Radio-Electronics

TELEVISION • SERVICING • HIGH FIDELITY

NOVEMBER

HUGO GERNSBACK, Editor-in-chief

EXPERIMENTERS—7 Tunnel-Diode Circuits

SERVICING Low-Priced Tape Recorders

INSTALLING a Car Alternator Electrical System

NEW! Large-Screen Scope Covers Wide Range See Page 4

www.americanradiohistory.com
Look for these signs at your participating Distributor

You get S&H Green Stamps when you buy Sylvania Receiving Tubes

Hundreds of gifts for you and your family when you buy Sylvania tubes

Get in on
Sylvania's big, new Service 'n Save Stamp Plan

S&H Green Stamps add up in a hurry when you buy Sylvania tubes. So does customer good will when you stay with Sylvania quality.

That's why we say you can profit and save at the same time through the many Sylvania distributors offering S&H Green Stamps with Sylvania Receiving Tubes.

Select gifts from a big, new 144-page S&H Catalogue. Ask your Distributor for a copy.

Sylvania
Subsidiary of
General Telephone & Electronics

www.americanradiohistory.com
Here's why Audio Magazine says Scott Kits are "Simplest to build..." and have "Engineering of the highest calibre" *

The exclusive Scott full color instruction book shows every part and every wire in natural color and in proper position. To make the instruction book even clearer, each of the full color illustrations shows only a few assembly steps. There are no oversized sheets to confound you.

Each full color illustration is accompanied by its own Part Chart...another Scott exclusive. The actual parts described in the illustration are placed in the exact sequence in which they are used. You can't possibly make a mistake.

There are certain areas in every professional high fidelity component where wiring is critical and difficult. FM front ends and multiplex sections are an example. In Scott Kits these sections are wired at the factory, and thoroughly tested by Scott experts, assuring you a completed kit meeting stringent factory standards.

Tubes are aligned with the unique Scott E-Z-A-Line method using the meter as the timer itself. This assures perfect alignment without expensive signal generators. Amplifier kits require no laboratory instruments for perfect balancing.

Much of the uninteresting mechanical assembly is completed when you open your Scott Kit-Pak. All the terminal strips and tube sockets are already permanently riveted to the chassis. To insure accuracy all wires are cut and pre-stripped to proper length.

The new Scott Warrantee Performance Plan guarantees that your kit will work perfectly when completed. If you have followed all recommended procedures and your kit fails to work Scott guarantees to put your kit in working order at the factory at minimum cost.

*Audio — February 1961, Pages 54-56

SCOTT

H. H. Scott, Inc., Dept. 570-11
111 Powdern Mill Road, Maynard, Mass.

FREE STEREO RECORD demonstrating new FM Multiplex Stereo and explaining all important technical specifications.

Name __
Address ___
City _______ State ________

Include names and addresses of any interested friends.

Export: Median Exporting Corp., 458 Broadway, N.Y.C.
Canada: Atlas Ramie Corp., 188 Winslow Ave., Toronto

www.americanradiohistory.com
editorial
Hugo Gernsback 27 Telstar-1 Results

audio-high fidelity-stereo
Jerry L. Ogdon 45 Servicing the Economy Tape Recorder
Simple as the recorder itself
Daniel Meyer 48 Stereo Preamp Has Everything
Part II—Seeing just how good it really is

electronics
39 Semiconductors Sit for Their Portraits
47 What's Your EQ?
Answers on page 68
51 What's New
Pictorial reports of new developments
Elliott A. McCready 71 Build This Composite Transistor
Low cost, high gain

industrial electronics
Charles J. Schauer 34 Installing an Alternator
Most information for the mobile man
Don Wherry 52 Magnetic Tape Tester Finds the Dead Spots
Spot dropouts before recording

radio
Jordan McQuay 28 How Good Is Radar Jamming?
Newer radars have some defenses
Clive Sinclair 36 Seven Circuits for Tunnel Diodes
Seven opportunities for the experimenter
J. P. Jeffries 42 Simplified "Instant-On" Circuit
John A. McCormick 47 Narrow-Band Two-Way Radio Rules
Stanley Leinwoll 50 SW Propagation Forecast
Oct. 15—Nov. 15
R. L. Winklepleck 55 CB Photonotes
Bob Barry 77 CB for Marine Safety

television
Larry Steckler 43 Tube Layouts in TV Sets
Travler 1960–1962
Jack Darr 56 Service Clinic
Trouble at the transmitter
David Lachenbruch 66 UHF in Every Television Set
New law means more stations

test instruments
32 Now—a Large-Screen Scope with Wide Frequency Range (Cover Feature)
Sampling is the secret to success
Wayne Lemons 40 New Test Instrument for FM Stereo
Fisher model 300 multiplex generator
Larry Steckler 74 In-Circuit Capacitor Checker
Equipment Report—EICO 955

the departments
18 Correspondence
110 New Patents
112 New Books
108 New Tubes & Semiconductors
98 New Literature
6 News Briefs
104 Noteworthy Circuits
100 Technicians’ News
103 50 Years Ago

Over 50 Years of Electronic Publishing

EDITOR-IN-CHIEF AND PUBLISHER
Hugo Gernsback

EDITOR
M. Harvey Gernsback

MANAGING EDITOR
Fred Shuman

TECHNICAL EDITOR
Robert F. Scott, W2PWG

ASSOCIATE EDITOR
Larry Steckler

EDITORIAL ASSOCIATE
I. Queen

SERVICE EDITOR
Jack Darr

TECH. ILLUSTRATION DIRECTOR
Wm. Lyon McLaughlin

ART ASSOCIATE
Fred Neinast

DIRECTOR OF PRODUCTION
Elizabeth Stalup

DIRECTOR, ADVERTISING SALES
Lee Robinson

EASTERN SALES MANAGER
John J. Laram

CIRCULATION MANAGER
G. Aliquo

DIRECTOR, NEWSSTAND SALES
Joseph L. Bund

Average Paid Circulation
Over 160,000

—on the cover—
Story on page 32
Engineer using the ITT Industrial Product Division’s large-screen, low- and high-frequency sampling scope. It has a 14-inch screen, response from dc to 5 mc.

Color original by International Telephone & Telegraph Corp.

Gernsback Publications, Inc.
EXECUTIVE, EDITORIAL, ADVERTISING OFFICES
154 W. 14 St., New York 11, N.Y.
Phone AL 5-7755
CHAIRMAN OF THE BOARD
Hugo Gernsback
PRESIDENT
M. Harvey Gernsback
SECRETARY
G. Aliquo

Radio-Electronics is indexed in Applied Science & Technology Index (Formerly Industrial Arts Index)

Trademark registered U. S. Pat. Office

www.americanradiohistory.com
GET YOUR ELECTRONICS-TV-RADIO HOME TRAINING FROM N.T.S. RESIDENT SCHOOL

BREAK THROUGH TO HIGHER PAY, GREATER JOB SECURITY
START NOW! Break through the earning barrier that stops "half-trained" men. N.T.S. "All-Phase" Training prepares you...at home in spare time...for a high-paying CAREER as a MASTER TECHNICIAN in Electronics—TV—Radio. One Master Course at One Low Tuition trains you for unlimited opportunities in All Phases: Servicing, Communications, Preparation for F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rocket Projects.

A MORE REWARDING JOB...a secure future...a richer, fuller life can be yours...As an N.T.S. MASTER TECHNICIAN you can go straight to the top in industry...or open your own profitable business.

Over 1 City Block of Modern School Facilities, Laboratories and Shops Housing Over 1,000 Students.

50,000 Graduates all over the World—since 1905

NATIONAL TECHNICAL SCHOOLS WORLD-WIDE TRAINING SINCE 1905

THE SCHOOL BEHIND YOUR HOME-STUDY TRAINING

In these modern School Headquarters your Home Training is:
Classroom-Developed, Lab-Studio Planned, Shop-Tested, Industry-Approved, Home Study Designed.

N.T.S. IS NOT JUST A MAILING ADDRESS ON A COUPON
N.T.S. is a real school...a world famous training center since 1905. Thousands of men from all over the world come to train in our shops, labs, studios and classrooms.

You learn quickly and easily the N.T.S. Shop-Tested way. You get lessons, manuals, projects, personal consultation from instructors as you progress. You build a Short-Wave, Long-Wave Superhet Receiver plus a large screen TV set from the ground up with parts we send you at no additional cost. You also get a Professional Multitester for your practical job projects. The Multitester will become one of your most valuable instruments in spare time work while training and afterwards, too. Many students pay for their entire tuition with spare time work.

You can, too...we show you how.

SEND FOR INFORMATION NOW...TODAY! IT COSTS YOU NOTHING TO INVESTIGATE

MAIL COUPON NOW FOR FREE BOOK & ACTUAL LESSON

No obligation.
No salesman will call.

MAIL COUPON

Mail Now To
National Technical Schools, Dept. RG-112
4000 S. Figueroa St., Los Angeles 37, Calif.

Please rush FREE Electronics TV-Radio "Opportunity" Book and Actual Lesson.

Name ____________________________ Age ______

City ____________________________ Zone ______ State ______

Check here if interested ONLY in Resident Training at Los Angeles.

VETERANS: Give date of discharge ______

NATIONAL TECHNICAL SCHOOLS WORLD-WIDE TRAINING SINCE 1905

MAIL COUPON... 完成してください。
New Satellite Project To Link US and Brazil

A North and South link has been scheduled by the International Telephone and Telegraph Co. in cooperation with the government of Brazil. It will go into effect when the Project Relay satellite is launched late this year. The Relay satellite is planned to orbit the earth at altitudes ranging from 800 to 3,500 miles. A completely mobile ground station has been constructed for use near Rio de Janeiro. It includes a 30-foot parabolic tracking antenna, control-band and auxiliary trailers, and will be operated by the ITT subsidiary Companhia Radio Internacional do Brasil.

The power of the ground station is 10 kw. The project Relay satellite will put out 10 watts. The project is a purely experimental one, designed (1) to test feasibility of communications in this direction; (2) to detect radiation particles in the Van Allen belt, and (3) to determine the extent of radiation damage to solar cells and electronic components. The mobile station will be able to handle 12 simultaneous two-way telephone messages or 144 teleprinter or high-speed data circuits.

Experimental work between the United States and Europe will include television, teletype, high-speed data transmission and telephone communication. The signals will be transmitted to the satellite on 1,725-mc or 2,300-mc and from the satellite on 4,170-mc.

The northern link in the communications experiment will be operated at the ITT Federal Lab at Nutley, N. J., which has received the country's first FCC license allocating radio frequencies to private industry to operate an experimental research facility of this type.

Simple Equipment Good For Telstar Communications

Relatively inexpensive equipment was used to provide a single two-way voice channel via the Telstar satellite at a demonstration at Bell Labs, Holmdel, N. J. Several two-way telephone conversations were completed. The path of the calls was from a small temporary 850-watt transmitter at Holmdel to Telstar and down to the big space communications station at Andover, N. J. From Andover the calls were sent back to Holmdel over regular phone circuits. The other side of the calls went from Holmdel to Andover via land lines, up to Telstar and back via radio to Holmdel. Transmissions were on 6384.58 mc and reception on 4165 mc.

At Holmdel a remodeled 18-foot dish antenna together with other existing equipment formed the communications station. While the capabilities of such a station do not compare to the Andover establishment, it can provide basic service where needed.

All control equipment is housed in a rather ordinary house trailer. Although an 18-foot dish was used for the demonstration, a properly designed 10-foot dish could do the same job, it was stated.

Smithsonian Honors First Plane Radio Operator

A bust of Elmo Neale Pickerill, the first person to transmit radio signals from a plane to earth, has been installed at the Smithsonian Institution National Air Museum. Mr. Pickerill learned to fly under Orville Wright, for the purpose of attempting the wireless transmission.

During his historic flight on Aug. 4, 1910, he communicated with a portable ground station at Manhattan Beach, N. Y., from an air position above Mineola, 20 miles away. He also established two-way communication with the Marconi stations at Sagaponack and Sea

Relay Spacecraft being constructed by RCA for NASA is an eight-sided prism, tapered at one end. Weight 169 lbs., diameter 29 inches, height 32 inches, with 19-inch long communications antenna extending from the narrow end. The surface is covered with 8,215 solar cells, shielded from radiation damage by a layer of quartz 60 mils thick. NASA will conduct experiments on Relay's operating condition at the ITT station at Nutley, and at another NASA test station at Mohave, Calif., before communications experiments are carried out.

Larry Steckler, Associate Editor, Radio-Electronics, communicating via Telstar.

Addressing Representatives: Atlanta: 7, Hilley (c/o IBM Associates), 15 South 15th St., N. Y. 11, N. Y. 11. Chicago: 6, W. J. A. (c/o IBM Associates), 221 West 42nd St., New York 36, N. Y.

Radio-Electronics
NOW... at home... get DeVry Tech’s amazing effective training in

ELECTRONICS

RADIO-TELEVISION! Nothing else like it for providing real LABORATORY-TYPE training at home. Get the kind of thorough, practical experience YOU NEED for the kind of progress YOU WANT in today’s tremendous field of Television, Radio and Electronics. Qualify yourself for real money—interesting work—... a wonderfully promising future. And when you finish, DeVry Technical Institute’s active Employment Service HELPS YOU GET STARTED! Or open your own profitable Television-Radio Service Business.

THOUSANDS OF SUCCESSFUL GRADUATES
Why has DeVry Technical Institute become one of the largest training organizations of its kind? Because it provides EVERY MAJOR HOME TRAINING AID to help make the subject EASIER to learn... EASIER to remember—the kind of training so helpful for REAL PROGRESS. Students get thorough, up-to-date, practical training that TAKES ADVANTAGE of new and improved training developments. Study the ADVANTAGES shown on this page. Think what they can mean to YOU... to YOUR FUTURE! Or come to DeVry Tech’s modern Training Laboratories in Chicago or Toronto. MAIL COUPON TODAY for complete facts—including 2 valuable free booklets, “Pocket Guide to Real Earnings” and “Electronics in Space Travel.” Also, valuable information for men subject to MILITARY SERVICE.

Accredited member of National Home Study Council

SEND FOR 2 FREE BOOKLETS
MAIL COUPON TODAY!

DeVRY TECHNICAL INSTITUTE
6741 Belmont Avenue, Chicago 41, Ill., Dept. RE-11-S
Please give me your two free booklets, “Pocket Guide to Real Earnings” and “Electronics in Space Travel”; also include details on how to prepare for a career in Electronics. I am interested in the following opportunity fields (check one or more):

☐ Space & Missile Electronics
☐ Television and Radio
☐ Microwaves
☐ Radar
☐ Automation Electronics
☐ Computers
☐ Broadcasting
☐ Industrial Electronics
☐ Special “Short Courses”

Name
Age

Address

City

State

Apt

Mail

Check here if you face military service.

DeVRY TECHNICAL INSTITUTE
6741 Belmont Avenue, Chicago 41, Ill., Dept. RE-11-S

www.americanradiohistory.com
Gate, also on Long Island, N. Y., the marine station of United Wireless Telegraph and five steamships in the area. Using a 200-foot wire trailing from one wing tip as antenna, and a second one from the other wing tip as an "artificial ground," Mr. Pickerill also laid to rest fears that airplane transmission could not be practical because of the impossibility of making a good ground.

The presentation to the museum was made by Mr. Pickerill himself, who is now 77 and lives at Mineola. The bust was commissioned and presented to Mr. Pickerill in 1939 by his friend Augustus Post, a New York financier, and one of the founders of the Early Birds Association, in recognition of his services to radio and aviation.

Gallium Arsenide Diode May Do Maser's Work

According to scientists of the Massachusetts Institute of Technology, a gallium arsenide diode, emitting very powerful radiation in an exceedingly narrow range of frequencies near the visible light spectrum, may do many of the things now proposed for optical masers (lasers). The high power and narrow bandwidth of the energy from the diode, and the very high speed with which it responds to a change in the input signal, make it seem especially adaptable to such work. The diode was pictured on page 60 of last month's issue, although little information on it was available at that time. Equipment has already been devised that will transmit 20 TV channels or 20,000 voice channels on a single beam of intense infrared. The new device was developed by R. J. Keyes and T. M. Quist of MIT's Lincoln Laboratory, Solid State Division, with the joint support of the Armed Forces.
What Job Do You Want In Electronics?

Whatever it is, Cleveland Institute can help you get it!

Yes, whatever your goal is in Electronics, there's a Cleveland Institute program to help you reach it quickly and economically. Here's how: Each CIE program concentrates on electronics theory as applied to the solution of practical, everyday problems. Result...as a Cleveland Institute student you will not only learn electronics but develop the ability to use it! This ability makes you eligible for any of the thousands of challenging, high-paying jobs in Electronics. Before you turn this page, select a program to suit your career objective. Then, mark your selection on the coupon below and mail it to us today. We will send you the complete details...without obligation...if you will act NOW!

Electronics Technology

A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Televison, Transistors, and preparation for a 1st Class FCC License.

First Class FCC License

Mobile Radio, Microwave, and 2nd Class FCC preparation are just a few of the topics covered in this "compact" program...Carrier Telephony too, if you so desire.

Industrial Electronics & Automation

This exciting program includes many important subjects as Computers, Electronic Heating and Welding, Industrial Controls, Servomechanisms, and Solid State Devices.

Electronic Communications

If you want a 1st Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

Broadcast Engineering

Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

Mail Coupon TODAY For FREE Catalog

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE71
Cleveland 14, Ohio
Please send FREE Career Information prepared to help you get ahead in Electronics, without further obligation.

CHECK AREA OF MOST INTEREST

- Electronics Technology
- Industrial Electronics
- Broadcast Engineering
- First-Class FCC License
- Electronic Communications

Your present occupation ____________________________
Name ____________________________ Age ______
Address __
City __ Zone ______ State ______

Your Future in Electronics

Accredited Member

Cleveland Institute of Electronics
1776 E. 17th St., Dept. RE71
Cleveland 14, Ohio

NOVEMBER, 1962
Just press the switch...

you're “on-the-air” with this powerful transistor CB 2-way radio

New Cadre ‘510’ 5-watt, 5-channel Transceiver

Highest Power Allowed • Excellent Selectivity
Solid-State Throughout • Maximum Reliability

When you press the switch you’re on-the-air with the cleanest 27Mc “talk” power possible — 5 watts. You can reach vehicles and base stations instantly... dependably... up to 20 miles over land, 30 miles over water. Crystal-controlled transmit/receive channels assure perfect contact every time.

MOST SELECTIVE —
DUAL-CONVERSION SUPERHET

Release the switch — you’re still on-the-air.
(Don’t let the silence fool you! Adjustable squelch shuts out extraneous signals for noise-free standby reception.) The sensitive receiver circuit — a dual-conversion superheterodyne — captures weakest signals, and reproduces them with crisp, clear intelligibility. No adjacent channel interference. Highest selectivity with tuned ceramic filters. Electrical interference virtually eliminated with the ‘510’s’ effective automatic noise limiter.

MOST RELIABLE —
100% SOLID-STATE DESIGN

Whether pressing or releasing the mike switch, you’re controlling the most reliable, maintenance-free Citizens Band transceiver. It’s completely transistorized — 18 transistors, 8 diodes. Keep it “ON” safely all day — no heat problems, no tubes to burn out and replace, lowest current drain prolongs vehicle battery life. Solid-state components absorb road punishment without damage.

MOST COMPACT—EASIEST TO INSTALL

The smallest, full-power Citizens Band transceiver is easiest to install. Its 3½” height never steals leg room in a vehicle; fits smartly under the dash of the smallest foreign compact. And it can be used anywhere — vehicle, base station field, marine craft. A dual-power supply — 12VDC/110-220VAC — is built right into the Cadre ‘510’. Add a portable pack accessory (model 300-1) with rechargeable batteries and you have the lightest, portable 5-watt radio (9½ Lbs, with batteries) for pleasure or business. Cadre ‘510’ complete with dynamic microphone, set of matched Channel 11 crystals, universal mounting bracket, AC & DC cords... $199.95.

See the nearest Cadre distributor for a free demonstration, or write:

CADRE INDUSTRIES CORP., COMMERCIAL PRODUCTS DIVISION, ENDICOTT, N.Y. AREA CODE 607. 748-3373

Canada: Tri-Tei Assoc., Ltd., 81 Shepard Ave., West Willowdale, Ont. Export: Morton Exporting Corp., 458 Broadway, N. Y. 13, N. Y.

Van Allen Warns of Danger In Electron Belt

The high-altitude nuclear test staged in the Central Pacific last summer has “increased the potential danger for man’s space flights,” according to Dr. James A. Van Allen. The new belt, consisting largely of high-energy electrons, is about 400 miles deep and 4,000 miles wide, stretching around the middle of the earth on the geomagnetic equator.

Maj. Gen. Stuart S. Hoff Assumes Electronics Command

Under the new reorganization program, the Army Electronics Command has been established at Fort Monmouth, N. J., with Maj. Gen. Stuart S. Hoff as commanding (Continued on page 16)
"a CREI home study program helped me become an electronics engineer"

Robert T. Blanks
Engineer, Research & Study Division,
Vitro Laboratories, Silver Spring, Md.,
Division of Vitro Corporation of America.

WHEN YOU ENROLL IN A CREI Home Study Program, you join more than 20,500 students working in electronics in all 50 states and most countries of the free world. One CREI Program helped Robert Blanks become an Electronics Engineer. Another helped Robert I. Trunnell become an Electronics Technician. While John H. Scofield—a Mathematician—is enrolled in still a different CREI Program relating mathematics to electronics. All work at Vitro Laboratories.

INDUSTRY-RECOGNIZED CREI HOME STUDY PROGRAMS PREPARE YOU FOR INCREASED RESPONSIBILITIES, HIGHER-PAYING POSITIONS IN ELECTRONICS.

YOU CAN QUALIFY for a CREI Program if you have a basic knowledge of radio or electronics and are a high school graduate or the equivalent. If you are doubtful about your qualifications, let us check them for you.

SEND FOR FREE BOOK. If you qualify, send for FREE 58-page book describing CREI Programs and career opportunities in advanced electronic engineering technology—new 1963 edition is now available. Mail coupon or write to: The Capitol Radio Engineering Institute, Dept. 1411-N, 3224 Sixteenth St., N.W., Washington 10, D. C.

"THROUGH A CREI HOME STUDY PROGRAM I learned the practical theory and technology I needed to become a fully-qualified engineer—not a 'handbook' engineer, either—and I did it while I was on the job," says Robert T. Blanks. Today thousands of electronics personnel—engineering technicians, engineers, administrators, executives—attribute present high salaries and positions to home study of CREI Programs in Electronic Engineering Technology.

DEMAND FOR CREI-PREPARED MEN today far exceeds the supply—has exceeded the supply for many years. Designed to prepare you for responsible positions in electronics, CREI Home Study Programs are the product of 35 years of experience in advanced technical education. Aiding in their development are leading engineers and scientists from industry, government agencies and institutions of higher learning. Here Robert T. Blanks discusses CREI with Director Wayne G. Shaffer of Vitro Labs.

YOUR LIVING IS BETTER when you prepare for—and get—desired promotions through CREI Home Study. CREI alumnum Blanks is understandably proud of his home in a comfortable neighborhood. The positions of CREI-prepared men in such companies as Pan American Airways, Federal Electric Corporation, The Martin Company, Northwest Telephone Company, Mackay Radio, Federal Power and Light and many others attest to the high caliber of CREI Programs.

YOUR WHOLE FAMILY BENEFITS. Engineer Blanks’ growing family pitched in to provide free time for his CREI Home Study. Now they share his success. We invite you to check the thoroughness and completeness of CREI Home Study Programs in Electronic Engineering Technology in the catalog provided on request. For those who can attend, CREI maintains a Residence School in Washington, D. C. offering CEPD Accredited Technical Institute Curricula.

CREI
THE CAPITOL RADIO ENGINEERING INSTITUTE
Founded 1927
Dept. 1411-N, 3224 Sixteenth St., N.W., Washington 10, D. C.

Please send me details of CREI Home Study Programs and Free Book, "Your Future in Electronics and Nuclear Engineering Technology."

My qualifications are noted to obtain immediate service.

CHECK
FIELD OF GREATEST INTEREST:

Electronic Engineering Technology
Nuclear Engineering Technology
Servo and Computer Engineering
Automation and Industrial Electronic Engineering Technology
Aero and Navigational Engineering Technology
Communications

Name
Address
City
State

Employed by
Type of present work
Education: Years High School
Electronics Experience

Check: Home Study Residence School C.I. Bill

10 B

www.americanradiohistory.com
Humidity can cause serious troubles in capacitors used in many of the electronic circuits used today. Take a look at the equivalent circuit of a capacitor, and you can appreciate the source of these troubles. The D-C leakage path of a capacitor can be considered as a parallel resistance across the terminals. In a radio circuit, a capacitor with insulation resistance of as little as 25 megohms would give reasonable operation. But not in television and other sophisticated circuits.

Most television circuits have high impedance. Coupling, bypass and timing capacitors should have insulation resistance many times the circuit impedance. In a multivibrator circuit, for instance, capacitor leakage resistance alters the time constant of the timing network. In a ringing oscillator, frequency depends not only on inductance and capacitance, but also on the resistance of the capacitor leakage path.

What happens when ordinary capacitors are exposed to humidity? Sometimes there's an all-out failure. But even without a catastrophic short-out, a capacitor can begin to lose insulation resistance to the point where, in a television circuit, for instance, it's impossible to get the picture to lock in, verticals will be wavy, and the picture will bend at the top.

Our tip for the month: be sure of stable operation no matter how wet the weather, by using Mallory PVC capacitors. PVC stands for plus value capacitor. They're made with 100% Du Pont Mylar* dielectric. They contain no paper, no combinations of Mylar and paper, no substitutes for this most moisture-impervious of dielectrics.

PVC also stands for polyvinyl chloride . . . the flexible case on these new, blue capacitors that won't crack when you bend the leads. PVC's are exceptionally small for their ratings. You can squeeze 'em readily into crowded circuits. And they're even better in reliability, ruggedness and stability today than when we introduced them months ago.

Get Mallory PVC capacitors from your nearby Mallory distributor. He's the man to see for the best in capacitors, resistors, semiconductors, batteries . . . for all your component requirements.

* Reg. Trademark—E. I. du Pont de Nemours
The Same School That Originated The RTS BUSINESS PLAN

A SPECIAL COMPACT COURSE
COVERING ALL THREE PHASES OF
ELECTRONICS

The Entire Course Is Made Up Of The Following:
- 35 LESSONS COVERING BASIC AND INTERMEDIATE ELECTRONICS
- 9 EQUIPMENT KITS COMPLETE WITH TUBES AND BATTERIES
- SOLDERING IRON
- 25 LESSONS COVERING THESE ADVANCED ELECTRONIC SUBJECTS:
 - Thyatron Tubes • Semiconductors • Electronic Symbols and Drawings • Voltage-Regulators • Electronic-Timers • Control Systems • X-Rays • Photoelectric Devices • Dielectric Heating • Geiger Counters • Pulse Circuity • Clippers and Limiters • Multivibrators • Electronic Counters • Radar • Magnetic Amplifiers • Analog-Computers • DC Amplifiers • Digital Computers • Storage Systems • Input and Output Devices • Servomechanisms • Telemetering
- 60 EXAMINATIONS
- UNLIMITED CONSULTATION SERVICE
- KIT MANUALS
- DIPLOMA UPON GRADUATION

AND MUCH MORE...

RTS' Membership in The Association of Home Study Schools is your assurance of Reliability, Integrity and Quality of Training.

RTS ELECTRONICS DIVISION
815 E. ROSECRANS AVENUE
LOS ANGELES 59, CALIFORNIA
Est. 1922

Rush Coupon
NO SALESMAN WILL CALL!

DONT' LOSE OUT — FIND OUT!

RTS ELECTRONICS DIVISION
815 E. ROSECRANS AVENUE
LOS ANGELES 59, CALIFORNIA

Rush me full information by return mail. (Please Print)

Name __________________________ Age __________
Address __
City ___________ Zone _____ State __________

□ ENROLL ME NOW □ SEND MORE FACTS
What's the difference in loudspeakers that makes Quam so special?

All loudspeakers look pretty much alike, and may even sound pretty much alike—yet Quam speakers are different—in a way that's very important to you who use them!

the difference lies in PERFORMANCE RELIABILITY

When it's a Quam speaker—you install it and forget it. Quam speakers are built to give long, trouble-free performance.

Quam's factory is a manufacturing plant, not merely an assembly shop. By making our own speaker parts, we can guarantee the quality of the materials that go into them. Our voice coils are centered precisely; each and every speaker is thoroughly tested; the product you get meets the standards we have insisted on for almost forty years.

Quam Quality Line speakers are enameled in gold—and while the color has no effect on performance characteristics, it symbolizes the quality and reliability that's built into every Quam speaker.

ASK FOR

QUAM

THE QUALITY LINE— for all your speaker needs

QUAM-NICHOLS COMPANY
238 East Marquette Road
Chicago 37, Illinois
Is the course proven?
A high percentage of our fulltime resident students get their 1st class licenses within 12 weeks from the time they start the course. Intensive FCC license training is our specialty—not just a sideline.

Is the course complete?
The Grantham course covers all the required subject matter completely. Even though it is planned primarily to lead directly to a first class FCC license, it does this by TEACHING you electronics.

Is the course "padded"?
The streamlined Grantham course is designed specifically to prepare you to pass certain FCC examinations. All of the instruction is presented with the FCC examinations in mind. If your main objective is an FCC license and a thorough understanding of basic electronics, you want a course that is right to the point—not a course which is "padded" to extend the length of time you're in school. The study of higher mathematics or receiver repair work is fine if your plans for the future include them, but they are not necessary to obtain an FCC license.

Is it a "coaching service"?
Some schools and individuals offer a "coaching service" in FCC license preparation. The weakness of the "coaching service" method is that it presumes the student already has a knowledge of technical radio. On the other hand, the Grantham course "begins at the beginning" and progresses in logical order from one point to another. Every subject is covered simply and in detail. The emphasis is on making the subject easy to understand. With each lesson, you receive an FCC type test so you can discover daily just which points you do not understand and clear them up as you go along.

Is the course guaranteed?
The now famous Grantham Guarantee protects your investment. When such "insurance" is available at no extra cost, why accept less?

Is it a "memory course"?
No doubt you've heard rumors about "memory courses" and "cram courses" offering "all the exact FCC questions." Ask anyone who has an FCC license if the necessary material can be memorized. Even if you had the exact exam questions and answers, it would be much more difficult to memorize this "meaningless" material than to learn to understand the subject. Choose the school that teaches you to thoroughly understand—choose Grantham School of Electronics.

THE GRANTHAM FCC License Course in Communications Electronics is available by CORRESPONDENCE or in RESIDENT classes.
14,000,000 reasons why

fewer cartridges ✔ replace more models
✔ tie up less capital ✔ mean greater profits

Leading record player manufacturers—from the low-price mass producers to the well-known high fidelity manufacturers—have chosen to protect the quality of their products with Sonotone—more than 14 million times! That's the number of Sonotone cartridges incorporated as original equipment in the products of the nation's leading producers. And, that's also the number of genuine direct replacements you can make with Sonotone cartridges.

Normally, it would take a large inventory of cartridge models to provide replacements for 14 million record players. Not with Sonotone. Sonotone has so engineered its line that just a few models make it possible for you to offer a direct genuine Sonotone replacement to your share of 14 million potential customers. What's more, with only a few models the Sonotone line replaces the most frequently used cartridges of other manufacturers.

Sonotone has just released a series of new stereo and mono high fidelity ceramic cartridges with the same standard physical dimensions as cartridges now used in over 14,000,000 record players. Rely on Sonotone—the line that requires fewer cartridges to replace more models. Now available in the handy 6-Pak at your distributors.

SONOTONE® CARTRIDGES

Sonotone® Corporation • Electronic Applications Division • Elmsford, New York
Cartridges • Needles • Speakers • Tape Heads • Mikes • Electron Tubes • Batteries • Hearing Aids

(Continued from page 10)

officer. This is one of five commands which form the Army Materiel Command and will take over most of the functions of the Army Signal Corps as well as some others, not previously handled by the Corps.

Nuclear-Powered Lamp Runs for 10 Years

A lamp that operates without batteries, bulbs or cables has been developed by the U. S. Radium Co. for use in railroad switch service.

The new switch lamp contains four mounted light sources in its housing. These are constructed of heavy radiation-resistant cerium glass windows, soldered into metal casings. Within each casing, radiation-responsive zinc sulfide phosphor is excited to the desired color and brightness by krypton 85 gas. The light sources are rugged and shock-resistant, and since they do not generate any appreciable heat or use electrical energy, they are naturally explosion-proof.

The lamps are quite compatible with present equipment, the bases being designed to fit the switchstand tips of any railroad, and they are structurally interchangeable with present kerosene and battery-operated lamps.

Brief Briefs

Electronics may create a "technological revolution" in the legal field, due to the use of computers and other electronic devices. Reed C. Lawlor told members of the American Bar Association at the 85th Annual Meeting in San Francisco.

George Lewis, early radio pioneer, died Sept. 12. He started as radio engineer in the Signal Corps in 1910, later joining the Navy, where he became a Commander. He had been vice president of Ken-Rad and Arcturus tube companies, and later assistant vice president of ITT till retiring in 1950.
NEW! POWERFUL knight-kit®
I-WATT WALKIE-TALKIE!
KG-4000 All-Transistor CB Kit

WITH THESE ADVANCED FEATURES:

- 9-Transistor, 3 Diode Circuit—Powerful 1-Watt RF Input
- Professional Quality Truly Portable 2-Way Radio With a 5-Mile Range
- Crystal-Controlled Transmit and Receive Channels
- Superhet Receiver with RF Stage, 2 IF's, Squelch, AVC, Noise Limiter, Push-Pull Audio Output

THERE'S NO OTHER KIT LIKE IT!

Knight-Kit is the leader again with this professional-quality transceiver kit...with 10 times the power of most walkie-talkies...with full 1-watt RF input for reliable 2-way communication up to a 5-mile range! Superhet receiver has automatic noise limiter and variable squelch to reduce background noise and maintain speaker silence between calls. Distance—Local switch and SVC eliminate receiver distortion caused by nearby units. Includes: handy press-to-talk button; relative RF output indicator for maximum power adjustment; plug-in crystal sockets; 52" whip antenna; external-antenna jack; weather-protected built-in mike and speaker; uses 9 transistors, 3 diodes. Weighs only 32 ounces. Complete with high-impact Styrene case and carrying strap; wire, solder; easy instructions; FCC-permit application form. Less batteries and crystals (requires 1 transmit, 1 receive, listed below). 10½ x 3½ x 4½”. Shpg. wt., 2½ lbs.

