HI-FI FROM YOUR TV
ELECTRONIC STARTER
THAWS FROZEN CARS
9 STEPS TO COLOR
TUNED SIGNAL TRACER

www.americanradiohistory.com
EXTRA QUALITY IS HIDDEN

MODEL 630 V-O-M

Standard Of The Industry

USES UNLIMITED:
Field Engineers
Application Engineers
Electrical, Radio, TV, and Appliance Servicemen
Electrical Contractors
Factory Maintenance Men
Industrial Electronic Maintenance Technicians
Home Owners, Hobbyists

FACTS MAKE FEATURES:

1. Popular streamlined tester with long meter scales arranged for easy reading. Fuse protected.
2. Single control knob selects any of 32 ranges—less chance of incorrect settings and burnouts.
3. Four resistance ranges—from .1 ohm reads direct; 4½ ohm center scale; high 100 megohms.

Attention to detail makes the Triplett Model 630 V-O-M a lifetime investment. It has an outstanding ohm scale; four ranges—low readings .1 ohm, high 100 megas. Fuse affords extra protection to the resistors in the ohmmeter circuit, especially the X1 setting, should too high a voltage be applied. Accuracy 3% DC to 1200V. Heavy molded case for high impact, fully insulated.

630A same as 630 plus 1½% accuracy and mirror scale only $59.50

TRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO

THE WORLD'S MOST COMPLETE LINE OF V-O-M'S. AVAILABLE FROM YOUR TRIPLETT DISTRIBUTOR'S STOCK.
"OVER $12,000 WORTH OF POWERMATES SOLD...AND IT'S JUST THE BEGINNING!"

GEORGE MARKMILLER
TV Sales and Service, 165 Ulster Avenue, Saugerties, New York

POWERMATE sells itself through its performance

George Markmiller's customers "were from Missouri" where TV reception was concerned. The products they had tried, in spite of high claims, had not produced snow-free TV from the distant New York stations. With the help of his Jerrold distributor, George used the potent promotional kit to tell his customers the POWERMATE performance story. Newspaper ads, truck banners, stuffers and store displays presold POWERMATE because the promotion was custom-designed for his area.

The real clincher came after the demonstration when one customer began to tell the other about POWERMATE's amazing reception. The Saugerties area had never seen such clarity in black and white and in color. As George says, "The performance of this unit has been the best advertising that has helped to sell it."

Jerrold's ready to set up a POWERMATE promotion designed for your local area. You can repeat George Markmiller's success story as hundreds are doing—all over the country. Write for the name of your nearest Jerrold distributor.

JERROLD ELECTRONICS CORPORATION
A subsidiary of THE JERROLD CORPORATION

DECEMBER, 1962

www.americanradiohistory.com
editorial
Hugo Gernsback 25 Senseless Orbiting

audio-high fidelity-stereo
M. Harvey Gernsback 28 High-Fidelity TV Sound
Listen to your TV through your FM tuner
George L. Augspurger 50 Phasing and Balancing Speaker Systems
A how and why story
66 Improved Sound from Small FM Radios

electronics
35 What's New
Pictorial reports of new developments
Paul J. Walker 47 Radio Makes Doll Talk
48 Start Your Car Fast
No more cold-morning worries
49 What's Your EQ?
Answers on page 63
A. L. Armstrong 78 You Can Learn Electronics
Look what I learned in three short weeks
80 Guide to Semiconductor Terms

industrial electronics
Matthew Mandl 44 Automated Sequence Control
How some of the common ones work

radio
Jordan McQuay 26 TAHA, Tapered Aperture Horn Antenna
For dependable long-range point-to-point hf communications
Stanley Leinwoll 31 SW Propagation Forecast
Nov. 15-Dec. 15
L. W. Born 41 The FM Tuner that Buzzed
It took a TV man to find the trouble!
Roy E. Pafenberg 43 The Quick Fix
Practical short cut speed parts replacement

television
Larry Steckler 39 Tube Layout in TV Sets
Gamblies Coronado 1960-1962
Jack Darr 54 Service Clinic
TV conversions
Jerry L. Ogdin 64 New Video Tape Recorders
Another step toward recorded home TV?

test instruments
Robert G. Middleton 32 Nine Steps to Chroma Circuit Servicing
Doing a tough job the easy way
Rufus P. Turner 36 Tunable AF Signal Tracer Has Many Uses (Cover feature)
Nine high-quality audio test instruments in one
Wayne Lemons 60 Grid-Dip Meters
Equipment Report—PACO G-15 and EICO 710
Jack Darr 68 Use Your Scope
Uncomplicated shortcuts you can take

the departments
82 ANNUAL INDEX (JAN.-DEC. 1962)
18 Correspondence
105 New Patents
108 New Books
109 New Products
94 New Literature
98 New Tubes & Semiconductors

DECEMBER 1962
VOL. XXXIII No. 12

Over 50 Years of Electronic Publishing
EDITOR-IN-CHIEF AND PUBLISHER Hugo Gernsback
EDITOR M. Harvey Gernsback
MANAGING EDITOR Fred Shunaman
TECHNICAL EDITOR Robert F. Scott, WZPFV
ASSOCIATE EDITOR Larry Steckler
EDITORIAL ASSOCIATE I. Queen
SERVICE EDITOR Jack Darr
TECH. ILLUSTRATION DIRECTOR Wm. Lyon McLaughlin
ART ASSOCIATE Fred Neinast
DIRECTOR OF PRODUCTION Elizabeth Stalcup
DIRECTOR, ADVERTISING SALES Lee Robinson
EASTERN SALES MANAGER John I. Lamson
CIRCULATION MANAGER G. Aliquo
DIRECTOR, NEWSTAND SALES Joseph L. Bund

Average Paid Circulation
Over 160,000

—on the cover—
(Story on page 36)
Veteran author and engineer, Rufus P. Turner, describes a simple, easy-to-build audio test instrument that features professional precision and innumerable uses in the shop and lab.

Radio-Electronics is indexed in
Applied Science & Technology Index
(Formerly Industrial Arts Index)

Radio-Electronics is printed on
Donated paper

Gernsback Publications, Inc.
EXECUTIVE, EDITORIAL, ADVERTISING OFFICES:
154 W. 14 St., New York 11, N.Y.
Telephone AL 5-7755
CHAIRMAN OF THE BOARD Hugo Gernsback
PRESIDENT M. Harvey Gernsback
SECRETARY G. Aliquo

www.americanradiohistory.com
GET YOUR ELECTRONICS-TV-RADIO
HOME TRAINING FROM N.T.S. RESIDENT SCHOOL

BREAK THROUGH TO HIGHER PAY, GREATER JOB SECURITY
START NOW! Break through the Earning Barrier that stops "half-trained" men. N.T.S. "All-Phase" Training prepares you... at home in spare time... for a high-paying CAREER as a MASTER TECHNICIAN in Electronics - TV - Radio. One Master Course at One Low Tuition trains you for unlimited opportunities in All Phases: Servicing, Communications, Preparation for F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rocket Projects.

A MORE REWARDING JOB... a secure future... a richer, fuller life can be yours! As an N.T.S. MASTER TECHNICIAN you can go straight to the top in industry... or open your own profitable business.

19 BIG KITS YOURS TO KEEP
- Friendly Instruction and Guidance
- Graduate Advisory Service
- Unlimited Consultation
- Diploma Recognized by Industry
- EVERYTHING YOU NEED FOR SUCCESS

RESIDENT TRAINING AT LOS ANGELES
If you desire to take your Electronics-TV-Radio training in our famous Resident School in Los Angeles - the oldest and largest school of its kind in the world - write for special Resident School catalog and information, or check special box in coupon.

MAIL COUPON NOW FOR FREE BOOK & ACTUAL LESSON
No obligation. No salesman will call.

NATIONAL TECHNICAL SCHOOLS
WORLD-WIDE TRAINING SINCE 1905
4000 S. FIGUEROA ST., LOS ANGELES 34, CALIF., U. S. A.

RADIO-ELECTRONICS published monthly at Concord, N. H., by Genuthack Publications Inc. Second-class postage paid at Concord, N. H. Copyright © 1962 by Genuthack Publications Inc. All rights reserved under Universal International and Pan-American Copyright Conventions. SUBSCRIPTION RATES: US. and possessions, Canada: $6 for 1, $11 for 2, $15 for 3 years. Pan-American countries: $6 for 1, $11 for 2, $15 for 3 years. Other countries: $6.50 for 1, $12 for 2, $16.50 for 3 years. Postmaster send form 3579 to 154 W. 14th St., New York 11, N. Y.

www.americanradiohistory.com
Space News Broadcasts

The Voice of America announces that interested short-wave listeners can receive up-to-date schedules for two broadcast series of wide interest. One of these, the Space News Broadcast, issued in conjunction with the US National Academy of Sciences, is heard on short wave 6 days a week, from 0330 to 0335 GMT, on six frequencies. The other is the Voice of America Amateur Radio Program, 15 minutes, transmitted weekly on a large number of frequencies and from a number of stations in different parts of the world. Broadcasts are in English and are written and delivered by Bill Leonard, W2SKE.

Full particulars as to stations, times and frequencies may be obtained by writing the Voice of America, Frequency Division, Washington 25, D. C.

Biggest Movable Antenna Starts to Scan Skies

The National Radio Astronomy Observatory at Green Bank, W. Va., has announced the completion of its new 300-foot antenna. The new dish is 50 feet wider in diameter than the one at Jodrell Bank in England, here-tofore the largest steerable antenna. It stands some 23 stories high, when aimed at the zenith, and weighs 600 tons—not as much as the Jodrell Bank radiotelescope.

The new radiotelescope is not movable in all directions, being able to swing north and south only. Thus it can observe one point in the heavens for only 40 seconds each night. To make it fully steerable would have tripled its $800,000 cost.

Its probable first target will be Venus, and it is expected that the resolution of the new scope, 10 times as great as that of previous instruments, may make it possible to measure the temperature of that planet much more accurately than heretofore.

Unbreakable TV Tubes?

A new tough glass, demonstrated by Corning, may make possible TV picture tubes one-third of their present weight, according to a recent statement by Television Digest. It is possible that, instead of making tubes lighter, virtually unbreakable and implosion-proof tubes could be made at about the present weight. These would not need a safety shield.

The new tubes are still in the indefinite future, however, according to Corning research and development. The reason is that the new "Chemcor" glass would lose much of its strength when reheated at the tube plant to weld in the electron gun. Only when it is possible to reheat and rework the glass without losing its strength could it be used for TV picture tubes.

Transistor Microphone Is Pinhead Size

A microphone so small that some prototypes had to be viewed under a magnifying glass has been announced by Raytheon. The new transducer effect by which it works was discovered by Dr. William Rindner while studying surface detects on a transistor. He noted that scratching or tapping the transistor produced readings on a meter. With associate Roger Nelson, he embarked on a study that resulted in the new microphone.

They devised a miniature cap, resembling a pygmy thumbtack, for a chip of transistor material. Pressure applied to the head of the tack is converted to electrical energy by the transistor. Varying the pressure on the point on the transistor, or constructing transistors with special shallow junctions, increased the sensitivity of the microphone.

Since it is a transistor, the microphone amplifies as well as senses the vibrations transmitted through it, thereby falling in the class of amplifying transducers.

The advantage of the new microphone is that it responds to a very wide frequency range—from .01 to 120,000 cycles. A laboratory model of a phonograph pickup using the device produced sound quality comparable to commercial models. Output of the pickup was high, due to the transistor's amplifying effect. Mass was fantastically lower than that of average pickups.

Subscription Service Address form: 5379 and correspondence to Radio-Electronics Subscriptions Service, 101 West 15th St., New York 11, N. Y. When remitting a change of address please furnish an address label from a recent issue. Allow one month for change of address.
3 More Big Training Advantages

De Vry Tech Exclusive!

Now Prepare for GOOD JOB OPPORTUNITIES IN ELECTRONICS Faster—with
1. METER — Transistorized, Portable, AC-DC Multimeter
2. SCOPE — 5-inch New Streamlined Commercial-Type Oscilloscope
3. ELECTRO-LAB* — For 3-Dimension Circuit Building

To help you get ready F-A-S-T-E-R . . . and THOROUGHLY . . . for good-paying job opportunities in the fast growing Electronics field, DeVry Technical Institute now presents the newest and finest training advantages in its over 30 years of experience. Now . . . AT HOME . . . in your spare time, you prepare with "industry-type" home laboratory equipment. To provide real PRACTICAL EXPERIENCE, you build a quality Transistorized Meter and a 5-inch industrial-type Oscilloscope . . . and build small, 3-dimensional circuits on DeVry’s new Design Console . . . use highly instructive home training movies . . . and follow up-to-date lessons with many time-saving fold-out diagram sheets.

Little wonder DeVry men qualify for such fine opportunities in Space-Missile Electronics, Automation, Computer Work, Radio-TV, Industrial Controls, and other fields.

You learn PRACTICAL techniques important in today’s Space Age industry, because you build many compact circuits with the streamlined Electro-Lab, using exclusive solderless “modular connectors.” You perform over 300 construction and test procedures in all! Your self-built test equipment has function-grouped controls, meter scales color-keyed to the panel markings—much like instruments used on today’s jobs. What’s so important, the home laboratory and the test equipment are YOURS TO KEEP!

INDUSTRY NEEDS TRAINED MEN

Through this remarkable 3-way method, DeVry Tech has helped thousands of ambitious men prepare for good jobs or their own profitable full-time or part-time service shops. It is the newest in a long series of PRACTICAL training aids that we have pioneered and developed in more than three decades of experience. Sound interesting? Then see how DeVry Tech may help YOU. Mail the coupon today.

MAIL COUPON FOR FREE FACTS

DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Illinois

Please give me your two free booklets, "Packet Guide to Real Earnings" and "Electronics in Space Travel," also include details on how to prepare for a career in Electronics. I am interested in the following opportunity fields (check one or more):

□ Space & Missile Electronics □ Communications
□ Television and Radio □ Computers
□ Microwaves □ Broadcasting
□ Radar □ Industrial Electronics
□ Automation Electronics

Name: ____________________________ Age: ______
Address: ________________________ Apt: ______

City: ______ Zone: ______ State: ______ ______ ______
□ Check here if you face military service.
□ Canadian residents: Write DeVry Tech of Canada, Ltd., 970 Lawrence Avenue West, Toronto 19, Ontario
why does Blonder-Tongue offer two new indoor boosters?

Let's talk straight-from-the-shoulder about indoor boosters. Transistor boosters provide higher gain and are more rugged, but they have one problem—overload (windshield wiper effect, loss of sync, etc.). If you use a transistor booster in an area with one or more strong TV or FM signals — you may be buying too much booster! On the other hand, tubed boosters perform very well in these areas — and what's more, they cost less. That's why Blonder-Tongue has two new home indoor boosters — the transistor IT-4 Quadrobooster and the frame-grid tubed B-33 Amplicoupler.

The B-33 costs less than the transistor IT-4, $19.95 as against $29.95. In most cases, the extra cost of the IT-4 is more than justified by its remarkable performance and life. However, if the B-33 can do the job, we don't want you to spend more than is necessary for the finest TV reception.

Which one is best for you? Try one, or both. They can be hooked up in seconds at the set terminals. Try them on all channels. With either an IT-4 or a B-33, you'll end up with the best TV reception possible.

\[\text{BLONDER-TONGUE IT-4 TRANSISTOR QUADRABOOSTER} \]
- 4 to 8X increase of signal voltage for 1 set
- Improves reception on up to 4 TV or FM sets
- Long-life transistor
- Stripless terminals
- Exclusive neutralizing circuit minimizes overload
- List $29.95

\[\text{BLONDER-TONGUE B-33 FRAME GRID AMPILCOUPLER} \]
- More than 2X increase of signal voltage for 1 set
- Improves reception on up to 3 TV sets
- Lowest price multi-set booster on the market
- List $19.95

\[\text{indoor or outdoor • tubed or transistor • VHF or UHF • 1 set or 4 sets} \]

\[\text{BLONDER-TONGUE TV/FM BOOSTERS} \]

\[\text{MODEL AB-4-AC, Transistor Mast-Mounted TV/FM Booster w/remote AC power supply. Provides brilliant reception on up to 4 sets from a single antenna. Takes advantage of the optimum signal-to-noise ratio. List $34.95.} \]

\[\text{MODEL AB-4 with remote battery power supply. List $29.95.} \]

\[\text{MODEL B-24C, 4-set TV/FM Booster. Low cost home TV system uses rugged frame grid tube to provide for as many as 4 TV or FM sets. List $24.95.} \]

\[\text{MODEL BTA, TV Booster. Lowest cost booster on the market. Improves TV reception in prime or weak signal areas. List $15.50.} \]

\[\text{MODEL UB, UHF Booster. Brings in UHF where all other methods fail. 5 models cover all channels from 14 to 83. List $93.50.} \]

\[\text{Canadian Div. Renca Television Assoc., Ltd., Toronto Export: Rocke Intl', N. Y. 16, Cable: ARLAB} \]

\[\text{Home TV Accessories • UHF Converters • Master TV Systems • Closed Circuit TV Systems • CATV Systems} \]

\[\text{engineered and manufactured by} \]

\[\text{BLONDER-TONGUE} \]

\[\text{9 Alling St., Newark, N. J.} \]

Other applications, according to Raytheon, may be used in seismology as sensitive weight and pressure measuring devices, strain gages, accelerometers, fusing devices for acoustical mines, or in medical work.

"Inert" Gas Xenon Believed Compounded

Xenon, considered an absolutely inert gas, has been combined chemically with fluorine by chemists at the Argonne National Laboratory. The compound produced was xenon tetrafluoride. Another compound, xenon-platinum hexafluoride, was reported by Neil Bartlett, professor of chemistry at the University of British Columbia. The Argonne scientists placed one part of xenon and five parts of fluorine in a sealed container, and heated it for an hour at 400° C. They cooled the container rapidly, and on opening the container, found colorless crystals of the xenon-tetrafluoride compound.

FCC Gets New Member

E. William Henry, Memphis, Tenn., has been selected by President Kennedy as a member of the Federal Communications Commission. Mr. Henry, a Democrat, will serve a 7-year term, succeeding John Cross. Born in 1929, he was graduated from Yale University in 1951, in 1957 received his law degree from Vanderbilt University, and is now a member of Chandler, Manire & Chandler, a Memphis law firm.

World's Smallest TV Set Is All-Transistor

A TV set that measures only 7¼ x 7¼ x 4½ inches and weighs 8 lb is now available in the United States. Introduced by the Sony Corp. of America, it uses a 5-inch picture tube and produces a remarkably...
how will your success in electronics compare with this man's?

Will you have a rewarding career, like Robert N. Welch? Or will you never get beyond a routine job? It's up to you.

LET'S LOOK AT THE FACTS. Men with ordinary qualifications may always be accepted for routine, low-paying jobs. But for critical technical assignments in well-paying career positions with engineering status—where electronics is applied to the frontiers of the missile and space programs—only men with advanced technical knowledge will do.

MEN LIKE ROBERT N. WELCH enjoy interesting and rewarding careers because they have equipped themselves with the practical and up-to-date knowledge of advanced electronic engineering technology which industry demands. Mr. Welch was a technician when he enrolled in a CREI Home Study Program. Today he is a Philco Corp. engineer with a responsible assignment at Vandenberg Air Force Base, launching site for intercontinental ballistic missiles.

YOU HAVE THE SAME OPPORTUNITY. CREI offers you, for study at home, a complete program in electronic engineering technology designed to equip you with the practical knowledge of electronic developments required for well-paying positions and put you on the level of specialization where men are most in demand and progress most rapid.

YOU WILL FOLLOW THE FOOTSTEPS of the thousands of CREI men who hold positions as associate engineers, engineering aides, field engineers, project engineers and technical representatives. They work in every area of electronics from manufacturing to research in the aero-space program.

YOU ARE GUIDED and assisted with personal attention from CREI's staff of experienced instructors. You study courses to which a number of leading engineers and scientists have made substantial contributions.

YOU CHOOSE FROM PROGRAMS covering every important field of electronics:

- SERVOMECHANISMS
- INSTRUMENTATION
- RADAR
- COMPUTERS
- AERONAUTICAL AND NAVIGATIONAL
- COMMUNICATIONS
- AERO-SPACE
- TELEVISION
- AUTOMATION AND INDUSTRIAL ENGINEERING
- TECHNOLOGY
- NUCLEAR ENGINEERING TECHNOLOGY

CREI EDUCATION IS RECOGNIZED by such large corporations as Pan American Airways, Federal Electric Corp., The Martin Co., Canadian Broadcasting Co. and Mackay Radio. They pay all or part of employees' CREI tuition.

CREI HAS 35 YEARS OF EXPERIENCE in advanced technical education through home study. CREI has developed electronics courses for the Army Signal Corps, special radio technician courses for the Navy and group training programs for leading aviation and electronics companies. CREI also maintains a Residence School in Washington, D.C., and invites inquiries from high school graduates.

YOU CAN QUALIFY for a CREI Correspondence Program, if you have basic knowledge of radio or electronics and are a high school graduate or the equivalent. If you meet these qualifications, send for the FREE 1963 edition of our 58-page book describing CREI Programs and career opportunities in electronics. Use coupon below, or write to: The Capitol Radio Engineering Institute, Dept. 1412-K, 3224 Sixteenth St., N.W., Washington 10, D.C.

CREI
THE CAPITAL RADIO ENGINEERING INSTITUTE Founded 1927
Dept. 1412 K, 3224 Sixteenth St., N.W., Washington 10, D.C.

Please send me details of CREI Home Study Programs and Free Book, "Your Future in Electronics and Electronic Engineering Technology." My qualifications are listed to obtain information.

CHECK FIELD OF GREATEST INTEREST:
- Electronic Engineering Technology
- Nuclear Engineering Technology
- Aeronautical and Industrial Electronic Engineering Technology
- Communications

Name: ________________________________ Age: ______
Address: ________________________________
City: __________________ Zone: ______ State: ______
Employed by: ________________________
Type of present work: ____________________
Education: Years High School: ______ State: ______
Electronics Experience: ______
Check: ______ Home Study ______ Residence School ______ G.I. Bill

33
The New Sony Micro-TV

A complete plug-in component that permits tuning in the UHF band. The new micro-TV has 24 transistors and 20 diodes. It operates on regular house current or from a 12-volt battery, battery drain being about 25% of that used by an ordinary car radio. An earphone is provided for private listening, as might be required in a bedroom or hospital room. The price of the new set was said to be about $230.

Bell Telephone Labs Unveils Switching Center

A new laboratory to be devoted entirely to the development of telephone switching equipment and systems, apparatus and systems for data transmission by telephone, and customer equipment (such as telephones and public booths) has been opened by Bell Telephone Laboratories at Holmdel, N. J. The new facility employs some 2,600 engineers, scientists, technicians and supporting personnel.

Designed by the late Eero Saarinen, the new construction is striking in appearance and pioneers in a number of functional features. The main corridors, for example, run around the perimeter of the building, reducing traffic past office and laboratory doors to a minimum.

The building is on historic Bell Telephone property. The site is that on which Karl Jansky first discovered radio waves from space, and in sight of the white farmhouse in which Southworth first developed microwaves. A mile and a half away is the famous Crawford Hill, used for many years for antenna experiments, and recently very much in the news in connection with Telstar.

NY Hi-Fi Music Show

Thirty-two thousand audiophiles packed the New York Trade Show building to see the latest in high-fidelity equipment. FM stereo stole the show, with great emphasis being placed upon it by a large number of exhibitors. More than 100 manufacturers displayed their wares, with special exhibits for interest.

Bell Telephone displayed a model of the Telstar communications satellite. The; Ford Motor Co. showed its Concert Hall on Wheels. A group of professional and student artists painted while listening to hi-fi music for inspiration. Three special rooms were set up to show how hi-fi components can be blended into various decors.

Astronauts' Radio Blackouts Out?

Space pilots, troubled by silent radios during re-entry from orbit, may have their problems solved by this new high-power amplifier tube. Existing radios black out when they meet the heat-induced ion shields produced as the spacecraft enters the atmosphere, but the new tube, operating at previously untrapped frequencies in the range between microwaves and light waves, will cut through with a millimeter wave beam. The tube was developed by Hughes Aircraft Co.

Made of metal and ceramic materials, the tube with its permanent magnet weighs about 16 pounds. It produces about 10 times the continuous power of a comparable tube.

(Continued on page 14)
What Job Do You Want In Electronics?

Whatever it is, Cleveland Institute can help you get it!

Yes, whatever your goal is in Electronics, there's a Cleveland Institute program to help you reach it quickly and economically. Here's how: Each CIE program concentrates on electronics theory as applied to the solution of practical, everyday problems. Result... as a Cleveland Institute student you will not only learn electronics but develop the ability to use it! This ability makes you eligible for any of the thousands of challenging, high-paying jobs in Electronics. Before you turn this page, select a program to suit your career objective. Then, mark your selection on the coupon below and mail it to us today. We will send you the complete details... without obligation... if you will act NOW!

Electronics Technology
A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a 1st Class FCC License.

Industrial Electronics & Automation
This exciting program includes many important subjects as Computers, Electronic Heating and Welding, Industrial Controls, Servomechanisms, and Solid State Devices.

Broadcast Engineering
Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

First Class FCC License
If you want a 1st Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

Electronic Communications
Mobile Radio, Microwave, and 2nd Class FCC preparation are just a few of the topics covered in this "compact" program... Carrier Telephony too, if you so desire.

Mail Coupon TODAY For FREE Catalog

Cleveland Institute of Electronics
1776 E. 17th St., Dept.RE-72
Cleveland 14, Ohio

Please send FREE Career Information prepared to help me get ahead in Electronics, without further obligation...

CHECK AREA OF MOST INTEREST:

- Electronics Technology
- Industrial Electronics
- Broadcast Engineering
- First Class FCC License
- Electronic Communications

Your present occupation:
Name: ___________________________
Age: ___________________________
Address: ________________________
City: ____________________________ Zone: ______ State: ____________

News from Bell Telephone Laboratories

WE'RE "FINGERPRINTING" VOICES...TO FIND BETTER WAYS OF TRANSMITTING THEM

Acoustics scientists at Bell Telephone Laboratories study voices to learn how one voice differs from all others, what makes yours instantly recognizable to friends and family, and what the elements of a voice are that give it the elusive qualities of "naturalness."

To enable us to examine speech closely, we devised a method of making spectrograms of spoken words. We call them voiceprints. They are actual pictures of sound, revealing the patterns of voice energy. Each pattern is distinctive and identifiable. They are so distinctive that voiceprints may have a place, along with fingerprint and handwriting identification, as an important tool of law enforcement.

The shape and size of a person's mouth, throat and nasal cavities cause his voice energy to be concentrated into bands of frequencies. The pattern of these bands remains essentially the same despite modifications which may result from loss of teeth or tonsils, the advancement of age, or attempts to disguise the voice.

Study of voiceprints and recognition factors is part of our exploration of new techniques to extract and transmit the minimum essentials of a person's voice and from these reconstruct the original voice at the receiving end, retaining its factors of naturalness.

Our ultimate goal, as always, is to learn how to improve your telephone service and make it a better value.

BELL TELEPHONE LABORATORIES
World center of communications research and development
Get Your Choice of Valuable "Bonus Packages"* with Your Easy-Buy PHOTOFACT Library Purchase!

own the world's finest TV-radio service data and get these free extras

Now, more than ever, it pays to own a PHOTOFACT Library—the time-saving troubleshooting partner that helps you earn more daily! Now, you can start or complete your PHOTOFACT Library the special Easy-Buy way, and get absolutely FREE with your purchase, any one of the valuable dollar-saving "Bonus Packages" described below. Make your choice now—order from your Sams Distributor today!

"Bonus Package" offers available only until April 25, 1963

BONUS PACKAGE 1
FREE WITH YOUR PURCHASE OF 60 PHOTOFACT SETS

Order 60 PHOTOFACT Sets the Easy-Buy way and get the following FREE:
1. All-steel, single-drawer file cabinet holding 60 Sets; worth $8.95
2. Complete Color TV Servicing Course
3. Complete 2nd Class Radio-telephone License Course
4. Complete Transistor Radio Servicing Course
5. Test Equipment Guide

The correspondence-type courses alone are literally worth hundreds of dollars to you—they've helped thousands of technicians increase their earning capacity.

BONUS PACKAGE 2
FREE WITH YOUR PURCHASE OF 180 PHOTOFACT SETS

Order 180 PHOTOFACT Sets the Easy-Buy way and get the following FREE:
1. All-steel, top quality 4-drawer file cabinet holding 240 Sets; actual value $36.50
2. Complete Color TV Servicing Course
3. Complete 2nd Class Radio-telephone License Course
4. Complete Transistor Radio Servicing Course
5. Test Equipment Guide

Here's a money-saving "bonus package" offer you won't want to miss—it helps build your profit in every way.

BONUS PACKAGE 3
FREE WITH YOUR PURCHASE OF 240 PHOTOFACT SETS

Order 240 PHOTOFACT Sets the Easy-Buy way and get the following FREE:
1. All-steel, 4-drawer file cabinet holding 240 Sets; worth $36.50
2. 8-Volume Set of "101 Ways" Test Instrument books, covering scopes, sweep generator, VOM-VTVM, signal generator, audio test equipment, etc. Worth $18.50
3. Color TV Servicing Course
4. 2nd Class Radiotelephone Course
5. Transistor Radio Servicing Course
6. Test Equipment Guide

Get this great "bonus package" today!

OWN YOUR PHOTOFACT LIBRARY THIS EASY-BUY WAY!

A PHOTOFACT Library more than pays for itself from the first day you put it into your shop. Now available to you with FREE "Bonus Packages" of your choice this special Easy-Buy way:

- NO INTEREST
- NO CARRYING CHARGE
- ONLY $10 DOWN
- UP TO 30 MONTHS TO PAY

Call or see your Distributor today for an Easy-Buy PHOTOFACT Library purchase—and get your FREE "Bonus Package" choice!

HOWARD W. SAMS & CO., INC.
Howard W. Sams & Co., Inc., Dept. 6-M2
4300 W. 62nd St., Indianapolis 6, Ind.

- SEND full information on Easy-Buy Plan
- I am interested in the following Photofact "Bonus Package":
 - [] 60 Sets [] 180 Sets [] 240 Sets

- My Distributor is: ________________________________

- Shop Name ________________________________

- Attn. ________________________________

- Address ________________________________

- City_________________________ Zone ________ State ________________
Kerchunk! new sound of safety

Kerchunk is the sound made by the heavy duty magnet on the back of a Sonotone CB Ceramike as it mounts firmly, securely to your car's dashboard.

Kerchunk says: "Message to home base completed easily, safely."

Kerchunk means no more groping when you return your mike to its dashboard mounting bracket, no need to take your eyes off the road.

Responsible for this boon to those who rely on CB or mobile communication, from car or truck, is an important Sonotone development called "Magnet Mount." A heavy duty magnet on the back of Sonotone Ceramike mobile communications Models "CM-30M" and "CM-31M" lets you place the mike almost anywhere on or around the dashboard. Further, Magnet Mount eliminates the need to drill holes for dashboard mounting brackets.

The Ceramikes have far more to recommend them than just this amazing mounting device. The quality-engineered mobile communications models, "CM-30M" and "CM-31M," provide loud and clear reception. Inherently immune to extremes of temperature and humidity, they will operate even if immersed in water. The ceramic transducer is neoprene encased, rendering it shock and impact-proof.

SONOTONE CERAMIKE "CM-30M" — Intelligibility unsurpassed. Sensitivity curve favors voice frequency range. High sensitivity from -49 db to 60 to 7000 cps. Ruggedly built to take the punishment of mobile use. Lightweight, shatterproof plastic case. So easy to handle and control with convenient "Push-to-Talk" button. Supplied with spring-spiraled, 4-conductor shielded cable — list $16.50

With dashboard mounting bracket instead of Magnet Mount, Model "CM-30" — list $14.00

SONOTONE CERAMIKE "CM-31M" — Budget-priced communications model in shatterproof plastic case features excellent intelligibility in 60 to 7000 cps frequency range at -49 db sensitivity. Mike has a 2-conductor coil cable, no switch — list $16.00

Available with dashboard mounting bracket instead of Magnet Mount, Model "CM-31" — list $13.50

Fixed communications or mobile, Sonotone Ceramikes provide topflight long-term, maintenance-free performance.

SEE SONOTONE CB CERAMIKES WITH MAGNET MOUNT

Cartridges — Speakers — Tape Heads — Microphones — Electron Tubes — Batteries — Hearing Aids

(Continued from page 10)

(Continued from page 10)

ious power output of any tube previously developed for the same frequency range.

Dr. Malcolm R. Currie, associate director of Hughes Research Labs, cites other uses for the tube. It can amplify and transmit telephone, telegraph and television messages over private ground links using small line-of-sight antennas. Due to small antenna sizes, a mobile communications system could be built around it for portable battlefield ranging.

"The millimeter portion of the electromagnetic spectrum," says Dr. Currie, "lies between 30,000 and 300,000 mc. and has hardly begun to be tapped as yet for communications or radar use."

CALANDER OF EVENTS
2nd Canadian IRE Communications Symposium, Nov. 16-17; Queen Elizabeth Hotel, Montreal, P.Q., Canada.
MAECON (Mid-American Electronics Conference), Nov. 19-20; Hotel Continental, Kansas City, Mo.
1962 Ultrasonics Symposium, Nov. 28-30; Columbia University, New York, N.Y.
First International Communications Fair, Nov. 28-Dec. 2; New York Coliseum, New York, N.Y.
FJCC (Fall Joint Computer Conference), Dec. 4-6; Sheraton Hotel, Philadelphia, Pa.
PVCC (PC on Vehicular Communications) Conf., Dec. 6-7; Disneyland Motel, Anaheim, Calif.
Millimeter and Submillimeter Conference, Jan. 6-10; Cherry Plaza Hotel, Orlando, Fla.
9th National Symposium on Reliability and Quality Control, Jan. 21-24; Sheraton Palace Hotel, San Francisco, Calif.
12th Southwestern Electronic Conference (SWELCON), Jan. 27-31; Baker Hotel, Dallas, Tex.

Brief Briefs
Closed-circuit color TV is being used in the veterinary courses at the University of California, to give a larger number of students an opportunity to observe surgical operations on large and small animals.

A new ultra-thin magnetic tape, which enables 3,600 feet to be contained on a 7-inch reel, has been announced by Agfa Inc. The new tape, called PE-65, is said to be virtually stretch-proof.
NOW EVERYONE CAN QUICKLY
Set up and Service Color TV

New! B&K Model 850 COLOR GENERATOR

Most Complete, Most Versatile, Portable Instrument for Use in the Home and in the Shop
Makes Color TV Set-up and Service Easier, Faster than ever!

Now every service technician can be ready to set-up and service color TV with amazing new ease and speed! New advanced design simplifies the entire operation, saves time and work in every installation. Eliminates difficult steps in digging into the color TV set. Gives you new confidence in handling color.

Produces Patterns, Burst, and Colors Individually—Provides dot pattern, crosshatch, vertical lines, horizontal lines, burst signal, and individual colors—one at a time—on the instrument panel as well as on the TV color set—for fastest, easiest check. Unique window-viewer on front of the instrument panel shows you each pattern and color as it should be—gives you an exclusive display standard to use as a sure guide for quick, visual comparison.

Provides Accurate, Individual Color Display—Produces Green, Cyan, Blue, B—Y, Q, Magenta, R—Y, Red, I, Yellow, and Burst—one at a time. All colors are crystal-controlled and are produced by a precision delay-line for maximum accuracy. Each color is individually switch-selected—no chance of error.

Provides Accurate NTSC-Type Signal—Color phase angles are maintained in accordance with NTSC specifications.

Makes Convergence and Linearity Adjustments Easy—Highly stable crystal-controlled system with vertical and horizontal sync pulses, assures the ultimate in line and dot stability.

Simplifies Demodulator Alignment—The type of color display produced by this instrument provides the ultimate in simplicity for precise demodulator alignment.

Provides Automatic Deconvergence—Eliminates the necessity for continual static convergence adjustments. The instrument automatically deconverges a white into a color dot trio without digging into the color set to mis-adjust the convergence magnets. It also deconverges a white horizontal or vertical line into red, green and blue parallel lines. This greatly simplifies dynamic convergence adjustments.

Provides Exclusive Color Gun Killer—Front-panel switch control makes it easy to disable any combination of the three color guns. Eliminates continuous adjustment of the background or screen controls, or connection of a shorting clip inside the receiver. The switch also selects the individual grids of the color tube and connects to a front-panel jack to simplify demodulator alignment.

Provides Switch-Selected R.F. Signals—Factory-tuned, for channels 3, 4, and 5—for open channel use in your area.

Model 850 also includes other features that make it invaluable for home and shop use. Net, $199.95

B & K MANUFACTURING CO.
Division of DYNASCAN CORPORATION
1801 W. BELLE PLAIN AVE. • CHICAGO 13, ILL.
Canada: Atlas Radio Corp., 50 Wingold, Toronto 19, Ont.
Export, Empire Exporters, 277 Broadway, New York 7, U.S.A.
Now! Enjoy a slim-line system that sounds as good as it looks! The new E-V Regina 200 with component-quality speakers expressly designed to meet the challenge of ultra-thin cabinetry!

In the woofer, for example, where some thin-speaker systems use light-weight “radio set” speakers, the new E-V Regina 200 employs a true 10-inch high fidelity speaker... with powerful 1 lb. 6 oz. ceramic magnet, precision edgewise-wound voice coil and specially-tailored low-resonance suspension. This combination guarantees solid response to 50 cps, plus minimum distortion and optimum efficiency — with even the lowest-powered stereo amplifiers!

Now, examine the tweeter! It has the look and sound of fine laboratory equipment! The heavy die-cast frame and jewel-like machining insures a lifetime of uniform response. And note the polyurethane suspension system that’s years ahead of the rest! It’s the secret of the remarkably smooth response to 15,000 cps! Note the handy level control on the back of the Regina 200 for exact personal control of tonal balance.

Measuring only 5-5/8 inches deep, 24-3/8 inches high, 16-3/8 inches wide, the new E-V Regina is a beautifully easy answer to your stereo speaker placement problems. And it’s easy on the pocketbook, too... just $89.50 net with oiled walnut finish.

Hear the biggest sound in slim-lines... the new Electro-Voice Regina 200 at your E-V dealer’s today!

ELECTRO-VOICE, INC.
Consumer Products Division
Dept. 1224E, Buchanan, Michigan

www.americanradiohistory.com
Through HOME STUDY or in RESIDENT CLASSES

the Grantham Communications Electronics Course prepares you for your first class commercial F.C.C. LICENSE.

The Grantham home study course teaches you principles of electronics in a simple “easy-to-grasp” manner. Each new principle is explained first in everyday language and then, after you understand it, is associated with the proper technical language. You learn and remember more, because the emphasis is on understanding rather than on memorizing.

This correspondence course is directed toward two major objectives — (1) to teach you a great deal about electronics, and (2) to prepare you to pass all of the F.C.C. examinations required for a first class commercial operator’s license. We teach you step by step and have you practice with FCC-type tests which you send to the School for grading and comment. You prepare for your F.C.C. examinations under the watchful direction of an instructor who is especially qualified in this field.

Grantham training is the easy way to learn more quickly — to prepare more thoroughly — for F.C.C. examinations. And your first class license is the quick, easy way to prove to your employer that you are worth more money.

Get details concerning how we can prepare you for your F.C.C. license and how that license can help you advance in electronics. Mail the coupon below to the home office of Grantham School of Electronics in Hollywood, Calif., and our free catalog will be sent to you promptly.

GRANTHAM SCHOOL OF ELECTRONICS

FIRST CLASS F.C.C. LICENSE IN 12 WEEKS

Grantham resident schools are located in four major cities — classes in F.C.C. license preparation are offered at all locations. New day classes begin every three months, and new evening classes begin four times a year. The day classes meet 5 days a week and prepare you for a first class F.C.C. license in 12 weeks. The evening classes meet 3 nights a week and prepare you for a first class license in 20 weeks. For more information about the Grantham resident schools, mail the coupon to the School’s home office in Hollywood, Calif. Free details will be mailed to you promptly.

MAIL COUPON FOR FREE DETAILS — NO SALESMAN WILL CALL

DECEMBER, 1962
For strong, noise-free soldered connections

Dual Heat SOLDERING GUN KIT

in plastic utility case

A Weller Dual Heat Gun is indispensable in electronic soldering. Heat and spot-light come on instantly when trigger is pulled. 2 trigger positions give two tip temperatures. Switch instantly to low 100-watt or high 140-watt heat. You prevent damage to heat-sensitive components, prolong tip life, and save current by using high heat only when necessary. Kit includes break-proof plastic utility case, 3 long-life soldering tips, tip-changing wrench, flux brush, soldering aid and solder. Model 8200PK.

For making cabinets and speaker mounts

Hi-Speed Sabre Saw

Makes all kinds of cuts in wood (up to 1" finished stock) and many other materials—extra fast. Weller's 4.8 ampere reciprocating motor provides 7,200 cutting strokes of 3/16" a minute. Never splinters. Makes its own starting hole for inside cuts. Five blades included. Model 88.

Hi-Powered Sander

Sands twice as fast as any other sander at its price, thanks to Weller's heavy-duty, 4.8 ampere reciprocating motor, 14,400 strokes of 3/16" a minute and big 26 square inch sanding plate. Straight-line action gives a far smoother finish than disc or orbital action. UL approved. Model 77.

Available at Electronic Parts Distributors

WELLER ELECTRIC CORP., EASTON, PA.

Correspondence

We Flubbed One

Dear Editor:

Please confess to our readers the mistakes edited into my short note on a "Low-Amplitude Linear Oscillator" in the July 1962 issue. Other reader-authors will understand, but the rest will think me a fool.

Corrections, text: 3rd paragraph: "C2 (not C4) being kept small enough." Same paragraph, "5 µfd with a 6.2-mc crystal" (not 6.2-ke "rock"). Last paragraph: "... for the frequency and decrement of the tuned circuit."

Corrections, diagram: Legend "15-30 µfd if used" applies to C1, not C4; G4 does not have −10 volts bias.

Apparently, somebody not only changed my careful notation without understanding the circuit, but tried to telescope two items together—this one and another which appeared in the August 1961 issue as "Coilless Crystal Oscillator." Readers interested in the crystal version should refer to the 1961 note, and those wishing to build the variable oscillator may write to me.

ALBERT H. TAYLOR

Read Island, B.C.

Canada

Yes You Can!!!

Dear Editor:

Mr. J. C. Nielsen's comment on page 21 of the September issue concerning the little tape recorders—the tapes cannot be interchanged between machines—needs clarification.

