Directory of FM Multiplex Equipment

An up-to-the-minute listing of receivers and adapters. Features important characteristics and differences between the various units. See page 38.

Other Articles On FM Stereo

Horizontal Oscillator Drifting

The culprit in too many TV service callbacks. Wayne Lemons shows how to spot and cure drift troubles quickly. See page 50.

Build a Better Light Meter

An easily constructed unit so sensitive it will give accurate readings at light levels so low as to require 30-second exposures. Uses a cadmium sulphide cell. See page 43.

Test Equipment For Industry

Matt Mandl shows where industrial test apparatus is like radio—TV servicing gear, and where it differs. Also what new pieces of equipment the service technician will have to understand and use. See page 63.
World's Largest Selling

POCKET SIZE V-O-M

FEATURES:

1. Hand size and lightweight, but with the features of a full-size V-O-M.
2. 20,000 ohms per volt DC; 5,000 AC.
3. EXCLUSIVE SINGLE SELECTOR SWITCH speeds circuit and range settings. The first miniature V-O-M with this exclusive feature for quick, fool-proof selection of all ranges.

SELF-SHIELDED Bar-Ring instrument; permits checking in strong magnetic fields. Fitting interchangeable test prod tip into top of tester makes it the common probe, thereby freeing one hand. UNBREAKABLE plastic meter window. BANANA-TYPE JACKS—positive connection and long life.

Price—only $37.50; leather case $3.20.

Available For Immediate Delivery From Your Triplett Distributor's Stock

THE TRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO

MANUFACTURERS OF PANEL AND PORTABLE INSTRUMENTS; ELECTRICAL AND ELECTRONIC TEST EQUIPMENT

FOR EVERY PURPOSE—THE WORLD'S MOST COMPLETE LINE OF V-O-M'S
Can You Afford 15 Hours to Build
The World's Best FM/Multiplex Tuner?

Fifteen hours. That’s all it takes to build the world’s best
FM/Multiplex tuner.

Citation has the “specs” to back the claim but numbers alone
Can't tell the story. On its real measure, the way it sounds,
Citation III is unsurpassed. And with good reason.

After years of intensive listening tests, Stew Hegeman, director
of engineering of the Citation Kit Division, discovered
that the performance of any instrument in the audible range is strongly
influenced by its response in the non-audible range. Consistent
with this basic design philosophy - the Citation III has a
frequency response three octaves above and below the normal
range of hearing. The result: unmeasurable distortion and the
incomparable “Citation Sound.”

The qualities that make Citation III the world’s best FM tuner
also make it the world’s best FM/Multiplex tuner. The multiplex
section has been engineered to provide wideband response, ex-
ceptional sensitivity and absolute oscillator stability. It mounts
right on the chassis and the front panel accommodates the
adapter controls.

What makes Citation III even more remarkable is that it can
be built in 15 hours without reliance upon external equipment.

To meet the special requirements of Citation III, a new FM
cartridge was developed which embodies every critical tuner
element in one compact unit. It is completely assembled at the
factory, totally shielded and perfectly aligned. With the car-
tridge as a standard and the two D’Arsonval tuning meters, the

problem of IF alignment and oscillator adjustment are eliminated.

Citation III is the only kit to employ military-type construc-
tion. Rigid terminal boards are provided for mounting compo-
nents. Once mounted, components are suspended tightly between
turret lugs. Lead length is sharply defined. Overall stability of
the instrument is thus assured. Other special aids include pack-
aging of small hardware in separate plastic envelopes and
mounting of resistors and condensers on special component cards.

For complete information on all Citation kits, including re-
prints of independent laboratory test reports, write Dept. RE-10,
Citation Kit Division, Harman-Kardon, Inc., Plainview, N. Y.

The Citation III FM tuner-kit, $149.95; wired, $229.95. The
Citation III MA multiplex adapter—factory wired only, $89.95.
The Citation III X integrated multiplex tuner—factory wired,
$319.90. All prices slightly higher in the West.

Build the Very Best C I T A T I O N K I T S by
harman kardon

www.americanradiohistory.com
editorial
Hugo Gernsback 33 Extra-terrestrial TV
stereo-high fidelity-audio
Larry Steckler 38 FM Stereo Component Directory
Guide to the new multiplex units
Leonard Feldman 46 Convert to Stereo
W. R. Williams 54 Build a Quality Stereo Preamp
Norman H. Crowhurst 59 Does FM Stereo Follow Its Own Theory?
New light on how FM multiplex really works
62 Key to the Cover
Joseph Marshall 73 Accurate Alignment of HI-FI FM Tuners
Use an FM generator and distortion analyzer
84 FM Stereo Is Not So Tough
Multiplex stereo presented pictorially
Art Trauffer 85 Stereo Phones to Mono Phones
George L. Augspurger 91 How to Place Your Stereo Speakers
There are two basic rules

what's new
37 Pictorial Reports of New Developments

electronics
A. N. Glennon 34 How Sonar Works
Its uses in peace and war
Charles E. Cohn 37 Checking Power Transformers
Alen E. Gordon 43 Ultrasensitive Photographic Lightmeter
Build a simple meter that measures low light levels
Ronald L. Ives 66 Add a Pilot Light to Variable Autotransformers
74 What's Your EQ? (Answers to September Puzzles on page 75)
Ronald Wilensky 77 Electronic Repeating Switch
A. K. Taylor 110 Transistor Bias Regulator
Use a diode

television
Wayne Lemons 49 Line-of-Sight 136 Miles
50 Stop Horizontal Oscillator Drift
How to handle those tricky horizontal oscillator circuits
Jack Darr 68 TV Service Clinic
Technician's tour of circuits affecting width
Jack Darr 90 An Integrated Antenna
TV yogi has built-in booster amplifier
103 Service Prices for TV Repairs

industrial electronics
Matthew Mandl 63 Industrial Test Equipment—Is It Different?
Not enough to keep the service technician from using it
Ed Bukstein 78 Industrial Electronics Dictionary
From electron microscope to hard X-rays
Tom Jaski 96 Unusual Relay Circuits
Fourth article of a series

test instruments
Dave Stone 56 RF Signal Generator Covers Marine Bands
R-E printed circuit speeds construction
Wayne Lemons 75 Speedy Transistor Tester
Switchbox turns your ohmmeter into a transistor checker

radio
Stanley Leinwold 58 Short-wave Forecast for Sept. 15-Oct. 15
Roy E. Pafenber 76 Relay Service Note
Harold Davis 86 Double CB Receiver Sensitivity
How to add an rf stage to Heathkit's GW-10 series transceivers
Stanley Leinwold 104 Sporadic-E Opens New Horizons
New technique of short-wave communications without the Flayer

the departments
133 Business and People
67 Corrections
24 Correspondence
138 New Books
135 New Literature
126 New Patents
114 New Products
124 New Tubes & Semiconductors
6 News Briefs
128 Noteworthy Circuits
111 Technicians' News
122 Technotes
130 Try This One
137 50 Years Ago
OCTOBER, 1961

GET YOUR ELECTRONICS-TV-RADIO
HOME TRAINING FROM N.T.S. RESIDENT SCHOOL

BREAK THROUGH TO HIGHER PAY, GREATER JOB SECURITY
START NOW! Break through the Earning Barrier that stops "half-trained" men. N.T.S. "All-Phase" Training prepares you... at home in spare time... for a high-paying CAREER as a MASTER TECHNICIAN in Electronics - TV - Radio. One Master Course at One Low Tuition trains you for unlimited opportunities in All Phases: Servicing, Communications, Preparation for F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rocket Projects.

A MORE REWARDING JOB... a secure future... a richer, fuller life can be yours! As an N.T.S. MASTER TECHNICIAN you can go straight to the top in industry... or open your own profitable business.

Over 1 City Block of Modern School Facilities, Laboratories and Shops Housing Over 1,000 Students.

50,000 Graduates - all over the World - since 1905

NATIONAL
TECHNICAL SCHOOLS
WORLD-WIDE TRAINING SINCE 1905

THE SCHOOL BEHIND YOUR HOME-STUDY TRAINING

In these modern School Headquarters your Home Training is:
Classroom-Developed, Lab-Studio Planned, Shop Tested, Industry Approved, Home Study-Designed.

N.T.S. IS NOT JUST A MAILING ADDRESS ON A COUPON
N.T.S. is a real school... a world famous training center since 1905. Thousands of men from all over the world come to train in our shops, labs, studios and classrooms. You learn quickly and easily the N.T.S. Shop-Tested ways. You get lessons, manuals, job projects, personal consultation from instructors as you progress. You build a Short-Wave, Long-Wave Superhet Receiver plus a large screen TV set from the ground up... at no additional cost. You also get a Professional Multitester for your practical job projects. The Multitester will become one of your most valuable instruments in spare time work while training, and afterwards, too. Many students pay for their entire tuition with spare time work. You can, too... we show you how.

SEND FOR INFORMATION NOW... TODAY!
IT COSTS YOU NOTHING TO INVESTIGATE

MAIL COUPON NOW FOR FREE BOOK & ACTUAL LESSON
No obligation. No salesman will call.

MAIL NOW TO:
National Technical Schools, Dear RG101
4000 S. Figueroa St., Los Angeles 37, Calif.
Please rush FREE Electronics TV-Radio "Opportunity" Book and Actual Lesson.

Name
Age
Address
City
Zone
State

[] Check here if interested only in Resident Training at Los Angeles

VETERANS: Give date of discharge

ACCREDITED MEMBER
NATIONAL
TECHNICAL SCHOOLS
WORLD-WIDE TRAINING SINCE 1905
4000 S. FIGUEROA ST., LOS ANGELES 37, CALIF. U.S.A.

RADIO-ELECTRONICS published monthly at Mt. Morris, Ill., by Glennrock Publications Inc. Second-class postage paid at Mt. Morris, Ill. Copyright © 1901, by Glennrock Publications Inc. All rights reserved under Universal, International and Pan-American Copyright Conventions. SUBSCRIPTION RATES: US and possessions, Canada: $3 for 1, $5 for 2, $10 for 3 years. Pan-American countries: $6 for 1, $11 for 2, $15 for 3 years. Other countries: $9.00 for 1, $12 for 2, $16.50 for 3 years.

NATIONAL
TECHNICAL SCHOOLS
WORLD-WIDE TRAINING SINCE 1905

www.americanradiohistory.com
Now We Can Talk in Pulses

Phone users in the Newark-Passaic, N. J., area have unknowingly been taking part in a synthetic speech experiment—every time they pick up their phones. Instead of going out over the lines in original audio form, their words are broken down into the language of computers; the transmission is by pulse code modulation.

This is the first regular use of the system, which was developed by the Bell Laboratories and demonstrated some years ago (RADIO-ELECTRONICS, February 1948). It has been named T-1 by the phone company. The speaker's voice is "sampled," tiny bits being taken 8,000 times a second. The level of each sample is measured and given a number in binary code, 1, 2, 4, 8, etc. up to 128. At the receiving exchange the message is decoded and each binary number replaced by an audio pulse of the correct strength. The result is a reconstituted signal not distinguishable from the original in ordinary phone conversation.

Since a large number of pulse-coded conversations can be carried on the same pair of wires, the new system is expected to be particularly useful in large cities such as New York, where congestion below ground has often made it difficult to find room for additional telephone conduit.

To install T-1, telephone companies will not have to dig up city streets. Instead, using existing cable, they can connect terminal equipment in telephone buildings at each end of the route, and repeater equipment in manholes or on poles along the way.

Another advantage is that each repeater station reconstitutes the signal instead of simply relaying it. If the message is distorted, but still intelligible, the relay station, instead of amplifying it with the distortion, sends out a perfectly formed new set of code pulses. Thus, as long as the pulses can all be interpreted correctly, the signals will be as clear after several repeaters (they are spaced about every mile along the transmission route) as after the first.

Pay TV for Little Rock

Midwest Video Corp. has been authorized by the Public Service Commission to set up a pay television system in Little Rock, Ark. Midwest is operating under franchise from International Telemeter, the company now operating a pay-TV setup in Etibicoke, Ontario. The system brings the program on a cable, and a coin box is used to collect the fees for each attraction.

Midwest Radio plans to begin operations in the southwest portion of the city, an area containing about 10,000 homes. No definite target date was announced. There is some opposition by the local theaters, and one spokesman suggested that the authorization may be appealed in the courts.

CHU Corrects Time

The time signals of the Dominion Observatory station at Ottawa, Canada, were advanced 50 milliseconds Aug. 1, reported Malcolm Thompson of the Observatory. This change was made to bring the signals exactly to Universal Time. Station MSP at Greenwich made the same change at the same time. CHU transmits continuously on 3.35, 7.335 and 14.67 mc.

The signals of CHU are widely used throughout the United States as well as Canada, and have become practically the standard at sports-car rallies, due to CHU's practice of announcing the time by voice every minute, instead of every 5 minutes as does WWV.

Ultrasonic Waves Affects Health?

Workers exposed to intense ultrasonic waves and high-frequency noises show definite physical reactions, reports the Russian magazine Hygiene and Sanitation. The general effect, the article reports, is fatigue, irritability, headache, moderate loss of weight, decreased work output and frequently, reduction of blood pressure. Industries that use ultrasonic devices should provide periodic medical examination for their workers, the magazine advises.

Optical Maser New Light Source

Optical maser is being used as "an ideal light source for short-exposure, high-magnification photomicrography, and for shadowgraph and schlieren work," according to R. J. Labs. The rays 25,000 times brighter over a given area than the sun, may make the optical maser as important to the photographer as to the communications engineer.

TV Set Shortage Coming?

Television receivers are selling faster than they are being manufactured, recently warned Frank Mansfield, EIA's top market researcher. If production does not come up, there may be an actual shortage of sets on the retail market in the late fall.

Mansfield estimates that at least 6,220,000 TV sets will be sold in 1961, a slight increase over 1960. Inventories are lower than they have been since 1954. So unless production is stepped up rapidly, there will not be enough sets on hand to meet the year-end demand.

New "Banana" Tube for Color

British Mullard has announced a type of tube using principles altogether different from the shadow mask, Lawrence or others now in development. The tube is a cylinder about 4 inches in diameter, with three equally spaced cylindrical rods running along its length. The screen...
NOW...at home...get DeVry Tech's amazing effective training in ELECTRONICS

RADIO-TELEVISION! Nothing else like it for providing real LABORATORY-TYPE training at home. Get the kind of thorough, practical experience YOU NEED for the kind of progress YOU WANT in today's tremendous field of Television, Radio and Electronics. Qualify yourself for real money...interesting work...a wonderfully promising future. And when you finish, DeVry Technical Institute's active Employment Service HELPS YOU GET STARTED! Or open your own profitable Television-Radio Service Business.

THOUSANDS OF SUCCESSFUL GRADUATES

Why has DeVry Technical Institute become one of the largest training organizations of its kind? Because it provides EVERY MAJOR HOME TRAINING AID to help make the subject EASIER to learn...EASIER to remember—the kind of training so helpful for REAL PROGRESS. Students get thorough, up-to-date, practical training that TAKES ADVANTAGE of new and improved training developments. Study the ADVANTAGES shown on this page. Think what they can mean to YOU...to YOUR FUTURE! Or come to DeVry Tech's modern Training Laboratories in Chicago or Toronto. MAIL COUPON TODAY for complete facts—including 2 valuable free booklets, "Pocket Guide to Real Earnings" and "Electronics in Space Travel". Also, valuable information for men subject to MILITARY SERVICE.

DeVRY TECHNICAL INSTITUTE
CHICAGO • TORONTO
Introducing the perfect mate for any TV/FM antenna

NEW TRANSISTOR JERROLD POWERMATE

Mounts on boom, mast, wall, window... offers highest gain, lowest noise figure

Here's the preamplifier for every TV antenna in your area, whether new or up for years! The exclusive universal bracket of the new JERROLD Transistor POWERMATE permits mounting directly on the antenna boom (for greatest boost before downlead losses) or at any other point—along the mast, on the wall or windowsill, behind the set—anywhere your best judgment dictates.

And look at this gain: An average of 13.9db at Channel 13 and 15.25db at Channel 2—by far the highest in the business! This remarkable gain gives any antenna system the lowest System Noise Figure obtainable—the key to better pictures.

See your distributor today, or write for special bulletin describing System Noise Figure.

Only $39.95 list, complete with power supply

MOUNT IT AND FORGET IT

On the antenna or anywhere along the downlead, POWERMATE is up for good. Same 300-ohm lead that carries signal also carries 15 volts ac to POWERMATE. No tubes, no batteries to replace.

REMOTE A-C POWER SUPPLY installs on or near receiver, draws less current than an electric clock. No polarity nuisance when attaching to lead, no danger of damaging the transistor.

Audio Surgical Instrument Combats Heart Block

An electronic depth probe makes it easy for the surgeon to locate vital heart tissue—the "bundle of His"—during open heart operations and thus oriented, work with the minimum likelihood of surgical heart block.

The probe, which uses tri-axial gold electrodes, is attached to a "tone box" which produces a buzz that varies according to the conductivity of the matter reached by the probe. When contact with the bundle of His is made, the pitch changes noticeably.

The instrument, manufactured by Medtronic Inc., of Minneapolis, uses a transistor circuit with rechargeable battery. It is called the Medtronic Conduction System Locator.

Gallium Arsenide Phototube Is Highly Sensitive

The Lansdale Div. of Philco reports a new gallium arsenide phototube that is one or two orders more sensitive than conventional photodiodes. It can also operate in daylight without sensitivity degrada...
An FCC License, Or Your Money Back!

Completion of the Master Course (both Sections) will prepare you for a First Class Commercial Radio Telephone License with a Radar Endorsement. Should you fail to pass the FCC examination for this license after successfully completing the Master Course, you will receive a full refund of all tuition payments. This guarantee is valid for the entire period of your enrollment agreement.

1. You can get job security. Specialized education is the road to higher salary and important jobs in the growing field of electronics.
2. You can solve the problems that stump other technicians. Problems in electronics are becoming more complex. Your ability to solve problems will help you get ahead in your field.
3. You can handle new electronic devices. Every day, advances are being made in electronics. Only through education can you find out how to keep up with these developments and how to use the new devices.

Get All 3 Booklets and This Handy Pocket Electronics Data Guide Folder Free

Puts all the commonly used conversion factors, formulas, tables, and color codes at your fingertips. Yours absolutely free if you mail the coupon today. No further obligation.

Sorry—Not for Beginners

Please inquire only if you really want to get ahead and to add to what you have already learned in school, in the service, or on the job. Some previous schooling or experience in electronics, electricity, or related fields is necessary for success in Cleveland Institute programs.

Accredited by the National Home Study Council

Cleveland Institute of Electronics
Desk RES8A, 1776 E. 17th St., Cleveland 14, Ohio

Please send Free Career Information prepared to help me get ahead in Electronics. I have had training or experience in Electronics as indicated below.

☐ Military ☐ Broadcasting
☐ Radio-TV Servicing ☐ Home Experimenting
☐ Manufacturing ☐ Telephone Company
☐ Amateur Radio ☐ Other

In what kind of work are you now engaged?

In what branch of Electronics are you interested?

Name ___________________________ Age ___________________________
Address ___________________________
City ___________________________ Zone ___________________________ State ___________________________ RE88A

OCTOBER, 1961

www.americanradiohistory.com
These 2 new Sonotone stereo cartridges are “original replacements” for the bulk of sets you service. They give brilliant, crisp highs... full lows. Satisfy the most critical audiophile’s ear!

When you’re all stocked up on Sonotone cartridges, good servicing is easy to do — and really brings in the profits.

The Sonotone 16T and 18T stereo cartridges are natural replacements. They are already being used as original equipment by America’s leading phonograph manufacturers.

As for sets without Sonotone, replacement with a Sonotone will make 2 out of 3 sound better. The specifications — especially the channel separation — would do anyone proud. The cartridges have no audible hum — never sound tinny.

There are Sonotones for every kind of set — from the simplest portable to the most extravagant stereo equipment. Stock Sonotone, and keep your customers happy... your profits high!

SPECIFICATIONS

Sonotone 16T
- Response: flat ±1 db from 20 to 10,000 cps, with smooth rolloff to 12,000 cps.
- Output voltage: 0.5 volt
- Compliance: 2.4 x 10^-6 cm/dyne
- Tracking force: 5-7 grams for changers.
- Mounting Dimensions: fits all standard mounting centers.

Sonotone 18T
- Response: flat ±1 db from 20 to 10,000 cps, with smooth rolloff to 12,000 cps.
- Output voltage: 0.7 volt
- Compliance: 1.5 x 10^-6 cm/dyne
- Tracking Force: 6.6 grams for professional arms. 7-9 grams for changers.
- Mounting Dimensions: fits all standard mounting centers.

Quality Control Now Automated

Computers now not only direct machines but can look into the future and anticipate manufacturing mistakes or drifts toward tolerance limits before they happen. This is now being done on a production line that turns out resistors for Western Electric at Winston-Salem, N. C.

Military necessity — the need to turn out deposited-carbon resistors that would operate 200,000,000 hours without failure in the Nike-Zeus anti-missile missile system — sparked the program. A wholly new manufacturing philosophy emerged — a production procedure that omits final inspection, the costly process of sorting out and junking defective products.

First, the W-E engineers built a conventional automated line to make resistors under the control of a digital computer. Sensing devices were then installed at strategic stations along the line to detect trends in machine performance and tendencies on the part of the product to depart from specified values. Based on this information, supplied by the sensors, the computer continuously predicts future process trends and feeds correcting information to the automated line that heads off manufacturing errors before they occur. Hence, only good resistors are made.

FCC Moves on TV Allocations

Proposals for rules issued by the Federal Communications Commission would make several regions all-uhf and would drop in short-range vhf stations in a number of others. The FCC also proposes to continue to push for all-channel-set legislation, ease technical requirements for uhf TV transmitters, permit dual uhf-uhf operation by existing vhf stations, use uhf transmitters to fill in dead spots in a station's service area, and earmark certain uhf channels for educational TV.

The areas the FCC proposes to de-intermix and make all-uhf are Madison, Wis.; Champaign and Rockford, Ill.; Hartford, Conn.; Erie, Pa.; and Binghamton, N. Y.; Columbia, S. C., and Montgomery, Ala.
Special Training Equipment Included

Pick the field of your choice—and train at home with the leader—NRI. In addition to Industrial Electronics and FCC License training explained at the right, NRI offers comprehensive courses in Radio-TV Servicing and Radio-TV Communications. Except for the FCC course, all NRI courses include—at no extra cost—special training equipment for actual practice at home, building circuits and working experiments. Makes theory you learn come to life in an interesting, easy-to-grasp manner.

Multiplexing, FM Stereo Broadcasting Included

NRI training keeps up with the times. New, additional profit opportunities exist for the Technician who understands the latest technical advances. Course material now covers FM Stereo Broadcasting, tells you about Multiplexing equipment, other recent developments.

Learn More to Earn More

Act now. The catalog NRI sends you gives more facts about the field of your choice, shows equipment you get and keep. No obligation. Cost of NRI training is low. Monthly payments. 60-Day Trial Plan. Mail postage-free card today. NATIONAL RADIO INSTITUTE, Washington 16, D.C.

Send for 64-Page CATALOG FREE

The Amazing Field of Electronics

NRI—Oldest and Largest Radio Television School Now Offers NEW HOME STUDY TRAINING IN INDUSTRIAL & MILITARY ELECTRONICS

This is the age of Electronics. Rapidly expanding uses for Electronic Equipment in industry, business, the military demands more trained men. Prepare now for a career as an Electronic Technician to assure advancement or to profit from your hobby. NRI now offers a complete course in ELECTRONICS—Principles, Practices, Maintenance. Computers, telemetry, automation, avionics are changing our world, yet all employ the same basic principles . . . and that is what this NRI course stresses with illustrated lessons and special training equipment. Mail card below.

NEW HOME STUDY TRAINING FOR YOUR FCC LICENSE

An FCC Commercial License combined with NRI time-tested training can be the keys to a better future for you with higher pay, interesting work, more rapid advancement as the rewards. Prepare at home quickly for your FCC examinations through NRI’s new, low-cost, special training. Like other NRI-trained men, you can be monitoring TV shows, radio broadcasts, operating shipboard and aviation radio, or holding down other important jobs. Get full details—mail the card below.

FOR MORE INFORMATION-TURN PAGE

Cut Out and Mail—No Stamp Needed

NRI NATIONAL RADIO INSTITUTE WASHINGTON 16, D.C.

Send me your Electronic, Radio-TV catalog without cost or obligation. I am interested in the course checked below: (No representative will call. Please PRINT.)

☐ INDUSTRIAL ELECTRONICS ☐ COMMUNICATIONS
☐ FCC LICENSE ☐ SERVICING WX

Name_________________________________ Age_________

Address__

City________________________ Zone________ State_______

ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL

www.americanradiohistory.com
Join The Thousands Who Trained For Advancement With NRI

Thousands of NRI graduates throughout the U. S. and Canada are proof that it is practical to train at home. NRI graduates are in every kind of Electronics work: inspectors, maintenance men, lab technicians, testers, broadcasting and mobile communications operators, Radio-TV service technicians, or in essential military and government posts. Catalog tells more about what NRI graduates do and earn. Mail postage free card.

"THE FINEST JOB I EVER HAD" is what Thomas Bilak, Jr., Cayuga, N. Y., says of his position with The G. E. Advanced Electronic Center at Cornell University. He writes, "Thanks to NRI, I have a job which I enjoy and which also pays well."

BUILDING ELECTRONIC CIRCUITS on specially-designed plug-in type chassis, is the work of Robert H. Laurens, Hammonton, N. J. He is an Electronic Technician working on the "Univac" computer. Laurens says, "My NRI training helped me to pass the test to obtain this position."

"I OWE MY SUCCESS TO NRI" says Cecil E. Wallace, Dallas, Texas. He holds a First Class FCC Radio-telephone License and works as a Recording Engineer with KRLD-TV.

MARINE RADIO OPERATOR is the job of E. P. Searcy, Jr., of New Orleans, La. He works for Alcoa Steamship Company, has also worked as a TV transmitter engineer. He says, "I can recommend NRI training very highly."

FROM FACTORY LABORER TO HIS OWN BUSINESS that rang up sales of $158,000 in one year. That's the success William F. Kline of Cincinnati, Ohio, has had since taking NRI training. "The course got me started on the road," he says.

NRI IS OLDEST—LARGEST SCHOOL OF ITS KIND

Training men to succeed by home study has been the National Radio Institute's only business for over 45 years. NRI is America's oldest and largest Electronics home-study school. Don't delay. Cut out and mail POSTAGE-FREE CARD.

See Other Side

Choose from 4 Courses

1 INDUSTRIAL ELECTRONICS
Learn Principles, Practices, Maintenance of Electronic equipment used today by business, industry, military, government. Covers computers, servos, telemetry, multiplexing, many other subjects.

2 FCC LICENSE
Every communications station must have one or more FCC-licensed operators. New NRI course is designed to prepare you for your First Class FCC exams. You learn quickly, training at home in your spare time.

3 COMMUNICATIONS
Training for men who want to operate and maintain radio and TV stations; police, marine, aviation, mobile radio, etc. Includes FM Stereo broadcasting. Course also prepares you for your FCC license exam.

4 SERVICING
Learn to service and maintain AM-FM Radios, TV sets, Stereo Hi-Fi, PA systems, etc. A profitable, interesting field for a spare-time or full-time business of your own.

FIRST CLASS PERMIT NO. 20-R
(Sec. 34.9, P.L.&R.)
Washington, D.C.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

MAIL POSTAGE-FREE CARD

NRI is the National Radio Institute
3939 Wisconsin Avenue
Washington 16, D.C.
The FCC also took three final actions, allotting channel 13 to Grand Rapids, Mich., channel 9 to Syracuse, and channel 9 to Rochester, N. Y.

Calendar of Events
EIA Fall Conference, Sept. 12-14, Biltmore Hotel, New York.
IHFM High Fidelity Show, Sept. 13-17, Trade Show Building, New York. Radio-Electronics will exhibit in Room 52.
Institute Society of America—AIEE-IREE Industrial Electronics Symposium, Sept. 20-21, Bradford Hotel, Montreal.
IRE National Communications Symposium, Oct. 2-4, Ulica N.Y.
Canadian Electronics Conference, Oct. 2-4, Automotive Bldg., Exhibition Park, Toronto, Canada.
IRE Annual Broadcast Symposium, Oct. 6-7, Willard Hotel, Washington, D.C.
IRE Symposium on Electronics Engineering and Education, Oct. 19-20, Greensboro, Greensboro, N. C.
IRE East Coast Conference on Aerospace & Navigational Electronics, Oct. 23-25, Lord Baltimore Hotel, Baltimore, Md.
URSI-IREE Fall Meeting, Oct. 23-25, University of Texas, Austin, Tex.
ERA Mid-Latino Chapter Hi-Fidelity Show, Oct. 27-29, Benjamin Franklin Hotel, Philadelphia, Pa.
EIA-IREE Annual Radio Fall Meeting, Oct. 30-Nov. 1, Hotel Syracuse, Syracuse, N. Y.
IRE-AIEE Conference on Nonlinear Magnetics, Nov. 6-8, Statler Hilton Hotel, Los Angeles.
IRE Northeast Research and Engineering Meeting, Nov. 16-18, Somerset Hotel & Commonwealth Armory, Boston.
IRE Symposium on Electronic Systems Reliability, Nov. 14, Linda Hall Library Auditorium, Kansas City, Mo.

Medical Electronic Progress
Reported at Convention
Electronics is already playing an important part in practical medicine, delegates to the Fourth International Conference of Medical Electronics reported. The conference was held in New York, with Vladimir K. Zworykin presiding.
The use of computers was possibly the most impressive advance. Dozens were exhibited at the conference, some capable of analyzing and correlating data on as many as 800 symptoms and 100 diseases for the benefit of the doctor making a diagnosis. (Continued on page 18)
...It is essentially a thing of the mind for it works through concepts, symbols and relationships...it helps man to analyze and synthesize the complex phenomena of the universe and himself...it works in many ways to advance electrical communications:

IT IS CALLED MATHEMATICS

At Bell Telephone Laboratories, mathematics works powerfully to solve problems involving complex data. For example, engineers must design and synthesize complex systems to process specific signals in precisely controlled ways. At the same time the technology provides a wide choice of circuits and components. Mathematical circuit analysis reveals the circuits which can do the job most efficiently and economically.

Intriguingly, too, the mathematical approach leads to basically new knowledge. For example, it led to the invention of the electric wave filter...disclosed a kind of wave transmission which may some day carry huge amounts of information in waveguide systems...foretold the feasibility of modern quality control...led to a scientific technique for determining how many circuits must be provided for good service without having costly equipment lie idle.

In the continuing creation of new devices, technologies and systems, Bell Laboratories utilizes whatever serves best—mathematical analysis, laboratory experimentation, simulation with electronic computers. Together they assure the economical advancement of all Bell System communications services.
The Same School That Originated The RTS BUSINESS PLAN

...NOW Proudly Presents...

A SPECIAL COMPACT COURSE COVERING ALL THREE PHASES OF ELECTRONICS

The Entire Course Is Made Up Of The Following:

- 35 LESSONS COVERING BASIC AND INTERMEDIATE ELECTRONICS
- 9 EQUIPMENT KITS COMPLETE WITH TUBES AND BATTERIES
- SOLDERING IRON
- 25 LESSONS COVERING THESE ADVANCED ELECTRONIC SUBJECTS:
 Thyratron Tubes • Semiconductors • Electronic Symbols and Drawings •
 Voltage-Regulators • Electronic Timers • Control Systems • X-Rays •
 Photoelectric Devices • Dielectric Heating • Geiger Counters • Pulse
 Circuity • Clippers and Limiters • Multivibrators • Electronic Counters
 - Radar • Magnetic Amplifiers • Analog Computers • DC Amplifiers • Digital
 - Computers • Storage Systems • Input and Output Devices • Servomechanisms
 - Telemetering
- 60 EXAMINATIONS
- UNLIMITED CONSULTATION SERVICE
- KIT MANUALS
- DIPLOMA UPON GRADUATION

AND MUCH MORE...

RTS' Membership in The Association of Home Study Schools is your assurance of Reliability, Integrity and Quality of Training.

RTS ELECTRONICS DIVISION
815 E. ROSECRAINS AVENUE
LOS ANGELES 59, CALIFORNIA
Est. 1922

OCTOBER, 1961

BASIC • INTERMEDIATE • ADVANCED
DESIGNED FOR THE BUSY MAN OF TODAY
This is MODERN training for the MODERN man. You'll find no "horse and buggy" methods here. Every page of this streamlined course is devoted to important Electronics principles and practical projects. You'll be amazed how fast you grasp Electronics the RTS way. RTS has combined modern THEORY and PRACTICE to make this the finest training program of its kind available!

Satisfies Novice, Technician or Hobbyist
Whether you're new to Electronics or an old "pro," chances are you'll find this to be the ideal course for you. The novice will appreciate the completeness of the training. It starts with the most basic considerations, covering each important point thoroughly, yet concisely. The technician will enjoy the practical review of fundamentals and profit from the 25 advanced subjects covered.

RTS GIVES YOU "TOP MILEAGE" FOR YOUR TRAINING DOLLAR
The price quoted below buys EVERYTHING — there are no extras to pay for. RTS has gone "all out" to give you the best training value in America. Why pay hundreds of dollars for training such as we offer when it's available for this LOW PRICE? If you can find a better training bargain... BUY IT!

CAN BE COMPLETED IN MONTHS INSTEAD OF YEARS
Some students will complete this course with "Jet-Like" speed but we allow up to two years if your circumstances require it. You study at your own rate. You are ENCOURAGED but not pushed. You'll find the lessons professionally written but easy to understand. LET US SEND YOU ONE OF THESE LESSONS ALONG WITH YOUR CAREER BOOKLET SO YOU CAN SEE FOR YOURSELF. NO OBLIGATION!

* TERMS ALSO AVAILABLE AS LITTLE AS
$5.00 DOWN $5.00 PER MONTH
SAVE TIME — SEND
$5.00 WITH COUPON
YOUR FIRST LESSONS AND KIT WILL BE RUSHED TO YOU THE SAME DAY THEY ARE RECEIVED!

DON'T LOSE OUT — FIND OUT!

RTS ELECTRONICS DIVISION, Dept. RE101
815 E. ROSECRAINS AVENUE, LOS ANGELES 59, CALIFORNIA
Rush me full information by return mail. (Please Print)

Name __________________________ Age ________
Address __________________________
City __________________________ Zone ________ State __________

□ ENROLL ME NOW □ SEND MORE FACTS

www.americanradiohistory.com
Other devices exhibited were new types of radio pills, which telemeter information from the stomach or intestinal tract when swallowed by the patient. Other devices included television cameras so small as to permit photographing surgical procedures formerly inaccessible to the camera, a continuous-recording electroencephalograph and monitoring devices that make it possible for a nurse at a single desk to observe continuously the temperature, pulse, respiration and bodily movements of a ward of a dozen patients.

Battery TV's Arrive

The 8-inch Japanese transistor battery portables reported in this and other magazines nearly a year ago were placed on sale in the New York market late in June. The sets are made by Sony, well known for its transistor radios, and are selling at $249.95.

Silicon Rectifiers Replace Tube Types in Transmitters

Frank Marx, vice president in charge of engineering of the American Broadcasting Co., has announced that silicon rectifiers will replace tube rectifiers in all its owned and operated radio stations. Marx stated that 35% to 40% of the troubles that caused disruption of service have been due to mercury rectifier arcbacks, and that these are the largest single cause of serious transmitter troubles. The development of high-voltage semiconductor rectifiers, he says, offers a means of eliminating this source of transmitter trouble, and of "assuring our stations of continuous, dependable service."

TV City Guide for Tourists

An application filed with New York City authorities for a closed-circuit television system would provide TV information on New York's entertainment and shopping facilities to the guests in 200,000 hotel rooms.

The city guide programs, according to the backers of the proposal, Sterling Information Services, would be piped in on one of the vacant channels, and would be 1 hour long with 1 minute of commercials for each 5 minutes of noncommercial time. Existing ducts belonging to the telephone company would be used to transmit the programs.

Electronics Spots Hurricanes

Hurricanes this season are being kept under closer control than ever before, the Weather Bureau reports. Last year, the bureau states, hurricane Donna was kept under close watch by the new weather radar being tried out at Miami, Key West, Daytona Beach and Tampa. This year additional stations have been installed at Brownsville (Tex.), New Orleans, Charleston (S.C.), Washington and New York, while useful
MAKE MORE MONEY

TRAIW FOR ELECTRONICS . . .

GET your first class commercial F.C.C. LICENSE

Grantham resident schools are located in four major cities—Hollywood, Seattle, Kansas City, and Washington, D.C. Regularly scheduled classes in F.C.C. license preparation are offered at all locations. New day classes begin every three months, and new evening classes begin four times a year. The day classes meet 5 days a week and prepare you for a first class F.C.C. license in 12 weeks. The evening classes meet 3 nights a week and prepare you for a first class license in 20 weeks. For more information about the Grantham resident schools, indicate in the coupon the city of your choice and then mail the coupon to the School's home office in Hollywood, Calif. Free details will be mailed to you promptly.

Grantham training is the easy way to learn more quickly—to prepare more thoroughly—for F.C.C. examinations. And your first class license is the quick, easy way to prove to your employer that you are worth more money.

This correspondence course is directed toward two major objectives—(1) to teach you a great deal about electronics, and (2) to prepare you to pass all of the F.C.C. examinations required for a first class commercial operator's license. We teach you step by step and have you practice with FCC-type tests which you send to the school for grading and comment. You prepare for your F.C.C. examinations under the watchful direction of an instructor who is especially qualified in this field.

To get ahead in electronics—first, you need the proper training; then, you need "proof" of your knowledge. Your first class commercial F.C.C. license is a "diploma" in communications electronics, awarded by the U.S. Government when you pass certain examinations. This diploma is recognized by employers. Grantham School of Electronics specializes in preparing you to earn this diploma.

Grantham training is offered in resident classes or by correspondence. Our free booklet gives complete details. If you are interested in preparing for your F.C.C. license, mail the coupon below to the School's home office at 1505 N. Western Ave., Hollywood 27, California—the address given in the coupon—and our free booklet will be mailed to you promptly. No charge—no obligation.

Get your First Class Commercial F.C.C. License by training at

GRANTHAM SCHOOL OF ELECTRONICS

HOLLYWOOD SEATTLE KANSAS CITY WASHINGTON

Accredited by the National Home Study Council

This booklet FREE!

This free booklet gives details of our training and explains what an F.C.C. license can do for your future. Send for your copy today.

for FREE Booklet CLIP COUPON and mail in envelope or paste on postal card.

To: GRANTHAM SCHOOL OF ELECTRONICS
1505 N. Western Ave., Hollywood 27, Calif.

Please send me your free booklet telling how I can get my commercial F.C.C. license quickly. I understand there is no obligation and no salesman will call.

Name______________________Age________

Address______________________

City__________________State________

I am interested in: [] Home Study, [] Kansas City classes, 14R,
[] Hollywood classes, [] Seattle classes, [] Washington classes

www.americanradiohistory.com
The new Dynakit Stereophonic Preamplifier has all the quality features which you require for the finest high fidelity reproduction. This handsomely styled control unit is a model of classical quality and contemporary simplicity.

BEST IN EVERY WAY

In either kit or wired form, the new Dynakit Stereo Preamplifier represents both the finest quality and the finest value available. It utilizes the basic circuitry of the famous Dynakit monophonic preamplifier without compromise of quality. This circuit has the lowest possible distortion, an absolute minimum of hum and noise, superior transient response, and every other attribute which can contribute to natural, satisfying sound quality.

Dynakit’s basic philosophy of simplicity of layout and control action, along with impeccable performance, is well exemplified in the design. Every useful function is incorporated, but the operation of the unit is not complex since the controls are arranged and identified in a functional manner. Operation of controls and switches is smooth, noise-free, and non-interacting. The unit is a pleasure to assemble, a pleasure to operate, and a pleasure to hear. It is not necessary to spend a lot of money to have the best sound available. Dynakit equipment has no compromises in quality. It is designed to be the finest and to be used by those who are not satisfied with less than the best. We suggest that you listen to it at your Hi Fi dealer, or write for our brochure which gives complete specifications on all Dynakit high fidelity components.

** Specifications on all**

Dynakit **you know**

you have the BEST!

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Performance</td>
<td>Frequency response within 1 db 10 cps to 40 kc. Distortion (either IM or harmonic) less than 0.005%</td>
</tr>
<tr>
<td>Finest Quality Components</td>
<td>1%, tolerance components used in critical equalization-determining circuits. Tone control components matched to provide absolutely flat response.</td>
</tr>
<tr>
<td>Greater Flexibility</td>
<td>7 stereo inputs (or 14 monophonic ones) provide for all present and future sources. Special "input provides option for special equalization characteristics. Provision for tape head, tape playback amplifier, and monitoring tape recording. Independent tone controls for each channel. Exclusive Dyna "Blend" switch to control stereo separation. Unique feedback scratch filter takes out the hash and leaves in the music. Rear panel ac outlets enable switching other components with preamp on-off switch. Self-powered (with dc heater supply) permits use with any amplifiers.</td>
</tr>
<tr>
<td>Outstanding Appearance</td>
<td>Choice of bone white or charcoal brown textured finish cover. Solid brass, etched front panel. Designed by Saul Ibenberg, prominent industrial stylist. Requires only 13" by 3½" panel space and can be readily mounted on any thickness of panel with convenient FM-3 auxiliary mounting kit.</td>
</tr>
<tr>
<td>Easiest Assembly</td>
<td>About 8 hour average assembly time—from one-third to one-fourth of other kits. Assembly speeded by use of pre-assembled printed circuit boards plus ultra-simple and accessible layout of parts. Complete pictorial diagrams included plus step-by-step instructions so that no technical skill is required. Also available fully wired and individually tested.</td>
</tr>
</tbody>
</table>

** Dynako, Inc., 3916 Powelton Avenue, Phila. 4, Pa. **

Radio-Electronics

With Dynakit you know you have the BEST!

PA5-2 $59.95 Kit, $99.95 assembled

radars will also be working on Nanucket and Cape Hatteras. The radar stations will probably receive some information from weather satellites, which can observe and plot the path of a storm directly. Ordinary radio will also play its part, as weather planes close to the hurricane send back detailed reports.

Briefer Briefs

All capacitors and resistors made by Aerovox and sold through all industry markets are now covered by a 2-year warranty. The new policy, the company states, is the result of the increasing recognition of product reliability and dependability. No immediate increase in prices is seen as a result of the longer warranty.

Radio Corporation of America announces that its millionth nuvisor has been produced. The small-size, low-noise tube is used especially in TV tuners to improve signal-noise ratio in fringe areas. Nuvistors are now available in five types: two general-purpose industrial triodes, a general-purpose industrial sharp-cutoff tetrode, and two high-mu entertainment triodes.

Normal metals may act like superconductors at very low temperatures, according to scientists of the Arthur D. Little laboratories in Cambridge, Mass. Normal metals in thin film form, they find, can be made to act as superconductors by placing them in contact with a superconducting metal film at the proper temperature.

The FCC proposes to amend its Rules and Regulations so that the seal certifying that a television receiver complies with FCC radiation limits will be visible. The proposed rule provides that the seal shall be affixed to the back panel, shall be 1 x 3 inches in size and shall contrast with the color of the cabinet finish.

New transistorized image orthicon TV camera developed by Admiral for the Signal Corps is so sensitive that it is "capable of observing persons and objects from a distance of several hundred yards in virtually total darkness." The camera measures 5 x 10 x 30 inches and weighs 35 lb.

Sylvania has joined the ranks of the color TV producers, with a 21-inch set that will be available at a suggested list price of $825.

New Canadian 1,300-mile microwave communications system stretches from Grand Prairie, Alta., to Mount Dave on the Yukon-Alaskan border. It vastly improves telephone and telegraph communications along the length of Canada's Alaska Highway, and forms a link in a high-quality communications system between the United States and Alaska.
Free ALLIED
444-PAGE ELECTRONICS CATALOG

WORLD'S BIGGEST • MOST COMPLETE

best buys for 1962

EVERYTHING IN ELECTRONICS
including exclusive products & special values available only from ALLIED

Send for it today!

SAVE MOST ON EVERYTHING IN ELECTRONICS

- New Stereo Hi-Fi Systems—Everything in Hi-Fi Components
- New Multiplex Stereo FM • All-Transistor Stereo Hi-Fi
- Money-Saving Build-Your-Own KNIGHT-KITS® for Every Need
- Best Buys in Tape Recorders, Tape, and Supplies
- Citizens Band 2-Way Radios • Short-Wave Receivers
- Amateur Receivers, Transmitters, and Station Gear
- Latest Public Address Systems, Paging and Intercom Equipment
- TV Tubes, Antennas, Accessories • Batteries, Wire and Cable
- Test and Laboratory Instruments • Tools, Hardware
- Huge Listings of Parts, Tubes, Transistors, Technical Books

NEW Multiplex Stereo FM
All-Transistor Stereo Hi-Fi

exclusive money-saving KNIGHT® products
SAVE MOST on famous KNIGHT Stereo Hi-Fi—comparable to the best in quality, styling and performance, yet priced far lower. Select super-value KNIGHT components or complete systems (including latest Multiplex Stereo and All-Transistor hi-fi) and save most. KNIGHT products are acclaimed by all those who recognize integrity in design and manufacture and who appreciate value.

NO MONEY DOWN
on Allied's new Credit Fund Plan
Now—enjoy 50% more buying power—up to 24 months to pay—see our 1962 Catalog for simple details.

SEND FOR 444-PAGE CATALOG TODAY!

Satisfaction Guaranteed or Your Money Back

ALLIED RADIO-ELECTRONICS

www.americanradiohistory.com
building a Knight-Kit is the most satisfying do-it-yourself experience in the world!

5 big reasons why:

- Convenience designed—makes you a kit-building expert—even the very first time!
- Wonderful to Build—you'll marvel at the sheer ease of assembly with the exclusive "show-how" manual guiding you like a good instructor.
- You own the Best—you'll enjoy with pride a true custom-built product, professional in its engineering and performance.
- You save so much—because you buy direct from Allied at our money-saving volume prices—and because you do the easy assembly yourself.
- Easiest to buy—no money down on Allied's new Credit Fund Plan—easiest terms ever!

Money back guarantee: Buy any Knight-Kit. Build it! Use it! You must be satisfied or you get your money back!

see more than 90 Knight-Kits

21 High-Fidelity Kits
25 Hobbyist Kits
31 Instrument Kits
14 Amateur & Citizens Band Kits

Knight-Kits are also available in Canada

World's largest electronics catalog

Send for it today!
ABSENCE OF "GRID EMISSION" AND GAS DEMONSTRATES GOOD HEALTH OF TUNG-SOL IF AMPLIFIER TUBES

Radio and TV doctors know that IF amplifier tubes must be physically sound in order to enjoy a healthy long life. Because they operate in a high impedance circuit, internal cleanliness is vital to avoid gas distress. Grid emission, which displays identical symptoms, likewise must be carefully avoided. Tung-Sol's exacting engineering standards and rigid quality control in every step of manufacture assure vigorous long life. Tung-Sol IF amplifier tubes are made in a humidity-controlled, dust-free atmosphere. The operator's hands never touch the cathode coating. Gas evacuation and metal heating are done with critical precision by means of the most advanced equipment. As a result, Tung-Sol IF amplifier tubes possess unusual stamina and help you to maintain enviable standards in your service business.

GOOD MEDICINE FOR PROFITS

One of the most highly recommended medicines for profits in radio and TV service business is the prescribing of tubes that are reliable. Cuts radio and TV set hospital visits. You can rely on Tung-Sol tubes.

CORNER SPEAKERS BEST!

Dear Editor:

Corner placement of a sound reproducer results in the longest path before the first reflection, oblique angles of incidence, and an apparent increase in room size, compared to wall-located speakers. There is a common and widespread fallacy that corner placement excites more room modes or resonances. A study of the principle of mirror images shows that a corner speaker does exactly what a double-size wall speaker would do in a room twice as large. This is true whether actuation is by open cone, horn, modulated air blast, electrostatic or ionized air. Corner placement results in the lowest measured peak-to-trough sound pressure ratios. It usually results in an octave extension of the bass range. It always reduces distortion by reducing the required diaphragm excursion for a given power and sound pressure output.

Whatever the actuating principle, the power levels and diaphragm excursions always have to be considered. For example, taking Frank Massa's 100 dynes per square centimeter as "necessary to secure realistic musical reproduction" and a room of 3,000-cubic-foot volume and 0.8-second reverberation time leads to the need for one acoustic watt of power. At low frequencies this requires moving large volumes of air. If modulation distortion limits air-sheet motion to 1/16 inch, a radiating area of about 20 square feet is required to radiate 1 acoustic watt at 32.7 cycles per second. Thus much area for the bass would result in severely anomalous polar or spatial radiation patterns at the middle and high frequencies. There still remains a desirable separation of spectrum, with large speakers radiating the long wavelengths and small ones radiating short wavelengths.