83 YQ 010. KG-4000 Walkie-Talkie Kit. Only............. $59.95
83 YQ 012. "C" Batteries for above (8 required), each.......... 14¢
83 YQ 011. Rechargeable Battery/Charger/AC Power Supply Kit. Replaces the 8 "C" cells; may be recharged many times; charger unit permits the KG-4000 to be operated from 115 VAC while charging battery. Shpg. wt., 1 lb. Only.......................... $19.95
83 YQ 047. Adapter for 12-v. Use. Plugs into cigarette lighter of auto. With cable. Only... $1.00
20 YQ 473-2. 1-Receive and 1-Transmit Crystal; specify Channel 1-22... $5.00

NO MONEY DOWN: Now! More Buying Power with your Allied Credit Fund Plan

ALLIED RADIO
100 N. Western Ave., Chicago 80, Ill.
Ship me the following:

[] KG-4000 All-Transistor CB Walkie-Talkie Kit 83 YQ 803DB
[] "C" Batteries 83 Y 012 (quant....)
[] Adapter for 12-v. use 83 Y Q 047
[] Rechargeable Battery/Charger/AC Supply Kit 83 Y Q 011
[] Receive & Transmit Crystals; Specify Channel 1-22 20 YQ 473-2
[] Ship No Money Down on Allied's Credit Fund Plan

New Credit Customers Only: Send name and address present employer, how long you have been there, address, monthly salary or rent. Address: 121 minimum for credit account.

[] $...... enclosed (check) (money order)

Name

Address

City_________________ Zone____ State_________________

Satisfaction guaranteed or your money back

ORDER TODAY

www.americanradiohistory.com
Crossover-Phasing Comment

Dear Editor:

Here is a comment on crossovers and "phasing".

Basil Barbee's article "Let's Build a Crossover Network" (Radio-Electronics, August 1962, pages 32-34) states that the high- and low-pass parts of the network are 180° out of phase due to 90° lead of one and 1 lag of the other.

Actually, at the crossover point, the phase shift of each is 45°, not 90°, and the sum is 90°, not 180°. The two circuits never approach 180° relative phase angle. For the example used (about 2.5 kc), the phase shifts will be as follows:

<table>
<thead>
<tr>
<th>1 (KC)</th>
<th>2 low-pass</th>
<th>3 high-pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>14°</td>
<td>76°</td>
</tr>
<tr>
<td>1.25</td>
<td>26.5°</td>
<td>63.5°</td>
</tr>
<tr>
<td>2.5</td>
<td>45°</td>
<td>45°</td>
</tr>
<tr>
<td>5.0</td>
<td>65°</td>
<td>26.5°</td>
</tr>
<tr>
<td>10.0</td>
<td>76°</td>
<td>14.0°</td>
</tr>
</tbody>
</table>

Note the sum (actually the difference, considering that the sign of lag relative to lead is minus) of the two angles is always 90°, never 180°. A polarity reversal still leaves a 90° difference.

The polarity (not phasing) of speakers will be considerably more affected by difference of path lengths from woofer and tweeter than by phase shifts in a 90° or 6-db slope network. Even with "phasing", one must always expect some dips in response near crossover; polarity reversal will shift but not eliminate these dips. One might expect to minimize the dips by listening with both ears, or by measuring with two microphone locations, but actually no observer here has ever been able to detect "phase" by ear. The two-microphone technique is being exploited to permit indoor measurements, but the phase and polarity effect may be observed by shifting microphone locations or using two microphones.

Incorrect polarity cannot be found by listening for a null or partial cancellation at the crossover frequency; there will usually be a series of two or more such dips in sound output, and reversing polarity will result in another series, but at different frequencies. The best way, for 90° networks, is to connect both negative leads to ground. If sound pressure measuring apparatus is available, response curves may be run and examined for normal and reversed polarity (and the dips will be observed for each). Based on the idea that most people have two good ears, one may use two microphones with some means to indicate whichever is the larger, and then it will be found that polarity makes no difference. Finally, since one can't hear the difference that polarity makes when listening to a composition of frequencies, why bother? Try this with a toggle switch to reverse one speaker, and fool yourself and your friends.

Paul W. Klipsch
Hope, Ark.

You Can Get Them Now!

Dear Editor:

Toward the end of your pleasant reading News Briefs section, in the September 1962 issue, we noted the following:

"Kits for color TV receivers are expected to be on the market this fall. Two companies, Transvision and Conar, plan to produce such kits."

If you will turn to page 80 in the same issue, you will see that we are advertising our color TV kit which is being shipped to kit builders now. These Color TV kits are available from Transvision Electronics, Grey Oaks Ave., Yonkers, N. Y.

Thank you for your cooperation, and my compliments on your fine publication.

Chas. Gold
H. J. Gold Co.
New York 3, N. Y.

The Human Element

Dear Editor:

I truly appreciated Hugo Gernsback's August 1962 editorial on what computers can do. Every time I am asked what I think of electronic brains, I answer, "It's wonderful what they can do, but it will always take a human brain to plan, build and regulate them. When they break down, the human repairman will have to fix them."

Peter Legon
Malden, Mass.

Pet Peeves

Dear Mr. Darr:

I do not like your Service Clinic column in the July 1962 issue—the one that tells us how to guess at the manufacturers of unmarked chassis and ends with the words "good hunting". Why, in the first place, do we have to do any hunting at all? Are we television repairmen, or are we research specialists? By the way, who is supposed to pay for this research? We are not endowed by a foundation.

I have always maintained that if a manufacturer goes out of his way to create mystery sets, he makes a sucker
To assure ADVANCEMENT or to turn your hobby into a new and PROFITABLE CAREER in the fast growing field of ELECTRONICS you should investigate the NRI Home-Study Courses in Industrial Electronics, Radio-TV Servicing, Radio-TV Communications.

You must be trained to qualify for higher earnings and advancement. Whichever branch of Electronics you select, you'll find that NRI training is the time-proven way to get into this interesting and fast growing industry.

There is an immediate and growing need for trained Technicians in many branches of Electronics. In fact, four to seven trained Technicians are needed for every graduate engineer. Better than average jobs await you in the fast growing industry of the 1960's...offering high pay and prestige, interesting work and a bright future. Join the thousands of NRI graduates who have benefited from career opportunities in this Electronic Age. Mail the postage-free card today.

Cut Out and Mail—No Stamp Needed

NATIONAL RADIO INSTITUTE
Washington 16, D.C. RE

Please send me your Electronic, Radio-TV catalog without cost or obligation. I am interested in course checked below. (No salesman will call. PLEASE PRINT.)

☐ Industrial Electronics ☐ FCC License
☐ Radio-TV Servicing ☐ Communications

Name__________________________Age__________________________

Address__

City__________________________Zone__________________________State__________________________

ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL
Approved for Veteran's under Korean GI Bill

www.americanradiohistory.com
PICK THE CAREER YOU WANT
IN THE WONDERFUL FIELD OF ELECTRONICS
TRAIN AT HOME WITH THE LEADER

INDUSTRIAL ELECTRONICS

Prepare for a career as an Electronic Technician in industry, business, government, the military, with this NRI course in Electronics—Principles, Practices, Maintenance. Computers, telemetry, automation, missiles, rockets all employ the same basic principles... and that is what this NRI course stresses with illustrated lessons, special training equipment.

TELEVISION-RADIO SERVICING

(NIncludes COLOR TV)

NRI's time-tested course in Servicing not only trains you to fix radios, TV sets, hi-fi, etc., but also shows you how to earn spare-time money starting soon after enrolling. Fast growth in number of sets, color-TV, stereo means money-making opportunities in your own spare-time or full-time business or working for someone else. Special training equipment included.

TV-RADIO COMMUNICATIONS

In the NRI Communications course you get actual experience as NRI prepares you for your choice of Communications fields and an FCC License. Commercial methods and techniques of Radio and TV Broadcasting; teletype; facsimile; microwave; radar; mobile and marine radio; navigation devices; FM stereo multiplexing are some of the subjects covered. You work with special training equipment.

FCC COMMERCIAL LICENSE

For men with Radio-TV experience who want to operate or service transmitting equipment used in broadcasting, aviation, marine, microwave, facsimile or mobile communications. A Service Technician is required by law to have an FCC License to work on C-Band, other transmitting equipment. From Simple Circuits to Broadcast Operation, this new NRI course trains you quickly for your Government FCC examinations.

Job Counselors Recommend

Today, a career in Electronics offers unlimited opportunity. Job counselors advise, "For an interesting career, get into Electronics." The National Association of Manufacturers says, "There is no more interesting and challenging occupation in American industry."

When you train for a career in Electronics through NRI home-study methods your home becomes your classroom, and you the only student. You pick your own study hours, study when you want, as long as you want. No need to give up your job or go away to school. And there are no special requirements of previous Electronics experience or education. Train with the leader. Your NRI training is backed by nearly 50 years of success. Mail the postage-free card. National Radio Institute, Washington 16, D.C.
out of the purchaser who buys his products in good faith—no matter from what sales outlet he buys it. Yet publications seem to condone these practices. Instead of exposing the manufacturers who indulge in these activities, you all chant, “Work harder, boys! It’s good for you.”

I am also a consumer, and I don’t like to be considered a sucker by carefully protected manufacturers.

Harry Goldman
Detroit, Mich.
[Unfortunately, the publications are in almost the same position as the service technician in identifying “orphan brand” or department-store sets.—Editor]

Missing—One Microphone
Dear Editor:
I find the August RADIO- ELECTRONICS contains several extraordinarily good and beautifully presented articles, for which my bouquet.

However, in one of these (“Understanding the Microphone”) there is an omission. I refer to the rf-fm capacitance type microphone which has no inherent frequency limitations other than of its diaphragm. If it is made of aluminized Mylar and stretched to a very high natural frequency, or a thick, surface-aluminized disc of super-soft foam rubber, such a microphone is very close to the ideal one, as to frequency range and low distortion. The historical details and operation of this principle, not alone in microphones, but in phono pickups, electronic musical instruments, etc., were published in IRE Transactions-Audio for July-August, 1954.

B. F. Miesner
Miami Shores, Fla.

More on Electronic Ignition Systems
Dear Editor:
I read with interest Mr. H. W. Lawson’s article on transistor ignition in the July issue. This is a definite improvement over the Smithy circuit using a 2D21 thyatron, though it is still complicated in comparison to what can be done with one or two transistors and a few resistors.

At any rate, I would like to tell your readers that we can supply stock heavy-duty coils in ratios of 250 to 1 and 400 to 1. These are suitable for use in single- or two-transistor circuits. While they are also suitable for use in capacitive discharge circuits, we can provide on a custom basis good-efficiency coils with ratios as high as 1,000 to 1. Such ratios permit the use of lower-voltage, less-expensive silicon controlled rectifiers.

W. F. Palmer
W. F. Palmer Electronics Laboratories
Carlisle, Mass.

Now in breakproof plastic utility case!

Weller adds greater value to the Heavy Duty Soldering Kit with a new utility case of miracle plastic that won’t break. Kit features the Weller 275-watt Soldering Gun used by electronic service technicians the world over. Instant heat. Twin spot-lights. Long life, long reach tip—made of copper for superior heat transfer and iron plated for long life. Also included in this kit are smoothing tip, cutting tip, tip interchange wrench and supply of solder. Model 8250AK.

$14.95 list

Weller Hi-Speed Sabre Saw
For smooth, super-fast cutting of all kinds on speaker and record player mounting boards, cabinets, walls, etc. Makes its own starting hole for inside cuts. Never splinters or tears wood. Heavy duty, 4.8 amps. Model 88. $22.95 list

On sale at your Electronic Parts Distributor

WELLER ELECTRIC CORP. • EASTON, PA.
The HIDDEN 500* wrote these 6 SUCCESS STORIES...

Service Technicians supply the happy endings!

Capacitor success stories are no novelty at Sprague. The "Hidden 500", Sprague's behind-the-scenes staff of 500 experienced researchers, have authored scores of them! And customers add new chapters every day. But none has proved more popular than the 6 best sellers shown here. Developed by the largest research organization in the capacitor industry, these 6 assure happy endings to service technicians' problems.

1. DIFILM® BLACK BEAUTY® MOLDED TUBULAR CAPACITORS
 The world's most humidity-resistant molded capacitors. Dual dielectric—polyester film and special capacitor tissue—combines best features of both. Exclusive HCX® solid impregnant produces rock-hard section—nothing to leak. Tough case of non-flammable phenolic—cannot be damaged in handling.

2. DIFILM® ORANGE DROP® DIPPED TUBULAR CAPACITORS
 Especially made for exact, original replacement of radial-lead tubulars. Dual dielectric combines the best features of both polyester film and special capacitor tissue. Exclusive HCX® solid impregnant—no oil to leak, no wax to drip. Double dipped in bright orange epoxy resin to beat heat and humidity.

3. TWIST-LOK® ELECTROLYTIC CAPACITORS
 The most dependable capacitors of their type. Built to "take it" under torrid 185°F (85°C) temperatures—in crowded TV chassis, sizzling auto radios, portable and ac-dc table radios, radio-phono combinations, etc. Hermetically sealed in aluminum cases for exceptionally long life. Withstand high surge voltages. Ideal for high ripple selenium rectifier circuits.

4. ATOM® ELECTROLYTIC CAPACITORS
 The smallest dependable electrolytics designed for 85°C operation in voltages to 450 WVDC. Small enough to fit anywhere, work anywhere. Low leakage and long shelf life. Will withstand high temperatures, high ripple currents, high surge voltages. Metal case construction with Kraft insulating sleeve.

5. LITTL-LYTIC® ELECTROLYTIC CAPACITORS
 Ultra-tiny size for use in transistorized equipment. High degree of reliability at reasonable price. All-welded construction—no pressure joints to cause "open" circuits. Withstand temperatures to 85°C (185°F). Hermetically sealed. Extremely low leakage current. Designed for long shelf life—particularly important in sets used only part of the year.

6. CERA-MITE® CERAMIC CAPACITORS

* The "Hidden 500" are Sprague's 500 experienced researchers who staff the largest research organization in the electronic component industry and who back up the efforts of some 7,000 Sprague employees in 16 plants strategically located throughout the United States.

Handy Hanging Wall Catalog C-457 gives complete service part listings. Ask your Sprague Distributor for a copy, or write Sprague Products Company, 81 Marshall Street, North Adams, Massachusetts.
why take hours to troubleshoot when Photofact does it for you in minutes!

IF YOU'RE NOT NOW A Photofact Library owner, you're more than paying for it in the time you lose

here are just a few of the dozens of ways Photofact saves you time

 OWN THE TIME-SAVING, PROFIT-MAKING PHOTOFACT LIBRARY THIS EASY-BUY WAY

Free File Cabinets

The photofact library more than pays for itself from the first day you put it into your shop. It gives you instant time-saving help on more than 52,000 listings of TV, radio, hi-fi and other home-entertainment equipment—virtually any model made since 1946. You can own a photofact library this special easy-buy way:

• NO INTEREST
• NO CARRYING CHARGES
• ONLY $10 DOWN
• UP TO 30 MONTHS TO PAY

You get free file cabinets with your photofact library—so you have all you need for time-saving, money-making service work right at your fingertips. Get the full photofact library details today.

own the time-saving, profit-making photofact library

Photofact saves you time

Famous Standard Notation Schematic saves valuable hours—always uniform, accurate, complete for every model.

Disassembly Instructions, step-by-step, help you remove difficult chassis, sub-chassis, and assemblies in minutes.

Waveform actual photos are shown on schematic for quick comparison of patterns on your scope. No time wasted in guesswork.

Terminal identification saves you time; transformer and coil terminals quickly identified by color code or basing diagram shown on schematic.

Dial Card Stringing instructions save you up to an hour or more of time and headaches on a single job.

Alternate Tuner Data—separate schematics, alignment data and parts lists are provided—no time wasted interpreting various tuner versions.

Unique Alignment System eliminates guessing; you get complete instructions with response curves, how to connect test equipment, proper adjustment sequence.

Auto Radio Removal instructions show you step-by-step procedure for removal of even the most complicated models—a big time-saver.

Exact Terminal Connections are indicated—no need for trial-and-error methods—a real time-saving feature.

Tube Failure Check Charts spell out probable tubes responsible for failure—no need to waste time studying circuitry.

Full Photo Coverage of the actual equipment makes identification of all components and wiring easy—you can see everything.

Clear Parts Symbols with values and associated information are shown plainly on the schematic—no time wasted in cross-reference "look-up."

Field Servicing Notes spell out locations of adjustments for speedy "in home" servicing. Saves time spent in hunting for hidden adjustments.

CircuitTrace® saves countless hours of foil tracing time. This exclusive Sams system pinpoints junctions and test points on schematic and printed board.

ALTERNATE TUNER DATA

TUNER DATA

NAME

ADDRESS

CITY

ZONE

STATE

send coupon

HOWARD W. SAMS & CO., INC.

Howard W. Sams & Co., Inc., Dept. 6-12
4300 W. 62nd St., Indianapolis 6, Indiana

Send full information on Easy-Buy Plan

Enter my Photofact Standing Order Subscription

My Distributor is:

Shop Name:

Attn:

Address:

City:

Zone:

State:

NOVEMBER, 1962

www.americanradiohistory.com
SLOW DOWN!

Heard clearly through the rush-hour din on the George Washington Bridge ... over University Cobreflex trumpets.*

But what's most important is why the Cobreflex was chosen to perform in this exacting and difficult location. One of the main reasons is that every Cobreflex embodies the unique combination of battleship construction and Swiss watch precision! This unexcelled ruggedness of construction paired with its exceptionally high articulation of speech makes the Cobreflex ideal for the most gruelling applications. Its wide angle projection over 120° is but another good reason why it is sought after in situations that call for ultra-wide projection. And this extremely smooth, wide radiation pattern over the full frequency range is the result of University having incorporated a pair of folded exponential horns having twin air columns onto a single assembly. These two identical one-piece heavy aluminum die-castings with integral tone arm and reflectors ensure there are no separate parts to loosen or vibrate. Resonant vibration is non-existent! Reasons enough?

And for installations requiring full-range wide angle coverage, there's the CLH, a rectangular reflex trumpet loaded with significant engineering refinements. A conoidal reflector at the critical final bend improves high frequency response, and a rugged, ribbed and braced fiberglass bell subdues resonances, providing more extended, natural response for the reproduction of music as well as speech. The wide horizontal coverage helps you get sound into dead spots that would not be reached by ordinary trumpets, while narrower vertical directionality lets you practically 'tune' the speaker during installation for minimum reverberation and feedback.

But for the complete story of University Public Address Speakers, Write Desk J-11, University Loudspeakers, Inc., White Plains, N.Y.

NOTE: All University P.A. Loudspeakers are F.C.D.A. approved.

*Engineered with HIGH 'A'—HIGH AUDIBILITY—exclusive with University!
HOTTEST-and TOUGHEST

Compare and you'll see why!

Besides being the most durable, note the almost flat response curve of the T-BIRD ELECTRA throughout the VHF band—no hills and valleys that cause smear and distortion in black-and-white, and disrupt optimum reproduction of color. T-BIRD ELECTRA delivers a strong, clean signal, free of element "junction noise" and gain flutter—a boon to black-and-white reception, a must for color!

Write for name of nearest distributor

TECHNICAL APPLIANCE CORPORATION
Dept. JTD-59, Consumer Products Division
Sherburne, New York
A Subsidiary of
THE JERROLD CORPORATION

NOVEMBER, 1962
A great tape recorder made greater:

1. New professional studio recording hysteresis-synchronous capstan motor: 24 stator slots for ultra-smooth drive, ultra-quiet and vibrationless professional bearing system.
2. Two new take-up and rewind reel motors, both extra-powered for effortless operation.
3. New cored-out steel capstan flywheel with all the mass concentrated at the rim for improved flutter filtering.
4. New optimally designed capstan drive belt brings wow down to negligibility.
5. New relay provides instantaneous extra power to the take-up reel motor at start to minimize tape bounce. Provides near-perfect stop-and-go operation and eliminates any risk of tape spillage when starting with a nearly full take-up reel.
6. New automatic end-of-tape stop switch cuts off take-up reel motor power. Also permits professional editing techniques, whereby tape being edited out runs off the machine while you are listening to it.
7. Playback preamps remain on during stop-standby mode to permit cueing.
8. Recording level adjustment during stop-standby.
9. Shock-absorbing helical spring tape lifters practically eliminate tape bounce at start of fast winding.

And All These Well-known RP-100 Features:

Separate stereo 1/4 track record and playback heads permitting off-the-tape monitor and true sound-on-sound recording; separate transistor stereo record and stereo playback amplifiers meeting true high fidelity standards; monaural recording on 4 tracks; digital turns counter; electromagnetic braking (no mechanical brakes to wear out or loosen); all-electric push-button transport control (separate solenoids activate pinch-roller and tape lifters); unequalled electronic control facilities such as mixing mic and line controls, two recording level meters, sound-on-sound recording selected on panel, playback mode selector, etc. Modular plug-in construction.

Wow and flutter: under 0.17% RMS at 71/2 IPS; under 0.25% RMS at 3/4 IPS. Timing Accuracy: ± 0.15% (0.13 seconds in 30 minutes). Frequency Response: ± 2db 20-15,000 cps at 71/2 IPS, 50db signal-to-noise ratio; ± 2db 30-10,000 cps at 3/4 IPS, 50db signal-to-noise ratio. Line Inputs Sensitivity: 100mv. Microphone Sensitivity: 0.5mv.

New Stereo FM MULTIPLEX TUNER ST77
Semi-Kit $99.95 Wired $140.95
Includes Metal Cover and FET

Another brilliant example of EICO's no-compromise engineering, the new ST77 combines the features of station-monitor quality and fringe-area reception capabilities with exceptional ease of assembly for the kit-builder. No test or alignment instruments are needed. The two most critical sections, the front-end and the 4-1/2 stage circuit board, are entirely pre-wired and pre-aligned for best performance on weak signals (fringe area reception). The front-end is drift-free even with AFC defeated. The last 17 stages and JMC-wide ratio detector achieve perfect limiting, full-spectrum flat response, very low distortion, and outstanding capture ratio. The 10-stage stereo demodulator—EICO's famous true-phase-shift flutterless detection circuit (pat. pend.)—copes successfully with all the problems of high fidelity FM stereo demodulation and delivers utterly clean stereo outputs. Excellent sensitivity, selectivity, stability, separation and clean signal add up to superb fringe-area reception. The automatic stereo indicator and station tuning indicator travel in tandem on two slide-rule dials. Antenna Input: 500 ohms balanced. IFM Unbalance Sensitivity: 3uV (30 db quieting). A 5uV for 2db quieting. Sensitivity for phase-locking synchronization in stereo: 2.5uV, Full Limiting Sensitivity: 10uV, IF Bandwidth: 200kc at 6 db points. Ratio Detector Bandwidth: 15kc ± separation, Audio Bandwidth at FM Detector: Flat to 5kc. Discreetly designed pre-emphasis, IFM Signal-to-Noise Ratio: 55dB. IFM Harmonic Distortion: 0.5%, Stereo Harmonic Distortion: less than 1.5%. IFM Distortion: 0.1%, Output Audio Frequency Response: ±1db 20-15,000. IFM Capture Ratio: 5db, Channel Separation: 50db, Audio Output: 6.8 volt, Output Impedance: low impedance cathode followers, Controls: Power, Separation, FM Tuning, Stereo-Mono, AFC-Defeat.

9 New Features Now In The New 1962 EICO RP100 Transistorized Stereo/Mono 4-Track Tape Deck

SemiKit: Tape transport assembled and tested; electronics in kit form $299.95 Factory-assembled: Handwired throughout by skilled American craftsmen $399.95
An original, exclusive EICO product designed and manufactured in the U.S.A. (Patents Pending)
Carrying Case $29.95 Rack Mount $9.95

EICO®

Over 2 MILLION EICO Instruments In Use. Most EICO Dealers offer budget terms. Add 5% in West.
*1962 EICO Electronic Instrument Co. Inc. 5300 Northern Boulevard, L. I. C., L. N. Y.
EICO, 3200 N. Blvd., L.I.C., 1. N. Y. C-11
Send free 32-page catalog & dealer's name.
Send new 36-page Guidebook to Hi-Fi for which I enclose 25¢ for postage & handling.

Name
Address
City Zone State

Actual distortion motor reading of desired left or right channel output with a stereo FM signal fed to the antenna input terminals.
TELSTAR-I RESULTS

... One of the Most Complex Electronic Space Devices Scores ...

Since its successful launching on July 10, 1962, Telstar I has surpassed the fondest hopes of its designers. At the moment its telemetry indicates perfect working of all its electronic-mechanical instrumentation. Although Telstar could probably stay in orbit for 200 years, its electronic equipment will be automatically shut off after about two years, to clear the frequencies for other Telstars.

As described in Radio-Electronics in September, 1962, its ball-shaped dimensions are about 37 inches diameter (axial), 34 inches equatorial. Its total space weight is 170 (earth) pounds. Its outer surface carries 72 flat facets, 60 of which have a total of 3600 solar cells which continuously recharge 19 nickel-cadmium cells when in direct sunlight. On three facets are mirrors to reflect the sunlight to earth for optical tracking.

Telstar obtains all its power from the sun via its solar cells, at the rate of 13.5 watts output. This may decrease, according to its builders, to 11.5 watts because of the effects and the impact of various charged particles.

Telstar's orbit is quite elliptical—purposely so. At its highest, it soars to 3501.8 statute miles (apogee); at its lowest it is 593.4 miles (perigee). Its period of revolution around the earth is 157.8 minutes.

Around the satellite’s equator it carries one receiving and one transmitting antenna for communications and transmission of a precision tracking signal. Above its axis there is a wire-helix antenna for telemetry, command and continuous beacon circuits.

Telstar I was designed chiefly as an orbiting experimental broadband microwave space relay station. It receives earth radio signals at a frequency of 6390 megacycles, amplifies these and retransmits them back to earth on 4170 mc. It can do so only in straight lines, however, because of the curvature of the earth, which limits its total range. It must be “visible” to both sending and receiving stations simultaneously. The very weak signals received by Telstar are first transformed to a 90 mc intermediate frequency, then amplified about a million times, then transformed to 4170 mc. A traveling wave tube provides final amplification, an additional 5000 times. Total amplification is about 2 billion times. When retransmitted to earth, the signal has a power of 21/4 watts.

Telstar is pressurized internally with an atmosphere of carbon dioxide (CO₂). Its special instruments for that purpose, after many weeks, show that meteorites have not pierced Telstar's skin so far. The internal temperature averages 75° F. This drops 40° more or less when Telstar dips into the earth’s shadow, down to about 35° F. The outside skin temperature of the station varies from 18° F. in the shadow to 48° F. in the sun.

The greatest enemy of Telstar thus far is not micro-meteorites, or even small meteorites, but radiation. This may be of solar origin, such as solar X-rays, ultraviolet rays, etc., or Van Allen belt charged particle radiation, as well as possible damage from the artificial new belt caused by last summer's US nuclear explosions in space. Not protected by the earth’s vast blanket of atmosphere, Telstar gravitates in space, a naked target for the all-powerful cosmic rays as well.

Fully aware of this, its designers planned a number of experiments to measure the effects of radiation on electronic gear. Telstar's outer skin carries six differentially shielded silicon transistors, all radiation-sensitive. It appears that space radiation has progressively weakened these transistors. Thus the current gain of the least heavily shielded transistor decreased by a factor of 8.

Furthermore, solar cells deteriorate steadily by radiation bombardment. It appears that the least shielded solar cells, protected only by 20 mls of synthetic sapphire, decreased by about 10% current output after two weeks in space. For those protected by 25- and 30-ml shields of cadmium to solar, the current decrease was only about 5%.

Electronic people will not be too surprised that inside Telstar's small body, aside from its voluminous electronic and other gear, there are 1064 transistors and 1464 diodes! Surprisingly enough, there is only one lone vacuum tube on board! This is the foot-long traveling wave tube already mentioned. Its inventors were Drs. John R. Pierce and Jack A. Morton of Bell Telephone Laboratories, Inc.

Bell Telephone Laboratories was responsible for the design and construction of Telstar I. The American Telegraph and Telephone Co. paid the entire cost of the Telstar project, including a fee of $3 million paid to National Aeronautics and Space Administration for launching it into orbit.

Inasmuch as a single satellite cannot give continuous worldwide service, it will be necessary to put up a multiplicity of Telstars, so there will always be several above the horizon. This makes for a minimum of 30 to 50 communication satellites within 10 years.

However, once we have sufficiently powerful rockets to launch them, future, more sophisticated Telstars can be elevated to a height of 22,238 miles above the equator. At this height they will revolve with the speed of the earth and will hover, apparently stationary, over the circumference of the earth. At this height, we require only 3 Telstars. However, at such an elevation we meet with a disagreeable time lag because it takes a signal 0.3 second to travel both ways. In a 2-way telephone conversation there would be a 0.6 second lag between speaking and hearing the reply. This might be annoying in telephone conversations. The time lag however would not affect TV transmission and reception.

A compromise of 4 or 5 Telstars lifted to a height of about 10,000 miles, as pointed out in our March, 1958 editorial, might be a solution. This would make it possible to carry a traffic of over 10,000 simultaneous telephone conversations plus other traffic, such as world-wide television and various other requirements. It probably can be accomplished before 1975, in the writer’s estimation.

—H.G.
HOW GOOD IS RADAR JAMMING?

By JORDAN McQUAY

Modern radar is used widely in both military and industrial applications to detect and locate aircraft, ships and other objects in the air, on land and on the sea. Radar is a basic military weapon—useful in wartime as an aid to combat, in peacetime for defense.

The development of every new military weapon has produced, in turn, a counterweapon or defensive measure. Just as the use of gas resulted in the gas mask, just as the heavy bomber established the need for radar, radar countermeasures evolved against radar itself.

The accuracy, sensitivity and other unique attributes of radar were described in the June and July 1960 issues of Radio-Electronics. And by the very nature of its operation, radar is extremely vulnerable to interference and jamming. The extreme sensitivity and other characteristics of modern radar can be turned against it by adroit radar countermeasures. We can expect these countermeasures to be used against our own radar installations by an enemy. Similarly, the United States is ready to administer the same treatment to any potential enemy.

The “treatment” may include any of several kinds of countermeasures. Most frequently used is radar jamming—the deliberate transmission of signals intended to interfere with the operation of enemy radar. The purpose is to nullify or at least minimize their effectiveness by obscuring or confusing radar scope displays and thus eliminating or distorting the reception of intelligence.

The first classic example of large-scale radar jamming took place in early 1942 when three German warships escaped from Brest, moved through the English Channel and reached the safety of northern ports. Nearly a hundred German jamming stations in France so effectively blinded British coastal defense radars that they could not detect the warships passing through waters under British surveillance.

There was limited jamming during the Korean war. And this specialized electronic warfare can be expected during any future limited or global war. Although not always completely successful, it is a potent counterweapon.

Weaknesses and antidotes

Deliberate radar jamming and countermeasures are potentially successful because of certain characteristics and inherent weaknesses of radar.

Chiefly these are its extreme sensitivity to returning rf signals, the visual nature of these results on radar display scopes, and the inability of radar to distinguish the precise nature or number of relatively small targets.

A radar transmits recurring pulses of tremendous magnitude—often several megawatts of peak power. These pulses travel long distances before they impinge on a target or other object and are reflected to the radar. Often they return with only a few millivolts, or even microvolts, of input power. Very sensitive rf receivers detect these weak “echoes.” They also pick up interfering jamming, noise and other signals (at the frequency of operation) in the path of the radar antenna. Thus, we must carefully discriminate between the wanted signal from a distant target and extraneous and jamming signals from a multitude of other sources.

An operating radar is its own best advertisement, continually blasting the air with its operational presence. It cannot function secretly, and thus betrays its existence as well as its frequency and other characteristics (by electronic surveillance and analysis), its direction (by radio direction finding) and its location (by triangulation with two or more rf stations). If the radar is not driven off the air by enemy jamming, it may be blasted off the earth by enemy bombers.

To minimize some of these inherent weaknesses, modern radars incorporate a variety of advanced-design electronics stages and circuitry.

Some radars have provisions for varying or slightly changing the operating frequency of the transmitter. This is invariably used with cavity magnets. The frequency of received signals can be varied by a change in the tuning of the local oscillator of the superheterodyne radar receiver. High- and low-pass filters are used in the rf and video stages of most receivers to screen and remove unwanted or interfering signals. Both the duration and the frequency of transmitted pulses can be varied. A change in prf (pulse recurrence frequency) is being widely used to “lose” jamming signals that are synchronized with the radar. Most modern installations are also equipped with “black-box” AJ (anti-jamming) circuits. When they are operating, the normal display on the radar scope is divided into a number of magnified segments—to permit better visual discrimination between wanted and unwanted signals.

But despite these technological advances, all types of modern radar are susceptible, in greater or lesser degree, to many types of jamming and other countermeasures.

Principal types of jamming may be described in terms of the visual appearance of the two basic types of radar displays—the A-scope and the PPI-scope. There are countless varieties of these principal patterns, the nature or variety depending upon the jamming. Through many of these jamming patterns, however, the target signal can still be observed by operators with patience.

A-scope effects

Visual effects of several types of jamming viewed on a radar A-scope are shown in Fig. 1. All synthesized effects are obtained with the same radar and scope, and the same target.

A normal A-scope presentation, without jamming, is shown in Fig. 1-a. At the left is the radar transmitter pulse marking the start of measurement of distance to a target, at the right, the target at a distance along the base line. Minor deflections along the base line—known as "grass" or "clutter"—are caused by atmospheric noise and other unwanted electronic interference of an external nature.

Occasional pulses which may
receiver. The undistorted part of the base line is near and unaffected. When all of the base line is disturbed and distorted, the frequencies of the FM jamming signal are within the response curve of the radar receiver. If the FM jammer is synchronized with the radar, the "hump" effect will be stationary and the target difficult to detect. If the jammer and radar are not synchronized, the "hump" effect will move along the base line, permitting an occasional glimpse of the target.

The most effective jamming signals are combinations of FM with noise (Fig. 1-d) or pulsed AM with noise (Fig. 1-e). The addition of electronic noise produces a highly complex signal, which almost completely masks the target signal. With much patience, a radar operator can detect and locate a target signal in the confusion on his scope. But usually this type of jamming is almost 100% effective.

PPI-scope effects

The effect of radar jamming signals on a PPI-scope has a different appearance, mainly because a PPI-scope presents target azimuth or direction as well as target distance. The rotating base line is synchronized with the radar antenna, and both revolve several times a minute. As a result, PPI-scope effects of radar jamming are frequently multi-circular, often very complex and usually symmetrical. Fixed patterns indicate the jammer is synchronized with the radar; moving patterns, a difference between their prf's. In fast-sweep PPI-scope, the target is frequently obscured by the circular maze of confusion.

A normal PPI-scope presentation, without jamming, is shown in Fig. 2.

Fig. 1—Effects of jamming on radar A-scope: a—Normal scope, no jamming. b—CW pulsed jamming. c—FM jamming. d—FM plus noise jamming. e—AM plus noise jamming.

sometimes move quickly along the base line are known as "rabbits" and are frequently too swift to photograph. This type of intermittent interference is caused by a jammer or by any rf transmitter that is not synchronized with the radar.

When a jammer is using CW pulsed modulation, the A-scope effect (Fig. 1-b) is known as "railings." If these appear stationary, the jammer and the radar are synchronized. Any movement of the "railings" along the base line indicates a difference in prf between jammer and radar. With a little practice, a radar operator can easily read through the "railings" and detect and locate the target.

An AM jamming signal usually produces steep-sided visual effects on an A-scope. An FM signal usually produces sloping waves or "humps."

In a typical instance of FM jamming (Fig. 1-c) the resulting "hump" distorts a portion of the base line. This distortion is caused by frequency sweeps greater than the response curve of the

four different prf's, are shown in Fig. 4.