Since tape speed is not calibrated, it must be adjusted for playback to correspond with recording speed. This is quite easy to do.

Originally, both volume and clarity were better when tapes were played back on the machine that did the recording. I recently realigned the heads on our own two machines, and now each plays tapes made on the other loud and clear. It was necessary to install a .016-inch thick shim under one side of the record-play head on one machine to correct poor "azimuth alignment". Evidently, the manufacturer does not attempt to align the heads accurately, and this alignment is surprisingly critical when interchanging tapes.
To assure ADVANCEMENT or to turn your hobby into a new and PROFITABLE CAREER in the fast growing field of ELECTRONICS you should investigate the NRI Home-Study Courses in Industrial Electronics, Radio-TV Servicing, Radio-TV Communications.

Qualify for Higher Pay

You must be trained to qualify for higher earnings and advancement. Whichever branch of Electronics you select, you'll find that NRI training is the time-proved way to get into this interesting and fast growing industry.

Training Equipment Included

When you learn Electronics through NRI you use scientifically developed "learn-by-practice" methods. At no extra cost, NRI sends special equipment that gives actual experience, makes theory you learn come to life in an easy-to-grasp, interesting manner. You perform a wide variety of experiments working with basic circuits and components. All equipment is yours to keep.

Oldest and Largest School

For nearly half a century, NRI has featured Electronics training, progressing from Radio and Television servicing and communications to Industrial and Military Electronics. As the oldest and largest home-study school of its kind, NRI can supply training at reasonable cost. Monthly payment plans. Take the first step toward a successful career now. Mail postage-free card. Get NRI CATALOG without cost or obligation. National Radio Institute, Washington 16, D.C.

There is an immediate and growing need for trained Technicians in many branches of Electronics. In fact, four to seven trained Technicians are needed for every graduate engineer. Better than average jobs await you in the fast growing industry of the 1960's... offering high pay and prestige, interesting work and a bright future. Join the thousands of NRI graduates who have benefited from career opportunities in this Electronic Age. Mail the postage-free card today.

Turn Page for Facts on NRI Courses

Cut Out and Mail—No Stamp Needed

NATIONAL RADIO INSTITUTE
Washington 16, D.C. RE

Please send me your Electronic, Radio-TV catalog without cost or obligation. I am interested in course checked below. (No salesman will call. PLEASE PRINT.)

[] Industrial Electronics [] FCC License
[] Radio-TV Servicing [] Mobile Communications
[] Math for Electronics [] Aircraft Communications
[] Communications (Complete) [] Marine Communications

Name___ Age________________________

Address___

City________________________ Zone________ State________

ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL
Approved for Veteran's under Korean GI Bill.
PICK THE CAREER YOU WANT
IN THE WONDERFUL FIELD OF ELECTRONICS
TRAIN AT HOME WITH THE LEADER

INDUSTRIAL ELECTRONICS

Prepare for a career as an Electronic Technician in industry, business, government, the military, with this NRI course in Electronics—Principles, Practices, Maintenance. Computers, telemetry, automation, missiles, rockets all employ the same basic principles... and that is what this NRI course stresses with illustrated lessons, special training equipment.

TELEVISION-RADIO SERVICING
(INCLUDES COLOR TV)

NRI’s time-tested course in Servicing not only trains you to fix radios, TV sets, hi-fi, etc., but also shows you how to earn spare-time money starting soon after enrolling. Fast growth in number of sets, color-TV, stereo, means money-making opportunities in your own spare-time or full-time business or working for someone else. Special training equipment included.

TV-RADIO COMMUNICATIONS

In the NRI Communications course you get actual experience as NRI prepares you for your choice of Communications fields and an FCC License. Commercial methods and techniques of Radio and TV Broadcasting; teletype; facsimile; microwave; radar; mobile and marine radio; navigation devices; FM stereo multiplexing are some of the subjects covered. You work with special training equipment.

FCC COMMERCIAL LICENSE

For men with Radio-TV experience who want to operate or service transmitting equipment used in broadcasting, aviation, marine, microwave, facsimile or mobile communications. A Service Technician is required by law to have an FCC License to work on C-Band, other transmitting equipment. From Simple Circuits to Broadcast Operation, this new NRI course trains you quickly for your Government FCC examinations.

ALSO: Special courses in Mobile Communications; Aircraft Communications and Guidance; Marine Communications; Math for Electronics.

Today, a career in Electronics offers unlimited opportunity. Job counselors advise, “For an interesting career, get into Electronics.” The National Association of Manufacturers says, “There is no more interesting and challenging occupation in American industry.”

When you train for a career in Electronics through NRI home-study methods your home becomes your classroom, and you the only student. You pick your own study hours, study when you want, as long as you want. No need to give up your job or go away to school. And there are no special requirements of previous Electronics experience or education. Train with the leader. Your NRI training is backed by nearly 50 years of success. Mail the postage-free card. National Radio Institute, Washington 16, D.C.
Shure Brothers Inc. seemed to best serve the identification. The selected form, however, the better acc bias.

ture

article. has been growing rectly applied to the high condition er

erer	pacitive element the following reasons:
agree, however, material ply, it obviously that
truth dissipated from acoustical power. And the
plies supply of phone along with the carbon micro-
phone since he classifies condenser bias. And the
phone along with the carbon micro-
function, however, dissi-

-END-

BOULD YOUR OWN Schober ELECTRONIC ORGAN

This is the Schober Consolette Model with two full 61-note keyboards, 17 pedals and 22 individual stops. It is comparable to finished organs selling from $1800 to $2500.

You'll love the rich, thrilling tone of a Schober Electronic Organ, and you'll love the price, too—starting as low as $550. Whichever Schober Organ you prefer—there are three brilliant models to choose from—you'll happily find it's only half the price of a comparable, ready-made organ sold in a store. In fact, many people who could well afford to buy any organ, have chosen to build a Schober Organ simply because they prefer it musically! You get a full-size organ on which you can play classical and popular music. Beautiful hand-rubbed cabinet...magnificent sound!

And you don't have to be an electronic genius to build your own Schober Organ. The clear, concise, step-by-step instructions make it realistically simple, even if you've never touched a soldering iron!

MAIL THIS COUPON TODAY

This Schober Consolette Model with two full 61-note keyboards, 17 pedals and 22 individual stops. It is comparable to finished organs selling from $1800 to $2500.

You'll love the rich, thrilling tone of a Schober Electronic Organ, and you'll love the price, too—starting as low as $550. Whichever Schober Organ you prefer—there are three brilliant models to choose from—you'll happily find it's only half the price of a comparable, ready-made organ sold in a store. In fact, many people who could well afford to buy any organ, have chosen to build a Schober Organ simply because they prefer it musically! You get a full-size organ on which you can play classical and popular music. Beautiful hand-rubbed cabinet...magnificent sound!

And you don't have to be an electronic genius to build your own Schober Organ. The clear, concise, step-by-step instructions make it realistically simple, even if you've never touched a soldering iron!

MAIL THIS COUPON TODAY

The Schober Organ Corporation
43 West 61st Street, New York 23, N.Y.

IN CANADA: Associated Music Services
216 Alvernys Road
Richmond Hill, Ontario

IN AUSTRALIA: The Electronic Organ Co.
(Australia) Ltd
10 Cadwell Street
Pymble, N.S.W.

IN UNITED KINGDOM: Burge Electronics Ltd
Geeswines Industrial Estate
Bushey Mill Lane, Watford
Hertfordshire, England

Please send me FREE booklet and other literature on the Schober Organ.

Please send me the Hi-Fi demonstration record. I enclose $2 which is refundable when I order my first kit.

Name_____________________________
Address_____________________________

City_________ Tone State_________

DECEMBER, 1962

Robert Lynn
Beverly Hills, Calif.

Mr. Carr Replies

My thanks are due to Mr. Lynn for pointing out that the form of presentation of the condenser microphone material may be ambiguous. I do not agree, however, that it is incorrect, for the following reasons:

1. The text nowhere states (as for the carbon microphone) that the capacitive element dissipates power. In fact, the reference in the "Principle" section properly refers to "change in charge."

2. The text here (and in the entire article) has reference to complete and practical microphones. The condenser mike in this regard does require a power source to establish the operating condition (bias), and to provide the high output voltage at low impedances (through active impedance conversion).

3. The term "modulating" is correctly applied to the condenser structure when it is used (as mentioned in the text) for frequency modulation of an ac bias carrier. This use, incidentally, has been growing in popularity.

Perhaps clarity could have been better served by classifying ac bias usage under "Modulating Types" and the dc bias version under a third classification. The selected form, however, seemed to best serve the purpose of the article.

Robert W. Carr
Manager, Product Development
Shure Brothers Inc.
Evanston, Ill.

END
NEW LOOK FROM PACO
IN LOUDSPEAKERS:
REVOLUTIONARY NEW PACO SPEAKER SYSTEM DARES TO USE 6" CONES!

PACO is proud to present the Model L4 System, a revolutionary new development in loudspeaker design that offers a degree of brilliance, clarity and quality unequalled by speakers selling for as much as $300. Yet this remarkable speaker system costs only $99.95 net.

Here's the secret. Developed by a brilliant and famous audio designer, the new system consists of three 6-inch woofer mid-range speakers in close configuration and a tweeter. Normally, 6-inch speakers have very high cone resonance, no bass response and low power capacity. In this system, however, a special ball diffuser, bonded to the voice coil form, disperses sound in the middle frequency and widens the normally narrow axis beam of the speaker. The result is an extremely smooth response in the middle range.

Each speaker cone also has three struts bonded to it, and to each diffuser. This produces a rigid diaphragm which eliminates edge distortion and provides the much-desired "piston effect" up to 7,000-8,000 cycles. The arrangement also produces a cone resonance in the mid-range woofers of approximately 40 cycles—comparable to the most expensive woofer.

Because of their close proximity, the three speakers act as a single mass in moving air, but without the sluggishness often associated with large speakers. And, each individual speaker remains light enough to produce an accurate mid-range. This elimination of the cross-over between bass and mid-range affords an even greater degree of clarity and fidelity.

With a response of 45-18,000 cycles, the system is capable of reproducing every nuance of even the most intricate musical passage. Designed to operate with all amplifiers, its impedance is 8 ohms. See and hear it at your dealer or write today to PACO Electronics Co., Inc., Glendale 27, New York.

IN HIGH-FIDELITY KITS:
The ST-55MX FM Stereo Multiplex Tuner Kit and the SA-50 Stereo Preamp-Amplifier Kit (50 watts: 25 per channel) are two completely new, decorator-designed units that enhance the decor of any home. Handsome new styling and color scheme make this combination look as distinctive as it sounds. And, like other famous PACO kits, the ST-55MX and SA-50 assemble 3/4 faster and easier than similar kits sold by other kit makers.

IN TEST-EQUIPMENT: A complete line of PACO test equipment is now available in kit form for the audiophile, ham operator and electronic technician who wants maximum quality at lowest possible cost.

New Model T-63 CRT Tester and Rejuvenator. Utilizes a true beam current test circuit. Kit: $44.95 net. Factory wired: $59.95 net.

New Model G-34 Sine and Square Wave Generator. Versatile coverage of 7 cps to 750 kc sine and square wave in 6 bands. Kit: $64.95 net. F'cty wired: $99.95 net.

Model G-30 RF Sig. Generator. Fine and coarse attenuators handle any signal level. Kit: $32.95 net. Wired: $44.95 net.

PACO ELECTRONICS COMPANY, INCORPORATED, 70-31 84th STREET, GLENDALE 27, NEW YORK DIVISION OF PRECISION APPARATUS CO., INC. EXPORT: MORHAN EXPORTING CORP., 458 BROADWAY, N. Y. 13, N. Y.
Season's Greetings
and Best Wishes for an
even More Prosperous NEW YEAR

THE PHILCO PLEDGE OF QUALITY
TO THE SERVICE-DEALER

When you insist on a Philco STAR BRIGHT 20/20 Picture Tube or Philco Receiving Tube, you're sure of unbeatably high quality. There are many technical reasons why—but the most fundamental reason behind the Philco Pledge of Quality is Philco's own reputation—and the fact that we consider the service technician as our most important tube customer.

Everything that Philco makes or sells reflects on the proud reputation that we have tried to build throughout the years. Your customer makes no distinction between the Philco part or tube that you install and the original Philco instrument that he purchased. To us, the most important fact is that your customer ... and ours ... is satisfied.

That is why we refuse to relax the quality standards for every product, every tube, every part sold by Philco. That is one reason we believe every replacement part should meet original factory specifications. Your Philco Distributor makes it especially easy for you to use and order the right tube or part, by offering a service data program and maintaining complete stocks of Philco tubes and parts.

See Your Philco Distributor ... He's the Best Friend and Partner Any Serviceman Could Have!

Double Satisfaction

Star Bright 20/20 Picture Tubes contain all new material in a re-used envelope ... checked and rechecked to rigid Philco specifications. Buy them for double satisfaction ... your customers and your own!

Parts & Service Operations

A SUBSIDIARY OF Ford Motor Company

Just Off the Press! New Philco Electronic Parts Catalog! Ask Your Philco Distributor for Your Copy Today!

Parts & Service Operations

Philco Parts & Service Operations

"C" and Westmoreland Streets, Phila. 34, Pa.

Please send me the latest free technical information and my complimentary copy of the Philco Service-Businessman magazine.

Name

Address

City State

Service Only Retailer with Service Dept.
UNCOMPROMISING ENGINEERING CREATES THE BEST BUY...EICO

NEW ADVANCED GENERAL PURPOSE OSCILLOSCOPE #269
Kit $61.95 Wired $106.95
Vertical amplifier with 3 push-pull stages, direct coupled throughout; 4-position, frequency-compensated V input attenuator, internal calibrating voltage. Recurrent sweeps from 10cps-100kc in 3 overlapping ranges; choice of int., 600cps or ext sync; fully automatic sync operation. Full waveform reference. 196 voltages, frequency and assignment controls on panel. 2000 lmc, clean, non-blooming trace, instantaneous, drift-free positioning. Convenient direct plate connections. V input 10mv p-p cm sens.; flat 500kc-6db at 50mv; 1 meg input Z 6 amp. 0.5V p-p cm sens.; 2cps-1500kc flat response; 10 meg input Z.

AC VTVM & AMPLIFIER #250
Kit $49.95 Wired $79.95
Highly sensitive, reliable AC VTVM & wide-band amplifier. Measures 100 mvvolts to 300V in 12 ranges, 100kc-0.060, 3-db reading, 3-db response, 1 meg input impedance, ±3% accuracy. Wide-band amplifier switch-controlled for external use: 8c-800kc response, 0.025MV output, 5k ohms output impedance, gain control, noise 40db. Frame-grid triode cathode follower input circuit, feedback-compensated input attenuator, cathode circuit attenuator, regulated power supply. AC VTVM #255 Kit $44.95 Wired $72.95 All the benefits of the #250 less external use of the wide-band amplifier.

VACUUM TUBE VOLTMETER #322
Complete with exclusive dual purpose Uni-Probe® (U.S. Pat.)
Kit $21.95 Wired $42.95
Entirely electronic, direct reading measurement of resistance, and A.C. & D.C. to 1500V in 5 ranges. May be calibrated without removal from cabinet. Complete electronic overload protection, plus fuse. 1% precision ceramic resistors. Exclusive A.C./D.C. Uni-Probe® selects D.C. or A.C.-ohms. D.C. voltmeter input impedance 1 meg, accuracy ±2%, A.C. multi-meter input impedance 1 meg, accuracy ±5%. Ohmmeter 0.2 ohms to 1000 megohms in 5 ranges.

AC VOLT-WATT METER #284
Kit #48.95 Wired $76.95
AC voltmeter & load-compensated audio wattmeter of unique design. Measures AC voltages from 1mv to 1000V in 12 ranges. Power from 0.15mv to 150W in 7 ranges, across standard loads from 4 to 600 ohms. Tapped power resistor load (4, 8, 16 and 600 ohms) handles up to 60W on 8 ohms and 60W on other taps. Switch to external load up to 150W. Meter automatically compensated for any load selected, internal or external, to provide single watt scale.

IN-CIRCUIT CAPACITOR TESTER #855
Kit $18.95 Wired $39.95
Tests capacitance in the circuit without unsoldering. Checks for shorts, (even in the presence of as little as 1 ohm shunt resistance). Checks open units (as little as 3500fF in the circuit). Measures capacitance with ±1% accuracy between 0.1uf and 33uf. Measures RC product, convertible into dissipation or power factor. Utilizes electron-ray tube EM84/6FC6 with sharp bar pattern. Line adjust control permits maximum sensitivity regardless of line voltage variations.

TRANSISTOR & CIRCUIT TESTER #680
Kit $25.95 Wired $39.95
Measures EICO, EICO & DGB directly, ASCII indirectly, without charts or other special settings—plus all dc volt, currents & resistances needed in service transistor equipment. Battery powered, 50A, 3½" face meter movement provides sensitivity & scale length necessary for accuracy. Built-in 90,000Ω VOM facilities free your other test equipment.

EICO ELECTRONIC INSTRUMENT CO., INC.
3300 NO. BLVD., L.I.C. 1, N.Y.

EICO, 3200 N. Blvd., L.I.C. 1, N.Y.
□ Send free 32-page catalog & Distributor's name:
□ Send Free Schematic of Model No.
□ Send new 36-page GUIDEBOOK TO HI-FI for which I enclose 25c for postage & handling.

Name _____________________________
Address ___________________________
City __________________ Zone ________
State _____________________________

RADIO-ELECTRONICS

Listen to the EICO Hour, WABC-FM, N.Y. 155 MC. Mon-Fri, 7-15-8 P.M.
Export Dept., Rahum Agendas Inc., 621 Greenwich St., New York 13
SENSELESS ORBITING

... Aping the Soviets Doesn't Get Us to the Moon...

AFTER an unnecessarily late start into the space age on Feb. 1, 1958, four months after Sputnik I, the US is still slavishly imitating the course of the Soviets.

When the Russians orbited a man around the earth on Aug. 6, 1961, then another on Aug. 12, 1961, we followed suit on Feb. 20, 1962, and May 24, 1962. But the Russians made 1, then 17½ orbits against our 3 each. On Aug. 11 and Aug. 12, 1962, the Soviets accomplished 64 and 48 orbits against our 6 on Oct. 3, 1962. This makes a total of 4 Soviet manned orbits against our 3. But the Russians' orbits far exceeded ours—130½ against the US' only 12.

Why all this frantic orbiting around the earth? Because airless space is a totally new experience to man, it must be well tested to make certain that he can survive long space trips. On top of the deadly vacuum of space, another totally new experience was added when man first began orbiting in space—weightlessness. Could he stand this too? Yes, he could and did.

All these facts had been predicted as feasible by physicists, astronomers and others for many decades. Fifty years ago, the present writer, in his magazine Modern Electrics (March 1912), spoke of weightlessness in space and space sickness. Recent experiences have shown that like seasickness, space sickness is suffered not by all individuals but only by a certain percentage. Today, too, we have medicines to counteract space nausea.

The point is that modern space flying is not a new or recent art—it is indeed over 100 years old. Many scientists have occupied themselves with all its phases for a long time. Its laws, its physics have been thoroughly known and discussed in textbooks for decades. Astronomers and mathematicians have solved the laws of space flight, trajectories, orbits and the elapsed time of all contemplated interplanetary flights.

Then why do the Russians lead and we follow in space? Their longer experience in rocketry has given them an edge. Unfortunately, when our own Prof. R. H. Goddard, of Clark University—the father of space rocketry—did his celebrated pioneer work during 1914 to 1945, nobody in high government listened to him and to his epoch-making discoveries. A few men in our War Department did appreciate his work, but the astronomically high costs of going into space research discouraged our Government. Had we started at that time, we probably would now be ahead of the Soviets.

In our opinion, we should stop NOW the senseless earth-orbiting manned rocket experiments. We do not believe that any further such orbiting will enhance our space knowledge to a large degree.

We know and are fully convinced that we are ahead in electronics and all its knowledge. It is axiomatic that rocketry and space exploration is unthinkable without electronics.

We know, too, that our astronauts are well trained and do not lack in courage as explorers into the unknown, any more than Columbus or Lindbergh did.

We know, too, that our real goal in space is the moon. But we are wasting too much time on nonessentials. Washington space people tell us that, at present, imagination, vision and urgency are lacking in many of our space departments. What we need is a new approach to the moon problem, NOW—not in 1965 or 1967.

The money and effort spent in useless earth orbiting could better be used in doing first things first.

Most scientists and space technicians are convinced that what is urgently needed now is to place an unmanned exploring pilot vehicle on the moon immediately. Fortunately we are working in that direction now.

Moreover, we have the means to accomplish it now—particularly when it comes to electronic telemetry and guidance.

We have multiple rockets with sufficient thrust to orbit the moon, either instrumented or manned; then by telemetered television we can pick the best location to land an electronic explorer from the same rocket.

This is the prime requisite for landing a manned moon crew subsequently. No one today knows the consistency of the moon's surface. Scientists speculate that in the several billions of years of existence it may be covered with a layer of quicksand-like dust that could be hundreds of feet deep, or only a foot thick. Patently, men should not make a lunar landing under such hazardous conditions.

And that is the chief reason for a fully electronically instrumented explorer in advance of a manned landing.

In the exploration of the moon, we should also speak of low moon orbiting. Such orbits can either be polar or equatorial. The moon being airless, lunar satellites are not hampered by an atmosphere. Thus, such orbits could be extremely low, if it were not for the moon's mountains which rise to peaks of 30,000 feet, or more than 5 miles. The orbiting satellite must clear such elevations. Perhaps the lowest moon orbiter should be at least 20 miles above the surface. The time of revolution at such an altitude is about 1 hour 52 minutes. But the orbiting speed of such a low satellite is nearly 1 mile a second—too fast for visual observation of the lunar topography. The solution: Make a taped cinematographic record which later can be inspected at a slower speed.

In résumé: 1. Stop aping the Russian manned earth orbits. Our goal is the moon as the first vital space objective.

2. Fire into a low moon orbit a rocket that carries an electronic-instrumented explorer.

3. Release the manless robot explorer from its mother rocket and set it onto the moon to make hundreds of tests, including a television survey of the moon's surface, these to be sent electronically coded to earth for evaluation.

Once we have complete data on the moon's surface and its consistency—then and only then should we undertake a manned lunar landing, for which we should be ready then.

-H. G.

Merry Christmas—Happy New Year

The Staff of Radio-Electronics

DECEMBER, 1962
Longest, largest single antenna for point-to-point fixed communications

By JORDAN McQUAY

WORLD'S LARGEST AND MOST UNIQUE DIRECTIONAL antenna is the TAHA—Tapered Aperture Horn Antenna—now regularly used for long-range hf (high-frequency) fixed reception at the Army Signal Corps station, La Plata, Md.

At this giant site—terminal receiving point for overseas circuits of the Army global communications system—are many rhombics and special antennas that are usually effective for hf dx signal reception.

In the event of international hostilities, however, none of these may provide the high degree of directivity and selectivity required for extremely reliable—particularly jam-proof and interference-proof—global communications.

This critical and strategic need led to the design and development of the TAHA, an immense structure with all the advantages of a conventional rhombic plus greater directivity and selectivity, and broader bandwidth.

Operating within a range of 5 to 25 mc, the TAHA is permanently oriented to "work" with one, and only one, of the several, distant, fixed transmitting stations of the Army global system.

These transmitting stations are variously located in Eastern Africa, the Near East, the Philippines and elsewhere around the world. Thus, the TAHA requires an individual antenna to link with each of the distant transmitting sites. In the meantime, conventional rhombics are used for routine reception on these international circuits.

As with a rhombic, the larger the size of the TAHA, the greater its directivity and selectivity. This is an oversimplification, of course, because a practical limit to increasing physical size is set by factors of mechanical construction.

That limit is reached in the present size of the TAHA, which has the desired characteristics of directivity and selectivity for long-range hf global communications.

The complete antenna—tapered horn, waveguide feed and supporting structure—is nearly a quarter of a mile long.

Looking at the open mouth, the aperture is over 500 feet wide and 250 feet high. The opposite or terminal end of the horn is 40 feet wide and 80 feet high—precisely matching the size of the open waveguide feed, contained in a metal housing 40 x 80 x 80 feet.

Total ground area encompassed by the TAHA and supporting system is nearly 17 acres. The tapered horn, excluding guy wires, covers nearly 7 acres.

Horn characteristics

The tapered horn operates essentially as any open-ended horn antenna.
The electric field distribution at the aperture is shown in Fig. 1. Despite truncation, the E-field intensity across the aperture is maximum at center, and tapers smoothly to zero at all edges.

Characteristics of the reception (and radiation) pattern are influenced primarily by the large size and the truncated shape of the aperture. This pattern has a 10° beam width in the horizontal plane—similar to an equivalent rhombic, but almost devoid of sidelobes. Sidelobes of the TAHA are down more than 20 db from the maximum of the main lobe.

Broad bandwidth characteristics of the TAHA are on the order of 3.5 to 1—better than an equivalent rhombic.

The TAHA can be operated at any frequency within the high-frequency range of 5 to 25 mc, because the entire antenna has no resonant elements.

High-gain directivity coupled with broad bandwidth make the TAHA invaluable as an interference-rejecting antenna for long-range point-to-point reception, despite its fixed azimuth and elevation.

Waveguide feed

Upon entering the aperture, received radio waves pass along the inside of the tapered horn to the terminal, where the waveguide feed is located. The waveguide feed couples the tapered antenna to a 72-ohm coaxial transmission line leading to conventional high-frequency receivers.

The terminal opening of the horn is an upright rectangle 40 feet wide and 80 feet high. Coupled directly to this is an 80-foot length of rectangular waveguide, having the same 40 x 80-foot opening and an identical tapered ridge on each side wall (Fig. 2). Top, bottom, side and back surfaces are covered with galvanized sheet steel. Only the front surface is open, where it connects electrically and mechanically with the terminal of the tapered horn antenna.

Each of the two ridges is about 30 feet in height. They taper back until they are separated by about 6 feet—at which distance they are removed about 5 feet from the metal surface of the back wall. Mounted on one of the ridges, about 6 feet from the back wall, is a 5-foot conical probe. The entire cone is active, and therefore the apex is mounted physically well beyond the center point between the two metal ridges. The base of the cone is positioned about 1 inch from the actual surface of the mounting ridge. The center conductor of a standard 72-ohm coaxial transmission line is connected to the conical base. The outer conductor is attached to the metal ridge. The only insulator in the entire TAHA assembly is a small bushing at the point where the transmission line connects with the conical probe.

Received radio waves passing through the terminal of the tapered horn impinge upon the metal surfaces inside the waveguide feed, and are collected by the conical probe mounted horizontally across the gap at the rear of the two metal ridges. From that point, the signals travel via the transmission line to conventional hf receivers.

Construction

The aperture of the tapered horn antenna is truncated by the ground, mainly to minimize structural problems.

The ground is actually the bottom of the antenna, consisting of copper mesh imbedded in a flat asphalt surface, which runs beneath the entire horn and the waveguide feed. The copper mesh is bonded to the wire-grid sides of the horn antenna.

The sides and top of the tapered horn antenna are constructed of wire-grid panels of No. 8 Copperweld wire. Transverse wires are uniformly spaced at 24-inch intervals. Longitudinal wires are spaced at varying distances—from about 10 inches at the waveguide feed to as much as 8 feet near the horn aperture.

The sides and top of the horn are supported by a guyed structure composed of 18 steel towers of graduated height—plus catenaries, stays, hangars and secondary cables. All guy wires are outside the horn antenna—eliminating the need for strain insulators.

All parts and components of the TAHA—the horn antenna, the waveguide feed, and all towers, guys, stays and supports—are connected together and grounded together.

Future types

Principal characteristics of the first TAHA have been evaluated and verified during actual operation over considerable periods of time. Comparison tests were also made between the TAHA and equivalent rhombics.

Collated data from these various dynamic tests are now being applied to research and development of improved designs and modifications of the TAHA. Areas of current study include changes in density of wire grids of the horn antenna, use of wire screens to enclose the waveguide feed, use of various types of probes in the waveguide feed, and use of polarization diversity reception.

A TAHA for transmitting purposes is also under development—requiring only minor design modifications in the receiving type. It will have similar electrical characteristics, but will be capable of handling almost unlimited power. It will operate from a 300-ohm balanced transmission line, and in the same high-frequency range.

The TAHA was designed, developed and constructed for the Army Signal Corps by the Developmental Engineering Corp. Cost of the first TAHA, including engineering design and development, exceeded $900,000.
Simple converter adds TV sound to your FM tuner

high-fidelity TV sound

By M. Harvey Gernsback

Have you ever tried picking TV sound through your hi-fi system when a particularly good program was on? Taking the sound from the ratio detector of the typical intercarrier TV leaves a lot to be desired. Sync buzz, distortion and background noise show up like a sore thumb when fed through a good audio system.

If you own a good FM broadcast tuner, you can build a converter to provide high-fidelity, noise-free reception from the sound channels of your local TV stations. If the FM receiver is sensitive and you have a reasonably good TV antenna, it will provide good sound reception from TV stations up to 75 miles away.

The unit converts the TV sound carrier of any TV channel to 88 mc. This is within the tuning range of any FM receiver or tuner (tuning range 88-108 mc). The FM tuner picks up the 88-mc output of the converter and handles it as though it were an FM station operating on 88 mc.

Unlike previous converters this one does not require two local oscillators to convert the TV sound carrier to 88 mc. Only one is necessary.

Suppose your local TV station is channel 4. The sound carrier of channel 4 is at 71.75 mc. We use an ordinary 44-mc i.f. TV front end at the input of our converter to change this to a 41.25-mc sound i.f. But we need 88 mc. Suppose we added a doubler-amplifier to the TV front-end output. This would produce a new i.f. at two times 41.25, or 82.5 mc. That's better, but it's still not 88 mc.

But we can change the i.f. output of the TV front end by changing the local oscillator frequency (adjusting the oscillator slugs or trimmers) and retuning the i.f. output slug to match.

Suppose we raise the oscillator frequency by 2.75 mc. This will raise the sound i.f. output by the same amount to 44 mc. Now if we double 44 mc we should have the 88-mc i.f. we want! This sounds fine—but will it work? The answer is yes! The tuning range of the slugs on most TV front ends permit a shift of 4 or 5 mc, and a simple one-tube doubler-amplifier (an overbiased i.f. amplifier with its grid tuned to 44 mc and its plate to 88 mc) is all we need to complete the job.

Why not use a 21-mc front end?

"Fine," you say. "I've got an old 21-mc TV front end stashed away in the corner. I'll set its output to 22 mc and double twice (quadruple to you) to get my 88-mc output!" I've got sad news for you. The output of your FM tuner will probably sound very distorted! Here's why.

An FM signal swings back and forth across its nominal carrier frequency, the amount of swing corresponding to strength of modulation. FCC rules for FM broadcast stations specify a maximum swing of ±75 kc at 100% modulation (a total band of 150 kc) and the FCC assigns station channels 200 kc apart, providing a 50-kc guard band between channels. FM receiver designers take this into account and provide a selectivity characteristic which will pass a bandwidth of from 150 to 200 kc so that the modulation peaks won't be chopped off.

Unlike broadcast stations, the FM sound channel of a TV station is allowed to swing only ±25 kc (50 kc total bandwidth) at 100% modulation.
to conserve channel space.

Now let's go back to our i.f. amplifier–frequency-doubler stage. When we doubled the 44-mc TV sound carrier, we also doubled its frequency swing. The resulting 88-mc signal has a frequency swing of ±50 kc around 88 mc. (Remember that TV sound transmissions swing only ±25 kc.) This swing is still less than the ±75 kc of FM broadcast stations so the FM receiver will handle it with no trouble. But suppose we used a 22-mc i.f. and quadrupled it. Our frequency swing would also be quadrupled so we would have an 88-mc signal swinging ±100 kc. This is 25% greater swing than FM broadcast stations; the selectivity of most FM receivers would be too great to handle it. Serious distortion of a clipping type would occur every time the signal swung to its maximum during modulation peaks. Another objection to the 21-mc front end: Quadrupling would require a two-stage doubler, adding another tube and i.f. transformer and complicating construction.

The final circuit

The finished converter is a four-tube job: two tubes in the TV front end—a 6ER5 rf amplifier, and a 6CQ8-A oscillator-mixer—and a 6E6W 44- to 88-mc doubler–amplifier, and a 6X4 rectifier.

The front end is a Standard-Kollsman GG-4290-A guided-grid replacement type 40-mc TV front end. We used it because of its compactness, general availability and good performance. An earlier converter using a surplus RCA KRK-29 cascode tuner gave equally good performance. However, the RCA tuner is much bulkier and readjusting the oscillator slugs is trickier. Also, it may no longer be generally available. As a 40-mc TV job: Quadrupling would work out satisfactorily. (If you are in a uhf TV area, uhf strips are available for the GG-4290A front end.)

We show two schematics—one for use with the Standard tuner (Fig. 1), the other for the earlier RCA job (Fig. 2). The only differences are in the resistors in the B-supply and in the method of coupling the TV front-end outputs to the 6E6W grid.

Construction

A one-stage amplifier–doubler does not present any real construction problems. But the high frequencies require careful parts placement and one-point grounding to the chassis. Note that R1, C1, C2, C3, C4 and C5 are grounded to a common point at the socket of V1. This is important and must be done.

The Standard tuner is mounted in a 3½ x 5½-inch cutout in the 3 x 5 x 7-inch aluminum Minibox. It is clamped to the Minibox with the mounting brackets supplied with the tuner. The original converter had the KRK-29 tuner mounted outside the Minibox and secured to its side by a metal bracket. The KRK-29 tuner is larger than the Standard tuner.

In wiring output transformer T2, note that, although it is a standard FM antenna coil, we are using it with reversed connections. The normal secondary is used as the primary, tuned by ceramic trimmer C4. The 300-ohm primary is used as our secondary to couple the converter to the FM receiver antenna terminals.

The type 1454 transformer that we used was dropped from the 1962 Miller catalog but your dealer may still have one in stock. If not, you may use the Miller type 1447. This is an unshielded slug-tuned FM antenna transformer. In this case, replace trimmer

Fig. 1—Converter circuit using Standard Kollsman GG-4290-A TV tuner.

Fig. 2—Circuit for using RCA KRK-29 TV tuner.
C4 with a mica capacitor of around 25 μF and peak the coil with the slug. Add a shield can (Miller S-32 or equivalent), if needed, for stability.

Power supply

B-supply voltage should be within 15% of the value shown on the schematics. However, the B-voltages applied to the TV front ends are maximum values and should not be exceeded, unless you plan to replace the tubes frequently!

We used a 600-volt center-tapped power transformer because our original unit required 260 volts for the KRK-29 tuner. The 6EW6 doubler-amplifier tube can operate with its plate voltage as low as 175 with only a slight reduction in gain. Since the Standard tuner needs a maximum of only 175 volts, you can substitute a lower-voltage transformer for T1, such as a 470 or 500-volt center-tapped 40-ma unit (Stanco PC8401, Triad R44, etc.), and operate the 6EW6 plate at the same voltage as that supplied to the TV tuner (175 volts). In this event, omit R9.

Alter the value of R5 by small amounts to set the B voltage at the proper value. We used a 2,000-ohm 5-watt potentiometer as a variable R5 in designing the converter. It was replaced with a fixed resistor after proper voltages were established and the correct value found for R5. (In some cases R5 may be unnecessary.)

Although we found it unnecessary to bias the tuner rf tube to prevent overloading at our location 25 miles from New York City, it may be necessary if you are close to a TV station. The bias arrangement shown in the schematics (silicon rectifier D and R6, R7, C7 and C8) provides a negative bias of about -0.75 volt. This is needed in the Standard tuner to prevent damage to the 6ER5. Although not strictly necessary if you use a cascode tuner such as the RCA KRK-29, it will extend the life of the 6BQ7-A with only a slight reduction in weak signal sensitivity. And this bias circuitry can be simply bypassed. You may find a positive bias of +0.5 or -5 volts (by increasing the value of R7) if you need to reduce sensitivity to prevent overloading in very strong signal areas.

Alignment

The oscillator frequency on each channel of the front end must be raised by 2.75 mc (assuming that the front end was originally aligned to a sound i.f. of 41.25 mc, the commonest one used). (If you have a strong FM station on 88.1 mc, or one local TV station on channel 6—sound at 87.75 mc, you may select an i.f. slightly above or below 88 mc. Adjust the oscillator slugs and converter i.f. to the particular one you select.) The procedure varies with different tuners. An accurate marker generator (preferably with a heterodyne detector) is essential.

Set the marker at the new oscillator frequency for each channel in turn (see chart). Place the converter in operation (with the 6EW6 i.f. tube removed), loosely couple an insulated wire from the rf input of the marker generator detector to the oscillator tube of the front end (loop the wire around the oscillator tube inside the shield and leave the tube shield in place). Tune the front end to the same channel that the marker is tuned to. Set the front-end fine-tuning control at its mid-point and slowly raise the front end's oscillator frequency by adjusting the oscillator slug at the front of the Standard tuner for less inductance. If you use other tuners, follow the manufacturers' instructions.

When the oscillator frequency reaches that of the marker, you will hear an audible beat through the marker's loudspeaker or headset. Adjust for zero beat. Then switch both marker and front end to the next channel and repeat the procedure until all channels have had the oscillator frequency raised 2.75 mc. Do not touch the rf or mixer trimmers on the front end.

On some channels it may be necessary to change the fine-tuning control setting to a point near one end or the other of its travel to hit the new frequency. In my case this occurred only on channel 2 which comes in near the counterclockwise position. Next insert the 6EW6 i.f. amplifier-doubler tube and tune the marker to 44 mc.

Feed the 44-mc signal into the TV front-end mixer grid through the usual grid “look-in” point. Connect a vtvm with a crystal demodulator probe to the plate of the 6EW6. Adjust the i.f. slug on the front end (Fig. 1) for maximum output. Do the same with the slug on L (Fig. 1) (T3 on Fig. 2). Next, connect the crystal demodulator probe across the 300-ohm secondary of T2 and adjust C4 for maximum output. (If a sweep generator and oscilloscope are available, a more accurate alignment can be performed in conjunction with the marker generator.)

Operation

Connect the TV antenna to the converter's antenna terminals. (If your location has an outdoor FM antenna works well as the source of TV signals for the converter.) Connect T2's secondary through a length of 300-ohm lead to the FM receiver's antenna terminals. Tone the FM receiver to 88 mc (make sure your receiver dial calibration is accurate and that you are actually tuned to the converter's intermediate frequency). Now set the converter channel changer to the desired TV channel and adjust the fine-tuning control till the TV sound comes out of the speaker of your FM set.

That's all there is to it! There is no output unless the converter is tuned to a TV station. Adjust volume at the FM set. At some settings of the converter fine-tuning control you may hear buzzing. You are tuning in the video portion of your TV station. Caution: If your FM set has warmup drift, it may be necessary to retune to 88 mc after warmup to insure good reception from the converter. The converter itself may show a small amount of warmup.
The nighttime maximum usable frequencies (MUF's) are normally lower at this time of the year. This, combined with the continued decrease in sun spot activity, will make useful nighttime frequencies lower than at anytime since 1955. A 5 to 7 mc range will be the best to most areas of the world during the hours of darkness. In daylight hours, the range of optimum frequencies will increase. Frequencies as high as the 10-meter amateur band will be open during short periods over some circuits. By next winter, however, 10 meters should not be open to any area of the world via normal F-layer propagation.

The tables here show the optimum frequency in mc for short-wave propagation between locations shown during the time periods indicated.

Select the table most suitable for your location, read down the left side to the region in which you are interested, follow the line to the right until you are under the appropriate time. (Time is given in 2-hour intervals, running right to 10 pm, in local standard time.) This figure is the optimum working frequency in mc. The best band is the one nearest the optimum working frequency.

These tables are designed to serve primarily as a guide, since day-to-day variations in receiving conditions can be significant. At certain hours, propagation over some paths given in the tables may be extremely difficult or impossible. This will depend on the type of service, antenna characteristics, transmitter power, etc. The curves from which the data in the tables are derived are based on an effective radiated power of 10 kw. These curves are representative for the paths given. Thus, the data over the Eastern USA to Western Europe path is based on a circuit analysis curve over the Washington, D. C., to Bern, Switzerland circuit. On circuits further north (e.g., Bangor, Maine to London, England) frequencies will be somewhat lower than those shown, while a circuit from Miami, Florida to Rome, Italy will require frequencies one or two mc higher than those given.

SW PROPAGATION FORECAST

Nov. 15–Dec. 15
By STANLEY LIENWOLL

The nighttime maximum usable frequencies (MUF's) are normally lower at this time of the year. This, combined with the continued decrease in sun spot activity, will make useful nighttime frequencies lower than at anytime since 1955. A 5 to 7 mc range will be the best to most areas of the world during the hours of darkness. In daylight hours, the range of optimum frequencies will increase. Frequencies as high as the 10-meter amateur band will be open during short periods over some circuits. By next winter, however, 10 meters should not be open to any area of the world via normal F-layer propagation.

The tables here show the optimum frequency in mc for short-wave propagation between locations shown during the time periods indicated.

Select the table most suitable for your location, read down the left side to the region in which you are interested, follow the line to the right until you are under the appropriate time. (Time is given in 2-hour intervals, running right to 10 pm, in local standard time.) This figure is the optimum working frequency in mc. The best band is the one nearest the optimum working frequency.

These tables are designed to serve primarily as a guide, since day-to-day variations in receiving conditions can be significant. At certain hours, propagation over some paths given in the tables may be extremely difficult or impossible. This will depend on the type of service, antenna characteristics, transmitter power, etc. The curves from which the data in the tables are derived are based on an effective radiated power of 10 kw. These curves are representative for the paths given. Thus, the data over the Eastern USA to Western Europe path is based on a circuit analysis curve over the Washington, D. C., to Bern, Switzerland circuit. On circuits further north (e.g., Bangor, Maine to London, England) frequencies will be somewhat lower than those shown, while a circuit from Miami, Florida to Rome, Italy will require frequencies one or two mc higher than those given.

