projects.

A more rewarding job...a secure future...a richer, fuller life can be yours! As an N.T.S. MASTER TECHNICIAN you can go straight to the top in Industry...or in your own profitable business.

SUCCEED IN MANY HIGH-PAYING JOBS LIKE THESE...

- TV-Radio Sales, Service and Repair
- Producible Business of Your Own
- Communications Technician—F.C.C. License
- Hi-Fi, Stereo & Sound Recording Specialist
- TV-Radio Broadcasting Operator
- Technician in Computers & Missiles
- Electronics Field Engineer
- Specialist in Microwave & Servomechanisms
- Export Trouble Shooter
- All-Phase Master Technician

NATIONAL TECHNICAL SCHOOLS

MAIL COUPON NOW for FREE BOOK and ACTUAL LESSON

No Obligation! No Salesman Will Call

HEADQUARTERS
4000 S. Figueroa St., Los Angeles 37, Calif.
Write Dept. RG-13

Free book gives you all the facts

NATIONAL TECHNICAL SCHOOLS

Mail Now To National Technical Schools, Dept. RG-13
4000 S. Figueroa St., Los Angeles 37, Calif.

Please rush FREE Electronics—TV-Radio "Opportunity" Book and Actual Lesson. No Salesman will call.

Name: __________________________ Age: __________
Address: __________________________ City: __________
Zone: __________ State: __________

Check here if interested ONLY in Resident Training at Los Angeles.

VETERANS: Give date of discharge.

Radio Signals from Jupiter Due to Maser Action

The mystery of the extremely powerful radio signals coming from Jupiter appears to have been solved by two New York physicists—Dr. Leon Landovitz and Dr. Leona Marshall. They believe that Jupiter is acting like a large gas maser, in which the electrons are raised to an excited state by solar radiation striking the planet's atmosphere and radiating waves a few meters long, as the electrons drop back to a lower energy state.

Jupiter emits radio waves in three ranges. The shorter wavelengths have been explained, but the so-called decimeter waves (in the order of 10 meters long), which were surprisingly powerful, could not be understood until the two physicists came forward with the explanation that Jupiter is a gigantic maser.

TV Plus Microscope To Train Surgeons

A breakthrough in microsurgery training was demonstrated by the New York Polyclinic Medical School and Hospital when they put on closed-circuit television what the surgeon himself saw through an operation microscope, as he performed highly delicate surgery in the middle ear. The surgeon was Dr. Alan Scheer of the Polyclinic Hospital, and the operation a stapedectomy—an operation in which one of the small bones of the middle ear is removed and replaced by a plastic tube. This permits signals to be transmitted again from the ear drum to the inner ear.

Previously, by using a double microscope, it was possible for one surgeon-in-training to watch the operation. By using a subminiature TV camera that can be mounted directly on the microscope, it is now possible for a large number of doctors to see what only one saw before. The camera, made by DuMont, weighs only 2 ounces, and is constructed in the form of a cylinder 1 1/4 inches in diameter and 10 inches long. It has no lenses itself, all the optics being provided by the Zeiss operation microscope, on which it is mounted.

Pictorial Computer Is New Navigation Aid

An airplane pilot can remain on course and know his exact position by watching an orange dot on a new navigation aid. The device, called "Flitefix" by its manufacturer, ACF Electronics, Inc., is designed for general aircraft already equipped to receive VORTAC ground stations. A chart with the nearest VORTAC station in the center is placed in the device, a scale selector turned to coincide with the chart scale, and the pilot is then able to watch his course across the chart as it is indicated by an orange luminescent dot which duplicates the aircraft flight through the charted area. The unit is priced in the $2,000 range.

WWVB and WWVL Improved

The National Bureau of Standards is taking steps to increase coverage of the standard-frequency and time transmissions on vlf. Stations WWVB (60 kc) and WWVL (20 kc) will have 50-kw transmitters and diamond-shaped antennas about 1,900-feet long. The new facilities are at a site near Fort Collins, Colo., and are expected to be operating by early 1963.

Higher accuracy is possible with very-low-frequency transmissions than over the regular frequen-
3 More Big Training Advantages

Now Prepare for GOOD JOB OPPORTUNITIES IN ELECTRONICS Faster—with

1. METER — Transistorized, Portable, AC-DC Multimeter
2. SCOPE — 5-inch New Streamlined Commercial-Type Oscilloscope
3. ELECTRO-LAB* — For 3-Dimension Circuit Building

To help you get ready F-A-S-T-E-R . . . and THOROUGHLY . . . for good-paying job opportunities in the fast growing Electronics field, DeVry Technical Institute now presents the newest and finest training advantages in its over 30 years of experience. Now . . . AT HOME . . . in your spare time, you prepare with "industry-type" home laboratory equipment. To provide real PRACTICAL EXPERIENCE, you build a quality Transistorized Meter and a 5-inch industrial-type Oscilloscope . . . work with small, 3-dimensional circuits on DeVry's new Design Console . . . use highly instructive home training movies . . . and follow up-to-date lessons with many time-saving fold-out diagram sheets.

INDUSTRY NEEDS TRAINED MEN

Through this remarkable 3-way method, DeVry Tech has helped thousands of ambitious men prepare for good jobs or their own profitable full-time or part-time service shops. It is the newest in a long series of PRACTICAL training aids that we have pioneered and developed in more than three decades of experience. Sound interesting? Then see how DeVry Tech may help YOU. Mail the coupon today.

From RADIO to SPACE-MISSILE ELECTRONICS

DeVry's training goes all the way from radio repair . . . to space-missile electronics. That's the range of subjects covered in its programs AT HOME or in its well-equipped training centers in Chicago and Toronto. You learn up-to-date techniques, working with new equipment, modern texts, movies—one of today's finest combinations of training equipment . . . geared for RESULTS!

EMPLOYMENT SERVICE

is ready to help you get started. There is no extra charge ever—for this aid.

DeVRY TECHNICAL INSTITUTE

CHICAGO • TORONTO

MAIL COUPON FOR FREE FACTS

Please give me your two free booklets, "Pocket Guide to Real Earnings" and "Electronics in Space Travel!"; also include details on how to prepare for a career in Electronics. I am interested in the following opportunity fields (check one or more):

[] Space & Missile Electronics [] Communications
[] Television and Radio [] Computers
[] Microwaves [] Broadcasting
[] Radar [] Industrial Electronics
[] Automation Electronics

Name_________________________ Age__________
Address_______________________ APT___________
City___________________________ Zip___________

Zone _______ State _______

Check here if you face military service.

Canadian residents: Write DeVry Tech of Canada, Ltd.
970 Lawrence Avenue West, Toronto 19, Ontario

www.americanradiohistory.com
Send CANADA: 1365 5715 your defective drives must tubes, shield cover and Castle replaces to own spare complete the alignment expensive place drilling, UHF TUNERS TV TUNER SERVICE, INC. Castle Center Serving Check Separately tuning the...Palisade UHF and VHF model tuner repair you are extra at net prices) tuner to aligns your TV one piece of these problems. A Castle Overhaul eliminates every one of these problems. Castle replaces all defective parts (tubes and major parts are extra at net prices) and then aligns your tuner to the exact, original specifications. Simply send us your defective tuner complete; include tubes, shield cover and any damaged parts with model number and complaint.

ALL MAKES ONE PRICE

9 95

*TV combination tuner must be of one piece construction. Separate UHF and VHF tuner with cord or gear drives must be dismantled and the defective unit sent in. 90 Day Warranty.

Send for FREE Mailing Kit and complete details

CASTLE TV TUNER SERVICE, INC.

Check Map for the Castle Center Serving You.

5715 N. WESTERN AVE. CHICAGO 45, ILLINOIS 653 PALISADE BLVD., CLIFFSIDE PARK, N. J. CANADA: 136 MAIN ST., TORONTO 13, ONTARIO

Dr. Zoltan Kiss of RCA Labs and the new sun-pumped laser.

Table-model of diamond-shaped antennas planned for WWVB and WWVL. They cover a ground area of 200 acres.

cies of WWV. Transmission on 20 kc will offer a precision of 1 part in 10 billion or better over the whole earth, within an observing period of about 1 day. Within the same period, a 60-ke transmission will offer a precision of 5 parts in 100 billion within the continental United States. On the higher frequencies of WWB, a period of up to 30 days is required to achieve a precision of 1 part in 10 billion. The usual attainable precision is only about 1 part in 10 million—quite sufficient to meet the current needs of television and radio stations, electric power companies, amateurs, smaller businesses and the general public.

New Laser Is Solar-Powered

A new, sun-pumped laser has been developed by RCA, states Dr. James Hillier of the R.C.A. Laboratories. He said the apparatus includes a 12-inch hemispherical mirror for focusing the sunlight, a laser with a calcium fluoride crystal and a spectrometer for detecting the laser's output. The laser emits continuous radiation when exposed to about 50 watts of radiant power from the sun. Wavelengt is 23,600 angstroms, which falls in the infrared portion of the spectrum. The laser operates in a bath of liquid neon for cooling.

CALENDAR OF EVENTS

Millimeter and Submillimeter Conference, Jan. 6-10; Cherry Plaza Hotel, Orlando, Calif.

9th National Symposium on Reliability and Quality Control, Jan. 21-24; Sheraton Palace Hotel, San Francisco, Calif.

12th Southwestern Electronic Conference (SWECO), Jan. 27-31; Baker Hotel, Dallas, Texas.

4th Winter Convention on Military Electronics, Jan. 30-Feb. 1; Ambassador Hotel, Los Angeles, Calif.

Pacific Electronic Trade Show; Conference, Feb. 4-10; Stater Hilton Hotel, Show, Feb. 7-10; Shrine Exposition Hall, Los Angeles, Calif.

6th International Exhibition of Electronic Components, Feb. 8-12; Paris (Porte de Versailles), France

3rd Quantum Electronics Congress, Feb. 10-15; Unesco House and Parc de Exposition, Paris, France

Kits Go Miniature

A kit introduced recently by General Electric uses components so small that the equivalent of a 200-
JANUARY,

derivatives and

For the first

lyze

of

CALCULUS.

struction

ter and circumference; estimating materials

spheres, planes, solids; figuring diam-

3

and engineering.

2

slide rules, powers, roots, etc.

and

cuts"
Music...soft and caressing...vibrantly alive...inspiring. The pure sound of Grommes stereo recreates each mood...with fidelity and presence of infinite superiority. Prices are sensible...quality unsurpassed.

Model 101M FM multiplex-stereo tuner. Magic bar tuning with exclusive Stereo Sentry to indicate stereo broadcasts $139.95
Model 102M FM and AM multiplex tuner with all features of above $159.95
Write GROMMES
Division of Precision Electronics, Inc.,
9101 King St., Franklin Park, Ill.

The General Electric TIMM (thermionic integrated micromodule) kit with heat-tolerant miniature electronic equipment.

A new machine for setting type in Chinese is being developed by RCA under contract to the Army Quartermaster Research and Engineering Command. An electronic system using fiber optics and television techniques reproduces the characters very rapidly on film, and then transfers them to lithograph plates for offset printing.

The equipment will be capable of setting approximately 100 characters per minute—it has a storage bank of some 10,000 characters. This will be a tremendous speedup over the present method of setting printed material by hand from large cases, which may carry as many as 8,000 to 10,000 characters. Speed of such typesetting is limited by the pace of the man choosing the characters from the huge cases.

IEEE Elects Officers

Dr. Ernst Weber (right) has been elected president of the Institute of Electrical & Electronic Engineers, to be formed Jan. 1, 1963. Dr. Weber is president of Polytechnic Institute of Brooklyn. A Fellow of the AIEE, he was 1959 president of IRE. The Electrical Engineering Education Medal was awarded to him in 1960.

Dr. B. Richard Teare, Jr., (left) Dean of the College of Engineering and Science at Carnegie Institute and president of the American Institute of Electrical Engineers, has been elected vice president.

The IEEE, formed by a merger of the AIEE and the IRE, will have a world-wide membership of 160,000, with headquarters in New York.

(Continued on page 14)
Pick the course for your career...

Electronics Technology
A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a 1st Class FCC License.

Electronic Communications
Mobile Radio, Microwave and 2nd Class FCC Preparation are just a few of the topics covered in this "compact" program... Carrier Telephony too, if you so desire.

First Class FCC License
If you want a 1st Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

Broadcast Engineering
Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

Get A Commercial FCC License
...Or Your Money Back!

A Commercial FCC License is proof of electronics skill and knowledge. Many top jobs require it... every employer understands its significance. In your possession, an FCC Commercial Ticket stamps you as a man who knows and understands electronics theory... a man who's ready for the high-paid, more challenging positions.

Cleveland Institute home study is far and away the quickest, most economical way to prepare for the FCC License examination. And that's why we can make this exclusive statement:

The training programs described above will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License... or your money back!

Before you turn this page, select the program that fits your career objective. Then, mark your selection on the coupon below and mail it to us today. We'll send you... without obligation... complete details on our effective Cleveland Institute home study. Act NOW... and insure your future in electronics.

Mail Coupon TODAY For FREE Catalog

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE-74
Cleveland 14, Ohio

Please send FREE Career Information prepared to help you get ahead in Electronics, without further obligation.

CHECK AREA OF MOST INTEREST—

☐ Electronics Technology ☐ First Class FCC License
☐ Industrial Electronics ☐ Electronic Communications
☐ Broadcast Engineering ☐ other

Your present occupation __________________________ Name __________________________ Age ______

Address ______________________________________ (please print)

City __________________________ Zone ______ State ______

Mail Coupon TODAY For FREE Catalog

January 1963

www.americanradiohistory.com
NEW BLONDER-TONGUE CADDY/PAK BOOSTS BOOSTER SALES

TV Technicians — here's a bright new profit idea from Blonder-Tongue. Called the CADDY/PAK, it holds two indoor TV/FM boosters—one a transistor model, the other tubed—and fits easily in your tube caddy. The boosters are: the new all-transistor, model IT-4 Quadra-booster; and the industry's most reliable tubed model, the B-24c.

This combination makes it easy for you to give your customer the right booster for any reception situation. Remember, transistor boosters provide higher gain and are more rugged, but they have one problem — overload (windshield wiper effect, loss or sync). If you use a transistor booster in an area with one or more strong TV or FM signals — you may be buying too much booster. On the other hand, tubed boosters perform very well in these areas.

With the Blonder-Tongue CADDY/PAK you can demonstrate both tubed and transistor models in a jiffy, by connecting them to the terminals of the set. Either way your customer gets the finest indoor booster — a Blonder-Tongue.

The CADDY/PAK fits in your tube caddy. It's imprinted with the profit-producing words — "WANT A SHARPER TV PICTURE? ASK ME." You can place it on the set you are servicing and let it sell for you. And it reminds you and all your technicians to mention boosters on every service call.

You just can't help selling more — having more satisfied customers too — because they have the right booster. Today, see your Blonder-Tongue distributor and get details on how you can get a free CADDY/PAK booster demo kit—the sure-fire approach to boosting booster sales.

BLONDER-TONGUE
753 Kenwood Rd., Newark, N. J.
Canadian Div.: Benco Television Assn., Ltd., Tor. Ont.
Export: Rocke Int'l Corp., N. Y. 16 - Cables ARLAB

HOME TV ACCESSORIES • UHF CONVERTERS • MASTER TV SYSTEMS • CATV SYSTEMS • CCTV SYSTEMS

RADIO-ELECTRONICS
Free!

send today for your

LATEST INDEX
to PHOTOFACT®

it's your handy guide to the world's finest service data

covering 54,000 listings

- TV RECEIVERS
- HOME & AUTO RADIOS
- RECORD CHANGERS
- TAPE RECORDERS
- CB RADIOS

Here is your valuable 68-page guide covering virtually every model of home-entertainment electronic equipment produced since 1946! Helps you locate the proper PHOTOFACT Folder to quickly solve any service problem in any model. PHOTOFACT provides everything you need in complete, uniform style for quick, effective repairs: Famous Standard Notation Schematics packed with the service details you need; Full Photo Coverage of all chassis views; Complete Replacement Parts Lists; Tube Placement Diagrams; Alignment Instructions; CircuTrace® for printed boards; Disassembly Instructions; Dial Cord Diagrams; Changer and Recorder "Exploded Views"—plus dozens of other great features. Send for your FREE copy of the latest PHOTOFACT Index to the service data you need!

MAIL COUPON TODAY!

Send for FREE INDEX

HOWARD W. SAMS & CO., INC.

Howard W. Sams & Co., Inc., Dept. 6-A3
4300 W. 62nd St., Indianapolis 6, Ind.

☐ Send FREE Photofact Index

☐ I am a Service Technician: _____ full time, _____ part time

Other: (specify)__

Shop Name__

Attn:___

Address ___

City________________________ Zone________ State________________________

www.americanradiohistory.com
Checklist for buying a full-power CB 2-way radio

look for these features:

☐ TRANSMITTER POWER — For longest transmission range possible, choose a 5 watt unit, the maximum authorized power input for Class D CB radios.

☐ SENSITIVITY — A greater sensitivity rating indicates a better ability to reproduce weak signals. Look for a sensitivity rating below 1 microvolt to capture signals transmitted many miles away.

☐ SELECTIVITY — A radio’s ability to reject interference from channels not tuned in, is largely determined by the type of circuit used: superregenerative, superheterodyne or dual-conversion superheterodyne. The latter circuit, the dual-conversion superheterodyne, is acknowledged by experts to be the best circuitry for clearest reception. Says Len Buckwalter, noted communications author, in Electronics Illustrated May 1962: “... Look for the dual-conversion feature if you wish to get top receiver performance.”

☐ CRYSTAL-CONTROLLED CHANNELS — Fixed crystal controls assure accurate, fast communications contact. They enable users to switch quickly from one channel to another to contact different persons, to find a channel that isn’t busy. It is best to choose a CB unit with multiple crystal-controlled channels for an efficient, flexible 2-way radio system.

☐ POWER SUPPLY — A power supply should be an integrated part of a CB radio. Since full-power CB radios are most often used in vehicles and base stations, a CB radio’s power supply should be able to operate from both 12-volt auto battery and 110-volt AC line.

☐ AUTOMATIC SQUELCH — This automatically eliminates annoying background noise when a CB radio is on ‘standby’ (not transmitting and ready to receive any radio calls). Thus, hisses, crackles and other noises can’t distract workers, drivers, etc.

☐ AUTOMATIC NOISE LIMITER — An effective automatic noise limiter is necessary, especially in heavily populated areas, to shut out extraneous interferences such as ignition noise. Makes messages more intelligible.

☐ RELIABILITY — CB radios must withstand vibration and shock which occurs during mobile use. Solid-state components—transistors and diodes—are less susceptible to damage than fragile tubes.

☐ PORTABILITY — Some full-power CB radios may be used in the field as portable units when equipped with a portable case-battery accessory. These units are generally lightweight, compactly designed and offer greater operating flexibility.

☐ INSTALLATION — Compact CB radios with simple mounting provisions don’t steal leg room in vehicles, lower installation and maintenance costs. Cadre Industries has two 5-watt models that rate high in every category. Each is supplied with a press-to-talk microphone, set of matched channel crystals, universal mounting bracket and AC & DC cords.

(Continued from page 10)

Doppler Radar Navigators Fly Trans-Ocean Planes

Radar equipment (Radio-Electronics, May 1962, page 8; August 1962, page 42) is now being used to fly Trans-World Airline jet planes in place of professional navigators. Settlement of an agreement to provide job protection for some 680 members of the Flight Engineers International Association, makes it possible to reduce crews on TWA planes from four to three members.

TWA is the first company to use the self-contained Doppler equipment as a primary navigation system over the Atlantic. The company believes it to be more reliable than any other for long-range navigation. Several other airlines have Doppler equipment, but carry navigators.

Music Ups Corn Yields?

George E. Smith, agronomist and corn breeder of Normal, Ill., reports that test plots of corn showed increases of yield from 6% to 10% when serenaded with radio programs or sound tones. The greatest increase, he says, was from a plot subjected to a 450-cycle note, though all types of sound or music produced greater yield than in controlled plots grown in comparative silence. The sound ran 24 hours a day, from mid-May until just before harvest time.

Agricultural colleges have commented rather negatively on Mr. Smith’s work, but have not reported on any experiments which would tend to prove or disprove his results.

Sunspot Conditions May Bring Broadcast Dx

The drop in usable frequencies for long-distance transmission caused by the decrease in the number of sunspots is making new bands useful for trans-Atlantic dx. British stations have been getting excellent results with the 3.9-mc transmissions, and it is likely that the lower frequency bands in the 2-and 3-mc region will get out much farther than has been possible in the past. Under exceptionally favorable conditions, trans-Atlantic dx on the broadcast band is possible.

Stanley Leinwoll gives more details on low-frequency propagation conditions in his column on page 38.

$42,000,000 for Hi-Fi

Hi-fi enthusiasts, who spent less than $2,000,000 for components in 1950, invested more than $42,000,000 last year, according to the Electronic Industries Association (EIA). The audio enthusiast spent $15,000,000 for speakers alone, $14,000,000 for amplifiers, and about $13,000,000 for tuners.
Learn Electronics

PREPARE FOR YOUR F. C. C. LICENSE—YOUR TICKET TO A BETTER JOB AND HIGHER PAY!

F.C.C. LICENSE—THE KEY TO BETTER JOBS

An F.C.C. commercial (not amateur) license is your ticket to higher pay and more interesting employment. This license is Federal Government evidence of your qualifications in electronics. Employers are eager to hire licensed technicians.

WHICH LICENSE FOR WHICH JOB?

The THIRD CLASS radiotelephone license is of value primarily in that it qualifies you to take the second class examination. The scope of authority covered by a third class license is extremely limited.

The SECOND CLASS radiotelephone license qualifies you to install, maintain and operate most all radiotelephone equipment except commercial broadcast station equipment.

The FIRST CLASS radiotelephone license qualifies you to install, maintain and operate every type of radiotelephone equipment (except amateur) including all radio and television stations in the United States, its territories and possessions. This is the highest class of radiotelephone license available.

GRANTHAM TRAINING PREPARES YOU

The Grantham Communications Electronics Course prepares you for a FIRST CLASS F.C.C. license, and it does this by TEACHING you electronics. Each point is covered simply and in detail, with emphasis on making the subject easy to understand. The organization of the subject matter is such that you progress step-by-step, to your specific objective—a first class F.C.C. license.

CORRESPONDENCE OR RESIDENCE CLASSES

Grantham training is available by correspondence or in resident classes. Either way (residence or correspondence), we train you quickly and well—no previous training required. Even a beginner may qualify for his first class license in a relatively short time.

RESIDENT CLASSES HELD IN FOUR CITIES

To better serve those students who wish to attend resident classes, Grantham School of Electronics offers DAY and EVENING classes in four different cities—Los Angeles, Seattle, Kansas City, and Washington, D.C. The same rapid course in F.C.C. license preparation is conducted in all four locations. If you are interested in attending a DAY or EVENING class, indicate the city of your choice in the coupon below, and mail the coupon to Hollywood for free information. There is no obligation of any kind.

GRANTHAM SCHOOL OF ELECTRONICS

LOS ANGELES • SEATTLE • KANSAS CITY • WASHINGTON

1505 N. Western Ave., Los Angeles 27, Calif. HD 7-7727
408 Marion Street, Seattle 4, Washington MA 2-7727
3123 Gilham Road, Kansas City 9, Mo. JE 1-6320
821—19th Street, NW, Washington 6, D.C. ST 3-3614

Accredited Member of the National Home Study Council

MAIL COUPON NOW—NO SALESMAN WILL CALL

This booklet FREE!

This free booklet gives details of our training and explains what an F.C.C. license can do for your future.

Upgrade Your Income with a First Class F. C. C. LICENSE

HERE’S PROOF...

that Grantham students prepare for F.C.C. examinations in a minimum of time. Here is a list of a few of our recent graduates, the class of license they got, and how long it took them:

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>License</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gary D. Lea</td>
<td>9219 N.E. 76th St., Vancouver, Wash.</td>
<td>1st</td>
<td>12</td>
</tr>
<tr>
<td>Dennis P. Miller</td>
<td>416 W. Oak St., Alexandria, Va.</td>
<td>1st</td>
<td>12</td>
</tr>
<tr>
<td>Cecil J. Hironimus</td>
<td>113 Berwick Rd., Johnstown, Pa.</td>
<td>1st</td>
<td>12</td>
</tr>
<tr>
<td>Max D. Rieke</td>
<td>4222 Fremont Ave. N., Seattle 3, Wash.</td>
<td>1st</td>
<td>20</td>
</tr>
<tr>
<td>Robert Benne</td>
<td>3802 Military Rd. N.W., Washington, D.C.</td>
<td>1st</td>
<td>12</td>
</tr>
<tr>
<td>Jon M. Martin</td>
<td>7913 Sausalito Ave., Canoga Park, Calif.</td>
<td>1st</td>
<td>24</td>
</tr>
<tr>
<td>Kline H. Mengle</td>
<td>401 Granville Dr., Silver Spring, Md.</td>
<td>1st</td>
<td>24</td>
</tr>
<tr>
<td>Gary D. Burnard</td>
<td>Johnson Rd., Kirkwood, RD #1, N. Y.</td>
<td>1st</td>
<td>12</td>
</tr>
</tbody>
</table>

YOUR F.C.C. LICENSE

IS U.S. GOVERNMENT EVIDENCE OF YOUR KNOWLEDGE IN ELECTRONICS

(Mail in envelope or paste on postal card)

To: GRANTHAM SCHOOL OF ELECTRONICS
NATIONAL HEADQUARTERS OFFICE
1505 N. Western Ave., Hollywood 27, Calif.

Gentlemen:

Please send me your free booklet telling how I can get my commercial F.C.C. license quickly. I understand there is no obligation and no salesman will call.

Name
Age
Address
City State

I am interested in:

[] Home Study, [] Kansas City classes, [] Los Angeles classes, [] Seattle classes, [] Washington classes

www.americanradiohistory.com
Space electronics was top dog in 1962. It backed up every missile, rocket and satellite launching. It put our astronauts into space, and brought them back again. It fired the rockets, kept them on course, reported on conditions inside the craft and gave second-by-second TV views of the men aboard the manned flights. Telstar I is a perfect example of electronics in space. That little globe circling the earth is crammed full of electronic devices.

Computer electronics ran a very strong second. More and more reliance was placed by business on computers. They took care of inventory, billing, records and payroll. Airlines used computers to keep track of available seats. And your bank now uses computers to keep tabs on your checking account. (That's what that special number along the bottom of your checks is for.)

Medicine had an important year, too. Electronic devices to take the load off a weak heart and to restore proper operation to a fluttery one went into full-scale use. Computers showed up as diagnostic devices. The laser was introduced as a new tool for eye surgery.

JANUARY

Laser in Surgery. Laser device caller a retina coagulator was used to treat eye tumor. It produces for an instant a spot of precisely located intense heat which can be in tiny pieces of unwanted tissue. (March, page 6)

FEBRUARY

Machine Reads Script. If the writer observes base and guide lines, uses no capitals and writes legibly, there are machines that will read his writing with 90% accuracy. (April, page 6)

MARCH

Secret Radio Transmission. You scramble the transmission with a discrete frequency synthesizer. With this device, both transmitter and receiver jump from frequency to frequency, apparently at random and always in step, rendering eavesdropping impossible. (May, page 6)

Radio Sounding Measures Ice. Thickness of Arctic glaciers can be measured with radio waves. The signals are beamed down through the ice, reflected off ice, bottom and return to a receiver. As with radar, the time it takes for the signal to return indicates the thickness of the ice. (May, page 6)

APRIL

Satellite Earth Station, Andover, Me., is the site of the first Earth Station for handling communications traffic via satellites. A 360-ft. tall, rotatable antenna horn sits inside a protective radome, 16 stories tall. (June, page 6)

MAY

Report Cards by Computer. At least one high school using a computer to process report cards. Big time saver for teachers, although they still must grade the questions the computer that makes out the cards. (July, page 6)

JUNE

Voiceprinting for Identification. Voice spectograms show that a voice pattern is a very individual thing. It may some day replace fingerprints as the major identification method. (August, page 6)

Electronic Refrigerator Parts to Wear Out This Unit. Electric current is passed through thousands of semiconductor junctions. One or more junctions will have broken down. It may not be seeing much more of that refrigerator repairman! Can also be used in air conditioners. (August, page 8)

JULY

Pay TV Test. First large-scale over-the-air test in Hartford, Conn. Picture and sound are electronically scrambled so only subscribers with proper converters can tune in programs. (September, page 6)

Light-weight TV Picture Tubes. New processes result in lighter weight savings. Thick, heavy safety glass replaced by thin, tough, lightweight laminated plastic. (September, page 8)

First Communications Satellite in Orbit. Makes intercontinental TV and radio a reality. Total of 30 to 40 satellites will be needed for 24-hour world-wide communications. (September, page 30)

AUGUST

Gasooeeed Masers Announced. Five types, each using a different gas mixture and operating at different frequencies, were announced by Bell Telephone Labs. (September, page 6)

SEPTEMBER

Magnetic Glass. Optically transparent, this glass reacts to a magnet like a piece of iron or steel. It should find many uses in thermomagnetic devices, transformer cores, light modulation and space applications. (November, page 6)

OCTOBER

Microscopic Microphone. A solid state transducer that makes an excellent ultra-miniature microphone. Some versions are so small that they must be viewed under a microscope. (December, page 6)

Radio-silencing during spacecraft re-entry from orbit may be accomplished by high-powered millimeter-wave transmission. Such signals might be able to penetrate the heat-induced ion shield that forms during re-entry, blanking out normal radio transmitters. (December, page 10)

END
Nothing fits all your CB needs like Hallicrafters' versatile new transistorized CB-5

Wherever and however you use citizens band, no transceiver made gets around with the effortless efficiency and consistent high performance of the new CB-5.

A fraction over 3 inches high, 10 inches wide and 8 inches deep, its 18-transistor design solves all normal space problems in mobile or airborne use. It has no vibrator of course, and you can operate it all day with less battery drain than it takes to start your engine once.

A slim, matching pedestal will furnish AC power for base operation. And for carrying between "stations," it weighs just 6 3/4 pounds.

For occasional portable use, an inexpensive 12-volt battery works out fine; but we've also designed a highly-efficient rechargeable battery pak accessory, in case you're serious about it. (There'll be a tone-coded squelch accessory, too, in the near future.)

Specifications? Here are a few: 5 watts in; 100% modulation capability; 6 crystal-controlled channels; 1 μv sensitivity for 10 db. S/N ratio; 45 db. adj. channel rej.; PTT ceramic mike; 6 kc. selectivity at 6 db.; 18 transistors, 9 diodes, 3 instant-heat transmit tubes. Price: $199.95; accessories optional at extra cost. For full details, talk it over with your Hallicrafters dealer or drop us a line.

the new ideas in communications are born at... Hallicrafters
5th & Kostner Aves., Chicago 24, Ill.

Overseas Sales: Contact Export Department, Hallicrafters. Canada: Gould Sales Co., Montreal, P. Q.
NEW VELOCITONE MARK II
why it's the finest stereo cartridge
you can use with your record changer

It isn't as if the new Mark II won't work wonders with your transcription turntable and arm. That it would. But, matching a cartridge to a record changer is the far more challenging problem. It's a tougher nut to crack.

Here are some of the problems. You can select one of those ultra-high-compliance magnetic cartridges that track at a gram or two. Now what?

Says Joe Marshall, noted authority in the January, 1962, issue of High Fidelity: "An attempt to reduce needle pressure with an arm not designed for low needle pressure will usually result in high distortion due to loading the needle with the mass and friction of the arm."

And in the April 7, 1962, issue of Opera News, Conrad Osborne observes: "The thing to be sure of when selecting a new cartridge is that the compliance... Suits the characteristics of your tonearm. A cartridge with extremely high compliance will not necessarily turn in better performance with arms on changers, or with manual turntable arms requiring fairly heavy styli pressure..."

Now let's take a look at the Velocitone Mark II. Compliance: 5.5 x 10^-6 cm/dyne, designed to track at from 2 to 4 grams. Perfect! Also because it is a ceramic transducer, you can play it with an unshielded motor—in an intense magnetic field—without a trace of magnetically induced hum. Fine! But, how about frequency response, output, channel separation? How does it perform?

The usable response of the Mark II extends from 20 to 20,000 cycles — ±1db to 17,000. And it has better than 50db channel separation. What's more, it is supplied with plug-in, matched equalizers so that it functions as a constant velocity transducer, and can be fed directly into the 'magnetic' phono inputs of any stereo preamp. Universal terminal plug eliminates soldering to arm leads.

Its output is in the order of 11mv per channel. You can operate your amplifier with lower gain settings and with less power, resulting in improved signal-to-noise ratio, lower distortion. What more could you ask?

The Velocitone Mark II is priced at $22.25 with two 0.7-mil diamond stylus; $19.25, diamond/sapphire; $14.75, dual sapphire. Ask your hi-fi dealer to show you and demonstrate the new Velocitone Mark II.

SONOTONE CARTRIDGES
Sonotone® Corp. • Electronic Applications Div. • Elmsford, N. Y., Canada: Atlas Radio Corp., Ltd., Toronto Cartridges • Speakers • Tape Heads • Microphones • Electron Tubes • Batteries • Hearing Aids
Learn RADIO TELEVISION ELECTRONICS
by Practicing at Home in Your Spare Time

Electronics is the outstanding career field of the 1960's. There are more better-than-average opportunities in Electronics than in any other field—openings for which you could qualify through NRI training. Thousands of men like yourself have stepped up to good money in Industrial Electronics, Radio and TV Broadcasting and Radio and TV Servicing with NRI training.

Make More Money Soon
If you decide to be a Radio-TV Service technician, NRI training can help you step up your income soon after you enroll. We show you how to apply your knowledge to make extra cash in spare time doing Electronic repairs or servicing radios and TV sets for friends and neighbors. If desired NRI assists you in job placement when you're ready. In short, whatever branch of Electronics you select, NRI is well qualified to help you grow in your new career ... in usefulness, in prestige, in monetary gain.