Examples of the effects of FM jamming, at four carrier frequencies, are shown in Fig. 5. Harmonic relations are responsible for the exceedingly complex patterns viewed on a PPI-scope. By further varying the prf, even more complicated designs appear on the scope.

Jamming equipment

Jamners are of three broad types: ground based, shipborne or airborne.

Fig. 2—Normal PPI-scope (without jamming).

The dots and splotches indicate recurring signals from targets and objects within range of the radar, represented at the center of the PPI-scope.

Four examples of the effect of CW pulsed jamming are shown in Fig. 3—the CW pulses vary in width from extremely narrow to very broad. A broad CW pulse means that the jammer is transmitting an excessive amount of average power, producing more interference on the PPI-scope, but at the expense of greater output power at the jammer.

Four effects of CW pulsed jamming of fixed pulse duration, but with

Fig. 3—Effect of CW pulsed jamming on PPI-scope. Top to bottom shows increase in pulse width.
All modern ones are capable of generating and transmitting a variety of jamming signals at any specified operating frequency.

While technical details of current jammers are classified as military information, some general data on several typical jammers can be revealed. Newer models constitute improvements in sophistication—primarily the greater variety of intermixed AM/noise and FM/noise signals that can be generated and broadcast.

A typical ground-based jammer (Fig. 6), the TDY-2, has been used extensively by both the Army and Navy. The transmitter’s final stage uses a CW cavity magnetron.

An airborne jammer (Fig. 7), the AN/APJ-4, also uses a cavity magnetron. The omnidirectional wide-band antenna is characteristic of many types of jammers.

Special-purpose jammers include one that is essentially a miniaturized transmitter, which can be dropped by parachute, suspended from a balloon, or launched in the vicinity of an enemy radar by a rocket or artillery. Battery-powered, it is small in size and weight, and equipped with a self-destruction mechanism to prevent its falling into enemy hands.

Passive devices

All the jamming equipment and techniques so far described are known as active countermeasures. When used against enemy radar, they are easily controlled and involve electronic components and circuitry.

Another important category, the
passive countermeasures, require no equipment or circuitry and use the transmitted pulses of an enemy radar to counteract it. This is done with rf reflectors, especially designed to produce maximum "echoes" at the enemy radar.

There are two types of passive countermeasures: chaff and rope.

Chaff, also known as window, consists of literally thousands of thin strips of lightweight reflecting material—tin foil, aluminum foil or metallic-coated paper—about 5/8 inch wide. The length of each strip depends upon the operating frequency of the enemy radar to be jammed. A microwave radar requires strips about 1 inch long; lower radar frequencies require longer strips.

Bundles of precut chaff are dropped by aircraft at high altitudes, or they may be fired into space by small rockets (Fig. 8). The bundles quickly separate and disperse the many reflective strips—which then float gently down through a predetermined air-space area.

When pulses from an enemy radar strike the moving mass of chaff, "echoes" returning to the radar indicate hundreds of reflections. Since a radar cannot distinguish differences in the size of small objects, the effect of chaff on a PPI-scene (Fig. 9) is that of hundreds of aircraft—a massive deception.

While the effect may last for only 30 minutes, this is often enough time to confuse the enemy or to synchronize some diversionary tactic.

Chaff is cut to about one-half the wavelength of the radar to be jammed; and has an effective bandwidth approximately 15% of center frequency.

Rope consists of bundles of long pieces of metallic tape, often as long as a hundred feet. Used against low-frequency radars, it produces a deceptive effect similar to chaff. Rope is essentially an untuned reflector and is used best against radars operating at frequencies below 300 mc.

The principal disadvantages of all passive countermeasures are that they fall rapidly, drift with prevailing wind and quickly disperse due to falling and drifting in space.

Using countermeasures

Tactical use of radar countermeasures requires a good deal of military preplanning and coordination. Long before a ground-based or shipborne jammer goes into action or before chaff is dropped by aircraft, there is electronics activity by technical intelligence teams and other groups concerned with the success of the operation.

The search phase of radar countermeasures involves the location and continuous monitoring of enemy radar. Established as near the enemy as possible, intelligence teams maintain an electronic surveillance of all enemy transmissions. Results—operating frequency, prf, pulse duration, other technical characteristics—are carefully measured, recorded and analyzed. Geographical location of all enemy radars is determined by precision rdf equipment. Supplementary data are collected by special aircraft—known as ferrets or electronic sniffers—equipped with receiving and recording gear for close contacts with enemy radars.

Based on all technical data collected during the search phase, plans are completed for the most effective type of countermeasures to be used against the enemy sites. Appropriate jamming equipment is set up at key sites. But the jamming transmitters are not fired up, not even tested with dummy antennas.

There is a period of waiting—until the countermeasures operation can be coordinated with a major military operation against the enemy. Then, at H-hour, the jamming transmitters open up with a barrage of composite jamming signals directed against the enemy radars. Perhaps at the same time, the Air Force is dropping chaff in the skies above the invasion area. Surprise is an important factor in the success of radar countermeasures. Confusion is introduced suddenly and unexpectedly to assure maximum effect.
Sampling gives a 14-inch scope usable response from zero to 5 mc

Oscilloscope design engineers have been faced with a paradox. Large-screen scopes could find many uses in such applications as classroom demonstrations, production-line testing, read-out devices for analog computers and for multi-channel data display. Yet a large-screen scope must be magnetically deflected—the narrow deflection angle possible to electrostatic deflection limits it to smaller C-R tube sizes. But the inductance of a magnetic deflection yoke delays the rise time of an applied voltage and so will display faithfully only the lowest-frequency waves. Above about 15 kc it becomes almost useless. Yet so valuable is the large screen that there has been since 1955 a small but steady market for magnetic scopes, to find limited use in the lower frequencies.

When requested to supply a 14-inch scope flat to 5 mc, engineers of International Telephone & Telegraph’s Co.’s Industrial Products Div. (San Fernando, Calif.) found it necessary either to make magnetic deflection work at high frequencies or to devise an electrostatic-deflection system that would work with a large tube. Magnetic deflection, they believed, was the practical answer, and they achieved a breakthrough by using a technique heretofore used only on the highest-frequency scopes—that of sampling (See “About Those Super-Sscopes,” Radio-Electronics, March 1961).

Sampling is sensing the waveform with components that are not frequency-sensitive. Diodes that respond in tenths of microseconds are used. A short gating impulse turns the diode on, and the instantaneous amplitude of the signal at that instant charges a storage capacitor through the diode. At the end of the gating impulse, the charge on the capacitor is proportional to the instantaneous amplitude of the signal. The gating circuit timing is controlled by the frequency being measured. One sample of each cycle of the signal wave is taken, each sample being a little later in the cycle than the preceding one. If a wave were to be sampled at 18 points, for example, an 18-mc signal, sampled once per cycle (Fig. 1-a) could be displayed on a scope sweeping at 500 kc (Fig. 1-b). Persistence of the screen phosphor and of human vision make the string of dots look like a continuous curve.

Existing sampling scopes, while able to display extremely high-frequency waveforms, were limited to small C-R tubes. And because they took only one sample of the wave per cycle, they could not be used for the low-frequency waveforms which had been considered the natural field of the large-screen scope. They just couldn’t plot a large enough number of points to represent the wave correctly.

The ITT breakthrough that made full-screen magnetic deflection possible both at 5 mc and at frequencies going right down to zero was to make the sampling process entirely independent of the wave being sampled.

The operation can be understood from Fig. 2, a simplified block diagram. Circuitry for the horizontal (x) and vertical (y) inputs is identical, to give the scope greater flexibility. Each input consists of the driver stage which converts the input voltage signal to a current sufficient to charge the storage capacitor. The output from the current driver is fed to the sampling gate, which is normally an open circuit. When the sampling pulse generator is activated (once every 20 microseconds) the sampling gate connects the input current driver to the storage capacitor (Cx and Cy in the diagram). The storage capacitor now assumes a charge proportional to the value of the incoming signal and follows its variations so long as the gate remains open. When the gate closes, the instantaneous change on the storage capacitor is trapped and remains static un-
The vertical deflection of the yoke, causing the waveform to be displayed on the scope screen. The integrated display is, of course, presented at a much lower frequency than the signal being sampled.

This sampling method is the secret of the low-frequency response. Even the lowest-frequency waves are sampled a large enough number of times to display them accurately on the C-R tube screen.

Yet the inductance of the yoke is still there, after the signal has passed the deflection amplifiers, to delay the rise of deflection voltage and to distort the waveform on the screen. To solve this problem, the C-R tube beam is normally gated off. The deflection amplifier drives through the yoke a current proportional to the sample stored on the storage capacitor. The delay multivibrator and unblanking pulse generator keep the tube below cutoff till the current in the yokes has had time to stabilize against the opposition of the yoke inductance. Then the tube is turned on very briefly and a point of light plotted on the face of the scope. The vertical and horizontal position of this spot are directly proportional to the charge samples on the two storage capacitors. The display for a low-frequency wave, and how a high-frequency is handled by the random-sampling technique, is shown in Fig. 3.

On a single high-frequency cycle, there may be only 1 or 2 sampling points, which certainly would not give an indication of the wave shape. But on the next high-frequency cycle there are 1 or 2 more sampling points, that are not the same as those on the first cycle. These points all add up and because of the persistence of the CRT phosphor and the human eye, you see the entire wave on the scope.

The versatility of the instrument is increased by its modular construction. It is made up in three units, the indicator, a control unit and a power supply. The indicator unit contains the 14-inch tube, the main deflection amplifiers and an 8-kv high-voltage supply. The control unit contains sampling circuitry and the controls for the C-R tube functions as well as jacks for the x and y plug-ins. The third unit is a power supply that provides all power except the high voltage for the C-R tube.

The display tube of the LS 421 is electrostatically focused and provides exceptionally high resolution, brightness and linearity. Spot size of 0.5 millimeter is better than that of most 5-inch cathode-ray tubes. It is achieved by the special design of the electron gun. The potential is 8 kilovolts. The full screen display measures 18 x 24 centimeters and the calibrated area is 15 x 20 centimeters.

The horizontal calibrated sweep speeds are 0.2 second per cm to 20 nanoseconds per cm. The uncalibrated sweep is 0.5 second to 20 nanoseconds per cm when using the time-base generator type PH2. The LS 421 is more than 6% transistorized. Tubes are used in the outputs of the deflection amplifiers.

Youngest Hearing-aid user

Barbara Ann Yashuk, 5 months, sits out a test of her new hearing aid at the St. Louis Hearing & Speech Center. She's been using it for a month and cries when it is not put on.

NOVEMBER, 1962
Installing an ALTERNATOR

By CHARLES J. SCHAUERS

You've been doing mobile radio work all along—communications, amateur, CB—and lately more and more of customers have been asking about and buying alternators. But you've been sending the work to an automotive shop. Why? You could install the alternator system yourself. Here's how it is done.

The first step is to check the polarity of the existing automobile ignition system. Reverse battery polarity will damage rectifiers in the alternator and regulator. Once you've determined polarity (does the negative or positive end of the battery connect to the car chassis?), refer to the diagrams shown as to which alternator and which wiring arrangement to use.

Each alternator installation kit contains all the hardware needed for a specific model car, so order the installation kit by the auto make and model. Sometimes the original fan belt is used and sometimes a new one must be provided. In almost all installations the original generator leads are used. Now let us do a typical alternator installation (step by step) in a 1960 Pontiac Catalina. We will use a Leece-Neville 6000 series alternator. A later issue will present details on maintaining and servicing alternators.

To begin, disconnect the battery—first the end connected to the car chassis. Next remove the old generator and regulator. Now follow the photos.

Make it a part of your mobile service business
Mount fan pulley on alternator shaft.

Next, remove brush holder and brushes.

Then remove the four through-bolts.

Rotate slip-ring housing, as necessary, to fit the space in the engine compartment. Replace bolts, brushes, etc.

Alternator is installed in engine compartment by placing long bolt through mounting spindle.

Next, the fan belt (original) is engaged in the alternator pulley grooves.

Now, mount the support strap (supplied) between the ears of the alternator.

Then connect all leads to the alternator following the appropriate wiring diagram.

Adjust alternator position to allow for hood and fender clearances. Engage bolt to connect support strap to retaining strap.

Using lever, move alternator until fan belt is tight enough to prevent rotating fan with fingers. Tighten retaining bolt.

Install regulator in the same location as original regulator and wire it according to proper wiring diagram.

Reconnect battery, hot lead first; grounded lead last. Run engine at least 15 minutes, check fan belt for tightness. Voltage from regulator BATT terminal should be 13.9 to 14.1 volts with 3533RA regulator, 14.2 to 14.6 with 3631RA.

END

NOVEMBER, 1962
These transmitting and receiving hookups will interest the experimenter.

By CLIVE SINCLAIR

Tunnel diodes have been around a fair length of time now. We've seen several experimental circuits using them in different ways. Here, we will present circuits that show how the tunnel diode can be used as an rf amplifier and i.f. amplifier, in medium-wave and FM receivers and in an FM transceiver.

Fig. 1 shows how a tunnel diode might be used as an rf amplifier. The coils are wound on a single ferrite rod. L1 and C1 form a resonant circuit tuned to the frequency required. The tunnel diode, a 1-ma type, is biased to a negative portion of its curve by R1 and R2, which form a voltage divider across the battery.

L2, C2 and C3 form a broadly tuned circuit whose dynamic resistance must be numerically less than the negative slope resistance of the tunnel diode. Under this condition we get amplification because the negative resistance of the diode cancels some of the positive resistance of the tuned circuit, thereby raising its Q. If gain is thus obtained in much the same way as in a regenerative detector.

How much gain this circuit gives depends upon how close the numerical value of the tunnel-diode resistance is to the dynamic resistance of the tuned circuit—the smaller the difference, the higher the gain. If the diode's negative resistance is numerically greater than the positive resistance of the tuned circuit, the circuit will oscillate—all the resistance of the tuned circuit will have been cancelled. To get maximum gain short of oscillation, alter the diode resistance by adjusting R1. Maximum gain will be around 30 db.

The same procedure works for an i.f. amplifier, with more practical results. The circuit of Fig. 1 would have to be redjusted for maximum gain each time the signal frequency was changed. In an i.f. amplifier, the frequency remains constant and retuning would not be needed.

To get gain with the circuit of Fig. 2, the diode's negative resistance must be numerically greater than the input and load impedances in parallel. Also it must be numerically less than the load impedance, which includes the shunt loss of the tuned circuit. Since it is inconvenient to vary input and output impedances to adjust the slope resistance of the diode for maximum stable gain, we have included R1 for this adjustment.

Both circuits (Figs. 1 and 2), may appear unusual, yet are conventional in the sense that they use an accepted method of amplification with a negative resistance device. Neither Fig. 1 nor Fig. 2 presents an attractive circuit because the same thing can be done better with transistors. However, at much higher frequencies, similar circuits could be used where transistors would be useless.

Detector circuit

Unlike these circuits, Fig. 3 is both new and potentially very useful. It was developed by Standard Telephones & Cables Ltd. (S.T.C.), England, as was the circuit of Fig. 2. The circuit, then, is a detector, but one that provides full-wave rectification with only a single diode. This is done by biasing the diode to its peak current point (P in Fig. 4), so that either a negative- or positive-going signal will reduce conduction. This might be purely academic were it not for one important advantage this detector has over a conventional one: It is sensitive to very low input voltages. An ordinary detector diode has a contact potential to overcome before efficient demodulation can occur.

Fig. 1 — Tunnel-diode rf amplifier.

Fig. 2 — Tunnel-diode 465-kc. i.f. amplifier.

Fig. 3 — Tunnel-diode detector circuit.

Fig. 4 — Characteristic curve showing the point (P) to which the tunnel diode in Fig. 3 is biased. L is a load line.

RADIO-ELECTRONICS
the forward and reverse conductances being very much the same at very low signal levels. This means that, in a receiver, the signal has to be amplified considerably by rf or if stages before being applied to the detector. Were this not so, more of the gain required in the set could be obtained by audio amplification, which is cheaper and simpler. With a detector such as in Fig. 3, such an arrangement would be possible and the cost of a set could be reduced. At ordinary AM broadcast frequencies the saving might not be very great but, in the vhf and uhf regions, rf gain becomes increasingly expensive and saving several stages becomes attractive.

As a demonstration of the potentials of this detector S.T.C. has built a medium-wave receiver in which the whole rf section consists simply of the circuit of Fig. 1 combined with that of Fig. 3. In this circuit L3 in Fig. 1 replaces the secondary of the rf transformer in Fig. 3. The audio transformer has a step-up ratio of about 3 to 1 to match the very low output impedance of the detector to that of a four-stage transistor audio amplifier. Because it needs delicate adjustment, the receiver, as it stands, is really suited only to single-station operation but it bodes well for the future of similar arrangements at very much higher frequencies.

VHF/FM circuitry

In medium-wave receivers the transistor is so successful and well established that it is unlikely that the tunnel diode will find much application. The situation is much more promising in the FM band since transistors that can amplify and oscillate at 100 mc with a low noise level are still comparatively expensive by domestic equipment standards. They also require more complex circuits than do tunnel diodes in similar circumstances.

Tunnel diodes will probably be confined to the front end in FM receivers because transistors are more satisfactory in the i.f. sections. The same applies to receivers at all frequencies right up to the microwave region. Tunnel diodes will amplify the rf signal and reduce it to an intermediate frequency which can be comfortably handled by transistors.

The conventional transistor FM front end consists of a single-stage rf amplifier and an autodyne converter that combines the functions of mixer and oscillator. A similar arrangement with tunnel diodes needs only about half the number of auxiliary components. Compare the circuit of a typical FM front end using transistors (Fig. 5) and one with tunnel diodes (Fig. 6). The latter is not only simpler but is also likely to have a considerably lower noise level, of vital importance in this type of unit. The conversion gain may be slightly lower under some circumstances but this is of no particular importance when the noise level is very low since most of the gain of an FM tuner is in the i.f. strip.

In Fig. 6, D1 is the rf amplifier. The circuit is arranged so the diode is tapped into a part of the tuned circuit with a dynamic resistance just less than the numerical value of the diode slope resistance over the negative part of the curve. Gain is controlled by adjusting the voltage across the diode and is limited either by the amount of gain that can be achieved before instability occurs or by the need to maintain an adequate bandwidth in the tuned circuit.

One advantage of the tunnel-diode amplifier over transistor types is that only a single tuned circuit is necessary and no additional input transformer is required. D2 is the oscillator and operates in much the same way, except that the dynamic resistance of the tuned circuit is higher than the negative resistance of the diode. The oscillator circuit is also very simple because no feedback coil or capacitor is required. The oscillator and rf signals are mixed in D3, a conventional diode. The circuit as shown is suitable for tunnel diodes with peak currents of around 1 ma. They can be powered by a single mercury cell instead of the two shown.

A tunnel diode may be used as a mixer in place of a conventional type—Fig. 7 is one possible circuit. It is also possible to use the same tunnel diode both as oscillator and rf amplifier and even as the mixer, but adjusting such a circuit is difficult. Trouble arises because it is impossible to make all the adjustments required simply by varying the voltage across the diode, and some means has to be included to vary the Q of the tuned circuits. Since this also changes the frequency to which the circuit is tuned, precise adjustment is a long and troublesome process.

Best results with a new component are often obtained by using unconventional circuitry. This may well be true for the tunnel diode in FM tuners. Fig. 8 is the circuit of a complete FM tuner. The principle on which it works was discovered at S.T.C. in the course of experiments designed to produce a superregenerative circuit. The tuner is basically a synchrodyne receiver. Though little used and not well known, the synchrodyne has several advantages over the superhet or the trf. It is

Fig. 5—Typical transistor FM front end. Compare with Fig. 6.

Fig. 6—FM front end using tunnel diodes. It’s much simpler than circuit of Fig. 5.

Fig. 7—Mixer circuit uses a tunnel diode.

Fig. 8—Complete FM tuner needs only one tunnel diode.

www.americanradiohistory.com
most easily described as a superhet in which the intermediate frequency is zero cycles per second or dc. The local oscillator and signal frequencies are identical except that the latter is modulated. When the two are mixed, the difference output is simply the audio content of the original signal so no i.f. strip, as such, is required. The advantages of this system are low cost, simplicity and control of the bandwidth by the bandwidth of the audio amplifier.

The tuner in Fig. 8 uses a tunnel diode biased to its negative resistance region so that oscillation occurs at the resonant frequency of the tuned circuit. This circuit is tuned to the center frequency of the FM signal to be received. As the FM signal deviates from its center frequency the oscillator keeps in step with it, but the Q and hence the dynamic resistance of the tuned circuit drop rapidly as the deviation increases. The diode resistance alters in step with this so as just to cancel out the conductance of the tuned circuit and cause oscillation. As the diode resistance alters in sympathy with the modulation of the FM signal so does the voltage across it, and this forms the receiver's audio output.

The audio signal from the tuner is, of course, very small but not too small to be handled comfortably by a suitable audio amplifier. For speaker operation, feed the tuner output into a four-stage transistor amplifier. If you use a stepup transformer with a turns ratio of about 6 to 1 between the tuner and the amplifier, only three stages may be needed. If a sensitive earpiece is used one stage less will be necessary in each case.

The tunnel diode should have a 1-ma peak current (a 0.5-ma type may be used if all the resistor values are doubled) and should be a low-capacitance type such as the Philco T1925 for one of the Q-E diodes. The coil may be five turns of stiff copper wire wound to a length of 1/2 inch on a 1/4-inch diameter form.

The one disadvantage of this circuit, as it stands, is that R1 normally has to be adjusted when a new station is tuned in. This could be overcome by using several preset resistors (one for each station required), and switched tuning. It may also be possible to devise a simple control circuit that automatically adjusts the bias voltage to the correct level. The quality is excellent and from every other point of view the circuit is very satisfactory indeed. No difficulties should arise in building one of these sets.

One feature of the circuit in Fig. 8 which should not be overlooked is the ease with which it may be turned into an efficient low-power FM transmitter. Simply connect a low-impedance dynamic microphone (a miniature speaker works very well) across what are now the output terminals. To produce a deviation of ±75 kc, the microphone must provide about ±10 mv. The range of the transmitter should be about 1/2 mile under good conditions, but is limited by the tiny output from the diode.

Complete FM transceiver

A very simple fm/vhf receiver may be built by using the synchrodyne principle for the receiver. The complete circuit for such a unit is shown in Fig. 9. Three subminiature transistors are used in the high-gain audio amplifier; the 2N207 was chosen because of its ability to operate well from a 1.3-volt cell. Since the total consumption of the set is less than 3 ma, a tiny Mallory RM-675 may be used as the battery and will give about 35 hours life. The earpiece also acts as the microphone and should be a very sensitive type such as those designed for use with hearing aids. S1, the TRANSMIT-RECEIVE switch, a dpdt type, is shown in the transmit position.

Coil L1 consists of five turns wound to a length of 1/2 inch on a 1/4-inch diameter form. The diode must be a 1/2-ma type to make the input impedance of the transmitter as high as possible.

As the case of the generated audio amplifier; the 2N207 was chosen because of its ability to operate well from a 1.3-volt cell. Since the total consumption of the set is less than 3 ma, a tiny Mallory RM-675 may be used as the battery and will give about 35 hours life. The earpiece also acts as the microphone and should be a very sensitive type such as those designed for use with hearing aids. S1, the TRANSMIT-RECEIVE switch, a dpdt type, is shown in the transmit position.

Coil L1 consists of five turns wound to a length of 1/2 inch on a 1/4-inch diameter form. The diode must be a 1/2-ma type to make the input impedance of the transmitter as high as possible.

By using subminiature 0.1-watt resistors and tantalum capacitors throughout the unit, the transceiver could be made no larger than a matchbox and yet give remarkably good performance.

The future

One of the first applications could be a new type of remote control for TV receivers using a tunnel-diode transistor, possibly operating in the vhf band, to avoid the need for a lengthy aerial. Such a device would be small, light and versatile—numerous controls being possible with a single unit. Tunnel diodes are likely to be used in pocket FM receivers operating in the vhf broadcast band. They may also be applied to Citizens-band transceivers.

Tiny Citizens-band transceivers small enough to fit into a buttonhole could be developed. While these would have only a limited range because of their small output power, they might be very useful for interoffice, factory and home communications.

Tunnel diodes are likely to appear in TV receivers too, particularly in the front end. Their ability to act as very low level detectors might well prove useful since it could reduce the number of i.f. stages considerably. This may lead to a small revolution in TV receiver design and could accelerate the development of small portable and pocket-size TV receivers.

IT COSTS US PLENTY

...but it protects you!

We're talking about our policy, long in existence, of insisting that all mail-order radio tube advertising in Radio-Electronics be clearly identified as to newness, use, or otherwise perfect or imperfect condition—your assurance that you get what you pay for.

This has cost us thousands in advertising, but we think it's well worth it in your good will.
semiconductors sit for their portraits

These are microphotographs of semiconductor surfaces. Made in M.I.T.'s Lincoln Laboratory by Harry H. Ehlers of the Electronics Materials Group, they are as useful to metallurgists and solid state physicists as they are attractive. Magnification of 200 times or more makes it possible to study many important phenomena in electronic materials, including the presence and orientation of grain, identification of lattice defects, noting the presence of precipitates, and others.

The photo to the top left is of a film of antimony 1,500 Angstroms thick. At top right is an etched cadmium sulfide surface; at bottom left, a germanium surface etched in argon at high temperatures, and at bottom right a germanium surface etched in hydrogen.
NEW Test Instrument for FM Stereo

Fisher model 300 Multiplex Generator transmits signals for testing and aligning multiplex tuners and adapters

By WAYNE LEMONS

BASICALLY THIS NEW TEST INSTRUMENT is a miniature, high-stability, multiplex FM transmitter that can be used to broadcast stereo signals for testing and aligning FM stereo tuners and multiplex (MPX) adapters.

Since FM stereo broadcasting is fairly new, a short explanation of the FCC rules and standards should help us better understand why there is a vital need for an instrument such as the 300.

In the FCC approved system, left (L) and right (R) signals are combined (L + R) and used to modulate the main channel, a band of frequencies from 50 cycles to 15 kc. (This is the only part of the stereo signal reproduced by a monophonic tuner.)

The stereophonic subchannel is modulated with the difference information of L and R, designated L — R. The subchannel carrier frequency is 38 kc but, for practical reasons, the carrier is suppressed and only the sidebands are utilized.

To control and time the subchannel for reproduction at the receiver, a 19-kc pilot carrier (half of 38 kc) is added. These three signals make up the MPX signal which in turn is frequency-modulated on the FM station carrier.

Another signal for “store-casting,” SCA (Subsidiary Communications Authorization), is often added. It occupies the band of frequencies from 60 to 74 kc and is frequency-modulated on a 67-kc subcarrier. The distribution of these signals is shown in Fig. 1.

With these facts in mind, let’s see how the Fisher model 300 derives these composite signals.

The fundamental timing device (Fig. 2) of the generator is a crystal-controlled 19-kc oscillator factory-set to be correct within 0.5 cycle. (The FCC allows a 2-cycle deviation.) A doubler stage produces a 38-kc carrier. This is fed to the modulation section through a Cowan type switch described later. An audio generator produces fixed signals of 1 kc and 8 kc for modulating either of the internal R and L amplifiers. (A 60-cycle signal, derived from the power line, is also available.) The function switch can also select external modulation so that a stereo source, such as a record or tape player or another tuner, may be used to modulate the 100-mc FM carrier produced by the multiplex generator.

The 1-kc and 8-kc signals are available on the rear panel of the instrument, both for phase adjustment with a scope and for signal tracing or other purposes.

An output meter connected to the COMPOSITE OUTPUT jack indicates either output voltage, modulation percentage or amplitude of the pilot carrier.

The modulation section

Though most of the circuitry of the model 300 is fairly conventional, the modulation circuit is an exception. The modulator cannot exactly be called a suppressed-carrier system, but for all practical purposes the effects are the same. It is actually a switching circuit with a switch rate of 38 kc (Fig. 3). With the switch up, output from the
LEFT INPUT is fed to the modulator. On the next half-cycle, the switch moves down and the output is taken from the RIGHT INPUT. With the left input as shown and no input to the right channel, the resultant output signal resembles Fig. 4.

This system of modulation is much easier to build and adjust than the more complicated suppressed-carrier modulator with its complex filter networks. Though the "switch" system is less complicated, it does have more harmonics but these have been proven to be only odd order ones (third, fifth, seventh, etc.) easily removable with one fairly simple low-pass filter.

The Cowan type 38-kc diode switch (Fig. 5) uses silicon diodes for good stability and high front-to-back ratio. Two of these diode switches are used. They are connected across the 38-kc source to short one input effectively to ground while allowing the other input to pass a signal during one half-cycle. The process is reversed on the next half-cycle. See Fig. 6 for a block diagram of the MPX modulation unit. One of the diode switches is represented by S1 and the other by S2. Figs. 7-a and 7-b show a sine-wave audio input signal and the signal output from the switch. The serrations are the result of the 38-kc switching frequency.

This switch type modulation clearly shows how the two 100% modulated signals will not overmodulate the transmitter, a fact not so easily seen using a suppressed-carrier analogy. As you can see in Fig. 6, only one signal, either right or left but not both, modulates the transmitter at a time. While one signal is being used, the other is shorted to ground.

Figs. 8-a, 8-b, 8-c show actual modulated output with different modes of operation. Fig. 8-d is the same as 8-c but with the 19-kc pilot carrier added.

Using the model 300

The model 300 will be used for aligning and testing two kinds of FM stereo equipment: integrated FM-MPX tuners and for separate MPX adapters. Note that the i.f. and detector circuits of an FM tuner usually have considerable influence on the performance of an MPX adapter, so it is highly desirable that you align an MPX adapter with the tuner it is to be used with. Follow the specific manufacturer's instructions, which usually include adjusting SCA traps or filters, if used; adjusting the 19- and 38-kc circuits, and adjusting for best stereo separation. Here's how to do this with the model 300:

1. Allow the tuner and the model 300 to warm up for 15 minutes or more.

Fig. 7—Sine-wave input (a) and the output from the switch (b).

Fig. 8—Actual modulated signals produced by the generator: (a)—1-kc right signal without pilot carrier; (b)—1-kc right signal plus 60-cycle left signal; (c)—1-kc right signal plus 60-cycle left signal—equal amplitude; (d) same signal as in c but with 19-kc pilot added.

2. Read the manufacturer's instructions and adjust any SCA traps or filters accordingly.

3. Set the controls as follows:
 - POWER—ON, PRE-EMPHASIS—OFF, LEFT SIGNAL 7, RIGHT SIGNAL 7, and the SELECTOR to 1 KC LEFT.
 - The COMPOSITE SIGNAL level control for a reading of 1 on the meter's top scale. This corresponds to 75-kc deviation.

5. Depress the 19-KC AMPLITUDE pushbutton and adjust the 19-KC AMPLITUDE ADJ for a reading of 100 mv on the meter scale.

6. Connect the rf output cable...
Simplified ‘Instant-On’ Circuit

TO THOSE WHO MAY BE TOYING WITH THE idea of applying this new circuit (Radio-Electronics, January 1962, page 29) to their favorite ac–dc radio, the following simplified circuit should be of interest. A dpst switch is not required, and wiring changes can be made in a matter of minutes, without removing or replacing any parts. The only added component is a 500-ma 400-piv silicon diode connected across the existing on–off switch. In the usual “Instant-On” circuit, a second section of the on–off switch is required.

The circuit in Fig. 1 illustrates the one most commonly used where the on–off switch is located in the B-minus return side of the power line. Minor variations of this circuit will, of course, be encountered. Silicon rectifier polarity must be as shown. Fig. 2 illustrates the situation where the on–off switch is in the other side of the line. —J. P. Jeffries

[This circuit is used in Canadian Westinghouse sets. The Editor tried it before publishing the January article. He had trouble with repeated breakdowns of the added silicon rectifiers. Research showed that this was due to an unusual transient condition on the power line in his home. Bridging the line at the receiver with a 0.082-uf capacitor cured the trouble.]

RADIO-ELECTRONICS
Fold the top down and back, keeping the cover facing you. Then trim the right and left edges. Now staple the booklet along the vertical center fold, about ¾ inch from the top and bottom. Now fold from left to right, keeping the cover facing you. Trim a fraction of an inch off the top and trim the bottom to size and you’re finished. You now have another useful piece of service data, exclusive with RADIO-ELECTRONICS.
Servicing the economy Tape Recorder

What to do when that $25 recorder comes into the shop

By JERRY L. OGDIN

These inexpensive machines (retail price from $25 to $50) usually accept 3-inch tape reels and have no capstan. "Reel-to-reel" drive is used. A motor shaft drives the rubber rim of a turntable on which the reels are placed.

When the tape is moving forward, the motor shaft presses on the rim of the takeup turntable and rotates it. The take-up reel pulls the tape off the supply reel and across the heads. The supply turntable spins freely. The diameter of the tape on the reel increases gradually. Because the take-up reel is rotating at a constant number of revolutions per minute, tape speed across the head increases as the tape is played.

The tape speed on a typical machine may vary from 3 1/4 ips at the beginning of a tape (Fig. 1-a) to 6 1/2 ips at the end (Fig. 1-b).

The basic system is similar to conventional tape recorders. The same thing occurs in both, but the tape speed of the conventional recorder is controlled by the capstan assembly. In recorders with a capstan, the drive to the takeup turntable only winds the tape on the takeup reel.

Mechanical operation

Another unique feature, used to reduce cost, is found in most of these sets. The motor is mounted on a bracket supported at each end, so that it can rock from side to side, as shown in Fig. 2. It is much like a cradle. There are two shafts on the motor, one at each end. By lifting up one side of the cradle, one shaft of the motor presses against the rubber rim of its associated turntable. This lifting is done by the motor switch, which moves against one of the control tabs. At the same time, the switch closes, starting the motor. The same switch controls the head pad. The pad is pulled off the head surface in the rewind and stop positions.

The motor's rewind shaft is larger in diameter than the forward shaft. This makes rewind faster than forward. The larger shaft can be seen in Fig. 2. There is no fast forward on these machines.

Electronics

Fig. 3 shows the circuit of a typical economy recorder. The amplifier is conventional. The record-play switching merely turns the amplifier "end for end," so that it amplifies the head out-
put in PLAY, and the microphone input in RECORD. When recording, the speaker is disconnected but, on most machines, an earphone may be used to monitor recording. Meters or other level indicators are not used, so earphone monitoring is recommended.

C1 is used for equalization while C2, which some manufacturers omit, bypasses the motor.

One make of recorder does not have an output amplifier and speaker in the unit, but uses an external cabinet for them.

The network composed of C3, R1 and R2 from V4's collector to the record-play switch is an ac voltage divider to provide proper record level. It is returned to the B-minus line to provide dc recording bias.

There is no bias oscillator in these machines. Erasing is done by a permanent magnet on which the tape runs when recording. The erase magnet covers the top half of the tape, because the head is half-track. In the machine shown, an Apolec RA-11, the erase magnet is attached to a white and red "flag." When S1 is thrown to RECORD, the red portion of the flag shows through a window in the head cover.

When the slide switch is in RECORD, the motor system cannot rewind the tape, so accidental erasure is avoided.