TWIN CITIES

<table>
<thead>
<tr>
<th>Daytime</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Europe</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>22</td>
<td>23</td>
<td>15</td>
<td>9</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>East Europe</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Central America</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>20</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>South America</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Near East</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>North Africa</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>24</td>
<td>25</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>South & Central Africa</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>24</td>
<td>28</td>
<td>26</td>
<td>20</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Far East</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>22</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Australia & New Zealand</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>12</td>
<td>18</td>
<td>23</td>
<td>26</td>
<td>20</td>
<td>14</td>
</tr>
</tbody>
</table>

CENTRAL US TO

<table>
<thead>
<tr>
<th>Daytime</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Europe</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>22</td>
<td>23</td>
<td>15</td>
<td>9</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>East Europe</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Central America</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>20</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>South America</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Near East</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>North Africa</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>24</td>
<td>25</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>South & Central Africa</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>24</td>
<td>28</td>
<td>26</td>
<td>20</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Far East</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>22</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>Australia & New Zealand</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>12</td>
<td>18</td>
<td>23</td>
<td>26</td>
<td>20</td>
<td>14</td>
</tr>
</tbody>
</table>

WESTERN US TO

<table>
<thead>
<tr>
<th>Daytime</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Europe</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>20</td>
<td>17</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>East Europe</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Central America</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>16</td>
<td>23</td>
<td>24</td>
<td>27</td>
<td>28</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>South America</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>18</td>
<td>27</td>
<td>24</td>
<td>23</td>
<td>19</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>North Africa</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>South & Central Africa</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>15</td>
<td>26</td>
<td>26</td>
<td>24</td>
<td>18</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Far East</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>19</td>
<td>27</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>Australia & New Zealand</td>
<td>11</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>14</td>
<td>21</td>
<td>26</td>
<td>27</td>
<td>26</td>
<td>16</td>
</tr>
</tbody>
</table>
9 Steps to chroma circuit servicing

A color TV servicing procedure worth remembering... and using

TUBES HAVE BEEN REPLACED, BUT WE still have rainbows (Fig. 1)—color sync is unstable or completely lost. The first step is a signal-tracing procedure, to locate the defective stage. With a wide-band scope and a low-capacitance probe, we check the waveform at the input of the burst amplifier—(1) in Fig. 2. This tells us whether the trouble is in the chroma section or in the preceding video section. (The video section includes the video amplifier, i.f. amplifier and rf tuner).

Here we are concerned with the burst amplitude (Fig. 3). The burst normally has the same peak-to-peak amplitude as the horizontal sync pulse. Although we can use a color TV station signal in this test, a color bar generator is preferred. The generator has a normal output signal which is not affected by characteristics of the antenna, by technical difficulties in the station network or by propagation anomalies.

First step

Burst attenuation points to poor i.f. or rf alignment, or to inadequate high-frequency response in the video amplifier.

Second step

Now we check the keyer pulse from the flyback transformer, (2) in Fig. 2. The burst amplifier can be compared with a keyed-agc tube—it conducts only when the keying pulse is present. If there is no keying pulse, the burst signal cannot pass through the burst amplifier. If the keying pulse is weak, the output from the burst amplifier is weak. A typical keying pulse is shown in Fig. 4. Use a calibrated scope, and check the pulse amplitude against the value specified in the service data. If the pulse is weak or absent, stop here and trace back into the flyback section. The keyer winding may be broken down, or there may be a defective capacitor or resistor in the keyer circuit.

Third step

When burst and keying signals to

Fig. 1—Rainbows in a color-bar pattern.

Fig. 2—Nine chief chroma-signal test points.

Fig. 3—Burst and sync pulse normally have the same peak-to-peak amplitude.

Fig. 4—Typical keying pulses.

By ROBERT G. MIDDLETON
the burst amplifier are normal, we should see the output waveform shown in Fig. 5 from the burst amplifier. Check with a wide-hand scope and low-capacitance probe at (3) in Fig. 2. Although the waveform in Fig. 5 is unsymmetrical, this is not a matter for concern. Many burst amplifiers are nonlinear. What we are interested in here is the amplitude of the output waveform—check its peak-to-peak voltage against the service data. If its amplitude is down more than 20%, the trouble will be in the burst amplifier. Use a vtm to measure the dc voltages in the burst-amplifier circuitry, just as in black-and-white troubleshooting. Check capacitors for leakage, shorts or opens. Look for off-value resistors. Investigate alignment last, because it is least likely to be at fault. However, there is a possibility that the slug(s) in the burst-amplifier transformer may need touching up.

Fourth step

When burst amplifier output is normal, we go to the burst phase detector in tracking down the loss of color sync. The burst phase detector has two signal inputs—the burst-amplifier output and the 3.58-mc oscillator signal. The latter is checked at (4) in Fig. 2. You should see the pattern of Fig. 6. Note that, although this is actually a sine wave, it appears very cramped on most scopes, because of its comparatively high frequency. Also, in Fig. 6, there is a jitter in the scope sync action which makes the waveform appear somewhat as a series of vertical lines—many service scopes do not lock tightly on a 3.58-mc frequency.

However, we are concerned only with the amplitude of the waveform. Compare its peak-to-peak voltage with the value specified in the service data. If low, check the coupling capacitor between the 3.58-mc oscillator and the burst phase detector. It may be leaky or open. Of course, there may be a defect in the oscillator circuit, such as low plate-supply voltage. So make dc voltage and resistance measurements in the oscillator circuitry, if necessary.

But color sync can be lost even with normal amplitude, if the oscillator frequency is incorrect. Modern color receivers generally have an L-C oscillator circuit, provided with a tuning slug. Do not forget to touch up the oscillator tuning slug, to try and lock in the color sync. An ideal check here is to place the input lead of a heterodyne frequency meter near the oscillator tube, and measure the operating frequency on the meter scale. Unfortunately, many shops do not have a calibrated frequency meter, and the oscillator frequency can be judged only indirectly by observing receiver circuit action.

Note that oscillator section is associated with the reactance-tube circuit (Fig. 2). If there is a defective capacitor, off-value resistor or incorrect supply voltage to the reactance-tube circuit, it will be impossible to make the 3.58-mc oscillator zero-beat with the burst. In most receivers, the output circuit of the reactance tube contains a tunable coil, which is also the input of the oscillator circuit. We will have tried to adjust it when checking out the oscillator. Capacitors are the most common trouble makers.

Fifth step

In this step, we leave the problem of tracking down loss of color sync, and investigate poor color reproduction. Start by checking the output from the bandpass amplifier with a wide-band scope and low-capacitance probe, (5) in Fig. 2. The typical waveform is shown in Fig. 7. Note how the Y-signal is removed from the Fig. 3 waveform by the bandpass amplifier, permitting entry of chroma information only to the X and Z demodulators. Our chief interest here is in the amplitude of the Fig. 7 waveform. If its peak-to-peak voltage is low, the colors will be weak.

The bandpass amplifier is a tuned stage like an i.f. amplifier, but it processes a 3.58-mc signal like a video amplifier. It differs from both, however, in that it has a bandpass response, such as from 3.1 to 4.1 mc. We check alignment last. If the output waveform from the bandpass amplifier is weak, measure the dc control voltage from the color killer—it may be too negative and running the amplifier near cutoff. If the control voltage does not check correctly against the service data, make the necessary tests in the killer circuitry, just as if you were checking a keyed-age stage. A defective capacitor or resistor is most likely to cause trouble.

However, with correct dc voltages supplied to the bandpass amplifier and the possibility of a defective capacitor eliminated, we will finally make an alignment check. Ideally, this should be done with a video-frequency sweep and marker generator. Since most shops still do not have suitable equipment, we must often fall back upon touching up the bandpass tuning slug(s), and judge alignment indirectly on the basis of receiver response. In rare cases, there will be a broken slug, shorted or open coil, or leakage between coil turns. These possibilities are investigated only if you can't get correct alignment.

Sixth step

When the chroma demodulators are fed a normal chroma signal, colors on the picture-tube screen can still be weak, absent or distorted, if the 3.58-mc injection voltage is subnormal. This brings us to step (6), Fig. 2. A scope check should show the same waveform as in Fig. 6, but at the amplitude specified in the service data. Check both injection voltages, because there is individual circuitry for the input demodulator stages. Note that (6) is repeated in Fig. 2. One injection waveform (6), might have normal amplitude, with the other (6A), weak or absent. If so, make the usual capacitor and resistor tests—and do not forget to check the small inductor often found in the common portion of the demodulator inputs. A dc resistance measurement usually reveals a bad coil, but if its resistance is not specified, make a substitution test.
CAMERAS THAT THINK

Wonder how they work? Photo-cell controlled cameras compute correct exposure for your best picture. How they operate is described in this article covering chief models.

REMOTE RECEIVER FOR THE CITIZENS BAND

How you can build a set to work as a Citizens Band phone receiver or as a receiver to control models. (can also be made a self-paging receiver by using the control feature to make a light or sound signal.)

MIXED WAVEFORMS ON YOUR SCOPE

It's a good bet you've come across some puzzling patterns on your scope. They could be mixtures of two waveforms. Bob Middleton shows with photographs how to spot them and what they mean.

ASPIRIN-BOX HEARING AID

This three-transistor unit combines the utmost in amplification with miniaturization. Also makes a good amplifier for any application where small size is important.

Radio-Electronics
ON SALE DECEMBER 19TH

Fig. 8—Typical demodulator output waveform.

These injection voltages may be out of phase, even though their amplitude is normal. This sounds like a difficult matter, but it is really a very simple test procedure, provided you have a color bar generator.

Seventh step

Apply an X \(\angle 90^\circ \) signal (a signal 90° from the X base line) from the color-bar generator to the receiver and connect a scope and low-capacitance probe at (7A) of Fig. 2. What should the scope show? Nothing! Only a horizontal trace should appear on the scope screen. On the other hand, if you get vertical deflection as in Fig. 8, try adjusting the receiver's color-phasing control (tint control). If the vertical deflection can be minimized, but not eliminated, we are not yet finished with the burst phase detector and reactance-tube stages! Some defective component causing an abnormal phase shift has been overlooked.

With normal output at the X demodulator, shift the low-capacitance probe to (7B) and then to (7C). Fig. 2. You should find vertical deflection at these points, because of feed from the Z demodulator. The check at (7C) is particularly useful. Drive the receiver with a Z \(\angle 90^\circ \) signal from the color bar generator, and look for a null output from the Z-demodulator. If the Z-demodulator nulls at the same setting of the color-phase control as was found for the X demodulator, all is fine. But if a Z-null is unsatisfactory, check capacitors, resistors, and inductors in the demodulator stages to close in on the culprit. Note that X \(\angle 90^\circ \) and Z \(\angle 90^\circ \) signals are specified bars in a keyed-rainbow generator signal.

If your color bar generator does not have the X and Z outputs, you can check the demodulators indirectly by going to the next step.

Eighth step

Connect the scope and low-capacitance probe at (8A), Fig. 2. Feed a B – Y signal into the receiver. There should be a null at the output of the R – Y amplifier when the color phase control is suitably adjusted. If you don’t get a satisfactory null, follow the foregoing track-down procedures. Note that we are working through the R – Y amplifier, which is interconnected with G – Y and B – Y amplifiers. This in-direct method of demodulator testing could show an unsatisfactory scope pattern caused by trouble in one of the amplifiers.

The amplifiers are quite straightforward, aside from their interacting feature, and trouble localization reduces to dc voltage measurements, plus resistance and capacitance checks. The latest amplifiers do not even have peaking coils to confuse the issue. Here are the normal nulls from the amplifier outputs:

2. The B – Y amplifier nulls on an R – Y signal.
3. The G – Y amplifier nulls on a G – Y \(\angle 90^\circ \) signal.

When we use a rainbow generator, we can easily check the amplifier outputs for correct relative amplitudes. These are often specified in the receiver service data. They are just as important as correct nulls for good color reproduction. In X and Z systems, correct circuit phases usually go with correct amplitudes, because of the system interaction.

Ninth step

The blanker simply cuts off the picture-tube beam during horizontal retrace, so the burst does not contaminate the color picture. Connect the scope at point (9) in Fig. 2, and observe the blanking pulse for proper amplitude as specified in the service data. If the pulse is weak or absent, there are only a few resistors and capacitors to check in the blanker circuit.

You will find that the scope is the most useful signal-tracing instrument for localizing a faulty section in a chroma system. Without its help, a vast amount of time can be wasted in making random trial-and-error tests with a meter and by component substitution. After the faulty section is located, the vtm is needed to check voltages and resistances. A capacitor tester is very useful, unless you have a large stock on hand, and don’t mind cutting out the suspects and replacing them.
What’s New

DIME-SIZE MODULES form the circuitry of ITT Kellogg’s tiny Kel-O-Rad transceiver. No larger than a pack of cigarettes, the 9-ounce device permits “hands-free” two-way communication for firefighters, missile-refueling teams, space-probe crews. A crystal-controlled 20-50-mc transmitter, consisting of five modules, and a matching seven-module receiver, powered by two rechargeable batteries, are contained in one small package. A voice-actuated switch turns on the transmitter when user talks into mike.

MAMMOTH RADAR ANTENNA LENS is examined by Sperry Gyroscope engineers. The molded plastic-impregnated Fiberglas lens, silver-coated to make it electrically conductive, consists of 4,100 cells put together like a giant egg crate, which focus high-energy radar beams. Its light weight and electrical efficiency make it ideal for shipboard missile guidance antennas. The process, developed by Sperry, can also be used to build radar reflectors.

GIANT UHF TELEVISION ANTENNA radiates 5,000,000 watts of effective power. Its 114-foot cylinder weighs 13½ tons. The 232 oblong slots spout power in varying amounts to create a shaped TV signal; an “electrical beam tilt” device directs the main signal to the right spot near the horizon. The antenna, one of the most powerful ever built, will be installed by WSBT-TV, South Bend, Ind. The antenna was built by RCA.

HUMAN TISSUE SIMULATOR, a tiny ionization chamber, is studied by Hughes Aircraft scientist. It and four similar units will be placed at various body points inside “plastinauts”—man-size dummies made of plastic—to simulate human tissue. When launched by the Air Force, they will measure the radiation met by astronauts in outer space.
It's a tuned bandpass filter, sharply tuned null filter, audio frequency meter, telemetry amplifier, intermodulation analyzer and audio circuit troubleshooter.

Constructional details of a selective amplifier continuously tunable from 20 cycles to 20 kc. Has many uses for both experimenter and engineer.

Conventional untuned audio signal tracers do not discriminate between the test signal, extraneous signals, hum, and noise; test results can be confused and misinterpreted. Even when the tracer output is monitored by ear, there is no way of significantly separating the signal from trash or of determining the level of each.

The serious audio technician needs a tracer that can be tuned sharply to any test signal in the 20- to 20,000-cycle spectrum. But tunable af instruments have been available only as laboratory wave analyzers, priced way beyond the reach of small budgets.

The instrument described here tunes smoothly from 20 to 20,000 cycles in three ranges: 20-200, 200-2,000 and 2,000-20,000. Selectivity is adjustable so sharpness of rejection is at the control of the operator. The curves in Fig. 1 show response at minimum and maximum selectivity. Deflection of the indicating meter is proportional to the af input voltage. The meter reads 0 to 100, which may be interpreted as 0% to 100%. Input impedance varies from 1,000 ohms to 5 megohms, depending upon the gain control setting. An output jack is provided for aural monitoring or for driving an external millivoltmeter, oscilloscope or other instrument. (At full scale of the internal meter, output is 1 volt rms across a minimum of 10,000 ohms, representing a voltage gain of 20 at maximum selectivity and peak output.) Only one transistor and two diodes are used. A 12-volt battery (eight 1.5-volt C flashlight cells in series) supplies the 5 ma required for operation.

In addition to being a signal tracer, the instrument may be used in any of the myriad applications which require a sharply tuned af amplifier. These include use as a wave analyzer, tunable bandpass filter, sharply tuned CW filter, sharply tuned null detector, tunable indicator for vswr measurements, tunable af amplifier with output indicator, audio-frequency meter for identifying unknown frequencies, sharply tuned electronic voltmeter, sound analyzer, vibration analyzer, and in telemetrying.

Operating principle

The instrument consists of a tunable af amplifier followed by an electronic af voltmeter (Fig. 2-a). Tuning is by a parallel-T R-C circuit in the negative feedback loop of a single-stage amplifier (Fig. 2-b). Tuning is sharpened by positive feedback provided by transformer T, capacitor C14, and resistor R6. Commercial laboratory instruments use a similar system.

The parallel-T is a null network, so there is enough negative feedback to suppress the gain of the amplifier on all frequencies except the null frequency, at which the gain is maximum. The amplifier output consequently peaks at this frequency. The amplifier is tuned continuously by varying R2.

Transformer T is poled correctly for positive feedback. Capacitor C14 prevents the transformer secondary from dc-shorting the amplifier bias circuit. Positive feedback is controlled by adjusting R6.

Capacitors C2 through C10 (Fig. 3) must be as close as possible to their specified values. Take your freshly calibrated bridge or capacitance meter to the store with you. Although metallized paper units have rather wide tolerance, many are right on the nose. If you cannot find exact values, choose lower ones and build up the values you need by connecting suitable capacitances in parallel. If they do not coincide exactly, you will have to make a separate dial.
scale for each of the three frequency ranges.

Transformer T supplies positive voltage. This voltage level and accordingly the selectivity of the amplifier are adjusted with R6. C14 prevents the transformer secondary from grounding the 2N190 dc base bias. The transformer must have good frequency response over the entire range of the instrument (20–20,000 cycles).

The voltmeter circuit consists of a bridge rectifier and a 0–100 dc microammeter. The diodes may be any general-purpose point-contact germanium units such as 1N134, 1N556 or 1N57. If their characteristics are matched, so much the better. Resistors R7 and R8 should be identical in value. Their absolute resistance is not as important as the requirement that they have the same resistance. The 10-µf value of C13 improves good frequency response down to 20 cycles.

Open-circuit jack J3, allows the tuned output of the instrument to be monitored aurally or to be applied to an oscilloscope, ac millivoltmeter, recorder or some other measuring device. High-impedance headphones (magnetic or crystal) may be plugged in directly.

Building and wiring

Wiring and construction techniques are the same as those used in building any high-gain audio voltage amplifier, but the job is considerably simplified by the one-stage circuit.

The first task after assembling the three-gang potentiometer is to wire the tuning unit. Connect capacitors (C2 through C10) between proper points of switch S1 and potentiometer R2 without trying to make a pretty job of it. (Run the capacitors by the most direct route.) To minimize stray capacitance, wire the unit exactly as shown in Fig. 3. The straight lines of the capacitor symbols for C2 through C10 represent the outside foils, which are clearly marked on the capacitor labels.

Test the assembled tuning unit before wiring it into the amplifier circuit. To do this, connect an audio signal generator between lead X and ground. (Fig. 3), and connect an ac vtvm between lead Y and ground. Set S1 to X10 and the generator to 1,000 cycles. Adjust R2 for null. Using the most sensitive vtvm scale, note the voltage reading at exact null. Swap the generator and vtvm, and readjust the potentiometer for null. If your components are closely matched, the parallel-T network will be symmetrical and the null voltage will be the same each way.

If there is a difference select the setup which gives the lowest null reading and mark the lead which goes to the vtvm, and the lead which goes to the generator. These will be the proper X and Y leads in Fig. 3. Then set the generator successively to 200 and 2,000 cycles and tune the potentiometer for null to check the extremes of the X10 range. Set the switch to X1 and check the extremes (20 and 200 cycles) of that range. Set the switch to X100 and check the extremes (2,000 and 20,000 cycles) of that range.

Some amplifier components are mounted on a 5 x 4 x 1½-inch perforated phenolic panel held by the meter terminal screws. They include C12, C13, C14, R3, R4, R5, T and Q. For solid mounting, the transistor is held by a three-terminal barrier type terminal strip. C1, R1, R6 and S2 are mounted on the front panel. C1 is connected directly between the hot input binding post and potentiometer R1. To prevent ground loops, run all ground return leads to a single point on the front panel.

To avoid damaging the transistor, finish wiring the terminal strip before installing it. Pole capacitors C12, C13 and C14 as shown. Transformer T must be poled correctly, otherwise the feedback will be negative instead of positive. Simply follow the color coding shown in Fig. 3. The center tap (yellow lead) is not used and should be clipped short.

The voltmeter components (D1, D2, R7, R8) are also mounted on the perforated board. When wiring this circuit, be sure to pole the diodes and meter exactly as shown. To prevent heat damage to the diodes, grip their pigtails with pliers while soldering, and hold them until completely cooled.

A large meter (4½-inch rectangu-
Analog Signal Generator and Tunable Bandpass Filter

The instrument also acts as a wave analyzer. The fundamental frequency and each of its harmonics in a complex wave may be tuned in successively. With the fundamental tuned in, set the gain control for full-scale meter deflection. The strength of each harmonic may then be read, as the frequency is tuned in, directly in percent of fundamental. For closer readings of lower scale values, plug an ac vacuum-tube millivoltmeter into J3.

At maximum selectivity, the smallest second-harmonic percentage which may be read is 1.8% (−35 db); third harmonic, 0.4%.

In this application, the instrument suffers somewhat because its gain is not constant over the tuning range but decreases gradually as the frequency increases. For constant gain, the gain control must be advanced as the instrument is tuned upward. However, a close calibration of the gain-control settings vs frequency will permit fairly close measurements in wave analysis.

Tunable bandpass filter with indicator. At a selected frequency, bandwidth is adjustable between the limits indicated by curves A and B in Fig. 1.

Sharply tuned CW filter. In this application, the instrument may be operated between audio amplifier stages of a receiver or from the receiver output. Plug headphones or speaker amplifier into jack J. Vary selectivity by adjusting R6.

Sharply tuned null detector. This is invaluable for close adjustment of impedance bridges and similar measurement circuits, especially when the signal generator has an impure waveform.

Tunable indicator for vswr measurement. Here, the af signal presented to the instrument is delivered by a bolometer or crystal diode operated from a microwave slotted line driven by an amplitude-modulated signal. A tuned af amplifier-indicator enhances the measurement.

Tunable af amplifier. There are numerous applications for such an instrument in the laboratory, shop and field. At maximum gain and maximum selectivity, 50-volt rms input drives the meter to full-scale deflection and delivers 1 volt rms to the output jack.

Audio-frequency meter. The unknown frequency is read directly from the dial when the instrument is tuned for peak deflection of the meter. Sharp tuning increases accuracy.

Sharply tuned electronic voltmeter. The instrument may be used after being voltage-calibrated at a given setting of the gain control. At maximum gain and maximum selectivity, full-scale deflection of the meter corresponds to an input of 50 mv rms.

Vibration and sound analysis. With a vibration transducer connected to the input terminals, the instrument may be tuned successively to the fundamental and other frequency components of vibration, and their relative amplitudes read from the meter, as in wave analysis. In sound analysis, procedure is the same but a microphone is connected to the input terminals.

Intermodulation measurements. In intermodulation checking, sum and difference frequencies may be tuned in separately and the amplitudes checked from the meter deflection.

Telemetering. In some phases of telemetry practice and strain-gage operation, a sharply tuned amplifier is required for selecting a particular signal frequency in the 20- to 20,000-cycle spectrum.

END
Fold the top down and back, keeping the cover facing you. Then trim the right and left edges. Now staple the booklet along the vertical center fold, about 3/4 inch from the top and bottom. Now fold from left to right, keeping the cover facing you. Trim a fraction of an inch off the top and trim the bottom to size and you're finished. You now have another useful piece of service data, exclusive with RADIO-ELECTRONICS.
We were unpacking a new FM tuner when the phone rang in the front office. Shortly thereafter the intercom clunked on, carrying the glad tidings from our Girl Saturday (she refused the traditional title of Girl Friday as pointed out and frequent reminder of her firm dislike of Saturday hours).

"It's the engineer at the new FM station and he sounds pretty mad! He wants to palaver with you, please."

We picked up the extension phone.

"Yeeh?"

"This is the chief engineer of K@-FM, he said, confirming our preliminary report.

"Welcome to our fair city," we replied in a tone calculated to promote goodwill and brotherly love. "What can we do for you?"

"Well, it would help a load if you'd stop peddling lousy FM tuners!" he replied in a manner that made it obvious that he wasn't interested in winning friends nor influencing people, not even hi-fi people.

"Whataya mean, lousy tuners? We handle the best tuners in the business," we shot back with some emotion.

"What's your gripe, anyway?"

"Well, we've had at least a dozen complaints from guys that bought their FM tuners from your shop. They get a bad hum on our station and our manager is convinced there's something haywire with our transmitter. Now, I've just pulled our proof for the FCC and I know blank well that our noise and hum are way down. So there must be something goofed up in your tuners that's causing the trouble and what are you going to do about it?"

We were tempted to outline in vivid terms what we proposed to do, but by this time Saturday was on hand waving a warning finger. And then, there was also the outside possibility that the guy was right. So we obtained the names of the troubled ones and promised to look into the situation.

At the scene

After lunch, we drove out to the first case on our list and explained our mission to the Mrs.

"What puzzles my husband and makes him simply furious is that our next door neighbor has a little $15 tuner and gets simply wonderful reception, while our big stereo tuner has this awful hum on the local FM station," she explained as she ushered us into the family room.

She was so right! Even the most careful tuning would not eliminate the hum. Yet the tuner was quiet on the other four out-of-town stations. We went next door and listened to the tuner. It was perfect, not a hint of hum. Back we went to grapple with the troublemaker.

No amount of tube replacements, grounding, ac plug reversals, cussing, or any other trick made the slightest difference . . . the hum remained. Actually, we noted, it wasn't really a hum, more like a buzz. As a matter of fact, it sounded very much like the 60-cycle sync buzz we had heard many times from mistuned or misaligned television sets. Suddenly the incandescent switched on in our foggy noggins.

We tuned up from the 100.3-mc local FM station where we noted with satisfaction the strong audio signal from our one local TV station operating on channel 13. The tuner was probably picking up the 60-cycle sync pulses transmitted with the video signal and that was causing the hum. We hot-footed it next door to check the tuner there. There was no trace of the sync buzz nor of the television audio signal!

Back at the problem-child tuner, we disconnected the outdoor FM antenna from the tuner and substituted a simple dipole which we attached to the wall with pressure tape. Stuck to this wall, the dipole antenna gave maximum pickup north toward the FM station and minimum pickup west toward the TV station. Voilà! Buzz-free reception from the FM station. It was then a simple matter to install a tunable trap on the outdoor FM antenna and knock out the sync buzz from the television transmitter while not impairing FM reception from the out-of-town FM stations.

In this particular instance, the video signal of the channel 13 television station produced a spurious signal on the FM tuner at almost precisely the same spot on the dial that the local FM station was assigned. Since the video signal is amplitude-modulated and contains sync pulses in addition to video information, the FM tuner produces

*Plaza Television & Hi-Fi, Topeka, Kans.

DECEMBER, 1962

Fig. 1—Block diagram of superhet circuit used in FM tuners and receivers.
only the lower-frequency components and these only when the tuner is detuned slightly from the spurious frequency. This interference condition prevails in numerous other instances involving TV channels from 9 to 13.

What happens

To understand how FM tuners, which are supposed to accept only signals between 88 and 108 mc, also receive television signals broadcast on a much higher frequency, let’s refer to Fig. 1, a block diagram of the familiar superheterodyne circuit used in FM tuners and receivers.

In this type circuit, the incoming signal of frequency F1 is mixed with a local oscillator of frequency Fc, which is higher in frequency by precisely 10.7 mc. The mixer produces a difference frequency of F1 - Fc = 10.7 mc. If amplifier is, of course, tuned to 10.7 mc and additional amplification and eventual detection follows.

So far, everything is straightforward. But consider what occurs if another incoming signal reaches the mixer stage and if that signal happens to be 10.7 mc higher than the local-oscillator frequency. This situation is shown in Fig. 2. The tuned circuits of the rf amplifier provide maximum amplification at the desired signal frequency. But they do not completely reject other frequencies — they attenuate them and discriminate against them, but cannot completely eliminate them. Hence, if the intensity of the undesired signal is great enough, it will ride through to mix with the local oscillator to produce a difference frequency of 10.7 mc.

Thus we have two 10.7-mc difference frequencies—one from the mixing of the desired 108.3-mc signal with the local oscillator tuned to 111.0 mc, and the other from the mixing of the undesired 121.7-mc signal with the local oscillator. Both difference signals are fed to the intermediate-frequency amplifier and it amplifies both signals with no concern as to the interference that results. The undesired signal, 10.7 mc higher than the local oscillator and twice this amount higher than the desired signal, is called the image frequency. With the FM tuner operating within the assigned limits of 88 to 108 mc, the images will necessarily be within the range of 109.4 to 129.4 mc. Images within this range may be called the first-order images.

Now the local oscillator, in addition to generating a fundamental frequency 10.7 mc above the desired signal frequency, also generates harmonics or overtones. These are simple multiples of the fundamental frequency such as 2, 3, 4, 5, etc., times the fundamental frequency. Usually, only the second harmonic is strong enough to become a problem, although in some instances, third or fourth harmonics may cause difficulties. Taking into consideration only the second harmonic, we have the situation shown in Fig. 3.

Second-order images

Leaving the tuner adjusted to receive an FM station on 100.3 mc, we know the local oscillator is tuned to 111.0 mc and that the first-order image is located at 121.7 mc. The second harmonic of the local oscillator is twice its fundamental frequency or 2 x 111.0 = 222.0 mc. Now if other signals located 10.7 mc above or below this 222.0- mc second harmonic reach the mixer stage, additional difference frequency signals of 10.7 mc are generated and passed on to the rf amplifier, where they are as cordially received as any other 10.7-mc signal. Thus signal frequencies of 211.3 and 232.7 mc can cause interference and are called second-order image frequencies. Because the video frequency of a channel 13 television station is 211.25 mc or about 0.05 mc from the second-order image frequency when the FM tuner is tuned to receive a FM station on 100.3 mc, there may be sync-buzz interference.

Second-order images are possible only when (1) there is insufficient selectivity in the rf amplifier, (2) there is inadequate shielding in the tuner front end, or (3) there is substantial second-harmonic content in the local oscillator output. Naturally, if the tuner is being operated within the virtual shadow of the television transmitting antenna, the second-order image signal may be so intense compared to the weaker FM signals that no amount of shielding or any reasonable degree of selectivity will eliminate it. Within a range of 10 miles from a channel 13 television antenna radiating full power of 316 kilowatts, some 40 FM tuners and receivers of 17 makers have been evaluated.

Only the tuners made by one of the 17 manufacturers have been found free of second-order image reception from the video and audio transmissions of the channel 13 television station, although quite probably there are others. The “next-door neighbor” had a tuner made by this one manufacturer and hence had no interference problem.

If the rf amplifier is tuned to a slightly different frequency than the standard 10.7 mc, the exact frequency of the first- and second-order images will differ slightly from the values given here. The table shows the several television channels that will produce second-order images in standard FM tuners. For each TV channel, the table also shows the image frequencies for sound and picture carriers and the nearest FM frequency allocation with which interference may result. Tabulations are based upon the precise alignment of the FM if amplifier on 10.7 mc although some deviation from this figure can be expected in practice.

Spurious Response

<table>
<thead>
<tr>
<th>TELEVISION CHANNEL</th>
<th>VIDEO FREQ. (MC)</th>
<th>APPARENT 2ND-ORDER IMAGE FREQ. (MC)</th>
<th>NEAREST FM FREQ. (MC)</th>
<th>AUDIO FREQ. (MC)</th>
<th>APPARENT 2ND-ORDER IMAGE FREQ. (MC)</th>
<th>NEAREST FM FREQ. (MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>211.25</td>
<td>89.5</td>
<td>215.75</td>
<td>91.825</td>
<td>91.9</td>
<td>102.525</td>
</tr>
<tr>
<td>12</td>
<td>205.25</td>
<td>86.575</td>
<td>209.75</td>
<td>88.825</td>
<td>88.9</td>
<td>99.525</td>
</tr>
<tr>
<td>11</td>
<td>199.25</td>
<td>83.575</td>
<td>203.75</td>
<td>96.825</td>
<td>96.5</td>
<td>96.525</td>
</tr>
<tr>
<td>10</td>
<td>193.25</td>
<td>80.575</td>
<td>197.75</td>
<td>82.825</td>
<td>82.5</td>
<td>93.525</td>
</tr>
<tr>
<td>9</td>
<td>187.25</td>
<td>77.525</td>
<td>191.75</td>
<td>79.825</td>
<td>79.5</td>
<td>90.525</td>
</tr>
<tr>
<td>8</td>
<td>181.25</td>
<td>74.525</td>
<td>185.75</td>
<td>76.825</td>
<td>76.5</td>
<td>87.525</td>
</tr>
</tbody>
</table>

*Apparent 2nd-order image frequency means the dial reading in mc at which the FM tuner responds to the image signal. Thus, with a dial reading of 102.525 mc, the second-order image received from the audio signal of a channel 13 TV station is 215.75 mc.

Fig. 2—Relationship of signal, local-oscillator, first-order image frequencies.

Fig. 3—Relationship of signal frequency, local-oscillator frequency with second harmonic, and first- and second-order image frequencies.

END
Many radio-TV repairs are routine part replacements—a new speaker, an electrolytic, a volume control. But, the replacement isn't always an exact duplicate of the original and some unusual mounting procedure may be called for. Even when an exact replacement is on hand, keeping track of a dozen leads while replacing a tube socket isn't easy. Some of the more valuable time-saving approaches are shown here.

Replacing a multiterminal component like a multisection electrolytic capacitor is another time-consuming task, and there are a lot of leads to keep track of. Un soldering each one separately is tedious and unnecessary. Next time you have to replace one of these, take your dykes and clip each terminal lug as close to the chassis as possible. Then break the capacitor loose from its mounting and install the new unit. All that's left is to solder the old lugs to the new ones. The clip technique also works well on multiple-section pots. Remove the mounting hardware and swing the defective unit clear of the chassis. Insert the replacement and transfer the leads one at a time. Just clip the lug and solder it to the respective lug on the new control. You'll be surprised at how much time you save.

That clip-and-solder technique we used on electrolytics also works for tube sockets. Of course, you'll have to drill out the rivets holding the old socket. If the new socket is a wafer type, use nuts and bolts to hold it in place. Solder metal-shell or plate type sockets to the chassis. As with the electrolytics, solder the old tube terminals to the new ones to complete the job. This gimmick also works on if transformers and similar components.

DECEMBER, 1962
AUTOMATED SEQUENCE CONTROL

By MATTHEW MANDL

AUTOMATIC PROCESSING OF MATERIALS often consists of a series of operations which must be performed step by step. To do this, sequential control methods are used so one type of work is completed before the next one starts. Sequential control in industry consists of electronic, electrical or mechanical systems, or combinations of them for performing a particular series of tasks.

The type of sequential control depends on whether various operations are performed on a single item or a number of items on an assembly line. The nature of the work also has a bearing on equipment choice. A variety of control systems can be set up, using timers, photocells and associated circuits. Such devices are used when the sequence of steps is rarely reset or rearranged.

If the work process on an item is changed periodically, paper- or magnetic-tape control devices may be employed. The sequence of steps—machining, drilling, milling or stamping—can be placed on the tape in coded form and the tape used to actuate the machinery for carrying out the processes necessary. The tape can be stored and reused when the same step-by-step work is done again.

To give you a clearer understanding of these various methods, we'll examine some practical applications of the timer, photocell and tape control unit in sequential control systems. Similar arrangements can be used in many manufacturing processes other than the specific examples.

Clocks with built-in switches are the simplest type of control system.

You may already be familiar with photographic timers. Similar units are used in industry. Some are intended for intervals measured in seconds, others in minutes and still others in hours. Built-in relays and switches turn circuits on or off, or turn on another timer after the first has permitted a certain process to continue for a specified length of time. Some timers are interval types—they can be used to start a process at some particular time and continue the process for a definite period. Such timers have a dual dial—one to set the start of the cycle, and the other to stop the cycle.

Fig. 1 shows a typical timer. It is the series 305 Atcotrol timer made by the Automatic Temperature Control Co., Inc. Ten standard dial ranges are available, ranging from 0-15 seconds to 0-240 minutes. Since one timer can trip another one at the end of its timing cycle, a number of units can be connected in series for sequential control. Applications include molding, heating and forming processes of plastics and rubber, as well as the sequential control of valve operations for oil, water or fluid chemicals.

One application for Atcotrol timers is in the automatic operation of rubber molding presses (see photo). Since three timers are required to control a single press, the panel shown operates 12 presses simultaneously. The system is illustrated in Fig. 2. Initially, the rubber sheet stock is placed between the molding press dies and the push-button switch is depressed to start the process. As soon as the circuit to the first timer is closed, it turns on the press-closing mechanism and the initial heating cycle begins. This cycle continues for several minutes. When it is completed, the first timer automatically starts the second timer. It causes the molding press to open partially for degassing, which lasts as long as the interval of time set on the second timer. When the degassing process is completed, the second timer turns on the third. It closes the molding press for about an hour for curing. When the hour is up, the third timer opens the press and the automatically processed molded piece is removed. The third timer also actuates a counter that records the number of processed pieces.

Once the actual molding time is established for a particular material thickness and shape, the timer settings are recorded for future reference, when the same material may be processed again.

Bank of 36 timers controls rubber molding presses.
A broken beam of light can trigger counters, package handling devices and name stampers.

Items on an assembly line lend themselves readily to sequential control because their continuous progress establishes the necessary time relationship. Photocells are used for counting, packaging, selecting, stamping and other similar processes. When several photocells are used, as shown in Fig. 3, various sequential operations can be performed as required.

The sequential control process in Fig. 3 handles packages on an assembly line. These packages could all be the same size, with alternate ones containing different items. They could also be assorted sizes, as shown, and contain similar items, with more units in one package than the other. Regardless of such variables (or the lack of them) sequential control can be initiated with the photocells and the circuits shown.

Assume that the items have already been packaged and sealed and arrive at the left of the assembly line shown in Fig. 3. Each package breaks the beam of light and the photocell sends a signal to a control unit to stamp the company's name on the top of the box. The container then moves on to the right and breaks the second light beam. The second photocell actuates a counter that records the total number of packages that go down the line.

The photocell used for counting can also select alternate packages if required to fill a particular order. Assume that a regular customer has placed a large order for the smaller packages. A stamp bearing his name and address is placed in the assembly for automatically printing the customer's name on the selected packages.

As shown in Fig. 3, a flip-flop circuit is connected between the amplifier and the control unit. A flip-flop produces one output pulse for every two input pulses. When a large package interrupts the light beam, the customer's name is stamped on the adjacent small package which is then thrust aside and goes down a chute to the shipping department. When a second package interrupts the light beam, the flip-flop circuit produces no output and hence the large package is ignored.

The small packages which are diverted to the chute also intercept a photocell beam and are counted. When the required number have been diverted to shipping, the counter shuts off the control unit and the selection process stops automatically. If desired, of course the larger packages could have been selected by manually interrupting the light beam once in addition to the normal interruptions caused by the packages. The additional interruption of the beam resets the selection cycle and only the large packages are stamped and diverted to the shipping room. The process works even when the packages are all the same size. With two sizes of packages, one photocell can be placed higher than another so one light beam is interrupted only when a larger package passes. The method shown, however, lends itself to an assembly line handling either dissimilar sizes or equal sizes, and no changes need be made when different packages are used.

When a customer places an order for both kinds of packages, the flip-flop stage is bypassed, switching the amplifier output directly to the control unit. Now every package is stamped with the customer's name and address and diverted to the shipping room. When the predetermined number has been selected, the counter again shuts off the control unit and the packages continue to the storage room.

Coded tapes form the heart of a control system that can give directions to a drill press or other machine tool.

When a number of processing steps are to be performed on a single item, a convenient control method uses either perforated paper or magnetic tape. Information regarding the sequence of operations is placed on the tape in coded form, and a tape reader interprets the code and regulates control circuits for the automated industrial machinery doing the work.

A typical example of this method is shown in Fig. 4 where a metal or wood rod is being shaped by a lathe under control of a tape system. By replaying the same tape, hundreds of pieces can be shaped exactly the same. Once the material has been placed in the lathe and the process started, the tape control unit automatically regulates the movement of the servo table. The same control principle can be applied to the automatic operation of a drill press as shown in Fig. 5. Here, a series of holes must be drilled in the material. First, the sequence of drilling operations is determined, as well as the direction which the drill must take to reach each
ing the hole position. This information is used to prepare a paper tape, using a special typewriter-like machine. The tape is then inserted into the tape reader, and the material to be drilled is clamped to the servo table. As the tape is being read, the control circuits cause the servo table to move around under the drill until the proper position is reached for the first hole. The drill press is then automatically put into operation, after which the servo table repositions the material for drilling the second hole.

One might wonder how a so-called servo table can move around under a drill press or other work device. Its operation can be understood by referring to the makeup of a typical one. The principles of the compound servo table (as the Digi-matic model 202) of the Electronic Control Systems Co. are illustrated in Fig. 6.

This servo unit consists of a base, a cross-slide section and a work table. The cross slide and the work table move in the directions shown with respect to the base section. By combining the movements of the cross slide and the work table, the material being processed can be placed accurately in the exact position required for drilling.

The motor drive mechanism, including rollers which move on steel bars, the magnetic brakes and transducers are all mounted inside the table castings. The rollers support the table weight and also guide the travel under control of the servo motor. The table can support a thrust of up to 1,700 pounds without disturbing position accuracy.

A block diagram of the basic circuit needed for sequence drilling and servo-table control is shown in Fig. 7. The tape reader feeds instructions through the control circuits to the magnetic amplifier, where relatively low-power signals control the servo motor.

As the servo-motor drive mechanism moves the work table, two position-sensing transducers check the exact horizontal position. One transducer senses the right and left movement, and the other makes a position check on the other horizontal axis. The signal voltages produced by these transducers are compared with the signals from the tape reader. Thus, any table movement which is not in strict accordance with the signals from the tape reader is immediately determined electronically. The error-detection circuit sends a correction signal to the magnetic-amplifier section in order to insure positioning accuracy.

In the system just described, the servo table moves only along a horizontal plane, and paper tape control is satisfactory. In milling-machine operations involving horizontal and vertical movement, the additional signal information required makes magnetic tape necessary. The sequence control system can then be used for contour machining by providing a three-axis coordinated control.

The sequence control processes used in industrial electronic automation speed up production. As an illustration, assume that a piece of material is to be machined so that it has the general shape of the letter D and is 6 inches high and 4 inches wide. By conventional methods, the study and design time, setup and machining would take approximately 16 hours. Using electronic controls, the total time would only be about 3-1/2 hours, including the necessary preparation of a planning sheet and programming the information for tape preparation. When larger and more complex objects must be machined, time savings are even greater. Hence, automatic electronic control systems are being widely adopted in industry at an ever-increasing rate for all phases of machining, processing, packaging and related applications.
If anyone needed to be convinced that we are living in the Electronic Age, he would only have to look at children's toys. Radio kits and science projects are grabbed up eagerly by older children and pre-adolescents. Simpler toys, with an electronic slant, are available for the younger ones. Here's one of the more dramatic ones—Sarandade, the Westinghouse Talking Doll.

Sarandade, a young lady of 22 inches, cannot really talk all by herself. She needs another unit—a four-speed record player that can be used either as a straight phonograph or—by turning a switch—a low-power transmitter that sends the sound on the record to a miniature transistor receiver in the doll. The phonograph has a tuning knob to adjust the transmitter frequency—the doll is fixed-tuned and has only a concealed on-off switch.