Train With The Leader

NRI is America's oldest and largest home-study Radio-TV, Electronics training school. For nearly half a century NRI has maintained the confidence and respect of students, graduates and the Electronics Industry by constantly supplying practical, complete, up-to-date home-study training at a cost most everyone can afford. Read the capsule descriptions of NRI courses on the other side of this page. Then, mail the postage-free card today for the FREE NRI CATALOG. National Radio Institute, Washington 16, D. C.
INDUSTRIAL ELECTRONICS

Prepare for a career as an Electronic Technician in industry, business, government, the military, with this NRI course in Electronics—Principles, Practices, Maintenance. Computers, telemetry, automation, missiles, rockets all employ the same basic principles... and that is what this NRI course stresses with illustrated lessons, special training equipment.

TV-RADIO COMMUNICATIONS

In the NRI Communications course you get actual experience as NRI prepares you for your choice of Communications fields and an FCC License. Commercial methods and techniques of Radio and TV Broadcasting; teletype; facsimile; microwave; radar; mobile and marine radio; navigation devices; FM stereo multiplexing are some of the subjects covered. You work with special training equipment.

SEE OTHER SIDE

TELEVISION-RADIO SERVICING

(INCLUDES COLOR TV)

NRI’s time-tested course in Servicing not only trains you to fix radios, TV sets, hi-fi, etc., but also shows you how to earn spare-time money starting soon after enrolling. Fast growth in number of sets, color-TV, stereo, means money-making opportunities in your own spare-time or full-time business or working for someone else. Special training equipment included.

FCC COMMERCIAL LICENSE

For men with Radio-TV experience who want to operate or service transmitting equipment used in broadcasting, aviation, marine, microwave, facsimile or mobile communications. A Service Technician is required by law to have an FCC License to work on C-Band, other transmitting equipment. From Simple Circuits to Broadcast Operation, this new NRI course trains you quickly for your Government exams.

ALSO: Special courses in Mobile Communications; Aircraft Communications and Guidance; Marine Communications; Math for Electronics.

Today, a career in Electronics offers unlimited opportunity. Job counselors advise, “For an interesting career, get into Electronics.” The National Association of Manufacturers says, “There is no more interesting and challenging occupation in American industry.”

When you train for a career in Electronics through NRI home-study methods your home becomes your classroom, and you the only student. You pick your own study hours, study when you want, as long as you want. No need to give up your job or go away to school. And there are no special requirements of previous Electronics experience or education. Train with the leader. Your NRI training is backed by nearly 50 years of success. Mail the postage-free card. National Radio Institute, Washington 16, D.C.

FIRST CLASS PERMIT NO. 20-R (Sec. 349, P.L&R.)
Washington, D.C.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES
POSTAGE WILL BE PAID BY
NRI National Radio Institute
3939 Wisconsin Avenue
Washington 16, D.C.

Mail Postage-Free Card
Crossup on the Crossover
Dear Editor:
Paul W. Klipsch's comments, in his letter in the November 1962 issue, on my article on crossover networks, are much appreciated. Mr. Klipsch apparently had in mind the simpler 6-db-per-octave network, whose phase shift is indeed 45° per channel, resulting in a 90° phase difference between the two outputs. In that case, speaker polarity will not matter since the two speakers can never be either in or out of phase. The network discussed in the article, however, was of the 12-db-per-octave type, which has a phase shift of 90° per channel, or a 180° phase difference between the two outputs.

Mr. Klipsch's point regarding the effect of acoustic path lengths on phasing is well taken. At 2,340 cycles a difference in path length of only 2.82 inches will result in a phase shift of 180°. Granted that the human ear cannot detect phase, it can detect amplitude and, therefore, cancellation due to out-phasing.

Basil Barbee
Nacogdoches, Tex.

We're Sorry
Dear Editor:
Mr. Barbee did me the honor of sending me a copy of his letter in answer to my criticism. I admit with regret that I did not do as much for him in mine.
Mr. Barbee points out that his network is clearly a 12 db per octave slope, and I criticized it on a basis of it being a 6 db network. Thus I have to admit I just didn't read it carefully—I skimped rather than scanned.

[The editors must confess at this point their own contribution to the confusion. On the cover of the August issue, the crossover was described as a 6 db per octave unit. This may have started the whole thing.]

Further, what Mr. Barbee says of polarity reversal would be true for coaxial—coplanar speaker elements. In this, again, I was thinking of horns rather than direct radiators where horn lengths would differ and produce a delay difference.

Preference for 6-db networks has led me to their adoption for most applications, and here again I judged on a basis of what was most familiar to me rather than what I should have read critically.

Using 6-db networks and horns differing some 20 inches in length, polarity reversal does not produce a significant difference in sound, as judged by numerous observers.

Paul W. Klipsch
Klipsch & Associates Inc.
Hope, Ark.

Modified Meter Saver
Dear Editor:
Tony Karp's meter saver (October 1962, page 34) is an excellent device for any shop, and its design is primarily suited to portable or separate equipment units.

Protection by shorting alone might result in damage elsewhere. The following modification may be handy in a built-in or meter panel unit.

Jack J at the left of the schematic on page 34 connects to the terminals of the meter it is intended to protect. All currents are fed to the vtvm or vom meter through its probe. Excessive currents trigger the 2N1213, closing the relay and shutting the meter. But, for added protection, I suggest using the unused relay contact to break the probe circuit. When not actuated, the relay would complete this circuit.

This will protect meter multipliers against burnout or changed values due to overloading. In a 1/2 a volt or vom, you could break the lead between the selector switch and the meter.

Ernest Lukis
Tyler Electronics Co.
Bronx, N. Y.

More Headphones
Dear Editor:
I have just read with avid interest the article by Joseph Marshall in the October issue. You are to be complimented on an excellent article covering the growing field of private-listening stereo program material. It was surely to our chagrin that we did not find our excellent headphones among those listed.

Since you may not be aware of our well recognized products in this field, I have attached our product literature on the wide-range flat-response stereo Dyna Twin and on the Stereo Twin, our latest product for the hi-fi listener. From the recognition it has received, we feel the Stereo Twin is fully competitive with the products which you did show in your article. For example, our Stereo Twin is one of three listed in the latest Heathkit catalog.

Robert L. Sell
Assistant Vice President
TELEX St. Paul 1, Minn.

[We regret the omission of the Telex stereo phones. Readers who wish a spec sheet on the Telex Dyna Twin and Stereo Twin phones may get a copy by writing to Telex at the address shown above.—Editor]

JANUARY, 1963

IT PAYS TO USE AEROVOX!

Let's face it...this radio-TV-electronics servicing business is a highly demanding business. Your customers demand good service at a fair price. Your work at the bench or on service calls requires skill and efficiency. The rapid pace of new circuits and equipment demands time to keep up with the industry. And how well you know that time means money! That's why you can't afford costly callbacks or customer complaints due to premature component failures. When it comes to capacitors, you know you can depend on Aerovox. You see, at Aerovox there's absolutely no compromise with quality. Since the early days of radio, Aerovox engineers have pioneered capacitor improvements. Take electrolytics, for example. Your Aerovox distributor stocks the most dependable and complete line of exact replacement types in every rating you need...a few of the most popular types are shown here. Get all the facts...ask him for a free copy of the new Aerovox TV Electrolytic Capacitor Replacement Guide AFG-462.

If you demand the best—use AEROVOX ELECTROLYTIC EXACT REPLACEMENT CAPACITORS.

AERVOX CORPORATION
DISTRIBUTOR DIVISION, NEW BEDFORD, MASS.
Technical Leadership—Manufacturing Excellence

END
New Eico Stereo FM Multiplex Tuner ST 97

Semi-Kit $99.95 Wired $149.95 Includes Metal Cover AND FET

BUILDING THE SEMI-KIT:
The two most critical sections, the front end and 4 IF's through to the detector, are entirely pre-wired and pre-aligned for best performance on weak signals and for highest selectivity and sensitivity. Complete rejection of storcasting interference. Cathode follower driven, sharp cut-off 15kc low pass filters in each output channel.

THE OPERATION:
Two slide-rule dials in a line: one, a station frequency dial with the famous EICO "eye-ronic" tuning/eye travelling along it to indicate the exact center of each broadcast channel; the other a logging dial with an automatic stereo indicator lamp travelling along it in tandem with the tuning/eye to indicate when the station tuned in is broadcasting stereo.

THE LOOK:
Massive extruded aluminum panel and side rails, exquisitely brushed and anodized pale gold, with baked epoxy brown, perforated steel cover.

PERFORMANCE:
Pre-production field tests brought back the report "Definitely a fringe-area stereo tuner," which is simply the meaning of our laboratory measurements. We know, for example, that full limiting is achieved at 10UV input signal, meaning that the low distortion and noise specifications (the full benefits of FM) will apply to all but the most distant and difficult-to-receive stations. The sharp selectivity you need when a tuner is that sensitive is here also (a strong local station and a low-power station 100 miles distant separated by only 1° arc, each had its own sharp tuning-in point on the dial). While signal levels as low as 2.5UV will produce phase-locking for full stereo separation, very strong local signals will produce no higher output from the FM detector than a 10UV signal and will not be degraded in quality by overloading the stereo demodulator. Distortion is very low, both in mono and stereo, so that the sound you hear has that sweetness, clarity, and freedom from grating harshness that results from absence of distortion. The stereo output signals are so clean that there is not a sign of the 10kc pilot carrier or the re-inserted 30kc sub-carrier visible on a scope presentation.

SPECIFICATIONS
tor post fuse. Size (HWD): 5½" x 15¾" x 11¾". Weight 17 lbs.

*Actual distortion meter reading of derived left or right channel output with a stereo FM signal fed to the antenna input terminals.

Listen to the EICO Hour, WABC-FM, N. Y. 95.5 MC, Mon.-Fri., 7:15-8 P.M.; Export Dept., Roburn Agencies Inc., 431 Greenwich St., New York 13, N. Y.
TELEVISION AND SOUND

... Future TV Instrumentation Will Change Radically...

When daily programmed broadcast TV first started on Aug. 13, 1928, it was done over a regulation radio broadcast station, WRNY (326 meters), and W2XAL (short wave 30.91 meters). These stations belonged to the writer's former publication Radio News. This was "The first regular, daily, television broadcast service the world has known," according to the September 1928 number of Radio News. The newspapers at that time—35 years ago—ran their first daily TV programs beginning August 21.

The New York Times of Aug. 13, 1928, heralded the new event with a front-page story, of which the following is a short excerpt:

"... The television broadcasting scheduled to begin today will be made a part of WRNY's usual programs, Mr. Gernsback said. After a singer or other entertainer has finished, his or her face will be sent out over the air by television. Thus the schedule for the television will be the same as for the regular broadcasting of this station..."

Note particularly that in 1928 TV had no sound—it was completely soundless. The picture in motion was there—as large as a postage stamp—but it ran in majestic silence.

There are those critics today—and their number probably runs into the millions—who look back to those halcyon and nostalgic days of 1928 television, and perhaps wish that the later accompanying sound had never been invented! Indeed, full TV and simultaneous emissions over a broadcast station did not evolve until 1931.

It seems anachronistic to us that after 32 years of TV with sound, there has been so little improvement in the regulation modern TV receiver. For many years now we have had excellent high-fidelity reproduction, stereo and every audio improvement one could think of outside of our TV receiver.

But most television receivers still to a large extent remain the "sound" stepchild of the industry. There are few commercial TV sets that have hi-fi equipment and stereo incorporated in a single cabinet.

It is only fair to state here that, up to now, the Federal Communication Commission has not allowed television stations to transmit stereo audio. It is mainly for that reason that TV receivers have rarely been equipped with stereo.

Last October, however, General Electric petitioned the FCC to allow stereo audio to be broadcast from TV stations. We hope the move succeeds.

It is conceivable that the industry could soon bring out TV receivers with the most up-to-date sound equipment. Admittedly, such high-grade musical instruments will not sell as readily as the present mass-produced "lame-ear" sets, but we honestly believe that there is a large and growing market for hi-fi, stereo TV today. We all agree that such sets will be expensive at first, but we are also sanguine that the public will buy them. If music lovers are avid for hi-fi and stereo equipment, why should they not welcome it combined with a TV set?

Admittedly, many attempts have been made in this direction. A few sets with multiple loudspeakers simulate hi-fi and stereo, but the experts tell us that they leave too much wanting. They also know that if the sound is a "live" broadcast the quality, and therefore the placement of the musical instruments, must start at the TV station.

One cannot receive a brilliant concert from a TV receiver if the brilliance does not originate at the transmitter. Hence it would be useless to build expensive sound receivers if the stations did not reform their transmissions first. This seems elementary, but it is not the whole story.

In our estimation we do not as yet possess the necessary instrument to judge scientifically the quality, the timbre, the brilliance, the sonority and the correct volume of the reproduced sound. Today, "we play it by ear." But most people's ears are far from perfect—hardly ever are both ears alike acoustically. Hence what is one music connoisseur's excellent reproduction is another's audio flatness.

With today's advances in audio electronics, it should not be too difficult to design at reasonable cost a multi-audio-tester that does for audio what a modern automatic light-exposure meter does for a luxury camera, when held 6 or 10 feet from the receiver. It is gratifying to note that steps in this direction have already been taken.

At the present time, most of our TV receivers still have fixed loudspeakers. We can visualize a future TV cabinet with removable and mobile speakers at both sides behind normally concealed doors. Such loudspeakers with attached flexible cords could be extended from the cabinet and placed in the best locations for maximum performance. At least one manufacturer has marketed a TV-FM radio-phono console with a similar arrangement.

Another future requirement for loudspeakers will be their audio adjustability. Loudspeakers should be able to be adjusted to fit their environment.

In the recently opened New York Philharmonic Hall, suspended from the ceiling are 214 six-cornered sound reflectors, which can be raised or lowered to alter the sound characteristics of the hall. Conversely, the loudspeakers of the future high-performance TV receivers must be adjustable audio-electronically to the room's sound characteristics.

No two rooms are alike audio-metrically. The ceiling, the walls, the floor, the furniture, the windows, the drapes, window shades, the placement of the receiver and loudspeakers, are all acoustic variables. For this reason, speakers must be placed and balanced for the optimum acoustic degree of the room. And this in turn requires a multi-audio-tester which we mentioned before.

This may all seem complex and difficult to attain. We assure you it is not, once the right instrumentalities have been evolved. Correct and efficient engineering has always overcome apparently impossible tasks—it will do so in this instance, too.

—H.G.
By DONALD L. STONER

Electronic circuit sets correct lens openings automatically

I, LIKE MANY OTHER AMATEUR PHOTOGRAPHERS, have trouble with F-stops and focal lengths. Solving simultaneous equations seems simple compared to the intricacies of computing F-stops from an exposure meter.

Realizing that the camera is a mysterious and complex device to the layman, Kodak marketed a fully automatic still camera (called the Super Kodak 620) as early as 1938. It was an excellent piece of engineering, but had a price tag of $225. Actually the camera was 20 years ahead of its time.

Much later, in 1956, Bell & Howell scooped the industry with a battery-powered electric-eye 16-mm movie camera, their model 200-EE. It was the first automatic movie camera. Its wide acceptance led Bell & Howell to introduce, in 1957, the first fully automatic batteryless 8-mm camera (model 290), priced at $169.95. Its mechanical diaphragm was built to operate directly from the few microwatts supplied by a selenium photovoltaic cell.

This amazing device cracked open the home movie market. It was ideal for an average family who wanted movies without having to cope with exposure meters and F-stops.

Within a year of the introduction of the 290 almost every US movie camera maker had automatic or semi-automatic models on the market. One manufacturer, Elgea Optical Co., brought out an accessory lens with an automatic diaphragm for converting standard movie cameras to automatic operation. A unique automatic attachment was also produced by the Polaroid Corp. for their “60-second” cameras, when using ASA 3000 film.

In 1958 simple automatic still cameras appeared, and again Bell & Howell was first with a camera in the $40 class, followed in 1959 by a mass-produced $29 camera called the Starmatic, produced by Kodak.

How it works

The simplest form of automatic exposure camera can be thought of as a glorified exposure meter in which the needle controls the iris opening. In a typical exposure meter, a selenium photocell sits behind a plastic or glass lenticular lens and baffle assembly. Light striking the cell generates an electric current. The stronger the light, the greater the current. This current is fed to a moving-coil meter (Fig. 1). Passing through the coil, it creates a magnetic field which repels the field produced by the permanent magnet. The stronger the current, the higher the meter reading, as indicated by the pointer. The pointer is calibrated with a scale that indicates the correct F-setting for a particular film speed.

In the automatic camera the movement of the meter coil controls the diaphragm (Fig. 2). There are, of course, several varying mechanical designs but the method shown here is typical and

Fig. 2—Typical automatic exposure device. The meter gear drives both iris gears to control the opening.

www.americanradiohistory.com
Fig. 3—Battery-powered motor adjusts the lens opening according to the amount of light falling on a photocell.

illustrates the general principle. Two iris gears with teardrop-shaped slots provide the variable lens opening. The gears are supported on small precision jeweled bearings and are coupled to a high-torque meter movement. Note that the gears rotate in the same direction.

The light entering the baffle hits the photocell, which generates an electric current in proportion to the light intensity. The current passes through a resistor and thermostor and the meter coil. The coil rotates according to the current strength to move the two iris gears, which allow just the right amount of light to strike the film. The inertia of the two gears is carefully matched to the meter for stability even though the camera may be moved during exposure. Without this feature, any camera movement would cause the iris opening to drift or change size, causing a variation in exposure. The resistor is used to calibrate and match the cell to the meter. The thermistor compensates for temperature changes and their effects on the cell and copper-wire meter coil. It thus maintains correct exposure over the wide range of temperatures encountered by outdoor photographers in winter and summer.

An automatic shutter

An interesting self-powered automatic-exposure device is produced by Polaroid as an attachment for its still cameras. An automatic shutter, it works on the principle of an air bellows. The rate of escape of the air controls the opening and closing speed. A selenium photocell actuates a vane which covers or uncovers (according to scene brightness) tiny holes through which the air escapes.

When one considers the tiny current generated by the photocell, it is truly amazing that the automatic-exposure cameras work so well. Their performance is even more outstanding when one looks at the range of illumination the camera must accommodate. The maximum scene illumination (bright sunlight) is approximately 10,000-foot-candles. The dimmest scene that can be photographed is determined by the maximum lens opening and the film speed. With typical movie cameras and average film speed, it may be approximately 20-foot-candles. Thus the photoelectric control system must be able to handle a range of illumination between 20 and 10,000 foot-candles.

Recent developments

The "second generation" 8-mm electric-eye cameras, produced by Bell & Howell, have battery-powered motors to rotate the iris discs. As shown in Fig. 3, the motor is connected in a form of servo system controlled by the light falling on a photocell. The lens iris is actuated through a gear train by a small battery-powered motor. Two electric circuits drive the motor in either of two directions, causing the lens iris to open or close. The control mechanism is the simple exposure meter mentioned earlier.

In this camera system, the needle moves to contact either of two platinum pins which act as a spdt switch to complete one or the other of the two motor circuits. The platinum contact pins are mounted on one of the gears used in the iris drive train so they engage the control-mechanism needle. When the motor has driven the gear train and moved the lens iris to its correct aperture, the contact pins break contact with the control mechanism needle and the motor stops. This action takes place only when the starting button is actuated. In addition to controlling the camera mechanism, the starting button acts as a master switch for the motor circuits.

A third-generation of electric-eye cameras is currently being marketed. These use the reflex principle—the scene is viewed through the lens opening. In addition, the cell which controls the iris setting "sees" this same scene. This eliminates the tendency of electric-eye cameras to adjust to overall illumination rather than the subject. Such a third-generation electric-eye camera is the new Bell & Howell Director Reflex. Since much lower wattage levels are involved, a cadmium sulfide cell is used to control the system. This type of cell does not generate electricity, but varies resistance in direct proportion to illumination. A typical cadmium sulfide cell might have a dark resistance of 1 megohm and at 10 foot-candles would drop to 2,000 ohms. A small mercury battery, connected in series with the cadmium sulfide cell provides power for the iris control system. The reflex technique makes it possible to incorporate zoom lenses in the automatic camera. Even though the field of view through the lens changes, as the lens zooms in or out, the cell is able to compensate for the changing illumination.

Photocell-controlled cameras are not without disadvantages but there is a mounting trend toward incorporating this automatic feature into even the lowest priced units. As the mechanism becomes more sophisticated, automatic-exposure devices will be used on highest priced professional cameras.

END
CB Receiver Opens Garage Door

5-transistor set is supersensitive

The transformer in the detector's collector circuit provides both impedance matching and quench removal. Its leakage reactance and the 0.2-µf capacitor across its secondary form a low-pass filter which attenuates the 40–80-kec sawtooth quench voltage. Following the detector are two temperature-stabilized 2N1694 audio amplifiers. Connect a single crystal earphone across V3's collector load for phone reception. Do not leave the phone in the circuit when relay operation is desired.

The relay driver stage consists of two direct-coupled 2N404 p-n-p transistors. The first transistor of the pair, V4, is not forward-biased and the pair are cut off when there is no audio signal. When a tone-modulated carrier is picked up, V4 conducts, causing V5 to conduct heavily and pull in the control relay. Capacitor C10 keeps V5 conducting during modulation negative half-cycles.

From V4's base to the positive supply bus a block marked Z is indicated. This network consists of a parallel .005-µf capacitor and a 5,600-ohm resistor.

Completed unit includes an on-off switch not shown in schematic.

By JOHN H. PHELPS

* Manager, Application Engineering Semiconductor Products Dept., General Electric Co., Syracuse, N. Y.

Fig. 1—Circuit of the 3-way unit.
when no audio frequency selectivity is desired. For selective tone operation, the network consists of a .02-µf capacitor shunting a toroidal inductance of 750 mh. This parallel combination resonates at approximately 1,200 cycles and audio tones appreciably removed from this frequency cannot close the relay.

To build it

To facilitate construction a printed-circuit board layout is shown in Fig. 2. If you have never made your own printed circuits before, see “Photographed Circuits,” by Richard Dorf, RADIO-ELECTRONICS, December 1955 and January 1956; also “Making Printed Circuits Is Easy,” by Tom Jaski, RADIO-ELECTRONICS, September 1955.

Use a good rosin-core solder to solder components to the board. The low melting point solders are preferred. The lower melting point helps avoid damage to the conductors by overheating. During construction refer frequently to the schematic in Fig. 1 and the parts layout photograph. The parts location photo shows all components except R12, which is hidden by the toroid coil, and the 2-pf antenna capacitor mounted on the bottom of the board directly from V1’s base to the antenna eyelet.

Adjustments

Although some latitude is allowed for capacitor and resistor substitution in the audio and switch stages, the experimenter should stick to the transistor types shown and particularly the components specified for the superregenerative. If you cannot obtain RFC exactly as specified, C2 must be altered to preserve proper operation. The choke’s distributed capacitance, as well as its inductance, is part of the feedback circuit. Inductance values ranging from 22 to 50 µh should work if a ceramic trimmer is used in place of C2, to establish proper operation. The trimmer should have a minimum capacitance of 5 and a maximum of 20 pf.

You can check proper operation best with a scope and a well shielded signal generator. If elaborate test equipment is not available, listen to the character of the superregenerative hiss in a crystal headphone. If it is ragged or absent, adjust the trimmer until you hear a smooth rushing noise.

Under certain circumstances the noise produced and amplified by the superregenerative detector will sporadically pull in the receiver relay. If this happens, reduce the value of C9. Values as low as 0.1 µf are acceptable. Select a transmitted tone above 1,000 cycles. Reducing the value of C9 also sharpens the selectivity of the toroidal filter by rapidly attenuating frequencies below resonance. Adjust the relay to pull in at about 20 ma and drop out at 10 ma.

Motorboating or low-frequency oscillation of the entire receiver is possible if the unit is powered by weak cells. For garage-door openers, three D-size flashlight cells should give approximately 1 year of operation. The readily available and inexpensive nickel-cadmium cell is ideal since it has very low internal resistance and a long recharge cycle life. Use four such cells in series.

If motorboating persists, even with good cells, switch either the primary or secondary leads of transformer T1.

The printed-circuit board layout of this receiver has been duplicated by a number of individuals without difficulty and with uniformly good results. When the receiver is used to actuate motor drives for opening garage doors, brush type (universal) motors can create very high rf interference levels which may keep the relay pulled in as long as the motor runs. This may or may not be objectionable, depending upon the type of power relay used in the mechanism and the nature of the limit and safety switches. Induction motors have caused no trouble and are recommended for use with this receiver.

New Abbreviations

Radio-Electronics is adopting the modern abbreviation “pf” for “µf.” (The “p” in this case is short for pico, meaning “very small.” Both the “p” and the “µ” represent 10⁻⁶.) This abbreviation has been coming into more and more common use in the past year or two, and is especially handy for people who do not have the character “u” on their typewriter keyboard.

We are also beginning to use “Q” instead of “V” to designate transistors. While usage has been split on this, “Q” is now used by the majority of American publications. Since much material is already set up in type, readers will probably see both sets of abbreviations side by side in the magazine for a few months, but ultimately the newer ones will prevail.
Here comes the LASER

What's new in the field of optical masers?

By JORDAN McQUAY

A MAJOR ADVANCE IN PHYSICAL SCIENCE is the generation of coherent light beams by a new electronic device: the optical maser, or laser. These newly developed electronic-optical devices promise to advance and revolutionize the extremely high-frequency fields of radio and electronics technology.

Potential uses of lasers are tremendous and breath-taking, with many bordering on science-fiction levels—but all are well within the realm of possibility in the next 5 years:

A light beam capable of handling 100 million telephone calls, or a million TV channels. A light beam that can power satellites and other spacecraft, or map areas of the moon. A light beam focused to an intensity brighter than the sun. A pulsed beam that enables radar to track objects billions of miles away in outer space. A concentrated light beam sufficiently intense to bore holes through metal—and even diamonds—in a few hundred microseconds.

These and other advanced techniques are possible with the laser—an acronym for light amplification by stimulated emission of radiation. Also called an optical maser, it is an extension of electronic techniques into the infrared and visible-light portions of the frequency spectrum (Fig. 1).

Both masers and lasers are essentially energy converters, operating on similar principles. The maser operates in the microwave region; the laser in the infrared and visible-light regions.

Both utilize the natural resonant frequency of electrons within an atom as a frequency standard. This means that they have very high stability insensitive to environment.

In both masers and lasers, random energy is converted by atomic action into a stimulated, coherent, highly directional beam. But of these two, lasers show greater promise for future applications—exploring for the first time the use of optical frequencies for communications and other electronic techniques.

The optical portion of the spectrum is a new and almost-unfamiliar region to those accustomed to thinking of frequency in terms of megacycles. Wavelengths are so short that the angstrom (1 x 10^-10 meter) is used to define these waves.

In this region, a typical optical maser operates at about 6,330 angstroms, or 470 teracycles (10^12 cycles). At longer wavelengths in the infrared region, typical lasers operate between 11,114 angstroms (268.3 teracycles) and about 21,189 angstroms (137.1 teracycles), depending on the type of element used in each device. At least one recent optical maser worked in the visible (red) light region.

Coherent waves

Although resonance in crystals and other materials is often encountered the most unusual characteristic of the laser is that oscillations are controlled and stimulated, by the device itself, so the output of light waves is coherent. This means the output is monochromatic, unpolarized and unphased.

Light is produced whenever the atoms of certain substances are raised sufficiently in temperature. Such light—whether from incandescent lamps, fluorescent tubes or the sun itself—is not coherent. It is emitted in a random pattern, haphazardly in all directions. The many light waves interfere with each other and are diffused. As a result, the potential energy is dissipated to a large degree. But coherent light behaves differently.

Coherent light waves have traveling surfaces of constant phase moving in an extremely narrow beam. The amplitude and phase of coherent waves can be specified closely. The frequency depends upon the active laser element.

These coherent waves proceed in strict formation, closely obeying the ideal laws of optics.

Although laser outputs have an extremely narrow beam width, they can be focused to even tighter beams. Under such controlled conditions, a laser beam spreads less than 2 feet in 1 mile. In comparison, sunlight would disperse as much as 100 yards.

This permits wide-band communications where—at least in theory—a 1% bandwidth can handle over 100 million TV channels simultaneously. And with sufficiently high power, lasers will permit communication over phenomenal distances through outer space.

Much laser research is experimental. Only a few models are available for commercial use, and they are expensive. But some idea of the potential magnitude of lasers is indicated by the fact that over 500 Government-sponsored development contracts are now in existence in as many laboratories across the nation.

Despite their many advantages, these coherent light waves have some important limitations.

They cannot penetrate clouds, adverse weather or atmospheric conditions. They follow line-of-sight transmission paths—unless moved through optical type waveguides.

Atomic energy

Coherent optical waves are generated and produced by harnessing and controlling the illimitable power and inherent frequency of atomic energy.

Certain elements, such as uranium, lend themselves to the production of nuclear energy. And we know what that produces!

In more peaceful pursuits, any of a relatively small group of solid-state...
crystals or certain gases are also suitable for producing a more beneficial and useful type of energy: optical waves.

The most successful crystalline substances have been the synthetic ruby—doped with any of several chemicals. Some of the gases are helium, neon, argon, krypton and xenon.

This is the way it works:

Every atom of such an active element has certain characteristic energy levels. The lowest of these is the normal—or “at rest” energy level, at which the atom remains relatively undisturbed (Fig. 2).

When stimulated by an external source of rf or light energy—called a radiation pump—the atoms of the element absorb some of the energy and jump quickly to a higher energy level, where they remain in an “excited” state.

This state is unstable and the atoms tend to return to their normal, “at rest” level. As they do so, they emit the absorbed energy in the form of light waves at a frequency depending upon the basic substance of the excited element. In a gas, these atoms collide with other atoms, causing further emission of light waves.

So far this light emission is random and not coherent.

But when this atomic process takes place in a resonant chamber or tube of critical dimensions and under carefully controlled conditions, the laser becomes a regenerative oscillator. Optical waves are stimulated and produce a magnified narrow-beam output.

Basic operation

In a typical arrangement (Fig. 3), the active element—whether crystal or gas—is contained within a tube. A mirror over each end of the tube makes it a resonant cavity. One of these mirrors, however, has a small transparent “window,” or may be very thin, so that a small portion of the light escapes through it.

The laser is pumped by either optical or electrical means. Then, as excited atoms return from higher energy levels to their normal or “at rest” level, light waves are produced.

Reflected by the end mirrors, the waves move back and forth within the cavity, each time colliding with other excited atoms, and stimulating or increasing the production of light waves. All these light waves are in phase, which results in a major intensification of these waves along the resonant tube. Output is through the mirror at one end of the cavity. (For a more detailed description of optical maser action, see "Communications on 450,000,000 Mc," Radio-Electronics, May 1961, page 57.) The frequency of these oscillations depends on the atomic structure of the active element.

There are two broad types of lasers: the crystal and the gaseous.

Crystal lasers

The active element of solid-state optical masers is a small crystal rod with silvered ends. It is pumped with white or green light from a spiral photoflash lamp surrounding the element.

The most common type of crystal laser (Fig. 4) uses a synthetic ruby crystal of aluminum oxide doped with chromium. Applying a green pumping light of the right frequency causes the chromium atoms to jump to a higher level of energy. Returning to their normal or “at rest” state, these atoms emit infrared light, which is trapped between the silvered ends of the ruby rod. By stimulating emission in the resonant cavity, intense radiation (Fig. 5) is developed along the length of the rod.

Work is continuing along several broad fronts by many research organizations. Notable among these are Hughes Aircraft Corp., Bell Telephone Laboratories, Raytheon Co., American Optical Co., Sylvania and many others.

The search for new active elements has led to exhaustive experiments with new crystal compounds. Prominent among the crystals successfully tested are calcium fluoride doped with dysprosium, samarium, thulium, neodymium, and even uranium. Also of potential merit are calcium tungstate doped with erbium, neodymium, holmium, thulium and other paramagnetic ions.

New methods of exciting the active element of a crystal laser have been developed. And Raytheon has offered one of the first pulsed crystal lasers on the commercial market.

An advanced type of optical maser, capable of continuous operation, has been developed by Bell Telephone Laboratories (Fig. 6). The active element of this laser consists of two substances grown together as one synthetic
is surrounded by a strong nonuniform magnetic field, which forces the device to store up energy. When the field is removed, the laser releases the energy in a concentrate many more times powerful than for a nonmodulated discharge.

Another specialized application of the crystal laser is the sun-powered device, proposed by the American Optical Co., which would permit direct use of sunlight to power a system for communicating with satellites and other space vehicles (Fig. 7).

Gaseous lasers

Active element of most gaseous optical masers is a combination of inert gases—such as helium or neon—consistently pumped by a high-power device. Laser output in gaseous lasers is several times larger than for crystal lasers.

Optical masers using a pure (noble) gas have also been developed by the Bell Telephone Laboratories. These produce a beam of coherent infrared radiation at more than a dozen wave-lengths between 16,900 and 21,890 angstroms. Cesium has been used to generate beams of 71,180 angstroms.

An important characteristic of this type of optical maser is that the output beam is several hundred times narrower than the output of crystal lasers.

The two types—crystal and gaseous—tend to complement each other, since the gaseous laser is essentially a low-power device. The crystal laser, a high-power device, is particularly useful in pulsed applications—for radar and pulsed-code modulation (pcm) communication.

Communications

Using either pulse-code or continuous-modulated cw, optical masers are particularly adapted to long-range communication—particularly in outer space. But for interstellar and inter-planetary communication, means and methods of modulation, which are now under development in research laboratories, are required. General Telephone Laboratories at Bayside, N. Y. (formerly Sylvania Labs), announces, for example, a modulation method based on frequency change. This FM approach "allows the lasers to be 'tuned' rapidly like a home radio set" (Fig. 9).

For pulse-code modulation transmission or reception, a "traveling-wave" laser that can amplify or intensify light waves directly has been developed by Bell Telephone Laboratories.

An intensified image of a suitably illuminated object at the input is reproduced in the output. The laser type device consists essentially of two amplifying sections with an isolator of lead-oxide glass (flint glass) between them. This material is transparent to light waves over most of the optical range. The "isolator" tends to absorb backward traveling waves and to transmit forward traveling ones. This is done by a disc of polaroid type material. This apparatus provides a gain of about 13 db. But the amplifier has a bandwidth of about 100 kmc—as large as the entire spectrum of presently usable radio and microwave frequencies.

