Versatile Vhf Transistor Radio Is Easily Built

Do It With Diodes!

Build This In-Cabinet Horizontal Sweep Analyzer
USES UNLIMITED:
Field Engineers
Application Engineers
Electrical, Radio, TV, and Appliance Servicemen
Electrical Contractors
Factory Maintenance Men
Electronic Technicians
Home Owners, Hobbyists

World's Largest Selling
POCKET SIZE V-O-M

FEATURES:
1. Hand size and lightweight, but with the features of a full-size V-O-M.
2. 20,000 ohms per volt DC; 5,000 AC.
3. EXCLUSIVE SINGLE SELECTOR SWITCH speeds circuit and range settings. The first miniature V-O-M with this exclusive feature for quick, fool-proof selection of all ranges.

SELF-SHIELDED Bar-Ring instrument; permits checking in strong magnetic fields • Fitting interchangeable test prod tip into top of tester makes it the common probe, thereby freeing one hand • UNBREAKABLE plastic meter window • BANANA-TYPE JACKS—positive connection and long life.

Price—only $34.50; leather case $3.20.

Available For Immediate Delivery From Your Triplett Distributor's Stock

THE TRIPLETT ELECTRICAL INSTRUMENT COMPANY, BLUFFTON, OHIO

MANUFACTURERS OF PANEL AND PORTABLE INSTRUMENTS; ELECTRICAL AND ELECTRONIC TEST EQUIPMENT

FOR EVERY PURPOSE—THE WORLD'S MOST COMPLETE LINE OF V-O-M'S

www.americanradiohistory.com
"Over and above the details of design and performance, we felt that the Citation group bore eloquent witness to the one vital aspect of audio that for so many of us has elevated high fidelity from a casual hobby to a lifelong interest: the earnest attempt to reach an ideal—not for the sake of technical showmanship—but for the sake of music and our demanding love of it."

Herbert Reid, Hi Fi Stereo Review

A truly remarkable commentary about a truly remarkable group of products—the Citation kits by Harman-Kardon.

Mr. Reid’s eloquent tribute to Citation is one of many extraordinary reviews of these magnificent instruments. We are proud to present a brief collection of excerpts from Citation reviews written by outstanding audio critics.

"When we first heard the Citations our immediate reaction was that one listened through the amplifier system clear back to the original performance, and that the finer nuances of tone shading stood out clearly and distinctly for the first time..."

The CITATION SOUND..."FOR THE SAKE OF MUSIC AND OUR DEMANDING LOVE OF IT."

C. G. McProud, Editor, Audio Magazine

"The unit which we checked after having built the kit, is the best of all power amplifiers that we have tested over the past years."

William Stocklin, Editor, Electronics World

"Its listening quality is superb, and not easily described in terms of laboratory measurements. Listening is the ultimate test and a required one for full appreciation of Citation... Anyone who will settle for nothing less than the finest will be well advised to look into the Citation II."

Hirsch-Houck Labs, High Fidelity Magazine

"At this writing, the most impressive of amplifier kits is without doubt the new Citation line of Harman-Kardon... their design, circuitry, acoustic results and even the manner of their packaging set a new high in amplifier construction and performance, kit or no."

Norman Eisenberg, Saturday Review

PRESENTING THE NEW 1961 CITATION LINE

The CITATION I, Stereophonic Preamplifier Control Center
The many professional features and philosophy of design expressed in Citation I permit the development of a preamplifier that provides absolute control over any program material without imparting any coloration of its own. The Citation I—$159.95. Factory Wired—$240.95.

The CITATION II, 120 Watt Stereophonic Power Amplifier will reproduce frequencies as low as 5 cycles virtually without phase shift, and frequencies as high as 100,000 cycles without any evidence of instability or ringing. Because of its reliability and specifications the Citation II has been accepted by professionals as a laboratory standard. The Citation II—$159.95—Factory Wired $229.95.

The CITATION III, Professional FM Tuner
The world’s most sensitive tuner. But more important—it offers sound quality never before achieved in an FM tuner. Now, for the first time Harman-Kardon has made it possible for the kit builder to construct a completely professional tuner without reliance upon external equipment. The Citation III’s front end employs the revolutionary Nuvistor tube which furnishes the lowest noise figure and highest sensitivity permitted by the state of the art. A two-stage audio section patterned after Citation II provides a frequency response three octaves above and below the range of normal hearing. The Citation III is styled in charcoal brown and gold to match all the other Citation instruments. The Citation III—$449.95—Factory Wired—$529.95.

For complete information on the new Citation kits, including reprints of independent laboratory test reports, write to Dept. RE-2, Citation Kit Division, Harman-Kardon, Inc., Plainview, New York.

All prices slightly higher in the West.

CITATION KITS by

harman kardon
editorial
33 Upheaval in Electronics—Hugo Gernsback

test instruments
34 You Can Build a Top-Chassis Horizontal Sweep Analyzer—Wayne Lemons
54 New Citizens-Radio Test Set—Robert F. Scott
59 Logarithmic Meter—Nathaniel Riha
74 Make Your Meter Easier to Read—Leo G. Sands

audio-high fidelity
42 Strobo Instrument Tunes Organs—Richard H. Dorf
49 Easy-to-Connect Audio Plugs
69 Puzzled About Feedback?—Norman H. Crowhurst
96 High-Quality Audio—A. V. J. Martin

electronics
38 Do It With Diodes—Donald L. Stoner
40 Transistor Pack You Can Build to Power Model Railroad—Paul S. Lederer
45 Evolution in Relays
81 Effects You Should Know—J. H. Thomas

radio
50 New and Different Free-Power Radio Construction Project—William H. Grace, Jr.
52 L-C Reactance Nomo Saves Calculation—S. J. Salva and W. R. Morey
60 Space-Scanning Antenna Is Multi-polarized (Cover Feature)
82 Special-Services Receiver Is Easy to Build—I. Queen

industrial electronics
46 Klystron—Tube for Outer Space—Tom Jaski
93 Test Speaker Speeds Industrial Repairs—William F. Kernin

television
56 TV Remote Uses One Tube—Joseph DeMarinis
61 Television Service Clinic (Watch Those Tube Changes)—Conducted by Jack Darr
72 TV Tuner Uses Nuvisor Triode
80 Safe Driving With Closed-Circuit TV—Manfred von Ardenne
86 Servicing Sync Separators and Clippers, Part I—Jack Darr

the departments
118 Business and People
99, 117 Corrections
20 Correspondence
123 New Books
120 New Literature
102 New Patents
103 New Products
98 New Tubes and Semiconductors
6 News Briefs
110 Noteworthy Circuits
112 Technicians' News
116 Try This One
114 50 Years Ago

Radio-Electronics is indexed in Applied Science & Technology Index (Formerly Industrial Arts Index)

Subscription Rates: U.S. & U.S. possessions and Canada, $5.00 for one year; $9.00 for two years; $12.00 for three years. Pan-American countries $6.00 for one year; $11.00 for two years; $15.00 for three years. All other countries $5.50 a year; $12.00 for two years; $18.00 for three years.

Subscriptions address correspondence to Radio-Electronics, Subscribers Service, 104 West 11th St., New York 11, N.Y. When requesting a change of address, please furnish an address label from a recent issue. Allow one month for change of address.

Gernsback Publications, Inc., Executive and Editorial Officers: 104 West 11th St., New York 11, N.Y. Telephone Alamo 5-7754. Hugo Gernsback, Chairman of the Board; M. Harvey Gernsback, President; G. Alano, Secretary.

START NOW! Break through the Earning Barrier that stops half-trained men. N.T.S. "All-Phase" training prepares you—at home in spare time—for a high-paying CAREER in Electronics—TV—Radio as a MASTER TECHNICIAN. One Master Course at One Low Tuition trains you for unlimited opportunities in All Phases: Servicing, Communications, Preparation F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rocket Projects.

A more rewarding job ... a secure future ... a richer, fuller life can be yours! As an N.T.S. MASTER TECHNICIAN you can go straight to the top in industry ... or in your own profitable business.

N.T.S. Shop-Tested HOME TRAINING is Better, More Complete, Lower Cost ... and it is your key to the most fascinating, opportunity-filled industry today!

YOU LEARN QUICKLY AND EASILY THE N.T.S. SHOP-TESTED WAY

You get lessons, manuals, job projects, unlimited consultation, graduate advisory service. You build a Short Wave-Long Wave Superhet Receiver, plus a large-screen TV set from the ground up, with parts we send you at no additional cost. You also get a Professional Multimeter for your practical job projects.

EARN AS YOU LEARN... WE SHOW YOU NOW!

Many students pay for entire tuition — and earn much more — with spare time work they perform while training. You can do the same ... we show you how.

SEND FOR INFORMATION NOW... TODAY! IT COSTS YOU NOTHING TO INVESTIGATE.

MAIL COUPON NOW for FREE BOOK and ACTUAL LESSON

NO OBLIGATION! NO SALESMAN WILL CALL

NATIONAL TECHNICAL SCHOOLS

MAIL NOW TO

National Technical Schools, Dept RG-21
4000 S. Figueroa St., Los Angeles 37, Calif.

Please rush FREE Electronics—TV-Radio "Opportunity" Book and Actual Lesson. No Salesman will call.

Name
Address
City
Zone
State

VETERANS: Give date of discharge
“Compound” Thermogenerator

General Electric has announced a combination thermionic-thermoelectric energy converter that produces twice as much power from a given amount of fuel as would be obtainable from the thermionic converter alone.

The thermionic converter, a device resembling a vacuum tube, produces electricity by heating a filament. Electrons released from the filament or cathode drift across to another (anode) element in the tube, producing an electric current. The effect is analogous to “contact-potential” effect in a receiving diode. A thermoelectric generator is a series of thermocouples.

Since the thermionic generator is most efficient at high cathode temperatures, and the thermoelectric generator works best at lower ones, the waste heat from the one can be used to power the other.

When operated at a cathode temperature of 1150°C, a G-E Z-5386 thermionic converter produces a minimum of 1 watt with about 2.5% efficiency. If the waste heat from a Z-5386, operated at this cathode temperature, is used to power a lead telluride thermoelectric generator, the power output of the cascaded system would be about 2 watts and efficiency about 5–6%.

Diagram of compound thermogenerator that appears in the photo above.

Studies by I. T. Sald, of the G-E Power Tube Dept., indicate that efficiencies of 16% and better may be achievable using vapor thermionic converters operating at a cathode temperature of 1325°C, cascaded with lead telluride thermoelectric generators, operating at a hot-junction temperature of 650°C and a heat-sink temperature of about 75°C.

Canadian Station Improves Time-Signal Accuracy

The Dominion Observatory time signals from CHU, Ottawa, Canada, are now cesium-controlled to an accuracy of at least 2 parts in 10^11. CHU broadcasts time signals on 3330, 7335 and 14,970 kc. A pip is transmitted at the beginning of each second, with the 51st to 59th pips inclusive of each minute being omitted, as well as the 1st to 29th pips on the first minute of each hour.

The time is announced by voice once each minute in the 10-second gap before the beginning of each minute. A code identification “CHU Canada CHU” is transmitted once during the first half-minute of each hour.

The signals of CHU, because of the voice announcement, are widely used at sports-car rallies and other events where frequent repetition of the correct time is valuable.

Valdemar Poulsen Medal To Videotape Developer

The first native-born American to receive the Valdemar Poulsen medal is Charles P. Ginsburg, of Ampex Corp. The award was due to his “guiding spirit and principal participation in the development of video tape recording.”

The Valdemar Poulsen Gold Medal Award was established in Denmark in 1939 to be awarded each year on the birthday of Valdemar Poulsen to a radio engineer or scientist in recognition of important contributions to the development of the science or art of radio communications or magnetic registration. Winners of the renowned science medal are selected on the basis of recommendations from competent institutions in Denmark and abroad.

The medal has been awarded only six times since its inception in 1939. In that year it was presented to the inventor of magnetic recording, Valdemar Poulsen himself, on his 70th birthday. Later recipients were Sir Robert Watson-Watt and Dr. E. F. W. Alexanderson, 1946; Sir Edward Appleton, 1948; Dr. Balthazar van der Pol, 1952; Dr. Harold Trap Friis, 1954, and Prof. Hidetsugu Yagi, 1958.

Communications Stamp Features Echo I

Post Office recognizes the satellite as a communications instrument in new 4-cent stamp issued December 15 last. Stamp is purple with white lettering.

All TV to Go UHF In 5 to 7 Years?

Our present vhf–uhf TV allocations system must be replaced soon with an all-uhf one, stated FCC Commissioner Robert E. Lee at the winter conference of the Electronic Industries Association. Growing population makes a vhf system unacceptable, and it was an error, he said, to assume that uhf and vhf could compete. Existing uhf stations are being forced out of business by the well-rooted vhf outlets, even though they offer the only solution to the problems of congestion and necessary future expansion.

Commissioner Lee, who has not hesitated in the past to espouse causes in which he was not supported by the other members of the FCC, suggested that once the num-
FEBRUARY, 1961

Now! Work Over

300 PRACTICAL PROJECTS with these PARTS AT HOME!

to help You learn

ELECTRONICS

RADIO—TELEVISION—RADAR

NOW... at home in your spare time you can get the very kind of training and subsequent Employment Service you need to get started toward real earnings in one of today's brightest opportunity fields—TELEVISION-RADIO-ELECTRONICS. Now that Electronics is entering so many new fields, here is a chance of a lifetime to prepare to cash in on its remarkable growth.

DeVry Tech's amazingly practical home method enables you to set up your own HOME LABORATORY. You spend minimum time to get maximum knowledge from over 300 practical projects, using the same type of basic equipment used in our modern Chicago and Toronto Training Centers!

DeVry Tech Provides EVERYTHING YOU NEED...—to help you master TV-ELECTRONICS. In addition to the home laboratory and easy-to-read lessons, you even use HOME MOVIES—an exclusive DeVry Tech advantage. You watch hidden actions...see electrons on the march. Movies help you to learn faster...easier...better.

LABORATORY TRAINING

Full time day and evening training programs in our modern Chicago and Toronto Laboratories are also available. MAIL COUPON TODAY for facts.

BUILD and KEEP Valuable TEST EQUIPMENT

As part of your training, you build and keep a fine Jewel-Bearing Vacuum Tube VOLTMETER and a 5-inch COLOR OSCILLOSCOPE—both high quality, needed test instruments.

EFFICIENT EMPLOYMENT SERVICE

Get the same Employment Service that has helped so many DeVry Tech graduates get started in this fast-growing field.

"One of North America's Foremost Electronics Training Centers"

Accredited Member of National Home Study Council

DeVRY TECHNICAL INSTITUTE

CHICAGO 41, ILLINOIS

MAIL COUPON TODAY!

DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill., Dept. RE2-R

Please give me your FREE booklet, "Electronics in Space Travel," and tell me how I may prepare to enter one or more branches of Electronics.

Name ___________________________ Age ____________
Street ___________________________ Apt _______________
City _____________________________ Zone ______ State __
2045 Canadian residents address: DeVry Tech of Canada, Ltd.
970 Lawrence Avenue West, Toronto, Ontario

www.americanradiohistory.com
ber of sets capable of receiving uhf passed 12,000,000, manufacturers might find it more profitable to make all-uhf receivers only. He said that the FCC will push for legislation requiring that all future sets be made with provision for receiving uhf. He believes that such legislation has a good chance of enactment. Today's present vhf stations would be removed slowly during the transition period. The old vhf channels could be used for police, industrial and educational TV stations.

According to the newspaper Home Furnishings Daily, manufacturers are considering the inclusion of uhf in all receivers very seriously. One manufacturer, H. Leslie Hoffman of Hoffman Electronics Corp., points out that the industry could establish its own uhf requirements, making the enactment of a law unnecessary.

Telephone Engineers Develop Electronic Dream Analyzer

A subvocal speech analyzer for use in the study of dreams is being developed by a group of Illinois engineers in cooperation with doctors from Midwest Medical Research Institute. The engineers are members of a group called Service Activities of Volunteer Engineers (SAVE) which has already devised new equipment useful in therapeutics and medical research.

Studies of dreams would seem to indicate that, when a person dreams that he is saying something, there is some (usually subvocal) activation of the vocal cords. The engineers are attempting a technique which would introduce a high-frequency sound into an artificial larynx—similar to those used in speech aids—pick the sound up as modulated by the movements of the vocal chamber, record it on tape, amplify and play it back.

SMPTE Elects Officers

The 44-year old Society of Motion Picture & Television Engineers elected John W. Servies, National Theatre Supply Co., for a 2-year term as their president. Reid H. Ray was elected executive vice president; Lloyd Thompson, editorial vice president; Harry Teitelbaum, convention vice president, and Herbert E. Farmer, secretary.

Australian Radiotelescope A Mile Long and Wide

A radiotelescope project that will dwarf the famous 600-foot Jodrell Bank antenna is announced from New South Wales, Australia. It will be designed in the shape of a cross, with two arms 1 mile long and 40 feet wide. A reflecting screen will be suspended from the two arms, the shape of the reflector being parabolic. The signals from this reflector will thus be focused on a wire running the length of each arm.

How to Get

An FCC License can be

Your FCC License

Your Guarantee...

Completion of the Master Course (both Sections) will prepare you for a First Class Commercial Radio Telephone License with a Radar Endorsement. Should you fail to pass the FCC examination for this license after successfully completing the Master Course, you will receive a full refund of all tuition payments. This guarantee is valid for the entire period of your enrollment agreement.

Free!

FIND OUT HOW:

1. The new electronic devices can be handled by you
2. To solve the problems that will stump your fellow technicians
3. Training is Work Insurance when employment is tough to find ... and more money for you when times are good

Mail Coupon NOW...
(Commercial)

an FCC License

your Measure of Success in Electronics

Or Your Money Back!

here's proof of good jobs

Irving Laing:

"Your lessons are helping me a lot in my Navy work. You cover topics that were not presented by the Navy at the E.T. School... Your course has helped greatly to get my 2nd class FCC ticket. I am now a radio and T.V. engineer at WTVS and WDTR in Detroit, Michigan."

Irving L. Laing, 15887 Robson, Detroit 27, Michigan

Get all 3 FREE

Accredited by The National Home Study Council

Cleveland Institute of Electronics
Desk RES08, 1762 E. 17th St., Cleveland 14, Ohio

Please send FREE career information prepared to help me get ahead in Electronics. I have had training or experience in Electronics as indicated below:

☐ Military
☐ Radio-TV Servicing
☐ Manufacturing
☐ Amateur Radio
☐ Broadcasting
☐ Home Experimenting
☐ Telephone Company
☐ Other

In what kind of work are you now engaged?

In what branch of Electronics are you interested?

Name... Age..................................
Address.. Zone.................................
City... State...................................
Desk RES08
The telescope was designed by Australian radio astronomer Dr. B. Y. Mills, and the project was announced by Prof. S. T. Butler, head of the school of physics at the University of Sydney.

Senate Committee Charges Neglect of Radio Satellites

The Government appears to have no over-all policy for developing and using communications satellites, reported the Senate Committee on Aeronautical and Space Sciences. The committee, headed by the then Senator Lyndon Johnson, reported that no agency seems to be responsible for drafting such a policy.

Among other things, the report commented pointedly on the allocation of microwave frequencies to private users shortly after the FCC had been warned by Leo A. Hoegh, director of the Office of Civil Defense and Mobilization, to use extreme care in disposing of these frequencies until the needs of space communications could be established.

"A host of intertwined and complex issues which require study and decision in the near future," are raised by the satellites, the Senators stated, warning that the potentialities of satellites for opening new international communications links could be hampered unless critical decisions are made promptly.

Ultrasonic Delay Line Works with Light at VHF

An acoustical delay line in a bar of optical material, operating at very high radio frequencies, has been announced by Corning Glass Works. Delays up to 160 µsec at frequencies as high as 30 mc have been reported.

The delay line is a bar of photoelastic material (a material whose optical properties change when stressed by an acoustic wave or other stress). Glass is such a material, and fused silica, an ultra-pure glass, was chosen by Corning Glass because of its excellent optical and acoustic properties. A ceramic transducer changes the electrical signals into mechanical stresses, which pass down the bar and are absorbed at the far end.

A light source (far left in the drawing) sends light through a system (the three circular plates) that polarizes it in such a way that little light reaches the photocell as long as the bar is not stressed. As the acoustic waves pass down the bar, light does get through in proportion to the strength of the acoustic wave. The photomultiplier tube turns the light signal into an electrical one again.

The time delay can be varied by moving the slit through which the light escapes up or down the bar. Time delays of 160 µsec were obtained with a 24-inch delay line. The letters L and S refer to orientations of the filters for longitudinal and shear type vibrations of the bar.

Ultrasonic delay lines are used in target-detection radar systems. It may also be possible to use them in computers, and for applications as yet not foreseen.

New Electronic Beacon Talks Boatmen Home

A new type of electronic beacon for users of small boats is now undergoing experimental trials at a New Jersey coast location. Developed by International Telephone & Telegraph Corp. (ITT), it requires no charts or calculations, not even the dot-counting of the simplest previous system, Consolan.

The talking beacon teams up a rotating microwave antenna with a prerecorded tape so that the transmitter announces the direction in which the antenna is pointing every 3°. For example, a boatman off Cape May would hear "Cape May, 003... Cape May, 006 etc., according to his bearing.

The only piece of equipment the boatman needs is a pretuned, in (Continued on page 18)
DOUBLES YOUR EFFECTIVE MANPOWER

Fix "Tough Dogs" Fast!
Save Half Your Time!
Step Up Your Profit!

TELEVISION ANALYST
for Black & White and Color

Check all circuits—Pinpoint any TV trouble...in minutes

By Easy Point-to-Point Signal Injection,
You See the Trouble on the TV Screen and
Correct it—Twice as Fast and Easy!

There's no longer any need to "lose your shirt" (and customers)—and worry about the lost hours you never recover—on "tough dogs" or even intermittents. The remarkable B&K Analyst enables you to inject your own TV signal at any point and watch the resulting test pattern on the picture tube itself. Makes it quick and easy to isolate, pinpoint, and correct TV trouble in any stage throughout the video, audio, r.f., i.f., sync, and sweep sections of black & white and color television sets—including intermittents. Makes external scope or wave-form interpretation unnecessary. Most useful instrument in TV servicing! Its basic technique has been proved by thousands of successful servicemen the world over.

The Analyst enables any serviceman to cut servicing time in half, service more TV sets in less time, really satisfy more customers, and make more money.

Model 1076. Net, $299.95
Available on Budget Terms. As low as $30.00 down.

See Your B&K Distributor or Write for Bulletin AF16-E

FEBRUARY, 1961
A HISTORIC TELEPHONE EXPERIMENT BEGINS IN AN ILLINOIS TOWN

New technology brings the dream of an electronic central office to reality...foreshadows new kinds of telephone service.

Today, the science of communications reaches dramatically into space, bouncing messages off satellites. But an equally exciting frontier lies closer to home. Bell Telephone Laboratories engineers have created a revolutionary new central office. At Morris, Illinois, an experimental model of it has been linked to the Bell System communications network and is being tried out in actual service with a small group of customers.

This is a special electronic central office which does not depend on mechanical relays or electromagnets. A photographic plate is its permanent memory. Its "scratch pad," or temporary memory, is a barrier grid storage tube. Gas-filled tubes make all connections. Transistor circuits provide the logic.

The new central office is versatile, fast and compact. Because it can store and use enormous amounts of information, it makes possible new kinds of services that will be explored in Morris. For example, some day it may be feasible for you to ring other extensions in your home...to dial people you frequently call merely by dialing two digits...to have your calls transferred to a friend's house where you are spending the evening...to have other numbers called in sequence when a particular phone is busy.

The idea behind the new central office was understood 20 years ago, but first Bell Laboratories engineers had to create new technology and devices to bring it into being. A Bell Laboratories invention, the transistor, is indispensable to its economy and reliability.

This new experiment in switching technology is another example of how Bell Telephone Laboratories works to improve your Bell communications services.

BELL TELEPHONE LABORATORIES
World center of communications research and development

Part of a memory plate of the new electronic central office is shown at right (enlarged 8 times). Spots are coded instructions which guide the system in handling calls and keeping itself in top operating form. Over two million spots are required. Logic and memory are physically separated in the machine, so new functions can be easily added. The experiment is being conducted in co-operation with the Illinois Bell Telephone Company and the Western Electric Company.
Do you WISH you were EMPLOYED in ELECTRONICS?

F.C.C. LICENSE — THE KEY TO BETTER JOBS

An F.C.C. commercial (not amateur) license is your ticket to higher pay and more interesting employment. This license is Federal Government evidence of your qualifications in electronics. Employers are eager to hire licensed technicians.

WHICH LICENSE FOR WHICH JOB?

The THIRD CLASS radiotelephone license is of value primarily in that it qualifies you to take the second class examination. The scope of authority covered by a third class license is extremely limited.

The SECOND CLASS radiotelephone license qualifies you to install, maintain and operate most all radiotelephone equipment except commercial broadcast station equipment.

The FIRST CLASS radio telephone license qualifies you to install, maintain and operate every type of radiotelephone equipment (except amateur) including all radio and television stations in the United States, its territories and possessions. This is the highest class of radiotelephone license available.

GRANTHAM TRAINING PREPARES YOU

The Grantham course covers the required subject matter completely. Even though it is planned primarily to lead directly to a first class FCC license, it does this by TEACHING you electronics. Some of the subjects covered in detail are: Basic Electricity for Beginners, Basic Mathematics, Ohm’s and Kirchhoff’s Laws, Alternating Current, Frequency and Wavelength, Inductance, Capacitance, Impedance, Resonance, Vacuum Tubes, Transistors, Basic Principles of Amplification, Classes of Amplifiers, Oscillators, Power Supplies, AM Transmitters and Receivers, FM Transmitters and Receivers, Antennas and Transmission Lines, Measuring Instruments, FCC Rules and Regulations, and extensive theory and mathematical calculations associated with all of the above subjects explained simply and in detail.

OUR GUARANTEE

If you should fail the F.C.C. exam after finishing our course, we guarantee to give additional training at NO ADDITIONAL COST. Read details in our free booklet.

Learn by Correspondence or in Resident Classes

Grantham training is offered by correspondence or in resident classes. Either way, we train you quickly and thoroughly—teach you a great deal of electronics and prepare you to pass the F.C.C. examination for a first class license. Get details now. Mail coupon below.

This booklet FREE!

This free booklet gives details of our training and explains what an F.C.C. license can do for your future. Send for your copy today.

To get ahead in electronics—first, you need the proper training; then, you need “proof” of your knowledge. Your first class commercial F.C.C. license is a “diploma” in communications electronics, awarded by the U.S. Government when you pass certain examinations. This diploma is recognized by employers. Grantham School of Electronics specializes in preparing you to earn this diploma.

Grantham training is offered in resident classes or by correspondence. Our free booklet gives complete details. If you are interested in preparing for your F.C.C. license, mail the coupon below to the School’s home office at 1505 N. Western Ave., Hollywood 27, California—the address given on the coupon—and our free booklet will be mailed to you promptly. No charge—no obligation.

Grantham School of Electronics

HOLLYWOOD
CALIF.

SEATTLE
WASH.

KANSAS CITY
MO.

WASHINGTON
D. C.

MAIL COUPON NOW—NO SALESMAN WILL CALL

FEBRUARY, 1961

(Mail in envelope or paste on postal card)

TO: GRANTHAM SCHOOL OF ELECTRONICS
1505 N. WESTERN AVE., HOLLYWOOD, CALIF.

Gentlemen:

Please send me your free booklet telling how I can get my commercial F.C.C. license quickly. I understand there is no obligation and no salesman will call.

Name_________________________Age_________________________
Address_________________________City_________________________
State_________________________

I am interested in:□ Home Study □ Seattle classes
□ Hollywood classes □ Kansas City classes □ Washington classes

14B
there are drivers

and there are drivers!

Which is by way of saying: don't use a boy for a man's job! For performance, efficiency, dependability and penetration, let these man-sized features of University's loudspeaker drivers guide your choice: ▶ One-piece linen base phenolic diaphragm construction yields exceptionally uniform over-all frequency response ▶ Rim-centered palate assembly results in shock- and vibration-proof mechanism ▶ Powerful Gold Dot Alnico 5 magnet assembly ▶ Built-in transformers provide highest degree of versatility of application and flexibility of operation ▶ Individually precision-wound tropicalized voice coils ▶ Important conveniences of field-replaceable diaphragm assemblies, phase-coded terminals, standard threads for interchanging trumpets ▶ Conservatively rated continuous-duty power handling capacity at maximum conversion efficiencies mean lower dollar-per-watt costs for the user ▶ Completely weatherproof construction and acrylic finish assure lifetime protection. ▶ With drivers like these you're off to a good start. Now team them up with trumpets from University's all-inclusive line—wide-angle, directional, radial—and you're ahead all the way. For complete details on University public address speakers and accessories, write Desk J-2, University Loudspeakers, Inc., White Plains, N. Y.

CHOOSE FROM THESE SIX DELUXE ID MODELS—FROM 20 TO 60 WATTS

ID-20, 20 watts ID-30, 30 watts ID-40, 40 watts ID-40T, 40 watts ID-60, 60 watts ID-60T, 60 watts

OR FROM THE WORLD FAMOUS STANDARD LINE OF UNIVERSITY DRIVERS

14
FREE!

LAFAYETTE'S
1961 CATALOG
324 GIANT SIZED PAGES

The Complete Catalog Featuring "The Best Buys In The Business"

- Stereophonic Hi-Fi Equipment
- Public Address Systems
- Tape Recorders
- Radio and TV Tubes and Parts
- Citizen Band Equipment
- Amateur Equipment
- Industrial Supplies

Send for Lafayette's FREE Catalog—the most complete, up-to-the-minute electronic supply catalog crammed full of everything in electronics at our customary down-to-earth money-saving prices.