To get Sarandade into the groove, the phonograph is turned on and a record put on the turntable. With the DOLL-PHONO switch turned to DOLL and the doll turned on, and placed about 5 feet away, the TUNING control is adjusted for maximum sound. Sarandade can then be carried farther from the phonograph. This unit is both a phonograph amplifier and an oscillator circuit (Fig. 1). When the DOLL-PHONO switch is in the PHONO position, R3 becomes the cathode resistor, and the circuit functions as a standard audio amplifier.

When the switch is turned to DOLL, the amplifier circuit becomes a low-power transmitter. Resistor R4 becomes the cathode bias resistor. V5's plate is connected to the antenna through C6 and to the oscillator transformer, T1. Plate current flows through the tank circuit of C5 and T1's primary. T1's secondary regeneratively couples the signal back to the grid to sustain oscillation. The TUNING control, actually a slug in the coil, varies the frequency of the tank to match the 180-kc fixed-tuned receiver in the doll.

Output at the antenna is a 180-kc signal, modulated by the audio from the phono cartridge. Radiation from the antenna is well within FCC limits.

Receiver

The 180-kc rf signal from the phonograph is picked up by the doll's antenna, which runs down inside its legs. A three-transistor receiver is mounted behind a cover in the front of the doll.

The antenna wire is connected to the tuned tank of C1, T1 (Fig. 2). The rf signal is coupled to Q1, where it is amplified, fed to Q2 for additional amplification and on to the detector, a 1N60 diode. The audio signal from the detector is coupled back to Q2's base through C5. Thus, Q2 is a reflex circuit that amplifies both the 180-kc rf signal and the detected audio. T3's primary has practically no reactance at audio frequencies. R7 is the audio load resistor. The signal across it is then amplified by Q3 and applied to the 8-ohm speaker.

Troubleshooting

Distorted or low sound, or no output at all, can be checked as for any standard phonograph. If the phonograph plays, but there is no sound from the doll, either the oscillator circuit or the doll's receiver may be at fault.

Check the doll's receiver first, by radiating a modulated 180-kc rf signal into it. Make sure the battery is good and the switch is on. If there is no output, remove the two screws holding the receiver mounting plate in the front of the doll and make a visual check of the receiver. A slip-on connector joins the antenna to T1. Use a signal generator and a vtm to check the receiver. Use an audio signal for the audio sections and a modulated 180-kc rf signal for the rf sections. After any repair job, touch up the three transformer slugs to insure good receiver gain.

Now suppose the phonograph works properly but no signal reaches the doll's receiver. Since the input circuit to the tube does not change during switching, the trouble must be in either the switch or one of the oscillator circuit components. This circuit is very simple and there should be no difficulty in finding a defective component.

Electronic units, as they are used in toys, are not difficult to understand or troubleshoot. The greatest cause of trouble will probably be rough handling. A careful visual check, therefore, should locate many of the problems that may arise.

By PAUL J. WALKER*
Start Your Car FAST

Build this 3-transistor unit and start your car easily, even on the coldest mornings.

As the weather gets colder, you'll find it increasingly difficult to start your car in the mornings. The cold motor and thickened grease and crankcase oil put a tremendous load on the starter, which in turn draws a heavy current from the battery. The result is lowered battery voltage and a spark that is often too weak to do any good. The little gadget described here* avoids this by inserting a separate battery into the ignition circuit when you start your car. As soon as the motor is running, it turns itself off, reconnects the auto battery and waits for its next call to duty.

The diagram shows the circuit of the electronic starting aid, as installed in your car. You've just come out of the house, climbed into your driver's seat, and are ready to go to work. You've switched the unit on and inserted your key in the ignition switch and turned it on.

At this point, let's examine the circuit. V3 is not conducting because no negative bias has been applied to its base. Conversely, V2 is conducting because V1 is supplying base bias to V2. V1 is conducting because of the bias applied to its base through the windings of the starter motor. So far, the car battery is still connected to the ignition system. (True, ignition-coil current must flow through the collector-emitter circuit of V2, but V2 is saturated and the voltage drop it introduces is negligible—in the order of ½ volt.)

Next the starting motor is actuated, introducing a negative voltage at the starting motor terminal. This reverses the conductive states of all transistors in the starting aid. V1 is biased to cut-off; it in turn cuts off V2, disconnecting the car battery from the ignition coil. At the same time, V3 is triggered into conduction and connects the auxiliary battery to the ignition coil.

Once the engine starts, the starting motor is, of course, disengaged. The negative voltage is removed from the starter-motor terminal and the transistors revert to their original states. This disconnects the auxiliary battery and reconnects the car battery. Operation is now normal. However, should the engine die and you restart it, the auxiliary battery is switched in automatically.

Once the motor has warmed up a little, you can turn the quick-start device off. It will do no harm if you leave it on, but to conserve the life of the auxiliary battery it is best to turn it off. Whenever the device is on, there is some leakage through V3.

The three electrolytic capacitors (C1, C2 and C3) bypass ignition transients which might otherwise injure the transistors. Note the polarity for C1 is not the same as for C2 and C3.

Installation

You can locate the device in either the engine or passenger compartment. Just make sure you keep it away from the engine manifold if it goes in under the hood. Also, insulate the heat sink from the car chassis. When making connections between the quick-starter and the ignition system, be sure to break the proper ignition coil lead. One lead goes to the breaker points in the distributor. Do not touch this one. Lift the connection to the other and, as shown in the diagram, connect this coil terminal to

*The device was developed by Irving M. Gottlieb, Menlo Park, Calif.

Circuit of the quick-starting unit.
terminal 4 of the starting aid. The lead you disconnected from the coil goes to terminal 3 of the starting aid. Terminal 1 goes to the single large terminal protruding from the housing of the starter motor.

Make sure that you have a good ground return for the auxiliary battery. To avoid any resistive path, use a substantial body bolt free from rust and corrosion and use a fairly heavy stranded cable to connect to it. Tin the connecting end of the cable with solder and clamp it firmly in place.

One word of caution: The electronic starting aid is intended for use only with automobiles having a 12-volt grounded-positive battery system. END

120-240 Switchover
A 120/240-volt dc generator supplies the power for a balanced 3-wire 120-volt load as shown. A 120-volt generator is to be installed for emergency use. What must be done, using a knife-switch arrangement, to switch the entire load from the 3-wire generator to the 2-wire generator without reversing the polarity, and making certain that one generator cannot inadvertently be connected to the other or that 240 volts cannot be inadvertently connected to a 120-volt load?—Z. L. Langley

Voltage Quandary

Without writing any equations (by inspection), what is the B-plus voltage?—Rudolf H. Schorsch

BENCH
This starting aid was installed in a 1960 Ford Falcon and tested for 2 weeks. While in colder climates the test would have been more valid, it was easy to tell that, though the starter turned the motor at the same rate as without the unit, yet on cold mornings the motor caught faster.

Basically, this is an electronic switching device. It is comparatively simple and works well. While it may be somewhat expensive, considering the task it performs, the auto bug and experimenter will find it a fascinating project.

The only difficulty encountered was in installation. No metal parts of the unit should be allowed to touch any part of the auto chassis. Therefore, it was necessary to first mount the unit to a wood board before installation. The board was attached to the car body.

TESTED

What's Your EQ?
Three puzzlers for the student, theoretician and practical man. They may look simple, but double-check your answers before you say you've solved them. If you've got an interesting or unusual answer send it to us. We are especially interested in service stinkers or engineering stumpers on actual electronic equipment. We are getting too many letters we can't answer individual ones, but we'll print the more interesting solutions (the ones the original authors never thought of). We will pay $10 and up for each one accepted. Write EQ Editor, Radio-Electronics, 154 West 14th St., New York, N.Y.
Answers for this month's puzzlers are on page 63.

What Am I?
This is a photographic one. Do you recognize it?—Larry Steckler.

DECEMBER, 1962
PHASING AND BALANCING SPEAKER SYSTEMS

By GEORGE L. AUGSPURGER

For some reason, speaker phasing and balancing remain an impenetrable mystery to the average music lover, and to altogether too many service technicians. They’re really not hard to understand at all. You can phase and balance your own speakers without too much trouble.

The signal from the amplifier makes the speaker cone move back and forth—no problem so far. Now, if you reverse the wires from the speaker where they connect to the amplifier, you won’t hear a bit of difference. But the cone is actually moving in a mirror image of its previous excursions. In other words, it is now going forth and back.

In a monophonic installation it doesn’t make a bit of difference which way the wires are connected between the speaker and the amplifier. But in a stereo system the two speakers must be connected the same way so the cones swing back and forth together.

You can check speaker phasing with little trouble. First, set the function selector switch on your stereo amplifier to “A + B.” Feed in a mono or stereo program source. Adjust the balance control so the speakers are playing at about the same loudness. Listen, then flip the “phase” switch (or reverse connections to just one speaker system).

One connection generally gives stronger bass and a definite sense that the sound is coming from a point midway between the two speakers. If the two systems are out of phase, bass will be thin and there will be a hole in the middle with sound clearly coming from two separate speakers.

Note that this test is made with the system operating monophonically, that is, with both speakers reproducing exactly the same signal. This makes it considerably easier to hear the two effects described. As you listen to stereo and become more critical, however, you’ll find that you can spot out-of-phase trouble even when the system is operating in its normal stereo mode.

One other point regarding phasing: If you are using two- or three-way speaker systems, the individual drivers in each system must be phased properly. If you get firmest bass with the phase switch in one position, but the correct single blended sound source in the other position, chances are that the two woofers are phased together but the mid-range units are not. Reverse connections to the mid-range driver in one speaker system and see if this doesn’t correct the trouble.

Fortunately, if you are using matched equipment all the way along—speakers, amplifiers, preamp—then you can simply follow the hookup directions supplied. Once in a while, however, a mono record is released with the two channels in reverse phase. This is why a phase switch is often provided on stereo amplifiers. Phasing mixups may occur on some FM stereo broadcasts, too, until the broadcasts have all the bugs out of their systems.

Are the channels balanced?

Generally speaking, the two loudspeaker systems should be operating at about the same loudness for proper stereo reproduction. This isn’t quite true really... what is required is that the two channels be balanced at the listening location. If you are sitting nearer the left speaker, the right channel will have to be cranked up a little louder.

The easiest way to set balance is again to turn the switch to “A + B” and then listen for the point at which the sound seems to come from a source midway between the two speakers as you adjust the balance control. Flip back to “stereo” and you’re set.

It would be simpler if the balance control could be left off the amplifier altogether, but it is needed for two purposes. One is to compensate for differences in loudspeaker efficiency or listening location. The other is to make

Speakers can be turned to reflect sound from the walls to form a wider and more diffuse sound source.

It’s simple when you know how.

By GEORGE L. AUGSPURGER

For some reason, speaker phasing and balancing remain an impenetrable mystery to the average music lover, and to altogether too many service technicians. They’re really not hard to understand at all. You can phase and balance your own speakers without too much trouble.

The signal from the amplifier makes the speaker cone move back and forth—no problem so far. Now, if you reverse the wires from the speaker where they connect to the amplifier, you won’t hear a bit of difference. But the cone is actually moving in a mirror image of its previous excursions. In other words, it is now going forth and back.

In a monophonic installation it doesn’t make a bit of difference which way the wires are connected between the speaker and the amplifier. But in a stereo system the two speakers must be connected the same way so the cones swing back and forth together.

You can check speaker phasing with little trouble. First, set the function selector switch on your stereo amplifier to “A + B.” Feed in a mono or stereo program source. Adjust the balance control so the speakers are playing at about the same loudness. Listen, then flip the “phase” switch (or reverse connections to just one speaker system).

One connection generally gives stronger bass and a definite sense that the sound is coming from a point midway between the two speakers. If the two systems are out of phase, bass will be thin and there will be a hole in the middle with sound clearly coming from two separate speakers.

Note that this test is made with the system operating monophonically, that is, with both speakers reproducing exactly the same signal. This makes it considerably easier to hear the two effects described. As you listen to stereo and become more critical, however, you’ll find that you can spot out-of-phase trouble even when the system is operating in its normal stereo mode.

One other point regarding phasing: If you are using two- or three-way speaker systems, the individual drivers in each system must be phased properly. If you get firmest bass with the phase switch in one position, but the correct single blended sound source in the other position, chances are that the two woofers are phased together but the mid-range units are not. Reverse connections to the mid-range driver in one speaker system and see if this doesn’t correct the trouble.

Fortunately, if you are using matched equipment all the way along—speakers, amplifiers, preamp —then you can simply follow the hookup directions supplied. Once in a while, however, a stereo record is released with the two channels in reverse phase. This is why a phase switch is often provided on stereo amplifiers. Phasing mixups may occur on some FM stereo broadcasts, too, until the broadcasts have all the bugs out of their systems.

Are the channels balanced?

Generally speaking, the two loudspeaker systems should be operating at about the same loudness for proper stereo reproduction. This isn’t quite true really ... what is required is that the two channels be balanced at the listening location. If you are sitting nearer the left speaker, the right channel will have to be cranked up a little louder.

The easiest way to set balance is again to turn the switch to “A + B” and then listen for the point at which the sound seems to come from a source midway between the two speakers as you adjust the balance control. Flip back to “stereo” and you’re set.

It would be simpler if the balance control could be left off the amplifier altogether, but it is needed for two purposes. One is to compensate for differences in loudspeaker efficiency or listening location. The other is to make
slight adjustments which may be required for different broadcasts or recordings. If you don't have a balance control, separate volume controls for the two channels will do the same thing, but the adjustment is more awkward.

Don't be afraid to experiment

Time and time again, manufacturers of high-fidelity components get letters, "I have a room 13 by 18. Please tell me what equipment I need and where it should be installed for stereo." There is nothing wrong with this man's desire for good music reproduction, but he needn't be so timid about it.

First of all, if you live in a fairly large city with several audio dealers, why not visit them and see what they suggest? For some reason, there is a reluctance to "intrude" into a dealer's showroom for fear he may not have what you want or be rude or stupid or a high-pressure salesman. It is possible that any of these may be true, but that is his misfortune, not yours. You are the master of the hour: a potential customer, or at least a goodwill emissary. If you don't like the way you are treated, walk out and try someone else.

Secondly, once you have picked your equipment, don't be afraid to play with it. I have never been able to understand the man who pays $200 for a super multi-control edge-lighted pushbutton stereo preamp and then wants someone to tell him exactly where all the knobs should be set.

No one takes this approach with an electric range. All the little chrome gadgets can be set different to do different things. Same thing with a stereo system. Play with all the knobs and switches and terminal strips to find out the things you can do to make individual programs sound just the way you want them to.

Play with the locations of your speaker systems. Room placement is vitally important to the operation of any speaker. Sometimes moving it a few feet will make all the difference in the world. This is especially true of stereo speakers. Even if the rest of the furniture prevents you from placing the speakers in the very best arrangement, you know at least the limitations of your room acoustics and can mentally adjust your listening impressions accordingly.

Sometimes, if you can work it out from a practical standpoint, you can get exciting stereo sound by turning the speakers backward and listening to the sound reflected from the wall, as in the diagram. Sometimes you can get a closer approach to the concert hall by using a third speaker, not between the other two, but behind the listening area and played at low volume.

There are all sorts of things you can try with little or no additional cash outlay. Have fun! Experiment! You'll get more enjoyment out of your equipment!

It seems to me that multiplex stereo will pretty well establish stereophonic sound as the type of program material for most serious listening. Don't be afraid to take the time and trouble to get the most enjoyment out of it you can. It's worth it.

Electronic Activators for Motion-Picture Matrix Printers

By MARY VIVIAN SMALL

[WE HAVE OFTEN NOTED A STRANGE EXPRESSION ON OUR NONTECHNICAL FRIENDS' FACES WHEN WE DISCUSS SOMETHING ELECTRONIC, AND HAVE DECIDED THAT WE MUST SOUND RATHER OBSCURE TO THEM. JUST HOW OBSCURE WE SOUND WOULD BE CLEAR TO US BY A POEM RECEIVED FROM AN OPERATOR IN MOTION PICTURE PROCESSING.—EDITOR]

These things designed to activate the light boards and the cams (when printing special fade effects) can cause a lot of jams.

Sometimes the little silver bloops dissolve the shadow scenes and light the moving images upon the silver screens;

but copper bloops, and rivet pins, and nicks will trip the switch.

There's short, and square, and longer bloops which works the best—oh, which???

Glossary

Matrix: A pattern made from an original negative.

Light Board: The machine that regulates the amount of light passing through the negative as it is being printed.

Cams: Heart-shaped piece of flat metal, used to regulate the manner in which a shutter is opened or closed. Fade and dissolve operations require the use of cams. (Fade is understood by every picture-goer. Dissolve is the effect created when two scenes overlap, the first gradually disappearing altogether as it is replaced by the second.)

Bloop: Mixture of ground metal and chemicals, brushed onto the edge of the negative while in semi-solid form. As the bloop comes into contact with the roller, it shorts out a circuit by connecting with the poles inside the bloop roller, causing an impulse.

Rivet Pin: Small metal bolt fitted through a hole in the film. Rivets and rivet pins are placed on the film, or the "cuing matte" (a control film) in such a position to direct an impulse to any one of many solenoids and microswitches, either by direct contact bypassing the fingers or by proximity detector.
Xmas Shopping is Easy with Heathkit!

With a Heathkit Catalog you can relax and enjoy Christmas shopping—gift giving without ever leaving your living room! You'll find a Heathgift for everyone on your list, regardless of interest, from beginner to experienced technician. And you give so much more with Heathgifts, for you save two ways—by buying direct from Heath and by buying in kit form. Savings that total 50% or more!

Heathgifts are fun to give, fun to own, and they're fun to build...so much so that you'll be tempted to build them all before giving! Simple instructions enable you to complete any kit in your spare time—in a matter of hours—and they are unconditionally guaranteed to perform to factory specifications.

So give the best in electronic kits, give Heathgifts. Call or write our gift counselors if you need help or give a Heathgift certificate. Begin making your Heathgift List today and place your own name at the top!

Buy Now—No Money Down!

Here's help for your Xmas Budget! Order your Heathgift now, and any purchase of $25 to $500 can be paid for later on Heath's liberal time-pay plan. No money down! Take as long as 18 months to pay! You'll find complete details in the new Heathkit catalog. Make out your Heathkit order and mail it today!

NEW 23" High Fidelity TV Kit—None Finer at Any Price!

An outstanding TV value! Exclusive Heathkit advanced-design features include latest TV circuitry to bring you both Hi-Fi picture and sound! Incorporates the finest set of parts & tubes ever designed into a TV receiver. Easy to build too!...all critical circuits (tuner, I.F. strip & Hi-voltage sections) are supplied as factory-built, aligned and tested sub-assemblies, ready to install. The rest is easy with two precut, cabled wiring harnesses and circuit board. 70 lbs.

Kit GR-22, no money down...$169.95

BEAUTIFUL MODERN CABINET: Styled to match Heathkit AE-20 Hi-Fi Cabinets in rich, walnut solids and veneers. Complete with picture tube mask, chassis mounting board and extended-range 6½" x 9" speaker for GR-22 TV set. Measures 36" W x 32½" H x 20½" D.

GRA-23-1, no money down...$89.95

"CUSTOM" TV WALL MOUNT: For rich, attractive custom wall installations. Includes cut and drilled board for TV chassis. Unfinished white birch. Measures 19½" H x 10½" W x 13½" D. 13 lbs.

GRA-23-2, no money down...$25.95

SAVE $10, order GR-52,
TV chassis & cabinet.....only $249.95
SAVE $6, order GR-62,
TV chassis & wall mt.....only $189.95

GRA-22-3, no money down...$27.95

NEW Deluxe CB Transceiver

4-tone selective call circuitry; 5 crystal controlled transmit & receive channels; variable receiver tuning; built-in 3-way power supply for 117 v. ac, 6 or 12 v. dc; and more! Most complete CB unit ever designed! 22lbs.

Kit GW-42, no money down...$119.95

NEW Advanced Transistor Stereo Amplifier

Smooth power—superb dynamic range! 100 watts 1HF 3 M Music Power rated, 70 watts Heath rating, 13 to 25,000 cps response @ rated output. 28-transistor, 10 diode circuit. 28 lbs.

Kit AA-21, no money down...$134.95

for family FUN and entertainment—give Heathgifts!
ANOTHER HEATHKIT FIRST!
A Real 2-Manual Organ for Only $329.95
The exclusive Heathkit version of the all-new Thomas Transistor Organ now, for the first time, offers you a real two-manual organ at the market-shattering low price of only $329.95 in easy-to-build kit form! Compares in features and performance with assembled units costing well over $700. Features two 37-note keyboards; 10 true organ voices; 13-note pedal bass; variable vibrato; expression pedal; variable bass pedal volume; manual balance control; correctly positioned overhanging keyboards; built-in 20-watt peak amplifier and speaker system; beautifully factory assembled and finished walnut cabinet.
Kit GD-232 (less bench) ... no money dn., as low as $22 mo. ... $329.95

NEW FM/FM Stereo Tuner
Stereo Indicator light; phase control for max. separation and lowest distortion; adjustable AFC for drift-free reception; bar-type tuning indicator; filtered outputs for stereo tape recording. Factory assembled tuning unit. 16 lbs.
Kit AJ-12 ... no money dn., $7 mo. ... $69.95

NEW Heathkit SSB "Six Pack"
A brand new SSB exciter and linear amplifier for six meter operation; 125 watts P.E.P. Only $289.90 for the pair ... less than the cost of most transverters. Loaded with extras for maximum efficiency and operating convenience!
Kit HX-30 Exciter ... $189.95
HA-20 Linear ... $99.95

NEW 10-Transistor FM Car Radio
88 to 108 mc coverage; better than 1.25 microvolt sensitivity; AFC for drift-free reception; tone control. Factory-assembled tuning unit; easy circuit board assembly. 7 lbs.
Kit GR-41 ... no money dn., $7 mo. ... $64.95

NEW FM Portable Radio
10-transistor, 2-diode circuit; vernier tuning; AFC for drift-free reception; tone control; 4" x 6" speaker; built-in antenna; prebuilt tuning unit. Battery lasts to 500 hrs. 6 lbs.
Kit GR-61 ... no money dn., $6 mo. ... $54.95

World's Biggest VTVM Value!
Measures AC volts (RMS), AC volts (peak-to-peak), DC volts, Resistance and DB. Has 4½ 200 uA meter, precision 1% resistors and 11 meghm input. Slim, all-purpose test probe incl. 5 lbs.
Kit IM-11 Special Value Price ... $24.95

FREE 1963 HEATHKIT CATALOG
New edition — more than 100 new kits since last issue — over 250 kits all.

DECEMBER, 1962

HEATH COMPANY
Benton Harbor 20, Michigan

PLEASE SEND FREE 1963 HEATHKIT CATALOG
Order direct by mail or see your Heathkit dealer.
Name
Address
City Zone State

HEATHKIT®
Panasonic®

Orders must be prepaid. C.O.D. orders not accepted.

www.americanradiohistory.com
This column is for your service questions. We answer them free of charge and your name and address will be kept confidential if you wish. The main purpose is to help those working in electronics with their problems.

We've changed our target a little and are no longer restricted to TV, radio, audio and industrial electronics problems are also grist for the mill. All letters get a prompt individual answer and the more interesting ones will be printed here. So if you have a service problem, send it here. We'll do our very best to help you solve it.

We continue to receive numerous inquiries concerning picture-tube conversions. Hence, we are listing pertinent data here:

- 7J7F to 8-inch 90° tube; not a practical conversion.
- 10BP4 to 24-inch tube: difficult—21EP4 is better advised. Use with a Merit HVO 7 flyback and matching yoke.
- 12KP4 to 21EP4: OK, with change of flyback, yoke, and vertical output transformer.
- 12LP4 to 16BP4: conversion from a 53° tube to a 90° is not advisable.
- 12LP4 to 17BP4: conversion practical—use a conversion kit.
- 12LP4 to 17LP4: difficult—use 17BP4.
- 12WP4 to 121P4: not practical, because of thin neck on the 12WP4.
- 14CP4 to 17BP4: OK, although high voltage is a bit low and pix will be a trifle dim.
- 15GP2 to 12AXP22: not practical.
- 16LP4 to 16LP4-A: OK, but high voltage is a bit low.
- 17CP4 to 17BP4: OK.
- 19VP23 to 21AXP22: OK.
- 20CP4 to 21EC4P: OK—use Merit MDF 110 yoke, HVO 126 flyback.
- 21A1P4-A to 21YP4-A: practical conversion.
- 21ALP4-A to 24DP4-A: picture will be narrow, unless heavier flyback is used.
- 21AMP4-A to 24CP4-A: can be done, if flyback, yoke and vertical output transformer are replaced.
- 21AP4 to 21ACP4-A: OK—the 21EP4 is another possibility here.
- 21EP4 to 24CP4: requires yoke and flyback change.
- 21KP4 to 21YP4-C: OK.
- 27AP4 to 24DP4: practical conversion—both are 90° tubes.

Picture collapse

The picture collapses intermittently, in a Magnavox CT-CMU-427 TV. It looks as if there is complete loss of vertical deflection followed by loss of brightness. If you're near the set, you can hear a slight "snap!" All tubes replaced; no help.—I. J. H., Grand Forks, N. D.

Look into the high-voltage cage and inspect the rectifier socket, flyback and then the yoke for any signs of arcing to nearby metal. Such arcs usually leave a tiny discolored spot and are caused by a minute breakdown or open spot in the insulation. Watch for this in a darkened room. Clean out the whole cage, and spray with an acrylic insulating compound, or anti-corona dope. Give the whole thing several thin coats, letting each one dry for at least four hours.

A product known as High-Voltage Putty (Colman) is very helpful in repairing loosened or melted "tires" on flybacks suffering from this complaint.

Vertical retrace lines

The vertical retrace lines in a Sylvania 1-518 show up about halfway down the picture. The blanking seems to be all right most of the time, but there shouldn't be this much retrace. I have checked the blanking network and it seems OK.—F. B., Allenhurst, N. J.

The vertical blanking pulse in this chassis is picked up from the vertical linearity control, as you can see in Fig. 1, and fed to the CRT grid, through the 12,000-ohm resistor and .0033-µf capacitor. There is also a .01-µf bypass. If the 12,000-ohm resistor or the .0033-µf capacitor are bad, you will get improper retrace blanking. Also check the .01-µf capacitor for leakage.

To be certain, pick up the blanking pulse at the linearity control and follow it to the CRT. If it's dropping out anywhere, you can find out why.

Sentinel tuner

I've an old Sentinel with no model number. The trouble is in the oscillator circuit. It uses a 12A77, and it will not start on the low band until you touch something—anything—in the oscillator circuit. Then it starts and keeps working until the set is turned off.—B. D., Denver, Colo.

This seems to be marginal oscillator operation. It could be caused by a bad capacitor, but the most likely cause is low plate voltage. Try checking the plate resistor. It is 22,000 ohms in most of these tuners. It may have been burned by a short in a previous oscillator tube. Plate voltage ought to be around 150.

Give the whole tuner a good cleaning, and check the bias resistor. It ought to be about 220 ohms. Also, try another tube or two. In some of these older tuners, tubes were critical.

Needs replacement control

I need a volume control for a Tech-Master 2431P, and I can't find it anywhere. Where is this control tapped; in ohms, that is? Also, the contrast control is on the same shaft.—C. H. S., Hannibal, Mo.

The actual position of the tap on a compensated volume control isn't too critical, especially to the naked ear. The average positioning for this is about 300,000 ohms from the top end. The volume control in this chassis is a standard audio curve taper C or D, 1 meg., contrast control. 5,000 ohms.

Any parts distributor can make up one of these from stock units, but will probably have one in any of several lines: Mallory, Centralab, etc. This combination is quite popular. I can think of at least three chassis that use the same values.

Color pop-in and out

Although this set is in a strong signal area, within 5 miles of a station, I've always had trouble getting the color to stay on. The picture is good, but the color wants to pop in and out.—R. K., Tulsa, Okla.

This is one of two things: either age or antenna trouble. Under most cir-

Fig. 1—Source is actually the secondary of the vertical oscillator transformer.
NEW

SENCORE PS120
PROFESSIONAL
WIDE BAND
OSCILLOSCOPE

Here it is, the scope that technicians, engineers and service men from coast to coast have been demanding. A portable wide band scope that can be used on the job anywhere, yet has the highest laboratory specifications for shop or lab. Cumberson color TV sets, remote audio and organ installations and computers are just a few of the jobs that make owning a scope of this type so essential. Why consider a narrow band scope, when for only a few dollars more, this professional wide band sensitive scope equips you for any job.

• The PS120 provides features never before offered. Only two major controls make the PS120 as easy to use as a voltmeter. Even its smart good looks were designed for functional efficiency. New forward thrust design, creating its own shadow mask, and full width calibrated graph increase sharpness of wave form patterns. A permanent chromed steel carrying handle instead of untidy leather strap and a concealed compartment under panel for leads, jacks and AC line cord make the PS120 the first truly portable scope combining neatness with top efficiency.

• Electrical specifications and operational ease will surpass your fondest expectations. Imagine a wide band scope that accurately reproduces any waveform from 20 cycles to 12 megacycles. And the PS120 is as sensitive as narrow band scopes, all the way. Vertical amplifier sensitivity is .035 volts RMS. The PS120 has no narrow band positions which cause other scopes to register erroneous waveforms unexpectedly. Another Sencore first is the Automatic Range Indication or Vertical Input Control which enables the direct reading of peak-to-peak voltages. Simply adjust to one inch height and read P-to-P volts present. Standby position on power switch, another first, adds hours of life to CRT and other tubes. A sensitive wide band oscilloscope like the PS120 has become an absolute necessity for trouble shooting Color TV and other modern circuits and no other scope is as fast or easy to use.

WIDE FREQUENCY RESPONSE:
Vertical Amplifier—flat within 1 1/2 db from 20 cycles to 5.5 MC, down—3 db at 7.5 MC, usable up to 12 MC. Horizontal Amplifier—flat within —3 db from 45 to 330 KC, flat within —6 db from 20 to 500 KC.

HIGH DEFLECTION SENSITIVITY:
Vertical Amplifier—Vert. input cable .035V/IN. 0.1V/IN. Aux. vert. jack .035V/IN. 0.1V/IN. Through hi-imped. probe .015V/IN. 0.01V/IN.
Horizontal Amplifier—

HIGH INPUT RESISTANCE AND LOW CAPACITY:
Vert. input cable 2.7 Megs. shunted by approx. 85 MMF Aux. vert. input jack 2.7 Megs. shunted by approx. 20 MMF Through hi-imped. probe 27 Megs. shunted by 8.6 MMF Horiz. input jack 330 K to 4 Megs.

The PS120 is a must for color TV servicing. For example, with its extended vertical amplifier frequency response, 3.58 MC signals can be seen individually.

SENCORE
ADDITION 2, ILLINOIS

WWW.AMERICANRADIOHISTORY.COM
DYNACO
for superlative sound

Superlative sound means the very best sound available, sound so realistic that skilled listeners can not distinguish the difference between "live" and "recorded" music. Thus can truly "live" portions performed by the Fine Arts Quartet. In these comparisons, the superlative sound capabilities of the Dynakits were amply demonstrated since the vast majority of the audiences readily admitted that they could not tell the difference between the electronic reproduction using the Dyna Mark III amplifiers and PAS-2 pre-amplifier and the instrumental rendition by the members of the Fine Arts Quartet.

Such perfection of reproduction means that listeners at home, using home type components, can truly have concert hall realism - a level of fidelity of reproduction which cannot be improved regardless of how much more money were to be spent on the components used. This is true reproduction for the audio perfectionist, and all Dyna components are of quality level which permits reproduction indistinguishable from the original. This is achieved through exclusively engineered designs coupled with prime quality components. Further, the unique designs and physical configuration of all Dynakits make them accurately reproducible, so that everybody can hear the full quality of which the inherent design is capable. Dynakits are the easiest of all kits to build—and yet they provide the ultimate in realistic quality sound.

FM-1—An outstanding FM tuner with provision for internal insertion of the FMX-3 Stereomatic multiplex integrator. The FM-1 is a super-sensitive (better than 4 µV), drift-free tuner with less than .5% distortion at all usable signal levels. Better than 30 db separation on stereo usage using the FMX-3, and automatic transition to stereo with the visual Stereocator. FM-1 kit $79.95, wired $119.95; FMX-3 kit $29.95; FMX-3A (Wired tuner with multiplex), $169.95.

☆SCA-35—Integrated stereo amplifier and pre-amplifier with low noise, low distortion, and moderate power output, 17.5 watts per channel continuous (45 watt total music power) with less than 1% distortion over the entire 20 cps to 20 kc range. Unique feedback circuitry throughout. Inputs for all hi fi sources including tape deck. SCA-35 kit $89.95; wired $129.95.

PAS-2—Fully flexible stereo preamplifier with less than 1% distortion at any frequency. Wide band, lowest noise with every necessary feature for superb reproduction. Acclaimed throughout the world as the finest unit available. PAS-2 kit $59.95; wired $99.95.

☆STEREO 35—A basic power amplifier similar to that used in the SCA-35. Extremely low distortion over entire range at all power levels. Inaudible hum, superior transient response, and outstanding overload characteristic makes this unit outperform components of much higher nominal rating. Features new type Dynaco output transformer (patented design). Fits behind PAS-2 or FM-3A units. ST 35 kit $59.95; wired $79.95.

STEREO 70—One of the most conservatively operated and rated units in the industry. The Stereo 70 delivers effortless 35 watts per channel continuous power. Its wide band Dyna circuit is unconditionally stable and handles transient waveforms with minimum distortion. Frequency response is extended below 10 cps and above 40 kc without loss of stability. This amplifier is admirably suited to the highest quality home listening requirements with all loudspeaker systems. ST 70 kit $99.95; wired $129.95.

Fig. 2—Two pads for reducing signal strength in strong-signal areas. Pad in (a) drops signal 6 db. For additional attenuation, add another section as in (b). it! Unless, that is, you set the age properly and, if necessary, reduce the signal level applied to the input with pads. If you try to pad, always use resistive pads (Fig. 2), never inductive, to avoid forming traps for the color signals.

Red smear

In an RCA 21C57815 color TV, the black-and-white picture is perfect. On color, I get a smearing of the reds. This makes a girl's lips smear to the right, and so on.—R. P., Clo, S. C.

Transmitter trouble! Or, trouble in a stabilizing amplifier in the telephone company's office, where the coaxial cable or microwave link is terminated.

This is caused by a phase shift in the cable, or some similar component. It is delaying the blue and green or introducing a lead into the red.

This cannot be in your receiver! Why? Because it makes a good monochrome picture. The only thing that could cause this particular trouble in the receiver would be a severe misconvergence. But either one of these would cause the red fringing to show up on monochrome too!

Vertical bars

I've got vertical bars on the screen of an Olympic 17TW27. They look like yoke ringing, but I've replaced and tested the yoke-balancing capacitor with no results.—J. G., Dothan, Ala.

Let's get basic: obviously, the cause must be ringing in or around the flyback somewhere, not due to the standard cause, yoke unbalance. So, get out the scope and check everything in that circuit. Chances are, you'll find something in the secondary circuit of the flyback is causing the damper cir-
Free SEND TODAY FOR YOUR MONEY-SAVING 464-PAGE ALLIED 1963 CATALOG

featuring the new 1963 knight-kit CATALOG (pages 1 to 65)

ALLIED ELECTRONICS for everyone 1963 our 42nd year CATALOG 220 INDEX: PAGE 446

Satisfaction Guaranteed or Your Money Back

SEND FOR IT NOW!

WORLD'S LARGEST ELECTRONICS CATALOG BIGGEST SELECTION • BIGGEST SAVINGS!
satisfaction guaranteed or your money back

NO MONEY DOWN: NOW! MORE BUYING POWER WITH YOUR ALLIED CREDIT FUND PLAN

SEE OTHER SIDE

For your FREE 1963 ALLIED Catalog, fill in card, detach and mail. (Please give second card to an interested friend.) SEND CARD TODAY

www.americanradiohistory.com
ALLIED

1963 CATALOG

WORLD'S LARGEST • BIGGEST SELECTION • BIGGEST SAVINGS

NEW

1963 knight-kits®
Over 100 great do-it-yourself kits: Hi-Fi, Hobby, Intercom, Amateur, Citizens Band, Instrument—savings up to 50%.

NEW

Stereo Hi-Fi
Complete selection of components and systems; latest All-Transistor equipment and Stereo Multiplex FM.

NEW

Tape Recorders
Complete recorders, tape decks, recording and pre-recorded tapes at big savings.

NEW

Citizens Band Radios
Latest 2-way radio—no exam required—complete selection of top-value CB equipment, including Walkie-Talkies.

NEW

Transistor, FM-AM Radios
Best buys in all types of compact transistor radios, including quality FM-AM portables.

NEW

Phonographs & Records
Big values in phonographs; latest stereo portables; famous-brand records at amazing discounts.

NEW

Ham Station Equipment
Largest selection of receivers, transmitters, antennas—everything in Ham station gear.

NEW

Test Equipment
Save on every type of instrument for home or professional use—all leading makes available.

PLUS
- PA Systems & Intercoms
- Top values in Power Tools, Soldering Guns, Hardware
- Biggest selection of TV Tubes, Antennas; Parts, Tubes, Transistors, Books

satisfaction guaranteed or your money back

NO MONEY DOWN: Now! More Buying Power with Your Allied Credit Fund Plan!
This circuit to ring excessively. Or something that is allowing the ringing to get into the raster when it shouldn’t.

Suggestion: check the voltage on grid 2, pin 10, of the CRT (Fig. 3). This ordinarily comes directly from boost. If it is insufficiently filtered, it could cause such bars by beam-modulating the CRT. Even this grid, if there is enough modulation on it, can affect the raster. Look for high-amplitude horizontal spikes on this pin, also on the signal grid and cathode.

Horizontal drift

I have a Freed-Eisenmann Model, CHT-1916 on the bench and I can’t find service data for it anywhere. It has horizontal drift, which takes place over about 15 or 20 minutes. I did have some arcing in the flyback, but cleaning the high-voltage cage and spraying with Krylon stopped that. However, I still hear a slight sizzling in it. The flyback is marked 77J1 and TRB-41.—E. M., Detroit, Mich.

I expect you’re going to find the cause of the horizontal drift is a temperature-sensitive resistor. From the time constant of the defect, the resistor is the most likely cause. Any resistor which could affect the frequency of the oscillator should be suspected—grid resistors, plate load resistors, time-constant or R-C network shaping resistors, etc. To pin it down quickly, cool the set, turn it on and rapidly apply heat to each suspected resistor with the tip of a soldering iron. The guilty resistor will cause the drift to show up immediately. Don’t stop with the first one you find, either; check them all!

The original flyback in this set was evidently bought from G-E, from the 77J1 number, which is characteristically G-E. However, my catalogue lists a Triad D-14R for this chassis, and gives the original model number as TRB-41. This is shown as being used in the 1610 and 1620 chassis. This was probably due to a manufacturing change in that run of these receivers. The 77J1 G-E flyback is very popular and not expensive. If it must be replaced, which I doubt, use that. The frying you hear is a bit of corona which didn’t get covered up on the first spraying. Examine the high-voltage cage in a darkened room and you’ll probably see it. A material called high voltage putty is very good for this trouble.

END

Both these young people constructed a radio-controlled model airplane. One model controlled its maker! The other maker controlled his model!

Gernsback Library proudly announces publication of a perfect book for summer reading and construction pleasure:

FUN WITH RADIO-CONTROLLED MODELS

BY E. L. SAFFORD JR. / $3.20

Author Safford takes you on a fascinating learn-by-building journey in model electronics. By careful, step-by-step reading and doing, you will become a radio-control expert in no time. Start by building relays, escapements, transmitters and receivers using everyday tools and materials. You don’t just read about them—you build them and find out what they do, what they’re for, how they tick. You are now well on your way to radio-control. You’ll finish by installing R/C units in model boats, cars and planes with the skill and ability of an old technician’s hand. And you’ll have a summer you’ll never forget. If you’ve read and built diligently, you’ll never have to go chasing after a run-away model plane or deepwater swimming after an electronically pirated motorboat. Fun With Radio-Controlled Models is fully illustrated and simply diagrammed for ease of construction. The book makes an excellent beginning for the electronic hobbyist, gives technicians a fine hobby, and provides a wonderful gift for your interested friends. Fill out the coupon below and mail it in or buy a copy from your parts distributor today.

GERNSBACK LIBRARY, Inc., Dept. 12W, 154 West 14th Street, New York 11, N. Y.

Please send me FUN WITH RADIO-CONTROLLED MODELS, G/L No. 106, at $3.20 each postpaid.

NAME

ADDRESS

CITY ZONE STATE

Payment Enclosed

DECEMBER, 1962

www.americanradiohistory.com
The grid-dip oscillator (GDO), an unusually versatile instrument widely used by designers and engineers, seems never ever to have caught on as it should with the service technician. It seems a shame that such a useful yet inexpensive instrument should be regarded so lightly by so many.

Part of the reason may be that earlier GDO's did not reach down into the broadcast band.

By WAYNE LEMONS

The grid-dip oscillator (GDO), an unusually versatile instrument widely used by designers and engineers, seems never ever to have caught on as it should with the service technician. It seems a shame that such a useful yet inexpensive instrument should be regarded so lightly by so many.

Part of the reason may be that earlier GDO's did not reach down into the broadcast band.

Two kit or wired instruments that go down to 400 kc and up to 250 mc are the PACO model G-15 (Fig. 1) and the EICO model 710 (Fig. 2).

A grid-dip oscillator, or if you prefer, a grid-dip meter, is basically a variable-frequency oscillator with a microammeter in the grid-return circuit to indicate relative power. The oscillator tank coils plug in externally so they can be used as a probe. The tank ca-
Why some filter capacitors develop hum... and some don't

Aluminum electrolytic capacitors are widely used as filters in DC Power Supplies. This is because of their large capacitance in relatively small size. All in all, they do an efficient job of reducing ripple (hum) to acceptable levels.

However, all electrolytic capacitors are not alike. This is often why some types seem to allow hum to rise to objectionable levels more quickly than do others. In order to understand why, we must investigate actual construction methods.

As you know, electrolytics are basically made by depositing a film of aluminum oxide on aluminum foil to form the positive anode. The oxide is the dielectric. A semi-liquid electrolyte surrounds the anode and is actually the negative cathode. In order to connect this semi-liquid cathode to a terminal, a second piece of aluminum foil is used. This is often called the cathode, but it is not. It is actually only the cathodic connection. (The preceding describes a "polarized" electrolytic capacitor.)