Not all optical masers need be large or ponderous. At least one light-weight though low-power crystal laser has been developed—by the Bell Telephone Laboratories. Weighing only a few pounds, it is used for short-range communications and demonstration (Fig. 10).

Radar applications

In radar—for long-range surveillance, acquisition and tracking, and for

Radio-Electronics www.americanradiohistory.com
guidance and control of space vehicles, the optical maser is destined to shine the brightest.

Both crystal and gas lasers are extremely adaptable to most radar operations, because they can be pulsed to achieve extreme peak power. Outputs greater than 3 megawatts have been generated by the Army Signal Corps and other research laboratories.

One of the first laser radars was the Colidar (for Coherent Light Detecting and Ranging) developed by Hughes Aircraft Co. (Fig. 11). A crystal (ruby) laser provides light pulses, which are collimated by a lens and transmitted toward a distant target. Reflected light signals (echoes) are collected by a large telescope, amplified and processed to provide distance, elevation and other data.

On a larger scale, MIT scientists at Cambridge, Mass. during 1962, used a Raytheon pulsed crystal laser and precise timing equipment to bounce signals off the moon—an old stunt for microwave radar, but a scientific “first” for the optical maser. Using a 12-inch telescope, transmitted laser pulses illuminated a circle on the moon about 2 miles in diameter, and then returned to earth. Each round trip took 2 seconds and was received weakly—but positively.

Optical masers fit perfectly into the special requirements of space exploration and discovery—once the light waves penetrate the atmosphere of the earth. Supplementing conventional radar applications, lasers could well bridge the gap between a manned spacecraft and a target vehicle as they approach a rendezvous point in space.

Although such an application may be a few years away, a suitable radar exists today—developed by the Martin Co. Called the “suitcase” radar, it transmits and receives radar pulses at ranges up to 10 miles. The equipment weighs about 30 pounds.

A military version of the same radar is the “laser ranger,” also developed by the Martin Co. Designed for rugged field use, the operator simply aims the portable device toward a moving ground target, presses a button and reads the distance to the target on an indicator panel.

High-intensity beams

The ability of optical masers to produce coherent light beams of extremely high intensity is utilized in a number of ways.

Using laboratory lasers, the Air Force has welded pieces of titanium—
with no other source of power. And two pieces of hard-to-weld molybdenum and titanium have been fused by the American Optical Co. with a laser they developed.

Raytheon has demonstrated the tremendous power of their optical laser by burning holes through a stainless steel sheet 1/32 inch thick—in 2 milliseconds. The same coherent light beam can ignite paper at a distance of 15 feet. And a General Electric device can blast through diamonds with a temperature of about 10,000°F.

Already the laser has been adapted to the ophthalmologic area of medicine. Utilizing an intense laser beam, a new instrument called the laser retina coagulator is now successfully in use at the Presbyterian Hospital in New York. The beam is used to cauterize small areas and even kill individual cells of the retina without the dangerous and penetrating effects of X-rays and gamma rays (Fig. 12).

Decals give the completed unit a professional look.

Transistor-safe

POWER SUPPLY

Limited-current supply makes it almost impossible to burn out a transistor circuit, even if it is shorted

By STANLEY E. BANIEL

Here is a power supply with a continuously variable current limit. The output voltage is regulated up to the point of the current limit. If the limit is exceeded, output voltage drops very sharply. For example, the output drops from 10 volts to zero at a current overload of 30%, thus protecting the load (usually transistors) and the power supply. Note that the power supply cannot be damaged by any load. Also note that this supply is excellent for transistor circuits and comes in handy on the service technician's bench when working on transistor radios.

The current limit range is 3 to 100 ma. Very few transistors will be damaged by 3 ma, and 100 ma is adequate for almost any circuit.

The output voltage is continuously variable from 0.2 to 15 and is regulated within 1/2 volt or better, depending on voltage and current settings. The continuously variable voltage control is a great convenience over changing batteries to get a desired voltage. The regulation makes it unnecessary to use a meter. Just set it and forget it.

Other applications of the coherent light beams of optical masers are proceeding in many laboratories. Under the cover of military secrecy, some of these experiments are concerned with developing a “death ray”—to divert enemy satellites in flight, or even to knock down intercontinental ballistic missiles. Such applications—and the optical maser, itself—are in their infancy. And much can be expected in the future from the coherent light beams produced by lasers.

END
The circuit

Transistor V shunt-regulates the output voltage. It is connected in a common-collector configuration that has a voltage gain of slightly less than one. For most practical purposes, the input voltage can be considered to be the output voltage. The current gain of the common-collector configuration is the beta of the transistor (common-emitter current gain) plus one.

The current drawn by V is the maximum output current. As the load is increased, less current flows through V and more flows through the load. The output current reaches a limit when all the current is transferred from V to the load.

By controlling the current through V, the maximum output current can be controlled. R4 is the current limit control. R2 limits the range of R4.

Since the output voltage equals the input, supplying the input (base) with a constant reference voltage will give an essentially constant voltage at the output (emitter). R3 and R5 form a voltage divider which provides the reference.

Also by supplying the base with a low-ripple source, we get a low-ripple output. C2 filters the base voltage and the ripple is 0.2% at 10 ma and 0.5% at 100 ma.

Since there is current gain, the reference-voltage source can be a relatively high impedance, for \(Z = E/I \). Therefore, if I is relatively small, Z is relatively high since E is the same for both input and output. Also, since the input circuit is a relatively high impedance, a relatively small filter capacitor can be used to get a given amount of filtering.

Since the output voltage is dependent on an input reference voltage, the latter must be essentially constant for the output to be constant. Since the total current drawn by the whole circuit varies with the current control setting, the tendency of the main supply voltage is to drop when the current increases. The reference then drops in proportion. This tendency is bucked by using a very large value for C1.

Construction and calibration

I built my unit into a 3 x 4 x 6-inch box chassis. A somewhat smaller chassis can probably be used without difficulty. First drill the holes for and mount R4 and R5. Do the same for J1, J2 and S. Then mount T and the terminal strip. The transistor does not have to be mounted on a heat sink since dissipation at most is only 1.5 watts. Since the collector is grounded, it is simplest to mount it in the conventional manner. I mounted mine on an L-shaped bracket.

The transformers are flat ferrite-loop antennas with a Q of around 100 at 1 mc. They are mounted 4 inches apart and at least 2 inches from the chassis to keep Q and selectivity high. The photo shows the coils and tuning capacitor mounted on an aluminum shield box. A three-stage transistor amplifier and battery were mounted in the box on this model.—Leonard Geisler

Bandpass Crystal Tuner

This crystal tuner was designed for local reception but has received stations up to 1,200 miles away. Its excellent performance made it useful as a signal source for demonstrating amplifiers at an audio exhibit. The curves show the selectivity at various frequencies with the circuits peaked at 810 kc to favor a weak local station. With a 30-50-foot antenna and waterpipe ground, audio output was high enough to drive the average amplifier into distortion. Response is flat to 8 kc and then falls off rapidly, thus minimizing whistles and heterodynes.

The transformers are flat ferrite-loop antennas with a Q of around 100 at 1 mc. They are mounted 4 inches apart and at least 2 inches from the chassis to keep Q and selectivity high. The photo shows the coils and tuning capacitor mounted on an aluminum shield box. A three-stage transistor amplifier and battery were mounted in the box on this model.—Leonard Geisler
South Carolina has a state-wide closed-circuit educational TV system that now reaches 140 public schools, 3 denominational schools, 3 state colleges, 3 private colleges and 5 hospitals. According to Dr. Alvin C. Eurich, director of the Ford Foundation Fund for the Advancement of Education, "South Carolina, in our opinion, has the basis and blueprint for what educational TV needs to bring about a healthy revolution in American education systems."

Skilled operator in the control room watches over monitors during a French class. He selects camera views and blends them, one after another, to put together a complete, continuous program.

Each class views the lecture. Additional instructors give further explanations and examples, as needed, to clarify questions raised by the students.
HOW TO FOLD

Fold the top down and back, keeping the cover facing you. Then trim the right and left edges. Now staple the booklet along the vertical center fold, about 3/4 inch from the top and bottom. Now fold from left to right, keeping the cover facing you. Trim a fraction of an inch off the top and trim the bottom to size and you're finished. You now have another useful piece of service data, exclusive with RADIO-ELECTRONICS.
A look inside the case shows the parts layout that must be followed. The photo is approximately one and a half times actual size.

This tiny hearing aid is designed for the hard-of-hearing person who desires a small unit. It also is a good construction project for the electronics enthusiast interested in miniaturization. It will outperform most of the inexpensive hearing aids on the market. You can use larger components and build the unit into a cigarette case, if small size is not required.

The very small high-beta transistors are used with a dynamic microphone. The volume control is a compact unit with a built-in switch. Life of the single mercury cell is long, as the entire circuit draws only 1 ma.

The amplifier is assembled outside the case and then slipped into place. Building such a compact unit requires a small soldering iron and a great deal of patience.

I used a 20-watt pencil iron and a small pair of side cutters with its sides ground away to allow it to fit into crowded spaces. In soldering, you will not have to be overly concerned about damage from heat because only a small amount of solder is used. When soldering the tantalum capacitors, however, grip the leads close to the body with pliers to prevent excess heat from popping them. Don't cut their leads shorter than ¼ inch.

Put the circuit together

Start by cutting and bending the leads of C1 and R1. Next cut and position the base lead of transistor V1 and solder the three wires together as shown in the photo. It would be best to practice making these small solder joints with some thin wire to get the knack of it. With a little experience, you will be able to make tiny, neat connections by first positioning the leads close together and applying the iron and a little solder. Hold the iron in place only a second to allow the solder to form a neat bead.

Excess solder can be snipped off with the dikes.

The rest of the components are wired as shown in the photo. Be sure to wire them close enough together to fit the space available.

Now the microphone, battery terminals and volume control are ready to be mounted in the aspirin box. But, first, cut away one corner of the box to allow the knob of the volume control to project slightly. Also cut a hole in the bottom of the box to correspond with the hole in the front of the microphone.

Shock-mount the mike on a thin piece of sponge rubber or strips cut from a wide rubber band. Cement several strips to the front of the microphone with any good rubber cement, and solder a ½-inch length of fine wire to each mike terminal. Then curl the wires to form the flexible leads needed to allow the microphone to move freely. Now cement the mike to the case.

A bead of solder inside the box

R1, R4, R5—470,000 ohms
R2, R7—4,700 ohms
R3—pot, 10,000 ohms with on-off switch (Centralab 5W5-103-5 or equivalent)
All fixed resistors 1/10-watt 10%
C1, C3—3 uf. 90 volts, miniature tantalum capacitor (Mallory TNT 803U350PO or equivalent)
C2—2 uf. 50 volts, miniature tantalum capacitor (Mallory TNT 203U50P0A or equivalent)
The author used smaller capacitors which are no longer available. While those listed are somewhat larger, there is enough room in the case for them.
BATT—1.5 volts, mercury (Mallory RM673 or equivalent)
MIKE—Shure MC30J or equivalent
V1—CK22-A-B
V2, V3—CK67-A-B
Earphone box—12-tablet size
Miniature earphone, 7,000 ohms (Lafayette MS-260 or equivalent)
Miscellaneous hardware

Circuit of the little hearing aid.

JANUARY, 1963
forms the positive battery terminal. Scrape the paint down to bright metal to insure good soldering. You may have to file down or build up the solder contact later for a perfect fit. The negative terminal is formed from a strip of thin sheet brass. Solder a 3-inch length of phono pickup-arm wire to one end of the strip and cement it in place on the lid. Epoxy cement works best for this. Place a small piece of paper between the terminal and the case for insulation. The other end of the wire will be connected to the switch later.

To mount the volume control, you will have to cut the switch terminal studs off flush with the bottom of the control. Now solder the switch and volume control leads and cement the control in place, again using a piece of paper to insulate the switch leads from the case.

After all major parts are mounted, you are ready to hook up the amplifier. When soldering the lead from the volume control to capacitor C2, remember to use pliers as a heat sink to protect the capacitor. Make sure the mike leads do not short to the microphone case.

When all wiring is complete, insert the battery with the positive side (outside of case) facing downward (see photo) and close the lid. If there is any tendency to motorboating at high volume settings, reduce amplifier gain by shunting resistor R2 with another resistor of lower value. You may require as little as 220 ohms.

To improve appearance, I cemented a small piece of speaker grille cloth to the front of the case, over the hole. A jewelry clip could also be soldered to the case. A coat of black crackle enamel paint completes the project.

Dec. 15–Jan. 15

The sharp drop in MUF's (Maximum Usable Frequencies) this winter has severely hampered the efforts of international broadcasters. Since the 6-mc band is the lowest allocated to international broadcasting, many broadcasters have found that, with MUF's running 4 and 5 mc over some circuits, their effectiveness has been severely limited, particularly over trans-Atlantic paths.

On the other hand, listeners and radio amateurs have found the 2-, 3- and 4-mc bands more active than at any time since the last period of sunspot minimum, in 1954. In addition, medium-wave dx enthusiasts have found that the upper part of the broadcast band has frequently opened over trans-Atlantic circuits.

Low nighttime MUF's are expected to continue the remainder of the winter, and be even lower next winter.

These tables are designed to serve primarily as a guide, since day-to-day variations in receiving conditions can be significant. At certain hours, propagation over some of the paths given may be extremely difficult or impossible. This will depend on the type of service, antenna characteristics, transmitter power, etc. The curves from which the data in the tables are derived are based on an effective radiated power of 10 kw. They are representative for the paths given. For example, the figures for the Eastern USA to Western Europe path are based on a circuit analysis curve drawn for the Washington, D.C. to Bern, Switzerland, circuit. On circuits farther north, e.g. New York to Brussels, Belgium, frequencies will be somewhat lower, while on more southerly circuits, frequencies 1 or 2 mc higher will be required.

The tables show the optimum frequency in mc for propagation of short-wave signals between locations shown during time periods indicated.

Select the table most suitable for your location, read down the left side to the region in which you are interested. Follow the line to the right until you are under the appropriate time. (Time is given in 2-hour intervals from midnight to 10 pm, in your local standard time.) This figure is the optimum working frequency, in mc. The best band is the one nearest the optimum working frequency.
INVISIBLE LIGHT carries confidential conversations between stations up to 10 miles apart. The portable communicator uses a pencil-thin infrared beam to set up the long-distance private line. For military uses, the Raytheon infrared communicator can convey commands or relay scout findings. For police uses, continuous contact is possible while radio silence is maintained.

20-FOOT CLOVER LEAF is a new multi-purpose phase monopulse antenna system with a bandwidth of 200 to 2,300 megacycles. It consists of closely spaced reflectors, combined with individual log periodic feeds, which are interconnected to produce signal information for tracking purposes. The medium-gain system was developed by Radiation Inc., Orlando, Fla. Its wide bandwidth permits it to do the job of several antennas.

HELMET RADIO and tiny hand-held transmitter may be standard equipment for the soldier of the future. This vhf unit, designed for short-range communication, is an experimental model made by Delco Radio Div. of General Motors for the Army Electronics Command at Fort Monmouth, N. J.

UNDERWATER ARTILLERY shoots telephone conversations across the bed of the Pacific Ocean. The "guns" are being assembled at ITT's Standard Telephones & Cables Ltd. plant in London. The submarine telephone repeaters will amplify telephone signals as they become weaker while traveling along a trans-Pacific telephone cable between Australia and Canada.
TEST

Transistors with your vtvm

A vtvm and this little adapter, that is

By DANIEL J. HOROWITZ

This tester measures I_{CBO}, leakage (I_{CEO}) and gain (dc beta) at 20, 75 and 150 µA base current. If desired, other values of base current can be selected by using different resistor values. The vtvm is connected to terminals on the adapter, and set to its 1.5-volt dc scale. If the reading goes off this scale, switch the vtvm to its 5-volt dc scale.

The circuit is set up so that the transistor characteristics read off the vtvm scale are always multiples of the numbers on the 50- or 15-volt scales. The readout is as follows:

I_{CEO} test:
- vtvm on 1.5-vdc scale — read 0 to 15 µA
- vtvm on 5-vdc scale — read 0 to 50 µA

Leakage test:
- vtvm on 1.5-vdc scale — read 0 to 500 µA
- vtvm on 5-vdc scale — read 0 to 1500 µA

Gain tests:
- vtvm on 1.5-vdc scale — read 0 to 50 gain
- vtvm on 5-vdc scale — read 0 to 150 gain

Aside from offering two scales for each reading, the vtvm also has the advantage that when measuring gain it may be zeroed to cancel leakage. This is why you use the READ GAIN pushbutton on the adapter. When switching to one of the gain positions, zero the vtvm to cancel leakage. Then the READ GAIN pushbutton is pressed to apply base current. After going from the gain test to one of the other tests, turn the adapter off and zero the vtvm again.

A transistor socket is provided for transistors with short leads, and three binding posts for any others. A 9-volt battery provides the test voltages. The PNP-OFF-NPN switch, a double-pole double-throw switch with a center off position, reverses the polarity of the battery voltage so that both types of transistors can be tested. The vtvm must be switched from DC- to DC+ when switching from PNP to NPN.

Three values of base current are provided for gain measurement, so that gain can be compared under three conditions. In testing transistors, check the values obtained against those in a transistor manual. Also note that transistors are sensitive to heat and that holding a transistor in your fingers increases its leakage reading.

Transistor specifications normally list I_{CEO} and gain. Gain may be referred to as dc beta, h_{FE} or common-emitter dc transfer ratio. Leakage, though it may not be listed, indicates a defective transistor if excessive. It will be found that inexpensive experimenter's transistors generally have much higher leakage than standard types, and that their gain varies over an extremely wide range.

The transistor tester provides excellent accuracy if 1% tolerance resistors are used in place of flexible leads with alligator clips. Use both if desired, but the flexible leads should take preference over binding posts. Second, you have to switch the meter, for p-n-p transistor, to its dc volts range. This could be remedied by using an n-p-n—p-n-p selector switch with an additional set of dpdt contacts to reverse polarity in the tester rather than in the meter.

BENCH TESTED

Unit works exactly as described by author. Vtvm scales give clear, accurate, direct readings at leakage, gain and I_{CEO} (collector current). The large scales (6½ inches) on the tester's vtvm made it simple to read betas of S1, S2 and S3 without confusion.

Two minor disadvantages. First, binding posts are used in place of flexible leads with alligator clips. Use both if desired, but the flexible leads should take preference. Second, you have to switch the meter, for p-n-p transistor, to its dc volts range. This could be remedied by using an n-p-n—p-n-p selector switch with three additional sets of dpdt contacts to reverse polarity in the tester rather than in the meter.

Circuit of the adapter.

40

Miscellaneous hardware

- R1—100,000 ohms
- R2—3000 ohms
- R3—1500 ohms
- R4—400 ohms
- R5—2000 ohms
- R6—664,000 ohms
- R7—125,000 ohms
- R8—62,000 ohms
- R9—150,000 ohms

All resistors 1% watt.

Use 1% or 2% tolerance units depending upon the accuracy you need in the tester. Make up odd values by combining resistors in series or parallel.

BATT—Any 9-volt transistor radio battery

J1—3-way binding posts

J2—transistor socket

S1—dpdt, center off, toggle switch

S2—4-pole 5-position rotary, shorting (1 pole not used)

Chassis box, 6 x 5 x 4 inches

www.americanradiohistory.com
ors are used. However, 5% resistors are satisfactory if inexpensive precision resistors cannot be obtained.

How it works

The vtvm measures voltages which are proportional to the currents through the transistor. These voltages are developed across resistors placed in the collector circuit. Since the voltages developed across these resistors are only a few volts in relation to the supply voltage of 9 volts, the change in collector voltage due to the drop across the resistor has negligible effect on the reading.

For measuring I_{ce}, the transistor's base is grounded, the emitter left open, and the collector connected to 9 volts through a 100,000-ohm current sampling resistor. This value is chosen so that a 15-μa current produces 1.5 volts.

To measure leakage, the transistor's base is left open, the emitter grounded and the collector connected to the battery through a current sampling resistor. The circuits for the gain tests are similar, except that, when the READ GAIN pushbutton is depressed, a fixed base current is applied. It is supplied to the base from the battery through a resistor whose value determines the current. The values of the base resistors are calculated assuming a battery voltage of 9.3, since a 9-volt battery is made up of six 1.55-volt sections connected in series.

If desired, a minor modification allows testing for the beta cutoff frequency. To do this you will need a signal generator and scope as well as

WHAT'S YOUR EQ?

The sine wave with a peak value of 30 volts, shown at the input of circuit, collided with a diode on its way to the output. As a result, the wave was bent a bit. Draw in the space provided the shape of the wave at the output. Ignore the voltage drop across the diode.—*Cleveland Institute of Electronics.*

CAPACITOR CHARGE

Two 1-μf capacitors are connected in series with a 100-volt dc source. A shorting switch is connected across one of the capacitors. The capacitors are both good. The shorting switch is pressed, then released. What is the condition of the charge on the two capacitors immediately after the shorting switch is released?—*V. H. Laughter*

ANOTHER TWO-BOX LIGHT

Each of the boxes has an spst switch throw and a 120-volt 6-watt indicator lamp with jewel. The wires are shown in the diagram. The switch in each box operates the lamp in the oppo-

Answers on page 57.
COAXIAL CABLES ARE IMPORTANT COMPONENTS of many types of electronic production lines and electronic research projects. It is always best to check these cables thoroughly before putting them into use. Such testing should check for plug-to-plug shield continuity, plug-to-plug conductor continuity, absence of shield-to-conductor short, and high-voltage leakage resistance between shield and conductor. Normally, the first three checks are made with a simple low-voltage ohmmeter and the last check with a high-voltage megohmometer (a megger).

A single instrument that makes both types of resistance measurements, performs all the switching functions automatically while doing so, has a minimum of parts for economy and is safe and simple to operate, is highly desirable. The unit described here does these things.

The two-ohmmeter circuits

Cable leakage resistance must be checked under high-voltage conditions. A 300-volt supply was rather easy to build, and a 100-µa meter was decided upon. A Weston model 301 meter was used. The basic high-resistance ohmmeter circuit is shown in Fig. 1.

Since the meter resistance is 600 ohms, there is only .06 volt across it for full-scale deflection. Thus R_x will have 300 volts across it when the switch is closed. So when R_x is the unknown resistance, R_y is a known resistance, R_m is the meter resistance, I_1 is the current with the switch closed, I_2 is the current with the switch open:

\[R_x = E \frac{I_1}{I_2} = \frac{300}{.0001} = 3 \text{ megohms} \]

The next thing to determine is the largest value of R_x which can be read on the 100-µa meter. Assume that the smallest division we can read on the 100-µa meter is the lowest point at which we can read our resistance. This smallest division is 2 µa. From the formula

\[R_x = (R_y + R_m) \frac{(I_1 - I_2)}{I_2} \]

we can omit R_m, since its 600 ohms is small compared to the 3 megohms of R_y.

\[R_x = 3 \times 10^6 \frac{.0001 - .000002}{.000002} \]

\[R_x = 147 \text{ megohms} \]

We are interested in the useful range over which the high-resistance circuit will read. Assume a point on the scale corresponding to 97% of full scale, or 97 µa.

Then \[R_x = 3 \times 10^6 \frac{.0001 - .000097}{.0000097} \]

\[R_x = 3 \times 10^6 \times .0309 \]

R_x = 92,700 ohms

Thus the approximate useful range of the high-resistance scale is from 100,000 ohms to 150 megohms.

To test for continuity, we must be able to read very low resistances. Low voltage and high current will do for low-resistance testing. I decided upon 10 ma for the full-scale deflection of the 100-µa meter, and a series resistance was used to drop the available 300 volts down to .06.

Fig. 2—How the meter shunt is determined.

The meter shunt is determined as shown in fig. 2:

\[E_m = E_n = 600 \times .0001 = .06 \text{ volt} \]

\[R_s = \frac{E_m}{I_m} = .06 \]

\[R_s = .01 - .0001 = 6.06 \text{ ohms} \]

where \(E_m \) = voltage across meter movement, \(E_n \) = voltage across shunt resistor, and \(R_s \) = shunt resistance.

Fig. 3—Basic low-resistance ohmmeter circuit.

The basic low-resistance ohmmeter circuit is shown in Fig. 3. R1 is a current-limiting resistor. R_y is the shunted meter resistance (includes R_x above). R_s is the unknown resistance. I_1 is the current reading with the switch open and I_2 is the current reading with it closed.

The 10-ma current-limiting resistor

\[R_1 = \frac{E}{I} = \frac{300}{.01} = 30,000 \text{ ohms} \]

The next thing to do is determine the lowest value of R_x that can positively be read on the 10-ma meter.
scale. Assume that the smallest division we can read on the basic 100-µa (now 10-ma full-scale) meter is the lowest point at which we can read our resistance. This smallest division is 0.2 ma. The formula is:

\[R_s = R_a \left(\frac{1}{I_1 - I_2} \right) \]

Since .06 is small in \(R_a = 6.06 \) ohms, it may be omitted:

\[R_s = 6 \left(\frac{0.0002}{0.01 - 0.0002} \right) \]

\[R_s = 0.12 \text{ ohm} \]

Of interest to us is the maximum range over which the low-resistance circuit will approximately read. Assume a point on the scale corresponding to 95% of full scale, or 9.5 ma. Then:

\[R_s = 6 \left(\frac{0.0095}{0.01 - 0.0095} \right) \]

\[R_s = 114 \text{ ohms} \]

Thus the approximate useful range of the low-resistance scale is from 0.1 to 100 ohms.

In the final design of this tester (Fig. 4) transformer T provides 250 volts rms, which is rectified for the ohmmeter circuits. Fuse F is in the primary, along with the on–off switch S1-h. In secondary is a IN561 rectifier, which is selected for its high peak inverse voltage rating. R6 is the surge-limiting resistor. The 6.3-volt filament winding on the transformer is not used. The 12-µf capacitor provides more than enough filtering.

The low-resistance ohmmeter circuit requires 10 ma, and is connected so its current string (R1, R2, R3) acts as a constant bleeder across the 300-volt supply. This of course improves power supply regulation.

R2 is the \(\infty \) ADJUST for the low-ohms scale. It sets the meter and shunt current to 10 ma. The meter shunt is R3, and, whenever the low-resistance function is chosen, the meter is connected across it, making the basic 100-µa meter a 10-ma meter. The shunt was computed to be 6.06 ohms. It can be made in three ways: with small-gage copper wire, with resistance wire or by paralleling two low-ohmage resistors. I chose the third method and paralleled two standard 12-ohm ½-watt resistors. The two resistors were selected units, slightly low in resistance. After being paralleled, they were heated with a soldering iron until their resistance, as measured with a resistance bridge, rose to 6.06 ohms. If the resistors are not checked with a bridge, use 5% resistors.

The low-resistance scale should be accurate enough. Any unknown small resistance is measured by its additional shunt effect across the meter.

The high-resistance ohmmeter circuit has R4 and R5 for its current-limiting string. R5 is the ZERO ADJUST (full scale) for the megohm scale, and it lim-

![Details of the meter face.](image)

S1-b and S1-c connect the basic 100-µa meter as a low-resistance ohmmeter in positions A, B and C. In position D, the microammeter is connected as a high-resistance ohmmeter. S1-e and S1-f connect the cable via J1 and J2 (under the double-end test) to the ohmmeter so that position A checks plug-to-plug shield continuity, position B plug-to-plug conductor continuity, position C plug-to-plug shield-to-conductor short, and position D shield-to-conductor leakage resistance. S1-g connects the cable via J3 (under single-end test) to the ohmmeter in the same fashion. Tests in positions A, B and C are made at 60 mv, while position D tests are made at 300 volts dc. S1-a and S1-d interconnect the ohmmeter function switches S1-b and S1-c to the external-circuit selection switches S1-e, S1-f and S1-g. S1-h is the power on–off switch. S2 is a momentary-contact pushbutton type. It must be depressed to zero-set the high-resistance scale, which is in use in position D. When S2 is depressed while the selector switch is in position A, B or C, the low-resistance scale’s zero can be checked. The low-resistance scale’s zero is the meter’s mechanical zero.

Note that J2 is insulated from ground. This prevents shorting the 60 mv across the meter while using the low-resistance scale, to avoid a short of Centralab PA-3 and a PA-3000 switch assembly)

S2—push-pull pushbutton (three sections of Centralab PA-3 and a PA-3000 switch assembly)

T—power transformer; primary, 117 volts; secondary, 250 volts, 10 ma, 63 volts, 1 amp (Thordarson 22939 or equivalent)

Case 3 x 3 x 7 inches

Miscellaneous hardware

Fig. 4—Complete coax cable tester.
detect leakage resistance. If it is desirable to test long cables for continuity, all you have to do is short the far end while making the low-resistance test on position C. If both ends of the cable can be brought to the tester, then the double-end test is preferable. However, some low value of resistance will be read on positions A and B due to cable length. Remember, position D applies 300 volts to the conductor of the cable.

I use this unit every day. It has been a dependable and valuable tool. The assurance that cables being put to use are good is well worth the time taken to design and construct this unit.

[The 600-ohm, 100-µa model 301 Weston meter used in this tester has been replaced by a later model 301 with a much higher internal resistance. A meter with a resistance that is appreciably higher makes it necessary to calculate new resistor values and recalibrate the scale.]

[The 301 meter used in this instrument can be obtained from A & M Instrument Co., 48-01 31st Ave., Long Island City 3, N. Y. When ordering, specify the meter by range and internal resistance. The old 301, 100-µa meter costs about twice as much as the current model.—Editor]

END

WHAT ABOUT MULTIPATH DISTORTION?

Will this form of trouble, already a problem in monophonic reception, be a menace to FM stereo?

Radio-Electronics asked a number of FM stereo authorities. Their answers are informative and highly readable. They explain clearly the nature of multipath distortion, its effects on FM stereo systems, and its possible prevention or cure.

In the Radio-Electronics February Issue

MULTIPATH DISTORTION SYMPOSIUM

Issue on Sale January 19

RADIO-ELECTRONICS
Hi-Fi Enclosure from your old TV

Some old-time cabinets make excellent speaker housings

TV is now about 15 years old, the average useful life of a television set is probably 6 to 8 years before it is traded for a new one. Many stores never go to the trouble of rejuvenating these older models, and they are sold as junk usually at $3 to $10.

Some of these early small-screen sets had expensive, well built cabinets which lend themselves well to hi-fi speaker enclosures. An example of what can be done with one of these cabinets is shown in the photo and drawings. The cabinet was originally a General Electric model 817. It was a well constructed cabinet with ½-inch plywood throughout. Other features were the fairly good 12-inch speaker and the fact that the cabinet was on casters—easy to move.

The main point of interest in this example may be the construction of the tunnel and bass ports. The original TV chassis mounting floor was used as the bottom of the tunnel. This floor had two sets of slots used to ventilate the bottom of the TV chassis. The front set was covered by a piece of ¼-inch plywood, and the rear set left open so sound could enter the tunnel. The two bass ports were cut into the speaker baffle board as shown. The top of the tunnel is a ½-inch piece of plywood cut to size.

All the new pieces of plywood are glued and fastened with wood screws for solid construction. The 12-inch speaker enclosure (the lower portion of the cabinet) is lined with Fiberglas, except for the top. New grille cloth to match the cabinet finish is installed on the top and lower speaker baffles.

A conventional crossover network is used between the 12-inch and the mid-range speakers, with a capacitor between it and the tweeter. A three-way network would no doubt be even better.

The situation will of course be different for each make and model of TV cabinet used, but some ideas that may prove helpful to the economy minded hi-fi enthusiast should be mentioned. When choosing a cabinet for a speaker enclosure, always choose the heaviest one, built with ½ inch plywood or better. Many cabinets are of ½ inch plywood on a wood frame. These are not desirable.

No attempt was made to figure the mathematically correct size (for speaker diameter and bass response) of the example shown. The author is one of many who believe that listening is the best and final test in good audio reproduction, and this converted cabinet sounds very good, with plenty of bass.

The whole back of the cabinet can be covered with plywood to improve the low-frequency response. This was not done in the author's case, because a 23-watt amplifier was installed in the open portion of the cabinet.

The person just getting into stereo will find the converted TV cabinet an easy, economical way to obtain the second speaker enclosure needed for stereo.

In any case, some very good results can be obtained, for the small amount of money and time involved, if a little care is used in converting the old cabinet to a hi-fi speaker enclosure. END

How the enclosure was made: (1) baffle for tweeter and mid-range speaker; (2) bass ports; (3) ½-inch plywood cover for front vent slots; (4) 1/2-inch plywood top of tunnel; (5) old floor for TV chassis; (6) existing baffle for woofer; (7) floor for bass enclosure; (8) ½-inch plywood back for 12-inch speaker enclosure.

At right, detail of new ½-inch panel for mid- and high-range speakers and bass ports.

JANUARY, 1963

45
mixed waveforms
and your scope

By ROBERT G. MIDDLETON

MIXED WAVEFORMS ARE OFTEN FOUND IN ELECTRONIC CIRCUITS. THE COMPOSITE VIDEO SIGNAL (FIG. 1) IS A MIXED WAVEFORM. IT HAS THREE CHIEF COMPONENTS: HORIZONTAL SYNC PULSES, VERTICAL SYNC PULSES AND THE VIDEO SIGNAL. IT ALSO HAS MINOR COMPONENTS: EQUALIZING PULSES AND THE DC COMPONENT.

Sync-pulse generators have an output waveform with square corners and a fast rise time. The leading and trailing edges are invisible on a scope screen (Fig. 2). The photo depicts two horizontal sync pulses, with five gating pulses inserted at black level (for insertion of a bar pattern). Compare this pulse with that shown in Fig. 3. We see from Fig. 3 that the rise time of a sync pulse from a TV receiver is comparatively slow. The sides of the pulse shape with that shown in Fig. 3 results from passage through the transmitter network and the receiver circuits. The higher harmonics in the waveform are attenuated or lost. If the bandwidth of the receiver circuits (or of the scope) is excessively narrow, sync pulses are rounded off (Fig. 4).