CONTAINS HUNDREDS OF EXCLUSIVE LAFAYETTE ITEMS NOT AVAILABLE IN ANY OTHER CATALOG OR FROM ANY OTHER SOURCE—SEND FOR YOUR COPY NOW!

A "must" for the economy-minded hi-fi enthusiast, experi-
menter, hobbyist, engineer, technician, student, serviceman and dealer.

Our 40th Year

EASY PAY PLAN—the simplest, and quickest way to get what you want when you want it. As little as $2 down . . . up to 24 months to pay.

Communications Receiver
KT-200, Kit HE-10, Wired.
64.50 79.95

RK-400 2-Speed Portable Tape Recorder
49.50

TM-14 Radio Field Indicator
6.95

TM-14

RW-60 20,000 Ohms Per Volt Multitester
13.50

TE-15 Tube Checker
19.95

HE-800WX Citizen Band Mobile Antenna
6.95

Lafayette Radio Electronics Corp.
Dept. JB-1, P.O. Box 190
Jamaica 31, N.Y.

Send me the FREE Lafayette 324 page 1961 catalog

Name _____________________________
Address ___________________________
City______________ Zone______ State_____
Here's the SPECIALIZED

Let these 2 Ghirardi manuals teach you to REPAIR ANY TELEVISION OR RADIO RECEIVER ever made!

1. RADIO & TV CIRCUITRY and OPERATION

Learn about circuits... and watch service headaches disappear

You can repair ANY radio, TV or other electronic equipment faster and better when you're really familiar with its circuits and know just what to look for! Here are hundreds of clear pictures and diagrams explaining EVERY troubleshooting and repair operation as clearly as A-B-C. No needless mathematics. No involved theory. You get straight-from-the-shoulder training of the type that teaches you to do the best work in the shortest time.

Sold separately for $9.00. Save $2.00 on MONEY-SAVING COMBINATION OFFER.

2. RADIO & TV TROUBLESHOOTING and REPAIR

Complete training in modern service methods

Radio & TV TROUBLESHOOTING and REPAIR is a complete 82-page guide to professional service methods... the kind that help you handle jobs faster, more profitably. For beginners, this giant book with its 417 clear illustrations is an easily understood course in locating troubles fast and fixing them right. For experienced servicemen, it is an ideal way to develop better methods and shortcuts; or to fill fast answers to problems. You learn troubleshooting of all types from "static" tests to dynamic signal testing methods. Step-by-step charts demonstrate exactly what to look for and how to look. A big television section is a down-to-earth guide to all types of TV service procedures. Read it 10 days at our risk! $10.00.

DON'T THROW OLD RADIOS AWAY!

Here's the date you need to fix old sets in a jiffy! Just look up the bow-to-do-it data on that old radio you want to fix.

Four times out of 5, this giant, 35-cent, 744-page Ghirardi RADIO TROUBLESHOOTER'S HANDBOOK tells what is likely to be causing the trouble... shows how to fix it. No useless testing. No wasted time. Using it, even novices can easily fix old sets which might otherwise be thrown away because service information is lacking. With a few simple repairs, most of these old sets can be made to operate perfectly for years to come.

THE ONLY GUIDE OF ITS KIND!

Cuts service time in half!

Includes over 2000 troubleshooting tips and their remedies for over 6,800 models of old tube, auto radios and record changers; Airline, Bing Crosby, Bluebird, Clark, Coronado, Columbia, Fate, G. K. Atwater, Motorola, Philco, Philco, RCA, Silverline, Sputnik, Walter, Zenith, and dozens more. Includes histories of tubes of innumerable type and component data, service sheets, and more.

Specify RADIO TROUBLESHOOTER'S HANDBOOK in your order. Price only $10.00. 10-day trial.

USE COUPON FOR 10-day Free Trial!

Save $2.00! Make your service library complete! Get both these famous Ghirardi books at a saving of $2.00 under the regular price. See MONEY-SAVING COMBINATION OFFER in coupon.

A. A. GHIRARDI

Let these two famous training books teach you to handle all types of AM, FM and TV service jobs by approved professional methods—and watch your efficiency and earnings soar! Almost 1500 pages cover over 900 clear pictures and diagrams explain EVERY troubleshooting and repair operation as clearly as A-B-C. No needless mathematics. No involved theory. You get straight-from-the-shoulder training of the type that teaches you to do the best work in the shortest time. Each book is co-authored by A. A. Ghirardi whose radio-electronics training guides have, for more than 25 years, been more widely used for military, school and home study training than any other books of their type. Books are sold separately at prices indicated—or you save $2.00 by buying them together! Use coupon for SI0.00 or order from Douglass Div., Holt, Rinehart and Winston, Inc., 383 Madison Ave., New York 17, N.Y.
TRAIN AT HOME FOR TV-RADIO-ELECTRONICS... at rock-bottom cost!

Now! Get your basic training from these two easily understood, low cost books!

BASIC ELECTRICITY — Fundamental electrical principles are the basis of all Electronics—and this 386-page manual gives you a complete working knowledge of them all! Covers everything from electromagnetics to phone principles, circuits, wiring, illumination, rectifiers, rectification, power factor, instruments, controls, measurements, and all types of components and equipment. Includes set-up diagrams, practical examples and problem solutions. Price $6.25, see Money-Saving Offer.

BASIC ELECTRONICS — This new 389-page guide takes up where Basic Electricity leaves off. Shows how electrical principles are applied in Electronics and gives you a sound grasp of electronic theory, methods, circuits and equipment. Over 357 illustrations explain details clearly. The ideal basic training to help you build a predictable future in TV, radio, communications, hi-fi, industrial electronics and related fields! Price $5.25 separately.

Only $11.00 for this complete HOME TRAINING!

Get your COMMERCIAL OPERATORS LICENSE!

Train for radio's most fascinating, best paid jobs!

This famous book makes it easy to train for your FCC commercial license as an operator aboard ship, in aviation, broadcasting, telecasting, etc. LICENSE COMBINATION FOR RADIO OPERATORS is a quick, easily understandable guide that covers ALL the receiver section involved — then gives clear, repair instructions. Two PIX-O-FIX units Nos. 1 and 2 cover 48 different TV troubles. Together, they're a comprehensive guide to quick, "figure analysis" servicing of any TV. Price only $3.00 for the two.

REPAIR ANY ELECTRICAL APPLIANCE!

Save on repair bills! ... earn in your spare time!

This 378-page ELECTRICAL APPLIANCE REPAIR SERVICE MANUAL helps you service practically any home electrical appliance, from the simplest to the most complex. Illustrated instructions teach you to analyze patterns. Even includes data on quantitative measurements (as used in color TV servicing) and use of "heurist" the many other specialized books! ELECTRICAL APPLIANCE! starts from the symptoms they produce in the set itself— then followed by cutting-edge "blinding": abnormal contrast; "snow"; poor detail; sync troubles; sound troubles — and all the many other symptoms that indicate something is wrong. Just turn to the "Quick Trouble-Finder Guide" inside the cover. Look up the symptom exhibited by the set you're working on. The HANDBOOK then tells you just what to do and how to do it. Outlines time-saving shortcuts. Eliminates guesswork. More than 5,000 photographs, wiring diagrams and circuits illustrations explain test procedure. Price 85c. Order HANDBOOK OF TV TROUBLES in coupon.

ORDER NOW

No. 1

No. 2

SHORT CUT TO TV REPAIR!

Just turn the dial of the pocket-size PIX-O-FIX TROUBLE FINDER GUIDE! When the picture in the PIX-O-FIX window matches the image on the TV screen exactly — you KNOW! PIX-O-FIX shows the likely causes of the trouble — indicates the receiver section involved — then gives clear, repair instructions. Two PIX-O-FIX units Nos. 1 and 2 cover 48 different TV troubles. Together, they're a comprehensive guide to quick, "figure analysis" servicing of any TV. Price only $3.00 for the two.

TRIAL ANY BOOK 10 DAYS FREE!

Send books checked for 10 day FREE examination at prices indicated plus postage. SAVVY? Send cash with order and we pay postage. Same 10 day return privilege with money refunded!

Check here for MONEY-SAVING SERVICE MANUAL, helps you service practically any home electrical appliance, from the simplest to the most complex. Includes data on quantitative measurements (as used in color TV servicing) and use of "heurist" the many other specialized books! ELECTRICAL APPLIANCE, regular price $17.00 — you save $10.00!

Check here for MONEY-SAVING Basic Training COMBINATION ON BASIC ELECTRICITY and BASIC ELECTRONICS, regular price $11.00 plus postage. Price $5.00 — you save $6.00!

OUTSIDE U. S. A.

Add 50¢ to price of each book. Cash orders only, but money refunds if books are returned in 10 days.

Name.

Address.

City, Zone, State.

FEBRUARY, 1961
EVERY ROOM A TV OR FM ENTERTAINMENT CENTER
NEW BLONDER-TONGUE TV/FM HOME SYSTEM KIT

It's so easy to enjoy brilliant TV or FM performance on up to four sets. Good reception starts with a remarkable new indoor antenna. Installs easily in attic or other convenient indoor areas. In primary signal areas, eliminates the need for an outdoor antenna, yet provides the reception capabilities of an outdoor antenna. The TV signal is distributed by a quality engineered 4-set coupler providing exact match, low loss, interset isolation. And, you get sparkling TV or FM performance. HK-1 only $9.95 list

engineered and manufactured by
BLONDER-TONGUE
8 Alling St., Newark, N. J.

Canadian Div.: Benco Television Assoc., Ltd., Toronto, Ont. Export: Mohan Export Corp., New York 13, N. Y.

UHF converters • master TV systems • industrial TV systems • FM-AM radios

Cost Guard electronic technician chief Donald Aetis adjusts the talking beacon transmitter on the New Jersey coast. Strips of talking tape and playback head are seen in the cabinet.

(Continued from page 10)

expensive receiver the size of a tube type portable radio, which can be used with speaker or phones. At the center of a beam, the voice on the two bearings to each side, come through faintly. If the boatman hears “006 . . . 008” with equal strength, he can safely assume his bearing is about halfway between the two.

Calendar of Events—March 1961

Cleveland Electronics Conference, Jan. 29-31, Cleveland Engineering and Scientific Center, Cleveland, Ohio.

Second Annual ERA Convention, Feb. 4-6, Ambassador Hotel, Los Angeles.

Commercial and Industrial Sound Systems Institute, Feb. 23-24, University of Wisconsin, Madison Wis.

Pacific Electronics Trade Show (PETS), Feb. 28-Mar. 1, Great Western Exhibit Center, Los Angeles, Calif.

IRE Elects Officers

Lloyd V. Berkner, president of Associated Universities Inc., is the 1961 president of the Institute of Radio Engineers. The new vice presidents are Franz Ollendorff, research professor at the Technion-Israel Institute of Technology, Haifa, Israel, and J. F. Byrne, manager of the Riverside Research Laboratory, Motorola, Inc., Riverside, Calif.

RADIO-ELECTRONICS
ALLIED value-packed 1961
444-PAGE ELECTRONICS CATALOG

including special products available only from Allied

free

SAVE MOST ON EVERYTHING IN ELECTRONICS

- New Stereo Hi-Fi Systems — Everything in Hi-Fi Components
- Money-Saving, Build-Your-Own KNIGHT-KITS® for Every Need
- Best Buys in Recorders & Supplies
- Newest Public Address Systems, Paging and Intercom Equipment
- Amateur Receivers, Transmitters and Station Gear
- Citizen’s Band 2-Way Radio
- Test and Laboratory Instruments
- TV Tubes, Antennas, Accessories
- Huge Listings of Parts, Tubes, Transistors, Tools, Books

ALLIED exclsuives:

MONEY-SAVING KNIGHT-KITS® — truly the very best in build-your-own electronic equipment — lowest in cost, easiest to assemble, best for performance. Select from a complete line of Stereo hi-fi kits, Hobbyist kits, Test Instrument and Amateur kits. KNIGHT-KITS are an exclusive ALLIED product.

KNIGHT® STEREO HI-FI — Comparable to the best in quality, styling and performance, yet priced far lower. Select super-value KNIGHT components or complete systems and save most. Also see the largest selections of famous-name hi-fi components and money-saving ALLIED-recommended complete high-fidelity music systems.

Exclusive Allied products save you more

ALLIED RADIO

Satisfaction Guaranteed or Your Money Back

World's Largest Electronic Supply House

FEBRUARY, 1961

BUY ON EASIEST TERMS
only $2 down on orders up to $50;
only $5 down on orders up to $200;
only $10 down over $200.
Up to 24 months to pay.

You get every buying advantage at ALLIED:
Lowest, money-saving prices, fastest shipment,
extpert personal help, easiest-pay terms, satisfaction guaranteed or your money back.

send coupon today for 444-page catalog

ALLIED RADIO, Dept. 2-B1
100 N. Western Ave., Chicago 80, Ill.

☐ Send FREE 1961 Allied Catalog No. 200

Name
PLEAE PRINT

Address

City Zone State
ail, hail, the gang's all here

They'd be inside if the TV set were working ... but a push-push control went bloo-ey.

Luckily for them, though, CENTRALAB has replacement units ... the only push-push units on the market, plus a complete line of 35 push-pulls. Four different types—Adashft, Universal Shaft, Fastatch or dual concentrics, and Twin types for stereo.

Push-push and push-pull controls are now being used in over 78% of the TV, radio and hi-fi sets coming out of the factories. Find the CENTRALAB replacement you need at your distributors, so the folks can get back inside to see what Wyatt Earp is up to.
NOW...
4 GREAT "SALESemen" SELLING FOR YOU!

Look at this parade of selling power! Sylvania advertising will make an average of over 9 million sales calls each week—thousands in your area—52 weeks of the year. The top stars of radio, the largest-selling weekly magazine in the country...all selling for you in 1961.

Yes, Sylvania is going all out to help you build profits. All new streamers, in-store display and direct mail are available from your Sylvania tube distributor. See him today. Stock up on Silver Screen 85 picture tubes and Sylvania quality receiving tubes. Do it now for a fast start to more profits in 1961.

Sylvania
Subsidiary of General Telephone & Electronics

FEBRUARY, 1961
NOW IN KIT FORM!
The RCA Senior VoltOhmyst®

ONLY $62.50* With probe, cable, clips and instruction booklet.

Featuring Pre-Assembled Etched-Circuit Board and Pre-Assembled DC/AC OHMS Probe (WG-299D)
- Easy-to-read meter—6½" wide
- 200-microampere meter movement with less than 1% tracking error
- Precision multiplier resistors accurate to ±1%
- Meter electronically protected against burnout
- Separate color-coded peak-to-peak and rms-voltage scales
- Die-cast aluminum case with leather carrying handle

MEASURES:
DC voltages, 0 to 1500 volts.
AC voltages, 0 to 1500 volt rms or 0 to 4200 volts peak-to-peak.
Resistances from 0.2 ohm to 1,000 megohms.

RCA WV-98B available factory-wired and calibrated: $79.50*

OTHER OUTSTANDING RCA KIT VALUES...

RCA VOLTOHMYST® KIT
WV-77E(K) Only $29.95*
Famous VoltOhmyst® quality and performance at a low price! Special test features include: separate 1.5-volt and 4-volt peak-to-peak scales for accurate low AC measurements. Measures AC and DC voltages to 1500 volts, resistances from 0.2 ohm to 1,000 megohms. Complete with ultra-slim probes, long flexible leads, special holder on handle to store leads. RCA WV-77E available factory-wired and calibrated: $43.95*

RCA WV-38A(K)
VOLT-OHM-MILLIAMMETER KIT
Only $29.95*
The V-O-M with the extras! • 0.25-volt and 1.0-volt DC ranges • Big easy-to-read 5½" meter • Non-breakable sealed plastic case—no glass to crack or shatter • Jacks located below switches to keep leads out of the way • Spring clips on handle to hold leads • Attractive, scuff resistant, rugged carrying case, only $4.95* extra. RCA WV-38A available factory-wired and calibrated: $43.95*

RCA SUPER-PORTABLE OSCILLOSCOPE
KIT WO-33A(K) Only $79.95*
Now in kit form. A 'scope you can carry anywhere! Rugged and compact, yet weighs only 14 pounds. Just right for in-the-home and shop troubleshooting and servicing of black-and-white and color TV, radio, hi-fi components, tape recorders, etc. Ample gain and bandwidth for the toughest jobs. Scaled graph screen and internal calibrating voltage source for direct reading of peak-to-peak voltage. RCA WO-33A available factory-wired and calibrated: $129.95*

See them all at your Authorized RCA Test Equipment Distributor

The Most Trusted Name in Electronics
RADIO CORPORATION OF AMERICA

*User Price Optional
Yes, this great course costs far less than any training of its kind given by other major schools! Radio-Television Training School will train you for a good job in Television or Industrial Electronics — AT HOME IN YOUR SPARE TIME.

Think of it—a complete training program including over 120 lessons, Fourteen Big Radio-Television Kits, Complete Color-TV Instruction, Unlimited Consultation Service ... ALL at a really big saving to you. How can we do this? Write to us today ... and find out!

And what's more — you can (if you wish)

OPEN YOUR OWN RTS-APPROVED AND FINANCED RADIO-TV SERVICE SHOP

We Want Many More Shops This Year

This 38 year old training organization — called RTS, that's Radio-Television Training School — wants to establish a string of Radio-TV Repair Shops in principal cities throughout the U.S. So far, a great many such shops are NOW IN BUSINESS AND PROSPERING. We are helping and training ambitious men to become future owners and operators of these shops in all areas.

FOR UNSKILLED INEXPERIENCED MEN ONLY — WE TRAIN YOU OUR WAY!

We must insist that the men we sign up be trained in Radio-TV Repair, Merchandising and Sales by our training method—because WE KNOW the requirements of the industry. Therefore, we will TRAIN YOU, but we will show you how to earn EXTRA CASH, during the first month or two of your training period. YOU KEEP YOUR PRESENT JOB. TRAINING TAKES PLACE IN YOUR OWN HOME, IN YOUR SPARE TIME!

CUT OUT AND MAIL — TODAY!

RADIO-TELEVISION TRAINING SCHOOL
815 E. ROSECRANS AVENUE
LOS ANGELES 59, CALIFORNIA

SEND ME FREE — all of these big opportunity books — "Good Jobs in TV-Electronics," "A Repair Shop of Your Own" and "Sample Lesson!" I am interested in:

☐ Radio-Television☐ Industrial Electronics
(Automation)

Name Age
Address
City & State Zip

Mail This Coupon Now — No Salesman Will Call
IN PARIS
PORTE DE VERSAILLES
from 17th
to 21st
February
1961

INTERNATIONAL
EXHIBITION
OF
ELECTRONIC
COMPONENTS

the greatest world meeting
in the field of electronics.

FÉDÉRATION NATIONALE DES INDUSTRIES ÉLECTRONIQUES
23, rue de Lübeck, Paris 16e - PAS. 01-16

INTERNATIONAL
SYMPOSIUM
ON
SEMICONDUCTOR
DEVICES

sponsored by the
FÉDÉRATION NATIONALE DES INDUSTRIES ÉLECTRONIQUES

and organized by the
Société Française
des Électroniciens et des
Radio-Electroniciens

UNESCO BUILDING - PARIS
425, AVENUE DE SUFFREN
FROM 20TH TO 25TH FEBRUARY, 1961

(Continued from page 20)
lateral movement of an observer. With
speaker axes crossing in the listener
area, an observer on the left flank can
still hear high-frequency output from
the right-flank speaker, normal fusion
can take place and a relatively small
shift of virtual sound sources take
place.

My own practice since 1954 has been
with corner flanking speakers which are
natural turned in at 45° so I have
been guilty of failing to notice the effect
of speakers with their axes parallel.
When the significance of the effect is
pointed out, an experiment with speak-
ers that can be rotated is revealing.

PAUL W. KLIPSCH
Klipsch & Assoc., Inc.
Hope, Ark.

STRAIN EQUATIONS

Dear Editor:

I thoroughly enjoyed the article "A
Look at the Electronic Strain Gauge," by
Arthur S. Kramer in the December,
1960, issue. In the article, Mr. Kramer
states that determination of average
stress intensity in a specimen is
accomplished by multiplying the mea-
sured strain by E (Young's modulus).
According to the theory of elasticity,
the relationship between stress and
measured strains is given by

$$\sigma_E = \frac{1}{1 - \mu^2} (\epsilon_x + \mu \epsilon_y)$$

where σ_E is the desired stress, μ is
Poisson's ratio (ratio of lateral con-
traction to longitudinal extension) and
ϵ_x and ϵ_y are the measured unit strains
parallel and perpendicular to the direc-
tion of σ_x. The relationship Mr. Kramer
refers to, namely

$$\sigma_x = E \epsilon_x$$

is valid only for the simplified case
where

$$\epsilon_x = \mu \epsilon_y$$

This last relationship applies, for
example, to a long, thin bar stressed in
tension. For more complicated stress
situations requiring the use of strain
gauges for solution, the strain must be
measured in two perpendicular direc-
tions and a more complicated equation
used. PAUL H. SANDERS, PH.D.
University of Pittsburgh
Pittsburgh, Pa.

TRANSISTOR PREAMP
IMPROVEMENTS

Dear Editor:

I have done some further investiga-
tion on my transistor stereo preamp
(December, 1960) and find some im-
provements that simplify switching and
associated circuitry. They also help re-
duce the loading effect of one channel on
the other when the BLEND control is in
the MONO position.

Add a 4,700-ohm resistor to the low
side of the AM and FM LEVEL potentiom-
eters. Add a 220,000- and 4,700-ohm
resistor in series to ground at the
auxiliary input jack.

Connect the ungrounded sides of
the 4,700-ohm resistors (above) to the
FM, AM and AUX positions on S1-a.
Remove S1-d and S1-b from the cir-
cuit; short together all connections that
were on S1-d's contacts.
Prepare now IN SPARE TIME AT HOME for great opportunity field of...

TELEVISION

You Can Quickly be doing interesting profitable work like this!

COYNE offers a most practical Home Television Training. Easy to follow step-by-step instructions, fully illustrated with over 2150 photos and diagrams. Practical Job Guides to show you how to do actual servicing jobs—make money early in course. Keep your present job while in training.

Lower Cost—Easy Terms
We save you money because we don’t send you—AND CHARGE FOR—a long list of parts or “put together kits,” which you may not want or do not need. With Coyne Television Home Training you pay only for your training, no costly extras.

Even though we have added over 130 pages of lesson material recently to cover the latest Electronics subjects we have lowered our tuition while other schools have raised theirs.

SEND COUPON OR WRITE TO ADDRESS BELOW FOR FREE BOOK
and full details, including Easy Payment Plan. No obligation, no salesman will call.

COYNE TELEVISION
Home Training Division
Dept. 21-H5—New Coyne Building
1501 W. Congress Parkway, Chicago 7, Illinois
Send Free Book and details on Television Home Training. This does not obligate me in any way.

Name
Address
City State

(Unlike most other schools we do not employ salesmen.)
High fidelity manufacturers are vigorous competitors, but in this one respect the quality leaders are unanimous—to fulfill the great expectations of the original drawing-board concept, they use tubes by Amperex! PACO engineers designed a 40-watt stereo power-amplifier kit that would provide remarkable flexibility. Their next step was to assure high gain, inaudible hum, noise and distortion, plus optimum dependability. In the PACO SA-49, the total concept became a reality—with three Amperex 12AX7/ECC83's and four 7189's. These and many other Amperex 'preferred' tube types have proven their reliability and unique design advantages in the world's finest audio components.

Applications engineering assistance and detailed data are always available to equipment manufacturers. Write: Amperex Electronic Corp., Special Purpose Tube Division, 250 Duffy Ave., Hicksville, Long Island, New York.

MAIL FOR THE MAJOR

Dear Editor:
The ideas advanced by Major W. M. Price in regard to the so-called Philadelphia Plan of retail-wholesale parts sales (Radio-Electronics, November, 1960) are strictly old-hat and not very apt.

In practice, I doubt that any wholesaler is making any payments to service technicians on such sales, despite the beautiful plan which has been presented. I personally called one distributor's attention to the fact that he had made an auto mechanic (who brought the parts to me for installation), but I have yet to see a check, even though I have an open account which is in full effect.

Actually, there is a good basis for such a plan. Ethical wallpaper suppliers have been making such payments for years. In fact, they usually ask the name of your paperhanger, in order to make the payments, though he may not be a customer of theirs.

Auto parts, in an example used, are almost never sold at a discount to do-it-yourselfers, but carry full list from ethical parts distributors. Note the word 'ethical'—this does not cover Pep Boys, Strauss Auto or mail-order houses. Sears lists about 40 pages of auto parts, at prices close to wholesale, so home repairs to autos may be bigger than the major realizes.

Years ago parts sales got off to a bad start, and it will take heroic efforts to correct the present abuses; perhaps they can never be corrected. But I feel that any plan aimed in that direction is better than none at all. The argument that we technicians do not carry adequate stocks is just so much eye-wash. What garage carries spare generators, carburetors, etc. in stock, other than a dealer of a specific line, who may be likened to a brand-line distributor? H. L. Matsinger Philadelphia, Pa.

Dear Editor:
In answer to Major Price's letter, I'm going on record as agreeing with him 100%.

One thing we do not have to fear in this business is tube changers. Sooner or later the customer realizes there is more to TV repair than that. The only thing we have to sell is service—the ability to service a set for maximum performance and minimum call-backs.

Look what's ahead in Radio-Electronics

NEXT MONTH...
- Servicing Photoflash Equipment
- Tunnel Diode CW Transmitter
- Wideband AC Voltmeter
- Troubleshooting Sync Stages

MARCH Issue of Radio-Electronics on sale February 16 at newstands and parts distributors

Subscription Rates
- 3 years $12
- 2 years $9
- 1 year $5

154 West 41st St., New York 10, N.Y.
Learn RADIO, TELEVISION AND ELECTRONICS by Practicing at Home in Your Spare Time

At No Extra Cost you get specially developed Electronic Training Kits for practical experience. Shop and laboratory practice at home make learning easier, interesting, faster. You do not need a high school diploma or previous experience.

Increasing Demand for Trained Men

This is the Electronics age. Men with Electronic know-how are in demand. They enjoy high pay and growing opportunities for advancement. Satellites, Radar, Automation in Industry, Missiles, Rockets, Planes, Stereo, TV, Radio, Two Way Communications for transportation are a few of the fantastic developments in the fast growing Electronics industry. If you are not completely satisfied with your work; if you are doubtful about your future, investigate Electronics.

High Pay, Prestige, Bright Future

What branch of Electronics interests you? Thousands of successful NRI graduates prove that NRI's learn-by-practice method is the way to success. You start in your chosen career 'way ahead of the man who only learns from books. You do not need to give up your job. You do not need to go away to school. You learn at home, get practical knowledge from training kits NRI provides.

Train With the Leader

NRI is the world's oldest and largest home study Electronics school. You benefit from the experience NRI has gained from training men for 45 years. NRI offers you proven courses of home study in Electronics; Principles, Practices and Maintenance—Radio Television Communications—Radio Television Servicing.

Start Soon to Earn More

Soon after enrolling NRI shows you how to apply your knowledge to earn extra money doing Electronics repairs or servicing Radio and Television sets for friends and neighbors. Take the first step toward success now. Find out what NRI offers you. Mail the postage-free card. No obligation. Cost of NRI training is low. Monthly payment plan available. NATIONAL RADIO INSTITUTE, Washington 16, D.C.

NRI Has Trained Thousands for Success

"I got over twice the salary I made before enrolling. NRI training gave me a thorough understanding." H. ATKINSON, Austin, Tex.

"I started with station CJIC, now in charge of sound effects for CBC. NRI opened doors to greater opportunity for me." F. TUDOR, Toronto, Ontario

"Averaged $150 a month spare time before I graduated. Now have my own full time business and employ 2 men." F. COX, Hollywood, Cal.

NEW COURSE IN ELECTRONICS

Cut Out and Mail—No Stamp Needed

64-PAGE CATALOG FREE

No Salesman will call. (Please PRINT)

Name ____________________________ Age _______

Address __

City ________ Zone ________ State ________

National Radio Institute

OLDEST & LARGEST HOME STUDY RADIO-TV SCHOOL

NATIONAL HOME STUDY COUNCIL

WASHINGTON 16, D.C.

ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL

www.americanradiohistory.com
NEW Home Study Course in ELECTRONICS
Principles-Practices-Maintenance
NOW READY

This is the Electronic Age. Electronic equipment is already being used to count and control flow of liquids, solids, gases. Electronics is employed to search for oil, make surveys, control traffic, machine complex parts and in atomic installations. Military uses of Electronics are great and expanding rapidly. In business, Automation with Electronics plays an important part, prepares payrolls, calculates engineering formulas.

Learn More to Earn More
Now, to meet the growing demand for trained Electronic Technicians NRI has developed a comprehensive, complete course in Electronics Principles, Practices, Maintenance. This training stresses fundamentals. It is a course specially prepared for beginners and for Technicians. You get both theory and practical experience in an interesting, exciting way.