PAUL W. KLIJPSCH
Klipisch & Assoc. Inc.
Hope, Ark.

ANTI-PLANE COLLISION

Dear Editor:

Your editorial "Anti-Plane-Collision Radar" in the March 1961 issue, is of interest. I believe that a few words on the Federal Aviation Agency program, and the difficulties inherent in collision prevention devices, will make a useful epilogue. The development of positive collision avoidance devices was first undertaken

PHOTOFACT world's finest electronic service data now greater than ever!

with dozens of exclusive new features for fastest, easiest, more profitable servicing

OVER 50,000 LISTINGS: Only service data of its kind—prepared from analysis of the actual equipment. Complete, uniform, accurate. Over 21,000,000 PHOTOFACT Sets now in use! If you're not using PHOTOFACT, you're not realizing your full earning power. So get the proof—try PHOTOFACT on any job—see how much time you save, how much more you can earn daily! Your Parts Distributor has the PHOTOFACT Folder Sets you need. Have all the help you'll ever want for greater servicing success and bigger earnings!

PHOTOFACT INDEX

FAMOUS "STANDARD NOTATION" SCHEMATICS
- Uniform symbols in each schematic, same circuit layout form each time
- Voltages at tube pins and test points
- Waveforms at appropriate points on TV schematics
- "CircuitTrace" identification numbers for printed circuits
- Schematic items keyed to chassis photos and parts lists
- Special capacitor and resistor ratings
- Coil and transformer color codes or terminal identification
 - Test points labeled
 - Special currents shown (B+ horizontal output cathode, horizontal output screen)
- Alignment adjustments and test points labeled
- Tube functions shown
- Control and switch functions shown
- Switch sequence indicated
- Power supply "sources" shown
- Fuse ratings indicated
- Coil resistance over 1 ohm shown
- Coding of electrolytic capacitors shown

REPLACEMENT PARTS LISTS
- Lists standard, locally available replacement parts
- Includes notes for special installation or other considerations
- Includes ratings and/or measured values for assisting in selection of replacement parts
- All parts keyed to chassis photos and schematics for quick reference

TUBE PLACEMENT DIAGRAMS
- Shows tube types and functions; top and bottom views shown
- Includes filament connections on series string
- Indicates TV sound and sync paths
- Tube failure check charts included
- Shows blank pin or locating key on each tube
- Includes fuse locations and ratings.

ALIGNMENT INSTRUCTIONS
- Gives step-by-step easy-to-follow alignment data
- Procedure makes use of standard service-type equipment
- Alignment frequencies are shown on chassis photos near adjustment number—adjustments are keyed to schematic and photos

"CircuitTrace" FEATURE
- Invaluable printed board servicing aid—indicates points on board photo and schematic for quick, easy measurement of component, or test locations

ONLY $10 DOWN puts the complete PHOTOFACT Library in your shop—and you have up to 30 months to pay. Right now—keep up with the industry—sign up for a Standing Order Subscription to PHOTOFACT! See your Sams distributor for full details on a Library or Standing Order purchase!

FREE! VALUABLE PHOTOFACT INDEX

YOUR GUIDE TO OVER 50,000 TV, Radio, Electronic Listings! Send for it today! Your guide to virtually every model produced since 1946. Helps you locate the proper PHOTOFACT Folder you need to solve any service problem in any model. Send the coupon today for your FREE copy of the latest PHOTOFACT Index to the service data you need!

SEND FOR YOUR PHOTOFACT INDEX NOW!

FREE COVERS:
Black & White TV Color TV AM Radios FM Radios Transistor Radios Auto Radios Amplifiers, Tuners Recorder Changers Tape Recorders

FULL PHOTO COVERAGE
- All chassis views are shown in actual photographs
- All parts are numbered and keyed to the schematic and parts lists
- Test and alignment points indicated

FIELD SERVICE NOTES
- Outlines procedure for "in the home" adjustments
- Gives hints on quick access to pertinent adjustments, safety glass removal, etc.

"BONUS" FEATURES
- Disassembly instructions
- Dial cord diagrams
- Record changer and tape recorder "exploded views" for easy mechanical parts replacement or service

"PLUS" ADVANTAGES
- Citizens Band Radio coverage
- Tube Test data—provides setting for testing new tubes
- Color TV Course "Bonus" beginning in Set No. 541
- Eligibility for membership in "PEET" with ownership of a PHOTOFACT Library

HOWARD W. SAMS & CO., INC.
Howard W. Sams & Co., Inc., Dept. 6-K1
1724 E. 38th St., Indianapolis 6, Ind.

Send FREE Photocopies
Free! Send FREE Photocopy Cumulative Index
Send full information on: Easy Buy Plan
Standing Order Subscription — "Peet" Program

Shop Name ____________________________
Address _______________________________
City __________________ State ____________

www.americanradiohistory.com
NOW... Master System Performance at a Home Booster Price!

Blonder-Tongue signal master, AB-4 (new transistor, mast-mounted TV/FM 4-set booster) ... $29.95 list

- Transistor circuit provides lowest noise, maintenance free operation—no tubes to burn out or replace—no heat dissipation problems.
- Mast mounting takes advantage of best signal-to-noise ratio—minimizes snow. (Can also be mounted at any convenient point along the downlead.)
- World's smallest and lightest booster—no additional weight or wind resistance for mast to bear.
- Remote power supply at set uses 4 low-cost flashlight batteries for pure d.c.—eliminates AC power line, and components which may fail.
- Converts existing antenna into a powerful amplifier-distribution system—no need to invest in a new antenna.
- Eliminates costly installation of giant antenna arrays in most fringe areas.
- Provides improved FM reception (gain 12-15 db).
- Stripless 300-ohm terminals on booster and remote power supply for fast installation, positive contact.
- No separate balun needed—matches impedance of antennas and TV sets.

ALL THIS PLUS... 4 set coupler incorporated in remote control power supply distributes fully isolated amplified signals for brilliant reception on up to 4 TV or FM sets. Improve TV and FM reception today. Add the new Blonder-Tongue AB-4. Sold thru distributors. For details write. Dept. RE-10.

1 set gain: up to 19 db. channel 2 Up to 10.5 db. channel 3
2 sets gain: up to 14 db. channel 2 Up to 6 db. channel 3
3 sets gain: up to 13 db. channel 2 Up to 4 db. channel 3
4 sets gain: up to 10.5 db. channel 2 Up to 2 db. channel 3

Patent applied for

Engineered and manufactured by

BLONDER-TONGUE
9 Alling St., Newark, N. J.

Canadian Div.: Benco Television Assoc., Toronto, Ont. Export: Norhan Export Corp., N. Y. 13, N. Y.

Home TV accessories • UHF converters • master TV systems • closed circuit TV systems

in 1955. The firm requirement was established that only self-contained non-cooperative operation was acceptable. After several years' work by outstanding engineering organizations, it was determined that this requirement could not be met by state-of-the-art techniques.

The FAA program for developing collision-prevention devices started under the Airways Modernization Board in late 1958. The first technique tested was that of ground reflection ranging with altitude communicated, and the threat criteria of time to nearest approach. Flight tests were run in December 1960, using a completely instrumented but extremely developmental installation. Additional tests will be conducted within the next several months.

Other techniques under consideration for collision avoidance are in such early stages that little should be said of their potentiality. Infrared techniques for collision prevention, unlike some military applications, suffer from the very low radiant intensity of general aviation aircraft.

Very carefully controlled tests of non-cooperative systems were performed by the Navy Ordnance Test Station, China Lake, California, at the request of the Federal Aviation Agency. The possibility exists that a cooperative infrared proximity warning indicator (PWI) can be devised using a modified rotating light beacon, but infrared PWI will be strictly a good-weather device and useful only on planes flown under visual flight conditions. Preliminary tests of this equipment were conducted in June 1961.

The operational use of collision-avoidance systems in the Air Traffic Control System will require the solution of several difficult problems to insure that a pilot is not instructed or his aircraft maneuvered into a more hazardous position. It is for these reasons that it appears at this time that the most promising way of decreasing the likelihood of mid-air collisions is by making large improvements in the Air Traffic Control System.

N. E. HALABY
Administrator
Federal Aviation Agency
Washington 25, D. C.

MEDICINE AND ELECTRONICS

Dear Editor:

Medical electronics is gaining more and more attention. Your article "Electronics in the Psychology Lab" is another example of this. But I would like to comment on this article.

E.K.G. is the German abbreviation for Electrocardiogram. Our abbreviation is E.C.G. However, we often use the German abbreviation to avoid verbal confusion between E.E.G. and E.C.G.

The E.K.G. in Fig. 2 is upside down. I believe it is electromechanically produced rather than recorded from a human subject because of the triangular slow wave complexes that represent auricular depolarization and ventricular
NEW TUBE TESTER

for the first time, a
B & K QUALITY TUBE TESTER

at this
amazing low cost!

Checks for all shorts, grid emission, leakage, and gas

Checks each section of multi-section tubes separately

Checks tube capability under simulated load conditions

Rejects bad tubes — not good tubes

For the man who wants the performance and reliability of a B&K professional-quality tester at minimum cost... there's nothing like the new "600". No other tube tester in this price range is so complete and up-to-date. Tests the newest tube types, as well as the old. It's fast... it's accurate... it's easy to use. Quickly reveals tube condition. Saves customers. Sells more tube replacements. Stops call-backs. Steps up servicing profit... day after day. Pays for itself over and over again.

Model 600
DYNA-QUIK

only $69.95
NET

8½" x 11" x 4½"
Handsome, sturdy leatherette-covered carrying case

NEW TUBE INFORMATION SERVICE
available every 3 months for all B & K Dyna-Quik Tube Testers

B & K MANUFACTURING CO.
1801 W. BELLE PLAINE AVE - CHICAGO 13, ILL.
Canada: Atlas Radio Corp., 50 Wingold, Toronto 19, Ont.
Export: Empire Exporters, 277 Broadway, New York 7, U.S.A.
Here is magnificent Pipe Organ tone: tremendous tonal color range; two 61-note pipe-organ keyboards; hand-rubbed cabinetry in the finish of your choice. Taken together they comprise a superlative electronic instrument comparable to organs selling for $2,500 to $6,000.

Yet, when you assemble the Schober of your choice, you save more than half the normal cost and create a superb instrument to bring the delightful gift of music to your family. Matched kits and printed circuitry make it possible.

Work requiring knowledge and experience is eliminated. All that remains is the pride and pleasure of watching a fine musical instrument take shape under your own hands. The Schober organ you assemble will equal or surpass any factory-built organ for quality, reliability and circuitry.

And the Schober Electronic Organ is so easy to play! From the very first day even novices will transform simple tunes into deeply satisfying musical experiences — because unlike a piano whose tone dies away almost as soon as the keys are struck, organ tones continue to sing out as long as the key is held down. Then, by simply moving your right foot, you change the volume so that the sound becomes rich and alive.

The coupon brings you full details on how you can start building the Schober of your choice with an investment as little as $18.95. In addition, you may have an exciting 10" LP record demonstrating Schober’s full range of tones and voices. The $2 charge for the record is refunded when you order your starting kit. No salesman will call.

MAIL THIS COUPON TODAY

THE Schober Organ CORPORATION
Dept. RE-15 43 WEST 61ST STREET, NEW YORK 23, N.Y.

□ Please send me FREE full-color booklet and other literature on the Schober organ.
□ Please send me the Hi-Fi demonstration record. I enclose $2 which is refundable when I order my first kit.

name______________________________
address______________________________
city______ zone____ state____

repolarization. Human hearts and all animals that I know of give off rather round-shaped waves. This is with the exception of the ventricular depolarization wave which is tall and sharp as you have it pictured.

Your E.E.G. samples in Fig. 1 are excellent for getting across what you wanted to get across. May I suggest, though, that Fig. 1-e "c" is not a recording of an epileptic seizure, but more likely a recording during a subclinical epileptic discharge that probably reflects the patient's tendency toward seizures.

Thank you for this useful article and for many others. JIM STEPHEN
E.E.G. Technician Regina, Saskatchewan, Canada

[Thank you too for letting us know what you like in RADIO-ELECTRONICS. —Editor]

KEEP THEM COMING

Dear Editor:
Louis B. Henry has something on his side in his letter "I'd Buy A Kit" in the July Correspondence column. But when he says "such articles are quite useless except as purely and strictly reading material," I definitely disagree with him.

How about "Wind Your Own Ferrite-Core Antennas"? If I'd been using a transistor radio, I would have been winding and trying that one right away.

I look over all construction articles with interest. And when you build something entirely yourself, turn on the juice and she works—brother, you really live for a while!

So just keep those construction projects coming.

JOHN IALE
Eureka River, Alberta, Canada

I LIKE TO BUILD-IT-MYSELF

Dear Editor:
In your July correspondence column, construction projects were mentioned. Allow me to include myself among the many who buy RADIO-ELECTRONICS primarily for them alone! Should they disappear or be reduced in number, I would have no reason to continue reading R-E.

My only complaint is that some of your projects are too sophisticated, while others of more interest are too simple.

I have built, and no doubt will build more kits, but they are usually items of test equipment whose accuracy and calibration would be difficult for the home constructor. But by far the majority of the equipment I have is home-made, and some of it I think far superior to similar items available commercially.

HAROLD L. STEPHENS
Biloxi, Miss.

[The above two letters are typical of our readers. They like and respect kits but get something extra out of building a complete device from scratch, all by themselves.—Editor]
RADIO SHACK Proudly Presents

29 Realistic® KITS

GREATEST VALUES IN ELECTRONICS
Look, perform like factory-wired units at up to 42% less cost
Exclusive years-ahead designs

Radio Shack's whole new family of audio and test equipment kits employs the most advanced designs and engineering concepts known today! They meet the most exacting requirements in performance and appearance. They're easy and fun to build! Critical areas are pre-wired, factory-aligned. Even a novice can follow the simplified assembly manuals. And they're easy to own on No Money Down credit terms. Every kit backed by a money-back guarantee.

We show here six kits newly introduced in our exciting 1962 Catalog.

FM Stereo Multiplex Tuner Kit. Highest standards of excellence with deluxe built-in integral multiplex section. It features wide band circuitry for exceptional sensitivity: 2.2 µV, drift-free selectivity. Frequency response 10-20,000 cps ±1 db, 3 l-f stages, 3 limiters. 11 tubes plus rectifier. Muting, tuning, function selector. Tape recorder output. 901L092—$149.95

Matching Units—unexcelled anywhere

50-Watt Stereo Amplifier Kit — the powerful, all-transistor HK-208. Unique 18-transistor circuit eliminates hum, noise, output transformers and heat. Absolutely flat —1 db 10-15,000 cps at full power. Truly a breakthrough in semi-conductor stereo design, the only amplifier of its kind in the world! 90LX093—$139.95

Radio Shack's 1962 Line of Kits Includes All These:
• Stereophonic Preamplifier Kit
• Stereo 140W Basic Amplifier Kit
• 40 Watt Stereo Amplifier Kit
• Complete Stereo System Kits
• Universal Multiplex Adapter Kit
• Hi-Fi 12 Watt Amplifier Kit
• FM Adapter Kit
• Stereo Balance Meter Kit
• Wireless Intercom Kits
• Deluxe Signal Generator Kit
• Deluxe VTVM Kit
• Standard VTVM Kit
• Ultra-Modern Tube Tester Kit
• 500W Variable AC Supply Kit
• VOM Kit with 4½” Meter
• Signal Generator Kit
• AC VTVM Preamplifier Kit
• Electronic Photo Relay Kit
• “Novatherm” Thermometer Kit
• 5-Tube Teakwood Radio Kit
• 2-Transistor Home Radio Kit
• 6-Transistor Portable Radio Kit
• Transistor Experimental Lab Kit

See complete specifications of these fine kits in Free Catalog

Send today for FREE 1962 Catalog

Gentlemen: Please send me your giant new 340-page Electronics Catalog of over 100,000 items and every supplement for one year—all FREE and POSTPAID.

Mail coupon to
RADIO SHACK Corp.
730 Commonwealth Avenue
Boston 17, Massachusetts

NAME
ADDRESS
CITY
ZONE
STATE

OCTOBER, 1961

www.americanradiohistory.com
It takes MORE than TOOLS to be a TV Technician!

Just what IS the difference between the "screwdriver mechanic" and the expert TV-Radio Technician?

NOT expensive tools and test equipment—although they ARE essential.

TRAINING is the first big difference. The tinkerer guesses, but the expert technician KNOWS—because he spent years in the study of electronic theory and its application to television techniques.

EXPERIENCE is the next big difference. The professional TV specialist has repaired hundreds—perhaps thousands—of sets. He knows the complexities and the variations in circuits. He is familiar with the hundreds of parts which make up the "innards" of each type of TV. He can diagnose trouble and cure it quickly and safely.

PROGRESSIVENESS is another big difference. The expert TV Technician continually spends countless hours and hundreds of dollars on manuals, keeping up to date on new developments, new circuits, and new troubleshooting techniques. When trouble develops, he knows what to do about it.

Well-meaning, but poorly informed "screwdriver mechanics" and "do-it-yourself-ers," frequently unable to accurately diagnose TV trouble, often "butcher" a set to the point where it can be dangerous as well as expensive.

DON'T RISK YOUR SAFETY OR NEEDLESS EXTRA EXPENSE—CALL AN EXPERT TECHNICIAN AT THE FIRST SIGN OF TROUBLE! HIS FEE IS YOUR INVESTMENT IN SAFETY AND SATISFACTION.

THIS MESSAGE WAS PREPARED BY SPRAGUE PRODUCTS COMPANY, DISTRIBUTORS', SUPPLY SUBSIDIARY OF SPRAGUE ELECTRIC COMPANY, NORTH ADAMS, MASSACHUSETTS FOR...

YOUR NEIGHBORHOOD TV-RADIO TECHNICIAN
OCTOBER, 1961

EICO™...UNCOMPROMISING ENGINEERING

BEST BUYS IN SERVICE INSTRUMENTS: everything from Scopes to Probes

BEST BUYS FOR INDUSTRIAL TESTING: everything from Bridges to Supplies

BEST BUYS IN STEREO & MONO HI-FI: everything from Tape Decks to Speakers

NEW Metered Variable Auto-Transformer AC Bench Supplies: ±1073 (3 amp.) Kit $35.95 Wired $47.95 ±1078 (7½V amp.) Kit $42.95 Wired $60.95

NEW Extra-Low Ripple & 12 Volt Battery Eliminator & Charger ±1064 Kit $43.95 Wired $89.95

NEW AC Volt-Watt Meter #260 Kit $49.95 Wired $99.95 Complete with steel cover & handle

NEW 70-Watt Integrated Stereo Amplifier ST70 Kit $94.95 Wired $149.95

NEW FM-AM Stereo Tuner ST96 Kit $39.95 Wired $59.95 Inc. FET

NEW 40-Watt Integrated Stereo Amplifier ST40 Kit $79.95 Wired $99.95

Bookshelf Speaker System HFS1 Kit $39.95 Wired $47.95

BEST BUYS IN "HAM" GEAR: from Transmitters to Code Oscillators

NEW 60-Watt CW Transmitter ±723 Kit $49.95 Wired $79.95

NEW 60-Watt CW Transmitter ±720 U.S. Pat. No. D-184776 Kit $79.95 Wired $119.95

Universal Modulator Driver ±730 Kit $49.95 Wired $119.95 Cover E-5 $4.50

Grid Dip Meter ±710 Kit $29.95 Wired $49.95

Over 2 MILLION EICO instruments in use. Compare EICO side-by-side critically with products selling for 2 or 3 times more. Buy your EICO right "off the shelf" from 1500 neighborhood dealers coast to coast, most of whom offer budget terms.

BEST BUYS IN CITIZENS TRANSCEIVERS AND TRANSISTOR RADIOS

NEW DeLuxe Citizens Band Transceivers: ±760:117 VAC Kit $59.95 Wired $99.95 ±771:117 VAC & 6 VDC Kit $79.95 Wired $109.95

Citizens Band Transceivers: ±760:117 VAC Kit $59.95 Wired $89.95 ±771:117 VAC & 6 VDC Kit $79.95 Wired $99.95

Transistor Portable Radio RA6 Kit $29.95 Wired $49.95 Inc. FET

Listed in the EICO Hours, WABC-FM, N.Y. 95.5 MC, Mon.-Fri., 7-15-8 P.M.

Turn Page for more EICO Values

EICO, 3300 N. Blvd., L. I. C. 1, N.Y.

Listen to the EICO Hour, WABC-FM, N.Y. 95.5 MC, Mon.-Fri., 7-15-8 P.M.

© 1961 by EICO, 3300 N. Blvd., L. I. C. 1, N. Y.

Send free 32-page catalog & Distributor's name before.

Send free schematic of model no.

Send new 36-page GUIDEBOOK TO HI-FI. For which I enclose 25c for postage & handling.

Name
City
State

Add 5% in West © 1961 by EICO, 3300 N. Blvd., L. I. C. 1, N. Y.
FM Multiplex Stereo broadcasting has arrived!
A top quality stereo tape recorder will permit you to build a stereo tape library of your favorite music at low cost. As your musical interests change, you may record the new music that interests you at no additional cost. See your EICO dealer now for a demonstration of the EICO RP-100.

NEW SUPERB SERIES.

TRANSISTORIZED 4-TRACK STEREO TAPE DECK
- **MODEL RP-100W**
 - Completely assembled, wired and tested. $399.95
- **MODEL RP-100K**
 - Semi-kit includes a completely assembled and tested transport, electronics in kit form.

OF EICO STEREO.

FM and AM stereo tuners on one compact chassis. Easy-to-assemble prewired, prealigned RF and IF stages for AM and FM. Exclusive precision prewired EYETRONIC tuning on both AM and FM.

FM TUNER

AM TUNER
- Switched "wide" and "narrow" bandpass. High Q filter eliminates 10 kc whistle. Sensitivity: 300 mv for 1.0V output at 20db S/N ratio. Frequency Response: 20-9,000 cps ("wide"); 20-4,500 cps ("narrow").

70-WATT INTEGRATED STEREO AMPLIFIER ST70
- **Kit $94.95 Includes Metal Cover Wired $149.95**

40-WATT INTEGRATED STEREO AMPLIFIER ST40
- **Kit $79.95 Includes Metal Cover Wired $129.95**

FM MULTIPLEX ADAPTOR MX-99
- **Kit $39.95 Wired $64.95**

An original EICO contribution to the art of FM Multiplex reception.

The new EICO MX-99 Multiplex Adaptor incorporates the best features of both the matrixing and sampling techniques. It is free of phase-distorting filters and provides the required, or better-than-required, suppression of all spurious signals including SCA (67kc) background music carrier, re-inserted 38kc sub-carrier, 19kc pilot carrier and all harmonics thereof. This is very important for high quality tape recording, where spurious signals can beat against the tape recorder bias oscillator and result in audible spurious tones in a recording. This adaptor will synchronize with any usable output from the FM tuner and will demodulate, without significant distortion, tuner outputs as high as 3 volts peak-to-peak (12 volts RMS). The MX-99 is self-powered and provides entirely automatic recording/multiplex operation. A separation of 35 db between channels is typical across the entire audio spectrum. Low impedance cathode follower outputs permit long lines. The MX-99 is designed for all EICO FM equipment (HFT-90, HFT-92, ST-96), and component quality, radio detector FM equipment provided with a multiplex output.

Turn Page for more EICO Values.
PERHAPS the most important applications of television will be made during the next few decades. It would appear certain that these applications will not be on earth but outside our planet.

Already a number of such uses have been made, chiefly in weather satellites. Special TV cameras scan cloud covers, record the result on tape and, on command from earth, transmit the result to our meteorologists for analysis.

In a like manner, the Russians, on Oct. 18, 1959, for the first time in history scanned the far side of our natural satellite, using one of their rockets to circumnavigate the moon. The rocket then transmitted the pictures to Russia on command of their scientists, by radio impulses from earth.

In the January, 1951, issue of this magazine, the writer forecast a new weapon, the Television Bomb. A television camera, built into the nose of a bomb, could be dropped accurately despite rain, fog or night, on its target. The TV bombardier would watch on his TV screen the exact progress of the falling bomb's flight. By radio control he could so manipulate the bomb that he could guide it exactly onto the target.

This was before the intercontinental ballistic missiles. The same principle can be used with them—it will take some of the present inaccuracy out of these long-distance missiles. If such missiles were equipped with television, advanced ground stations or special instrumented planes could follow the progress of the bomb-carrying ICBM via its TV transmitter. When the bomb reaches its apogee, hundreds of miles above the earth, it starts its descent. It may, however, be off target. The computers at the watching ground or air station would be able almost instantly to calculate the correct angle at which it should fall to hit the target. Then, via radio control, an auxiliary lateral correcting rocket would be fired from the falling missile. This will deviate its flight sufficiently to assure a bull's-eye hit on target.

In 1951, the author, in an illustrated article "Celestial Television," foresaw how the world could watch extraterrestrial events. By means of TV cameras on board a space ship 15,000 miles distant from earth, TV watchers would see how our whole planet appears from space and also watch the breathtaking spectacle of our flaming sun (viewed through special filters) with its miraculous streaming corona, in a black sky, with millions of brilliant stars surrounding it.

Such unusual broadcasts are perfectly feasible even today. We need not wait for manned space vehicles. If the money is available, a satellite can be built now, carrying special remote-control TV camera broadcast equipment.

As this is being written, at Harvard-Smithsonian, two TV orbiting telescopes are being developed. Also under development is a lunar orbiter that should soon be ready for firing. It should be very dramatic because it will give large-scale pictures of the rugged lunar surface.

During the next 10 years it will also be possible to solve one of the greatest astronomical puzzles that has vexed our scientists for generations.

We know next to nothing of our nearest planet in space, Venus. We have never even seen it. All we can see is its perpetual cloud cover—never its surface. Hence we do not know whether it is completely or partially covered with water, or whether it has any continents.

Nor do we know the length of Venus' day, or whether it turns one side to the sun perpetually, as the moon does to our earth.

This irritating problem may be solved during this decade by the use of a special radio-controlled, unmanned, TV-equipped rocket. It would circumnavigate Venus in a continuous tight spiral, descending slowly into the planet's thick cloud-covered atmosphere, until it emerges below it, televising its daylit surface without interruption. The TV signals would then be sent earthward and be recorded there. During opposition of earth and Venus, the distance separating the two planets is some 25,000,000 miles. This means that it takes the signals 2 minutes and 18 seconds to reach us, since radio waves travel at the rate of 186,000 miles a second. What happens to the Venus TV rocket? The first ones may not be recovered—they probably will crash on Venus; later and better ones will return to earth intact. This would be more desirable, as they would also take TV tape records scanning the entire visible Venus panorama. This is a superior method to the 25,000,000-mile long-distance TV signals (of the pioneer rockets), which are also influenced adversely by outer space radio-astronomical disturbances. Incidentally, the idea of such a rocket is not new—it originated with the writer in 1953 in his illustrated article "Television Guided Spaceflight." In this article the rocket, however, was circumnavigated the moon.

Television on our nearest neighbor in space will be an extensive chapter by itself. Many unmanned lunar rockets, long before man sets foot onto the moon, will be TV-equipped to better guide the rockets in televising their approach and viewing the moon's surface from several hundred miles up. It takes only 1.2 seconds for TV signals to reach the earth, thus in 2.4 seconds we can reach the rocket by radio before it makes its final descent. Therefore, radio manipulation of the rocket's auxiliary retro-rockets is quite feasible on the moon.

Unmanned lunar vehicles will be TV-equipped routinely for easier moon exploration and surveying. Later on, manned expeditions will carry TV cameras as a matter of course. The earth, as seen from the moon, 238,000 miles away, will make exciting TV programs, as will the sun. So will closeup views of the colossal lunar mountains, as well as the vast moon craters. Then will come TV spectacles of the moon's far side, as well as TV exploration of the titan moon caves—the inside of the many-billion-years-old airless, vacuum-immersed dead world.

—H.G.
Sonars are electronic devices which use underwater sounds to locate submarines. They can also be used to find fish and chart the ocean bottom.

To detect submarines, sonars transmit a high-powered pulse of sound, called a ping, then listen for an echo. A submarine within detection range will return an audible echo. The sound of the echo depends on the frequency and pulse length of the ping, but is usually short and sharp with a metallic quality. The echo can also be made to show up as a bright spot on a PPI scope or as a deflection of an A-scope trace.

The Navy does not have exclusive use of sonars. They are used by merchant ships, fishing boats and yachts, too—not to look for submarines, but to tell how deep the water is or to find fish. Sonars built for these purposes are often called echo sounders.

A modern echo-ranging sonar can spot a submarine several miles away, under good conditions. It is usually mounted on a destroyer, with the operator in a protected location within the hull, and transducer mounted near the forward end of the ship, under-water on the keel.

To detect a submarine, the sonar sends out a short pulse of sound, concentrated into a narrow conical beam (Fig. 1). The ping travels through the water, strikes the submarine and a small portion bounces back. This echo is picked up by the transducer, amplified and presented to the operator.

A sonar transducer converts electrical energy to acoustic energy the same way a radio loudspeaker does. Like a loud-speaker, it will also convert acoustic energy back into an electrical signal, so the same transducer can be used for both transmitting and receiving. Since an echo can be down 120 db or more from the outgoing ping, sonar transducers must have a wide dynamic range.

Echo-ranging sonar

The block diagram in Fig. 2 shows a typical echo-ranging sonar. There are five major assemblies: the operator’s console, transmitter, transducer, amplifier and receiver.

The operator’s console normally controls the outgoing power. A transmission pulse generated in the console triggers the transmitter’s oscillator. At the same time, a keying pulse goes to the transmit-receive (T-R) switch in the amplifier, to disconnect the receiver for the duration of the ping. The transmitter pulse then proceeds through the T-R switch to the transducer.

A keying pulse also goes to the receiver. This helps protect the operator from reverberations, which are very strong for a second or two after each ping. The keying pulse reduces receiver gain, then lets it recover slowly as reverberations die away.

By A. N. GLENNON
Once the ping is transmitted, the T-R switch reconnects the preamplifier to the transducer. Received signals then proceed through the preamp to the receiver, where they are processed for presentation to the operator.

The recorder indicated in the diagram uses chemically sensitized paper and a stylus to show the results of every ping. When a submarine has been detected, the recorder can be used to control the pinging rate. The keying pulse then originates at the recorder, instead of the console.

The audio and video receivers for this sonar are similar. Fig. 3 is a block diagram of the audio section. In addition to the reverberation gain control, which is automatic, the operator's master gain control manually sets the final volume of the audio signal from the speaker or phones. Aside from the reverberation gain control circuits, the receivers are straightforward super-heterodyne designs.

Sonar headaches

Although sonars have improved tremendously since the end of World War II, there are still, and always will be, problems associated with them. Even the best equipment is unable to cope with some of the phenomena of underwater sound transmission.

To receive a useful echo, enough sound must be put into the water to compensate for losses in transmission. The most important losses are caused by refraction, spreading and absorption.

Of all the factors that influence underwater sound, sea temperature has the greatest effect: sound travels faster in warmer water. Sound velocity in water is usually between 4,800 and 5,100 feet per second. The fact that it varies even over a small range of values presents problems, because any small change of velocity will cause enough

Fig. 2—Simplified block diagram of a typical echo-ranging sonar.

Fig. 3—Audio circuit of an echo-ranging sonar.

Small echo sounder records ocean depth on sensitized paper.
refraction to handicap underwater communications or search. In point-to-point transmissions, which includes echo ranging, refraction reduces the intensity of received sound by bending sound beams away from where they are aimed, toward regions of slower velocity. The effect is so common that straight-line paths for sound are almost nonexistent. The severity of refraction varies from day to day, and communication or detection ranges can vary from several hundred yards to several thousand yards because of bending.

In deep ocean areas, temperature varies considerably with depth. A fairly common temperature structure is shown in Fig. 4. Here, temperature is constant near the surface, then steadily decreases as depth increases. This structure causes velocity to vary as shown in Fig. 5.

Velocity characteristics of this sort distort a sonar beam as shown in Fig. 6. Because there is a low-velocity region near the surface as well as a deep one, the beam splits into two parts, one bending toward the surface while the other is bent severely downward. Under these conditions, a very deep submarine, or one at periscope depth, might be picked up at a range of over 4,000 yards, while one at 100 feet depth could escape detection until the range was about 2,000 yards. In the "shadow zones," almost the entire signal is lost by refraction. Although some sound will scatter into the zone, the amount is negligible.

As sound spreads out from its source, it gets weaker. The sound passing through a particular area in one place (Fig. 7) has to cover four times the path area, and the effect decreases as distance increases.

Absorption loss is created by molecular effects. Part of it is due to friction, part to molecular excitation. It increases with increasing frequency, and at 10 kc is about 2 db per thousand yards.

Reverberations do not attenuate sound, but reduce the amount of useful echo by raising the background noise level. They are caused by back-scattering of sound from the surface or bottom, or from minute particles in the water. The effect is most serious in the first few seconds after a ping. In tracking a close-in target, reverberations can be high enough to blank the echo out completely.

Acoustic echo ranging is a slow process. Sound travels about 1,600 yards a second in water, compared to 186,000 miles a second for rf energy in air. Since the ping has to make a round trip between transducer and target, sonar range is measured at a rate of 800 yards a second.

A time-base sweep is provided to measure range. Accuracy is difficult to obtain, because of the variations that always occur in sound velocity. Velocity
operators are use as from not
ture.
previously
commercial fisherman
Fishscope
vertical -beamed sonar.

Depth finders
fully large.
set into age,
OCTOBER.

PREVIOUS
Echo sounders, as a result, are
difficult to pick

This continuous variation makes it difficult to pick out one number to use as the velocity of sound. Sonar operators are forced to choose an average, based on the local velocity structure. With a properly chosen average set into the range unit, range errors due to velocity error will not be harmfully large.

Depth finders

Echo sounders aren't affected greatly by the factors that create so much trouble in submarine detection. Since the beams are aimed straight down, refraction is no problem. Spreading and attenuation are compensated for by the hugeness of the bottom as a target. Echo sounders, as a result, are small and compact, and operate at low power. Even so, they must have all the components of a large sonar, or at least provide the same functions.

The echo sounder shown in the photo is completely contained, except for the transducer, in a small cabinet that can be bulkhead-mounted. It was developed for the Navy as the AN/UQN-1B echo sounder, and has now been released for civilian use. It presents a permanent record of depth information on sensitized paper (Fig. 9).

This sort of equipment is useful in ocean survey work, and is also a valuable tool for navigators. In a fog, for example, echo-sounder information can be used to pilot ships within sighting distance of shore or navigational markers.

Another small sonar is the Edo Fishscope. It does not give a permanent record, but provides an A-scope indication of water depth, and the depth of any fish that are within the beam. Fig. 10 shows a fishing boat about to receive echoes showing a school of fish just over the bottom. With this information, the fishermen can cast their nets where they know there are fish, and set the nets to the right depth to catch them. By using their Fishscope, they make more productive cruises.

The instrument has two scales for presentation of its information. One shows all the water directly beneath the boat, to a depth of 250 fathoms. The other scale, available at the flip of a switch, shows any selected 10-fathom sector of this water. In Fig. 11, the Fishscope is indicating a school of fish about 5 fathoms from the bottom, as it appears on each of the two scales.

Checking power transformers

We often run into a power transformer whose proper lead connections are unknown. It is dangerous to wire up such a transformer and try it out as the manufacturer may use a nonstandard color code for his leads, and you might connect the power line to the wrong ones. (It cost me one blown fuse to discover that, on one transformer, the black leads went to the filament winding and not the primary.) An ohmmeter often cannot deliver useful information, especially on larger units where all windings have fairly low resistances.

Therefore, I recommend the following method for testing a new transformer:

Take a source of low ac voltage (say, 6.3 volts) and connect it to the leads you believe connect to the filament winding of the corresponding voltage. Then measure the ac voltages at the other leads and compare the readings with what you expect. If they coincide, then your assumed assignment of leads is correct. If not, try some other leads till you hit the right ones. With this method, a wrong guess can do no damage.—Charles E. Cohn
FM STEREO

COMPONENT

DIRECTORY

By LARRY STECKLER
ASSOCIATE EDITOR

FM STEREO HAS REALLY ARRIVED. THE SYSTEM HAS BEEN SELECTED and approved. Some FM stations are already transmitting stereo programs and others will soon follow. To receive these stereo broadcasts, FM stereo (multiplex) equipment is needed.

Hi-fi component manufacturers are bringing FM stereo receivers to the market as fast as possible. There are adapters for converting existing FM tuners. And there are all-new FM stereo tuners and receivers.

In an attempt to unravel some of the confusion, we queried all hi-fi manufacturers. We asked them about their existing and planned FM stereo gear. This directory is the result of these questions. It lists every hi-fi FM stereo adapter, tuner and receiver known at the time of writing.

Most of the units described are already on the market or will be by the time this article is published. Wherever possible, a photo of the unit is included with the capsule report on its specifications. In some cases photos are not yet available. Some manufacturers have only prototype units that are not suitable for illustration. But it is just a matter of time before they will be coming off the production line.

On the specification end, we have attempted to abbreviate the data now available, picking out the important facts. Where a specific bit of information is given in one listing and not in the next, it just wasn't available for that next unit.

A number of circuits are used in these adapters and tuners. These will be presented and discussed elsewhere. The Crosby schematic appears this month. Others will appear in future issues.

ADMIRAL AMX100
Admiral Corp., 3800 Cortland St., Chicago 47, Ill.
FM Stereo Adapter
Self-powered unit is transistorized. For use with Admiral AM/FM tuners made during 1960, 1961 and 1962. Has gain of 1; frequency response, 20-20,000 cycles. 38-ke signal is suppressed 40 db. All controls are preset. Channel separation better than 26 db. 8-1/16 x 4 3/4 x 4 inches.

ALTEC-LANSING 359-A
Altec-Lansing Corp., 1315 S. Manchester Ave., Anaheim, Calif.
FM Stereo Adapter
Self-powered adapter for Altec 353A, 309A and 312A receivers and tuners. Adapter has 5-volt low-impedance output. It has no controls and is designed to be located out of sight behind the tuner chassis.

AUTOMATIC MD-80
FM Stereo Adapter
All-transistor FM stereo adapter for use with companion FM tuner. Operates off 9 volts from tuner or separate battery. On-off and balance controls.

BELL MXA-1
Bell Sound Div., 555 Marion Rd., Columbus 7, Ohio

FM Stereo Adapter $39.95
Piggyback unit uses three tubes and two diodes. Becomes integral part of Bell tuners. Can be used with other tuners with response to 53 kc. Adapter output 1 volt. High impedance. Response 20-15,000 cycles ±3 db. Hum and noise 50 db down. 38-ke carrier and harmonics 60 db down. No controls. Channel separation, 30 db.

BELL MXP-2

FM Stereo Adapter
Self-powered version of the MXA-1. Designed for use with Bell tuners, it can also be used with other tuners that have high-frequency response to 53 kc and provision for a multiplex output jack. All other characteristics the same as the MXA-1.

BOGEN PX60
Bogen-Presto Co., PO Box 500, Paramus, N.J.

FM Stereo Adapter $369.50
Self-powered unit for Bogen tuners and other makes that have wide bands of spread and good if linearity. Adapter output 1 volt, from low-impedance cathode follower. Response flat 50-15,000 cycles. Hum and noise 60 db down. Power, mono-stereo, stereo dimension, separation controls, 24-db channel separation. 9 x 4 3/4 x 4 3/4 inches.

RADIO-ELECTRONICS
Stereo Tuner

Stereo Receiver

BOGEN RP40A

Stereo Receiver, preamp and dual 22-watt amplifier. Complete AM/FM stereo receiver. Channel separation better than 20 db. 16 x 6 x 13½ inches. $399.95

Stereo Receiver

BOGEN RP200

Complete AM/FM stereo receiver. Channel separation better than 20 db. All general characteristics as the Bogen PX60 adapter. $299.95

Stereo Receiver

BOGEN RP16A

Complete AM/FM stereo receiver. Channel separation better than 20 db. All general characteristics as the Bogen PX60 adapter. $249.95

Stereo Tuner

BOGEN TP60

Complete AM/FM tuner with built-in multiplex section. Channel separation better than 20 db. Multiplex section has same general characteristics as the Bogen PX60 adapter. 16 x 6 x 9 inches. $269.95

Stereo Tuner

BOGEN TP200

Complete AM/FM tuner with built-in multiplex. Response 20-18,000 cycles ±0.5 db. 38-kc carrier and harmonics are suppressed. General multiplex characteristics same as Bogen PX60 adapter. 15 x 4¾ x 12½ inches. $199.95

Stereo Tuner

CROSSBY MX-101

Universal FM Stereo Adapter

EICO MX99

Electronic Instrument Co., 33-00 Northern Blvd., Long Island City 1, N.Y.

FM Stereo Adapter

EICO MX600-D

Eric Engineering, 8270 Santa Monica Blvd., Los Angeles 46, Calif.

FM Stereo Adapter

ERIC MX600-D

Self-powered adapter for use with all Eico FM equipment and any other component FM tuners that use a ratio detector and have a multiplex output jack. Filters out 47-, 38- and 19-kc carriers. Indicator lamp lights when unit is receiving stereo program. 35-db separation between channels over entire audio range. 9¾ x 6½ x 3¾ inches.

CROSSBY MX-80

Crosby Electronics Inc., 135 Eileen Way, Syosset, N.Y.

FM Stereo Adapter

CROSSBY TP200

CROSSBY MX99

DYNACO FMX-3

FM Stereo Adapter

DEWALD F-400

DeWald Radio Mfg., 35-15 37th Ave., Long Island City 1, N.Y.

FM Stereo Adapter

DEWALD R-1103

FM tuner with built-in multiplex circuitry. Multiplex section has same general specifications as the DeWald F-400 adapter. Complete 13¾ x 4⅜ x 11½ inches.

www.americanradiohistory.com
FM Stereo Adapter
Self-powered adapter for use with all Fisher FM tuners, receivers and other tuners having ratio detectors and multiplex outputs. Stereo balance and selector switches. Stereo beacon lights to indicate stereo program is being received. 4 1/8 x 4 1/8 x 12 inches.

G-E MA-2G
General Electric, Electronics Park, Syracuse, N.Y.
FM Stereo Adapter
Unit is self-powered. Requires input of 1 to 1.5 volts rms corresponding to 75-kc deviation. Hum and noise 60 db down. Response 50-15,000 cycles ±3 db. 10 x 2 3/4 x 3 inches.

GRANCO 809
Granco, 83-30 Kew Gardens Rd., Queens, N.Y.
Stereo Receiver
Complete stereo receiver (AM/FM tuners, stereo preamp, dual amplifiers) with built-in multiplex circuitry.

GROMMES 101GTA
Precision Electronics Inc., 9101 King St., Franklin Park, Ill.
Stereo Tuner $129.90
FM tuner with optional built-in multiplex circuitry. No stereo specifications available.

GROMMES 500
Stereo Receiver $339.90
FM/AM tuner, stereo preamp, dual 20-watt amplifiers. Has built-in multiplex as an option. No multiplex specifications available.

GROMMES 103GTA
Stereo Tuner $299.90
FM/AM tuner with optional built-in multiplex circuitry. No data available on multiplex section.

GROMMES 101GTA

HARMAN-KARDON CITATION IIIMA
Harman-Kardon Inc., Ames Court, Plainview, N.Y.
FM Stereo Adapter (wired) $89.95
Mounts on and powered by Citation III FM tuner. New escutcheon for tuner allows for adapter controls. Tuner chassis already has holes for mounting controls. Wired unit available about Oct. 1. Kit version should be available before end of year.

HARMAN-KARDON MX500
FM Stereo Adapter
Plug-in adapter uses two tubes and two semiconductor diodes. For use with manufacturer's F500, ST360A, ST360 and ST350. 38-ke notch filter drops out 38-ke carrier to avoid interference with bias oscillator of a tape recorder when one is used.

HARMAN-KARDON MX600
FM Stereo Adapter $49.95
Snaps onto back of tuner and draws power from it. For use with TA230, TA224 and TA260 receivers. Consists of two-stage subcarrier main amplifier followed by a 19-kc synchronous oscillator. Output level 1.25 volts. Distortion less than 1%. Frequency response 15-15,000 cycles ±1 db.
HARMAN-KARDON MX700

FM Stereo Adapter
Self-powered adapter for use with all Harman-Kardon tuners and receivers that have multiplex outputs. Same circuitry as the MX-600 with additional power supply.

HARMAN-KARDON T300X

Stereo Tuner $149.95
AM/FM tuner with a built-in multiplex section. Multiplex circuitry is same as in MX-600 snap-on adapter.

HEATHKIT AC-11, ACW-11

FM Stereo Adapter
Kit $33.50
Wired $56.25
Self-powered adapter plugs into multiplex output jack of quality FM tuners. Three-tube circuit insures low distortion with simplified balanced-diode detector. Controlled signal matrixing for maximum channel separation. Frequency response 50-15,000 cycles. 3 kHz x 3 kHz x 9 kHz inches.

KARG MX-4

Karg Laboratories Inc., 132 Ely Ave., S. Norwalk, Conn.
FM Stereo Adapter $64.50
Self-powered unit will work with tuners that have a 100% modulated output between approximately 0.2 and 1 volt.

HEATHKIT AC-11, ACW-11

Adapter output 2 volts, impedance 10,000 ohms. Response 40-15,000 cycles ±2 db. Hum and noise 55 db down. 38-kc signal and harmonics 40 db down. On-off and separation controls. Channel separation 28 db. 5 x 5 x 8 inches.

KNIGHT KN-MX

Allied Radio, 100 N. Western Ave., Chicago 80, Ill.
FM Stereo Adapter $39.95
Self-powered adapter will work with FM tuners that have wide-band IF's and discriminator—to 250 kc. Audio output at least 0.4 volt at 50% modulation. Adapter output 2.5 volts. Frequency response 50-15,000 cycles. Hum and noise 50 db down. 38-kc signal and harmonics suppressed 20 db. Separation and power controls.

KNIGHT KN-125M

Stereo Tuner $179.95
FM/AM tuner with built-in multiplex circuitry for receiving stereo FM broadcasts. Characteristics of the multiplex section are similar to the Knight KN-MX adapter.

KNIGHT KN-136M

Stereo Tuner $119.95
FM/AM tuner has built-in multiplex circuitry with characteristics similar to the Knight KN-MX adapter.

KNIGHT KN-150M

Stereo Tuner $149.95
Tuner with built-in multiplex circuitry. Characteristics of multiplex section similar to Knight KN-MX adapter. Has indicator light to show when stereo program is being received.

KNIGHT KN-250M

Stereo Tuner $139.95
All-transistor FM tuner with built-in multiplex circuitry for receiving FM stereo broadcasts. Characteristics of the multiplex section are similar to the Knight KN-MX adapter.

KNIGHT KN-310M

Stereo Receiver $239.95
All-transistor unit has FM tuner, multiplex built-in, stereo preamp and dual 20-watt amplifiers. Characteristics of multiplex circuitry similar to Knight KN-MX adapter.

OCTOBER, 1961
PACO MA-100
Paco Electronics Co., Inc., 70-31 84th St., Glendale 27, N.Y.

FM Stereo Adapter
Self-powered adapter for Paco ST-45 and ST-25 tuners.
Can also be used with many other wide-band tuners.
Dimension and volume controls, mono-stereo switch. 19- and 95-kc signals are suppressed.

PILOT 100
Pilot Radio, Corp., 3706 36th St., Long Island City, N.Y.

FM Stereo Adapter
$49.50
Self-powered adapter designed for Pilot receivers but will work with tuners that have wide-band circuits.
Output is 2 volts at 100% modulation at their multiplex output.
Adapter has 2-db gain, low-impedance output. FCC standards as to frequency response and channel separation.
5 x 3 x 12 inches.

PILOT 200

FM Stereo Adapter
$79.50
Self-powered adapter works with wide-band tuners whose multiplex output is between 0.2 and 2 volts, with 100% modulation.
Same general characteristics as the Pilot 100 but automatically switches in and out. FM stereo 19-kec pilot carrier turns adapter on. When 19-kec signal is absent, adapter goes off. 5 x 3 x 14 inches.

H. H. SCOTT 335

FM Stereo Adapter
$99.95
Adapter is designed to work with Scott tuners. Output is 2 volts at 90% modulation. Frequency response 20-15,000 cycles ±1 db. 38-kec carrier and its harmonics suppressed at least 50 db.
Selector, noise filter, level and adapter in-out controls. Channel separation approximately 35 db.
Separate outputs for tape recorder. Indicator lights when stereo program is received. 4 3/4 x 6 1/4 x 12 3/4 inches.

H. H. SCOTT 350

Stereo Tuner
$199.95
FM tuner with built-in multiplex circuitry. Frequency response 20-15,000 cycles ±1 db. Hum and noise 60 db down. 38-kec carrier and its harmonics suppressed at least 50 db.
Stereo indicator lights when stereo program is being received. Channel separation 35 db or better. 4 3/4 x 15 x 10 inches.

SHERWOOD A3MX
Sherwood Electronic Labs., 4300 N. California Ave., Chicago 18, Ill.