When high ripple currents are applied to polarized electrolytics, a thin oxide film forms on the so-called "cathode". It begins to assume the characteristics of a second anode. This in turn, has the same effect as placing two capacitors in series. Consequently, overall capacitance is reduced. Inevitably hum increases.

This action is especially noticeable in electrolytics which use plain foil as the "cathode". This is simply because the oxide builds up over a relatively small area.

Mallory avoids this problem by etching the "cathode" on electrolytics. As a result, oxide build-up is spread over a vastly increased area. Therefore, ripple currents are maintained at very low levels for very long time periods.

Of course etched "cathodes" cost a lot more to make. But you get them from Mallory at no extra cost. There's much more to the Mallory capacitor story, but we'll leave that to another TIP.

Meanwhile, see your local Franchised Mallory Distributor for capacitors, resistors, controls, switches, semiconductors, and batteries. In fact, he's the man to see for all of your electronic component requirements.
capacitor is variable and its dial is calibrated in frequency.

To check resonance of unknown tuned circuits, the probe coil is inductively (sometimes capacitively) coupled to the unknown circuit. The GDO dial is then rotated for a dip in meter reading. This dip indicates that the unknown circuit is absorbing power from the oscillator and is resonant with it. The GDO dial then indicates the resonant frequency of the unknown circuit.

The units mentioned here have eight plug-in coils to cover the desired frequency range. By switching off the B-plus to the oscillator tube (dial position), the GDO becomes an absorption wavemeter, and the frequency of an rf source, such as in a transmitter, can be determined. The oscillator tube becomes an equivalent diode and the meter reads the circulating current picked up by the probe coil.

These instruments have phone jacks for headphones converting the GDO to an oscillating detector. You can zero-beat the GDO with an unknown frequency source for an even more sensitive indication.

Servicing radios

The GDO is ideal for checking tube or transistor radios. Use it to check loop or ferrite antennas and oscillator coils, for substituting a local oscillator and even as a signal generator for alignment.

<table>
<thead>
<tr>
<th>PACO model G-15</th>
<th>EICO model 710</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>400 kc–250 mc</td>
</tr>
<tr>
<td>Meter</td>
<td>500 μa</td>
</tr>
<tr>
<td>Plug-in Coils</td>
<td>8</td>
</tr>
<tr>
<td>Circuit</td>
<td>6A84 Colpitts Oscillator</td>
</tr>
<tr>
<td>Tuning</td>
<td>Direct Drive</td>
</tr>
<tr>
<td>Power Supply</td>
<td>Transformer—silicon</td>
</tr>
<tr>
<td>Size</td>
<td>2 1/4 x 2 1/2 x 3/4 inches</td>
</tr>
<tr>
<td>Weight</td>
<td>2 lbs</td>
</tr>
<tr>
<td>Price</td>
<td>$31.95 kit. $49.95 wired.</td>
</tr>
<tr>
<td></td>
<td>400 kc–250 mc</td>
</tr>
<tr>
<td></td>
<td>500 μa</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6A84 Colpitts Oscillator</td>
</tr>
<tr>
<td></td>
<td>1/7 Vernier Drive</td>
</tr>
<tr>
<td></td>
<td>Transformer—selenium</td>
</tr>
<tr>
<td></td>
<td>2 1/4 x 2 1/2 x 3/4 inches</td>
</tr>
<tr>
<td></td>
<td>3 lbs</td>
</tr>
<tr>
<td></td>
<td>$29.95 kit. $49.95 wired.</td>
</tr>
</tbody>
</table>

If you suspect the antenna coil is not tracking or if you need to rewind one that has been damaged, the GDO makes the job a snap. Set the radio dial to say 1,000 kc. Hold the GDO probe coil near the loop and check for a dip at about 1,000 kc. If you do get the dip, and it is not too far off in frequency, you know the coil is resonant at this point and will probably track OK. For further proof, you can spot-check at a couple of other frequencies, say at 600 and 1,400 kc.

If you are rewinding a loop, the GDO will tell you whether you have too few or too many turns. Just check the resonant frequency with the loop across the set's tuning capacitor (normal hookup). With a little practise you can get the correct number of turns with only one or two tries after the first check. For a small reduction in inductance you can spread the turns and the GDO will indicate whether the change is great enough.

Check the oscillator coil the same way. Remember that it will be resonant at the radio dial setting plus the i.f. (minus the i.f. in a very few sets). The i.f. is usually 455 kc, so, for example, with the radio dial set to 1,000 kc the oscillator coil should be resonant at 1,455 kc.

If the set's local oscillator isn't working but the signal circuits are OK, as evidenced by normal hiss or liveness but no stations, hold the GDO close to the set's loop antenna to substitute for the local oscillator. Tune the GDO to the correct frequency (station frequency plus i.f.) and you should hear the station. By moving the radio dial you can tell whether the rf circuits are tracking (peaking at the correct place on the dial).

Checking alignment and tracking of FM or short-wave radios with a GDO is easy, especially if the coils are unshielded and accessible, as they usually are.

Servicing TV

In TV the GDO can speed nearly any alignment job, especially where the trouble is the electronic-twiddler-who-should - never have been given - that gold - plated - alignment - tool - for - Christmas sort of thing. At least you can soon find out whether resonance is possible any more!

You can reset all the unshielded coils and traps to near their correct frequency without ever turning the set on. This can eliminate a lot of frustration when trying to realign a "twiddled" set.

The GDO is indispensable for such rare service jobs as resetting or readjusting German TV's brought back by returning soldiers. These sets are aligned for 5.5-mc sound. Either shunt capacitors or extra windings must be used to bring the frequency down to the 4.5-mc American standard. Trying to align them with a 4.5-mc signal source gets sticky since you have no idea whether you have added too much or too little capacitance or too many or too few turns when the coil refuses to speak.

You can still grid-dip shielded or inaccessible coils by using link coupling as shown in Fig. 3. A single-turn link is enough at all except perhaps the lowest frequencies, where it may be desirable to use more turns. Whatever coupling method is used, it should be the minimum that will give a readable indication on the meter if utmost accuracy is desirable.

Fig. 3—Link coupling can often be used where coil is shielded or otherwise inaccessible.
120-140 Switchover . .

Split the neutral and install a 4-pole double-throw switch as shown. This problem actually arose, and an arrangement similar to the one shown here was used in the construction of a distribution panel for a large dredge.

Voltage Quandary

Since this is a series circuit, there is only one current path. Therefore, the voltage drop across R3 plus R4 must equal the voltage drop across R2 plus R3, because R2 equals R4 and R3 is common to both combinations. So, with a 40-volt drop across R1 plus R2 and a 30-volt drop across R3 plus R4, we get a total of 70 volts.

What Am I?

120V
+ + +
240V
+ + +
120V
+ + +

A coax speaker, of course!

"Who left this 1B3 on the bench?"

Only Cleveland Institute guarantees*

A First Class FCC License

...or Your Money Back!

Your key to future success in electronics is a First-Class FCC License. It will permit you to operate and maintain transmitting equipment used in aviation, broadcasting, marine, microwave, mobile communications, or Citizens-Band. Cleveland Institute home study is the ideal way to get your FCC License. Here's why:

*Our training programs will quickly prepare you for a First-Class Commercial Radio Telephone License with a Radar Endorsement. Should you fail to pass the FCC examination after completing your course, you will get a full refund of all tuition payments. You get an FCC License... or your money back! You owe it to yourself, your family, your future to get the complete details on our "guaranteed effective" Cleveland Institute home study. Just send the coupon below TODAY. There's no obligation.

MAIL COUPON TODAY FOR FREE CATALOG

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE-73
Cleveland 14, Ohio

Please send FREE Career Information prepared to help me get ahead in Electronics, without further obligation.

CHECK AREA OF MOST INTEREST -

Electronics Technology First-Class FCC License
Industrial Electronics Electronic Communications
Broadcast Engineering

Your present occupation

Name_ (please print) Age_
Address_
City_ Zone_ State_

Accredited Member National Home Study Council

DECEMBER, 1962
New Video Tape Recorders

Unique head design makes them simpler

By JERRY L. OGDIN

For the past 9 years, recording research has been directed toward improving the original Ampex system of video recording, and developing new methods. Toshiba of Tokyo, Japan, has recently announced a video tape recorder which needs only one video head, has head rotation speeds one-fourth those encountered in conventional systems (3,600 vs 14,400 rpm), and requires no vacuum tape control system.

Basic operation is illustrated in Fig. 1. The 2-inch tape is supplied from the left. The chassis is constructed so that the supply reel is on a shelf about 4 inches above the main deck. The tape spirals down around a guide cylinder about 1 foot in diameter.

A head disk, driven at 3,600 rpm, rotates clockwise within the guide cylinder. With the tape not in motion, the horizontally spinning head disk with the head attached scribes a line which begins at the top edge and progresses toward the bottom edge of the tape. This, in addition to the linear speed of the tape, provides a recorded line about 27 inches long and at a small angle to the tape length.

A typical recording (Fig. 2) has the video tracks recorded at an angle of 4°20' to the length of the tape. Each video track in this system is one complete picture field, rather than one scanning line. When the head is located at that point on the guide cylinder at which the tape spiral begins and ends, the recording (or playback) begins at the top of the tape. After the head has rotated clockwise 90°, and the tape has advanced at a rate of 15 ips, the track being recorded has “fallen” to a position approximately one-fourth the width of the tape.

When the head returns to the original position, it begins to scribe the next video track.

Actually, the tape is slightly overlapped, the incoming tape inside, to provide absolute picture continuity. That is, the rotating head is always in contact with tape. The gap of the video head is aligned to be perpendicular with the video track, rather than the tape.

Another video tape recorder under construction permits easier tape handling and loading, but requires two heads. In this model, the tape wraps only halfway around the guide cylinder, and is formed by two guide rollers at 180° opposition on the periphery of this cylinder. The tape is half-spiraled—that is, it falls about 2 inches in traveling the 180° around the guide cylinder. The recorded video track is at twice the angle to the length of the tape as in the one-head system, and the recorded line is shorter.

Each video track is 0.48 mm wide, and the space between tracks is 0.25 mm. Audio is recorded on the top edge of the tape, and sync or cue signals on the lower edge.

The video input to the recorder is frequency-modulated before recording—to be demodulated upon playback. Video frequency response is in excess of 4 mc, and audio is recorded up to 20 kc.

An electronic tachometer measures the rotation of the head disk drive motor, and its speed is compared to the vertical sync pulse and drives the amplifier which in turn powers the motor. The capstan motor is also locked to the vertical sync pulse rate of the video input when recording. The recorded vertical pulse is amplified and compared to a standard to drive the capstan motor during playback. This makes for perfect sync during playback.

END
The new RCA MARK VIII
27-Mc 2-WAY RADIO

More Features • Improved Performance • AT A LOWER PRICE

Here is THE outstanding bargain today in a 2-way Citizens' Band radio: THE NEW RCA MARK VIII. Compact, dependable, simple to operate, it outperforms and offers more features than even the famous RCA Mark VII.

Look what this remarkable new unit offers you:

- 9 crystal-controlled transmit and receive channels
- Tunable receiver for reception of 23 C-B channels; dial marked in both channel numbers and frequency
- Exceptionally good voice reproduction—high intelligibility
- Maximum allowable transmitter input of 5 watts—nominal output of 3 watts or more
- Highly selective superheterodyne receiver with one rf and two if amplifier stages
- Operates from standard 117-volt AC; separate DC power supply (optional) for mobile installations (you don’t pay for unnecessary power supplies)
- Electronic switching—no relay noise or chatter
- Illuminated “working channel” feature
- Light and compact—only 3½ inches high, weighs only 8 pounds with mike; fits easily under the dashboard of even a compact car
- Improved Automatic Noise Limiter to reduce effects of ignition and similar interference

plus many more features to increase its usefulness and efficiency.

Here is THE outstanding bargain today in a 2-way Citizens' Band radio: THE NEW RCA MARK VIII. Compact, dependable, simple to operate, it outperforms and offers more features than even the famous RCA Mark VII.

Look what this remarkable new unit offers you:

- 9 crystal-controlled transmit and receive channels
- Tunable receiver for reception of 23 C-B channels; dial marked in both channel numbers and frequency
- Exceptionally good voice reproduction—high intelligibility
- Maximum allowable transmitter input of 5 watts—nominal output of 3 watts or more
- Highly selective superheterodyne receiver with one rf and two if amplifier stages
- Operates from standard 117-volt AC; separate DC power supply (optional) for mobile installations (you don’t pay for unnecessary power supplies)
- Electronic switching—no relay noise or chatter
- Illuminated “working channel” feature
- Light and compact—only 3½ inches high, weighs only 8 pounds with mike; fits easily under the dashboard of even a compact car
- Improved Automatic Noise Limiter to reduce effects of ignition and similar interference

plus many more features to increase its usefulness and efficiency.

The new low Mark VIII price $149.50*
puts 2-way radio convenience within reach of everyone

GET THE FULL STORY; FILL OUT AND SEND IN THE COUPON BELOW

RCA Electron Tube Division, Commercial Engineering, Dept. L-39R
415 South Fifth Street, Harrison, New Jersey

Please! Rush more information on the new RCA Mark VIII 2-way Citizens' Band Radio.

Name __
Address __
City ___________________________ Zone ______ State ________

*Maximum plate input power to final radio-frequency amplifier stages as defined by FCC regulations

**Optional list price

RCA
The Most Trusted Name in Electronics
Improved Sound from Small FM Radios

Two simple modifications smooth the set's frequency response.

AC-DC TABLE-MODEL FM RADIOS ARE NOT NOTED FOR THEIR GOOD AUDIO QUALITY, ALTHOUGH THEY ARE AN IMPROVEMENT OVER THEIR AM COUNTERPARTS.

Here's a modification that will improve response. The usual audio output stage is shown in Fig. 1-a. The .01-µF capacitor C across the primary of the output transformer is used to flatten the high-frequency response of the audio amplifier-speaker combination. It almost invariably overcompensates, causing a sharp cutoff above about 4 or 5 kc as shown in curve 1 of Fig. 1-b.

The impedance of a loudspeaker voice coil increases as frequency rises (curve 2 of Fig. 3-b). The increased voice-coil impedance is reflected to the primary of the output transformer. If the output tube has a high plate resistance (a pentode or beam power tube does), the rising impedance of the output transformer causes the gain of the stage to rise. Result—too much treble!

Enter our friend, capacitor C. A capacitor's reactance drops as frequency rises. In theory we should be able to select a capacitor which exactly compensates for the increasing voice coil impedance.

In practice a capacitor alone won't do it. What's needed is a resistor in series with the capacitor as in Fig. 3-a. The resistor establishes a minimum value for the capacitive reactance shunt across the output transformer, eliminating the sharp cutoff of curve 1.

A good starting value for the resistor is 1.3 times the recommended plate-load impedance for the output tube used. A 50C5, for example, calls for a 2,500-ohm load. The resistor needed is 2,500 x 1.3, or 3,250 ohms. Use a 3,300-ohm 0.5-watt unit. The value of C must be found by experiment. Connect an audio oscillator to the first audio tube's grid. Connect a vvm (ac setting) or a scope across the voice coil. Vary the audio oscillator from 100 to 10,000 or 12,000 cycles. Select a value for C giving the smallest change in output. The capacitor will be in the range of .003 to .025 µF, in all likelihood. A small change in the value of the resistor may be necessary to achieve flattest response.

One further change in the audio amplifier is necessary. FM stations are required to boost or pre-emphasize the higher audio frequencies. The receiver is supposed to include a simple R-C circuit which rolls off or de-emphasizes the highs in exactly the same degree to give flat response. Note that we said "supposed to." Many manufacturers of small table FM sets don't bother. They figure that the sharp high-frequency cutoff of that little capacitor C across the output transformer will take care of it! Take another look at curve 1 in Fig. 3-b. Now look at curve 3 in the same figure. It is the required de-emphasis to match the FM station's pre-emphasis. Any resemblance between curves 1 and 3 is strictly accidental! The audible result of trying to use curve 1 to compensate for curve 3 is overemphasizing frequencies between 1 and 4 kc and elimination of most frequencies above 5 kc. Result? The well known squawk-box sound!

The remedy is simple: Since we have corrected for curve 1, we now add an R-C de-emphasis circuit at the input to the first audio stage (ahead of the volume control) — if there isn't one already (Fig. 3-b). The product of the value of C (in µF) and R (in meg-ohms) should equal 68 to 75. For example: 680 or 750 µF and 0.1 meg-
ohm. This will produce a response that
matches curve 3. Some receivers have
the R-C pair, but the values usually are
wrong. (Generally they don’t de-em-
phasize enough; the product of R and C
is much less than 75.)

We’ve made these modifications in
several table model FM receivers. Al-
though the sets still lack bass response,
they sound much better after the
changes. Try it yourself! Even AM sets
are improved by the first of these modi-
fications. Of course, the R-C de-em-
phasis circuit of Fig. 2-b applies only to
FM.—MHG

New Abbreviations

Radio-Electronics is adopting the modern abbreviation “µF”
for “µµF”. (The “p” in this case is
short for pico, meaning very
small.” Both the “p” and the “µµ”
represent 10⁻¹².) This abbreviation
has been coming into more and
more common use in the past year
or two, and is especially handy for
people who do not have the char-
acter “µµ” on their typewriter key-
board.

We are also beginning to use
“Q” instead of “V” to designate
transistors. While usage has been
split on this, “Q” is now used by
the majority of American publications.

Since much material is already
set up in type, readers will probably
see both sets of abbreviations side
by side in the magazine for a few
months, but ultimately the newer
ones will prevail.

NEW! WINEGARD NUVISTOR ANTENNA AMPLIFIER

ENGINEERED FOR TROUBLE-FREE, LONG LIFE OPERATION...

NO CALL BACKS!

Install it and forget it... uses 2 Nuvistors that will last for years... completely weather-sealed, won’t corrode... responds to weakest signals but strong signals won’t overload it (takes up to 400,000 microvolts input)... not affected by heat or cold... designed for color TV... fits any antenna... fully protected from lightning flashes, precipitation static and line surges on 110 volt lines.

Uppermost in the minds of Winegard engineers in developing the new Colortron amplifier were two things—1. A new high in performance. 2. Long life and trouble-free operation. For example, a special “lifesaver” circuit gives the two nuvistors an expected life of 5 to 8 years at top performance. This is possible because of a heat sink to control operating tempera-
ture and an automatic voltage control.

Winegard’s revolutionary new circuit enables the Colortron to overcome the service problems and limitations of other antenna amplifiers. Colortron will not oscillate, overload or cross modulate be-
cause it takes up to 400,000 microvolts of signal input. This is 20 times better than any single transistor amplifier.

The Colortron amplifier will deliver clean, clear, color pictures or black and white, sharp and bright without smear. It can be used with any good TV antenna but will deliver unsurpassed reception when used with a Colortron antenna.

It has an ultra low noise circuit... high amplification... flat frequency response... accurate impedance match (VSWR 1.5 to 1 or better, input and output)... and no phase distortion. Can drive 6 sets or more easily.

Nothing on the amplifier is exposed to the elements—even the terminals are pro-

Colortrons will be heavily promoted this fall with big ads in Life, Family Weekly, Parade and other consumer publica-
tions. Order now—ask your distributor or write for technical bulletin.

You get an extra bonus of quality and performance in all Winegard products.

DECEMBER, 1962

Winegard Antenna Systems

AMPLIFIER WORKS ON ANY ANTENNA.
SPECIALS DESIGNED AMPLIFIER CLAMP SNAPS ON COLORTRON ANTENNA IN SECONDS.
UNRETUCHED PHOTO OF AMPLIFIER GAIN CURVE—FLAT RESPONSE ON ALL CHANNELS.
COLORTRON POWER UNIT WITH BUILT-IN 2 SET COUPLER.

Winegard Antenna Systems
3013-1/2 Kirkwood Boulevard
Burlington, Iowa

www.americanradiohistory.com
use your

SCOPE

Let your scope help you cut servicing time.

By JACK DARR
SERVICE EDITOR

The scope does one thing superlatively well. It tells you what ac waveforms are in a given circuit, and their frequencies. With simple extra equipment, it will also tell you the peak-to-peak voltage of these waveforms. In TV servicing, this is something we need to know. So if you've got an instrument on the bench that'll tell you these things, why aren't you using it? The expert technician uses a scope just as matter of fact as he does a voltmeter or ohmmeter. Not for very complicated tests or waveform analyses, but for quick checks and short cuts. And, he gets results a heck of a lot faster than the man who won't use the instrument!

Let's look at a few common service jobs and see how a scope can speed up servicing. How about a real good common trouble, loss of capacitance in an electrolytic? Most of the time, this is pretty obvious (Fig. 1). (Obvious, eh? Only one hum bar? This set happened to have a half-wave rectifier!) Now, how about Fig. 2? Why, everybody knows what causes that—horizontal phase-detector diodes. Yeah? Guess again. This is also caused by a weak electrolytic filter. How do I know? Because I put a scope on the horizontal oscillator B-plus feed line, and it looked like this (Fig. 3) instead of being a nice smooth line as it ought to be.

Maybe you can't get a picture at all, no matter how wiggly. What if the screen looks like Fig. 4. Oh, sure—everybody knows that one. Internal arcing in the high-voltage filter capacitor. Yeah? Look at Fig. 5. See that pattern on the scope? Same thing—open electrolytic filter capacitor.

So, there's one quick check you can make on any TV set that will show up lots of assorted troubles. Just pick up the probe, and check the B-plus circuits for hash. You'd best use some kind of low-capacitance probe for this, preferably one matched to your scope.
New Heavy Duty RFI Suppression Kit For Mobile Radio

Radio HAMS, fleet owners, and CB operators can now enjoy clearer, more readable, less tiring mobile communications at longer effective ranges.

Sprague's new Type SK-1 SUPPRESSIKIT provides effective R-F Interference suppression—at moderate cost—up through 400 megacycles. Designed for easy installation on automobile, truck, or boat engines with either 6-volt or 12-volt generators, the Suppressikit makes possible high frequency interference control by means of Sprague's new extended range, Thru-pass® capacitors.

The components in the SK-1 Suppressikit are neatly marked and packaged, complete with easy-to-follow installation instructions. All capacitors are especially designed for quick, simple installation.

The generator capacitor is a heavy-duty unit rated at 60 amperes, and will operate at temperatures to 125°C (257°F). This means you'll have no trouble with an SK-1 installation in the extreme temperatures found "under the hood" on a hot summer's day. There's no chance of generator failures from capacitor "short outs," as with general purpose capacitors. The Thru-pass capacitors for use on voltage regulators are also rated at a full 60 amperes.

The Deluxe Suppressikit is furnished complete with an 8-foot shielded lead on the generator capacitor which can be trimmed to necessary length for any car or small truck, preventing R-F radiation from armature and field leads.

Containing only 5 easy-to-install capacitors, the Deluxe Suppressikit is a well-engineered kit. The net price is a little higher than that of many throw-together kits, but it saves you so much time and aggravation it's well worth the slight extra cost.

For additional information on the Type SK-1 Suppressikit, see your Sprague Electronic Parts Distributor.

Sprague TWIST-LOK® Capacitors give you 2 tremendous advantages over all other twist-prong electrolytics

The right size, the right rating, for every replacement job

No need to compromise or improvise...the TWIST-LOK Line includes over 1690 different capacitors...It's the industry's most complete selection of twist-prong type capacitors, bar none!

Exclusive, improved cover design for greater dependability

Type TVL Twist-Lok Capacitors are now more dependable than ever! Sprague's new cover design provides a truly leak-proof seal and permits capacitors to withstand higher ripple currents.

Compare internal construction of TWIST-LOK to ordinary 'Lytic!

Complete listings are shown in handy Wall Catalog C-457. Get your copy from any Sprague Distributor, or write to Sprague Products Company, 81 Marshall St., North Adams, Mass.

Sprague®
MANUFACTURER OF CAPACITORS

WORLD'S LARGEST
MANUFACTURER OF CAPACITORS

DECEMBER, 1962
Fig. 4—Is this pattern caused by arcing in the high-voltage filter capacitor?

Fig. 5—The scope pattern reveals an improperly filtered B-plus line. That's what caused the trouble shown in Fig. 4.

Fig. 6—CRT pattern when horizontal pulses get into the B-plus lines.

Fig. 7—Scope pattern found on B-plus line feeding the horizontal oscillator. Scope is set for 7,875-cycle sweep. The spikes are horizontal sync pulses. The broadened base line is caused by 60-cycle hum.

You can check the waveforms at a 30-cycle sweep rate to find 60-cycle hum. Use 7,875-cycle sweep if you suspect horizontal pulses where they shouldn't be. Fig. 6 shows the screen appearance, and Fig. 7 the pattern found on the B-plus line feeding a horizontal oscillator. One of the electrolytics nearest the voltage-feed point for the horizontal oscillator was open.

The main point to remember in making this test is that hash, any hash at all, on your B-plus lines means trouble. Even if the set has a fair picture now, it won't be too long before you will have troubles. Make as many tests as you can on sets in good operating condition, to get used to the normal patterns and the amount of hum, etc., that can be tolerated. In the average well filtered set, something like 0.2 to 0.5 volt, peak to peak, of hum is found at the filter output capacitor. More than that, or horizontal spikes out along the major B-plus feed lines, means insufficient filtering. This is a quick test. You can pick up a probe and check out practically the whole B-plus system in about 1 minute. If you don't find any trouble, you at least know one place not to look!

Sound circuits

A scope can quickly pinpoint the cause of buzz and hum in sound circuits. Fig. 8 shows a 400-cycle signal, with a 60-cycle spike riding on it. This particular one was caused by a defective age circuit, but intercarrier buzz and other sound troubles can be spotted the same way. Intercarrier buzz, for example, instead of the sharp spike, will show a complete vertical blanking pulse, flat top and all, riding on top of your test signal, or even on the composite sound signal if it is strong enough. So you would immediately check alignment, video i.f. plate voltages, tubes, video detectors, etc. This pattern can be seen more easily if a low-capacitance probe

Fig. 8—400-cycle signal in audio circuits with 60-cycle spike riding on it.
More Uses for Versatile Tarzian Tape

Trains in the Living Room
Tape belongs at parties—to provide pre-taped entertainment, and to record activities while they happen. If you have a stereo machine, how about suddenly interrupting taped background music with the sound of a freight train that seems to be running right through the party room?

Don't forget that many people have never heard themselves talk. Let your guests take turns recording for later playback...on Tarzian Tape, of course.

Tarzian’s Free Booklet
“The Care and Feeding of Tape Recorders,” has 16 pages of additional ideas for using and maintaining your tape recorder. Get your copy from your tape dealer, or write to the address below. Meanwhile, depend on Tarzian Tape to capture every sound with professional fidelity. Available in 1½-mil and 1-mil acetate, and in 1-mil and ½-mil tensilized Mylar—on 3, 3½, 5, and 7-inch reels to meet every recording requirement. The price is competitive—the quality is unchallenged.

Read While You Drive?
Not really...sometimes it’s just impossible for you to give the children a “live” reading performance. But you can keep them happy during lengthy auto trips, or any other time when boredom sets in. Play their favorite stories, pre-recorded on Tarzian Tape at a more convenient time. When the kids begin to read for themselves—erase the stories and let them record their homework!

Double Your Pleasure
With an Extra ¼ Inch
Here’s good news for owners of battery-operated tape recorders. If you feel restricted by the standard 3-inch reel capacity, try the new Tarzian 3¼ inch reel for ½-mil “tensilized” Mylar tape. Tape footage and available recording time are doubled. You get 600 feet of Tarzian Tape and one full hour of recording at 3¼ i.p.s.—compared to 300 feet and 30 minutes with the old-fashioned 3-inch reel.

Tarzian's Free Booklet
"The Care and Feeding of Tape Recorders," has 16 pages of additional ideas for using and maintaining your tape recorder. Get your copy from your tape dealer, or write to the address below. Meanwhile, depend on Tarzian Tape to capture every sound with professional fidelity. Available in 1½-mil and 1-mil acetate, and in 1-mil and ½-mil tensilized Mylar—on 3, 3½, 5, and 7-inch reels to meet every recording requirement. The price is competitive—the quality is unchallenged.

Read While You Drive?
Not really...sometimes it's just impossible for you to give the children a “live” reading performance. But you can keep them happy during lengthy auto trips, or any other time when boredom sets in. Play their favorite stories, pre-recorded on Tarzian Tape at a more convenient time. When the kids begin to read for themselves—erase the stories and let them record their homework!

Double Your Pleasure
With an Extra ¼ Inch
Here's good news for owners of battery-operated tape recorders. If you feel restricted by the standard 3-inch reel capacity, try the new Tarzian 3¼ inch reel for ½-mil "tensilized" Mylar tape. Tape footage and available recording time are doubled. You get 600 feet of Tarzian Tape and one full hour of recording at 3¼ i.p.s.—compared to 300 feet and 30 minutes with the old-fashioned 3-inch reel.
is used, but a direct connection from your scope can be made to either grid or plate of the audio output tube without any trouble.

Video amplifier checks

No picture on the screen, and sound is OK? Put the low-capacitance probe on the input element of the CRT—grid or cathode. If you find a good-size video signal at that point (average value 50 volts peak to peak), but still no picture on the screen, you’ve probably got a defective picture tube. Same thing with a video amplifier stage. Normal readings here, about 0.3 to 0.5 volt peak to peak on the grid, and about 50 volts peak to peak on the plate. You can follow the signal through the video plate output networks with the low-capacitance probe, watching for unusual changes in amplitude.

Horizontal oscillator output tests

No light on screen, no high voltage? Hold the tip of the probe near the horizontal output tube plate lead. You should see spikes at the horizontal frequency. Check a few operating sets to get an idea of the average height. Is the horizontal oscillator operating? Pull the output tube and check at the grid connection for a horizontal drive signal, at the proper amplitude. It should be at least 80 to 100 volts peak to peak. If there’s a TV set in working order nearby, you can hold the probe near the horizontal output tube plate lead, and set your scope sweep to produce say 3 cycles on the screen. Then, check the first set again. By counting the number of cycles you see on the screen you can easily tell whether the horizontal oscillator’s right on frequency, high or low.

Vertical oscillator output stages

Brought the chassis and yoke, but left the picture tube in the cabinet? Want to know whether the vertical oscillator’s running on frequency? Set your scope sweep to line sweep, which means a 60-cycle sinusoidal sweep taken from the ac line. Now, couple the probe into the vertical circuit somehow: hold it close to the vertical yoke lead or touch the grid of the vertical output tube. If you get something that looks like Fig. 9, your vertical oscillator’s quite a ways off. Adjust the vertical hold until you can get something like Fig. 10. If we fed two identical sinusoidal signals into the vertical and horizontal inputs of a scope, we’d get a circle. Here, we have one sinusoid and one spike, so we get a circle with a notch in it. What we want is only one circle with only one notch. Then the vertical oscillator is running at exactly line frequency, 60 cycles, if the notch stands still. This, by the way, checks nothing but the frequency of the signal—the waveform can be badly distorted.

Other tests

If you have unusual symptoms, check the screen grids of the tubes in the circuit with the low-capacitance probe. Too much signal or hum voltages appearing on the screen means trouble. Usually, open screen bypasses or inadequate filtering somewhere. Check back through the B-plus network for too much hash or hum.

Peak-to-peak measurements

We’ve been measuring peak-to-peak voltages for the past few minutes, haven’t we? To measure ac voltage with a scope, just think of the screen as a voltmeter with a completely blank face. To read a given voltage, you take a reading, then feed in a controllable voltage until the needle reaches the same point. Then you read the voltage from the calibrated voltage source. Well, we do exactly the same thing with a scope. To measure peak-to-peak voltage, clip the probe to the point where you want to measure, then turn the horizontal gain of the scope down to zero, leaving only a vertical line on the scope screen. Now, adjust the vertical gain until this line is some convenient height, say four divisions on the cross-hatched screen on the scope (Fig. 11) (the "graphic" if you want to be nasty-nice about it).

Now, disconnect the probe and connect it to a source of variable 60-cycle ac, which you can read on a regular shop meter. Vary the output of this source until the vertical line is the same height as the unknown signal or hum voltage, read the value of the second voltage, and there you are.

Special scope calibrators are made. However, if you don’t have one of these handy instruments, you do have the filament circuit of your tube tester? Make up an adapter consisting of an old tube base with two leads connected to the filament pins. These may be connected to...
Portable Wireless
New Wireless Naval Wireless Station on

usually as accurate to 50 volts accuracy. For
so rms is the scope
peak to peak. Peak
rms values, and what you want
input and
peak to peak at the
across the tube
your
 calibration chart
peak to peak. Peak
for

curated to
50 volts

accurate to
within about 1%—it depends
peak to peak at
the ac voltmeter used.

So, there you are. Each of the tests
given can be made as quickly and easily
as reading the plate voltage and will
usually be a heck of a lot more informative.
So keep that scope turned on and ready.
Practice using it on a few
sets in good condition, and you'll soon
find your way around. Properly used, a
scope can be the handiest single instrument in the shop.

END

50 Years Ago
In Gernsback Publications

HUGO GERNSBACK, Founder

Modern Electrics
1900
Wireless Association of America
1906
Electrical Experimenter
1913
Science & Invention
1919
Practical Electrics
1920
Television
1921
Radio-Craft
1922
Short-Wave Craft
1929
Television News
1937

Some older libraries still have copies of Modern Electrics
on file for interested readers.

In December, 1912, Modern Electrics

Naval Wireless Station at Washington.
Static Electric Motor, by H. B. Dailey.
Wireless Amateur and the Wireless Law,
by C. A. LeQuens, Jr. (Part One)
New Wireless Clubs. (List)

Regulations of the London Wireless Conference.

Wireless Club Directory.
A Good Loose Coupler, by Howard Danner.
Portable Receiving Outfit, by Howard A. Thompson.

DECEMBER, 1962

Winegard

World's most powerful FM Antenna—positively improves FM set performance!

Responds to Weakest Signals But Strong Signals Won't Overload It
(Takes Up to 200,000 Microvolts of Signal Input)

This is the world's most powerful antenna for FM or FM stereo. With the Stereotron and Stereotron amplifier, Winegard Guarantees unexcelled performance, Guarantee you will receive 85% of all FM stations in a 200 mile radius. The Stereotron, with powerful nuvisor amplifier, has a minimum gain of 26 DB over a folded dipole, with flat frequency response of ± 4/2DB from 88 to 108 MC.

With nuvisor amplifier, Stereotron is so sensitive it will pull a 1 microvolt signal out of the noise, yet signals as strong as 200,000 microvolts will not overload the amplifier and cause it to cross modulate. This extraordinary performance is due to a unique amplifier circuit employing 2 RCA nuvisors.

Uppermost in the minds of the engineers in developing the Stereotron amplifier were two things—1. A new high in performance. 2. Long life and trouble-free operation. For example, the life of the 2 RCA nuvisors will be 5 to 8 years at top performance. This is possible because of a heat sink to control operating temperature and an automatic voltage control. A completely weather-sealed case protects all amplifier parts from rust and corrosion. The antenna is beautifully gold anodized—100% corrosion proofed. Available both for 300 ohm or 75 ohm coax.

SF-8 Stereotron FM Antenna $23.65
AP-320 Stereotron Nuvisor Amplifier $39.95—amplifier can be purchased separately to use with any FM antenna.

READ WHAT USERS SAY—
"The results have been so outstanding under less than ideal conditions, I felt you might be interested. It was truly amazing how a previously blank dial sprang to life."

C. M. S. Elmira, New York

"I now get as strong a signal from out-of-town stations as I get from 'locals'. I told a radio and TV man in Hollister about my reception and invited him over to hear it."

M. J. D. Hollister, Mo.

Write for information or ask your dealer for spec sheets on Stereotron and other Winegard FM and TV antennas and accessories. Get Free Station Log and FM map of U. S.

Winegard

3013-12F Kirkwood Boulevard • Burlington, Iowa

www.americanradiohistory.com
RCA Training
Can Be The Smartest Investment You Ever Made!

If you're considering a future in electronics, investigate the courses offered by RCA Institutes Home Study School. In the rapidly expanding world of electronics, good basic training in Electronic Theory and Practice is most important. And you can be sure of the very finest when you enroll at RCA Institutes.

Founded in 1909, RCA Institutes is one of the largest technical schools in the United States devoted exclusively to electronics. The very name "RCA" means dependability, integrity and scientific advance.

The courses offered by RCA Institutes are many and varied. A complete program of integrated courses for beginners and advanced students is available. They include: Electronic Fundamentals, Transistors, Television Servicing, Color Television, Electronics for Automation. Each one is especially tailored to your needs, designed to prepare you for a profitable future in the ever-expanding world of electronics. And once you become an RCA Institutes graduate, you are assured of top recognition by leading companies everywhere.

Investigate the superb facilities for technical instruction at the RCA Institutes today. It can be the smartest move you ever made.
HOME STUDY COURSES

in Electronic Fundamentals • TV Servicing • Color TV Communications Electronics • Automation Electronics Computer Programming • Transistors • Electronic Drafting

Voluntary Tuition Plan. All RCA Institutes Home Study courses are available under the Voluntary Tuition Plan. This plan affords you the most economical possible method of home study training. You pay for lessons only as you order them. If, for any reason, you should wish to interrupt your training, you can do so and you will not owe a cent until you resume the course. No other obligations! No installment payments required.

RCA Personal Instruction. With RCA Home Study training you set your own pace in keeping with your own ability, finances, and time. RCA Institutes allows you ample time to complete the course. Your lesson assignments are individually graded by technically trained personnel, and helpful comments are added where required. You get theory, experiment, and service practice beginning with the very first lesson. All lessons are profusely illustrated. You get a complete training package throughout the entire course.

You Get Prime Quality Equipment. All kits furnished with the course are complete in every respect, and the equipment is top grade. You keep all the equipment furnished to you for actual use on the job ... and you never have to take apart one piece to build another.

RESIDENT SCHOOLS in Los Angeles and New York City—
You can study electronics in the city of your choice.

No Previous Technical Training Required For Admission. You Are Eligible Even If You Haven't Completed High School. RCA Institutes Resident Schools in Los Angeles and New York City offer training that will prepare you to work in rewarding positions on research and production projects in fields such as automation, transistors, communications, technical writing, television, computers, and other industrial and advanced electronics applications. If you did not complete high school, RCA will prepare you for such training with courses specially designed to provide the basic math and physics required for a career in electronics.

Free Placement Service. RCA Institutes graduates are now employed in important jobs at military installations with important companies such as IBM, Bell Telephone Labs, General Electric, RCA, and in radio and TV stations all over the country. Many other graduates have opened their own businesses. A recent New York Resident School class had 93% of the graduates who used the FREE Placement Service accepted by important electronics companies ... and had their jobs waiting for them on the day they graduated!

Coeducational Day and Evening Courses. Day and Evening Courses are available at Resident Schools in New York City and Los Angeles. You can prepare for a career in electronics while continuing your normal full-time or part-time employment. Regular classes start four times each year.

SEND POSTCARD FOR FREE ILLUSTRATED BOOK TODAY!
SPECIFY HOME STUDY OR NEW YORK OR LOS ANGELES RESIDENT SCHOOL

RCA INSTITUTES, INC., DEPT. RE-D2 A SERVICE OF RADIO CORPORATION OF AMERICA, 350 WEST 4TH ST., NEW YORK 14, N. Y.
PACIFIC ELECTRIC BLDG., 610 S. MAIN ST., LOS ANGELES 14, CALIF.

The Most Trusted Name in Electronics

DECEMBER, 1962

3 NEW LOCATIONS
In addition to RCA Institutes Inc. courses, Radio Corporation of America offers a limited selection of basic Resident School Courses in Electronics at three new locations...Chicago, Philadelphia, and Cherry Hill, N. J., (near Camden). For complete information, write the city of your preference next to your name on the attached postcard.

www.americanradiohistory.com
YOU can learn Electronics

I'm 54 and I've just finished my first profitable three weeks in school

By A. L. ARMSTRONG

After spending many years in business I had to quit for reasons of health, and was advised to enter a field completely foreign to what I'd been doing. After carefully considering many possibilities I decided on electronics.

Why electronics? Well, I'd always been a bit envious of the fellows who understood electricity, radio and so forth. It seemed to me that these people were making the modern world go around while we business people were just tagging along, never really understanding what made things tick. Also, I wanted to get into technical writing and, in spite of what one technical writing school said, I was convinced that one who proposed to write on a technical subject must be well grounded in it first.

Before entering school, I'd read just one book on the subject: Introduction to Electronics, by Robert J. Hughes and Peter Pipe. To some of you old-timers it would probably be kid stuff, but I found it fascinating.

So I entered school and began taking the resident course. After three weeks, where do I stand? No, I can't even go into a fairly simple radio and follow the circuit with any accuracy. If the set were haywire, I'd have a heck of a time figuring out what was wrong. Remember, I started with almost no knowledge at all of the subject and the best of schools can't perform miracles.

So what have I learned? Plenty!

I understand basic electrical circuits and I know the difference between them—series, parallel, series-parallel. What's more I know how to calculate voltage, current and resistance in these circuits. I'd been a bit doubtful about my ability to cope with the math. But, so far at least, I've had no trouble at all and I'm sure no Einstein. The class has Ohm's law backed into a corner and, if the instructor were to ask me to give the formula for finding power when only current and resistance were known, I'd have to struggle for only half a minute before coming up with the right answer.

Offhand, can you give it?

A month ago, if I'd run onto the abbreviation vtm, I might have thought they were the initials of the Russian secret police. Now I know what they mean. More important, I've learned how to use the instrument itself. Not only that, I know how the thing works and how it is put together.

The same goes for the multimeter.

One of the mysteries of my former life whenever I happened to notice them were the colored bands and dots on so many of the components in a radio. I thought they were for decoration. Now I know what they represent and can figure the values they indicate.

On the very first day we were given a small square card with a mess of wires, resistors and capacitors in it. We
were told that it was a two-tube amplifier, and were asked to measure the resistance of all the component parts. Willy-nilly, we were forced to learn something about tubes almost immediately and the term space charge no longer evokes an image of a futuristic military operation.

You might think that with all the foregoing, and much more besides, we students have no time left for anything else. Well, you’re wrong! In addition to learning the fundamentals of electronics physics, we are being taught how to read a slide rule and to do necessary electrical figuring. Those megas and micros and millis with their zeros strung out like beads still throw us at times, but we’re learning how to tame them with powers of 10 so that even I can keep up.

We’ve learned that Greek letters are used for purposes other than naming college fraternities. We haven’t worked with all of them but we know that mu is overworked, and what omega and pi and lambda mean. We know something about farads and ohms, maxwells, giberts, henries and gausses. Direct current has been kicked around so much it no longer bothers us and some of the mysteries of magnetism have been revealed.