Ten Special Training Kits Give Practical Experience
You get practical experience with Thyatron Tube circuits, Multivibrators, build a D'Arsonval type Vacuum Tube Voltmeter (Kit 2); work and experiment with pentode tubes, selenium resistors, oscillators, transistors, magnetic amplifiers; and get practical experience in telemetry circuits as used in earth satellites, digital and analog computers (Kit 9).

NRI—Oldest and Largest School

National Radio Institute
3939 Wisconsin Avenue
Washington 16, D.C.
It would be nice to make a profit on every job, but I find myself taking a beating on some jobs in the hope that I'm making a satisfied customer. Chances are I'll never be rich, but like the man says "It's only money."

I. J. OSBORNE
7-11 Home Entertainment Servicing Pico Rivera, Calif.

Dear Editor:

After reading Major Price's opinion of the Philadelphia Plan in the November 1960 Correspondence Column, I have come to agree with him. The average technician has an inborn fear of something, but he is unable to put his finger on it. After all this is a free country and a person has the right to do as he pleases if it is within the law, and certainly buying supplies from the large dealers he calls wholesalers is. Also, if you approached the average shop for parts, nine times out of ten he doesn't have what you need in stock.

THOMAS FEEMY
Rutherford, N. J.

Dear Editor:

Some courageous distributor defied the major's (Major William M. Price, Correspondence, November 1960) authority and refused to sell him tubes at wholesale prices!

May I suggest he has oversimplified the subject? Perhaps he hasn't tried to make a living from consumer service late in the year and may have overlooked developments in the industry during the past 10 years.

Since he doesn't state the source of his information on operation of TV shops and garages, it is difficult to evaluate the validity of his analogy and conclusions.

The sinister reference to "kickback gimmicks" intrigues me. It suggests that we are missing out on a bonanza when we are satisfied with the standard industry discounts. Be specific, major; tell exactly what you mean by the "kickback gimmick."

The men who repair are the lowest paid group in nearly any industry, and TV is on the bottom. Hourly wages according to census and survey figures for the electronics service industry place consumer service at the bottom of the scale.

Since our industry is in the adolescent stage of growth, our attempts to improve our status are disorganized and unsophisticated. Uniform standards must wait on maturity.

During our painful growth, we must expect bitter criticism whenever we oppose the "dual-function jobbers."

The Philadelphia plan isn't an inadvisable plot to force the major to pay retail prices. I'm sure he has several mail-order catalogs in his desk and may order to his heart's content.

Jobbers need dealers and the Philadelphia plan gives dealers a big prestige boost by preventing the prostitution of fair market value of products with indiscriminate price cutting.

JOHN A. DOYLE
Bath, Me.

END

FEBRUARY, 1961

New kind of KIT from H. H. Scott...

EASY-TO-BUILD 72 WATT STEREO AMPLIFIER KIT LOOKS AND PERFORMS LIKE FACTORY- BUILT UNITS! $149.95*

Here's the kit that makes you a professional. Beautifully designed, perfectly engineered, and so easy to wire that you can't go wrong. In just a few evenings you can build a professional 72 watt H. H. Scott stereo amplifier... one so good it challenges factory-assembled units in both looks and performance.

H. H. Scott engineers have developed exciting new techniques to ease kit-building problems. The Kit-Pak container unfolds to a self-contained workable. All wires are pre-cut and pre-stripped. Parts are mounted on special cards in the order you use them. All mechanical parts are pre-riveted to the chassis.

Build a new H. H. Scott LK-72 for yourself. You'll have an amplifier that meets rugged IHFM specifications... one that delivers sufficient power to drive any speaker system... one that's professional in every sense of the word.

TECHNICAL SPECIFICATIONS: Full Power Output: 72 watts, 35 watts per channel • IHFM Power Band: extends down to 200 psc • Total Harmonic Distortion: (1k) under 0.4%. • Amplifier Hum Level: better than 0.2db below full power output • Tubes: 4 - 7591 output tubes, 2 - 7199, 4 - 12AX7, 1 - 5AR4 • Weight of Output Transformers: 12 pounds • Amplifier fully stable under all loads including capacitive • Dimensions in accessory case: 13 x 13 x 7 • Size and styling matches H. H. Scott tuners.

If you would like complete details on our new LK-72 Complete Amplifier Kit, LT-10 FM Tuner Kit, and Custom Stereo Components for 1961.

H. H. SCOTT
If. Scott Inc., Dept. 570-02
111 Powdermill Road • Maynard, Mass.

Rush me complete details on your new LK-72 Complete Amplifier Kit, LT-10 FM Tuner Kit, and Custom Stereo Components for 1961.

Name: ...
Address: ...
City: ...
State: ...
Export: Telesco International Corp.
36 W. 40th St., N. Y. C.
Very Hot News . . . from hallicrafters

Two great new kits...a complete, high-performance AM/CW station, from the world's most experienced designers of short wave equipment

HALLIKITS, we call them—a completely new concept of kit engineering that brings to your workshop, for the first time, these two outstanding advantages:

First, the unparalleled design experience of Hallicrafters' communications laboratories; and *second*, production-line proof of "Constructability" before you buy.

Have a wonderful time! Save a bundle of money! End up with a station the most experienced amateur would be proud to call his own.

HT-40 TRANSMITTER, $79.95
A perfect match for the handsome SX-140, both in quality and appearance. Hallicrafters' transmitter leadership is evident in every precision-engineered feature of this crystal-controlled 75-watt beauty—features as important to old-timers as they are to novices.

FEATURES: You get excellent CW performance as well as AM. Full band switching; 80 through 6 meters. Enjoy easy tune-up and crisp, clean styling that has efficient operation as well as appearance in mind. Unit is fully metered, TVI filtered.

SPECIFICATIONS: Maximum D.C. power input: 75 watts. Power output in excess of 35 watts CW, 30 watts peak AM phone. (Slightly less on 6 meters.) Frequency bands: 80, 40, 20, 15, 10 and 6 meters.

TUBES AND FUNCTIONS: 6DQ5 power output; 6CX8 crystal oscillator and driver; 12AX7 speech amplifier; 6DE7 modulator; silicon high voltage rectifiers.

FRONT PANEL: Function (AC off, tune, standby, AM, CW); Band Selector (80, 40, 20, 15, 10, 6); Drive control; Plate loading, Crystal-V.F.O.; Grid Current; Meter; AC indicator light; RF output.

REAR CHASSIS: Microphone gain; antenna co-ax connector; remote control terminals; AC power cord.

SX-140 RECEIVER, $94.95

 Doesn't it make sense to team up your skill with the experience of a company who has designed and built more high-performance receivers than any other in the world? Especially when the result is the lowest-priced amateur band receiver available!

FEATURES: You get complete coverage of all amateur bands 80 through 6 meters, with extremely high sensitivity and sharp selectivity. Unit has RF stage; S-meter; antenna trimmer; and XTAL calibrator. Tuning ratio is 25 to 1.

CONTROLS: Tuning; Antenna Trimmer; Cal. Reset; Function (AC off, standby, AM, CW-SSB); Band Selector; Cal. on/off; RF Gain; Auto. Noise Limiter on/off; Selectivity/BFO; Audio Gain; phone jack; S-meter Adj.

TUBES AND FUNCTIONS: 6A25 tuned RF amplifier and crystal calibrator; 6US oscillator and mixer; 6BA6 1650 kc. IF amplifier and BFO; 6T8A 2nd detector, A.V.C., ANL and 1st audio; 6AW8 A audio power amplifier and S-meter amplifier; (2) silicon high voltage rectifiers.

P.S. Both units are available fully wired, and tested. SX-110, $109.95. HT-40, $99.95.

halli-kits from hallicrafters

Chicago 24, Illinois

...where the new ideas in communications are born!

Export Sales: International Die, Raytheon Co., Waltham, Mass. Canada: Gould Sales Co., Montreal, P.Q.

www.americanradiohistory.com
DEIGNED AS YOU WOULD DESIGN IF YOU WERE AN ELECTRONICS ENGINEER...

Praised by the experts as Best Buys.

EICO®

By far the best professional VTM value in electronics, nobody but EICO brings you such outstanding instrument performance for so low a price! Calibration without removing from cabinet. Measure directly p-p voltages of complex & sine waves 0.1, 1, 10, 100, 1000, 10000, 100000 (up to 30,000 Vols with HPV probe, & 250 mc with P&F probe). 0.2 ohms to 1000 megas, 450-meter, card/burn-out circuit. 7 non-skid ranges on every function. Zero drift features EICO’s exclusive UNI-PROBE! Your terrific time-saver, performs all functions. A half turn of probe-tip selects DC or AC-Ohms.

A

An engineering achievement unmatched in the industry! EICO-designed for laboratory precision and EICO-priced for lowest cost. Features DC amplifiers. Flat from DC to 4.5 mc, usable to 10 mc. Vert. Sens. 25 mv/m, input 7 mgs; direct-coupled & push-pull throughout. 4-step frequency compensated attenuator up to 1000V/m. Slew; perfectly linear 20-cps-100 kc (ext. cap. for range to 1 cps). Pre-set TV V & H positions. Auto sync limiter & amplifier Direct or C-coupled, balanced or unbalanced inputs. edge-leaf engraved foliate screen with dimmer control.

B

More features and versatility, more range and accuracy than in generators costing three to four times as much. 100 kc to 435 mc with ONE generator in 6 fundamental bands and a harmonic band! +15% frequency accuracy. Colpitts RF incorporated directly state-modulated by V-follower for improved modulation. Variable depth of internal modulation 0-50% by 400 cps Colpitts oscillator. Variable gain external modulation amplifier: only 3 volts needed for 50% modulation. Tuner mounted, slp-tuned coil for max. accuracy. Fine & Coarse (3-step) RF attenuators. RF output 100,000 volts, AF output 70 volts.

C

D

Speedy, simple operation, unexcelled accuracy and accuracy, superior electrical and mechanical design. Tests all receiving tubes (picture tubes with adapter), n-p-n and p-n-p transistors. Composite indicators 0-500 kc & peak emission. Simultaneous selection of any one of 4 combinations of 3 plate voltages, 3 screen voltages, 3 ranges of continuously variable grid voltage (with 5% accuracy pot.). Sensitive 2000 volt meter, 10 position lever switches: freepoint connection of each tube pin. 10 push-buttons: rapid insertion of any tube element in leakage test circuit. Direct reading of inter-element leakage in ohms. New gear-driven rollchart, CRD Adapter "$4.50.

E

Dynamic Conductance Tube & Transistor Tester #666

KIT $29.95 Wired $49.95

Complete with steel cover and handle

F

Most EICO distributors offer budget terms.

G

Export: Roburn Agencis, Inc., 431 Greenwich St., New York 13, N.Y.
NEW MEDALIST LINE

4-TRACK STEREO TAPE DECK
MODEL RP-100W
Completely assembled, wired and tested. $395.00
MODEL RP-100K
Semi-kit includes a completely assembled and tested transport, electronics in kit form. $289.95

Perfected 4-track stereo/mono recording, 4 & 2 track playback. True high fidelity transistor electronics, individual for record & playback, plus separate record & playback heads permitting off-the-tape monitor. 2 recording level meters, mixing, mic & level controls; switched sound-on-sound recording; Electro dynamically braked supply & take-up reel motors; hysteresis synchronous capstan motor. Individual splendoids for pinch-roller & tape lifters. All-electric, interlocked push-button transport control & interlocked safety "record" pushbutton. Precision tape guidance & sweep loading — no pressure pads. No slurring or tape bounce problems. Digital turns counter. Vertical or horizontal mounting. Modular plug-in construction. An original, exclusive EICO product designed & manufactured in U. S. A. (patents pending).

FM and AM stereo tuners on one compact chassis. Easy-to-assemble; prewired, prealigned RF and IF stages for AM and FM. Exclusive precision prewired EYE-TRONIC tuning on both AM and FM.

FM TUNER

AM TUNER
Switched "wide" and "narrow" bandpass. High Q filter eliminates 10 kc whistle. Sensitivity: 3uv for 1.0V output at 20db S/N ratio. Frequency Response: 20-9,000 cps ("wide"); 20-4,500 cps ("narrow").

FM-AM STEREO TUNER ST96
Kit $89.95 Includes Metal Cover and FET Wired $129.95

OF EICO STEREO

70-WATT INTEGRATED STEREO AMPLIFIER ST70
Kit $94.95 Includes Metal Cover Wired $144.95

40-WATT INTEGRATED STEREO AMPLIFIER ST40
Kit $79.95 Includes Metal Cover Wired $124.95

Both amplifiers: Complete stereo centers plus two excellent power amplifiers. Accept, control, and amplify signals from any stereo or mono source.

ST70: Cathode-coupled phase inverter circuitry preceded by a direct-coupled voltage amplifier. Harmonic Distortion: less than 1% from 25,000 cps within 1 db of 70 watts. Frequency Response: ±1/2db 10-50,000 cps.

ST40: Highly stable Williamson-type power amplifiers. Harmonic Distortion: less than 1% from 40,000 cps within 3 db of 40 watts. Frequency Response: ±1/2db 12-25,000 cps.

Over 2 MILLION EICO instruments in use. Most EICO Dealers offer budget terms.

EICO, 3300 N. Blvd., L.I.C. 1, N. Y.
C-2
Send free 32-page catalog & dealer's name
Send new 36-page Buildback to Hi-Fi for which I enclose 25c for postage & handling.
Name
City
Zone
State
Add 5% in West. Turn Page For More EICO Values.

There's an EICO for your every stereo/mono need. Send for FREE catalog.

Listen to the EICO Hour, WABC-FM, N. Y. 95.5 MC, Mon.-Fri., 7:15-8 P.M. © 1961 by EICO. 3300 N. Blvd., L. I. C. 1, N. Y.

EXPORT: Roburn Agencies, Inc., 431 Greenwich St., New York 13, N. Y.

RADIO-ELECTRONICS
UPHEAVAL IN ELECTRONICS

... Future Electronic Devices Border the Incredible ...

JUST as electronics of today bears no resemblance to electronics of 50 years ago, the present art cannot be compared to electronics 50 years hence.

And if we consider the ultra-rapid advances during the last 10 years, since the advent of the transistor, we know that we cannot possibly comprehend the potential electronic evolution of the next 50 years. At best, we can glimpse only dimly a few of the future evolutions.

We are now at the beginning of a new upheaval: Microelectronics.* The new art of making practically all electronic components of almost invisible thin films, only a few molecules thick, is already well established. While the components are still not available commercially, many are already orbiting around the earth in our recent satellites and are performing well. It is certain that a large number of electronic microcomponents will be on the market before 1965.

Already the transistor is beginning to be eclipsed in certain directions by the maser and the tunnel diode. Even more promising is the recent newcomer, the yet unnamed cross-film, solid-state cryo-electronic (from the Greek, cryos, cold, freezing) device of inventor Ivar Giaever, of General Electric. This new device, a versatile simple component functions at once as a switch, diode, negative-resistance diode, triode, resistor or capacitor?†

Future compact components such as the Giaever device, smaller than a dime, will probably replace the usual radio chassis.

The reader will object to such a prediction because the new device is cryo-operated. It functions only in intense cold, at a temperature of 1.2° Kelvin, near absolute zero, in the vicinity of -459°F.

That means a flask of supercooled helium is needed—a large and cumbersome adjunct, without which a superconductor cannot function. At least not now. Yet in the future we will have purely electronic superconductors without benefit of helium flasks or chemical or mechanical makeshifts.

Curiously, the first pure cryo-electronic device was invented by the French physicist, Jean Charles Athanase Peltier (1785–1845). He made a cross of square antimony and bismuth rods, which, when connected to a battery, reduced the temperature at the junction to -4.4°C (24.1°F). Today we have reached much lower temperatures with newer metal alloys in the evolution of new nonmechanical air-conditioning and other cooling devices.

It seems quite certain that in the future we will see very efficient semiconductor cryo-electronic units that will be very compact and efficient. There seems to be no good scientific reason why we will not have microcryo-electronic units the thickness of a dime, built up of films of molecular thickness that produce the necessary Kelvin temperature for superconductors.

What will be the advances in loudspeakers? They, too, will shrink in size. Even today we have radios with loudspeakers (for the near deaf) that are so small that they fit within the ear cavity. There seems to be no reason why we will not have small electrostatic speakers the size of a dime, made from a plurality of metal or semiconductor films. Such speakers, despite their minute size, will be able to function well in the open, perhaps better than our large speakers of today. If one realizes how minute a child’s whistle is, yet how loud it sounds, one should not conclude that miniature audio devices are not technically feasible.

While the sensitivity of our detecting devices has constantly been increased and while the gain of our amplifiers has been pushed higher and higher, we are still at the very beginning of the art of detection and amplification.

In the not too distant future, we should be able to speak to the antipodes with a two-way pocket radio, battery-operated, the size and thickness of a matchbook, including batteries. It will also be practically noise-free.

There will not be a large demand for antipodal radios—it is simply given here as an illustration of what can be done in the future.

Actually, such diminutive radios will probably be carried by citizens for protective purposes, against holdups, robberies and general crimes. Hidden under clothing, the set can be turned on when necessary. Such transceivers will be monitored by police stations or by the policeman on the beat. Help can thus be summoned within seconds. Such devices will certainly be crime preventors, when universally adopted.—H.G.

*See editorial, “Microelectronics,” February 1960, RADIO-ELECTRONICS.
† See RADIO-ELECTRONICS, January 1961, page 12.

FEBRUARY, 1961
you can build a
TOP CHASSIS
horizontal sweep analyzer

Simple to make, easy to use unit speeds horizontal sweep circuit troubleshooting

All four tests are made by simply removing the horizontal output tube (6BQ6, 6CD6, 6AV5, etc.) and plugging it into the HSCA adaptor socket—then plugging the adaptor socket back into the television set. The HORIZ TYPE switch is set to the correct position and the TV set is turned on.

The circuit
The horizontal output tube's cathode current is measured by determining the voltage drop across a 5-ohm resistor (R1) placed in series with the cathode (Fig. 1-a). A 20,000-ohm pot (R5) acts as a meter multiplier resistance.

The horizontal output tube screen voltage is measured from either pin 4 or 8 (depending on the tube type) to the cathode. The meter multiplier is a 4.7-megohm resistor (R3) in series with R4, the 1-megohm screen voltage calibrating pot (Fig. 1-b).

The horizontal oscillator output is measured across a 39,000-ohm resistor (R2) placed in series with the cathode of the horizontal output tube. A 1-megohm pot (R7) is used to calibrate the circuit (Fig. 1-c). When an adapter cable is used, this method of checking oscillator output is more satisfactory than attempting to check from the grid circuit. Any try at reading the ac oscillator output from the grid loads the grid circuit with the capacitance of the adapter cable.

Instruments such as the Doss Pioneer 250 Horizontal Sweep Quantalyst do measure the dc drive from the grid circuit by placing the meter multiplier in the socket adapter. This method effectively isolates the cable capacitance from the grid but makes parasitic oscillations possible unless special techniques are used.

The only disadvantage of measuring the horizontal oscillator output from the cathode of the horizontal output tube is that there must be some current in the horizontal output tube. This is the reason for the sequence of tests in the HSCA. If there is no cathode cur-

By WAYNE LEMONS

THIS horizontal sweep circuit analyzer (I call it the HSCA) provides a quick and simple method of dividing the horizontal circuit, so you can tell in which direction to troubleshoot.

It also tests circuit performance so that many callbacks may be eliminated. And all this without pulling the chassis.

Parts to build this unit are standard and easily obtained. Calibration is simple. When you get the analyzer built, you'll find it one of the most frequently used pieces of "nonstandard" test equipment. The HSCA will give you an insight into the horizontal circuit that can't be duplicated by any but the most specialized horizontal circuit test instruments.

The HSCA makes four tests at the horizontal output tube:

- Cathode current.
- Screen voltage.
- Oscillator output.
- Horizontal oscillator frequency.
Fig. 1—Simplified circuit of each test. The HSCA performs: a—cathode current; b—screen voltage; c—horizontal oscillator output; d—horizontal oscillator frequency.

rent in the first check, then of course there will be no apparent oscillator output, nor frequency for that matter.

Horizontal oscillator frequency is measured by passing the cathode current of the horizontal output tube through a one-turn loop placed around a standard horizontal ringing coil. A capacitance divider, C2 and C3, is placed across the ringing coil to produce a resonant circuit at 15,750 cycles. Diode (D2) and a 5,000-ohm sensitivity control (R6) along with the meter are placed in parallel across the .02-μf capacitor (C3) in the capacitance divider (Fig. 1-d). At resonance, the circulating current is maximum in the circuit. This in turn causes the meter to read maximum or to peak when the horizontal oscillator in the TV set is operating at the correct frequency.

Construction

The HSCA is built into a 5 x 4 x 3-inch case. The size is not important (except as a minimum) and neither is the parts layout. The complete circuit is shown in Fig. 2.

The case is not connected to the common return and actually floats although, if desired, it could be made completely cold by using a .05-μf capacitor and a 100,000-ohm resistor in parallel between the box and common. The case is left floating because some sets do not use the chassis as the common return. In this event a short might occur if the HSCA were brought in contact with the chassis. The common tie point is the negative terminal of the meter.

The most difficult thing about the HSCA to build is the adapter socket. Fig. 3 shows it ready to be assembled. Note the staggered length jumper wires on socket SOC. They make it easier to thread them into the pins of plug PL. The low-voltage wire should enter PL between pins 1 and 2. Two wires from the cable are soldered to pins 3 and 8 of PL. The three remaining cable wires are soldered to SOC after the jumper wires are threaded into PL just before the pins are pushed completely together. Last, SOC and PL are pushed tightly together and the jumper wires are soldered into place. Excessive wire protruding through the pins is clipped flush. Make sure none of the cable wires come near jumpers wire 5 during final assembly. Pin 5 is hot with rf when single-ended horizontal output tubes are being tested.

The meter used was a surplus unit with 100-μa sensitivity. However, less sensitive meters might be used by calculating the proper value multiplier. The sensitivity of the frequency-measuring circuit may be increased by making L1 a three- or four-turn winding and lowering the capacitance of C3 to .01 μf.

None of the resistance values are critical except perhaps R3, which should measure near its 4.7-megohm value. Otherwise it may prevent your calibrating the screen voltage circuit properly.

To calibrate the horizontal sweep circuit analyzer:

1. Open the jumper between S1-a and S2-a's rotors and insert an accurate milliammeter. (Most shop voms have milliampere positions and are sufficiently accurate.) Now connect the HSCA to any TV set that PL is in good working order. Adjust R5, the cathode current calibrating pot, for the same current reading as indicated by the milliammeter used for calibration. Full-scale meter reading should be 250 or 500 ma, depending upon the meter used. In our unit, the meter has scale divisions of 0–25, so we used 250 ma. Most TV sets using 6BQ6 type tubes will draw from 90 to 105 ma. Sets using 6CD6 types may draw as much as 180 ma.

Horizontal output screen voltage is calibrated with an accurate vom or vtv. Hook up the HSCA to a normally operating set and measure the screen voltage between the switch rotor terminals of S1-a and S1-d. Then adjust the screen-voltage calibrating pot R4 for the correct reading on the HSCA. This time use, if possible, 500 volts as full scale. The multiplier resistances shown were selected for this full-scale reading.

To calibrate the horizontal oscillator output, use a 110° set if possible. Install a new oscillator tube and then rotate horizontal-oscillator calibrating

Fig. 3—The socket adapter shown ready for final assembly. See text for details.
pot R7 until the HSCA meter reads about 75% to 80% of full scale. Then check several other sets with the same and different deflection angles. Sets with smaller deflection angles will read correspondingly less on the meter as a general rule. Using the HSCA on several sets will give you the feel of the instrument so you can determine whether there is enough horizontal output voltage. Now the raster disappears in this position because the horizontal output cathode has a high resistance (39,000 ohms) in series with it.

Calibrating the horizontal oscillator frequency is simplicity itself. With the HSCA connected to a normally operating set, lock in the picture horizontally and turn the HSCA's ringing-coil slug until the meter reads maximum. If the meter deflects off scale, use the sensitivity control to bring it back in range. The HSCA is now ready for use in repairing and adjusting horizontal sweep circuits.

Troubleshooting with the HSCA

Remove the horizontal output tube and insert the HSCA adapter in its place. Then plug the output tube into the adapter. Now we can start checking.

Move the function switch to position 1, cathode current (CC). Read the cathode current. It should be about 90 to 105 ma for 'BG6, 'BG6, 'AU5 and 'AV5 types; 100 to 140 ma for 'DG6 types, and 110 to 180 ma for 'CD6, 'DN6 and 'EX6's. If cathode current is low, it may be caused by a defective tube, low screen voltage, a cathode resistor changed higher in value, no plate voltage or low B-plus. High cathode current is usually caused by a defective tube, high screen voltage, little or no oscillator output, a leaky coupling capacitor, shorted turns in the flyback or yoke, a shortened width coil or capacitor, a shortened boost capacitor.

A shorted boost capacitor is easily spotted by taking a resistance measurement between the plate and cathode of the damper tube socket. In most sets this resistance will be 200,000 ohms or more and, in any event, not less than 10,000 ohms. Check the schematic if the reading seems suspicious. Measuring this resistance will also spot a yoke that has broken down between horizontal and vertical windings.

Even if cathode current is high or low, it is a good idea to make the other three tests with the HSCA before doing further troubleshooting. The next three tests may pinpoint the trouble precisely.

Step 2 measures the screen voltage with the function switch turned to SV. It should always be as low as is consistent with ample sweep width, and should never exceed about 175 (preferably 150) volts for all tube types except the 'BG6, which may operate normally with up to 875 volts on the screen.

High screen voltage is usually caused by a changed-value screen dropping resistor. If screen voltage is high, check this resistor with an accurate ohmmeter. Of course, a defective tube would also cause a high screen voltage reading. Low screen voltage is most often caused by a defective tube, a wrong-value screen dropping resistor, a shorted or leaky screen bypass capacitor, low B-plus or no plate voltage on the output tube.

Step 3 (S2 set to 10) measures the horizontal oscillator output. This test is especially important in determining whether there is enough drive to the horizontal output tube to develop high voltage. Readings should be 75% of full scale or more for 110° sets; over 60% for 90° sets; over 45% for 70° and over 25% for 50° sets. These are representative readings and depend upon the calibration of the HSCA. The meter will read zero if the oscillator is not working.

Use this position as a very accurate test of horizontal oscillator tubes. Because the cathode of the horizontal output tube is effectively open during this test, you may change horizontal oscillator tubes with the set turned on, without damaging the output tube. Install the new oscillator tube and see if the reading is greater than before. Also—and this is important—recheck step 1 for a change in cathode current. Often a new oscillator tube reduces the cathode current of the output tube from 5 to 20 ma, even though the old tube may seem to be operating properly.

Step 4 measures the horizontal oscillator frequency. This test is vital and is made with S2 turned to HF. Along with the output test, it can point the finger of suspicion either to or away from the horizontal oscillator circuit. Horizontal oscillator drift can also be determined using this test.

To determine whether the oscillator is at the correct frequency—simply rotate the horizontal hold control on the TV set while watching the meter. Maximum deflection will occur on the meter when the set's horizontal oscillator is at the correct frequency (15,750 cycles). If the meter deflects off scale, reduce sensitivity with R6. If there is sufficient horizontal oscillator output (step 3) and if the horizontal oscillator is at (or near) frequency, you can be sure that any trouble in the horizontal sweep circuit is not in the horizontal oscillator but in the output, damper or high-voltage circuits. If, on the other hand, the horizontal oscillator cannot be brought on frequency, as noted by little or no deflection on the meter even at full sensitivity, or if there is insufficient output as registered by a low reading in step 3, the horizontal oscillator faults must be corrected before further tests are made on the sweep circuits.

Horizontal oscillator drift over long periods of time is almost undetectable with conventional test instruments. The HSCA may be used to monitor the oscillator frequency while you are busy somewhere. Here's how it is done.

Set the HSCA function switch to step 4, horizontal frequency. Turn the set on and, with the channel selector set on an unused channel, turn the horizontal hold until the meter peaks. Now, using the sensitivity control, adjust the meter pointer for an arbitrary number on the meter, say 20. Let the set run for an hour or two or whatever. If the horizontal oscillator frequency changes, the meter reading will drop. Turning the set's horizontal hold control to zero the meter will show you the circuit has drifted and about how much. If you must turn the horizontal hold control to lower its resistance, the oscillator has drifted low in frequency and vice versa.