The waveform in Fig. 4 is displayed on 7,875-cycle sawtooth deflection. If the deflection rate is reduced to 30 cycles, we see the waveform in Fig. 5. Here, narrow bandwidth has reduced the peak voltage of the horizontal sync pulses without greatly affecting the vertical sync pulse. Equalizing pulses have been practically eliminated by the narrow circuit bandwidth.

A 60-cycle hum is sometimes an undesired component in a mixed waveform. We see hum voltage in Fig. 6. Hum can result from heater-cathode leakage in the tube, faulty power-supply filtering or from stray-field pickup by high-impedance circuits (Fig. 6).

V1's grid circuit has high impedance at 60 cycles. Accordingly, the normal waveform at point X (Fig. 6) shows appreciable stray-field pickup (Fig. 7-a). If the .01-µf capacitor opens, the grid-circuit impedance becomes still higher and more stray-field voltage appears in the mixed waveform (Fig. 7-b).

Note that hum voltage appears as a sine-wave outline in a mixed waveform displayed on 30-cycle deflection (Fig. 8). On the other hand, hum voltage thickens a pattern displayed on 7,875-cycle deflection (Fig. 9). The experienced technician soon learns to

Fig. 1—The composite video signal is a mixed waveform.

Fig. 2—Horizontal sync pulses viewed at output of sync generator.

Fig. 3—Horizontal sync pulse at output of video amplifier in receiver.

Fig. 4—Narrow bandwidth causes pulse rounding.

Fig. 5—Narrow bandwidth attenuates horizontal pulses before vertical.

Fig. 6—V1's grid circuit has high impedance at 60 cycles.

Fig. 7—The 60-cycle stray-field voltage at point X in Fig. 6 (a) increases (b) when the .01-µf capacitor is open.

Fig. 8—Outline of 60-cycle hum voltage is evident in this pattern.

Fig. 9—At higher deflection rates, hum voltage thickens pattern.

How to spot trouble in a mixed waveform and know where it may be originating
recognize hum voltage in a pattern displayed at any chosen deflection frequency.

Mixed waveforms in some electronic circuits consist chiefly of various phases of a single frequency. For example, the color-difference signal in Fig. 10 consists of an \((R-Y)\) bar, a \((B-Y)\) bar, and a burst pulse. These three signals all have the same frequency \((3.579545 \text{ mc})\), but each has a distinctive phase. Of course, there is also a 15,750-cycle sync pulse in the mixed waveform.

Circuit noise is sometimes a prominent component of low-level mixed waveforms. Fig. 11 shows an output waveform from a thyratron pulse generator. The right excursion of the waveform is greatly thickened by circuit noise. Note that noise voltages have all frequencies within the passband of the circuit. In this respect, a noise pattern differs from a geometrical pattern.

Thus, the geometrical waveform in Fig. 12 has a fundamental frequency \((15,750 \text{ cycles})\), a second harmonic, third harmonic, etc., up to the bandwidth limit of the circuit. On the other hand, the random circuit-noise waveform in Fig. 13 has all frequencies from zero (dc) to the bandwidth limit of the circuit. Hence, there is a fundamental difference between man-made waveforms and naturally occurring "noise" patterns.

Mixed waveforms can be considered from two viewpoints. For example, a combination of horizontal and vertical sync pulses gives a composite sync signal. We usually regard it as a mixture of two separate waveforms. On this basis, the horizontal sync pulse has a fundamental frequency of 15,750 cycles, plus even and odd harmonics. In addition, the vertical sync pulse has a fundamental frequency of 60 cycles, plus even and odd harmonics of that frequency.

However, we can equally well consider the composite sync signal as the output from a single generator, instead of the mixed output from two generators. Then, we regard the composite sync signal as having a fundamental frequency of 30 cycles, plus even and odd harmonics of this frequency up to the bandwidth limit of the circuit. The fundamental frequency of the composite sync signal is 30 cycles, because the waveform returns to its starting point each \(1/30\) second.

Mixed waveforms often provide an indication of amplifier linearity. Fig. 14 shows a low-frequency waveform mixed with a high-frequency one after it is passed through a nonlinear amplifier. We can see that the high-frequency component is attenuated at the positive peaks of the waveform. This indicates that the amplifier is compressing the signal on positive peaks.

Similar mixed waveforms of low- and high-frequency sine waves are often used to test audio amplifiers for intermodulation distortion. Whenever an amplifier compresses a signal, more or less heterodyne action is present. In this case, the two signal frequencies heterodyne to form sum-and-difference frequencies (new frequencies) which are measured at the amplifier output. Intermodulation distortion is expressed as a percentage of distortion products with respect to the total output signal.

Mixed waveforms appear in cyclograms, as well as in conventional displays. Fig. 15 shows a simple cyclogram pattern, compared with a mixed waveform type. The thickened portion of the mixed waveform results from residual video signal, which gains entry into the sync circuits as in Fig. 16.

Electronic circuits can develop undesired mixed waveforms when high-Q resonant branches are present. In such cases, ringing patterns distort the waveform. Fig. 17 shows how spurious ringing components appear in conventional and cyclogram displays. Transient oscillation can be suppressed by reducing the Q of tuned-circuit branches.

When a voltage waveform rings,
Fig. 17—Ringing pattern (a) in square wave; (b) in cyclogram.

Fig. 18—a—Current waveform obtained across series resistor. b—Current waveform obtained with current probe.

the current waveform also rings. There are two methods of displaying current waveforms (Fig. 18). In the first, the scope’s vertical input terminals are connected across a series resistor in the circuit. Since the voltage drop across a resistor is directly proportional to the current flow through the resistor, we see the current waveform on the scope screen.

In the second method a current transformer can be used as a probe to display current waveforms. A small horseshoe-shaped ferrite core is used. A coil that connects to the scope input terminals is wound on it. The core is inserted around a wire in the circuit under test. Thus, the wire acts as a primary winding. The current waveform in the wire is induced in the coil,

Fig. 19—(left) Integrated square wave and a simple integrating circuit. (across bottom of page) Some of the many types of square-wave distortion in electronic service work.

and the stepped-up voltage is fed to the scope.

The more turns in the coil, the higher its output voltage. On the other hand, the distributed capacitances can cause spurious resonances in the winding that produce overshoot and ringing in the reproduced waveform. It is sometimes helpful to shunt resistance across the coil winding to dampen the Q of spurious resonant configurations.

Causes of waveform distortion

Next, let us look into some of the basic causes of waveform distortion. Once they are understood, we can look at a distorted waveform and tell what

Fig. 20—a—Square wave integrated in passage through amplifier. b—Stray capacitance Cg forms integrating circuit with R that distorts square wave.

the circuit fault has occurred. First, consider Fig. 19-a. Series resistance working into shunt capacitance integrates a square-wave, sync-pulse or other rectangular waveform. This is one of the basic distortions met in practical work. Other types of square-wave distortion are illustrated across the bottom of this page.

For example, we find integration in a simple resistance-coupled amplifier (Fig. 20) when the square-wave frequency exceeds the amplifier capability.
Here the shunt capacitance is invisible. It is stray capacitance and consists of the capacitance of circuit wiring to ground, plus the tube's interelectrode capacitance. How can we minimize this integrative distortion? A lower value of plate-load resistance must be used. The amplifier gain drops, but we get improved frequency response.

Stray capacitance increases when lead length is increased. Suppose we lengthen the video-signal lead to a picture tube (Fig. 21). We find that the picture quality deteriorates as the stray capacitance increases. As shown in Fig. 22, detail is lost and the image appears blurry. If the amplifier is swept, the frequency-response curve shows high-frequency attenuation because of excess stray capacitance.

We must not confuse scope distortion with receiver distortion. Fig. 23 shows a distorted reproduction of a square wave. The pattern is cramped at the right-hand end. This is not a receiver fault, but a scope defect. The horizontal amplifier is nonlinear. Nonlinearity can be caused by weak tubes, low plate-supply voltage or a defective grid-coupling capacitor.

Coupling capacitors become defective in different ways. Sometimes a capacitor opens completely or partially. Again, the capacitor often becomes leaky or shorts. The capacitance of a leaky capacitor frequently drops, too. Fig. 24 shows how a square wave becomes distorted when a grid-coupling capacitor becomes leaky and its effective capacitance is reduced. The lower portion of the waveform is differentiated because of the reduced time constant in the grid circuit. The top of the waveform is clipped, because leakage shifts the dc grid bias in a positive direction. This causes diode action, and clips the positive peaks of incoming signals.

With a sawtooth driving wave, curvature is introduced as in Fig. 25—the wave becomes nonlinear. In turn, the scope pattern becomes progressively cramped toward the right-hand end. We see that adequately large time constants and correct operating points are essential in scope amplifiers. Three types of horizontal nonlinearity are found (Fig. 26).

Thus, when the basic causes of waveform distortion are recognized, it becomes much easier to interpret scope patterns. The patterns are like a foreign language, which must be learned. For this reason, practical experience is the only way we can become proficient in reading “waveform language.”

British TVers Like Rental

Half the TV watchers in Britain rent their sets instead of buying them, according to a recent statement in Time. Of the new sets being installed, 80% are rentals. One advantage to the consumer is the speed of repair or replacement—at no charge. Larger firms maintain mobile repair vans with parts, test benches and generators and a large company may handle 30,000 service calls a week. One firm offers 32 models at monthly rentals from $4.20 to $8.40, with used sets at lower prices. Charges are reduced every 6 months, and discounts are given for advance payment.

Largest of the firms is Radio Rentals, Ltd. Thirty-two years ago it started renting radios at 35¢ a week. Now it has 750,000 subscribers, and manufactures its own sets as Baird Television, Ltd. Profits last year were $4,612,000.

It’s catching on here, too. Hertz, renting home sets in New York since December 1961, reports triple the volume it anticipated.
How 6½ sq. ft. can speed up your picture-tube service:

10 versatile "Universal" picture-tube types from Sylvania's Silver Screen 85 line may be all you need to fill 52% of your renewal needs! This fact, verified by a recent industry survey, stems from a remarkable streamlining of the Sylvania line—making fewer, more versatile types that can be used as replacements for many others. Already 54 types can replace 217.

Think what the versatility of these "Universal" tubes can mean. An in-shop inventory of a few popular types can help you quickly take care of most of your renewal calls. Ordering is simplified...and distributor calls for special tubes can be cut way down.

Start profiting now from Sylvania's Silver Screen 85 picture tubes. Call your Distributor and put an inventory in your own shop—where it can enhance your reputation for fast service and quality replacements.

Silver Screen 85 Picture Tubes are made only from new parts and materials except for the envelopes which, prior to reuse, are inspected and tested to the same standards as new envelopes.
use it for SILVER SCREEN 85° tubes...
(10 "Universal" types meet half of all renewal needs)

The "Big 10" Tubes that fill 52% of all renewal needs:
21CBP4Z
21ZP4B
21ACP4A
21YP4A
21UP4A
24AEP4
21DFP4
21EP4B
21FP4C

SILVER SCREEN

SYLVANIA

SUBSIDIARY OF
GENERAL TELEPHONE & ELECTRONICS

JANUARY, 1963
THE VALUE OF ANY PIECE OF TEST equipment is determined by what it can do. If the rest of your test equipment can't do, or if it does duplicate, how much faster or more accurately does it operate? The scope falls right in the middle of that category. It can do one job very well — look at the waveform of a signal. Also, it does this very rapidly, if we use it correctly. Let's look at a few examples.

Is the horizontal oscillator working? DC voltmeters and even ac voltmeters can give you some information, but nothing absolutely definite. Negative voltage on the grid of the horizontal output tube could be signal-developed bias or a fixed bias from somewhere else. Only a scope can answer this one. Simply touch a low-capacitance probe to the grid and there's your answer.

Another use: Is the signal on frequency? If the horizontal oscillator is running but is way off frequency, the screen may be dark because the excitation is so far off frequency that the flyback won't deliver any high voltage.

How is this measured with the scope? By comparison. The scope is basically a comparison instrument. If you remember the Lissajous patterns found in every book on scope theory, they show a comparison between a known (standard) and an unknown frequency. We need a standard horizontal-frequency signal to compare with what we see on the output tube grid. Where? Try the horizontal sync pulses in the video signal. Is that accurate enough? Touch the low-capacitance probe to the video output plate, and set the scope's horizontal sweep to 7,850 cycles to produce 2 or 3 cycles on the screen.

You can use more or less if you like, but 2 or 3 give a good usable display (Fig. 1).

Now, leave the horizontal sweep alone, and touch the probe to the output tube grid again. If you see the same number of cycles, the oscillator is definitely on frequency and you can look elsewhere for the trouble. You can set it exactly on frequency with the horizontal hold control, to simplify further troubleshooting. Just adjust for the same number of cycles in the pattern (Fig. 2).

Suppose there is something wrong with this set so that I can't get a video signal? Simple. Take the comparison waveforms from another set in operating condition. Same signal in all of them!

This same trick can be used for vertical sweeps. For instance, if the picture is rolling so fast that you can't tell whether it's going up or down, set up the scope on the video again, but this time on the vertical sync frequency (Fig. 3). Now, back to the vertical oscillator grid and repeat the process we just used on the horizontal oscillator. If you see only a half-cycle or less, the oscillator is too fast (Fig. 4). Several more cycles (Fig. 5) and you know it's too slow.

Sync troubles? Sure. Big problem in cases of vertical instability — weak sync or oscillator troubles? Set up the scope for 2 cycles of vertical sweep or 30-cycle sweep, connect it through a low-capacitance probe to the sync in-
Free SEND TODAY FOR YOUR MONEY-SAVING 464-PAGE ALLIED 1963 CATALOG

SEND FOR IT NOW!
WORLD'S LARGEST ELECTRONICS CATALOG
BIGGEST SELECTION • BIGGEST SAVINGS!
satisfaction guaranteed or your money back

NO MONEY DOWN: NOW! MORE BUYING POWER WITH YOUR ALLIED CREDIT FUND PLAN

SEE OTHER SIDE
For your FREE 1963 ALLIED Catalog, fill in card, detach and mail. (Please give second card to an interested friend.)

SEND CARD TODAY
SEND CARD TODAY FOR YOUR 464-PAGE

ALLIED

1963 CATALOG

WORLD'S LARGEST • BIGGEST SELECTION • BIGGEST SAVINGS

NEW

1963 knight-kits®
Over 100 great do-it-yourself kits: Hi-Fi, Hobby, Intercom, Amateur, Citizens Band, Instrument—savings up to 50%.

Stereo Hi-Fi
Complete selection of components and systems; latest All-Transistor equipment and Stereo Multiplex FM.

NEW

Tape Recorders
Complete recorders, tape decks, recording and pre-recorded tapes at big savings.

Citizens Band Radios
Latest two-way radio—no exam required—complete selection of top-value CB equipment, including Walkie-Talkies.

NEW

Transistor, FM-AM Radios
Best buys in all types of compact transistor radios, including quality FM-AM portables.

Phonographs & Records
Big values in phonographs; latest stereo portables; famous-brand records at amazing discounts.

NEW

Ham Station Equipment
Largest selection of receivers, transmitters, antennas—everything in Ham station gear.

Test Equipment
Save on every type of instrument for home or professional use—all leading makes available.

PLUS
• PA Systems & Intercoms
• Top values in Power Tools, Soldering Guns, Hardware
• Biggest selection of TV Tubes, Antennas; Parts, Tubes, Transistors, Books

satisfaction guaranteed or your money back

NO MONEY DOWN: Now! More Buying Power with Your Allied Credit Fund Plan!

www.americanradiohistory.com
put of the vertical oscillator, and kill the sweep temporarily. Pull a tube, in parallel-filament sets, or ground the output tube grid, in series-string sets. Now, check the sync amplitude. How? Once again, by comparison with a known voltage amplitude. As an average, if there is less than 4 or 5 volts of sync, you've got troubles.

Where to get known voltage? Best way, from a voltage calibrator made for the purpose. Some scopes have built-in peak-to-peak voltages on the front panel. If you haven't any of these, use the filament voltage from your tube tester. For example, the 1.4-volt filament is stated in rms values so the peak-to-peak value is 2.8 times this, or 3.92 volts. Set the scope's vertical gain so it covers a known distance on the calibrated screen. I always used 2 major divisions or 10 small divisions. It makes no difference as long as you remember where it is set. If you don't have a calibrated graticule, mark the ends of the waveform on the screen with a grease pencil. Now go ahead and measure the peak-to-peak amplitude of your sync. Same trick can be used for horizontal sync, video or any other signal to find the peak-to-peak value. To make it simpler, turn the scope's horizontal sweep off while calibrating, leaving only a thin vertical line. Easier to judge distances.

There are a lot of quick-checks such as this that you can make with a scope once you get into the habit of using it regularly. They'll speed up your service work tremendously. Of course, you won't need it on every job, nor even on the majority of jobs. Good old statistics keep telling us that a very large percentage of service jobs require only the replacement of one tube, and this is true, as you've found out. But on the jobs where we need this kind of help, the scope is the only place we can get it. The scope can trace signals, and show you what is happening to them at any point in the circuit, something that no other piece of test equipment can do.

Video short

A Tele-King K73 has developed a short. Raster is present; no video. The sound is nothing but a low growl.

![Fig. 6—Video output circuit in a Tele-King K73.](image-url)

Video output circuit in a Tele-King K73.

Mercury

SELF-SERVICE TUBE TESTERS are BIG INCOME PRODUCERS

NEW MODERN EYE-STOPPING TESTERS... TOPS in PERFORMANCE... QUALITY... and VALUE

Here is everything you want in self-service tube testers at down-to-earth prices. MORE VERSATILITY—Tests emission, shorts and gas of over 1200 tube types including the very latest NUVISTORS, NOVARs, COMPACTRONS, etc.... Also tests fuses, pilot lights, 6 and 12 volt auto radio vibrators, all types batteries under load. SMARTER LOOKING—Modern cabinet design finished in a rich green and white color combination with gold trim... Eye-stoppers in any location—will attract do-it-yourself customers as never before and sell tubes in a big way. MORE QUALITY FEATURES—Completely self-service.... Only two easy-to-use controls are required to test any tube.... Easy-to-read quick flip tube charts list over 1200 tube types.... Engineered to accommodate new tube types as they are introduced.... Etched aluminum panel always retains its handsome appearance.... 63 phosphor-bronze beryllium tube sockets assure positive contacts and long life.

Replace old self-service tube testers with Mercury testers and spark-up your present locations.... place them in new locations and be assured of the greatest profit results.

Slightly higher in the West

MERCURY ELECTRONICS CORPORATION, 111 ROOSEVELT AVENUE, MINEOLA, NEW YORK

JANUARY, 1963

Model 202-LB (Le-Boy Floor Model) Dealer Net $184.50

Model 202-C (Counter Model) Dealer Net $129.95

Model 203-LB (Deluxe Le-Boy Floor Model) Dealer Net $254.50

Model 203-C (Deluxe Counter Model) Dealer Net $166.95

This set has been tampered with. The two 1.200-ohm resistors in the video amplifier circuit are wrong. This would give you a total plate load of only 600 ohms. Someone has misread the color code. This resistor should be 2300 or 6,200 ohms. This is about normal plate load resistance for this circuit.

As to the short, there is a remote possibility that the low resistance is causing the tube to draw so much plate current that the resistors are overloaded. Not too much chance of this, though, because of the tube type used. Unless it is shorted, a 6C86 probably wouldn't...
carry enough current to burn up two resistors in parallel. Check to see if the 100-ohm resistor in the cathode circuit is burned. It or the contrast control would probably be damaged, too, if the tube were defective.

The most likely cause for this would be a direct short to ground in the wiring, one of the peaking coils or the primary of the sound i.f. input transformer (Fig. 6). Unsolder parts and trace it out with an ohmmeter.

Picture pulling

I have an RCA KCS-72 chassis with severe picture pulling. I can't get the contrast high enough without weaving, by adjusting the age control. Also, the height of the sync pulses goes down when the weave shows up. Is 8 volts too much negative bias on the i.f. grids?

All of your troubles are tied together. Eight volts is quite a bit too much negative bias for the video i.f. Because of this, you can't get enough gain in these stages to give you proper contrast. Check the i.f. tubes. Even with the high bias, one of them may be gassy or have grid emission, resulting in plate saturation and the sync clipping.

Also, from the symptoms, it would be a very good idea to align the i.f. stages. Sweep them carefully and watch out for a droop in the high-frequency end of the curve.

Finally, bridge the electrolytics in and around the B-plus supply lines to the video amplifier and sync separator stages. Pulling is often caused by weak electrolytics.

Vertical growing

We have a Sylvania S57-3 chassis in the shop that is pretty mysterious. The vertical sweep expands about 40% during the first 5 minutes of warmup! The vertical output tube plate current increases about the same amount, but the waveform on the plate seems to expand only about 5%. All voltages seem to be pretty stable.—D. H., White Rock, B.C., Canada

Since, as you say, you've changed all components in the vertical circuits, I'd look elsewhere. Try replacing the damper tube, since it could be altering the boost voltage. Check the horizontal output tube for grid current or grid leakage, also the 10DE7 vertical output tube. I'd say that this trouble is probably due to grid current or grid leakage in one of the tubes named (except the damper, of course!) since this seems to be at the bottom of almost all mysterious difficulties like this.

I remember a case not long ago in which a small leakage in the grid of the horizontal output tube caused a very similar symptom. The only explanation we could find was that it was altering boost voltage.

Horizontal lock range

In an old Stewart-Warner 9126, I can't get the horizontal hold control to work right. Although I can short out the afc grid and hold a picture for a long time, when I put the afc back on, it is very unstable.

When I turn the hold control (the slug in the ringing coil) clockwise to bring the picture into sync, it flops on past out of sync the other way. If I back it up to I can get it to lock, but sometimes I get it locked on a split picture and can't get it off without throwing it out of sync again and sneaking up on it. I've checked or changed every part in the horizontal ave, and I seem to have plenty of sawtooth pulse at the right peak-to-peak amplitudes.—J. C., Atlanta, Ga.

Although this looks like a standard stabilized-multivibrator dual-diode afc circuit, it can be pretty tricky. Check the circled parts in Fig. 7. Each one has been known to cause this peculiar symptom. Probably the most likely is the 3,900-ohm oscillator plate load resistor. Even though this resistor in most circuits is not critical as far as frequency is concerned, in this one it is. You'll probably find it has increased to 8,000 or 10,000 ohms. Also check the grid bypass capacitor and the pulse coupling capacitors, both .05 μf, for leakage. The grid is a very high-impedance circuit, more than 5 megohms from ground, and any dc leakage in the bypass capacitors upset control action.

Fig. 7—Partial circuit of Stewart-Warner 9126. Circled parts can cause horizontal instability and incorrect locking action.
WHAT'S YOUR EQ?

Draw the Waveform

As long as the input signal is less than +20 volts, the diode cannot conduct and the output signal is the same as the input signal. When the input voltage reaches 20, the tube acts as a short, keeping the voltage from rising any higher.

Capacitor Charge

Since the two capacitors are in series, the 100-volt charge will divide, charging each to 50 volts. When the shorting switch is pressed, the non-shorted capacitor (C1) will be charged to 100 volts. When the switch is released, one end of C2 is connected to the negative side of the battery and the other end to the negatively charged end of C1. Thus, you will have a 100-volt charge on one capacitor and zero charge on the other. (This statement does not consider the residual charge left in the shorted unit.) Due to leakages, the charges will gradually even up, resulting in a final charge of 50 volts on each capacitor.

Another Two-Box Problem

As you have probably guessed, this is also done with rectifiers, and the difference between it and the earlier problems is in the switching. The diagram below shows the circuit. The lamps are 120 volts 6 watts, as stated in the problem, and the rectifiers should be rated at 100 ma or more.

TV-RADIO Servicemen or Beginners... Send for Coyne's 7-Volume Job-Training Set on 7-Day FREE TRIAL!

Answers ALL Servicing Problems QUICKLY... Makes You Worth More On The Job!

Put money-making, time-saving TV-RADIO-ELECTRONICS know how at your fingertips—examine Coyne's all-new 7-Volume TV-RADIO-ELECTRONICS Reference Set for 7 days at our expense! Shows you the way to easier TV-Radio repair—time saving, practical working knowledge that helps you get the BIG money! How to install, service and align ALL radio and TV sets, even color-TV, UHF, FM and transistorized equipment. New photo-instruction shows you what makes equipment "tick". No complicated math or theory—just practical facts you can put to use immediately in the shop, or for ready reference at home. Over 3000 pages; 1200 diagrams; 10,000 facts! **SEND NO MONEY!** Just mail coupon for 7-Volume TV-Radio Set on 7-Day FREE TRIAL! We'll include the FREE BOOK below. If you keep the set, pay only $3 in 7 days and $3 per month until $27.25 plus postage is paid. Cash price only $21.95. Or return set at our expense in 7 days and owe nothing. Either way, the FREE BOOK is yours to keep. Offer limited, so act NOW!

FREE DIAGRAM BOOK! We'll send you the new 75-page TV & Radio Television Picture Patterns and Diagrams Answer Book with its original 设图 to aid your instruction! 7-Volume Shop Library on 7-Day FREE TRIAL! Yours here on approval, simply mail coupon to us today! No matter how you're earning your living, you'll find in pictures and diagrams thousands of hints and ideas. Graphs and charts in text assist you. This is a must for any TV and radio set. Whether you keep the 7 Volume Set or not! Mail coupon today!!

Transistor Ignition

READY-TO-INSTALL CONVERSIONS

You can get top mileage, highest performance, longer point & plug life, better winter starting, and many other advantages with one of our INEXPENSIVE TRANSISTOR systems. These include HERMETICALLY-SEALED AMPLIFIER, HIGH-RATIO COIL, BALLASTS, LEADS & HARDWARE.

MODEL T 6 or 12v. neg. grid... $39.95
MODEL T2 TWO TRANSISTORS, 200-1 coil... $44.95
MODEL TP 6 or 12v. pos. grid... $49.95
MODEL TS TWO TRANSISTORS... $49.95

TWO-TRANSISTOR KITS Everything needed to build conversion. Includes transistors, coil, ballast, heat sink, decal, etc.

K72 with TX250 coil for 30v output... $34.95
K72 with TX400 coil for 40v output... $34.95

K1 Single Transistor with 400-1 coil... $29.95
K1 6 or 12v. negative-ground only. Point insulation kit adapts to points ground... $25.95.

1 oz. Epoxy potting plastic in mixing bag $1.95 pp.

HIGH-RATIO IGNITION COILS with free circuit diagram.

TX250 Heavy duty coil 250-1 ratio... $ 9.95
T400 HIGH EFFICIENCY 400-1 coil for higher output... $39.95

FULL LINE OF PARTS at net prices.

Free lists. Dealer opportunities. Marine models available. When ordering, specify voltage and car. Add postage for 4 lbs, or kits and conv's; 3 lbs. or coils. $2.50 deposit with C.O.D.'s.

PALMER ELECTRONICS LABORATORIES Inc. CARLISLE 20, MASS. 617-AL 6-2626

TV-RADIO Servicemen or Beginners... Send for Coyne's 7-Volume Job-Training Set on 7-Day FREE TRIAL!

Like Having An Electronics Expert Right At Your Side!

FREE BOOK—FREE TRIAL COUPON!

VOL. 1: EVERYTHING ON TV RADIO PRINCIPLES! 300 pages of practical explanations; hundreds of illustrations.

VOL. 2: EVERYTHING ON TV RADIO-FM RECEIVERS! 403 pages; fully illustrated.

VOL. 3: EVERYTHING ON TV RADI0 CIRCUITS! 330 pages; hundreds of illustrations, circuit diagrams.

VOL. 4: EVERYTHING ON SERVICING INSTRUMENTS! How they work, how to use them. 368 pages; illustrated.

ALL 7 BOOKS HAVE BRIGHT, MODERN VINYL CLOTH WASHABLE COVERS!

FREE BOOK—FREE TRIAL COUPON!

VOL. 5: EVERYTHING ON TV TROUBLESHOOTING! Covers all types of sets. 437 pages; illustrations, diagrams.

VOL. 6—TV CYCLOPEDIAM Quickly and concisely answers to TV problems in alphabetical order, including UHF, Color TV and Transistors; 868 pages.

VOL. 7—TRANSISTOR CIRCUIT HANDBOOK! Practical reference covering Transistor Applications; over 200 Circuit Diagrams; 410 pages.

FREE BOOK—FREE TRIAL COUPON!

Educational Book Publishing Division COYNE ELECTRICAL SCHOOLS 1455 W. Congress Parkway, Dept. 13-RE, Chicago 7, Illinois

Free send me COYNE'S 7-Volume Applied Practical TV-Radio Electronics Book for FREE! Get 7-Volume Job Training Set FREE for 7 Day free trial per your request. Include "Patterns & Diagrams" book FREE!

Name:_________________________

Address:_________________________

City:_________________________

State:_________________________

Age:_________________________

Zone:_________________________

Check here if you want FREE catalog only. Cash price or COD. Add postage for C.O.D. and cash orders. 7-Day Money Back Guarantee.

Coyne ELECTRICAL SCHOOL

1455 W. Congress Parkway Dept. 13-RE, Chicago 7, Illinois

JANUARY, 1963

57

www.americanradiohistory.com
HERE'S PROOF:
HARMAN-KARDON GALAXY SERIES handles more sound jobs, large or small, easier and at less cost than any other packaged public address amplifier!

- You select exactly the number of channels, types of inputs and the power you require to fit each job! You buy only what you need, use what you buy ... never any waste!
- Expand or modify a system, anytime, with simple modules that install in minutes. Regardless of whether it's channels, inputs or power! System never outdates!
- Apply compression or full limiting to any desired channel, on any kind of program source. Or, alternately, apply limiting action to the entire program mix. Eliminate complaints about sound being too loud or too low; reduce the number of microphones and channels needed to achieve group coverage; prevents sound output exceeding point of feedback howl.
- Introduce beep, warble or continuous tones—all three if you wish—to signal time periods, fire, forced or unauthorized entry, occurrence of any disaster or emergency ... even to signal rain, temperature, water level or other possibly significant conditions. And you can introduce these signals manually, or remotely and automatically ... even if the amplifier is turned off! Now a sound system can more than earn its keep by doubling as an operation and safety aid.
- Employ "precedence" mode of operation, with local manual switch or remotely and automatically; complete cut-out of unwanted signal or any blend of the normal and precedence signals. Now you can have all-call, emergency messages, tone signals, periodic sales messages, etc., as an integral part of the regular sound system.
- Monitor headset jack and monitor volume control ... plus space and facilities on the front panel for plug-in monitor speaker or VU meter. Takes the guesswork out of system adjustments; detects and isolates program problems quickly.
- Complete remote control facilities are provided... for control of program levels, putting the system on "stand-by" or turning the system on and off. Place the equipment where it is most convenient.
- Professional performance, quality and construction throughout. Power ratings are given at 1% T.H.D.—the industry practice for packaged amplifiers is twice this distortion. Power band-width, hum and noise level and regulation are exceptional ... as good as you might expect from "high fidelity" amplifiers. Parts are conservatively operated; tubes are run well within manufacturers' tolerances for greatest reliability and life.
- Plus many other special operating and installation advantages, such as: output to a tape recorder, independent of tone and master volume controls; four position Lo Cut Filter; bridging In-Out connections; on-chassis sockets for plug-in low impedance mike and line input transformers, phono and tape equalizers; both balanced and unbalanced 25V and 70V constant voltage outputs; choice of flush-panel, cage or rack-mounting facilities ... and numerous other features.

PREAMPLIFIER-MIXER — accommodates up to 8 channels; includes VU Meter, line amplifier and power supply.

POWER BOOSTERS — available covering the range from 40 to 200 watt performance.

REAR VIEW 40-50 WATT GALAXY — note modular construction and arrangements of inputs. Other models: 75-85 watt and 150-200 watt output power.

AND DOLLARS-PER-WATT PRICES THAT DEFY COMPETITION! No matter how small or how big the sound system you contemplate, you owe it to yourself to investigate the Harman-Kardon GALAXY Series before you buy. Use the coupon to get Free "Sound Headquarters" Decal that helps identify you as a source of quality sound equipment ... plus all the facts on GALAXY!

HARMAN-KARDON INC. Commercial Sound Division 55 Ames Court, Plainview, L.I., N.Y. DESK T-1

Please send literature on the GALAXY Series immediately.

name __________________________

address ________________________

city __________________________ state ____________________

harman kardon
Electronic switching

Switching circuits for oscilloscope or oscillograph

By F. J. G. Van Den Bosch

In electronics it is often desirable to compare two or more waveforms, either in relation to each other or to a fixed standard. Electronic switching and an oscilloscope make this possible.

There is a fundamental loss of information when we use an electronic switch—we lose whatever data would have appeared during the switching intervals. This loss is kept as small as possible by selecting a switching frequency that makes all useful or desired information available. This depends upon how much loss of information can be tolerated, or inversely by the minimum amount of data judged adequate.

In studying biophysical waveforms, for example, the switching frequency should be at least five times that of the waveform to be observed. When the two waveforms to be observed have a great frequency difference, the switching frequency should be based upon the highest frequency.

Fig. 1 shows two electronic switching circuits. In Fig. 1-a, V1 is arranged as a standard multivibrator. Switching pulses are injected into the suppressor grid of the 6AU6's. Varying screen grid potentials with potentiometers R1 and R2 vary the relative position of each of the switched beams. The switch's outputs can be connected directly to a scope or to the driver stage shown in Fig. 2.

Fig. 1-b is slightly different. Here, multivibrator V1's output is fed to V2, a driver for V3 and V4. V2's cathodes are directly connected to the cathodes of V3 and V4. Again the output of these last tubes can be connected directly to the scope or to the driver stage shown in Fig. 2.

With the values shown, both circuits in Fig. 1 will operate equally well. However, note the separate feed of the screen grid potentials in Fig. 1-a. This is done to avoid interference between the two beams. If you want to display more than two waveforms simultaneously (for example, six signals), use three multivibrators and six independent 6AU6 output tubes. The driver stage shown in Fig. 2 increases sensitivity and is optional.

Fig. 3 shows a valuable addition for blanking. It is primarily a mixer for the two incoming signals from the switches. V2's plates are connected via a capacitor (not shown) to the grid of CRT. One control grid of V2 receives the mixed signals from V1 and the other control grid receives a pulse from the scope's sweep circuit. The net result is sync with the line time base and a suppressed retrace.