FM Stereo Adapter
$45.00
Plug-in unit is powered by tuner it is used with. Designed specifically for S2200 and S-3000III. Two-tube circuit is similar to S3MX but does not have hiss filter and 60-kec filter is in circuit at all times.

SHERWOOD S3MX

FM Stereo Adapter
$69.50
Self-powered unit can be used with Sherwood FM tuners that have multiplex output and wide-band detector.
Adapter circuitry uses four tubes plus rectifier. Hum and noise 60 db down. Output 2 volts with less than 1/2% distortion.
Filter circuits remove 19-kec pilot carrier and 67-kec subchannel transmission. Frequency response 20-15,000 cycles ±1 db. 5 1/4 x 10 1/4 x 4 inches.

SHERWOOD S-3000 IV

Stereo Tuner
$160.00
Complete FM stereo tuner. Adapter circuitry has phase-locked synchronous oscillator to reinsert multiplex carrier.
Filter circuits remove 19-kec pilot carrier and 67-kec subchannel transmission. Frequency response of adapter section is 20-15,000 cycles ±1 db.

SHERWOOD S-8000

Stereo Receiver
$299.50
Complete FM stereo tuner, preamp and amplifier. FM section has controlled frequency and phase response of amplifier, limiter and discriminator, flat to 75 kc, for minimum distortion and maximum separation of the multiplexed signal. Multiplex circuitry same as A3MX plug-in adapter. 16 1/4 x 14 x 4 1/2 inches.
ULTRASENSITIVE PHOTOGRAPHIC LIGHTMETER

By ALEN E. GORDON

When taking indoor pictures or night shots, where there is a minimum of light, the average commercial light meter is useless. It just isn't sensitive enough to give a reading. But the homemade unit described here is so sensitive that it will give accurate readings for light levels that require exposures as long as 30 seconds. It is also designed to take light readings down the narrow tubes of microscopes and medical instruments. The secret is a cadmium sulphide photocell.

The man who takes indoor pictures or night photos without flashbulbs uses very sensitive film and fast lenses. For such work, most photographers use regular light meters with a booster cell. Even this booster is often inadequate because it simply does not have enough sensitivity to measure the small amounts of light available.

In my work I take pictures down the tubes of microscopes, bronchoscopes and other medical tools. No light meter was small enough to fit into a ½- to 1-inch diameter tube and read the light accurately. Most commercial units have photocells that are about 1 by 2 inches—much too large for a microscope. Furthermore, this work requires high sensitivity, and the amount of light varies tremendously with microscope diaphragm settings, slide thickness and depth of staining. The only way in the past was to set the exposure by trial and error.

Finished unit. Push S1 for light reading.

This meter is an excellent tool for all these purposes. It can be hand-held and is small enough to fit in your pocket. Sensitivity is high—it will read the dimmest light in the corner of a room lit by ordinary lightbulbs. The photocell itself is as small as a pencil eraser and, when mounted, it can easily be inserted into a microscope barrel.

The circuit

The heart of the unit is a cadmium selenide photocell manufactured by Clairex. Use their model CL-4. It is mounted in a plastic case ¼ inch in diameter and ½ inch long. The cell is not like the usual light-meter photocell—it does not generate electricity—but it is infinitely more sensitive. Its resistance varies as the amount of light hitting it changes, adjusting the amount of voltage that can be fed through it to produce a meter reading. This is a disadvantage of the unit; it needs batteries, and the probable reason why it is not used in commercial meters although the battery drain is low, never more than 5 ma.

The circuit (Fig. 1) shows what is basically an ohmmeter for measuring the resistance of the cell. With no light hitting it, the resistance is very high. This drops as increasing amounts of light strike the cell. A 22.5 volt hearing-aid battery powers the unit. The current is read on a miniature 50-µa meter. A less sensitive meter or a lower battery voltage lowers the unit's sensitivity. The opposite is also true. If an even more sensitive meter were needed, you would have to go to high-voltage batteries. If portability could be sacrificed, a high-voltage power pack could be built or a vacuum-tube microammeter used.

The photocell is temperature-sensitive. A temperature change from 50° to 90°F causes a 5% change in the meter reading. For those who are mathematically inclined, the temperature coefficient of resistance at 25°C and 10 foot-candles is 0.25% per °C. However, this has not been a problem.

One thing that definitely has to be kept in mind is the spectral response (Fig. 2). Peak sensitivity is at 6,900 A, which is the color red. In all ordinary scenes, this can be safely ignored. But, if the scene is pure blue and green with absolutely no color in the yellow-red range, decrease the exposure two or three stops to compensate for the lower meter sensitivity. As you can imagine, scenes composed of only blue and green light are extremely rare. In shooting many rolls of film at night along the streets of New York, I have never yet come across an overexposed shot because of this. Other Clairex photocells

Fig. 1—Circuit of the sensitive light meter.

R1—pot. 5,000,000 ohms, miniature
R2—220,000 ohms, ½ watt
R3—470,000 ohms, ½ watt
R4—4,700 ohms, ½ watt
BATT—22.5 volts (Eveready No. 505 or equivalent)
M—0-50 µa, dc (Lafayette TM-205 or equivalent)
PC—Clairex CL-4
S1—slip normally open pushbutton
S2—double-pole 4-position rotary
Case: 1/2 x 2 x 4 inches
Miscellaneous hardware

OCTOBER, 1961
Fig. 2—Spectral response of the CL-4 photocell. (high-impedance models unsuitable for a lightmeter) have peak responses in the blue-green spectrum. The high sensitivity of the CL-4 to infrared light makes this meter useful for infrared photography too.

Construction hints

Mount the CL-4 photocell in an ordinary bushing for a ¼-inch shaft. The exact way of mounting the cell depends on your needs. The farther back in the case the cell is, the narrower its angle of light acceptance. This is shown in Fig. 3. This phenomenon is useful if you are taking a picture of very light areas with heavy shadows. The ordinary meter has a wide acceptance angle and will read an average from this scene. The only way you could properly expose the film is to get up close and read the light in the bright as well as the dark areas and then determine your exposure accordingly. But what happens if this cannot be done, as in a picture of a valley with shadows in it? Simply use the principle of Fig. 3 to make a meter of very narrow light acceptance and measure both readings from the same spot. In my unit I mounted the photocell in the bushing as deep as I could get it.

The bushing can be extended with a piece of Bakelite tubing. Paint the inside of the bushing or Bakelite tube dull black to minimize reflections. Be sure that the plastic is really lightproof because the meter is extremely sensitive. You cannot even use your finger or palm to block out the light to demonstrate that the meter will return to zero with no light. It will actually read the light coming through your finger, and you must use a piece of metal to block it off.

S1 is positioned so it is directly under the thumb. This spring-return switch is depressed to read the light or to calibrate. In this way no current flows unless S1 is on and you cannot run down the battery by forgetting to turn off the switch. The parts are laid out so S1 is under the thumb of a right-handed person, and everything has to be reversed for the left-handed. Position 1 on the meter is the least sensitive scale and position 3 the most sensitive. Position C is for adjusting the ohmmeter circuit for variations in battery voltage. At this setting the photocell is completely shorted out and resistor R4 is connected across the battery to measure the voltage with a 5-ma current drain. The meter is adjusted to full scale with R2, a miniature unit with a screwdriver shaft I adjust with my fingernail. This adjustment has to be made only rarely and the rheostat could be put inside the case.

Any 2-pole 4-position switch can be used for S2. The battery mounts in a standard aluminum bracket.

Calibration

Calibration is simple in principle but a little tricky to carry out. In principle, you hold the meter side by side with a meter of known accuracy, and compare readings. Point them toward and away from a steady light source—use a 100-watt lamp. For example: to get the figures shown on the calibration chart in Fig. 4, set the calibrated meter for an ASA film speed of 125 and an aperture of f/5.6. This way all you have to read is the shutter speed. With the two meters side by side read the speed reading off the calibrated meter. On my unit, when I got an exposure time of 1/125 second, my sensitive meter read 27 µa on range 2. When the calibrated meter read 1/30 second, the sensitive meter read 14 µa on range 1 and 41 µa on range 2. The only problem comes when you reach the lower limits on the scale of the reference meter. Then you will need a neutral density filter of some known value. These filters cut down the amount of light by some known amount and do it consistently over the light spectrum. If you do not already own one, you can pick up a filter for about $2.

Place the filter over the sensitive meter’s photocell. Now when you point the two meters toward a light source, subtract the filter factor from the reading on the commercial meter. For example, if the filter has a 5-stop factor and the commercial meter read 1/30-second exposure at f/2 with an ASA film speed of 125, the reading on your sensitive meter (15 µa on range 2 and 40 µa on range 3) is equivalent to a 1/30-second exposure at a shutter opening 5 stops larger than f/2 (f/2, f/2.8, f/4, f/5.6, f/8, f/11). Or since the calibration chart assumes that the ASA stays at 125 and the aperture at f/2, shutter speed is slowed down five steps (1/30, 1/15, 1/8, 1/4, 1/2, 1 second). Do this step by step and you will get calibrated readings that are lower than any possible with the commercial unit.

Do not hold the new and the reference meters in your hand—small angular changes result in large meter-reading changes, and all errors will affect the weaker measurements. Hold the meters firmly on a desk top and make all readings carefully. After several practice runs you will get consistent readings and make a good calibration chart.

The calibration charts for my meter

<table>
<thead>
<tr>
<th>(ASA 125 Film At 1/2)</th>
<th>SPEED IN SECONDS</th>
<th>METER READING RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/250</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1/125</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1/60</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>1/30</td>
<td>14</td>
<td>41</td>
</tr>
<tr>
<td>1/15</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>1/8</td>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>1/4</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>1/2</td>
<td>21</td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>21</td>
</tr>
</tbody>
</table>

Fig. 3—How moving photocell back into tube narrows angle of accepted light.

Fig. 4—Basic calibration chart.

Inside the hand-sized case.
are shown in Figs. 4 and 5. Fig. 5 is plotted on 5-cycle semilogarithmic paper. The lower scale is the meter reading: 0–50 μA. The left-hand scales are a little unusual. To understand them, you have to know something about the ASA system of rating film. In this system, which is the one used in the United States, the higher the ASA number the more sensitive the film. If you double the ASA number, you need only half the exposure time, all other things being equal.

Not knowing what type of film I was going to use, scale A was set up in "ASA-seconds at f/2." What this means is that your camera is set at f/2, then you read a figure "ASA-seconds." You read it off the number, and divide by the ASA number of the film. This gives the exposure time. Let us say you are using Kodachrome with an ASA rating of 10, and the meter reads 270 on the most sensitive scale (mETER RANGE 9). For this, scale A at the left reads 500 ASA-seconds. (Follow 27 on the meter reading scale at the bottom of the chart until it intersects the proper METER RANGE scale. Then follow across to the left and read the answer on scale A.) Dividing this by the ASA number, 10, gives an exposure time of 50 seconds. With ASA 800 film, the exposure time is 50/800 or 1/16 second (the closest shutter speed). With ASA 50 film it is 10 seconds. Scale A is a general scale you can use with any type of film new or old.

To save the work of dividing out the ASA number, I also made up scales to read the exposure time for my two favorite films. Scales B and C have the ASA number divided out so you can read off the exposure times directly. Scale B is labeled "ASA 50." This is the one I use when I shoot with Panatomic X film. Scale C is labeled "ASA 125," the rating of the fastest indoor color film available today, high-speed Ektachrome. You can make up scales like this or one or like Fig. 4. It is exactly the same thing as scale C. It is set up for ASA 125 film and 1/2. I then read off the exposure time vs. the meter reading.

You can make up all sorts of scales for these charts. If your camera has a maximum opening of less than f/2, the scales can be altered. In the example above with Kodachrome, if the exposure at f/2 is 50 seconds, then at f/2.8 it is 100 seconds; at f/4, 200 seconds, etc. When you make up new scales, just cut out a strip of the logarithmic paper and write the exposure times on it. Slide it up and down until it is at the right spot on the main chart and then glue it in place. That is how I made scales A, B and C.

There are two reasons why all the scales are at an aperture of f/2. One is that this is the speed of the fastest lens I own and the one I use when shooting at night. The second is that these scales work out well when shooting with a microscope without any lens at all. The exposure times on the scales for f/2 give a perfect exposure every time.

When I do available-light photography at night, calibration curves are too cumbersome and hard to read quickly so I use a chart like Fig. 4. I put this on a card and slip it into my pocket. When doing photography of this type you need two people, the meter, the calibration chart and possibly a flashlight to read both. You hold the camera and the other person holds and reads the meter.

One final suggestion: since you will come to prize this meter, do not toss it into a case with the other photographic equipment. The case is plastic and easily scratched. It should be kept in a soft felt-lined bag.

Fig. 5—Detailed universal calibration chart.

<table>
<thead>
<tr>
<th>SCALE C</th>
<th>SCALE B</th>
<th>SCALE A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECONDS AT ASA 125</td>
<td>SECONDS AT ASA 50</td>
<td>ASA-SECONDS</td>
</tr>
<tr>
<td>1/250</td>
<td>1/300</td>
<td>5</td>
</tr>
<tr>
<td>1/125</td>
<td>1/150</td>
<td>10</td>
</tr>
<tr>
<td>1/60</td>
<td>1/100</td>
<td>20</td>
</tr>
<tr>
<td>1/30</td>
<td>1/60</td>
<td>30</td>
</tr>
<tr>
<td>1/15</td>
<td>1/30</td>
<td>50</td>
</tr>
<tr>
<td>1/8</td>
<td>1/15</td>
<td>100</td>
</tr>
<tr>
<td>1/4</td>
<td>1/8</td>
<td>200</td>
</tr>
<tr>
<td>1/2</td>
<td>1/4</td>
<td>500</td>
</tr>
</tbody>
</table>

NOW IT'S A LAW

The state of Pennsylvania recently passed a law prohibiting the sale of used or reactivated radio or TV tubes unless clearly labelled. For more than five years it's been standard advertising practice in Radio- Electronics that all mail order tube advertisers state so specifically if their tubes are new and unused or if they are seconds or rejects.
By LEONARD FELDMAN*

SINCE APRIL 19, 1951, THE DAY OF THE FCC stereo multiplex decision, we have been literally deluged with inquiries concerning the problems of multiplex conversion of present-day tuners and FM receivers. Naturally, interest is extremely keen, for stereo via FM promises to provide the missing music source for stereo listening and stereo home recording.

Are all tuners convertible?

Virtually all FM tuners now in the hands of the public can be converted to stereo by adding a multiplex adapter. That does not mean that all tuners will work equally well after conversion. Many inexpensive tuners may, because of their simple ratio-detector type circuits, actually produce better stereo results than some of the more expensive tuners featuring the well known Foster-Seeley limiter high-impedance discriminator circuit, long considered the standard in FM detector design. Problems resulting from the particular tuner design will be dealt with later. For the moment, two degrees of "readiness for conversion" should be considered: tuners that already have a multiplex jack and tuners to which this jack must be added.

Tuners with multiplex jacks

Almost all tuners built in the last 5 years or so already have a multiplex jack. It is usually located at the rear of the chassis (or on the top of the chassis, adjacent to the ratio detector or discriminator transformer). If a circuit diagram of the particular tuner is not available, trace the actual connection of the multiplex jack to determine whether it is wired to meet FCC-approved standards.

Fig. 1 shows a discriminator circuit that does have a multiplex jack. Nevertheless, if an adapter were connected to this jack, it would not work. You will note a 300-µf coupling capacitor in series with the MX (multiplex) jack. It was designed into this circuit at a time when it was universally assumed that two outputs would be required to feed a multiplex adapter—one from the MX jack, the other from the main tuner output. If such a technique had become standard, the MX jack would have provided only high-frequency subcarrier components to the adapter (easily passed by the 300-µf coupling capacitor). The main output would have passed normal main-channel audio-frequency components. In the FCC-approved system, all frequency components (low-frequency audio plus high-frequency subcarrier sideband components) must be fed to the adapter from the one multiplex jack. Therefore, if you find such a small blocking capacitor, wire a low-value resistor (200 to 300 ohms) across the capacitor or short it out completely.

Fig. 2 shows a ratio-detector type circuit. Here, too, a multiplex output jack has been provided and, since no coupling capacitor is shown, this particular circuit is ready for connection to a multiplex adapter.

Adding a multiplex jack

You can add a multiplex jack to an FM tuner in a few minutes. Locate the discriminator or ratio detector and examine its wiring. You will always find a series resistor, followed by a capacitor to ground whose product of values (in ohms times farads) equals approximately .000075 (75 µsec). For example, a 75,000-ohm series resistor will be followed by a .001-µf capacitor to ground. (In practice, these circuits may have R-C products ranging from 50 to 100 µsec.) This combination of values is known as the "de-emphasis network" and rolls off or attenuates the high audio frequencies which have been pre-emphasized at the transmitter. (The resulting audio output, after de-emphasis, has flat frequency response from 30 to 15,000 cycles.)

The multiplex connection should be made just ahead of this de-emphasis network (at the end of the 75,000-ohm resistor away from the .001-µf capacitor, for example). In locating the de-emphasis network, do not be surprised if the product of the values of R and C is not exactly .000075. In Fig. 2, for example, the resistor is 68,000 ohms while the capacitor is .001 µf, giving an apparent de-emphasis characteristic of .000068. Actually, the manufacturer is depending upon stray capacitance of some of his wiring at this circuit point to contribute the missing µf. Then, too, certain European tuners and receivers are built to different standards, having a de-emphasis characteristic of .000050 or so.

If more than 6 inches of cable is required between the MX output circuit point and the input to the multiplex adapter, use only low-capacitance shielded cable such as RG-58/U or RG-59/U. Under no circumstances should the distance between tuner and adapter exceed 3 feet. If a phono jack is added to the chassis, use standard pin-type phone plugs at the ends of the cable that connects the tuner and adapter. Some adapter manufacturers provide a fixed

*Director of Engineering, Crosby Electronics Inc., Syosset, N.Y.
to observe frequency and tuner rate attenuator, your indicating as distortion output stereo.

Indication and an ment according to Fig. 3. Tuner extension length.

Many -cycle modulation to the

Tuner at that high output. This becomes apparent that you must be careful when trying to match a given tuner to a given adapter. The most important consideration is output voltage available from the tuner at its detector.

Many tuners have a stage of audio amplification following detector, to provide high output. This is of no use whatever, since the adapter is connected ahead of any such amplification. To determine available output from a given tuner detector, set up your test equipment according to Fig. 3. Apply an FM signal at 100-µv 75-ke deviation with 400-cycle modulation to the tuner. If your generator does not have an accurate attenuator, reduce signal strength to the lowest value available. Tune the tuner or receiver to the generator frequency and measure the audio output from the multiplex jack with an ac vtm.

At this point it is a very good idea to observe the output of the tuner with an oscilloscope. If, at 75-ke deviation and 100-µv rf input, distortion is seen (Fig. 4), you’ve got a pretty good indication that the tuner is badly out of alignment. If alignment does not improve the situation, the tuner is not likely to be suitable for multiplex stereo. Check the appearance of the output at even lower levels of rf signal input. Most tuners will start showing distortion of the kind shown in Fig. 4 as the signal strength is reduced, indicating reduced bandwidth at low signal levels.

While adequate bandwidth alone does not insure perfect stereo results after conversion, lack of bandwidth is a sure sign of trouble ahead.

After determining the available output voltage, check the specifications of the adapter to be used. The important specification may appear as input voltage required from the tuner or as pilot-carrier amplitude required for proper operation. If the input voltage requirement is given, it is easy to check for adequate voltage. Where only pilot-carrier voltage required is stated, divide the tuner output voltage by 10 to determine if it is adequate. For example, let’s say a tuner produces 1 volt out for 75-ke deviation, and the adapter to be used requires 65 mv of subcarrier pilot. Dividing the 1.0-volt tuner output by 10 yields 0.1 volt (or 100 mv), which is greater than the 65 mv required by the adapter. Thus, this tuner would feed enough voltage to the adapter to actuate its circuits properly.

Some wide-band tuners, while offering very good bandwidth (no distortion of the kind shown in Fig. 4, even at a few microvolts input), may not have enough audio voltage at their discriminator or ratio detector outputs. More elaborate adapters featuring extra stages of amplification have to be used with these tuners. Some manufacturers have indicated that their adapters are suitable only for their tuners, most of which have very low audio output at their mx jacks. Since these manufacturers have added gain to their adapters, there is a possibility that if these adapters were used with more conventional, high-output tuners, the high voltage available might overload particular form of adapter. Thus, both the minimum and maximum voltage requirements of an adapter should be known.

Signal strength vs stereo reception

Unfortunately for some prospective stereo listener, low in fringe areas, the FCC, in choosing the approved system, was more concerned with the monophonic listeners than with the future stereo market. The system chosen has the least degradation when a mono listener tunes in a stereo broadcast monophonically. Conversely, the system chosen has the most degradation in stereo listening of all the systems evaluated. Simply stated, this means that a barely usable mono signal strength will be unsatisfactory when stereo is broadcast on the same station. In fact, the signal-to-noise reduction can be as much as 13 to 20 db compared with mono broadcasts. Thus, a given tuner in a given installation which provided a 30-db signal to noise condition (minimum acceptable for serious listening) may have only a 10- to 17-db signal-to-noise ratio (definitely unusable) when stereo is broadcast. Another way of stating the same facts is: the range of a station is substantially reduced when it broadcasts stereo.

Antenna installations

Because of the stereo range problem, the antenna installation becomes extremely important. FM users have been spoiled and expect adequate reception using little more than a hank of wire hooked to one of the antenna terminals. This arrangement simply won’t do for stereo. A good rule to follow is to pay as much attention to the antenna, its location, orientation and quality as you did in the early days of TV. The FCC, while acknowledging inferior reception range for stereo, has not authorized increased transmitter power to compensate for the reduced service range. So your only solution is to increase the signal received at the tuner’s antenna terminals. The mere substitution of an adequate antenna for the usual piece of wire often results in a signal improvement of 10 to 1—far more than the degradation brought about by stereo transmission.

Of course, if you already have a superior antenna installation, but the distance to the transmitter is too great listening may have performance barely usable, don’t even try a stereo conversion. The only solution in such instances is to buy a new and more sensitive tuner. Such extreme situations should
be few and far between, however, particularly in view of the mushrooming growth in the number of FM stations throughout the country.

Adapter output connections

In approaching the problem of connecting the adapter outputs to amplifier inputs, we are on more familiar ground. Here, two ordinary shielded phono type cables can be used. If the adapter has cathode-follower output circuits, lead length is not critical and may be as great as 200 feet. The adapter outputs should connect to a pair of high-level high-impedance inputs on the amplifier. Many recent stereo amplifiers have an \(\pm X \) position on the selector switch. Use the pair of inputs corresponding to this position of the selector switch. Actually, these inputs are similar to aux or tuner positions on earlier amplifiers and those positions may be used.

Once the adapter has been connected, the \(\pm X \) amplifier input is used for either stereo or monophonic FM listening. Either way, signal is fed to both speakers when the adapter is used. If the tuner is an AM-FM unit, and AM listening is desired, the regular main output connection from tuner to amplifier must be retained, and the selector switch will have to be set to the tuner position.

Adapter location

Some adapters have controls on their front panels, others do not. Obviously, those that feature controls such as special noise filters, separation controls and even balance controls should be installed so they are accessible during normal use. Adapters without front-panel controls can be installed inconspicuously so no front-panel cutout is required. All adapters, however, must be adjusted after being installed. This technique will be discussed shortly.

Problem tuners

As mentioned earlier some narrow-band high-impedance discriminator type sets may cause trouble when adapters are added. Formerly, the discriminator (and, for that matter, the i-f circuits) handled low-frequency audio (up to 15 kc), and were called upon to detect such signals faithfully. Now, in addition to recovering audio, the discriminator must detect audio plus an assortment of frequencies ranging from 19 to 53 kc. Not only must these frequencies be recovered with low distortion, but with faithful amplitude and phase response as well. Lack of accurate phase response results in decreased stereo separation. (A left-only signal will produce some output from right channel, just like a lower-grade stereo cartridge.)

Improper amplitude response causes distortion in the output signal and usually decreases separation, particularly where high-frequency audio tones are involved. Distortion in the recovered composite waveform, however, will cause really serious distortion. Since these detectors have high output impedances, they are extremely susceptible to high-frequency rolloff because of the cable capacitance between discriminator and amplifier as well as because of their own rf filter capacitor (100 \(\mu \)f in Fig. 1). This filter capacitor has an additional detrimental effect known as diode clipping. Fig. 5 shows the composite waveform of a left-only signal as seen at the discriminator output.

Phase response may be checked with the aid of a network analyser. Waveforms in Figs. 6 and 7 show the same waveform reproduced by a set whose discriminator has insufficient bandwidth. Waveforms in Figs. 6 and 7 will result in severely distorted audio output from the adapter. There is nothing the adapter can do to correct these deficiencies—they are inherent in the tuner itself. The defect of Fig. 7 can to some extent be rectified in the tuner by reiring the discriminator output, lowering the output impedance of the discriminator (and hence improving the frequency response of this circuit) by about 2 to 1. The changed values are shown in Fig. 8 and should be compared with the circuit of Fig. 1.

Adaptor problems

It is far too early to attempt to predict what service problems will arise in adapters themselves, nor is this discussion intended as a circuit troubleshooting course for adapters. Certain adjustments, however, have already been found to be critical, and these will be mentioned (Fig. 9).

Separation

As you no doubt know by now, stereo programs are transmitted by one FM station by sending \(L + R \) (the sum of both channels) in the usual manner. \(L - R \) (the electrical difference between both channels) is transmitted via an ultrasonic subcarrier and its sidebands. Actually only the sidebands are transmitted—the subcarrier itself is suppressed. A low-amplitude 19-kc pilot signal is also transmitted so the subcarrier can be reinserted in proper phase relationship to the sidebands at the receiving end.

The separate \(L \) and \(R \) are recovered by performing the following electrical additions and subtractions: \(L + R \) and \(L - R \). Subcarrier and its sidebands. The separate \(L \) and \(R \) are recovered by performing the following electrical additions and subtractions: \(L + R \) and \(L - R \). It is obvious that exactly equal amounts of \(L + R \) and \(L - R \) must be added and subtracted from each other to recover a distinct \(L \) and a distinct \(R \). If these \(L + R \) and \(L - R \) quantities are not recombined in proper proportion, the \(L \) signal will have some \(R \) mixed in and the \(R \) signal will contain some \(L \)—stereo separation will be reduced. The FCC requires that these two quantities be transmitted in correct proportion. There is no guarantee, however, that a given tuner will recover them in the same proportion. Usually, the \(L - R \) information (contained in the frequencies from 23 to 55 kc) is attenuated compared with the \(L + R \) information because of the poor high-frequency response of the detection circuit of most tuners.

This is even true to a certain degree in tuners using ratio detectors. Therefore, adapter manufacturers have incorporated a separation or \(L + R \) control which varies the amount of \(L + R \) with respect to a fixed amount of \(L - R \) as it appears at the output of the tuner in the form of ultrasonic sidebands. The manufacturer can adjust this control only on the basis of \(L + R \) being equal to \(L - R \) (the FCC standard). Nearly always, this control will have to be adjusted after the adapter is hooked up, to get best stereo separation. This should be done during a stereo broadcast during which, it is hoped, the announcer will give listeners an opportunity to make this adjustment.

![Fig. 5](image-url) — Properly recovered composite signal (only left channel has program material) suitable for multiplexer adapter input.

![Fig. 6](image-url) — This composite waveform shows signs of diode clipping. If such a signal is applied to any multiplexer adapter, the output signal will have high audio distortion.

![Fig. 7](image-url) — Recovered waveform from a tuner that has inadequate bandwidth.

![Fig. 8](image-url) — Suggested modification of Foster-Seeley discriminator reduces its output impedance and minimizes effect of diode clipping (Fig. 1) when a single tone is transmitted. Fig. 6 shows the same signal after having undergone severe diode clipping. Fig. 7 shows the same waveform reproduced by a set whose discriminator has insufficient bandwidth. Waveforms in Figs. 6 and 7 will result in severely distorted audio output from the adapter.

![Fig. 9](image-url) — Diagram of multiplexer adapter. Such a unit is designed to separate a FM broadcast signal into its left- and right-channel components and transmit these with adequate stereo separation. The unit is suitable for use as a stereo phono preamplifier or similar applications.
by indicating that he is speaking from the left or right microphone.

Phasing control
In the FCC-approved stereo broadcasting system, the 38-ke subcarrier is not transmitted. Only its sidebands actually go out over the air. Therefore, the subcarrier must be restored and added to its sidebands in the adapter. For minimum distortion and maximum separation, the phase relationship of the 38-ke subcarrier (redeveloped by a local oscillator in the adapter) and its sidebands must be faithful to the original as transmitted. The local oscillator is locked in by a low-amplitude 19-ke signal transmitted along with the sidebands and main-channel information. This signal, of course, bears a fixed relationship to the original. Therefore, the oscillator can be locked over rather a wide range, the 19-ke signal effectively pulling the oscillator into correct frequency, but not necessarily into correct phase relationship. The oscillator must, therefore, be adjusted by the manufacturer, not only for lock-in when a 19-ke synchronizing signal is applied, but also for optimum phase conditions. There is test equipment which synthesizes the composite signal, and such adjustment can be precisely made only with this type of equipment. Since this equipment is intended primarily for laboratory and production work and sells for $1,000, most service technicians will not make this investment now.

In the absence of such a signal generator, proper phase can be approximated by slightly readjusting the oscillator for best separation and least distortion during a stereo transmission. This should not be attempted unless absolutely necessary (factory adjustment will hold very well, unless the tuner used exhibits severe phase distortion) and then only after the separation control has been adjusted for best separation.

Of course, if the oscillator is entirely "out of lock," you will have to retune the oscillator until it is locked in. (An out-of-lock condition is indicated by motorboating (low-frequency oscillation) heard when stereo broadcasts are transmitted. After the oscillator is set, adjust phasing as outlined above. Such severe mistuning is rare. It could only be caused by improper alignment at the factory, severe shock in shipping or unusually high operating temperature (indicating inadequate ventilation of the adapter).

As more and more adapter circuits become available, Radio-Electronics will analyze them in detail. For the time being, we feel this article will help familiarize the service technician with some of the problems he is sure to encounter as he approaches what promises to be the next lucrative "service market" in the ever-growing consumer electronics field.

"Line-of-Sight" 136 Miles

The world's longest point-to-point microwave beam for TV relay service operates from a 9,000-foot peak near Salt Lake City across the length of Great Salt Lake and through a mountain pass to a receiving point on 7,000-foot-high Albion Peak in Idaho. A connecting microwave link relays it from there to KID-TV, Idaho Falls. According to C. H. College of the broadcast and television equipment division of RCA, the 136-mile link constitutes an absolute record. He pointed out that line-of-sight relay stations are normally spaced 25 or 30 miles apart, and stated that the long hop, eliminating a number of relays, results in a noticeably clearer incoming signal at the KID-TV transmitter.
Perhaps no trouble is more annoying than a TV set that seems to perform perfectly, only to become intermittently inoperative after being thoroughly "cooked" in the shop and finally delivered to the customer's home. One such trouble is horizontal oscillator drift.

The drift (frequency change) may occur only after the set has been on for several hours. It may be slight, and resetting the horizontal hold control may correct it temporarily. Sometimes the customer may have to reset the hold control only once during an entire evening.

Other times the fault may take the form of suddenly jumping out of horizontal sync at station breaks or when changing channels. It may go out only one frame (representing a 60-cycle horizontal oscillator change) or it may "take off," going out several frames and producing numerous horizontal lines on the screen.

Just about any type of horizontal oscillator must have a stability better than 0.4% if it is to perform properly. Actually, though, by its very nature, which requires that it be controllable, a horizontal oscillator cannot be too stable! This means that, to perform acceptably, it must be neither too tight (hard to control) nor too loose. A too-tight oscillator tends to take off on its own and pay very little attention to the control voltage. On the other hand, a too-loose oscillator responds well (generally) to control voltages, but may be easily upset by noise pulses and may bend and weave if sync is unstable.

The tightness or looseness of an oscillator is determined by the overall design of the circuit. In servicing, design factors usually need not concern us. Our job is to get the darn thing working again.

On occasion, though, we may run into a set that is short in the design department. If the set has a record of horizontal oscillator problems, some technicians rebuild the entire circuit, using a layout they know is stable. If you should decide (in the heat of battle) to rebuild the horizontal oscillator, don't change oscillator types! For instance, don't replace a Synchroguide with a multivibrator unless you are prepared to modify the sync system too.

There are exceptions, of course. On an older Sylvania model, the one that used a special oscillator and sync input transformer (Fig. 1), we changed the circuit to a Synchroguide; we had to get a new transformer anyway and the Sylvania replacement was not readily available.

What causes drift?

There are probably just as many possibilities as there are components in the oscillator and sync sections of a particular receiver. Experience, however, has taught us that some are much more frequent offenders than others. First, let's take the familiar and most widely used circuit—the multivibrator. This is simply an amplifier with the output fed back into the input, through cathode coupling, in the correct phase to sustain oscillations. A ringing coil "tightens up" the circuit.

The size of resistor R1 in Fig. 2 plays an important role in just how "tight" the ringing coil makes the circuit. If the resistor is smaller, the ringing coil has more stabilizing effect and the oscillator becomes less responsive to sync control. It is our opinion that the correct size for this resistor is the one that will let the oscillator just work with the ringing coil shorted out. This is usually about 6,800 ohms.

A dc voltage developed by the phase detector controls the speed of the oscillator. The phase detector may be a dual diode tube but in recent years semiconductor diodes have been used by most manufacturers. The phase detectors measure the speed of the oscillator as compared to the sync input and develop either a positive or negative voltage, depending on this information. If something goes amiss in the phase detector circuit, such as a defective diode, the horizontal oscillator is sent an incorrect control voltage. Either a highly negative or a highly positive voltage on the oscillator control grid will stop the oscillator.

Even if the voltage is not high enough to block the oscillator, it may

Fig. 1—This complex horizontal oscillator and control circuit can be replaced easily with a Synchroguide circuit. Use a 10-mfd sync input capacitor.
It follows, then, that a fault in the phase detector system can cause horizontal oscillator drift. A classic example of this occurred in G-E and Hotpoint portable sets a few years ago. Defective semiconductor diodes caused the raster to disappear when the set was tuned to a station, but the raster and high voltage returned when off channel.

Fortunately, it is usually simple to tell whether the trouble is in the oscillator or the phase detector stage by grounding the control grid with a jumper (Fig. 2). This completely eliminates the phase detector (and sync) as a source of trouble. If you have severe oscillator drift, simply ground the control grid. The picture won't lock in, of course, but you'll be able to tell if there is a recurrence of oscillator drift. If, after operating the set a while, you find very little change in the “floating” speed of the picture, you can reasonably assume that the oscillator is stable. If the picture goes way out of sync or the raster disappears when you remove the jumper, you know the trouble is in the sync circuit. This method works with all horizontal multivibrators that normally have zero bias on the sync input grid. For circuits like the one in late-model Emersons (Fig. 3), connect the grid back to the center arm on the horizontal hold control, since the grid normally operates about 6 volts positive.

Check for natural resonance
Shunt the ringing coil with a 1,000-ohm carbon resistor. High voltage should remain and the picture should stay in sync. If the oscillator changes frequency drastically, you can be almost certain of an unstable oscillator. Why? Because the natural resonant frequency of the oscillator circuit (with the ringing coil out of the circuit) is not 15,750 cycles. This means that, even though you may be able to lock the picture by (mis)adjusting the ringing coil, there is continuous "warfare" inside the oscillator circuit. A sudden noise pulse, a loss of sync or a change in line voltage may let the circuit take off, and it will be impossible for the phase detector to recapture the oscillator.

To adjust a multivibrator
1. Remove sync by shorting the sync-controlled multivibrator grid.
2. Shunt the ringing coil temporarily with a 1,000-ohm resistor.
3. Adjust the horizontal hold control (not the ringing coil) until the picture floats by slowly.
4. Remove the 1,000-ohm shunt from the ringing coil.
5. Adjust the ringing coil until the picture floats by slowly. (Do not touch the hold control.)
6. Remove the sync short; the picture should lock in. If there is only a slight out-of-sync condition, adjust the hold control for a locked-in picture.
7. If the picture is far out when the sync short is removed, either the control grid does not normally operate at zero voltage or there is trouble in the phase detector circuit.
8. In sets without a resistance hold control, juggle values of either R2, C3 or both (Fig. 2) until the picture floats by with sync shorted and ringing coil shunted. A resistance-capacitance substitution box is ideal for this.

Defective components
The most common cause of drift, other than misadjustment is electrolytic bypass. C1 in Fig. 2 may partially open, causing the oscillator to become erratic or slow to stabilize. Many circuits do not have the 10,000-ohm decoupling resistor (R3) and rely on the B-plus electrolytic alone to bypass horizontal currents. It is very possible for a B-plus electrolytic to cause horizontal instability without producing any other apparent symptom.

In our experience, coupling capacitors and resistors give the least trouble, at least those in the oscillator circuit proper. C2, coupling the oscillator to the output tube, is a frequent offender, however. Slight leakage here affects the oscillator plate voltage as well as the loading. C3, used in other circuits, will cause instability if it partially opens, especially if the oscillator design is critical. An instability condition that is hard to trace sometimes occurs if the screen resistor (R4) burns and changes to a low value. This in turn causes the output tube to "gas" and load the oscillator circuit.

The ringing-coil circuit can cause trouble but the shunt method of testing makes it easy to determine. The 1,000-
Fig. 5—Synchroguide waveform as seen on scope. Use a low-capacitance scope probe.

An ohm shunt will eliminate the ringing coil as a factor in determining the oscillator frequency.

The Synchroguide

Drift in the Synchroguide is a little harder to isolate than in the multivibrator since the control circuit is tied with the oscillator so intimately. It is hard to separate them for testing.

Basically, the Synchroguide is a blocking oscillator with a stabilization circuit (L1-C5, Fig. 4). A second triode changes the oscillator speed in accordance with synpe information.

A misadjusted stabilization circuit is the greatest cause of instability. It can be properly adjusted only with a scope and a low-capacitance probe. Fig. 5 shows the correct characteristic waveform with the picture locked in.

The Synchroguide is all high-impedance circuitry. Because of this, it is most susceptible to slight leakage in capacitors. Always check C1, C2, C3, C4 and C5 with a good leakage checker (one that puts 100 volts or more on the capacitor being tested). Any capacitor that shows even slight leakage should be replaced with exactly the same type. Do not replace any capacitors in this circuit with ceramic units unless you are sure of their characteristics!

The Sears Synchroguide is a little unusual (Fig. 6) in that bias for the control tube is taken from the output tube grid. The .005-mf coupling capacitor is a frequent offender in this circuit. Slight leakage here will upset the oscillator control without affecting the high voltage. A horizontal jitter or "piecrust" effect is the usual result. This capacitor is part of a printed component pack but it may be pried loose and a paper .005-mf unit substituted.

RCA Synchrophase

This circuit is a first cousin to the Synchroguide. This particular model (Fig. 1) uses diode phase detectors but other models use control circuits similar to the older Synchroguides.

A scope cannot be used to adjust the Synchrophase. Follow this procedure:

1. Turn the horizontal hold to extreme clockwise position.
2. Connect a jumper across the sine-wave coil.
3. Connect a jumper from grid to ground of the sync amplifier tube (not the control tube).
4. Adjust the horizontal hold control until a picture floats by slowly.
5. Remove the jumper across the sine-wave coil and adjust the coil until the picture again floats by slowly.
6. Remove the sync short. The picture should lock in.

Because the Synchrophase is a new circuit, not much service information has been received from the field. Probably it will be subject to essentially the same faults as the Synchroguide.

Oscillator-drift check points

1. Check capacitors for leakage.
2. Check electrolytics for opens or partial opens.
3. Check for unsoldered terminals. These sometimes escape detection for years.
4. If the set uses semiconductor diode phase detectors, check for good front-to-back ratio with an ohmmeter. Both diodes should have about the same ratio.
5. Make sure adjustments are correct.
6. Do not use ceramic capacitors for replacements unless you are absolutely sure of their characteristics.
7. Check tubes critically for gas content and heater-cathode leakage.
8. If the customer's complaint is slow drift, enclose the set in box and let it play for 2 hours before delivery to make sure you have found the trouble.

Fiber Optics in New C-R Tube

Du Mont has announced a cathode-ray tube with a glass fiber faceplate. The faceplate of the 1¾-inch tube is made up of more than 6,000,000 glass fibers, 10 microns in diameter. Light originating from any point on the phosphor layer inside the faceplate is carried away at one or more of the glass rods without spreading or halo effects. Since the image is carried directly to the outer surface, all parallax is eliminated. The tube, which costs $900, is expected to be used in such applications as flying-spot scanning, photographic printing, and coupling to fiber-optic systems.

Fiber optics is also used in an image storage panel patented by Joseph T. McNaney, inventor of image display tubes. In this panel, each individual fiber is covered with a coating of selenium as a photoconductive medium. The inside surface is coated with a transparent conductive material which makes contact with the photoconductive fibers. The outer surface has a coating of electroluminescent material, over which is a transparent conductive layer. The two conductive layers are connected across an ac supply in the manner of a conventional luminescent panel. A light image projected on the back of the panel produces a luminescent image on the front. Light feedback keeps the image displayed until the power is turned off.

Fiber optics is based on the principle that light entering a glass or other light-conducting rod at one end may be trapped and continue to the other end, even if the rod is curved or doubles back on itself. Thus, the rod becomes a waveguide for light. Possible applications of fiber optics in electronics were discussed in Hugo Gernsback's editorial in the August, 1960, issue.

Fig. 6—Synchroguide circuit in Silvertone 528.50060. Leakage in circled capacitor can cause some unusual symptoms.

Fig. 7—Synchrophase circuit in RCA KC8-131 chassis.
EXPERIMENTAL AUDIO-VISUAL communications system designed by Motorola may become the intercom of the future. Called Visicom, it uses only simple video-frequency circuitry. Possible uses would include door answerer, baby sitter, communication between executives in separate offices, teacher-student or supervisor-workman communication and similar applications. For door answering and baby watching, the unit could be simplified, with camera in one unit and monitor in another.

SPACE-AGE GAUGE directly measures atmosphere density in space. "Pressure" from 10^{-7} to 10^{-11} mm of mercury are within its range. Already tested in an Aerobee Hi rocket, these Westinghouse units are expected to be used to gather data at altitudes from 70 to 125 miles.

STRIPPING TWIN-LEAD, subject of more than one how-to-do-it hint or kink in service magazines, is now reduced to a science. These special pliers, made for the job, are placed between the leads, then all insulation removed neatly with one quick jerk. The new tool, made by Kraeutel & Co., can also be used as end-cutting pliers.

NEW IDEA IN METERS makes instruments shock-resistant, increases accuracy and all-round ruggedness. In the new Triplett Suspension panel instruments, the moving-coil and pointer assembly is supported on a thin, narrow band kept tightly suspended between special spring terminals. No pivots, jewels or hairsprings are needed. Torsion returns the pointer to zero, and the coil-spring terminals take up the shock if the meter is jarred or dropped.
By W. R. WILLIAMS

Here is a sweet little stereo preamp that is well worth the time it takes to put it together. It uses standard parts yet has a dual loudness control of the type normally found only in monaural preamps. Other features are maximum bass and treble boost and a dc heater supply. Four 7025 tubes assure balanced output and require only 6 to 8 ma plate current that can be drawn from the 300-volt line in the main amplifier. The unit measures only 12 1/4 x 7 x 4 1/2 inches.

The basic circuit for this preamp was found in an article on preamp design by Norman Crowhurst which appeared in the May 1960 issue. I decided it was the basis of an inexpensive stereo preamp which would have characteristics found only in more costly commercial units. Tonal quality matches anything I have ever heard and, while I haven’t run any sensitivity measurements, Mr. Crowhurst’s design calls for 2 volts out from a 1-millivolt input.

Features

RIAA equalization is used on the low-level inputs as it is the standard in the recording industry. A five-position two-pole FUNCTION switch provides for stereo, neutral, reverse, FM one channel, FM with multiplex, or FM with AM. This switching meets all of my require-

![Circuit Diagram]

Fig. 1 — Complete circuit of the preamp.
ments but could be changed if desired (Fig. 1).

Dc heater voltage was desired to reduce hum and, for this reason, heater voltage could not be taken from the power amplifier. A separate dc heater supply is therefore included. The bass, treble and level controls for each channel are independent and concentric, and give a wide variation in tonal response. The loudness control is a worthwhile feature that eliminates the need for readjusting bass and treble controls whenever volume is adjusted.

Construction

The main wiring is done on a 12 x 4 x $\frac{3}{4}$-inch chassis. Terminal strips make for nest component placement. The tube sockets are in the center of the chassis. Channel A is wired on one side of them and channel B on the other. This arrangement makes wiring simple and assures maximum channel separation. When chassis wiring is completed, add the side pieces that support the control mounting strip. Dual concentric controls are used throughout. Position the terminals on the controls so they face in opposite directions (see loudness-control detail, Fig. 2) for maximum channel separation.

The loudness control cannot be purchased as a complete unit but is made from two sets of standard controls. (Fig. 2 shows complete construction details for assembling it.) The channel-A control is made by joining two front units together, soldering the shaft of one to the wiper disc of the second. Do not apply too much heat when doing this; you may damage the resistive ele-

The channel-B control is made from two rear controls. Since they have aluminum shafts, they are joined by filing one shaft flat on each side, then bending a piece of brass strip to form a bushing. The bushing is pushed over the shaft projection on the wiper disc of the other control. I used Centralab type B controls for these units because they have features that make joining possible. To complete the channel-B control, two more wire stiffeners are used. One word of caution: Make sure that you have full rotation of the front and rear controls before soldering. When the control for each channel is complete, snap the two together in the normal way, lugs in opposite directions.

In the preamp output circuit, capacitors C33 and C34 are suitable for amplifier input resistance of 250,000 ohms; 0.25 uf capacitors should be used for input resistances of 100,000 ohms.

The preamp is extremely sensitive to hum, therefore follow all standard precautions to guard against it. Ground returns should be made to the same point for each stage. Connect the ground bus from stage to stage (a separate bus for each channel) continuously from input to output, and ground to the chassis at the input end. Notice that a large amount of filtering is used; this is necessary as there is little filtering in the power supply. Should a regulated well filtered supply be used, filtering could be reduced. Plate loading resistors are low-noise types, matched to within 1%.

Elsewhere, standard carbon units are used.

The dc heater supply is built on the tube side of the chassis, using a 28-volt center-tapped transformer rated at 600 ma or more, and two silicon rectifiers. These rectifiers are small, inexpensive and preferable to selenium units because of their negligible voltage drop. Heaters are wired separately, connected to ground at the output end of the bus with the transformer center tap.

An aluminum cover completes the preamp and shields the unit from possible outside hum sources.

www.americanradiohistory.com
RF SIGNAL GENERATOR COVERS MARINE BANDS

THE Trans-Marine transistorized rf signal generator produces tone-modulated or CW signals from 225 kc to 4.5 mc and is particularly useful for aligning and testing the rf and if stages of marine, auto, long-wave, broadcast and some short-wave receivers. The lightweight, compact, battery-powered set can be slipped into the service technician’s toolbox and carried afloat for on-the-spot marine receiver repairs.

A modest battery drain of 2.5 ma provides a 2-volt output on the low ranges, dropping to a 0.1-volt level on the highest range, enough for the normal run of alignment problems in most receivers. The Trans-Marine is made with easily obtained parts and does not require any complicated or difficult construction techniques, but the end result is a useful test set that is ready for operation anytime, anywhere.

Circuit action

Rf transistor V1, a 2N1086, operates as a grounded-base, collector-to-emitter feedback oscillator. Capacitors C1, C2, C3 and C4 form the variable elements of the feedback path between the collector and emitter. Oscillator frequency is controlled by variable capacitor C6 and coils L1 through L5.

The oscillator’s output is taken across R1 and applied to V2’s base. This transistor operates as a straight voltage amplifier. The amplified signal is then fed through C11, output LEVEL control R6, and C12 to the output jack.

The audio modulation is supplied by V3, a 2N35 transistor in a transformer-coupled feedback audio-oscillator circuit. The transformer provides a feedback path between collector and base, causing the circuit to oscillate at a frequency determined by the inductance of the collector winding and the stray capacitance of the transistor and transformer.

The resulting tone (approximately 1,000 cycles) is coupled through C13 to V2’s base to modulate the signal produced by V1. S2 switches the audio oscillator on or off.

Construction hints

Inductances L1 through L5 and feedback capacitors C1 through C4 are all mounted on RANGE switch S1. The coil lugs are straightened and fastened across the upper-and lower-deck switch terminals, one terminal to each deck. The feedback capacitors are mounted between the deck terminals in the same manner.

T, S2, S3, R6, C6, J and the battery are mounted to the sides of the case. The remaining circuitry is fastened to

Details of the printed-circuit board for this unit. These figures are actual size.

Portable Trans-Marine uses three transistors to cover a frequency range of 225 kc to 4.5 mc
This view gives a detailed look at how the coils are mounted across the range switch.