Finding interferences

A bonus feature of the HSCA is that the circuit in the TV set may be disturbed rather violently by opening the cathode repeatedly. Border-line components will nearly always break down under these conditions. So if you have an intermittently failing set or one that blows fuses occasionally, you can probably find the culprit fast with the HSCA. Function switch position 3 opens the cathode completely. Position 5 is the TRANSIT position for when you carry the HSCA on service calls. It shorts the meter, thereby damping the movement.
HSCA Troubleshooting Chart

<table>
<thead>
<tr>
<th>INDICATION</th>
<th>POSSIBLE TROUBLE</th>
<th>HOW TO FIND THE TROUBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST 1 — CATHODE CURRENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive</td>
<td>Defective tube.</td>
<td>Replace horizontal amplifier.</td>
</tr>
<tr>
<td></td>
<td>Shared boost capacitor.</td>
<td>Check for short between plate and cathode of damper tube.</td>
</tr>
<tr>
<td></td>
<td>Leaky coupling capacitor.</td>
<td>Open cathode (transit position) and measure for positive voltage on grid of horizontal amplifier. (Gassy tube will also show a positive voltage on grid with cathode open.)</td>
</tr>
<tr>
<td></td>
<td>High screen voltage.</td>
<td>Measure, test 2.</td>
</tr>
<tr>
<td></td>
<td>Little or no oscillator drive.</td>
<td>Measure, test 3.</td>
</tr>
<tr>
<td></td>
<td>Shorted flyback or yoke.</td>
<td>Disconnect yoke—if cathode current changes little, flyback is probably defective. Tests 2, 3 and 4 must be normal, however.</td>
</tr>
<tr>
<td></td>
<td>Shorted width coil.</td>
<td>Disconnect and check for high voltage.</td>
</tr>
<tr>
<td></td>
<td>Shorted width capacitor.</td>
<td>Disconnect and check with ohmmeter.</td>
</tr>
<tr>
<td>Low</td>
<td>Defective tube.</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>Low screen voltage.</td>
<td>Measure, test 2.</td>
</tr>
<tr>
<td></td>
<td>Open yoke.</td>
<td>Measure with ohmmeter.</td>
</tr>
<tr>
<td></td>
<td>Open yoke coupling.</td>
<td>Shunt with good capacitor.</td>
</tr>
<tr>
<td>Noise</td>
<td>Defective tube.</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>No B-plus.</td>
<td>Check fuse, etc.</td>
</tr>
</tbody>
</table>

TEST 2 — SCREEN VOLTAGE		
Extensive	Defective tube.	Replace.
	Screen resistor changed value.	Measure with ohmmeter.
Low	Defective tube.	Replace.
	Screen resistor changed value.	Measure with ohmmeter.
	Leaky coupling capacitor.	Check as noted in test 1.
	Little or no drive.	Check—test 3.
	Little or no plate voltage on horizontal amplifier.	Measure voltage with regular voltmeter only if no rf present.
	B-plus low.	Check.
Noise	Open screen resistor.	Measure with ohmmeter.
	Shunted screen bypass capacitor.	Measure with ohmmeter.
	No B-plus.	Check in normal manner.

TEST 3 — OUTPUT		
Little or none	Defective oscillator tube.	Replace.
	Defective parts in oscillator circuit.	Make regular diagnosis.
	Oscillator off-frequency.	Measure—test 4.
	Open coupling capacitor.	Shunt with good capacitor.
	Shorted drive trimmer.	Measure with ohmmeter.
(NOTE: No oscillator output will be registered by the HSCA if the horizontal output tube has no cathode current—test 1.)		

TEST 4 — FREQUENCY		
Little or none cannot be made to pass through a peak reading at any setting of the IF set's hold control.	Oscillator not at correct frequency.	Replace oscillator tube.
		Check all electrolytics in the oscillator circuit.
		Check for charged-value resistors or capacitors.
		If oscillator is multivibrator type, ground the sync input grid. If it returns to normal frequency, trouble is in phase comparator or sync circuit.
		Short out ringing coil with 1,000-ohm resistor. If oscillator returns to normal, check for defective ringing coil or capacitor, or misadjustment.
		For Synchroguides, short out phase adjusting coil and recheck frequency.
		Check also for leaky sync coupling capacitors, etc.
Diodes used to be rectifiers—now they are switches, amplifiers, voltage regulators and even capacitors

By DONALD L. STONER

WHAT is a diode? Once, this was an easy question to answer. But that was back when you could say that a diode is a device that lets a current flow in only one direction. Today, a diode might be a switch, an amplifier, a capacitor, a voltage regulator, a conductor of currents in more than one direction, or many things not even remotely associated with rectification! The once humble diode may be used to convert light into electricity, ring an alarm when frost threatens or catch burglars who are after the family valuables.

Let’s take a look at the operation of a semiconductor junction diode. Such units consist of a sandwich of p- and n-type germanium or silicon. Impurities are added to the p-type material to make its atomic structure short in electrons. However, due to a sharing of electrons, the structure is still quite balanced. The opposite is true for the n-type material—the atomic structure has a surplus of electrons. When the two materials are joined, you might expect the surplus of electrons in one wafer to cross immediately to the other side and make up the deficit. This does not happen. Each material is electrically neutral or balanced and, if an electron from the n-material crossed to the p-material, each of the two pieces would take on a charge. The n-material, having lost an electron, would be positive and, of course, the p-material would be negative. Actually, a field or barrier is set up between the two pieces and only the pressure of voltage will force the reluctant electrons across.

The barrier

We might consider the barrier as a little gap between two areas. We might even consider the gap an insulator (which it really is under certain conditions) and the two materials the plates of a capacitor. By applying a reverse bias (negative anode, positive cathode) to the two plates, the width of the gap or barrier can be altered. Thus we have a capacitor whose value can be changed by varying a dc bias applied to it. Naturally enough, if we reverse the polarity of the bias (positive anode, negative cathode), the barrier will break down and the diode will conduct. When alternating voltage is applied, the barrier is alternately broken down and then built up. Current flows only during the half-cycle the barrier is down.

The barrier capacitance is a very real and usable one. Several manufacturers have developed diodes especially for this purpose and have given them names to suggest their purpose. However, all germanium or silicon diodes exhibit this property and ordinary general-purpose diodes may be used by experimenters. (The diodes made especially for this application have excellent capacitance stability under varying temperature.)

The variable-capacitance diode lends itself to a variety of applications: automatic frequency control, sweep generators, remote tuning control, frequency modulation and others too numerous to mention in the space available. Fig. 1 shows an experimental circuit for demonstrating the variable-capacitance effect. Naturally, to avoid rectification, the rf voltage must not exceed the dc bias. Audio applied across the bias will frequency-modulate the signal.

Diode switch

When a diode is forward-biased (positive anode, negative cathode), it actually becomes a conductor, just like a piece of wire. As such, it may be used to connect one component to another, like a switch. Audio or rf may be turned off and on so long as the signal through the diode does not exceed the bias voltage. When this happens, rectification will take place. When the diode is reverse-biased, the barrier is re-erected and no rf or audio can flow. The diode may therefore be used as a switch or, more correctly, as a relay.

Fig. 2 gives the general idea of a diode switching circuit. Of course, it is a simple matter to gang up sections to get any number of poles or functions.

Fig. 1—A reversed-biased germanium diode acts as a variable capacitor. The 10,000-ohm pot varies the reverse bias and, thereby, the capacitance.
I have done this to replace an antenna relay. It has also been used in the place of a signal switching relay in radiotelephone equipment. The advantages of such a device will immediately be obvious. Hard-to-get-at circuits may be conveniently switched, antennas may be changed over on the tower itself (using only one feed line), and even a receiver bandswitch (and its ganging problems) can be taken over by the diode switch.

The circuitry is simple, there are no moving parts to wear out, and dust cannot cause intermittent operation. The diode must be carefully chosen for each application, however. Silicon power diodes (currently available at low cost) may be used to switch a transmitting antenna. Germanium 1N34's can conveniently switch audio or rf in a high-impedance circuit. In fact, there is nothing that the right semiconductor diode can't switch.

Limit control

Oscillators must run class-A to be very stable. The amplitude of the oscillation must be limited one way or another so that the peaks don't extend into the nonlinear region of the tube's characteristics. A reverse-bias diode, acting as a clipper, might well be used to limit oscillator amplitude. It is already used in audio work where it is called speech clipping.

The principle may be applied to a variety of circuits. Transistor receivers, for example, use the reverse-biased diode to assist age action on strong signals. In this case, the reverse bias is overcome by the age voltage at a pre-determined level and the diode becomes a short circuit across an rf transformer, thereby causing a reduction in receiver gain. When age drops again, normal operation resumes.

Zener diode

Silicon diodes, when subject to a reverse bias, break down when the bias exceeds a certain figure, and conduct. This is the Zener voltage. The voltage at which this effect occurs is very constant and thus the device makes a good voltage regulator. In this application the barrier has been overcome by sheer force. Zener diodes may be used exactly in the same way as voltage-regulator tubes (Fig. 3). The Zener diode normally conducts and, as the supply voltage rises, the Zener current increases.

When the supply voltage decreases, the Zener current likewise decreases. This tends to level off voltage changes for improved regulation in much the same manner as a voltage-regulator tube.

Fig. 3—Zener diode can regulate power supply. It acts like a voltage-regulator tube.

Zener diodes cover a range from a fraction of a volt to several hundred volts. The currents they handle vary from a fraction of a milliampere to many amperes. Accuracy may well be perfect or, if such perfection is not required, 20%, 10%, 5% or whatever is needed. The 1N430-A, for example, will hold the voltage constant within .007 volt over a temperature range of −55°C to 165°C! This type of diode may be used to regulate an accurate source of voltage for instrument calibration, as a solid-state secondary cell and so on. Naturally one wouldn't use such a diode for simple regulation applications. For this purpose there are less expensive units with wider tolerances.

Zener diodes have a variety of uses. They may control the bias in a tube or transistor class-A, -B or -C stage merely by being inserted in the cathode...
Photodiodes generate tiny current when the diode junction is illuminated.

In Fig. 4-A Zener diode in the cathode of a tube amplifier (emitter of a transistor amplifier) holds bias constant.

or emitter lead. Such a system is shown in Fig. 4. The arrangement has been used to bias a 7094 single-sideband linear amplifier. The Zener unit may be connected in parallel with a meter to protect it against overloads. It may take the place of coupling capacitors in audio amplifiers or even electrolytics. In a power supply, the Zener diode will represent around 3,000 µf of capacitance even in an inexpensive unit. So numerous are Zener-diode applications that several books have been written about them. Service technicians may expect to see more and more of them as time goes by.

The photodiode

If, while forward-biased, a junction diode is exposed to light, the current flowing through it will change. The diode has the properties of (and may actually replace) a photocell. The Philips (Amperex) OAP12, for example, has a built-in lens, is less than ⅛ inch in diameter, generates very low noise and has a host of uses from sound scanning of motion-picture film through computer punch-card scanning to the detection of fire or smoke.

Only the surface has been skimmed when it comes to new applications for modern-day diodes. Tunnel diodes, for example, have not been mentioned, for a full discussion of these devices would more than fill a magazine of this size. The solar cell, too, is really a diode and its applications are numerous. The field of diode application is an exciting one, and one that will pay you to keep abreast of in the months to come. There's something new to be seen almost every day.

Zener diodes come in a variety of sizes. Both of these units can dissipate 1 watt.

An inexpensive power transistor takes the place of an expensive tapered rheostat

By Paul S. Lederer

In the past few years, model railroading has become increasingly popular. In particular, HO gauge trains have gained a large number of adherents. HO rolling stock is powered by 12 volts dc fed to the engines through the rails. Most HO train sets are sold with all rolling stock and tracks but without a power pack. It must be bought separately.

The basic power pack consists of a stepdown transformer which feeds a rectifier (either a bridge or center-tapped full-wave type). The resulting pulsating dc passes through a rheostat (for speed control) and a dpdt switch (to reverse the polarity of the voltage) to the rails.

The rheostat used for speed control is rather special. Its tapered winding consists of a number of sections, each wound of different size wire, with the size (cross-section area) of the wire increasing in the direction in which the slider advances for decreasing rheostat resistance. This permits increased but safe dissipation as the resistance is decreased. A conventional rheostat of the same dissipation rating would have to be wound with wire corresponding to the largest used in the tapered pot. This in turn would result in a smaller overall resistance change and consequently a smaller degree of control over the train speed. Needless to say, tapered rheostats are expensive, about $6.

The power pack described here does not use a tapered rheostat. Instead it uses a power transistor whose internal resistance is controlled by varying its base bias current. This transistor, a 2N256, is connected in a grounded-

www.americanradiohistory.com
The transformer, a Stancor type RT-201, has two main stepdown windings; each one delivers 16 volts ac rms. In this power pack they are connected in series with the junction forming the common return for the supply. The other ends of these windings are connected to a center-tapped full-wave selenium rectifier. The particular unit used (IRC J14C1) is designed to handle 1.5 amps at 14 volts dc. (Another rectifier which may be used, the Sarkesian-Tarzian D-16, handles 2 amps, which is the maximum capacity of this transformer.)

A 1,000-ohm wire wound potentiometer (R2) is connected across the dc supply and its arm goes to base of the transistor. Varying the position of the sliding contact varies the transistor's base bias current and thereby varies the transistor's internal (collector-to-emitter) resistance. Thus the potentiometer-transistor combination works like the tapered power rheostat in controlling the source resistance of the power supply and therefore the power delivered to the train.

Since the transistor acts as a variable resistor, it must be able to dissipate varying amounts of power safely. The 2N256 has a maximum rated power dissipation of 1.5 watts in free air, and of 6.25 watts with a large heat sink. For 6.25-watt operation, mount the transistor on the aluminum chassis of the power pack. Remove all burrs surrounding the mounting hole to assure good thermal and electrical contact between the case of the transistor (which is directly connected to the collector) and the chassis.

Tests with a typical HO train indicated power requirements of about 4 volts at 400 ma at slow speeds and about 8 volts at 450 ma for fast speeds. In these cases, for a 14-volt dc supply, the transistor must dissipate about 4 watts and 2.7 watts, respectively, well within the dissipation rating of the transistor.

The power pack can easily be expanded to operate two or three trains simultaneously and independently by adding one or two additional potentiometer power transistor combinations and polarity-reversing switches.

Ripple is useful

One other feature deserves attention. Because of high starting friction in the motors used in HO trains, such trains generally start off with quite a jerk when powered by well filtered dc. This poses problems when the train is to be moved only a small distance for switching, coupling and similar operations. For such uses, dc with a lot of ripple on it is better because the resulting pulsating torque overcomes the starting friction more gently. To achieve this, a small amount of ac from an auxiliary winding on the transformer is injected into the transistor's base circuit. This modulates the output at a 60-cycle rate and thereby provides the pulsating power. An spst switch (S2) permits choice of direct or pulsating power.

About 16 volts ac (used to operate remote control switches, etc.) is available ahead of the selenium rectifier. A pilot light is connected to the auxiliary 15-volt ac winding. The 3-amp fuse is placed in the common return of all windings so that an overload on any output (ac or dc) will blow it. When that occurs the pilot light goes out too.

Front panel. Speed control still has to be calibrated.
STROBO INSTRUMENT TUNES ORGS

New low-priced instrument allows technicians to tune an electronic organ as well as repair it

By RICHARD H. DORF *

W ith electronic musical instruments (especially organs) becoming so popular, there is an increasing market for the service technician to shoot at. Though servicing musical instruments may be a little new and different at first, the theory and practice is the same as with any other piece of electronic equipment.

However, one phase of organ servicing becomes a constant source of frustration to technicians—the final tuning. In this respect, the organ belongs in the musical and not the electronic field; normal test instruments are almost no help at all.

The only instruments that are worth while are stroboscopic types like Conn’s Stroboconn and Strobotuner. Few service technicians own them because even the cheaper of the two costs almost $200.

The writer has developed a new tuning device which is about as accurate as these expensive instruments but costs only a fraction of the above-mentioned figure. It measures only 3¼ inches wide, 6¾ inches high and 2½ inches deep. It weighs just 2½ pounds and can be easily stuffed into a service kit (or even a good-sized overcoat pocket).

Tuning problems

While the mathematically minded person can easily understand how musical pitches are arrived at, he is always annoyed at the irrationality of the numbers obtained.

A musical octave, the interval between, say, middle C and the C note next above it (or between any two notes having identical names) is represented by a frequency ratio of 2. Middle A, for example, is 440 cycles; the next higher A is 880 cycles and the next lower 220 cycles. This frequency ratio of 2 is the basic one in music because the human ear and brain sense a feeling of “identity” between any two notes (or pitches) having this frequency ratio. This is not felt to the same degree for any two pitches with a smaller frequency ratio. The musical scale, as used in the Western world, is therefore composed of a number of different pitches (the number, arrived at arbitrarily hundreds of years ago, is 12) with intervals such that the 13th note is twice the frequency of the first. It is therefore used as the first note of the next higher (or lower) scale.

The human ear hears pitch intervals or changes in the same logarithmic fashion as it hears audio power changes. That is, the apparent difference between two pitches depends on a multiplying (or dividing) rather than adding (or subtracting) factor. For instance, the pitch interval between middle A (at 440 cycles) and the next A (at 880 cycles) seems the same to the ear as the interval or difference between middle A (440 cycles) and the next lower A (220 cycles). The arithmetic differences in the two cases are different—440 cycles in the first and only 220 in the second. But the fact that a constant multiplying or dividing factor—12—has been used in both cases makes the differences seem the same.

Given the problem, therefore, of dividing a frequency ratio of 2—the octave—into 12 equal parts, and with the proviso that the difference between each pitch arrived at and the one just above it or below it must seem to be identical, we must find a multiplying factor. When the frequency of any note is multiplied by this number, the result must be the next note. We take the 12th root of 2 (approximately 1.05946309) as our multiplying factor. The number is irrational and can be carried out to an infinite number of places, depending on how late at night you feel like staying up to keep on figuring.

If we arbitrarily decide, then, that middle A on the keyboard will have a frequency of 440 cycles and we use this factor to determine the frequencies of the other notes, we end up with the scale shown in Fig. 1. This drawing shows the frequency of every note on

Stroboscope disc is mounted on printed-circuit chassis and rotated at 60 rpm.

*President, Schober Organ Corp.
Fig. 1—Standard 88-note piano keyboard.

A piano keyboard. It also indicates the keys on a standard 61-note organ manual. For scientific purposes, the frequency notations should be carried out further, but for our purposes it is accurate enough.

A look at some of the consecutive frequencies gives one the shudders. The only integral relationships in these numbers are the octaves. As a practical matter, this means that if we assume that, say, one of the G's is tuned properly, we can tune the remaining G's by beating them with the first (and with each other)—in effect, comparing harmonics directly. But if you then wanted to go on to the G2's or any other notes (none of which are tuned in advance), you wouldn't have a leg to stand on! Nothing is a direct multiple of anything else.

Well, you may say, I have an audio signal generator. Why not use that? The simple answer is that for an instrument to sound anything but sourer than an underripe grapefruit, the notes must be tuned with a bare minimum accuracy of a quarter of 1% (0.25%).

A tenth of 1% (0.1%) is a more realistic accuracy, which is even tougher. If your signal generator calibrations are accurate to 5%, you must have a rich uncle! In fact, the only “standard” instrument that can be used in this situation is a digital-readout counter—and if you can afford one of those, you're not in the service business.

Stroboscopes

Excluding a counter, there is almost no device which is self-controlled (not dependent on an external standard) that will maintain its accuracy long enough for tuning a musical instrument. The one exception is a tuning fork made of a very special alloy whose dimensions change extremely little with temperature and time.

But, fortunately, there is one kind of instrument which not only can be very accurate (because its accuracy is controlled by your power company, which in turn checks its own accuracy continually with a primary standard in Washington) but is also a very accurate and easily read indicator. This is the stroboscope, commonly used to judge phonograph turntable speed. You normally view the stroboscope disc with a light (generally neon) which goes on and off at a fixed rate controlled by the 60-cycle power line. In the space of time between one flash and the next, the disc rotates just enough so that each of the little radial lines printed on it moves to the position previously occupied by the adjacent line. The lines on the disc therefore appear to stand still.

To use this principle for tuning a musical instrument, we use the same apparatus but we turn it around a little. The disc is made to rotate at a constant, known speed controlled by the 60 cycles of the power line and a synchronous motor. The light is energized by an audio signal whose frequency we wish to measure. When we have adjusted the audio frequency correctly, the light flashes at exactly the right rate to make the disc's lines seem to stand still. If frequency of the audio is fast or slow, the disc lines will appear to move in one direction or the other.

It would seem, then, that all we need is a disc with a synchronous motor and an amplifier to supply the organ tones to neon lamps. But there is one little hitch. This will work fine for one frequency (or its multiples). For example, suppose we have a disc rotating once per second and we print on 440 equally
The required accuracy, power line were motor rately of one try radial us otherwise the want ing A's.

The principle is simple. The stroboscope disc is used, not to measure the musical frequencies directly, but to measure the differences between adjacent notes. In so doing, a small amount of error is accepted, but it is far less than the tremendous error one would get by measuring actual frequencies on a single-speed disc and it is well within the minimum error required for music.

The head photo shows the stroboscope disc mounted on the front of the printed-circuit chassis. A small synchronous motor rotates the disc at exactly 60 rpm—1 revolution per second. The notes corresponding to the 12 bands are printed on the metal panel and on the plexiglas window. See Fig. 2. The outermost band contains 98 radial marks equally spaced with an accuracy of 5 minutes of arc. This band is the only one used in the "conventional" manner. When the disc is illuminated by neon lamps (energized by the organ output), the second G below middle C is tuned until the marks on the outer band appear to stand still. The note is then tuned to exactly 98 cycles with zero error. In a frequency-divider organ (Schober, Baldwin, Lowery, etc.) this automatically tunes all the G's in the organ. In such organs as the Conn or Allen, the remaining G's must then be tuned by zero-beating with the original one tuned.

The Autotuner

The most economical (and simplest) way to make a tuning stroboscope would be to use a single disc, rotating at a single speed controlled directly by the power line. This has been done in the Schober Autotuner (the invention is covered in the writer's Patent No. 2,019,620).

The Autotuner principle is simple. The stroboscope disc is used, not to measure the musical frequencies directly, but to measure the differences between adjacent notes. In so doing, a small amount of error is accepted, but it is far less than the tremendous error one would get by measuring actual frequencies on a single-speed disc and it is well within the minimum error required for music.

The head photo shows the stroboscope disc mounted on the front of the printed-circuit chassis. A small synchronous motor rotates the disc at exactly 60 rpm—1 revolution per second. The notes corresponding to the 12 bands are printed on the metal panel and on the plexiglas window. See Fig. 2. The outermost band contains 98 radial marks equally spaced with an accuracy of 5 minutes of arc. This band is the only one used in the "conventional" manner. When the disc is illuminated by neon lamps (energized by the organ output), the second G below middle C is tuned until the marks on the outer band appear to stand still. The note is then tuned to exactly 98 cycles with zero error. In a frequency-divider organ (Schober, Baldwin, Lowery, etc.) this automatically tunes all the G's in the organ. In such organs as the Conn or Allen, the remaining G's must then be tuned by zero-beating with the original one tuned.

The Autotuner principle is simple. The stroboscope disc is used, not to measure the musical frequencies directly, but to measure the differences between adjacent notes. In so doing, a small amount of error is accepted, but it is far less than the tremendous error one would get by measuring actual frequencies on a single-speed disc and it is well within the minimum error required for music.

The head photo shows the stroboscope disc mounted on the front of the printed-circuit chassis. A small synchronous motor rotates the disc at exactly 60 rpm—1 revolution per second. The notes corresponding to the 12 bands are printed on the metal panel and on the plexiglas window. See Fig. 2. The outermost band contains 98 radial marks equally spaced with an accuracy of 5 minutes of arc. This band is the only one used in the "conventional" manner. When the disc is illuminated by neon lamps (energized by the organ output), the second G below middle C is tuned until the marks on the outer band appear to stand still. The note is then tuned to exactly 98 cycles with zero error. In a frequency-divider organ (Schober, Baldwin, Lowery, etc.) this automatically tunes all the G's in the organ. In such organs as the Conn or Allen, the remaining G's must then be tuned by zero-beating with the original one tuned.

The Autotuner principle is simple. The stroboscope disc is used, not to measure the musical frequencies directly, but to measure the differences between adjacent notes. In so doing, a small amount of error is accepted, but it is far less than the tremendous error one would get by measuring actual frequencies on a single-speed disc and it is well within the minimum error required for music.

The head photo shows the stroboscope disc mounted on the front of the printed-circuit chassis. A small synchronous motor rotates the disc at exactly 60 rpm—1 revolution per second. The notes corresponding to the 12 bands are printed on the metal panel and on the plexiglas window. See Fig. 2. The outermost band contains 98 radial marks equally spaced with an accuracy of 5 minutes of arc. This band is the only one used in the "conventional" manner. When the disc is illuminated by neon lamps (energized by the organ output), the second G below middle C is tuned until the marks on the outer band appear to stand still. The note is then tuned to exactly 98 cycles with zero error. In a frequency-divider organ (Schober, Baldwin, Lowery, etc.) this automatically tunes all the G's in the organ. In such organs as the Conn or Allen, the remaining G's must then be tuned by zero-beating with the original one tuned.

The Autotuner principle is simple. The stroboscope disc is used, not to measure the musical frequencies directly, but to measure the differences between adjacent notes. In so doing, a small amount of error is accepted, but it is far less than the tremendous error one would get by measuring actual frequencies on a single-speed disc and it is well within the minimum error required for music.

The head photo shows the stroboscope disc mounted on the front of the printed-circuit chassis. A small synchronous motor rotates the disc at exactly 60 rpm—1 revolution per second. The notes corresponding to the 12 bands are printed on the metal panel and on the plexiglas window. See Fig. 2. The outermost band contains 98 radial marks equally spaced with an accuracy of 5 minutes of arc. This band is the only one used in the "conventional" manner. When the disc is illuminated by neon lamps (energized by the organ output), the second G below middle C is tuned until the marks on the outer band appear to stand still. The note is then tuned to exactly 98 cycles with zero error. In a frequency-divider organ (Schober, Baldwin, Lowery, etc.) this automatically tunes all the G's in the organ. In such organs as the Conn or Allen, the remaining G's must then be tuned by zero-beating with the original one tuned.

Now we sound the G and G₂ (Ab, Fig. 1) just above middle C. Both these tones are fed into the amplifier (Fig. 3) either through the microphone supplied or by direct connection to a convenient point in the organ. The first three stages of the Autotuner are simple amplifiers which are so overloaded that they clip and distort the signal. This assures high-amplitude additive and subtractive beat frequencies between the two tones. Capacitors C1 and 2 attenuate both the original tones and the additive beat frequency. The plate load of the fourth stage is the neon lamps, which flash at the frequency of the subtractive beat.

Consulting Fig. 1, we find the desired frequencies are 392 and 415.3 cycles; thus the beat frequency is 23.3 cycles. There are 23 marks on the first (inner most) band of the disc. If we tune the G₂ until the marks appear to stand still, we will have tuned for a 23-cycle beat and G₂ will actually be at 415 cycles. The 0.2-cycle error amounts to about .072%.

Next, sound the G₂ and the adjacent A. Tuning the A until the second pattern appears to stand still. This gives an A frequency of 440 cycles exactly correct. The remaining notes are tuned in the same manner, until the F₂ has been tuned. This completes the octave and finishes the job for frequency-divider organs. For separate oscillator organs, the remaining octaves are tuned by zero-beating—either by ear or using the Autotuner to indicate the beats through light blinks. If the oscilloscope is handy, it is the fastest and most accurate reference for zero-beating.

Since the disc rotates at 1 revolution per second and the number of marks in each band must be integral, it can measure the beats only to the nearest cycle. This means a maximum possible error of 0.5 cycle which, at the frequencies of
The do-it-completely-yourself enthusiast who scorns to follow the instructions in a kit can probably construct himself an acceptable job by sputtering his disc after care. But the Autotuner is available in kit form and will also be available completely assembled, housed in a sturdy Daka-Ware case. The small Synchron motor and all the circuitry except for the input jack, potentiometer and power transformer is on a printed circuit. A "top-hat" silicon rectifier is used in the power supply. Just one electrolytic filter capacitor is needed, as a small amount of hum does not affect the Autotuner's operation. The silicon rectifier avoids the heat a vacuum-type rectifier would create and helps miniaturization. An ac-dc power supply would have been cheaper but not so safe, hence the transformer is used.

A crystal microphone is furnished as well as a special test cable with clips at one end and a phone plug at the other. This gives the user his choice of a direct connection to the organ's output or mike pickup. The instrument is easy to use and no warmup time beyond that needed for tube heating is necessary. To answer an obvious question, the Autotuner can be used for piano tuning—for setting the "temperament octave". But, piano tuning is not recommended for amateurs. It is a long and touchy job and you will find that you can break a string as easily as falling off a piano bench.

OSCILLATOR DRIVES RELAY

Recycling and repeating circuits for flashers, life-test equipment, industrial machinery and the like are often controlled by multivibrators or similar low-frequency oscillators. Sensitive relays control the load circuit. If the load consumes an appreciable amount of power, auxiliary power relays must be used.

Here is a simple relaxation oscillator that will handle almost any power relay. The VR tube may be an OA2, 082 or any convenient type. Select the values of R and C for the desired repetition rate (frequency) and relay current. The dc and the dc supply voltage should satisfy the requirements of the VR tube and relay. For example, with an OA2, the supply should deliver a minimum of 185 volts and at least 30 ma. The relay should operate at 30 ma or lower and its contacts should be selected to handle the load current and voltage.

—Herbert E. Pasch

EVOLUTION IN RELAYS

A N entirely new departure in relays has been developed and introduced in the form of a unit using printed-circuit contacts, no spring, and a permanent magnet embodied in the relay. It was developed by Executone, Inc., an intercommunicator company using large numbers of relays in its own equipment.

The armature of the new relay is a flat piece of magnetic material, % x % inch, backed by a ceramic slab holding the contacts. The pole pieces are two U-shaped units so made that one side of one U is a little higher than the others. The armature rests on this U, and is held there by nothing more than magnetic force. It is positioned by the walls of the case.

A small flat ceramic magnet is held between the two U-shaped pieces. It is magnetized transversely, so that one of the U's is magnetized N and the other S. The armature rests between the N and S poles, as indicated at a in the figure.

Now suppose that the relay is actuated—that current flows in the coil in such a direction as to set up N and S poles as indicated at b in the figure. The outside U-shaped piece that was formerly S is now neutralized, and the other outside one has its strength as an N-pole doubled. The center is now predominantly S. As a result, the armature flips over to the other position. Note that the actuating field can be slightly weaker than, equal to or a great deal stronger than the permanent field and still do the same job.