There is another approach to this problem. When dealing with a biophysical phenomenon, it might be more economical to use separate preamps fed by an electronic switch to power a final amplifier. This final might then be connected to a scope (if the signal is to be visually observed), or to recording equipment.

Fig. 4 shows the circuit of an electronic switch for two inputs. V1 and V2 are both multivibrators. V3 allows phase adjustments before output stage V4. Variable capacitors C1, C2, C3 and C4 adjust the switching frequency for the waveforms shown at A and B. Both these outputs then connect to the input terminal of the preamps and in parallel with the incoming signals. This way only one final amplifier is required. For example, electroencephalographs usually contain six to eight separate circuits for each hemisphere of the brain to be examined. By using three switches like the one in Fig. 4 and interconnecting them for sync with capacitors of the type shown in the cir-

Fig. 2—Driver stage amplifies output of circuits of Fig. 1.

Fig. 3—Retrace blanker is also a mixer.
Now, through continuous Winegard research, a new, improved Electro-Lens yagi has been developed—the **NEW WINEGARD COLORTRON—PERFECT ANTENNA FOR COLOR TV**!

Colortrons have a flat frequency response (plus or minus $1/2$ DB across any 6 MC channel), no “suck-outs” or “roll-off” on end of bands... accurate 300 ohm match (VSWR 1.5 to 1 or better)... unilobe directivity for maximum ghost and interference rejection. They deliver today’s finest color reception, give a new picture quality to black and white. Colortrons are the only outside antennas that carry a **WRITTEN FACTORY GUARANTEE OF PERFORMANCE**.

And Colortrons are built to last. High tensile aluminum tubing for rigidity and stability, insulators with triple moisture barrier, GOLD ANODIZED for complete corrosion-proofing.

There are four Colortron models to cover every reception need, from suburbs to distant fringe areas... $24.95 to $64.95 list.

New Winegard Colortron twin-nuvistor amplifier perfectly matches Colortron antennas. Gives added gain and sensitivity on both color and black and white. Ultra-low noise, high gain Colortron Nuvistor Amplifier can easily drive 6 or more TV sets.

With revolutionary twin-nuvistor circuit, Colortron amplifiers can handle up to 400,000 micro-volts of signal without overloading. **This is 20 times better than any single transistor amplifier.** The Colortron Amplifier will bring the weakest signals up out of the snow, yet strong local TV & FM signals will not overload it. A special life saver circuit gives the two nuvistors a life of 5 to 8 years.

This amplifier is completely trouble free and the finest performing antenna amplifier you can own.

Completely weather sealed, nothing is exposed to corrode and cause trouble... has all AC power supply with 2 set coupler. (Model No. AP-220N, $39.95 list). Twin transistor model also available up to 80,000 micro-volts input. New type circuit protects transistor from static electricity built up in lightning flashes. (Model No. AP-220T, $39.95 list). Colortron Amplifier can be added to any good TV antenna for sharper, clearer TV reception.

Ask your distributor or write for technical bulletin.
Metro-Tel Shorted-Turn Indicator

Conar 230 Tuned Signal Tracer

By WAYNE LEMONS

Ever want to check the oscillator or oscillator frequency of a tube or transistor radio? Ever want to make a quick diagnosis as to whether the radio trouble is in the i.f. or af stages? Like to know if the loop antenna is tuning to the correct frequency? These are only a few of the things you can do with a TUNED signal tracer that you can't do or can't do as well with an untuned one.

Back in the Thirties no shop was considered complete without at least one tuned signal tracer on the service bench. Later, the untuned tracer virtually replaced the tuned variety, because they were then less expensive and less complicated.

The tuned tracer is better than the untuned both in circuit loading where it usually has much less effect on the circuit it is checking, and in signal identification where the tuned tracer tells you whether the signal you are measuring is rf, i.f. or oscillator and at what frequency.

The bugaboos of both price and complication have been neatly side-stepped on a new tuned tracer made by Conar, a division of the National Radio Institute. It is both simple and inexpensive.

Looking at the schematic, note that the probe houses a cathode follower (6AB4). This gives it high input impedance and low input capacitance. The 47,000-ohm resistor (R1) further isolates the input capacitance from the circuit to be tested.

The output of the 6AB4 is fed through the probe cable to a COARSE

Simpler Closed-Circuit TV

An industrial closed-circuit, high-resolution color TV system that uses a single vidicon camera with a color wheel and a three-gun color tube in the receiver is reported by Mitsubishi of Japan. Previous systems using a single vidicon in the camera have needed color wheels synchronized on both camera and receiver. Those systems that used a three-gun color tube in the receiver have used a three-vidicon camera. The new camera combines the two approaches to make a simpler system. The equipment has a bandwidth of 10 mc.

Equipment Report

Fig. 4—A practical electronic switch.
ATTENUATOR step switch inside the main housing. This switch attenuates the input signal, either rf or af, in multiples of 10. The output of the attenuator is fed through a .005-µf capacitor (C3) to the grid of a 6GM6 rf-af amplifier. A 3,000-ohm pot in the cathode of this tube is used as a FINE ATTENUATOR. In the rf position, the plate load of the 6GM6 is an rf coil. Its frequency is determined by the range switch and the tracer tuning capacitor (A range—170 to 500 kc, B range—500 to 1,500 kc.) The rf is then coupled through a 47-µf capacitor (C9) to the grid of a second 6GM6 rf amplifier that also uses rf coils in its plate circuit. The output of this second rf stage is fed through another 47-µf capacitor (C13) to one of the diode plates of the 6AV6. This diode rectifies (detects) the rf, and the resultant dc is filtered and fed to the grid of the 6ES tuning-eye tube. The detected signal is also fed to the audio amplifier through the volume control. Eye closure indicates the strength of the rf signal.

For af tracing, the same probe is used as well as the coarse and fine attenuators. In the af position, though, only the first 6GM6 is used. The rf plate-coil is switched out and an 18,000-ohm resistor (R15) switched in instead. The af is then fed through a .01-µf capacitor (C7) to the other diode plate of the 6AV6. The rectified af voltage is fed to the grid of the 6ES tuning eye. It is also fed to the audio amplifier through the tracer volume control so the operator can hear the signals through the built-in speaker.

Using the tracer

Either tube or transistor radios can be checked with the 230; however, since transistor radios are not discussed as often as tube types, we will confine ourselves to the transistor radio only.

1. **Dead radio**

Turn on the radio and make sure it is drawing current. Tune the signal tracer to the i.f. (usually 455 kc) and hold the probe near the last i.f. transistor, touch it to the transistor case or to the slug inside the transformer. Turn the tracer to near full gain and tune the radio dial. If you hear stations, the circuits are working up to this point and you should suspect the audio circuits. If you hear no signals, then you know the trouble is ahead of the last i.f.

To trace the audio stages, switch the tracer to af. A convenient point to start is at the top of the volume control. If there is audio here, move on to the driver base, driver collector, audio output bases, audio output collectors and the speaker voice coil, until you find where the signal stops.

For tracing i.f. and rf signals, switch the tracer to rf, start at the antenna and work up to the volume control—base and collector of each stage. Remember that in a transistor radio, unlike a tube radio, you will have a loss through the i.f. transformer. The only time you won't have a loss is if the transistor input circuit is open so that there is no load on the secondary winding. If you find a set that has little or no loss, look for a broken printed circuit or an open transistor. When tracing rf or i.f. circuits, set the tracer dial to the correct frequency to get maximum gain.

2. **Testing the oscillator**

The oscillator circuit is a frequent cause of trouble in transistor radios. With the model 230 you can tell not only whether the oscillator is working but also if it is at the correct frequency. Just hold the tracer probe near the oscillator circuit and tune the tracer on band B for maximum eye closure. Increase attenuation if the eye shadow overlaps. Read the oscillator frequency directly from the 230 dial. **Note:** Since the tracer's top frequency is 1,500 kc, the radio dial should be set to below 1,000 kc so that the radio's oscillator frequency will not be out of the tracer's range. (The oscillator is normally the intermediate frequency above the station frequency.)

3. **Checking gain**

One of the most important aspects of signal tracing is in checking the gain of a radio. A set that is weak is nearly always harder to troubleshoot than a dead one. With the 230 you can check gain accurately since the tracer does not load the circuits appreciably. The

(Continued on page 66)
all find Heathkit® test equipment quality and

Industry Production and Design professionals put Heathkits to work in their factories and laboratories for high performance at low cost. Typical Heathkits used are: 10-10 3" DC Oscilloscope, $79.95...IM-11, world's largest selling Vacuum Tube Voltmeter, $24.95...IG-82, Sine & Square Wave Generator, $51.95...IP-32, Variable-Voltage Regulated Power Supply, $56.95...IP-20, Hi-Current, All-Transistor, Regulated Power Supply, $72.95...IM-30, Laboratory Transistor Tester, $54.88...IM-21, Vacuum Tube Voltmeter for precision AC measurements, $33.95.

Technicians around the world put Heathkits on their service benches for rapid, precision measurements...complete trouble-shooting facilities at lowest cost. Typical Heathkits used are: IM-32, Service Bench Vacuum Tube Voltmeter, $32.95...IO-12, Wide-Band 5" Oscilloscope, $76.95...TT-1A, Mutual Conductance Tube Tester, $149.95...IG-62, Color Bar and Dot Generator for Color TV servicing, $64.95...IG-52, TV Alignment Generator, $54.95...IT-11, Deluxe Capacitor Checker to test capacitors of all types, $29.95...See the complete line in the Heathkit Catalog.
Hobbyists of all kinds find Heathkit test equipment invaluable for pursuing their hobbies with refined techniques. Audiophiles, amateur radio operators, kit builders of all kinds use these Heathkits in their workshops: IO-21, General Purpose 3" Oscilloscope, $49.95 ... MM-1, Sensitive Volt-Ohm-Milliammeter for all-purpose measurements, $29.95 ... IT-21, Tube Checker for fast tests of tubes of all types, $44.95 ... IG-102, Radio Frequency Signal Generator, $27.95 ... IG-72, Audio Signal Generator, $41.95 ... IP-12, Low Ripple Battery Eliminator, $47.50.
best way to check gain is to first check several radios that are performing normally. This gives you some idea of what to expect. This is your standard of performance and, when a radio deviates substantially from it, you have a good indication of where to look for trouble. Note: Only strong stations will give you any indication at the antenna transformer secondary. There is very little signal voltage at this point.

4. Checking audio

You can check the audio stages both for gain and distortion. Start at the top of the volume control and work right on through to the speaker. For more accurate at gain checks, use an af generator with the tracer.

For distortion, a station signal is best. Follow the af until you can localize the stage originating the distortion.

The calibrated attenuators work both for rf and af and control the amount of signal fed to the tuning eye and to the audio amplifier. On the other hand, the volume control has no effect on the eye. It controls the audio going to the speaker.

The Conar tracer fills a definite niche as an inexpensive, simple-to-operate, tuned signal tracer that should be an invaluable aid for any technician servicing broadcast radios.

Metro-Tel Shorted-Turn Indicator

This handy little device checks coils for shorts and excessive leakage rapidly and easily. You simply drop the coil being checked over the mandrel projecting out of the front panel and watch the meter. If the needle doesn’t move, the coil is not shorted. If the needle moves to the left (down scale), there’s a shorted turn somewhere in that coil.

The circuit used is a peak-tuned two-transistor oscillator powered by four 1.5-volt C-cells. The oscillator coil core extends through the instrument’s front panel. If a shorted or very leaky coil is placed over this core (mandrel), it reduces the Q of the oscillator cir-
International Model 100A Executive Transceiver

International’s new Model 100 A is the latest in the outstanding line of Executive transceivers. The advanced design Executive features a transistor power supply, new perforated metal cabinet, and a new rugged microphone... all of which contribute to a more reliable mobile operation.

The Model 100 A... the finest of its kind, also features:
- Crystal filter for improved receiving
- Twelve crystal controlled transmit positions
- Two crystal controlled receive positions
- Dual conversion superheterodyne receiver tuning 23 channels
- Built-in calibration circuit
- N R squelch
- Provision for connecting external speaker and S/meter
- Push-to-talk operation
- Transistor power supply operates from 6/12 vdc or 115 vac

Model 100 A, complete with 1 transmit crystal, 1 receive crystal, and microphone... $199.50

External Speaker and S/Meter
The perfect companion for the International Executive Model 100. Utilizes a high impedance vacuum tube volt meter circuit. Connects to socket on rear of transceiver. S/meter reads in three ranges. Brown cabinet, brown and silver panel matches Executive transceiver.
Complete with interconnecting cable... $49.50

Executive Speech Clipper/Filter Amplifier
A microphone amplifier designed to increase average modulation... limits modulations peaks... filters audio frequencies above 2500 cycles. Permits arm-length microphone operation. Power requirements: 12 vac or 12 vdc.
Complete with interconnecting cable... $36.50

12.6 VAC, 2 Ampere Power Unit
Base station power unit for Speech Clipper/Amplifier. Operates from 115 vac. Provides 12.6 vac at 2 amperes.
Complete with mounting chassis, power cord, fuse, switch... $12.50

Citizens Band licensees with International equipped stations know the unquestioned superiority and advantages of Executive transceivers and their system engineered accessories.

See your authorized International dealer today.

INTERNATIONAL CRYSTAL MANUFACTURING CO., INC.
18 NORTH LEE • OKLAHOMA CITY, OKLA.
Headphones cut cost, time and amount of equipment

By ERIC LESLIE

The hard-core stereo enthusiast insists that the only way you can get true stereo is by listening with headphones. Loudspeaker stereo does add that third dimension of direction to the sound, but the direction is limited by the speakers. The sound has to come either from one or the other, or from some point ahead of you on a plane directly between the two speakers. But, as Joe Marshall says: "Headphones put you right among the instruments."

To me, headphone stereo had one other advantage. It made it possible for me to add stereo to my present setup with a minimum of cost and trouble. A small multiplex adapter, a pair of stereo headphones and two output transformers were, roughly speaking, all I needed. The transformers for this application are not critical, but should be matched. Mine were 2,000 ohms primary to 3 to 6 ohms secondary, for use in the cathode-follower output of the Heath multiplex adapter. A higher primary impedance might work better with adapters having a plate output of 1.5 volts. An otherwise identical 7,000-ohm type was tried both with the cathode-follower output and with a transistor-type multiplex adapter. In both cases, output dropped 50%. Since no dc flows in the windings, large transformers are not required.

The output transformers were enclosed in a box with a pair of fuses (not really necessary for this type of headphone stereo, but useful in case I ever want to use the phones on the output of a power amplifier) and the necessary input and output jacks. The hookup is shown in Fig. 1, and is self-explanatory. All that is necessary is to connect it to the multiplex output of your FM tuner. My FM tuner did not have a multiplex output, so the problem was not quite as simple, but still not difficult.

The audio output of an FM tuner follows a de-emphasis network—a sort of tone control that compensates for the fact that the high frequencies are deliberately emphasized before being transmitted. This pre-emphasis and de-emphasis is one of the factors that give FM its excellent signal-to-noise characteristics. For FM stereo, we have to tap in ahead of this de-emphasis network, which is a resistor in series with the output and a capacitor across it.

Our multiplex output has to be taken off ahead of this final resistor. Fig. 2 makes this clear. The convenient thing would be to add a jack for the multiplex output. I simply soldered a short piece of low-capacitance coax directly to the discriminator output.

Some practice may be needed in adjusting the separation control to get the best stereo effect. Unfortunately the tones broadcast to help you make this adjustment are usually short, but if you can try to use them, not only will the right and left tones tell you when you are getting separation, but there is an unmistakable maximum of sound in both headphones—when both tones appear at the same time and the separation adjustment is correct—that cannot be heard on monophonic music or speech.

Another thing to watch is that the two channels are in phase. Reverse the connections to one of the output transformers while listening.

The headphone effect is, of course,

![Image](https://www.americanradiohistory.com/images/1968/11/fig1.jpg)

Fig. 1—Schematic of the unit.

![Image](https://www.americanradiohistory.com/images/1968/11/fig2.jpg)

Fig. 2—How to add multiplex output to discriminator or ratio detector.
binaural rather than the stereophonic effect you get with loudspeakers. In most recordings, it is binaural reception of material recorded stereophonically. See Marshall’s article in the October 1962 issue.

And, if you have a second amplifier, all you have to do for loudspeaker stereo is to pull the output leads of the multiplex adapter off the phone box and plug them into the inputs of your two amplifiers. It is a second’s job to change from headphones to speaker or back again. My own job uses the old (de-emphasized) output to the mono amplifier, so I have mono FM on speaker and stereo on headphones.

END

The Model 88 . . . A New Combination
TRANSISTOR RADIO TESTER—
DYNAMIC TRANSISTOR TESTER

AS A TRANSISTOR TESTER
The Model 88 will test all transistors including NPN and PNP, silicon, germanium and the new gallium arsenide types, without referring to characteristic data sheets. The time-saving advantage of this technique is self-evident. A further benefit of this service is that it will enable you to test new transistors as they are released!

The Model 88 will measure the two most important transistor characteristics needed for transfer servicing: leakage and gain (beta).

Model 88—Transistor Radio Tester
Model 58—Dynamic Transistor Tester.

List Price

AS A TRANSISTOR RADIO TESTER
The Model 88 provides a new simplified rapid procedure—a technique developed specifically for transistor radios and other transistor devices. An I.F. Signal source, modulated by an audio tone is injected into the transistor receiver, from the antenna through the R.F. stage, past the mixer into the I.F. Amplifier and detector stages and on to the audio amplifier. This audio tone signal is then followed and traced through the receiver by means of a built-in High Gain Transistorized Signal Tracer until the cause of trouble whether it be a transistor, some other component or even a break in the printed circuit is located and pin-pointed.

SHIPPED ON APPROVAL
NO MONEY WITH ORDER—NO C.O.D.

Try it for 15 days before you buy. If completely satisfied then send $38.50 and pay balance at rate of $6.00 per month until total price of $59.50 (plus postage) is paid—No interest if financed

Charge Added if not completely satisfied, return to us, no explanation necessary.

TURNER MICROPHONES
designed to do a specific job better

VOICE . . . better on CB

New convenience for CB and mobile operation. Equipped with 11 inch retracted, 5 foot extended coiled cord, wired for relay operation. Response: 80-7000 cps. Level: —50 db. 356c has same spec’s, but with new “cool” interior.

List Price $12.50

FIDELITY . . . for true recording

This powerful little dynamic is designed for TV and broadcast use—a natural for applications where freedom and mobility are required. Comes with 25 foot attached cable, 3 conductor shielded. Desk stand optional. Response: 50-18,000 cps. Level: —60 db.

List Price $57.00

CONVENIENCE for paging

Turner’s amazing “lift switch” model. Exclusive 3 way activating switch arrangement makes this the ideal mike for amateur and paging jobs. Lift it, it’s live! Press the momentary touch bar, it’s live! Press the switch, it stays live! Response: 60-10,000 cps. Level: —52 db.

List Price $49.50

Check your microphone needs and mail this coupon today.

THE TURNER MICROPHONE COMPANY
933 17th St. N.E.
CEDAR RAPIDS, IOWA

THE TURNER MICROPHONE COMPANY

IN CANADA: Tri-Tel Associates
81 Sheppard Avenue West, Willowdale, Ontario

Please send me complete specifications on the microphones described above.

Name ____________________________
Address __________________________
City Zone State _____________________

MORE ELECTRONIC, INC.
DEPT. D-144, 2607 Third Ave., New York 36, N.Y.

Please rush Model 88. If satisfactory, I will pay
on terms specified. Otherwise I will return tester.

Name ____________________________
Address __________________________
City Zone State _____________________

June, 1963
why settle for a routine job in electronics while others move ahead?

Read how CREI graduate Roy S. Reichert has advanced from maintenance work to the design of electronic equipment at one of the world's leading laboratories.

JUST A FEW YEARS AGO Roy S. Reichert had a routine job maintaining electronic equipment. He realized that progress to a responsible, well-paying position in modern electronics was impossible without practical and up-to-date knowledge of advanced electronic engineering technology. Determined to prepare himself to meet industry requirements for career opportunities, he enrolled in a CREI Home Study Program. Today, he helps design complex test equipment used in the development of transistors in the Semiconductor Device Lab of Bell Telephone Laboratories.

YOU HAVE THE SAME OPPORTUNITY. CREI offers you, for study at home, a complete program in electronic engineering technology designed to equip you with the practical knowledge of electronic developments required for well-paying positions and put you on the level of specialization where men are most in demand.

YOU WILL FOLLOW THE FOOTSTEPS of the thousands of CREI men who hold positions as associate engineers, engineering aides, field engineers, project engineers and technical representatives. They work in every area of electronics from manufacturing to research in the aero-space program.

YOU CHOOSE FROM PROGRAMS covering every important field of electronics:

- SERVOMECHANISMS
- INSTRUMENTATION
- RADAR
- COMPUTERS
- AERONAUTICAL AND NAVAIGATIONAL
- COMMUNICATIONS
- AERO-SPACE
- TELEVISION
- AUTOMATION AND INDUSTRIAL ENGINEERING TECHNOLOGY
- NUCLEAR ENGINEERING TECHNOLOGY
A CREI PROGRAM has helped Reichert earn respect for his creative abilities. Here he discusses the design for an automatic transistor test set with John E. Iversen, supervisor of the transistor development group of Bell Telephone Laboratories.

The high level of Reichert’s knowledge of electronics is shown by his ability to contribute substantially to the design of, and to build the prototype of this automatic transistor test set, which measures the device characteristics of transistors under development.

Reichert enjoys the satisfaction and rewards of contributing to the development of semiconductor devices at Bell Telephone Labs. He was doing routine electronic maintenance work at the time he enrolled in a CREI Home Study Program.

Reichert has helped Reichert earn respect for his creative abilities. Here he discusses the design for an automatic transistor test set with John E. Iversen, supervisor of the transistor development group of Bell Telephone Laboratories.

You are guided and assisted with personal attention from CREI’s staff of experienced instructors. You study courses to which a number of leading engineers and scientists have made substantial contributions.

CREI Education is recognized by such large corporations as Pan American Airways, Federal Electric Corp., The Martin Co., Canadian Broadcasting Co. and Mackay Radio. They pay all or part of CREI tuition for their employees.

CREI has 35 years of experience in advanced technical education through home study. CREI has developed electronics courses for the Army Signal Corps, special radio technician courses for the Navy and group training programs for leading aviation and electronics companies. CREI also maintains a Residence School in Washington, D. C. and invites inquiries from high school graduates.

You can qualify for a CREI Correspondence Program, if you have basic knowledge of radio or electronics and are a high school graduate or the equivalent. If you meet these qualifications, send for the free 1963 edition of our 58-page book describing CREI Programs and career opportunities in electronics. Use coupon provided, or write to:

CREI founded 1927
The Capitol Radio Engineering Institute
Dept. 1491-A 1224 Sixteenth St., N. W.
Washington 19, D. C.
Industrial emergency repairs

ALTHOUGH the dial type DC controller is fast disappearing, there are still enough around to keep the maintenance section worrying over the shortcomings inherent in the design. Repairing the nichrome-steel wire in the resistance coils mounted in the hollow cast-iron base is both tedious and viciously hot work that should be best delayed until weekend shutdowns make the work more convenient and leisurely. The innermost tier of coils is the first to fail, because of the entrapped heat. By the same token, it is the most difficult to get at for repairs.

The severe arcing at the contact segments as a resistance coil opens provides a way to make an emergency repair that will hold until normal shutdown can be arranged. Remove the two arcing plates (segments) and insert two thicknesses of brass shim stock large enough to cover the dual spot in one solid piece (see diagram). By drilling proper screw holes in the shim stock, you can replace the segments, place over the shims and secure them with the usual screws. Now the brass shims bridge the gap in the defective resistance coil and service is restored in a matter of minutes (if you have the shunts cut and perforated beforehand).

The slightly increased elevation of the shunted segments offers practically no obstruction to the passage of the carbon brushes on the rotating arms, since the rounded edges of segment and brush provide smooth motion. We have had as many as three shim shunts in place on as many old dc cranes, awaiting an opportunity to dismantle the interior of the hollow cast-iron base to replace those troublesome resistance coils.—Paul C. Ziemke

TELLING THE ELECTRONIC TRUTH

According to legend, the youthful George Washington always told the truth. So do we. Electronic facts and ideas are our business. Dedication to you is our strength. In February, you'll find articles that last week seemed like fantasy, but today are the truth and nothing but. We go so far as to chop down cherry trees to give you electronic facts. Most construction projects are bench- or lab-tested; every practical idea is conceived, written and edited by electronic experts. Here are some self-evident truths you'll want to read about:

ADD STEREO TO YOUR FM WITH THIS SIMPLE ADAPTER

Until all FM receivers include circuits, you can easily build an 8-transistor adapter into your FM to enhance your listening pleasure. It's laboratory tested. Multiplex your FM now.

UNSUSPECTED CAUSE OF TV COLOR FAILURE

TV Detective Bob Middleton investigates TV failures and discovers one culprit might be a bad capacitor. You'll be interested in his case-history report and how he deals with his suspects.

CB REPAIRS WITHOUT A LICENSE

There's plenty to do repairing Citizens Band sets— even without a radiotelephone license— if you follow Jack Darr's suggestions. Mr. Darr also gives some hints about working with the CB transmitter.

BUILD THE TEMP-ALL

Once you build and use this electronic thermometer, you'll wonder how you did without one. This rugged, professional unit pays for itself when for the first time it warns you about dangerous heat. Use it with any electronic or scientific heat-cold measurement. The possibilities are limited only by the inventiveness of the builder.

Radio-Electronics
February Issue on Sale January 19

www.americanradiohistory.com
RAD-TEL
You Get MORE
For Your Money!
RAD-TEL'S QUALITY
BRAND NEW TUBES
FOR TV, RADIO AND HI-FI
1-YEAR GUARANTEE
UP to 75% OFF
1-DAY SERVICE - Over 500 Types in Stock

THE SIGN OF RAD-TEL'S RELIABILITY FOR OVER 15 YEARS

SERVICEMEN:
RAD-TEL HAS THE LATEST TUBE TYPES.

FREE! Send For New Tube & Parts Catalog
Send For Trouble Shooting Guide

The Original NOW YOU CAN FIX YOUR OWN TV SET BOOK
You can fix your own TV if you have TV FIST Book, because 80% of troubles are caused by tubes. This book explains, illustrates trouble and what tubes cause this trouble. Points in over 3000 layouts by model number, position and type tube causing trouble.

$1.00

CHEATER CORD

RAD-TEL TUBE CO., TV, RADIO AND HI-FI
55 CHAMBERS STREET, NEWARK 5, NEW JERSEY

JANUARY, 1963

| EACH TUBE ATTRACTIVELY BOXED & BRANDED RAD-TEL |
|---------|---------|---------|---------|
| Qty. | Type | Qty. | Type | Qty. | Type |
| 0.24 | .75 | 6AU1 | .87 | 6K6 | .63 | 12CU5 | .58 |
| 1AX2 | .52 | 6AV6 | .41 | 6S4 | .52 | 12CU6 | .06 |
| 1AX3 | .79 | 6AV6 | .90 | 6K7 | .55 | 12C54 | .54 |
| 1DS5 | .55 | 6AX5 | .66 | 65H7 | 1.02 | 1204 | .69 |
| 1G3 | .79 | 6AX5 | .74 | 65J7 | .88 | 12D8 | .83 |
| 1H3 | .79 | 6BA6 | .50 | 65K7T | .95 | 12D7S | .83 |
| 1K3 | .79 | 6BC1 | .61 | 65L7T | .84 | 12D6G | 1.04 |
| 1R5 | .77 | 6BC1 | 1.04 | 65N7 | .65 | 12D5S | 1.64 |
| 1R7 | .75 | 6BE7 | .55 | 65O7T | .76 | 1207T | .79 |
| 1T4 | .72 | 6BE7 | .90 | 6T4 | .99 | 12D7S | .79 |
| 1U5 | .65 | 6BF6 | .44 | 6T8 | .85 | 12D8 | 1.78 |
| 2AF4 | .62 | 6BG1 | 1.70 | 6UB | .83 | 12DW8 | .89 |
| 2AL5 | .46 | 6BGE | .65 | 6W4 | .61 | 12E5D | .62 |
| 2AV6 | .42 | 6BGT | .79 | 6WG | .71 | 12D5G | .62 |
| 3BC5 | .63 | 6BL7 | 1.09 | 6X8 | .80 | 12LE6 | .50 |
| 3BR5 | .75 | 6BN1 | 1.24 | 7AU7 | .65 | 12Z6Z | 1.57 |
| 3BU8 | .78 | 6BQ1 | 1.12 | 7AV9 | .60 | 12LE6 | .52 |
| 3BY8 | .58 | 6BO7 | 1.00 | 7EY6 | .75 | 12FAS | .79 |

ORDER FORM • MAIL TODAY
RAD-TEL Tube Co.
Total Tubes $...
Dept. RE-1
Total Sale $...
55 Chambers Street
Postage $...
Newark 5, New Jersey
Grand Total $...
ENCLOSED IS $...
Please rush order.

SEND: Book(s) B: Your Own TV Repairman & $10.00 ea. #170
Chester Ctrd 25¢ ea. Lots of 3 - 25¢ ea. #134
Orders under $5.00. Add $1.00 handling charge plus postage.
FREE! Send FFEE Tube and Parts Catalog
FREE! Send FFEE Trouble Shooting Guide

NAME
ADDRESS
CITY... ZONE.. STATE

www.americanradiohistory.com
Guide to Semiconductor Terms

By Sylvania Semiconductor Div.

Nonosecond—A thousandth of a microsecond (10^-9 second).

N-p-n Transistor—A device consisting of a p-type central section with two n-type semiconductor end sections.

N-Type—A semiconductor crystal with a surplus of electrons, or negatively charged particles.

Parameter—A derived or measured value which expresses performance for use in calculations.

P-Type—A semiconductor crystal with a surplus of holes or positively charged particles.

P-n Junction—The region of transition between n-type and p-type parts of a piece of semiconductor material.

P-n-p Transistor—A device consisting of an n-type central section with two p-type end sections of semiconductor material.

Resistivity—A property of material that determines its ability to conduct electricity. The amount and kind of impurity (dopant) in semiconductor material determines conductivity and whether the material is p- or n-type.

Reverse Bias—An external voltage applied to a p-n junction with a polarity such that very little current flows across the junction. Changing polarity will give forward bias and a large current will flow. (See Diode) Reverse bias widens the depletion region.

Saturation (Leakage) Current—The current flow between the base and collector measured with the emitter lead open, or between the emitter and collector with the base lead open. Most frequently, this current refers to the leakage between the base and collector.

Solid-State Devices—Any elements that can control current without moving parts, heated filaments or vacuum gaps. All semiconductors are solid-state devices, but some solid-state devices are not semiconductors.

Storage Time—That part of the total switching time of a transistor required to sweep current carriers out of the collector region when the switch is turned off.

Transformer—A semiconductor device capable of transferring a signal from one circuit to another and producing amplification.

Varactor—A semiconductor junction device designed to utilize the nonlinear variation of junction capacitance with change in applied voltage.

END

Beware of Cheap Imitations

Insist on "No Noise"

- VOLUME CONTROL and Contact Restorer
- TUNER-TONIC for all tuners including wafer type
- FORMULA EC-44 for all electrical contacts

FREE with ALL No-Noise Products
5" Plastic Extender Push-button Assembly for pin-point applications. Does not cause short!

CASH FOR YOU—REPAIR BUSTED

Electric APPLIANCES
Learn at Home • $3 to $5 an Hour
Spare Time, Full Time • Be Your Own Boss

FREE BOOK tells about profitable business you can run right at home. Repair Electric Appliances using simple tools. Pays 50¢-$.05 an hour!

CASH IN ON THIS BIG BOOM

FREE Sample Lessons Mail coupon below, letter or postcard now.

NATIONAL RADIO INSTITUTE
Dept. FA3, Washington 16, D. C.

14 Years of Recognized Leadership

Electronic Chemical Corp.
813 Communipaw Ave., Jersey City 4, N. J.

www.americanradiohistory.com
NEW LITERATURE CATALOGS • BOOKLETS • CHARTS

Schwartzcraft, Inc., 5555 N. Elston Ave., Chicago 30, Ill.

TRANS neh PERS e R MOBILE GEAR, representative manufacturers, includes products of Williams and Edmund P. Kelly, Jr. Tells how to build a universal transistorized transponder for mobile electronic equipment. 1117-vac power for equipment requiring up to 200 watts. 150 ma. —Stanton Electronic Corp., 3501 W. Addison St., Chicago 18, Ill.

AMATEUR AND SHORT-WAVE RECEIVERS offered in 12-page 8% x 11-inch brochure. Includes complete line, gives description and specs on each receiver. —National Radio Co., Inc., Dept P, Melrose 76, Mass.

PUSHBUTTON SWITCHES. 6-page Catalog S-801 features new series 970 Tiny-Frame direct-acting pushbutton switch for space-saving applications. Explains pushbutton switches, kitten switches, rocket switches,其中 menu and design features, dimensional drawings, full operating application ideas. —Schwartzcraft, Inc., 5555 N. Elston Ave., Chicago 30, Ill.

COLOR BAR GEN. model 661 Chromo-Aligner, described in 4-page brochure. Defines and illustrates NTSC standard signal plus standards for white-dot and red-dot color, color differences in photos, and construction. The product is 661.—Hickok Electrical Instrument Co., 10514 Dunlop Ave., Cleveland 8, Ohio.

HI-FI COMPONENTS offered in 6-page illustrated foldup leaflet. 15 items include amplifiers, tuners, receivers, multiplex—stereo adapters. Photos and specs of all units. —Cromomes, Div. Precision Electronics Inc., 9101 King St., Franklin Park, Ill.

ELECTRONIC COMPONENTS pictured in 4-page leaflet. Products include tube testers, converters, circuit adapters, taster adapters, cables, pinsets and technical data on all models, plus extension cable for sale. —Antarone Corp., 2712 W. Monroe St., Chicago 18, Ill.