The generator circuit is simple, but effective.

The most convenient method. But all other components mount on the board. If you use the printed-circuit board, mount it in the same manner as the perforated board shown in the photos. Of course, don't forget to ground the ground foil to the cabinet. If you don't, the unit won't work and your output jack will be floating.

Calibration techniques remain the same. A smaller case was suggested but, unless you need a really tiny instrument, there is no advantage to this. In fact, many technicians prefer larger instruments for their shop. When it doesn't have to be portable, they like an instrument that won't get lost.

Calibration
After construction is complete, insert a milliammeter in series with the positive battery lead and S3. Turn S2 to CW, throw S3 to ON and note the current reading. If it is appreciably higher than 2.5 ma, remove the power immediately and inspect the wiring for a wrong connection or defective transistor. When the correct reading is obtained, turn S2 to M00 and again note the reading. If the audio oscillator circuit is correctly wired, the meter reading will increase only 0.5 ma.

It is easy to calibrate the generator's upper ranges with a good communications receiver. For the lower ranges you'll need a stable signal generator and oscilloscope since most communications receivers do not go below the broadcast band. If a low-frequency receiver can be borrowed, it will be a lot easier to use for calibration than a generator and scope.

The generator circuit is simple, but effective.

The generator circuit is simple, but effective.

The generator circuit is simple, but effective.
The author ended up with this scale of frequencies covered by his instrument.

The receiver. Rotate C6 toward the low-frequency or maximum-capacitance end and tabulate C6's dial markings with the frequencies indicated on the receiver.

When C6's fully closed position is reached, leave the receiver at this frequency, rotate S1 to position 4, turn C6 back to its full-open position and adjust L4's slug for a signal at the previous setting of the receiver dial. Continue the calibration toward the low-frequency end.

Follow this simple procedure until all ranges are calibrated. If the receiver you have doesn't go down far enough, calibrate with the receiver until you run out of the receiver's lowest frequency range, then use a stable signal generator and oscilloscope to finish the job with Lissajous figures.

Connect the calibrating signal generator's output to the scope's horizontal input and the test set's output to the vertical input, with S2 set to the CW position. When the two generator frequencies are equal, an ellipse will appear on the scope face. Continue the calibration with the calibrating generator's frequency when an ellipse is obtained.

The Trans-Marine generator can be used in the same manner as any other standard signal generator. Connect it to the rf, mixer or if stage of any receiver for alignment or signal substituting. If it is to be connected to a test point which contains de, like the plate of a mixer tube, insert a 0.1-uf 400-volt capacitor between the output jack and test point. The modest investment in the construction of this handy unit will repay itself many times over with ease of alignment and testing marine, auto, portable and fixed receivers.

INT-PRINTED-CIRCUIT BUILDERS
The photos of the original instrument were shown, since assembly on the board is semi-automatic. R.E had a board made and tested the unit with it wired in place. There was no change in performance. All parts not mounted on the printed board are fastened to the case or mounted on the switches. Connect the arms of S1-a, b-c-d to S1A, B, C, D on the board with ordinary hookup wire. S3's ON terminal and S2's MOD terminal to go to S3 ON and S2 MOD on the board.

SHORT-WAVE FORECAST
Sept. 15-Oct. 15 by STANLEY LEINWOLL
The trend toward winter propagation conditions, characterized by higher usable frequencies during the daylight hours and lower usable nighttime frequencies, will continue.

During the latter part of September, a noticeable decrease in static levels and ionospheric absorption will result in a significant improvement in the 4-, 6- and 7-mc broadcast bands during the evening hours. Conditions in these bands should be better for the next several months than they have been in 5 years.

Propagation conditions between the United States and Australia, Africa and South Asia improve considerably during equinox periods. This improvement will be general and should be noticeable in all bands.

The tables show the optimum broadcast band, in megacycles, for propagation of programs between the locations shown during the time periods indicated.

To use the tables, the listener selects the one most suitable for his location, reads down the left side to the region he wishes to hear, then follows the line to the right until he is under the appropriate time. (See table below for the meaning of each table in hour intervals from midnight to 10 pm, in your local standard time.) The figure thus obtained is the short-wave band (in megacycles) nearest to the optimum working frequency.

For example, a listener in the Central USA would be most likely to receive broadcasts in the 17-mc broadcast band from Western Europe at noon.

The tables are designed to serve primarily as a general guide, since day-to-day variations in receiving conditions can be large.

At certain hours, propagation over some of the paths given in the tables may be extremely difficult, or impossible. These are shown with an asterisk (*).

Radio Frequency and Propagation Manager, RADIO FREE EUROPE.

EASTERN US to:

<table>
<thead>
<tr>
<th>West Europe</th>
<th>7*</th>
<th>7*</th>
<th>7</th>
<th>7</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>10 Noon</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Europe</td>
<td>7*</td>
<td>7*</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>7*</td>
<td>7*</td>
<td></td>
</tr>
<tr>
<td>Northern Latin America</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>7*</td>
<td>7*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Latin America</td>
<td>15</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near East</td>
<td>7</td>
<td>7*</td>
<td>7*</td>
<td>11</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South & Central Africa</td>
<td>9</td>
<td>9</td>
<td>17</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia & New Zealand</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7*</td>
<td>9*</td>
<td>21*</td>
<td>21</td>
<td>21</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CENTRAL US to:

<table>
<thead>
<tr>
<th>West Europe</th>
<th>7*</th>
<th>7*</th>
<th>7</th>
<th>7</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>10 Noon</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Europe</td>
<td>7</td>
<td>7*</td>
<td>7*</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11*</td>
<td>9*</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Northern Latin America</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Latin America</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Near East</td>
<td>7*</td>
<td>7*</td>
<td>7*</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>11*</td>
<td>9*</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South & Central Africa</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Far East</td>
<td>9</td>
<td>9</td>
<td>6*</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia & New Zealand</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>21*</td>
<td>21</td>
<td>21</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WESTERN US to:

<table>
<thead>
<tr>
<th>West Europe</th>
<th>7</th>
<th>7*</th>
<th>7</th>
<th>11</th>
<th>15</th>
<th>15</th>
<th>11</th>
<th>9*</th>
<th>9</th>
<th>7</th>
<th>7</th>
<th>7</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Europe</td>
<td>9</td>
<td>9</td>
<td>7*</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Northern Latin America</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Latin America</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td>7</td>
<td>7*</td>
<td>7*</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South & Central Africa</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>9</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Far East</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Asia</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia & New Zealand</td>
<td>15</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>15*</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END

www.americanradiohistory.com
DOES FM STEREO FOLLOW ITS OWN THEORY?

Some of the explanations are more complex than the circuit workings

By NORMAN H. CROWHURST*

EVER SINCE THE ARTICLE IN THE JULY issue of RADIO-ELECTRONICS, we have been trying to get information about adapter circuits. Many manufacturers had released information on an adapter, with model number and photograph, with the usual claims of tested performance superior to anything else available. But when it came to giving technical information about how their circuit was different from the others, or supplying a schematic so we could see for ourselves what they had done, nothing was forthcoming. Several did invite us to go see.

These visits have been informative. The questions we asked uncovered so much that engineers did not know about the new system and how to work with it, that we started to find at least some of the answers. A week's intensive work, followed by further visits to other companies working on the problems, shows that our long background in audio design has paid off, when it comes to stereo multiplex: we suspect that we now know more about the theory and practice of stereo multiplex than anyone else in the industry.

Of course, a lot of people are making rapid progress. Many ideas for new circuits around the 114 kc. Some of these will fulfill the dreams of their originators and some of them won't. But the biggest thing we found from this lightning investigation is a general misunderstanding about how the system works—and should work. This incorrect understanding of some aspects is hindering progress in solving the problems.

Basic concept

It's commonly known, from the very fact that the system was developed independently in two different ways by Zenith and G-E, that the same system can be analyzed from two different viewpoints. And it will work with correspondingly different circuitry. But there are points about each that have led many "up the garden path" unnecessarily.

We have had several arguments about the mathematics presented with the Zenith approach. The Zenith method works, there is no argument about that, but the math used to explain how it works can mislead the student.

The approach uses a switching concept: an electronic switch flips between left and right channels at a frequency of 38 kc. The mathematical analysis assumes this switching is instantaneous, like a square wave (Fig. 1). The circuit may in fact use this technique. But if it does, the modulation frequencies will include sidebands of 38 kc, sidebands of 114 kc, sidebands of 190 kc, and so on, just like any other 38-ke square wave.

The highest frequency that should be used to modulate the transmitter is 75 kc. So, regardless of the switching method used, all these sidebands of 114 kc, 190 kc and higher frequencies just have to be cleaned off with a low-pass filter.

If we show the sidebands corresponding to 38-ke modulation, square wave, of the transmitter, they look like Fig. 2. Compared with the FCC requirements, every harmonic up to the 29th is at too high a level, after the first. Then an SCA subcarrier of 67 kc may have to be squeezed in too. In point of fact, the composite stereo, L + R with L - R suppressed-carrier modulated on 38 kc, is passed through a very-sharp-cutoff 54-ke low-pass filter, so everything but the simple 38-ke sidebands is cleaned off, for all intents and purposes.

If you have a 38-ke square wave, it isn't a very good square wave if you only have 38, 114 and 190 kc (Fig. 3). But if you take away the 114 and 190 kc, it doesn't even begin to look like a square wave. It's just a sine wave, pure and simple. To try and analyze it as an approximation to a square wave would be ridiculous. The approximation isn't rough—it's nonexistent.

Yet that, in effect, is what the use of Fourier analysis in the Zenith math is trying to do.

Then you do the same on reception, with a similar "approximation". If that

Fig. 1—How mathematical approach to time-division multiplex assumes the waveform is made: top shows the left and right waveforms superimposed; at bottom is theoretical composite stereo waveform (without pilot).

Fig. 2—Sidebands corresponding to 38-ke modulating square wave. Shaded area is permitted boundary level of the FCC; note how many sidebands exceed this level seriously.

Fig. 3—Nearest approximation to a square wave possible with fundamental, third and fifth harmonics (38, 114 and 190 kc) is shown here; it is not a particularly close approximation.
One of the schematics shown in the Zenith documentation. Filter shown here is a phase-linear low-pass (not bandpass, as some have thought) with 67-ke rejection beyond the cutoff.

approximation even resembled the true explanation - the error in approximation, twice over, would mean this should be about 90% distortion. The very fact that the system works shows there must be a direct explanation that does not involve such radical approximations.

Whether a circuit uses sudden switching twice during every 38-ke cycle and filters off the harmonics, or whether a more direct arrangement samples left and right by a sinusoidal fluctuation at 98 ke from one to the other (Fig. 4), the latter is the kind of signal actually used to modulate the transmitter. We don't find that waveform at all hard to visualize. In fact it's easier to imagine and draw than trying to figure out what happens to the suddenly switched signal when all its harmonics are cleaned off.

Incidentally, this correction gets rid of the 2-pi factor in the math that has been mentioned as having to be built into the reception circuit. If you have to build it into the adapter at all, it's only because you make it necessary by introducing the particular approximation that causes it — at the receiver using a sudden switching circuit with low-pass filtering for demodulation, which some are doing.

Oddly enough, the math involving Fourier series is so complicated only an engineer pretends to understand it, while this more correct explanation is simple enough for a technician to understand from the waveform drawing of it. We would also emphasize that this criticism applies only to the Zenith theorization — their system definitely works.

Bandpass filters

That criticism concerned the Zenith approach. To keep things fair, this one concerns the G-E approach! Their original design uses a bandpass filter to separate subcarrier modulation from L-E. They prescribe "phase-linear" filters for this and the associated low-pass filter.

It was only when we tried to design a phase-linear bandpass filter to the required specification that we found out there is no such a signal — in this bandwidth. To "prove" that such a filter is possible, some have quoted the complicated Bode filter shown in the Zenith schematic (top of page). That is not a bandpass filter, but a low-pass type.

A phase-linear low-pass filter is no great problem. But a phase-linear high-pass cannot possibly exist, and a bandpass of this bandwidth is essentially a synthesis of the two. In a correctly designed low-pass filter, the phase delay, up to cutoff, is proportional to frequency (Fig. 5). If it's 30° at 5,000 cycles (5 ke), 60° at 10 ke, and 90° at 15 ke (all practical figures), it is phase-linear. The delay is 1/4 of a 15-ke cycle, 1/6 of a 10-ke cycle, or 1/12 of a 5-ke cycle, each of which means 16/12 microseconds, the same constant delay time.

But in a complementary high-pass filter, 90° phase advance (not delay in high pass) at 15 ke would correspond with 60° advance at 22.5 ke and 30° advance at 45 ke. These figures convert to time advances of 16.7, 7.4 and 3.3 microseconds, respectively. Nothing can be done, over a band this wide, to make the time-delay/advance characteristic anywhere near linear.

In relatively narrow bandwidth filters, where the response is due to the relative Q and coupling factor of tuned circuits, the overall response can be analyzed, to a close approximation, as analogous to a low-pass filter, where the cutoff frequency is equal to the deviation of either cutoff in the bandpass from mid-frequency (Fig. 6). This close approximation depends on the upper cutoff being at an equal frequency fraction from mid-band with the lower cutoff. In an FM if coil, the mid-frequency is around 10 mc, and the cutoffs are a small fraction of 1 mc on either side. In a receiver for the Subsidiary Communications Authorization subcarrier multiplex, the mid-frequency is 67 ke, and the cutoffs are at 60 and 75 ke, only 6 or 7 ke above and below 67 ke — still a 10-to-1 ratio. But in the stereo subcarrier, the mid-frequency is 38 ke and the cutoffs are 23 and 53 kc, which is a very different kettle of fish.

The G-E alignment instructions are a little bit of a giveaway to this fact. They say the subcarrier reinsertion phase should be adjusted for maximum stereo separation at the higher audio frequencies, and the matrix (dimension) adjustment should be used for separation at the lower stereo frequencies. Put in simple terms, what this means is this:

Having two variables, the subcarrier reinsertion phase and the dimension

![Fig. 4—Actual kind of waveform the system does use, based on left and right waveforms used in Fig. 1. Each time left and right waveforms cross, the 38-ke component goes through zero and reverses phase.](image-url)

![Fig. 5—Phase response of 15-ke low-pass filter to illustrate phase linearity. Dashed line represents theoretical ideal. Solid line is for a relatively simple practical circuit.](image-url)
control, means that separation can be made high at two frequencies by what is really a "crooked" adjustment. Suitable choice of these frequencies means the separation does not get too high in between or beyond them (Fig. 7). But the very method means separation cannot be very high anywhere.

Fortunately there is a fairly simple remedy. A phase-linear low-pass filter is no problem, so we can use this to separate the L + R component. It is easy to null out the L + R component from the subcarrier detection, merely by returning the detector load circuit to the output point of the low-pass filter (Fig. 8). In this way, the whole L - R demodulation circuit "floats" at L + R audio, and a bandpass filter is not needed. Time delay can be equalized between L + R and L - R very completely by matching the delay caused by the detector load to that caused by the low-pass filter (Fig. 9).

These are some of the things engineers have been finding out the hard way. What has hindered them, of course, has been the absence of any generator or test equipment to work with. The more successful manufacturers made their own rather than wait for a model to be made available by somebody else.

Other details
One misunderstanding encountered was that the G-E system provides...
means for adjusting relative magnitudes of L + R and L - R, thereby controlling separation, while the Zenith method of reception does not. When the foregoing misunderstandings are corrected, the picture changes.

Either circuit is capable of adjustment to secure maximum separation of left and right after either switching (Zenith) or dematrixing (G-E). The exact method will vary from circuit to circuit. To give anything like a complete rundown on this aspect, we'll have to wait until we have a more complete picture of the various circuits available. At this writing, few have been released for publication.

Another important feature about alignment, which depends on having a good generator of some sort, is being sure that the phase of the pilot carrier is right, relative to the suppressed-carrier modulated subcarrier. Stated like that it sounds like looking for the phase of something that isn't there, which would be a problem. It's only there when there is L - R modulation.

If you check the phasing, by Lissajou pattern or any other method, at the output from the respective generator circuits, before mixing, there may be some error. This is due to differential phase shifts before you reach the output, which is the input to your adapter. The best place to check phase is where it matters, at the input to the adapter under test.

In their document of Oct. 28, 1960, Zenith showed different phasings of pilot frequency, with audio on only one channel (Fig. 10). The patterns for signal as prescribed by the FCC are those at a and b. The easiest to check phase is d. If the pilot signal circuit has a phase adjustment, followed by a low-impedance twin phase-shifting network to give 45° advance or delay from the center position (Fig. 11), the center position can be used to get an output pattern like Fig. 10-d by careful adjustment. The other two positions provide an input signal equivalent to left only and right only, for phase-adjustment and separation checks on the receiver.

One adapter with a nice feature has already appeared, from Fisher. It has a "stereo beacon" which, as well as indicating when stereo is being transmitted by FM from the station to which the tuner is set, switches off the subcarrier demodulator when no pilot is present, and thus avoids unnecessary noise when receiving mono on the same system. It just parallels left and right when the transmission is monophonic.

A number of other interesting developments are going on, about which we have unofficial news but not permission to say anything at this juncture. In fact, this whole project looks like about just the most flexible system ever to tickle an audio man's fancy.

Installing the new system will bring a few problems. Not all tuners will work well with an adapter, although they might be quite good monophonic tuners. The main difference (but this statement may oversimplify matters a little) is that for stereo the tuner must provide distortion-free reception of "audio" up to 75 kc, instead of just 15 kc, as previously.

Antenna installation becomes more important than before. Reflections that could cause ghosts on a TV screen may not be audible on monophonic FM reception in any way—distortion or frequency response. But on stereo multiplex, these ghosts can cause distortion, change in frequency response and interference with separation at different frequencies. So you need a good antenna installation that will virtually eliminate reflections, due either to excessive mismatch or multi-path reception.

Testing the same antenna for TV reception is not the answer, of course, because the TV program does not use either the same frequency or the same transmitting antenna location as the FM stereo. It's a job that has to be done with patient observation on actual FM stereo multiplex reception when transmissions are available.

The new system will undoubtedly have its "teething" problems all around. But "stay tuned"—we'll keep you posted on new developments.

KEY TO THE COVER

![A B C D E F G H I J K]

REASSEMBLING SPRING-LOADED GEARS

By CHARLES E. COHN

Many dial mechanisms use spring-loaded gears to eliminate backlash. When reassembling such a mechanism after working on it, gear adjustment must be right. Note the relationship of the two spring-connected gears with no force on the springs. Then move the gears relative to each other, in the direction that compresses the springs, until the teeth of the two first coincide with these springs under force. Then mesh them with the other gear of the train. Moving the gears to compress the springs further than this increases the friction of the system and makes it harder to operate. This can be done, however, if the load carried by the gear train is high enough that the light spring loading recommended here is not enough to take up the backlash. The lightest spring loading that will keep the two loaded gears from moving relative to each other under reversal of motion is the loading that should be used.

A Paco

B Eico

C Pilot

D H. H. Scott

E Sherwood

F Friedman

G Harmon-Kardon

H Bogen

I Lafayette

J Heath

Want to know more about these units? Check the directory starting on page 38.
INDUSTRIAL TEST EQUIPMENT

IS IT DIFFERENT?

By MATTHEW MANDL

THE differences between industrial test equipment and TV service gear are those of refinements and modifications of basic voltmeters, ohmmeters, oscilloscopes and related units to adapt them to the more demanding requirements of industrial electronic gear and circuitry. Service technicians who know how to use their own equipment will have no difficulty using similar higher-level industrial equipment once the ranges, applications and variations are understood.

On occasion, a piece of equipment unrelated to the test equipment found in TV servicing will be encountered, such as the strip-chart recorder discussed later. When its basic principles are understood, however, the technician will have no trouble using it, particularly if he is proficient in handling ordinary meters, scopes and checking devices.

VTVM's and VOM's

The ordinary vtvm and vom are extensively employed in testing, servicing and maintaining industrial electronic equipment. There are, however, numerous occasions when more specialized types are used for tasks normally beyond the capabilities of the basic units. One such might be a miniature unit to meet a certain set of requirements, or it may have a greater input impedance and higher scale ranges. Others may interpret the signal voltage output from transducers and give a direct reading of the information sensed by them.

An example of an industrial meter is the Metronix model 311, a panel-mounted ac unit. Its usefulness in industrial electronics, is due to its high input impedance and broad frequency range. These desirable factors were obtained by using a vtvm.

The input impedance of the model 311 is 5 megohms, paralleled by 25-µuf capacitance. The high input impedance is particularly useful when it is necessary to make voltage measurements without loading the circuit under test with the voltometer circuit.

Ordinary voltmeters for industrial work are calibrated at 60 cycles, and their accuracy varies when signal voltages above or below the calibrated frequency are measured. But this meter's frequency range is from 20 cycles to 250 kilocycles. Accuracy is ±2% of full-scale deflection over the entire frequency range. Also, the instrument is comparatively unaffected by any line-voltage variations. A 10% change in line voltage will cause an error of no more than 1% of full-scale deflection. The full-scale sensitivity of the unit begins at 10 mv and goes up to 300 volts rms.

A volt-ohmmeter with a special speed-reading (tachometer) probe is the Servo-Tek Speedvolter. It is designed to meet industrial requirements for a quick and accurate means of measuring speed. Because of its voltage and resistance checking capabilities, it can also be used as a testing and servicing device. The Speedvolter has an external tachometer transducer which is attached to probe leads as shown. It is used to measure the speed of motors, rotating machinery, conveyor belts and other motions. The speed is directly indicated on the specially calibrated meter dial.

The tachometer transducer is based on the dc generator principle. When an armature rotates in a magnetic field, the magnetic lines of force are cut and a voltage is induced in the output leads. In a tachometer, the generator assembly is very small so the unit is not excessively bulky.

When the shaft which protrudes from the tachometer housing is held on a motor shaft or other rotating device, the spinning armature in the tachometer generates a voltage output propor-
HEATHKIT

the only

New Deluxe Stereo Preamplifier
- 15 pushbutton-selected inputs; two sets of controls.
- Kit AA-11, 19 lbs. $84.95

Low Cost AM/FM Tuner
- Has multiplex output jack, two tuning "eyes", adjustable AFC.
- Kit AJ-11, 19 lbs. $69.95

Hi-Fi Rated Amplifier
- Mono. amplifier and preamp. 3 inputs; Heath Ultra-Linear.
- Kit AA-161, 15 lbs. $33.54

Superhet. CB "Walkie-Talkie"
- 9 transistor crystal-controlled superhet: with RF stage; 1 uv sensitivity; squelch & noise limiter.
- Kit GW-21, 3 lbs. $44.95

Short Wave Radio
- 4 bands, 550kc-30mc; lighted dial & meter; circuit board.
- Kit GR-91, 9 lbs. $39.95

Two-Part Basic Radio Course
- Each with authoritative textbook and parts for receiver.
- Kit EK-2A & 2B, 6 lbs. ea. $19.95

VTVM Applications Course
- First of a series; includes textbook & experiment parts.
- Kit EF-1, 3 lbs. $8.95

Educational Analog Computer
- Ideal for school or industry; 9 amplifiers, complete manual.
- Kit EC-1, 43 lbs. $199.95

3-Band RDF
- 10 transistor, 1 diode; covers Beacon, Consolan, Broadcast, Marine.
- Kit MR-11, 12 lbs. $109.95

Low Cost Depth Sounder
- All-transistor, battery power; depth 0-100'; transducer inc.
- Kit MI-10, 9 lbs. $69.95

Power Converter
- Converts 6 or 12 v. battery power to 117 VAC; switched; fused.
- Kit MP-10, 7 lbs. $29.95

7 Band VFO
- Covers 80 thru 2 meters; vernier, regulated, isolated; xmtr powered.
- Kit HG-10, 12 lbs. $34.95

50 watt CW Transmitter
- 80-10 meters; low pass filter; single switch station control.
- Kit HX-11, 17 lbs. $43.50

"Tunnel Dipper"
- Exclusive tunnel-diode osc.; works like grid-dip; 2.7-270mc.
- Kit HM-10, 3 lbs. $34.95

AC VTVM
- 10 ranges, .01-3000v; response 10 cps-500kc; 10 megohm input.
- Kit IM-21, 4 lbs. $33.95

General Purpose Scope
- Push-pull amps; sweep 20 to 100,000 cps; sensitivity .25v.
- Kit I0-21, 14 lbs. $49.95

Deluxe Capacitor Checker
- Direct reading; check all types completely, plus R and L.
- Kit IT-11, 7 lbs. $29.95

RADIO-ELECTRONICS
TOP VALUE
Value is a relative thing. In electronic kits it relates to quality of design, components, ease of assembly, performance and price. Heathkit is world-famous as the value standard.

EASIEST TO ASSEMBLE
Millions of satisfied Heath customers attest to the superiority of Heathkit construction manuals... so easy to follow, so complete that we guarantee you can build any Heathkit!

BEST QUALITY
Quality begins with design and continues through performance. Heathkit engineering reflects our greater experience and no-compromise quality components. Result: quality performance.

LOW PRICES
The Heathkit goal: to produce the highest quality kits at the lowest possible prices. Our devotion to this goal keeps Heathkit the world leader... the name you can trust for value.

complete line of Electronic kits!

OVER 250 KITS FOR EVERY NEED!

WORLD’S LARGEST MFR.
of electronic kits. Since 1927, Heath has been producing do-it-yourself equipment. Today, the Heathkit line includes over 250 different kits for your every need, interest and budget.

NO DOWN PAYMENTS
It’s easiest to buy Heathkit! No-money-down terms on your Heathkit order of $25 to $600! Take as long as 18 months to pay... reasonable carrying charges. Details in our ’62 Catalog. These new, relaxed terms, coupled with our guarantee that you can build any Heathkit, are your assurance of complete satisfaction.

NEW GUARANTEE
We guarantee you can build any Heathkit! This money-back Heathkit guarantee, unprecedented in the kit industry, is made possible by our millions of satisfied customers who have proved that building a Heathkit requires no special background, experience, skills or training! Now, regardless of your mechanical ability or experience, you too can enjoy the immense satisfaction of creating with your own hands an electronic product that performs like the factory built models... you too can enjoy the great savings of Heath “do-it-yourself” kits.

Send...FOR THIS NEW 100 PAGE CATALOG...
OVER 250 KITS

Money Back Guarantee
The Heath Company unconditionally guarantees that you can build any Heathkit product and that it will perform in accordance with our published specifications, by simply following and completing our check-by-step instructions, or your purchase price will be cheerfully refunded.

1962 Heathkit Catalog.
The world’s biggest kit catalog... big new size, big photos, complete descriptions, specifications, schematics.
Details over 250 exclusive kits available only from Heath. We’ll be glad to send your friends free copies too!

HEATH COMPANY
Benton Harbor 20, Michigan

[Address line]

Name
Address
City Zone State
Add a pilot light to variable autotransformers

By RONALD L. IVES

VARIABLE autotransformers such as the Variac, Varitran and Powerstat are widely used in electronic work to adjust and control line voltage. At many installations, a pilot lamp is used to indicate when the device is operating.

Conventional methods of connecting a pilot lamp to a variable autotransformer are shown in Fig. 1. Here (Fig. 1-a) a neon lamp with a series current-limiting resistor is connected across the primary. This is inexpensive and produces little heat but does not produce very much light. In Fig. 1-b, a filament pilot (such as a No. 44 lamp) is connected across the line with a suitable series dropping resistor. This produces adequate light for most purposes but emits considerable heat, 25 watts being dissipated in the dropping resistor and only 1.5 watts in the lamp. In Fig. 1-c, a similar lamp is connected across the input in series with a large capacitor which limits the current to that required for the lamp filament. This method, although bulky and initially costly, operates more cool. In Fig. 1-d, the pilot lamp is powered by aidget stepdown transformer. This is relatively inexpensive and compact.

(Continued from page 63)

Oscilloscopes

As in radio and television servicing, the industrial oscilloscope is useful for visual observation of the signals in oscillators, amplifiers and other such circuits. It is also used for signal tracing in conjunction with a signal generator, and for measuring peak-to-peak voltages. Many industrial scopes are similar to the types used by the TV technician. In research and design laboratories, however, more complex ones are used. They have a greater degree of input voltage sensitivity and a much higher sweep range. The more expensive scopes also have signal amplifiers which reproduce faithfully the sharp rise and fall of square waves and pulses. (See "About These Super-scopes," Radio-Electronics, March, 1961.)

A scope which is useful in industrial electronic applications is one which can display two input signals simultaneously. A typical instrument is the Hewlett-Packard model 122A. It has a 200-ke bandwidth which permits observation and measurement of the performance of electrical as well as mechanical equipment. It can be used as an ordinary scope with just a single trace, or, where two signal waveforms are to be compared, can provide two separate traces just as though two scopes were used.

This unit has twin vertical sweep amplifiers which have direct-coupled circuitry so that very-low-frequency square waves may be used for test purposes. AC coupling may also be used, to eliminate unwanted dc signals. The device is useful, for instance, in vibration studies in industrial electronic applications. In this application more rapid analysis is possible because both the driving source waveform for the vibration test as well as the actual vibration pattern can be seen at the same time and in relation to each other.

When two signals are viewed, they may be of different amplitudes because there are separate attenuators for each of the two signals. Direct-reading calibrated sweeps are available. One knob selects any of 15 calibrated sweep ranges from 5 µsec to 200 msec. The same concentric knob also selects the calibrated horizontal sensitivity. A feature of this scope is the sweep expander which aids observation and also speeds the analysis of transient signals by magnifying any 2-centimeter portions of the trace to 10 centimeters for easy viewing of the sectional details. This expander device may be used on any sweep range and increases the 5-µsec sweep to 1 µsec per centimeter.

Strip-chart recorder

Strip-chart recorders contain a roll of paper marked with graph lines. The roll is driven by a motor and glides under a recording pen or a recording stylus for graphing information. This type of recorder is useful because it will show variations in signals over extended time periods and can be used for keeping a permanent record of the variations of temperature, voltage, current, motor speed, and other such data.

Of particular interest is the Brown Instrument Co.'s Electronik Function Plotter. It is especially useful where it is necessary to indicate graphically one variable function with respect to another. Thus this strip-chart plotter is of value in industrial electronic applications such as the recording, plotting and graphing of variables in fabrication processes, construction applications, power distribution systems and chemical plants. Specifically, the device plots curves capable of indicating such information as relationship of speed vs torque, stress vs strain, temperature vs pressure, amplifier output vs amplifier input, fluid volume vs pressure and magnifying force vs flux density. In the latter application, it is of significant usefulness in the plotting of hysteresis curves of magnetic materials.

The Electronik Function Plotter uses two measuring circuits, two balancing circuits and two amplifiers which regulate drive motors. The pen which traces the graph lines moves horizontally under control of one of the variables sensed by any one of various devices such as thermocouples, tachometer generators or other de sources. As the recording pen travels horizontally across the calibrated scale chart, it indicates continuously magnitude of the variable and hence represents the X-axis on a rectangular coordinate plot. The second variable, representing the Y-axis on a graph, is mechanically linked to the chart drive mechanism to regulate the vertical movement of the chart. The result of these simultaneous operations is a continuous plot of Y as a function of X.

So far we have examined three categories of industrial test equipment. Next month we will continue by showing how hysteresis curves of magnetic materials are plotted with strip recorders and why we bother to do so. Also, typical industrial test procedures will be presented.

Hewlett Packard model 122A is a dual-trace scope.
By taking advantage of the properties of any standard variable autotransformer, most of the voltage reduction necessary for ordinary pilot lamp operation can be handled by the transformer itself. Usually, the voltage across the two outer taps of a conventional variable autotransformer is about 20, with a 117-volt input (Fig. 2).

![Fig. 2—There is about 20 volts across the top two taps of the transformer.](image)

By using these taps, a low voltage for the pilot lamp is available, and most conventional lamps can be operated in series with a small resistor, to drop the voltage. Connections and constants for No. 44 lamp are shown in Fig. 3. The value of a dropping resistor for other lamps is easily computed by using Ohm’s law.

![Fig. 3—Pilot lamp (No. 44) hooked up across the 20-volt taps.](image)

Obviously, the same general principles can be applied to devices other than lamps. In some industrial installations, relays, tube filaments and crystal oven heaters could be so operated. However, don’t forget that anything connected to the supply line and may be hot in relation to ground is also connected to ground.

CORRECTIONS

In the transceiver chart on page 53 of the September issue, the location of Karr Engineering Corp., was inadvertently listed as Englewood, Calif. The correct location is Palo Alto, Calif.

The electrocardiogram (EKG recording) in the article “Electronics in the Psychology Laboratory” (page 82, July issue) is upside down.

We thank Dr. Evan H. Ashby, Jr., of Remington, Va., for calling this to our attention.

OCTOBER, 1961

A SOUND APPROACH to Commercial and Industrial Application...

THE NEW COMMANDER SERIES BY HARMAN-KARDON

Flexible. Versatile. Dependable. That’s the new Harman-Kardon Commander Series of amplifiers and systems for commercial and industrial sound use. They’re ruggedly constructed for continuous duty. They include deluxe features at popular prices. They’re designed and manufactured by Harman-Kardon—notes for the quality, reliability and superb performance standards of its high fidelity products, including the highly acclaimed Citation Kits. In short: the new Commander Series is built by soundmen—for soundmen. Here are some of the exclusive features that make these the best instruments you can buy for the price.

MASTER VOLUME CONTROL: Enables total amplifier output to be varied without disturbing other control settings. MIXER CONTROL: Convenient one knob control permits fading and blending of signal from two channels, in any desired amount. (DA-35, DA-100) MULTIPLE INPUTS: All at the rear—allow for an unusually high degree of installation and operational flexibility. ANTI-FEEDBACK FILTER: Equalizes frequencies most sensitive to generation of feedback “howl” without reducing articulation—thus achieving maximum power output under difficult acoustical conditions. (DA-12) 25 AND 70 VOLT OUTPUTS: Provides two constant voltage systems—70 and the newer 25 volt balanced system— for optimum flexibility and economy in speaker installation. LOCKING COVERS: Unique feature on units in this price class—designed to prevent tampering or accidental change of precise control settings. PLUS: Magnetic Cartridge Input; Tape Recorder Output; Independent Power Switches; and many other deluxe features.

The Commander Series shown above includes the following: Model DA-35, 12 Watt PA Amplifier—$119.95 List; Model DA-35, 35 Watt PA Amplifier—$187.50 List; Model DA-100, 100 Watt PA Amplifier—$250.00 List; Model DPR-7, Combination Mixer/Preamplifier—$75.00 List; Model PT-1, Phonograph Top—$37.50 List; Model LC-1 and LC-2, Locking Panel Covers: Model LC-1—$8.50 List, Model LC-2—$9.00 List.

For informative catalog on complete Commander Series write Dept. 108.

Commercial Sound Division

Harman-Kardon, Inc.
Plainview, N. Y.
THERE ARE TIMES WHEN THE MAIL IN THIS department runs pretty heavy on width troubles. In our day-to-day servicing activities, we've found that the percentage of width troubles to other defects runs fairly high at times. So we thought that we'd run over some of the more common (and a few uncommon) causes of this defect. Let's take them one at a time.

Tubes

As with all other TV troubles, weak tubes cause most of the complaints. They get the most wear. So the first step in troubleshooting width complaints is to replace all tubes in the horizontal sweep circuits—oscillator, output damper and high-voltage rectifier. Unless this is done, there's always the chance that an unsuspected bad tube is still in the set. (Might throw in the low-voltage rectifier while you're at it, just for luck.)

Frankly, the horizontal sweep and high-voltage sections of a TV set are pretty rough to test, unless you have one of the specialized in-circuit testers, such as the unit designed by Wayne Lemons and described in the February 1961 issue of Radio-Electronics. These make the task a lot easier, for you're able to read actual operating values of voltage and current. There are several professional test instruments built for the purpose: the Doss 250, B&K 1070 and Sencore SS105. I can't recommend them too highly.

You've changed the tubes, and the picture is still narrow. We're going to have to pull the chassis and take some measurements. While there are wide variations in voltages in other stages of a TV set, you'll find a lot of uniformity in horizontal output stages. For example, the voltage on a GB6 plate will be about the same in all sets (but don't measure it), and the screen voltage should be about 150. This is usually obtained through a dropping resistor to B-plus or boost. Check this resistor carefully. A previous tube may have shorted and burned the resistor, causing it to go off value. A change in screen voltage alters the operating constants of the tube severely. Some sets vary the screen voltage to adjust width. Check this variable resistor. It may have shorted or dirty (Fig. 1). Low screen voltage causes insufficient width. High screen voltage causes excessive plate current in the output stage and shortens the life of the output tube. As a quick average, almost all common horizontal output tubes in use today have screen voltages ranging from 100 to 157 (average, 150) except the GB6 series, which use from 250 to 300 volts on their screens.

The screen bypass capacitor can be the source of some obscure troubles. If it is open, the usual result is a loss of width or sometimes parasitic oscillations of various kinds. If it is leaky, we get low screen voltage and loss of width. Average value of this capacitor is about 0.1 to 0.15 µf, and it must never be rated at less than 600 volts.

While we're working around the screen circuit, let's take a look at an obscure complaint that has caused lots of headaches among technicians. This is screen emission, or grid emission, in the horizontal output tube. When the tube develops this defect, the screen actually emits electrons. This, of course, plays hell with the normal sequence of events in the electron stream within the tube. The usual symptom is a gradual loss of width and brightness after the set has been on for a while. Sometimes it takes as long as 2 hours for this trouble to set up. We get pull-in from the sides, and in some cases, even a slight horizontal instability.

There is a good test for this (Fig. 2). Connect a vtm to the grid of the output tube, set to a medium range (0-30 volts negative) and open the cathode of the tube while the set is running and thoroughly warmed up. If there is any reading at all after the initial reading has "soaked off" (the normal grid-bias reading from the grid current developed by the horizontal drive), either the tube has screen or grid emission or the coupling capacitor is leaky.

A sure test for coupling capacitors is easy. Just pull the tube out of the socket. If there is any reading, the capacitor must be leaking. Now you'll have a reading to begin with, as we said, but this should drop to zero in 5 seconds or so. If it doesn't, substitute a new tube, heat the set for an hour or so and repeat the test.

This width situation covers more ground than we expected. We'll stop here for now and continue next issue.

Tuner replacement

In the December 1955 issue of Radio-Electronics you were asked to replace a tuner. I have a similar problem and would like your help on it. I want to change a variable-capacitance tuner in a Philco 53-T-1683, replacing it with a turret tuner from a 51-T-1602 Philco. Is this possible without too much remanufacturing? I am sure the original tuner is beyond repair.—C. R. D., Ashbtaloha, Ohio.

I think this will be possible without
too much trouble. The 53-T-1883 uses the 44 rf chassis and the tuner mounts on the side. This should leave you plenty of room. Physical dimensions and mounting will be your worst problems.

Both tuners have the first video if transformer in the tuner chassis so this should simplify your connections. This transformer is tuned to 23.6 mc on both tuners unless the alignment has been changed or tampered with.

There were several versions of the turret tuner in a series of Philco chassis. Some were built by Philco, others by Standard Coil. Some had only 8 channels, some 12. Electrically they are all close enough so that it will make no difference which one you have. After making all connections as per the schematic—B-plus, filament, age, etc—it would be a good idea to run a video if alignment curve on the whole set. If you don't have the necessary FM sweep alignment equipment, wait until you can get a good clear test pattern, with sound, and lightly touch up the alignment of the 23.6-me adjustment on the tuner for best definition of the vertical wedge and best sound at the same time.

Retrace eliminator

Can you tell me how to hook up a vertical retrace eliminator in a Philco 52-T2114?—J. L., Wayne, W. Va.

This is fairly simple. To eliminate vertical retrace lines, we simply apply a pulse of voltage to either the cathode or grid of the CRT to cut off the electron beam during vertical retrace time. To apply blanking to the cathode, we need positive-going pulses. To the grid negative-going pulses are used.

Fig. 3—A simple vertical retrace eliminator circuit.

Fig. 3 shows some typical circuits you can use. Incidentally, you can do a lot of cut-and-try here without hurting anything. You don’t even have to check polarity on your pulses. Just hook up the R-C network to wherever you want it. If the retrace lines get worse, you've got the wrong polarity. You can pick up pulses almost anywhere in the vertical circuit except at the plate of the output tube.

Poor height

A Crosley 11-461WU has insufficient height. I checked voltages, and found only 25 volts on the plate of the vertical oscillator. All the resistances be-

STEREO FM RADIO

Only Granco brings the magnificent new sound of stereophonic FM radio into your home—today! Fine Granco FM/AM radio with AFC...and matching speaker-amplifier Stereo Companion for total listening pleasure never before possible. Hear Granco stereophonic FM radio now—at fine dealers everywhere.

Write for free booklet! "THE WONDERFUL WORLD OF STEREO FM"

GRANCO America’s Leading Specialist in Stereophonic FM

DIVISION - DUMONT EMERSON CORPORATION, Dept. RE, 680 FIFTH AVENUE, N.Y. 19

*Suggested list. Prices slightly higher in some areas.

MAIL THIS COUPON TODAY

Radio Shack Corp.
730 Commonwealth Ave., Boston 17, Mass.

Please send me Radio Shack's famous electronics catalogs for 1 full year—all FREE and POSTPAID.

Name: __________________________

Address: ________________________

City & Zone: ____________________

State: __________________________

TYPICAL VALUES FROM

REALISTIC 2-SPEED TAPE RECORDER

High sounds like a $100 set Hi-Fi stereo speaker for balanced tone. 4 element tweeter. 7" woofer. $54.95

REALISTIC STEREO AMPLIFIER KIT

First under $20. Exclusive of Radio Shack. Easy to assemble. pre-mounted except resistors, capacitors. $10.95

ELECTROSTAT-2

2-way speaker system. Good sounds like a $100 set Hi-Fi stereo. $54.95

RADIO SHACK CORP.

Boston 17, Massachusetts

OUR NEW 336-PAGE BOOK

Our 1962 giant catalog brims with over 100,000 values like those shown at left. Stereo, Hi-Fi, Ham Radio, Test Equipment, Records, Tapes, Parts and Accessories, 30 pages of Kits—the biggest line of electronic equipment and parts in the world! Guaranteed to satisfy or money back. Easy to own. No Money Down credit terms.

When you send coupon, you get our giant catalog plus all other books for 1 year.
between the plate and B-plus were normal. If I remove the tube from the socket, the voltage comes up. If I put a 100,000-ohm resistor between cathode and ground the plate voltage comes up to normal, but the oscillator doesn't work. The vertical amplifier in the same envelope is OK.—P. H., McKees Rocks, Pa.

Your loss of plate voltage is obviously caused by the tube drawing too much current. This accounts for the rise in voltage when the tube is removed. When you inserted the high resistance on the cathode circuit, you overdrew the defective bias circuit, blocking the tube, and the plate current stopped flowing.

Check the grid voltage on the defective section. You will undoubtedly find it positive. Check two components: the tuning capacitor between the vertical oscillator grid and the integrator, and the vertical blocking transformer (for leakage between the windings). If the positive plate voltage is leaking between windings, it would drive the grid heavily positive. The tube would draw a very high plate current, giving you the symptoms you describe. To check it, disconnect the grid end of the transformer at the grid connection, and re-measure your grid voltage. It should drop to zero. If the transformer is leaking, the open end of the grid winding will show a high positive voltage.

No raster on strong stations

I am working on a Westinghouse V-2192. The complaint is no raster on strong stations, and a very dark raster on weaker channels. If I substitute an age bias, I can get a picture. The voltages around the age keyer tube are as shown in the sketch (Fig. 4). If I touch the grid of the first video if, the picture comes back.—J. H., Hudson, N.Y.

This is an age blackout caused by overloading on the strong signal. This sounds awfully simple, but I've been caught on it myself at times. Check the shields on the video if stages. If one of them is missing, you may be getting regeneration or oscillation strong enough to cause this.

The voltages you show on the keyer tube are almost all wrong (Fig. 4). Notice that the plate and screen voltages are high. This indicates a lack of the proper grid bias. You show 80 volts here and it ought to be 60. The cathode reads 120 volts, leaving you with an actual grid-cathode voltage of —40. You're just not drawing the right amount of plate current in this stage.

The most likely cause of this trouble is either incorrect resistors in the supply circuit, or insufficient video signal applied to the control grid. Check this with a calibrated scope. There could be an open coupling capacitor or leakage in the supply circuit between grid and the signal takeoff point at the video amplifier. Also, don't overlook the possibility of open peaking chokes, etc., in the video amplifier stage or even a weak tube.

Chronic tube burnout

I am having trouble keeping tubes in the high-voltage section of a Sylvania chassis 1-512-1-2. It is a 27-inch set and uses two 6BQ6's and two 1B3's. It has a voltage-doubler circuit and the tubes seem to get too much current, making them go bad every 3 or 4 months.—Q. E. C., Port Arthur, Tex.

Your difficulty is caused by just slightly low drive voltage on the 6BQ6's—this has occurred before in several sets. The cure is to raise the drive to normal. Check the horizontal oscillator tube and circuit and be sure that there is at least 18-20 volts dc, as measured on a vttm, or about 150 volts peak-to-peak, as read on a scope. The short life of the 1B3's could also be traced back to the same fault. Excessive currents through the horizontal output tubes could raise the pulse voltage, overloading their filaments. Check the plate current of each of the 'BQ6's, after repairs have been completed. It should not be over 100 ma per tube. One other possibility would be to replace the 6BQ6's with 6JQ6's. However, before doing anything drastic to the set, make a very careful check of the ac line voltage at the customer's home! It could be slightly high and would cause all of the symptoms described.

Hot linearity coil

I'm having trouble with a Hoffman 21 M115, chassis 196. The 6BQ6 screen grid resistor gets very hot. The linearity coil is dripping wax. The waveform at the 6BQ6 grid is 100 volts p-p, but it doesn't look right to me (Fig. 5). Voltages seem close to normal and the 6BQ6 is drawing 95 ma.—R. H., Collins, Miss.

There are two possibilities here. One, of course, is improper adjustment of the horizontal linearity coil. However, since you read 6BQ6 plate current as only 95 ma, you probably have the other one.

This is parasitic oscillation in the horizontal output stage, mostly in the screen circuit. It is the most likely cause of the ringing seen in the horizontal oscillator grid waveform. Put a resistor of about 100-150 ohms in series with the screen of the 6BQ6 and adjust the horizontal linearity coil for minimum plate current. Check the screen bypass capacitor (Fig. 6). Also, take a low-capacitance probe and check all of the B-plus supply circuits for traces of horizontal hash. If you find

Fig. 5—This waveform was on the grid of the horizontal output tube of a Hoffman 196. Note the excessive ringing.

Fig. 6—Add a 100- to 150-ohm resistor in series with the screen grid to damp out parasitic oscillations. Also check screen bypass capacitor for leakage.

19- to 21-inch conversion

I have the problem of converting a Zenith S4H21 from a 19AP4-A to a 21-inch picture tube. Please tell me if this change can be made, and how.—S. T., Johnstown, Pa.

This will be a fairly simple conversion, with only mechanical changes required. The best choice of picture tube would be a 21EP4. If the present tube is being fully swept, you will have ample width. The 21EP4 is also economically priced. Don't forget to ground the outer coating when you install this tube.

Poor pix detail

The picture detail is poor in a Raytheon 17AY21. I've changed all the tubes in the video section without helping it. The scanning lines are sharp.—J. S., Rockford, S.D.

Sounds like your video if is badly out of alignment. This is the most common cause of loss of fine detail if the picture is focused properly.

Run a complete realignment of these stages. You might also check the series and shunt peaking chokes in the video and detector output circuits. If one of these is defective, it could cause the same trouble.
RCA training at home can be the smartest investment you ever made

Look what you get in the Course in Radio and Electronic Fundamentals

40 Fascinating THEORY LESSONS

Containing all the basic principles of radio and electronics in easy-to-understand form.

40 EXPERIMENT-LESSONS

Each containing absorbing practical experiments bound together in 20 books.

40 SERVICE PRACTICES

Full of practical, time-saving servicing tips, bound into 20 books.

PLUS ALL THIS AT NO EXTRA COST...

15 KITS

to build a Multimeter, AM Receiver and Signal Generator. Kits contain new parts for experiments, integrated so as to demonstrate what you learn in the lessons and to help you develop technical skills. Each kit is fun to put together!

MULTIMETER

A sensitive precision measuring instrument you build and use on the job. Big 4½" meter with 50 microamp meter movement, 20,000 ohms-per-volt sensitivity d-c, 6,667 a-c.

AM RECEIVER

Have the satisfaction of building your own radio receiver with this high-quality 6-tube superheterodyne set. Big 5" speaker, fine tone!

SIGNAL GENERATOR

A "must" for aligning and trouble-shooting receivers. Build it for your own use. 170 KC to 50 MC fundamental frequencies for all radio and TV work.

Practical work with the very first lesson! Pay-only-as-you-learn! No long-term contracts to sign! No monthly installment payments. Pay only for one study group at a time if and when you order it!

Stake out your future in electronics now!

SEND FOR OUR FREE HOME STUDY CATALOG TODAY!