The contacts are normally printed on the circuit board to which the relay is clamped. Since the contacts on the armature are of the shorting type—two fingers strapped together—there are two gaps for each contact, dividing the voltage per gap. Pressure is excellent for the paradox of old type relays—when the relay is closed, the spring tension trying to pull it open is maximum—is eliminated. In this relay, the magnetic pull tending to hold the armature in position is at a maximum in both the fully open and the fully closed position. Getting rid of the springs not only makes the action more positive—it reduces the cost of manufacturing the relay.

Units have been constructed to work at voltages from 6 to 24, with a power consumption of about % watt. The printed-circuit type of contact adds flexibility to design—the equipment manufacturer can adapt the relay to his own circuit needs. Reliability is another important feature—it was indeed the quest for reliability that led to the research program that developed the new relay. Experiments indicated that it is good for at least a million openings and closings with a load current of 0.5 amperes, and for much more than that with the very small currents often found in electronic equipment.

END
KLYSTRON-tube for outer space

By TOM JASKI

Not only for outer space, but for its usefulness wherever microwaves must be generated, the importance of this tube grows with the industry's use of higher and higher frequencies.

When we get to talking to those intelligent beings "out there" on other planets or even in other solar systems, very likely klystrons will be the transmitter tubes that will make our communications possible. Large-power klystrons have been used as amplifiers in the equipment that bounced radar signals off the moon, Venus and satellites in orbit. Klystrons have been used to "interrogate" satellites, and to trigger into action the electronic and mechanical equipment in them.

Less romantic, but even more practical, are other applications for klystrons. Large-power klystrons are used widely in Europe for uhf television transmitters. Here uhf television has not become common enough to need many power klystrons. Klystrons are also the heart of the new "scatter" communications systems in which the line-of-sight rule about microwave transmission is violated simply by using very high-power transmitters, large antennas and ultra-sensitive receivers.

Another major use of klystrons is in experiments with food sterilization. These use high-speed electrons issuing from linear electron accelerators, and these in turn are powered by large klystron tubes.

In linear accelerators, the klystrons provide a mighty push to the electrons passing through successive drift tubes, eventually speeding them up to almost the speed of light.

What then are these klystrons, what do they look like and how do they operate? Klystrons were invented just before the start of World War II by the Varian brothers, then graduate students at Stanford University. I remember their little shack behind the Ryan laboratory in the hills behind the university, and the excited talk of a resident in the area who had seen the barbed-wire fence around this little shack develop a mysterious red-hot glowing section of wire. True or not, the klystron has played an enormously important role in the development of radar and microwave communications, and is now on the verge of taking over industrial jobs from other tubes.

Resonant cavities

To start the explanation of klystrons, let us first look into another item, resonant cavities. Understanding cavities is essential to understanding klystrons. All rf oscillating circuits contain resonant elements (Fig. 1-a). As frequency increases, we must decrease the inductance and capacitance of the resonant circuits. We decrease the inductance by decreasing the turns until we
since the length, if the cavity is multiple "mode" to maintain a certain field amplitude. For just as a capacitor dielectric would break down if it were too thin for the voltage on the plates, so a cavity can break down, dielectrically speaking, when the voltage gets too high between top and bottom plates. Because we design the cavity carefully as far as dimensions are concerned, we can then set up standing waves in it, and the cavity can easily be excited with small charges on the top and bottom plates.

If we make the cavity an integral part of a vacuum tube, and make part of the top and bottom into a grid area (punch holes in it or slot it), this does not drastically change the properties of the cavity. It can still be excited easily by charge differences between top and bottom plate. The klystron itself have nothing left but a straight wire or even a flat strip of metal. The capacitance is reduced by lowering the number of plates in our capacitor and finally by further separating the plates (Fig. 1-b). Eventually we get to paralleling inductances (Fig. 1-c) since paralleling two inductors halves their inductance, and the entire process winds up as in Fig. 1-d or 1-e. The final product is a box or cavity, the top and bottom representing the capacitor plates and the sides the paralleled inductors.

Cavities follow certain hard and fast rules, which can be determined easily from common-sense observation. For example, regarding the top and bottom plates of the cavity as plates of a capacitor, we see that they are virtually short-circuited at the edges. This means that at the edges of the plates we cannot have a charge, and therefore no field. From this follows our first rule about cavities: the electric field parallel to a wall must be zero at that wall. Now to maintain any charge which has a field in the center of the plate and none at the edges, the voltage distribution must look something like a sine-wave half-cycle from wall to wall. In fact, this is the simplest way we can maintain a field in a cavity, the simplest "mode" in which we can operate it. It follows that the width of the cavity should be just about a half-wavelength of the microwave energy, or any multiple of that. And the same goes for the length, if the cavity is rectangular.

The magnetic field always associated with an electric field, and always at right angles to it, will then be parallel to the top and bottom of the cavity. Thus it would cut the end plates. But since it is a changing magnetic field, it will induce a current in any conductor within the field, and the end plates have currents induced in them which set up counter-magnetic fields equal to and thus cancelling the first fields.

Here we have the second rule about cavities: the magnetic field must be zero at any wall which it cuts at right angles. Thus the magnetic field is confined to the box as well. But with the magnetic field we do not have the same dimensional problem, for we can swap density for space. Therefore, the top-to-bottom dimension of the cavity is not as critical, but does determine the capacity of the cavity to maintain a certain field amplitude. For just as a capacitor dielectric would break down if it were too thin for the voltage on the plates, so a cavity can break down, dielectrically speaking, when the voltage gets too high between top and bottom plates.

In the next half-cycle of applied rf, the lower grid will be positive and the top one negative. Thus electrons which then approach the lower grid will be accelerated, and the electrons which are then between the two grids will be retarded. In this way, the grids and cavity in which applied rf will form bunches of electrons, some of which move faster than when they left the cathode and some of which move a bit slower.

When the rf applied to the cavity goes through zero, the electrons then passing through the grids will not be affected, and will just travel on at the same velocity. The lower cavity and grid assembly, forming the bunches, is appropriately called the "buncher." (The Varian named this a "rhumbatron.") In this space between the cavities, the "drift space," the electrons that are moving at the original "from-the-cathode" velocity will join some of those which were slowed down. They in turn will be joined by some of those that speeded up. Thus the bunches of electrons in the drift space become denser, and the space between bunches has fewer and fewer electrons.

Were we to let the bunches drift too long, the repulsion between electrons would again scatter them. But we don't give them time to do that. Instead we bunch them, now with more electrons, pass through the second set of grids. Through these grids then pass alternately dense bunches of electrons and spaces with none or just a few. This is, in effect, a pulse de. Pulsed de can look very much like ac if we shift the base line (different zero level).

The bunches then constitute a periodically changing current capable of inducing an rf voltage in the second cavity. Note that the acceleration and deceleration of electrons between the buncher grids lasted nearly a half-cycle. The bunches which reach the "catcher" grid are also about a half-cycle long. They will induce in the catcher cavity an rf of the same frequency as was applied to the buncher.

Getting power from a klystron
To induce a field in the second cavity, the electrons must give up energy. It is easy to see this, since the magnetic field has built up. Electrons approaching a negative grid are retarded and...
impert energy to the grid. Electrons leaving a positive grid are also retarded, giving off energy. Thus if we time the bunches (by regulating the initial velocity of the electrons) to be between the catcher grids only when the first catcher grid is positive and the second catcher grid is negative, while we make sure that we have virtually no electrons between the grids when this situation is reversed, then we draw the maximum energy from our bunches of electrons. This is the way a klystron is operated. The collector and accelerator voltages must be precisely adjusted to get this kind of timing.

If we feed back a portion of the catcher energy to the buncher, the tube will oscillate. If our timing is correct, the phase of the rf will of course be exactly right for the feedback situation, for the bunching occurs when the second buncher grid is negative, and we get the most energy when the second catcher grid is also negative. Amplification is obtained, because the bunches going through the catcher contain many more electrons, thanks to the time spent in the drift space, than the bunches coming out of the buncher.

The energy is coupled into the buncher and out of the catcher cavities with a small loop, which will contain some of the magnetic lines of force of the fields and will thus have a current induced in them.

We can of course use the energy in one of the catcher cavities to excite additional cavities and grids, and this we do many times to increase the energy produced by large klystrons. Fig. 3 shows such a large multicavity klystron made by Eimac, capable of producing 10,000 watts output in the 720-985-mc range.

The reflex principle

But there are also klystrons with but one cavity. The principle is illustrated in Fig. 4. These we call reflex klystrons because the collector at the end of the tube is given a negative voltage, thus repelling the electrons. This electrode is usually called a repeller. What happens here is that the electrons, after being bunched in the grids, travel on into the drift space above the cavity for a time, then are repelled back toward the grids. If we repel them with exactly the right velocity to make them arrive at the grids when the voltages on these grids are of the correct phase to obtain energy from the electron bunches, the original field is augmented, and we have oscillation. So the reflex klystron is used primarily as an oscillator.

Reflex klystrons come in many shapes. Fig. 5 shows three of World War II vintage, the 417A made by Westinghouse for the S-band (10 cm), the 707B with an external cavity, also for the same frequency range, and the 2K25 used most often as the local oscillator in 3-cm (10,000-mc) radar receivers.

All three are tunable to a certain extent (Fig. 6). The 417A is tuned by changing the cavity dimensions with a tuning lever and screws, the 707B by modifying the electric fields in the cavity with slugs projecting into it, and the 2K25 by changing the cavity dimensions with the tuning “bow.” The tuning bow is flexed by the screw. This alters the position of the more or less flexible top portion of the metal enclosure, and the top cavity grid with it.

A more modern version of the reflex klystron, using ceramic insulation, is shown in the head photo. Such ceramic klystrons are now produced and regularly oscillate at 25 kmc, while some laboratory models have been used to generate frequencies as high as 100 kmc. The latter are not in production, but are strictly experimental tubes.

Modulation methods

Klystrons can be modulated in various ways. One is to vary somewhat the reflector voltage or, in the power klystron, the collector voltage. This has the effect of changing the velocity of the electrons, and thus the frequency of oscillation in the klystron is affected. This kind of modulation is limited within very narrow ranges. Klystrons specially built with a modulating anode near the electron gun can be amplitude-modulated by the simple mechanism of making the electron beam vary in density. Since the amplification of the tube depends on increasing the density of the electron bunches in the drift space, the effect of the bunching will be more pronounced when a lot of electrons are available than when only a few are traveling through the cavity grids. These anode-modulated klystrons are so constructed that the total voltage between the cathode and the tube structure (including the cavities) remains the same. Thus the velocity of the electrons is constant, but the voltage between the modulating anode and the cathode can vary and the quantity of electrons with it.

Very often, particularly in television transmitters, it is actually unnecessary to modulate the klystron. Here it acts as a power amplifier, and the modulation can be introduced at an earlier stage. Thus the klystron amplifies the already modulated signal.

The klystron can be pulse-modulated by the anode in the types which have

![Fig. 3—A 10-kw multicavity klystron.](image1)

![Fig. 5—Three old-time klystrons, the 417A, 707B and 2K25. The 2K25 is still used to generate 3-centimeter waves.](image2)

![Fig. 4—Cross-section, reflex klystron.](image3)

www.americanradiohistory.com
this separately insulated anode, and by turning the collector voltage on and off in the types that do not.

Except when we want to modulate the klystron, the voltages supplied to the elements must be very stable. Usually they are supplied from well regulated power supplies. The reasons are fairly obvious. If the dc voltages on the cavities and collector or reflector varies, the velocity of the electrons also varies. And, since the speed with which the electrons travel through the buncher determines the frequency of the generated rf, this too would vary.

In the reflex klystron the situation is even more critical. The path the electrons travel must be exactly the right length to allow the electrons on their return voyage to reinforce the original bunching action. If the path should be altered, by a varying voltage, the electrons would arrive at the wrong time and might partly cancel the bunching. The oscillation would then soon die out.

As a matter of fact, this device is used to allow the reflex klystron to operate in different "modes." The path of the electrons, for oscillation, must always be a multiple of a quarter-wavelength. But whether the tube has a path of 3/4 or 4/4 wavelengths for the electrons, the action is the same. However, with the longer path, caused by a lower (less negative) reflector voltage, the density of the beam is somewhat affected, and the klystron produces less power. By selecting one or the other modes the klystron can be made to put out at different levels of power. The 25K5 for example can operate in about five modes, all producing the same frequency, but with different power levels.

As uhf television becomes more popular, the klystron will be used increasingly for high-power amplification in the transmitters. Further increases in uhf scatter communication and in microwave applications as we progress in the space age is also to be expected. The klystron, which has proven its mettle in bouncing signals off our neighboring planets, will most certainly be the power amplifier for space telephony, once man takes the big jump and starts traveling between planets in the solar system and to distant stars. It is a special vacuum tube to be reckoned with for the next few centuries of man's technological development.

SEVERAL audio connectors which make the usually messy and difficult job of putting a phono plug at the end of a shielded audio cable faster and easier are now available. The photograph shows three types, along with a standard one for comparison.

At the upper right are three views of H. H. Smith Co. Handy Grip (No. 1246) which requires soldering of only the center conductor. The shield is secured by crimping the rear-projecting lip around it with pliers. This projection then serves as a convenient handle for plugging in or removing the connector.

The upper-left plug with a black plastic body screws together (shown disassembled at lower left). The center conductor is soldered into the center pin while the shield is secured by pressure of the rear plastic ring as it is tightened against the rear spring insert. This type of plug is available in seven colors including black and white as H. H. Smith No. 1219.

Bottom center in the photograph is the Grip-A-Lip, which requires soldering of the shield after it's pulled through a hole in the rear projecting lip and wrapped around it. Grip-A-Lip is made by DeRo Electronics, 194 Nassau Rd., Roosevelt, N. Y. These plugs are all available through parts jobbers.

Three audio connectors that simplify job of attaching a phono plug to shielded cable.

EASY-TO-CONNECT AUDIO PLUGS

FEBRUARY, 1961
NEW
AND DIFFERENT
FREE-POWER RADIO

By WILLIAM H. GRACE, JR.

SOMETHING new, something old something different are all found in the circuit of this little radio set. If you have never built a successful free-power receiver, this experience may be both interesting and rewarding. The parts required are few and inexpensive. Anybody who can use a small soldering iron should have no difficulty assembling this simple unit. It will work almost indefinitely if properly assembled. There are no tubes to burn out or batteries to replace—ever.

The radio's schematic (Fig. 1) shows how the components must be connected for satisfactory results. The set is tuned by the antenna series capacitor C1, and the tapped ferrite-cored inductance coil shown in detail in Fig. 2. Note that the lower end of the coil is connected to both ground and the base capacitor. The first tap goes direct to the emitter socket prong and the second tap to the cathode or plus side of the diode. The third tap may not be required but may be very useful if your antenna is a long one or if the strongest locals are at the high-frequency end of the band in your location.

The sensitivity of a series-tuned circuit is greatest if the ratio of C to L is large, and the selectivity is best when the reverse holds true. Hence, the third tap may come in very handy for circuit adjustment. If used, it is connected to the tuning capacitor in place of the lead from the coil end.

The anode or minus side of the diode is connected to the nearest phone-tip jack and the other jack to the prong of the transistor socket that connects to the collector. This insures proper current direction. The transistor circuit includes a base-bias resistor which improves the overall performance both as to output volume and signal quality. (The transistor is employed as a base-biased detector in this circuit—the "different" feature mentioned above.)

Some of the transistor types tested did work without the bias but most of them required it for best operation. Approximately 220,000 ohms was found to be about on the nose but other resistance values should be tried with transistors at hand for best results. This resistor provides a negative bias to base.

Winding the coil
The only component which has to be tailor-made is the inductance, though readymade coils may be altered to fit. To the experienced, this coil is a simple one to wind. It should be nothing more to the neophyte than a little effort if the simple suggestions are followed. A Lafayette superhet loop antenna (catalog item MS-272) provided the ferrite core after unwinding the original wire. It was 3½ inches long by ⅛ inch in diameter. The same core material in ¼-inch diameter and 7½-inch

Comparison shows that, while small, this is not a cigarette-box radio.

Construction and action of this simple radio are described clearly. An excellent project for the beginner

Fig. 1—Free-power receiver uses one diode and one transistor.
lengths can be purchased from the same concern (catalog item MS-331). Each makes two cores of the size needed though only one is required for this receiver. Fig. 2 explains coil detail and the positions of the three taps.

The new antenna coil, which consists of a total of 130 turns, is wound with No. 26 dcc copper wire. Taps are taken at the 6th, 28th and 100th turns by removing the insulation with a knife blade or a piece of sandpaper and then twisting the bare wire upon itself for a twisted-wire tap. All taps should be at least 1/4 inch long to permit easy soldering later.

The only problem in winding any coil is to prevent it from unwinding when beginning or ending it, or whenever turns are to be made. The solution is simple. Secure a small bottle of Ad-a-Grip adhesive (obtainable at hardware stores). It comes in a squeeze type container and allows very small amounts to be used at a time.

After allowing a 6-inch lead, wind on exactly 6 turns and hold with the fingers while a drop or two of the glue is applied to both core and coil. Hold for a few minutes after spreading the glue with the fingers. The tap is now made and the winding continued for 22 turns more, at which point the second tap is made in the same manner. Apply a small amount of adhesive before each tap is taken to prevent unwinding.

The third tap is made after 72 turns are wound and the winding is continued for 30 additional turns, a total of 130. Leave a 6-inch finishing lead and apply a drop or two of the Ad-a-Grip to complete the winding. The adhesive left no stains on the winding and has no deleterious effect upon the coil.

This particular coil and series tuning capacitor will come close to covering the entire broadcast band if used with an antenna of about 75 to 100 feet flat-top plus an average length lead-in. Should it fail to include stations at the extreme low-frequency end of the band, a few more turns will be needed. Another way to reach the 550-ke end of the band is to shunt the entire coil with a small capacitance of roughly 25 to 50 μf.

The case is one of the popular polystyrene variety and measures 3½ x 2½ x 1¼ inches with the hinge at the 3¼-inch end. These boxes are inexpensive. (It matters little if the dimensions vary from those given.) Purchase two cases when parts are bought because one of them will be used to supply the L-brackets to mount the coil and the transistor socket in the receiver case later. Take care not to crack the case when the holes are drilled; this plastic is very easily cracked. Make a small depression with the point of a sharp knife at the hole sites in both the case and the brackets before drilling. Always be sure to back the plastic with a wooden block and employ as little drill pressure as possible at all times. Only seven holes are required in the case to mount the jacks and the tuning capacitor—four in the upper case half and three in the lower, as seen in the photo.

The plastic L-brackets are sections sawed with a scroll or fret saw from the side walls and bottom of the second case. (See detailed drawings, Fig. 3.) Two brackets are used for coil supports. A 3/8-inch hole is drilled to permit the core to enter the upper arm of the brackets, which will later be cemented to the lower half of the case.

A third and wider bracket is required for the transistor socket. Two small holes are drilled parallel to each other and very close together so that a rectangular shape may be formed to accommodate the socket. Put the socket lock washer in place and the transistor bracket is completed. Do not cement the brackets in position until all the holes have been drilled in the case and the components have all been mounted. Use judgment in tightening the small jack nuts to avoid cracking the case; small fiber or cardboard washers may be set under the nuts to help prevent this. The best cement for attaching the brackets is obtainable in any store that sells ship or plane models—Testor's polystyrene model cement at 10 cents a tube.

Assembling the set

When the small antenna, ground and the two phone-tip jacks are in place and the Argonne Poly-vari-con capacitor has been mounted, the coil and coil brackets are cemented in the lower half of the case. Use the polystyrene cement sparingly to avoid running, and hold parts with finger and thumb for a few minutes until set.

The transistor socket bracket may now be cemented in the same manner after it has been positioned to allow the needed clearance for the Poly-vari-con that was mounted in the top half of the case. If this bracket is not placed correctly, the case will not close properly. Solder the main leads to the transistor socket to the little prongs before cementing the bracket. Any other small component may often be more easily soldered before it is placed within the case.

When soldering parts within the case, avoid burning the plastic with the iron. Use only rosin-core solder—acid-core solder will cause trouble. A couple of small soldering lugs are used under the aerial and ground-jack locking nuts to facilitate soldering.

Fig. 2—Winding details of the coil.

Fig. 3—How the brackets are made.
L-C REACTANCE NOMO
SAVES CALCULATION

By S. J. SALVA
and W. R. MOREY

CALCULATING reactance values can be a very tedious chore. The figures are large, and the fractional point has a habit of getting away from you. Labor can be lightened, however, by the accompanying nomogram. It will determine reactance values at any frequency from 1 cycle to 1,000 megacycles.

The nomogram is based on the formulas:

\[X_c = \frac{1}{2\pi f} \]
\[X_l = 2\pi fL \]

where \(X_c \) is capacitive reactance in ohms; \(X_l \), inductive reactance in ohms; \(f \), frequency in cycles per second; \(C \), capacitance in farads, and \(L \), inductance in henrys. Resonant-frequency values for any combination of \(L \) and \(C \) can easily be determined by this nomogram since \(X_c = X_l \) in resonant circuits.

The concept of a reactance chart is not new, but typical examples are either limited in frequency range or are broken down and spread over many pages. In this nomogram, all values have been plotted so that the reactance of any inductance or capacitance may be determined simply by placing a straightedge across the proper scales to connect the known quantities. It is actually equivalent to a three-line nomogram three times its length.

Suppose, for example, you wish to determine the reactance of a 2-henry inductance at a frequency of 80 cycles per second. Place a straightedge across the known values on \(L \), and \(f \) (see example 1). The answer is read as 1,000 ohms on scale \(X_c \). By referring to scale \(C \), it can be seen that 2 \(\mu \)f of capacitance at 80 cycles per second would have the same reactance. It can also be seen that a circuit employing \(L \) and \(C \) at these values would be in resonance at 1200 cycles per second.

Scales \(L \), \(X_c \), and \(f \) are used for frequencies up to 1,000 cycles per second. At higher frequencies, scales \(L \), \(X_c \), and \(f \) are used, with values being read to the left of \(L \), \(C \), and \(f \); at frequencies up to 1,000 kc, and on the right for frequencies up to 1,000 megacycles.

Therefore, if a reactance value is sought for a capacitance of 5 \(\mu \)f at 10 mc, place a straightedge between the values 5 \(\mu \)f, to the right on \(C \), and 10 mc, read on the right side of \(f \) (see example 2). The answer is read as 8,100 ohms on \(X_c \).

New and Different Free-Power Radio (Continued)

Remember to use a pair of pliers as a heat sink on the leads of both diodes and transistors when soldering. Excessive heat through the leads will ruin them!

Operating
After all soldered connections have been completed, check the wiring against the diagram for errors. Clip the transistor leads to \(\frac{1}{4} \) inch long and insert in the socket, attach the aerial and ground and insert phones into the jacks—signals should be heard at once! Two or three stations will be much louder than the others. These stations are furnishing sufficient power to supply the collector's needs. A transistor must have some dc voltage to provide gain or amplification.

If your location is not more than 25 miles or so from a powerful station, and you have an effective aerial and ground, you may expect to hear signals several feet away from the phones on a table top. A signal of such level will work a sensitive PM speaker at modest volume level. Secure a speaker with a large, heavy magnet and be certain to use a high-quality, large output transformer. An old-style magnetic speaker, if still in good condition, will do even better, though they are hard to find today.

If for some reason your receiver does not work properly, these troubleshooting suggestions may help: Should no signal be heard after covering the dial carefully, check for errors in wiring or poor solder work at the points of connection. With the transistor removed, signals should still be heard through the diode-phone section of the circuit. No signal here can mean a bad diode—it's rare. If volume is poor from the best station heard, try another transistor. To determine if the transistor is giving proper gain, short out the emitter and collector. A drop in volume shows that all is well.

Measuring power
A multimeter is valuable for checking voltage and current. Remove phones and transistor and place the positive or red meter lead to the ground end of coil; connect the black lead to the minus side of the diode (Fig. 4). Tune the set to a loud station. Set the meter on the 10-volt scale and compare readings with those given below. Take readings of the current in microamperes from one station. Typical readings on loud stations are:

<table>
<thead>
<tr>
<th>Station</th>
<th>(\mu)amp</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>WABC</td>
<td>245</td>
<td>1.6</td>
</tr>
<tr>
<td>WRCA</td>
<td>500</td>
<td>1.9</td>
</tr>
<tr>
<td>WCBS</td>
<td>574</td>
<td>2.3</td>
</tr>
</tbody>
</table>

With the meter connected in series with the phones at the collector jack, with transistor in the circuit and the set tuned to the same stations, these readings were observed:

<table>
<thead>
<tr>
<th>Station</th>
<th>(\mu)amp</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>WABC</td>
<td>40</td>
<td>1.5</td>
</tr>
<tr>
<td>WRCA</td>
<td>75</td>
<td>1.75</td>
</tr>
<tr>
<td>WCBS</td>
<td>105</td>
<td>2.4</td>
</tr>
</tbody>
</table>

REFERENCES
<table>
<thead>
<tr>
<th>L_1</th>
<th>L_2</th>
<th>X_1</th>
<th>X_2</th>
<th>C_1</th>
<th>C_2</th>
<th>F_1</th>
<th>F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2000</td>
<td>10M</td>
<td>10</td>
<td>0.02</td>
<td>0.00002</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1500</td>
<td>1500</td>
<td>5M</td>
<td>5</td>
<td>0.05</td>
<td>0.00005</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>2M</td>
<td>2</td>
<td>0.10</td>
<td>0.0001</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>1M</td>
<td>1</td>
<td>0.20</td>
<td>0.0002</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>0.5M</td>
<td>0.5</td>
<td>0.50</td>
<td>0.0005</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>0.2M</td>
<td>0.2</td>
<td>1.00</td>
<td>0.001</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>0.1M</td>
<td>0.1</td>
<td>2.00</td>
<td>0.002</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>0.5N</td>
<td>0.5</td>
<td>1.00</td>
<td>0.002</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0.2N</td>
<td>0.2</td>
<td>2.00</td>
<td>0.005</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>0.1N</td>
<td>0.1</td>
<td>5.00</td>
<td>0.01</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0.5N</td>
<td>0.5</td>
<td>10.00</td>
<td>0.05</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.2N</td>
<td>0.2</td>
<td>20.00</td>
<td>0.10</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.1N</td>
<td>0.1</td>
<td>50.00</td>
<td>0.20</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.5N</td>
<td>0.5</td>
<td>100.00</td>
<td>0.30</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.2N</td>
<td>0.2</td>
<td>200.00</td>
<td>0.50</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.1N</td>
<td>0.1</td>
<td>500.00</td>
<td>1.00</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.5N</td>
<td>0.5</td>
<td>1000.00</td>
<td>2.00</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.2N</td>
<td>0.2</td>
<td>2000.00</td>
<td>5.00</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

EXAMPLE 1:
- $L_1 = 10M$
- $L_2 = 10$
- $X_1 = 0.02$
- $X_2 = 0.00002$
- $C_1 = 1000$
- $C_2 = 1000$

EXAMPLE 2:
- $L_1 = 5M$
- $L_2 = 5$
- $X_1 = 0.05$
- $X_2 = 0.00005$
- $C_1 = 900$
- $C_2 = 900$

CYCLES PER SEC:
- $F_1 = 50$
- $F_2 = 50$

KILOCYCLES:
- $F_1 = 15$
- $F_2 = 15$

MEGACYCLES:
- $F_1 = 5$
- $F_2 = 5$
NEW CITIZENS RADIO TEST SET

Make 7 checks on Citizens-band equipment using a single test instrument

By ROBERT F. SCOTT
TECHNICAL EDITOR

The rapid growth of class-D Citizens-band radiotelephony has led to the development of specialized test instruments such as monitors, rf signal generators, field-strength meters, crystal checkers and tuning meters. All these and other useful functions are combined in Seco’s new model 500 two-way radio test set—called the Crystalalignmeter.

The model 500 performs the following functions:
- Tests activity of fundamental type crystals.
- Tests the activity of overtone type crystals with output in the 26-28-mc range.
- Serves as a low-power rf signal generator supplying modulated or unmodulated rf signals from third-overtone crystals and modulated signals from fundamental crystals.
- Operates as an rf indicator for tuning antennas and transmitters for maximum output.
- Operates as a 0-50-ma plate-current meter.
- Serves as a visual and audible modulation monitor.
- Operates as a beat-frequency demodulator and indicator.

The test set’s circuit

The circuit of the model 500 is shown in Fig. 1. It consists of two transistor oscillators and a germanium diode used as a mixer-modulator and a meter rectifier. The 2N1225 is a high-frequency transistor operating as a fundamental or overtone-type crystal oscillator, depending on the type of crystal being checked. The 2N44 rf oscillator modulates the rf output of the 2N1225 when it is used as a crystal-controlled signal source.

The switch must be in the OFF position when the test set is not being used or is being used as a plate milliammeter, rf power indicator, monitor or beat-frequency demodulator. The meter is a basic 0-1-ma movement that is used to read plate current, relative rf power output and modulation peaks.

(The manufacturer’s diagram of the model 500 shows only the physical arrangement of the terminals on the slide switch and its external connections. We have drawn this switch as a three-circuit four-position type so you can get a better idea of the circuitry.)