INDUSTRIAL ELECTRONIC PARTS shown in enlarged 500 Catalog 73. Lists over 70,000 items from 500 manufacturers, includes products for industrial, defense and broadcast use. 60 pages of semiconductor devices with numerical listing by JANUARY, 1963

JEDEC number. Many illustrations, full specs.—Newark Electronic Corp., 223 W. Maudison St., Chicago 6, Ill.

TERMINALS, TERMINAL BOARDS. CHASSIS HARDWARE offered in two-page 80-page catalog. Included are mil specs covering materials and finishes on handles, screws, spacers, standoffs, bushings, brackets. Materials and plating for terminals, plus multiple sizes in single, double, triple turrets, inductive, splice-type double-end and threaded. All sizes and dimensions of standard, modular and special Provo type terminal boards.—Sales Dept., Concord Electronics Corp., 37 Great Jones St., New York 12, N. Y.

TEST EQUIPMENT offered in 20-page catalog. Illustrations, specifications, special features and prices of millimeters; CV, V, W, V, tube testers, crystal diode testers; signal, sweep, audio and color gages, resistance and capacitance decade; scopes; capacitor testers; power supplies; signal transducers. —Precision Apparatus Co., Inc., 70-31 84th St., Glendale 27, N. Y.

ELECTRICAL SPECIALTIES. 100-page 1962-63 catalog illustrates over 1,500 electrical wiring devices, switches, receptacles, transformers, extension and cord sets, fuses, wall plates, push buttons and lamps. New items include ac switch in competitive grades; brass, nickel-plated and poly-bagged supplies. All products grouped in competitive cross-index.—Eagle Electric Mfg. Co., Inc., 23-10 Bridge Plaza South, Long Island City 1, N. Y.

PRECISION POWER RESISTORS presented in 16-page illustrated catalog. Contains specs and standard ranges/controls/resistances of silicon, coated resistors for power requirements in advanced-circuitry and high temperature applications, metal-foil resistors for high-power heat-sink applications. Also includes recap of CAL-R's production and quality-control methods.—California Resistor Corp., 1631 Colorado Ave., Santa Monica, Calif.

AUDIO EXCHANGE BOOKLET, 10-page Trader's Handbook. Describes nationwide trading systems, including service department, custom installation service, mail order service, and trade-in and trade-back of new and used equipment.—Audio Exchange, 153-21 Hillside Ave., Jamaica, N. Y.

ELECTRONIC COMPONENTS of some hundreds of manufacturers catalogued in 2,200-page Electronic Engineer's Master, 1962-63 (EEM) purchasing guide of the electronic industry. Sections include: product line (who makes what); catalog section (1,325 pages of photos and specs in 81 product sections); manufacturers and sales offices directory; trade names directory; cross-section index, Available free to engineers and purchasing agents, others $15. Available on micro-film.—Tech Publishers, Inc., 60 Madison Ave., Hempstead, N. Y.

LOUDSPEAKER BROCHURE Catalog 165-H. 24-page booklet covers all technical and styling details of high, loudspeakers, headphone equipment. Discusses slim vs bookshelf speakers, headphone accessories, remote control devices.—Jensen Manufacturing Co., 6601 S. Laramie Ave., Chicago 28, Ill.

Huntington, Indiana

with a flick of the wrist... and like Magic, your room fills with bewitching, beguiling sound which could only come from Utah's Sorcerer. Only the magic of Utah's electronic ingenuity produces the big, the full, distortion-less sound from such a compact, complete speaker cabinet.

- Styling—fits Early American through Modern decor.
- Components—Two Utah Speakers, an 8' Woofer, 5' Tweeter.
- Cabinet—Hand-rubbed, oiled walnut veneer, applied to 1/4 plywood, a standard for fine furniture.
- Location—Wall, bookshelf, floor, table-top.
- Dimensions—20" in length, 12" high, 24" deep.
- Power rating—12 watts.
- US$—Hi-Fi or Stereo, as extension speakers for record player, radio or TV.

MODEL SH-4W—Finished Walnut Veneer

Utah ELECTRONIC CORP.

Huntington, Indiana

www.americanradiohistory.com
WHERE WILL ELECTRONICS BE IN 1963?

Find out for yourself—visit the

6th international exhibition of electronic components

FROM FEBRUARY 8TH TO 12TH, 1963
IN PARIS (PORTE DE VERSAILLES)

The greatest world exhibit in the electronics field.

All components, tubes and semiconductors, test and control instruments, electro-acoustics...

For information and data:

FÉDÉRATION NATIONALE DES INDUSTRIES ÉLECTRONIQUES
23, rue de Lübeck - Paris 16e - PASsy 01-16

Under the sponsorship of F.N.I.E:

3rd quantum congress electronics

Organized by the French Chapter of I.R.E. and by the S.F.E.R.

FROM FEBRUARY 10TH TO 15TH, 1963
at Unesco House, Paris

For Information: 7, rue de Madrid - Paris 8e

TECHNICIANS' NEWS

Color TV Course

Pasadena, Calif.—A 12-week course on practical color TV service, sponsored by the California State Electronics Association—Pasadena, and co-sponsored by the San Gabriel and Whittiers chapters, is underway. The cost of the course is $25, and includes all texts and work materials. Classes are held every Thursday evening. The course is limited to service operators and their employees. It assumes practical knowledge and experience in black-and-white TV service. The course covers theory, but emphasizes practical color TV servicing. Diplomas will be issued to technicians completing the course.

Tri-State Council Events

Gloucester, N. J.—A color school is scheduled for 20 technicians of the Allied Electronic Technicians Association Inc. of New Jersey. Attendance is limited to 20 because of the way the course is given, and reports from TSDA (Delaware County) members who have attended it say “it is the most.”

Wilmington, Del.—All members who successfully completed the recent color school sponsored by the Television Service Dealers Association of Delaware received their color school certificates. The association thanks the RCA instructor and Ty Yonker of Raymond Rosen & Co. for the course.

Trenton, N. J.—Members voted to adopt licensing, as presented by the Tri-State Council. Certificates will be issued, as well as identification cards. An advertising program will get underway in the near future. The group (Radio Servicemen’s Association of Trenton, N. J.) also took on a group life insurance program, which will go into effect as soon as plans are finished with other Tri-State members.

Around Wisconsin

Green Bay—The regular meeting of the local TESA group was held at the Wisconsin Public Service Building. Attendance was considered exceptionally good. The main point of discussion was the NATESA convention in Chicago.

Milwaukee—At a recent meeting, communications from Senator Proxmire and Congressmen Zablocki and Reuss were read. They expressed delight to have heard from TESA—Milwaukee, urging support of the Quality Stabiliza-
FREE! FOR '63

LAFAYETTE RADIO ELECTRONICS
1963 CATALOG NO. 630
388 GIANT-SIZE PAGES —
The Largest Catalog in Our 42-Year History

WHEN YOU BUY AT LAFAYETTE, YOU GET THESE EXCLUSIVE BENEFITS

- SATISFACTION GUARANTEED OR MONEY REFUNDED. Use Lafayette's 30-Day FREE Home Trial.
- LARGEST STOCK SELECTION. If it's in Hi-Fi or Electronics, it's in the Lafayette Catalog.
- NO MONEY DOWN. Buy on time with Lafayette's Easy Pay Credit Plan, up to 24 months to pay.

TRUE, CUSTOM-MATCHED STEROE NEED NOT BE EXPENSIVE — and isn't at Lafayette!

YOU GET THESE SYSTEM MATCHED COMPONENTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lafayette LA-224 24-Watt Stereo Amplifier</td>
<td>49.95</td>
</tr>
<tr>
<td>Garrard Autoslim 4-Speed Record Changer</td>
<td>39.50</td>
</tr>
<tr>
<td>Wood Base (Specify Walnut, Mhg. or Blonde)</td>
<td>3.95</td>
</tr>
<tr>
<td>Pickering U36/AT Diamond Needle Cartridge</td>
<td>46.50</td>
</tr>
<tr>
<td>2 Lafayette SK-124 2-Way Speaker Systems (Specify walnut or mahogany)</td>
<td>38.90</td>
</tr>
</tbody>
</table>

Regular Catalog Price: 476.00

ONLY

129.50

NO MONEY DOWN

YOU SAVE

49.30

A COMPLETE 24-WATT STEREO PHONO SYSTEM

Only at Lafayette could you find an outstanding, custom-matched stereo system at such an amazing low price. Compare components, compare performance, compare price—you'll choose Lafayette.

LS-225WXM Specify: Pickering Cartridge; wood base finish; Speaker System finish. Shpg. wt., 64 lbs. Net 129.90

MAIL THIS COUPON TODAY for YOUR FREE LAFAYETTE 630 CATALOG

Get One for a Friend Too

LAFAYETTE RADIO ELECTRONICS
Dept. JA-3, P.O. Box 10, Syosset, L.I., N.Y.

☐ Rush my FREE 388-page giant-size Lafayette Catalog
☐ Send me #.................................., Shipping charges collect.

I am enclosing ..

Name

Address

City Zone State

Friend's Name

Address

City Zone State

www.americanradiohistory.com
Wherever you go...

it's easy to go STANCOR!

When you need an exact replacement transformer, check first with your Stancor distributor. He's almost sure to have the unit you need in stock. That's because Stancor makes the industry's most comprehensive line of exact replacement yokes, flybacks, and other TV replacements, and Stancor distributors carry complete inventories for your maximum convenience.

How do you find a Stancor distributor? That's easy, too. If he's a leading distributor, who carries the top lines, he'll have Stancor.

Stancor—the most extensive line with the most extensive distribution

STANCOR ELECTRONICS, INC.
3501 West Addison Street
Chicago 18, Illinois

QUICK and LASTING
When You Use
HUSH®
Chemically-Electronically, engineered for Tuners
and Switching Mechanisms.

When New HUSH is applied it will wash-away that dirt, leaving clean and positive contacts protected by a lasting lubricant. New HUSH is made from the finest solvents and it contains Electro-Silicone oils.

6 oz. Spray can. Also available 2 oz., 8 oz., 32 oz. containers
FREE 6" Plastic Extender With Every Can

EVER-QUIET®
Since 1949

VOLUME CONTROL AND CONTACT RESTORER
EVER-QUIET is a free-flowing liquid that leaves no powder residue, scientifically designed to seep around the shaft and penetrate the contact or potentiometer, cleaning the contacts and leaving a safe protecting film. Harmless to metals, wire or carbon. 2 oz. Bottle & dispenser. Also available—6 oz. Spray can

CHEMICAL ELECTRONIC ENGINEERING, INC., Matawan, New Jersey

The clinics are sponsored by local electronic parts distributors, who can inform interested technicians when and where they will be held.

Lemons, owner of two radio-TV service shops, was named G-E Service-man of the Year in 1958.

Ethics Code Ok'd
San Diego, Calif.—The majority of electronic repair firms have agreed to comply with newly established service standards and a Code of Ethics set up by the San Diego County Bureau of Home Appliances in cooperation with the local Better Business Bureau. The code includes features of many similar codes already existing in other cities. Individual service technicians, service association representatives, suppliers and other segments of the industry were
HOW TO BE SURE OF GOOD TV SERVICE...

1. **Beware the Service "Bargain."** If you shop around for cut-rate prices or extra-liberal service contracts, you're asking for trouble. A "something-for-nothing" offer usually means cut-rate parts and sub-standard service methods. The reputable service dealer spends years in study and training—thousands of dollars on test equipment, tools, and service manuals—countless hours in keeping up-to-date on new developments and service techniques. Because of this heavy investment, he can't afford to offer "bargains."

2. **Rely on a Fully Qualified Independent Service Dealer.** Well known and highly regarded by your friends and neighbors, his professional training and experience have made him a real technical expert. He takes pride in his work. He wants to stay in business. And he stakes his reputation and his future on satisfying you. So he'll use only component parts of the highest quality and latest design—plus his thorough knowledge and keen skills—to do the job right. Depend on him; he can't afford to let you down!

Your TV set provides you with a wealth of entertainment. Keep it in the best repair . . . at lowest cost . . . by calling your local TV-RADIO Service Dealer at the first sign of trouble!

THIS MESSAGE WAS PREPARED BY SPRAGUE PRODUCTS COMPANY, DISTRIBUTORS' SUPPLY SUBSIDIARY OF SPRAGUE ELECTRIC COMPANY, NORTH ADAMS, MASSACHUSETTS FOR . . .

YOUR INDEPENDENT TV-RADIO SERVICE DEALER

JANUARY, 1963

For window-size blow-ups of this message, send 10¢ to Sprague Products Co., 81 Marshall St., North Adams, Mass., to cover handling and mailing costs.
Only Cleveland Institute offers...

A First Class FCC License

...or Your Money Back!

Your key to future success in electronics is a First-Class FCC License. It will permit you to operate and maintain transmitting equipment used in aviation, broadcasting, marine, microwave, mobile communications, or Citizens-Band. Cleveland Institute home study is the ideal way to get your FCC License. Here’s why:

Our training programs will quickly prepare you for a First-Class Commercial Radio Telephone License with a Radar Endorsement. Should you fail to pass the FCC examination after completing your course, you will get a full refund of all tuition payments. You get an FCC License... or your money back!

You owe it to yourself, your family, your future to get the complete details on our “proven effective” Cleveland Institute home study. Just send the coupon below TODAY. There’s no obligation.

MAIL COUPON TODAY FOR FREE CATALOG

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE-75
Cleveland 14, Ohio

Please send FREE Career Information prepared to help you get ahead in Electronics, without further obligation.

CHECK AREA OF MOST INTEREST—

[] Electronics Technology [] First Class FCC License
[] Industrial Electronics [] Electronic Communications
[] Broadcast Engineering [] other

Your present occupation

Name ______________________ (please print) Age ______
Address ____________________
City ___________ Zone ___ State ____________

Approved for Veteran’s Training under Korean GI Bill. RE-75

consulted before the standards and code were drawn up.

TV Service Seminar

New York, N. Y.—Service and engineering pointers on the 1963 Westinghouse television sets were highlighted at a TV service seminar held by Westinghouse at the National Design Center. Service technicians and dealers from the metropolitan New York and New Jersey area attended. The Westinghouse color-coded chassis, instant-on mobile sound and the company’s warranty program were covered fully in talks given by J. H. Fooks, K. H. Brown, H. J. Horstmann, J. J. Eagan and G. E. Bouton, all from Westinghouse.

Roly Poly Boosts Business

A boost for the independent service dealer is offered by General Electric in the form of an inflatable plastic “Roly Poly” toy. Bearing the name “Independent TV Service Dealer”, this 28-inch inflatable toy can be used as a store display or in consumer sales promotion. It is made of heavy-gauge white vinyl, colorfully decorated in blue-gray, red-orange and black. It is available to service dealers, as GE part No. ETR-3261, for $1.65, deflated and packed in individual mailing boxes. It can be obtained from authorized General Electric tube distributors.

Yellow-Page Fight Rages

Sacramento, Calif.—The fight to regulate yellow-page TV service advertising is still going strong. Chapters throughout the state are getting more and more cooperation from the telephone company, and hope that the battle will soon be over. What the California State Electronics Association is after is that every firm advertising in the yellow pages be required to have an address and a place of business. Experience has shown that the greatest source of customer complaints has stemmed from firms advertising only phone numbers. In some instances, the same phone number has appeared in several ads with different firm names. The association has suggested that any service dealer in the state that knows and has proof of irregularities should put them in writing and send them to the state office in Sacramento.

Promotion to Boost Trade

Treasure-Hunt Promotion: Place an article or merchandise somewhere in your store. Give clues—and the finder gets the prize.

Post Card Mailings: Each postcard has a number. Recipient is invited to bring a card to the store and check to see if this number is listed. Lucky numbers receive prizes.

Prize When Bell Rings: Ring a bell in the store at irregular intervals. Those in the store at the time receive a few items of merchandise, or a 5% discount on purchases.

End-of-Month Drawing: At the end of each month a “drawing” is held of purchase slips deposited in a special box each day. Those holding lucky slips get full refund.

How to use temperature compensating ceramic capacitors

While an oscillating circuit is warming up, its frequency changes. Distributed capacitance in tubes and coil will drift in the "positive" direction—tending to decrease the resonant frequency. Unhappily, the tuning capacitor, if it is a conventional mica or paper unit, also drifts in this same direction...thereby adding to the downward frequency shift.

This can be a real nuisance. In the local oscillator circuit of a superhet receiver, it leads to constant readjustment of tuning as the set warms up. It may also introduce appreciable error in a ringing oscillator timing circuit in TV sets.

Here's where ceramic capacitors enter the scene. Unlike capacitors which have a "natural" material as dielectric, they use a man-made, rock-like material whose composition can be adjusted to just about any capacitance-temperature characteristic you want.

Some ceramic capacitors have a positive temperature coefficient: these are the kinds you'd use in bypass, coupling and buffer applications. Others have a zero temperature coefficient, remaining unchanged in the range from 25° to 85° C. And you can get 'em with a negative coefficient so that the capacitance change goes opposite to that of the other circuit elements, giving a constant LC product and substantially steady frequency during the warm-up period.

The usual negative temperature coefficient is 750 parts per million per degree C. But if you happen to need some non-standard coefficient to compensate your particular circuit, there's a simple way to calculate the parallel combination of zero and negative coefficient types that will do the job. Write to us and we'll give you details.

When you go looking for ceramics, be sure to ask for Mallory Discaps®. They're made by Radio Materials Company, a division of Mallory—world's largest manufacturer of ceramic capacitors. Your Mallory distributor has a complete stock, in the handy five-pack, mounted on a file card that's especially easy to keep on a peg board or in a file drawer.
TV Viewing Mirror Setup

Have a headache setting up your mirror so you can watch the TV screen while making rear-chassis adjustments? Well, here's a way to avoid the headache. Set up a flashlight at a convenient viewing point—the place your head will be when you look at the mirror.

In-Circuit Capacitor Testing

The statement is often made that an ordinary bridge circuit will not measure capacitance in-circuit! But I find that my EICO 950B will check capacitors for value in-circuit, if the shunting resistance is not too low. These values are roughly as follows:

<table>
<thead>
<tr>
<th>Value</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>.001 µf</td>
<td>10 megohms</td>
</tr>
<tr>
<td>.01 µf</td>
<td>3.3 megohms</td>
</tr>
<tr>
<td>.1 µf</td>
<td>220,000 ohms</td>
</tr>
<tr>
<td>1 µf</td>
<td>68,000 ohms</td>
</tr>
<tr>
<td>5 µf</td>
<td>10,000 ohms</td>
</tr>
<tr>
<td>10 µf</td>
<td>2,000 ohms</td>
</tr>
<tr>
<td>100 µf</td>
<td>100 ohms</td>
</tr>
</tbody>
</table>

I have tried the "comparator" range for in-circuit testing, using a capacitor and variable resistor as the "standard". The results were not conclusive, as the bridge would not balance at several points on the dial—Charles Andrews

Soft Tips for Earpieces

Perhaps some readers have tried the new low-priced "Stethoscope" earphones offered by many distributors recently—both dynamic and crystal—and
Now you can profit from transistor radio servicing! This amazing new B&K "960" ANALYST gives you everything in one complete easy-to-use instrument. Makes transistor radio servicing quick and easy. Nothing else is needed except the transistor radios themselves waiting to be serviced. Brings you new customers for service, parts, and batteries. Makes this new business yours.

EASILY TROUBLE-SHOOT ANY STAGE BY UNIQUE POINT-TO-POINT SIGNAL INJECTION

The ANALYST gives you a complete signal-generating source for point-to-point signal injection. Easily enables you to trouble-shoot any transistor radio—check all circuits stage-by-stage—locate and pinpoint the exact trouble in minutes.

Supplies modulated signals, with adjustable control, to check r.f., t.f., converter, and detector. Supplies audio signal to check audio driver and audio output. Provides unmodulated signal to test local oscillator. Provides separate audio low-impedance output for signal injection into loudspeaker or voice coils to check speaker performance.

BUILT-IN METERED POWER SUPPLY FOR EASY SERVICING

Makes it easy to operate radio under test, while you inject your own signals. Provides from 1 to 12 volts in 1/2 volt steps. Supplies all bias taps that may be required.

SIMPLECT IN-CIRCUIT TRANSISTOR TEST WITH NEW DYNA-TRACE SINGLE-POINT PROBE

Unique single-point probe needs only the one contact to transistor under test. No longer are three wires required to connect to emitter, base, and collector. Gives fast, positive meter indication. Saves time Makes trouble-shooting simple and easy.

BUILT IN VTVM

Includes high-input-impedance vacuum-tube voltmeter, which is so necessary for transistor radio servicing.

TESTS ALL TRANSISTORS OUT-OF-CIRCUIT

Meter has "Good-Bad" scale for both leakage and beta. Also has direct-reading Beta scale, calibrated 0-150. Assures quick, accurate test. Also automatically determines whether transistor is NPN or PNP. Meter is protected against accidental overload and burn-out.

Model 960. Net, $995

Solve Every Service Problem and Profit with a Modern B&K Service Shop. See Your B&K Distributor or Write for Catalog AP20-E.

B&K MANUFACTURING CO.
Division of DYNASCAN Corporation
1801 W. BELLE PLAINE AVE. * CHICAGO 13, ILL.
Canada: Arisar Radio Corp., 50 Wingold, Toronto 19, Ont.
Export: Empire Exporters, 377 Broadway, New York 7, U.S.A.

JANUARY, 1963
Perma-Power puts you in the P.A. picture with the ROVING ROSTRUM
a complete high-volume sound system in a single case

- Use it anywhere—INDOORS OR OUT—It's Battery-Powered!
- Perfect for CLUBS, SCHOOLS, CHURCHES, MEETING ROOMS, RENTALS, ETC.

THE Perma-Power Roving Rostrum is as simple to use as one-two-three. You open the case, plug in the microphone, turn on and talk! It reproduces voice or music clearly, distinctly, and naturally—and covers audiences of over 500! No electrical outlets are needed: The Roving Rostrum is powered by 2 standard lantern batteries that will last more than a year with moderately heavy use.

The Roving Rostrum includes a 10 watt transistor amplifier, Astatic microphone and accessories, 2 full fidelity Quam speakers with special anti-feedback housings, an extra input for phono or radio, and outputs for auxiliary speaker and tape recorder. Even the reading desk is part of this compact self-contained system! Yet it weighs under 30 lbs. for easy portability—and is priced at only $124.50 user net ($175 less than you'd expect!)

FANTASTIC VALUE IN CLOSED CIRCUIT TELEVISION
BRAND NEW—COMPLETE SYSTEM SHOWN
Approx. 1/10 Mfg. Suggested Resale Price

Low—Low $495.00
Complete system with all tubes—wired and tested. Less Vidicon and Lens—with Schematics (connecting cables and plugs only—supplied, but not assembled)

CONTROL MONITOR
12 Tubes & 21DAP4

CAMERA
4 Tubes & VID

POWER SUPPLY
11 Tubes & Transistor—31.5 Kc Crystal Controlled Oscillator

EIA Standards of 525 lines, 60 Fields, 30 Frames and 2:1 interlace—Aspect Ratio 7:3
Capable of 700 lines Horizontal resolution and 350 lines Vertical.

Write for Catalog #1273—"HOW TO BUILD A LOW COST TV CAMERA", Industrial and Broadcast Cameras and equipment, Miscellaneous accessories, lenses, tripods, etc. ONLY 50c

DENSON ELECTRONICS CORP., Box 85, Rockville, Conn., Tel.: TRement 5-5198

86

have found them very satisfactory. From a lightweight performance standpoint, they are a welcome relief from the old-fashioned heavy "cans". However, the hard, small plastic tips quickly become uncomfortable in the ears. This can be easily remedied by inexpensive "slip-on" pencil erasers, which are a small hole has been drilled, placed over the hard tips. Shape the end of the eraser with sandpaper. For sanitation, each earphone wearer can have his own erasers.—F. Bodine

Cup-Hook Cable Standoffs

Need some standoff insulators for an electric cable or heavy-gage wire? Im-

provise your own standoffs by snapping rubber grommets into the eyes of cup hooks as shown.—John Comstock

Better Grip Tool Handles

When using screwdrivers and nut drivers with plastic handles I raised more than one blister trying to tighten or loosen a tough screw or nut. To get around this problem, I got a piece of large-diameter Alphlex shrinkable tubing and fitted it over the tool handle. A little heat applied with a soldering iron shrinks the tubing to a tight fit over the plastic handle. The next time I had need for the driver there were no more blistered hands, and the resilient surface of the tubing let me get a better grip on the tool, making the job easier.—Warr

END

"He's waiting for the man next door to turn his hi-fi on."

RADIO-ELECTRONICS
NEW PRODUCTS

ETCHED-CIRCUIT KIT, model 27X. Simple printed circuits. 2 pieces 4½ x 6½ x 1/16-in. thick, phenolic, clad one side with 2-oz copper, perforated with overall grid of .062-in. holes on 0.2-in. centers. Unperforated area 1½-in. on one edge for etching connector fingers. 1 sheet tape-resist circuits. 1 sheet tape-resist strips; 2 bags dry etchant chemical; 1 ballpoint etching pen; 2 sheets grid layout paper; complete instructions.—Vector Electronic Co., 1100 Flower St., Glendale 1, Calif.

TRANSISTOR IGNITION KIT, GD-232, for 12-volt negative-ground ignition systems. Voltage-protected transistors, adjustable for optimum current settings on transmitters for radio-controlled garage-door operators.—Perma-Power Co., 3100 N. Elston Ave., Chicago 18, Ill.

ELECTRICAL CIRCUIT TESTER, model 825 Chk-It. Tests continuity, fuses, switches, buzzers, push buttons, chimes, appliances, motors, auto ignition voltage regulators.—Workman Electronic Products, Inc., Box 5397, Sarasota, Fla.

TRANSISTOR ANALYZER KIT, KT-223. Tests all transistors including power types. In- and out-of-circuit transistor checker, diode and rectifier checker, signal generator, battery tester, voltmeter, milliammeter. Out-of-circuit check for leakage. also

ETC.

Merrell — THE EASIEST TO BUILD

- Complete assembly book and diagrams
- Over sized chassis makes easy wiring
- The finest components
- Also available completely wired
- The best value dollar per watt available

12 WATT WILLIAMSON TYPE AMPLIFIER MA-12

- Complete amp and pre-amp
- Response 20 to 20,000 cycles
- 4 Inputs: magnetic, crystal phone; tape; tuner; mix/aux.

$22.95

- Williamson type circuit
- Inputs: tape; tuner: magnetic and crystal phones
- Preamp: balance-cancel control
- Response 20 to 20,000 cycles
- Low harmonic distortion

$59.95

Merrell — YOUR BEST BUY IN HI-FI KITS 16 WATT STEREO AMPLIFIER Model SA-210

AMAZING PERFORMANCE
- Dual 8 watt amps with pre-amps
- 6 inputs for magnetic phono & tape: tuner; crystal
- Response: 20 to 18,000 cycles

$29.95

- ST-360
- Pre-wired 'front-end'
- Automatic frequency
- Pre-aligned I.F.
- Pre-aligned F.F.
- +9 db 20 to 20,000 cps
- Multiplex
- $34.95

Neat-in Multiplex Adaptor

$19.95

WRITE FOR FREE BROCHURE AND NAME OF NEAREST DISTRIBUTOR
The Electronic Catalog of the Year
BY POPULAR DEMAND!

over 1,000,000 new friends—amateurs, pros, hi-fi devotees, hams—have already sent for it!

EASY TIME PAYMENT TERMS take up to 2 years to pay

284 PAGES OVER 10,000 ITEMS

Partial list of products in our New 1963 Catalog

- Amateur Radio
- Antennas
- Batteries
- Books
- Capacitors
- Controls
- Hi Fi
- Microphones
- Needles
- Phonographs
- Public Address
- Radios
- Resistors
- Tape Recorders
- Test Equipment
- Tools
- Transformers
- Transistors
- Tubes
- Wire

For you and 2 Friends MAIL CARD TODAY

Yes, over 1,000,000 brand new friends have been added to the millions who shop regularly from Radio Shack's big catalog but we want everyone interested in electronics to have this great money saving shopping guide so we've printed 500,000 more for you and your friends. Mail the card opposite today and get your share of the newer and better things in electronics in this fine new book.

Whether you are a music devotee, a radio ham, a professional operator, or just interested in the great world of communications as a hobby, you'll be excited and delighted with the vast assortment of precision-built, high-quality, guaranteed products in Radio Shack's famous catalog. And you'll save too as you never saved before. Our easy credit terms make it convenient and simple to buy what you want when you want it and pay later. Mail the card opposite now!

RADIO SHACK CORPORATION 730 Commonwealth Ave. BOSTON 17, MASS.
The proud result of creative engineering, this Realistic® HK-20B 80-Watt Stereo Amplifier sets new standards of transient response and definition, delivers an extra margin of performance. Premium Minneapolis-Honeywell tetrode transistors utilized throughout! A host of spectacular technical features make this the unquestioned leader in its field! 16½ x 7½ x 14½”. No money down. Satisfaction guaranteed.

3OK90LX093, Amp. Kit, Wt. 19 lbs., $8 Monthly

Net 139.95

2 KITS FOR $29.50

Easy to Build, Operate! Just Plug In and Talk!

Add convenient room-to-room, floor-to-floor intercommunication for truly modern living! Just plug into your house current and talk. Range over 1 mile. Size: 8x5x5". No money down! Wt. 10 lbs. 43K90LX844, Kit (pair) $5 Monthly ... Net 29.50

Enjoy the fun of building the world’s only hi-fi speaker in kit form — another Realistic® exclusive from Radio Shack! Assemble the entire speaker, from 1 1/4 lb. magnet to voice coil, basket and dual cone, using a precision jig for perfect alignment. No money down. Satisfaction guaranteed. Ship. wt. 7½ lbs. 4OK90LX370, 12" Speaker $5 Monthly ... Net 19.95

WIRELESS INTERCOM KITS

Electronic Thermometer Kit Famous “Novathon” Accurate to ½°F. $19.95

Another Realistic® exclusive! Equal to precision thermometers selling for $89 and up! Easy to assemble. Fast reaction to temperature change. Ideal for darkrooms, laboratories, freezers, amateur radio equip. Size 3 ¼ x 6 ¼ x 4 ½”. Builder’s manual included. No money down. Satisfaction guaranteed. 22K94LX095, Novathom Kit, Wt. 5 lbs., $5 Mo., Net 19.95

Good Quality FM Tuner Kit Realistic® Components Carefully Engineered $19.95

For maximum listening enjoyment and top economy, it’s Realistic’s FM Tuner Kit! A pleasure to assemble. Let’s you add quality FM reception to your home music center ... at fantastically low cost! Includes brushed gold case, instructions. No money down. Satisfaction guaranteed. 31K90LX070, Sh. wt. 6 lbs., $5 Monthly ... Net 19.95

FM Multiplex Adapter Kit Converts Monaural FM Tuners to Stereophonic $19.95

Fully self-powered; famous Realistic® quality; completely pre-aligned! No test equipment needed. Resp. 50-15,000 cps, ±3db. Size: 3½" H x 4 ½" W x 5 ½" D. Black case incl. Uses 15 watts, 105-125V, 50/60 cy. Easy-to-follow instructions. No money down. Satisfaction guaranteed. 31K90LX099, Ship. wt. 4 lbs. Kit $5 Monthly, Net 19.95

Mail this order form today

Radio Shack Corporation
P.O. Box No. 309
Boston, Massachusetts

63A10C

Stock No.

Name

Address

City & Zone

State

Please Print

$139.95

$8 Monthly

Easy Assembly; Fabulous Savings! Features

Massive Transformers!

NO MONEY DOWN CREDIT TERMS take up to 2 years to pay

G U A R A N T E E

In addition to the manufacturers guarantee and warranty, Radio Shack Corporation guarantees complete satisfaction on every purchase or your money back.

J A N U A R Y, 1 9 6 3

www.americanradiohistory.com
In these times...

every man needs the tremendous coverage, engineered precision, and incomparable reliability of a hallicrafters.

S-118
Short Wave/AM Communications Receiver
455 kc. - 31 Mc.
plus 185-420 kc.
$99.95

What you can hear: English-language news throughout the world • Hundreds of foreign stations • Radio amateurs • Marine and aviation communications • Local broadcast and Conelrad • Citizens band • Military channels • Voice of America • Foreign languages • WWV international time reports • Continuous aviation weather • Civil and emergency frequencies

Features for best reception: Electrical bandspread for ultra-fine tuning • BFO for code reception • Automatic Noise Limiter • Slide-rule dial with logging scale • headphone jack • tuner output jack for use with existing audio system • Socket for emergency or portable use on DC.

For complete specifications, write to...

hallicrafters
Dept. 15-A, 5th & Kostner Aves., Chicago 24, Ill.

(Continued from page 87)

(Continued from page 87)

terminals to aid matching or balancing tubes. BFO switch for measurements under fixed or self-bias conditions. Nonstandard tests aided by place terminals giving access to grid, plate, cathode and heater circuits. Six ranges, 600-60,000 amperes. Metered line and grid voltage, dual tube leakage readings directly on meter or by neon short indicator. - Hickok Electrical Instrument Co., 10514 Dupont Ave., Cleveland 8, Ohio.

SELF-SERVICE TUBE TESTER, model 202-LB. Tests Nuvators, novars, compactrons, 10-pin tubes, plus 6- and 12-volt vibrators, fuses, pilot lights. 65 phosphor bronze beryllium sockets. will accommodate new tube types to come. Sliding drawers, tube dividers, drawer stops for automatic inventory control. Thin tube chart list more than 1,200 tube types, new charts available periodically. 16 in. high x 20 in. wide x 19 1/2 in. deep. — Mercury Electronics Corp., 111 Roosevelt Ave., Mineola, N. Y.

STEREO MULTIPLE SIG GEN, model E-490. For rapid alignment, complete testing of multiplex circuits in FM stereo receivers and adapters. Measures and adjusts channel separation, channel balance, sync pull-in and hold-in range.

Self-contained 1-kc audio oscillator or external audio generator switchable to generate left only, right only, sum or difference signals. Pipe signal switches on or off. — Precision Apparatus Co., Inc., 70-31 84 St., Glendale 27, N. Y.