Shooting trouble

Servicing is conventional, keeping in mind the strange nature of the recorders. There are three types of troubles: mechanical, audio and operational.

The most obvious is the latter and, before the set is opened for servicing, should be checked. Customers often misalign the sprockets, place the tape on the wrong side of the head pad, twist the tape or mistrue the head.

The head should be cleaned, as most customers and users of this type of recorder are not as meticulous as an audiophile.

Mechanically, improper pressure may occur as the motor cradle spring ages. Correct pressure can be checked without tools. With the function switch (rotary in the example) in Rewind position, apply enough finger pressure to the rotating turntable to stop it. Because of friction, the motor shaft should also stop. If it continues to rotate, the pressure is too light. If, however, after removing finger pressure, the turntable does not start immediately, the pressure is too great.

The tab which holds the fixed end of the motor cradle spring can be bent away from the cradle for more pressure or toward it for less pressure.

Should the motor be suspect, measure its dc resistance. It should be around 5 to 10 ohms.

If all runs well but the machine doesn't record or play, apply an audio signal across the head terminals and turn the switches to PLAY. If signal is heard from the speaker, disconnect the head and read its dc resistance.

Testing the dc resistance of magnetic heads is discouraged by all literature on tape recorders. However, the test is applicable here. Ohmmeter testing magnetizes the head, and increases the noise level of a tape machine. The noise level in economy tape recorders is high to begin with, and no increase in noise is noticed after dc testing. The dc resistance of the head should be between 100 and 1,000 ohms.

If the amplifier is defective, inject an audio signal at the base of each transistor to isolate the bad stage. If no signal generator is handy, you will do. Touch one finger to a collector of the output stage and another finger to each base, starting with the first transistor. You will form a feedback loop, causing the amplifier to oscillate around the good stages. (You can do this with nearly all transistor audio amplifiers.)

The usual grade of components in these sets includes a rather offbeat type of resistor. The ends of the resistor bodies, although painted gray, often short to the nearest object. Before testing the amplifier, see that each component "stands alone." Sometimes, transistor leads may contact each other.

Some amplifiers use heat sinks on the output transistor. These are formed metal vanes which fit over the transistor body. The heat sink should not be removed. It dissipates heat from the last transistor. This lessens the possibility of damage by thermal runaway.

Top-chassis view of an inexpensive tape recorder.

Fig. 3—Circuit of typical economy tape recorder. In some models S2-b terminals FR are connected.

46

RADIO-ELECTRONICS
Narrow-Band Two-Way Radio Rules

DOES ALL EQUIPMENT IN YOUR MOBILE radio system meet FCC narrow-band technical standards? If you originally installed a wide-band system, have you converted or replaced the old equipment with new, meeting present more stringent narrow-band standards? If you haven't, now is a good time to plan to do so; the final deadline is drawing near.

New narrow-band standards come into full effect on Nov. 1, 1963. By that time all transmitters must comply with the FCC rules. Receivers should comply if you are to get the best performance in range, freedom from noise, minimum squelch burst and freedom from adjacent-channel interference. This is more than ever likely to occur with split-channel assignments treated with the same degree of frequency coordination as the primary channels.

Assuming your transmitters are all now adjusted for ±5-kc swing (an interim requirement), there are two other requirements you must meet by Nov. 1, 1963. First, transmitters operating in the 25-50-mc band must now have a frequency stability of ±0.002% and in the 150-174-mc band ±0.005%.

Second, each transmitter must include a low-pass audio filter placed between the instantaneous modulation limiter and the modulator stage of the transmitter. Equipment originally supplied as complying with the narrow-band standards of course contains all three features as supplied by the factory—±5-kc swing, ±0.002% or ±0.005% frequency stability as required, and low-pass audio filter.—John A. McCormick, G-E Mobile Radio

What’s Your EQ?

Answers on page 68

A Capacitance Problem

Two capacitors, a 20-µf and a 5-µf unit, are each charged to 200 volts, then connected in series so their voltages add up to 400 (see diagram). Switch S is then closed, putting a 500,000-ohm load across the series combination.

What will be the end condition of this circuit, and how long will it take to reach it? (For the purposes of this problem, an R-C circuit can be considered to reach its final condition in five time constants.)—Walther Richter

A Tracking Problem?

An early worker with printed-circuit boards was given the board shown in the diagram with three components to be mounted as shown, and a set of terminals as indicated. The trick is to lay out leads to all of the components, in straightforward fashion, without jumping through to the other side of the board, or using any of the other tricks sometimes seen in printed circuits.—Rene E. Pittet, Jr.

Distribution Problem

Here is a simple series-parallel circuit which might be found in practical work. Enough values are given to make it possible to discover the others. Do you think you can work it?—Cpl. David B. Schulz
LAST MONTH WE SHOWED YOU HOW TO build a superior hi-fi stereo preamp. Now let's take a closer look at the unit and how it operates.

The preamp is built around two high-gain direct-coupled amplifiers (see schematic in the October issue). Dc feedback from the second transistor’s emitter to the first transistor's base insures temperature stability, while ac feedback taken from the second-stage collector to the first-stage emitter gives the input impedance needed and helps reduce distortion. By switching suitable R-C networks into the ac feedback loop, we get the compensation needed for the magnetic phono and tape inputs. In all other positions, the preamp response is flat.

The high-level inputs have attenuators and all signals are fed to V1’s base by the selector switch. This simplifies input switching considerably and has no noticeable effect on either the distortion or noise. The selector switch shorts all unused inputs so there will be no chance of cross-talk even if other inputs are not turned off. The aux input jack does not have a level control, but one could be added. If used, it would be connected in the same way as the level controls for the AM and FM inputs. Do not attempt to improve on the input attenuator circuit by wiring the level controls as potentiometers instead of rheostats as shown. If this is done, the noise level will depend on the setting of the control and will quickly become excessive as the control is advanced to increase amplification.

The amplifier circuit has a gain of approximately 50 db with the ac feedback loop disconnected. The high open-loop gain also leaves approximately 6 to 8 db of negative feedback still in the circuit at frequencies below 50 cycles. This holds down distortion and insures that phono and tape compensation will be correct and not fall off at low frequencies. Fig. 1 shows the measured deviation from the standard RIAA curve on each channel. The phono compensation was designed to be correct when V1 and V2 have a beta range of 50 to 90. The betas of the transistors in the rest of the circuit are not critical and any transistor of the type specified should be satisfactory. The input impedance in the phono position is approximately 100,000 ohms. If your cartridge requires a lower terminating resistance for proper high-frequency response, connect a resistor across the phono input jack to bring the input resistance down to the correct value. The shunt resistor value needed for various input resistances is shown in the table.

The various feedback networks are switched by a second wafer on the input selector switch. The switch specified can have as many as ten positions so more inputs than the six shown may be added. Monaural operation and channel reversing are switched in or out with two toggle switches wired between the input selector and V1’s base. Either or both may be omitted. Slide switches are usually used for this type of switching, but toggle switches are easier to mount, more reliable, and also look better.

Tone controls

The preamp output feeds a step type passive tone-control network. Such a system is usually found in only the most expensive equipment because of the increased number of parts and the additional wiring. This type of tone control has a number of advantages. First, you can be certain that the response is flat when the control is

Fig. 1—Measured deviation from standard RIAA curve.
switched to the flat or zero compensation position. Second, you can be certain of the exact amount of compensation being used and can reset this amount exactly. Each step on these controls provides approximately a 4-db change at 50 cycles for the bass control and at 10,000 cycles for the treble control. A smaller change could hardly be noticed, so no one should miss the fact that settings between these steps are not possible.

The curves in Figs. 2 and 3 show the range of compensation available with these tone controls. Notice that the controls are of the variable-turnover type rather than the less desirable or simpler to build variable-slope type. The bass curves are actually better than they appear. The 1-db drop at the low end was caused by the sweep oscillator used to trace the curves. The symmetry and precision of the tone-control response depend on the component values being correct. For this reason, 5% tolerance parts are used in the tone-control networks.

The tone controls work into the loudness—balance—volume system. Typical loudness compensation curves are shown in Fig. 4. A switch on the rear of the control removes loudness compensation completely when the control is turned fully counter-clockwise. The balance control can reduce the volume on either channel to zero, but causes little loss when set to its mid-range position (3 db). This is due to the use of complementary log tapers on its two sections.

The volume control works into the second amplifier unit. This two-stage amplifier is almost identical to the preamp. It gives the gain needed to provide an output level that will drive a power amplifier. This second amplifier (V4) drives the rumble filter, scratch filter and phase inverter, if they are included in the preamp. The filters have a 12-db-per-octave slope starting at 60 cycles for the rumble filter and 6,000 cycles for the scratch filter.

The fast cutoff rate allows the rumble filter to remove most of the rumble without damaging low-frequency response seriously. In most cases, it would be hard to tell by listening to the music that this filter was being used. Only on the highest quality speakers, and on music with a great deal of low-frequency sound such as organ music, will the effect of this filter be noticed by many people.

The scratch filter was designed to be used with old or worn records, weak and noisy FM reception, etc. Its effect is not nearly as subtle as that of the rumble filter, but the results are desirable where there is much noise and little or no high-frequency information being received.

Figs. 5 and 6 show the response with the rumble and scratch filters in circuit. The phase-reversal circuit is used on only one channel and introduces a 180° phase shift in it. This control is not absolutely necessary and may be left out, but it can be very handy for checking or correcting speaker phasing. The filters and the phase-circuit have unity gain and low distortion due to the large amounts of degenerative feedback used. They do not affect the gain of the preamp when they are switched into or out of the circuit.

An extra jack is provided on the back panel for a mixed center-channel output if this is desired. A level control for this channel may be installed on the back of the preamp if there is no gain control on the power amplifier used for the center channel. The output at this jack will be R + L, when the phase switch is in one position and R − L in the other.

Power supply

The preamp requires 12 volts dc at 15 mA. This may be obtained from other equipment, batteries or an ac supply. For the lowest hum level, use batteries. A pair of 6-volt lantern batteries connected in series will run the preamp for 6 months to a year with an average amount of use. If you prefer an ac supply, use the circuit in Fig. 7.

Testing and use

Connect the power supply and check the preamp for proper operation. If
operation is not proper, check the wiring and transistor voltages. See table on page 48 of the October issue. It gives the voltages at the transistors. These should not be taken as exact values, since a 10 to 20% variation could occur due to component tolerances without causing trouble. If this check fails to turn up the trouble try signal tracing with an audio oscillator and detector. This is done by connecting the oscillator to one of the inputs and tracing the signal through the circuits with an oscilloscope, ac voltmeter or head.

The preamp may now be installed in the equipment cabinet. Choose a spot that is not directly over a power amplifier or other component that produces a large amount of heat. The heat will not affect preamp operation, but will dry out the electrolytic capacitors. To keep hum down, it would also be wise to avoid locations near power transformers or turntable motors.

Connect the cables from the sources to be used to the input jacks and from the power amplifiers to the output jacks. Set the level controls to give the same output on AM and FM as in the phono position. Connect the amplifiers and speakers so that right- and left-channel outputs are correct with the reversing switch in the NORM position. Speaker phasing can be checked by facing the speakers toward each other, placing them about 4 to 6 inches apart, and playing a record. If throwing the phase switch produces more bass output from the speakers, the phasing is wrong and the wires to one speaker should be reversed. Set the volume control fully clockwise, and the balance control to 50% of rotation. Play a recording and set the level controls on the power amplifiers to produce the highest sound level that will ever be needed. Now turn down the gain on the preamp and check the speakers for equal output. If one is lower, turn the gain on that power amplifier up slightly until both speakers have equal output.

You should be ready now to make that most enjoyable of all tests called a listening test. Put on one of your favorite records, settle down in a good listening spot between the speakers and enjoy the music.

END
LILLIPUTIAN REFRIGERATOR, atop the plastic column, improves sensitivity of military infrared detectors by keeping their operating temperature low. The detector’s noise level drops with temperature. Westinghouse Astroelectronics Lab is the home of this device. It is being wired to a power supply here.

What’s New

10-FOOT MICROWAVE DISH is a link in 305-mile system bringing TV from Phoenix, Ariz., to KOAT-TV in Albuquerque, N.M. Designed and built by RCA, automatic fault reporting and switching gear insures continuous operation, even if some part of the system should fail.

CRANIAL MICROPHONE for radiation protection suit helmet picks up and amplifies high-intelligibility speech direct from the cranial vibrations of the user. Mounting on a leaf spring in the top of the helmet assures constant pressure on the head, no matter how the helmet moves. The system was developed by Dyna Magnetic Devices Inc.

LAZER PUNCHES HOLE IN A DIAMOND at G-E’s Engineer Lab in Schenectady, N.Y. It takes only 200 microseconds to cut, and the impact of the laser beam generates temperatures around 10,000° F. The flame and smoke is actually vaporized diamond particles. UPI

TV MOVES TRAFFIC on Detroit’s 6-lane John C. Lodge Freeway. The controller scans 14 TV screens which show him 14 points along the freeway. At any sign of trouble — accidents, traffic jams, etc. — he can correct the problem by remotely reducing speed limits, closing lanes or closing entrance ramps. The system was built by G-E for the Michigan State Highway Department.
magnetic tape tester

finds the dead spots

Automatic device locates and counts dropouts on multichannel recording tape

By DON WHERRY

How can we test for the quality of the magnetic coating on a reel of tape? Particularly, how can we find and mark sections of the coating that will not record at the proper level, sections that cause dropouts? If a dropout is large (the area affected along the length of the tape) it will be discernible to the audiophile who records off the air. But even more important are the smaller dropouts that can ruin the telemetered results of an expensive series of missile tests or cause loss of sync in the middle of a taped TV show.

Such reductions in magnetic tape output can be caused by extremely small foreign objects mixed with the original iron-oxide coating; dust particles which have impinged on the tape surface during previous recording sessions; slight faults in the tape which cause oxide flaking; and rough handling. The dropouts can vary from a fraction of a db to complete absence of recorded signal, and extend for a minute section to several feet of the tape track.

A relatively simple instrument that will locate such dropouts is described here. The photos show two such devices. One is for ¼-inch 2-track tape and the other for ½-inch 7-track tape. Both are identical except for the number of channels available. Because the 2-track instrument is electrically equivalent to the 7-track model, the circuit and description cover only the 2-track instrument.

Basically the unit compares the output voltage of the tape under test to a standard reference voltage. When the tape output drops below this reference level for a sufficient length of time (both reference level and time are adjustable), we get a visual indication of dropout and the tape transport stops.

The test voltage from the tape is from a 10,000-cycle pre-recorded audio tone. For commercial recorders the tone is recorded simultaneously with the test run; for smaller home recorders, the tone is recorded prior to making the test.

How it works

The signal is picked up by a playback head and enters the instrument through an input jack and the CALIBR-ATE-OPATE switch (see Fig. 1). The signal level then is set by the INPUT GAIN potentiometer and amplified by V1-a and V1-b. This audio signal (10 kc) is then rectified by V2-a and
V2-b in a voltage-doubling circuit. The current through V2-a is observed on the 500-ohm meter between its cathode and the ground and is used to set the input signal to a predetermined level. The negative voltage developed at V2-b's plate is fed through 47,000-ohm resistor R1 to the junction of R2, R3 and R4. Here it is compared with the positive voltage set by potentiometer R5.

This positive voltage is adjusted to give the desired dropout indication when the normal tape output level falls below a given value. This means that with normal signal input, the junction of R1 and R2 is at some negative potential. The grids of V3 and V4 are also at this negative voltage and the tubes are cut off. Now when the head reaches a dropout on the tape, the negative voltage from V2 drops, lowering the negative grid voltage on thyatrons V3 and V4 until they ionize. This happens if the dropout is greater than what was set in by R5.

A more detailed setup procedure follows: The signal from the tape under test is fed into the unit to give some arbitrary reading on the level meter—say 400 mV. The signal input to the instrument is then reduced by the amount decided upon as the maximum reduction in tape output allowable without the reduction being called a dropout, in this case 5 db. The positive voltage from R6 is then increased until V3 and V4 just ionize. This means that the output from the tape can drop any value up to 5 dB with no indication from the instrument. However, if the dropout is greater than 5 dB the thyatrons will ionize, indicating a dropout which exceeds the allowable maximum. It can be seen that by properly adjusting the input potentiometer R6 and the reference voltage potentiometer R5 a wide range of dropout indication levels may be set into the instrument.

Up to this point we have discussed dropout levels only, with no reference to their lengths. If nothing is done regarding length, any dropout whose length exceeds the ionization time of V3 and V4 will trigger the instrument (time modified slightly by C1). This is not what we want. We want some value of time to also enter the picture, therefore we have added 1-megohm resistors R3 and R4 and capacitors C1 and C2 between the voltage comparison point and the thyatron tube grids. The discharge time of this RC combination determines the length of dropout that will trigger the instrument. The discharge time may be calculated by using the formula for time constants. However, the time calculated is not necessarily the discharge time needed to ionize the thyatrons. This can be found only by measurement. Place a vtvm on the grid of the thyatron and measure the normal negative grid voltage, then reduce the signal input slowly until the tubes just ionize. These two voltages may then be applied to a discharge curve (time constant curve) and the true time is found for a given value of C2 and C3. It may sound complicated but it really isn't.

For the home recorder owner who does not need such accuracy, an easier method is to record a tone (audio oscillator, whistle or just music) on a section of tape, then cut the tape and splice it together again leaving a small gap between the tape ends. Adjust this gap width until it is just audible when the tape is played back, then adjust C2 and C3 until the thyatrons ionize with a gap slightly smaller. Capacitors, both smaller and larger, may be added to switch circuit S1 and S2 for tighter or looser standards. The home recorder can dispense with this switch altogether, and use only the one capacitor whose value was found by ear.

In the instrument in Fig. 1, V3 and V4 are controlled by different time constants. V4 is set for 13 milliseconds and V3 for 100 milliseconds—both at
5-db depth. This circuit is a form of integrator. The deeper the dropout level, the faster the trigger action on the thyratron. This means that, while a dropout slightly exceeding the 5-db threshold level will trigger V4 in 13 milliseconds, a dropout of, say, 25 db will trigger much faster. This allows the instrument to evaluate the seriousness of the defect. A perfect tape—one without any dropouts—is extremely rare, even among new tapes of the best obtainable quality. With used tapes, the dropout count increases rapidly, particularly if it has been run many times or stored under unfavorable conditions.

Switching and power supply

When testing new as well as used tape the user must evaluate his requirements and determine just how many dropouts—and to what dropout level—he must hold—before rejecting the reel. These criteria are determined by how the tape is to be used. For audio work, either by a professional or a serious amateur, the requirements are not as stringent as they would be for instrumentation work. At this telenmetering center it is considered practical to pass as OK magnetic tapes which do contain a limited number of short-term dropouts which exceed the 5-db and 13 milliseconds mentioned, provided they are not clustered in one small area, indicating a faulty or damaged section of the tape. However, if the dropout exceeds 10 milliseconds and triggers the slow time constant channel, it is cause for immediate rejection. This is the reason for having the two channels—both set for the 5-db dropout level.

The plates of V3 and V4 go to ordinary plate relays. One V3 (RY2) lights an indicator light and, being the reject circuit, opens a contact which stops the tape transport when energized. Once closed, this relay remains closed. V4's plate goes to a similar relay, RY1, which, upon closing, not only lights an indicator, but starts a reset sequence. This sequence is continued by the plate relay RY1 closing the circuit to another relay, RY3, which in turn opens the cathode of V4. This de-ionizes the tube and allows the original plate relay to fall out, thereby opening the circuit to the second relay allowing it to fall out and close the cathode of V4, thus resetting the circuit—provided the signal level from the tape has returned to the normal level. The reset relay also furnishes a counter pulse to trigger an external counter for automatic dropout tabulation if desired. If the automatic reset feature is not wanted, the plate circuit of the reset relay may be broken by the auto-reset switch. Once triggered the instrument then remains in that condition until the manual reset button is depressed to allow the thyatrons to de-ionize. This resets the circuit. The push-button resets all thyatron tubes in the instrument, not just individual ones.

The plate relay for V3 is common with V7. All channels have this common plate relay in the slow time constant circuit, and all channels have a common reset relay in the fast circuit. This is also true of the 5-track instrument.

The power supply needs no comment except to mention the fact that the voltage to the amplifiers and potentiometer controlling the reference voltage must be regulated to insure reliability in the tests. The remaining circuit is the audio calibrate oscillator. It furnishes a signal input of constant level for the setup procedures and performs periodic checks on the dropout adjustments, etc. Any type of audio oscillator circuit will operate equally well.

While the external counter adds the dropout from all tracks, visual observation of the indicator lights while the unit is in operation allows the operator to record the dropouts from any, or all, channels separately if desired.

Construction tips

The cost of constructing this unit is not great. The home recording enthusiast will probably limit his unit to a single track instrument. Even the circuit shown, with one track left out, is the normal input level, 200 µa on the meter is approximately 6 db. It is the one to use for testing ordinary audio only tapes.

No special care, or order, is needed in the chassis layout. Good audio practices are all that are necessary. A suggested layout is shown in the photos.

Anyone who takes his magnetic recording seriously, whether it's Tchaikovsky, Junior's first word, or broadcast programming, should have some way of testing tape—especially when the "bargain" price product is used.

This unit is a proven instrument which can be used to test magnetic recording tape to conform to any desired quality for any ultimate use.
Here are three gimmicks that make class-D CB equipment easier to use and quicker to service

By R. L. WINKLEPLECK

The service shop often has to connect several makes of CB gear interchangeably to the shop antenna. If the antenna lead-in terminates in a conventional phono plug and this adapter is used, there is never a problem. The Switchcraft phono jack shown at the left can be fitted into the Amphenol UG-175/U fitting tapped for the 1/4 x 32 threads and this screwed into the PL-259 plug. A short length of wire connects the center terminals.

CB units, like the ones shown here can be easily adapted to be belt-worn for convenience. Lapel speaker mikes complete the outfit. The carrying case for the unit on the right was hand-fashioned. The lapel speaker mike is a small pillow speaker.

When CB transceivers are used commercially, rechargeable batteries become a must. This charger (see diagram) for nickel-cadmium cells contains a standard 25-volt filament transformer and a silicon rectifier. A 330-ohm resistor in each charging lead limits charging current to the 12-volt batteries to 20 ma maximum. Miniature plugs fit the jacks on the CB transceivers. Charger plugs are plugged into the insulated holes on the charger when not in use and a neon lamp shows when the charger is on.

NOVEMBER, 1962
ALMOST ALL TV TROUBLES ORIGINATE IN the receiver. However, there is always the possibility that they are originating in the transmitter! This should be remembered by the technician, to save useless testing time.

TV transmitters operate within very strict tolerances set up by the FCC, and engineers watch them very closely. However, errors can creep in, through defects in equipment, accidents, or a moment’s inattention on the part of the engineer on duty!

The proportion of video signal to sync tips is what gives receiver technicians the most trouble. Under FCC reg's, this must always be 75% video, 25% sync, as seen in Fig. 1. This pattern is displayed on a monitor scope on the control panel, and should be watched by the operator at all times.

However, if the monitor is not correctly calibrated, the sync percentage can be off, even though the console scope shows it at the right value. The input to this monitor is usually taken off at the transmitter's output, through a diode probe inserted in the transmission line (Fig. 2).

During remote operation, sync percentages of the signal being sent to the transmitter (over a microwave link or coaxial cable) are monitored, and should be monitored once more at the transmitter site. The calibration of these scopes is checked at regular intervals, when "proof of performance tests" are made on the transmitter, for reporting to the FCC.

Two symptoms of this trouble show up in the TV receiver—instability, especially in the vertical sync, and excessive contrast, due to the high video level. This is easily detected on a community antenna system or in a location where two or more stations can be received with about the same signal strength.

The receiver for a normal picture on one channel, then switch to the others. If all other channels but one have good contrast and sync and the one bad station shows both weak sync and excessive contrast (a much blacker picture), you've reason to suspect transmitter troubles!

The best test is to measure the proportion of sync to video, using an oscilloscope and low-capacitance probe, on a TV set known to be in good operating condition. Set up the equipment and tune the set to a channel producing a good picture. Use the video amplifier input or output as the point of connection, whichever gives the best scope pattern with the least disturbance to the picture itself. Now, tune from the suspected channel to the others, and note the percentage of sync to video shown up on the scope. For the most accurate results, adjust the rf signal input to the set to the same level on both channels. If one is quite a bit stronger than the rest, there is always the possibility that the age may be causing clipping in the receiver. Signal adjustments can be made with simple resistive pads, or a broad-band adjustable-gain booster may be used.

Fig. 3 shows the differences that can be found if there actually is trouble in the transmitter. Be very sure that the comparisons made are accurate. The remedy is to notify the chief engineer...
The theoretical formulation and extensive research which led to the final development of the LPV antenna was a cooperative effort by several outstanding antenna scientists at the Antenna Research Laboratory of the University of Illinois.

Early recognition of the high caliber and originality of these scientists came from the Air Force which awarded several R & D contracts to the University.

Dr. V. H. Rumsey, who headed the Antenna Research Laboratory from 1954 to 1957, directed a large portion of its efforts towards the quest for frequency independence. Professor Rumsey suggested that a logarithmic spiral of infinite length might have characteristics independent of the frequency of operation. Further research by Professors R. H. DuHamel John D. Dyson, and D. E. Isbell established this theory and also led to the development of a series of finite size antennas which exhibited constant pattern and impedance characteristics independent of frequency over a wide range of frequencies.

The importance of this work soon became obvious with the massive effort devoted by the government to space communications and telemetry. The satellite “Transit” used a modified logarithmic spiral to communicate with our tracking stations from 50 to 400 mc.

In 1957 Professor DuHamel built the first planar Log-Periodic antenna. This was followed in 1959 by Isbell’s uniplanar Log-Periodic dipole array. For the next two years, exhaustive tests at the Antenna Research Laboratory were aimed at establishing the properties of the Log-Periodic. It was during this period that Doctors Paul Mayes and R. L. Carrel made their many contributions to the understanding of these antennas and jointly hit upon the V configuration of the dipoles. Tests indicated that this extended the antenna’s high directivity from the lowest frequencies covered to the highest.

Professor Mayes subsequently made some modifications in the LPV design so as to make it more suitable for UHF and VHF television coverage.
Revolution in the Air:

Initially Developed by the Antenna Research Laboratories of the University of Illinois*, Proved-Out in Air

IT COULD ONLY HAVE BEEN PRODUCED by such massed resources as those of a prominent university, the military, and the country's leading antenna manufacturer.

BECAUSE ITS GAIN IS INDEPENDENT OF FREQUENCY, the backward-wave log-periodic LPV functions with high efficiency across the entire band. This end-fire array is comparable on any channel to a tuned Yagi cut to that channel.

ON VIRTUALLY EVERY COUNT, IT OUTPERFORMS PREVIOUS WIDE-BAND ARRAYS: in gain, in directivity, in bandwidth, in front-to-back ratio. It has gains as high as 14 db. in the 17-element model. It shows flat response across both TV bands—with greater gain on the high band, where it's needed most. Result: An all-channel, all-purpose antenna with unprecedented gain, a decisive end to snow and ghosts and the truest color reception yet—as well as vivid sharpness in black and white. The basic log-periodic LPV principle will be also adapted to all future UHF antenna needs.

MORE, FAR MORE, THAN JUST A "FRINGE" SOLUTION, the log-periodic LPV gives superior reception in all multi-channel areas. It is the first true "universal" TV antenna. It will open key profit opportunities to you in the months ahead—not only because it puts better reception within the reach of virtually every TV set-owner, but because it enables you for the first time to meet all antenna needs with a single antenna line.

*PRODUCED EXCLUSIVELY BY JFD ELECTRONICS UNDER LICENSE TO THE UNIVERSITY OF ILLINOIS
U.S. PATENT NUMBERS 2,958,081—2,985,879—3,011,168 ADDITIONAL PATENTS PENDING

LOG–PERIODIC

LPV

TV ANTENNA
THE LOG-PERIODIC LPV

Force Satellite Telemetry, Adapted to TV by JFD—Ending the "Era of Compromise" in TV Antenna Design

NOT A "CATCH-ALL COMPROMISE"—the log-periodic LPV signals a halt to the endless piling-on of narrow-band elements and parasitics. It is essentially frequency-independent since it is derived from an antenna geometry that repeats the electrical properties of the basic element, or cell, periodically; the periodicity being proportional to the logarithm of the frequency. (Actually, the basic log-periodic design is capable of flat response over a frequency range as broad as 20 to 1.)

BASED ON PRINCIPLES DESIGNED TO MEET RIGOROUS AIR FORCE PERFORMANCE STANDARDS—built to uncompromising JFD specifications—of AAA† Gold Bond Alodized aircraft aluminum for enduring good looks.

100% PREASSEMBLED FLIP-QUIK CONSTRUCTION—with new "tank-turret" aluminum brackets that align and double lock the elements instantly and permanently in place.

RECEIVES STEREO FM, TOO—delivers drift- and distortion-free FM stereo.

SEE THE LOG-PERIODIC LPV AT YOUR JFD DISTRIBUTOR—study the performance figures—try it—see for yourself how the LPV towers over all other broad-line antennas.

THE BRAND THAT PUTS YOU IN COMMAND OF THE MARKET

JFD ELECTRONICS CORPORATION
6101 Sixteenth Avenue, Brooklyn 4, N.Y.

JFD Electronics-Southern Inc., Oxford, North Carolina
JFD International, 15 Moore Street, New York, N.Y.
JFD Canada, Ltd., 51 McCormack Street, Toronto, Ontario, Canada
557 Richards Street, Vancouver 2, British Columbia

† Attractive, Anti-corrosive Armor

Model LPV-11 (illustrated)

ONE BASIC CONFIGURATION SATISFIES ALL NEEDS:
Harmonically resonant V-elements operating on the Log-Periodic Cellular Principle in the Fundamental and Third Harmonic Modes:

LPV-4
4 Active Cells—up to 90 miles

LPV-6:
6 Active Cells—up to 75 miles

LPV-8:
7 Active Cells and 1 director—up to 100 miles

LPV-11:
9 Active Cells and 2 directors—up to 125 miles

LPV-14:
13 Active Cells and 1 director—up to 150 miles

LPV-17:
15 Active Cells and 2 directors—up to 175 miles

www.americanradiohistory.com
These articles, in the December issue of Radio-Electronics, will warm the cockles of any electronics hearted careereman or experimenter. You'll find things to do, ways to increase your income, methods of making your hobby interesting and useful. Next month’s Radio-Electronics in a word: ELECTRIFYING!

TRY READING THESE SNOW-MELTERS:

“START YOUR CAR FAST!” Electronic starter thaws frozen cars. How you can build a 3-transistor unit that provides summer voltage and spark in zero weather.

“9 STEPS TO COLOR” Easy-to-use, step-by-step color TV servicing procedure. You'll want to memorize this one.

“FM STEREO ADAPTER” Convert your monaural FM tuner to multi-dimensional listening by building and using this transistor adapter.

“SHARPLY TUNED AF SIGNAL TRACER” Build this economical multi-use tracer. Unit checks for hum, peaks, dropouts, and many other amplifier defects. Use it also as a wave analyzer, bandpass filter with indicator, null detector, tunable af amplifier and seven other applications.

Radio-Electronics

December Issue on Sale November 19

(Continued from page 56)

calling Standard Coil tuner coils “slugs.” Everyone does, including me! Anyway, the slugs in the tuner you have must be a Japanese special, I can’t find them listed anywhere. However, from the information you give, this is a Standard Coil type T tuner. The regular DB slugs will fit it and should be available at parts supply houses.

Vertical linearity is off

I cured the vertical rolling the set came in with. Now I have a vertical linearity trouble left. Linearity is fair at first, then the top of the picture stretches and the bottom compresses. You can keep compensating with the height control. It’s a Hotpoint 17S302. —M. P., Tampa, Fla.

This has been quite a problem in this series, and there seem to be several answers. Most of the trouble is caused by minute leakages in capacitors (Fig. 4): the .0039 and .015 in the vertical oscillator are the worst offenders. Also, check that 3.3-megohm plate resistor. It’s another good prospect.

You might change the resistor in series with the vertical linearity control from the present 3.3 to 2.7 megohms. At the same time, check the 1-megohm and 820,000-ohm resistors in the output grid circuit.

Accidental magnetization

One of my customers’ color TV sets suddenly jumped out of convergence pretty badly. I checked all of the adjustments, degaussed it, and reconverged it without a bit of trouble! I couldn’t find a thing that could have caused it! —E. K. W., Plainfield, N. J.

The only possible answer for this is a thing that I’ve never encountered personally, but I have heard of in several cases—lightning! A heavy lightning bolt striking within a certain distance, not striking the set, but hitting nearby, can cause partial demagnetization (or magnetization) of the purity magnets, faceplate, etc. and foul up the convergence. Sort of a gaussing operation. If you found no other troubles, this must be the explanation.

Big tube, small raster

We have just converted an Arkay TV Kit model 14T21 from a 21YP4-A tube to a 21CEP4-A (we also changed the yoke). Now we seem to be lacking sweep. The picture is small, about 8 by 10 inches. The old yoke had four leads, while the new one has five. Does this have anything to do with the small picture? —Y. B., Oakland, Calif.

I’m sorry to say that you have apparently bitten off more than you can chew. While you must change the yoke to get sufficient scan when converting to a larger picture tube, you must also increase the power delivered to the yoke. Thus if you were changing from a 70° to a 90° tube, a 90° yoke would not give you full scan unless you increased the power delivered to the yoke!

![Diagram](image-url)
NEW, MODERN, PORTABLE... FOR THE MAN ON THE GO...

as easy to use as a voltmeter

NEW

SENCORE PS120
PROFESSIONAL
WIDE BAND
OSCILLOSCOPE

Here it is, the scope that technicians, engineers and service-
men from coast to coast have been demanding. A portable
wide band scope that can be used on the job anywhere, yet
has the highest laboratory specifications for shop or lab.
Cumbersome color TV sets, remote audio and organ installa-
tions and computers are just a few of the jobs that make
owning a scope of this type so essential. Why consider a
narrow band scope, when for only a few dollars more, this
professional wide band sensitive scope equips you for any job.
• The PS120 provides features never before offered. Only
two major controls make the PS120 as easy to use as a voltmeter.
Even its smart good looks were designed for functional
efficiency. New forward thrust design, creating its own
shadow mask, and full width calibrated graph increase
sharpness of wave form patterns. A permanent chromed
steel carrying handle instead of untidy leather strap and a
concealed compartment under panel for leads, jacks and AC
line cord make the PS120 the first truly portable scope com-
bining neatness with top efficiency.
• Electrical specifications and operational ease will surpass
your fondest expectations. Suppose a wide band scope that
accurately reproduces any waveform from 20 cycles to 12
megacycles. And the PS120 is as sensitive as narrow band
scopes...all the way. Vertical amplifier sensitivity is .005
volts RMS. The PS120 has no narrow band positions which
cause other scopes to register erroneous waveforms unexpect-
ably. Another Sencore first is the Automatic Range Indica-
tion on Vertical Input Control which enables the direct
reading of peak-to-peak voltages. Simply adjust to one inch
height and read P-to-P volts present. Standby position
on power switch, another first, adds hours of life to CRT
and other tubes. A sensitive wide band oscilloscope like the
PS120 has become an absolute necessity for trouble shooting
Color TV and other modern circuits and no other scope is as
fast or easy to use.