Just fill out this card and drop it in the mail—no postage needed.

RCA INSTITUTES, INC.
A Service of Radio Corporation of America
350 West Fourth Street
New York 14, N.Y.

The Most Trusted Name in Electronics

RCA INSTITUTES INC. Home Study School, Dept. RE-01
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N.Y.

Without obligation, rush me the FREE 64-page illustrated book describing your electronic training program (check one). No salesman will call.

Home Study □ Los Angeles Resident School □ New York Resident School □

Name ___ (Please Print)

Address ___

City __________________________ Zone ______ State ______

Veterans: Enter discharge date _________________________

CANADIANS—Take advantage of these same RCA courses at no additional cost. No postage, no customs, no delay. Enclose this card in envelope and mail to: RCA Victor Company, Ltd., 5581 Royalmount Ave., Montreal 9, Quebec.

www.americanradiohistory.com
RCA TRAINING CAN BE THE SMARTEST INVESTMENT YOU EVER MAKE

With RCA Institutes Home Study training you set your own pace in keeping with your own ability, finances and time. You get prime quality equipment as a regular part of the course... and you never have to take apart one piece to build another. Perhaps most important, RCA's liberal Pay-As-You-Learn Plan is the most economical home study method because you pay only for lessons as you order them... one study group at a time! If you drop out at any time, for any reason, you do not owe RCA one penny! No other obligations! No installment payments required! Licensed by New York State Education Department.

Choose YOUR FUTURE from this list of courses:
- Radio and Electronic Fundamentals (see reverse side)
- Television Servicing
- Color Television
- Electronics for Automation
- Transistors

FIRST CLASS
PERMIT NO.
10662
NEW YORK, N.Y.

BUSINESS REPLY MAIL
No Postage Stamp Necessary if mailed in U.S.

Postage will be paid by—
RCA INSTITUTES, INC., Dept., RE-01
350 West Fourth Street
New York 14, N.Y.

RCA TRAINING IN ELECTRONICS NOW AT RCA INSTITUTES in Los Angeles, New York City

CHOICE FROM THIS LIST...

<table>
<thead>
<tr>
<th>Course</th>
<th>Qualifications</th>
<th>Length of Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Advanced Electronic Technology (T-3)</td>
<td>High School grad, with Algebra, Physics or Science</td>
<td>Day 21/2 yrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eve. 6 1/2 yrs. (N.Y.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 1/2 yrs. (L.A.)</td>
</tr>
<tr>
<td>B Television and General Electronics (V-7)</td>
<td>2 yrs. High School, with Algebra, Physics or Science</td>
<td>Day 1 1/2 yrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eve. 4 1/2 yrs. (N.Y.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 yrs. (L.A.)</td>
</tr>
<tr>
<td>C Radio and Television Servicing (W-3)</td>
<td>2 yrs. High School, with Algebra, Physics or Science</td>
<td>Day 9 mos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eve. 2 1/4 yrs. (N.Y.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1/2 yrs. (L.A.)</td>
</tr>
<tr>
<td>D Transistors</td>
<td>Radio background</td>
<td>Eve. 3 mos.</td>
</tr>
<tr>
<td>E Electronic Drafting (V-11 V-12)</td>
<td>2 yrs. High School, with Algebra, Physics or Science</td>
<td>Eve. Basic 1 yr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced 2 yrs.</td>
</tr>
<tr>
<td>F Color Television</td>
<td>Television background</td>
<td>Eve. 3 mos.</td>
</tr>
<tr>
<td>G Radio Telegraph Operating (V-5)</td>
<td>2 yrs. High School, with Algebra, Physics or Science</td>
<td>Day 9 mos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eve. 2 1/4 yrs. (N.Y.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1/2 yrs. (L.A.)</td>
</tr>
<tr>
<td>H Computer Programming (C-1)</td>
<td>College Graduate or Industry sponsored</td>
<td>Eve. 24 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat. 30 weeks</td>
</tr>
<tr>
<td>I Technical Writing (V-10)</td>
<td>High School Graduate</td>
<td>Day 9 mos. (L.A.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eve. 2 1/4 yrs. (L.A.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 mos. (L.A.)</td>
</tr>
<tr>
<td>J Automation Electronics (V-14)</td>
<td>Background in Radio Receivers and Transistors</td>
<td>Eve. 8 mos. (N.Y.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat. 46 weeks (N.Y.)</td>
</tr>
<tr>
<td>K Digital Computers</td>
<td>Electronics background</td>
<td>Eve. 3 mos. (L.A.)</td>
</tr>
<tr>
<td>L Preparatory Math & Physics (P-0)</td>
<td>1 yr. High School</td>
<td>Day 3 mos.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or 6 mos.</td>
</tr>
<tr>
<td>M Preparatory Mathematics (P-0A)</td>
<td>1 yr. High School</td>
<td>Eve. 3 mos.</td>
</tr>
</tbody>
</table>

RCA Institutes is one of the largest technical institutes in the United States devoted exclusively to electronics. Co-educational Day and Evening classes. Free Placement Service. Applications now being accepted.

SEND FOR THIS FREE ILLUSTRATED BOOK TODAY. Fill in the other side of the postcard and check Resident School.

RCA INSTITUTES, INC., A Service of Radio Corporation of America 350 W. 4th St., N.Y. 14, N.Y. + 610 S. Main St., Los Angeles 14, Calif.

The Most Trusted Name in Electronics
Accurate alignment of

Hi-Fi FM Tuners

By JOSEPH MARSHALL

This time we use an FM generator and a distortion analyzer to do the job

Last month we saw how to align FM tuners without using either a scope or a sweep generator. This month we will discuss another FM alignment procedure that uses instruments.

There is a method of alignment, not nearly as well known as the visual and vtm methods, which is both simpler and more effective. It calls for an FM generator covering the FM band and a distortion meter (or a 400-cycle null network and any ac meter capable of reading 400-cycle ac). It works equally well with any kind of detector, requires a minimum setup time, and the setup remains the same throughout the alignment process. Since its criterion of measurement is the lowest distortion, it also results in the highest fidelity.

Quite a few shops specializing in hi-fi servicing own distortion meters, either FM or harmonic. Few shops own a good FM signal generator. The Measurements Corp. and Boonton Radio generators, which are ideal, unfortunately leave very little change out of a thousand-dollar bill. An occasional Measurements 78FM can be found on the surplus market for as little as $100 and, if in good condition, is a real bargain. The procedure is very simple.

1. Connect the harmonic-distortion meter to the tuner output and adjust the tuner volume control and the sensitivity of the distortion meter so that tuner noise produces a 0-db reading on the meter. Connect the FM generator to the tuner input and feed an unmodulated signal at either 90 or 106 mc into the tuner and adjust the generator output to produce a 20-db reduction in the reading on the distortion meter. Note, for reference, the input in microvolts. Retune the generator and tuner to 106 (or 90) mc and repeat. Compare the input with that at 90 mc. Note which position yields the highest sensitivity, and tune the generator and tuner carefully to this weak signal at either 90 or 106 mc, whichever is the more sensitive point.

2. Modulate the generator with internal 400-cycle tone and adjust for 75-kc deviation. Adjust tuner volume control and meter sensitivity so audio output gives about a half-scale reading.

3. Now adjust the primary slug of the detector transformer and the slugs of all if and limiter transformers for maximum output as read on the meter. This will coincide with maximum swing on tuner's tuning meter or indicator.

4. Increase the generator output until you find that the difference in sensitivity at 90 and 106 mc is greater than 6 db, try to equalize the sensitivity by adjusting capacitative trimmers at the high end and coil inductances at the low end. Or, in a fringe area, adjust the sensitivity to favor desired weak stations.

You can also use an IM analyzer. Feed the tuner output to the analyzer input. Feed the composite signal from analyzer into the external modulation jack of the FM generator. You can meter this input to the voltage suggested in the generator manual. Or, more simply, you can set the deviation at 75 kc and then increase IM analyzer output until you hear or read appreciable distortion.

This method is so simple, foolproof and effective that it is to be hoped that someone will soon provide a reasonably priced FM generator—or better yet—a generator with a built-in nulling network and meter.

The outlined procedures will apply equally well to the mass-produced FM tuners and receivers that are found in hi-fi packages, table model receivers, etc. However, you are likely to run into gated-beam detectors. No component tuner I can recall uses a gated-beam detector though several use gated-beam limiters. The gated-beam detector combines the functions of limiting and detection and can be aligned as follows:

1. Feed the tuner with a signal from an AM generator anywhere in the FM band or, if you want to go to the trouble, at the intermediate frequency.
WHAT'S YOUR EQ?

The EQ’s are now the most popular department in the magazine. Our mail is reaching an all-time high! We just can’t answer individual letters, but will continue to print the more interesting solutions (the ones the original authors never thought of!).

Here are a few more we hope our readers will find challenging. And if you can develop an original EQ that will stump our readers, send it to us. We pay $10 and up for each one accepted. Write to EQ editor, RADIO-ELECTRONICS 154 West 14th St., New York 11, N.Y. Answers to September puzzles are on the opposite page.

An Electronic Ground?

This Zenith chassis 15Z31 came into the shop with what appeared to be a folded-over ground symbol. The shop technician took one look and pointed out the trouble, not by deduction, but because he had had the same trouble before. Could you have done as well? — Wayne Lemons

Simple Impedance Problem

At 1,000 cycles, what is the impedance of this circuit (to the nearest ohm) between points A and B, and what is its phase angle (to the nearest degree)? — Charles Erwin Cohn

Accurate Alignment of Hi-Fi FM Tuners (continued)

Carefully peak the signal and modulate at around 30%. Connect an audio output meter or the ac section of your vtvm to audio output of tuner.

Ground the quadrature grid (see diagram). Turn up the volume control on the tuner and adjust generator output to produce a moderate reading on the meter. Check to see that the limiter is not limiting. If limiting shows up, reduce output.

Tune the primary and secondary slugs of the detector transformer for maximum swing.

Increase generator output until the limiter is saturated (meter reading does not increase with increased input). Adjust the variable cathode resistor for minimum reading on the meter.

Disconnect the generator and tune in an FM station of moderate strength. Unground the quadrature grid and tune quadrature coil for maximum audio output.

Peaking double-humped if

If you run into an older tuner with the double-humped response curve, you can still peak it easily by the method below. The double-humped response may show up when you check the shape and symmetry of the if as detailed earlier. Or it may show up when you try to peak the if. Get a 1,000-ohm resistor and attach two small alligator clips to its leads. Keep the leads as short as possible but with enough flexibility to be conveniently used. Clip this loading resistor across the secondary of the if transformer when you are peaking the primary, and across the primary when peaking the secondary. You will find that you get a broad single peak and the idea is to adjust the trimmer or slug for the middle of this broad peak.

END

Electronic Photogram Puzzle

This novel, puzzle can provide many minutes of fun for the electronic technician and hobbyist. The object is to see how many of the radio-equipment components you can identify correctly in the photo-diagram. Watch out—a couple foreign (non-electronic) parts are thrown in just to mislead you!

List your answers in the blank spaces and then check your answers next month.—John A. Comstock

RADIO-ELECTRONICS
SPEEDY TRANSISTOR TESTER

With this switchbox and an ohmmeter you can spot defective transistors and separate the p-n-p's from the n-p-n's.

Front panel of the switchbox sports a selector switch, transistor socket and jacks for your ohmmeter probes.

By WAYNE LEMONS

NEARLY ALL MANUFACTURERS RECOMMEND an ohmmeter test for transistors, especially for power types. It consists of placing test leads between the base and emitter, base and collector, collector and emitter, and then reversing the leads to check diode action. If you get a high-resistance reading in one direction and a low-resistance reading in the other between the base and emitter and the base and collector, and a high-resistance reading in both directions from collector to emitter, the transistor is considered good.

This does not check gain but, since transistor gain seldom changes, a gain test is virtually unnecessary for service work. Unfortunately, holding two test leads while fumbling with three transistor leads and trying to remember which is which and why, is no job for a man with only two hands and a one-track mind.

The little box shown here, used with your ohmmeter, decomposes and defrusters the process marvelously. A transistor socket is used for plug-in transistors, and the three clips for other types. It makes no difference whether the transistor tested is an n-p-n or p-n-p. Simply plug your ohmmeter into the jacks provided and rotate the tester switch from 1 to 6. You should get alternate low- and high-resistance (or high and low) readings in positions 1 to 4 and high-resistance readings on both 5 and 6. In other words, there will be two low-resistance and four high-resistance readings if the transistor is good. You can identify transistors as n-p-n or p-n-p by noting if the low-resistance reading occurs on position 1 or 2. This unit and the meter used with it gives a low-resistance reading on position 1 for n-p-n types and position 2 for p-n-p's. Other wiring arrangements or a different meter could reverse this. It's easy to find out — check a good transistor with known characteristics.

The R × 10 scale is used for most transistors but you may want to use the R × 1 scale for power types. The R × 10 scale is probably about right for most of the resistances encountered. Transistors will vary but you usually get 100 ohms or less in the forward direction to over 50,000 ohms in the reverse direction for small-signal types. Power types usually have less resistance in both forward and reverse directions. Different meter scales will alter the readings—for instance, you may get 20 ohms forward resistance on the R × 10 scale and only 10 ohms on the R × 1 scale. Ratio of front to back is more important than actual values. Ratios of 100 to 1 are desirable though sometimes not necessary.

Inside the switchbox.

What's Your EQ September Solutions

Over the River

The solution shown is for 10 wires but it applies to any even number of wires greater than 4. Start by tying wires into pairs except for four wires. Tie three of these together and leave one free. Label the pairs A-A, B-B, C-C; then label the set of three D-D-D. The remaining wire is then labeled 1. Move over to the other side. Find the free wire and label it 1. Find the pairs and label them 2-3, 4-5, 6-7; then label the set of three 8-9-10. Tie 1-2-10 together. Then tie the following wires into pairs 3-4, 5-6, 7-8; leave 9 free. Move back to the first side. Open all the wires that are tied together. Find the free wire and label it 9. Find the wires that are connected to No. 1. Label the D-wire 10 and the C-wire 2, then the other C-wire must be 3. Label it. Find the wire connected to No. 3 and label it 4. Since it is an A-wire, label the other A-wire 5. Find the wire connected to No. 5 and label it 6. Since it is a B-wire, label the other B-wire 7. Find the wire connected to No. 7 and label it 8. This completes wire identification.

Automated Voting

Now everyone gets to vote. Three employees can outvote the boss — when they want to listen to the radio, that is. Wonder how this system works when Dick wants a raise?
Almost too simple. The black box merely contains a nice, neat short circuit. The cells, of course, both have equal internal resistances through which the current, I, flows. When two cells are in series, the resistance as well as the voltage doubles, leaving current I essentially constant.

Series-Parallel Capacitors

This is a typical sample of the present-day right-angled drawing. (It can make any problem unnecessarily complicated.) Drawn in bridge form as shown here, it is easy to see that the 5-μf capacitor has no effect on the circuit, and that we have two parallel branches of two 2-μf capacitors in series with each other. Capacitance of each branch: 1-μf; total capacitance: 2-μf.

Relay Service Note

A relay that intermittently fails to operate when the proper signal is applied is exasperating. We ran into this twice—the escapment relay in two signal-seeking automobile radios failed to operate. In each instance the proper current was applied to the relay winding, mechanical action was free and the escapement released smoothly when operated manually.

We noted that when operated manually with current applied, an unusual amount of force was required to actuate the mechanism. Close inspection disclosed a small sliver of iron filing held in a horizontal position between the armature and the pole piece of the relay. Residual magnetism prevented its being moved in normal handling. When current was applied, the filing bridged the gap between the armature and the pole piece, preventing normal operation of the relay. We removed the filing with a piece of gummed tape to effect a permanent cure.—Roy E. Petersen

Perma-Power COMPANY

3100 N. ELSTON AVE. • CHICAGO 18, ILL.

RADIO SHACK 1962

Send for your FREE personal copy of RADIO SHACK'S 336-PAGE 1962 CATALOG

Nationwide standard of excellence in Electronics, Music, Communications. Also receive all other issues for 1 year! Our bigger, better catalogs offer the widest line of electronic parts and equipment in the world! Latest in Stereo, Hi-Fi, Ham Radio, Test Equipment, Pre-Recorded Tapes, Tape Recorders, Records, Component Parts—plus 30 pages of new fun-to-build kits. Every item is easy to own on new No Money Down Credit Terms. Every item is guaranteed to satisfy or your money back.

MAIL THIS COUPON TODAY

RADIO SHACK Corp.
730 Commonwealth Ave., Boston 17, Massachusetts

Please send me Radio Shack's new 1962 Electronics Catalog and every new issue for the next 12 months—all FREE and POSTPAID.

Name:
Address:
City & Zone:
State:

www.americanradiohistory.com
Electronic Repeating Switch

This simple repeating switch is useful for life testing, ornamental lighting, cycling display motors, cycling soldering irons to prevent overheating and numerous other applications. It acts as a spdt switch whose contact arm can be moved downward and held for 10 to 28 seconds and upward and held for 20 to 40 seconds.

The basic circuit is shown in Fig. 1. When the potentiometer is set for zero resistance, it takes about 5 seconds for the tube to warm up and conduct enough to pull in the relay. The time delay can be increased by increasing the resistance in series with the heater.

![Fig.1](image)

With two of these delay circuits interconnected as in Fig. 2, we can vary the on and off times of the device being controlled or tested. When S is closed, heater voltage is applied to V1. After a warmup period (determined by the setting of R1) V1 conducts and RY1’s normally closed contacts open up. V1 continues to receive heater voltage through RY2’s normally closed contact. When RY1 pulls in, it applies heater voltage to V2 through R2. When V2 reaches operating temperature, RY2 pulls in and opens V1’s heater circuit, thus releasing RY1. This breaks V2’s heater circuit and the cycle repeats.

Assuming that a lamp is connected to power through RY1’s normally closed contacts, it goes off as soon as V1 warms up and comes on again when V2 reaches operating temperature. Off time is controlled by R2; on time by R1. R1’s and R2’s functions are reversed when the lamp or load is connected across RY1’s normally open contacts.—Ronald Wilensky

SEND THE HANDY COUPON INDICATING YOUR NEEDS

ROHN

Manufacturing Company

BOX 2000

PEORIA, ILLINOIS

THE MOST FAMOUS LINE OF TOWERS IN THE WORLD ARE ROHN!

Here are the features that make them the largest selling and most accepted tower for television, radio, industrial and communications uses:

- **ZIG-ZAG CONSTRUCTION**—proven zig-zag design means sturdiness and dependability that is truly outstanding. Tower sections are completely assembled and electric welded throughout for maximum strength and greater economy in erection.

- **HOT DIPPED GALVANIZED AFTER FABRICATION**—Entire tower sections are completely zinc coated after fabrication for the finest outer protection possible. Being galvanized after fabrication means no uncoated bolt holes, weld spots or seam to rust. All ROHN Towers last far longer and have less maintenance than competitive towers because of this feature.

- **HIGHEST QUALITY MATERIAL USED**—only highest quality laboratory-certified steel tubing is used (not pipe). Quality steel plus heavy gauges combine to give far greater strength than competitive towers.

- **COMPLETE LINE FOR WHATEVER YOUR NEEDS**—fully self-supporting towers are available to 170 feet or lower; heavy duty guyed towers available up to 500 feet. Whatever your needs, check ROHN.

- **UNEXCELSSED ENGINEERING**—all ROHN Towers are engineered to meet the most rigid requirements as outlined by all major communications equipment manufacturers and electronic industry associations.

- **UNIVERSAL ACCEPTANCE**—Hundreds of thousands of Roahn Towers are in use all over the world. They have withstood the “test of time”—the only true test as to the superiority of a tower. So why settle for less than the BEST? Insist on the largest selling tower in the world—ROHN.

For your needs and for all allied tower accessories, contact your local ROHN sales-man or write direct for full information.

NEW KIT KING® KITS

FIRST TIME EVER IN LEKTRON’S HISTORY! BRAND NEW PARTS! ALL MADE IN U.S.A. 1 S$ to $35 VALUES! LEKTRON EXCLUSIVE!

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 GOLDS, cr. and. res.</td>
<td>0.5 each</td>
</tr>
<tr>
<td>20 TRANSDUCERS</td>
<td>2 each</td>
</tr>
<tr>
<td>5 VOLUME CONTROLS, 4.7K</td>
<td>2 each</td>
</tr>
<tr>
<td>5 TRANSISTOR SOCKETS, low line</td>
<td>10 each</td>
</tr>
<tr>
<td>10 TUBULAR CAPACITORS, 0.1uf to 10pf</td>
<td>10 each</td>
</tr>
<tr>
<td>100 TUBE Sockets for 810</td>
<td>1 each</td>
</tr>
<tr>
<td>20 PTFE SWITCHEX, 0.25-1.0mfd, 4uf</td>
<td>20 each</td>
</tr>
<tr>
<td>15 PLUGS, 1 to 50</td>
<td>10 each</td>
</tr>
<tr>
<td>15 POWER RESISTORS, 5 to 50</td>
<td>10 each</td>
</tr>
<tr>
<td>15 MICA CAPACITORS, .01uf to 10mfd</td>
<td>15 each</td>
</tr>
<tr>
<td>15 SILVER MICROPHONES, 60 ohms</td>
<td>75 each</td>
</tr>
<tr>
<td>15 CERAMICマイク, caps.</td>
<td>63 each</td>
</tr>
<tr>
<td>15 MICA CAPACITORS, 0.01uf to 10mfd</td>
<td>15 each</td>
</tr>
<tr>
<td>15 FUSE disconnects, 5 amp</td>
<td>15 each</td>
</tr>
<tr>
<td>15 STANDARD BOLT, radio TV, 4 each</td>
<td>25 each</td>
</tr>
<tr>
<td>15 RECTIFIERS, 600V, 1 amp</td>
<td>15 each</td>
</tr>
<tr>
<td>15 PLUG & RECEPTECLES, 2 pr.</td>
<td>15 each</td>
</tr>
<tr>
<td>15 RESISTORS 1.5 amp, 10 each</td>
<td>15 each</td>
</tr>
<tr>
<td>15 FABRICATION, 10 each</td>
<td>15 each</td>
</tr>
<tr>
<td>15 WINDERS, 10 each</td>
<td>15 each</td>
</tr>
<tr>
<td>15 SUPPLIES, 10 each</td>
<td>15 each</td>
</tr>
</tbody>
</table>

POSTAGE CHART

Orders $5.50 and over receive postage free. Orders $5.00 and under have a postage charge of $0.50. Orders $2.00 and under are shipped at cost.

LEKTRON

241-245 EVERETT AVE.

CHELSEA, MASS.

OCTOBER, 1961

www.americanradiohistory.com
Electron microscope: Magnifying device using an electron beam instead of light as in a conventional microscope. The electron stream diverges and casts a shadow of the specimen on a fluorescent screen or a photographic plate. The electron microscope is capable of greater magnification and resolution than its optical counterpart.

Electrostatic precipitation: Method of controlling small particles of paint, dust, smoke, abrasives and other materials with electrical charges. The particles are charged by passing them through a set of wires or plates connected to a high-voltage power supply. The charged particles are then attracted to any object given an opposite charge. In electrostatic paint spraying, for example, the particles of paint are charged oppositely as compared to the object to be painted. In the manufacture of sandpaper, the abrasive particles are charged so that they fall with sharp points upward on the paper backing. Smoke and dust particles are attracted to a metal plate to remove them from chimney gases in industrial plants. This not only cuts down on fumes and smoke, but the recovered particles may be very valuable (in refining operations, for example).

Electrostatic storage welding: Same as capacitive storage welding. A bank of previously charged capacitors is allowed to discharge through the primary of a welding transformer. The resulting current flow in the secondary produces enough heat to weld the metals.

Error detector: That portion of an automatic control system that determines when the regulated quantity has deviated beyond the limits of the dead zone. The error-detector circuit generally consists of a transducer for measuring the value of the quantity to be regulated, and a comparator circuit for comparing the measured value against a reference quantity. The difference (error) is then amplified and used to restore the regulated quantity to the desired value. The transducers used in error-detector circuits are variously referred to as sensing elements, pickup elements and data pickoffs. Typical examples are thermocouples (for temperature control), bellows-actuated potentiometer (for pressure control), moisture detectors (for humidity control), etc.

Feedback: Process of returning a portion of the output (or a signal proportional to output) to the input. In automatic control systems, the feedback is compared against a reference quantity and the difference (error signal) is applied as input. As a result of this input, the output changes in a direction that reduces the error to zero.

Firing angle: The electrical angle (of plate supply voltage) at which a gaseous tube ionizes. Thyratrons, ignitrons and other gas- or vapor-filled tubes are often operated with ac plate supplies. The tube may be made to fire (ionize) at a selected time during the positive half-cycle of plate supply voltage by adjusting the bias voltage (Fig. 12). If the bias of a thyratron is increased, for example, the plate voltage must reach a higher value before the gas can ionize. The tube, therefore, fires later in the positive half-cycle of plate supply voltage and the average current through the load is decreased. (See Amplitude-controlled rectifier.)

Flame-failure control: A circuit that automatically shuts off the fuel supply to a furnace if the pilot burner should accidentally go out. This keeps unignited fuel from accumulating in the furnace, avoiding its attendant hazards. Blue-sensitive phototubes are often used to sense the characteristic blue flame of the pilot burner.

Flip-flop circuit: Same as binary circuit. A distinction is sometimes made between the binary circuit and the flip-flop on the basis that the binary circuit has only one input terminal (feeding to both grids) and the flip-flop may have separate input terminals for the two grids. The simplest flip-flops use neon lamps.

Fluoroscope: An X-ray instrument in which the object to be examined is positioned between an X-ray tube and a fluorescent screen. The X-rays penetrate the object according to its density and then excite the fluorescent screen to produce a visible image. A system of mirrors and lead-glass shields permits the operator to view the image without exposing himself to direct radiation. Fluoroscopic examination is used industrially to inspect packaged foods for proper filling and to spot foreign particles, citrus fruits for internal texture and quality, and rubber tires for internal defects, etc.

Fluoroscopy: X-ray examination by viewing the image produced on a fluorescent screen (see Fluoroscope). This feature distinguishes fluoroscopy from radiography, a process of producing an X-ray image on a photographic film.

Fig. 12—Thyratron has this typical firing-angle diagram.
Fig. 13—A portable Geiger counter.

Gas amplification: A numerical rating indicating the greater sensitivity of a gas-filled phototube as compared to a vacuum phototube. A phototube having a gas amplification of 5, for example, will draw 5 times as much current as an otherwise equivalent vacuum phototube under equal conditions of illumination. Gas amplification is generally in the range of 3 to 10.

Gas detector: Photoelectric instrument used to monitor the concentration of harmful gases in the air. Many noxious gases absorb ultraviolet radiation. Therefore, the presence of these gases decreases the illumination received by a phototube from an ultraviolet source. The phototube controls a relay to sound an alarm when the gas concentration approaches a dangerous level.

Geiger counter: Instrument used for detecting and monitoring radioactivity. The Geiger tube is a cold-cathode, gas-filled diode operated with a plate supply voltage slightly less than that required to ionize the gas. Particles and rays emitted from radioactive substances enter the tube and ionize the gas. The resulting pulses of plate current—one for each particle detected—are amplified and applied to a headset, neon lamp, counting rate meter or other indicating device.

Grid-controlled rectifier: Rectifier circuit employing thyratrons. Load current is varied by adjusting the bias of the thyratrons. Grid-controlled rectifiers are of two general types: amplitude-controlled and phase-controlled. The former uses a variable dc bias, and the latter a variable-phase ac bias (see Amplitude-controlled rectifier).

Hard X-rays: Highly penetrating X-rays as distinguished from soft X-rays, which are less penetrating. The degree of hardness (penetrating power) is determined by the amount of voltage applied to the X-ray tube: the greater the voltage, the harder the X-rays. Hard X-rays are used to inspect metal castings for internal cracks and air bubbles, for examining welded joints and for inspecting complex mechanical assemblies for proper location and positioning of internal components. Soft X-rays are used for inspecting low-density materials such as plastics, packaged foods, etc. To be continued.

Joe Marshall’s back with—

WHAT’S WITH HI-FI PICKUP ARMS?

The provocative Joe Marshall writes again in our November issue. This time he takes critical aim at some pickup problems and tells how the 1961 arms are trying to meet them. He’s compiled a useful tabulation of pickup arms, features, characteristics and prices that makes an invaluable buying guide. Don’t miss it in next month’s issue.

Super R/C—

PRINTED CIRCUIT RADIO CONTROL SYSTEM

Here’s a powerful and reliable radio control unit with muscles. It will control not only model boats and such—but even your lawnmower. Printed circuit boards are available to make construction even easier. See it in the November issue.

CRYSTAL CONTROLLED FREQUENCY DIVIDER

Looking for low frequencies? Insert this divider after the output of a 100-kc oscillator and get down as low as 2 kc. This neat and simple job uses three transistors. Read about it in the November issue.

New Way to Shoot Trouble—

SHOOT RADIO TROUBLES WITH A CHART

November Radio-Electronics gives you an effective, systematic graphic way to radio troubleshooting. It leads you through circuitry the quickest and surest way. This one is high priority for service technicians.

NOVEMBER ISSUE ON SALE

OCTOBER 17th

www.americanradiohistory.com
LAFAYETTE is America's Citizens Band Headquarters

Complete Portable Communications for Everyone

LAFAYETTE 9 TRANSISTOR CITIZENS BAND "WALKIE TALKIE"

HE-29A

PORTABLE POCKET SIZE

ONLY 109.50 NO MONEY DOWN

LAFAYETTE HE-20A Deluxe CITIZENS BAND TRANSCEIVER

Now With Added Deluxe Features-
- Pi-Network for Greater Power Output
- Calibrated "S" Meter
- 14 Tube Performance, 3 Diodes
- Built-In 12 Volt Power Supply for Mobile Use
- Complete with Matched Crystal for Channel 9
- A high efficiency 5-way communications system operating over a distance of up to 70 miles or more depending on terrain. Features

HE-19 Telescoping Whip Antenna
HE-16 Power Supply for 12 Volts
HE-18 Power Supply for 6 Volts

LAFAYETTE HE-15A

Made in U.S.A.

SUPERHET Citizens Band TRANSCEIVER
- Completely Wired—Not a Kit
- 5 Crystal-Controlled Transmitting Positions
- Tuneable Receiver Over Full 23 Channels
- High Output Ceramic Microphone
- Complete with Transmitting Crystal for Channel 9
- A compact, precision transmitter and receiver covering up to a 20 mile or more radius, depending upon conditions. The HE-15A features an effective full-wave variable noise limiter, planetary vernier tuning, RF and microphone jack, on front panel. 12 tube performance from 4 dual-function tubes, 2 single-function tubes. 2 rectifiers.

HE-19 Telescoping Whip Antenna
HE-16 Power Supply for 12 Volts
HE-18 Power Supply for 6 Volts

LAFAYETTE All-in-One CITIZENS BAND MOBILE ANTENNA

6.95

HE-400WX

- Chrome Swivel Base
- Stainless Steel Spring
- 100% Stainless Steel Whip for Optimum 11-Meter Performance
- Chrome swivel ball mount base designed for mounting on any surface. Stainless steel spring holds rod in properly adjusted position and prevents rod damage from shocks and blows. Stainless steel whip for maximum resiliency and strength.

NEW! LAFAYETTE RADIO FIELD INDICATOR

- Continuously Indicating Transmitter Output
- Rugged 200 ua Meter Movement
- Requires No Electricity, Batteries or Transmitter Connection
- Check the performance of marine, mobile or fixed transmitter. Features a 200 ua meter movement with variable sensitivity control. Earphones can be plugged in for an aural check of output. Antenna extends from 3¾" to 10¼". Magnet on bottom plate allows easy mounting on car dash or metal surfaces. Size, less antenna, 3¼W, 2¼H, 2'D.

6.95

TM-14

SEND MAIL ORDER TO LAFAYETTE RADIO
111 JERICHO TURNPIKE
SYOSSET, LONG ISLAND, NEW YORK

PLEASE INCLUDE SHIPPING CHARGES WITH ORDER.

OTHER LOCATIONS

NEW YORK, N.Y.
100 6th Avenue
JAMAICA, N.Y.
165-08 Liberty Avenue

NEWARK, N.J.
24 Central Avenue
BRONX, N.Y.
542 E. Fordham Rd.

PARANUS, N.J.
182 Route 17
BOSTON, MASS.
110 Federal Street

PLAINFIELD, N.J.
139 W. 2nd Street

RADIO-ELECTRONICS
FREE!

LAFAYETTE

340 PAGE 1962 ELECTRONICS CATALOG

"America's Hi-Fi & Electronics Shopping Center"

Yours free for the asking — the biggest, best and most comprehensive catalog in the 41-year history of Lafayette Radio. Audiophile, Experimenter, Hobbyist, Technician, Engineer, Student, Serviceman, Dealer — you'll find what you want in this latest Lafayette catalog.

LARGEST STOCK SELECTION. Stereophonic Hi-Fi equipment, Citizens Band, Ham and Amateur equipment, Radio & TV parts, Optics, Industrial Supplies, and much more, including all the favorite name brands.

LAFAYETTE EXCLUSIVES. Featured are the famous Lafayette Kits ... dollar for dollar the best value for your money today. You'll also see hundreds of Lafayette specials ... available only from Lafayette. And, as always, SATISFACTION GUARANTEED OR MONEY REFUNDED.

LOWEST PRICES. You'll save money too with Lafayette's low, low prices. The lowest prices are always in the Lafayette catalog.

24-HOUR SERVICE. Quick, courteous service is your guarantee at Lafayette. Most orders are fully processed within 24 hours after receipt in the mail Order Division.

NEW EASY-PAY PLAN. Now, NO MONEY DOWN ... up to 24 months to pay.

LAFAYETTE'S
NEW MAIL ORDER HEADQUARTERS
111 JERICHO TURNPIKE
(2 Blocks West of South Oyster Bay Rd.)
SYOSSET, LONG ISLAND, NEW YORK

Watch for Opening Fall, 1961

LAFAYETTE RADIO, DEPT. JII-2
P.O. BOX 10, SYOSSET, L. I., N. Y.

☐ Rush my FREE Lafayette 1962 Catalog 620
☐ Please send me # , shipping charges collect.

I am enclosing $

Name ____________________________
Address ____________________________
City ____________________________ Zone ______ State ______

www.americanradiohistory.com
STEREO FM TRANSMISSION AND RECEIPTION IS NOT AS COMPLEX AS SOME OF THE DESCRIPTIONS HAVE MADE IT LOOK. THE ILLUSTRATIONS ABOVE SHOWS WHAT HAPPENS IN STEREO BROADCASTING.

The signal from the two microphones at the far right is amplified and then mixed by a pair of transformers to produce an in-phase (L + R) and an out-of-phase (L - R) component. Pre-emphasis is applied (shown for the L - R in the first rack—for the L + R in a separate unit) and the L + R signal delayed roughly 48 sec to keep it in phase. The L - R signal then is used to modulate a 38-kc carrier (afterward suppressed). The equipment that produces the 38-kc carrier also originates the 19-kc signal that acts as a pilot in the receiver.

The 38-kc signal now goes through a 54-kc low-pass filter to remove any components that might interfere with the 67-kc SCA signal that will also be transmitted by many stations. Then it and the L + R signal modulate the rf in the multiplex exciter. The rf signal from the exciter is amplified in the fm transmitter.

Reception (lower illustration) is simpler. If the listener has a good FM tuner, he uses it with a multiplex adapter as shown. Or he may buy a new stereo FM tuner which has left- and right-channel outputs instead of a multiplex jack. In either case, the right and left outputs go to a two-channel stereo amplifier and to speakers as would the output from a stereo pickup or stereo tape.

There may be many complicated formulas and confusing distinctions to trouble the engineer in designing this equipment. The stereo signal knows nothing of these, and we can see that it makes its way through the apparatus in a pretty straightforward way. END
Stereo Phones to Mono Phones

Judging by the increasing number of quality stereo phones around, the pleasure of listening to stereo with earphones is gaining in popularity. Some of these stereo phones are equipped with a three-conductor phone plug which is wired as in A in the diagram. When you want to plug the phones into a monaural jack for monaural listening, the hookup is wrong and you hear the signal in one phone only. The simple adapter described here converts the phones from stereo to monaural wiring without changes in the plug that comes with the phones. The adapter converts the stereo phones to monaural as in B in the diagram.

As shown in the illustrations, the adapter consists of a three-conductor phone jack and a standard phone plug mounted in a plastic pill container, wired as shown. I used a 1-inch-diameter plastic container cut to a length of 1½ inches. A plastic container is used to avoid shorts—if you use a metal container, mount either the jack or the plug with fiber shoulder washers to insulate either from the metal can. The phone plug is securely cemented into a hole in one end of the plastic case.

—Art Trauffer

Dr. Bakst's "funny way to teach math" cuts out the learning and memorizing of rules and formulas. In 791 fascinating pages his book Mathematics: Its Magic and Mastery uses entertaining puzzles, games and tricks to simplify and humanize math for the average person.

Even if you never finished high school math, you'll find this book easy to follow. It explains every basic step in mathematics; shows how to solve all sorts of problems, from adding up everyday bills to short-cut ways of operating giant electronic calculators. And even Einstein's theory of relativity is explained so simply that any layman can readily understand it.

Unsquaring the Square; How to Figure the Odds; The Great Pyramid Mystery; The Game of 999

Today's Stress on Math

In today's world of science, automation, engineering and automatic computing, a good knowledge of all phases of mathematics will help anyone to advance himself faster and further. In fact, it is an absolute essential in many fields, for reaching the top positions.

Dr. Bakst's book assures that your new knowledge of math will be of practical value to you—because he applies its principles to home life, insurance, business, finance, scientific and managerial problems.

Examine it FREE for 10 days

There is no need to send any money now. The coupon will bring you this 791-page book for 10 days' free trial. If not convinced that it brings you an interesting and practical way to gain a knowledge of mathematics which will be of great value to you, return it and owe nothing. Otherwise you may keep it by sending us only $1.50 down and the balance in easy payments. Mail the coupon NOW. D. Van Nostrand Company, Inc., Dept. 1810, 120 Alexander Street, Princeton.

PARTIAL CONTENTS

of this 791-Page Book

Short Terms in Long Division
Fractions Without Denominators
The Game of 999
Properties of Numbers
Repeated-Digit Baffles
The Other Side of Zero
Secret Codes with Numbers
The Great Pyramid Mystery
Simple Calculating Devices
A Home-Made Abacus
Multiplication Made Painless
How to Remember that Phone Number
The Number Magician's Secret
Algebra Magic
Why the Rich Get Richer
Arithmetic Sequences for Rabbits
Logarithm Declares a Dividend
Streamlining Everyday Computations
How to Figure the Odds
Unsquaring the Square
The Triangle—
Man's Servant and Master
Measuring Heights with a Mirror
The Secret of the Sphinx
Trig Without Tables
Squashing the Rectangle
How to Wrap a Circle
Cutting Corners From a Triangle
The Shortest Route on Earth
Cork-core Geometry
Mathematics on the Rifle Range

A WHOLE LIBRARY IN ONE GIANT 791-PAGE VOLUME

"I Teach MATH a Funny Way"

... says Dr. Aaron Bakst, distinguished mathematician and lecturer at New York University. And the N. Y. Times says of this method: "A rich dish, well-stocked with parlor tricks and ingenious problems ... a new trend toward the humanization of mathematics."

PRINT NAME
ADDRESS
CITY
STATE
ZONER
(SAVE: If you send $7.50 with this coupon we will pay all shipping costs. Same return privilege; refund guaranteed.)
(For Foreign and A.P.O., send $4.50 with order)

10-DAY FREE EXAMINATION COUPON

D. VAN NOSTRAND COMPANY, INC., DEPT. 1810
120 ALEXANDER STREET, PRINCETON, N. J.

Please send—for ten days' free examination—MATHEMATICS: ITS MAGIC AND MASTERY by Dr. Aaron Bakst. Within ten days I will either return the book or send you $1.50 as first payment and only $2.90 per month for the three months plus a small shipping cost (a total of $7.90).

10-DAY FREE EXAMINATION COUPON

D. VAN NOSTRAND COMPANY, INC., DEPT. 1810
120 ALEXANDER STREET, PRINCETON, N. J.

Please send—for ten days' free examination—MATHEMATICS: ITS MAGIC AND MASTERY by Dr. Aaron Bakst. Within ten days I will either return the book or send you $1.50 as first payment and only $2.90 per month for the three months plus a small shipping cost (a total of $7.90).

PRINT NAME
ADDRESS
CITY
STATE
ZONER
(SAVE: If you send $7.50 with this coupon we will pay all shipping costs. Same return privilege; refund guaranteed.)
(For Foreign and A.P.O., send $4.50 with order)

10-DAY FREE EXAMINATION COUPON

D. VAN NOSTRAND COMPANY, INC., DEPT. 1810
120 ALEXANDER STREET, PRINCETON, N. J.

Please send—for ten days' free examination—MATHEMATICS: ITS MAGIC AND MASTERY by Dr. Aaron Bakst. Within ten days I will either return the book or send you $1.50 as first payment and only $2.90 per month for the three months plus a small shipping cost (a total of $7.90).

PRINT NAME
ADDRESS
CITY
STATE
ZONER
(SAVE: If you send $7.50 with this coupon we will pay all shipping costs. Same return privilege; refund guaranteed.)
(For Foreign and A.P.O., send $4.50 with order)

10-DAY FREE EXAMINATION COUPON

D. VAN NOSTRAND COMPANY, INC., DEPT. 1810
120 ALEXANDER STREET, PRINCETON, N. J.

Please send—for ten days' free examination—MATHEMATICS: ITS MAGIC AND MASTERY by Dr. Aaron Bakst. Within ten days I will either return the book or send you $1.50 as first payment and only $2.90 per month for the three months plus a small shipping cost (a total of $7.90).

PRINT NAME
ADDRESS
CITY
STATE
ZONER
(SAVE: If you send $7.50 with this coupon we will pay all shipping costs. Same return privilege; refund guaranteed.)
(For Foreign and A.P.O., send $4.50 with order)
Double CB receiver sensitivity

Add a 1-tube rf stage to your Heathkit

By HAROLD DAVIS

Performance of the already good Heathkit Citizens-band GW-30A and GW-10D transceivers can be greatly improved by adding an rf stage to the receiving end.

The modification described here was designed by my good friend D. C. Nix. It can be made before or after completing the kit, but is probably easiest to handle during construction.

Adding an rf stage is not simple, but is well worth the effort. Looking at pictorial 6 in the construction manual (the necessary portion is duplicated in Fig. 1), swing terminal strip K around 180°. Then move the output transformer 1/2 inch to the left. You will have to drill new mounting holes 1/2 inch to the left of those now on the chassis.

Punch a 5/8-inch hole in the chassis between terminal strips K and L. Place a seven-pin miniature tube socket in this hole. Fasten one ear of the socket with the screw that holds terminal strip K. Use another screw and nut to fasten the other ear through the hole that originally held one side of the output transformer.

Now break off the right side of the bracket installed on the speaker. It was originally intended to hold the output transformer but is not used in this kit, and it interferes with the added rf stage.

The next step is the rf transformer. You'll have to wind it yourself. Several TV if transformers were tried but none were entirely satisfactory. Having access to a frequency meter and a GDO, it was no job at all to design one. I stripped the windings of a Meissner No. 163487 transformer, and in their place wound 15-turn coils of No. 26 enamelled wire for both primary and secondary. Install a 12-µµf NPO disc capacitor across each winding.

Once the rf transformer is finished, remove antenna coil RA, cut a new hole for it just forward of terminal strip J, and mount it there. You'll have to move terminal strip J about 5/8 inch closer to the edge of the chassis. Install the rf coil where the antenna coil was originally located. Now you are ready to wire in the rf stage. Complete all wiring following the schematic in Fig. 2. You shouldn't have any trouble.

Once the circuit is wired you only have to tune the rf transformer and you're ready to go once again. Use the original slugs and peak the stage for greatest output. This can be done even without a signal generator. Just tune in a station on the desired band and peak the transformer.

This rf stage is fixed-tuned, and one might wonder about its efficiency. However, when we consider that all 23 CB channels are packed into an area only 0.715 mc wide, the stage won't be far off at either end. In addition, if it is peaked on the channel that is used most, efficiency is optimum.

If you want figures to back up the facts, here they are. On a direct side-by-side comparison with another make that includes an rf stage, the modified Heathkit performed equally well. The specifications for the reference set stated that it had a sensitivity of 0.5 µv for a 10-db signal-to-noise ratio. Since the Heathkit specs read 1 µv, we can assume that receiver sensitivity has been doubled. Additional proof of improved performance came in a side-by-side test with an unmodified receiver. Signals that could not be read previously, were easily understood with the modified unit.

END
Don and Larry Taylor, with twin backgrounds and skills, have competitively built kit after kit, Paco vs. other makes. In one test Don built the Paco, in the next Larry did. Net results: Paco kits proved faster, easier, and better in performance. For a typical Twin-Test report turn the page.
HERE ARE JUST A FEW OF PACO'S NEWEST KITS:

V-70 VACUUM-TUBE VOLTMETER KIT:
Employed balanced vacuum tube bridge circuit for all voltage and resistance measurements plus 3-way probe for accurate, rapid test. Includes: 7 DC voltmeter ranges, 7 AC voltmeter ranges (RMS) from 0 to 1500 volts, and 7 AC voltmeter ranges (peak to peak) from 0 to 4000 volts. Also 7 decibel ranges, -6 to +66 db and 7 electronic ohmmeter ranges from 0.2 ohms to 1000 megohms.

C-25 IN-CIRCUIT CAPACITOR TESTER KIT:
Reveals dryed out, shorted, or open electrolytics in the circuit with Paco's exclusive Electrolytic Dial. Simple Sequential Test: reveals open or shorted capacitors, even electrolytics. Electrolytic Dial: indicates in-circuit capacity from 2 to 400 mfd. Condenser is proved non-shorted and not open if capacity reading can be obtained.

Model C-25 Kit: with Paco-detailed operating assembly manual $19.95 net
Model C-25W: Factory-wired. $29.95 net

SA-40 STEREO PREAMP-AMPLIFIER: Power: 80W (RMS) per channel, 40W total. Peak, 40W with 40W total. Response: 30 cps to 90 Kc. Distortion: 2% at 40W per channel. Includes: 14 inputs and 14 Panel Controls, black and gold case.

Model SA-40 Kit with enclosure, “Twin-Tested” operating assembly manual: $59.95 net

SA-40F: Factory-wired, ready to operate: $129.95 net

SA-40B: Stereo Kit as above different styling, 25W per channel: $69.95 net

ST-25 FM TUNER: Sensitivity: 1.5 microvolts for 20 db quieting. Harmonic Distortion: less than 1%. Includes: Dual Limiters, AFC and AFC Defeat, "Eye" type tuning indicator, Multiplex Jack. Black and gold case or walnut enclosure at slight extra cost.

Model ST-25 Kit with fully-wired prealigned front end, “Twin-Tested” operating manual: $42.95 net

ST-25W: Factory-wired, ready to operate: $59.95 net

ST-26 Tuner-Amplifier Kit: Same as ST-25, with built-in amplifier

ST-26W Tuner-Amplifier: Factory-wired, ready to operate $69.95 net

DF-99 TRANSISTORIZED DEPTH FINDER KIT: Protect your boat against shoals and underwater hazards with this compact, easy-to-assemble. Includes: Dual Limiters, AFC and AFC Defeat, "Eye" type tuning indicator, Multiplex Jack. Black and gold case or walnut enclosure at slight extra cost. Fully Transitronized: 5 transistors, low battery drain for very long battery life. Fast, easy readings: over-sized scale with 1-ft. calibrations from 0-100 ft.

Model DF-99 Kit: Complete with “Twin-Tested” assembly operating manual: $54.95 net

DF-99W: Factory-wired: $135.50 net

G-15 GRID DIP METER: Major Functions: 1-Variable Frequency Oscillator covering 400 Kc up to 250 Mc in 8 bands; 2-Absorption WaveMeter, 400 Kc to 250 Mc; 3-Modulation Indicator. Applications: antenna tuning, standing wave checks, neutralizing, TVI suppression, frequency monitoring, etc. RF signal source for visual alignment marking between 400 Kc and 250 Mc. Weight only 3 lbs.

Model G-15 Kit: Complete with 8 plug-in coils, “Twin-Tested” manual: $31.95 net

G-15W: Factory-wired: $39.95 net

Price to be announced

“I built the Paco SA-40 Stereo Preamp Amplifier.”

Larry Taylor, 8 Stevens Place, Huntington Station, N. Y. “It took me one-third less time to build the Paco kit than it took Don to make the almost identical preamp-amplifier by another kit maker. But it wasn’t just the time; it was knowing you’re using the right part, and that you understand the instructions completely. Paco parts are all pictured and labeled, the resistors are neatly mounted on cards for easy identification. And Paco’s instruction book doesn’t leave you guessing. The fold-out diagrams and drawings are always right beside the instructions, so you aren’t reading one part of the book and following a diagram in another part. Photographs in Paco’s book show how each assembly should actually look. I enjoyed building Paco kits, because I wasn’t wasting time or worrying.”