CAPACITOR ANALYZER, model BF-71. Tests unit with ratings of 1-500 volts. Measures 10-pf to 2,000-pf capacitors. Resistance measurement range 2.5 ohms-29 mega-ohms, 2 µ-100 ma. Measures power factors to

50%. Internal power supply 0-500 vac at 35 ma maximum for capacitance leakage tests. Checks leakage currents on tantalum capacitors plus aluminum foil types. — Cornell-Dubilier Electronics Div., Federal Pacific Electric Co., 50 Paris St., Newark 1, N. J.

DC VOLTAGE REFERENCE SUPPLY FOR SCOPES. Scope-0-Trol type PS-1990. Opposing potential cancels dc increment of circuit being checked, so ac and dc steady-state and transient voltage changes seen in true form. 115-volt 60-cycle circuit. Regulation = 0.05% for ±15% line change.
NEW
SENCORE PS120
PROFESSIONAL
WIDE BAND
OSCILLOSCOPE

Here it is, the scope that technicians, engineers and servicemen from coast to coast have been demanding. A portable wide band scope that can be used on the job anywhere, yet has the highest laboratory specifications for shop or lab. Cumbersome color TV sets, remote audio and organ installations and computers are just a few of the jobs that make owning a scope of this type so essential. Why consider a narrow band scope, when for only a few dollars more, this professional wide band sensitive scope equips you for any job.

• The PS120 provides features never before offered. Only two major controls make the PS120 as easy to use as a voltmeter. Even its smart good looks were designed for functional efficiency. New forward thrust design, creating its own shadow mask, and full width calibrated graph increase sharpness of wave form patterns. A permanent chromed steel carrying handle instead of untidy leather strap and a concealed compartment under panel for leads, jacks and AC line cord make the PS120 the first truly portable scope combining neatness with top efficiency.

• Electrical specifications and operational ease will surpass your fondest expectations. Imagine a wide band scope that accurately reproduces any waveform from 20 cycles to 12 megacycles. And the PS120 is as sensitive as narrow band scopes...all the way. Vertical amplifier sensitivity is .005 volts RMS. The PS120 has no narrow band positions which cause other scopes to register erroneous waveforms unexpectedly.

Another Sencore first is the Automatic Range Indication on Vertical Input Control which enables the direct reading of peak-to-peak voltages. Simply adjust to one inch height and read P to P volts present. Standby position on power switch, another first, adds hours of life to CRT and other tubes. A sensitive wide band oscilloscope like the PS120 has become an absolute necessity for trouble shooting color TV and other modern circuits and no other scope is as fast or easy to use.

Specifications

Wide Frequency Response:
Vertical Amplifier—flat within ± 0.5 dB from 20 cycles to 5.5 MC, down - 3 db at 7.5 MC, usable up to 12 MC.
Horizontal Amplifier—flat within ± 3 dB from 45 to 330 KC, flat within - 6 dB from 20 to 500 KC.

High Deflection Sensitivity:
Vertical Amplifier—Vert. input cable, .035V/IN, 0.1V/IN, Aux. vert. jack, 1.5V/IN, Through hi-imped. probe, 4.5V/IN.
Horizontal Amplifier—-.5V/IN, 1.44V/IN.

High Input Resistance and Low Capacity:
Vert. input cable, 2.7 Megs., shunted by approx. 85 MMF, Aux. vert. input jack, 2.7 Megs., shunted by approx. 20 MMF, Through hi-imped. probe, 27 Megs., shunted by 8.5 MMF.
Horiz. input jack, 330 K to 4 Megs.

The PS120 is a must for color TV servicing. For example, with its extended vertical amplifier frequency response, 3.58 MC signals can be seen individually.

January, 1963

Sencore

Addison, IL

93

www.americanradiohistory.com
Output adjustable 0 to 52 volts dc, stabilized at selected voltage. Coarse adjustment in 6 overlapping 10-volt steps, fine adjustment potentiometer selective at 2 mv per degree or rotation. Ripple .002% peak to peak. Output voltage stability within ±0.015% per hour after 15-minute warmup.—Acme Electric Corp., Cuba, N. Y.

TRANSISTOR/TUNNEL DIODE ANALYZER, model 258. Reads collector-to-base and collector-to-emitter leakage currents, tests tunnel and Zener diodes. Checks transistors in or out of circuit. Indicates transistor leakage and gain. tunnel-diode negative resistance characteristics, diode forward conduction and reverse current leakage. Identifies n-p-n and p-n-p transistors, matches transistors of similar type by Rf dynamic test or dc analysis, operates as sine-wave and harmonic signal generator or comprehensive circuit analyzer. AC power or battery-powered.—Sears Electrometers, Inc., 1201 S. Clover Dr., Minneapolis 20, Minn.

CIRCUIT ANALYZER, Archer model CA 378 True-Color. Complete analysis of color picture tube and related circuits under operating conditions. With volt-ohm-milliammeter, measures operating voltages in circuits supplying power to elements in color tube. Tests color guns, indicates results of adjustments. Built-in method of disabling or more CRT guns during purity adjustment and convergence procedures. With scope, checks signals at CRT. Switching arrangement for testing any gun and related circuits without disturbing others.—Antron Corp., 2712 W. Montrose, Chicago 18, Ill.

INDUSTRIAL-AMATEUR TV CAMERA, AL-DEN. Dual tetrode video amplifiers. built-in intercarrier 4.5-mc sound system. Complete audiovisual closed-circuit transmitter, 2-inch electrostatic Vidicon and 5-10-inch lens of standard Leitz-Cannon camera. Output adjustable to vhf channels 2-6.—Denscorp Electronics Corp., Longview St., Rochester, Conn.

AUDIO MASTER, model AM. Adds complete sound channels to master antenna and community antenna TV systems. Receiver on line reproduces FM or AM music, tapes, hi-f recordings, public address. No extra distribution materials, cables or cabinets; mounted into same housing with other equipment.—Blonder-Tongue Labs, Inc., 9 Alling St., Newark, N. J.

HOUSEHOLD COUPLER PACKAGE, Antennas. Inductive set coupler, 25 feet of Twinhead. Connects any number additional sets to exist-

EMC advances in Audio and Test Equipment — by far the Best Values obtainable in Wired or Kit form.

EMC Model 801
RC Bridge and In-Circuit Capacity Checker. A new comprehensive resistance and capacity checker. It measures condensers for actual value, leakage, and power factor. In addition it measures condensers while they are still connected in their original circuits for open, shorts or interments. Model 801 Wired$38.95 — Model 801 Kit$45.95

EMC Model 802
Signal Tracer and Generator. Generates its own audio, IF and RF signals for tracing. Uses both a magic eye and a speaker for signal detection. Checks noisy contacts. Checks and compares magnetic, ceramic and canary crystal diodes. Supplied with 10 shielded audio probes and 1 RF crystal demodulator probe. Model 802 Wired$36.95 — Model 802 Kit$45.95

EMC Model 107A
Peak to Peak Vacuum Tube Volt-Ohm-Milliammeter. Measures peak to peak AC voltages to 2800 volts in 6 ranges. Measures capacity in 6 ranges from 50 mfd to 5000 mfd. Measures resistance in 6 ranges from 2 ohm to 1000 mgs. Measures DC volts to 1000 volts in 6 ranges. Input resistance 165 mgs. Model 107A Wired$51.40 — Model 107A Kit$58.90

EMC Model 214 Stereo Amplifier
A compact, highly attractive dual 14W amplifier with built-in preamplifier having 56 watts peak power output. Has rumble filter and contour control switch. Extremely low distortion and noise level. It can be used as a 28 watts (56 watts peak) monaural amplifier or as a monaural amplifier so arranged that one preamplifier is used to drive the internal amplifier while the other preamplifier is used to drive any existing monaural amplifier. Model 214 Wired$106.80 — Model 214 Kit$120.90

Yes, tell me more, send me FREE a detailed catalog of the Complete EMC Line. Dept. RE-163

NAME
STREET
CITY
STATE
EMC
Electronic Measurements Corp., 625 B'way, New York 12, N. Y.
Ex., Dept., Pan-Mar Corp., 1270 B'way, New York 1, N. Y.

RADIO-ELECTRONICS
For those special applications choose a Quam speaker

When you need a 2½" unit for a transistor radio—or a shallow 6" x 9" for a Thunderbird replacement—Quam has it!

When you need a special voice coil impedance or special field resistance—Quam has it!

Quam gives you the widest selection and the highest quality in the entire speaker industry! Ask for Quam, the Quality line, for all your speaker needs.
USEFUL radio books from E. & E.

"HOW-TO-BUILD" DATA
- the NEW (16TH EDITION)
Radio Handbook

- New amplifier designs
- New transmitter designs
- New receivers and transceivers

Gives extensive, simplified theory. Provides the latest design and construction data on a wide range of advanced radio amateur equipment, attractively priced. Broadest "How-To-Build" coverage in the field. Completely revised and up to date. Clearly indexed. 805 pages, all text, with hard covers.

$9.50

at your distributor

CONVERT SURPLUS RADIO GEAR INTO AMATEUR & C.B. EQUIPMENT

A wealth of conversion data in 3 volumes shows you how!

Data includes schematics, diagrams, photos, etc. Covers the most commonly available surplus items. Each conversion shows yields a practical piece of equipment—proved by testing.

CONVERT SUPLUS RADIO CONVERSION MANUALS — 3 Volumes — $3.95* each

VOLUME II — AIC-76, APS-13, ARC-10 (Schematic only); ARC-6; ARC-13, ANC-112, BC-191, 352, 454, 455, 457/458, 495/496, 5126, 609; LM-7; R-27-ARC-5, R-26/ARC-5, SCR-274, TA-159/216, TBN-1, T/35-ARC-5. Schematics/Rectifier Power Units; Simplified Coax Winding Instructions. Basic Radio Blueprinting Methods. Book 505H

VOLUME III — APS-1, ARC-5; ANC-13, BC-191, 312, 342, 346, 375, 442, 453, 455, 459, 462, 465, 480, 482, 496, 5106, 5126, 5127; CRY-5200 series; COL-5000, CRO-4, EV-10; 54-5/8 or 0.1/2; 78-101A; LM-7; MAF MOD. 1/ARC-5; RM-52, 53, R 7/A-50; 78/ARC-5; RT/19; ARC-4; TA-159; SCR-274 series; SCR-502, 522, 576. S/I: T/15 to T/35-ARC-5; UTC: WE-701 A. Schematics only. APS-10, APS-2, APS-5, ARM-2, AS-5, BC-649, 1335P. CPR-46AC. Book 533H

THE SURPLUS HANDBOOK (Receiver and Transmitters) — $1.95

VOLUME I — Schematic Diagrams and large photographs only; APS-1; APS-12; ARC-4; ARC-5 (S.F.), ARC-5; ARM-1; ARM-5; BC-233, 235, 312, 344, 345, 346, 351, 361, 626, 948, 1054, 1259, 560, 667, 759, 781, 825, 906, 917; 1000; 1026, 1125, 1206; 1207; 1525; CRY-5200 series; COL-5000, CRO-4, EV-10; 54-5/8 or 0.1/2; 78-101A; LM-7; MAF MOD. 1/ARC-5; RM-52, 53, R 7/A-50; 78/ARC-5; RT/19; ARC-4; TA-159; SCR-274 series; SCR-502, 522, 576. S/I: T/15 to T/35-ARC-5; UTC: WE-701 A. Schematics only. APS-10, APS-2, APS-5, ARM-2, AS-5, BC-649, 1335P. CPR-46AC. Book 533H

SPECIAL LOW COST SUBSCRIPTION RATES
to Radio-Electronics available to clubs, associations and other groups. Write: G. Aliquo, Radio-Electronics, 154 W. 14th St., New York 11, N. Y.

CONVERT TO COLOR TV

COLORADAPTOR—A simple 10-10-10 circuit and multiple color wheel converts any set B & W to V to receive color

COLORADAPTOR — Easily attached halfway through set, does not affect normal operation, often results in normal picture quality faster than any other method. No parts required. BRILLIANT COLOR — $1.95

Complete booklet gives theory of operation, full construction details, schematics, and sample color pictures.

ESSENTIAL PARTS KIT—Includes all parts—cathode, delay line, crystal, color filters. Add $1.00 for sets over $10.

COLORADAPTOR

278 Santa Cruz
Monterey Park, Calif.

$1.95

$19.95

SAVE MONEY

HI-FI COMPONENTS
TAPE RECORDERS
SLEEP LEARN KITS

FREE 1963 CATALOG

DRESSNER

1523 JERICHO TPKE.
NEW HYDE PARK, N.Y.

RADIO-ELECTRONICS
amplifier with adjustable controls, squeeze-to-talk bar, magnetic hang-up. Optional permanent magnet allows unit to be hung on any metal surface. 4½ x 4½ in.—Instruments & Communications, Inc., 33 Dunbury Rd., Wilton, Conn.

PALM MICROPHONES, series 201-401. Shaped voice response, omnidirectional polar pattern. Model 201, ceramic cartridge, high impedance, output level — 55.5 db. Model 401A, controlled magnetic, high impedance, output level — 49 db. Model 401B, controlled magnetic, low impedance, for PA applications. output level — 48 db.—Shure Bros., Inc., 222 Hartrey Ave., Evanston, Ill.

RECORD CHANGER, Studiomatic. Replacement unit or for custom installation. Turntable, almost 12-in. diameter, balanced and cushioned to minimize rumble. Plays all sizes of records, intermixed in any sequence. Manual operation allows single play without interfering with automatic mechanism. Optional accessories: 45-rpm spindle, mounting board, base.—RCA Sales Corp., 600 N. Sherman Dr., Indianapolis, Ind.

TAPE RECORD PLAYBACK, Trojan model PD-95. 4-track stereo. Built-in record and playback preamps. 7½, 3½ and 1½ ips. Separate motor for each reel plus squirel-cage motor for driving cap. (Continued on page 102)
Let RCA help you find the answer with a profitable career in electronics

Now, you can put your finger on the electronics career of your choice, and RCA Institutes will help you train for it—right in your own home! RCA Institutes Home Training Courses can lead you directly to the kind of job you want! If you are looking for a career in electronics, here is your chance to plan a successful future for yourself—the RCA way—right down the line!

RCA Institutes offers both home training and classroom training—which ever best fits your needs. See the adjoining page for a dramatic example of how RCA can help you plan for the future you want! Licensed by the New York State Department of Education. Approved for Veterans.

RCA Institutes, one of the largest technical schools in the United States (devoted exclusively to electronics), offers the finest facilities for home training. A service of the Radio Corporation of America, RCA Institutes gives you the technical instruction you need to plan, build, and realize a lifetime career in today's fastest growing field.
RCA CLASSROOM TRAINING
IN NEW YORK CITY AND LOS ANGELES

<table>
<thead>
<tr>
<th>INDUSTRY DESIGNATED JOB TITLES</th>
<th>THIS IS THE RCA TRAINING THAT WILL HELP YOU GET IT!</th>
<th>QUALIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Aide, Test Engineer, Technical Instructor</td>
<td>Electronics Technology (T-3)</td>
<td>High School Grad with Algebra, Physics or Science</td>
</tr>
<tr>
<td>Electronic Technician, Field Technician, Computer Technician, Broadcasting Technician, Customer Service Engineer, Instrument Technician</td>
<td>Industrial and Communications Electronics (V-7)</td>
<td>2 yrs. High School with Algebra, Physics or Science</td>
</tr>
<tr>
<td>TV Serviceman, Electronic Tester</td>
<td>Electronics and Television Receivers (V-3)</td>
<td>2 yrs. High School with Algebra, Physics or Science</td>
</tr>
<tr>
<td>Transistor Circuits Specialist</td>
<td>Transistors</td>
<td>Radio background</td>
</tr>
<tr>
<td>Junior & Senior Detail Draftsman</td>
<td>Electronic Drafting (V-11, V-12)</td>
<td>2 yrs. High School with Algebra, Physics or Science</td>
</tr>
<tr>
<td>Color TV Service Technician</td>
<td>Color Television</td>
<td>Television background</td>
</tr>
<tr>
<td>Hi-Fi Service Technician</td>
<td>Audio Hi-Fidelity</td>
<td>Radio background</td>
</tr>
<tr>
<td>Technical Writer</td>
<td>Technical Writing</td>
<td>Electronics background</td>
</tr>
<tr>
<td>Cameraman, TV Film Editor, Video Technician, Director</td>
<td>TV Studio Production (S-1)</td>
<td>High School Grad</td>
</tr>
<tr>
<td>Console Operator, Junior Programmer</td>
<td>Computer Programming (C-1)</td>
<td>College Grad or Industry sponsored</td>
</tr>
<tr>
<td>Radio Code Technician</td>
<td>Radio Code</td>
<td>8th Grade</td>
</tr>
<tr>
<td>Preparatory</td>
<td>Preparatory Math & Physics (P-1)</td>
<td>1 yr. High School</td>
</tr>
<tr>
<td>Preparatory</td>
<td>Preparatory Mathematics (P-0A)</td>
<td>1 yr. High School</td>
</tr>
</tbody>
</table>

- Free Placement Service. RCA Institutes graduates are now employed in important jobs at military installations such as Cape Canaveral, with important companies such as IBM, Bell Telephone Labs, General Electric, RCA, and in radio and TV stations all over the country. Many have opened their own businesses. A recent New York Resident School class had 93% of the graduates who used the FREE placement service accepted by important electronics companies, and had their jobs waiting for them on the day they graduated!

Note: 3 additional locations. RCA Technical Institutes offers a limited selection of basic resident school courses in Electronics in Chicago, Philadelphia, and Cherry Hill, N. J. (near Camden). For complete information write the name of the city of your choice on the attached postcard.

RCA HOME TRAINING

<table>
<thead>
<tr>
<th>INDUSTRY DESIGNATED JOB TITLES</th>
<th>THIS IS THE RCA TRAINING THAT WILL HELP YOU GET IT!</th>
<th>QUALIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio aligner, Repairman, Tester</td>
<td>Radio-Electronic Fundamentals</td>
<td>8th Grade</td>
</tr>
<tr>
<td>Black & White TV Service Technician</td>
<td>Television Servicing</td>
<td>Radio Background</td>
</tr>
<tr>
<td>Color TV Service Technician</td>
<td>Color Television</td>
<td>Black & White Television</td>
</tr>
<tr>
<td>Automation Technician</td>
<td>Automation Electronics</td>
<td>Radio or Electronics Fundamentals</td>
</tr>
<tr>
<td>Transistor Circuits Specialist</td>
<td>Transistors</td>
<td>Radio or Electronics Fundamentals</td>
</tr>
<tr>
<td>Transmitter Technician, Communications Specialist</td>
<td>Communications Electronics</td>
<td>Radio or Electronics Fundamentals</td>
</tr>
<tr>
<td>Junior Draftsman</td>
<td>Electronic Drafting</td>
<td>8th Grade</td>
</tr>
<tr>
<td>Coder, Programmer, Analyst</td>
<td>Computer Programming</td>
<td>High School Grad plus 1-year business experience</td>
</tr>
</tbody>
</table>

- Voluntary Tuition Plan for Home Training Courses. This plan affords you the most economical possible method of home study training. You pay for lessons only as you order them. If, for any reason, you wish to interrupt your training, you can do so and not owe one cent. No other obligations! No installment payments required!
- You get Prime Quality Equipment. All kits furnished with home-training courses are complete in every respect and the equipment is top grade. You keep all the equipment furnished to you for actual use on the job, and you never have to take apart one piece to build another!

SEND POSTCARD FOR FREE ILLUSTRATED BOOK TODAY! SPECIFY HOME STUDY OR NEW YORK OR LOS ANGELES RESIDENT SCHOOL

RCA INSTITUTES, INC. Dept. ZRE-13
A Service of the Radio Corporation of America,
350 West 4th St., New York 14, N. Y.
Pacific Electric Bldg., 610 S. Main St., Los Angeles 14, Calif.

The Most Trusted Name In Electronics

JANUARY, 1963

101
Celebrating our 9th Year of Poly Pak’n

DOUBLE FREE

“BONUS”

BONUS #1 $50.00 WORTH OF ELECTRONIC PARTS AS MUCH AS 200 PCS. ADD 25¢ FOR HANDLING

BONUS #2 $1 POLY PAK OF YOUR CHOICE LISTED BELOW

BOTH FREE WITH EVERY $10.00 ORDER
ALL BRAND-NEW COMPONENTS

CONDENSERS

- 40 TEMPERATURE COMPENSATED CONDENSERS
- 20 Hi-Q Discs, 0.01 mfd at 1000
- 40 Teflon Discs, 0.001 mfd at 1000
- 100 MINI-WIRE CONDENSERS, 0.01 mfd at 1000
- 100 MINI WIRE K72, 0.01 mfd at 1000
- 100 CONDENSER SURF., 0.5 mfd at 1000

RESISTORS

- 60 ALLEN BRADLEY 20 watt, 10%
- 35 RGA RESISTORS, 20 Watt, 10%
- 35 SUBMINIATURE RESISTORS, 2 Watt, 10%
- 35 TWO WATTS, 1% tolerance
- 40 ASP CARBONS. 10 kohms - 1 meg.
- 45 ASP CARBONS, 100 kohms - 1 meg.
- 50 MICA, 2 Watt, 10%
- 60 CONDENSER SURF., 0.5 mfd at 1000

WORLD’S BEST “DOLLAR” BUYS

- 10 RCA PLUGS, 200 volts, 30 amps
- 10 ELECTRONIC RESISTORS, 20 watt, 10%
- 10 MICRO SWITCHES, 5 amp, 250 volt, 10%
- 10 TRANSISTOR Sockets for COUPE-NTF6s
- 1500 Ohm HARDWARE KIT, screw, etc.
- 5000 VOLTAGE COMPARATOR, sub-10
- 100 MINIATURE TUBE CHEATER, 2 volt, black
- 125 PARTS, bulbs, bulbs, etc.
- 125 TERMINAL STRIPS, 1 to 2 lug types

SEMI-KON-DUCTORS

- 15 PNP TRANSISTORS. 200 volts, 100 ma.
- 15 TOP BRAND CT. TRANSISTORS, PNP
- 15 TOP MAT RECTIFIERS, silicon, to 750 ma.
- 15 SILICON DIODES, to 1 amp.
- 25 1N4114 DIODES, to 1 amp.
- 25 1N4118 DIODES, to 1 amp.
- 25 1N4001 DIODE, to 1 amp.
- 25 1N4007 DIODE, to 1 amp.
- 25 1N5819 DIODE, to 1 amp.
- 15 1N5814 DIODES, to 1 amp.
- 15 1N5817 DIODES, to 1 amp.
- 15 1N5818 DIODES, to 1 amp.
- 15 1N5816 DIODES, to 1 amp.
- 15 1N5815 DIODES, to 1 amp.
- 15 1N5813 DIODES, to 1 amp.
- 15 1N5812 DIODES, to 1 amp.
- 15 1N5811 DIODES, to 1 amp.

FREE! Poly Pak’s “Dollar Guide” on semiconductors, poly packs, parts, send 10¢ for handling
NOT AFFILIATED WITH ANY OTHER MAIL ORDER HOUSE

Poly Aks

World’s Largest Supplier of Pre-Packaged Assemblies

(Continued from page 97)

stand. Independent VU meter on each channel. Separate gain controls on each channel and each input. Off-the-tape monitoring, cue button, digital counters, automatic shutoff. Permanently lubricated capstan and flywheel bearings. 7-inch reels. Bias frequency 95 kc. Mike inputs: high-impedance (2 mgs) sensitivity: 1.0 mv. Radio/phonio inputs: 0.5 mgs, sensitivity 150 mv. Output: approximately 1 volt, low impedance. At 7¾ ips, wow and flutter 0.125%

frequency response 30-20,000 cycles. Signal-to-noise ratio 50 db. channel separation 55 db.—Benjamin Electronic Sound Corp., 80 Swalm St., Westbury, N. Y.

MINIATURE CONDENSER MIKE, model C-17B. Cardiod pattern with 25 db from-to-back sensitivity. Frequency response ±2 db-15,000 cycles. Power supply included; low-frequency 4-position step attenuation and high-frequency equal. ¾ in. diam × ¾ in. long—Sony unit, available from Supremeco Inc., 8150 Vineyard Ave., Sun Valley, Calif.

STEREO HEADPHONES, model HA-8. Frequency response 20-15,000 cycles, maximum input power 2 watts. Impedance 8 ohms per phone. Attenuation of ambient noise 20 db at 1,000 cycles. Lateral pressure about 2 lb over 8-sq-in. area. 6-ft leads.

STEREO-MINDER indicator, electronic-eye tuning, tape recorder filter.—Bogen Communications Div., PO Box 300, Paramount, N. Y.

STEREO PHONO CARTRIDGE, Stantm 481A. For manual tone arms. Recommended tracking force 2.5 grams. Dc resistance 2,000 ohms, inductance 440 mh, loud resistance 47,000 ohms. Nominal output 1 mv/cm/sec, channel separation 35 db. Frequency response 1/2 db down at 20 kc, channel balance 1 db. Mute control.—Pickering & Co., Sinnerside Blvd., Plainview, N. Y.

DISK-WHISK KIT. Cleans records while they play. Brush sweeps grooves, cylinder pad deposits coating of anti-static fluid. Device clips to arm of any record changer or turntable. Replacement kit, model ESK-8, contains roller and fluid.—Robins Industries Corp., 15-58 127th St., flushing 56, N. Y.

All specifications are from manufacturers’ data

RADIO-ELECTRONICS

Terms: include postage, check, money order, EXPORT ORDERS INVITED. Wt. per pack 1 lb.
P.O. BOX 942R
S. LYNNFIELD, MASS.

www.americanradiohistory.com
A Bold Departure in Paging Speakers!

Look carefully at the new Electro-Voice PA7 paging speaker. The speaker that defies tradition to give you more value than any other paging unit on the market!

Even the horn is new! Molded of tough, unbreakable Cycolac* plastic, it outlasts metal yet doesn't "ring" like ordinary bells. And the color is molded in. Fading, peeling, rusting problems are gone forever!

Inside, a brand new ring-type diaphragm of fiberglass-reinforced Acoustalloy® provides the authoritative voice of the PA7. Unusually high efficiency is coupled with smoothly rising response and low distortion. Test it with voice—even music! This is crisp, commanding sound that puts even larger speakers to shame!

Although the PA7 is light in weight, the ingenious swivel mounting is strictly heavy-duty for quick, absolute positioning anywhere... mobile or fixed!

Every detail of design and performance of the PA7 reflects the refreshing, new ideas that have made E-V PA speakers the finest in the industry! Ideas that mean highest quality and reliability for you and your customers!

Measure this remarkable new paging speaker against your personal yardstick of quality. No matter how critically you judge the Electro-Voice PA7, you'll find it's better than you expected. Except the price. That's much better!

* T.M. Borg-Warner
REVISED • REVIVED • REWARDING

RADIO

1963

READ & PROFIT BY

GERNSBACK LIBRARY

BOOKS ON RADIO

RADIO SERVICING MADE EASY (2 Vols.) Brand new! Just released. Provides up-to-date servicing information on latest radio types and how to repair them.

No. 107—$7.20

BASIC RADIO COURSE (Revised) From loopstick to speaker—everything you need to know about Ohm’s Law, inductance, capacitance, tubes, circuits, transistors, and how they work, includes practical servicing techniques.

No. 104—$4.10

HINTS AND KINKS FOR TV, RADIO & AUDIO. 280 ideas make your job easier, your electronic hobby more fun, using simple tools. Hints on construction and servicing.

No. 103—$2.35

HOW TO FIX TRANSISTOR RADIOS & PRINTED CIRCUITS (2 Vols.) Learn new, improved, faster transistor radio servicing techniques. Save time, handle more jobs, add to your income.

No. 96—$5.50

PRACTICAL AUTO RADIO SERVICE & INSTALLATION. How to fix these specialized sets. Solid servicing information.

No. 87—$2.95

RAPID RADIO REPAIR. Put your finger on tough radio troubles easily and quickly. Symptoms listed alphabetically in four handy sections.

No. 78—$2.90

GUIDE TO MOBILE RADIO. What mobile radio is, what the circuits are like, how it’s used. Data on maintenance, licensing, remote control, selective calling.

No. 77—$2.85

SERVICING TRANSISTOR RADIOS. Covers theory, analysis of a typical set, techniques, inside tips. Useful charts speed servicing.

No. 76—$2.90

TV & RADIO TUBE TROUBLES. Trace any tube trouble to its source in minutes. New sure-fire symptom analysis technique.

No. 68—$2.90

RADIO IN 1963—Fastest growing, greatest selling electronic field in the world. Keep ahead—stay ahead with the latest servicing data.

SEE YOUR ELECTRONICS PARTS DISTRIBUTOR or mail the coupon below today.

107 104 103 □ REMITTANCE
96 87 78 □ MUST ACCOMPANY
77 76 68 □ EACH ORDER

Enclosed is $.................

GERNSBACK LIBRARY, INC., 163 RE
154 West 14th St., New York 11, N. Y.

Name

Address

City

Zone

State

10-DAY MONEY-BACK GUARANTEE

104

NEW SEMI-CONDUCTORS & TUBES

DESPIE THE NAME OF THIS COLUMN, we’re starting off with a combination tetrode with three plates and a diode in the same miniature envelope. Further on, you’ll find some controlled rectifiers, a nor gate in a semiconductor package and a triode-pentode for TV vhf tuner applications.

6KMB

Here’s a fascinating tube—a multi-unit 9-pin miniature that houses a diode and a sharp-cutoff tetrode that has three plates. It is specially designed for use in an electronic organ where the 6KMB can provide three independent readout or output-signal voltages. The diode unit can be used as a key in a vibrator circuit.

Maximum ratings of the triode section of the RCA 6KMB in frequency-divider and complex-wave generator service are:

Vr (plate 1)	450 (plate 2A)	450 (plate 2B)
330	330	330
Vos	330	330
Vs (neg bias value)	50	0
(poz bias value)	0	0.65
G2 (input watts)	3.3	1
Pr (plate 1, watts)	1	1
(plate 2A, watts)	1	1
(plate 2B, watts)	1	1

Diode section rating:

Maximum plate current 1 ma

5HGB

A triode-frame-grid pentode, in a 9-pm miniature envelope, designed for use in the mixer stage of vhf television tuners. This tube has a 5.3-volt 450- ma heater with an 11-second controlled warmup time.

Typical operating characteristics of this Sylvania tube are:

<table>
<thead>
<tr>
<th>Tr</th>
<th>Fe</th>
<th>Pentode</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2</td>
<td>90</td>
<td>170</td>
</tr>
<tr>
<td>V2z</td>
<td>3</td>
<td>170</td>
</tr>
<tr>
<td>Vg1</td>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td>Ic (ma)</td>
<td>14</td>
<td>19</td>
</tr>
</tbody>
</table>

Junction temperature and can carry an average current of 10 amps at a 180° conduction angle. One-cycle peak current rating is 125 amps and the maximum forward current drop is 1.6 volts at 10 amps. Forward blocking voltage ratings are 25 through 400 volts and repetitive peak reverse voltage ratings are 30 to 480.

NC-10

This digital nor gate can operate at speeds up to 15 mc. It features a clamped output to define the output level and is widely used in digital logic systems, instrumentation and general switching service. The unit incorporates...
ELECTRONICS

Engineering-Technicians

Bachelor of Science Degree, 30 Months
Save Two Years' Time

Radio-Television Plut Color Technician (12 Months)
Electronics Engineering Technology (15 Months)
Electronics Engineering (B.S. Degree)
Electrical Engineering (B.S. Degree)
Mechanical Engineering (B.S. Degree)
Civil Engineering (B.S. Degree)
Architecture (B.S. Degree)

Approved for Veterans
DAY AND EVENING CLASSES

Write for Catalog and Registration Application. New Term Starting Soon.

Your Name __
Address __
City __
State __

ENGINEERS, TECHNICIANS, EXPERIMENTERS WANTED

ANNOUNCING

2 New Professional
HOME-STUDY COURSES - Electronics!

TECHNICAL WRITING

TECHNICAL ILLUSTRATING - Electronics!

NOW... THE CAREER OPPORTUNITY FOR YOU!

WRITE FOR FREE BULLETIN

HUGO GERNsBACk, Founder

Modern Electronics... 1908
Wireless Apparatus of America... 1908
Radio News... 1919
Science & Invention... 1923
Practical Electricity... 1924
Television... 1927
Radio Craft... 1929
Short-Wave Craft... 1930

In Gernsback Publications

Some larger libraries still have copies of Modern Electronics on file for interested readers.

In January, 1913 Modern Electronics

Frog-Leg Wireless

Electrolytic Interrupters, by H. Winfield Secor.

Wireless Club Directory.

Rotary Spark Gap, by Charles S. Ballantine.

A Detector of Merit, by Paul Horton.

Compact Receiving Outfit, by Wyly Dewey Nelson.

Portable Sending Set, by Charles Keevil.

JANUARY, 1963

SILICON

TOP HATS

OF DIODES

LOW LEAKAGE NEWEST TYI% GUARANTEED

7-0 MA

LOWEST PRICES

PIV 850 500 250 125 60 30 15

100 Diff. Res. 1/2 W, 1 W, 2 W-

1% Tolerance, 1/16" Diameter, .01" Thick.

G-E. 1N91 Diode; 10 for $1.00, 50 for $5.00

SILICON POWER DIODE STUDS

100 50 30 15 10 5 3 2

100 50 30 15 10 5 3 2

100 50 30 15 10 5 3 2

100 50 30 15 10 5 3 2

All material guaranteed 92.00 min. yield. Orders O.K. NEW YORK, NEW JERSEY, CHICAGO, DETROIT, CINCINNATI, SAN FRANCISCO, LOS ANGELES, DALLAS, ATLANTA, MILWAUKEE, CHICAGO, PHILADELPHIA

WARREN ELECTRONICS CO.