SPECIFICATIONS

WIDE FREQUENCY RESPONSE:
Vertical Amplifier—flat within 1/2 DB from 20 cycles to 5.5 MC, down — 3 DB at 7.5
MC, usable up to 12 MC.
Horizontal Amplifier—flat within — 3 DB from 45 cycles to 330 KC, flat within
—6 DB from 20 cycles to 500 KC.

HIGH DEFLECTION SENSIVITY:
Vertical Amplifier—Vert. input cable Aux. vert. jack Through Lo-Cap probe —RMS P/P
.035V/in. .01V/in. .035V/in. .01V/in.

HIGH INPUT RESISTANCE AND LOW CAPACITY:
Vert. input cable Aux. vert. input jack Through low cap. probe Horiz. input jack
2.7 Meg. shunted by approx. 99 MMF 2.7 Meg. shunted by approx. 25 MMF
27 Meg. shunted by 9 MMF 330 K to 4 Meg.

The PS120 is a must for color TV servicing. For example, with its ex-
tended vertical amplifier frequency response, .058 megacycles can be
seen individually.

SENCORE
ADDISON 2, ILLINOIS

NOVEMBER, 1962

Only 124.50 net
Gernsback Library

SERVICING

Radio Servicing Made Easy (2 Vols.)
by Leonard C. Lane
Get the latest servicing information on new radio types. Full instructions on how to fix FM, AM, AM-FM, Communications receivers, Marine Radios, transistor sets, Converters, etc. Books adapted from school course given at many times this price.
No. 107 2 Volumes $7.20

Practical TV Troubleshooting
Trouble fixing TV sets? The experts let you in on their secrets to help you think your way through the toughest problems, quickly and efficiently. Add years to your technical knowledge.
No. 102 $2.35

TV Trouble Analysis
by Harry Mileaf
Fix TV Troubles in any set fast, by knowing what symptoms look like and what causes them. Learn how and why components and circuits fail.
No. 101 $2.20

How to Fix Transistor Radios & Printed Circuits (2 Vols.)
by Leonard C. Lane
Feel at home in the wonderland of semiconductors. Learn improved transistor techniques and save time, handle more jobs and add to your income. Theory and practical applications with hundreds of diagrams. Originally published as an expensive school course.
No. 96 2 Volumes $5.90

New Shortcuts to TV Servicing (2 Vols.)
by Leonard C. Lane
A practical servicing speed-up course. No theory or math, but heavy on test and repair techniques that save time and make money. Symptom analysis methods helps you find troubles fast. Numerous handy check lists tell you how to find troubles easily and quickly.
No. 95 2 Volumes $5.90

Practical Auto Radio Service & Installation
by Jack Greenfield
Newest servicing information on these specialized sets. For technicians, serious hobbyists interested in expanding their field of interest. Time-saving hints, speed servicing charts and check lists.
No. 87 $2.95

Rapid Radio Repair
by G. Warren Heath
Put your finger on tough troubles in FM sets, transistor sets, hybrid auto sets and other modern radio receivers easily and quickly. Lists symptoms and cures alphabetically in four handy sections: Receivers, Techniques, Servicing, Charts.
No. 78 $2.90

Servicing Transistor Radios
by Leonard D'Airo
Are you all thumbs handling the transistors? This book will show you that transistor sets are even simpler to fix than vacuum-tube counterparts. Learn the inside tips, the new techniques. Charts, diagrams provided.
No. 76 $2.90

TEST INSTRUMENTS

How to Get the Most out of Your VOM
by Tom Jaski
Get more mileage out of this versatile instrument. A complete analysis, including theory and practical usage plus chapters on construction.
No. 85 $2.00

Oscilloscope Techniques
by Alfred Haas
Use the scope in scores of new applications. Make tests and measurements, interpret patterns. Hundreds of photos of actual waveforms to help you.
No. 72 $2.00

The VTVM
by Rhys Samuel
Get the most out of this electronic workhorse. Explains VTVM circuits and how and why they work. Gives many new time-saving uses.
No. 57 $2.50

Sweep and Marker Generators for Television and Radio
by Robert G. Middleton
Tips and hints on how to use and understand this instrument. Includes major chapters on antenna, signal calibration, receiver alignment, etc., and a terminology index.
No. 55 $2.50

Buy these quality paperbacks, essential reading for your training, education, and reference shelf. Tax deductible if used for professional purposes.

BUY NOW FROM YOUR ELECTRONIC PARTS DISTRIBUTOR,
or mail in the coupon below by checking matching book number with box number.

--- 10-Day Money-Back Guarantee ---

101 102 103 96 95 87 85 78 76 72 57 55
Send books to: Name ______________________
Address ______________________
City State Enclosed in $____________

Gernsback Library, Inc., Dept. 112T, 1154 W. 14 St., New York 11, N.Y.

ER is a possible wrong connection on the base. The original tube had a nonstandard base. Check out the connections to see that each goes to the proper element. Follow the signal through with a scope to see that you have video on the CRT grid.

The short neck could be due to the rebuilding process.

Color tuning
In an RCA CTC4 color TV, the hue adjustment binds now and then. The color works OK, but this adjustment is hitting something on the inside, or the shaft is binding.—J. F. K., Oklahoma City, Okla.

The hue adjustment on this set is a small metal blade which changes the inductance of the coil in the color-phase detector plate (Fig. 5). This coil and

Fig. 5—RCA CTC4 color hue control circuit. Small metal blade varies hue-coil inductance for control.

blade adjustment is mounted on the control panel as in Fig. 6. A slug inside the coil tunes it to the proper inductance. It is possible to set the slug to the wrong position inside the coil. If it's screwed too far back away from the panel, the end of the slug will sometimes come out of the coil form and hit the blade. The correct position for this is near the front of the coil. Turn it counterclockwise until you get the same setting.

Matching FM tuner input
The input impedance of my FM tuner is 240 ohms. I want to connect a 300-ohm outside antenna to this.—F. D., Camden, N. J.

Go ahead and hook it up. The tolerance here is usually wide enough to
take care of small mismatches. I don’t think you will find any difference.

If you want to be very particular about it, you can taper a piece of 300-ohm line. Slit the center web of the line, for about 24 inches, and bring it gradually closer together until it is about ¾ inch apart instead of the normal ½ inch (Fig. 7). This will make an exact match for the 240-ohm input. However, I have tied 365-ohm open-wire TV line directly to 300-ohm ribbon without ill effects. The bandpass is so broad that any minor mismatch is more or less swamped out. However, if you’re matching 72-ohm coax to 300-ohm input you will definitely need a matching transformer. They’re inexpensive and work just fine. Install the transformer at the back of the TV set.

B-plus supply trouble

I replaced the 5U4-GB rectifiers and the B-plus filter resistors in an RCA CTC5 color TV chassis. In a month it came back to the shop with the same trouble. Replacing the same parts cured it, and it plays fine. I’m afraid to return it again! It may be back with the same trouble once more! —W. R., Jamaica, N. Y.

This must be high line voltage trouble at the home, from the symptoms. Before I’d put the set back into service, I’d request a 24-hour line-volt-

age check from the power company. In similar cases, we have found surges as high as 150 volts at odd hours. You might install a line-voltage regulator or a Surgistor in the TV chassis just for luck. They are always excellent protection.

I would try cooking this set at the shop for at least 8-10 hours, preferably on about a 10-15% high line voltage, to be sure that there is nothing intermittently shorting elsewhere in the chassis.

Vertical bars

I have a Silvertone portable, model 71025. When the picture is light gray, it shows a series of evenly spaced lines, similar to sound bars, but vertical. They are about ¾ inch wide. This is especially prominent during commercials. Voltages and capacitors seem to check OK.—E. J. B., W. Roxbury, Mass.

The most common cause of this type of trouble is ringing in the yoke or horizontal deflection circuits. In this set, it would be caused by failure of the 62-µf capacitor in series with a 1,000 resistor in the yoke housing. This is connected across the “top” half of the yoke (the part which connects directly to the flyback).

It can also be caused by horizontal radiation reaching the video circuits. You can check this by noting the appearance of the raster lines. If they bend at each of the bars and the lines decrease in intensity going from left to right across the screen, the trouble is in the yoke. If the scanning lines are straight, but vary in intensity, the trouble is vertical signal leaking into the video. Dress the antenna-to-tuner lead as far away from all parts of the horizontal circuit as possible. Radiation from the yoke leads is a fairly common cause of this trouble, too. To cure this, wrap the yoke cable in metal foil (if you can find a piece of foil of the type with paper backing on one side, it is very handy). Cover the yoke leads as completely as possible, wrap the foil with fine bare wire and ground both ends (under a handy screw).

YOU CAN RELY ON MICRO FOR BEST TUBE BUYS!

We’re Proud of A 5-Year Record of Fair Dealing

THERE’S ONLY ONE Original MICRO—NOT CONNECTED WITH ANY OTHER MAIL ORDER TUBE CO.

MICRO ELECTRON TUBE

FABULOUS LOW PRICES!
LARGE SELECT STOCKS!
DEPENDABLE, FAST SERVICE!

FOR ANY TUBE LISTED $35 PER HUNDRED ASS'D.

ALL TUBES SENT POSTAGE PAID.

Please send 25c handling for orders under $5. Send 25c postage in C.O.D. orders. Send approximately 10 cents in Canadian and foreign orders.

MICRO ELECTRON TUBE CO.

NOVEMBER, 1962

63

www.americanradiohistory.com
PACO KITS
THE KITS YOU BUILD IN 1/3 LESS TIME

REVOLUTIONARY NEW SPEAKER SYSTEM
RADIO-ELECTRONICS
NEW LOOK FROM PACO

IN LOUDSPEAKERS:
REVOLUTIONARY NEW PACO SPEAKER SYSTEM DARES TO USE 6" CONES!

PACO is proud to present the Model L4 System, a revolutionary new development in loudspeaker design that offers a degree of brilliance, clarity and quality unequaled by speakers selling for as much as $300. Yet this remarkable speaker system costs only $99.95 net.

Here's the secret. Developed by a brilliant and famous audio designer, the new system consists of three 6-inch woofer mid-range speakers in close configuration and a tweeter. Normally, 6-inch speakers have very high cone resonance, no bass response and low power capacity. In this system, however, a special ball diffuser, bonded to the voice coil form, disperses sound in the middle frequency and widens the normally narrow axis beam of the speaker. The result is an extremely smooth response in the middle range. Each speaker cone also has three struts bonded to it, and to each diaphragm. This produces a rigid diaphragm which eliminates edge distortion and provides the much-desired "piston effect" up to 7,000-8,000 cycles. The arrangement also produces a cone resonance in the mid-range woofers of approximately 40 cycles — comparable to the most expensive woofer.

Because of their close proximity, the three speakers act as a single mass in moving air, but without the sluggishness often associated with large speakers. And, each individual speaker remains light enough to produce an accurate mid-range. This elimination of the cross-over between bass and mid-range affords an even greater degree of clarity and fidelity. With a response of 45-18,000 cycles, the system is capable of reproducing every nuance of even the most intricate musical passage. Designed to operate with all amplifiers, its impedance is 8 ohms. See and hear it at your dealer or write today to PACO Electronics Co., Inc., Glendale 27, New York.

IN HIGH-FIDELITY KITS:

The ST-55MX FM Stereo Multiplex Tuner Kit and the SA-50 Stereo Preamp-Amplifier Kit (50 watts: 25 per channel) are two completely new, decorator-designed units that enhance the decor of any home. Handsome new styling and color scheme make this combination look as distinctive as it sounds. And, like other famous PACO kits, the ST-55MX and SA-50 assemble 1/3 faster and easier than similar kits sold by other kit makers.

ST-55MX FM Stereo Multiplex Tuner Kit (Prealigned; less enclosure): $99.95 net. Factory wired (includes enclosure): $159.95 net. Enclosure: $7.95 net.

IN TEST-EQUIPMENT: A complete line of PACO test equipment is now available in kit form for the audiophile, ham operator and electronic technician who wants maximum quality at lowest possible cost.

New Model T-63 CRT Tester and Rejuvenator. Utilizes a true beam current test circuit. Kit: $44.95 net. Factory wired: $59.95 net.

New Model G-34 Sine and Square Wave Generator. Versatile coverage of 7 cps to 750 kc sine and square wave in 6 bands. Kit: $64.95 net. F’cty wired: $99.95 net.

PACO ELECTRONICS COMPANY, INCORPORATED, 70-31 84th STREET, GLENDALE 27, NEW YORK DIVISION OF PRECISION APPARATUS CO., INC. EXPORT: MORHAN EXPORTING CORP., 488 BROADWAY, N. Y. 13, N. Y.

NOVEMBER, 1962

65

www.americanradiohistory.com
UhF
in every television set

What the all-channel law means to you

THE ALL-CHANNEL SET LAW PASSED RECENTLY by Congress requires that all TV's must include a uhf tuner. This is an all-out attack on the problem which has beset uhf TV broadcasting for its 10 years of existence—lack of receivers that can pick up uhf broadcasts. All other attempts to deal with this problem have failed.

Under present allocations, the 12 vhf channels can provide only about 630 television channels in the continental United States, and the vast majority of these are now in operation. Full use of uhf's 70 channels would provide more than 1,500 additional stations. If there is to be further growth for TV under the present channel-allocation system, it can be only in the uhf band.

Expansion problems are particularly acute in the growing field of educational TV. Of 275 channel allocations presently assigned for education, 227 are in the uhf band. In commercial television the development of additional program choices and opportunities for local expression depend upon full use of uhf.

UhF's problems became apparent shortly after the FCC authorized telecasting in this band in 1952. The immediate troubles seemed to stem from the shorter range of uhf stations and the difficulty of picking up their signals. But the real problem was receiver conversion.

Very early in the game, it became apparent that viewers would readily convert their vhf sets or buy uhf receivers in areas where vhf reception was inadequate. In regions where uhf stations had little or no competition from vhf, there was no difficulty in approaching 100% uhf conversion, despite the so-called "technical problems" of uhf. UhF stations in these areas have prospered.

But in localities where uhf was forced to rub elbows with vhf in direct competition, the public stubbornly refused to convert or to buy all-channel sets. Their needs were perfectly satisfied by the existing vhf sets—why spend more money or fuss around with tricky antennas?

The early uhf boom of 1952-53 soon turned to gloom. Nearly 100 uhf stations quickly found they couldn't cope with vhf competition and went off the air. A far larger number of authorized uhf stations were abandoned without ever having been built. UhF receiver production dropped from 1,459,475 sets in 1953 to 370,977 in 1961. Today there are about 100 uhf stations still on the air, mostly in areas where they don't have to compete directly with a number of vhf outlets. Although a few nonprofit educational uhf stations are serving small numbers of viewers in predominantly vhf areas.

The first remedy proposed for uhf's troubles was "de-intermixture." This was a proposed re-allocation program to eliminate direct competition between vhf and uhf stations. It would have made some areas all-vhf and others all-uhf, requiring some existing vhf stations to change to uhf. Vhf broadcasters objected, and argued that de-intermixture would leave large rural areas without any television because of uhf's limited coverage range.

Under mounting pressure from Congress to do something about the uhf problem, FCC acted on two fronts:

1. It decided to get first-hand experience in technical problems and established its own super-power uhf station, WUHF, on channel 31 in New York City. New York was selected because its tall buildings make it uhf's most challenging location. This experiment is still under way, but preliminary results appear to indicate that uhf can serve New York, although not as satisfactorily as vhf.

2. It mapped an attack on uhf's
For your next P.A. job, for every P.A. job,

Commander Series

Harman-Kardon gives you versatility,

Galaxy Series

top value and exclusive features

Troubador Series

in each of these complete lines!

Commander Series: Popular priced equipment with facilities and versatility seen only in "de luxe" amplifiers till now. 12, 35, and 100 watt amplifiers and a 4-channel mixer/preamplifier. Durable, continuous-duty equipment which opens a new range of applications that can now be serviced with popular priced p.a. units.

Get the full story!

Galaxy Series: A new concept in p.a.—modularized 40, 75, 150 watt amplifiers, boosters and 8 channel mixer, offering the quality of custom sound with installation ease of compact equipment. Pre-amp modules — give you precise equipment for any need, allows for expansion at any time at minimal cost; equipment never obsoletes.

Get the full story!

Troubador Series: Extra services and application flexibility unduplicated by any other transistorized equipment. A 15 watt mobile transistorized amplifier and a 30 watt portable transistorized DC or AC/DC amplifier. These amplifiers will find uses in police, fire, marine, construction, rental and other applications.

Get the full story!

Built by Sound Men for Sound-Men

harman kardon

problems from the receiving as well as the transmitting end, and proposed a bill to ban interstate shipment or import of receivers without all-channel tuners. The FCC reasoned that within a span of about 10 or 12 years after the law became effective, almost all sets in use would be able to receive both vhf and uhf channels, eliminating one of uhf’s biggest handicaps—lack of sets.

In return for a promise to drop its de-interference proposals, most vhf broadcasters backed the FCC’s proposal for this unprecedented legislation to regulate the television set manufacturing industry. The bill was opposed by the Electronic Industries Association and most television set manufacturers who had no broadcast station interests.

As finally passed by Congress and signed by the President in July, the law authorizes FCC to require that all sets be “capable of adequately receiving” all TV channels. That word which so neatly splits the infinitive—“adequately”—is the key word in the law.

The next moves are now up to the FCC, which is about to hold conferences with industry representatives on how to implement the law. First, it must define the word “adequately.” In effect, the definition will set some sort of minimum standard for the performance of the required uhf tuners. The commission is expected to interpret the law as requiring tuners which can receive the entire uhf band, rather than a few selected channels.

The commission must also establish a cutoff date—“U-Day”—after which all sets shipped must include uhf tuners. This must be far enough in the future to allow receiver and tuner manufacturers to gear up for increased production of uhf tuners—from an annual rate of about 370,000 to around 6,000,000. It must also give manufacturers time to clear their inventories of already-built vhf-only sets.

Although the cutoff date hadn’t been set at press time, most informed industry and FCC guessers were estimating it would probably be between 1966 and 1967, when the UHF band is due to be allocated for television.

Manufacturers aren’t inclined to drag their heels. They’ve already begun planning for U-Day. Even though it vigorously opposed the law, their spokesman, EIA, has pledged full cooperation. Industry representatives had even begun preliminary conferences with FCC engineers before President Kennedy signed the bill into law. Most manufacturers are anxious to cooperate—although there’s always a possibility that someone might delay or bar application of the law by challenging its constitutionality in the courts.

Even while Congress was still debating the bill, the effects of all the “uhf talk”—and the widespread opinion that the bill would pass—seemed to be starting something of a boomlet in uhf. Production of all-channel sets in the first 4 months of 1962 totaled 185,750, more than double the 90,400 produced during the comparable period of 1961. The FCC began to receive a few applications for uhf channels again, after a long famine.

Already the results of set makers’ preparations for U-Day are beginning to appear. In the new models introduced this summer for fall selling, a greater number of sets are available in vhf-uhf versions or can be converted internally to all-channel performance. Here’s the probable timetable for the future:

With the introduction of the so-called 1964 TV lines next summer, virtually every model will be designed for easy internal conversion to uhf by continuous tuner kits, which will be readily available. Nearly all switch and turret tuner dials will be marked for uhf.

Meanwhile, tuner manufacturers have already instituted their own crash programs for fall selling, and better uhf tuners, and are preparing for vastly stepped-up output. The new continuous tuners will represent improvements on existing ones rather than engineering innovations, and they’ll be ready in time for sets introduced next year.

Antenna makers, too, are gearing for increased demand for outdoor uhf installations. But they expect the rise to be more gentle, occurring gradually as prospective uhf telecasters take heart as a result of the more favorable climate for uhf stations.

Most standard sets offered next year will still be of the vhf-only variety. But distributors and dealers will be well stocked with uhf tuner kits for in-the-store and field conversion, while factories continue to ship complete all-channel sets mainly to uhf areas.

As U-Day approaches, set makers will make a relatively simple changeover. Instead of shipping sets that can be converted in the field, they will convert all sets in their inventory—so that no manufacturer will be stuck with unsalable vhf-only sets. All future sets will then be built with continuous uhf tuners in them from the start.

Of the nation’s 56,000,000 sets, only an insignificant percentage are now equipped to receive all channels. An important start has been made on a long-range plan to utilize a vast national resource—the uhf TV band. If the all-channel law succeeds in its purpose, this new expansion will directly affect every viewer by increasing his choice of TV programs and services. For those who make their livelihood in television, it could mean a new boom second only to television’s original growth.

What’s Your EQ?

Answers to puzzles on page 47

A Capacitance Problem

The resistance sees the series combination of the 20-µf and the 5-µf capacitor—in other words, 4 µf. The time constant is therefore 4 µf times 0.5 meghom, or 2 seconds. In 10 seconds, the voltage across the resistance—between points A and B—is practically zero. But how about the voltages across the individual capacitors? A 4-µf capacitance, charged to 400 volts, holds a charge of 1,600 microcoulombs. This is the charge that has flowed through the resistor during the discharge process. But the 20-µf capacitance held a charge of 200 × 20 = 4,000 microcoulombs at the beginning. After 1,600 have been taken out, it still holds 2,500. The voltage across its terminals is therefore 120, with the same polarity as at the start. The 5-µf capacitor originally held 5 × 200 = 1,000 microcoulombs; if 1,600 were displaced during the discharge, it first discharged to zero and then charged to the opposite polarity with 600 microcoulombs. This makes the voltage across it also 120, but with a polarity opposite to the original.

A Tracking Problem?

This puzzle was proposed (and solved) back in the days of Sam Lloyd, long before printed circuitry—or even radio—was thought of. The solution:

Distribution Problem

E1 = R1 (11 + 12) = 26 (0.8 + 12) = 20.8 + 2612 = 4012
E2 = 4012
E1 + E2 = 100
20.8 + 2612 + 4012 = 100
20.8 + 6612 = 100
6612 = 79.2
I2 = 1.2 amps

From here on the problem is easy, and can be solved with Ohm’s law:
E = 100 volts
E1 = 52 volts
E2 + E3 = 48 volts
I1 = 0.8 amps
12 = 1.2 amps
R1 = 26 ohms
R2 = 60 ohms
R3 = 40 ohms

END
Free SEND TODAY FOR YOUR MONEY-SAVING 464-PAGE ALLIED 1963 CATALOG

SEND FOR IT NOW!

WORLD'S LARGEST ELECTRONICS CATALOG
BIGGEST SELECTION • BIGGEST SAVINGS!
satisfaction guaranteed or your money back

NO MONEY DOWN: NOW! MORE BUYING POWER WITH YOUR ALLIED CREDIT FUND PLAN

SEE OTHER SIDE

SEND CARD TODAY

For your FREE 1963 ALLIED Catalog, fill in card, detach and mail. (Please give second card to an interested friend.)
TO:
ALLIED RADIO
100 N. WESTERN AVE.
CHICAGO 80, ILL.

PLACE STAMP HERE

TO:
ALLIED RADIO
100 N. WESTERN AVE.
CHICAGO 80, ILL.

PLACE STAMP HERE

1963 Free
SEND CARD TODAY FOR YOUR 464-PAGE
ALLIED 1963 CATALOG

WORLD'S LARGEST • BIGGEST SELECTION • BIGGEST SAVINGS

NEW
1963 knight-kits®
Over 100 great do-it-yourself kits: Hi-Fi, Hobby, Intercom, Amateur, Citizens Band, Instrument—savings up to 50%.

NEW
Stereo Hi-Fi
Complete selection of components and systems; latest All-Transistor equipment and Stereo Multiplex FM.

NEW
Tape Recorders
Complete recorders, tape decks, recording and pre-recorded tapes at big savings.

NEW
Citizens Band Radios
Latest 2-way radio—no exam required—complete selection of top-value CB equipment, including Walkie-Talkies.

NEW
Transistor, FM-AM Radios
Best buys in all types of compact transistor radios, including quality FM-AM portables.

NEW
Phonographs & Records
Big values in phonographs; latest stereo portables; famous-brand records at amazing discounts.

NEW
Ham Station Equipment
Largest selection of receivers, transmitters, antennas—everything in Ham station gear.

NEW
Test Equipment
Save on every type of instrument for home or professional use—all leading makes available.

PLUS
• PA Systems & Intercoms • Top values in Power Tools, Soldering Guns, Hardware
• Biggest selection of TV Tubes, Antennas: Parts, Tubes, Transistors, Books

satisfaction guaranteed or your money back

NO MONEY DOWN: Now! More Buying Power with Your Allied Credit Fund Plan!

Free MAIL CARD TODAY FOR YOUR 1963 ALLIED CATALOG
AND GIVE THIS CARD TO A FRIEND

www.americanradiohistory.com
You'll end up with a unit that has a gain of about 2,000 in a 4-volt circuit.

LOUIS GARNER'S ARTICLE ON THE COMPOSITE TRANSISTOR in the June 1961 issue of Radio-Electronics made fascinating reading. Most of us who have worked with transistors know that a series of direct-coupled transistors would be the simplest and cheapest way to build an amplifier. No interstage transformers, capacitors or resistors!

The further knowledge that leakage current in input and subsequent stages would be amplified right along with the signal was, at least in my case, reason enough to discourage any attempt at building such an amplifier.

After reading Garner's article, I wasn't so sure that such a project wouldn't be feasible—some transistors have remarkably low collector-to-emitter leakage. The composite transistor described here is only a two-stage unit but boasts a beta, or current gain, of around 2,000 at 4 volts. Leakage current is in the neighborhood of 200 µa, which isn't at all unreasonable. If you have access to a good supply of transistors, you can probably better these figures somewhat.

Parts selection

The home-built composite transistor is limited to two stages for several reasons. First, even with the most carefully chosen commercial transistors, leakage current in a three-stage composite would be intolerable. In my unit, the addition of a third stage with even a modest beta of 20 would increase leakage current from 200 µa to around 4 ma. A third stage would also call for a power transistor output complete with heat sink and physical isolation from the first stages.

To make this project successful all components must be hand-picked. The input transistor must be carefully chosen for minimum leakage current—beta isn't too critical here. The output stage must have high beta together with a reasonably low leakage current. I have found that rf transistors tend to have lower leakage current than those designed for audio work. The transistors in my composite are a CK-768 input and a CK-913 output. Both are Raytheon's and are moderately priced. They are, however, old types no longer manufactured, and may not be available. If you can't get them, use a 2N416 for the CK-913 and a 2N413 for the CK-768.

If you have access to a transistor tester that will measure both beta and leakage current, selecting the best transistors is simple. If not, take a look at Fig. 1: It shows a leakage-current and beta test setup. Leakage current is measured with the transistor base disconnected at point X. Beta is determined by first connecting the transistor base to its bias supply through pot R and observing the increase in collector current produced by a given increase in base current. Dividing the increase in collector current by the increase in base current will give beta, or current gain. For instance, if an increase in base current of 10 µa (say, from 20 to 30 µa) causes a 1-ma increase in collector current (say an increase of from 2 to 3 ma), the beta of the transistor would be:

\[
\text{beta} = \frac{\text{current in collector}}{\text{current in base}} = \frac{1 \text{ ma}}{0.01 \text{ ma}} = 100
\]

When measuring beta, keep base current low and changes in base current small to avoid changes in collector-to-emitter voltage, which would render the results of the test inaccurate.

Start by selecting the output transistor. Choose one with a reasonably high beta—upward of 100—and fairly low leakage current. The CK-913 I used showed a beta of 150 and a leakage current of about 40 µa.

Next, select a diode. Then connect the transistor you chose for the collector-emitter leakage test of Fig. 1. Now connect the diode as shown between the transistor base and emitter and note the change in leakage current. Try several diodes and select the one which brings transistor leakage current to its lowest value.

The input transistor is chosen mainly for low leakage current. Remember, 10-µa leakage in the input transistor will result in a composite leakage of around 1 ma, assuming the output transistor has a beta of 100. The CK-768 I used showed a leakage of around 3 µa.

Construction

I used two miniature hearing-aid sockets in the construction of my composite transistor (Fig. 2). However, the unit may be made considerably smaller if sockets are not used. If you decide to dispense with the sockets, be extremely careful when soldering the transistor and diode leads. Use long-nose pliers as a heat sink between the joint and the body of the transistor, and a small, hot iron for a minimum period of time to complete the connection.

Too much heat at this point may permanently change the characteristics

(Continued on page 74)
WHERE TO SHOP
AN OUTSTANDING TV VALUE! Exclusive Heathkit advanced-design features include latest TV circuitry to bring you both Hi-Fi picture and sound! Incorporates the finest set of parts & tubes ever designed into a TV receiver. Easy to build too! All critical circuits (tuner, I.F., strip & Hi-voltage sections) are supplied as factory-built, aligned and tested sub-assemblies, ready to install. The rest is easy with two precut, cabled wiring harnesses and circuit board. 70 lbs.

NEW 23" High Fidelity TV Kit—None Finer at Any Price!

An outstanding TV value! Exclusive Heathkit advanced-design features include latest TV circuitry to bring you both Hi-Fi picture and sound! Incorporates the finest set of parts & tubes ever designed into a TV receiver. Easy to build too! All critical circuits (tuner, I.F., strip & Hi-voltage sections) are supplied as factory-built, aligned and tested sub-assemblies, ready to install. The rest is easy with two precut, cabled wiring harnesses and circuit board. 70 lbs.

- **SAVE $10, order GR-52, TV chassis & cabinet... only $249.95**
- **SAVE $6, order GR-42, TV chassis & wall mt. ... only $189.95**
 - **GRA-22-3, no money down... $5 mo.... $27.95**
 - **GRA-22-1, no money down... $9 mo.... $89.95**
 - **"CUSTOM" TV WALL MOUNT:** For rich, attractive custom wall installations. Includes cut and drilled board for TV chassis. Unfinished white birch. Measures 19 1/2" H x 20 1/2" D. 13 lbs.
 - **GRA-22-2, no money down... $5 mo.... $25.95**

NEW Deluxe CB Transceiver

4-tone selective call circuitry; 5 crystal controlled transmit & receive channels; variable receiver tuning; built-in 3-way power supply for 117 v. ac, 6 or 12 v dc; and more! Most complete CB unit ever designed. 22 lbs.

- **Kit AA-21, no money down, $13 mo. $134.95**

NEW Advanced Transistor Stereo Amplifier

Smooth power—superb dynamic range! 100 watts IHFM Music Power rated, 70 watts Heath rating, 13 to 25,000 cps response & rated output. 28-transistor, 10 diode circuit, 28 lbs.

- **Kit GW-42, no money down.... $119.95**

Heathgifts are fun to give, fun to own, and they're fun to build... so much so that you'll be tempted to build them all before giving! Simple instructions enable you to complete any kit in your spare time—in a matter of hours—and they are unconditionally guaranteed to perform to factory specifications.

So give the best in electronic kits, give Heathgifts. Call or write our gift counselors if you need help or give a Heathkit certificate. Begin making your Heathgift List today and place your own name at the top!
ANOTHER HEATHKIT FIRST!
A Real 2-Manual Organ for Only $329.95

The exclusive Heathkit version of the all-new Thomas Transistor Organ now, for the first time, offers you a real two-manual organ at the market-shattering low price of only $329.95 in easy-to-build kit form! Compares in features and performance with assembled units costing well over $700. Features two 37-note keyboards; 10 true organ voices; 13-note pedal bass; variable vibrato; expression pedal; variable bass pedal volume; manual balance control; correctly positioned over-hanging keyboards; built-in 20-watt peak amplifier and speaker system; beautifully factory assembled and finished walnut cabinet.

Kit GD-232 (less bench) . . . no money down, as low as $22 mono... $329.95

NEW 10-Transistor FM Car Radio
88 to 108 mc coverage; better than 1.25 microvolt sensitivity; AFC for drift-free FM reception; tone control. Factory-assembled tuning unit; easy circuit board assembly. 7 lbs.

Kit GR-41 . . . no money down... $7 mo. $64.95

NEW FM Portable Radio
10-transistor, 2-diode circuit; vernier tuning; AFC for drift-free reception; tone control; 4" x 6" speaker; built-in antenna, prebuilt tuning unit. Battery lasts to 500 hrs. 6 lbs.

Kit GR-61 . . . no money down... $6 mo. $54.95

WORLD'S BIGGEST VTVM Value!

Measures AC volts (RMS), AC volts (peak-to-peak), DC volts, Resistance and DB. Has 4½" 200 ma meter, precision 1½% resistors and 11 megohm input. Slim, all-purpose test probe incl. 3 lbs.

Kit IM-11 Special Value Price... $24.95

FREE 1963 HEATHKIT CATALOG

New edition — more than 100 new kits since last issue — over 250 kits all.

NOVEMBER, 1962

HEATH COMPANY
Benton Harbor 20, Michigan

Order direct by mail or see your Heathkit dealer.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MODEL NO.</th>
<th>PRICE</th>
</tr>
</thead>
</table>
The unit is potted after thorough testing.

(Continued from page 71)

of one of your carefully chosen transistors. Leave long leads from the collector and emitter of V2 and the base of V1 if you don't use sockets. If you build the unit around two sockets, solder the excess leads clipped from a transistor in place as output terminals.

Testing the unit

After the composite transistor is completed, use the setup of Fig. 1 to test it. First, check leakage current—it should be in the neighborhood of 500 µa at 6 volts. Reducing the collector voltage reduces leakage current. At 1.5 volts, leakage should be around 100 µa, the lower the better.

Before testing for beta, replace pot R with a 3-megohm unit and be sure it is set at maximum resistance! Now connect the base of the composite and perform the beta test. CAUTION: Advance R very slowly and limit collector current to not more than 25 ma at 6 volts or 100 ma at 1.5 volts. A limiting resistor in the base circuit might be advisable for this test. Use 270,000 ohms.

When tests are completed and the unit is operating satisfactorily, encapsulate it in anti-corona lacquer or a high-dielectric liquid plastic. If the liquid you use is opaque, be sure the output leads are properly identified.

Characteristics

The composite transistor has the characteristics of, and may be used as, a single high-gain transistor. Although the unit is necessarily much more temperature-conscious than an ordinary transistor, I have found no tendency toward thermal runaway. Leakage current increases slowly with temperature but rapidly returns to normal when temperature is decreased.

Although maximum power dissipation of the composite should be somewhat greater than that of the output transistor, I use this value (150 mw for the CK-913) as maximum. In applications requiring low leakage current, collector voltage may be reduced below the recommended maximum of 6 volts.

Altogether this little composite transistor is a very stable item, and any shortcomings are nicely compensated for by its extremely high gain.

END

in-circuit capacitor checker...

saves time and effort—you don't have to lift one end of the capacitor before you check it.

By LARRY STECKLER
ASSOCIATE EDITOR

ONE THING ABOUT THE GARDEN-VARIETY capacitor tester never fails to get me—to check a capacitor in a circuit you must disconnect one end of it first. In a wired circuit, this can be tough enough. On some printed-circuit boards it's even tougher—especially if you don't particularly care for the printed boards. But there is a way around this problem—use an in-circuit capacitance checker.

Almost all new units fit in this category. Of course, they don't only check capacitors in circuit, they'll also do an excellent job on those bypasses you salvaged from an old radio. One of the newest in-circuit testers is the EICO model 955 (Fig. 1). It comes in a neat professional-looking case, but more important, does a neat professional job on most capacitors between 0.1 and 50 µf.