We have already been introduced to the behavior of ac. This is to be followed by our initiation into the mysteries of inductance, capacitance, resonance and heaven only knows how many other ‘ances. (We already know the words, even though the veil has not been lifted.)

As we freshmen pass through the school corridors we see in the advanced classes shelves sagging under the weight of expensive electronic equipment, and we look forward to the time when we too shall be able to use such fine instruments. We notice the students listening earnestly to the instructor’s lecture. Incidentally, an Oscar for patience should be awarded to our instructor. He doesn’t seem to mind going over a point half a dozen times if necessary to make it clear to the entire class.

I’d thought that at my age I would be the old man of the class, but I found several men my age and one much older when school started. I figure if a man wants to learn something his age has nothing to do with it; so, if you want to learn electronics and have a touch of silver in your hair, don’t let it bother you. In class, you will just be one of the boys.

I know that so far we’ve made only a ripple on the broad sea of electronics, but I’m certain that if we continue to learn as we have these past three weeks, the end of the term will find all of us highly qualified electronic technicians. In my case, at least I’ll know what I’m writing about.

END

Tarzan offers

FAST, DEPENDABLE TUNER REPAIR SERVICE

ALL MAKES

ONLY

$8.50

INCLUDING

ALL PARTS

(EXCEPT TUBES)

and LABOR

24-HOUR SERVICE

1-YEAR WARRANTY

Tuners Repaired on
Approved, Open Accounts

DON'T REPLACE CRYSTALLIZED RUBBER PHONOGRAPH DRIVE WHEELS UNNECESSARILY

brush on NEW FONO-MAGIC*

eliminate slipping...dragging

SAVES DRIVE WHEEL INVENTORY COSTS TOO!

*FONO-MAGIC is a NEW compound of special rubber and carbide particles. When FONO-MAGIC is brushed on metal drive surfaces, it forms a coat of live, pliable non-slipping rubber. 0.00065 inches thick. Carbide particles imbedded in the rubber coating will scratch slipping rubber idler wheels, exposing live rubber and prolonging the life of the idler wheel. Just one bottle of FONO-MAGIC is equivalent to the replacement of 100 drive wheels. Only $1.95 dealer net.

www.americanradiohistory.com
CITIZEN BAND STANDARDS BY SONAR

When performance is critical and reliability a necessity, SONAR standards of SONAR must be absolutely met. Let us always be above and beyond what is expected. Write for full particulars.

MODEL E FCC type accepted • 8 channels, crystal-controlled transmitter/ receiver • Tunable receiver for 23 channels • Powerful transmitter 100% Class B modulated • Automatic noise limiter • Lightweight, compact. $179.50

MODEL G Dual conversion • RF output meter • Signal strength meter • Crystalline spotting switch • Illuminated panel • 8 channels crystal-controlled • Receiver tunes 23 channels • Class "B" modulation • Featuring the NEW Sonar noise silencer. $229.50

SONAR RADIO CORPORATION, 73 Wortman Ave., Brooklyn 7, N.Y.

Please send me complete information on: Model E □ Model G

NAME .. ADDRESS ..

CITY .. STATE ..

TELL YOUR FRIENDS ABOUT Radio-Electronics

GUIDE TO SEMICONDUCTOR TERMS

By Sylvania Semiconductor Div.

Absolute Maximum Ratings—Ratings which if exceeded will damage the semiconductor device.

Alloyed Junction—A p-n junction in which a material such as indium (p-type dopant) is placed in contact with n-type germanium and heated. The indium melts and dissolves some of the germanium. Upon cooling, the germanium recrystallizes with some of the indium and is therefore p-type.

Alpha—Current gain of a transistor connected as a common-base amplifier.

Alpha Cutoff Frequency—The frequency at which the current gain of a common-base transistor stage has decreased 30% from its low-frequency value. It gives a rough indication of the useful frequency range of the device.

Barrier—In a semiconductor, the electric field between the acceptor ions and donor ions at a junction.

Barrier Region—See Depletion Region.

Base (Junction Transistor)—The center semiconductor region of a double-junction (n-p-n or p-n-p) transistor. The base is comparable to the grid of an electron tube.

Beta (Gain)—This is also known as the current transfer ratio in the common-emitter circuit arrangement. This is the ratio of collector alternating current to base current. In switching applications it is the ratio of direct currents.

Biasing—Application of proper dc voltage to various elements of a transistor to set up the proper operating conditions. At the transistor input, the proper biasing voltage must be established between the base and emitter elements. In the transistor output, the biasing voltage must be applied to the collector.

Breakdown Voltage—The reverse voltage which applied to a junction, is large enough to cause significantly increased leakage to flow. Below breakdown voltage a reverse-biased junction conducts very little current.

Collector—The end semiconductor material of a double-junction transistor that is normally reverse-biased with respect to the base. The collector is comparable to the plate of an electron tube.

Collector Cutoff Current—Leakage current from collector to base when no emitter current is being applied. This leakage current varies with temperature changes and must be taken into account whenever any semiconductor device is designed into equipment.
Collector Capacitance—The capacitance appearing in the device between collector and base. It is determined by the area and type of collector junction.

Conductors—Metals whose atoms are bound together so that one or more of the outer electrons is free to move easily through the solid. This enables the solid to be a good conductor of electricity.

Current Transfer Ratio—The ratio of output current to input current. The most common current-transfer ratio is known as beta (gain) and is the ratio of the collector alternating current to the base current when the transistor is connected in a common-emitter amplifier circuit.

Another current transfer ratio involves static or dc values. In the common-emitter switch, the ratio of the collector dc to the base dc is termed dc gain. This is referred to as switching transistor beta.

Diffused Region—The region in a semiconductor containing the acceptor and donor ions whose excess holes or electrons have been removed. This also is referred to as the space-charge or barrier region.

Diode—A type of "valve" permitting current to flow easily in one direction and offering considerable resistance to current flow in the opposite direction. It is a two-terminal device.

Emitter (Junction Transistor)—The end semiconductor material of a double-junction transistor that is forward-biased with respect to the base. The emitter is comparable to the cathode of an electron tube.

Epitaxial Growing—The process of producing an additional single crystal layer of semiconductor material on a semiconductor substrate surface. The crystalline structure is continued from the substrate into the layer. The impurity concentration in the substrate and in the layer can be made to differ greatly.

Epitaxial Device Structure—A semiconductor device made with an epitaxial layer in the semiconductor body to obtain much improved characteristics not possible without the layer.

Forward Bias—In a transistor, an external potential applied to a p-n junction so that the depletion region is narrowed and relatively high current flows across the junction.

Forward Current—The current which flows across a p-n junction when a forward bias voltage is applied.

Insulators—Nonconducting solids whose atoms are bound tightly with bonds involving all of the outer shell electrons and, consequently, leaving very few electrons available for electrical conductivity.

Intrinsic Semiconductor—A semiconductor in which some hole and electron pairs are created by thermal energy at room temperature, even without impurities present in the semiconductor.

 Junction—The boundary between a p-section and an n-section in contact with each other.

 Junction Diode—Consists of a junction between two dissimilar sections of semiconductor material. One section is called a p-type semiconductor and the other an n-type. External connections consist of a lead to the p-type semiconductor and a lead to the n-type semiconductor.

Junction Transistor—A device having three alternate sections of p-type or n-type semiconductor material. See also P-n-p Transistor and N-p-n Transistor.

Majority Carriers—The holes in a p-type semiconductor or free electrons in an n-type semiconductor.

Mesa Transistor (Diode)—A diffused-base transistor (diode) that receives its name from its resemblance to the geological formation known as a mesa. During production, any etching process leaves little mounds on the structure.

Minority Carriers—The holes in an n-type semiconductor or excess electrons found in p-type semiconductors.

Mobility—Ease of movement of carriers through the semiconductor when they are subjected to electric forces. In general, electrons and holes have higher mobilities in germanium than in silicon.

TO BE CONTINUED

TV-RADIO Servicemen or Beginners...

Send for Coyne's 7-Volume Job-Training Set on 7-Day FREE TRIAL!

Answers ALL Servicing Problems QUICKLY...

Makes You Worth More On The Job!

Put money-making, time-saving TV-RADIO-ELECTRONICS know-how at your fingertips—examine Coyne's all-new 7-Volume TV-RADIO-ELECTRONICS Reference Set for 7 days at our expense! Shows you the way to easier TV-Radio repair—time-saving, practical working knowledge that helps you get the BIG money! How to install, service and align ALL radio and TV sets, even color-TV, UHF, FM and transistorized equipment. New photo-instruction shows you how to make equipment "pick". No complicated math or theory—just practical facts you can put to use immediately right in the shop, or for ready reference at home. Over 3000 pages; 1200 diagrams; 10,000 facts!

SEND NO MONEY! Just mail coupon for 7-Volume TV-Radio Set on FREE TRIAL! We'll include the FREE BOOK below. If you keep the set, pay us the 7 days and $25.25 postage when the bill arrives. Cash price only $24.95. Or return set at our expense in 7 days and owe nothing. Either way, the FREE BOOK is yours to keep! Offer limited, so act NOW!

FREE DIAGRAM BOOK!

We'll send you this big book—"339 Hints—Television Picture Patterns and Diagrams Explained" ABSOLUTELY FREE just for examining Coyne's 7-Volume Shop Library on 7-Day FREE TRIAL! Helps how to cut servicing time by reading picture-pattern plus schematic dia-

Coyne ELECTRICAL SCHOOL

D E C E M B E R , 1 9 6 2

The First Practical TV-RADIO-ELECTRONICS Shop Library!
LAFAYETTE RADIO ELECTRONICS
1963 CATALOG NO. 630

388 GIANT SIZE pages

The Largest Catalog in Our 42-Year History

It's New — It's Big — It's Better Than Ever

It's From the "World's Hi-Fi & Electronics Shopping Center"

Here it is — the exciting, all-new 1963 Lafayette Catalog. 388 giant-sized pages with thousands of different items for the audiophile, experimenter, technician, hobbyist, engineer, student, serviceman... fully illustrated... hundreds of manufacturers. It's the "World's Hi-Fi and Electronics Shopping Center" at your fingertips.

MAIL THIS COUPON TODAY FOR YOUR FREE LAFAYETTE 1963 CATALOG GET ONE FOR A FRIEND TOO!

LAFAYETTE RADIO ELECTRONICS
Dept. JL-2, P.O. Box 10, Syosset, L.I., N.Y.

☐ Rush my FREE 388-page giant-size Lafayette Catalog.
☐ Send me #__________, shipping charges collect.

I am enclosing ____________________________

Name

Address

City Zone State

Friend's Name

Address

City Zone State

www.americanradiohistory.com
High-voltage substitution speeds TV servicing (Provis)

How to hold broadcast (Provist)

Ice-alarm, Early-warning

Ignition, automotive (Indoors)

Improving commercial 2-transistor receiver

Intermittent condensers (Collings)

Jaws, are you equipped for industrial (Jaski)

K

Kirchoff's laws, solve problems with (Collins)

Kits, build or start from scratch (Fred)

L

Language training, adapting recorder for (Warden)

Laser(s)

Coherent light receiver demodulates output (NB)

Color meters (Bianco)

Doppler radar (WN)

Doppler weather (WN)

Eye surgery (NB)

Finger clipping (WN)

5-watt (Collins)

3-megawatt (NB)

Water (NB)

Light dimmers, semiconductor, for home (Scott)

M

Magnetic tape finder gets dead spots (Wrenn)

Make complex problems simple (Collins)

Marine boat electronics (Roberson)

Marine safety, CB for (Barry)

Master(s)

Galium arsenide diode may do its work (Collins)

Gas, new, emits light (NB)

Light (Pat)

Ruby, works continuously (NB)

New two (NB)

Medicine

Brainwaves sent out by radio transmitter (Kelly)

Computer aids in cancer treatment (NB)

Gasper counter, needed (Pat)

Tattoo, hearing-aid (WN)

Laser-used surgery (NB)

Microscopy, ultraviolet, and closed-circuit TV (Kemp)

Moods radio-controlled (NB)

Parametron, smallest (NB)

People their own power supplies (NB)

Radio pill (Pat)

Snipper-escape diagnosis (NB)

Tissue simulator (WN)

Touch compensation (Pat)

TV, closed-circuit, and ultraviolet (Collins)

Metal locator (NB)

Simplified metric prefixes, handling (Turner)

Micrometer, electron, Stone*

Microphone — See Audio

Microscopy, ultraviolet, and closed-circuit TV (Kemp)

Multiplex—See FM

N

Nature's sounds on tape, capture (Kellogg)

Navigation, electronic, in flight (Dorona)

Navy, electronic equipments in (Bladell)

New life for console radios (Bladell)

Nine steps to soundproofing (Collins)

Noisemaker for HE-20A (Purdy)*

Nuvists cut noise in electron tubes (Large)*

P

Patent problem, proposed solution (Pat)

Phase checker speeds hi-fi installation (Lawnrence)

Photographic toy is true semicrystalline (Schreiber)

Pinpoint defective color section fast (Andersen)

Power supply, regulated, low voltage (Daisey*)

Power measurements with scope (Middleton)

Public address

Adverse conditions, under (Ruvi)

First system found (NB)

Sneakers—why so many types? (Brockner)

Volume control, remote (NC)

Put more on your tape (Makasky)

 Quartz pickups measure pressure (Kerrison)

Quick fix (Fahenburg)

Q

Radar

Antenna lens (WN)

Ball tracker (WN)

Bird speeds checked (NB)

CIR has rear windows (WN)

Dipole antenna array of 1,224 dipoles (WN)

Doppler, laser for (WN)

Doppler navigators (WN)

500-foot range (NB)

Highway (Dudley)

Gibson Girl (Pat) (Collins)

Motor (NB)

Warning units to be outlawed? (NB)

jamming, how good? (McQuay)

Laser for WN

Moon landings assured by new technique (Collins)

Space radar system (WN)

R

RATAN, Hubbell tv (NB)

IGL package

Radiator

Cranial microscope (WN)

Electro-ball danger (NB)

High-intensity, measured (WN)

Measure atomic

Part I—Deviating-measuring devices

Part II—ion-chamber meters; G-M

Meter measures minute currents (Collins)

R

Radio

Amateur(s)

Child operators (NB)

Key, electronic Stone*

Oscillator

Satellite (NB)

Antennas—Antennas

Audio, simple but good (Martin)

Variable-time constant

Broadcast

First station that was

Half-million watt ERP for WJEF-FM (NB)

How to hold up (Provost)

Gates band

Antenna (Lynn)

Gates, groundplane (Hicks)

Bandwrench (NB)

Horns installed in cars (WN)

Kitchen below (WN)

Marine safety (BN)

Midwest channel R/C receiver (Safford)*

Transmitter, versatile (Safford)*

Narrow-band, two-way (Russell)

Channel to listeners to (WN)

Nuvistor (Eisner)

Remote control—See Radio, model control

Transmitter (B & L 960) (WN)

Pocket-Fax* (Pearl), (Corces)

Powerful station (WN)

Improving 2-transmitter (McCreedy)

One-transmitter (NC)

Replacing batteries in Japanese (Ray)

Transfers? end of i, transformers (PN)

Transmitter (Pat)

Tunetalk, with a twist (Marshall)

Tunnel diodes, 7 circuits (Sinclair)

 Morse code (NB)

WWVH schedule (NB)

Radio-Electronics project wins at Science

RATAN, Hubbell tv (NB)

Radio

Installing, testing and maintaining (Jacoby)

Motor-control (Barley)

Phonograph automation (NC)

RF, amplified (NC)

Stand-alone (NC)

Reverberation—See Audio

Resistor(s)

Automation makes golden (Leslie)

Substitution box for power (Davison)*

Satellites—See also Space

Brazil-US$ project (NB)

Hams have (NB)

Hams club (NB)

Japanese to report 1964 Olympics (NB)

Lighthouses in sky (NB)

Marine radio

Sunlight guide (WN)

Television

Broadcasts, regular, not practical (NB)

First transmitted picture (NB)

Closed-circuit (NB)

Selective calling for CB (Salvato)*

Semiconductors—See also Tunnel Diodes, etc.

Cooling and heating, electronic (Ort)

www.americanradiohistory.com
SEASONS GREETINGS FROM

RAD-TEL
RAD-TEL'S QUALITY
BRAND NEW TUBES
FOR TV-RADIO AND HI-FI
1-YEAR GUARANTEE
75% OFF
1-DAY SERVICE - Over 500 Types in Stock

FREE! Send For New Tube & Parts Catalog
Send For Trouble Shooting Guide
Be your own TELEVISION REPAIRMAN
The Original NOW YOU CAN
FIX YOUR OWN TV SET BOOK
You can fix your own TV if you have TV Fix! Book ... because 80% of troubles are caused by tubes. This book explains, illustrates trouble and what tubes cause this trouble. Price points in over 3000 layouts by model number, position and type tube causing trouble.

$1.00

CHEATER CORD

RAD-TEL TUBE CO. TV, RADIO AND HI-FI
DEPT. RE-12 55 CHAMBERS STREET, NEWARK 5, NEW JERSEY

TERM: 25% deposit must accompany all orders; balance C.O.D. Orders under $5 add $1 handling charge plus postage. Orders over $5 plus postage. Approx. 8 tubes per 1 lb. Subject to prior sale. No C.O.D.'s outside continental U.S.A.

DECEMBER, 1962

EACH TUBE ATTRACTIVELY BOXED & BRANDED RAD-TEL

<table>
<thead>
<tr>
<th>Qty. Type</th>
<th>Price</th>
<th>Qty. Type</th>
<th>Price</th>
<th>Qty. Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>79</td>
<td>6AK8</td>
<td>.57</td>
<td>6ES8</td>
<td>.94</td>
</tr>
<tr>
<td>1A2X</td>
<td>62</td>
<td>6AV6</td>
<td>.41</td>
<td>1C3</td>
<td>.79</td>
</tr>
<tr>
<td>1B3</td>
<td>79</td>
<td>6AW8</td>
<td>.99</td>
<td>6B6</td>
<td>.95</td>
</tr>
<tr>
<td>1E5</td>
<td>55</td>
<td>6AX4</td>
<td>.86</td>
<td>1F5</td>
<td>.79</td>
</tr>
<tr>
<td>1G</td>
<td>79</td>
<td>6AX5</td>
<td>.74</td>
<td>6B74</td>
<td>.88</td>
</tr>
<tr>
<td>1J3</td>
<td>79</td>
<td>6BA6</td>
<td>.50</td>
<td>6BM16</td>
<td>.84</td>
</tr>
<tr>
<td>1K3</td>
<td>77</td>
<td>6BC5</td>
<td>.61</td>
<td>6B84</td>
<td>.94</td>
</tr>
<tr>
<td>1L5</td>
<td>75</td>
<td>6BE6</td>
<td>.55</td>
<td>6BN16</td>
<td>.75</td>
</tr>
<tr>
<td>1T4</td>
<td>72</td>
<td>6BF9</td>
<td>.90</td>
<td>6BV4</td>
<td>.99</td>
</tr>
<tr>
<td>1U5</td>
<td>65</td>
<td>6BF6</td>
<td>.44</td>
<td>6BY6</td>
<td>.75</td>
</tr>
<tr>
<td>1X2B</td>
<td>82</td>
<td>6BG6</td>
<td>1.70</td>
<td>6BU8</td>
<td>.83</td>
</tr>
<tr>
<td>1AF</td>
<td>56</td>
<td>6BH8</td>
<td>.98</td>
<td>6BVGT</td>
<td>.54</td>
</tr>
<tr>
<td>3A5</td>
<td>46</td>
<td>6BJ6</td>
<td>.65</td>
<td>6BV8</td>
<td>.61</td>
</tr>
<tr>
<td>3A6</td>
<td>54</td>
<td>6BJ7</td>
<td>.79</td>
<td>6BW1</td>
<td>.71</td>
</tr>
<tr>
<td>3AV</td>
<td>42</td>
<td>6BK7</td>
<td>.85</td>
<td>6BX4</td>
<td>.41</td>
</tr>
<tr>
<td>3BC5</td>
<td>63</td>
<td>6BN8</td>
<td>.90</td>
<td>6BX16</td>
<td>.60</td>
</tr>
<tr>
<td>3BN6</td>
<td>75</td>
<td>6BN6</td>
<td>.74</td>
<td>7AG8</td>
<td>.68</td>
</tr>
<tr>
<td>3T6</td>
<td>79</td>
<td>6BG8</td>
<td>1.12</td>
<td>7AU7</td>
<td>.65</td>
</tr>
<tr>
<td>3X6</td>
<td>58</td>
<td>6BG7</td>
<td>1.40</td>
<td>7AC7</td>
<td>.68</td>
</tr>
<tr>
<td>3Y6</td>
<td>56</td>
<td>6BU5</td>
<td>.70</td>
<td>7AY4</td>
<td>.69</td>
</tr>
<tr>
<td>3G6</td>
<td>56</td>
<td>6BX7</td>
<td>1.11</td>
<td>8AU8</td>
<td>.90</td>
</tr>
<tr>
<td>4C5</td>
<td>58</td>
<td>6ZG6</td>
<td>.55</td>
<td>8AW8</td>
<td>.93</td>
</tr>
<tr>
<td>4C6</td>
<td>85</td>
<td>6BZ7</td>
<td>1.03</td>
<td>8BQ5</td>
<td>.94</td>
</tr>
<tr>
<td>4D6</td>
<td>60</td>
<td>6C4</td>
<td>.45</td>
<td>8CA7</td>
<td>.63</td>
</tr>
<tr>
<td>4D7</td>
<td>54</td>
<td>6CB6</td>
<td>.55</td>
<td>8CM7</td>
<td>.70</td>
</tr>
<tr>
<td>4F5</td>
<td>99</td>
<td>6C5</td>
<td>1.57</td>
<td>8CN7</td>
<td>.97</td>
</tr>
<tr>
<td>4G4</td>
<td>63</td>
<td>6CG7</td>
<td>.61</td>
<td>8CS7</td>
<td>.74</td>
</tr>
<tr>
<td>4S4</td>
<td>75</td>
<td>6CG8</td>
<td>.80</td>
<td>8EB8</td>
<td>.94</td>
</tr>
<tr>
<td>4S4</td>
<td>63</td>
<td>6CL8</td>
<td>.79</td>
<td>8FG16</td>
<td>.56</td>
</tr>
<tr>
<td>4T7</td>
<td>1.01</td>
<td>6CM7</td>
<td>.69</td>
<td>9CL8</td>
<td>.79</td>
</tr>
<tr>
<td>4C5L</td>
<td>61</td>
<td>6CN7</td>
<td>.70</td>
<td>11CY7</td>
<td>.75</td>
</tr>
<tr>
<td>4U4</td>
<td>55</td>
<td>6CG8</td>
<td>.92</td>
<td>12CA6</td>
<td>.60</td>
</tr>
<tr>
<td>4V6</td>
<td>60</td>
<td>6CR6</td>
<td>.60</td>
<td>12CA5</td>
<td>.60</td>
</tr>
<tr>
<td>4W8</td>
<td>79</td>
<td>6CS6</td>
<td>.57</td>
<td>12CA6</td>
<td>.57</td>
</tr>
<tr>
<td>5AN8</td>
<td>90</td>
<td>6CS7</td>
<td>1.50</td>
<td>12CA4</td>
<td>.47</td>
</tr>
</tbody>
</table>

RAD-TEL TUBE CO. NOT AFFILIATED WITH ANY OTHER MAIL ORDER TUBE COMPANY

<table>
<thead>
<tr>
<th>Qty. Type</th>
<th>Price</th>
<th>Qty. Type</th>
<th>Price</th>
<th>Qty. Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5A5</td>
<td>.54</td>
<td>6C5</td>
<td>.58</td>
<td>12E6E</td>
<td>.50</td>
</tr>
<tr>
<td>5AT6</td>
<td>.83</td>
<td>6C6</td>
<td>1.04</td>
<td>12G7</td>
<td>.66</td>
</tr>
<tr>
<td>5B97</td>
<td>.86</td>
<td>6C5</td>
<td>.70</td>
<td>12TA3</td>
<td>.73</td>
</tr>
<tr>
<td>5BG7</td>
<td>1.01</td>
<td>6CY7</td>
<td>.71</td>
<td>12TA6</td>
<td>.67</td>
</tr>
<tr>
<td>5C5</td>
<td>.83</td>
<td>6D4</td>
<td>.90</td>
<td>12TA5</td>
<td>.67</td>
</tr>
<tr>
<td>5CG8</td>
<td>.81</td>
<td>6DE6</td>
<td>.61</td>
<td>12TA5</td>
<td>.47</td>
</tr>
<tr>
<td>5CL8</td>
<td>.76</td>
<td>6DG6</td>
<td>.62</td>
<td>12TA8</td>
<td>.95</td>
</tr>
<tr>
<td>5CG11</td>
<td>.84</td>
<td>6DM16</td>
<td>1.21</td>
<td>12TB5</td>
<td>.89</td>
</tr>
<tr>
<td>5E8A</td>
<td>.80</td>
<td>6DK5</td>
<td>.59</td>
<td>12TA6</td>
<td>.50</td>
</tr>
<tr>
<td>5E8U</td>
<td>.80</td>
<td>6DN6</td>
<td>1.55</td>
<td>12TA7</td>
<td>.76</td>
</tr>
<tr>
<td>5F6</td>
<td>.72</td>
<td>6DO6</td>
<td>1.10</td>
<td>12TC15</td>
<td>.51</td>
</tr>
<tr>
<td>5T8</td>
<td>.86</td>
<td>6DT5</td>
<td>.81</td>
<td>12UA7</td>
<td>.61</td>
</tr>
<tr>
<td>5U4</td>
<td>.60</td>
<td>6DT6</td>
<td>.53</td>
<td>12VA6</td>
<td>.41</td>
</tr>
<tr>
<td>5V4</td>
<td>.84</td>
<td>6DT8</td>
<td>.94</td>
<td>12VA7</td>
<td>.82</td>
</tr>
<tr>
<td>5V6</td>
<td>.56</td>
<td>6DE8</td>
<td>.79</td>
<td>12X4X</td>
<td>.67</td>
</tr>
<tr>
<td>5X8</td>
<td>.62</td>
<td>6EB5</td>
<td>.73</td>
<td>12X7X</td>
<td>.63</td>
</tr>
<tr>
<td>5Y3</td>
<td>.46</td>
<td>6EB8</td>
<td>.94</td>
<td>12Y7</td>
<td>1.44</td>
</tr>
<tr>
<td>6AR4</td>
<td>.46</td>
<td>6EMS</td>
<td>.77</td>
<td>12X7</td>
<td>.96</td>
</tr>
<tr>
<td>6AC7</td>
<td>.96</td>
<td>6EM6</td>
<td>.82</td>
<td>12B4</td>
<td>.68</td>
</tr>
<tr>
<td>6AF4</td>
<td>1.01</td>
<td>6EU8</td>
<td>.79</td>
<td>12B6G</td>
<td>.50</td>
</tr>
<tr>
<td>6AG5</td>
<td>.70</td>
<td>6EV5</td>
<td>.75</td>
<td>12B8G</td>
<td>.93</td>
</tr>
<tr>
<td>6AH4</td>
<td>.81</td>
<td>6EW6</td>
<td>.57</td>
<td>12BF6</td>
<td>.60</td>
</tr>
<tr>
<td>6AH6</td>
<td>1.10</td>
<td>6EY6</td>
<td>.75</td>
<td>12BH7</td>
<td>.77</td>
</tr>
<tr>
<td>6AL5</td>
<td>.95</td>
<td>6F78</td>
<td>.68</td>
<td>12BF16</td>
<td>1.300</td>
</tr>
<tr>
<td>6AM8</td>
<td>.76</td>
<td>6GB8</td>
<td>.80</td>
<td>12BG6</td>
<td>1.16</td>
</tr>
<tr>
<td>6AZ6</td>
<td>.53</td>
<td>6GK5</td>
<td>.61</td>
<td>12B77</td>
<td>.74</td>
</tr>
<tr>
<td>6AS6</td>
<td>.50</td>
<td>6GK6</td>
<td>.79</td>
<td>12BV7</td>
<td>.76</td>
</tr>
<tr>
<td>6AS8</td>
<td>.49</td>
<td>6GN8</td>
<td>.84</td>
<td>12B87</td>
<td>.77</td>
</tr>
<tr>
<td>6AU4</td>
<td>.50</td>
<td>6GQ8</td>
<td>.68</td>
<td>12B9L</td>
<td>.77</td>
</tr>
<tr>
<td>6AV5</td>
<td>.52</td>
<td>6GJ6</td>
<td>.71</td>
<td>12C6</td>
<td>.67</td>
</tr>
</tbody>
</table>

SEND: __Book(s) Be Your Own TV Repairman & $1.00 ea. #170
Order under $5.00 + $1 handling charge plus postage. Orders over $5 plus postage. Approx. 8 tubes per 1 lb. Subject to prior sale. No C.O.D.'s outside continental U.S.A. 85
NEW PRODUCTS

15/16-INCH REPLACEMENT CONTROLS, Fassbach II. For all dual concentric types, plus single and dual controls. Components plug in, snap together, permanently lock. Replacement shafts available for every application. Universal terminals replace all other types. Centralab, 900 E. Keefe Ave., Milwaukee 1, Wis.

VIDEO/RF DISTRIBUTION SWITCHER, model V-61. Three Line Switcher. Contains 10 isolated through lines with push-button switches, allows any of 10 inputs to be connected to a separate "switched input" terminal. Corresponding output is then connected to "switched output" terminal. Combines closed-circuit TV channel with off-the-air channels in master antenna system. Can be used as 10-circuit video switcher, changing video monitor to any of 10 circuits on loop-through basis. Frequency range 0-216 mc, input and output impedance 75 ohms. For 15-inch rack panel mounting.-Blonder-Tongue Labs, Inc., 9 Alling St., Newark, N. J.

UHF CONVERTER, model G-2. Adds all 70 uhf channels to vhf TV set. Features uhf tuner, nuvistor circuit, isolation transformer. Built-in uhf vhf coupler. With set tuned to channel 5 or 6, converter tunes in any available uhf channel.-Gavin Instruments, Inc., Depot Square, Somerville, N. J.

COLOR CIRCUIT ANALYZER, model CA-122. All required test patterns, signals for test from TV tuner to tri-color tube. Additional analyzing signals for injection at audio, video, sync stages.

Tests: 10 standard color bars; white dots; cross-hatch pattern; vertical and horizontal bars; shade bars, showing ability of video amplifier to produce shades and make color adjustments; color gun interrupter; analyzing signals, RF and if. Signals modulated with any pattern for injection into grid circuits from antenna to detector. If. attenuator adjusts for minimum signal for each i.f. stage to produce pattern on CRT, providing check on individual stage gain. Sync and video, ± 0 to 30 volts peak to peak, have separate calibrated controls for quick checks on video and sync circuits. Crystal-controlled 4.5-mc and 900-cycle audio. Illuminated pattern indicator for color patterns that should be seen on receiver.-Sencore, Inc., 426 S. Westgate Dr., Addison, Ill.

LOUDSPEAKER SYSTEM, Patriotic 800, re-styled. Frequency response 20-15,000 cycles, power handling capacity 100 watts. Uses 30-inch woofer for 30 to 100 cycles, 12-inch mid-bass speaker (100-800 cycles), T250 treble driver (800 cycles to 3.5 kc). T350 vhf driver (3.5-35 kc).-Electro-Voice Inc., Buchanan, Mich.

STEREO TAPE RECORDER, model AD-12. 2-track stereo/mono, record/playback. Two record playback Vu meters, two inputs per channel with mixing controls. Fast forward and rewind, 3-digit counter. 4-pole motor, tape speeds 3/4 ips, push-pull bias oscillator. Circuit boards reduce construction time. Supplied with head alignment tape. Also available as AD-12 for playback only through audio system.-Health Co., Benton Harbor, Mich.

PORTABLE STEREO TAPE RECORDER, model TG-12XK. 4-track stereo/mono record and playback. Speeds: 17½, 3¼, 7¼ ips. 10-watt dual amplifier. Direct output for use with hi-fi component system, monitoring facilities for recording on both channels. Stereo/mono sound-on-sound recording. 2 speaker systems in removable lids of carrying case. Equipped for automatic control of slide or movie projectors. Supplied with two mikes, 3-digit tape counter. Specs for 7¼ ips: Frequency range 40-20,000 cycles ± 3 db. Signal-to-noise ratio 46 db.; wow and flutter ± 0.15%; channel separation 60 db., 30 to 20,000 cycles; cross talk 38 db. Max.

RADIO-ELECTRONICS
Scott Stereo Tuner Kit
Wins Rave Reviews
from every Leading Hi-Fi Expert!

Just one year ago Scott introduced the LT-110 FM Stereo Tuner Kit. High Fidelity Dealers built this superb kit themselves, examined its many features, and recommended it without reservation. Enthusiastic kit builders deluged us with mail. Now the verdict is in from all the leading technical experts. Never before in the history of the industry has a single kit received such unanimous praise. We reprint a few excerpts below.

from ELECTRONICS WORLD

"Construction time for the unit we tested was 6 ½ hours, without alignment . . . in listening tests, the tuner showed its high useable sensitivity to good advantage. Using an in-door antenna which produced marginal signal to noise ratios on most other tuners we were able to get noise-free, undistorted stereo reception. It's quite non-critical to tune, hardly requiring the use of its tuning meter."

From Electronics World, Nov. 1962

from POPULAR ELECTRONICS

"No commentary on Scott Kits would be complete without first mentioning that this company pioneered new areas in the hi-fi kit market and brought forth several (then-radical) innovations. One of them continues to fascinate all purchasers of a Scott Kit — the full-color instruction manual...Scott also pioneered the Kit-Pak — a shipping container which serves as a temporary workbench and storage box . . . a test model of the LT-110 was wired at POPULAR ELECTRONICS in just under five hours. Another 40 minutes was used for careful alignment and the tuner was "on the air." . . . The LT-110 met or exceeded all the manufacturer's detailed specifications on sensitivity, distortion, output level, a.c. hum, and capture ratio . . . the audio response is excellent, being within ±1 db, from approximately 20 to 16,000 cycles . . . Channel-to-channel crosstalk is particularly excellent both in terms of uniformity and the fact that it holds up well above 10,000 cycles . . . Frequency drift of the LT-110 from a cold start is extraordinarily low — less than 5 kc. The a.c. hum level (referred to 100% modulation) is low and exceeds the manufacturer's rating by 5 db . . . It's difficult to imagine a kit much simpler to assemble than the LT-110. The full-color instruction book eliminates just about the last possible chance of wiring errors . . . From a plan and simple operational standpoint, the LT-110 works well and sounds good."

From Popular Electronics, Oct. 1962

from AUDIO

"The LT-110 is so simple to build that we unhesitatingly recommend it for even the novice . . . We found that the useable sensitivity (IHFM) was 2.1 uV . . . a fine stereo tuner and an unusually easy kit to build."

From Audio, April 1962

from RECORD GUIDE

"It seems to me that every time I turn around I am building another of H. H. Scott's kits. And each time I end up praising the unit to the skies."

From Record Guide, Sept. 1962

Now Sonic Monitor† Added

Scott's unique Sonic Monitor has now been added to the LT-110. This fool-proof stereo signaling device tells you audibly when you are tuned to a stereo station. Just turn the switch to "Monitor," and tune across the dial. When you hear the monitor tone from your speakers you know you've tuned to a station broadcasting new FM Stereo. Now switch the Monitor knob back to "Listen" to enjoy perfect stereo sound.

LT-110 $159.95 (slightly higher West of Rockies.)

†Patent Pending
New Utah Thin-Drive Speakers in self service bubble pack display

Utah's radically new Thin-Drive Speaker is available in all popular sizes. It uses a completely new magnetic material (Lodex by G.E.). The "pot" is reduced in size and weight - efficiency and performance increased. The Thin-Drive is thinner in profile, allowing more knuckle room in tightly packed sets.

A beautiful combination!

Utah's new Thin-Drive speakers come individually carded - sealed in clear plastic bubbles for optimum protection and display.

Utah's attractive self service display rack offers fingertip convenience, self-merchandising - self-pricing. See your Utah distributor.

tape reel size 7 inches—United Audio, 12-14 W. 18 St., New York 11, N. Y.

FM STEREO ANTENNA AMPLIFIER,
model TNS16FM. Transistor FM stereo/mono signal amplifier adds up to 25 db gain to antenna with uniform frequency response across FM band.

Enables any FM antenna to handle up to 4 FM sets. Includes amplifier, power supply and distribution system—JFD Electronics Corp., 6101 16th Ave., N.W., Seattle, Wash.

PECK-UP ARM, model SME 3099, 12-inch records; model 3012, 16-inch records. Accommodates all stereo and mono cartridges. Pivot friction less than 20 milligrams, horizontal and vertical. Stylus tracking force 0.25-5 grams, adjusted by moving rider weight. Device prevents arm from skating to center of record, hydraulic lever-operated control allows gentle lowering and gentle lifting of arm anywhere on disc. 10 singles complete with one shell, mounting template, alignment protractor, mounting screws—Shure Bros., Inc., 222 Hartrey Ave., Evanston, Ill.

INTEGRATED PICKUP ARM/CARTRIDGE model H222. Tracking force 0.75-1.5 grams. Compliance, vertical and lateral, 22 x 10^-6 cm/dyne. Frequency response 20-20,000 cycles.

Channel separation at 1,000 cycles 22.5 db. Output voltage 3.4 mv. Tubular .005-in. diameter in model N222 cartridge—Shure Bros., Inc., 222 Hartrey Ave., Evanston, Ill.

THREE-IN-ONE RECORD CHANGER, model 1007/4. Operates as automatic turntable, manual turntable, automatic changer. Push-button controls. Pickup arm: One piece, removable pick-up head, tracking wi. 5-6 grams, weight adjustable. 3-pole wiring of plug-in head and tone arm, individual muting switches, manual tone arm lock. Cartridge: Crystal turn-over; plays 33-45 and 78-rpm records. Channel separation min. 20 db at 1,000 cycles; frequency range 20-16,000 cycles. Unit also available without cartridge—United Audio, 12-14 W. 18 St., New York 11, N. Y.

DISK-WHISK KIT. Cleans records while they play. Brush sweeps grooves, cylinder pad deposits coating of anti-static fluid. Device clips to arm of any record changer or turntable. Replacement kit.

WANT BACK ISSUES?

Back numbers of most issues of RADIO-ELECTRONICS are available upon request. This year's issues: $5.00. Last year's issues: $5.50. Previous year $6.00, etc., up to a maximum of $1 per copy. RADIO-ELECTRONICS, 154 West 14th St., New York, N. Y.

FIX ELECTRIC APPLIANCES

PAYS $3 TO $5 AN HOUR

Spare Time, Full Time • Learn at Home

FREE BOOK offered below shows how YOU can now have a good-paying business of your own. Easy to understand, complete in one volume. Money doing it. No experience needed, just simple tools. Learn to repair Electric Appliances. Pays $3-$5 an hour! 400 MILLION Appliances are in American homes right now. 70 Million MORE bought each year. People need them fixed, good, fast, or bad. YOU make good money doing it. In your basement, garage, even on your kitchen table.

Quick Way To Get Started
For less than 20c a day our easy, pictorial instruction - learned by 45 years of success in home training—prepares you for top earnings in this booming field. Earl Reid of Thonopan, Ohio says: "Made $510 in one month. No shop. Now a course is priceless." At no extra charge you even get all parts for your own Appliance Tester, Electrical Kit, etc. Push true-in, speeds and checks your work.

Get your FREE Book and FREE Sample Lesson! Mail coupon below, letter or postcard, amo.
SPEED AND SIMPLIFY YOUR WORK WITH RCA ELECTRONIC SERVICE ACCESSORIES

TV ISOTAP RCA WP-25A For better, faster and safer TV servicing. Provides high-medium-low line voltage testing. Adjustable to match line voltage of 105 to 130 volts in 5-volt steps. $27.00*

TV BIAS SUPPLY KIT RCA WG-307B (K) Three separate dc output voltages each adjustable from 0 to -15 volts provide bias voltages for aligning RF, IF and other circuits of COLOR and black and white TV receivers. $11.95*

VIDEO MULTIMARKER RCA WG-295C Provides 7 simultaneous absorption-type marker signals at accurately preset frequencies for marking video response curves in COLOR receivers. ¶32.50*

POWER LINE MONITOR RCA WV-120A Provides a constant check on incoming line voltage. Responds to every voltage fluctuation. Highly accurate (-1-2% at 120 volts). Gives true rms reading. 5" wide meter. $14.95*

STEREO PHASE CHECKER RCA WG-360A A quick, simple, positive way to check phase alignment of low and mid-range speakers in stereo systems. Completely "sound-powered" Snag-proof recessed grille design. $14.95*

RF MODULATOR RCA WG-304B Used to check overall frequency response of TV receivers, including COLOR. Permists modulation of a signal from a marker generator by a signal from a sweep generator. $16.50*

RCA ELECTRONIC PROBES

DIRECT / LOW CAPACITANCE PROBE WG-300B 48" cable. Switch provides instant selection of direct or low capacitance operations. For use with RCA scopes. $9.95*

DC/AC-OHMS PROBE WG-290D Fingertip switch for instant selection of dc or ac/ohms insulated. For use with all RCA VoltOhmysts® except WV-77E. $7.95*

HIGH VOLTAGE PROBES WG-299 OR WG-297 Extend the DC range of RCA VoltOhmyst® to 50,000 volts. Either microphone-type or banana-plug connectors. $11.95*

CRYSTAL-DIODE PROBE WG-301A "Slip-on" type for use with WG-296. Extends frequency range of RCA VoltOhmyst® to over 250 Mc. $7.75*

RF/IF/VF SIGNAL TRACING PROBE WG-305A Slip-on RF probe for WG-300B and RCA oscilloscopes for troubleshooting radiation, TV, IF and video stages. $8.50*

DIRECT / LOW CAPACITANCE PROBE WG-349A A flexible 48-inch unit, fully shielded, designed for use with the RCA 3-inch oscilloscope (WO-33A). $5.95*

DEMODULATOR PROBE WG-350A For use with RCA 3-inch oscilloscope (WO-33A) for demodulation and signal tracing of radio/TV RF and IF signals. $4.95*

CRYSTAL DIODE PROBE WG-351A Extends the frequency range of the RCA WV-77E VoltOhmyst® to over 100 Mc. $4.95*

SEE THEM ALL AT YOUR AUTHORIZED RCA ELECTRONIC INSTRUMENT DISTRIBUTOR

RCA Electron Tube Division, Harrison, New Jersey.