RADIO-ELECTRONICS

www.americanradiohistory.com
"I built a competing Stereo Preamplifier."

Don Taylor, 39 Cross Street, Smithtown, N. Y. "Neither Larry nor I are speed demons because we're very meticulous about wiring and soldering. So I was even more surprised when it took me 50% more time to finish my kit. My problem began when I tried to separate the parts. The resistors were in boxes, but not in any logical way: identical resistors often wound up in different boxes. The instruction book was clumsy to work from. It caused wasteful mistakes. Once I lost 20 to 25 minutes because I misread a tiny key letter that meant not to solder a certain connection. A lot of the fun of kit-building was lost when I had to spend time making up for shortcomings of the packaging and the instruction manual."

"Hi-Fi Music Wall!" Don Brann's new book How to Build a Hi-Fi Music Wall gives you step-by-step instructions for building a decorator styled cabinet or an entire music wall. Send 50c and your name and address to: PACOTRONICS, INC., Dept. RS-10 70-51 84th Street, Glendale 27, New York.
An Integrated Antenna

Field-Test Report by our Service Editor, Jack Darr

I have always favored antenna boosters (mounted on the antenna itself). Now the Winegard Co. has come up with what is likely a logical - next step. The antenna booster is designed as part of the antenna! This new antenna is called the Powertron, and comes in several models. The P-44, which is the one we tested, is a 14-element all-channel Yagi, similar in design to the company's CL-4. The antenna booster uses a single ECC88/6DJ8 tube, and a gain of 14 db is claimed for the amplifier. (This seems a reasonable figure, to us.) We were making some tests on signal propagation at the time, using another older antenna and a 4-tube antenna booster. Pictures received with the P-44 were equal to those from the more elaborate rig, and the signal strength on the field-strength meter showed only a very slight loss!

Two other models add more directors to the basic P-44. The P-44X has 21 elements and the SP-44X has no less than 30 elements.

More recently, the company has put out a trio of transistorized Powertrons: the P-55, a 14-element antenna; the P-55X with 21 elements, and the SP (Super-Power) 55X, a 30-element antenna. The transistor types were not available when I ran my test on the P-44.

Mechanical construction of this antenna is very well-built, while this type is not quite as convenient as the "snapout" ones, there is very little real assembly work to do. We put it together at the top of a 40-foot tower without any trouble at all. Lead-in terminals on each booster and power supply are of the "no-strip" type.

The booster is designed as an integral part of the antenna: the tapered-T dipole is fed directly to the booster input very good, and equalied any type of antenna so far tested here. This model shows the usual slightly wide frontallobe compared to all-channel Yagi configurations with only three directors—about 60-70°. The larger models will probably bring this down to a very narrow lobe, suitable for use under any condition of co-channel interference. At one time, we picked up three stations on Channel 4, simply by rotating the antenna 360°. Each one was quite clear, and there was a minimum of venetian-blind interference.

In a deep-fringe location, front-to-back ratio is often more important than absolute gain. This antenna showed a very good FTB ratio. In fact, the first time we read it, we waited until we could check it for another 2 or 3 days so that we could be sure.

Incidentally, the P-44 does not show any signs of my pet hate in all-channel antennas: pattern breakup on the high bands! (An antenna develops three, four or even seven or eight individual lobes, none too usable.) On both high and low bands, the P-44 shows only a single lobe.

Color reception on this antenna was very good. One of the big headaches in color has been standing waves on the lead-in, especially with high-gain boosters. This one showed no trace of ringing or ghosts on any channel.

We used our regular stations for the test: channel 5, 65 miles away; channel 6, 98 miles; channels 4 and 11, 20 miles (all distances airline, of course), and even our favorite freak, channel 8 from 206 miles away! This last comes in regularly, and even snowfree once in a while! Reception was very good on all, despite some highly disturbed weather during most of the test. END
HOW TO PLACE YOUR STEREO SPEAKERS

The inside story on how to select and use stereo speakers to get the most in listening pleasure

By GEORGE L. AUGSPURGER

The announcement of an approved system for broadcasting stereo sound on a single FM channel is already stimulating new interest in stereo reproduction. All the questions asked when disc stereo was first introduced commercially will be asked again. Those who were bored by discussions of stereo speaker placement 2 years ago are trying to find the answers to such questions now.

Fortunately, a lot of the initial confusion that surrounded the mysterious process of stereophonic reproduction has been cleared away. Notions about stereo loudspeakers, for example. Do you remember the profusion of systems, gadgets, formulas and recommendations into which the innocent audiophile was plunged when he investigated the possibility of converting his installation to stereo? There were 101 different methods of hooking up assorted speaker systems, networks, pads and transformers. And each manufacturer had his own pet loudspeaker arrangement.

Today, while the choice of excellent speakers has never been greater, their selection is far easier. The majority of speaker manufacturers suggest a pair of identical speaker systems as the basic stereo ensemble. This is logical, since the two-channel stereo system we're using is exactly that—two separate but identical channels over which sound can be reproduced.

Basic stereo speaker rules

This brings us to a fundamental axiom: stereo requires two matched speaker systems properly oriented with respect to the listener. This is not quite as inflexible as it sounds, but it is the cornerstone, so to speak. All the fancy patented systems with their reflectors and mixes and directors are variations on this primary axiom. The two speaker systems required for stereo listening don't have to be any special type. They can be single speakers, multiple speakers, small speakers or big speakers.

As an interesting sidelight, a lot of people thought that the trend toward small "bookshelf" speaker systems resulted from the space requirements of stereo installations. But now, with a new wave of interest in stereo, just the opposite seems to be happening. Speaker manufacturers who had practically given up trying to promote their larger models find that audiophiles are once again choosing big boxes and corner horns. A number of outstanding new big speaker systems have been introduced in the last year, and the critical listener with an appetite for the best in sound has a variety of products from which to choose.

But whether they be small or large, modest or expensive, two matched speaker systems are a necessity for your stereo installation. However, there is a difference between matched speakers and identical speakers. Also, the reference to proper orientation needs further explanation.

The basic axiom for stereo speakers can be expanded to include two sub-rules. These are based on an accumulation of experience and represent pretty general agreement among speaker manufacturers, engineers and audio specialists.

- Use speakers that sound alike.
- Place the two speakers so the listener sees an angle of about 40° between them.

Use speakers that sound alike

You will get best possible stereo sound if you use identical speaker systems. The two systems can be installed in separate enclosures, or you may prefer one of the single-cabinet, or "integrated," stereo speaker systems.

Which is better? Answer: It depends.

Single-cabinet stereo speaker systems have a number of advantages. It is often easier to find a place for a single new piece of furniture than a pair of speaker enclosures. The integrated system may offer engineering features that cannot be duplicated with separate enclosures.

For example, University makes a deceptively small cabinet which incorporates deflector panels to bounce the sound off room walls and thus achieve a wide, somewhat diffuse sound source. Bozak made a system using similar deflector panels, but in reverse. Here the panels reflect the sound directly to the listening area. They can be adjusted to focus the sound toward the listener and give the desired amount of diffusion.

The JBL "gon" series (Paragon, Metregon, Minigon) turn the Bozak arrangement inside out and direct the sound from the two speakers inward, reflecting it from a curved panel which is the distinguishing feature of these models. The idea is to control the directional characteristics of the two sound sources so that properly balanced stereo can be appreciated over a larger listening area. The operation of these three types of integrated systems is shown in Fig. 1.

(Continued on page 94)
Why the WINEGARD ELECTRONIC MOST EFFECTIVE TV ANTENNA...

TRANSISTORIZED!

MODEL SP-55X

"By Far world's most powerful all-channel antenna"

WHY? BECAUSE . . .

- **IT CAPTURES MORE SIGNAL** than any other all-channel antenna ever made. Patented design, electro-lens director system, dual "TAPERED T" driven elements, 30 precision-tuned elements in all.

- **IT'S THE ONLY TRUE ELECTRONIC ANTENNA.** Only the Winegard Powertron is built with the amplifier as part of the driven element—not an "add-on" attachment.

- **IT ELIMINATES ALL SIGNAL LOSS** that normally occurs between the driven element and the amplifier due to transmission and coupling mismatch.

- **IT BOOSTS WEAK SIGNALS UP OUT OF THE SNOW** far better than any other antenna or antenna-amplifier combination made.

FOR VIVID COLOR, HIGH DEFINITION BLACK AND WHITE AND LONG DISTANCE RECEPTION, nothing can compare to the Super Powertron. Thousands have been installed all over the country and our files are full of testimonials from grateful TV viewers and Service-Technicians alike.

WINEGARD IS THE ONLY MANUFACTURER THAT MAKES BOTH ANTENNAS AND RF AMPLIFIERS. Because of this you can feel confident of getting the very best. But don't take our word for it—let your eyes and ears and field strength meter tell the story.
POWERTRON is by far WORLD’S
Not 60%...Not 70%...but over 95% efficient

OUTFEATURES—OUTPERFORMS ORDINARY ANTENNAS WITH "ADD-ON" TYPE SIGNAL BOOSTERS!

THIS IS BETTER — THAN THIS —
Exclusive amplified "Tapered T" driven element for perfect match and lowest possible signal-to-noise ratio. Only Powertron has it.
Not an after-thought "add on" signal booster hung on an ordinary antenna — not an old fashioned mast mounted booster.

ONLY POWERTRON HAS BOTH 300 OHM TWIN LEAD OR 75 OHM COAX TERMINALS ON BUILT-IN AMPLIFIER.

POWERTRON HAS COMPLETELY AC POWER SUPPLY
Transistorized Model has rectifier and filter in power supply — not in amplifier, where servicing is difficult. No batteries. Costs 27¢ to operate for full year. Battery types require $5 to $9 in batteries a year to operate continuously at maximum efficiency.

ONLY POWERTRON GIVES YOU YOUR CHOICE OF TRANSISTORS OR TUBES (TUBE MODELS 300 OHM ONLY).

POWERTRON IS COMPLETELY 100% CORROSION-PROOFED — ANTENNA IS GOLD ANODIZED, ALL HARDWARE IRRIDIZED, AMPLIFIER HOUSING OF HIGH IMPACT PLASTIC.

ONLY THE POWERTRON CAN DO ALL THIS!
1. Powertron will drive up to 10 TV sets and each set will have a better picture than an ordinary antenna will deliver to one set.
2. Powertron will drive a TV signal through one-half mile of lead-in with signal to spare—permits you unprecedented flexibility for remote installations.
3. Powertron will virtually eliminate snow and interference even on an old TV set.
4. Powertron will deliver superlative color reception far better than a non-electronic antenna.
5. Powertron brings in stations beyond the reach of non-electronic antennas—delivers greatest reception distance.

AND WINEGARD POWERTRON is the only antenna presold to your customers—nationally advertised in the biggest consumer advertising campaign yet! So stock up now—take advantage of the demand Winegard is building for you.

Write for free technical bulletins.

Winegard ANTENNA SYSTEMS
Winegard Co., 3013-10 Kirkwood, Burlington, Iowa

OCTOBER, 1961
But an integrated system has its limitations. The University design, for example, can't operate sandwiched between two pieces of heavy or overstaffed furniture. The Bozik and JBL models provide a stereo sound source whose width is limited by the size of the cabinet. This in turn establishes how far away you can sit and still enjoy the stereo effect.

A third factor is that most single-cabinet systems try to achieve a diffuse sound source. This satisfies the listener who is annoyed by the effect of two distinct sound sources, but those who like ping-pong stereo are disappointed. (One of the first multiplex demonstrations was a flop because the sound didn't jump back and forth between speakers—it wasn't "stereo").

Two separate enclosures may not be able to match some of the features of the integrated systems, but they have the advantage that spacing can be adjusted to give best possible results in specific surroundings. Also, if you move or if the furniture is rearranged, the speakers can be relocated too.

If you can't use identical speakers, the next best thing is to use systems which have identical sound characteristics except in the low bass region. The sense of directionality is largely lost below 150 cycles or so, and this very low bass content is usually present on both channels of normal stereo material. True enough, some stereo recordings are made with most of the bass funneled through one channel, but you can use the "channel-reverse" switch on your stereo amplifier to feed the deepest bass to the speaker best able to reproduce it, no matter how the material was originally recorded.

Why would anyone want a combination like that? Because it may be the only practical way of utilizing a very large and expensive monophonic speaker system which you already own. An alternate solution is to use the same mid- and high-frequency transducers, together with a smaller woofer, all installed in your present enclosure. In either case, the speaker manufacturer will be happy to give you more explicit advice about the combination which will work best in the space you have available.

What about using speakers of different types or different brands? This is skating on thin ice, and I would want to hear the combination or else be awfully sure of results before much money was invested.

This is not to say it can't be done. Remember, the rule is that the speakers should sound alike, and surprising combinations sometimes yield acceptable stereo quality. Offhand, I know of a high-quality 8-inch speaker which has a characteristic sound very similar to that of one of the big corner-horn systems. It isn't identical to the big system of course, and it can't begin to duplicate its dynamic range, but so long as the volume control is kept to a reasonable setting the two together make a most pleasing stereo sound.

Two-speaker variations

Since symmetry is desirable, some people want to know if they can keep their present speaker system and flank it with two smaller units. This can be made to work, but it is usually not recommended. Since the side speakers carry most of the sound (and all of the stereo information) their limitations determine the quality of the whole system.

Another variation uses a single woofer in combination with two sets of mid- and high-frequency speakers. The University system already described uses a single woofer. The Weathers Harmony Trio system consists of two small speakers disguised to look a little like books, and a single unusual woofer hidden somewhere in the room.

However, most of the common-bass systems have been supplanted by pairs of compact speakers. Placement, wiring and balancing of the extra low-frequency reproducer are usually more trouble than the novelty is worth.

Speaker placement

Although important, the recommended 40° angle needn't be taken literally. There is nothing critical about it. It is easier to remember that the speakers should be separated about half to three-quarters the distance from them to the listener (Fig. 2). The farther the listening area, the farther apart the speakers should be. If the listening area is about 12 feet from the wall where the speakers are to be set, they should be 6 to 9 feet apart. It is as simple as that.

But sometimes the arrangement of a particular room makes it impossible to locate two speakers for best results. Look at Fig. 3. A second speaker can be placed only at A or B. If it is set at A, the speakers are too close together. At B, they are too far apart.

The solution is to use position B for the second stereo speaker, and then set a third speaker at A. This "center-fill" speaker handles a mixture of both

![Fig. 2 — The optimum listening angle puts the speakers 40° apart.](image)

![Fig. 3 — Where do we put a second speaker in this room? At A or at B?](image)
Fig. 4-a—Use this arrangement to feed the center speaker a difference signal.

b—This arrangement feeds a sum signal to the center speaker.

Stereo channels and effectively fills the "hole in the middle" which would otherwise result from wide speaker spacing.

Some people have the idea that such a three-speaker arrangement is three-channel stereo. This is not so. All commercial stereo program material is recorded on two channels, and no matter how many amplifiers and speakers you add, you still have two-channel stereo. A third speaker merely augments the sound from the basic pair of matched speaker systems.

The easiest way to hook up a third speaker is that suggested by Paul Klipsch and shown in Fig. 4-a. This circuit won't pump much bass through the center speaker since it feeds a signal consisting of the difference between the two channels, but there is no reason why the two main speakers can't handle all the bass anyway.

If you are a stickler for engineering niceties, you may prefer to feed the sum of the two channels to the center speaker. You can use the circuit in Fig. 4-b, or you can provide a separate amplifier to drive the third speaker. Some stereo amplifiers have a jack for this purpose. The separate amplifier is the best method to use if you want to drive additional monophonic speakers at remote locations.

In working out speaker placement, whether you use two or three, try to keep the listening area located symmetrically with respect to the speakers. One disadvantage of having only two channels of stereo information is that the effective listening area is fairly restricted. In general, the more directional the speakers used, the smaller the stereo listening area. The integrated stereo speaker systems which use reflecting surfaces to disperse the sound are generally better in this respect than two individual speaker systems.

It is a good idea to keep the speakers near ear level if possible. Stereo is more impressive than monophonic reproduction primarily because of the heightened sense of a live performance. Hearing a jazz combo crammed against the ceiling, or a coloratura soprano trilling from the bottom shelf in a bookcase tends to be unnerving.

And one last thing about placement. Only the very low audio frequencies flow around objects. The most important part of the sound spectrum tends to travel like light, in a direct path. Like light, it will be blocked by a solid object between the source and the listener. Again and again lengthy correspondence about a speaker system which was "obviously defective because it doesn't sound at all like it did in the dealer's showroom" finally turned up the fact that it was neatly hidden behind an overstuffed sofa!
Besides their more familiar functions relays are used in many industrial applications calling for more sophisticated circuits. Among them are the special sequence circuits, selection and counting circuits, alternators, pulse generation and stretching, and special functions that are not in these categories.

One special circuit is the wavefront relay shown in Fig. 1. It energizes when ac is applied and the capacitor demands a heavy charging current. This current keeps the relay energized. But as the capacitor charges, the current drops and the relay opens. Now it cannot be energized again until the ac is removed and the charge on capacitor C leaks off through the resistor. Actual component values depend on the relay and how long it must be energized, but can easily be determined. The value of the capacitor, in excess of the minimum required to energize the relay, determines how long the relay remains energized.

Another interesting circuit is shown in Fig. 2. This is a time proportional relay. It is arranged so that the time the relay remains energized after the control voltage is removed depends on how long the voltage was on in the first place. The capacitor cannot charge rapidly because of the reversed diode. Only backward leakage in the diode charges the capacitor. If the control voltage remains on a long time, the capacitor can gain enough charge to hold the relay closed for a considerable time after the control voltage is removed. Again the actual values needed depend on the relay.

Fig. 3 is a useful circuit. It prevents accidental reversal of a dc supply. This is needed where devices would be damaged by such a reversal. In Fig. 3 the sensitive relay is not normally energized, since the voltage is blocked by the diode. But if the input polarity is reversed, the sensitive relay energizes rapidly and activates the heavy-duty relay which immediately opens the dc supply circuit. The contacts of the heavy-duty relay must carry the current normally drawn through them.

Many special circuits can be designed. But most industrial applications call for fairly well established functions that can be handled by the relays. For example, alternate circuits are frequently used in industry. Often several devices that can do the same job equally well are available, but one is kept on standby. However, a completely idle unit might deteriorate and provide no safety margin. To prevent this, an alternator circuit is used to operate both devices equally.

A typical example is a pumping station with two identical pumps. One is needed for intermittent pumping jobs, and the other is a standby. Or one is needed most of the time, the other only once in a while when the load is heavy. An alternator circuit can be used to assure even wear of the pumps. In the first case Fig. 4), the pumps are started alternately and only one pump runs. In the second case pump 1 is started and both pumps run when demand is heavy (Fig. 5). Pump 2 will be started on the next run. Each time the float demands pumping a ratchet relay is activated. As shown, the ratchet relay remains on as long as the float contacts are closed.

Though shown for two pumps only, the circuits of Figs. 4 and 5 could be readily extended for three, four or more pumps. They could be arranged, not only to alternate which pump will be used, but also to provide a sequence of which pump will be used first, second, third etc.

The same kind of alternator or commutator function can be used with counting circuits, but these are more complicated than the cam or ratchet type relay circuits.

The next useful function performed by relays is selection. Fig. 6 shows a simple system which can select one of 16 points with only four signals. However, as you can see, this circuit has the disadvantage that the first relay needs only one set of contacts and the last eight sets. Fig. 7 shows how this circuit can be rearranged to equalize the number of contacts. With an equal number of contacts, the relays will all operate at the same speed and with the same holding margin.

Selection often calls for pulse operation. We can operate a relay with one pulse and release it with the next, provided the pulses are matched to the operating speed of the relay. Fig. 8 shows how this can be done. In Fig. 8-a the first positive pulse locks the relay, the second releases it. This circuit is sensitive to pulse length. In Fig. 8-b, a positive pulse locks the relay, a negative pulse unlocks it. The flip-flop in Fig. 13 (it is discussed later) is one means of producing alternate positive and negative pulses.

Another way to do the job is with two coils on the relay. One coil is used for energizing, the second for holding. Shorting the first coil will reduce holding power enough to let the relay drop out. Two winding coils are generally found only in telephone type relays.

Another item ostensibly available only in telephone relays but used extensively in circuits shown here is the make-before-break contact. To get this in an industrial type relay we adjust a normally closed and normally open contact to overlap.

Counting circuits can also handle selection, so let’s look at some counting circuits and see how they operate. Out
Familiar numbers, aren't they? But the “A” and “B” versions are brand-new ... introduced by Sylvania to help you hold onto your home radio service profits.

The 100-mA heater concept, pioneered by Sylvania, offers “cool” operation in series-string connection. But “series-string,” as you know, can be pretty hard on heaters at the instant of “turn-on”; can shorten tube life; can mean a call-back. Now, Sylvania has incorporated significant controls on warm-up time of the heaters. Surge voltages on any one heater in this 5-tube complement are therefore minimized, expectant tube life is extended. Benefits to you? Obvious ... high probability of mighty few callbacks due to Sylvania tube failure.

You too can beat the heat of profit-burning callbacks. Don't just order "tubes." Always order SYLVANIA TUBES. Electronic Tubes Division, Sylvania Electric Products Inc., 1740 Broadway, New York 19, N.Y.
must have a simple circuit to generate a pulse each time we push a button. Fig. 9 shows such a circuit. The duration of the pulse is controlled by selecting a relay with a desired operating speed and adjusting the make-before-break contact fingers.

A simple bi-directional counting circuit is shown in Fig. 10. (Single-direction counting circuits are shown in Figs. 11 and 12.) In Fig. 10, two relays are used per step. Each time a pulse is fed into input 1, the circuit adds one step. Each time a pulse is fed into input 2, the circuit subtracts a step, no matter what the total circuit situation. The first pulse to arrive energizes RY1, which is then connected across the line in series with RY2. This connects the pulse line to RY3 and the next pulse energizes that relay and RY4 and so on. When all relays are locked and a pulse arrives at input 2, RY5 is virtually shorted and drops out, also dropping out RY6 and so on. Only three steps are shown, but there is no practical limit to how many steps can be used. Note that the circuit is ideal for counting a difference of incoming pulses from two sources.

A simple unidirectional pulse-operated counting chain is shown in Fig. 11-a. Each pulse adds an energized relay to the chain until all of them are on. Turning the relays off requires a momentary interruption of the supply. Fig. 11-b shows how the same operation requires two relays if the make-before-break contacts are not used.

Fig. 12 is a similar counting circuit, but here the relays are not locked together. Instead, each relay when energized turns off the previous relay. Again the pulses must be measured. This counting circuit is what is known as a round-and-round chain. It is so arranged that when RY4 is energized, RY1 is released and ready to be energized, and the cycle starts over again. In fact, with a steady voltage instead of pulses on the pulse line, the circuit would continue to cycle. The relay contacts shown at the bottom of the diagrams can be used to generate pulses. Pulse duration depends on relay characteristics. With a slow relay in the chain, for example, a kind of loping rhythm can be developed. This circuit is excellent for life-testing relays since they cycle as fast as they can operate, and an enormous number of relay operations can take place in a day. To make the chain longer than shown, RY4 is not returned through the normally closed contact on RY1, but in-

3 PHASE AC INPUT

Fig. 4—Simple alternator circuit. Each time float closes pumping circuit, cam relay steps, alternating between pump 1 and pump 2.

Fig. 5—With 2-stage float, this alternator determines which pump starts first. Each time float closes top contact, cam relay alternates contacts. When demand increases, closing second float contact, other pump starts.

Fig. 6—Cascading relay contacts allows control of 16 points with only four signal inputs.

Fig. 7—Rearranged contacts can allow the same selection as in Fig. 6, but with more even distribution of relay contacts.

Fig. 8—These arrangements can replace 2-coil relay. a—first pulse locks relay. Next pulse releases it. Pulses must be measured. b—Positive pulse locks relay. Negative pulse unlocks it.

Fig. 9—Simple circuit produces a single pulse each time button is pressed.

Fig. 10—Progressive lock and unlock circuit uses two relays per step.
sound solution
new sound columns reduce acoustic feedback and reverberation to insignificant levels... offer the highest power-handling capacity and widest frequency response in the industry.

NEW UNIVERSITY UNILINE
acoustically-tapered p.a./hi-fi sound columns

BUT FIRST THINGS FIRST. WHAT IS A SOUND COLUMN?

THEORY: Essentially, a sound column is an in-line radiator using multiple speakers, one above the other, to provide broad horizontal dispersion and narrow vertical dispersion. The shape of the beam is similar to that of a fan held horizontally, its apex representing the source of the sound. As a result of its restricted vertical dispersion pattern, the sound is placed only where it is needed, avoiding reflections from the ceiling and floor to reduce acoustic feedback and reverberation.

PRACTICE: Theoretically, all sound columns should perform with equal success—but they don’t. What makes the difference? The degree of uniformity of the beam in the upper frequency range. In ordinary sound columns, the higher the frequency, the narrower the beam. Consequently, some means must be provided to reduce excessive high frequency beaming.

Only UNILINE offers acoustic tapering, the most perfect method yet devised for preventing uneven high frequency dispersion! UNILINE reduces acoustic feedback and reverberation to virtual non-existence, thus solving your difficult microphone and speaker placement problems. And only UNILINE offers power-handling capacity up to 150 watts... with frequency response ratings as wide as 35-17,000 cps! (Special voice frequency model available.)

For optimum dispersion at all frequencies, for uniform sound level within the beam, for music and speech, indoors and out...for all high reverberation areas... specifications and performance reveal that there is only one best line of sound columns—it is UNILINE.
Another all long as pulses come in. This prevents all devices from operating one after another as the proper one is selected.

A basic counting circuit not sensitive to pulse length is the relay flip-flop shown in Fig. 13. The first pulse arriving energizes RY1 and through the make-before-break contact locks this relay. RY2 does not energize as it is shorted by the pulse. But as soon as the pulse stops, RY2, being parallel to RY1, energizes. When the second pulse starts, the two ends of RY1's coil see the same potential and this relay drops out. This transfers the holding circuit for RY2 back to the pulse line. When the second pulse stops, RY2 drops out. In two pulses the circuit is back to its original state. Note that with a split contact on one of the relays, an alternate positive or negative voltage could be provided for every pulse. Since it is a typical binary, the relay flip-flop can be used for binary counting when built into chains, as shown in Fig. 14.

This circuit can also be used as a frequency divider. Each stage dividing the pulse frequency of the previous one by two.

The flip-flop circuit can be used for other purposes. For example, in Fig. 15 it activates an odd-and-even counter which has one relay per count. Another practical use is in selecting loads. When connected as in Fig. 16, with a switch instead of a pulse circuit, four loads can be selected, depending on the position of the switch, since the relay position changes at the beginning and the end of each pulse.

There you have some of the counting, selecting, commutating and special circuits that can be built with relays. Many other circuits are possible, and the ones shown here were selected to give an overview of relay use in these functions. Early computers were built with relays but vacuum tubes soon replaced them, and now transistors are beginning to take over the computer trade. But, in industry, relays will be with us for a long time. They are basically economical, rugged and quite dependable, fairly easy to maintain and, with the usual conservatism in operation, familiar to industrial circuit designers.

One class of relay has been ignored so far since it is a subject all by itself, the induction relay. In the next article in this series we will tell you how, why and where induction relays are used in industrial circuits.
With thundering applause...
here's what they say...

- "It is the best tube tester I have ever owned."
 F.M., MONROE, LA., TV TECHNICIAN
- "It's a real asset to any serviceman." (35 years in servicing)
 C.H.W., EAST PRAIRIE, MO., TV TECHNICIAN
- "This is the best checker I have ever used."
 E.L.R., EAST PRAIRIE, MO., TV TECHNICIAN
- "A must for every serviceman. A real Time Saver at a reasonable price."
 W.P., ERIE, PA., TV TECHNICIAN
- "The most complete and reliable instrument I ever bought for this price."
 H.P.R., QUEBEC, CANADA, TV TECHNICIAN
- "I already own one. This is my second Mighty Mite."
 PHILO DISTRIBUTOR, ST. LOUIS, MO.
- "Mighty Mite has paid for itself the first month."
 W.C., UNIONTOWN, PA., TV REPAIR
- "I have found the Mighty Mite all that you say it is and more. It tests tubes that my other tester, costing twice as much, will not test."
 L.K.E., W9PWQ, CHICAGO, HAM

In a nutshell... here's why the Mighty Mite finds them all. It checks tube grid circuits with the same high sensitivity as the indispensable Sencore LC3 Leakage Checker; yet it checks emission, leakage and shorts just like the big, expensive testers. That's why we call it the Mighty Mite... you can't miss!

Your Distributor

MAGAZINE TEST LABS SAY...

PF Reporter, Nov., 1960, page 65...
"When putting the Model TC109 to work in the lab, I tried to 'trip up' the tester by throwing a few curve balls at it. Using my prized collection of rejected tubes that have mostly 'tough dog' defects, I proceeded with the tests. The Mighty Mite found every trouble."
Les Deane

Electronics World, Jan., 1961, page 103...
"We checked two dozen tubes known to be defective. Many had been passed as "good" by other testers. Each failed at least one of the three tests provided by the TC109. On the other hand, every new tube previously known to be in good condition checked good on the Mighty Mite."

Announcing...

NEW MIGHTY MITE II
Identical to TC109 Mighty Mite with addition of 4 sockets for testing compactors, diodes, varistors, transistors and 10 pin tubes.
Model TC114. Dealer Net

Don't be misled...
there's only one Mighty Mite!

Only 59.50

Sencore
ADDISON 3, ILLINOIS

www.americanradiohistory.com
DEDUCT 10% ON ANY ORDER OF $10 OR OVER—Plus a FREE SURPRISE PACKAGE

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-PM SPEAKER 100'-FINEST</td>
<td>Magnets</td>
<td>$1.00</td>
</tr>
<tr>
<td>15-PM SPEAKER 100'-FINEST</td>
<td>Magnets</td>
<td>$1.00</td>
</tr>
<tr>
<td>3-1/2' TWETER FLAT BACK</td>
<td>Magnets</td>
<td>$1.00</td>
</tr>
<tr>
<td>3-AUDIO OUTPUT TRANS.50.6 pushpull</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>2-AUDIO OUTPUT TRANS.6K6 or 6V6</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>2-AUDIO OUTPUT TRANS.6K6 pushpull</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>2-AUDIO TRANS.700.1</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>20-CHOKE PLUGS</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>20-HF COIL TRANS.</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>2-TL14218</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>2-MEG VOLUME CONTROLS</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>5-1/2 MEG VOLUME CONTROLS</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>5-1/2 MEG VOLUME CONTROLS</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>5-SKK VOLUME CONTROLS</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>5-MEG VOLUME CONTROLS</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>5-MEG VOLUME CONTROLS</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>5-SKK VOLUME CONTROLS</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>5-ASST. 4 WATT</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>10-ASST. VOLUME</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>10-ASST. VOLUME</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
<tr>
<td>5-1/2 MEG VOLUME CONTROLS</td>
<td>Controls</td>
<td>$1.00</td>
</tr>
</tbody>
</table>
SERVICE PRICES FOR TV REPAIRS

This list of TV repair costs was published by the Television & Electronic Service Association of Wisconsin. Naturally, it is only a guide and prices will vary somewhat, depending on local conditions. Price lists used by service associations of other states will appear from time to time.

<table>
<thead>
<tr>
<th>Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Service Fee—Tube Check—Cleaning</td>
<td>$4.00</td>
</tr>
<tr>
<td>Chassis—Remove and Replace—Set-up</td>
<td>$4.00</td>
</tr>
<tr>
<td>Ac Input Circuit</td>
<td>$2.25</td>
</tr>
<tr>
<td>Audio Circuit</td>
<td>$15.45</td>
</tr>
<tr>
<td>Automatic-Frequency-Control System</td>
<td>$10.70</td>
</tr>
<tr>
<td>Automatic-Gain-Control System</td>
<td>$19.10</td>
</tr>
<tr>
<td>Control: Single Unit</td>
<td>$6.75</td>
</tr>
<tr>
<td>Dual Unit</td>
<td>$9.75</td>
</tr>
<tr>
<td>Damper Circuit</td>
<td>$11.40</td>
</tr>
<tr>
<td>Deflection Yoke and Circuit</td>
<td>$9.35</td>
</tr>
<tr>
<td>Filament Circuit</td>
<td>$8.65</td>
</tr>
<tr>
<td>Focus Circuit</td>
<td>$9.80</td>
</tr>
<tr>
<td>Horizontal Oscillator Circuit (Turret Type)</td>
<td>$17.85</td>
</tr>
<tr>
<td>Horizontal Oscillator Circuit</td>
<td>$14.55</td>
</tr>
<tr>
<td>Horizontal Output Circuit</td>
<td>$17.85</td>
</tr>
<tr>
<td>Vertical Tuner</td>
<td>$12.20</td>
</tr>
<tr>
<td>Vertical Tuner (Complete)</td>
<td>$12.50</td>
</tr>
<tr>
<td>Horizontal Blanking Circuit</td>
<td>$8.10</td>
</tr>
<tr>
<td>Printed Circuits (Concealed Type)</td>
<td>$8.50</td>
</tr>
<tr>
<td>Clean Picture Tube (Removal)</td>
<td>$3.85</td>
</tr>
<tr>
<td>90-Day Parts Guarantee</td>
<td></td>
</tr>
<tr>
<td>12. IF Amplifier Circuit</td>
<td>$13.75</td>
</tr>
<tr>
<td>13. Picture Tube: Replacement</td>
<td>$9.50</td>
</tr>
<tr>
<td>14. Power Supply Circuit (High Voltage)</td>
<td>$14.20</td>
</tr>
<tr>
<td>15. Power Supply Circuit (Low Voltage)</td>
<td>$12.45</td>
</tr>
<tr>
<td>16. Power Transformer</td>
<td>$10.45</td>
</tr>
<tr>
<td>17. Speaker</td>
<td>$4.75</td>
</tr>
<tr>
<td>18. Selenium Rectifiers</td>
<td>$7.25</td>
</tr>
<tr>
<td>19. Synchronizing Circuit: (Vert. or Horiz.)</td>
<td>$17.60</td>
</tr>
<tr>
<td>20. Tuner: (Turret Type)</td>
<td>$12.50</td>
</tr>
<tr>
<td>21. Tuner: (Wafer Type)</td>
<td>$19.50</td>
</tr>
<tr>
<td>22. Tuner: Cleaning and Lubrication (Turret Type)</td>
<td>$4.25</td>
</tr>
<tr>
<td>23. Tuner: Cleaning and Lubrication (Wafer Type)</td>
<td>$6.25</td>
</tr>
<tr>
<td>24. Tuner: Replacement or Removal</td>
<td>$12.50</td>
</tr>
<tr>
<td>25. Vertical Oscillator Circuit</td>
<td>$14.20</td>
</tr>
<tr>
<td>26. Vertical Output Circuit</td>
<td>$12.20</td>
</tr>
<tr>
<td>27. Video Circuit</td>
<td>$12.25</td>
</tr>
<tr>
<td>28. Retrace Blanking Circuit</td>
<td>$8.10</td>
</tr>
<tr>
<td>29. Printed Circuits (Concealed Type)</td>
<td>$8.50</td>
</tr>
<tr>
<td>30. Clean Picture Tube (Removal)</td>
<td>$3.85</td>
</tr>
<tr>
<td>Alignment of Tuned Circuits</td>
<td></td>
</tr>
<tr>
<td>31. Video (Complete)</td>
<td>$12.59</td>
</tr>
<tr>
<td>32. Sound (Complete)</td>
<td>$8.75</td>
</tr>
<tr>
<td>33. Automatic Frequency Control Circuit</td>
<td>$7.75</td>
</tr>
<tr>
<td>34. Sound Discriminator Circuits</td>
<td>$4.25</td>
</tr>
<tr>
<td>35. Tuner: Local Oscillators only</td>
<td>$2.00</td>
</tr>
<tr>
<td>36. UHF Tuners</td>
<td>Hourly Rate</td>
</tr>
<tr>
<td>"Local Zone" Average Service Fee</td>
<td>$7.00</td>
</tr>
<tr>
<td>Additional TV Shop Fee—per hour or portion thereof</td>
<td>$8.40</td>
</tr>
</tbody>
</table>

Analysis and location of trouble when estimate is given and set is not repaired: $10.00

IWP (In Warranty Parts Exchange Fee) $1.00 per part—Minimum Fee 1.20

When Shipping Tuner: Include Tubes, Shields and Damaged Parts

Give Model Number and State Complaint

Pack Well and Insure

24 Hours on Popular Types

ALL MAKES ONE PRICE $9.50

MERCURY TV TUNER SERVICE
890-2 River Ave., Bronx 51, N.Y.

"Largest in the East"

VHF-UHF TUNERS
7 Months Warranty

Price Includes Labor & Minor Parts
TUBES & MAJOR PARTS

AT NET PRICES

When Shipping Tuner: Include Tubes, Shields and Damaged Parts.

Give Model Number and State Complaint

PACK WELL AND INSURE

24 HOURS ON POPULAR TYPES

ALL MAKES ONE PRICE $9.50

BURLSTEIN-APPLEBEE CO.
1012-14 McGee St., Kansas City, Mo.

RUSH COUPON TODAY!

NAME
ADDRESS
CITY \ STATE

FREE GIANT ALL NEW 1962 BA CATALOG

SAVE UP TO 50% ON B-A SELECTED KITS

TOP VALUES IN POWER AND HAND TOOLS

HI-FI AND STEREO SYSTEMS & COMPONENTS

30 PAGES OF BARGAINS NOT IN ANY OTHER CATALOG

OCTOBER, 1961

www.americanradiohistory.com
SPORADIC-E OPENS NEW HORIZONS

By STANLEY LEINWOLL*

During the past several months Radio Free Europe schedules have included frequency assignments specifically selected to make use of sporadic-E propagation to reach RFE targets behind the Iron Curtain. These transmissions, initially undertaken on an experimental basis, are expected to have a significant impact on high-frequency communications for the next 5 to 10 years.

Although sporadic-E (Es) propagation has been known for many years, this is the first time any international broadcast operation has used it in a regular schedule, with antennas specifically suited to exploit this mode of propagation.

This technique has made it possible to schedule frequencies well beyond those ordinarily considered the normal operating range. This effectively expands available spectrum space, and provides a valuable tool in RFE’s continuing effort to combat jamming.

Late last May, Radio Free Europe included a 15-mc frequency in its schedule of Hungarian broadcasts from Biblis, Germany. This was during daylight hours, when the normal maximum usable frequency over this path is of the order of 9 mc.

The maximum usable frequency (MUF) is the highest frequency that is reflected by the regular F-layers of the ionosphere at any given time over a particular circuit. It is generally the highest frequency assigned to a circuit over which some degree of reliability is required. Scheduling a frequency 75% above the MUF as we did in the Biblis tests would result in extremely poor effectiveness figures with satisfactory reception unlikely more than 5% of the time.

Fig. 1 is a MUF curve for August, 1961. It shows how maximum usable frequency normally varies with time over the Biblis/Hungary path. The 15-mc signals from Biblis were propagated off the E-layer of the ionosphere, making use of a summertime anomaly occurring in the E-layer which is referred to as sporadic-E. While this anomaly has been known for some time, it is not well understood.

Fig. 2 shows the layers of the ionosphere on a typical summer day. These layers, made up of ionized gases of differing densities, can return obliquely incident radio waves to earth, thus making long-distance high-frequency radio communication possible.

Sporadic-E occurs as clouds or patches of high ionization density which form for no apparent reason, exist for up to several hours at a time, then disappear just as mysteriously. Sporadic-E clouds reflect radio waves of considerably higher frequency than those reflected by the normal F-layers of the ionosphere.

In mid-latitudes, E, is most prevalent during the summer months, occurring over 50% of the time at mid-day. Many

*Radio-frequency and propagation manager, Radio Free Europe.

Fig. 1—Curve showing maximum usable frequency over the Biblis, Germany, to Hungary circuit for August, 1961. Radio Free Europe Es frequency is shown by dashed line.

Fig. 2—Ionosphere layers on typical summer day. Most long-distance high-frequency communication takes place via F-layers, most ionospheric absorption in the D-layer.
scientists have agreed that sporadic-E is a very important effect, but up to now methods for taking its effects into account have been poor.

Sporadic-E is most evident during years of low sunspot activity. Since MUF's vary with sunspot number, E activity is most in evidence when MUF's are low. During years of high solar activity, MUF's are high, normally approaching the upper limit of the short-wave spectrum over many paths. At such times E effects are scarcely noticeable in the high-frequency bands.

Fig. 3 shows sunspot activity during the past 7 years. You can see that sunspot numbers have been declining steadily since 1958. The broken line is a projection of the sunspot cycle and indicates that, if the present trend continues, the cycle minimum will occur sometime in 1965. The decrease in sunspot number and the accompanying decrease in MUF will result in a corresponding decrease in the amount of propagationally useful high-frequency radio spectrum. In addition, world-wide demands for additional spectrum space in the high-frequency broadcast bands are expected to double in the coming decade.

The combination of decreasing spectrum space brought about by a decline in sunspot activity and increased demands for spectrum space resulting from an increase in short-wave broadcasts throughout the world has been of great concern to broadcasters, who anticipate that the amount of usable spectrum space will fall far short of what is needed.

About RFE tests

As part of an extensive program to determine what countermeasures can be taken to deal with the problem of the dwindling spectrum, RFE has undertaken a series of tests to find out whether consistent broadcast operation above the MUF is possible and practical. Fig. 4 shows how these tests are being conducted.

Since the E-layer of the ionosphere is considerably lower than the F-layers, an antenna with a relatively low radiation angle is required to bounce a signal off the E-layer.

RFE antennas are designed for normal F-layer propagation. Consequently, radiation angles for normal F-layer operation to targets in nearby Central Europe are relatively high. The problem of choosing a proper antenna was solved by scheduling broadcasts to Hungary on an antenna designed for beaming broadcasts to Rumania.

Fig. 4 shows that the vertical radiation angle of the Rumanian antenna is optimum for E-layer propagation of programs beamed to Hungary.

Results thus far have been excellent, with reception comparable to that obtained on lower frequencies via normal F-layer propagation. At present, plans for incorporating regular E transmissions into our schedules are under way.

Although the E-layer of the ionosphere exists principally during daylight hours, E activity is observed around the clock during the summer. Tests are under way to determine whether nighttime E transmissions above the F-layer MUF are practical.

Irrespective of the results of these nighttime tests, the success of the daytime E. tests is a significant step toward solving a serious problem for broadcasters. In effect, it expands the available spectrum space at a time when additional channels are a valuable commodity.

Although E. is observed about 50% of the days during the summer months, the RFE transmissions on 15-mc indicate that the signal is propagated considerably more than 50% of the time leading to the conclusion that, in addition to E., some other E-layer propagation mode is also a factor. It has been suggested that the phenomenon be referred to as anomalous E-layer propagation, rather than the misleading E. In addition, using frequencies above the MUF has proved valuable in countering the effects of jamming.

Jamming is defined as the creation and transmission of various kinds of radio interference for the purpose of preventing normal reception of radio broadcasts. The Communists have been jamming Radio Free Europe broadcasts...
Profiles in Electronic Engineering Technology

"a CREI home study program helped me increase my salary by a factor of four (4)."

"I am indeed grateful to CREI for my success. Since enrollment in a CREI Home Study Program in Electronic Engineering Technology, I have progressed from a Junior Technician to a recognized and licensed Senior Engineer. My present title is Field Support Manager and my salary has increased by a factor of four (4)."

Mearl Martin, Jr., SENIOR ENGINEER
Field Support Manager, Tektronix, Inc.,
Portland, Ore.

INCREASE YOUR EARNING POWER while you are on the job. Mearl Martin, Jr. made profitable use of his CREI-acquired knowledge in progressing from Junior technician to licensed Senior Engineer. His present position is Field Support Manager, Marketing Division of Tektronix, Inc.

INDUSTRY-RECOGNIZED CREI HOME STUDY PROGRAMS PREPARE YOU FOR INCREASED RESPONSIBILITIES AND HIGHER-PAYING POSITIONS IN ELECTRONICS.

THERE IS A CREI PROGRAM TO MEET YOUR NEED. Today thousands of advanced electronics personnel—engineering technicians, engineers, administrators, executives—attribute their present high salaries and positions to their home study of CREI Programs in Electronic Engineering Technology. Wherever you go—wherever thorough knowledge of electronic engineering technology is a prime requisite—you’ll find CREI Home Study students and alumni welcomed.

TOP SCIENTISTS CONTRIBUTE TO COURSES. When you enroll in a CREI Home Study Program, you join more than 20,600 students presently working in almost every phase of electronics in all 50 states and most countries in the free world. You study courses to which a number of today’s leading engineers and scientists have contributed. You are guided and assisted by CREI’s staff of experienced instructors. How long it takes to complete your CREI Home Study Program depends on your on-the-job experience, the amount of time you devote to study and the program or programs you choose.

DEMAND FOR CREI-PREPARED MEN IS GREAT. It far exceeds the supply—has exceeded the supply for many years. Specifically designed to prepare you for responsible positions in electronics, CREI Home Study Programs include the latest advancements in
EMPLOYERS RECOGNIZE THE BENEFITS they receive when they provide their employees increase their knowledge through educational programs. Industry needs men for better educated men increases by the day. Here Mearl Martin discusses education with W. K. Dallas, V. P., Manager, Marketing Division, Tektronix, Inc.

GAIN NEW PROFESSIONAL STANDING. The CREI Home Study Programs help you form new associations with responsible members of your company. Above (L to R) is Mearl Martin with Robert Wrobble Group Manager and Rollie Smith, Field Training Manager at Tektronix, Inc.

ELECTRONICS. We invite you to check the thoroughness and completeness of CREI Home Study Programs in the catalog provided on request. They include:

| ELECTRONICS ENGINEERING TECHNOLOGY |
| SPECIALIZED COMMUNICATIONS ENGINEERING TECHNOLOGY |
| SPECIALIZED AERONAUTICAL AND NAVIGATIONAL ENGINEERING TECHNOLOGY |
| SPECIALIZED TELEVISION ENGINEERING TECHNOLOGY |
| SPECIALIZED SERVOMECHANISMS AND COMPUTER ENGINEERING TECHNOLOGY |
| SPECIALIZED ENGINEERING MATHEMATICS |
| AUTOMATION AND INDUSTRIAL ELECTRONIC ENGINEERING TECHNOLOGY |
| NUCLEAR ENGINEERING TECHNOLOGY |

RATES HIGH WITH INDUSTRY. The high caliber of CREI Home Study Programs is attested to by America's biggest corporations, where CREI students and alumni attain positions ranging from engineering technicians to engineers to top officials. Such companies are National Broadcasting Company, Pan American Airways, Federal Electric Corporation, The Martin Company, Northwest Telephone Company, Mackay Radio, Florida Power and Light, and many others. These companies not only recognize CREI educational qualifications but often pay all or part of CREI tuition for their staff members.

ELECTRONICS HOME STUDY SPECIALISTS FOR 34 YEARS, CREI Home Study Programs are the product of 34 years of experience, CREI itself was among the first to have its curriculum accredited by the Engineers' Council for Professional Development. Each program is developed with the same painstaking detail and care that CREI put into its World War II electronics courses for the Army Signal Corps, its special radio courses for the Navy, and its post-war group training programs for leading aviation and electronics companies. For those who can attend in person, CREI maintains a Resident School in Washington, D. C., also offering ECPD accredited Technical Institute curricula.

REQUIREMENTS FOR ENROLLMENT. Pre-requisite is a high school education or equivalent plus electronics training and/or practical electronics experience. (Electronics experience and/or training not necessary for Residence School.) If you qualify, send for the latest CREI catalog at no cost. Veterans may apply under the G.I. Bill. If you're doubtful about your qualifications, let us check them for you. Use the coupon inserted between these pages or—if coupon has been removed—send qualifications to:

As of a better future, with a CREI Home Study Program, living is better when you prepare yourself for—and get desired promotions. CREI always Mearl enjoys living in a comfortable home in Portland, Oregon. CREI Programs help you make living better wherever you are located.

YOUR WHOLE FAMILY BENEFITS from the success you can achieve from a CREI Home Study Program. They share in it. They enjoy it with you. It helps them realize and understand some of the values of a better education. Above Mearl Martin relaxes at home with his wife and his son and daughter.

The Capitol Radio Engineering Institute
ECPD Accredited Technical Institute Curricula • Founded 1927
Dept. 1410 H, 3224 Sixteenth St., N.W.
Washington 10, D.C.
Announcing the Ultimate FM Tuners

THE FISHER FM-1000

FM-Multiplex Wide-Band Tuner
Exclusive Stereo Beacon

The FISHER FMR-1 Broadcast Monitor and network relay tuner is now being made available to the audio connoisseur seeking the absolute ultimate — FM-1000. A magnificent, architectural-brass finish control panel sets off this beautiful instrument. It has the remarkably high sensitivity of 1.5 microvolts (150M) and its tunable front-end boasts four tuned circuits—for a degree of sensitivity, and image and spurious rejection never before attained. An exceptional feature is Stereo Beacon, the Fisher invention that automatically lights a signal when the station is broadcasting in Multiplex and simultaneously switches the unit from monophonic to stereo operation. $419.50
Walnut (20-UM) and Mahogany (20-UM)
Cabinets for the FM-1000 $24.95

USE THIS COUPON
FISHER RADIO CORPORATION
LONG ISLAND CITY 1, N. Y.