Certain capacitors cannot be checked with this instrument. If they are, they will be damaged. The limits call for no testing of capacitors rated below 6 volts dc and no prolonged testing of capacitors rated between 6 and 9 volts dc. Also, no polarized tantalum capacitors, no matter how high their voltage rating, should be tested.

Short test

The unit performs several tests and we'll take them one at a time. First we test for shorts, about the most common
Find it and Fix it in 1/2 the time!

EASILY SOLVES "TOUGH DOGS"...INTERMITTENTS...ANY TV TROUBLE

By Easy Point-to-Point Signal Injection, You see the Trouble on the TV Screen and Correct it—Twice as Fast and Easy!

Simplified technique stops lost hours never recovered on "tough dogs", intermittents, and general TV troubleshooting. This one instrument, with its complete, accurate diagnosis, enables any serviceman to cut servicing time in half...service more TV sets in less time...satisfy more customers...and make more money.

With the Analyst, you inject your own TV signals at any time, at any point, while you watch the generated test pattern on the picture tube of the television set itself. This makes it quick and easy to isolate, pinpoint, and correct TV trouble at any stage throughout the video, audio, r.f., i.f., sync and sweep sections of black & white and color television sets—including intermittents. No external scope or waveform interpretation is needed. Checks any and all circuits—solves any performance problem. Gives you today's most valuable instrument in TV servicing—proved by thousands of professional servicemen everywhere.

Simplifies Color TV Servicing, Too

Enables you to troubleshoot and signal trace color circuits in color TV sets, or facilitate installation.

Generates white dot crosshatch and color bar patterns on the TV screen for color TV convergence adjustments.

Generates full color rainbow display and color bar pattern to test color sync circuits, check range of hue control, align color demodulators. Demonstrates to customers correct color values.

Available on Budget Terms: As low as $30.00 down.

Net, $29995

Time-Saving, Money-Making Instruments Used by Professional Servicemen Everywhere

Model 960 Transistor Radio Analyst
Model 360 V O Matic Automatic VOM
Model 375 Dynamatic Automatic VTVM
Model 700 Dyna-Quik Tube Tester
Model 440 CRT Rejuvenator Tester

See Your B&K Distributor or Write for Catalog AP20-E

B & K MANUFACTURING CO.
Division of DYNASCAN CORPORATION
1801 W. BELLE PLAIN AVE. • CHICAGO 13, ILL.
Canada: Atlas Radio Corp., 50 Wingold, Toronto 19, Ont.
Export: Empire Exporters, 277 Broadway, New York 7, U.S.A.

www.americanradiohistory.com
of all capacitor faults. Even a 100-volt electrolytic that has always been used in a 10-volt circuit will short, and more often than you might think. Fig. 2 shows the circuit for the short test.

T's secondary delivers about 330 volts ac to V1's plate through R2. At the same time, 6.3 volts ac, of opposite phase, is applied to V1's grid through R5 and C7. It is also applied across the capacitor under test. If the capacitor is not shorted, it presents more than 1 ohm impedance to the applied voltage. The voltage reaching V1's grid is enough to keep plate current low. This in turn keeps the voltage drop across R2 low and makes V2's grid slightly positive with respect to V2's cathode. Obviously this causes high plate current for V2, a large voltage drop across R4, and a large voltage difference between the target and control electrode of the indicator tube also drops. End result—the indicator tube closes when the capacitor is bad.

Opens

If the unit wasn't shorted, we check for an open capacitor, the next most common capacitor fault. This time the circuit is arranged as in Fig. 3. V1 is now arranged as a Hartley oscillator. When it oscillates, plate current is low and the indicator bars stay open. If V1 does not oscillate, plate current increases and, as in the short test, the bars close.

For the circuit to oscillate there must be a definite impedance across J1. If there isn't, the test cable together with L2, R12 and C4, which represents a quarter-wavelength line for the oscillator frequency, looks like a short at the input. This keeps V1 from oscillating, and the indicator bars close, revealing an open capacitor.

Check capacitance

If a capacitor proves to be neither shorted nor open, the only possible faults remaining are that it has changed in value or is leaky. A change is easy to check. All we have to do is measure its capacitance. For this purpose we use the circuit shown in Fig. 4. It works with the capacitor in or out of circuit. Here is where the EICO 995 does its best work.

What we have here is a series and parallel capacitance bridge, an amplifier (V1) and an indicator (V2). When the bridge is balanced, no voltage comes from the bridge and V1's grid is at the same potential as its cathode. As before, this causes high plate current and the indicator-tube bars close. When the bridge is not balanced, a negative voltage is developed on V1's grid, reducing plate current and causing the indicator bars to open. The balancing resistor (R10 or R11, depending on capacitance range) has a calibrated dial and the value of the capacitor under test is read off this dial when the indicator bars are closed.

There is one interesting thing to note about the bridge. The shunt-resistance balancing pot is in series with the capacitor only for high R-C values. To measure low R-C, the pot is connected in parallel with the standard capacitor. This permits measuring capacitors that are shunted with small-value resistors and still getting a reasonably accurate reading. If you haven't already guessed, this pot balances out any shunt resistance across the capacitor.

To figure the R-C product, multiply expected capacitance value in microfarads by the expected resistance value in kilohms. This will tell you which R-C range to use. If you don't know the values needed to figure the R-C product, set the R-C range switch to the 7-INF position and the R-C BALANCE control to INF.

When testing for capacitance in circuit, rotate the capacitance dial until the indicator-tube bars are as close together as you can get them, then rotate the R-C balance control to make the gap even smaller. Then it's back to the capacitance dial again. Continue this procedure until the bars close completely, then read on the dial the capacitance of the unit under test.

Points to ponder

As good as the instrument is, it has some limitations. Capacitors with a parallel resistance of less than 35 ohms may give a false reading during an in-circuit test. You will have to lift one end of these units to get an accurate reading. If two capacitors are connected in parallel, your in-circuit test reading will show their total capacitance and will not indicate the value of each unit individually. And, as a last condition, you cannot measure any capacitors that fall above or below the 0.1-50εF range, nor R-C combinations that have an R-C product measured in εF and kilohms of less than 1.
“WIRELESS” COMMUNICATION FIRST CAME into general use as an item of safety of life at sea. Over the years the brass-pounder has saved many lives with its dots and dashes. With the growth of small boating in the US during the past two decades, the radio-telephone has kept up the lifesaving tradition.

Now that boating is no longer a luxury item but a mass operation, radio is still too expensive an item for many.

A radiotelephone operating in the 2-3-mc band assigned for safety use is still a high-priced project for the small boat owner. Also the dependability of such communication leaves much to be desired. Within a hundred miles of New York, for example, several thousand boats are sailed during a summer weekend. They have only two channels, 2638 and 2738 kc, on which to exchange “business” communication. By international agreement 2182 kc is set aside as a “calling and distress” band.

These frequencies are used by steamships, tugs, workboats, fishing boats and pleasure craft. They are a bedlam of noises and sounds. Courtesy is unknown, and violations of the law are heard every few minutes. A 150-watt ether-buster on a steel-hulled boat will hash up communication between two smaller sets a hundred miles away. The 2182 “distress” channel is used for routine conversations and fishing chatter, without apparent fear of FCC reprisal or regard for possible actual distress.

The many US Coast Guard lifeboat stations maintain a watch on 2182 but many times we’ve heard two and even three Coast Guard stations, all with a boat in trouble offshore, trying to contact their own local problem boat and all interfering with each other.

In this same area there are only four channels for ship-shore telephone conversations.

On a summer afternoon with thunderstorms playing about, the static adds to the normal din, making the use of the 2-mc band rough even for the 150-watters and a complete failure for the 18-watters. Meanwhile, back on the Citizens-band channels, communication is dependable and static is at a minimum.

During the past year a number of pleasure boats have installed Citizens-band equipment. The results have been encouraging as far as ship-to-ship and ship-to-shore traffic is concerned. CB units carry well over salt water, much better than over land. Still pretty much of a line-of-sight proposition, they suffer much less interference.

But—and it’s a big BUT—for “safety of life at sea” CB sets are useless. They are the absolute answer for general communication needs of the boatman, but, if he gets into trouble, he can’t call for help.

Our suggestion for making safety at sea a reality and bringing the cost of such safety within reach of the small boatmen: Let the FCC set aside a frequency adjacent to the Citizens band, such as 26,950, to be used as a DISTRESS ONLY channel. Its use would be limited to messages coming under the MAYDAY, PAN, and SECURITE definitions. The Coast Guard would equip its installation for this frequency and, by so doing, would have a more efficient system for handling emergency traffic. Protection would be extended to many thousands of craft on salt water, inland lakes, and rivers. The current safety communications system is completely inadequate on 2182 kc. But 26,950 mc would offer real protection for the waterborne millions at a price they can afford.

[Bob Barry is a boatman and radio operator, having held a commercial ticket since 1931. He writes a boating column for a picture magazine, and recently worked with a marine radio concern, promoting CB radio among his other activities.—Editor]
RCA Training
Can Be The Smartest Investment
You Ever Made!

If you're considering a future in electronics, investigate the courses offered by RCA Institutes Home Study School. In the rapidly expanding world of electronics, good basic training in Electronic Theory and Practice is most important. And you can be sure of the very finest when you enroll at RCA Institutes.

Founded in 1909, RCA Institutes is one of the largest technical schools in the United States devoted exclusively to electronics. The very name "RCA" means dependability, integrity and scientific advance.

The courses offered by RCA Institutes are many and varied. A complete program of integrated courses for beginners and advanced students is available. They include: Electronic Fundamentals, Transistors, Television Servicing, Color Television, Electronics for Automation. Each one is especially tailored to your needs, designed to prepare you for a profitable future in the ever-expanding world of electronics. And once you become an RCA Institutes graduate, you are assured of top recognition by leading companies everywhere.

Investigate the superb facilities for technical instruction at the RCA Institutes today. It can be the smartest move you ever made.
HOME STUDY COURSES

in Electronic Fundamentals • TV Servicing • Color TV
Communications Electronics • Automation Electronics
Computer Programming • Transistors • Electronic Drafting

Voluntary Tuition Plan. All RCA Institutes Home Study courses are available under the Voluntary Tuition Plan. This plan affords you the most economical possible method of home study training. You pay for lessons only as you order them. If, for any reason, you should wish to interrupt your training, you can do so and you will not owe a cent until you resume the course. No other obligations! No installment payments required.

RCA Personal Instruction. With RCA Home Study training you set your own pace in keeping with your own ability, finances, and time. RCA Institutes allows you ample time to complete the course. Your lesson assignments are individually graded by technically trained personnel, and helpful comments are added where required. You get theory, experiment, and service practice beginning with the very first lesson. All lessons are profusely illustrated. You get a complete training package throughout the entire course.

You Get Prime Quality Equipment. All kits furnished with the course are complete in every respect, and the equipment is top grade. You keep all the equipment furnished to you for actual use on the job...and you never have to take apart one piece to build another.

RESIDENT SCHOOLS

in Los Angeles and New York City—
You can study electronics in the city of your choice.

No Previous Technical Training Required For Admission. You Are Eligible Even If You Haven't Completed High School. RCA Institutes Resident Schools in Los Angeles and New York City offer training that will prepare you to work in rewarding positions on research and production projects in fields such as automation, transistors, communications, technical writing, television, computers, and other industrial and advanced electronics applications. If you did not complete high school, RCA will prepare you for such training with courses specially designed to provide the basic math and physics required for a career in electronics.

Free Placement Service. RCA Institutes graduates are now employed in important jobs at military installations with important companies such as IBM, Bell Telephone Labs, General Electric, RCA, and in radio and TV stations all over the country. Many other graduates have opened their own businesses. A recent New York Resident School class had 93% of the graduates who used the FREE Placement Service accepted by important electronics companies...and had their jobs waiting for them on the day they graduated!

Coeducational Day and Evening Courses. Day and Evening Courses are available at Resident Schools in New York City and Los Angeles. You can prepare for a career in electronics while continuing your normal full-time or part-time employment. Regular classes start four times each year.

SEND POSTCARD FOR FREE ILLUSTRATED BOOK TODAY!
SPECIFY HOME STUDY OR NEW YORK OR LOS ANGELES RESIDENT SCHOOL

3 NEW LOCATIONS

In addition to RCA Institutes Inc. courses, Radio Corporation of America offers a limited selection of basic Resident School Courses in Electronics at three new locations...Chicago, Philadelphia, and Cherry Hill, N. J., (near Camden). For complete information, write the city of your preference next to your name on the attached postcard.

RCA INSTITUTES, INC. DEPT. RE-N2 A SERVICE OF RADIO CORPORATION OF AMERICA, 350 WEST 4TH ST., NEW YORK 14, N. Y.
PACIFIC ELECTRIC BLDG., 610 S. MAIN ST., LOS ANGELES 14, CALIF.

The Most Trusted Name in Electronics

NOVEMBER, 1962

81
RCA 21-CS-7815

Picture was very dark with only highlights of video information visible on some channels. Adjusting brightness and contrast controls had no effect. When the antenna was disconnected and the antenna terminals touched with a finger, channels 2, 4 and 5 came in pretty well, with fair color on channel 4 (set located in good signal area), brightness and contrast controls functioning. This immediately put the age section under suspicion. The 6U8 age amplifier and first sync. amplifier were replaced, and the set resumed normal operation.—Michael L. Tortoriello

Hotpoint 14S202

This set had a rather unusual trouble. With no signal applied (antenna disconnected), the raster was perfect. But as soon as the antenna was hooked up, the raster would disappear.

A check through the horizontal oscillator stage revealed that resistor R260 was open. Just why it caused this particular trouble I still do not know but, when it was replaced with a new unit, normal operation was restored.—William Porter

CRT Heater Repair

When a CRT heater fails, the trouble is often within the base connections, rather than inside the envelope. The heavy current carried by the heater tends to oxidize the solder resulting in an open or high-resistance circuit.

We have repaired these for years with our own technique. Since we have never had a recurrence despite many years of service, we consider the method completely satisfactory.

With a small triangular file, cut notches in pins 1 and 12, as close as possible to the base. Keep filing until the conductor running through the hollow pin is plainly exposed. Now apply heat until solder runs freely and fills the notch smoothly.—H. R. Holtz

G-E 14T017

After the set was on for a few minutes, the picture would roll and every 10 minutes or so the vertical hold would need readjustment. Changing the 12BH7 vertical tube did not help.

After removing the chassis, unscrew the printed board and swing it to the side to expose the circuitry. The symptoms pointed to thermal trouble so each part was heated while being tested. (Touching a soldering tip to the leads of a capacitor or resistor will cause it to react within a few seconds.)
OK. The test voltage was dropped to 200 to check C208 and it seemed to be good until heat was applied to the leads. When warm, the capacitor was very leaky. A 600-volt unit was used as a replacement for insurance.

Using a test CRT, the set was turned on outside of the chassis. With a heat lamp placed near the vertical section to simulate operating conditions, vertical sync held steady for over an hour and the repair was labeled a success.—Charles B. Randall

RF Interference

Complaint: Cross-hatch or diagonal bars in the picture, usually on channel 2. In severe cases, the picture may be reversed (negative) or even completely blanked out. Sometimes the interfering signal can be heard through the TV sound channel.

Cause: Direct pickup of fundamental, harmonic or parametric frequencies from a transmitter.

Cure: A high-pass filter installed as close to the receiver input as possible (right on the tuner). A good ac line filter added to the high-pass filter also helps.—C. S. Lawrence

Zenith 15Z30 Chassis

The vertical raster was unstable, with vertical retrace lines appearing in the picture. Changing tubes did no good.

A check of the vertical sweep circuit turned up a leaky capacitor, C37. I replaced it with a good quality 600-volt unit to get the set working properly.—William Porter

G-E M-line Portables

I have had over a dozen of these portables in the shop in the past few years with the same trouble: the sound cuts off after the set has been playing a while. Tubes do not help. In all cases the set was repaired by replacing the ratio detector transformer (Part No. RTD-020).

I suggest that you get the transformer directly from a G-E parts distributor as other replacements have proved unsatisfactory in performance and difficult to mount on the printed board.—R. B. Charles

TV-RADIO Servicemen or Beginners...

Send for Coyne's 7-Volume Job-Training Set on 7-Day FREE TRIAL!

Answers ALL Servicing Problems QUICKLY...

Makes You Worth More On The Job!

Put money-making, time-saving TV-RADIO-ELECTRONICS know-how at your fingertips—examine Coyne's all-new 7-Volume TV-RADIO-ELECTRONICS Reference Set for 7 days at our expense! Shows you the way to easier TV-Radio repair—time saving, practical working knowledge that helps you get the BIG money! How to install, service and align ALL radio and TV sets, even color-TV, UHF, FM and transistorized equipment. New photo-instruction shows you what makes equipment "tick". No complicated math or theory—just practical facts you can put to use immediately in the shop, or for ready reference at home. Over 3000 pages; 1200 diagrams; 10,000 facts!

SEND NO MONEY! Just mail coupon for 7-Volume TV-Radio Set on 7-Day FREE TRIAL! We'll include the FREE BOOK below. If you keep the set pay only $3 in 7 days and $3 per month until $37.25 plus postage is paid. Cash price only $24.95. Or return set at our expense in 7 days and owe nothing. Either way, the FREE BOOK is yours to keep, Offer: limited, so set NOW!

FREE DIAGRAM BOOK!

We'll send you this big book, "150 Radio-Television Parts Patterns and Diagrams Explained" ABSOLUTELY FREE just for examining Coyne's 7-Volume Shop Library on 7-Day FREE TRIAL! Shows how to cut servicing time by reading pictures, patterns, plus schematic, circuit diagrams, and radio sets. Your FREE copy—whether you keep the 7-Volume Set or not! Mail coupon TODAY!

Like Having An Electronics Expert Right At Your Side!

FREE BOOK—FREE TRIAL COUPON!

Yes! Send me COYNE'S 7-Volume Applied Practical TV-RADIO-ELECTRONICS set for 7-Day FREE TRIAL per offer. Included "Patterns & Diagrams" book FREE!

RADIO-CONTROL RECEIVER KIT. Up to 10 control channels. Transistors in all selective tuned circuits, crashproof solid-castreed relays.

AFH ... twist-prong 'lytics feature 85°C operation, improved sealing, high-purity aluminum foil construction throughout, ruggedized prongs and mounting terminals. Tops for full use in TV-radio and amplifiers.

PR ... wax-filled tubulars manufactured to same high standards as more expensive metal-cased units. Made for exact replacement in TV receivers. Available in singles, duals, triples, quads, and quints for 0.559 operation.

PITT PWE ... Miniaturized tubular 'lytics for repair of personal transistor radios, portable TV sets, and all space-light requirements. Feature Polycap® plastic cases with exceptional humidity resistance.

SRE ... "Bantam" metal tubular 'lytics hermetically sealed in aluminum cans with cardboard insulating sleeves. Smaller than the PRS but capable of handling full size loads to 85°C.

PRS ... compact "banded" units for trouble-free repair of home-string TV and AC-DC table radios, aluminum cans with cardboard insulating sleeves. Made in singles, duals, and triples, as well as AC rated and non-polarized units.

NEW — TV Electrolytic Capacitor Replacement Guide AFG-452. Available direct from Aerovox for 50 cents or free from your Aerovox Distributor.
DESIGNED FOR COLOR TV

WINEGARD
COLORTRON ANTENNAS

4 gold anodized models from $24.95

*Pat. Nos. U.S. 2,700,105; 2,955,289 • Canada 511,984 • Others Pending.

AVAILABLE WITH REVOLUTIONARY
NUVISTOR COLORTRON AMPLIFIER...

Now, through continuous Winegard research, a new, improved Electro-Lens yagi has been developed—the NEW WINEGARD COLORTRON—PERFECT ANTENNA FOR COLOR TV!

Colortrons have a flat frequency response (plus or minus 1/2, DB across any 6 MC channel), no “suck-outs” or “roll-off” on end of bands . . . accurate 300 ohm match (VSWR 1.5 to 1 or better) . . . unilobe directivity for maximum ghost and interference rejection. They deliver today’s finest color reception, give a new picture quality to black and white.

Colortrons are the only outside antennas that carry a WRITTEN FACTORY GUARANTEE OF PERFORMANCE.

And Colortrons are built to last. High tensile aluminum tubing for rigidity and stability, insulators with triple moisture barrier, GOLD ANODIZED for complete corrosion-proofing.

There are 4 Colortron models to cover every reception need, from suburbs to distant fringe areas . . . $24.95 to $64.95 list.

New Winegard Colortron twin-nuvistor amplifier perfectly matches Colortron antennas. Gives added gain and sensitivity on both color and black and white. Ultra-low noise, high gain Colortron Nuvistor Amplifier can easily drive 6 or more TV sets.

With revolutionary twin-nuvistor circuit, Colortrons amplifiers can handle up to 400,000 micro-volts of signal without overloading. This is 20 times better than any single transistor amplifier. The Colortron Amplifier will bring the weakest signals up out of the snow, yet strong local TV & FM signals will not overload it. A special life saver circuit gives the two nuvistors a life of 5 to 8 years.

This amplifier is completely trouble free and the finest performing antenna amplifier you can own.

Completely weather sealed, nothing is exposed to corrode and cause trouble . . . has all AC power supply with 2 set coupler. (Model No. AP-220N, $39.95 list). Twin transistor model also available up to 80,000 micro-volts input. New type circuit protects transistor from static electricity built up in lightning flashes. (Model No. AP-220T, $39.95 list).

Colortron Amplifier can be added to any good TV antenna for sharper, clearer TV reception.

Ask your distributor or write for technical bulletin.
BUILD YOUR OWN TRANSISTOR STEREO AMPLIFIER

for less than $75.00

OR

HI-FI only $44.45

EASY TO BUILD - SIMPLE TO OPERATE

Here is your chance to have one of the finest Stereo or Hi-Fi Systems available Today and have the fun of building it too. The STE Model 621 Amplifier incorporates the latest developments including the unique NEW STE variable compensation circuitry.

Highly Versatile - Monaural Hi-Fi, one Model 621 Amplifier and a Model 621 PWR Power Supply. Stereo - Simply add the second Model 621 Amplifier. No additional power supply is necessary.

LOOK AT THESE IMPORTANT PLUS FEATURES

AMPLIFIER: All transistors • Exclusive new variable compensation circuit • No waste power - no heat or ventilation problems • Selection of 3 Inputs - Magnetic (with pre-amp built-in), crystal or ceramic, tuner or recorder • Compact - only 3" H x 8 1/2" L x 2 1/4" D •

Remember, the STE system is designed specifically for enjoyment in your home. Possessing range of level and balance to suit your every mood, the STE Model 621 Amplifier is a truly advanced design offering all of the plus features associated with good efficient performance. Concisely, "Sound To Enjoy."

MAIL TO

SOUTHEAST TECHNICAL ENTERPRISES, INC.
1107 N. Garden Ave. P. O. Box 1137
Clearwater, Florida

Please ship me the following:
□ One Model K621 Amplifier Kit
□ One Model K621 PWR Power Supply Kit
□ Complete Stereo Kit (2 Model K621 and 1 Model K621 PWR)

Cost
29.95
14.50
74.40

Shipping & Handling
East of Miss. 0.40
West of Miss. 0.60
0.45
0.65
1.25
1.85

Please include shipping and handling charges.
My □ Check □ Money Order For $ _____________________ is enclosed.

Name __________________________ City __________________________
Address __________________________ State __________________________
Zone __________________________

□ Please send me additional information on STE products.

STE

RADIO ELECTRONICS

www.americanradiohistory.com
TIME...your most valuable asset! The people at Philco and at the Philco Distributor nearby know this all too well! For 30 years we've made it our business to understand your business...and to know your problems as well as our own.

TIME means money to you...and the TIME saved or wasted on a service call can mean a big difference in your earnings. To help you save TIME, we sponsor the Philco Factory-Supervised Service Association; the industry's finest, most complete program of technical information. Your membership in "PFSS" helps you service Philco products faster, easier...and at a greater profit. We know that callbacks cost you TIME—and reputation...that's why we confidently recommend the use of Philco parts, tubes and accessories. All of them have passed the most rigorous tests of quality and performance. Products repaired with Philco parts stay repaired. Yes, indeed—TIME can be Friend or Foe.

We can save you buying-time, too. Your Philco Distributor has a complete selection of Philco tubes, Philco and Universal parts, capacitors, batteries and accessories...for easy, one-stop buying.

WANT TECHNICAL INFORMATION TO HELP SAVE MORE TIME?
MAIL THIS COUPON TODAY

Parts & Service Operations
Philco Parts & Service Operations, Dept. E-11
"C" and Westmoreland Sts., Phila. 34, Pa.
Please send me the latest free technical information and my complimentary copy of the Philco Service-Businessman magazine.

Name ____________________________
Address __________________________
City ____________________________ State ___________

[] Service Only [] Retailer with Service Dept.
I'd walk a mile...

for

L & T Pad Attenuators

I'm not an ordinary camel—I'm a thinking man's camel—and I think highly of Centralab L & T Pad Attenuators.

These units work good—like an L & T Pad should—because of their small size, high wattage, and anti-backlash construction. Measuring less than 1⁄4" deep from the mounting surface, and with 13⁄8" diameter, they fit into any standard junction or switch box with room to spare.

In L & T Pads, though, it's what's in back that counts—and these Centralab units have exclusive "thermo-pass" insulation, which combines fast heat transfer with a high dielectric constant to achieve a conservative rating of 20 watts audio, 5 watts D.C., in a unit the size of conventional 2 watt controls.

Because of Centralab's anti-backlash construction, the "play" frequently found in dual controls is eliminated. The wiper contacts move in unison, so there's no alteration in frequency response due to variations in wiper position on the resistance tracks.

So hump down to your Centralab distributor and stock up on these L & T Pad attenuators. They satisfy!

B-6005S

THE ELECTRONICS DIVISION OF GLOBE-UNION INC.
922 E. KEefe AVENUE - MILWAUKEE 1, WISCONSIN

in Canada: Centralab Canada Ltd., P.O. Box 400, Ajax, Ontario

ELECTRONIC SWITCHES • VARIABLE RESISTORS • CERAMIC CAPACITORS • PACKAGED ELECTRONIC CIRCUITS • ENGINEERED CERAMICS

RADIO-ELECTRONICS
"OVER $12,000 WORTH OF POWERMATES SOLD...AND IT'S JUST THE BEGINNING!"

GEORGE MARKMILLER
TV Sales and Service, 165 Ulster Avenue,
Saugerties, New York

POWERMATE sells itself through its performance

George Markmiller's customers "were from Missouri" where TV reception was concerned. The products they had tried, in spite of high claims, had not produced snow-free TV from the distant New York stations. With the help of his Jerrold distributor, George used the potent promotional kit to tell his customers the POWERMATE performance story. Newspaper ads, truck banners, stuffers and store displays presold POWERMATE because the promotion was custom-designed for his area.

The real clincher came after the demonstration when one customer began to tell the other about POWERMATE's amazing reception. The Saugerties area had never seen such clarity in black and white and in color. As George says, "The performance of this unit has been the best advertising that has helped to sell it."

Jerrold's ready to set up a POWERMATE promotion designed for your local area. You can repeat George Markmiller's success story as hundreds are doing—all over the country. Write for the name of your nearest Jerrold distributor.

JERROLD ELECTRONICS CORPORATION
A subsidiary of THE JERROLD CORPORATION

NOVEMBER, 1962
TRANSPORTORIZED TAPE RECORDER, Continental 100, model EL1555, 2-track, 175 ips. Portable, battery-operated. Takes 4-inch reels with lid off, 3-inch with lid on. Frequency response 100-6,000 cycles; signal-to-noise ratio better than 40 db. Mike, phone, tuner inputs. 3 mv, 2,000 ohms. Output to external amplifier 1 volt, 1,000 ohms (adjustable). Six 1.5 volt D-batteries, power consumption 1.1 watts, battery life approximately 20 hours. Dynamic cardiod mike. Visual battery/ modulation indicator, capstan flywheel drive.—North American Philips Co., Inc., 230 Duffy Ave., Hicksville, N. Y.

PORTABLE TAPE RECORDER, Proton Mod- el 94. 2-speed unit records/plays 4-track stereo and monaural; plays 2-track stereo and monaural. Dual 5-watt stereo amps (9 watts monaural); dual stereo Magic Eye, 2-channel balance control; bass controls; edit control. Response 30-15,000 cycles ±2 db at 7½ ips, 40-9,000 cycles ±2 db at 3½ ips. Signal-to-noise ratio better than 50 db. Fluster and wow less than 0.125% at 7½ ips. Harmonic synchronous motor.—American Foreign Industries, Inc., 640 Sacramento St., San Francisco 11, Calif.

AMPLIFIER SHUTOFF, Stop-D-Matic. Turns off amplifier automatically when changer stops. Bypass switch permits use of amplifier with tuner or tape recorder without turning changer on. Outputs for changer and amplifier, ac line cord. Other electrical devices can be shut off when last record has played by inserting cube tap into amplifier outlet. Model HFS-1 for European changers, HFS-1 for US changers.—Robins Industries Corp., 36-27 Prince St., Flushing 56, N. Y.

PLAYBACK ARM, model 980, Dyna Lift self-lifting device removes arm from record at end of play. Calibrated knob glids any stylus force 0-8 grams accuracy ±1 gram. Linear-tone coil spring acts directly on pivot shaft at center of arm's mass for dynamic balance. Vertical and lateral precision ball-bearing suspensions. Fundamental resonance frequency 8 cycles. 5-wire circuit eliminates ground loops.—Empire Scientific Corp., Garden City, N. Y.

CERAMIC REPLACEMENT CARTRIDGES. Tuneover type, all speeds, stereo/mono. Model 16TA (illus.): Channel separation 25 db, response 2½ 1 db 20-10,000 cycles, smooth rolloff to 12,000 cycles. Compliance 2.4 X 10^-4 cm/sec, tracking
Tarzian offers

FAST, DEPENDABLE TUNER REPAIR SERVICE

It just makes sense that a manufacturer of tuners should be better-qualified, better-equipped to offer the most dependable tuner repair and overhaul service.

Tarzian Tarzian, Inc., pioneer in the tuner business, maintains a complete, well-equipped Factory Service Dept. — assisted by Engineering personnel — and staffed by specialized technicians who handle ONLY tuner repairs... on ALL makes and models.

Tarzian-made tuners received one day will be shipped out the next. There is a 12-month guarantee against defective workmanship and parts failure due to normal usage. And compare our cost of $8.50 and $15 for UV combinations. There is absolutely no additional, hidden charge for ANY parts except tubes. Replacements available at low cost on tuners beyond practical repair.

Tarzian-made tuners are identified by this stamping. When inquiring about service on other tuners, always give tube complement... shaft length... filament... voltage... series or shunt heater... IF frequency... chassis identification. All tuners repaired on approved, open accounts. Check with your local distributor for Tarzian Tarzian replacement tuners, replacement parts, or repair service.

SERVICE MANAGER • TUNER DIVISION •

SARKES TARZIAN INC

East Hillside Dr. • Bloomington, Indiana

MANUFACTURERS OF TUNERS... SEMICONDUCTORS... AIR TRIMMERS... FM RADIOS... AM-FM RADIOS... AUDIO TAPE

SEND FOR ESSENTIAL PARTS KIT—gives you theory of operation, all construction details, schematic, and sample color filters. Add $1.65 for sets over 16".

CONVERT TO COLOR TV

COLORADAPTOR—A simple 12-volt circuit and rotating color wheel converts any size B & W TV to receive compatible color.

COLORADAPTOR—Essay attached to any "B" set, does not affect normal operation, often doublesses value of set—has on hand, BRILLIANT COLOR!

FREE Catalog

OF THE WORLD'S FINEST ELECTRONIC GOV'T SURPLUS BARGAINS

HUNDREDS OF TOP QUALITY ITEMS— Receivers, Transmitters, Mics, Transistors, Power Supplies, Meters, Filters, Transformers, Amplifiers, Headsets, Converters, Control Relays, Dynasatrons, Test Equipment, Meters, Meters, Cable, Keyers, Coders, Handsets, Switches, etc. etc. Send for Free Catalog—Dept. RE.

FAIR RADIO SALES

2133 Elida Rd. • Box 1103 • Lima, Ohio

(Continued on page 96)

67 ohms in x 0.1, x 0.01, x 0.001 positions. Power requirements 117 vac, 50-60 cycles. Sine wave: output 0-10 volts rms across 600-ohm load, max. power output approximately 160 mw into 600 ohms; distortion less than 0.5%. 20-20,000 cycles; frequency response flat within 1 db 120 cycles to 120 kc, within 1 db 7 cycles to 705 kc, 1 db band to band. Square wave: output (peak to peak) 20 volts, high impedance. Rise time less than 0.15 ms. Precision Apparatus Co., Inc., 70-31 84th St., Glendale 27, L. I., N. Y.

DC POWER SUPPLY, model EC-3. Operates all portable transistor radios. Bias tap control fully adjustable 0-6 volts, complete filtering. Delivers 150 ma at 0-20 volts; 100 ma at 24 volts. Edge-reading meter indicates output voltage or current.

—Electro Products Labs, Inc., 6120 W. Howard St., Chicago 48, Ill.

PORTABLE VOLTMMETERS, models 825-DC, (tubes) 825-4C. Suspension movement. 6-13/32" inch mirror scale, knife-edge pointer, fully open meter front with top and side natural lighting. 7½ x 6½/16 x 3¼ in.—Triplet Electrical Instrument Co., 18 Water St., Boston 5, Mass.

November, 1962

www.americanradiohistory.com
HE-20C DELUXE CITIZENS BAND TRANSCEIVER

Now Officially Approved For use in CANADA By Dept. of TRANSPORT Type Approval No. 169361029. Tops in CB world ■ 8 crystal controlled receive positions, 8 crystal controlled transmit positions ■ Tuneable over all 23 channels ■ Direct reading "S" meter indicates RF Power Output, Transmitter and Antenna Efficiency and Receiver “S” readings ■ Effective noise limiter ■ Built-in 12 or 6 volt power supply for mobile use. With crystals for channel 9. No Money Down 109.50

RECORDS Sound-on-Sound

4-TRACK STEREO TAPE DECK

Deluxe Professional Quality Built-in Transistorized Stereo Record/Play Preamps ■ Plays: 4-Track Stereo, 2-Track Stereo, and 4-Track Mono Tapes ■ Records: 4-Track Stereo or Mono and Sound-on-Sound ■ 2 Record Level Meters ■ Tape Index Counter ■ Automatic Stop at end of tape ■ 2 Speeds: 3¾ ips and 7½ ips ■ Frequency Response @ 7½ ips, 40-18,000 cps ■ Takes up to 7” reels. No Money Down 99.50 less case

LAFAYETTE 4-BAND SHORTWAVE BROADCAST RECEIVER

■ Covers: 550 KC to 30 MC in four bands—tunes foreign broadcast programs plus ships, planes and amateurs ■ Sensitive superheterodyne circuit ■ Easy-tune slide rule dial ■ Built-in 4” speaker ■ Receives voice or code signals. No Money Down 39.95

LAFAYETTE STEREO MULTIPLEX TUNERS

FEATURES OF BOTH LAFAYETTE TUNERS

'Highest Quality Reception—Superb Styling!' ■ Wide-band Design ■ Duplex 3-Gang tuning condenser provides tuned RF stage for greater sensitivity and selectivity ■ Built-in Multiplex with excellent separation ■ Sensitive tuning Meters ■ Variable AFC control ■ FM stereo Noise Filter ■ Smooth Flywheel Tuning.