The Most Trusted Name in Electronics

*List Price (Optional)

DECEMBER, 1962
SLIM-LINE SPEAKER SYSTEM, Regina 300. Less than 6 inches deep, may be used monaurally or paired for stereo. Electrical crossover at medium-power indicators. 600-ohm output, lower or higher load impedances allowable. No output transformer. 5-stage direct-coupled quasi-complete symmetry circuit with 7 transistors, 1 diode, AC, DC feedback loops. Overload to 160°F, deliver 100 mw, less than 1% distortion into 600-ohm load. Model WR-100, wide-range module. Response ±1 db 10 cycles to 100 kc; input impedance 25,000 ohms; power gain 25 db; signal-to-noise ratio 75 db; supply required 24 v at 15 ma.—Amplifier Corp. of America, 598 Broadway, New York 13, N.Y.

TRANSISTORIZED CB RADIO, model 310. 5-watt transceiver has 5 receiving and 5 transmitting channels. Receiver tunes all 23 channels. Uses 18 transistors, 8 diodes. Dynamic push-to-talk microphone, adjustable squelch, automatic noise limiter with age. Built-in power supply and rechargeable batteries.—Cadre Industries Corp., 20 Valley St., Endicott, N. Y.

FM MULTIPLEX ADAPTER, model 2891. For use with any multiplex-ready FM tuner. All-transistor unit can be plugged into 117-volt ac or convenience outlet on amplifier or tuner. Impedance-changing input stage, self-contained power supply. Cross-talk attenuation —30 to —35 db. Three SCA filters.—Korting Recorder Sales Corp., Matthew Stuart & Co., Inc., 156 5th Ave., New York 10, N.Y.

FM ANTENNA, Stereotron, model SF-8. Shorty antenna with or without built-in nuistor amplifier. model AP-320. Min gain of 26 db over folded dipole, flat frequency response ±0.5 db, 88 to 108 mc, 100-ohm Twin-Lead or 75-ohm coaxial cable.—Winegard Co., Burlington, Iowa.

CB TRANSCEIVER, Messenger Two. 10-tube, crystal-controlled CB transceiver covers 10 channels. Illuminated channel indicator, rotating channel selector switch. Automatic volume control circuit, positive acting squelch control, universal mounting.

KRYLON CLEANER LUBRICANT SPRAY

Cleans away dirt and gummy deposits. Provides a non-drying lubricating film on contact surfaces. Gives long-lasting protection against corrosion. Comes with 5-in. plastic tube for controlled spraying in hard-to-reach areas.

Crystal Clear—Acrylic spray guards against humidity, dust, corrosion and electric current leakage.

Electric Motor Cleaner—Spray it on, let it dry, and wipe off. Instantly removes grease, oil and tar. Will not harm insulation or paint.

Silicone All-Purpose Spray—Lubricates and protects at same time. Eliminates squeaks in hinges, shafts, contacts, slides, etc.

Spray colors—Choice of 26 standard colors and 7 glowing fluorescent colors. Use for touchup, color coding, refinishing.

Contact your Radio-TV jobber or write for Krylon’s new industrial products catalog.

KRYLON CLEANER LUBRICANT SPRAY

To service volume controls, tuners, switches
Pep up your tired CB rig...

with the new

TURNER 355C

New for Citizens Band and other mobile operation, the 355C and its cool brother 356C feature top performance, durability and style.

Both these new models come complete with hanger button and standard dash bracket for easy mounting. Equipped with 11" retracted, 5 foot extended coiled cord, wired for relay operation. Response: 80 to 7,000 cps. 355C output level is -50 db, 356C output is -54 db. Please specify model number when ordering.

MAIL COUPON FOR COMPLETE SPECIFICATIONS.

GENTLEMEN: Please send literature on your Citizens Band microphones.

MICROPHONE COMPANY

933 17th Street N.E., Cedar Rapids, Iowa

IN CANADA: Tri-Tel Associates, Ltd.
81 Sheppard Avenue West
Willowdale, Ontario
ings to 50 mc. May be inserted permanently into transmission line for swr and relative power monitoring. Indicates rf power to 15 watts; into built-in 50-ohm dummy load; reads relative forward power to 1 kw. Gives direct swr measurements 1:1 to 4:1 with powers up to 1 kw. Full scale reading 10%.—Lafayette Radio Electronics Corp., 111 Jericho Turnpike, Syosset, N. Y.

REGULATED POWER SUPPLY, Kit model 1P-20. Delivers up to 1.5 amps, 9 to 50 volts, less than 150 µc ac ripple. Current ranges: 50 ma, 500 ma, 1.5 amps. Transistor series-type voltage regulator. Zener diode. Voltage control uses tapped power transformer; adjustable current limiter automatically controls output on any current range.—Heath Co., Benton Harbor, Mich.

RF SIGNAL GENERATOR, model 502. Wired or kit. 6 bands, 115 kc to 110 mc on fundamentals, up to 220 mc on second harmonic. Individual slug-tuned coils for each band. Colpitts rf oscillator, planetary drive tuning capacitor, 400-cycle internal modulation available. RF accuracy within 1 1/2%. 2-color etched panel, provision for external modulation. RF output lead, cathode follower output, rf attenuator. 6 3/4 x 6 3/4 x 4 inches.—Electronic Measurements Corp., 625 Broadway, New York, 12, N. Y.

DEGAUSSING COIL, model DGC-100. Features 10-foot line cord with line switch at the end rear socket fits with items in varied sizes, replacing older L. A. types.—Electronic Measurements Corp. P.O. Box 2965, 1017 N. 3rd Ave., Amarillo, Tex.

All specifications are from manufacturers data.

NEW BUSINESS GETTERS

NEW LITERATURE

Any or all of these catalogs, bulletins, or periodicals are available to you on request direct to the manufacturer, whose addresses are listed at the end of each item. Use your letterhead—do not use postcards. To facilitate identification, mention the issue and page of RADIO-ELECTRONICS on which the item appeared. UNLESS OTHERWISE STATED, ALL ITEMS ARE GRADES. ALL LITERATURE OFFERS ARE valid after six months.

DISPLAY RACK, ETR-3257. Holds 80 radio and TV service aids, occupies less than 2 square feet of floor space. Rotating hangers, basket for reference manuals. Free to dealers who purchase 80 service aids.—D. B. General Electric Co., 3800 N. Milwaukee Ave., Chicago, III.

MICROPHONES, COMPONENTS, ACCESSORIES. 20-page Catalog 62 contains photos and complete specs on about 40 models, including studio, general-purpose, controlled magnetic and crystal mikes, plus special high-freq types for amateur radio and language lab use. Shows manufacturer's line of cartridges, recording heads, accessories.—Share Bros., Inc., 222 Hartrey Ave., Evanston, Ill.

ZENER DIODE LOCATOR. 24-page guidebook lists Zener devices by ELA and manufacturer's part numbers. Listings in numerical order show case type, power rating, nominal voltage range, specified test current. Spec for Zener devices include 90-commerce, 900,000, 750,000, 600,000, 350,000 and 100,000 diode dissipation ratings. $1.00.—International Rectifier Corp., 223 Kansas St., El Segundo, Calif.

HOME STUDY COURSES in radio/electronics/TV offered in 4-page brochure. Also includes list of available service manuals for TV and radio.—Junior Reference Publications, 1760 Balsam Rd., Highland Park, Ill.

ELECTRONIC EQUIPMENT offered in 284-page 1963 shopping guide, Catalog 124. Over 18,000 items include special models of hi-fi components, plus new products and lines. Large section features manufacturer's own hi-fi systems and components, kit and wired. Other items include receivers, transmitters, test equipment, transistor radios, phonographs, musical instruments, records and tapes, car radios, books, tools, cameras, educational toys, CB transceivers.—Radio Shack Mail Order Headquarters, 730 Commonwealth Ave., Boston 17, Mass.

ELECTRONIC TRANSISTOR IGNITION explained in 4-page leaflet, with theory and wiring instructions for AEC-77 system. Photos and graphs show its advantages over conventional ignition.—Automatic Electronics Co., 387 Park Ave. S., New York 16, N. Y.

TRANSFORMER AND COIL REPLACEMENT for auto radios presented in the 12-page Catalog No. 501, 1962. Lists 60 radio brands and manufacturers by model or chassis, cross-referenced to manufacturer and list number. Separate cross-referencing tables show proper replacement part.—Stancor Electronics, Inc., 3501 Addison St., Chicago 18, III.

TELEMETRY ANTENNA SYSTEMS, Catalog 300. Photos, specs, complete details on manufacturer's line from tapes, remote-control multimode telemetry and command types to small special-purpose antennas.—TACO, Technical Appliance Corp., Sherman Oaks, 41st Ave., Boston 28, Mass.

SOUND IN FOCUS, 4-page illustrated brochure, explains sound-column PA installation. Tells what a sound column is, how it works, gives photos of sample installation. Specs on 8 models.—GR Electronics Co., 447 MacQuesten Parkway N., Mount Vernon, N. Y.

MICROMINIATURE & ELECTRONIC ASSEMBLY TOOLS. 24-page catalog presents tools and instruments for miniature assembly and microfine work. Featured items: tweezers, needle nose pliers, taps, dies, high-speed drills. Many photos.—Mini-Tool Technical Industries, Inc., 544 Grand Ave., Englewood, N. J.

CB/AMATEUR MIKE BROCHURE, Bulletin No. 1066. 4-page leaflet contains photos, specs and applications on 8 mobile and base station mikes, plus CB accessories.—Turner Microphone Co., 909 17th St. N., Cedar Rapids, Iowa.

UHF TRANSMISSION EQUIPMENT offered in 4-page short-form catalog excerpts types for amateur radio and language lab use. Shows manufacturer's line of cartridges, recording heads, accessories.—Share Bros., Inc., 222 Hartrey Ave., Evanston, Ill.

Dry Cell Batteries. Model SC-100, 9-volt rectangular; model SC-101, 12-volt penlite; 94

D R A I O - E L E C T R O N I C S

www.americanradiohistory.com
International's new Model 100 A is the latest in the outstanding line of Executive transceivers. The advanced design Executive features a transistor power supply, new perforated metal cabinet, and a new rugged microphone—all of which contribute to a more reliable mobile operation.

The Model 100 A... the finest of its kind, also features:
- Crystal filter for improved receiving
- Twelve crystal controlled transmit positions
- Two crystal controlled receive positions
- Dual conversion superheterodyne receiver tuning 23 channels
- Built-in calibration circuit
- N R squelch
- Provision for connecting external speaker and S/meter
- Push-to-talk operation
- Transistor power supply operates from 6/12 vdc or 115 vac

Model 100 A, complete with 1 transmit crystal, 1 receive crystal, and microphone

$199.50

External Speaker and S/Meter
The perfect companion for the International Executive Model 100. Utilizes a high impedance vacuum tube volt meter circuit. Connects to socket on rear of transceiver. S/meter reads in three ranges. Brown cabinet, brown and silver panel matches Executive transceiver.

Complete with interconnecting cable

$49.50

Executive Speech Clipper/Filter Amplifier
A microphone amplifier designed to increase average modulation... limits modulations peaks... filters audio frequencies above 2500 cycles. Permits arm's-length microphone operation. Power requirements: 12 vac or 12 vdc.

Complete with interconnecting cable

$36.50

12.6 VAC, 2 Ampere Power Unit
Base station power unit for Speech Clipper/Amplifier. Operates from 115 vac. Provides 12.6 vac at 2 amperes.

Complete with mounting chassis, power cord, fuse, switch

$12.50

Citizens Band licensees with International equipped stations know the unquestioned superiority and advantages of Executive transceivers and their system engineered accessories.

See your authorized International dealer today.
It's an emergency!

I'm out of Centralab® Ceramic Capacitors!

There's no need to fly off the handle when you need a ceramic capacitor. Just taxi down the field to your nearest CENTRALAB distributor. He has the unit you need—whether it's plane or fancy.

CENTRALAB piloted the ceramic capacitor to its present importance in electronics, and today is flying high with the most complete line of discs, tubulars, buffers, trimmers, feed-thrus—for every standard or special application...and if you use CENTRALAB's handy capacitor kits you'll never be grounded by lack of parts.

You'll not only like CENTRALAB's complete selection of ceramic capacitors. You'll like the product quality—and you'll like the brand-new plastic box. Travel first class with CENTRALAB ceramic capacitors—in stock at your distributor.

THE ELECTRONICS DIVISION OF GLOBE-UNION INC.
9226 EAST KEFE AVENUE, MILWAUKEE 1, WISCONSIN
In Canada: Centralab Canada Ltd., P.O. Box 400, Ajax, Ontario

ELECTRONIC SWITCHES • VARIABLE RESISTORS • CERAMIC CAPACITORS
PACKAGED ELECTRONIC CIRCUITS • ENGINEERED CERAMICS

150 Technicians
Jam Color Meeting

Detroit, Mich.—A color service meeting, held at the Venetian Hall, was jammed by 150 service dealers and technicians. They were anxious to see the new RCA Mark VIII line chassis, and get into their new workshop sessions to see what type of repairs might be necessary on this set and how they could be handled. Jerry Ratz, area service representative for RCA, did a fine job in showing circuit changes and answering color service problems. The meeting can best be summed up by: "Wish there were more of them."

Eight Association Committees

Buffalo, N. Y.—TESA-New York has set up eight committees to handle important aspects of association business. They are the Newspaper Committee, which is responsible for the operation of a TESA Vision newspaper; Publicity Committee, responsible for all forms of publicity; Public Relations Committee, responsible for establishing good will between members, distributors and the general public; Special Events Committee, responsible for organizing and conducting special technical and business events, such as color clinics, lectures, etc.; NATESA Committee, to handle all NATESA matters and act as delegate to the national association; Membership Committee, responsible for all matters pertaining to new memberships, as well as acquiring, contacting, screening and checking attendance at meetings of present members; Lapseation Committee, handling all matters pertaining to lapsed members, delinquent dues, etc., and lastly, the Budget Committee, to budget all moneys and operate the association on a prosperous financial basis.

Westinghouse Open House

Albany, N. Y.—TSA technicians attended an open house at the Inn Towne Motel, held by the Westinghouse Electric Corp. The display exhibited a large number of the company's appliances and TV sets. Servicing features of the TV line were stressed to those who attended. For instance, the console models contain a "tilt-down" chassis. With this arrangement, a technician can unfasten the upper mounting of the chassis and tilt the en-
tire chassis downward until the back side of the printed-circuit board is exposed. John Doble, Westinghouse field representative, was present to answer any questions from the technicians.

Around Wisconsin

Racine—Walter Beyer, president of this local group, played a tape recording of a speech on licensing at a recent regular business meeting. Members were urged to contribute to the licensing fund, and a very active discussion followed.

Green Bay.—The regular monthly meeting was held at the Wisconsin Public Service Building. All but two shops attended. Plans for the TESA Wisconsin Convention were discussed, and Harold Juelich reported that plans for the convention were progressing very well. Don Beno composed a letter to be sent to the Druggist Association, hoping to discourage the use of do-it-yourself tube testers. He pointed out that professionals should test tubes as well as fill prescriptions.

Sheboygan County.—A full report on the State Licensing Committee was given. Also shown at the meeting was a film from the Wisconsin Telephone Co. on communications. Members were urged to attend the State Convention, along with nonmember technicians. Fred Leonard states that no service dealer has a legitimate excuse for staying away.

Milwaukee.—Once again, Covic’s Amerwood Hall was the scene of the regular meeting. Bill Wolff of the Telephone Co. presented an interesting and informing film strip and discussion on turning telephone inquiries into sales. The talk went into such matters as the importance of the manner in which you use your voice, having answers ready for objections and excuses, and learning when to close a conversation. A short movie titled "Overcoming Objections" followed the talk.

END

“First service call I’ve ever had on Christmas Day. Hope you can afford it.”

DECEMBER, 1962
NEW SEMI -

CONDUCTORS & TUBES

WE START OFF WITH ONE OF THE TINIEST TRANSISTORS EVER MADE. IT MEASURES ONLY .09 X .06 X .04 INCH. THEN IT'S ON TO A GERMANIUM AUDIO TRANSISTOR BEFORE WE SWITCH OVER TO THE TUBE SIDE OF THIS COLUMN. HERE WE FIND A FULL-WAVE POWER RECTIFIER, A SINGLE-ENDED DIODE-

PENTODE FOR TV, A SHARP-CUTOFF PENTODE FOR TV, AND A GROUP OF FRAME-GRID PEN- TODES FOR I.F. STRIPS.

MT-100

AN N-P-N SILICON PLANAR MICRO-

TRANSISTOR DESIGNED PRIMARILY FOR HIGH-

SPEED SWITCHING AND HIGH FREQUENCY AMPLIFIER SERVICE. THE UNIT IS USEFUL IN NANOSECOND SWITCHING CIRCUITS AND HF AND VHF TUNED AMPLIFIERS.

5DN4

A FULL-WAVE POWER RECTIFIER, DESIGNED FOR RELIABLE OPERATION. IT HAS DOUBLE LEADS TO EACH PLATE AND FILAMENT, TO REDUCE THE INPUT RESISTANCE TO 20 MEG OHMS... 5 DC AND AC VOLTAGE RANGES TO 3000 VOLTS AND 3 DC CURRENT RANGES TO 5000 MAH.

2N1008-B

A GERMANIUM ALLOY HIGH VOLTAGE P-N-P TRANSISTOR DESIGNED FOR AUDIO AMPLIFIER SERVICE AND ESPECIALLY SUITED FOR USE AS SINGLE-ENDED AUDIO DRIVERS OR IN MEDIUM-SPEED SWITCHING APPLICATIONS.

6GA7

A SINGLE-ENDED DIODE-PENTODE ON A 12-PIN BASE. IN ONE ENVELOPE, IT COMBINES A TV DAMPER AND BEAM PENTODE AMPLIFIER FOR HORIZONTAL DEFLECTION CIRCUITS. COMBINING THE DAMPER AND AMPLIFIER IN ONE ENVELOPE RESULTS IN A MORE COMPACT DESIGN AND REDUCES THE COMPLEXITY OF THE WIRING. NOTE THAT NO TOP CAP CONNECTOR IS USED FOR THE OUTPUT PENTODE.

MAXIMUM DESIGN RATING FOR THE RAYTHEON 6GA7 ARE:

PENTODE SECTION

VS (boast and dc) 770
VGZ 220
PE (watts) 15
PG (watts) 3.6
Ic (average ma) 150
Ib (peak ma) 500
Vb (peak positive) 6,500
Vb (peak negative) 1,500
VG (peak negative) 330
RG (circuit megohms) 1

DIODE

Vz (peak inverse) 5,500
Iz (steady state ma) 325
Id (dc, ma) 140
Pd (watts) 5

CHARACTERISTICS OF THE PENTODE SECTION IN ACTUAL USE ARE:

Vg1 -22.5
Ig (ma) 75
Ig (ma) 2.4
µ (triode amplification factor) 4.1

DC OUTPUT CURRENT (ma) 380 350
DC OUTPUT VOLTAGE AT FILTER INPUT 285 430
are:

- **6HM6**: A series of sharp-cutoff pentode in a 7-pin miniature envelope, designed for use as a combined detector, limiter and audio voltage drive tube in locked-oscillator quadrature-grid FM sound detector service. The tube has two independent control grids (grid 1 and grid 3) a feature which provides great flexibility in circuit design. This tube also has a special shield associated with grid 2. This shield enables the tube to suppress parasitic oscillations which may be picked up in the tuners of some TV receivers.

Maximum ratings of the RCA 6H26 in FM sound detector service:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{rr}</td>
<td>300</td>
</tr>
<tr>
<td>V_{gs}</td>
<td>25</td>
</tr>
<tr>
<td>V_{gs}</td>
<td>100</td>
</tr>
<tr>
<td>V_{gs}</td>
<td>300</td>
</tr>
<tr>
<td>V_{gs}</td>
<td>50</td>
</tr>
<tr>
<td>P_{b}</td>
<td>1.7</td>
</tr>
<tr>
<td>G_{in}</td>
<td>0.1</td>
</tr>
<tr>
<td>G_{in}</td>
<td>1</td>
</tr>
</tbody>
</table>

3HM6, 4HM6, 6HM6: A series of sharp-cutoff 9-pin miniature frame grid pentodes, designed for use in TV receiver i.f. amplifier stages. They feature very high transconductance and low interelectrode capacitance. The cathode has two terminals to increase input impedance at high frequencies. Grid 3 is connected to a separate pin for easy grounding. All three tubes are electrically identical, except for their heater ratings. The 3HM6 has a 3.15-volt 600-ma heater.

3H6, 4H6, 6H6: The 4H6 has a 4.2-volt 450-ma heater, while the 6H6 has a 6.3-volt 300-ma heater.

Characteristics of the Westinghouse 'HM6 series in typical i.f. service are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{rr}</td>
<td>125</td>
</tr>
<tr>
<td>G_{in}</td>
<td>125</td>
</tr>
<tr>
<td>R_{p}</td>
<td>56</td>
</tr>
<tr>
<td>R_{p}</td>
<td>125</td>
</tr>
<tr>
<td>G_{in}</td>
<td>15,000</td>
</tr>
<tr>
<td>I_{m}</td>
<td>13</td>
</tr>
<tr>
<td>I_{m}</td>
<td>1.2</td>
</tr>
</tbody>
</table>

The only diode characteristic of interest is the 32-volt drop in the tube when it is conducting at 250 ma.
The Progressive Signal Tracer of this, electrical hookup for this is needed. These are progressive manner, understood. You recognize the radio symbols, how to read and interpret schematic diagrams, and how to operate electronic equipment, how to build radios. Today it is no longer necessary to spend many dollars for a radio course. You will receive a basic education in radio, worth many times the small price you pay. Why spend $5 to $10 for a radio course and get only a verbal lecture? Get a course in radio, and you will receive professional instruction. This is the only course of its kind ever advertised in the history of radio.
the grid. After replacing the defective tube, picture, sound and sync returned to normal.—Walter H. Peter

Motorola 902 Color Set

While attempting a "touchup" static convergence adjustment for the red gun, the knob on the magnet broke off, leaving the red dots displaced by about 1/4 inch. A slight misconvergence can be tolerated in the blue or green raster, but not in the red.

Anticipating a long delay in obtaining a new magnet, I used plastic tape to strap a small magnet from an ion trap to the back of the red coils. Turning and moving the magnet about on the coil shield made possible excellent red static and dynamic convergence.

These sets are capable of almost perfect convergence to the edges of the picture tube if the electrolytics in the convergence circuits are in good condition.—Arthur Kelley

G-E M5 TV Chassis

The picture curled at the top. Three other shops had worked on this set without correcting this condition. After about 10 hours' work, we found that the phase detector diodes had two resistors connected in parallel—560,000 and 390,000 ohms. We changed the 560,000-ohm resistor to 390,000 ohms and solved the problem.—Roland Demers

Transvision Series E

This set behaved in a fashion maddening to the viewer. Performance was normal until it was well warmed up (and the viewer well into a program). Then both sound and picture would slowly fade. Turning the set off to cool restored operation but only for a shorter interval. Since both sound and picture faded together, the tuner was suspect. The tubes checked OK. Physical manipulation of the 6U8 and its shield assembly finally provided the clue. When the tuner was wired, a very small gap had been left between the grid lead and a grounded point. As the tube and its shield got hot, expansion moved the socket pins and their associated components. This movement, though hardly perceptible, was enough to short the grid.—Wm. B. Rasmussen

8 FREE Olson Discount Catalogs

NOW! Come in to any of Olson's 13 Electronic Discount Stores and see the tremendous NAME BRAND Electronic Bargains! You'll find SPEAKERS—CHANGERS—TUNERS—AMPPLIFIERS—CB EQUIPMENT—TOOLS—TUBES—CONDENSERS—KITS, etc., all at money-saving low prices! If you live beyond our store areas, fill out coupon below and receive Olson Electronics' Discount Catalog FREE for one full year. A/F Hi-Fi and CB at a Discount Price on Credit.

MAIL TO: **Olson Electronics, Inc.** 735 S. Forge St., Akron 8, Ohio

NAME______________________________

ADDRESS______________________________

CITY__________ZONE______STATE______

DECEMBER, 1962
COMMODORE AC-DC 5 TUBE RADIO
Superhet, Built-in Antenna, Tops in Style, Performance

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7.88</td>
</tr>
</tbody>
</table>

GLOBAL 6-TRANSITOR POCKET RADIO
Excellent performance, Wonderful Tone, Completely assembled in Gift Box

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9.97</td>
</tr>
</tbody>
</table>

MAJOR 4-SPREAD PORTABLE PHONO
Beautiful Instrument in 2-Text Cabinet, Sapphire Pickup, Regular $25.00 value

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$13.67</td>
</tr>
</tbody>
</table>

MAJOR HI-FI PORTABLE PHONOGRAPH
Powerful Concert Tone, Complete with 4-Speed Changer, $39.00 value

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$32.95</td>
</tr>
</tbody>
</table>

MAJOR STEREO PORTABLE PHONOGRAPH
"Dual" Chassis, Complete, 4-Speed Top Box, 4-Speed Changer $79.00 value

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$38.49</td>
</tr>
</tbody>
</table>

EMERSON 8-TRANSISTOR POCKET RADIO
#888, Compact but as MIGHTY in Tone & Long Distance Pickup as a BIG RADIO

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$27.41</td>
</tr>
</tbody>
</table>

* Descriptive literature on request—Please mention items interested in.

"ONE DOLLAR" buys

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% OFF & FREE GIFT—ON PURCHASE OF $10 OR OVER (ON DOLLAR BUYS)</td>
<td></td>
</tr>
<tr>
<td>MARKET SCOOP COLUMN</td>
<td></td>
</tr>
</tbody>
</table>

ANDREA CUSTOM-BUILT TV CHASSIS
23"-110" Incl PICTURE TUBE and $227.50

TECH-MASTER Constellation Chassis
$411.25—Successor to the famous 650 TV Complete ready to play (less CRT)

EMERSON 12" TRIM SLIM PORTABLE TV
#1825—Dual Antenna, Front Speaker, Illum Dial, Complete in Sealed Carton

GENERAL ELECTRIC 19" PORTABLE TV

$30 UNIVERSAL 12" CO-AX SPEAKER
With Tweeter and Wired Network. 50 Watts, range 35 to 18,000 cps

UNIVERSAL 8" POWERFUL PM SPEAKER
Twin Cone, 6.8 oz. Alnico Magnet Money back if not worth over $10.00

HANDY WAY TO ORDER—Simply pencil mark items wanted (X in square is sufficient), enclose money with order check.

ON SMALL ORDERS—Include stamps for postage, excess refunded. **LARGER ORDERS** shipped express charges collect.

COMMENTS

- **Brooks Radio & TV Corp., 84 Vesey St., Dept. A, New York 7, N.Y.**
- **Telephone:**
- **www.americanradiohistory.com**
Add Low-Voltage Test to Your R-C Bridge

Like most instruments of its type, my EMC model 801 resistance-capacitance and comparator bridge tests capacitors for leakage at their normal working voltage. A potentiometer (Fig. 1), calibrated 0 to 500 volts, is set to the capacitors' voltage rating. However, you cannot adjust the voltage close enough to check the low-voltage capacitors used in transistor circuits.

Fig. 2 shows how I used a split slide switch, a 10,000-ohm wirewound pot and 3,300-ohm resistor to add 0-14- and 0-60-volt ranges to the instrument. (The same method can be used on other instruments by selecting suitable values for the pot and resistor.) I mounted the pot directly below the model number on the panel and calibrated it as in Fig. 3. The switch is on the left edge of the panel about one-third the way up from the bottom.

When using, start with both pots in the zero position. Use the regular voltage control for tests up to 500 volts. The slide switch may be in either position. For tests on the 0-14- and 0-60-volt ranges, set the switch as required and use the 10,000-ohm pot. Leave the voltage control in the zero position.

—L. F. Guzman Mendoza

Remote Volume Control

An unusual method of controlling the gain of a PA amplifier from a remote point was described in Popular Radio og Fjernsyn (Copenhagen). The circuit is shown.

A photoresistor such as a cadmium sulphide or cadmium selenide photocell is connected as a part of a voltage divider at the input to one of the amplifier stages. A small incandescent lamp is mounted close to the photocell and supplied from a battery and adjustable resistor located at any desired remote point.

SONOTONE—EARRPIECE, BATTERIES, ETC.

Includes all connections to complete HEARING AID (shown at left) $6.98

BEAUTIFUL SIMULATED PEARL NECKLACE

Wired for HEARING AID, but can be worn as regular NECKLACE, 25" long $2.67

TV & RADIO "HANDY TOOLS JACKPOT"

8 Tools incl. by CBS, invaluable to builders, repairmen, experimenters, etc. $6.67

6—TELEVISION ALIGNMENT TOOLS

Covers all fields of alignment in TV Chassis, TV Tuners & TV Coils $1.49

1—SQUARE YARD GRILLE CLOTH

Most popular brown & gold design. Regular price $7.50—slashed to $1.00

HOTTEST VALUE EVER OFFERED!

$200 HEARING AID (as shown)—YOUR PRICE ... $2

We Scooped the Market on 15000 of these HEARING AIDS from one of the Leading Manufacturers (name withheld) who switched to the Transistor Type.

Each HEARING AID INSTRUMENT is a Complete AUDIO AMPLIFIER and includes — CRYSTAL MICROPHONE, 3 SUB-MINIATURE TUBES and a Superior Beige Phenolic CABINET.

Indeed a TOP ITEM for the Experimenter—can be modified and converted to: RADIOS—INTERCOMS—TRANSMITTERS—SECRET LISTENING DEVICES MICROPHONES—Tape Recorders — PRE-AMP & MICROPHONE COMBINATION for Public Address Systems—ETC.

5" x 2½" x 1"—Shipping Weight 1 lb.

Complete as illustrated—Including a detailed informative SCHEMATIC DIAGRAM (less Earphone and Battery) $2

Sold without limit or reserve! Order as many as you want! Rush your order!

ACCURATE MODEL #122

SENIOR V.T.V.M. TUBE TESTER

FEATURES GIANT 6½" METER

D.C. VOLTOMETER—Ranges: 0 to 3, 30, 150, 300, 1500 Volts.

ZERO CENTER VOLTOMETER (for discriminator alignment).

R.M.S. Ranges: 0 to 3, 30, 150, 300, 1500 volts.

A.C. VOLTOMETER.

R.M.S. Ranges: 0 to 3, 30, 150, 300, 1500 volts.

OHMOMETER:

Ranges: 0 to 1000 megohms (3 overlapping ranges).

DECIBEL METER (for all audio measurements)

Ranges: —19 to +5, +6 to +25, +26 to +45 decibels.

CENTER SCALE 10, 100, 1K, 10K, 10 Megs.

PEAK TO PEAK RANGES:

0 to 8, 60, 400, 800 volts.

$29.55

Complete with Test Leads, Probe and Instructions. $19.00

ACCURATE MODEL #151

ACCURATE MODEL #151

TUBE TESTER TESTS OVER 1000 TUBE TYPES

ACCURATE MODEL #151 comes complete including instructions. $35.00

Checks all tubes including 7-pin miniature; octals, low-in; 9-pin noval miniatures & new T-9 types.

Makes all necessary tests. Checks for shorts and leakages between all elements. Indicates emission of all tubes.

5 Year Free Tube Data

Rugged accurate, highly dampered meter movement with sealed air-damping chamber.

Model #151 comes complete including instructions. $35.00

$21.95

TV PICTURE TUBE TESTER — Operates through #151 Tube Tester. $3.85

9½" x 7½" x 6½"—WT. 9 lbs.

$24.90

MODELS #152-155

Complete with Test Leads, Probe and Instructions. $16.95

See Descriptive Data and Order Form in this Section.

BROOKS RADIO & TV CORP., 84 Vesey St., Dept. A, NEW YORK 7, N. Y.
control point. Turning up the light intensity decreases the photocell's resistance and the volume promptly decreases linearly.

The value of series resistor R1 and the resistive characteristics of the cell depend on the value of grid resistor R2. In the Danish circuit, R1 and R2 are 1 and 22 megohms, respectively. Photocell characteristics were not specified. CdS and CdSe cells (Clairay types) are available with resistances ranging from 1 megohm to 250 ohms with light intensity at 2 foot-candles. Select R1 and photocell to suit circuit impedance.

The Loadminder

Like many technicians and experimenters, I used to leave the workbench for the night and return the next day to find occasionally that at least one piece of equipment was still turned on. My Loadminder (see diagram) has eliminated this problem. It is connected into the power line feeding the bench. When a test instrument is turned on or a soldering iron is plugged in, the Loadminder's indicator comes on and cannot be turned off until all loads have been turned off or disconnected.

Here is how it works: When the master switch is turned on, current flows through R1, R2, the rectifier, the relay coil and the normally closed pushbutton switch S. R2 is adjusted so that the current in this string is not enough to pull in the relay, but high enough to hold it in once the contacts are closed. When a load, say a vtm, is turned on, the power supply of that instrument and resistor R3, the "starter resistor", forms a second string in parallel with R1-R2.

Now there is enough current through the relay to pull in and close its contacts. When the relay operates, full line power appears at the output and the load proceeds to function in its normal manner. Also, there is now 117 volts across R4, which is adjusted so that the neon lamp now glows.

Assume now that S is depressed. This de-energizes the relay and opens the circuit to the load. As soon as S is released, however, the relay pulls in again. In other words, as long as a load is connected to an outlet, the indicator light cannot be turned off. Imagine that you have forgotten to turn off a tester or its pilot light is burned out. Then the Loadminder tells you: "Something is still on!"

I put all parts in a small box with the neon lamp and S mounted on top and screwed the whole works to the wall above the workbench. The relay is a surplus plate-circuit type with a coil resistance of around 3,000 ohms. It pulls in at 4.5 ma and holds in at 3 ma. The contacts are adequate to handle the normal bench load. With a different relay, you may have to experiment to find the optimum value for R3.

Adjustments: Turn R2 to maximum resistance and R4 to minimum for the neon lamp. Apply power to the input but do not connect a load to the output yet. Reduce R2 till the relay pulls in. Now adjust R4 until the neon lamp glows normally. Next increase R2 a small amount. Now depress and release S. If the relay still pulls in, increase R2 further. Try S again. Continue this till the relay no longer pulls in. You will still see a slight motion of the armature as S is released. This is all right as long as the contacts don't close. Next connect the smallest load on your bench, probably the vtm, to the output. As you turn on the instrument, the relay should pull in and 117 volts should appear at the output. This completes the adjustments.—H. Velme

OSCILLOSCOPES ARE "GOLD MINES"

... when you learn to use them fully on all types of service jobs!

Learn to put your oscilloscope to work on all types of AM, FM and Television service jobs—and watch your efficiency and earnings soar!

Here's the book that shows you how to use the handiest instrument of all.

MODERN OSCILLOSCOPES & THEIR USES, a fact-jammed, 346-page book by Jacob H. Ruiter contains exactly the help you need—written in a way you can clearly understand.

It gets right down to earth in showing you where, why and how to use this handiest instrument of all in pinpointing troubles and in servicing sets fast and accurately. Every detail is explained from connecting the scope and setting its controls to adjusting chassis components. Illustrated procedures explain pattern analysis. Even includes data on quantitative measurements (the slickest way to diagnose many color TV troubles) and the use of scopes in lab work, industrial electronics and testing. 370 illustrations. Price $8.75.

FULL-LENGTH 10 DAYS FREE SAMPLE

DEPARTMENT RE-425
HOYT, RINEHART & WINSTON, INC.
400 W. Madison St.
Chicago 6, Illinois

FREE BOOKLET: OSCILLOSCOPE (OX 9885) for 10-day no-risk examination. I will then send $6.75 if you keep it. If not, return it promptly and we pay postage. Some 10-day return privileges with money promptly refunded.

WRITE TODAY for FREE Catalog

E. F. JOHNSON COMPANY
1509 10th Ave. S.W., Minneapolis, Minn.

Please rush "Messenger" details to:

NAME: ___________________________
ADDRESS: ________________________
CITY: __________________ STATE: ______

Manufacturers of the world's most widely used personal communications transmitters.

write for information packed 4 Color Catalog

OSILLOSCOPES ARE "GOLD MINES"

HAND-HELD, MOBILE, BASE STATION

2-WAY RADIO

VIKING MESSAGES

NOW, 3 feature packed Johnson Messengers...outperforming everything else in the field!

Compact, hand-held 100 milliwatt or 1 watt "Personal Messengers", rugged and reliable—11 transisters, 4 diodes! Superheterodyne receiver and exclusive tuned RF amplifier gives twice the sensitivity and 40% more range than similar units with conventional circuitry—more output than similar units with same rated inputs! For mobile or base stations—performance proved Viking "Messenger" punches your signal across the miles! High efficiency design makes full use of maximum allowable legal power. Excellent receiver sensitivity and selectivity. Automatic "squeland—5 channel coverage. Only 9" x 2" x 11", easy to install anywhere!

WRITE TODAY for information packed 4 Color Catalog

E. F. JOHNSON COMPANY
1509 10th Ave. S.W., Minneapolis, Minnesota

Please rush "Messenger" details to:

NAME: ___________________________
ADDRESS: ________________________
CITY: __________________ STATE: ______

Manufacturers of the world's most widely used personal communications transmitters.

104 RADIO-ELECTRONICS
This neon indicator lights up when minuscule 3 volts are applied. It biases the transistor to conduct so it oscillates. The ac output is stepped up high enough to ignite the lamp.

Thyratron Failure Detection

Patent No. 3,040,264

John E. Owens, Wilmington, Del. (Assigned to E. I. du Pont de Nemours & Co., Wilmington, Del.)

If a thyratron burns out during operation, the controlled equipment might be damaged. This inventor has discovered that, as the tube nears the end of useful life, it generates internal oscillations. For example, a 3C23 generates 200 kc. The circuit shown detects this signal. The choke at the end of the circuit, is the circuit shown detects this signal. The choke is broadly resonant at 200 kc. D1 suppresses spikes of voltage often associated with thyratron circuitry, and D2 is a meter rectifier.

Microminiature Lamp

Patent No. 3,040,204

Donald J. Belknap, 302 Patterson Court, Takoma Park 12, Md. (Inventor)

This tiny lamp may be used as a probe or an indicator. It is so small that a single unit may be mounted at the end of a meter pointer. Dimensions are shown in the diagram. The filament (held by hooked ends on the leads) may be 25 turns of tungsten wire .00025 inch in diameter wound on a .001-inch mandrel. The lamp consumes only 25 ma at 1 volt.

Cloud Research

Patent No. 3,028,154

V. K. Zvarzin and C. C. Schaffin, Princeton, N. J. (Assigned to RCA)

This patent was applied for in 1948, but was delayed for reasons of military security. It describes a rocket used to explore clouds. The metal nose and rear case are insulated from each other.

For clarity, the components inside the missile are drawn schematically outside.

C is charged before launching, and S is closed on leaving the ground. The tube cannot fire because of its grid bias. However, when the rocket reaches a cloud where the potential difference is high enough to overcome the bias, the tube fires. Current through R (resistance wire) sets off an explosive charge to indicate the exact location of the rocket and charged cloud.

Exposure Meter

Patent No. 3,028,499

Robert A. Farrell, Needham, Mass. (Assigned to General Electric Co.)

An exposure meter must respond to a very wide range of illumination. This requirement is normally met with logarithmic type meter energized by a photocell. This new method uses a meter (which is less expensive) and two photocells, one photovoltaic (V1) and the other photoconductive (V2).

The same light source energizes both cells. If the illumination increases, for example, V1 generates higher voltage but, since V2's resistance falls, there is only slightly greater output to the meter.

Such an arrangement may respond from 0.1 foot-candle to 10,000 foot-candles. Also, it provides temperature compensation. For example, higher temperature causes more output from V1, but since it also lowers V2's resistance, the output remains nearly constant.

Close Regulation

Patent No. 3,040,241

Irvin Wonderland, Mountain View, Calif. (Assigned to Hewlett-Packard Co., Palo Alto, Calif.)

A neon lamp alone can regulate dc voltage, but here it does a far better job with the aid of an incandescent lamp and photoresistors (R2, R3). Over the input range shown, the output varies only 2 volts.

R2 is placed where light from the neon lamp falls on it. R3 is illuminated by the 3-watt lamp. If, for any reason, the output tends to fall, V1 dims slightly and RE's resistance increases. Lower current now flows through the 3-watt lamp and R3's resistance also increases. As a result of a smaller drop across R1, the output voltage returns to normal.

R2, R3 have a dark resistance of about 5 megohms.

NEW PATENTS

Neon Indicator

Patent No. 3,012,237

This neon indicator lights up when minuscule 3 volts are applied. It biases the transistor to conduct so it oscillates. The ac output is stepped up high enough to ignite the lamp.

8 TUBE AM/FM COMBINATION RADIO TUNER AND AMPLIFIER CHASSIS, complete with tubes. A fine quality unit that makes a wonderful accessory for your game room, den, etc. Automatic frequency control, tone control, phone input. Comes complete with simple installation instructions. Only ________ $14.95.

BRITE

SAVINGS

Order By Mail

GUARANTEED QUALITY PRODUCTS

THE WORLD'S SMALLEST TRANSISTOR PHONORADIO COMBINATION, complete with vinyl carrying case, earphone and batteries. Plays 33 1/3 and 45 rpm records. Carry it anywhere . . . dances, jam sessions, meetings, picnics, etc. Lightweight, portable. Excellent tone quality ________ $39.95.

MONOaural FLIP-OVER TONE ARM. Beautifully streamlined with sapphire stylus. Wonderful quality. A bargain at ________ $1.39 each.

MINIMUM ORDER $3.00

Send check or money order and include $1.00 for postage and handling. Sorry, no C.O.D.'s. Complete satisfaction guaranteed or money refunded.
the more you know about TEST EQUIPMENT — the more valuable a 'tool' it becomes

RIDER BOOKS

IT'S EASY TO USE ELECTRONIC TEST EQUIPMENT by Klein & Gilmore. 116 page, a practical, geared to do-it-yourself guide on electronic test equipment shows how to use and maintain the equipment for the best advantage in many many applications. Only up-to-date book covering all the basic test instruments. Of benefit to both the newcomer to servicing and the old "pro".

1. Saves you money on the purchase of new equipment because you'll know what features to look for. You avoid buying the equipment you don't need.
2. Saves you money in keeping your own test equipment in top condition because you're more familiar with what makes it tick. No more sending equipment back to the factory for adjustment or repair when you can do the job yourself.
3. Makes your present equipment more valuable by showing you new ways to use it.
4. Opens new fields of servicing because it makes you familiar with instruments used for radio and TV servicing, industrial and audio.

Equipment covered is from simple VOM's and VTVM's through signal generators, oscilloscopes and other test equipment and helpful accessories, $2.98. $4.00.

HOW TO USE METERS (2nd edition) by John J. Rider and D. F'rendly. "an indispensable addition to the art of meter instrumentation" — DESIGN NEWS.