The three sets of markings on each switch position seem to be a part of a plot to confuse the operator rather than to help him get the most out of the instrument. For example, there are two MOD RF positions. One—also marked A—delivers modulated rf from fundamental type crystals. The other (C) operates with overtone type crystals. There would be less chance of being used incorrectly if position A was marked MOD FUNDAMENTAL.

Third-overtone CB transmitting and amateur crystals with output in the 26- to 28-mc range are tested for activity with the switch in the UNMOD RF position. Meter readings increase with Q or crystal activity. A good crystal drives the meter to at least half-scale. A reading in the "?" area indicates a marginal crystal which should be replaced.

In making this test, the 2N1225 oscillator is converted to a third-overtone type circuit similar to those in most Citizens-band transceivers. The oscillator tank is broad-banded for operation in the 26-28-mc range. The circuit is loaded so the rf output indicated on the meter is a measure of crystal Q.

Fundamental type crystals for CB receiver and transmitter circuits and amateur and other services below 20 mc are tested with the switch in the MOD RF (A) position which converts the oscillator into an untuned type similar to a Pierce circuit. Crystal quality is indicated on the meter as described above. Lower meter readings are
acceptable from crystals used in receivers, frequency standards and calibrators because they don't have to develop as much power as in transmitting circuits.

The 500 as an rf signal source

The test set can be used as a crystal-controlled signal generator for peaking the receiver's rf and antenna circuits and for checking or setting the squelch threshold. Use the crystal from the transceiver's transmitter or select one for the desired channel. Throw the function switch to UNMOD RF or either of the two rF positions, depending on the type of crystal and whether modulation is needed. Couple the rf output to the set being serviced by placing the test set close to the receiver's antenna input section.

(When output of an overtone crystal will be slightly off in the 500's circuit but its frequency is close enough for checking receiver operation. For greater accuracy as a signal generator, use a fundamental type crystal whose fundamental or harmonic falls on the desired channel. For even closer tolerances when using the test set as a calibrator, Seco can supply crystals ground and calibrated especially for the 500's circuit.)

RF power indicator and monitor

The instrument is handy for checking relative power output when adjusting or comparing antennas and when adjusting transmitter output loading. It is also useful for checking modulation quality.

Rf from the transmitter is picked up on a broad-band tuned circuit, rectified by the 1N295 diode and fed to the meter and phones. The rectifier output is filtered and fed to the meter to indicate relative signal strength or rf power output. Check modulation quality with a pair of headphones plugged into the MA NEG and COM jacks.

Make rf power and modulation measurements with the test set's function switch at OFF and with no crystal in the circuit. Rf power can be picked up by placing the back of the test set close to the base of the antenna or by connecting it to the antenna through the 15-foot shielded accessory cable supplied. The meter can then be carried to the transceiver (on the front seat of the car or in the cabin of a boat) when making adjustments. The plugs on the cable go into the RF and COM jacks on the meter. The small clip (attached to the shield braid) goes to a ground point close to the base of the antenna. The large clip goes to the antenna near the base—with a piece of cardboard or other insulating material under it to provide capacitive coupling when needed to prevent the meter from going off scale. Adjust transmitter loading for maximum loading while keeping the power input within the 5-watt limit for Class-D Citizens radio service.

Hum, feedback, distortion and insufficient modulation must be avoided in efficient communications equipment. Monitoring the transceiver's output provides the quickest check on audio quality. Place the back of the test set close to the antenna base and adjust the spacing for a reasonable deflection on the meter. Modulate the transmitter and listen to the signal on phones plugged into the COM and MA NEG jacks. The meter will kick on modulation peaks.

Tuning the transmitter

The final rf amplifier plate circuit is tuned to resonance as indicated by minimum plate current, and then loaded to the desired power input (5 watts maximum in class-D Citizens radio service). Many CB transceivers have a 100-ohm "sampling" resistor in series with the final amplifier's B-plus supply (Fig. 1). The voltage drop across this resistor is an indication of plate current. The meter in the Seco 500 is calibrated to read up to 60 ma when test leads are plugged into the COM and MA NEG jacks and clipped across the sampling resistor. WATCH OUT! The test set's metal panel is at B-plus potential when measuring plate current. Be careful to avoid a shock.

Zero-beating two transmitters

The test set is valuable when tuning all transceivers in a net to precisely the same frequency. Stations on the same channel may be operating within prescribed tolerances without being on precisely the same frequency. This can make receiving difficult when mobile stations are operating near the limits of their service area or are located in dead spots. With all transmitters at zero-beat on the channel, the receivers can be peaked for maximum sensitivity and selectivity.

Fig. 3 shows the setup for zero-beating two transmitters. The standard and off-frequency transmitters are each, in turn, coupled to the meter's RF jack and the coupling adjusted for a meter reading around one-tenth full scale. With both transmitters on, listen to the beat on phones and adjust the off-frequency rig for zero beat.

(Zero-beating and other frequency adjustments may be made only by holders of first- or second-class radio operator's licenses, using precision frequency-measuring equipment.)

A number of new transistorized test instruments have been announced recently and we plan to discuss them as information is made available by manufacturers. Among the instruments to be covered in future stories are a new precision, counter type frequency meter, a TV field-strength meter and a TV flyback and yoke checker.

END

Fig. 2 — Hookup for tuning a transmitter.

Fig. 3 — Zero-beating two transmitters with the model 500.

Underchassis view of the radio test set.

FEBRUARY, 1961
TV REMOTE USES 1 TUBE

Simple remote-control circuit provides channel-changing and on-off control

By JOSEPH DeMARINIS

ABOUT a year ago Sylvania introduced a one-tube wireless remote control. The service technician familiar with the common two- to seven-tube designs will see the advantages of inherent reliability and operating economy, but may wonder how such a comparatively uncomplicated system can work. We'll try to explain that and also touch on some of the more interesting concepts involved in its design.

The customer holds a transmitter slightly larger than a pack of king-size cigarettes. When he momentarily depresses the button on this unit, the TV tuner advances to the next high preselected channel. A stop between channels 2 and 13 turns the TV set off. The useful range of the system is about 25 feet.

In the TV set, the remote-control receiver normally remains on all the time. It may be turned off by a switch on the front (or top) control panel. A pilot light tells the customer when the remote control is off standby.

To understand how the information is transmitted across a room, first consider two tuned coils very close to one another, lined up end to end (as in a radio if transformer). An alternating current passing through one coil induces a voltage in the other.

As the distance between the coils is increased, a smaller portion of the magnetic field cuts the secondary winding and the voltage output is reduced. In practice, this voltage falls a little faster than the reciprocal of the distance squared. In other words, this type of system can deliver a strong signal at moderate distances, but output falls off rapidly as the distance increases. (This greatly simplifies the problem of a similar set in the next apartment.)

The system operates at about 8 kc, mainly because interference pickup from the TV set is low at this frequency. Major sources of internal interference are audio, video and harmonics from the vertical retrace pulse. As long as the receiving antenna is kept away from the yoke and flyback, horizontal circuits present little problem. Audio and vertical interference is controlled by proper placement of its respective output transformer and the loudspeaker(s). Video pickup is reduced by careful attention to ground loops.

An optimum fixed antenna location was determined for each cabinet model. There is no need to make the antenna orientation adjustable and, therefore, no danger of maladjustment or shifting during shipping.

Transmitter circuit

The remote-control transmitter is a transistorized Hartley oscillator. The tank coil is wound on a 4-inch ferrite rod and serves as the transmitting antenna (Fig. 1).

The oscillator frequency is determined principally by L1 and C1. These components vary within their production tolerances to give a random spread of transmitter frequencies from about 7.2 to 8.2 kc. (Each receiver can be tuned to match any transmitter.) Thus, it becomes unlikely that close neighbors would own sets operating at the same frequency.

Fig. 1—Transmitter circuit uses a single transistor.
The oscillator draws about ¼ watt from a mercury battery, and produces more effective radiated power than many competitive systems. This is a major factor in making the one-tube receiver possible. Early estimates gave an average battery life of about 1 year. Recent experience has shown that figure to be very conservative.

The receiver

Fig. 2 shows the remote-control receiver circuit. The heart of the one-tube design is a circuit trick, familiar to old timers, but rare in this age of plenty—reflecting! More about this later.

The receiver input coil (L2) is wound on a 7-inch ferrite rod and serves as the receiving antenna. It is resonated with C4 and C5. Providing sufficient antenna tuning adjustment without sacrificing performance proved to be a most difficult design problem. The size of the capacitors ruled out a trimmer, and a simple adjustment of the inductance of a ferrite antenna is not easy. A tuning range of about 1,000 cycles is required.

The antenna is mounted in a phenolic tube with an adjustable ferrite slug attached to the end. The inductance changes slightly when the spacing between this slug and the ferrite rod is varied. This gives about half the required tuning range. To pick up the rest, C4 is added or removed as required. The tuning range of the slug slightly exceeds the change produced by adding or removing C4.

The tube, a 6AW8, is a pentode-triode chosen because, of all the common receiving tubes, it can give the most gain from one envelope.

Receiver operation

Let's consider the receiver in the standby condition. An incoming signal is picked up by the antenna and the voltage applied to the pentode (V1) grid. The pentode is in a conventional tuned amplifier with the resonant circuit L3-C7 as the plate load. The signal is R-C-coupled to the triode (V2) and amplified again. L4 is an audio-frequency choke and acts as V2's ac plate load. From this plate, the signal is capacitance-coupled to a voltage-doubler detector which gives a positive dc output. C10 and R7 constitute the detector load. This time constant is large enough to peak-detect the 8-ke carrier, but will not sustain the peak voltage of any modulation or pulses (interference) present. The detector output is fed back to the triode grid through R4, a 47,000-ohm resistor.

A glance at Fig. 2 shows that the V2 plate current must flow through the relay coil. A second look at the impedances involved shows that the relay coil is V2's dc plate load.

The positive grid voltage causes an increase of triode plate current that closes the relay. C11 is large enough to bypass the relay coil and keep it from chattering at low frequencies.

We have seen how ac and dc are simultaneously applied to the triode grid. Each component of the output appears across its own plate load; L4 for the ac and the relay for dc. Thus, by reflexing, one tube does the work of two.

Study Fig. 3. It is a plot of amplification factor vs grid bias, and plate current vs grid bias for V2. Note that over a wide range of grid voltage, the amplification factor remains almost constant, while the plate current changes substantially. It is this characteristic of triodes that makes reflexing possible without sacrificing (or changing) gain to any extent.

The relay pulls in with 5 ma through the coil and releases at 2 ma. Fig. 3 shows that the above current range is well in the flat portion of the /Ea curve. R5, called the threshold (or remote range) control, is used to bias the triode to a standby plate current of 2 ma or less.

Interference from the TV set produces a small output from the detector. The threshold control must also provide sufficient bias to overcome the interference. If too much bias is applied, the tube's operating point will slide down the /Ea curve, seriously reducing gain and therefore the operating range.

R11 bleeds a constant current through the threshold control to stabilize the bias and reduce dc cathode degeneration.

L3 is a universal-wound coil with an adjustable core and easily tunes the required range.

L4 must be wound on a closed iron core to minimize its external magnetic field. If strong enough, this field would be picked up by the antenna and throw the system into oscillation.

The detector-doubler diode is similar to the type commonly used in horizontal

Fig. 3—Characteristics of the 6AW8-A triode section.

Fig. 2—Remote control receiver circuit 1.
Channel-switching mechanism

C12 (Fig. 2) and C16 (Fig. 6) suppress arcing at the relay contacts. The drive mechanism consists of a motor and gear train coupled to the rear extension of the tuner shaft. A homing wheel is also rigidly coupled to the rear tuner shaft. This wheel has 13 semicylindrical nylon cams mounted along its edge (Fig. 4). The nylon rider of the leaf switch S2 rests on that perimeter, touching each cam surface as the homing wheel rotates. Twelve of the cams may be turned so that either their round or flat sides face the switch. When a cam, with its round side up, passes under the switch, the leaf is deflected and the contacts open. When the flat side of a cam passes under the switch, the leaf is not deflected and the contacts remain closed. This arrangement not only "tells" the motor exactly when to stop (round side up) but gives a means to bypass unwanted channels (flat side up). The tuner always stops at the channel 1 or off position (that cam cannot be rotated). There, the TV set is turned off by another leaf switch (S3) operated by another simple cam also mounted on the tuner shaft.

Last time we spoke of the signal, it had just closed the relay. That starts the motor. When the tuner shaft has rotated a couple of degrees, the rider of S2 falls into the valley between two homing wheel cams, closing S2's contacts. The incoming signal may now be discontinued, since sufficient B-plus is fed to V2's grid (through R8, S2 and R9) to keep the relay closed and the motor running.

As the tuner comes into the next preslected channel (round side of cam up), the homing switch opens the path from B-plus to V2's grid. The triode returns to its standby condition and the relay opens, instantly grounding the junction of R8 and R9. This makes the hold-in circuit (R8 and R9) inactive. Should the homing switch close again, the motor will not start. Without this lockout feature, manual tuning would be impossible and homing wheel adjustment very critical.

Alternate channel changer

The initial production run was built as we've just described. Then an improved homing wheel, which works in conjunction with the preset fine tuning, was incorporated.

Take a look at Fig. 5. The disc assembly, with the gear-tooth screws, is firmly attached to the front tuner shaft. Each channel position (except channel 1) has a corresponding gear-tooth screw with a rectangular hole in the top disc above it. Channel 1 has a hole in the top disc but no gear-tooth screw. Two leaf switches, the on-off switch and homing switch, ride on the top disc. While the tuner shaft is turning between channels, the leaf of the homing switch is deflected upward, keeping the contacts closed. When on channel, the nylon rider of the homing switch falls into a hole in the top disc (as shown in Fig. 5) and the contacts open.

Each channel is fine-tuned by turning its "own" gear-tooth screw, thereby adjusting the position of the fine-tuning plunger on the tuner. (This concept is familiar to service technicians.) To skip a channel, simply turn its fine tune screw all the way up so it blocks the hole in the top disc. The on-off switch opens when a bump or hole (depending on the chassis) in the disc passes under it at the channel 1 position. The tuner is driven, as before, from the rear shaft extension.

Compared to the original setup, this design keeps the homing switch open over a much smaller angular rotation of the tuner shaft, inherently increasing the possible stopping accuracy. However, the time constants (R7-C10 and the relay and C11) of the original receiver could not react to the fast homing switch, so the tuner never stopped! If these time constants were cut back, the system became prone to impulse interference (arcs, power-line bumps, etc.) and relay chatter. We needed a receiver that would start up slowly (for interference immunity) and stop instantly. The circuit shown in Fig. 6, fulfills this requirement.

The front end of both receivers is the same. Consider the standby condition. An incoming signal develops dc across R7 and C10, the diode load. This positive dc charges C15 through R13, and the voltage across C15 is applied to the triode grid. (See Fig. 7-a. Note that at this time the bottom end of R7 and C15 is grounded.) The time constant of R13-C15 is large, and a sustained signal is required to build up enough voltage to close the relay. Thus, the receiver is insensitive to most impulse interference.

Once the motor has started and the homing switch closed, the circuit takes on the configuration shown in Fig. 7-b. The positive hold-in voltage, derived from B-plus and developed across R14, is fed to V2's grid through R7, R13 and R4. Now V2's grid and cathode form a diode, holding V2's grid at about the cathode potential (normally about 2.5 volts). Since the hold-in voltage across R14 is about 7 volts, C15 charges to about 3.2 volts with the polarity shown in Fig. 7-b.

At the instant the homing switch opens, the "hold-in" voltage disappears and the circuit looks like Fig. 7-c. R14 is such a low impedance that the bottom of C15 is essentially grounded. At that instant, -6 volts appears between V2's grid and cathode, cutting off the tube. The relay opens quickly, shorting R14 for a lockout action, discussed previously. In a few tenths of a second, C15 discharges through R13 and R7, returning the system to the standby condition.

Since V2 is absolutely cut off by the stop signal, the relay cannot chatter.
then. The long time constant of R13-C15 prevents it from chattering at other times. This enables us to un-bypass the relay and use it as part of V2's ac plate load. The 8-ke impedance of the relay coil is much too high for stable operation, so R12, ac-coupled through C14, is really the ac plate load (Fig. 6).

The original system will bypass pre-selected stop channels if the transmitter button is held down. The revised receiver will normally stop momentarily at each preselected channel while the triode circuit goes through the cycle just described. Most people prefer the latter action.

Operating problems
Both receivers are prone to overloading at distances less than about 5 feet. The large signal is rectified by the triode grid, producing a negative voltage which opposes the positive voltage coming up from the detector. The net result is no dc, or dc of the wrong polarity. Careful orientation of the transmitter will help when testing at close range.

Detailed adjustment and alignment instructions for the service technician are packed inside each remote-control TV cabinet. Alignment will be necessary if the transmitter is replaced or repaired. Threshold adjustment may be required if the 6AW8 is replaced, if the line voltage becomes excessively high or low, or as indicated below.

Like all other remote-control systems, this one may be triggered by external phenomena. In rare cases, some electrical devices may generate a great deal of noise and feed it into the power line. If the same power line runs very close to the TV set (rises in the wall behind the set), it may radiate enough noise to trigger the remote. Moving the set a few feet or else placing it against another wall will usually remedy this problem.

If the dimensions of the room are less than the remote-control range, most cases of interference can be cured by slight clockwise rotation of the threshold control.

As we said earlier, the transmitter has a rather short range and operates on one frequency in a range of 1,000 cycles. This makes it unlikely that one remote will operate a set in neighbors' apartment. However, this may happen and when it does the customer will be unhappy, to say the least. The most effective cure is to trade off one of the remotes and readjust the receiver to match the frequency of the new unit.

The technical reader should now realize that all the considerations making the one-tube design possible are sound. There are no compromising or unreliable tricks. The tube and all components are operated very conservatively and should deliver long, trouble-free service. If repair does become necessary, a thorough understanding of the system should make your service call fast and profitable.

END

Fig. 6—Remote receiver circuit 2.

Fig. 7—Triode circuit action in remote receiver 2.

logarithmic METER

A MONG useful items sold by radio stores handling surplus items is an antenna relay designated ARC-5 or BC-142-A. This is a small metal box that contains a thermocouple, mechanical relay and "antenna current indicator" meter. The meter is calibrated uniformly from 0 to 10. With the thermocouple it measures rf from a transmitter into an antenna.

The meter, a dc instrument, is unusual in that it is logarithmic. Each division indicates a current \(\sqrt{2} \) times greater than the previous division, except near zero and near full scale. As a power meter, therefore, each division is equivalent to twice the power of the previous division.

Here is the measured calibration of a meter (G-E type DW-52) from an antenna relay box:

<table>
<thead>
<tr>
<th>Calibration</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.39</td>
</tr>
<tr>
<td>3</td>
<td>0.48</td>
</tr>
<tr>
<td>4</td>
<td>0.72</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>1.4</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>2.8</td>
</tr>
<tr>
<td>9</td>
<td>4.0</td>
</tr>
<tr>
<td>10</td>
<td>6.4</td>
</tr>
</tbody>
</table>

This meter is useful in many ways. It can be used to assemble a wide-range milliammeter or voltmeter. In an ordinary dc meter, there would be a 10-to-1 ratio between full scale and the first division. Here the ratio is approximately 25 to 1. Field-strength meters and other instruments are sometimes designed to have logarithmic response to provide a wide range of values. The range could be increased further by using a logarithmic meter like this one, rather than an ordinary dc meter. In a bridge circuit, this meter can read weak currents without overloading on strong inputs (off balance).—National Rhita

"It's called implosion!"
SPACE-SCANNING ANTENNA IS MULTI-POLARIZED

Polarization switches electronically without delay or element changing, simplifies satellite or missile tracking or telemetry

The unique equipment on our cover this month is a new multipolarized antenna for use in space-vehicle and missile tracking and telemetry. By simple switching it may be polarized vertically, horizontally or circularly with either clockwise or counterclockwise polarization. This makes it equal to four separate antennas of the older type. The polarity best suited for operation with a particular missile or space vehicle is selected by remote switching, or automatically if necessary to change from one to the other instantly.

The highly flexible new unit, developed by the Electronics Div. of Chance Vought, will be used aboard the USNS Range Tracker, the Pacific Missile Range's first tracking vessel.

The designer of antenna systems for missiles or satellites usually selects linear polarization, as giving the best all-around coverage pattern. But, with the complex shapes of today's missiles and satellites, it is extremely difficult to generate pure linear polarization. At some angles, and when rolling or tumbling, the airborne systems produce both the desired and other polarizations, yielding at the ground station a mixture of vertical and horizontal polarization and elliptical polarizations of both right and left sense. Thus, the ground station needs an antenna capable of receiving all polarizations.

This antenna is adapted to these various polarizations by remote switching or by connecting various cabling arrangements at the rear of the ground screen. The difficult element changing of conventional arrays is eliminated.

The multipolarized array is mounted on a ground plane the same size as conventional arrays of equal gain, but offers a 3-to-1 reduction in end-fire length over helical arrays. The reduced end-fire length places the center of gravity closer to the pedestal's center of rotation and makes the antenna less subject to vibration during the maximum slew rates that are found in tracking.

The best design for a multipolarized antenna seemed to Vought engineers to be one with two separate inputs, one for horizontal, the other for vertical polarization. The antenna could be polarized circularly by inserting a 90° phase shift between the inputs.

How it is built

The antenna designed on this basis consists of two full-wave elements—one horizontal and one vertical—fed from balanced transmission lines. The center-fed full-wavelength elements had a high input impedance. To reduce this impedance, each of the driven elements was enclosed in a tube for approximately half its length each side of center. This tube forms a coaxial transmission line.
WITH so many tubes having identical basing, it is often a temptation to substitute different types in TV tuners. The 6BQ7, 6BZ7, 6BK7, ECC-189, are as far as connections are concerned and will all work in most tuners. However, the performance of the tuner is often affected by unwise tube substitution. The tube should never be changed unless the performance of the tuner is carefully checked afterward, preferably by a sweep alignment.

It is often possible to replace rf amplifier tubes with other types and improve performance, especially in TV sets used on very weak signals in fringe areas. For example, the 6BQ7 will give about 4,000 ohms of mutual conductance on the average ge tester. The Phillips equivalent ECC189 often tests as high as 14,000 ohms.

Therefore, if the signal is extremely weak, substituting the hotter tube for the original will sometimes give a good improvement in overall performance. However, the set must be checked on all channels, to be sure that it is working properly.

The most common troubles encountered here are oscillation and general instability, due to the extra gain of the hot tube. This will often show up as oscillation on only one channel, usually channel 6. There is not much to be done about this, short of redesigning the tuner, so the only alternative is to go back to the original tube type.

Under certain circumstances, replacing the rf amplifier tube with one having lower gain will cure difficulties! If the signal level is very high and the trouble is excessive age voltage, general instability, overloading, etc., it might be worth while to try a lower-gain tube in the rf amplifier stage.

Video if amplifier tubes share this characteristic. There are many tubes with identical basing and filament ratings, and the temptation to substitute is very strong at times. However, this can lead to even more trouble than substitution in the tuner. The if stages are almost always age-controlled. The major difference between the various if tube types lies not only in the overall transconductance, but in the shape of the response curve—sharp cutoff, remote cutoff and semi-remote cutoff. Replacing a tube of one type with one having a different curve can lead to many obscure troubles! Incidentally, if such troubles are found, the first step should be to examine the if amplifier tubes closely to see if someone has made such a change! Fig 1 shows the difference between the curves of several popular types—notice the wide range of voltages required to cut off the various tubes. This could lead

Space-Scanning Antenna Is Multi-polarized (Continued)

The center conductor—the original driven element—extends out of the tubular section and is flared out into a conical shape, providing a more broadband radiator.

The outer tube of the coaxial line was connected to a larger cylinder—the one seen in the photographs—at its outer end, to maintain proper radiation patterns. A pair of straps from the edge of the outer cylinder to the end of each center element adds inductance, improves phase relationships.

The parasitic elements

The end-fire structure, which gives the antenna its characteristic Maltese cross appearance, actually consists of two broadband parasitic elements ahead of each driven section. The sides and ends of the Maltese crosses are made of fiber glass, as is the squarish plate in the center of each cross. Thus each of the eight parasitic elements in each cross is insulated from the others. The elements are so spaced as to act as directors, empirical methods being used to design the structure. They are so shaped as to keep the band wide. (See Fig. 1 at head of story.)

Four of these antennas mounted on a 12-foot-square ground plane constitute a typical array. The antennas are mounted one wavelength apart at 215 mc. An improvement in side-lobe level was obtained by adding a structure on the ground plane between the individual antennas, making each antenna free from reflections from the others.

The resulting Vought Electronics uhf multipolarized antenna has an essentially flat characteristic from 215 to 260 mc, a directional pattern 20° between half-power points, at least 18-db gain and not more than a 1.5-to-1 voltage standing-wave ratio (VSWR) over any part of the band.

Operational techniques

When all four antennas are fed in phase, the array produces a sum pattern ideally suited for receiving telemetry data. The most common tracking system is one in which the four antennas are fed into a comparator which produces an output consisting of such a sum channel and an azimuth and elevation difference channel. The azimuth difference channel places the two azimuthal halves of the antenna 180° apart. The horizontal elements of each quadrant would go to a pair of separate receivers, while the vertical outputs would go to another pair. The output of these receivers would then go to a diversity combiner and thence to either the system's input or a recorder. This system would afford optimum signal strength regardless of the source polarization, and with an effective gain increase in the order of 12 db.

Fig. 1—Cutoff characteristics of popular video if amplifier pentodes. Note wide range of grid 1 voltages required to bring tube to cutoff, also variation of slopes.
to troubles not only in the stage affected directly, but in subsequent stages, due to overloading, clipping, distortion and many other troubles.

Age circuits will also be affected by changes in video if amplifier tubes. For a given signal voltage input, the age voltage will be quite a bit different, as may be seen from the chart. This will affect, not only the if, but also the tube bias.

Therefore, if tube substitutions must be made, be sure that you are substituting the tube with the closest set of characteristics. Even so, performance will probably be adversely affected.

Vertical troubles

We have a pair of Zenith 19R21 chassis that are giving us headaches. The trouble is weak vertical hold in both. This has developed gradually over the last 2 years. One of them, in the shop, will work perfectly for a week at a time, but the vertical hold can be lost by any disturbance (change of line voltage, etc.). We’ve changed tubes, the shape of the oscillator waveform, rounding off the top corners, and make it difficult for the sync pulse to hold the oscillator in line. (Note: some versions of this set used another integrator between the oscillator and output stages in place of the shaping networks. Check this also.)

Unknown set

I have a set with a burned-out flyback and no chassis identification. The old flyback has the letters ET109CM on the mounting bracket and 111C2 on the core. I’ve written to several people and they tell me that they need more information. Can you recommend a replacement?—L. K., Cape Cod, Mass.

Whoever you wrote to first was right! That isn’t much information! However, we’re lucky: something about that part number struck me as familiar and about a half-hour’s digging through transformer manufacturer’s catalogs produced a match! Your mysterious TV set is a Mattison model 630 DXM or MDXL. You’ll find a complete schematic.

Red blooming

We have just replaced the 21CYP22 picture tube in an RCA 21CD8815 color set. When we made the convergence adjustments, we found blooming of the red dots, no matter how low the red screen control is set. Overall convergence is good, but there is a red halo around all of the white dots. With the red gun blocked out the green and blue guns track nicely and maintain the proper size over the full range of the brightness control. Is there any other reason for blooming other than excessive screen voltage? Are we correct in assuming that there could be some trouble in the red gun of the new picture tube?—H. E. Del., Monticello, Ga.

For your sake, I hope the picture tube is all right! However, just to be sure (and because it is the easiest thing to do!), I’d check the picture tube carefully, comparing the readings of red, green and blue guns. Any defect in the new tube should show up here. This doesn’t mean that all components in the red circuit very carefully. The screen controls on these sets have a tendency to change value, now and then, due to the current flowing through them. Check the other screen controls (disconnect them), by measuring their resistance. There has been some confusion on these due to production changes, but this was mostly in the older sets like the CTCA, etc. Also, check the red background control and its associated circuitry for the same thing. It might be a good idea to replace all fixed resistors in the red circuit; there are only three, I think. This would eliminate trouble due to gradual drifting of resistors.

It might also be helpful to run the red purity adjustment once more, to be sure that it is correct.

Tuner replacement

We have an old Diamant, model RA317A, which uses an Inductoform, and would like to replace this with a Standard or General Electric 21629 or 21622 or similar. Look at the 12-position tuner. Can you draw me a schematic showing how to make the necessary connections?—H. S., New York.

The worst problem here would be the
physical mounting of the tuner. The GG-2220 Standard Coil tuner is not too large, but I would check the dimensions carefully before going ahead as there won't be much room between the bulge of the picture-tube bell and the tubes. It might be possible to "flange up" some kind of brackets that would allow the new tuner to be mounted to one side to give the clearance needed.

This Dumont is a split-sound chassis, but the sound takeoff is from the plate of the second video if so you can use the tuner's output if transformer as is. Be sure to get the 21-mc tuner. The 25.76-mc coil is on the tuner chassis in the original circuit and is included in the new tuner. The present 120-µf capacitor should provide enough coupling, so leave it in the circuit.

Connect the new tuner as shown in output plate and screen circuits. Part of this trouble is caused by radiation of horizontal signals—sometimes into the lead-in cable between antenna terminals and tuner. The basic cause of the trouble is video information caught in the horizontal retrace period. As you forgot to give the model number, I'm going to have to give some general remedies.