LAFAYETTE 10-TRANSISTOR CITIZENS BAND "WALKIE TALKIE" TM.

50% more powerful—now with 10 transistors, plus diode, thermistor and extra RF stage ■ Transmits and receives up to 2 miles ■ Up to 50 hours battery life ■ Push-to-talk operation ■ Complete with leather case, earphone, antenna and batteries. No Money Down 33.95 EACH 2 for 62.90

FM-AM STEREO MULTIPLEX TUNER 89.50 No Money Down

FM MULTIPLEX TUNER 76.50 No Money Down

LAFAYETTE SETS THE PACE!
Here it is — the exciting, all-new 1963 Lafayette Catalog. 388 giant-sized pages with thousands of different items for the audiophile, experimenter, technician, hobbyist, engineer, student, serviceman... fully illustrated... hundreds of manufacturers. It's the "World's Hi-Fi and Electronics Shopping Center" at your finger tips.

CHECK THESE EXCLUSIVE LAFAYETTE BENEFITS
✓ SATISFACTION GUARANTEED OR MONEY REFUNDED. Use Lafayette's 30-Day Free Home Trial.
✓ LARGEST STOCK SELECTION. If it's in Electronics or Hi-Fi, it's in the Lafayette Catalog.
✓ NO MONEY DOWN. Buy on time with Lafayette's Easy-Pay Credit Plan, up to 24 months to pay.
✓ OUTSTANDING LAFAYETTE KITS
✓ LOWEST PRICES
✓ 24-HOUR SERVICE

MAIL THIS COUPON TODAY FOR YOUR FREE LAFAYETTE 1963 CATALOG GET ONE FOR A FRIEND TOO!

LAFAYETTE RADIO ELECTRONICS
Dept. JK2-2, P.O. Box 10, Syosset, L.I., N.Y.

[Check boxes for shipping options] Rush my FREE 388-page giant-size Lafayette Catalog
Send me #________________, shipping charges collect.
I am enclosing ____________________________.

Name ____________________________________
Address __________________________________
City ________________________________ Zone __ State __________

Friend's Name ____________________________
Address __________________________________
City ________________________________ Zone __ State __________

95

www.americanradiohistory.com
(Continued from page 91)

SOLDERLESS PLUGS, auto type coaxial cable attachment for master antenna and other electronic systems. Connector unit slides on cable; held permanently with crimping ring. Small teeth inside connector bite into cable. -Blonder-Tongue Labs, Inc., 9 Alling St., Newark, N. J.

GRID-CIRCUIT ANALYZER TUBE TESTER, model T62. Kit or factory-wired. Tests 10- and 9-pin miniature, 10-pin compactors, 7- and 5-pin novinators, Novars, octals, loclals. many industrial and European tubes. Checks interelectrode shorts, cathode emission at optimum prestressed plate loads, all TV picture tubes by cathode emission, grid current, and grid emission. -Pace Electronics Co., Inc., 70-31 84th St., Glendale 27, L. I., N. Y.

SIGNAL TRACER. Self-contained, transistorized Mini-Tracer pinpoints defective components, locates electrical hum, mechanical vibration in AM and FM radio, TV, communications, equipment, servo-control circuits. General Service model for radio and TV maintenance. Lab and Industrial model with accessory probes. -International Representatives Corp., 315 S. Beverly Drive, Beverly Hills, Calif.

DO-IT-YOURSELF SLIDE RULE has decibel-to-voltage times conversion rule on one side, calculator of distribution system losses on other. In

let. 14-db gain on all uhf channels. 300-ohm input, 75-ohm output. 5 models cover channels 14-29, 25-40, 41-55, 56-69, 70-83. -Blonder-Tongue Labs, 9 Alling St., Newark, N. J.

TV/FM COUPLER connects any number additional sets to existing antenna line, indoor or outdoor. Snaps on without tools, stripping, splicing, soldering. Electromagnetic operation, no cut in main antenna line. Loss due to placement on line 6 db for low-frequency channels, 2 db for high. Electrical qualities between main and tap lines automatically matched. Isolation factor 12 db between final and any auxiliary set; 24 db between auxiliary sets. For household use, any combination of black-and-white TV, FM and stereo FM. -Aerogap, 1680 N. Vine St., Los Angeles 28, Calif.

COLOR TV KIT for 21-inch set. Model CK-321 (Illus.): self-contained hi-fi audio amp and speaker system. Model CK-342: dual cathode follower circuit for hookup with existing hi-fi sys-

grams. Optional wireless remote-control system for either model. Separate control panel, provision for uhf, selection of accessories and front panels for custom installation. Bonded faceplate color CRT. Critical circuits prewired. Includes study course in color TV, to be used in assembly. -Transvision Electronics, Inc., Grey Oaks Ave., Yonkers, N. Y.

SINGLE-JUNCTION SILICON RECTIFIERS. 1-amp rating at 2,000 volts PIV. Reverse current at rated PIV less than 2 ma at 25°C. 1-cycle surge rating 22 amps with recurrent peak currents of

www.americanradiohistory.com
See Only the Scale You Want...in the Exact Range You Want

just set the range switch
and the correct scale appears
AUTOMATICALLY

in the new B&K
VOM and VTVM

V O M A T I C 360
AUTOMATIC VOLT-OHM MILLIAMMETER

Greatly simplifies your VOM use. Individual full-size scale for each range—and only one scale visible at any one time, automatically. Once you set the range switch, it is impossible to read the wrong scale. Reading in the range you want is amazingly easy—and direct. No reading difficulties, no multiplying, no errors.

Sensitivity 20,000 ohms per volt DC; 5000 ohms per volt AC. Accuracy ±3% DC; ±5% AC; (full scale). DC Volts in 6 ranges 0-6000. AC Volts in 6 ranges 0-6000. AF (Output) in 4 ranges 0-300 volts. DC Current in 5 ranges 0-10 amps. Resistance in 4 ranges 0-100 megohms. Supplemental ranges also provided on external overlay meter scales. Meter protected against extreme overload and burn-out. Polarity reversing switch. Automatic ohms-adjust control. Mirrored scale. Complete with 1½-volt and 9-volt batteries, test leads, and easy-viewing stand.

Net, $5995

D Y N A M A T I C 375
AUTOMATIC VACUUM-TUBE VOLTMETER

Once you set the range switch, you automatically see only the scale you want and read the exact answer directly. Saves time, eliminates calculation, avoids errors. Individual full-size direct-reading scale for each range. Simplifies true reading of peak-to-peak voltages of complex wave forms in video, sync and deflection circuits, pulse circuits, radar systems, etc. Includes DC current ranges, too.

Accuracy ±3% full scale AC and DC. Sensitive 100 microampere meter movement. DC Volts in 7 ranges 0-1500. AC Volts (rms) in 7 ranges 0-1500. AC Volts (peak-to-peak) in 7 ranges 0-1500. DC Current in 3 ranges 0-500 ma. Ohms in 7 ranges 0-1000 megohms. Utilizes single DA-AC ohms probe and anti-parallax mirror. Swivel stand converts to carry-handle. Includes 1½ volt battery. Operates on 117 volts 50-60 cycle AC.

Net, $8995

Ask Your B&K Distributor for Demonstration, or Write for Catalog AP20-E

B & K MANUFACTURING CO.
DIVISION OF DYNAMSCAN CORP.
1801 W. BELLE PLAINE AVE * CHICAGO 13, ILL.
Canada: Atlas Radio Corp., 50 Wingold, Toronto 19, Ont.
Export: Empire Exporters, 277 Broadway, New York 7, U.S.A.

NOVEMBER, 1962

97

www.americanradiohistory.com
AMAZING OFFER

RADIO & TV SERVICE DATA
Your list, complete source for all needed RADIO and TV diagrams and servicing data. Most amazing values: $2.50 and $5 per giant volume. Cover all important makes, models and period. Use this entire ad as your no-risk order form.

NO-RISK ORDER COUPON

TELEVISION SERVICE DATA

Supreme TV manuals are best for faster, easier TV repairs. Lowest priced data from top service data all time. Complete circuits, all needed alignment facts, testing board views, waveforms, voltages, production changes, and double-page schematics. Only $3 per 50 page manual. Check volumes wanted, send entire advertisement as your order form.

- All Additional 1962 Television Manuals, $3.
- Early 1962 Television Servicing Manual, only $3.
- Early 1959 TV Model, $3.
- Early 1957 Television, $3.
- Additional 1956 TV Model, $3.
- 1955 TV, $3.
- Master Index to All Manuals, $2.50.

RADIO DIAGRAM MANUALS

Here are low-priced radio manuals that simplify repair. Covers everything from most recent $10 radios to pre-war old-timers; home radios, stereo, combinations, transistor portable, FM, auto sets. Large schematics, parts lists, alignment facts, printed boards, voltages, dial strings, hints. Volumes are big. 100%, about 950 pages. $2.50 each.

- 1962.
- 1961.
- 1960.
- 1959.
- 1958.
- 1957.
- 1956.
- 1955.
- 1954.
- 1953.
- 1952 TV.
- 1951 TV.
- $2.50 each.

SUPREME PUBLICATIONS

1760 Balsem Road
Highland Park, Ill.

Rush today TV and Radio manuals checked in no-risk form of this ad. Back without charge. I am enclosing full price. You guarantee my complete satisfaction or my money back.

Name:
Address:
City:
State:

Genuine "No-Noise" Products
BRAND NAME QUALITY MEANS
MORE EFFECTIVE PROTECTION

NO-NOISE VOLUME CONTROL AND CONTACT RESTORER
Scientifically formulated to clean, lubricate, restore, protect. 2 oz. bottle. 6 oz. spray can

$1.00
$2.25

NO-NOISE TUNER-TONIC PERMA-FILM
A non-toxic, non-inflammable formula to clean, restore, lubricate all tuners, including contact points. Use for TV, radio, FM, AM just a little goes a long way!

NET TO SERVICEMEN
2 oz. bottle 6 oz. spray can

$1.00
$2.25

NO-NOISE ELECTRICAL LUBRICANT PERMA-FILM
A non-toxic, non-inflammable formula to clean, restore, lubricate all appliances with ALL Electrical products. Pin Point Precision! Won't Clog Switches!

FREE 5" PLASTIC Push Button Assembler Chemical products. Pin Point Precision! Won't Clog Switches!

ECLECTRONIC CHEMICAL CORP.
813 Communipaw Avenue Jersey City 4, N. J.

RADIO-ELECTRONICS

50 AMPS. Max. Leakage at 100°C 50 µA at 2,000 volts - Power Components Inc., PO Box 421, Scottsdale, Pa.

All specifications are from manufacturers' data.

NEW LITERATURE

CATALOGS BOOKLETS CHARTS

Any or all of these catalogs, bulletins, or periodicals are available to you on request direct to the manufacturers, whose addresses are listed at the end of each item. Use your letterhead—do not use postcard. To facilitate identification, mention the issue and pages of RADIO-ELECTRONICS on which the item appears. UNLESS OTHERWISE STATED, ALL SHORTS ARE GOOD AFTER SIX MONTHS.

ELECTRONIC PRODUCTS. Approximately 300 pages of them, displayed in fully illustrated Catalog FR-62. Products include chemical supplies, test equipment, knobs, resistors, communications and CB products, TV antennas and hardware, audio equipment, mikes and mike accessories—GC Electronics, S. Wynn St., Rockford, Ill.

TUBE DATA. 8-page TUBE DATA-1972 N gives USA direct replacement or similar type for foreign receiving tubes used in AM and FM radios, TV sets, and portable models. Number 850, $1.50.

FEED-BACK STABILIZER, model 8961, described in data sheet. Minimizes feedback howl and ringing in PA systems. Frequency range is 10 to 1,000,000 cycles per second. $4.00 each.

NO-NOISE TUNER-TONIC PERMA-FILM

NET TO SERVICEMEN
6 oz. can

$3.25

MINIATURE LAMPS. 12-page leaflet features specs for miniature and subminiature incandescent lamps, with life-size photos and candlepower values for all types. New listings include automotive heavy-duty lamps, subminiature Types. Special sections on lamp terminology and miniature lamp selection. Write on company letterhead.

MASTER TV MANUAL. 14-page selection guide for systems and equipment. Covers smaller systems only, with diagrams and photos of typical installations in homes, TV showrooms, service shops, apartment houses and institutions. Section on musical 400-1000. Saticoy Prod., 391 Broadway, New York 13, N. Y.

SOUND-TO-SLIDES BOOKLET illustrates new technique for adding sound to 35-mm slides. 2-page foldout leaflet. Make "Talkies" Out Of Your Slides. describes method using pencil mark on oxide face of recording tape to achieve change mechanism in projectors, etc. $1.00 each. Poetry Press Inc., Dept. R62, 1270 Broadway, New York 1, N. Y.

PA EQUIPMENT offered in 8-page illustrated Catalog SA-2. Shows a variety of loudspeakers, mike stands, accessories. New products include Special-duty weatherproof speakers, Colnaut sound column for improved reproduction in trouble areas. Atlas Sound Div., American Trading & Production Corp., 1969-51, 19th St., Brooklyn 18, N. Y.

DYNAMIC MICROPHONE. model S113H, described in 2-page, single-sheet data bulletin. Lifesize photo plus details of output, response, switch, cable, housing material and finish. Asto Inc., Conneaut, Ohio.

HI-FI-StereO EQUIPMENT shown in 19-page illustrated Catalog PA-2. Includes a variety of hi-fi speakers, home stereos, radio-receiver-combos, speakers, storage cabinets. Technical data and photos of equipment. $1.00 each. Electro-Scout Electronics Corp., Ltd., Time & Life Bldg., Rockefeller Center, New York 20, N. Y.

BARRY'S GREEN SHEET. Winter Edition, offers electronic tubes, semiconductors, transformer, mikes, mikes and accessories, inexpensive replacement units for inexpensive parts. Includes power supplies, accessories, complete make systems. Request on company letterhead.

PROFESSIONAL CONDENSER PHONES. American Radiohistory, catalog 220. Each phone is a character, including voice, range, etc. Made in Europe and the U.S. $1.50 each.

BARREY ELECTRONICS CORP., 512 Broadway, New York 12, N. Y.

ELECTRONIC COMPONENTS, 1963 Allied Catalog 220, 456 pages. Products include audio and hi-fi equipment, CB supplies, intercoms, mikes, lighting fixtures, PA equipment, TV equipment, tape recorders, etc. Allied Radio, 100 N. Western Ave., Chicago 80, Ill.

ELECTRONIC COMPONENTS offered in Lafayette 1963 Catalog 630. 388 pages of equipment include stereo hi-fi components of major firms, CB equipment, optics, books, tools, radio and TV parts and accessories. Many illustrations. Lafayette Radio Electronics Corp., 111 Jericho Turnpike, Lynbrook, N. Y.

RADIO TRANSISTOR REPLACEMENT Guide, 103345, 17 x 22-inch wall chart cross-references manufacturers and adds "before and after" replacement transistors with 1,218 types commonly used. General Electric Co., 3800 N. Milwaukee Ave., Chicago 37, Ill.

MASTER TV MANUAL. 14-page selection guide for systems and equipment. Covers smaller systems only, with diagrams and photos of typical installations in homes, TV showrooms, service shops, apartment houses and institutions. Section on musical 400-1000. Saticoy Prod., 391 Broadway, New York 13, N. Y.

MASTER SLAVE UNITS

PHOTOS and full descriptions—Mercury Electronics Corp., 111 Roosevelt Ave., Mineola, N. Y.

www.americanradiohistory.com
RAD-TEL
You Get MORE
For Your Money!

RAD-TEL'S QUALITY
BRAND NEW TUBES
FOR TV, RADIO AND HI-FI
1-YEAR GUARANTEE

RAD-TEL TUBE CO.
TV, RADIO
AND HI-FI

TERMS: 25% deposit must accompany all orders, balance C.O.D. Orders under $5, add handling charge plus postage. Orders over $5, plus postage, Approx. 8 tubes per 1 lb. Subject to prior sale. No C.O.D.'s outside continental U.S.A.

N O V E M B E R, 1 9 6 2

99
CITIZEN BAND
STANDARDS BY SONAR

When performance is critical and reliability a necessity SONAR CAN BE DEPENDED UPON. Citizen Band standards of SONAR must and will always be above and beyond what is expected. Write for full particulars.

MODEL E FCC type accepted - 8 channels, crystal-controlled transmitter/receiver • Tunable receiver for 25 channels • Powerful transmitter 100% Class B modulated • Automatic noise limiter • Lightweight, compact. $179.50

MODEL G Dual conversion • RF output meter • Signal strength meter • Crystal spotting switch + illuminated panel • 8 channels crystal-controlled • Receiver tunes 23 channels • Class "B" modulation • Featuring the NEW Sonar noise silencer. $229.50

SONAR RADIO CORPORATION, 73 Wortman Ave., Brooklyn 7, N.Y.

Please send me complete information on
☐ Model E ☐ Model G

NAME
ADDRESS
CITY
STATE

SAXITONE RECORDING TAPE
Available everywhere on roll, the newest and best.比 other brands, Saxitone tape is genuine, pure acetate, takes any kind of recording. It is available in 4-track stereo, 2-track mono, and will not warp or stick, so that it is ready for instant use. Compare guns with other "Brand" tape. You'll find it's made in only 4-track, mono and 3-track colors. We are in the forefront of the tape recorder business and our reputation means everything to us. Saxitone (plastic, 3 in. $1.00; 4 in. $4.00) Norelco, 3 in. $3.50; 4 in. $8.50

CUSTOM TV
Hand Wired HiFi Circuit Finest Quality Chassis

TRANSFORMER POWERED—ALL METAL 20-TUBE CHASSIS VERTICAL MOUNT
15" SPEAKERS 1/4 LB. MAGNET $16.95

GM PHOTOELECTRONICS
623 So. Gay Street
Knoxville 5, Tenn.
BOOST YOUR BRITENER SALES

with these

SIX MAGIC WORDS
from Perma-Power

WOULD YOU LIKE A BRIGHTER PICTURE?

That's a question with only one possible answer—YES. Every customer wants a better, brighter picture...but doesn't realize how easy it is to get one.

When you say you'll brighten the picture—When you quote the low cost—you've sold the customer.

Don't sell Briteners—sell Brighter Pictures!

On every service call, remember to use Perma-Power's 6 Magic Words—Would You Like A Brighter Picture? You'll sell a 12-pack of Briteners almost as fast as you can say Perma-Power!

Perma-Power COMPANY—3106 N. Elston Ave.—Chicago 18

N O V E M B E R, 1 9 6 2
ELECTRICAL STABILIZATION
Every tube electrically "aged" to actual operating levels

100% SHORTS AND CONTINUITY TESTS
to reveal interelement leakage

100% ELECTRICAL TESTS
to verify proper levels of plate current, screen current and plate emission

100% GAS AND EMISSION TESTS
to assure low levels of gas current and grid emission

EVERY RCA TUBE...
performance proved before you get it

You take no chances when you replace with RCA communications tubes. Every single tube, before leaving our plant, is electrically aged and tested for major electrical characteristics. A tube failing one single test is automatically rejected and destroyed.

You cannot buy an untested RCA POWER TUBE!
FOR POLICE, TAXI AND TRUCK RADIO • MARINE AND AIRCRAFT COMMUNICATIONS • RAILWAY SIGNALLING
Ask your Authorized RCA Industrial Tube Distributor for information on specific types.

RCA ELECTRON TUBE DIVISION, HARRISON, N. J.

100% ELECTRICAL STABILIZATION. Every tube electrically "aged" to actual operating levels. 100% SHORTS AND CONTINUITY TESTS to reveal interelement leakage. 100% ELECTRICAL TESTS to verify proper levels of plate current, screen current and plate emission. 100% GAS AND EMISSION TESTS to assure low levels of gas current and grid emission.

RCA Tube... performance proved before you get it.
You take no chances when you replace with RCA communications tubes. Every single tube, before leaving our plant, is electrically aged and tested for major electrical characteristics. A tube failing one single test is automatically rejected and destroyed.

You cannot buy an untested RCA POWER TUBE!
FOR POLICE, TAXI AND TRUCK RADIO • MARINE AND AIRCRAFT COMMUNICATIONS • RAILWAY SIGNALLING
Ask your Authorized RCA Industrial Tube Distributor for information on specific types.

RCA ELECTRON TUBE DIVISION, HARRISON, N. J.

Duplicer—Device for expanding small apartments.
Ferrite—Small ferryboat.
Noise Generator—Talkative female.

DA Reports
Santa Clara Valley, Calif.—Assistant District Attorney Louis C. Doll told SCV Chapter members of CSEA at their general meeting at Los Gatos Lodge that only one or two complaints on TV servicing had been handled by his office during the past five or six months. Doll went on to credit close cooperation between the association and the DA's office for the lack of complaints.

50 Years Ago
In Gernsback Publications

HUGO GERNSBACK, Founder
Modern Electrics ... 1908
Wireless Association of America ... 1908
Electrical Experimenter ... 1913
Radio News ... 1913
Science & Invention ... 1916
Practical Electrics ... 1918
Television ... 1922
Radio-Craft ... 1929
Short-Wave Craft ... 1931
Television News ... 1931

Some larger libraries still have copies of Modern Electrics on file for interested readers.

In November, 1912, Modern Electrics
The Helsby Wireless Detector, by Frank E. Perkins.
The Wireless Law (Public—No. 264).
A Galena Detector, by W. F. Hall.
The Simplest (Tuning) Slider, by E. R. Anschutz.
Taps for Loose Coupler Windings, by Otto Stach.
Portable Wireless Receiving Outfit.
A Simple Variable Condenser, by Paul Horton.
Marconi Demonstrates High Speed Transmission.

"Well, that completes the system—Hi-Fi in every room."
GET THIS NEW ELECTRONICS DICTIONARY FOR YOUR BOOKSHELF!

3,700 terms officially defined, many illustrated, in IRE's authoritative reference work

CHECK YOURSELF:
From Absolute Delay to Zoning (Stepping), there are over 3,700 electronics terms you need to be aware of . . . How many do you actually know? How many can you define? Some terms have more than one meaning; are you sure you have the right, the scientifically accurate, the IRE Standard definition?

There's no need to carry around 3,700 definitions in your head. Have them handy on your bookshelf, instead, in IRE's Dictionary of Electronics Terms and Symbols. Every term accurately defined; many illustrated by simple, grasp-at-a-glance diagrams.

PART I of the new Dictionary is compiled from 37 IRE Standards on electronics terms, organized and published by The Institute of Radio Engineers over an 18 year period. Each definition cites the Standard from which it was taken; where a term is used in more than one field, and has more than one meaning, each is listed under a separate entry.

PART II of this 225 page volume is a Dictionary of Symbols, made up of five IRE Standards: Letter Symbols for Electron Tubes; Letter Symbols for Semiconductor Devices; Graphical and Letter Symbols for Feedback Control Systems; Graphical Systems for Semiconductor Devices; and Graphical Symbols for Electrical Diagrams. A four-page index to graphical symbols is included.

THE INSTITUTE OF RADIO ENGINEERS
1 East 79th Street, New York 21, N. Y.

Please send me copies of your complete new Dictionary of Electronics Terms and Symbols.

[] I am an IRE member. Am enclosing $5.20 per copy.
[] I'm not yet a member. Am enclosing $10.40 per copy.

Name:
Company:
Address:
City __________________________ State ____________

NOVEMBER, 1962

103

www.americanradiohistory.com
Simplified Additive Power Switching

In a number of communications and industrial electronic installations, additive switching circuits make life complicated for the technician. This problem arises when the control data sheet calls for a switch that turns on device A in position 1, devices B and C in position 2, devices A, B, and C in position 3, etc. This normally requires either a “successive make” switch, which you can find in the catalogs but usually not at your supplier’s, or a separate switch wafer for each device to be switched. If the switching is to be remote, as by a telephone type stepping switch, circuitry becomes prohibitively costly or complicated.

Solid-state rectifiers with a very small voltage drop simplify this problem greatly, making possible not only compact and relatively inexpensive additive switching for either local or remote use, but also switching hitherto troublesome combinations.

The circuit of an additive switch, simplified by use of solid-state rectifiers, is shown in Fig. 1. Note that only a single switch wafer is needed. The rectifiers are compact so they may be mounted directly on the switch wafers. Only one wire from switch to each controlled device is needed.

A number of other additive circuits are possible using this general method. One sample, with a table of functions performed, is shown in Fig. 2. Many other switching circuits can be simplified by this technique. When the loads are ac-operated devices or circuits, these switching arrangements can operate dc-type control relays.

Rectifiers used here must be adequate as to voltage rating; the peak inverse rating of the rectifier must not be exceeded (off position for a given function), and forward current, including that during turn-on surges, must not exceed rectifier rating.—Ronald L. Ives

Relay-less Photoelectric Annunciator

This photoelectric annunciator can be set up anywhere to indicate when a person or object breaks a beam of light. It has no complicated relay. As soon as the beam is broken, a PM dynamic speaker produces an audio tone determined by the builder. One battery drives the complete unit.

The circuit consists of a two-transistor oscillator biased to cutoff by a third transistor serving as a photo-sensing device. As long as the light beam is shining on the exposed wafer of the transistor, the oscillator remains at cutoff; when the beam is interrupted, the bias is effectively removed and the oscillator becomes energized.

The oscillator consists of an n-p-n transistor, V1, direct-coupled to a p-n-p power transistor, V2. The circuit requires only one capacitor for proper phasing and feedback. Resistor R and the capacitor determine oscillator frequency. R can be either variable or fixed. Photo-transistor V3 is connected from emitter to base of V2 to cut off the oscillator when light is shining on it.

Transistors V2 and V3 are Olson TR-15's similar to the 2N176, 2N325, 2N307 and 2N401. To make V3 photosensitive, remove the top of the case by drilling a small hole into it as close to the edge as possible and away from the

POLY A 1c SALE

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 DISC COND.</td>
<td>$1.00</td>
</tr>
<tr>
<td>15 PRINTED CKTS</td>
<td>$1.20</td>
</tr>
<tr>
<td>60 CERAMIC COND.</td>
<td>$3.00</td>
</tr>
<tr>
<td>10 MICROSWITCHES</td>
<td>$1.20</td>
</tr>
<tr>
<td>60 RESISTORS</td>
<td>$1.12</td>
</tr>
<tr>
<td>10 ELECTROLYTICS</td>
<td>$1.20</td>
</tr>
<tr>
<td>8 1N34 DIODES</td>
<td>$1.60</td>
</tr>
</tbody>
</table>

FREE PARTS CATALOG write for yours

TERMS: Send check, money order. Include postage. Life acc. not 30 days.

P.O. Box 942R So. Lynfield, Mass.

World's largest supplier of pre-packed assortments

SILOM RECTIFIERS

- 750 MIL
- LOW LEAKAGE
- FACTORY TESTED
- GUARANTEED

DIODES !!

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4001</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4002</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4003</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4004</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4005</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4006</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4007</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4008</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4009</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4010</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

SILOM POWER DIODE STUDS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4001</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4002</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4003</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4004</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4005</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4006</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4007</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4008</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4009</td>
<td>$1.00</td>
</tr>
<tr>
<td>1N4010</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

NOTEWORTHY CIRCUITS
two best-selling knight-kits®
built and enjoyed by thousands of satisfied owners

WORLD-WIDE RECEPTION!

Hear planes
in flight

Tune favorite
local AM
programs

YOUR PERSONAL PASSPORT TO EXCITING SHORTWAVE LISTENING PLEASURE

THE ONE AND ONLY
ONLY
$25.95
$5 per month

NO MONEY DOWN on Allied's Credit Fund Plan

Now! Drive As the Experts Do!

IMPROVE MOTOR PERFORMANCE & FUEL ECONOMY WITH THIS

ELECTRONIC TACHOMETER KIT

ONLY
$21.95
$5 per month

Auto and power-boat experts agree that for best fuel economy, lower engine wear and peak performance, an accurate tachometer is a "must." Here's your best "tach" value. Registers engine speed in rpm—electronically! Transistorized switching and zener diode regulation; 3% accuracy, illuminated dial; adjustable red pointer. No ignition rewiring required. For 1.8 cyl., 2-cycle or 1-16 cyl., 4-cycle engines using ignition coil and distributor—9-32 VDC, for magneto and 6-VDC Systems with external 9-V battery (not supplied; below). Available in positive-ground and negative-ground models (most late-model American cars are neg. ground). With all cables, universal mounting base, tension strap, easy instructions. 4 1/2" x 3 1/4" x 3 1/2". Shpg. wt., 4 lbs.
83 Y 944DB, For Neg. Ground Systems
83 Y 980DB, For Pos. Ground Systems Each $21.95
83 Y 909, 9-V Battery & Accessories $1.50

SATISFACTION GUARANTEED OR YOUR MONEY BACK

TYPICAL OF THE QUALITY AND VALUE OF OVER 100 OTHER GREAT KNIGHT-KITS

manufactured by
KNIGHT ELECTRONICS CORP.
A DIVISION OF
ALLIED RADIO

NOVEMBER, 1962

SPAN MASTER® World-Wide 4-Band Shortwave Receiver Kit

Hear everything on the fun-to-build "Span Master"—far and away the leader in its class for radio coverage, sensitive performance and value. Continuous tuning from 540 kc to 30 mc lets you hear ships, planes, direct broadcasts from London, Paris, Moscow, Berlin, Rome. Tunes the 160, 80, 40, 20, 15 and 10-meter Ham bands—plus powerful local AM reception and dozens of other exciting broadcast services.

Features include: Bandspread dial for easy tuning; fine-regeneration control; built-in PM speaker, plus headphone terminals for private listening; transistorized switching for maximum circuit performance. Easy to assemble from step-by-step instruction manual (includes list of foreign stations and Morse code). Handsome pyroxylin-covered wood cabinet with perforated white baffle and satin-chrome control panel. Complete with all parts, tubes, wire and solder. Size 6 1/4" x 14 x 6 1/2". For 110-125 v., 60 cycle AC. Shpg. wt., 8 lbs.
83 YX 258DB, "Span Master" Receiver Kit. Only $25.95
83 Y 025, Outdoor Antenna Kit $1.03
83 Y 027, Dual Headset $2.08

ORDER TODAY

ALLIED RADIO
100 N. Western Ave., Chicago

Ship the following:

- Span Master Receiver Kit 83 YX 258DB
- Antenna Kit 85 Y 025
- Dual Headset 83 Y 027
- Tachometer for Neg. Ground Systems 83 Y 944DB
- Tachometer for Pos. Ground Systems 83 Y 980DB
- Ship No Money Down on Allied's Credit Fund Plan
- $ enclosed (check) (money order)

Name__________________________
Address________________________
City___________________________
Zona_____ State______

New Credit Customers Only: Send name and address, present employer, how long employed, position, monthly salary, rent or own home, how long at present address, age (21 minimum for credit account).
This can be determined by examining the bottom of the transistor. The wafer is above that portion representing the greater space between terminal connections (base and emitter) and mounting end. The top then can be removed with cutting pliers as you would peel off the band around a tin container. Mount the transistor in a vise for a firm support. The top can also be removed very nicely by grinding it away slowly on a sanding disc. It can then be peeled off. [The Olson TR-19 photoelectric-power transistor looks like a good ready-made substitute for V3.—Editor.]

The whole unit can be mounted in one box, with V3 exposed on one side. The sensitivity depends on the amount of light falling on the wafer of V3, and therefore might require a single convex lens in front of it. The light beam, of course, will have to be concentrated with either a lens or a parabolic reflector. Since germanium is unusually sensitive to infrared, it might be used instead of white light.—Martin H. Patrick

Re: Nonpolarized Electrolytics

An interesting method of using an electrolytic capacitor in a nonpolarized application was published in "Noteworthy Circuits" on page 101 of the May 1962 issue. Here is another circuit which might be advantageous under some conditions. It is a variant of the familiar bridge rectifier. When line 1 is positive, diodes D1 and D4 conduct and D2 and D3 are blocked; vice versa when line 2 is positive. C has the correct polarity in each case.

This circuit uses one less capacitor but two more diodes, so it is advantageous where a diode is cheaper than half the price of a capacitor. It also might provide worth-while space savings in some applications.—Charles Erwin Cohn

SELECT VALUE FOR DESIRED TONE

2N233 TR-15

LINE 1

D1

D2

D3

D4

LINE 2

SWITCHED TO

4001-002

V2

C

PM

SPKR

R

V3

6V BATT

3000

0200

V1

LIGHT SOURCE

RUSH COUPON TODAY!

NAME

ADDRESS

CITY

STATE

NOVEMBER, 1962

MERCURY TV TUNER SERVICE

890-2 River Ave., Bronx 51, N.Y.

"Largest in the East"

VHF-UHF TUNERS

1 Year Warranty

Price Includes Labor & Minor Parts

TUBES & MAJOR PARTS AT NET PRICES

ALL MAKES ONE PRICE!

$9.50

When Shipping Tuner: Include Tubes, Shields and Damaged Parts. Give Model Number and State Complaint. PACK WELL AND INSURE. 24 HOURS ON POPULAR TYPES.
NEW SEMI
CONDUCTORS & TUBES

THERE ISN'T EVEN ONE TUBE THIS
month. Everything falls into the semi-
conductor category. We've got medium-
power transistors, silicon microdiodes,
and a line of press-fit rectifiers.

2N2282, -2283, -2284
A series of diffused alloy medium-
power transistors designed for their ef-
ficient switching applications. The dif-
fused-base transistor gives the advan-
tages of low input resistance, excellent
gain characteristics and high collector-
to-emitter voltages. The switching and
voltage characteristics are particularly
suited for core-driver, high-frequency
and amplifier applications. Maximum
ratings of these Bendix transistors are:

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Vces (Volts)</th>
<th>IC (Amperes)</th>
<th>P0 (Wats)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2282</td>
<td>60</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2283</td>
<td>100</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2284</td>
<td>200</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Characteristics at 25°C are:

- hfe (minimum) = 80
- f3 (typical mc) = 30
- fa (typical) = 30
- t1 (usec) = 2.5
- t2 (usec) = 1.5
- t3 (usec) = 1.0

MD10, MD08, MD06, MD04
A group of silicon microdiodes
manufactured by the planar diffusion
process. They are intended for use in gen-
eral-purpose applications where very
small size and high reliability are re-
quired.

Maximum ratings of these General
Instrument diodes at 250°C are:

<table>
<thead>
<tr>
<th>MD10</th>
<th>-08</th>
<th>-06</th>
<th>-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown voltage @ 100 µA</td>
<td>100</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>Average rectified ma</td>
<td>75</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Power dissipation, mw</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

1N3491 through 1N3495

This group of press-fit rectifiers are designed to withstand current surges to 300 amperes. The knurled case allows the unit to be press-fit mounted in any position. The devices are normally supplied with the cathode connected to the case. Reverse-polarity units (identified with an R suffix) are also available.