1209 S. 11th St.

Spartanburg, South Carolina

In Canada: CROSS CANADA ELECTRONICS

12 Laurel Street, Waterloo, Ontario

105

www.americanradiohistory.com
The set was brought into the shop with a complaint of intermittent ripples in the center of the screen. Later the condition was analyzed as piecuring. As in other cases of the piecuring effect, the trouble was insufficient filtering of the error signal in the horizontal afc. Shunting capacitors in this circuit (C505, C506 and C507) with known good units cured the trouble. If the bad unit had been shorting, shunt caps wouldn't have helped and we would have had to check by replacement. Removing the shunts one at a time showed C506 was causing the trouble. We replaced it with a new unit and the piecuring was gone."
ohms) across the 22,000-ohm resistor in the plate circuit of the sync amplifier, a 6CU8. Replacing the .01-µf capacitor that is connected to one end of this resistor with a .0039-µf unit may also help.—M. L. Leonard

Metz 604

On this model the AM and FM tuning drives are engaged by a clutch assembly. It is a rubber-tired wheel that engages either the AM or FM tuning drive assembly. The tire (actually a rubber cover) eventually disintegrates and is hard to replace as sources of exact replacements are few and far between.

It can be repaired by buying a rubber finger—sold in drug stores—cutting it into three strips or sections 5⅛ inch wide and placing these, one over the other, on the wheel.

This repair takes about an hour because both dial cords must be loosened and the entire assembly removed. When replacing the dial cords be sure you reinstall them exactly as they were. In fact, before loosening them, use small pieces of masking tape over all pulleys to hold the string in place.—JUAN F. TRUJILLO

Philco E2004F

There was no raster and a squeal in the sound. Voltage checks at the horizontal multivibrator were within reason. Applying a 15,750-cycle signal at pin 6 of the 7AU7 (plate) restored the raster and cleared up the sound. I changed various components in the horizontal circuit without results, finally found the trouble in the 200-µf filter on the 135-volt line that supplies the multivibrator plate through 39,000- and 10,000-ohm resistors. Replacing the capacitor cured the trouble. We used a higher-voltage replacement to insure against a recurrence of the same trouble.—LLOYD S. LEMONS

RCA 1457052 (KCS 102B)

Horizontal pull, poor vertical and horizontal sync: Change the .01-µf capacitor across the sine-wave coil in the horizontal oscillator (see diagram). Set slug, watching the scope for proper waveform, then change the .033-µf capacitor from the video amplifier plate network to the triode section of 6AW8 (first sync amplifier). This set ran for hours outside the cabinet, but failed in 20 to 30 minutes inside the cabinet. A heat lamp was used on chassis to make the part break down.—W. G. ESICK
SALE! “NISHT GEFUNFIT” (The Real McCoy)

“DOLLAR BUYS” that would be bargains even at FIVE DOLLARS—made possible by our TREMENDOUS Buying Power* . . . Money back guarantee . . . Same day delivery!

10% OFF & FREE GIFT—ON PURCHASE OF $10 OR OVER

CASH ONLY

MARKET SCOOP COLUMN

1. **ROSCOE PORTABLE RADIO** $1

2. **ASSORTED TUBES** $1

3. **TRANSPORT RADIO BATTERIES** $1

4. **ASSORTED PHONO Plugs** $1

5. **2-WIRE STRIPPER/CUTTERS** $1

6. **ASSORTED RESISTORS** $1

7. **ASSORTED CAPACITORS** $1

8. **Soldering Irons** $1

9. **ASSORTED STANDARD TUBES** $1

10. **ASSORTED TV TUBES** $1

11. **ASSORTED SOLDER** $1

12. **ASSORTED TV PLUGINS** $1

13. **ASSORTED TV BATTERIES** $1

14. **ASSORTED TV TUBES** $1

15. **ASSORTED TV PHONO BOARDS** $1

16. **ASSORTED TV ION TAPES** $1

17. **ASSORTED TV INTERNS** $1

18. **ASSORTED TV EXPERIMENT KITS** $1

19. **ASSORTED TV ROTOMETERS** $1

20. **ASSORTED TV WIRE** $1

21. **ASSORTED TV CABLES** $1

22. **ASSORTED TV FIELD PRACTICE** $1

23. **ASSORTED TV HISTORY** $1

24. **ASSORTED TV EXPERIMENTAL** $1

25. **ASSORTED TV DISCOUNT** $1

26. **ASSORTED TV SPECIAL** $1

27. **ASSORTED TV OFFER** $1

28. **ASSORTED TV SAMPLE** $1

29. **ASSORTED TV DEAL** $1

30. **ASSORTED TV OFFER** $1

31. **ASSORTED TV SPECIAL** $1

32. **ASSORTED TV DISCOUNT** $1

33. **ASSORTED TV HISTORY** $1

34. **ASSORTED TV EXPERIMENTAL** $1

35. **ASSORTED TV EXPERIMENTAL** $1

36. **ASSORTED TV EXPERIMENTAL** $1

37. **ASSORTED TV EXPERIMENTAL** $1

38. **ASSORTED TV EXPERIMENTAL** $1

39. **ASSORTED TV EXPERIMENTAL** $1

40. **ASSORTED TV EXPERIMENTAL** $1

41. **ASSORTED TV EXPERIMENTAL** $1

42. **ASSORTED TV EXPERIMENTAL** $1

43. **ASSORTED TV EXPERIMENTAL** $1

44. **ASSORTED TV EXPERIMENTAL** $1

45. **ASSORTED TV EXPERIMENTAL** $1

46. **ASSORTED TV EXPERIMENTAL** $1

47. **ASSORTED TV EXPERIMENTAL** $1

48. **ASSORTED TV EXPERIMENTAL** $1

49. **ASSORTED TV EXPERIMENTAL** $1

50. **ASSORTED TV EXPERIMENTAL** $1

51. **ASSORTED TV EXPERIMENTAL** $1

52. **ASSORTED TV EXPERIMENTAL** $1

53. **ASSORTED TV EXPERIMENTAL** $1

54. **ASSORTED TV EXPERIMENTAL** $1

55. **ASSORTED TV EXPERIMENTAL** $1

56. **ASSORTED TV EXPERIMENTAL** $1

57. **ASSORTED TV EXPERIMENTAL** $1

58. **ASSORTED TV EXPERIMENTAL** $1

59. **ASSORTED TV EXPERIMENTAL** $1

60. **ASSORTED TV EXPERIMENTAL** $1

61. **ASSORTED TV EXPERIMENTAL** $1

62. **ASSORTED TV EXPERIMENTAL** $1

63. **ASSORTED TV EXPERIMENTAL** $1

64. **ASSORTED TV EXPERIMENTAL** $1

65. **ASSORTED TV EXPERIMENTAL** $1

66. **ASSORTED TV EXPERIMENTAL** $1

67. **ASSORTED TV EXPERIMENTAL** $1

68. **ASSORTED TV EXPERIMENTAL** $1

69. **ASSORTED TV EXPERIMENTAL** $1

70. **ASSORTED TV EXPERIMENTAL** $1

71. **ASSORTED TV EXPERIMENTAL** $1

72. **ASSORTED TV EXPERIMENTAL** $1

73. **ASSORTED TV EXPERIMENTAL** $1

74. **ASSORTED TV EXPERIMENTAL** $1

75. **ASSORTED TV EXPERIMENTAL** $1

76. **ASSORTED TV EXPERIMENTAL** $1

77. **ASSORTED TV EXPERIMENTAL** $1

78. **ASSORTED TV EXPERIMENTAL** $1

79. **ASSORTED TV EXPERIMENTAL** $1

80. **ASSORTED TV EXPERIMENTAL** $1

81. **ASSORTED TV EXPERIMENTAL** $1

82. **ASSORTED TV EXPERIMENTAL** $1

83. **ASSORTED TV EXPERIMENTAL** $1

84. **ASSORTED TV EXPERIMENTAL** $1

85. **ASSORTED TV EXPERIMENTAL** $1

86. **ASSORTED TV EXPERIMENTAL** $1

87. **ASSORTED TV EXPERIMENTAL** $1

88. **ASSORTED TV EXPERIMENTAL** $1

89. **ASSORTED TV EXPERIMENTAL** $1

90. **ASSORTED TV EXPERIMENTAL** $1

91. **ASSORTED TV EXPERIMENTAL** $1

92. **ASSORTED TV EXPERIMENTAL** $1

93. **ASSORTED TV EXPERIMENTAL** $1

94. **ASSORTED TV EXPERIMENTAL** $1

95. **ASSORTED TV EXPERIMENTAL** $1

96. **ASSORTED TV EXPERIMENTAL** $1

97. **ASSORTED TV EXPERIMENTAL** $1

98. **ASSORTED TV EXPERIMENTAL** $1

99. **ASSORTED TV EXPERIMENTAL** $1

100. **ASSORTED TV EXPERIMENTAL** $1

HARD WAY TO ORDER—Simply pencil mark items wanted (X in square is sufficient), enclose with money order or check. You will receive a new copy of these offers for re-orders.

ON SMALL ORDERS—Include stamps for postage, excess refunded.

LARGER ORDERS shipped express charges collect.

BROOKS RADIO & TV CORP., 84 Vesey St., Dept. A, New York 7, N. Y.

TELEPHONE Cortland 7-2339

RADIO-ELECTRONICS

*In order to SELL, we must FIRST BUY and that we do on a BIG SCALE. If you have any TUBES, CONDENSERS, RESISTORS or any other PARTS in quantity and new that you wish to sell . . . please send us samples . . . We pay SPOT CASH.

BROOKS RADIO & TV CORP., 84 Vesey St., Dept. A, New York 7, N. Y.
Regulated Heater Voltage Supply

A regulated heater voltage supply is often specified for precision oscillators and dc amplifiers. These circuits from Hoffman Semiconductor Application Notes show how Zener diodes can be used for this purpose. The circuits in Fig. 1 are for 6.3-volt 300-ma heaters and those in Fig. 2 are for 12.6-volt 150-ma circuits.

When adjusted for optimum regulation, a 13% change in the voltage applied to the bridge causes a heater voltage variation not exceeding .04%.

Trimmer resistor R should have a maximum value of about 20% of the total value of the lower variable arm of the bridge. The fixed resistor should be about 10% less than the value shown. A 3- to 4-ohm pot should do in the circuits in Figs. 1 and 2.

Fig. 3 is a test circuit for adjusting the regulation. Fig. 4 and 5 are for adjustable Zener diodes.

JANUARY, 1963

Regulated Heater Voltage Supply

A regulated heater voltage supply is often specified for precision oscillators and dc amplifiers. These circuits from Hoffman Semiconductor Application Notes show how Zener diodes can be used for this purpose. The circuits in Fig. 1 are for 6.3-volt 300-ma heaters and those in Fig. 2 are for 12.6-volt 150-ma circuits.

When adjusted for optimum regulation, a 13% change in the voltage applied to the bridge causes a heater voltage variation not exceeding .04%.

Trimmer resistor R should have a maximum value of about 20% of the total value of the lower variable arm of the bridge. The fixed resistor should be about 10% less than the value shown. A 3- to 4-ohm pot should do in the circuits in Figs. 1 and 2.

Fig. 3 is a test circuit for adjusting the regulation. Fig. 4 and 5 are for adjustable Zener diodes.

JANUARY, 1963

Regulated Heater Voltage Supply

A regulated heater voltage supply is often specified for precision oscillators and dc amplifiers. These circuits from Hoffman Semiconductor Application Notes show how Zener diodes can be used for this purpose. The circuits in Fig. 1 are for 6.3-volt 300-ma heaters and those in Fig. 2 are for 12.6-volt 150-ma circuits.

When adjusted for optimum regulation, a 13% change in the voltage applied to the bridge causes a heater voltage variation not exceeding .04%.

Trimmer resistor R should have a maximum value of about 20% of the total value of the lower variable arm of the bridge. The fixed resistor should be about 10% less than the value shown. A 3- to 4-ohm pot should do in the circuits in Figs. 1 and 2.

Fig. 3 is a test circuit for adjusting the regulation. Fig. 4 and 5 are for adjustable Zener diodes.

JANUARY, 1963

Regulated Heater Voltage Supply

A regulated heater voltage supply is often specified for precision oscillators and dc amplifiers. These circuits from Hoffman Semiconductor Application Notes show how Zener diodes can be used for this purpose. The circuits in Fig. 1 are for 6.3-volt 300-ma heaters and those in Fig. 2 are for 12.6-volt 150-ma circuits.

When adjusted for optimum regulation, a 13% change in the voltage applied to the bridge causes a heater voltage variation not exceeding .04%.

Trimmer resistor R should have a maximum value of about 20% of the total value of the lower variable arm of the bridge. The fixed resistor should be about 10% less than the value shown. A 3- to 4-ohm pot should do in the circuits in Figs. 1 and 2.

Fig. 3 is a test circuit for adjusting the regulation. Fig. 4 and 5 are for adjustable Zener diodes.

JANUARY, 1963

Regulated Heater Voltage Supply

A regulated heater voltage supply is often specified for precision oscillators and dc amplifiers. These circuits from Hoffman Semiconductor Application Notes show how Zener diodes can be used for this purpose. The circuits in Fig. 1 are for 6.3-volt 300-ma heaters and those in Fig. 2 are for 12.6-volt 150-ma circuits.

When adjusted for optimum regulation, a 13% change in the voltage applied to the bridge causes a heater voltage variation not exceeding .04%.

Trimmer resistor R should have a maximum value of about 20% of the total value of the lower variable arm of the bridge. The fixed resistor should be about 10% less than the value shown. A 3- to 4-ohm pot should do in the circuits in Figs. 1 and 2.

Fig. 3 is a test circuit for adjusting the regulation. Fig. 4 and 5 are for adjustable Zener diodes.

JANUARY, 1963

Regulated Heater Voltage Supply

A regulated heater voltage supply is often specified for precision oscillators and dc amplifiers. These circuits from Hoffman Semiconductor Application Notes show how Zener diodes can be used for this purpose. The circuits in Fig. 1 are for 6.3-volt 300-ma heaters and those in Fig. 2 are for 12.6-volt 150-ma circuits.

When adjusted for optimum regulation, a 13% change in the voltage applied to the bridge causes a heater voltage variation not exceeding .04%.

Trimmer resistor R should have a maximum value of about 20% of the total value of the lower variable arm of the bridge. The fixed resistor should be about 10% less than the value shown. A 3- to 4-ohm pot should do in the circuits in Figs. 1 and 2.

Fig. 3 is a test circuit for adjusting the regulation. Fig. 4 and 5 are for adjustable Zener diodes.

JANUARY, 1963
Service Technicians...
LIGHTNING DOES STRIKE TWICE!!

Another Double-Value Reason
to join the Technicians Book Club

NEW SHORTCUTS
TO TV SERVICING

By Leonard C. Lane

2-VOL. $9.90 set—Only $6.50

Three months ago Gernsback Library introduced a sensational 2-volume set that has service technicians everywhere buzzing. Now here's another one just as exciting. This book, too, was originally prepared as a training course by a leading home-study school and sold at many times this price.

Different from any servicing book you've ever read. There's no math, no theory. Instead it hammers hard at solving the servicing problems that bug you on those rough days. Rf, if, detector, agc, front end, sync stage, picture tube and many other component problems are carefully analyzed. This book is not just a crutch for tube pullers—but a guide that will help you understand basic troubles. You'll learn how to service sets not yet on the drawing boards! Get this one for your workbench now. The tricks, techniques and shortcuts it offers will help you boost your servicing income for years to come.

*The one twin you may have missed it—HOW TO FIX TRANSISTOR RADIOS & PRINTED CIRCUITS. A complete shirt-sleeve course on servicing transistor radios by the same author. Same low price. Same wonderful value—also originally sold for much more as a home study training course. Begin your membership with either one.

IT PAYS TO BUY THE BOOK CLUB WAY

The books retail for $9.90. But as a club member you can buy them for only $6.50 plus a few cents postage. Join the club now and take advantage of the book buy of the year.

NO-RISK GUARANTEE: You don't risk a cent. SEND NO MONEY. Look the books over in your own home. Then only when you're convinced they're as good as we say, send payment. If you're not satisfied just send the books back.

HOW TO JOIN

Just mail the coupon below. SEND NO MONEY. We'll send you the books for a 10-day No-Risk inspection in your own home. • If you like the books keep them and send us your remittance. If you don't, just send them back. • A new book is published every few months—you receive it on the same No-Risk inspection plan. • Keep only the books you want—pay only for those you keep. • You agree to take a minimum of only 4 books—over the whole enrollment period! You may cancel anytime after that. No time limit—no contract to sign.

BUILD A WHOLE LIBRARY OF BOOKS YOU NEED TO GET AHEAD IN SERVICING

The G/L Technicians' Book Club has helped thousands of service technicians everywhere • Do Faster Servicing • Earn More Money • Save money on the books they need to get ahead.

HERE'S HOW IT CAN HELP YOU! This club offers hard-cover editions of today's best servicing books by well-known authors AT DISCOUNTS UP TO 27%! Through mass printing and direct distribution we can offer you these books AT A SPECIAL LOW PRICE plus a few cents postage.

SEND NO MONEY! MAIL THIS COUPON TODAY!

Gernsback Library, Inc. Dept. 13A
134 West 14th St., New York 11, N. Y.

Enroll me in the G/L TECHNICIANS' BOOK CLUB. Send me: (Please check one)
□ 'How To Fix Transistor Radios and Printed Circuits' (2 Vols.)
□ New Shortcuts to TV Servicing
Name
Address
City
State

110 R A D I O- E L E C T R O N I C S

www.americanradiohistory.com
New Phase Inverter

Instability in many high-fidelity amplifiers with wide-band output transformers has been traced to poor high-frequency response in the phase-inverter or phase-splitter circuit. When negative feedback is applied around the phase inverter, the drop in response at high frequencies causes a lagging phase shift that approaches 90°. If the total phase shift is 180° at some high frequency, feedback becomes positive and the amplifier oscillates.

This kind of instability can be minimized by increasing the high-frequency response so the frequency where phase shift becomes intolerable is close to or above the upper limit of the output transformer.

In Wireless World, A. R. Bailey describes an improved version of the popular long-tailed pair phase inverter. In the original circuit, the high-frequency response is limited by Miller effect in the input triode. When a 12AX7 long-tailed pair is fed from a 100,000-ohm impedance, the reflected Miller capacitance causes the response to drop around 3 db at 25 kc.

The new circuit practically eliminates Miller effect degradation by using a pentode instead of a triode in the input section of the long-tailed pair.

The diagram shows the front end of a power amplifier with the long-tailed pair. The pentode and triode sections of a 6U8/ECF82 are used. The plate load resistor in the pentode section is slightly larger than the one in the triode stage, for balanced output. Coupling between the input stage and the phase inverter is direct. This eliminates the coupling capacitor, which could make the amplifier unstable at low frequencies when large amounts of feedback are used.

JANUARY, 1963

END
Olson
FREE

Fill in coupon for a FREE One Year Subscription to OLSON ELECTRONICS Fan-tastic Bargain - Packed Catalog - Unheard of LOW, LOW DISCOUNT PRICES on Brand Name Speakers, Changers, Tubes, Tools, Hi-Fi's, Stereo Amps, Tuners and thousands of other Electronic Bargains. Credit plan available.

*NAME.
ADDRESS.
CITY. ZONE. STATE.

If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS, INC.
736 S. Forge St., Akron 8, Ohio

HINTS & KINKS FOR RADIO, TV & AUDIO
Edited by Martin Clifford
Gernsback Library Book No. 103
128 pages $2.35

A unique and helpful selection of tips on how to use all sorts of gadgets and gimmicks like paper clips, drinking straws, grommets, corkscrews, tape and dozens of other everyday items as helps and timesavers in your servicing or experimenting be it TV, Radio, Audio—or just plain electronic tinkering. Editor Clifford selected the best from thousands of hints and kinks sent in to Radio-Electronics magazine by ingenious readers. This book is really priceless. Any one of these 280 suggestions may be worth hundreds of dollars to you in time and effort saved or in work more easily done.

JUST A FEW OF THE COLLECTION OF 280 HINTS & KINKS
Test prods. - Test lead storage - Fuse puller - Sticky yokes - Reduce nuisance calls - Toothpaste-tube knob - Boost fringe reception - Servicing aids - Transistor lifesaver - Kit-building kink - Audio test rig - Soldering tip - Gun carries own sander - Novelty blinker - Spaghetti for miniature circuits - Tube taper and wire puller - Wing nut driver - Plus 283 more practical shortcuts, timesavers and bench helpers.

RADIO-CONTROL HANDBOOK
By Howard G. McEntee
Revised and greatly enlarged edition
Gernsback Library Book No. 93
304 pages $4.95

Enough R/C material to fill two books. The book bulges with practical information with emphasis on how to do it, not why it happens. The original edition sold out completely after eight printings. This big second edition is completely updated — obsolete material has been dropped, new developments added. Offers scores of new ideas, circuits and construction details on receivers, transmitters, servos, pulsers, escapers, controls, relays plus inside tips on installation, adjustments, testing and building of complete systems.

FILL IN COUPON FOR FREE SUPPLEMENT
or use this coupon
Gernsback Library, Inc.
154 West 14th St.
New York 11, N. Y.

Please send me the books indicated postpaid

My remittance of $__________ is enclosed

please list books selected by number

NAME ___
ADDRESS ___
CITY_ ZONE_ STATE ____________________________

Order Today from Your Distributor

www.americanradiohistory.com
Also, since R2 passes less current, V2’s bias is reduced at the same time. This results in a potential difference between the tube’s anode and cathode.

When meter current reaches the danger point, the output from V2 and V3 is high enough to fire the thyatron and energize the relays it controls. Then Ry1 contacts shut out the meter and Ry2 contacts switch on the overload indicator.

R1 is adjusted so that thyatron V1 fires at the predetermined overload voltage. 5 vesces the circuit. Ry1 and Ry2 should be fast-acting relays, such as mercury types.

Negative Ion Generator

PATENT NO. 3,043,577

Harold J. Morowitz, Orange, Conn.

(assigned to Puriform Corp., New Haven, Conn.)

Negative ions are used in therapeutic work and to purify air. This generator uses a mercury tube within an enclosure. A thin layer of gold (or other metal) is deposited on the inner shell of this tube.

A fan sucks air in through the louvres and expels it through the side. The photoelectrons or photoelectric effects move along with the air into the room.

A ground wire to the metallic layer replenishes the supply of negative charges as they are emitted.

Sure glad you showed up. There’s a program in a couple minutes I don’t want to miss.”

JANUARY, 1963

the manual turntable you can play automatically

A superbly engineered unit developed especially for use in high quality music systems for faithfully reproducing high fidelity stereo and monaural music. Plays single record manually, automatically or continuously, and up to 10 records automatically. Operates at four speeds. Has a heavy die-cast 12-inch balanced turntable, mass-balanced tone arm and “feather-touch” pushbutton automatic controls. Model 101 with hysteresis-synchronous motor, $99.50; Model 102 with heavy-duty induction motor, $89.50 (prices are less cartridge and base). Descriptive literature at your dealer, or write to Benjamin Miracord Electronics Sound Corp., 80 Swalm St., Westbury, N.Y.

AMAZING OFFER

RADIO & TV SERVICE DATA

Your best complete source for all needed radio and TV diagrams and servicing data. Most amazing values. Only $5.00 and $10 per giant volume. Cover all important makes, models of all periods. Use this entice all of your no-risk order form.

DISCHARGE

Puritron

J. Morowitz, Orange, Conn.

NO-RISK ORDER COUPON

TELEVISION SERVICE MANUALS

Supreme TV manuals are best for faster, easier TV repairs. Lowest priced. Factory data on practically all sets. Complete circuits, all needed alignment facts, wiring board views, waveforms, voltages, production changes, and double-page schematics. Only $5 per large annual manual. Check volumes wanted, send entire advertisement as your order form.

RADIO DIAGRAM MANUALS

Here are low-priced radio manuals that simplify repairing. Cover everything from most recent 1952 radios to pre-war old-timers. Home radios, stereo, combinations, transistor portable, FM, auto sets. Large schematics, all needed alignment facts, printed boards, voltages, dial stringing hints. Volumes are big, 8 by 11, about 100 pages, each.

SUPREME PUBLICATIONS

1760 Balsam Road, Highland Park, Ill.
WANTED

INVESTIGATE ACCIDENTS, Earn $750 to $1,000 monthly. Men urgently needed. Car furnished. Business expenses paid, no selling. No college education necessary. Pick own job location. Investigate full time, or earn $6.44 hour spare time. Write for Free Book, No obligation. UNIVERSAL, Box 1, 6801 Hillcrest, Dallas 5, Tex. CASH PAID! Sell your surplus electronic tubes. Want unused, clean radio and TV receiving, transmitting, special purpose, Magnets, Klystrons, broadcast types, etc. Want military & commercial lab/test and communications equipment such as G.R., H.P. AN/UPM prefix. Also want commercial receivers and transmitters. For a fair deal write BARRY, 512 Broadway, New York 12, N.Y. Walker 5-7000.

PLATINUM electronic scrap bought. NOBLE METALS CO., Box 543, Los Angeles 9, Calif.

ELECTRONICS MANUFACTURER offers engineering and/or production facilities. Tax exemption permits tremendous savings. MILLES ENGINEERING, Las Marias, P. R.

EDUCATION/INSTRUCTION

LEARN WHILE ASLEEP. Hypnotize with your recorder, phonograph or amazing new Electronic Educator endless tape recorder. Catalog, details free. SLEEP-LEARNING ASSOCIATION, Box 24-9D, Olympia, Wash.

NEW CONCEPT OF LEARNING SELF-HYPNOSIS! Now on tape or record! Free literature. MCKINLEY-SMITH CO., Dept. T5, Box 3038, San Bernardino, Calif.

FCC LICENSE in 6 weeks, First Class Radio Telephone. Results Guaranteed. ELKINS RADIO SCHOOL, 2603 Inwood, Dallas, Texas.

JOB-SEEKING TECHNIQUE, $1.00. WALTER KAZAKS, 234 E 50th St., New York 22, N. Y.

HIGH-PAY Jobs in electronics waiting for you! Be an electronics technician, missileman, automation expert, computer specialist, radio-TV-ti-fi serviceman. Massey home study training pays for itself in spare-time earnings—accredited course with 7 kits. Write for Free home study or residence catalog. MASSEY TECHNICAL INSTITUTE, Dept. RE-1, Jacksonville, Fla.

SERVICES

METER REPAIRS. Average $2.50 by BIGELOW ELECTRONICS, Bluffton, Ohio. Free Mailing Pack.

TRANSISTORIZED products dealers catalog, $1. INTERMARKET, CPO 1717, Tokyo, Japan.

ALL MAKES OF ELECTRICAL INSTRUMENTS and TESTING equipment repaired. New and used instruments bought, sold, exchanged. HAZELTON INSTRUMENT CO., 128 Liberty St., New York, N.Y.

SPEAKER RECONING. Satisfaction Guaranteed. C & M RECONO CO., 255 Tioga St., Trenton, N.J.

TV Tuners—rebuilt or exchanged, $9.95. Fast Guaranteed. Complete crystal control alignment. VALLEY TUNER SERVICE, 18530 Parthenia, Northridge, Calif.

MULTIMETER REPAIRS. Average $7.00 by BIGELOW ELECTRONICS, Bluffton, Ohio. FREE Catalog. JAPAN DIRECTORY. 145 manufacturing exporters. Japan and Hong Kong trade Journal information. Asia opportunities. Send $1.00.

NIPPON SHOGYO, Box 739, Seattle 11, Wash. G.R., H.P., &N, etc., Tubes, manuals, military electronics. ENGINEERING ASSOCIATES, 434 Patterson Road, Dayton 19, Ohio.

FOR SALE

GENERAL

TRANSISTORIZED PRODUCTS, replacement parts catalog $1.00 money order. Custom orders for transistORIZED equipment or components. Write TECHSERVICES, C.P.O. Box 849, Tokyo, Japan.

BEFORE You Buy Receiving Tubes, Test Equipment, Hi-Fi Components, Kits, Parts, etc. . . send for your Giant Free Zalyntron Current Catalog featuring all STANDARD BRAND TUBES all Brand New Premium Individually Boxed, One Year Guarantee—all at BIGGEST DISCOUNTS in America We serve professional servicemen, hobbyists, experimenters, engineers, technicians, WHY PAY MORE? ZALYTRON TUBE CORP., 461 Jericho Turnpike, Mineola, N. Y.

FREE CATALOG—name-brand tubes 65% dis- count, phon nozzles 80% or more discount, phon cartridges, picture tubes 75¢ inch, parts, parts kits, silicon and selenium rectifiers, transmitting tubes, 77" TV test tube $.69, imported batteries, tube testers etc. Want to swap or sell tube inventory? Send us your offering. ARC-TURUS ELECTRONICS CORP.—Dept. R.E., 502 22nd St. Union City, N. J.

100 NEW INSULATED CARBON RESISTORS $1.00 postpaid. Free Catalog. BIGELOW ELECTRONICS, Bluffton, Ohio.

APPLIANCE-AUTOMOTIVE Lamp-Vacuum parts. Free wholesale bargain lists. SECO, 112 So. 20th St., Birmingham 3, Ala.

DISC CERAMIC CAPACITORS. New, unused. Leading manufacturer. Most popular capacitance. Assortment of 30 capacitors for only $1.00.

ROCK DISTRIBUTING CO., 902 Corwin Rd., Rochester 10, N.Y.

SAVE DOLLARS on radio, TV tubes, parts at less than manufacturer's cost. 100% guaranteed! No rebrand, pulls. Request Bargain Bulletin. UNITED RADIO, 1000-R, Newark, N.J.

DIAGRAMS for TV, $2.00; for radio, $1.00. HIET DIAGRAMS, Box 816, Laredo, Tex.

TRANSISTOR IGNITION COIL—Instructions. SPECIAL—$8.50. ANDERSON ENGINEERING, 16 Williams, Wrentham, Mass.

PROFESSIONAL ELECTRONICS PROJECTS—Organs, Timers, Computers, etc. $1 each. List free. PARKS, Box 1665, Lake City, Seattle 55, Wash.

SUPERSENSITIVE DIRECTIONAL MICROPHONE picks up faint sounds at 300 feet. Detects sound through ordinary walls. Easily built for $7.00. No electronic experience necessary. Illustrated plans, $2.00. DEE CO., Box 7263-A, Houston 8, Tex.

TRANSFIRE IGNITION. Transistor electronic. Save gas, tune-ups. Points, plugs last 50,000-100,000 miles. Improved cold-starting high-speed performance. Parts, complete conversions, kits from $34.95. PALMER ELECTRONICS, RE-1, Carlisle, Mass.

CONVERT ANY TELEVISION TO SENSITIVE, Big screen oscilloscope. Only minor changes neces- sary. Plans $1.95. RELCO, Box 10563, Houston 18, Tex.

PRECISION RESISTORS, carbon-deposit. Guarant- eed 1% accuracy. Millions in stock. 1/2 watt, 8¢, 1-watt, 12¢; 2-watt, 15¢. Leading manufacturers. ROCK DISTRIBUTING CO., 902 Corwin Rd., Roch- ester 10, N.Y.

DIAGRAMS FOR REPAIRING RADIOS, $1; television $2. Give make and model. DIAGRAM SERVICE, Box 672 RE, Hartford 1, Conn.

VIDICON, FOCUS AND DEFLECTION COIL KIT, coils and all parts included $15.95—also available assembled. Coming soon vidicon camera kit—under $200. KENCOL ELECTRONICS, 2816 E. Norwich, Fresno, Calif.

CONFIDENTIAL BARGAIN Electronic Parts catalog, lowest prices in USA. Guaranteed. Send 20¢ coin only. KNAPP, 5174 9th Ave, SW, Largo, Fla.

WEBSTER ELECTRIC INTERCOM! Amateur Equipment! Marine Electronics! Select Bargains! 10¢ Any list! SUPPLIERS, 187 Miraloma, Miraloma, Calif.
MISCELLANEOUS

$100 WEEKLY POSSIBLE. Compile mailing lists and address envelopes for advertisers. Home-
spare time. Particulars free. NATIONAL SERVICE, 81 Knickerbocker Station, New York, N. Y.

MAKE $25-500 WEEK CLIPPING TV and TRIBUNE items for publishers. Some clippings worth $5.00 each.
Particulars free. NATIONAL, 81 Knickerbocker Station, New York N. Y.

EXOTIC EARRINGS! Details Free. Pair. $1.00.
OHGA, RA-415, Sigakenusude, Japan.

BUSINESS AIDS

BUSINESS CARDS, LABELS, RUBBER STAMPS. Send for free descriptive literature, HEIGHTS
INDUSTRIES, 6212 C Street, Capitol Heights 27, Md.

250 BOND 8½x11 letterheads, 250 Envelopes
Printed $5.50. ACADIA PRESS, Enterprise, Kan.

1,000 BUSINESS CARDS $3.95. Many other bar-
gains. List Free. ALCO, Box 244-R, Urbana, Ill.

JANUARY, 1963
Jensen's new HS-1 Stereo Headphones are ready for you. We think you will agree with the experts who say they are the finest ever. Reasons? They cover the frequency range with extra smoothness because they have new fluid-damped transducers developed by Jensen. And they are good to look at, easy to adjust, comfortable to wear. Cord comes out one side . . . you don't get tangled up. Impedance 8 ohms. Complete with Jackbox for connecting to any stereo amplifier. Write for Brochure MH.

HS-1 with 3 conductor plug and accessory jack box
Net $24.95

HS-IL with 4 spade lug terminals
Net 22.50

Jensen Manufacturing Co., 6601 S. Laramie Ave., Chicago 38, Ill.
Canada: Radio Speakers of Canada, Ltd., Toronto
RCA invites you to

PUT YOURSELF IN THE COLOR PICTURE

Color television today is a 300-million-dollar-a-year business—and the fastest growing segment of the home entertainment industry.

Color TV programming is at an all-time high. If you still limit yourself to black-and-white servicing, you put yourself in the same position as the village blacksmith who considered automobiles a fad.

Leading manufacturers are now turning out color TV sets with the color picture tube developed by RCA. Servicing these sets means big and highly profitable business, but it requires special skills, knowledge, equipment and parts. What are you doing to take advantage of this great new business opportunity?

To the public, color TV means RCA! It was RCA who conceived and pioneered the compatible color system in universal use.

How can you climb on the color bandwagon? Associate your business strongly with the prestige and customer acceptance of the recognized pioneer of color TV. See your authorized RCA distributor; stock and advertise RCA tubes and associated products for color. Isn't it time you started seeing yourself in color?

RCA ELECTRON TUBE DIVISION, HARRISON, N. J.

THE MOST TRUSTED NAME IN TELEVISION