The basic cure lies in increasing the horizontal retrace time. Since you have replaced the flyback and yoke, check these for an exact match. However, since the trouble has always been there, this is possible but unlikely. Try changing the capacitance across the 6AL5 plates or whatever type of horizontal phase detector is used, increasing the size of the resistors across the cathodes and changing slightly the size of the capacitors in the R-C network between the phase detector and the horizontal oscillator. Whatever you do, if it increases the time constant of the horizontal blanking, it should show up as a reduction in the shadows.

You might also check voltages around the picture tube very closely. If grid and cathode voltages are not exactly right, the tube may not be sufficiently blanked during horizontal retrace times by the video signal. If the set uses a dc restorer, check it carefully.

Intermittent oscillator

Could you tell me what the trouble is in a Canadian G-E 21C30? When it is turned on, I have sound and no picture. I have to tap the 6SN7-GT horizontal oscillator before the picture comes on. I've changed this tube a number of times, but it seems to keep coming back.

-A. R. T., Montreal, Quebec, Canada.

From the symptoms you describe, it would seem that there is an intermittent connection somewhere around the horizontal oscillator socket. However, if it works all right after it starts, this may not be the case. I would clean and tighten all the socket contacts and resolder all suspicious-looking joints, just in case.

The other possibility here would be a marginal condition in the oscillator circuit. This could be due to plate supply resistors, as shown in Fig. 5. If one of these has increased in value, it would leave your horizontal oscillator right on the verge of oscillation. When you tap the tube, the microphonic noise going through the circuit could be enough to start it oscillating.

Check the ringing coil (L109) for high-resistance joints and check the coupling capacitors for leakage.

No nothing

I have a Hotpoint 11S203 portable TV on the bench and nothing works! No sound, no sound, no tubes lit up. I substituted a new line fuse and fusible resistor without success. All tubes check good in continuity tester. While...

Intermittent oscillator

Could you tell me what the trouble is in a Canadian G-E 21C30? When it is turned on, I have sound and no picture. I have to tap the 6SN7-GT horizontal oscillator before the picture comes on. I've changed this tube a number of times, but it seems to keep coming back.

-A. R. T., Montreal, Quebec, Canada.

From the symptoms you describe, it would seem that there is an intermittent connection somewhere around the horizontal oscillator socket. However, if it works all right after it starts, this may not be the case. I would clean and tighten all the socket contacts and resolder all suspicious-looking joints, just in case.

The other possibility here would be a marginal condition in the oscillator circuit. This could be due to plate supply resistors, as shown in Fig. 5. If one of these has increased in value, it would leave your horizontal oscillator right on the verge of oscillation. When you tap the tube, the microphonic noise going through the circuit could be enough to start it oscillating.

Check the ringing coil (L109) for high-resistance joints and check the coupling capacitors for leakage.

No nothing

I have a Hotpoint 11S203 portable TV on the bench and nothing works! No sound, no sound, no tubes lit up. I substituted a new line fuse and fusible resistor without success. All tubes check good in continuity tester. While...

Intermittent oscillator

Could you tell me what the trouble is in a Canadian G-E 21C30? When it is turned on, I have sound and no picture. I have to tap the 6SN7-GT horizontal oscillator before the picture comes on. I've changed this tube a number of times, but it seems to keep coming back.

-A. R. T., Montreal, Quebec, Canada.

From the symptoms you describe, it would seem that there is an intermittent connection somewhere around the horizontal oscillator socket. However, if it works all right after it starts, this may not be the case. I would clean and tighten all the socket contacts and resolder all suspicious-looking joints, just in case.

The other possibility here would be a marginal condition in the oscillator circuit. This could be due to plate supply resistors, as shown in Fig. 5. If one of these has increased in value, it would leave your horizontal oscillator right on the verge of oscillation. When you tap the tube, the microphonic noise going through the circuit could be enough to start it oscillating.

Check the ringing coil (L109) for high-resistance joints and check the coupling capacitors for leakage.

No nothing

I have a Hotpoint 11S203 portable TV on the bench and nothing works! No sound, no sound, no tubes lit up. I substituted a new line fuse and fusible resistor without success. All tubes check good in continuity tester. While...
THERE'S A NEW HEATH KIT FOR EVERYONE IN THE FAMILY!

fits both space and dollar budgets!

COMPLETE STEREO-PHONO CONSOLE WIRED OR KIT

Less than 3' long and end-table height, yet its six speakers assure rich, room-filling stereo! Smooth "lows" are delivered by two 12" woofers, "mid-range" and "highs" are sparklingly reproduced by two 8" speakers and two 5" cone-type tweeters mounted at wide dispersal angles in the cabinet. The "anti-skate" 4-speed automatic stereo/mono record changer has diamond and sapphire stylus. Concentric volume and separate dual bass and treble tone controls are within easy reach. Superbly styled with solid genuine walnut frame, walnut veneer front panel, and matching "wood-grained" sliding top, the cabinet measures just 31 3/4" L x 17 3/4" W x 26 3/4" H. Whether you buy the ready-to-play or kit form, the cabinet is factory assembled and finished; to build the kit, just wire the amplifier and install the changer and speakers. 70 lbs.

Model GD-31 (kit) . . $13 dn., $11 mo. ... $129.95
Model GDW-31 (wired) ... $15 dn., $13 mo. $149.95

INTRODUCING

. . . a superb new line of Stereo Hi-Fi Consoles . . .

FACTORY ASSEMBLED, ready to play!

HEATH COMPANY / Benton Harbor, Michigan

www.americanradiohistory.com
NOW ONLY
HEATH
BRINGS YOU
ALL 3!

1. HEATHKIT for do-it-yourself hobbyists.
2. HEATHKIT factory-built, ready to use.
3. HEATHKIT learn-by-doing Science Series for youngsters.

PORTABLE 4-TRACK STEREO TAPE RECORDER KIT
Delight to the vast treasures available to you in popular 4-track pre-recorded stereo tapes ... make your own 4-track stereo home recordings ... (you can even use it as a hi-fi center to amplify and control hi-fi tuners, record players, etc.) Has "record," "play," "fast-forward" and "rewind" functions, 2 speeds (33 1/3" and 7 1/2" per second). Controls include: individual tone balance controls for each channel; level controls; monitoring switch for each channel to let you hear programs as they are being recorded; and a pause button for tape editing. Two "eye-tube" indicators provide control of recording levels. Speaker wings may be detached. Cabinet and tape mechanism are completely preassembled. A storage compartment is provided for tapes and accessories. 40 lbs.
Model AD-40...$18 dn., $16 mo.$179.95

STEREO/MONO PORTABLE PHONO KIT
From jazz to classics, the younger set will have stereo wherever they go! Plays either stereo or mono records on its top quality 4-speed automatic changer with diamond and sapphire styli. Has detachable stereo speaker wing and complete tone and stereo balance controls. Record changer and cabinet are factory-assembled, the kit is a "snap" to build. 15 1/2" x 18" x 8 3/4", 28 lbs.
Model GD-19...$7 dn.,$69.95

ACOUSTIC SUSPENSION SPEAKER SYSTEM KIT
Using the revolutionary "acoustic suspension principle" licensed to Heath by Acoustic Research, Incorporated, the AS-10 meets and surpasses performance of speaker systems three to four times its size. The 10" bass speaker and two 3 1/2" hi-frequency speakers cover 30 to 15,000 cps with fantastic brilliance and fidelity! Use in upright or horizontal position. Cabinets pre-assembled and prefinished. 32 lbs.
Model AS-10U (unfinished)...$6 dn., $6 mo.$59.95
Model AS-10M (mahogany)...$5.50 dn., $5 mo.$64.95
Model AS-10W (walnut)...$5.50 dn., $6 mo.$64.95

DELUXE AM/FM STEREO TUNER
Exciting new styling and advance-design features rocket this new Heathkit to the top of the stereo hi-fi value list! Featured are: complete AM, FM and simultaneous stereo AM/FM reception, plus a multiplex adapter output; individual flywheel tuning; individual tuning meters on each band; FM automatic frequency control (AFC), and AM bandwidth switch. 24 lbs.
Model AJ-30 (kit)...$9.75 dn., $9 mo.$97.50
Model AJ-W-30 (wired)...$15.30 dn., $13 mo.$152.95

DELUXE 50-WATT STEREO AMPLIFIER
Look-alike companion to the tuner above, here's two 25-watt channels hi-fi-rated and loaded with extras! Mixed-channel center speaker output; "function selector" for any mode of operation; stereo reverse, balance and separation controls; ganged volume and separate concentric bass and treble tone controls. 5 1/2" H, 15 1/4" W, 13 1/2" D. 31 lbs.
Model AA-100 (kit)...$8.50 dn., $8 mo.$84.95
Model AA-W-100 (wired)...$14.50 dn., $13 mo.$144.95

8 new, exciting Heathkit® products on following pages
HEATHKIT®...pioneer in do-it-yourself

NOW...BUY YOUR HEATHKIT FOR as low as $2.50 DOWN! Yes, under the new, easy Heath Time Payment Plan, orders of $25.00 or more can be purchased for just 10% down and up to 18 FULL MONTHS ON BALANCE for orders of $300 to $600. So, don't wait...enjoy that Heathkit you've wanted so long NOW...for just a small amount down, and pay the balance in easy monthly installments!

ANNOUNCING THE ALL-NEW HEATHKIT
"WARRIOR" GROUNDED-GRID
KILOWATT LINEAR ONLY $229.95

Here's news to rock the entire Amateur Radio world! The new desk-top Heathkit "Warrior" matches any unit on the market feature for feature with no quality short cuts and slashes the price in half! Completely Self-Contained—amplifier and HV, filament, and bias supplies are built-in. Portable—drives with 50 to 75 watts, no matching or swamping network required. Efficient—stable g.g. circuit puts part of drive in output for up to 70% efficiency. Inexpensive Tubes—four paralleled 811A's and two 866A's. Dynamic Regulation—big oil-filled capacitor and 5-50 henry swinging choke for high peak power output with low distortion. Design—special low-capacity filament transformer requires less driving power and eliminates broad-band filament RF choke. Monitoring—gives constant output to scope regardless of frequency. Easily Assembled—average time 8 hours. Bands—80 through 10. Max. Power Input—SSB-1000 watts PEP, CW-1000 watts; AM-400 watts (500 using controlled carrier mod.), RTTY-650 watts. Write for Complete Information.

Model HA-10. 100 lbs. $20.00 dn., $20.00 mo. $229.95

DELUXE SERVICE BENCH VTVM KIT
Greater accuracy and conveniences for precision testing. Big 6", 200 ua meter has longer scales plus separate 1.5v and 5v AC scales. Wide frequency coverage with greater precision is made possible through use of 1% resistors and husky capacitors. Other deluxe features include high-visibility meter and controls; recessed thumbwheel "zero" and "ohms adjust" controls. Measures AC and DC volts to 1500 in 7 ranges; resistance from .1 ohm to 1,000 megohms in 7 ranges. Db calibrations for relative voltage measurements selected to give 10 db steps between ranges. Test leads included. 9 1/2" H x 6 1/4" W x 5" D. 7 lbs.

Model IM-10. $32.95

NEW ISOLATION TRANSFORMER KIT
The IP-10 presents a significant improvement in isolation transformers. Provides output voltage from 90-130v in 0.75v steps at 300 watts continuous duty, 500 watts intermittent duty, with 117v input—ample power for even color TV servicing. Built-in meter continuously monitors output voltage with ± 1 volt accuracy (linear scale is electronically expanded to cover 90-140v). Power line input voltage can also be measured by operating spring-return slide switch on front panel. Panel primary. Measures 6 1/2" W x 9 1/2" H x 5" D. 22 lbs.

Model IP-10. $54.95

HEATH COMPANY / Benton Harbor, Michigan
electronics—always the leader!

now a new improved 6 meter model
joins this famous transceiver series

2, 6 & 10 METER TRANSCEIVER KITS
The new 6 meter HW-29A joins "Tener" and "Twoer" to bring you top transceiver values. Like "Twoer," the new HW-29A multiplies its output frequency from an 8 mc crystal for greater stability. All models have crystal-controlled, 5 watt input transmitters and tunable super-regen receivers that pull in signs as low as 1 uv ... Fit for emergency work and "local" nets. Each includes transmit-receive switch, metering jack, ceramic mike and two power cables. Less crystal, 10 lbs.
Model HW-19...10 meter...$41 dn., $5 mo.$39.95
Model HW-29A...6 meter...$4.50 dn., $5 mo.$44.95
Model HW-30...2 meter...$4.50 dn., $5 mo.$44.95
Model HWM-29-1...Converts early "Sixer" to "A" model.
1 lb.$4.95

HEATHKIT BASIC RADIO COURSE
Here's a new 2-part series in basic radio for youngsters and adults. "Basic Radio—Part I," available now, teaches radio theory in everyday language, common analogies, and no difficult mathematics. Experiments performed with radio parts supplied result in a regenerative radio receiver. "Part II" of the series, which will be ready March 1, advances your knowledge of radio theory and supplies additional parts to extend your Part I receiver to a 2-band superheterodyne circuit.
Model EK-2A..."Part I"...8 lbs.$19.95

FREE CATALOG
Send today for your Free Copy of the latest Heathkit Catalog showing over 200 Heathkit items for hi-fi fans, amateur radio operators, students, technicians, marine enthusiasts, sports car owners and hobbyists. Many Heathkit products are now available in both kit and wired form!

ATTENTION MARINERS!
Keep a "weather-eye" peeled for announcement of a new Heathkit SHIP-TO-SHORE RADIO TELEPHONE . . . COMING SOON!

be your own "tune-up" specialist!

NEW ELECTRONIC IGNITION ANALYZER KIT
Checks ignition faults quickly and accurately. One simple hook-up to ignition wiring, and the 10-20 does the rest! No removing plugs, wiring or other engine parts. Checks engine in operation. Switch selection of primary, secondary, or superimposed patterns without changing leads to the engine. Detects shorted plugs, defective distributor points, defective wiring, cap and condenser problems, incorrect dwell time, worn distributor parts, etc. Features improved trigger circuit for locked-in patterns without trigger level adjustment. 21 vertical and 10-1 horizontal expansion. 8" H x 9½" W x 16" D. 22 lbs.
Model 10-20...$8.95 dn., $9.90 mo.$89.95

MONEY BACK GUARANTEE
Heath Company unconditionally guarantees that each Heathkit product, whether assembled by our factory or assembled by the purchaser in accordance with our easy-to-understand instruction manual, must meet our published specifications for performance or your purchase price will be cheerfully refunded.

ORDER DIRECT BY MAIL OR SEE YOUR HEATHKIT DEALER

HEATHKIT / HAYSTROM
HEATH COMPANY
Benton Harbor 20, Michigan

ORDERING INSTRUCTIONS
Fill out the order blanks below. Include charges for parcel post according to weights shown. Express orders shipped delivery charges collect. All orders F.O.B. Benton Harbor, Mich. A 20% deposit is required on all C.O.D. orders. Prices subject to change without notice.

Please send the following HEATHKITS:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MODEL NO.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ship via () Parcel Post () Express () COD () Best Way

() SEND MY FREE COPY OF YOUR COMPLETE CATALOG

Name ________________________
Address _______________________
City __________________ Zone _______ State _______
Dealer and export prices slightly higher.
That's a question with only one possible answer—YES. Every customer wants a better, brighter picture...but doesn't realize how easy it is to get one.

When you sell a Britener, you sell a Britener—When you sell the low cost—You've sold the customer.

Don't sell Briteners—sell Brighter Pictures!

On every service call, remember to use Perma-Power's Six Magic Words—Would You Like A Brighter Picture? You'll sell at least one Britener almost as fast as you can say Perma-Power!

(Continued from page 63)

the interlock to the fuse, and with the fuses. Many technicians shunt this fuse with wire, then add a more accessible line fuse on the back of the chassis. Just check it out once a piece at a time and you'll find the fault.

High-voltage trouble

In a RCA KCS-68E, the raster comes on for about 2 minutes then fades out. If you cool the set off for 5 minutes, the cycle can be repeated. I get a peculiar waveform on the grid of the 6CD6 (Fig. 7). The grid drive becomes flat-topped as the raster fades out.—B. F., Wisconsin.

You've already found the trouble: it lies in that flat-topping of the grid-drive waveform. The distortion of this signal results in less drive and changes the time constant among other things, all bad!

This would seem to lie in the grid circuit of the 6CD6. A leaky .001 coupling capacitor, the 1-megohm grid resistor changed in value or a gassy 6CD6. By the way, there's another source of trouble in this series: take the horizontal drive trimmer capacitor apart and see if there is any sign of leakage through the mica—discolored spots or burnt places. Moisture getting into this trimmer has caused lots of trouble. Also, check the 4-ohm resistor in the 6CD6 grid!

Weak pix

A Philco 22C312 had a weak picture, gray and washed-out-looking. There was a bad hum, and the sync was poor. Voltages on screen and plate of the video amplifier were high. I cut the 1-megohm resistor loose from pin 2, the control grid of the 12BY7 video amplifier, and the picture returned to normal. With the resistor replaced, the picture stayed perfect. What was happening in this circuit?—E. S., Ferguson, Mo.

From the symptoms and the voltage readings you gave, I would say that the video amplifier tube had been blocked. It could have been due to the grid resistor being open. This would have caused the grid to accumulate such a highly negative charge that it cut the tube off. As it was not drawing any plate or screen current, there would have been no voltage drop across plate load or screen resistors. Alternatively, the resistor may have been almost shorted out, although this is somewhat unlikely. In any case, restoring the proper bias to the 12BY7 brought the picture back, so the resistor was obviously defective.

END
PUZZLED ABOUT FEEDBACK

By NORMAN H. CROWHURST

I HAVe written a good deal on the subject of feedback and feel I know what I am talking about. However, quite recently I found myself somewhat puzzled. Not so much by what feedback is or does, but by what the quoted ratings mean. I have seen amplifier specifications stating 20, 30, 40 or even 80 db of feedback. These specifications sometimes indicate that the feedback is the total amount comprised in a number of loops. Some letters from readers (as well as some amplifiers I have recently had for test and evaluation) set me to wondering just how these fantastic numbers are obtained.

One amplifier showed an increase in gain of only 3 to 6 db (depending on frequency) when I opened the overall negative feedback loop. Yet a company engineer had assured me there was more than 20 db of feedback. I looked at the schematic carefully to see if there were any other feedback loops that could possibly account for the rest of the quoted figure.

In opening the feedback loop (Fig. 1), I had merely disconnected the resistor and capacitor (R2 and C) that went from the output transformer back to the cathode of the input stage. This still left a small amount of degenerative feedback due to the unbypassed cathode resistor (R1). As far as I could see from a careful analysis of the circuit, there was no other feedback loop.

A quick calculation indicated that if I bypassed the cathode resistor, I might increase the gain by 5 db. A quick check with a capacitor proved my calculation correct.

So the maximum possible change in gain produced by feedback in this particular amplifier is 8 to 11 db, depending on frequency. How then could the engineer claim he had more than 20 db of feedback?

Had I not known the engineer personally, I might have dismissed this matter as another exaggerated manufacturer's claim—the sort of thing where a maker claims a fantastic amount of feedback, puts a resistor in there to show there is some feedback and the consumer never knows the difference. But I knew this particular engineer would not make a claim unless somehow or other he had found this amount of feedback actually operating.

Then it suddenly dawned on me. The output circuit used pentode tubes (as pentodes). I was testing the amplifier with the conventional dummy resistance load. I took off the load and then checked the effective feedback again. I had more than 20 db. So there was my answer. Under open-circuit conditions, this amplifier really did have the amount of feedback claimed. However, under practical operating conditions, it had much less.

Probably, the average feedback is not as low as the amount I measured because most speaker impedances fluctuate upward from their nominal value rather than downward. On the other hand, there are some speaker impedances where the value quoted as nominal is an average. This means that, for example, an 8-ohm loudspeaker impedance could be increased by as much as 25% or more with some distortion occurring.

In the frequency range where the speaker gets down to 3 ohms, the feedback almost disappears.

The amplifier nominally has a feedback of more than 20 db when measured the "right" way. But in practical operation the feedback will vary from very little up to perhaps 14 db. Let's just see where this feedback occurs.

Maximum feedback will occur at loudspeaker resonance and at high frequencies where its inductive impedance is high. Speaker resonance may be somewhere between 30 or 40 cycles and 150, depending upon the size of the unit and the enclosure in which it is mounted. Here there is maximum feedback to minimize distortion at the speaker's basic resonance and also to provide some damping of this resonance. This sounds as if it may be good. It will prevent low-frequency distortion. Now at the high end, where the voice-coil inductance makes speaker impedance rise, again there will again be a fairly large amount of feedback. This begins to show 2,000 cycles or so, or, on up.

But in the region of 400 to 1,000 cycles, the loudspeaker impedance is minimal—not much more than the dc resistance of the voice coil, which is probably 2.5 to 3 ohms. This means the amplifier has practically no feedback at all in the important range from 400 to 1,000 cycles.

More than this. Any intermodulation distortion accompanying frequencies in the low range will not be reduced by the feedback because the intermodulation is a distortion of the mid-range frequencies. From the viewpoint of reducing audible distortion, it would be much better if there were comparatively little feedback in the low region near

Fig. 1—A typical amplifier uses a resistor-capacitor combination from the output transformer to the cathode of the input stage to supply negative feedback.

Fig. 2—the impedance of an 8-ohm loudspeaker is not always 8 ohms.
Satisfying Customers for Profit

A Practical Guide for Building Ham Shack Customers!

This Electronic Industries Association Project, on how to handle customers can mean the difference between success and failure for a service-type business. Describes typical "problem" situations and presents field-tested solutions, showing how a potential trouble can be turned into an asset. Covers problems such as: the customer who thinks he bought a "lemon"; complaints about "too high" service; and angry customers, etc. Includes 12 unique wallet-size reminder cards to help keep you on the right track. If you own, manage or work for a service-type business, this book belongs on your bench! 150 pages; 5 1/4 x 8 1/2. Only...

$1.25

Rapid Auto Radio Repair

G. Warren Heath provides you with typical schematic and circuit explanations for all types of auto radios (standard 6 or 12-volt conventional, hybrid, all-transistor, foreign, FM, new removable portable types). Gives you hundreds of troubleshooting tips. Includes chapter on troubleshooting tricks from auto service men. Describes auto radio components, including special capacitors, fuses, IF transformers, speakers, transistors, voltage regulators. If you service auto radios, this book belongs on your bench! 140 pages; 5 1/4 x 8 1/2. Only...

$2.25

Building Up Your Ham Shack

How to Assemble & Upgrade Ham Stations

Howard S. Pyle, W7OE, tells what equipment you'll need to get a ham shack on the air, how to budget for equipment so you can gradually build up your station at minimum cost. Describes both factory-built and do-it-yourself gear. Suggests what is needed and what you'll need; how to assemble your own workshop (including one that fits in a closet). Written for the novice as well as for the veteran "Ham Shack". Profusely illustrated. 128 pages; 5 1/4 x 8 1/2. Only...

$2.25

Servicing Transistor Radios, Vol. 7

Provides complete analysis of 48 domestic and foreign transistor radios produced in 1960-64. Here's all you need to know for quick servicing; Sams Standard Notation Schematics with exclusive Circuits-Trace; chassis photos; alignment data; servicing tips; complete replacement parts lists. Includes cumulative index to 114 volumes in the series. 150 pages; 8 1/2 x 11. Only...

$2.25

END
SUBJECTS OFFERED AT NO COST TO YOU:

1. **TRANISTOR FUNDAMENTALS**—complete coverage of transistor theory without the use of mathematics.
2. **GUIDE-MATIC POWER HEADLIGHT CONTROL** (Autronic Eye)—lecture and lab.
3. **TWO-LIGHT SENTINEL ELECTRIC HEADLIGHT SWITCH**—lecture and lab.
4. **TROUBLE-SHOOTING PROCEDURES** for dead or weak low voltage auto radio tuners and trigger circuits.
5. **LECTURE AND LAB. PRACTICE ON "SIGNAL SEEKER" AND "WONDER BAR" AUTO RADIO TUNER AND TRIGGER CIRCUITS.**
6. **SENTINEL ELECTRIC HEADLIGHT SWITCH**—lecture and lab.
7. **OTROUBLE-SHOOTING PROCEDURES** for head or weak low voltage auto radio tuners.
8. **LECTURE AND LAB. PRACTICE ON "SIG" SEEKER AND "WONDER BAR" AUTO RADIO TUNER AND TRIGGER CIRCUITS.**
9. **TRANSISTOR TROUBLE-SHOOTING**—lecture and lab work analyzing defects in transistor circuits.
10. **HYBRID-TYPE AUTOMOBILE RADIOS**—low voltage tube and output transistor circuits.
11. **DELCO-MATIC ALL-TRANSISTOR GARAGE DOOR OPERATORS**—lecture and lab.
12. **AUTO PORTABLE RADIOS**—lectures and lab. practice on all-transistor portable radios.

THE LATEST ON TRANSISTORS AND AUTOMOTIVE ELECTRONICS 9 SUBJECTS AVAILABLE TO YOU AT THE FREE DELCO RADIO-GUIDE LAMP ADVANCED TRAINING SCHOOL. One week of instruction. No lab. fees. No tuition charge. Textbooks supplied.

In 1960 over 900 electronics technicians completed our one-week course. You, too, can receive this same valuable training in 1961. Bring yourself up to date on transistors and automotive electronics with personalized instruction at the General Motors Training Center near you. (See schedule below.)

Classes will be conducted by graduate engineers with special training in your field. Diplomas, awarded only to those who successfully complete the courses, will mean a great deal to you—and to your customers.

Register now through your local Delco Electronics Parts Distributor or write directly to Delco Radio Division, General Motors Corporation, Kokomo, Indiana, Attention: Service Manager.

GUIDE LAMP DIVISION

<table>
<thead>
<tr>
<th>DATE</th>
<th>REGION 1</th>
<th>REGION 2</th>
<th>REGION 3</th>
<th>REGION 4</th>
<th>REGION 5</th>
<th>REGION 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-16</td>
<td>Philadelphia</td>
<td>Detroit</td>
<td>Detroit</td>
<td>St. Louis</td>
<td>Dallas</td>
<td></td>
</tr>
<tr>
<td>1-23</td>
<td>Washington</td>
<td>Charlotte</td>
<td>Detroit</td>
<td>St. Louis</td>
<td>Houston</td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>Washington</td>
<td>Atlanta</td>
<td>Cincinnati</td>
<td>Omaha</td>
<td>Los Angeles</td>
<td></td>
</tr>
<tr>
<td>2-13</td>
<td>Tarrytown</td>
<td>Memphis</td>
<td>Cleveland</td>
<td>Kansas City</td>
<td>El Paso</td>
<td>Los Angeles</td>
</tr>
<tr>
<td>2-27</td>
<td>Tarrytown</td>
<td>Jacksonvile</td>
<td>Cincinnati</td>
<td>Kansas City</td>
<td>El Paso</td>
<td>Los Angeles</td>
</tr>
<tr>
<td>3-6</td>
<td>Boston</td>
<td>New Orleans</td>
<td>Pittsburgh</td>
<td>Minneapolis</td>
<td>Oklahoma City</td>
<td></td>
</tr>
<tr>
<td>3-13</td>
<td>Union</td>
<td>Memphis</td>
<td>Buffalo</td>
<td>Chicago</td>
<td>Denver</td>
<td>San Francisco</td>
</tr>
<tr>
<td>3-20</td>
<td>Philadelphia</td>
<td>Charleston</td>
<td>Detroit</td>
<td>Cleveland</td>
<td>Chicago</td>
<td>Portland</td>
</tr>
<tr>
<td>4-10</td>
<td>Boston</td>
<td>Atlanta</td>
<td>Pittsburgh</td>
<td>Minneapolis</td>
<td>Oklahoma City</td>
<td></td>
</tr>
<tr>
<td>4-17</td>
<td>Boston</td>
<td>Atlanta</td>
<td>Pittsburgh</td>
<td>Minneapolis</td>
<td>Oklahoma City</td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td>Union</td>
<td>Memphis</td>
<td>Buffalo</td>
<td>Chicago</td>
<td>Denver</td>
<td>San Francisco</td>
</tr>
<tr>
<td>5-8</td>
<td>Philadelphia</td>
<td>Charleston</td>
<td>Detroit</td>
<td>Cleveland</td>
<td>Minneapolis</td>
<td>Dallas</td>
</tr>
<tr>
<td>5-15</td>
<td>Union</td>
<td>Atlanta</td>
<td>Cleveland</td>
<td>Minneapolis</td>
<td>Dallas</td>
<td>Salt Lake City</td>
</tr>
</tbody>
</table>

FEBRUARY, 1961
The nuvistor triode has appeared in one of its first practical applications—the rf amplifier of a TV tuner. This novel device (see "Nuvistor, New Kind of Electron Tube", June, 1959), a vacuum-tube triode in a dime-sized metal case, is now a part of the RCA KRK-98 TV tuner and is being used in one of RCA’s 1961 TV receivers. The tuner circuit is rather conventional (see diagram). It uses two tubes and switch tuning, but with the 6CW4 (nuvistor) as the rf amplifier the result is a small tuner that has more gain, lower noise, lower power drain and is more reliable than other tuners using conventional vacuum tubes.