Please rush FREE literature on the following: □ Specifications on FISHER FM-1000 □ Complete Catalogues on FISHER equipment □ Illustrated Custom Stereo Installation Guide

Name ____________________________
Address ____________________________
City ______ State ______ Zip

TRANSISTOR BIAS REGULATOR

By A. K. TAYLOR

SHUNT VOLTAGE REGULATORS SUCH AS gas-filled regulator tubes and Zener diodes have a dynamic resistance (dE/dI) much lower than their static resistance (E/I), but are not available for very low voltages. For fractions of a volt, use a semiconductor diode or the surviving diode of a half-burnt-out transistor.

Fig. 1 shows the E-vs-I characteristics for three diodes, taken by varying a high resistance in series with the diode and plotting diode voltage against current. The voltage varies but little for currents over 5 ma. The slope of the flatter part of the curve, approximately dE/dI, corresponds to 10 ohms for the high-perveance diode and 5 ohms for the other two.

This is the dynamic resistance which the load sees. The static resistance (E/I) which determines the necessary bleeder current is around 10 times as much. Bleeder current, which would have to be 40 ma to develop 0.4 volt across 10 ohms or 0.2 volt across 5 ohms, need be only 5 ma plus the maximum current drawn by the load. Diodes with still flatter characteristics and various voltage drops can probably be found among the innumerable types manufactured.

This represents a real saving in biasing class-B transistor amplifiers.

Fig. 1

Fig. 2

The low-resistance bleeders ordinarily used not only waste batteries but can seriously load driver stages in transformerless circuits. Fig. 2 shows typical applications to transformer-coupled and complementary push-pull amplifiers. A diode-connected 2N256, or two in parallel, is most nearly right for Fig. 2-a, and the high-perveance diode or two of the others in series are right for the complementary circuit (Fig. 2-b).

Current distribution varies with individual transistors. With a typical complementary pair, the transistor bases draw 1 ma and the diode 14 ma when idle. With full signal and 10-ohm load, the transistors draw 10 ma, the diode draws 5 ma and the bias drops to 0.4 volt, which is still enough to prevent crossover distortion. The negative temperature coefficients of the diodes stabilize the idle current in either amplifier well enough so that with good heat sinks no other temperature stabilization is necessary.
ANOTHER LICENSING LAW DIES

Miami, Fla.—A proposed licensing law for Dade County was killed by the Metro Commission by a vote of 10 to 1. The commission stated that the law, which was backed by TESA-Miami, might "become an open door for the complete control of the industry by the wishes and desires of the few." The County Manager's office also reported that it would cost $200,000 to administer such a law during the first year.

TRI-STATE COUNCIL NEWS

Gloucester, N. J.—The Allied Electronic Technicians Association elected Tony DeFranco, president, and Ray Dellinger, vice president. Joseph Papovich was re-elected secretary and Joseph Eberhardt, treasurer.

Trenton, N. J.—Bob Kroeson of the Trenton Chamber of Commerce was the guest speaker at a recent meeting of the Radio Servicemen's Association of Trenton. His topic was Business Mal-practices, with the accent on TV.

MORE JOURNEYMAN TECHNICIANS

Santa Clara, Calif.—Ten radio-TV service technicians joined the ranks of California State journeyman technicians when they received state trade certificates at a ceremony sponsored by the Santa Clara Valley and Santa Cruz County Chapters of the California State Electronics Association. Five of the new journeymen also received the designation of Master Technician. They are first to receive this rating which was established by CSEA last year.

Those receiving the CSEA Master Technician certificates and State of California Journeyman certificates were Kenji Aoki, William G. Cleveland, Melvin Haury, Everett A. Hunter and Oliver Sharrai.

Completing the apprenticeship course and receiving journeyman certificates were Alvin H. Bowers, Roderick A. Curry, William G. Jensen, Sandy Lunares and Joseph R. Twitchell.

POLICE GIVEN TALK

Seattle, Wash.—A TSA representative recently spoke before the weekly meeting of the Detective Division (Robbery-Burglary) of the Seattle Police Department on the means and methods of identifying electronic equipment. He cited the ease with which paper serial number tags can be removed, and the alternate methods of identification by hidden serial numbers and the serial numbers on replacement picture tubes which are a part of the service records.

is better than guesswork...

and STANCOR takes the guesswork out of TRANSFORMER REPLACEMENTS

When you use Stancor exact replacements, you know that you have a transformer that duplicates in every way the original manufacturer's electrical and physical specifications.

What's more, you know in advance that you'll be able to use a Stancor unit, because Stancor offers virtually complete coverage on flybacks and yokes . . . and the Stancor TV Guide, the most detailed in the industry, gives you exact information on the right transformer to use.

Contact your Stancor distributor for information on how to get your copy of the Stancor TV Guide.

Take all the guesswork out of transformer replacements—always specify Stancor.
of most shops, and which appear on the customer's picture-tube warranty card. Also mentioned were ways of looking up the serial number from sales records, service records, etc. Captain Shamessey expressed the department's appreciation for the information, and for the continued running of the stolen-set information in TSA Service News.

50% HAVE COLOR TV
Mulberry, Ind.—Is it true that this town has a color TV saturation of 50%? It's said that Charlie Maish, salesman for Associated Distributors, has a RCA color set and the other resident owns a black-and-white set.—Howard Test Probe

INDIANA ELECTION
Richmond, Ind.—The banquet room of the Rathskeller was the scene of the annual banquet and election of officers of RETA-Richmond. Following the feast W. F. Barnett was elected president; Robert Reed, vice president; Victor Ballman, secretary, and Charles H. Noren, treasurer.

AGAINST WARRANTY EXTENSION
Ephrata, Pa.—"We're against extending warranties" was the cry from delegates to the Federation of Television & Radio Service Associations of Pennsylvania at a recent meeting. This refers to extensions of warranties beyond 90 days for parts and labor and more than one year on picture tubes.

COLOR TV TRAINING
Philadelphia, Pa.—The Television Service Association of Delaware Valley will conduct a color TV service program. It is being handled with the cooperation of Raymond Rosen & Co., Inc., the local RCA distributor. Raymond Rosen Inc. is making available to association members a color TV chassis and test equipment. The RCA Service Co. is contributing specially prepared material for the program and is providing Howard Spencer, administrator of technical training, as an instructor.

FTC GETS TSADV RECORDS
Philadelphia, Pa.—Herman Shore, president of the Television Service Association of Delaware Valley, has been ordered by a US District Court to identify TSADV records requested by the FTC. Until now, the association has refused to give any records to the FTC unless individual members were ordered to do so. This was done by the group following their lawyer's instructions to turn over any records unless a subpoena was issued to individual so they would be, in testifying, legally immune from possible future prosecution.

The FTC has not said why they wish to examine TSADV records but it appears that they may wish to look into an alleged boycott of certain parts distributors by members of the association. Commenting on the court order, Mr. Sidney Black, the association's lawyer,
said: "We have never tried to keep our records from the FTC. We simply objected to the subpoena being issued to the group and not an individual so that immunity against future possible prosecution would protect those who testify." We would like to bring the practice of certain distributors to the eyes of the FTC so that these problems could be solved. We feel it is impossible for the FTC to see all these accusations against distributors and not investigate distributor practices."

REPORT ON LICENSING

California—The following is a report on state licensing Bill No. 265 that appeared in the Modern Electronic Service Dealer (Los Angeles, Calif.)

The licensing bill backed by CSEA (California State Electronics Association) has come to a halt. The bill as it now stands is in the Senate Business and Finance Committee and is scheduled for interim hearing.

Briefly, before the bill was submitted, it had 47 co-authors from the Assembly. During the next 5 months, the bill was amended six times as recommended by different departments within the state. Finally, only that portion of the bill was made in the Governmental and Efficiency Committee hearing. It was to leave out certification of technicians for the time being. The bill then went to the Finance Committee and was stalemated because the state budget had not passed. Then the bill finally got to the floor of the assembly where it was passed by a vote of 58 to 6.

The bill next went to the Business and Committees of Finance for their approval. From there it was supposed to go to the Finance Committee and then to the Senate floor in time to be passed this year. But the bill got tied up by the Business and Committees of Finance who moved that it be sent to the Interim Committee for more study.

NATESA GETS NEW PRESIDENT

Chicago, Ill.—Ralph Woertendyke of Salina, Kan., was elected president of the National Alliance of Television & Electronic Service Associations. He succeeds A. A. Benoit, Jr. Other officers elected at the annual convention at the Pick-Congress hotel were John Stefan- skii, secretary general; Nelson Busby, treasurer; Irving J. Toner, eastern vice president; George Carlson, eastern secretary; T. R. Nabor, west central vice president; B. R. Moon, west central secretary; Pat Barr, west vice president; Les Quigley, western secretary. Frank Moch remains an executive direc- tor. His term still has a year to run.

WARRANTY EXTENDED

Chicago, Ill.—Westinghouse Electric has announced that they are including a 90-day labor warranty on all products made by the company's television-radio division.

A feature of the plan is a telephone service that gives customers the address of the nearest independent authorized service company. All service work will be done by independent service dealers appointed by local distributors, Westinghouse states.

ELECTION RETURNS

Butte, Mont.—The Electronic Service Association of Butte has a new slate of officers: Pat Gordon, president; Harry Carroll, recording secretary; Kenneth Venner, treasurer; Outgoing president Raymond G. Tuszynski was elected corresponding secretary. Al Laurvick and Bjanne Johnson were voted trustees.

KARL W. HEINZMAN PASSES

Detroit, Mich.—The independent service industry lost one of its best leaders and sharpest minds with the passing of Karl W. Heinzman. His death followed two weeks in the Art Center Hospital, where he was recuperating from his second heart attack within the year. He was planning to return home when the fatal attack occurred.

CSEA CHAPTER NEWS

Burbank, Calif.—At the regular meeting of the Burbank-Glendale Chap- ter at Genio's Restaurant Robert Hahn spoke on servicing video amplifiers and remote controls. He is service manager for Philco, Los Angeles. Later, members discussed the state licensing bill.

San Diego, Calif.—Annual elections were the business of the day. The new directors are Clifford T. Coons, P. E. Fort, Howard Ellis, G. S. Lowell, Walt Meekins, Gene O'Brien and Earl Robbins. The new board then elected its officers for the coming year: president, Gene O'Brien; vice president, Howard Ellis; secretary-treasurer, G. S. Lowell. Guest speaker for the evening was Wm. E. Porst, regional manager of Simplified Tax Records Inc. He presented a tax preparation record keeping and business management system for the small businessman.

New Sams Books

NEW ON ELECTRONIC INDUSTRIES!

Using The Oscilloscope In Industrial Electronics

by Middleton & Payne

Explains how to use scope to test industrial equipment such as thy- rats, diodes, transistors and controls, saturable reactors and magnetic amplifiers, and industrial equipment, automotive ignition systems, and remote controls. First 4 chapters cover basics; second 4 chapters give information capability, operating features, characteristics, general use in industrial electronics. Ten other chapters discuss waveform photography, lab applications, scope maintenance and calibration, etc. Includes handy scope specifications charts. 256 pages, 9 1/2 x 11 1/2. Only $4.95

Industrial Transistor & Semiconductor Handbook

by Robert B. Toner

Now available—latest, most complete data on Industrial semi-conductors, their characteristics, circuit design procedures, typical applications. First chapter on semiconductor physics, general characteristics, circuit fundamentals, ratings and measurements. Other chapters discuss applications: diodes, industrial control, power converters, industrial devices, thermoelectricity in solar-energy conversion. Special chapter discusses advanced semiconductor manufacturing techniques. Final chapter describes new developments, such as thin-film and integrated circuits, high-density packaging, micro- elements, etc. Appendix contains transistor parameter symbols and definitions. 1,467 pages, 1,687 references and illustrations, 465 pictures, plus 1,524 substitutions (808 more than in prior volumes). Lists 2,759 substitutions for 1,687 receiving tube types. Shows 224 in- dustrial and 1,068 European transistor receiving types; 623 American for Europe receiv- ing types. Includes useful data on tube substitution. A "must" for every tube caddy and service bench. 96 pages, 8 x 5 1/2. Only $5.00

NEW VOLUME SERVICING TRANSISTOR RADIOS!

Just out—covers 47 models produced in 1960. Complete Photos/ Facts servicing data. 169 pages, 9 1/2 x 11 1/2. Only $2.95

HOWARD W. SAMS & CO., INC.

Order from your Sams Distributor today, or mail to Howard W. Sams & Co., Inc. Dept. K-21

1720 E. 38th St., Indianapolis 6, Ind.

Send me the following books:

☐ Tube Substitution Handbook Vol. 3 (TUB-3)
☐ Using the Scope in Industrial Electronics (OSM-1)
☐ Indus. Transistor & Semicon. Handbook (IT-1)
☐ Servicing Transistor Radio (TS-9)
☐ ... enclosed. Send Free Book List

Name:

Address:

City Zone State:

IN CANADA: A. C. Simmonds & Son, Ltd., Toronto 7

(outside U.S.A. priced slightly higher)

We've checked your credit references and you may charge any service required—up to a dollar.
new PRODUCTS

AM/FM STEREO TUNER, T499X. Built-in multiplex section. Sensitivity 0.95-µv for 20-db quieting. 3.2-µv usable sensitivity (IHFM standards). Distortion less than 0.1% at 100% modulation. Response 10-35,000 cycles ±1 db.—Harman-Kardon Inc., Ames Court, Plainview, N. Y.

FM STEREO ADAPTER, MX600D. For manufacturer’s FM tuners and other makes having wide bandwidths. Stereo Announcer lights when stereo program is being broadcast. Uses Com- pactron tubes.—Eico Electronics Corp., 1623 Colorado Ave., Santa Monica, Calif.

FM STEREO GENERATOR Type 520. Provides composite stereo signal for modulating an FM generator. This produces a composite test signal which conforms to FCC stereo FM standards.

PHASE COORDINATOR checks balance and phase relations of speaker output of stereo system. Direct-reading meter clearly indicates correct setting.—Jesse M. Kohler Co., 1566 E. 91 St., Brooklyn 36, N. Y.

STEREO AMPLIFIER, model X-101-B. Combination stereo preamp, dual 26-watt amplifiers. Response, 20-20,000 cycles ±1 db. Harmonic distortion 0.5% at full output. IM distortion 0.8% at tested output. 6 pairs of inputs. High- and low-frequency filters. 4-, 8- and 16-ohm outputs. 19 front-panel controls.—Fisher Radio Corp., 31-21 44th Drive, Long Island City 1, N. Y.

CB TRANSCEIVER, model 772. Superhet receiver has rf stage for high sensitivity. 4-position transmitter switch selects any of 4 crystal-controlled channels. Kit or fully wired and tested. Transmitter crystal oscillator and rf final prewired, tuned and sealed at factory in kit version.—Electronic Instrument Co. Inc. (EICO), 33-09 Northern Blvd., Long Island City 1, N. Y.

CB ANTENNAS, model GP-1 (illus.) ground-plane unit has 1-inch-diameter driven element and drooping radials. Model CFFS is 3-element Yagi.—Gear Beam Antenna Corp., 21341 Rosecrans Blvd., Canoga Park, Calif.

MOBILE ANTENA clamps onto car window. No tools needed. No holes to drill. Bracket rubber-lined. Interchangeable antennas for CB, 1¾-, 2-, 6- and 10-meter amateur bands and 156-mc businessman’s band.—Electrophono & Parts Corp., 530 Canal St., New York 13, N. Y.

CB MOBILE ANTENA, Omni-Flat Boundary Antenna. Ring type design. Provides gain of 4-Wave whip. Only 2 inches high.—General Electromagnetics Corp., 11719 E. Washington Blvd., Whittier, Calif.

CB ANTENA, model CBGP-5. Ground-plane...

CH BASE-STATION ANTENNA, Mark II Super Beacon. For 27-mc, 19 feet tall. Requires no ground radials or skirts. Precipitation static suppression by plastic overcoating on antenna. VSWR less than 1.5:1 over entire Citizens band. Matches 50-ohm coax.—Mark Mobile Inc., 5441 Fargo Ave., Skokie, Ill.

CONVERTER-AMPLIFIER, KT-70 Amplifier for low-power translator areas which use uhf channels 70-83. Converts vhf channels 5 or 6 into any uhf channel between 70 and 83.—Honder. Tongue Lake, Inc., 9 Alling St., Newark, N. J.

TRANSMITOR INTERCOM SYSTEMS, PA-10,3, 3-station system. Any station can be called from master without disturbing other remote. 3-transistor circuit operates off 3-1/2 light flashlight cells. 8%, 5/16-inch speakers. Each unit 11/ x 5 x 5/8 in.—Lafayette Radio Electronics Corp., 155-08 Liberty Ave., Jamaica 33, N. Y.

VOICE CASE, complete PA system in 12 x 12-1/2 x 6-inch attache case. Battery-powered. With lavalier mike and 25 feet of cord. Volume control in base.—Singer Corp., 875 S. Arroyo Pkway, Pasadena, Calif.

THIN SPEAKERS, models 5SC/10 and 8C/10PA (illus). Both use 10-ounce ceramic (barium ferrite) magnets. Units are thin enough to mount between standard wall studs.—Quad Nichols Co., 234 E. Marquette Rd., Chicago 27, Ill.

SPEAKER SYSTEM, CR-3 Crescendo, 3-way system uses 10-inch bi-axial transducer and 4-inch tweeter. Built-in crossover. Frequency response from 25 to 18,000 cycles. 24 x 12 x 12 in.—Mercury Electronics Corp., 111 Roosevelt Ave., Mineola, N. Y.

REMOTE SPEAKER. No grille. 8 x 10 1/4 x 6 1/2 in. Model SH-4 has random-width wood paneling which replaces grille cloth. Tiny slots load 6 x 9 speaker. Blond, mahogany or walnut.—Utah Radio & Electronic Corp., Huntington, Ind.

BULK TAPE ERASER, model HD-11. Handies 5- to 10%-inch reels. Erases all recorded material simultaneously.—Hohner, Trevico, Inc., 145 E. Mineola Ave., Valley Stream, N. Y.

DYNAMIC MIKES, models 70 and 71. Response 50-15,000 cycles. Output level into high-impedance input 28 mv/50 dynes/cm². For tape recorders, ham rigs and PA installations.—University Loudspeakers Inc., 88 S. Kenosha Ave., White Plains, N. Y.

CONVERSION KIT R-87 converts Roberts, Metanier, Akai and Terrascorder tape recorders to 4-track stereo playback. Uses T18-2 laminated core head that has 100 micro-inch gap.—Nortronics Co. Inc., 1015 S. 6th St., Minneapolis 4, Minn.

SOUND METER, model 150. Sound-level range:

(Continued on page 126)
VOLT-OHM MILLIAMMETER

FEATURES:
- Compact—measures 2 1/2" x 5 1/2" x 2 1/2".
- Uses "Full View" 2% accurate 800 Microampere
- D'Arsonval type meter
- Housed in round-cornered, molded case.

SPECIFICATIONS:
- A.C. VOLTAGE RANGES: 0-15/30/150/300/1500/3000 Volts.
- D.C. VOLTAGE RANGES: 0-7.5/15/75/150/750/1500 Volts.
- RESISTANCE RANGES: 0-10,000 Ohms, 0-1 Megohm.
- D.C. CURRENT RANGES: 0-15/150 Ma., 0-1.5 Amps.
- DECIBEL RANGES: -6 db to +18 db, +14 db to +28 db.

The Model 779-A comes complete with test leads and operating instructions. Price is $15.85. Terms: $3.85 after 10 day trial then $6.00 monthly for 3 months.

SUPERIOR'S NEW MODEL 77

VACUUM TUBE VOLTOMETER
WITH NEW 6" FULL VIEW METER

Compare it to any peak-to-peak V.T.M. made by any other manufacturer at any price!

SPECIFICATIONS:
- D.C. VOLTS: 0 to 3/15/75/150/300/750/1500/3000 volts at 1 megohms input resistance.
- A.C. VOLTS (RMS): 0 to 7.5/15/75/150/300/750/1500 volts.
- A.C. VOLTS (Peak to Peak): 0 to 8/40/200/600/2000 volts.
- ELECTRONIC OHMMETER: 0 to 1000 ohms/10,000 ohms/100,000 ohms.
 - 1 megohm/10 megohms/100 megohms/1,000 megohms.
- DECIBELS: -10 db to +18 db. +10 db to +20 db, +30 db to +58 db.
 - All based on 0 db = 300 volts (6 dbw) into a 500 ohm line (1/2 db).
- ZERO CENTER METER: For discriminator alignment with full scale range of 0 to 1.5/3.75/7.5/15/75/150/775/2,000 volts at 11 megohms input resistance.

Model 77 comes complete with operating instructions, probe and test leads and portable carrying case. Price is $42.50. Terms: $12.50 after 10 day trial then $6.00 monthly for 5 months.

SUPERIOR'S NEW MODEL 79

SUPER-METER
WITH NEW 6" FULL VIEW METER

SPECIFICATIONS:
- D.C. VOLTS: 0 to 7.5/13/75/150/300/1500.
- A.C. VOLTS: 0 to 15/75/150/300/1000/3000 Ohms.
- D.C. CURRENT: 0 to 1.5/15 Amperes.
- RESISTANCE: 0 to 1,000/100,000 Ohms.
- CAPACITY: 0.1 to 1 Mfd. 1 to 50 Mfd.
- REACTANCE: 0 to 2,500 Ohms.
- INDUCTANCE: 0 to 2,500 Megohms.
- DECEIBELS: 0 to +18, +14 to +36, +24 to +36.

The following components are all tested for QUALITY at appropriate test potentials. Two separate A.R.G. A.D.C. scaling on the meter are used for direct readings.
- All Electronic Condensers from 1 MFD to 1000 MFD.
- All Selenium Rectifiers.
- All Germanium Diodes.
- All Silicon Rectifiers. All Silicon Diodes.

Model 79 comes complete with operating instructions, test leads and portable carrying case. Price is $38.50. Terms: $8.50 after 10 day trial then $6.00 monthly for 5 months.

SUPERIOR'S NEW MODEL 80

20,000 OHMS PER VOLT

- 6 INCH FULL-VIEW METER provides large easy-to-read calibrations. No squinting or guessing when you use Model 80.
- MIRRORED SCALE permits fine accurate measurements where fractional readings are important.

SPECIFICATIONS:
- D.C. VOLTAGE RANGES: (All x 1000 sensitivity of 20,000 Ohms per Volt)
 - 0 to 15/75/150/300/750/1500 Volts.
- A.C. VOLTAGE RANGES:
 - 0 to 15/75/150/300/750/1500 Volts.
- 2 CAPACITY RANGES: 0.005/2 Mfd. 0.05 Mfd., 0.5 Mfd. to 30 Mfd.
- 2 D.C. CURRENT RANGES: 0-75 Microamps, 0 to 7.5/75/150 Milliamperes, 0 to 1.5 Amperes.
- DECIBEL RANGES: -6 db to +18 db, +14 db to +28 db, +34 db to +58 db.

NOTE: The line cord is used only for capacitor measurements. Resistance ranges operate on self-contained battery.

Model 80 Allmeter comes complete with operating instructions, test leads and portable carrying case. Price is $48.50. Terms: $12.50 after 10 day trial then $6.00 monthly for 5 months.

FOR REPAIRING ALL ELECTRICAL APPLIANCES
MOTORS * AUTOMOBILES

As an electrical trouble shooter the Model 70:
- Will test Toasters, Toaster Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostats, etc.
- Measures A.C. and D.C. Voltages, A.C. and D.C. Currents, Resistance, Inductance, Leakage, etc.
- Incorporates a sensitive direct-reading resistance range which will measure all resistances commonly used in electrical appliances, motors, etc.
- Leads detecting circuit will indicate Continuity from zero ohms to 5 megohms (10,000,000 Ohms).

As an Automotive Tester the Model 70 will test:
- Both 6 Volt and 12 Volt Storage Batteries
- Generators, Starters, Distributors, Ignition Coils
- Regulators, Relays, Circuit Breakers, Oil Pressure Switches, Condensers
- Directional Signal Systems
- All Lamps and Bulbs
- Fans, Heating Systems, Horns, etc.
- Also will locate poor grounds
- Breaks in wiring, poor connections, etc.

Model 70 comes complete with 44 page book and test leads. Price is $15.85. Terms: $3.85 after 10 day trial then $6.00 monthly for 2 months.

DID YOU EVER?

- Order merchandise by mail, including deposit or payment in full, then wait and write...wait and write.
- Purchase anything on time and sign a lengthy complex contract written in small difficult-to-read type.
- Purchase an item by mail or in a retail store then experience frustrating delay and red tape when you applied for a refund.

Obviously prompt shipment and attention to orders is an essential requirement in our business...we ship at your risk!

116 RADIO-ELECTRONICS
SUPERIOR'S NEW MODEL 83A
MULTI-SOCKET TYPE

TUBE TESTER

SPECIFICATIONS:
1. Complete, all-purpose tube tester with all type tubes and portable.
2. Easy to read, clearly visible, clearly distinguishable.
3. Dual Scale meter permits testing of all low current tubes.
4. Ultra-sensitive leakage test circuits will indicate leakage up to 5 megohms.

SUPERIOR'S NEW MODEL 85A
TRANS-CONDUC TANCE TYPE

TUBE TESTER

- Emulsifies latest improved TRANS-CONDUC TANCE circuits. Test tubes under "dynamic" (simulated) operating conditions.
- An in-phase signal is applied to the input section of a tube and the resultant plate current and plate voltage is measured as a function of tube quality. This provides the most suitable method of simulating the manner in which tubes are operated in real life.
- Employ a testing method which can be used to test the performance of all types of tubes, including...
- "FREE-FIVE" LEVER TYPE ELEMENT SWITCH ASSEMBLY marked with references to RMA testing, permits application of test voltages to any of the elements of a tube.
- FREE FIVE (5) YEAR CHART DATA SERVICE.

SUPERIOR'S NEW MODEL 88
TESTS ALL TRANSISTORS AND TRANSISTOR RADIOS

AS A TRANSISTOR RADIO TESTER
An R.F. Signal Generator, modulated by an I.F. signal, is injected into the...
VALUE PACKED
2 QUALITY TESTERS
FOR THE PRICE OF ONE

A top performing TUBE TESTER
and a complete VOM

- A truly companion for a service-
man or maintenance man.
- A real money maker for a part
time service man.
- Worth its weight in gold to the
experimenter, student or kit builder.

The TC101 Tube Tester tests for
emission under full load, for tube
shorts and leakage up to 2 meg-
ohmms between all tube elements. It
will test every radio and TV tube
you encounter (over 2000) plus
five star foreign imports and auto
radio tubes. The VOM features a
sensitive 1 Ma D'Arsenal movement
with 0 to 12 volt range for
testing auto electrical systems, 0
to 12 volt for fast testing of electri-
cal appliances and 0 to 1200 volts for
radio and TV testing. All ranges
are either AC or DC. Resistance
measurements up to 5 megohms.

Completely factory wired and
tested. All-American made to in-
sure top quality and performance.

MODEL TC101 . only $39.95

GOLD PRODUCTS, INC.,
500 S. Westgate Dr., Addison Illinois

Send me TC101 Tube Tester and VOM.
Check enclosed $39.95. (Save step, charge)
Send C.O.D.

Name:
Phone:
Address:
City:

Distributor's Name (if any)

(Continued from page 115)

35 to -142 db. Response: 40 to 8,000 cycles.
All-transistor. Rochelle salt diaphragm tube mike.
Direct-reading scale 2 x 3 in. 2 lbs.—
H. H. Scott Inc., 111 Powder Mill Rd., Maynard,
Mass.

SHIELDED FLAT PLUG No. 228 (2-conductor)
and No. 228-1 (3-conductor). 3/8-inch finger, built-
in cable clamp. For guitars, amplifiers, audio,
smaller and communications equipment—
Switchcraft Inc., 5555 N. Elston Ave., Chicago.

REPLACEMENT TRANSISTORS, kit 8JP con-
tains 8 American-made transistors and diodes
that replace more than 95% of semi-conductors
used in Japanese and other foreign radios—
Semintronics Corp., 370 Broadway, New York,
N. Y.

IN-CIRCUIT TRANSISTOR TESTER, model 910.
Checks all transistors in or out of circuit. When
circuit impedance is more than 500 ohms, tran-
sistors are checked with maximum error of
about 5%. Higher impedance lowers error.
Checks for both gain, shorts, and collector cur-
rent. 4.5-ohm crystal supplied. Internal blanking
eliminates retrace on scope—Paco Electronics,
Inc., 70-31 84th St., Glendale 71, N. Y.

TUBE TESTER, Dyna-Quik model 706. Dynamic
mutual-conductance tube tester. Multiple sockets
for rapid testing of most TV and radio tubes.
Simplified switch section to check new tubes in
Dyna-Quik emission circuit. Tests all tubes
including nuvistor, 10- and 12-pin types. Pro-
vision for future new sockets. Checks for shorts,
grid emission, leakage and gain. Makes life test.
Chicago 13, Ill.

SWEEP GENERATOR / MARKER ADDER, model 12.
Sweep covers frequency range from
3-220 mc. Sweep width from 0 to 30 mc, continu-
ously variable. Crystal-controlled marker oscilla-
tor. 4.5-ohm crystal supplied. Internal blanking
eliminates retrace on scope—Paco Electronics
Co., Inc., 70-31 84th St., Glendale 71, N. Y.

VACO®
"Spotlight Specials"
Need some new drivers?
Doesn't everyone?

Well, right now is the time to get them
and genuine VACO drivers at that! These are the
drivers with the world's most comfortable handle with rugged
blades of chrome vanadium steel — guaranteed not to break.
Every driver has a special, low "Spotlight Special" price — for
a limited time only!

VACO PRODUCTS COMPANY
317 East Ontario Street, Chicago 11, Ill.

In Canada: Vaco Lynn Products, Ltd. and Atlas Radio Corp.
TUNERS REPAIRED $8.50
24-Hour Service 6-Month Warranty
Repair Charge Includes
ALL Replacement Parts

SARKES TARZIAN, INC., pioneer in the Tuner Manufacturing business, offers fast, dependable, factory repair service on all makes and models. Cost—$8.50 per unit. $15 for UV combinations. Now offering 6-month warranty against defective workmanship and parts failure due to normal usage. Tuners repaired on approved, open accounts. Replacements available at low cost on tuners beyond practical repair.

Service Manager • Tuner Division Dept. C

ASK ABOUT Group SUBSCRIPTION RATES to RADIO-ELECTRONICS

YOU SAVE MONEY!
RUSH US YOUR
LIST OF HI-FI
COMPONENTS
FOR A SPECIAL
QUOTATION

WRITE FOR FREE
AUDIO DISCOUNT
CATALOG A-15

New low prices on amplifiers, tuners, tape
recorders, speakers, etc.

KEY ELECTRONICS CO.
120 LIBERTY ST.
NEW YORK 6, N.Y.

For customer's prices
on every replacement
part, plus flat rate and
hourly service charge
data, regional and
national. Dave Rice’s
official pricing
digest, listing over
63,000 items. $2.50.

If you want to op-
erate on a profes-
sional level, Dave
Rice’s official
order books give
you triplicate forms
for order, invoice,
and office records...
spaces for tubes,
parts, serial num-
bers, labor and tax
charges, signatures,
etc. 75c per book
$6.50 for dust-proof
box of 10.

Dave Rice's

ELECTRONIC PUBLISHING COMPANY, INC.
133 N. JEFFERSON ST. • CHICAGO 6, ILL.
FORD 67MF

When bench-checking, be sure to observe proper polarity of the 12-volt input or the signal seeker won’t seek and the reverse mechanism will fail to operate, resulting in the motor running with the dial pointer at the extreme left or right end. If the signal seeker fails to operate properly, and everything else fails, try several 12AU7 trigger tubes. This circuit is sometimes critical with apparently good 12AU7’s.

Clean all mechanical parts of the seeker and lubricate with some light oil and graphite.—George P. Oberto

FLOATING SPEAKER TERMINALS

This could happen to you if you’re not careful. A car drives in. You decide it needs a new speaker.

A new universal type is installed. The speaker lead is hooked up and the set turned on. Nothing happens. So you turn the volume control all the way up to make sure it is really dead. Later you find a blown transistor. Why?

The original speaker had one lug soldered to ground. The universal replacement had floating terminals—neither one was grounded (see Fig. 1). When the replacement was connected to the radio, the circuit was still open because the speaker and radio did not have a common ground (Fig. 2). The interlock switch which protects against no load opened when the new speaker was plugged in. This left the output transformer without a load and caused high audio voltage spikes to be built up across it when the volume control was turned up to a high level. This can ruin the output transistor or shorten its life drastically.—Delco Radio Testing Tips

TICKS ON TAPE

An intermittent ticking noise during tape playback may be caused by oxide deposits along a portion of the tape path. The most likely places for such deposits are around the heads, the capstan and the guides or pressure rollers.

Do not wipe the oxide away—it may only smear. Brush loose particles away. Alcohol is good for cleaning. Use it on a toothpick wrapped with cotton. Do not use pipe cleaners or other implements containing iron wire near the magnetic heads. Rub the cleaner away with a fresh piece of cotton on a toothpick or small wooden stick (or borrow a Q tip from your wife).—Lawrence Shaw

RCA CTC-5 COLOR SET

When adjusted for sharpest picture, focus would drift off after a few minutes, accompanied by loss of horizontal phase.

FOR SHARPEST, CLEAREST VOICE TRANSMISSION WITH ANY CITIZENS BAND TRANSCEIVERS, SPECIFY

THE TURNER 350C

Even the best citizens band equipment is no better than the microphone it uses. That’s why more Turner 350C microphones are used as original equipment in CB than any other. That’s why it will pay you to specify the Turner 350C when you buy CB equipment or replace your microphone.

The 350C is furnished with an 11” retracted (five foot extended) coiled cord. Hanger button and standard dash bracket are included for mobile rig mounting. Response: 80 to 7000 cps. Output: –54 db. Net price: $10.08. See Turner microphones at your electronic parts distributor or send coupon for complete information and the name of your nearest Turner distributor.

TURNER 254C FOR BASE STATION

and vertical sync. Also, red and purple streaks appeared across the picture. As I removed the back of the set, I noted the distinctive odor of ozone. The focus control, located in the high-voltage cage, was warm to the touch. When it was removed and examined, the resistance element was found pitted and burned in several places.

I replaced the pot with a new 250,000-ohm 2-watt unit (RCA part 102150-C). When installing the new pot, it is necessary to clip the locating tab. To keep the control from turning when focus is adjusted, the nut holding the pot must be securely tightened. As the terminals of the new control cannot be inserted through the mounting board, I had to solder three 3-inch lengths of buss wire to the control terminals. The bus wire is then inserted through the mounting-board holes.

When installing this new pot, it is necessary to remove the lead from pin 3 of V102 to the center terminal of R129. In its place connect the 56,000-ohm 1-watt resistor supplied with the control. Insulate both resistor leads and position them away from any nearby parts.

ATLAS "Job Rated" P. A. SPEAKERS

There is an Atlas Speaker Ideally Suited for Every Job

All Atlas P. A. speakers are highly efficient, especially in the voice frequency range, providing the extra "punch" needed to overcome high background noise. Most are 100% weatherproof; aluminum and diecast parts are treated with corrosion inhibitors, then finished in "stone hard" baked enamel. The CJ Cobra-jector horns are constructed of nonresonant, indestructible fiberglass, and HU and TP speaker horns of aluminum, finished in gun-metal gray. The HU and TP speakers are particularly designed for efficient talkback operations. The peaked characteristics within the voice frequency range improve the sensitivity of these speakers as pickup devices. All HU and CJ speakers are equipped with versatile "Versalock"... This rugged, reliable mounting bracket, completely adjustable both horizontally and vertically, provides positive locking in any position.

The DU-12 and DC-5, Atlas' renowned DeCor projectors, are styled to harmonize with any decor, modern or traditional.

RCA KC-107-B

The 4-amp E-plus fuse would blow at irregular intervals and damper tube failure was unusually high. Also, the horizontal output transformer was running a little hot. I inserted a 200-ohm 20-watt resistor ahead of the damper and bypassed it to ground with a 0.5-µf 600-volt capacitor.

Result—safe horizontal output transformer current, ample width and no more blown fuses. If you run into this problem, don't have 300,000-ohm 2-watt resistor from terminal 2 of terminal board 16 to pin 9 of V102. Insulate both leads and dress away from any other parts.—Michael L. Tortorillo

WE BUY TECHNOTES

Radio-Electronics wants Industrial Technotes. These should cover equipment (including closed-circuit television) actually used in industrial work, or technote on counters, controls and other apparatus whose uses are largely industrial. Unillustrated Technote pay $5; circuit diagrams raise the price to $9 and acceptable photos are worth $7 each. Send your technote from industry to Technote Editor, Radio-Electronics, 154 W. 14th St., New York 11, N. Y.

Once the new control is installed, you may find best focus is off toward one end or the other of the control setting. To get optimum focus near the center of the focus-control rotation, remove the black wire (knee focus lead) from R122 and reconnect to the junction of R118 and R122. Then remove R122, leaving terminal 2 on the terminal board 16 vacant. Next, take a 12-inch length of high-voltage wire (insulated for 10,000 volts) and connect terminal P of T103 (flyback transformer) to terminal 2 of terminal board 16. Lastly, connect a 330,000-ohm 2-watt resistor from terminal 2 of terminal board 16 to pin 9 of V102. Insulate both leads and dress away from any other parts.—Charles Andrews

ATLAS SOUND CORP.

1449 39th Street
Brooklyn 18, N. Y.

Atlas Radio Corp., Ltd.
Toronto, Ontario

END
Things were relatively quiet this month. But even so, we came across a couple of high-speed switching transistors, another norov tube, and a twinnio for TV vertical deflection circuits.

5BC3

A full-wave vacuum rectifier of the norov type intended for use in the power supplies of television and radio receivers and high-fidelity audio equipment having high current and voltage requirements. Typical operating characteristics of the RCA 5BC3 as a full-wave rectifier with a capacitor input filter are:

- V_{R+} (supply rms) $600 \, 900 \, 1100$
- Filter input capacitor (pf) $40 \, 40 \, 40$
- Total effective plate supply impedance per plate (ohms) $21 \, 67 \, 97$
- V_{in} (dc at input to filter) 290
- 275-ma load 460
- 162-ma load 630
- 150-ma load 335
- 137.5-ma load 520
- 81-ma load 680

2N779-A

A germanium micro-alloy diffused-base transistor specifically designed for very-high-speed switching applications. This p-n-p unit has been reliably used in circuits with speeds of more than 20 mc.

Electrical characteristics of the Philco 2N779-A are:

- I_{ec} (typical μ when $V_{ce} = 5$) 1
- V_{ceo} (minimum) 15
- V_{cc} (minimum) 2
- I_{c} (typical when $V_{ce} = -0.5$) 90

Microminiature transistors

Some tiny new p-n-p germanium alloy transistors are being made by Rauland, a subsidiary of Zenith. Their R-2 and R-3 units measure only 0.160 x 0.130 and 0.130 x 0.100 inch, respectively. Designed for use as audio or if amplifiers, they have a noise factor of 5 db maximum and beta ranges exceeding 300. Although the units are extremely small, they can dissipate up to 30 mw at 25°C.

6EW7

A 9-pin miniature tube containing two dissimilar triodes. One section is a medium-mu unit designed for use in vertical deflection oscillator circuits. The other triode section, a low-mu unit, is intended for use as a vertical deflection amplifier. When used in suitable circuits, it will fully deflect picture tubes having deflection angles up to 110°.

Characteristics of the medium-mu section of the RCA 6EW7 in vertical deflection oscillator use are:

- V_{s} (peak negative pulse) 300
- V_{p} (peak positive pulse) $1,500$
- I_{c} (peak ma) 77
- I_{c} (average ma) 22
- P_{d} (watts) 1.5

Characteristics of the low-mu section in vertical deflection amplifier use are:

- V_{s} (dc) 330
- V_{p} (peak positive pulse) $1,500$
Three new lines of germanium consumer type transistors have been announced by Texas Instruments. They include the GAM-1 (Germanium Alloy Mesa), claimed to have the industry's highest available gain in the broadcast band; the GAM-2, a high-frequency response series for FM use, and the Economy Power series for audio applications.

The GAM-1 units are particularly suited for AM-FM receivers, AM receivers and 27-mc CB transceivers. They supply 32-40 db of current gain at 455 kc.

The GAM-2 units for FM applications have high frequency response to 120 mc. Their noise figure at 100 mc is under 6 db.

The Economy Power transistors handle up to 25 watts and have breakdown voltages of 30, 45 or 90.

2N835

A high-speed n-p-n silicon epitaxial mesa switching transistor. With its typical storage time of 16 nanoseconds, the unit is one of the fastest silicon switching transistors available. It directly replaces the 2N706, -A, -B and -C silicon mesa transistors and provides improved circuit performance. It is intended for use in ultra-high-speed logic circuits of data-processing equipment and computers.

Maximum ratings of the Motorola 2N835 are:

- \(V_E \) (peak negative pulse) = 250
- \(I_E \) (peak ma) = 175
- \(I_E \) (average ma) = 50
- \(P_E \) (watts) = 10

New from TI

Frequency response is 70 to 15000 cps. Multiple impedance 50—150—Hi (40,000 ohms);
output level is —54 db at Hi impedance (0 db = 1 volt/dyne CM²). Mylar diaphragm and rugged construction make the D-55 ideal for outdoor-indoor requirements. Front to back ratio is 15 to 20 db.

Available in matched pairs, phased, for stereo recording at no extra cost.

American Microphone catalog.

WRITE today for free American Microphone catalog.

Division of G.G. Textor Electronics, Inc.
A "brass-tacks" guide to
time-saving
TEST PROCEDURES!

The manual that helps you CUT
TEST TIME IN HALF!

Here are some of the subjects it covers: Current
Checks; making measurements of Power, Capacitance,
Inductance, Resistivity, AF, RF Phase, Distortion &
Modulation; Checking Sensitivity, RF Gain, Fidelity,
AVC Voltage, Operating Voltages, etc. Includes handy
VISUAL ALIGNMENT TECHNIQUES. Even covers
transmitter and industrial electronic test procedures.
150 how-to-do-it pictures and dozens of step-by-step
troubleshooting procedure charts make things doubly
easy. Price only $8.50. Money-back guarantee.

PRACTICE 10 DAYS FREE

Write now for catalog of
microphones preferred by top radio, TV.
newsmen and sound engineers!

Electro-Voice, Inc.
Commercial Products Div., Dept. 101E
Buchanan, Michigan

QUALITY AUDIO OUTPUT
Patent No. 2,947,947
Sergio Bernstein-Bervery, Yonkers, N. Y. (Assigned to General Precision, Inc.)

This audio output stage provides quality
reproduction with an inexpensive output
transformer. Its output impedance is low. It
eliminates transients generated in conventional
circuits when the load shifts from one half of the
primary to the other half. In addition, effects of
stray capacitance are minimized.

T2 has two primaries which are coupled
through C1 and C2 (Fig 1). Thus they carry
equal current at all times and may be considered
in parallel. The signal is identical in both windings,
so no transients are generated. T2 need not be
specially designed for low capacitance and leak-
age resistance and tight coupling.

Fig 2 shows how output, distortion and
impedance vary with screen-to-anode turns ratio.
To take advantage of this, one primary of T2 is
center-tapped for the screen.

VOLTAGE REGULATOR
Patent No. 2,956,172
Robt. A. Torkelson, Milwaukee, Wis. (Assigned to
General Electric Co.)

In this circuit (see diagram) the output
voltage ratio E1:E2 tends to remain equal to
R1:R2 in spite of variations in Z1 or Z2. For
convenience we will assume a 1:1 ratio, or
R1 = R2. R3 is relatively small. R4 balances
the network to make E1 = E2 when Z1 = Z2.

At balance, both transistors conduct slightly
and equally, since Vi's base is more negative
than the emitter while V2's base is more posi-
tive. R4 provides an approximate center tapping
of the supply. Actually, it compensates for
differences in transistor leakage currents.
Suppose Z1.22 rises for any reason, then both emitters go more positive. Then V1's resistance goes down, and V2's resistance rises. Since V1 is across Z1, and V2 is across Z2, the change in Z1.22 is compensated by the opposite change in the resistance ratio V1:V2. Therefore the voltage ratio E1:E2 tends to remain constant.

TEMPERATURE-COMPENSATED AMPLIFIER
Patent No. 2,963,656

In Fig. 1, V1 is a silicon n-p-n transistor with positive temperature drift of about 2.4 mV/°C. V2, a germanium p-n-p transistor, drifts about -1.8 mV/°C. This circuit combines them to minimize drift over a wide range of temperatures (Fig. 2). This input diode prevents the input signal from going more than a few tenths of a volt negative.

The passband is from dc to 2 mc. Input impedance is 400,000 ohms, output is only 30 ohms. Source impedance Z should be about 20,000 ohms.

GAS-PRESSURE GAUGE
Patent No. 2,963,601

This gauge is especially suited at pressures between 400 to 10 mm of mercury, a range above the reach of conventional gauges. It contains an outer cylinder, A1; a coiled filament, and an inner cylinder, A2. Diameters may be, respectively, 44%, 54% in.

The tube is filled with the gas to be measured, as usual. Electrons emitted from the heated filament collide with gas molecules and break up the gas atoms into electrons and ions. The greater the gas pressure, the more collisions occur. The liberated ions are drawn toward the positive element A2 and are measured by M. Electrons are collected by the positive element A1.

Tube dimensions are such that linearity is maintained even at the high pressures mentioned above. The short electron path makes it unlikely that any electron will cause more than one collision before reaching A1. The short ion path prevents trapping on the tube structure. Also, A2 runs so hot (being close to the filament) that its atoms cannot trap ions.

With Centralab Twist-Tab Radiohms

You'll get a big bang out of Centralab tab-mounted Radiohm Controls—because they're easy to install and easy to adjust. These Twist-Tabs are tailored to the minimum shaft length needed for TV hidden controls. When a longer shaft is needed, it's simple to use the 2" polyethylene extension packed with each unit. Nothing to saw—a snip of the scissors gives the needed length, and the adjustment slot is still there, and still easy to get at.

Centralab Twist-Tabs are available in 25 values from 200 ohms to 7.5 megohms...rated at 1/2 watt, 1/16" diameter, 3/16" deep. Shoot over to your Centralab distributor for full details.
WAVEFORM GENERATOR

Pulse and sawtooth generators are widely used to develop sweep voltages and timing markers and for many other uses. The circuit shows a simple one-tube waveform generator that will find many applications on the service bench and in the lab. Seventy-volt peak-to-peak sawtooth voltages with sharp spikes are available at the plate-circuit output and 15-volt positive pulses at the cathode. Repetition rate is variable from 140 to 900 cycles.—Kenneth E. Walters

IMPROVISED IMPULSE RELAY

Impulse or ratchet relays are not readily available from many parts distributors, and they may not be made in the range of operating voltages you want to use. An item on page 142 of the November, 1957, issue of Radio-Electronics shows how a spdt impulse relay can be improvised from three dpdt relays.

Here is an improved circuit that I've

used for several years. It is simpler than the one described and uses only two dpdt relays. The circuit is shown with both relays de-energized. The relays have identical coils and each is rated at half the supply voltage.

When the button is pressed, RY1 is energized through contacts RY2-1 and RY2-2. and the circuit to the controlled device is made or broken through RY1-2. As soon as the button is released, RY2 energizes through RY1-1 and RY1's coil. RY1 remains energized through contact RY1-1 and the coil of RY2.

When the button is pressed the second time, RY1 opens (it is shorted out by RY2-1, the pushbutton and RY2-2). Releasing the button opens RY2, leaving both relays de-energized and the controlled circuit ready for another cycle.—Robert A. Belshe

TRIGGERED SWEET IMPROVEMENT

The triggered sweep in the Precise 300 and 308 oscilloscopes is a simplified circuit that does not give as clean operation as more expensive models. When using the triggered sweep, the length of the horizontal trace tends to vary with the time interval between the arrival of the signal being viewed and the signal following it. Thus, when viewing random pulses, the time base continually expands and contracts. When sweep amplitude is high, it over-drives the horizontal amplifier and develops a nonlinear trace. Here is a simple circuit modification you can add to your scope to improve its performance.

The original circuit, shown by solid lines, is a conventional cathode-coupled multivibrator. It is repetitive or free-running when the arm of the TRIGGERED SWEET control is at the ground end. The sawtooth sweep voltage is developed as C1-b charges through P5-a and R28 while V5 is cut off. At the same time, C1-a is discharging through R29 and P5-b, making V5's grid more positive and gradually bringing it out of cutoff. When V5 conducts, it discharges C1-b and the cycle repeats. The time constants of the circuits involving C1-a and C1-b are adjusted so that the charge on C1-b does not rise very much above 20 volts between sweeps.