Electrical characteristics of these Delco rectifiers are:

- **1N3491-3492-3493-3494-3495**
 - Max peak reverse voltage: 50 100 200 300 400
 - Max rms voltage: 35 70 140 210 280
 - Max continuous dc blocking voltage: 50 100 200 300 400
 - Peak one-cycle surge current (amps): 300 300 300 300 300

SPECIAL STEREO CABLE ASSEMBLIES

FOR CONNECTING

2 PIECES OF STEREO EQUIPMENT

- Eliminate Soldering
- Make a Quick, Clean Connection

Connect your Stereo Amplifier to Multiplex Recorder, Record Changer, Turntable or Tape Recorder

Construction—Two shielded insulated cables, inside a common chrome grey plastic jacket, provide two completely isolated channels. Separately insulated shields minimize the "ground loop" problem.

Available with two straight Phone Plugs on each end, plugs color coded for channel identification. Also available with two straight Phone Plugs on one end to stripped and tinned ends, plugs and inner jackets color coded. 3', 6' and 10' lengths—from $2.99 up.

Contact your dealer or write us for name of dealer nearest you.

THE FIRE AND POETRY OF SONY SOUND

The new Sony 464 CS is a completely self-contained stereo system with two microphones, two extended range stereo speakers and such professional features as sound-on-sound recording, push button channel selection, dual recording indicators, automatic tape lifter, digital counter, pause control and FM stereo recording inputs. Also available, model 4640 for custom installations. (464 CS less case, speakers and microphone) only $199.50. Sony, the world respected name in quality tape recording equipment, manufactures a complete line of monophonic and stereophonic recorders, priced from $79.50 to $299.50. All Sony Stererecorders are Multiplex Ready!

NEW SONY STEREORECORDER 464 CS: A COMPLETE, PORTABLE STEREO RECORDER AT A REMARKABLY LOW PRICE

Another Sony triumph in tape recorder engineering, the new Sony 461 CS Stererecorder records and plays back stereo tapes with the professional purity of studio recording. Whether it's the delicate tone of a Stradivarius, the fire and poetry of Hamlet, the resounding blare of seventy-six trombones or the full magnificence of a London Symphony—all the richness of stereo sound—yours to command for only $299.50. All Sony Stererecorders are Multiplex Ready!
Don't throw old Radios away!

Here's the data you need to fix them fast... and good as new!

Just call up the how-to-do-it data on that old radio you want to fix.

Four times out of 10, this giant 35-pound, 744-page: **GREAT RADIO TROUBLESHOOTING HANDBOOK** gives exactly the information you need to fix it in a jiffy. Tack what is likely to be causing the trouble... then how to fix it. No wasted time. Hand book covers practically every radio receiver, hi-fi setup, or hi-fi system you have ever stumbled on! Here's the best way to fix it. Even beginners can easily fix old sets which might otherwise be thought to have become service finished. With a few simple repairs, most of these old sets can be made to operate perfectly for years to come.

THE ONLY GUIDE OF ITS KIND

Cuts service time in half!

Included are commons troubles and their remedies for over 4,000 models of old tubes, auto radios and record players: Airline, Ace, Atwater Kent, Aiwa, Arvin, Atwood Kent, Baker, Blue Bird, Blackhawk, Boston, Bryson, C.F. Koester, Majestic, Philco, Pion, Rola, recorders, skylark, and thousands of others. Exploded drawings of many radio receivers and speakers.

TRY IT 10 DAYS... see for yourself!

![Department RE-12]

HOLT RINEHART & WINSTON, INC.
432000
NEW YORK 17, NEW YORK

Address...

CITY ZONE STATE

Outside U.S. add $1.00 each with order only. Offer also expires June 30, 1963.

guaranteed

Outperforms speakers costing five times more or your money back!

ALL NEW... ALL WOOD...

the Kent—only 19.95

Features famous British extended-range speaker with performance and design qualities found only in bookshelf speaker systems costing more than $100. Brilliant, faithful reproduction that will equal or surpass speaker units many times this price!

Scientifically designed, precision crafted, acoustically-true natural grained solid wood cabinet—not composite wood or processed wood chips. The "Kent" can be stained, oiled or waxed in any finish.

ORDER NOW to insure prompt delivery! This remarkable speaker is not available in retail stores. Direct factory sales only so you save a bundle. Price—$19.95 F.O.B. factory. Shipping weight 38 pounds.

Features and Specifications

24" wide, 10" high, 8" deep; 8" high compliance woofer; 3" hardened tweeter cone; coaxial wound 1" voice coil; silicon treated edge allows for 34" cone displacement; Alcomax III 1-b.5-oz. magnet; 10,000 gauss flux density; 6 ohm impedance; zero external magnetic field; 40-18,000 Hz; up to 30 watts power capacity; 45.5 cubic inch volume; Fiberglass acoustic damping; matched for stereo.

Cryotron Gate

Patent No. 3,023,325

Andrew E. Brennemann, Poughkeepsie, N. Y. (Assigned to International Business Machines Corp., New York, N. Y.)

This circuit measures different electrical signals in rapid succession. The cryotrons are made of superconductive material which loses its resistance when cooled to nearly absolute zero. The cryotrons are mounted inside field coils that are pulsed successively by control currents from a computer or other source. When an electrical pulse is applied across its coil, the cryotron becomes resistive again. Pulses are applied across the coils in rapid succession. A pulsed unit will develop a voltage in proportion to its signal, while the other (unpulsed) cryotrons are stored. Therefore, a single amplifier will do its output, at any given instant, will be a measure of the signal being applied to the pulsed cryotron.

Overload Protection

Patent No. 3,023,326

Ronald D. Cone, Bellflower, Calif. (Assigned to North American Aviation, Inc.)

This device maintains nearly constant output, so it can protect a load against excessive current. It is a common-base circuit in which the collector flow remains slightly smaller than the emitter bias.

By maintaining a fixed bias, the load current can vary only slightly. It is important that the collector be reverse-biased at all times. This requires that the collector voltage be large enough and the load resistance small enough for the particular transistor in use. The load current will rise very little even when the load is shorted.

Alarm Transmitter

Patent No. 3,035,181

Arthur Landel, Jr., Lebanon, N. H. (Assigned to U.S. as represented by the Office of Civil Defense)

Among important modern needs is a device to warn of impending danger, perhaps a hurricane.

www.americanradiohistory.com
or air raid. This new method seems more effective than sirens or radio broadcasts. An alarm is transmitted over existing power lines, so nearly everybody can be reached immediately.

The signal comprises a harmonic of the line frequency; for example, 240 cycles at 1 volt. It is superimposed over line power and does not affect other equipment. A sensitive receiver, plugged into the line, responds to the harmonic to sound an alarm. Tests show that such a signal is effective over 200 miles and can warn more than 1,000,000 persons.

The diagram shows a harmonic generator connected (at the powerhouse) across the line. T's primary is connected through reactor L, and a rectifier is placed across the transformer secondary. When S1 is closed, the line energizes T. Rectified secondary current distorts the sinusoidal waveform and generates harmonics. The desired harmonic is accentuated by adjusting the primary taps and the variable resistor.

Direct-Coupled Amplifier Gain Control

Patent No. 3,024,424

Chester Dudziak, Riverton, N.J. (Assigned to USA as represented by the Secretary of the Air Force)

This control adjusts gain without affecting grid bias. R is set to produce the same voltage at point A as at B. Then, as the gain control is adjusted, there can be no change in bias at the grid of V2. Component values are shown for a typical amplifier.

Alarm Receiver

Patent No. 3,035,251

Frank H. Indencio, Prairie Village, Kans. (Assigned to USA as represented by the Office of Civil Defense)

This receiver is tuned to 240 cycles and can operate on signals of 1 volt or less. It is always plugged into the line so it can respond to an alarm signal. LC1 is tuned to 240 cycles. Typical values are: L = 0.945 henry and C1 = 0.01µf. When a harmonic (signal) appears on the line, it flows through L1, causing contacts V to vibrate and close the circuit through the heater and its protective shunt. After a few seconds of heating, bimetal contacts BM close. Note that the upper contact is magnetized to assist closure.

With BM closed, the full line voltage appears across L (and limiting resistor R). The clapper vibrates against its sounder to give an audible alarm.

C2 prevents sparking across V's contacts. BM is designed so ambient changes cannot affect it. Also, because it takes time for the heater to reach operating temperature, BM cannot be affected by random, momentary pulses.

Get your FREE 1963 CATALOG FROM CONAR

It's full of exciting new electronic kits of highest quality. Many items available in both kit or assembled form. Home entertainment items that make perfect family gifts or test instruments for the technician who appreciates quality and high performance. Tools, too, to make your work easier, faster. And you'll like the reasonable prices and convenient payment plans which make CONAR Kits easy to own. Mail coupon for new 1963 Catalog now.

Conar Radio Kits: 1963 CATALOG 'BEST BUY' KITS

5-Inch Wide Band Oscilloscope Kit

Transistor Radio Kit

Vacuum Tube Volt Meter Kit

Mail this coupon

CONAR division of NATIONAL RADIO INSTITUTE

GUARANTEE

Parts and performance guaranteed by NRI - nearly 50 years of pioneering in Electronics.

CONAR

3039 Wisconsin Ave., N.W.

Washington 16, D.C.

Send me your new 1963 CONAR KIT CATALOG

Name

Address

City_________Zone________State_________

Cartoon Offer:

RADIO-ELECTRONICS pays $3.00 for good cartoon ideas and $15 and up for finished work.

Radio-Electronics

154 West 14th Street

New York 11, N. Y.
NEW SAMS BOOKS

Modern Communications Course, Vol. 2
AM Modulation Systems
Provides a full understanding of amplitude modulation systems used in present-day transmitters. Many experiments are included to provide practical knowledge and skill. 8 chapters covering AM Transmission Principles; Audio Systems & Modulators; Test Equipment & Adjustment; AM Modulation Methods; Transistor Modulators & Modulation Methods; Single-Sideband Interference; Switches; Commercial AM Equipment. 372 pages, $14.95

Vol. 1, Radio Frequency Systems, MCN-1...

$4.95

Electric Motor and Generator Repair
Details the operating principles and functions of electric motors and generators as well as repair and servicing techniques for each type. 10 complete chapters include: General Discussion; Introduction to AC Motors; Split-Phase Induction Motors; Capacitor Motors; Single-Phase Motors; DC Motors; Generators. 256 pages, $8.95. Order MGR-1, only...

Solving TV Tough-Dogs
Bob Middleton's realistic approach to solving the really tough TV service problems, for both beginning and experienced technicians. Through examples drawn from actual practice, you learn how to analyze, locate and solve in minutes TV trouble which often takes hours to find: 6 chapters include: White-Out & Black-Outs; No-Picture Troubles; Poor-Picture Troubles; Frame & Display Troubles; Power-Source Trouble. 226 pages; 5½ x 8½. Order TDM-1, only...

Small Engines Service Manual
All the knowledge you need for servicing virtually any small engine in operation today—covers over 1,300 makes of popular models. Explains how to service engines used on lawn mowers and tractors, tillers, snow throwers, karts, scooters, and industrial engines. Excellent for part-time handyman. 600 pages, 6½ x 9½. Order OUM-1, only...

ABC's of Tunnel Diodes
Teaches the basics of tunnel diodes (TD'S), important practical knowledge needed in servicing electronic applications. Explains principles of TD operation, construction and how they function and special needs in various circuits. 7 chapters include: P-Type and N-Type Basic Theory; Tunnel-Diode Amplifiers; Tunnel-Diode Oscillators; Tunnel-Diode Logic; Tunnel-Diode Computer Circuits; Measuring Tunnel-Diode Parameters. 96 pages; 5½ x 8½. Order TDK-1, only...

Interference Control Handbook
Analyzes electronic circuitry. Describes sources, types and effects of interference, as well as how to detect and control it. Chapters: Theory of RF Interference; Interference Measurements; Interference-Measuring Equipment; Making A Complete Interference Survey; Troubleshooting. 116 pages; $6.95.

NEW: SERVICING TRANSISTOR RADIOS, VOL. 16
Just out—covers 42 important models produced in 1966. Sams' easy-to-use! 600 pages; 8½ x 11½. Order TSM-16...

$2.95

CASH FOR YOU

For part- or full-time service opera-
tions. Starts with choosing a good name, ranges through buying parts, using the telephone, making home service calls, etc. It includes how to handle the accounting and information on many other important steps leading to success in the TV servicing business.

TRANSPORTER RADIO SERVICING MADE EASY, by Wayne Lemons. Howard W. Sams & Co., Inc., 1720 E. 38 St., Indianapolis, Ind. 5½ x 8¼ in. 128 pp. $1.95.

Practical procedures and methods by a practical service technician authority.

In four sections: 1. Introduction. 2. —Transmission Theory. 3. —Measurements. 4. —Fifteen experiments designed to acquaint the reader with microwave equipment and techniques.

SINGLE-SIDEBAND COMMUNICATIONS HANDBOOK, by Harry D. Hooton, Howard W. Sams & Co., Inc., 1720 E. 38 St., Indianapolis, Ind. 5½ x 8¼ in. 600 pages, $6.95.

Henry W. Sams & Co., Inc., 1720 E. 38 St., Indianapolis, Ind. 5½ x 8½ in. 286 pp. $6.95.

Latest circuits, practical design and construction, as well as measurements and techniques, for hams and professionals.

This is the famous Pilkington Report, about which so much has been heard. It gives, in Part II, an excellent description of present-day sound and television broadcasting in Britain, as well as in Part V the survey of future possibilities for which the report is famous.

Step-by-step instructions that all service technicians will find useful.

A text for the beginner or a refresher for the old-time technician, this book is based on the latest black-and-white TV circuitry, even including a chapter on transistor portable TV.

8,800 substitutes, including Japanese types, diodes, and baising diagrams.

www.americanradiohistory.com
ELECTRONICS

Engineering-Technicians

Bachelor of Science Degree, 30 Months

Save Two Years' Time

Radio-Television Plus Color Technician (12 Months)
Electronics Engineering Technology (15 Months)
Electronics Engineering (B.S. Degree)
Electrical Engineering (B.S. Degree)
Mechanical Engineering (B.S. Degree)
Civil Engineering (B.S. Degree)
Architecture (B.S. Degree)

Approved for Veterans
DAY AND EVENING CLASSES

Write for Catalog and Registration Application. New Term Starting Soon.

Your Name ____________________________
Address ________________________________
City ___________________________ State ______

HEALD'S
ENGINEERING COLLEGE
Established 1863
Van Ness at Post, RE
San Francisco, Calif.

KRYLON CLEANER LUBRICANT SPRAY

To service volume controls, tuners, switches

Cleans away dirt and gummy deposits. Provides a nondrying lubricating film on contact surfaces. Gives long-lasting protection against corrosion. Comes with 5-in. plastic tube for controlled spraying in hard-to-reach areas.

Crystall Clear—Acrylic spray guards against humidity, dust, corrosion and electric current leakage.

Electric Motor Cleaner—Spray it on, let it dry, and wipe off. Instantly removes grease, oil and tar. Will not harm insulation or paint.

Silicone All-Purpose Spray—Lubricates and protects at same time. Eliminates squeaks in hinges, shafts, contacts, slides, etc.

Spray colors—Choice of 26 standard colors and 7 glowing fluorescent. Use for touchup, color coding, refinishing.

Contact your Radio-TV jobber or write for Krylon's new industrial products catalog.

If you prize it... KRYLON-ize it!

KRYLON, INC., Norristown, Pa.
SERVICES

METER REPAIRS. Average $2.50 by BIGELOW ELECTRONICS, Bluffton, Ohio. Free Mailing Pack.

TRANSISTORIZED products dealers catalog, $1. INTERMARKET, CPO 1717, Tokyo, Japan.

ALL MAKES OF ELECTRICAL INSTRUMENTS AND TESTING equipment repaired. New and used instruments bought, sold, exchanged. HAZELTON INSTRUMENT CO., 128 Liberty St., New York, N.Y.

SPEAKER RECONING. Satisfaction Guaranteed. C & M RECON CO., 255 Tioga St., Trenton, N.J.

TV Tuners—rebuilt or exchanged, $9.95. Fast, Guaranteed. Complete crystal control alignment. VALLEY TUNER SERVICE, 18530 Panorama, Northridge, Calif.

TV TUBE SUBSCRIPTION SERVICE. Let us solve your new tube stocking problems. Write today for complete information. No obligation. TELEFIX, P.O. Box 361, Levittown, N.Y.

JAPAN DIRECTORY, 145 manufacturing exporters. Japan and Hongkong ad trade Journal information, Asia opportunities. Send $1.00. NIPPON SHOGYO. Box 739, Seattle 11, Wash.

MULTIMETER REPAIRS. Average $7.00 by BIGELOW ELECTRONICS, Bluffton, Ohio. FREE Catalog.

WE SUPPLY COMPONENTS FOR HOME-BUILT TRANSISTOR PROJECTS, Diagrams and replacement parts for Japanese receivers, also servicing. Write to, NIPPON OVERSEAS, 1165 B'way, N.Y.

FOR SALE

CLOSEOUT. Alliance Genie garage door openers. CT and ST $39.00 each. G.E. APPLIANCE MART, 1621 California, Columbus, Ind.

BARGAINS! Buy wholesale! Save money! Free catalog! NORDUS, 2732W Merrick Road, Lynbrook, N.Y.

TRANSISTORIZED PRODUCTS replacement parts catalog $1.00 money order. Custom orders for transistorized equipment or components. Write TECHSERVICES, C.P.O. Box 849, Tokyo, Japan.

BEFORE You Buy Receiving Tubes, Test Equipment, Hi-Fi Components, Kits, Parts, etc., send for your Giant Free Zalbyntron Current Catalog, featuring all STANDARD BRAND TUBES all Brand New Premium Individually Boxed, One Year Guarantee—all at BIGGEST DISCOUNTS in America! We serve professional servicemen, hobbyists, experimenters, engineers, technicians, WHY PAY MORE? ZALTYRON TUBE CORP., 220 W. 42nd St., New York, N. Y.

FREE BRAND-NEW FAMOUS-BRAND TUBES CATALOG. Discounts to 75% from list. Picture tubes at 73c. each up; parts, kits at 1/10 original cost. Phone needles, tube testers, silicones, seleniums, 7" TV bench test tube $6.99—and more. ARCTURUS ELECTRONICS CO., RE, 502 22nd St., Union City, N.J.

RADIO AMATEURS LICENSE MANUAL. 132 pages $1.00. BAKER, 129 Cooper, Santa Ana, Calif.

FREE confidential electronics catalog, unbeatable. KNAPP CO., 3174-8th Ave., Largo, Fla.

ELECTRONICS

DISC CERAMIC CAPACITORS, New, unused. Leading manufacturer. Most popular capacitance. Assortment of 30 capacitors for only $1.00. ROCK DISTRIBUTING CO., 902 Corwin Rd., Rochester 10, N.Y.

‘LISTEN-IN-COIL” picks up any telephone conversation in vicinity. No connection to telephone necessary. Easily concealed. $2.98 complete. ACOUSTICAL RESEARCH, 5121 E. 80th St., New York 21, N. Y.

TRANSISTORS, diodes, rectifiers, S.C.R. etc. Name brands, top quality. We overstocked for our own mfg. All specs guaranteed. Write for our free price list. AUTOCRAT, INC. P.O. Box 536, Dept. B, Dayton 6, Ohio.

SAVE DOLLARS on radio, TV tubes, parts at less than manufacturer's cost. 100% guaranteed! No rebrand, pulls. Request Bargain Bulletin. UNITED RADIO, 1000-R, Newark, N.J.

BUILD transistor ignition described July Radio-Electronics. Transistor SCR 1007 $11.90, chokes $1.95, power transistors $1.75 ea. ATTENTION ENGINEERS. Printed-circuit cards and allied sub-assemblies, fast service. PALMYRA INDUSTRIAL ELECTRONICS, Palmyra, Pa.

U. S. GOVERNMENT SURPLUS—Jeeps, $264.00, radios, $2.53, guns, typewriters, cameras, tools, thousands of items. Fabulously low prices. Complete information sent immediately. Send $1.00 to SURPLUS, PO Box 50512, Dept. N N, New Orleans 50, La.

ELECTRONICS, radios, amplifiers, recorders. Everything Japanese. UNITA, 545 Fifth Ave., New York 17, N.Y.

TV camera—low cost. Schematics, instructions 50c. DENSON ELECTRONICS, Rockville, Conn.

DIAGRAMS TV, $2.00; for radio, $1.00. HIET DIAGRAMS, Box 816, Laredo, Tex.

TRANSPORT IGNITION COIL—Instructions. SPECIAL—$5.50. ANDERSON ENGINEERING, 16 Williams, Wrentham, Mass.

ELECTRONIC SURPLUS CATALOG. 5,000 items. Send 10c. BILL SLEE CO., Drawer 178B, Ellenton, Fla.

PROFESSIONAL ELECTRONICS PROJECTS—Organs, Timers, Computers, etc.—$1 each. List free. PARKS, Box 1665, Lake City, Seattle 55, Wash.

SUPERSENSITIVE DIRECTIONAL MICROPHONE picks up faint sounds at 300 feet. Detects sound through ordinary walls. Easily built for $7.00. No electronic experience necessary. Illustrated plans, $2.00. DE CO., Box 7263-A, Houston 8, Tex.

DIAGRAMS FOR REPAIRING RADIOS, $1; television $2. Give make and model. DIAGRAM SERVICE, Box 672 RE, Hartford 1, Conn.

TRANSFIRE IGNITION. Transistor electronic. Save gas, tune-ups. Points, plugs last 50,000-100,000 miles. Improved cold-starting-high-speed performance. Parts, complete conversions, kits from $34.95. PALMER ELECTRONICS, RE-1, Carlisle, Mass.

GOVERNMENT SURPLUS. Voltmeters—$1.05, Freq meters—$4.37, Transmitters—$6.18, Receivers—$5.65. Oscilloscopes, Multimeters, walkie-talkies. Typical surplus prices. Exciting details FREE. Write: N. Y. ENTERPRISES, Box 402-R14, Jamaica 30, N. Y.

CONVERT ANY TELEVISION TO SENSITIVE, big-screen oscilloscope. Only minor changes necessary. Plans $1.95. RELO, Box 10563, Houston 18, Tex.

10 DISTANCE CRYSTAL SET plans—25¢; 20 different—50¢, including Transistor experiments, catalog. LABORATORIES, 1131 B Valota, Redwood City, Calif.

TRANSORIZED POCKET FM KIT. $29.95. EKERADIO 8823 Elm St., Temple City, Calif.

Audio—Hi-fi

WRITE for our low quotation on components, recorders. FREE catalog. HI-FIDELITY SUPPLY, 2817-XG, Third Ave., New York City 55. TAPE recorders, Hi-Fi components, Sleep-learning equipment, Tapes, Unusual values. Free catalog. DRESSNER, 1523 Jericho Turnpike, New Hyde Park 5, N.Y.

RENT STEREO TAPES over 2,500 different—all major labels—free catalog. STEREO-PARTI, 811-R, Centinela Ave., Inglewood 3, Calif.

SALE ITEMS—tapes — recorders—component quotes. BAYLA, Box 131-R, Wantagh, N. Y.

SAABA—Germany's finest AM-FM-SW Hi-fi system. Catalog. GERMAN HI-FI SALES, 1574 Third Ave., New York 28, N. Y.

601-2 AMPEX RECORDER, 10 Mikes, 8 stands, 1,000' mike cable, line transformers etc. CHARLES GOODMAN, 10 Woolson St, Mattapan 26, Mass. Cy-7-332.

MISCELLANEOUS

$100 WEEKLY POSSIBLE. Compile mailing lists and address envelopes for advertisers. Home-spare time. Particulars free. NATIONAL SERVICE, 81 Kinkerbocker Station, New York, N. Y.

BOOK. 200 Electrical Stunts $1.00. CUTTRADO, 875 Araratdrea, Palo Alto, Calif.
Cure for Loose Plug

Ever plug in your soldering gun, electric drill or cheater cord and have the push plug fall from the outlet or extension cord tap just as you started to do work? Here's a solution to this vexing problem. Instead of bending out the plug's prongs (see plug in left half of photo), for a tighter fit (to get them to fit in the outlet you usually have to bend them back anyway) grip the plug prong near its base with pliers, then using a second pair of pliers grip the end of the prong and give it a slight twist. Do the same with the other prong but twist in an opposite direction (right half of photo). This gives the plug a solid friction-tight fit so it won't fall out due to light tugs on the cord. —John A. Comstock

Wiring Cables

If you're building a complex piece of electronic gear that calls for running a large number of leads side by side down one edge of a chassis, it is best to combine them into a single cable. A simple way of doing so, one that avoids buying an expensive multiconductor ca-
In seconds:
the correct definition for the 5000 most frequently used electronic terms

RADIO-ELECTRONICS DICTIONARY

over 5000 terms 192 pages
only $3.50

5 years of planning and compilation make it easier than ever before to find the definitions or assistants of electronic terms used in your daily work. No matter what area of electronics you are in—engineer, technician, hobbyist or student—this new RADIO-ELECTRONICS DICTIONARY should be your standard equipment at your desk. Like any electronic dictionary, it is a storehouse of electronic terms. However, unlike other dictionaries now available, the Rider RADIO-ELECTRONICS DICTIONARY locates the definition you need faster and easier. What's more, it's more complete—contains over 5,000 of the terms you are most likely to run across in your work, hobby or studies. And, at $3.50 it's an economically priced desk companion.

No more searching—locate the definition you need immediately. If you've ever used a reference source that continually referred you from one place to another, consuming time and building up your blood pressure, you'll appreciate the direct approach used in the RIDER-ELECTRONICS DICTIONARY. For example, if you need the definition for "grounded-grid amplifier," you simply refer to "grounded-grid," instead of first looking up "amplifier," see "grounded-grid" and then making an extra time-wasting reference. The Rider RADIO-ELECTRONICS DICTIONARY is a direct line to the definition you need quickly.

5 years of painstaking research guarantees completeness, accuracy. Over 5000 commonly used terms are defined, based on standards from EIA, AIEE, ASEE, ASA, SMITE. Painstaking research by the members of the National Radio Institute Staff, the authors of this book, assures that the most commonly used terms are included; that their definitions are correct; their definitions to-the-point, in language that is easy to understand.

Why you should have this amazing reference on your fingertips. Many times a day do you, your associates, or your面前 help define or spell a common electronic term? If you are a student, you will probably find it both an aid to learning more about electronics and a practical reference that assures correct spelling and correct use of a term.

If you're an engineer or a technician, the correct definition can mean so much when writing a report, or explaining an electronic term to people with whom you work. And, if you work in a company where there is heavy correspondence, think of the hours saved in retyped letters and proposals by providing electrical and secretarial assistants with a copy of this easy-to-use electronics dictionary.

10-DAY MONEY-BACK GUARANTEE. The Rider RADIO-ELECTRONICS DICTIONARY and Rider Books are sold by electronic distributors, catalog houses and bookstores throughout the world. If you can order direct. No matter where you buy this book, if you are not completely satisfied, simply return it to the publisher within 10 days of purchase for full refund.

RIDER BOOK

Handy Hold-Down Unit
This weighty device leaves both hands free, avoids any need for clamping and keeps small components positioned for easy soldering where conventional clamping would hamper the work. To one end of an 8-inch length of cold-rolled steel welded a triangular foot. At the other end weld on a piece of 3/8-inch rod sharpened to a point at each end and bent hairpin-fashion.

Small parts are held either by the front or rear foot. When the front foot is used, the sharp rear leg digs into the benchtop for a firm hold and the total
weight of the unit keeps the parts to be soldered from slithering around.—Harry J. Miller

Pencil Case Probe Protectors

The inexpensive pencil case is ideal for protecting infrequently used meter and scope probes.

The smaller sizes are useful in the caddy for meter leads, pencil-iron handles, test adapters and cheater cords. Their use helps maintain a neat, professional appearance.—Elmer C. Carlson

Razor-Blade Holder Is Temporary Connector

When out of test leads with desired terminals and you wish to join a couple of leads, try a spring type metal razor-blade clip as shown. Work the terminals on the leads in and out of the spring holder a few times to assure good contact before making tests.—H. Leeper

Soldering Kink

When soldering in cramped quarters on a crowded chassis, you can protect nearby components by slipping an asbestos sleeve over the heated surface of your iron. Fasten the sleeve in place, leaving only the tip of the iron exposed. The sleeve also helps conserve the iron’s heat.—John A. Comstock

Cleaning Litz Wire

It can be difficult to clean and solder Litz wire—all the enamel must be removed, and the strands must not be broken. An easy way to do this is to heat the end of the wire, and then plunge this hot end into alcohol. The wires won’t break, but will be cleaned and ready for soldering.—Thomas R. C. Smith

END
ADVERTISING INDEX
Radio-Electronics does not assume responsibility for any errors appearing in the index below.

Aerovox Electronics
Allied Radio
Anglo American Acoustics Ltd.
Artisan Organs
Arts & Crafts
Audio Unlimited
B & K Mfg. Co., Div. of Dynascan Corp.
Barry Electronics
Brooks Radio & TV Corp.
Burstein-Alphee Co.
Cadre Industries Co.
Capital Radio Engineering Institute
Carson
Castle TV Tuner Service
Centralab Div. of Globe-Union
CLASSIFIED
Cleveland Electronics Inc.
Coloradio
Conor Div. of National Radio Institute
Coyne Book Manufacturing Co.
Devry Technical Institute
Dressler
Electronic Instrument Co. (EICO)
Electronic Chemical Corp.
Electronic Measurement Corp. (EMC)
Electronic Publishing Co. Inc.
Fair Radio Sales
GM Photolecetrons
Gernsback Library, Inc.
Grantham School of Electronics
Harman-Kardon Inc.
Heard Engineering College
Health Company, Inc.
Hoit, Klineham & Winsom Inc.
Institute of Radio Engineers
JFD Electronics Corp.
Jensen Manufacturing Co. Inc.
Jerrold Electronics Corp.
Kim Electronics
Klyon, Inc.
Lafayette Radio
(L. R.) Maloney Co., Inc.
Mercury TV TunerService
Microtian Co. Inc.
National Radio Institutes
National Technical Schools
Olson Radio Corp.
Paco Electronics Co. Inc.
Perma-Power Electronics

NEW 1962 Catalog

BARRY'S GREENSHEET VALUES ARE OUT OF THIS WORLD!

A complete catalog of specialized in
Industrial Electronic TUBES and COM
PONENTS - featuring Barry Elec
tronics savings to Industry, Servicemen
and Experimenters.

We'll also purchase your equipment and unused tubes.

Send details:

BARRY ELECTRONICS
512 BROADWAY
NEW YORK 12, NEW YORK

12 YEARS OF BUYERS CONFIDENCE CORPORATION

Walker 5-7000 • AREA code 212 • TWX: 571-048A

Please send me a copy of the new 1962 "Greensheet" and add my name to your mailing list.

(NE-11)

Name ____________________________
Address __________________________
City ____________________________
State ____________________________

Yes, tell me more, send me FREE detailed catalog of the Complete EMC Line. Dept. RE-11622

NAME ____________________________
STREET ____________________________
CITY ____________________________
STATE ____________________________

EMC Electronic Measurements Corp.
625 B’way, New York 12, N. Y.
Ex. Dept., Pan-Mar Corp., 1270 B’way, New York 1, N. Y.

ARTISAN ORGAN
"King of Kits"

1. The ultimate in organ tone and styling
2. Skip dealer profits and factory labor
3. Pay as you build and play as you build
4. Technical skill required in the original build-it-yourself organ
5. Choose of models from $1750 to $5500

Write today for details

449-R York Blvd., Los Angeles 42, Calif.

WALKIE-TALKIE RADIOPHONES

FROM $59.98

Send for Free literature on the complete line of VANGUARD TALKIES for Industry, G.I. Defense, CAP, Citizens and Am-
ateur Radio, made in the U.S.A.

VANGUARD ELECTRONIC LABS.,
160-48 99th Ave., Hollis 25, N. Y.

RADIO-ELECTRONICS
This man is not disturbing his wife while he listens to a stereo concert... and he's sitting out in the audience where he wants to be... not in the middle of the orchestra (where he'd be with ordinary headphone stereo). Right by his hand he can control volume; adjust left-right balance to suit the music source and the best hearing conditions for him; switch from mono to stereo, or stereo with SPACE-PERSPECTIVE*; individually select and/or reverse channels; switch speaker system. 'Phone jacks for two. All this in Jensen's new CC-1 Headphone Control Center with SPACE-PERSPECTIVE... an attractive, compact, versatile unit you can place anywhere... even hang on the wall.

What makes the extra difference is SPACE-PERSPECTIVE... the amazing headphone development which approximates more closely the sensation of listening to a stereo speaker system in a room. In ordinary headphone listening, left channel sound is confined to the left ear, and right channel sound to the right ear. In stereo speaker listening, sound from the left speaker reaches the left ear and also the right ear by means of the natural diffraction of sound waves around the head; and right speaker sound will reach the left ear in the same manner, thus resulting in what we all recognize as natural stereo sound in realistic perspective. SPACE-PERSPECTIVE adds this diffraction, which is missing in ordinary headphone listening, by electrically cross-feeding sound from one channel to the other to simulate the passage of sound waves around the head. You are now "in front of the speakers" via headphones... not in the middle where the sounds are isolated to each ear.

The CC-1 will operate with some other stereo headphones... but for best results the Jensen HS-1 'phones are recommended... the new professional stereo headphones which offer the most advanced features for top acoustical performance and comfort. The CC-1 Control Center sells for $39.95... HS-1 Stereo Headphones for $24.95... and a CFN-1 SPACE-PERSPECTIVE network only, with input jack, for $19.50. Write for Brochure MH. Jensen Manufacturing Company, Division of The Muter Company, 6601 S. Laramie Ave., Chicago 38, Illinois.

*TM Licensed by CBS Laboratories Division, Columbia Broadcasting System, Inc.
COME PREPARED

to Every
Service Job

Tools and tubes are your bread and butter on home service calls. That's why, in addition to the finest electron tubes, RCA also provides you with special service-designed tool chests and tube caddies to increase your efficiency on every call. These valuable service aids...

- Save your time
- Simplify your job
- Organize your work
- Help you find the tool or tube you need readily and quickly
- Help assure that you have what you need when you need it—with nothing inadvertently left behind in the shop.

ANOTHER WAY RCA HELPS YOU IN YOUR BUSINESS.

RCA ELECTRON TUBE DIVISION, HARRISON, N. J.

Ask your Authorized RCA Tube Distributor about obtaining these valuable service aids designed especially for your convenience.

NEW SERVICE-SPECIAL TOOL CHEST
(1A1280) Ample room for all basic tools, with a special compartment to hold your RCA WV-38A V-O-M or RCA Power Line Monitor.

RCA "QUICK CALL" TUBE CADDY
(1A1002) A handy tube caddy that holds 162 of the tube types you use most frequently on TV service calls.

RCA "TREASURE CHEST" TUBE CADDY
(1A1001) RCA's famous full-size caddy—holds over 260 receiving tubes.

RCA LITEWEIGHT TUBE CADDY
(1A1241) This lightweight, compact caddy holds up to 210 receiving tubes. Custom molded of plastic, its finish resists marring and staining, cleans with soap and water.

The Most Trusted Name in Electronics

www.americanradiohistory.com