Explain in detail the construction and operation of all types of electrical meters, how to make readings, and repairs. $3.95.

OBTAINING & INTERPRETING TEST SCOPE TRACES by John F. Rider. "... anyone who works with or plans to work with, a cathode-ray oscilloscope will benefit from ... this book. The test is extremely clear and the illustrations leave nothing to the imagination ..."—POPULAR ELECTRONICS, $4.16, $5.00.

HOW TO USE TEST PROBES by A. Ghirardi & H. Middleton. "an excellent book ..." — POPULAR ELECTRONICS.

The only book of its kind! Complete step-by-step explanations with practical examples of applications of all types of test probes used with test scopes, VTVM's, and VOM's. $1.65, $2.00.

HOW TO USE GRID-DIP OSCILLATORS by Rufus F. Turner, P. E., K&AI. "Well written ... of considerable interest to any electronic specialist working with a variety of circuits." — ELECTRONIC TECHNICIAN, $2.25, $3.50.

HOW TO USE SIGNAL AND SWEET GENERATORS by J. Richard Johnson. Discusses all types of signal and office generators, and their applications in AM, FM and TV. $2.50, $3.50.

ENCYCLOPEDIA ON CATHODE-RAY OSCILLOSCOPES & THEIR USES (3rd ed.) 1360 pages — 32 chapters, 3000 illustrations.

"Monumental" is the best word to describe this giant-sized volume that covers the oscilloscope completely from Aperature Control to 2-axis inputs. $13.95, $27.00.

All your books, parts distributor or direct.

10-DAY MONEY-BACK GUARANTEE

John F. Rider Publishers Inc.
A Division of Klein & Gilmore Publishing Co., Inc., RE 12
116 West 14th Street, New York 11, N. Y.
Enclosed is $. Please send:
[] 2308, $4.00 [] 2144, $3.50 [] 2146, $3.00
[] 2165, $2.50 [] 2445, $2.50 [] 2147, $2.40
[] 2133, $2.00
Name:
Address:
City: Zone: State:

106

Change That Capacitance!

Here's a trick that I have been getting away with when in tight spots in building various types of R-C oscillators or networks. When I need a fixed-frequency oscillator and stock components just aren't the right value, I merely insert disc ceramic capacitors slightly higher in value than I calculate I need. Noting the operating frequency of my oscillator, I gaily start chopping at the capacitor with a pair of wire cutters, removing pieces of its body opposite the leads until enough of the dielectric and its associated plates have been removed to lower the capacitance to the correct value.

Granted, this method is a bit insane and against all teachings of electronic component manufacturers but nevertheless it works and is invaluable to the home experimenter who can't afford costly precision parts. One word of warning, however — temperature and long-term stability-wise, the altered components just don't stand up. Thus, in final designs it is advisable to replace the hacked-up components with ones of higher quality. This is especially true when extreme temperature ranges are to be encountered. Remember, too, that this technique works only on disc ceramic capacitors. Other types just can't be altered. —George R. Wisner

High-Voltage Leakage Tester

We use a simple radio rig to provide 450 volts dc for insulation leakage tests on appliance motors and controls. Half-wave rectifiers for voltage tripling give 450 volts on open circuit. We use a 20-ma 130-volt rectifier stack. Polarity

YOU SAVE MONEY!

RUSH US YOUR LIST OF HI-FI COMPONENTS FOR A SPECIAL QUOTATION

WRITE FOR FREE AUDIO DISCOUNT CATALOG A-15

New low prices on amplifiers, tuners, tape recorders, speakers, etc.

Electronics Co.
120 Liberty St.
New York 6, N.Y.
of the capacitors, if electrolytic, is important.

We use this rig feeding one side of a two-circuit receptacle, the other the series resistor for bench test leads. The small components are housed in a box 4 inches square for use at customers' homes, or they may be mounted on a test panel at the workbench, the box having a combination duplex receptacle and pilot-light cover. Be sure to include the 1-megohm resistors in the output leads, and be careful to enclose the equipment completely. Otherwise you can find yourself across a lethal 500 volts.—Harry J. Miller

Marking Tubes and Chassis

In servicing, I often find it helpful to mark or identify tubes and chassis points—B+, Video In, Sync Signal, etc. An invaluable aid for this is the use of pressure-sensitive tapes, which come on cards. Obtainable in various colors from electrical supply houses, they are pre-cut to uniform size, inexpensive, easy to work on, clearly visible, and they make for small, neat identification.—Jack J. Rothstein

Dust Protection

The workbench of the electronics experimenter is the one place in the house most likely to be covered with dust, mainly because of the difficulty of trying to dust panels studded with knobs, switches, jacks, etc. Dust is particularly bad for electronic devices because of their many sensitive switch and relay contacts. One solution, especially useful for equipment used only occasionally, such as the printed-circuit breadboard outfit shown in the photograph, is to put the equipment in plastic bags, or at least to cover it with plastic sheets. Thus the instrument is always visible, easily accessible and, best of all, dust-free.—Ronald S. Newbower

DECEMBER, 1962

Guaranteed

Outperforms Speakers Costing Five Times More or Your Money Back!

ALL NEW... ALL WOOD... the KENT—only $19.95

Features famous British extended-range speaker with performance and design qualities found only in bookshelf speaker systems costing more than $100. Brilliant, faithful reproduction that will equal or surpass speaker units many times this price.

Scientifically designed, precision crafted, acoustically-true natural grained solid wood cabinet—composite wood or processed wood chips. The "Kent" can be stained, oiled or waxed in any finish.

Order Now to insure prompt delivery! This remarkable speaker is not available in retail stores. Direct factory sales only . . . and you save a bundle. Price—$19.95 F.O.B. factory. Shipping weight 18 pounds.

Amazing

TV Life-Saver

ONLY $4.95

U.S. Pat. 2,914,567

Eliminates Costly TV Troubles

By absorbing damaging in-rush current so destructive to Television and Hi-Fi tubes, the TV LIFE-SAVER eliminates 3 out of 4 Service calls by more than tripling the life of all tubes...

Protection

Model 4100-2, 100-275 watts 117 V. $1.95 List
Model 6030-4, 250-400 watts 117 V. $2.95 List

Wuerth Surgistor®

A new component easily installed to reduce call-backs by eliminating surge current damage to television and Hi-Fi tubes.

See your dealer or distributor today for these money saving, equipment saving Miracle Inventions. Or, send your order direct to us for prompt action.

Wuerth Products Corp.
1931 Moffett St., Hollywood, Florida
NEW SAM'S BOOKS

TV Servicing Made Easy
Wayne Lemons, an expert service technician, tells you, in simple language, how to repair the tougher types of TV troubles and explain the theory behind them. You are most likely to encounter in every type of circuit. Ten chapters: Turning on a Projector; Video and Picture Tubes; A/C and Noise Limiters; Synch Circuits; Horizontal-Sweep and High-Voltage Circuits; Vertical-Sweep and Fine Tune; Audio Couplers; Power Supplies; Servicing Procedures and Techniques. 160 pages, $3.50. Order SME-1, only $2.29.

How to Repair Major Appliances
The complete "A-to-Z" practical manual of home electrical repair. This handbook reference volume describes clearly the operating principles, then provides full details for troubleshooting and repairing the most widely used types of home appliances. Covers refrigerators, freezers, automatic washer, dryers, dishwashers, garbage disposal units, ranges, air conditioners, water heaters, dehumidifiers, mixers, etc. Includes both electric and gas units. 192 pages, $8.50. Order SME-2, only $3.75.

Medical Electronics Equipment Handbook
The most comprehensive, up-to-date book in the fascinating field of electronic medical devices. Covers all the major instruments now in use: describes function, operation, adjustment, and repair. Eleven chapters include: Spectrophotometers; Electrotherapeutic Devices; X-Ray Machines; Electrocardiographs; Degaussing; Intracranial Ultrasonic Devices, pH Meters; Titrators; Cells Counting Systems; Microscopes; Radiographic X-Ray Units; Distillation Apparatus; Spectrophotometers; Electrothermal Apparatus; EKG Electrocardiographs. Glossily illustrated. 256 pages, 7" x 11"; hardbound.

Fundamentals of Radio Control
Leo G. Sands fully covers the subject of control of objects and devices by audio, ultrasonic, lightwave, infrared, and microwave frequency transmission. Primary applications and principles of operation are explored deeply and clearly. This is a clear understanding of radio control as applied to such devices as vehicle detection, traffic control, marine auto-alarm, remote control of base and broadcast stations, Autocoll systems, gas and coal detonation, remote lighting. Basic Control Systems, Analog Modulation & Demodulation, Digital Modulation & Demodulation, Input Devices, Output Devices Control System Applications. FCC, DOT, and Fire Regulation. 150 pages, 7" x 11"; hardbound, only $12.50.

Broadcast Engineering Notebooks, Vol. 1
Television Tube Fundamentals
This first volume of an important new series provides a full understanding of the operating principles, applications, and maintenance of television tube equipment. Arranged in a unique notebook form, it is the most authoritative reference for B.E.C. engineers, technicians, and students. Explains the mechanics of time-space errors, gate circuits, B.C.N. blocks, etc. Seven sections include: Basic Electronics, Tube Theory; System root items; Video Signal Processing; Servo Systems; Operating Principles, 256 pages, 7" x 11"; hardbound. Order BEN-1, only $15.

ABC's of Short-Wave Listening
Len Busacker introduces you to the exciting world of short-wave radio, with its international broadcasting, amateur operations (both voice and code), police and emergency transmissions, commercial aircraft and ship-at-sea communications. Tells you not only what equipment is available, and how to get the most out of short-wave listening, but gives practical advice on how to hook up an antenna for best reception on various frequencies, types of receivers and how to make the best use of them. Explains the effects of radio-wave skip, the best time to receive particular frequencies, etc. A wonderful guidebook to the fascinating hobby. 96 pages, 7" x 11"; hardbound. Order SWL-1, only $5.

NEW AUTO RADIO MANUAL, VOL. 16
Just out! Covers 1971 popular late-model auto radios. Complete PHOTOFACT servicing data on each model. 160 pages, 7" x 11". Order AR-16, only $3.95.

GREGORY ELECTRONICS CORPORATION
112 Route 46
Saddle Brook, N. J.
Phone PR 3-7550

BASIC INDUSTRIAL ELECTRONICS

This handy reference volume describes clearly the operating principles of industrial equipment. It also contains detailed information on indicators, recorders, controllers and actuators used in electronic control applications.

PROGRAMMING FOR DIGITAL COMPUTERS

The prospective programmer will do well to read this book, which is simply an introduction to writing programs for digital computers.

HOW TO READ SCHEMATIC DIAGRAMS
by Donald E. Herington, Howard W. Sam's & Co., Inc., 1720 E. 38 St., Indianapolis, Ind. 5" x 8 1/2 in. 120 pp. $1.50.

From simple component to complicated module, this book explains its function and how to recognize it in a complete diagram.

RADIO SERVICING MADE EASY, Vol. 1
by Leonard G. Lane, Grants Beach Library Inc. 154 W. 14 St., New York, N. Y. 5% x 8 1/2 in. 188 pp. ea., Paper, $3.85 ea., $7.20 set, Cloth, $9.95 set.

A two-volume set, so complete that both the beginner and the full-time technician will find it useful.

ELECTROTECHNOLOGY, Parts 1 through 8, by D. L. Carr, St. Martin's Press Inc., 175 Fifth Ave., New York 10, N. Y. 5% x 8 1/2 in. 695 pp. in all. Paper, $1.50 each part.

An eight-part course in basic electronics. Part 1 covers direct current circuitry; part 2 covers radio-telecommunication systems; part 3 magnetic amplifier circuitry and electronic amplifiers; part 4 alternating currents; part 5 more advanced ac theory; part 6 6C generators and motors; part 7 7C transformers and 7C machinery; part 8 electronics and electronic illumination.

ABC'S OF SYNCHRO'S AND SERVOS, by Alan Andrews, Howard W. Sam's & Co., Inc., 1720 E. 38 St., Indianapolis, Ind. 5% x 8 1/2 in. 96 pp. $1.95.

With the aid of illustrations, this booklet begins with fundamental principles to explain how servos operate.

This enlarged and expanded volume is a practical manual that covers the physics, technology and circuit applications of transistors, diodes and photo-cells.

Refresher course in basic arithmetic operations of positional number systems.

School Directory

ENGINEERING DEGREES
E. E. Option Electronics, Mechanical, Administration, and Liberal Arts
Earned Degrees
HOMESTUDY
Resident Claims Also Accepted
Specify course preferred
PACIFIC INTERNATIONAL COLLEGE OF ARTS & SCIENCES
Primary by correspondence school
5719 M. Santa Monica Blvd.
Hollywood 30, Calif.

GET INTO ELECTRONICS
V.T.O. training leads to success as technicians, field engineers, specialists in electronic devices. Full- and part-time courses in theory & applications. Equipment & instructional aids. Diploma awarded if approved. Graduates in all branches of electronics with major emphasis on practical training. High school graduate or equivalency. Catalog.

VALPARAISO TECHNICAL INSTITUTE
Department C, Valparaiso, Indiana

1. The names and addresses of the publisher, editor, managing editor, and business managers are:
Publisher: Hugo Gernsback, 154 West 14 St., New York, New York.
Editor: Harvey Gernsback, 154 West 14 St., New York, New York.
Managing Editor: Hugo Gernsback, 154 West 14 St., New York, New York.
Business Manager: None.

2. The owner is the corporation by its name and address must be stated and also its interest in the publication, if any, and the names and addresses of stockholders owning or holding 1 percent or more of the total amount of stock. If owned by a corporation, the names and addresses of the individual owners must be given if owned by a partnership, its name and address, as well as that of each individual member must be given.) Gernsback Publications, Inc., 154 West 14 St., New York, New York.

3. The known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds, mortgages, or other securities is as follows:

4. Paragraphs 2 and 3 include, in cases where the stockholder or security holder apposes upon the books of the company as trustee or in any other fiduciary relation, the name of the person or corporation for whom such trustee is acting; also the statements in the two paragraphs show the affiant's full knowledge and belief as to the circumstances and conditions under which stockholders and security holders who do not appear among the names of the books of the company as owners at a census other than that of a bona fide owner.

5. The average number of copies of each issue of this publication sold or distributed, through the mails or otherwise, to paid subscribers during the 12 months preceding the date shown above was: This information is required by the act of June 31, 1960 to be included in all statements required for frequency of issue.) 161,996.

H. Gernsback
(Signature of editor, publisher, business manager, or owner)
[Signature and subscribed before me this 19th day of September, 1962.
(SEAL)]
Joanne Dodson
(My commission expires March 30, 1964)

DECEMBER, 1962

ENGINEERING EDUCATION for the Space Age

NORTHROP INSTITUTE of Technology
is a privately endowed, nonprofit college of engineering offering a complete Bachelor of Science Degree Program and TWO-YEAR accredited technical Institute curriculum. Students from 50 states, major foreign countries. Full-time, part-time, off-campus programs available. Accredited, specialized, low cost educational opportunities. No recitation. No residence. No interview. NORTHPHEN INSTITUTE OF TECHNOLOGY
1816 West Arbor Vitae Street, Ingledow, California

ENGINEERING
B. S. DEGREE
Science
MATH
in 36 mos.

U.S. NEEDS 50,000 NEW ENGINEERS
EASY ACCREDITED B.S. DEGREES in Science or Engineering offered by NORTHROP INSTITUTE of Technology. Length, engineering diploma also available. Classes held in evening, on Saturdays, Qualify Education. Graduates employed throughout the U.S. and foreign countries. Government sponsored for veterans training. Students from 50 states, 40 countries. 20 buildings, dorms. G.I. Chorus. New library. Students enrollment in any field included. WRITE TIME AND MONEY. Write for catalog and full information.

1616 E. Washington Blvd., Fort Wayne 2, Indiana

INDIANA TECHNICAL COLLEGE

GET IN ON THE GROUND FLOOR IN ELECTRONICS!
Demand for trained men in every phase of electronics and radio-TV has never been higher. And new opportunities are opening up so fast that you can still get in on the ground floor. But only if you act now.

To prove how I.C.S can help you break into this big money-making field, we'd like to send you—FREE—the famous I.C.S. Electronic Career Kit. There are 3 valuable booklets in this kit—guaranteed to open your eyes to opportunities, and show you how easily you can take advantage of it! But don't delay. This could be your chance of a lifetime! Mail the coupon today.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dean's Office 23420L, Scranton 15, Pa.

Please rush me FREE Career Kit. My field of interest is:
□ Electrical Engg.
□ Electronic Computers
□ Electrical Technician
□ Stereo and Hi Fi
□ Practical Electrician
□ Automatic Electronics
□ Profess'l. Engrr. (Elect.)
□ TV-Radio Servicing
□ Electrical Drafting
□ Other.

Name
Address
City
State
Age
Age
Zone

MILWAUKEE SCHOOL OF ENGINEERING
MAIL COUPON TODAY

MILWAUKEE SCHOOL OF ENGINEERING
Dept. RE-1262, 1025 N. Milwaukee St.
Milwaukee, Wisconsin

Please send FREE "Your Career" booklet.
□ I'm interested in □ Electronics □ Radio-TV □ Computers □ Electrical Engineering □ Mechanical Engineering
□ (PLEASE PRINT)
Name
Age
Address
City
State
Zone

□ I'm eligible for veterans education benefits.
□ Discharge dated

109

FREE CAREER BOOKLET

to guide you to a successful future in

ELECTRONICS
RADIO-TV COMPUTERS
ELECTRICAL ENGINEERING

This interesting pictorial booklet tells you how you can prepare for a dynamic career as an Electrical Engineer or Engineering Technician in many exciting, growing fields:

MISSILES · RADAR · RESEARCH
ELECTRICAL POWER · ROCKETRY
AUTOMATION · AVIONICS
SALES · DEVELOPMENT

Get all the facts about job opportunities, length of study, courses offered, degrees you can earn, scholarships, part-time work — as well as pictures of the Milwaukee School of Engineering's educational and recreational facilities. No obligation — it's yours free.

MILWAUKEE SCHOOL OF ENGINEERING
CASH PAID! Sell your surplus electronic tubes. Want unused, clean radio and TV receiving, transmitting, special purpose, Magnetrons, Klystrons, broadcast types, etc. Want military & commercial lab/test and communications equipment—such as G.R., H.P. AN/UPM prefix. Also want commercial receivers and transmitters. For a fair deal write BARRY, 512 Broadway, New York 12, N.Y. Walker 5-7000.

PLATINUM electronic scrap bought. NOBLE METALS CO., Box 543, Los Angeles 9, Calif.

EDUCATION/INSTRUCTION

LEARN WHILE ASLEEP, Hypnotize with your recorder, phonograph or amazing new Electronic Educator endless tape recorder. Catalog, details free. SLEEP-LEARNING ASSOCIATION, Box 24-RD, Olympia, Wash.

NEW CONCEPT OF LEARNING SELF-HYPNOSIS! Now on tape or record! Free Literature. MCKINLEY-SMITH Co., Dept. T5, Box 3038, San Bernardino, Calif.

FCC LICENSE in 6 weeks, First Class Radio Telephone. Results Guaranteed. ELKINS RADIO SCHOOL, 26036 Inwood, Dallas, Texas.

JOB-SEEKING TECHNIQUE, $1.00. WALTER KAZAKS, 234 E. 58th St., New York 22, N. Y.

LEARN MORSE CODE easily, quickly never to forget! Amaze your friends! Send 50c for remarkable booklet! "How to Learn the Morse Code in Ten Minutes." C. YATLEE, Dept. MC2, P. O. Box 2373, San Francisco, Calif.

SERVICES

METER REPAIRS. Average $2.50 by BIGELOW ELECTRONICS, Bluffton, Ohio. Free Mailing Pack.

TRANSMITTED products dealers catalog, $1. INTEKMARKET, CPO 1717, Tokyo, Japan.

ALL MAKES OF ELECTRICAL INSTRUMENTS AND TESTING equipment repaired. New and used instruments bought, sold, exchanged. HAZELTON INSTRUMENT CO., 128 Liberty St., New York, N.Y.

SPEAKER RECONING. Satisfaction Guaranteed. C & M RECONE CO., 255 Toega St., Trenton, N.J.

TV Tuners—rebuilt or exchanged, $9.95. Fass, Guaranteed. Complete crystal control alignment. VALLEY TUNER SERVICE, 18530 Parthenia, Northridge, Calif.

MULTIMETER REPAIRS. Average $7.00 by, BIGELOW ELECTRONICS, Bluffton, Ohio. Free Catalog.

JAPAN DIRECTORY. 145 manufacturing exporters. Japan and Hongkong trade journal information. Asia opportunities. Send $1.00.

NIJIN SEPPO (Box 739, Seattle 11, Wash.) TV TUBE SUBSCRIPTION SERVICE. Let us solve your new tube stocking problems. Write today for complete information. No obligation. TELEFIX, P.O. Box 361, Levittown, N. Y.

G.R., H.P. L&N, etc., Tubes, military, military electronics, ENGINEERING ASSOCIATES, 424 Patterson Road, Dayton 19, Ohio.

FOR SALE

TRANSPORTERIZED PRODUCTS replacement parts catalog $1.00 money order. Custom orders for transportizerized equipment or components. Write TECHSERVICES, C.P.O. Box 849, Tokyo, Japan.

BEFORE You Buy Receiving Tubes, Test Equipment, Hi-Fi Components, Kits, Parts, etc. . . . send for your Giant Free Zaltron Current Catalog, featuring all STANDARD BRAND TUBES all Brand New Premium Individually Boxed. One Year Guarantee—All at BIGGEST DISCOUNTS in America! We serve professional servicemen, hobb- byists, experimenters, engineers, technicians, WHY PAY MORE? ZALTRON TUBE CORP., 220 W. 42nd St., New York, N. Y.

FREE CATALOG—name-brand tubes 65% dis- count, phon needles 80% or more discount, phon cartridges, picture tubes 75¢ inch, parts, parts kits, silicon and selenium rectifiers, transmitting tubes, 77" TV test tube $6.99, imported batteries, tube testers etc. Want to swap or sell tube inventory? Send us your offering. ARC-TURUS ELECTRONIC CORP.—Dept. R.E., 302 22nd St. Union City, N. J.

SOLDERING AID—SAVES 50% lead/tin, form "3x2" t. "Thin-Knit!" Used U.S. Sig. Lab. etc. Positive results guaranteed. BIG OZ. Sample 1.00 w/o, postpaid in USA. EARLE & BRUCE MACCABEE, Rutland, Vt.

DISC CERAMIC CAPACITORS. New, unused. Leading manufacturer. Most popular capacitance. Assortment of 30 capacitors for only $1.00.

ROCK DISTRIBUTING CO., 902 Corwin Rd., Rochester 10, N.Y.

TRANSISTORS, diodes, rectifiers, S.C.R. etc. Name brands, top quality. Experimenters, stu- dents, schools, experimenters! All specs guaranteed. Write for our free price list. AUTOCRAT, INC. P.O. Box 536, Dept. B, Dayton 6, Ohio.

LISTEN-IN-COIL" picks up any telephone conversation in vicinity. No connection to telephone necessary. Easily concealed. $2.98 complete.

ACOUSTICAL RESEARCH, 512 E. 80th St., New York 21, N. Y.

SAVE DOLLARS on radio, TV tubes, parts at less than manufacturer's cost. 100% guaranteed! No rebrand, pulls. Request Bargain Bulletin. UNITED RADIO, 1000-R, Newark, N.J.

U. S. GOVERNMENT SURPLUS—Jeeps, $264.00, radios, $2.53, guns, typewriters, cameras, tools, thousands of items. Fabulously low prices. Complete information sent immediately. Send $1.00 to: SURPLUS, PO Box 50512, Dept. N N, New Orleans 50, La.

DIAGRAMS for TV, $2.00, for radio, $1.00. HIETT DIAGRAMS, Box 816, Laredo, Tex.

TRANSISTOR INITIATION COIL—Instructions. SPECIAL—$6.50. ANDERSON ENGINEERING, 16 Williams, Wrentham, Mass.

ELECTRONIC SURPLUS CATALOG, 5,000 items. Send 10¢. BILL SLE P, Drawer 178R, Ellenton, Fla.

YOYOTRON or POSGRIDYNE New VT Def Amp Osc CIRCUIT- INVENTION: Old tubes—for newest tricks—compare solid state or better, Gain—Q—noise—economy. OPEN FOR NEGOTIATION—Pats Pgd. EARLE & BRUCE MACCABEE, Rutland, Vt.—Anybody!

PROFESSIONAL ELECTRONICS PROJECTS—Orgs. Timers, Computers, etc.—$1 each. List free. PARKS, Box 1665, Lake City, Seattle 55, Wash.

SUPERSENSITIVE DIRECTIONAL MICROPHONE picks up faint sounds at 300 feet. Detects sound through ordinary walls. Easily built for $7.00. No electronic experience necessary. Illustrated plans, $2.00. DEE CO., Box 7263-A, Houston B, Tex.

BUILD TRANSISTORIZED MULTIPLEX ADAPTER. Printed-circuit board, parts list, schematic, instructions. $4.95. postpaid. PACIFIC INSTRU- MENT LABORATORIES, 124S W. Norgate St., San Dimas, Calif.

TRANSFIRE IGNITION. Transistor electronic. Save gas, tune-ups. Points, plugs last 50,000-100,000 miles. Improved cold-starting high-speed performance. Parts, complete conversions, kits from $34.95. PALMER ELECTRONICS, R-1, Carlisle, Mass.

GOVERNMENT SURPLUS. Voltmeters—$1.05, Freq.—$4.37, Transmitters—$6.18, Receivers—$5.65. Oscilloscopes, Multimeters, walkie-talkies. Typical surplus prices. Exciting details FREE. Write: N. Y. ENTERPRISES, Box 402-F14, Jamaica 30, N. Y.

CONVERT ANY TELEVISION TO SENSITIVE, Big- screen oscilloscope. Only minor changes neces- sary. Plans $1.95. RELCO, Box 10553, Houston 18, Tex.

10 DISTANCE CRYSTAL SET plans—25¢; 20 dif- ferent—$5.00, includes Transistor experiments, catalog, LABORATORIES, 1131-B Valois, Red- wood City, Calif.

DIAGRAMS. Radio $.75, Television $1.50.

BAKER, 129 Cooper, Santa Ana, Calif.

SUN BATTERY. Converts sunlight directly into ½ volt at .5MA. Instructions for powering radios, making light meters, etc. included. Bargain priced $1.00 each. 7 for $4.00 postpaid. CUSTOM RE12 SERVICE, 5071 Pico Blvd., Los Angeles 19, Calif.

TELETYPE EQUIPMENT, 75 WPM, excellent condition. Automatic tape relay two-channel line units $340.00, single-channel cross office $280.00. Delivery available 200 miles. FRANK HOLL- OWAY JR., 513 N. Pinehurst Ave., Salisbury, Md.

www.americanradiohistory.com
Audio—Hi-fi

WRITE for our low quotation on components, recorders. FREE catalog. HI-FIDELITY SUPPLY, 2017-XC, Third Ave., New York City 55.

TAPE recorders, Hi-Fi components, Sleep-learning equipment, Tapes, Unusual values. Free catalog. DRESSNER, 1520 Jericho Turnpike, New Hyde Park 5, N.Y.

RENT STEREO TAPES—over 2,500 different—all major labels—free catalog. STEREO-PARTI, 811-RE, Centinela Ave., Inglewood, Calif.

SALE ITEMS—tapes—recorders—component quotes. BAYLA, Box 131-RE, Wantagh, N. Y. SAVE 50% on guaranteed first-line professional recording tape; 30% on stereo music tapes. Tape duplication services. Free literature. AMERICAN RECORDING CO., 6704 Edsall Road, Alexandria, Va.

ATTENTION: A THRILLING FIND: We have just uncovered a collection of original antique Edison Cylinder Phonographs, released from 50 years of storage. Each in perfect working order and shape. Each complete with outside concert horn with stand and 12 original cylinders. Each $70.00, extra cylinders $1.00 each. TRACY STORAGE CO., 114 State, Brewer, Me.

MISCELLANEOUS

$100 WEEKLY POSSIBLE. Compile mailing lists and address envelopes for advertisers. Home-spare time. Particulars free. NATIONAL SERVICE, 81 Knickerbocker Station, New York, N. Y.

BOOK 200 Electrical Stunts $1.00. CUTRADO, 875 Arcatrdco, Palo Alto, Calif.

SELL, super brilliant, diamond faceted gems. Free price list. PHILLIPS CEM CO., Brady Lake, Ohio.

MAKE $25-$50 WEEK CLIPPING newspaper items for publishers. Some clipping worth $5.00 each. Particulars free. NATIONAL, 81 Knickerbocker Station, New York, N. Y.

EXOTIC EARRINGS! Details Free. Paif. $1.00. OHGA, RA-405, Sigakenkusu, Japan.

BUSINESS AIDS

BUSINESS CARDS, LABELS, RUBBER STAMPS. Send for free descriptive literature, HEIGHTS INDUSTRIES, 6121 C Street, Capitol Heights 27, Md.

250 BOND 8½x11 letterheads, 250 Envelopes Printed $5.50. ACADEMY PRESS, Enterprise, Kan.

1,000 BUSINESS CARDS $3.95. Many other bargains. List Free. AICO, Box 244-R, Urbana, Ill.

(Continued from page 108)

How computers may affect traditional business management techniques.

A collection of 37 papers, covering thermoelectric, thermionic, photovoltaic and electrochemical devices used to convert other types of energy into electricity.

A clear and simple presentation, intended for the nontechnical hobbyist. It is expected that the experimenter will buy most of his electronic apparatus, but will build much of the mechanical control equipment.

ABC'S OF TAPE RECORDING, by Norman Crawford. Howard W. Sams & Co. Inc., 1720 E. 38th St., Indianapolis 6, Ind., 5½ x 8½ in. 95 pp. $1.50.

A practical book for the nontechnical man. Tells him how to buy, maintain and use his tape recorder in simple, practical and advanced applications. A few hookups for the advanced applications, in pictorial-diagram style.

A book intended for the nontechnical man, to help him select intelligently, to install and, to a certain extent, maintain his high-fidelity equipment.

REPAIRING TV REMOTE CONTROLS by Leon Cantor and Harry Horstmann. John F. Rider Publisher Inc., 116 W. 14 St., New York, N. Y. 5½ x 8½ in. 122 pp. $2.50.

Tells how to align and troubleshoot modern TV remote-control units. END

POLY PAKS

Send 10¢ for Bargain Mail-Order Flyers

Poly Semiconductors Poly Paks Parts

1,000,000 PARTS BOUGHT FOR THIS GIANT CHRISTMAS SALE

FREE OUR YULETIDE GIFT PAK WORTH $15

Includes Transistors Diodes Rectifiers Capacitors Condensers... .

PLUS $1 FREE YOUR CHOICE OF ALL PAKS

BOTH FREE WITH EVERY $10 OFFER

TRANSISTOR V. CONTROL, 1½ in.
10MPC-300-500 TRANSMITTERS, 1800-WATT BASE.
60 ASST FIBERBRUSH COND. TO 6 mf, to 6 KV
150 ASST DISCO CONTROL, to 150-mfd cond. coils.
50 PLUGS-CEPACETALES, aud. prov. by...
50 ASST FUSE SOCKETS, free.
30 HI-O MOLDED COND, mylar too
12 TV CHASER CARDS
15 SLIDE SWITCHES, and 2A, 115 VAC.
18 TRANSISTOR SOCKETS, bump-up.
25 ASST POWER RESISTORS, 1-10K in TR.
30 PANEL SWITCHES, microstrip-ply.
10 ASST MICA CAPACITORS, 1-2000 pf.
40 ASST PRECISION RESISTORS, 1%.
100 ASST SOLDERING AIDS, 1%.
25 ASST TV KNOBS, 1%.
10 ASST ELECTROLYTICS, trigger tone.
100 ASST LOW-VOLTAGE RESISTORS.
4 SUN BATTERIES, to 150V. site cond.
100 ASST TRANS ELECTROLYTIC.
525 RADIO-IN TV SURPRISE, shop must.
10 ASST COILS & CHOKES, rf. cond. if.
10 TV-wm TRANSFORMERS, 1%. vars.
50 A. BRADLEY RESISTORS, factory aged.
10 TRANSISTOR SOCKETS, "W"-ridges change.
100 ASST 155 RESISTORS, factory aged.
10 TRANSISTOR SOCKETS, "W"-ridges change.
100 ASST HI Q RESISTORS, up to 500K, 1%.
9 RCA PHASE INDUCTORS, free.
50 ASST TERM STRIPS, up to 12 husps.
100 ULTRA MINIATURE RES.
35 ASST SILVER MICA CAPS, 1%.
10 MICROSWITCHES, by Gen. Elec.
100 AMPLIFIER CAPS, 6-12 values.
10 PRINTED CIRCUIT PARTS, 1000.
10 WORLD'S SMALLEST RESISTORS, 1% to 100.

SEMI-KONS BY PLY

We bought up millions, no chance to test 'em!

10 2AMP SILICON RECTIFIERS, initial.
10 2AMP SILICON RECTIFIERS, final.
20 PNPN TRANSISTORS, Gold Toy.
10 PNPN TRANSISTORS, Gold Toy.
10 TRANSISTORS, 5 planning.
5 POWER TRANSISTORS, 2N3945 cap.
10 EPOXY SILICON TRANSISTORS.
25 TOP HAT RECTIFIERS, silicon.

FACTORY TESTED

2 POWER TRANSISTORS, 2N3945.
100 STUB POWER TRANSISTOR.
2 PHILCO 30 MC TRANSISTOR, 2N5340.
10 AMR SILICON RECTIFIERS, GL-122.
15 ASST CRYSTAL & SILICON DIODES.
15 SILICON DIODES.
10 AMR GERMANIUM DIODES.
4 SUN BATTERIES to 145V, site cond.
15 100 WATTS LIKE 2N317, C-792.
20 SILICON RECTIFIERS, 750mA, 400V.
20 RCA TRANSISTORS 2N3720, wthout. 14.1V.
10 MATCHED PUSHPULL OUTPUT TRANS, pop.
10 500 SILICON TRANSISTORS, one-value.
4 2N2107 TYPE TRANSISTORS.

PRE-TESTED SILICON POWER DIODE STUDS

<table>
<thead>
<tr>
<th>Amps</th>
<th>Volts</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>350</td>
</tr>
<tr>
<td>1000</td>
<td>500</td>
<td>350</td>
</tr>
</tbody>
</table>

TRIMMED: Send check, money order, cash payment—wire net 50¢ each. Initial costs net 50 cts. EXPORT OUTLET.

P.O. Box 542-R, So. Lynnfield, Mass.

World's largest supplier of pre-packaged assortments.
ADVERTISING INDEX

Radio-Electronics does not assume responsibility for any errors appearing in the index below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allied Radio</td>
<td>57-58</td>
</tr>
<tr>
<td>American Elite Inc.</td>
<td>85</td>
</tr>
<tr>
<td>Anglo American Acoustics Ltd.</td>
<td>107</td>
</tr>
<tr>
<td>Audio Unlimited Inc.</td>
<td>80</td>
</tr>
<tr>
<td>B & K Manufacturing Co.</td>
<td>12</td>
</tr>
<tr>
<td>Bell Telephone Labs.</td>
<td>12</td>
</tr>
<tr>
<td>Bogen-Tongue Labs.</td>
<td>8</td>
</tr>
<tr>
<td>Bogen Leer Siegner Inc.</td>
<td>97</td>
</tr>
<tr>
<td>(Communications Div.)</td>
<td>78</td>
</tr>
<tr>
<td>Brile Electronics</td>
<td>105</td>
</tr>
<tr>
<td>Brooks Radio & TV Corp.</td>
<td>102-103</td>
</tr>
<tr>
<td>Burstien-Appliance Co.</td>
<td>97</td>
</tr>
<tr>
<td>Capital Radio Engineering Institute</td>
<td>2</td>
</tr>
<tr>
<td>Cartron</td>
<td>80</td>
</tr>
<tr>
<td>Cattle TV Tuner Service</td>
<td>10</td>
</tr>
<tr>
<td>Central Div. Div. of General Union</td>
<td>96</td>
</tr>
<tr>
<td>Cleveland Institute of Electronics</td>
<td>11, 63</td>
</tr>
<tr>
<td>CLASSIFIED ADS</td>
<td>110-111</td>
</tr>
<tr>
<td>Coladoraph</td>
<td>81</td>
</tr>
<tr>
<td>Coyne Book Publishing Div.</td>
<td>56</td>
</tr>
<tr>
<td>DeVizx Technical Institute</td>
<td>56</td>
</tr>
<tr>
<td>Dynaco Inc.</td>
<td>56</td>
</tr>
<tr>
<td>Editors & Engineers</td>
<td>90</td>
</tr>
<tr>
<td>Electro-Voice Inc.</td>
<td>16</td>
</tr>
<tr>
<td>Electronic Chemical Corp.</td>
<td>24</td>
</tr>
<tr>
<td>EICO Electronic Instrument Co.</td>
<td>24</td>
</tr>
<tr>
<td>Electronic Measurement Corp. (EMC)</td>
<td>98</td>
</tr>
<tr>
<td>Electronic Publishing Co., Inc.</td>
<td>106</td>
</tr>
<tr>
<td>Fair Radio Sales</td>
<td>106</td>
</tr>
<tr>
<td>GM Phonoelectrics</td>
<td>108</td>
</tr>
<tr>
<td>Gemsback Library Inc.</td>
<td>59</td>
</tr>
<tr>
<td>Graham School of Electronics</td>
<td>17</td>
</tr>
<tr>
<td>Gregory Electronics Corp.</td>
<td>108</td>
</tr>
<tr>
<td>Heat's Engineering College</td>
<td>99</td>
</tr>
<tr>
<td>Health Company</td>
<td>17</td>
</tr>
<tr>
<td>Holt, Rinehart & Winston Inc.</td>
<td>104</td>
</tr>
<tr>
<td>International Crystal Mfg. Co.</td>
<td>3</td>
</tr>
<tr>
<td>Jerrold Electronics Co.</td>
<td>9</td>
</tr>
<tr>
<td>E. F. Johnson Co.</td>
<td>104</td>
</tr>
<tr>
<td>Key Electronics Co.</td>
<td>106</td>
</tr>
<tr>
<td>Klyron, Inc.</td>
<td>92</td>
</tr>
<tr>
<td>Lafayette Radio</td>
<td>83</td>
</tr>
<tr>
<td>L.P. (R.) Mathews Co.</td>
<td>83</td>
</tr>
<tr>
<td>Merrill Electroncis</td>
<td>66</td>
</tr>
<tr>
<td>Moss Electrc Inc.</td>
<td>92</td>
</tr>
</tbody>
</table>

In the case of identical prices, entries are listed alphabetically.

Genuine "No-Noise" Products
BRAND NAME QUALITY MEANS MORE effective PROTECTION

NO-NOISE VOLUME CONTROL and CONTACT RESTORER

Scientifically formulated to clean, lubricate, restore, protect. NOT a carbon tetrachloride solution.

NET TO SERVICEMEN 2 oz. bottle $1.00 6 oz. spray can $2.25

NO-NOISE TUNER-TONIC with PERMA-FILM

A non-toxic, non-inflammable formula to clean, restore, lubricate all tuners, including radio, TV, record players, phonographs, tape recorders, etc. For internal and external use. Does not harm any electrical equipment. Just a little goes a long way!

NET TO SERVICEMEN 6 oz. aerosol can $3.25

OLSON ELECTRONICS, INC.

Free 5" PLASTIC Push Button Assemblies with ALL Electronic products. Free Pin Point Precision! Won't Cause Shorts!

ELECTRONIC CHEMICAL Corporation

813 Communipaw Avenue Jersey City 4, N. J.

NEED A 110 VOLT A.C. OUTLET?
IN CAR, BOAT OR TRUCK, YOU HAVE IT WITH A terado POWER INVERTER

Actually gives you 110 volt, 60 cycle A.C. from your 6 or 12 volt D.C. battery! Plug inverter into cigarette lighter, and operate lights, electric shavers, record players, electric tools, portable TV, radios, testing equipment, etc. Frequency will not change with change in load or input voltage.

Models from 15 to 300 watts, priced as low as $1295 LIST

See Your Electronic Parts Jobber, or Write:

terado CORPORATION

1055 Raymond Ave.
St. Paul 8, Minn.

In Canada, ATLAS RADIO CORP. LTD. - Toronto, Ont.

112
STANDARD CAN FIX IT BEST

$11.50 Plus Parts . . . $13.50 Maximum Total Cost
FREE Specially-designed shipping cartons to prevent damage in transit

6 Months GUARANTEE

- Only BRAND NEW PARTS Used - 48 Hour Service on All STANDARD Tuners - Latest Testing Techniques Assure Proper Alignment
- $3.00 Defective Tuner Trade-in Adjustment Against a New STANDARD Replacement Tuner Carrying a 12 MONTH GUARANTEE

IN TV IT'S Standard

STANDARD has maintained uniform mounting centers for the last 13 years. Over 50% of the TV sets in existence today have STANDARD tuners—in the case of most other tuners one of the 3 STANDARD replacement models can be easily accepted or will fit directly in place of these units. All STANDARD replacement tuners carry a 12 Month Guarantee.

SEE YOUR AUTHORIZED STANDARD DISTRIBUTOR

MORE PROFIT FOR THE SERVICE DEALER • GREATER CUSTOMER SATISFACTION GUARANTEED BY THE WORLD'S LARGEST TV TUNER MANUFACTURER

standard kollsman INDUSTRIES INC.
FORMERLY STANDARD COIL PRODUCTS CO., INC., MELROSE PARK, ILLINOIS

www.americanradiohistory.com
An important message to electronic technicians...

RCA invites you to
PUT YOURSELF IN THE COLOR PICTURE

Color television today is a 300-million-dollar-a-year business—and the fastest growing segment of the home entertainment industry.

Color TV programming is at an all-time high. If you still limit yourself to black-and-white servicing, you put yourself in the same position as the village blacksmith who considered automobiles a fad.

Leading manufacturers are now turning out color TV sets with the color picture tube developed by RCA. Servicing these sets means big and highly profitable business, but it requires special skills, knowledge, equipment and parts. What are you doing to take advantage of this great new business opportunity?

To the public, color TV means RCA! It was RCA who conceived and pioneered the compatible color system in universal use.

How can you climb on the color bandwagon? Associate your business strongly with the prestige and customer acceptance of the recognized pioneer of color TV. See your authorized RCA distributor; stock and advertise RCA tubes and associated products for color. Isn't it time you started seeing yourself in color?

RCA ELECTRON TUBE DIVISION, HARRISON, N.J.
THE MOST TRUSTED NAME IN TELEVISION