For triggered operation, the arm of P6 is moved toward B-plus, placing a positive bias on the cathodes of V5 and V6. V5's grid returns to ground so it remains cut off and stops free-running operation. C1-b now charges until it reaches full B-plus voltage or until the next incoming signal drives V5 to conduction and stops the sweep. Thus, instead of discharging periodically when its voltage reaches 20, as in the free-running state, C1-b's charge may be close to B-plus before the next signal comes along to discharge it.

This trouble can be eliminated by adding the 6AL5 clamping diode as
shown in dashed lines. This circuit prevents C1-b's charge from approaching B-plus and holds it at a level slightly above the peak it would reach in repetitive operation. This level is set by the back bias applied to the diode's cathode from the 50,000-ohm potentiometer. The charge on C1-b is clamped at the level set by the potentiometer. Thus each sweep is exactly the same length regardless of the rate of occurrence, and all sweeps are linear.

To adjust the circuit, turn the 50,000-ohm pot to the B-plus end and then back down as far as possible without interfering with the normal repetitive sweep operation.

The 6AL5 and pot can be mounted in holes drilled in the long connecting chassis or on a small mounting plate fastened to the rear of the front subchassis by screws holding terminal strip H82A.

Many general-purpose scopes use cathode-coupled multivibrators in a conventional repetitive sweep circuit. You can adapt these for triggered sweep by installing the trigger control consisting of R31 and P6 and adding the 6AL5 clamp.—Charles Erwin Cohn

Q-MULTIPLIER AND BFO

The selectivity of a superhet if circuit can be increased by shunting the if signal path with a tuned circuit that includes a controlled amount of positive feedback to increase its Q. This arrangement is called a Q-multiplier and is gaining popularity in amateur and communications receivers. The diagram shows the combined Q-multiplier and bfo that are used in the new Lafayette Radio Electronics HE-30 communications receiver.

The Q-multiplier and bfo is a Colpitts circuit using a 6AV6. With the SELECTIVITY control in the CW-SSB position, tube gain is high and the circuit oscillates and provides the best signal needed for CW reception or SSB carrier reinsertion. C31 adjusts the frequency for the desired CW pitch or the clearest SSB signal. Stray coupling is used between the oscillator and the if circuit.

When the SELECTIVITY control is off the CW-SSB position, S4 closes and connects the tuned circuit to the mixer plate through C9. Positive feedback—though not sufficient to produce oscilla-

sm thest thesponse

the all-new

Sonodyne II

adjustable frequency response microphone

Life-like, natural reproduction achieved through a smooth response from 60 to 10,000 cps...without coloration. Revolutionary Adjustable Frequency Response feature permits you to roll off highs or lows, separately or together—provides additional flexibility in a variety of microphone applications. Omni-directional...high output dynamic element. Equipped with reliable on-off switch and “positive action” 150° swivel that permits you to "aim" the microphone at the source of sound. Model 540S priced at only $29.97 audio net.

Write for literature:
Shure Brothers, Inc.
222 Hartrey Ave.
Evanston, Illinois
Dept. 12-J.

129

OCTOBER, 1961

www.americanradiohistory.com
By far the BEST VALUE obtainable in either wired or kit form... compare and you'll agree "THE BEST BUY IS EMC."

EMC Model 211 Tube Tester - The smallest, lowest priced, domestic made tube tester on the market. It is completely flexible and obsolescent proof. It checks each section of multi-purpose tubes separately, checks all octal, octal, 9 pin and miniature tubes for shorts, leakages, opens, interminants as well as for quality. Quality is indicated directly on a two color meter dial using the standard emission test. Comes complete with instructions and tube charts in ring bound manual.

Size 8½" x 5¼" x 2¼" deep. Shipping weight: 3 lbs.
Wired Kit $22.90 CRT Picture Tube Adapter $4.50

EMC Model 109 - Voltomer - Features 20,000 OHMS volts DC sensitivity and 10,000 OHMS per vol AC sensitivity. Uses a 4½, 40 microampere meter, with 1 AC to 6 ranges, and 3 resistance ranges to 20 megohms, 500 & 5000 OHMS. Measures to 3000 volts and 3 DC current ranges. Also 5 OHMS range.
Model 169 - With carrying strap. Weight 2 lbs. 5 ozs.
Model 169K - Kit Form 18.25
Model RV - 900 Volt Probe for Model 109 3.85

STOP GUN-TIP TARNISH
After prolonged use, the copper tip of a soldering gun becomes tarnished or corroded where the nuts or screws make electrical contact with the tip. The corrosion causes a poor electrical contact, lowered tip temperature and slow heating. Prevent this by removing the tip and tinning it with a soldering iron or gas flame.—Clyde A. Compton

HEATLESS TRANSISTOR CONNECTIONS
When connecting wires to lead type transistors, there's really no need to solder the connections for good electrical conductivity. Just dab on some printed-circuit silver or copper paint. To insure good mechanical strength, however, twist the wires tightly together before applying the paint.—Chester A. Clifford

LESS NOISE, MORE POISE
Nearly all record changers and turntables have a little noise, but this can be killed by twisting the knob that moves the click or jolt caused by turning them on or off. With high-amplification, however, this is not always fully effective, so some system that gives more complete muting is desirable.

When the added muting is controlled by a pushbutton, it is so useful that it soon becomes indispensable. It not only gives perfectly quiet stops and starts, but, even more important, it permits the operator to silence the pickup at any time. This aids the hand in setting down the stylus or lifting it up in normal playing but especially in the tricky operation of playing a selected part of a record.

Without muting, when the pickup is set down in the run-in groove, you often get a loud plop, either because of a rough spot or imperfect placement. Reflexes make the hand jump, causing
more noise and possibly damaging the grooves.

When there is separate muting, however, the operator presses a button with his left hand, sets the pickup down with his right and all is quiet even though the volume control is set at a normal listening level.

Similarly, lifting the pickup out of the groove is a maneuver that requires some care. All too often it makes a noise that shakes the hand that lifted the pickup that made the noise. This sequence can be avoided by placing one finger on one little button bearing down on one little switch.

The circuit is simple and can be added by anybody. You need two lengths of insulated wire and a snap-action momentary-contact switch.

Attach the two leads to the speaker terminals on the amplifier. Connect the switch across the other end of the new pair, mount it at the most convenient location and you'll wonder how you ever got along without it.

The degree of silence depends on size of the wire and length of the line. No. 18 is satisfactory for a run of 6 feet or more. A Microswitch is recommended for positive contact. The switch can be concealed under the turntable mounting base with only a small (home-made) plunger showing.—Nicholas B. Cook

PARTS RACK

A simple rack that makes for orderly arrangement and see-able inventory of various components is this parts rack which has shelves sloping downward toward the rear. Containers are quart cans with their tops cut out and their edges smoothed. The unit provides 110 compartments in a minimum space.—Harry S. Miller

BATTERY-HOLDER REPAIR

Battery holders used in transistor construction projects have solder-lug terminals that are usually riveted to the battery connector. In practically all cases these riveted connections remain good mechanically, but they often develop a high resistance, causing a complete electrical failure. This can be con-

DIRECT ROAD TO EARNING A SUCCESSFUL LIVING IN ELECTRONICS—HERE IT IS!

RIDER'S BASIC RADIO

by M. Tepper

6-VOLUME 'PICTURED-TEXT' COURSE MAKES IT EASY FOR YOU TO MASTER RADIO COMMUNICATIONS

A BACKGROUND IN RADIO COMMUNICATIONS IS A SPRINGBOARD INTO MANY VITAL AREAS OF ELECTRONICS

Radio communications and the areas that comprise this subject—AC and DC electricity, vacuum tubes, electronic transistors, and transmitters—prepare the foundation for many important branches of electronics and radio. This 6-volume set provides a complete coverage of all fundamentals for the amateur radio, mobile and marine communications, television, radar, television, instrumentation, microwave, facsimile, telegraphy, telex, remote control, paging, etc. To know the fundamentals of radio communications is to be prepared for all of these important fields. BASIC RADIO present these fundamentals more clearly, more securely than any test, or any group of texts ever published.

SPECIAL ILLUSTRATIONS MAKE SUBJECT EASILY UNDERSTANDABLE

Not only is the content of the course complete, but it is presented in such a manner that anyone regardless of previous education can grasp it quickly and know the subject thoroughly. The reason—carefully selected language, specially prepared illustrations—especially thought out presentation. These illustrations are not the typical ones found in most books on radio. They are specially conceived and selected for their ability to convey an idea, make complex thoughts simple to understand. You can't miss it! There is at least one illustration to every page, one to support every idea—more than 600 illustrations in all in this six-volume course.

COVERS EVERYTHING YOU'LL NEED TO KNOW ABOUT RADIO COMMUNICATIONS TO GET AHEAD

This 6-volume pictured-text course covers the fundamentals and intricacy of radio communications. While it stresses fundamentals, it does not neglect the practical—it puts these fundamental principles to work. You will be able to read schematics—recognize circuits used in radio equipment. You will understand electricity and magnetism; circuit components, vacuum tubes, power supplies; oscillators and amplifiers—the various circuits are put to work in simple and elaborate radio receivers, AM and FM radios, and communication receivers including citizens band, mobile communication equipment, etc.

You are made thoroughly familiar with semiconductors and transistors and their applications: what they are—how they work and how they are used in radio. Transistor circuits and receivers with parts values shown.

The last volume provides a thorough coverage of transmitters, antennas and transmission lines. You'll understand modulation and transmitter-type oscillators, microphones, coupling methods and power supplies and transmitter schematics. Volume I, DC electricity; Volume II, AC electricity; Volume III, vacuum tubes and vacuum tube circuitry; Volume IV, radio and communication receivers; Volume V, semiconductors, transistors and transistor receivers; Volume VI, transmitters, transmission lines and antennas.

A LOW COST ELECTRONIC EDUCATION

6-VOLUME COURSE ONLY $13.85

This 6-volume course opens the wonderful world of electronics to you. The complete course costs only $13.85 (soft covers). Or, you can select any volume covering the area of radio communications in which you wish to work or gain knowledge. Buy this course today at parts distributors, bookstores or order direct using convenient coupon:

FREE: Write for free brochure showing samples of pages demonstrating how special illustrations speed your learning.

10-DAY MONEY-BACK GUARANTEE

JOHN F. RIDER, PUBLISHER INC.

14 W. 14th St., New York 1, New York

I want to save $1.35 on cost of individual volumes. Enclosed is $....... Please send:

Set of ... Complete 6-vol. course in soft covers, $12.50.

Set of ... Complete 6-vol. course in single soft covers, $12.50.

Send me individual volumes:

Vol. I, Electricity, $2.50...

Vol. IV, Radio and Communication Receivers, $2.50...

Vol. V, Semiconductors, Transistors and Transistor Receivers, $2.50...

Vol. VI, Transmitters, Transmission Lines and Antennas, $2.50...

FREE CATALOG—FREE BROCHURE

Write for additional information or return to us within 10 days for full refund.

NAME

ADDRESS

CITY...STATE...

OCTOBER, 1961

131

SUPER MAGNET SUPER SAVING!

Buy this Little Giant Magnet, most powerful magnetic device you can purchase for only 25c. The Super-Absorbed Magnet is scientifically developed and carefully made with the strongest holding power ever produced for this price ever! Always BARIABLY Limited quality. Other grades and sizes available. Special Bargain (ship, Chaps. 10c).

NAME

Address

CITY...ZONE...STATE...

250 POWER TELESCOPE LENS KIT

Make your own high powered 6 ft.

binoculars! Kit contains 27 dia.

75 focal length, ground and poli-

ted objective lens and erecting

eye pieces. Magnifies 50x to 200x. Full instructions.

ITEM no. 123

(Ship. Chaps. 10c)

$2.95

AMAZING BLACK LIGHT

250-watt ultra-violet light source. Spectrum articles glow in the dark. Fits any lamp socket. For experimenting, educational and scientific effects.

Ship. wt. 2 lbs.

ITEM NO. 87

(P. & P. & Help. Chaps. 35c)

$5.35

WATTHOUR METER

Leading makes—recently introduced. Ideal for trailer parks. 100 to 1500 amp. 2 wires A.C., 2amps. Heavy metal case, easy to install. Ship. wt. 14 lbs.

ITEM no. 33

(Ship. wt. 5 lbs.)

$4.50

(P. & P. & Help. Chaps. 12c.)

www.americanradiohistory.com
MULTIMETER SAFEGUARD

Many multimeters have selector switch positions which leave the internal batteries continually in circuit—for example, the low-ohms range of some meters. If the switch is left in that position when the meter is put aside, the batteries will go dead rapidly. To guard against this, wire a push-button in series with the appropriate terminal of the selector switch. Hold down the button to make a measurement. When you release it, the circuit opens.—Charles Erwin Cohn

DEPTH GAUGE STOPS DRILL

Try this any time it’s necessary to limit the travel of a drill through a chassis or other objects or materials. Put the drill all the way in the chuck, then drill a hole lengthwise through a piece of dowel or soft pine stock.

Cut the dowel so just enough drill end protrudes to drill through the chassis or material as in Fig. 1.

Another way of doing it is to cut a ¼- or 1-inch length piece of dowel and cut a small setscrew hole in the side as in Fig. 2. Drill the setscrew hole small, so that the setscrew taps its own threads. If you have one of these depth gauges for each size of drill, you’ll never punch a hole in a capacitor or in any other component.—Frank W. Dresser

"Fastest antenna man in the West!"
H. H. Scott, Inc., Maynard, Mass., has increased its manufacturing space by 50% through leasing a portion of Maynard Mills, less than a mile from its present facilities. The present plant will continue to manufacture wired components and will remain as the executive office.

The Electronic Industry Show Corp., Chicago, announced that a recent study conducted by an independent consultant recommended the continuation of one 3-day electronic industry show each year in Chicago in May. It further recommended that the show be oriented toward distributors rather than their customers.

Joseph J. Kaleba joined Shure Brothers, Inc., Evanston, Ill., as manager of the product design and specifications section. He had been engineering supervisor at Controls Co. of America.

Jerry Borrevik joined the sales staff of Electro-Voice, Inc., Buchanan, Mich. He was an electrical engineering major at MIT.

Aerovox Corp., New Bedford, Mass., introduced a new slogan, Technical Leadership—Manufacturing Excellence, which will be used on all trade advertising and sales promotion material. A modernized trademark was also introduced.

Edward S. Miller, Gen. Mgr. of Sherwood cues Frank Kwak, WKFM Pres., to start the pioneer stereocast.

PRESS PARTY
Gathered at the Gaslight Club in Chicago were members of the electronics industry and the press. The Stereo Multiplex broadcast was received via the new Sherwood S-8000 FM/MX Stereo Receiver—the first such unit on the market.

For details on the S-8000 or versatile Stereo MX adapters write Sherwood Electronic Laboratories, Inc., 4300 N. California Avenue, Chicago 18, Illinois. Dept. RE10
EVERYBODY PROFITS from the GERNSBACK FALL BOOK FESTIVAL

For the Service Technician—

NEW SHORTCUTS to TV SERVICING
By Leonard C. Lane
Gernsback Library Book No. 95, 2 volumes—160 pages each. Paper bound edition $5.90. ($3.20 each if bought separately.) Deluxe hardcover edition $9.90.

FOR HI-FI-FANS—
For the first time in the U. S. A.—this master-piece.
A to Z in AUDIO—
By G. A. Briggs

NEW—EXCITING FOR INDUSTRIAL TECHNICIANS • SERVICE TECHNICIANS • STUDENTS • R/C FANS • EXPERIMENTERS...JUST OFF THE PRESS...TWO NEW G/L BOOKS READY FOR FALL SALE...

• INDUSTRIAL ELECTRONICS MADE EASY By Tom Jaski
(author of How to Get The Most Out of Your VOM)

In—or thinking about getting into industrial electronics? This book is for you! From your point of view, the author tells you what and where industrial electronics is, how it compares with communications servicing. There's an analysis of induction, dielectric, microwave and supersonic generators—an explanation of techniques for transistors, control systems and servos—a description of counters, recorders and other readout and display devices used in industrial electronics. Finally, there's a discussion of the techniques and instruments used in industrial servicing. When you finish this one you'll know which way industrial electronics is heading and how you can go along.

• RADIO-CONTROL HANDBOOK By Howard G. McEntee
Gernsback Library Book No. 93, 304 pages—$4.95 (revised edition).

The original sold over eight printings! Here it is completely updated with all the new developments in R/C included. A completely revised book—it assumes you know theory and concentrates on ideas, circuits, and construction. Offers complete data on receivers, transmitters, servos, pulser and other components. (Prices slightly higher in Canada)

AT YOUR DISTRIBUTOR—NOW—OR ORDER DIRECT

GERNBSACK LIBRARY, INC., 154 West 14th St. New York 11, N. Y. Dept. 101

Please send me the books listed below, postpaid. My remittance of $______ is enclosed.

please list book numbers
paper-cover edition □ hardcover edition □ please check one

NAME________
STREET________
CITY________ ZONE STATE________

GERNBSACK LIBRARY, INC. 154 West 14th Street, New York 11, N. Y. in Canada: Len Finkler, 2 Yonge Dr., Toronto 19, Ont. Export: Feffer & Simons, 31 Union Square, New York 3, N. Y.
NEW AND SURPLUS electronic equipment for aircraft, industrial, amateur, experimental and other electronic uses fill the 38 pages of Catalog No. 105. Antennas, radios, books, signal generators and other electronic gear are included.—Bill Slep Co., P.O. Box 178, Ellementon, Calif.

SILICON TRANSISTORS, Designers Handbook. A comparative study of the Raytheon 2N338 and similar high-frequency silicon transistors produced by four major manufacturers is presented in this 28-page illustrated booklet. Each manufacturer's transistor is analyzed as to electrical and mechanical characteristics, parameter distribution, design requirements, etc. Use your letterhead to request copy.—Raytheon Co., Warren Schoonmaker, Semiconductor Div., 150 California St., Newton, Mass.

SILICON RECTIFIER BULLETINS describe a series of miniature Trim-Line rectifiers. Data sheets give mechanical and electrical specifications.—Slater Electric Co., 241 Sunrise Highway, Rockville Centre, N. Y.

ELECTRONIC TEACHING AID for schools, experimenters, plants and laboratories are detailed in an 8-page brochure, The DeVry Electronics Trainer System.—Parram Electronics Corp., 3956 Belmont Ave., Chicago 18, Ill.

SEMICONDUCTORS, Short Form Catalog/Fall 1961. Shows complete line of diodes and transistors. Includes silicon and germanium transistors and diodes, and silicon capacitors.—Hughes Aircraft Co., Semiconductor Div., Newport Beach, Calif.

INDUSTRIAL TUBES of all types are listed in Electronic Tubes for Industry. Transmitting, special-purpose, industrial receiving tubes and semiconductors are among the hundreds of items in the 14-page catalog.—United-National Labs Inc., 90 President St., Passaic, N. J.

ELECTRONIC DEVICES, 288 illustrated pages of them are in this 1961 Indus-

NEW LITERATURE

HEALD'S ENGINEERING COLLEGE
Established 1863
Van Ness at Post, RE
San Francisco, Calif.

HEALD'S

ELECTRONICS

Engineering-Technicians
Bachelor of Science Degree, 30 Months
Save Two Years' Time
- Radio-Television plus Color Technician (12 Months)
- Electronics Engineering Technology (15 Months)
- Electronics Engineering (B.S. Degree)
- Electrical Engineering (B.S. Degree)
- Mechanical Engineering (B.S. Degree)
- Civil Engineering (B.S. Degree)
- Architecture (B.S. Degree)

Approved for Veterans
DAY AND EVENING CLASSES
Write for Catalog and Registration Application. New Term Starting Soon.

ELECTRONICS

NEW YORK UNIVERSITY

Now, for less than the cost of a good record changer, you can add a versatile new dimension to your hi fi system.

- The Sony 262-D tape deck has a 4 track stereo erase head and 4 track stereo record/playback head. Heads are wired to six output and input facilities for connection of external electronics to play and record four track stereo. This is the same quality mechanism used in the most expensive Sony Superscope tape recorders.

$89.50

NOW AVAILABLE!
Complete your 262-D stereo system: the long-awaited Sony SR-A-2 stereo recording amplifier provides instant connection to the Sony 262-D stereo tape deck for complete 4-track stereophonic and monophonic recording. Two V.U. meters, track selector switch, record safety interlock, microphonic and radio inputs. No modifications necessary. $89.50.

SUPERSCOPE INC.
Dept. T, Sun Valley, Calif.

SONY SUPERSCOPE The tapeway to Stereo
BECOME A RADIO TECHNICIAN FOR ONLY $26.95

BUILD 20 RADIO CIRCUITS AT HOME with the New PROGRESSIVE RADIO "EDU-KIT" @ ALL Guaranteed to WORK

A Stand-Up Home Radio Course

- 12 Transmitters
- 3 Transmitters
- 12 Receivers
- 6 Receivers
- 6 Wrenches
- 6 Wrenches

NO KNOWLEDGE OF RADIO NECESSARY

EXCELLENT BACKGROUND

THE WHAT THE "EDU-KIT" OFFERS YOU

A complete radio course, covering radio, television, stereo, hi-fi and transistor radios, for quick entry into the exciting field of electronics. You will receive 20 radio circuits, fully instructed and tested, and in the field of electron-ics, you will have the same educational advantages as the most advanced technician. You begin by building a simple radio, and move up to the most advanced one. You will learn more advanced theory and technique than you get in college, and you will be ready to work as a professional technician when you complete the course.

THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructions necessary to build your radios, complete with manuals, schematics and full instructions. The "EDU-KIT" course is designed by the most experienced radio technicians, and is complete with all necessary parts, tools, and instructions. You will receive a useful set of parts, tools, and instructions, and will soon be able to build your own radio, and become a professional technician. In addition, you will receive a useful set of parts, tools, and instructions, and will soon be able to build your own radio, and become a professional technician.

FREE EXTRA

ORDER RIGHT NOW—FREE BONUS RESISTOR AND CONDENSER KITS WORTH $7.00

1 "EDU-KIT" Postpaid. Enclose full payment of $26.95. If you are not completely satisfied with the "EDU-KIT" course, return it within 30 days in new condition for a full refund.

2 "EDU-KIT" C.O.D., I will pay $26.95 plus postage. No additional fees.

3 ADDITIONAL INFORMATION AVAILABLE FREE on request.

ORDER FROM AS—FREE SERVICE: REFUND AND CONDENSER KITS WORTH $7.00

39x36 Tester, 730 Commonwealth Ave., Boston 17, Mass.

TAPE RECORDER purchasing and servicing are subjects of this 12-page illustrated booklet. It describes briefly the tape recorder mechanism and how it works, and clarifies the guarantees and service offered by the manufacturer. Prepared by the National Better Business Bureau in cooperation with the Magnetic Recording Industry Association. Available from your local Better Business Bureau or hi-fi dealer.

HI-FI COMPONENTS are described and illustrated in Catalog AL 1962-1. All components in this manufacturer's line are shown. This includes tuners, amplifiers, complete receivers, speakers, microphones and custom installations. —Altec Lansing Corp., Dept. LD, 1515 S. Manchester Ave., Anaheim, Calif.

ELECTRONIC KITS of all kinds are offered in this 1961 catalog. Printed in three colors, the 28-page brochure gives illustrated descriptions of stereo and mono hi-fi gear, test instruments, ham gear, CB and transistor radios. More than 80 items are covered.—EICO, Electronic Instrument Co., Inc., 33-00 Northern Blvd., Long Island City 1, N. Y.

TEST EQUIPMENT and accessories made by this manufacturer are described in detail in Electronic Instruments. The little pocket-sized booklet includes meters, generators, scopes and tube testers. 16 pieces of equipment and 12 accessories in all.—RCA, Electr- on Tube Div., Harrison, N. J.

THE TAPE RECORDER in Business and Industry shows how tape recorders can be used in business. All phases are covered including management communications, personnel, sales, advertising, public relations.—Minnesota Mining & Manufacturing Co., 900 Bush Ave., St. Paul, Minn.

ELECTRONIC WIRE, CABLE AND TUBING, No. 63, completely indexed alphabetically, numerically and by Government and industrial specifications in new 52-page catalog. Eight new wire and tubing lines introduced in addition to already-existing 6,000 stock products. "E-Z" index chart for prompt location of any catalog item by number of conductors, wire size and whether it is shielded or not.—Alpha Wire Corp., 200 Varick St., New York 14, N. Y.

REPLACEMENT GUIDE to instrument rectifiers helps the technician keep his test equipment working. It tells which of this manufacturer's instrument rectifiers can be used in a particular piece of test equipment. Listings are arranged alphabetically, by equipment makers' names. —Conant Laboratories, 6500 O St., Lincoln, Neb.

MULTI-STATION INTERCOM, Ektacom series G. 4-page folder hits important outstanding features of this new intercom. Last page catalogs the units available and the possible options.—Fisher

TELL YOUR FRIENDS ABOUT RADIO-ELECTRONICS

CASH FOR YOU—REPAIR BURIED

Electric APPLIANCES Learn at Home * $3 to $5 an Hour

SPACE TIME, FULL TIME * BE YOUR OWN BOSS

FREE BOOK tells about profitable business you can run—right at home. Repair Electric Appliances, using simple tools. Pays $3 to $15 per hour. For less than 20¢ a day you can start building a successful business. Send a stamped, self-addressed envelope for your free 16-page booklet, "How to Repair Electric Appliances." Another 16-page booklet, "How to Start Your Own Business," will prepare you for top earnings. Earl Reid of Thompson, Ohio, says: "The Book is a real help to me in my business . . ."

FREE COURSE in Appliance Repair—an excellent, 90-page Textbook, with hundreds of drawings and photographs.矛盾 to defects in home electrical systems. Learn to repair appliances in your home. Send today for your free Illustrated Information Packet, which tells you how you can become a home appliance repairman. Donald Driscoll, 550 N. 15th St., Des Moines, Iowa.

SAVE 30% on 4-Track STEREO MUSIC ON TAPE!

NORELCO SPEAKER Famous A008100N, 200 cone 8" (17-19,000 cycles) stereo/tetramer model. Factory-built at $200 retail. We've got it for only $91.00 going at $4.95 plus postage. (See photo). NORELCO speaker alone at bargain prices — SEND NO FREE SPECIFICATION SHEET

SAXONTE PEAK SALE DIV. OF COMMISSIONER OF INSURANCE 1776 Columbia Rd., NW, Washington, D.C.

BARGAIN PRICE! SEND FOR OUR FREE Tape Recorder/Blank/Prerecorded Tape Catalog

NORISCH Elderly A0080100N, 200 cone 3" (25-19,000 cycles) stereo/tetramer model. Factory-built at $125 retail. We've got it for only $65.00 going at $4.95 plus postage. (See photo). NORC NORELCO speaker alone at bargain prices — SEND NO FREE SPECIFICATION SHEET

NATIONAL RADIO INSTITUTE, Appliance Div. Dept. F1, 1 Washington 16, D. C.

FREE EXPERIMENTAL REPAIR Course. I'm interested in: _ SPAKE TIME EXPERIMENT a. My Own Business _ BETTER JOB.

Name

Address

City Zone State

A member of the American Home Study Council

www.americanradiohistory.com
Now! DESIGN TRANSISTOR CIRCUITS FAST!

Here's the know-how you need to lick semiconductor circuit design problems!

Solve transistor problems fast, even if you've only worked with vacuum tubes before! TRANSISTOR CIRCUIT ANALYSIS AND DESIGN is the clear, concise, authoritative book by Franklyn C. Fitchen, industrial consultant and originator of transistor technique. For General Electric, U.S. Army Ordinance Corps, and General Dynamics Corp.

This new book is complete with schematic diagrams and performance charts that combine the theory of transistor applications with the workday knowledge to solve practical problems.

Technical Secrets Revealed

First, this expert gives you a solid knowledge of bias current directions, characteristics curves, leakage currents, and simplification factors—plus a valuable briefing on Semiconductor Physics.

Then he gives you scores of practical design and protection problems...helpfully discusses the "industrial approach" to electronics...and shows you how to design, quickly, new circuits and other problems from simple radios to complicated computers—with each step made clear through easy-to-understand charts and diagrams.

Try It FREE For 10 Days

Whether you're a repairman, technician, student or practicing engineer, you'll find TRANSISTOR CIRCUIT ANALYSIS AND DESIGN invaluable. But don't take our word for it. Prove it to yourself by reading and using this book FREE for 10 days—without cost or obligation. Mail the coupon below, now, to:

D. Van Nostrand Company, Inc.
Dept. 1810A
Princeton, New Jersey

Established 1848
This book tells what a transistor is and what it can do. It is a picture-text course. Each page is devoted to one basic idea; and includes large illustrations. A handy book for beginners and nontechnical readers.—IQ

TELEVISION TAPE RECORDING, by George B. Goodall. Robins Industries Corp., Flushing 54, N. Y. 6 x 9 in. 47 pp. $1.75. TV tape recording is comparatively new, but it need not remain a mystery. The mechanism and characteristics of the Ampex Videotape machine are explained clearly and without math. Photos illustrate important parts of the machine. How to splice, edit and duplicate are also covered.

ENGINEERING SAFETY, by H. W. Swann. Philosophical Library, 15 E. 40 St., New York 16, N. Y. 5 1/4 x 8 1/2 in. 292 pp. $15. This author calls on his wide experience as senior inspector to describe approved methods for avoiding hazards of shock, fire and explosion. He quotes from British electrical regulations and tells how to comply with them.

Among the topics are overload protection, grounding, inflammable surroundings, static charges, lightning. The book covers safety in the factory, hospital, power plant and in the home.

101 KEY TROUBLESHOOTING WAVEFORMS FOR HORIZONTAL AFC-OSCILLATOR CIRCUITS, by Robert G. Middle-

ton. Howard W. Sams & Co., Inc., 1720 E. 38 St., Indianapolis, Ind. 5 1/4 x 8 1/2 in. 128 pp. $2.

In this critical circuit, defects often
B. S. DEGREE IN 36 MONTHS

INDUSTRY & GOVERNMENT NEED 50,000 NEW ENGINEERS A YEAR!

INDIANA TECHNICAL COLLEGE

LEARN

ELECTRONIC ORGAN SERVICING

This new, high paying profession can now be learned easily in your spare time.
- Complete Training - All Makes and Models
- Scientific Teaching Aids Make Learning Easy
- No Prior Knowledge of Electronics Necessary

GET FULL DETAILS ON THIS AMAZING COURSE
WRITE FOR FREE BOOKLET

NILES BRYANT SCHOOL
Dept. 1, 3731 Stockton Blvd.
Sacramento 20, California

LEARN

RADAR MICROWAVES • COMPUTERS • TRANSMITTERS
CODE • TV • RADIO
A Non-Profit Corp.
Founded in 1908
Write for Free Catalog to Dept. RE-10 Classes now forming

LEARN

TRANSISTOR, COMPUTER OR RADAR ELECTRONICS
AT HOME!

Prepare now for a profitable career in one of these growing fields. Learn theory and practical application of all makes and types with proven home study courses from the Philco Technological Center.
For FREE information write:

PHILCO TECHNICAL CENTER
P.O. Box 4730, Dept. R-2, Philadelphia 34, Pa.

OCTOBER, 1961

LEARN

TECHNICAL MANUAL WRITING AT HOME

Big demand, good pay, for trained writers. Home Study Course offered by A.C.W. Saunders, nationally known authority. Instructs you in: WRITING and construction of commercial and military publications... ILLUSTRATION procedures... LAYOUT and printing. Write today for full particulars to:

ELECTRONIC TECHNICAL PUBL. CO.
P.O. BOX 300, ASTOR STA., BOSTON, MASS.

LEARN

ELECTRONICS CAREER KIT

If you’re interested in breaking into a good-paying job in Radio-TV-Electronics, I.C.S. will send you absolutely free a famous Career Kit with 3 famous booklets that have helped thousands of others—just like yourself—on the road to real success. Includes:
1 “HOW TO SUCCEED” Career Guide—36-page 8 1/2 x 11 mine of career tips and information.
2 “JOB CATALOG” of opportunities in your field of interest.
3 “SAMPLE LESSON” (math) to demonstrate the famous I.C.S. method.
Send today for your free I.C.S. Career Kit with these 3 famous booklets. There’s no obligation. This may be the big break you’ve been waiting for. Mark and mail the coupon today.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 3708(T), Scranton 15, Penna.

FREE!

ENGINEERING DEGREE IN 27 MONTHS
You know the advantages college graduates have in industry. Prove your skills, rapid advancement. Enroll now like Tri-State Graduates—regularly interviewed, qualified. Write today for full particulars. Becomes an Electronics Engineer. Qualify faster with I.C.S.

Bachelor of Science Degree in 27 Months
In Electronics, Engineering of Power, Aircraft, Mechanical, Chemical, Aeronautical, Civil Engineering, in 27 MONTHS B.S. in Business Administration (General Business, Accounting, Motor Transport Management). For careers—capable, native students, small classes. Money pays for cost. No prior preparation necessary. Big opportunity for trained graduates. All positions in engineering fields, length of time adjustable. Write today.

TRI-STATE COLLEGE
2121 College Ave., Angola, Indiana

FREE!

Correspondence Courses Now in Engineering

ENGINEERING DEGREE IN 27 MONTHS

This interesting pictorial booklet tells you how you can prepare for a dynamic career as an Electrical Engineer or Engineering Technician in many exciting, growing fields: MISSILES • RADAR • RESEARCH ELECTRICAL POWER • ROCKETFIRE AUTOMATION • AVIONICS SALES • DEVELOPMENT

Get all the facts about job opportunities, length of study, courses offered, degrees you can earn, scholarships, part-time work — as well as pictures of the Milwaukee School of Engineering’s educational and recreational facilities. No obligation — it’s yours free.

MILWAUKEE SCHOOL OF ENGINEERING
MAIL COUPON TODAY!

MILWAUKEE SCHOOL OF ENGINEERING
Dept. RE-1041, 1023 N. Milwaukee St.
Milwaukee, Wisconsin

Please send FREE “Your Career” booklet
I’m interested in □ Electronics □ Radio-TV □ Computers □ Electrical Engineering □ Mechanical Engineering
(PLEASE PRINT)

Name ____________________________ Age ________

Address __________________________

City ____________________________ Zone ________ State ________

I’m eligible for veterans education benefits.

Discharge date ____________________

www.americanradiohistory.com
cause severe distortion or inability to hold the picture without affecting volt-
ages of other points. That's where the scope comes in. The book illustrates 101
key waveforms that accompany defects. It tells the symptom, what tests should be
made, and evaluates the effects of the trouble. The book is divided into three
main sections, one for each of the basic horizontal circuits now in use. An
extensive index is included.

OSCILLATOR CIRCUITS, by Thomas M.
Adams. Howard W. Sams & Co., Inc.,
1720 E. 38th St., Indianapolis, Ind. 5 1/2 x
8 1/2 in. 125 pp. $2.95.

Many students feel the need for de-
tailed and complete physical explana-
tions of the concepts. This book uses
four colors to show current direc-
tion, feedback paths and phase rela-
tionships in circuits. It covers several
types of oscillators, multivibrators and
sawtooth generators. This approach is
to clarify the inner workings of oscil-
lators.—IQ

SEMICONDUCTOR DEVICES, by Rufus P.
Turner. Holt, Rinehart & Winston Inc.,
383 Madison Ave., New York 17, N. Y.
6 x 9 in. 278 pp. $6.95.

This handbook is for the nonmathe-
matical technician and student. Exper-
imenters will also find interesting cir-
cuits and useful data. In simple lan-
guage the book describes such devices as
rectifiers, transistors, Zener diodes,
thermistors, photocells and parametric
devices. Diagrams show typical appli-
cations, with the text giving component
values and discussing circuit operation.
A chapter on tests and measurements
shows how to make setups to check the
devices.

AN INTRODUCTION TO THE THEORY
AND PRACTICE OF TRANSISTORS, by J.
R. Tillmon and F. F. Roberts. John Wiley
& Sons Inc., 440 Park Ave. South, New
York 16, N. Y. 5 1/2 x 8 1/2 in. 230 pp.
$2.90.

This book goes deep into mathemat-
ical analyses. It is written for engi-
neers, physicists and specialists in semi-
conductors. Part 1 covers the properties
of semiconductors and junctions. Part 2
discusses fabrication of semiconductors
and their applications.—IQ

SEMICONDUCTORS AND TRANSISTORS,
edited by Alexander Schure. John F.
Ridgway & Sons, 114 St., New York 11, N. Y.
$1.00 each. $1.50 for set.

This volume will provide a solid founda-
tion for readers who understand

RADIO & TV TUBES at Manufacturers' Prices! 100% Guaranteed! Brand-new! No rebrands or pulls! UNITED RADIO, Box 1000-B, Newark, N.J.

FREE confidential bargain sheets of elec-
tronic components—Lowest prices in the
country! KNAPP, 3174 8th Ave. S.W.,
Largo, Fla.

ELECTRONIC RESEARCH SURPLUS,
2 1/2 lb.—$3. PALAN ASSOCIATES, 851 17
St. W., Cedar Rapids, Iowa.

WANTED: RC-348's, laboratory equip-
ment manuals, klystrons. Cash, swap.
ENGINEERS' ASSOCIATES, 434 Patter-
son Rd., Dayton 19, Ohio.

TRANSISTORIZED products dealers cata-

gog, $1. INTERMARKET, CPO 1717, Tokyo,
Japan.

WANTED—MISCELLANEOUS Quicksilver
Platinum, Gold, Silver. Ores analyzed.
MERCURY TERMINAL, Norwood, Mass.

COMPONENTS. Recorders, Tapes, FREE
Wholesale used equipment. CARPENTER,
125-T East 88th St., New York 28, N.Y.

CASH PAID! Sell your surplus electronic
tubes. Want unused, clean radio and TV
receiving, transmitting, special purpose,
Magnetrons, Klystrons, broadcast types,
etc. Want military & commercial lab-test
and communications equipment such as
G.R., H.P., AN/UPX phones. Also want
commercial receivers and transmitters.
For a fair deal write BARRY, 512 Broad-
way, New York 12, N. Y. Walker 5-1000.

DON'T BUY HI-FI COMPONENTS, Kita,
Tape, Tape Recorders until you get our
low prices. Mail return mail quote. "We Guar-
antee Not To Be Undersold." Wholesale
Catalog Free. Easy Time Payments Plan,
100% down—3 to 24 months to pay.
HIFI DEPARTMENT, 2289 9 1/2 St., New
York 10, N.Y.

ALL MAKES OF ELECTRICAL INSTRU-
MENTS AND TESTING equipment re-
paired. New and used instruments bought,
sold, exchanged. HAZELTON INSTRU-
MENT CO., 129 Liberty St, New York, N.Y.

BUY — SELL — TRADE cameras, lenses,
telescopes, amateur radio equipment.
DENTON ELECTRONICS, Box 85, Rockville,
Conn.

GARAGE DOOR OPERATORS $59.95.
Rugged chain-drive automatic units.
Highest quality. Free literature. DEEMCO INC.,
Sebring 24, Ohio.

SPOKESMAN SALE. Component quotes.
Tapes. BAYLA CO., Box 151-RE, Wantagh,
N.Y.

HIGHLY EFFECTIVE home-study review
for FCC Commercial phone exams. Free
literature. WALLACE COOK, Box 10634,
Jackson 9, Miss.

LOANS by mail. $100-$800. Anywhere.
CALL 1-800-1000. CARL SCOTT-RENTANCE,
Dept. R5, 323 East Canfield, Phoenix,
Ariz.

THREE-LINE rubber stamp, $1. ELD-
RIDGE INDUSTRIES, PO Box 2188, Tren-
ton, N.J.

WE SELL only tubes and semiconductors.
Authorized distributors for top-quality
brands. Check with literature. CALL, e.g.
etc. Buy with confidence for less at E T S,
161 Washington St., New York 6, N.Y.

FRANCHISES MAKE PROFITS! Operate
your own exclusive franchised business.
Write today for free interesting details.
NATIONAL FRANCHISE REPORTS, Dept.

DIAGRAMS FOR REPAIRING RADIOS,
$1. television, $2. Give make and model.
DIAGRAM SERVICE, Box 672 RE, Hart-
ford 1, Conn.

ENGRAVE dials, panels, nameplates with
"Duplicalscer" engraving machines. De-
tails, sample engraving, 20¢. DESCOT'S,
4329-C Hawthorne, Van Nuys, Calif.

LEARN WHILE ASLEEP, Hypnotize with
your recorder, phonograph or amazing new
Electronic Educator endless tape recorder.
Consult free. SLEEP-LEARNING ASSOCIA-
TION, Box 24-RD, Olympia, Wash.

PROMPT DELIVERY. We will not be un-
sold. Amplifiers, Tape Recorders, Tun-
ers, etc. No catalogs. Air Mail Quotes.
Compare. L. M. BROWN SALES CORP.,
Dept. R, 839 E. 24th St., New York 10, N. Y.

PROFESSIONAL ELECTRONIC PROJ-
ECTIONS—Organs, Timers, Computers, etc.—
each 1¢. List free. PARKS, Box 1665, Lake
City, Seattle 55, Wash.

NEW CONCEPT OF LEARNING SELF-
HYPNOSIS! Now on tape or record! Free
Literature. MCKINLEY-SMITH CO., Dept.
D7, Box 3938, San Bernardino, Calif.

500 PRINTED, GUMMED NAME AND
ADDRESS LABELS, $1.00. No C.O.D.'s.
Print clearly. RE-3, ADDISON MAIL
ORDER, 1846 Addison, Chicago 13, Ill.

BEFORE YOU BUY Receiving Tubes or
Hi-Fi Components send now for your giant
FREE Zaltron current catalog—featuring
nationally known Zaltron First Quality
TV-Radio Tubes, Hi-Fi Stereo Systems,
Kits, Parts, etc. All priced to Save You
Plenty—Why Pay More? ZALTRON
TUBE CORP., 226 W. 42nd St., N.Y.C.

HIGHLY DIRECTIONAL MICROPHONE
picks up a whisper a block away. Used by
investigators, broadcasters. Build for
about $7.00 with simple materials. Plans.
$2.00. DEE CO., Box 7263, Houston 8, Tex.

140 R A D I O - E L E C T R O N I C S
FALL ROUNDUP of RAD-TEL Tube Values

BUY 10 TUBES OF ANY ONE TYPE GET 1 FREE

You get 11 tubes (same type) ... pay for only 10
Offer limited to the following types only:

- 1R5 - 1U5 - 3BG5 - 3BU6 - 3CG5 - 3SH5 - 6AP6 - 6AV6 - 6B4D - 6B6D - 6BQ5 - 6BN6 - 6BU8 - 6CQ6 - 6E88 - 6G8 - 6G8B - 6H6 - 6J7 - 6K5 - 6L5 - 6L83 - 6L86 - 6M4 - 6N5 - 6P1 - 6Q6 - 6R8 - 6S8 - 6T8 - 6U8 - 6V8 - 6W8 - 6X8 - 6Y8 - 6Z8 - 7010 - 7020 - 7120 - 7182 - 7244 - 7254 - 7256 - 7257 - 7260 - 7264 - 7270 - 7271 - 7273 - 7274 - 7275 - 7276 - 7277 - 7278 - 7279 - 7280 - 7281 - 7282 - 7283 - 7284 - 7285 - 7286 - 7287 - 7288 - 7289 - 7290 - 7291 - 7292 - 7293 - 7294 - 7295 - 7296 - 7297 - 7298 - 7299 - 72A0 - 72A1 - 72A2 - 72A3 - 72A4 - 72A5 - 72A6 - 72A7 - 72A8 - 72A9 - 72B0 - 72B1 - 72B2 - 72B3 - 72B4 - 72B5 - 72B6 - 72B7 - 72B8 - 72B9 - 72C0 - 72C1 - 72C2 - 72C3 - 72C4 - 72C5 - 72C6 - 72C7 - 72C8 - 72C9 - 72D0 - 72D1 - 72D2 - 72D3 - 72D4 - 72D5 - 72D6 - 72D7 - 72D8 - 72D9 - 72E0 - 72E1 - 72E2 - 72E3 - 72E4 - 72E5 - 72E6 - 72E7 - 72E8 - 72E9 - 72F0 - 72F1 - 72F2 - 72F3 - 72F4 - 72F5 - 72F6 - 72F7 - 72F8 - 72F9 - 72G0 - 72G1 - 72G2 - 72G3 - 72G4 - 72G5 - 72G6 - 72G7 - 72G8 - 72G9 - 72H0 - 72H1 - 72H2 - 72H3 - 72H4 - 72H5 - 72H6 - 72H7 - 72H8 - 72H9 - 72I0 - 72I1 - 72I2 - 72I3 - 72I4 - 72I5 - 72I6 - 72I7 - 72I8 - 72I9 - 72J0 - 72J1 - 72J2 - 72J3 - 72J4 - 72J5 - 72J6 - 72J7 - 72J8 - 72J9 - 72K0 - 72K1 - 72K2 - 72K3 - 72K4 - 72K5 - 72K6 - 72K7 - 72K8 - 72K9 - 72L0 - 72L1 - 72L2 - 72L3 - 72L4 - 72L5 - 72L6 - 72L7 - 72L8 - 72L9 - 72M0 - 72M1 - 72M2 - 72M3 - 72M4 - 72M5 - 72M6 - 72M7 - 72M8 - 72M9 - 72N0 - 72N1 - 72N2 - 72N3 - 72N4 - 72N5 - 72N6 - 72N7 - 72N8 - 72N9 - 72O0 - 72O1 - 72O2 - 72O3 - 72O4 - 72O5 - 72O6 - 72O7 - 72O8 - 72O9 - 72P0 - 72P1 - 72P2 - 72P3 - 72P4 - 72P5 - 72P6 - 72P7 - 72P8 - 72P9 - 72Q0 - 72Q1 - 72Q2 - 72Q3 - 72Q4 - 72Q5 - 72Q6 - 72Q7 - 72Q8 - 72Q9 - 72R0 - 72R1 - 72R2 - 72R3 - 72R4 - 72R5 - 72R6 - 72R7 - 72R8 - 72R9 - 72S0 - 72S1 - 72S2 - 72S3 - 72S4 - 72S5 - 72S6 - 72S7 - 72S8 - 72S9 - 72T0 - 72T1 - 72T2 - 72T3 - 72T4 - 72T5 - 72T6 - 72T7 - 72T8 - 72T9 - 72U0 - 72U1 - 72U2 - 72U3 - 72U4 - 72U5 - 72U6 - 72U7 - 72U8 - 72U9 - 72V0 - 72V1 - 72V2 - 72V3 - 72V4 - 72V5 - 72V6 - 72V7 - 72V8 - 72V9 - 72W0 - 72W1 - 72W2 - 72W3 - 72W4 - 72W5 - 72W6 - 72W7 - 72W8 - 72W9 - 72X0 - 72X1 - 72X2 - 72X3 - 72X4 - 72X5 - 72X6 - 72X7 - 72X8 - 72X9 - 72Y0 - 72Y1 - 72Y2 - 72Y3 - 72Y4 - 72Y5 - 72Y6 - 72Y7 - 72Y8 - 72Y9 - 72Z0 - 72Z1 - 72Z2 - 72Z3 - 72Z4 - 72Z5 - 72Z6 - 72Z7 - 72Z8 - 72Z9

Prices subject to change. No COD's outside continental USA.
Universal Replacement Parts Kit

MODEL 31T 3890

Popular Standard Coil field replacement parts used extensively by servicemen for STANDARD tuners manufactured from 1947-1956.

MODEL 31T 3890

A kit of mechanical and electrical parts for shop and field use to be used in conjunction with Section II of the STANDARD Cross Reference Guide. These parts make up 90% of the replacement parts most commonly used in field service.

INCLUDED

- Special IF alignment tool for late model STANDARD TV and FM tuners.
- Popular special springs, detent springs and roller assembly, detent ball assemblies, etc.

FREE

BE PREPARED . . . GET YOURS TODAY from any authorized

Standard COIL distributor

- $27.99 DEALER NET

standard kollsman INDUSTRIES INC.

FORMERLY STANDARD COIL PRODUCTS CO., INC., MELROSE PARK, ILLINOIS

www.americanradiohistory.com
You're looking at the base of one of RCA's remarkable new novar tubes...the first in a new family of tubes that will mean better business for you through reduced call backs.

This new base—with 9 widely-spaced, heavy-gauge pins—characterizes novar, RCA's line of large all-glass integral base tubes designed to do the work of conventional tubes with molded bases. Because novars outperform these conventional types, they are being selected for use in more and more radio and TV receivers as well as hi-fi equipment. From present indications, novar should become the standard of the industry.

Look for novar, RCA's latest contribution to electron tube design. Your Authorized RCA Electron Tube Distributor now has RCA-7868 novar and will soon have many other types to support your servicing business.

RCA ELECTRON TUBE DIVISION, HARRISON, N.J.

The Most Trusted Name in Electronics