For example, the noise figure of the 6CW4 tuner is about 1.5 db better (on channel 13) than that of the 6ER5 (frame-grid triode) or the 6FH5 (standard triode). Such an improvement is important when a TV receiver is used in a fringe area and can make the difference between good, and good and snowy pictures. The 6CW4 tuner also features better overall gain than the 6ER5 and 6FH5 tuners by as much as 2 db.
Replace improper equipment with the only microphone designed specifically for citizen's band

The Turner 350C

This reasonably priced, mobile-type ceramic microphone is the perfect replacement for the many improper, tape recorder-type microphones now being used on CB equipment. Has DPST switch wired for relay operation with easily reversible terminals to allow modifications if necessary; wiring diagram enclosed with each microphone; hanger button and standard dash bracket for mobile rig mounting; and an 11" retracted (five foot extended), plastic-jacketed, coiled cord. Response: 80-7,000 cps. Output: -54 db. List price: $16.80 complete. See your Turner Distributor, listed below, he has the 350C in stock.

The Turner Microphone Company

Send this coupon to the nearest Turner distributor listed above or write The Turner Microphone Company for the name of a distributor in your area.
make your meter EASIER to READ

These range expanders spread out your readings so they cover 10 times as much of the scale

By LEO G. SANDS

HOW can you measure line voltage accurately? It's not as easy as it sounds. A very good ac meter is required. They're not cheap, and are usually found only in laboratories or in the hands of power companies.

My light bulbs started burning out every few weeks. Suspecting that the quality-control procedure of the lamp manufacturer was slipping, I sent the company a complaint. It brought a series of telephone calls from one of the firm's engineers, who immediately suspected high line voltage. This was measured with a voltmeter. They gave different readings! I reported back to the engineer, and he suggested that we make a more accurate meter be used.

The lighting engineer pointed out that a 5% increase in line voltage will cut lamp life 50% and, when line voltage is 10% too high, lamps will last only 40% of their rated 750-hour life. Line voltage makes a big difference in TV tube life, as well.

Instead of purchasing an instrument of the required accuracy, the meter range-expander device shown in Fig. 1 was designed. It consists of two OB2

![Fig. 1—Basic meter-expander circuit.](image)

Fig. 1—Basic meter-expander circuit.

voltage-regulator tubes in reverse parallel. (The cathode of V1 is connected to the anode of V2 and vice versa.) Assuming that the highest line voltage to be encountered would never exceed 110, the value of series resistor R was set at 500 ohms. With 110 volts applied, 105 volts is developed across V1-V2 and 30 volts across R. Current through R is 60 ma since I = E/R, or 30/500 = .06 amp. The current through each of the VR tubes is 30 ma.

When the line voltage is only 110 volts, there is still a 105-volt drop across the V-R tubes. But the voltage across R will now be only 5.

By measuring the voltage drop across R with an ac voltmeter set to its 0–30-volt range, the meter will read the line-voltage level minus 105 volts. If the line voltage is 120 volts, the meter will indicate 15. The meter scale will have been expanded so that it reads 105–130 volts over its full scale.

This kind of device is extremely useful for determining small line-voltage variations accurately. When using an ordinary vtvm or voltmeter, a change in voltage from 125 to 120 is indicated by only one scale division, if the scale has 60 divisions. But with the range-expanding device, the 5-volt change covers 10 times as much of the scale, as shown in Fig. 2. It thus becomes possible to note changes of less than 1 volt.

While not as accurate as a very precise laboratory instrument, this setup is a lot better than a conventional voltmeter.

The voltage divider is connected to the meter, as shown in Fig. 2. It is possible to note changes of less than 1 volt.

The meter accuracy is 2% of full scale; some are more accurate. A 2% error on the 300-volt scale is 6 volts. A 2% error on the 30-volt scale is only 0.6 volt, or one-tenth as great.

If the meter accuracy is 2% of full scale and the V-R tubes hold to within 1 volt, a total of about 1.6 volts error is possible if both errors are in the same direction. But, when using a voltmeter directly, the error when set to the 0–300 range can be from 6 to 9 volts.

To fire the V-R tubes, incidentally, about 30% higher voltage than their rated operating voltage is required. In the expander circuit, the tubes are fired by the ac peak voltages.

The same technique can be applied to dc measurement. Fig. 3 shows an expanded-scale setup for dc voltages. By setting S1, 105 or 210 volts can be applied as a bucking voltage. When measuring 260 volts, for example, 210 volts are applied at reverse polarity so that the meter will read 50 volts, the difference between the measured and the bucking voltage. When measuring 150 volts, 105 volts of bucking will give a meter reading of 45 volts. The accuracy becomes greater as the difference between the two voltages becomes smaller.

A technique, long known to Bell Labs engineers, includes a "volt box" (Fig. 4). The volt box is connected in series with a voltmeter that measures the difference between the measured voltage and the bucking voltage. When measuring 50 volts, for example, S is set to apply 45 volts of bucking. The meter reads 5 volts.

One problem in adjusting voltage regulators in cars is measuring the battery voltage accurately. Fig. 5 shows a circuit using a 0-3 dc milliammeter which indicates 6 to 9 or 12 to 15 volts along its 0–3 scale depending upon the position of S. The batteries are ordinary 1.5-volt dry cells, which measure 1.51 volts per cell when new. When S is set to 6V, zero on the milliammeter scale is 6 volts. When set to 12V, it is 12 volts. In a car equipped with a 6-volt battery,
normal voltage with engine off is 6.3. When the regulator is correctly adjusted and with the engine running, the voltage varies to about 7.2. In a 12-volt battery-equipped car, the voltage range is from 12.6 to 14.4, and up to 15 volts for some railway cabooses and heavy-duty vehicles. Fig. 6 shows the difference in the readability of an ordinary meter and the expanded-scale arrangement.

A word of caution is necessary. Don’t reverse test-lead polarity when using these expanded-scale techniques for dc. In the circuit shown in Fig. 5, for example, reversing the test leads would apply 24 to 27 (instead of 3) volts to the meter circuit when measuring voltage across a 12-volt battery.

LUCK of the IRISH?

Sitting in a neighbor’s home, we were all quietly watching the 21-inch TV screen, observing the technique used by the villain to start one of his nefarious schemes. Just as the hero in this horse opera appeared, horizontal hold departed. The picture started jumping sideways and nothing seemed to help. With much prodding I was convinced to look into the set’s rear—with no spare parts on hand I considered this a waste of time, but I looked anyway.

We were lucky. This set, a Philco split-chassis model, uses a 12AV7 in its sync section. It uses another 12AV7 in the front end as the rf oscillator. A quick tube switch and—believe it or not—things were back to normal. Just to insure good results, I replaced the defective tube with a new one the next evening.—Warren Ray

Send for Coyne’s 7-Volume Job-Training Set on 7-Day FREE TRIAL!

Put money-making, time-saving TV-RADIO-ELECTRONICS know-how at your fingertips—examine Coyne’s all-new 7-Volume TV-RADIO-ELECTRONICS Reference Set for 7 days at our expense! Shows you the way to easier TV-Radio repair—time saving, practical working knowledge that helps you get the BIG money! How to install, service and align ALL radio and TV sets, even color-TV, UHF, FM and transistorized equipment. New photo-instruction shows you what makes equipment “tick.” No complicated math or theory—just practical facts you can put to immediate advantage in the shop, or for ready reference at home. Over 3000 pages; 1200 diagrams; 10,000 facts!

SEND NO MONEY! Just mail coupon for 7-Volume TV-Radio Set on 7-Day FREE TRIAL! We’ll include the FREE BOOK below. If you keep the set, pay only $3 in 7 days and $3 per month until $37.25 plus postage is paid. Cash price only $24.95. Or return set at our expense in 7 days and owe nothing. Either way, the FREE BOOK is yours to keep. Offer limited, so act NOW!

FREE DIAGRAM BOOK!

"LEARNED MORE FROM THEM THAN FROM 5 YEARS WORK!"

“Learned more from your first two volumes than from 5 years work.” —Roy Glenn, Ithaca, New York

"Swell set for either the service man or the beginner. Every service bench should have one." —Melvin Maschbruch, Whelan, Iowa

FREE BOOK—FREE TRIAL COUPON!

Like Having An Electronics Expert Right At Your Side!

Educational Book Publishing Division
COYNE ELECTRICAL SCHOOL
1455 W. Congress Parkway
Dept. 21-T, Chicago 7, Illinois

FREE TRIAL COUPON

NAME__________________________ ADDRESS__________________________
AGE__________________________ CITY__________________________ STATE_________

Mail coupon today! Get your FREE book before this offer is withdrawn.

Build Your Own
THEREMIN!

Now you can enjoy the ethereal, mysterious, fascinating sound of the THEREMIN. You play this modern musical instrument without touching it—simply by moving your hands about it. The THEREMIN has no keys, buttons or strings.

For the first time, a transistorized THEREMIN is available in kit form.

This easy-to-build musical instrument is featured in the January, 1961, issue of Electronics World magazine. For a free reprint of this article and complete information on this exciting new kit, mail this coupon today.

R. A. MOOG CO.
Department C
P. O. Box 253
Houma, New York

Please send me complete information on the build-it-yourself THEREMIN.

Name__________________________ Address__________________________
City__________________________ Zone__________________________ State_________

Please Print

The First Practical
TV-RADIO-
ELECTRONICS
Shop Library!

FREE BOOK—FREE TRIAL COUPON!

Educational Book Publishing Division
COYNE ELECTRICAL SCHOOL
1455 W. Congress Parkway
Dept. 21-TI, Chicago 7, Illinois

FREE TRIAL COUPON

NAME__________________________ ADDRESS__________________________
AGE__________________________ CITY__________________________ STATE_________

Mail coupon today! Receive your FREE book before this offer is withdrawn.
83 YX 929. Stereo Tape Record-Play Preamp Kit. $79.95 (less case)

One of the many great Knight-Kit stereo component kits. Professional quality; superb performance with virtually any 3-head tape transport; separate dual-channel recording and playback preamps; permits tape monitoring, sound-on-sound and echo effects. Packed with quality features for every possible stereo and monophonic function...

83 YX 928. FM-AM Hi-Fi Tuner Kit. $49.95

Typical Knight-Kit hi-fi value—incomparable at the price. With AFC, tuned RF stage on FM, multiplex jack. Straight FM tuner kit also available at $39.95. For deluxe Stereo FM-AM and FM tuner kits, see the Allied catalog...

83 YX 927. 20-Watt Stereo Hi-Fi Amplifier Kit. $39.95

Biggest bargain in quality Stereo hi-fi. Has special clutch-type dual-concentric level control; simplified control facilities; DC preamp filaments. Similarly styled 32-Watt Stereo Amplifier Kit with full frequency center channel available at a low, low $59.95...

83 YU 934. Deluxe 70-Watt Stereo Hi-Fi Amplifier Kit. $119.95

Super-power to drive any of today's speakers, a do-it-yourself stereo masterpiece, featuring: special "blend" control; full-range center channel; tape-source monitor; dual phasing switches; Stereo paralleling switch. For deluxe 40-watt Stereo amplifier at only $76.95 and 60-watt Stereo amplifier, see the Allied catalog...

Simply these and 59 knight
A PRODUCT

a pleasure to build...

The most satisfying do-it-yourself experience awaits you when you build a Knight-Kit! You'll marvel at the sheer ease of assembly, absolutely assured by exclusive "show-how" manuals, wall-sized picture diagrams, step-by-step do-and-check instructions, pre-cut wire, "visi-packed" parts and an engineering perfection that eliminates guesswork. You'll get perfect results. You'll enjoy with pride a true custom-built electronic product, professionally engineered and styled—"the best you can own. And to top off your pleasure, you'll save substantially at the unbeatable Knight-Kit price...

www.americanradiohistory.com
83 YX 712-2. Superhet Citizen's Band Transceiver Kit. $79.95

Dual-conversion for highest sensitivity and selectivity; crystal-controlled operation on any 2 channels, plus manual tuning. Another Knight-Kit Citizen's Band Transceiver is available at an amazing low $39.95—see the Allied catalog for full details...

83 YX 258. 4-Band "Span Master" Receiver Kit. $25.95

Fabulous performer for world-wide reception; thrilling shortwave adventures, plus fine Broadcast; band-switching, 540 KC to 30 MC; with cabinet. For additional receiver kits, radio-intercom, clock-radio, transistor radios, intercom systems, electronic labs and other great hobbyist Knight-Kits, see the Allied catalog...

83 Y 125. Electronic VTVM Kit. $25.75

High sensitivity general-purpose VTVM; 11 meg input resistance; balanced-bridge circuit; 4½" meter. One of many fine instrument kits including 5" scopes, AC VTVM, tube checkers, signal tracer, audio generator, sweep generator, and others, described in detail in the Allied catalog...

Send coupon today for the 1961 Allied electronics catalog (the world's biggest), featuring the complete Knight-Kit line. See the best in electronic kits—save on everything in Electronics. Send for your FREE copy now!

ALLIED RADIO, Dept. 8-81
100 N. Western Ave., Chicago 80, Ill.

Send Free 1961 Allied Catalog No. 200

Name

Address

City Zone State

free send coupon today!
SAFE DRIVING with closed-circuit TV

By MANFRED von ARDENNE

A FEW months ago the world press carried a truly sensational report: in a mid-air jet explosion the pilot was thrown clear without his parachute. Exceptional luck had him wind up in a haystack with nothing more than a broken leg to complain about.

By this unusual occurrence Nature has shown a way of solving one of the pressing problems of our time, the design of high-speed transportation with greater safety for the traveler:

There exist substances that permit the complete deceleration of a human body from speeds of several hundred miles per hour within a yard or so, without critical injuries.

High-speed transportation should literally carry its own “haystack” or braking material along for the protection of the traveler in an accident.

Experiments in connection with space flight have shown that deceleration in the order of 35 G can be tolerated without damage. It should be noted that in those experiments the subjects were restrained only by belts and the seats were so oriented as to give no protection. If the seat is positioned backward with respect to the direction of travel, one can expect that the body will be suitably braced from head to foot. Under such conditions decelerations of up to 50 G can be tolerated for short periods without more than minor injuries.

Recent progress in the television field makes it possible to consider the radical solution (patent applied for) shown in the drawing and described in the following paragraphs.

It is quite understandable that the solution has been suggested, not by someone in the automotive field, but by an electronics engineer closely associated with the television industry. At the present state of the art, only moderate additional development work is needed to create a panoramic (wide-angle) TV installation which permits the driver to be seated with his back to the direction of travel. The picture of exceptional clarity (1,000 lines) would show a panoramic view of the road and surrounding area, as would normally be seen from the front of the car.

Three television cameras, each with a horizontal angle of 70°, could create a picture representing a view of 210°. This picture could be presented on three picture tubes in such a manner as to cover a horizontal angle of only 100° of the driver’s view. The driver would thus be able to scan the whole road ahead of him without having to turn his head to see on both sides of his car. A further advantage of this system would be a considerable improvement of visibility in fog. It would only be necessary to install filters in front of the camera lenses to improve response to the longer wavelengths of infrared.

The idea of using closed-circuit television does not appear so farfetched if one remembers that Cadillac has already used a similar approach (a few years ago) to provide a wide-angle view to the rear in one of their experimental cars.

To pick out colored traffic signs one might consider the use of color TV as already used for viewing surgical operations remotely, in medical universities. The present design includes a wide-angle periscope for observing colored traffic signs as well as for emergency use in case of failure of the TV system. This feature can be seen in the drawing, which also shows the arrangement of the driver’s seat and the video display.

The TV system permits the placement of the driver as well as the passengers in contoured seats arranged opposite to the direction of travel, so that the driver’s view is to the rear. Proper shaping of the contoured seats (usually referred to in this country as “bucket seats”—translator) will assure that the first impact in case of accident (which is nearly always frontal) will push the passengers into the seats and provide proper bracing for the whole body, including the driver. Front and rear seats are rigidly connected to each other and as a result of the impact they will move in unison toward the retarding mass of the padding, or braking material, designed to decelerate the body at a safe rate. The required constant deceleration can be accomplished by selecting braking material of the proper density, as stated above.

Admittedly the inclusion of such a decelerating-mass cushion inside the vehicle will occupy some of the interior space. To minimize this disadvantage the same part of the interior can also store other safety items, such as padding panels which, upon impact, would automatically shoot in front of the windows and other potentially dangerous areas, such as any hard objects in the interior. A complete covering of potential danger spots assures that later impacts during an accident, which are not always frontal ones, would also not be likely to injure passengers. With reference to the padding, one may think of the excellent protection given by crash helmets; they are so effective that many law-enforcing agencies suggest their use.

The rather radical solution discussed above should not be considered an impossibility at the present state of the art. It was presented with a view to pointing out possible future development of the automobile. It was however also discussed for the purpose of introducing compromise solutions for which technology has the means now and for which today’s traffic is more than ready.

*Director, Manfred von Ardenne Research Institute, Dresden-Weisser Hirsch, Germany.

RADIO-ELECTRONICS
EFFECTS YOU SHOULD KNOW

By J. H. THOMAS

SOME effects in electronics and allied sciences are named after their discoverers. One of the better known of these for example is the Edison effect, Thomas Alva Edison's most important contribution to electronic science. In 1883 he noted that a glass bulb with a heated filament would pass electric current in one direction but not the other. It remained for Fleming, who knew of the Edison experiments, to use the principle for a vacuum tube in 1904.

One of the latest in the category is the Seebeck effect, as the action of the tunnel diode tends to be labeled. In the course of the history of electronics there are many such effects, named for their discoverer. How many do you know?

1. Hall effect is prominent in the literature right now. What is it?
2. Do you recognize the Thomson effect?
3. The Petiier effect, discovered by 1834, is lately becoming of importance in semiconductor type baby-bottle warmers. Do you know where it appears and what it is used for?
4. The famous Volta also had an effect labeled after him, and it is naturally called the Volta effect. What is it?
5. What about the Joule effect?
6. More familiar perhaps in circuit work is the Miller effect, used in most oscilloscopes. Are you hep?
7. You're pretty hot on science if you've heard of the Stark effect.
8. The Barkhausen effect has nothing to do with oscillations in a vacuum tube, but instead deals with...what?
9. The Seelock effect is one which has never been explained satisfactorily. Do you know what it is?
10. Just to take the sting out of this quiz, here's an easy one. What is the Doppler effect?

(Answers on page 122)

The TC109 Tube Checker is a real money maker for the serviceman and a trusty companion for engineers, maintenance men and experimenters. Even students and hobbyists can afford the Mighty Mite for their own use or to service an occasional Radio or TV set. This small complete tester is a tremendous performer that spots bad tubes missed by costly mutual conductance testers.

New unique "stethoscope" approach tests for grid emission and leakage as high as 100 megohms, yet checks cathode current at operating levels. Special short test checks for shorts between all elements. The MIGHTY MITE will test every radio and TV tube that you encounter (over 1300!) plus picture tubes, foreign, five star and auto radio tubes (without damage). As easy to set up as a "speedy tester" from easy to follow tube booklet. New tube chart free of charge. Simple operating instructions are screened on the front panel.

Check these plus Sencore features
- Meter glows in dark for easy reading behind TV set
- Stainless steel mirror in cover for TV adjustment
- Rugged, all steel carrying case and easy grip handle
- Smallest complete tester made
- Inner chassis can be easily transferred to tube caddy, bench or counter
- Only 9" x 8" x 2½". Weight 8 lbs.

SenCore, Addison 3, Illinois

Dear Pat: Will you please...

□ Send me_______ Mighty Mite

□ Check or M.O. enclosed (PP prepaid) □ Send C.O.D.

Distributor's Name (if any):

Your Name ____________________________

Street ________________________________

City__________________ Zone________State________

ALL UNITS FULLY GUARANTEED OR MONEY BACK WITHIN 10 DAYS

See your Distributor... if he cannot help you, Pat will

PAT RUDE
Customer Service

FEBRUARY, 1961
The 27-mc Citizens band and the 28- to 30-mc ham band have a lot to offer the hobbyist and the casual listener. You can hear personal and business messages and ham conversations. The Citizens band also provides a frequency for transmission of control signals.

The little receiver described here is designed for special service in these bands. It is suitable for listening, signal-strength measurement and relay control. It tunes from about 25.5 to 30.5 mc, which includes short-wave programs by foreign broadcasters throughout the world and frequencies around 26 mc.

For listening, you need only the first two stages and can omit T2, V3, R5 and R6 (see schematic). Earpiece volume is more than satisfactory even on weak signals. The usual superregenerative bias should start with R1 about halfway on. If it doesn't, try a different value for R2. It might be wise to use a potentiometer for R2 as its optimum value may change with age or temperature. Tune coil L to center the desired frequency band.

The 2N1143 transistor (V1) is a high-frequency type that operates very well with only 1.2 volts and 70 μA! Thus the power supply may be a tiny cell and can be left on for long periods of monitoring. With an audio stage, total battery power drain is still negligible—only 0.4 ma.

I use a little rechargeable cell because of its small size and convenience. It is placed in a bottle cap which is fitted with a phono plug. To operate the set, the cell is plugged into a phono jack on the receiver. I keep an extra unit on hand and use it while recharging the other.

Low power means low radiation. Although the second harmonic of 28 mc falls within TV channel 2, you can use the receiver near a TV without interference. Actually, with the superregenerator whip a few feet from an indoor TV antenna, interference is negligible.

V3 adds the remote-control feature. It is biased nearly to cutoff. When a carrier arrives, it reduces the bias and increases collector flow. Choose a value for R5 that gives the lowest reading with no signal and maximum reading with signal. It may be made up of two or more resistors in series or parallel to get the required value. A strong carrier should cause more than 1 ma to flow through the relay coil and activate it.

The relay has a mechanical adjustment for sensitivity. Mine is set to operate at 0.8 ma and to release at

Three-transistor unit for listening, signal-strength measurements, and remote control. Covers frequencies between 25.5 and 30.5 mc. Uses rechargeable battery.

When tested by a member of the staff of RADIO-ELECTRONICS at a point some 15 miles from New York City, a number of stations were received. However, none of them were close enough to trigger the relay. But from the meter readings it was apparent that somewhat stronger stations would do the job.

SPECIAL SERVICES RECEIVER

Listening, radio control and signal-strength measurements are the three duties of this 3-transistor unit

By I. Queen
Editors' Associate

RADIO-ELECTRONICS

82
Circuit of the special-services receiver.

about 0.4 mA. It can easily be energized by a 5-watt carrier at a distance of about 1,500 ft., using an antenna only 2 feet long.

For carrier measurement, a meter (0 to 1 mA) is placed in series with the relay. Adjust R1 for minimum reading (without signal) or slightly beyond minimum (in the lower-resistance direction). My meter reads 0.2 mA at zero signal and above 1 mA on strong signals. If you touch the whip antenna, superregeneration will cease and the meter will deflect to full scale, just as though a strong signal were being received.

All receiver components are housed in a 4 x 2 1/4 x 2 1/4-inch metal box. Relay and meter are in another box of equal size. They are joined electrically by a short shielded lead with phono plugs at both ends. The receiver box also needs a phono jack (J2) for its rechargeable cell and a jack (J1) for the whip antenna (a phono plug is soldered to the antenna). J3 is a miniature earpiece jack.

The superregenerator is a very sensitive receiver which picks up hams and Citizens-banders over many miles. When conditions are right, even thousands of miles can be covered. When it comes to carrier measurement, don't confuse this device with the simpler variety often described. The latter can make measurements up to about 20 feet from the transmitting antenna. This one goes full scale on 5-watt carriers at 1,500 feet or more. All except the weakest of stations will give some sort of deflection. You can monitor signal strength of mobile stations, help your friends adjust their rigs the other side of town, etc.

It is perfectly feasible to leave this receiver on for long periods until a strong carrier throws the relay and calls attention to itself. The power needed to operate the set can be called negligible.

END
World’s first Electronic TV Antenna...

Here is the Powertron’s Power Secret—

Built-in signal intensifier amplifies the signal at the point of interception, produces up to 9 times more gain!

NOW AN ANTENNA WITH 5-9 TIMES MORE GAIN

THAN ANY TV ANTENNA EVER MADE!

Here's the antenna that will obsolete tens of thousands of old-style antennas, will give new life to old TV sets, will build new profits for TV Service Technicians.
POWERTRON AMPLIFIES TV SIGNALS AT THE POINT OF INTERCEPTION

Now Winegard engineers have designed a new high gain, all-channel yagi antenna incorporating a low noise, high gain RF amplifier in one integral unit! Because the input circuit of this amplifier exactly matches the characteristics of the new "Tapered T" driven elements to which it is directly coupled, every last particle of signal is amplified. The results are amazing.

We call this new electronic antenna the POWERTRON. The Powertron amplifier uses the frame grid 6DJ8 dual triode (12.500 MHOs) transconductance, in a radical new RF circuit, that allows this one tube to amplify all signals in the VHF TV band, 54 to 216 MC, with a gain of 5 times (14 DB). This gain is added to the gain of the antenna which is a high gain yagi design, quite superior to other all channel antennas.

The Powertron power supply towers 117 VAC to a safe 24 volts which is fed up the lead-in to the Powertron antenna. Completely fused, the power supply is made shock-proof by an AC isolation transformer.

Imagine what this super-powerful electronic antenna can do! Weak signals become strong and clear - dim pictures bright and contrasty. Old-style tuners pull in snow-free pictures better than 1961 models on ordinary antennas.

You can do many things with this new antenna that are impossible with any other. You can drive up to 6 TV sets in deep fringe, 15 TV sets in normal areas without an additional amplifier. You can put TV outlets in every room of the house and all sets will have better pictures than any single set with a regular antenna.

Because of its extreme sensitivity, Powertron can be installed lower than other antennas. For instance, where 40-ft. masts are normally used, a Powertron can usually be installed at 25 ft., yet give better results!

Where desirable, the Powertron can be remote up to 1/4 of a mile and still deliver a perfect signal.

In large distribution systems (motsels, apartments, etc.), Powertron makes the perfect antenna to use in conjunction with Winegard's 4-tube A-400 or 7-tube A-700 distribution amplifiers.

For critical color, Powertron's extremely linear frequency response makes it the ideal antenna for your "color" installations.

To sum it up, Powertron makes weak TV pictures good, and good TV pictures even better. It works equally well for color or black and white reception. It is the world's first all channel (VHF) electronic TV antenna, and after a tremendous step forward in the search for improved TV reception.

3 Gold Anodized Teletron Models —
Powertron Model P-44, 14 elements $74.95 list.
Powertron with Power Pack Model P-44X, 21 elements, $91.90 list.
Super Powertron Model SP-44X, 30 elements, $104.95 list.

COMPARISON OF POWERTRON AND TELETRON MODELS TO WINEGARD COLOR'CEPTOR
Chart shows Gain and Power Increase over Color'ceptor (CL-4) Antenna

<table>
<thead>
<tr>
<th>Model</th>
<th>DB Gain Over CL-4</th>
<th>Power Increase Over CL-4</th>
<th>Voltage Gain Over CL-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-44</td>
<td>14 DB</td>
<td>25.1 Times (3500%)</td>
<td>5.01 Times</td>
</tr>
<tr>
<td>P-44X</td>
<td>15.6 DB</td>
<td>38.4 Times (3800%)</td>
<td>6.20 Times</td>
</tr>
<tr>
<td>SP-44X</td>
<td>19.1 DB</td>
<td>81 Times (8100%)</td>
<td>9.0 Times</td>
</tr>
<tr>
<td>T-4</td>
<td>1.0 DB</td>
<td>1.26 Times (26%)</td>
<td>1.12 Times</td>
</tr>
<tr>
<td>T-4X</td>
<td>2.5 DB</td>
<td>1.39 Times (90%)</td>
<td>1.38 Times</td>
</tr>
<tr>
<td>ST-4X</td>
<td>6.1 DB</td>
<td>4.84 Times (484%)</td>
<td>2.2 Times</td>
</tr>
</tbody>
</table>

NEW TELETRONS, TOO! NON-ELECTRONIC, BUT 26% TO 484% MORE POWER INCREASE THAN COLOR'CEPTOR
Similar to the Powertron, but without the RF amplifier, Teletron embodies the same new WINEGARD "TAPERED T" DRIVEN ELEMENTS for proven performance superior to any other non-electronic TV antenna. Teletron is gold anodized, has the same fine quality construction and mechanical features as the Powertron.

3 Gold Anodized Teletron Models —
Teletron Model T4, 14 elements, $34.95 list.
Teletron Model T-4X, 21 elements, $51.90 list.
Super Teletron Model ST-4X, 30 elements, $64.95 list.

GET IN ON THE POWERTRON — TELETRON PROFIT BANDWAGON!
Be first in your area to offer the superb Powertron performance to your customers. Take advantage of many new sales aids now available through your Winegard distributor... and watch for sales-making consumer ads in LIFE.
SYNC SEPARATORS and CLIPPERS

Part I—This article, the first of a two-part series, covers sync separators, clippers, noise-immune sync

By JACK DARR

ANY technicians have a sort of built-in dread of sync clippers, separators and similar stages. Actually, these stages are fundamentally simple.

Let's take them one at a time. What's the basic purpose of a sync-separator stage? Easy; it separates sync! Before you start throwing things at me, let's analyze this a little. All TV sets have two sweep oscillators, which must be synchronized with the signal at 60 and 15,750 cycles. In the received TV signal, there are 60- and 15,750-cycle pulses which we use for this. These sync pulses are transmitted at the peak voltage of the signal. In a perfect signal, the video is never allowed to rise above 75% of this value, so we have the top 25% for our sync (Fig. 1).

To recover these pulses so they can be used to lock our oscillators, we detect them as we would an AM signal (Fig. 2-a). Pass them through a diode which allows only half of the signal to flow—that above the zero line in Fig. 2. We pass the resulting signal (Fig. 2-b) through a circuit which filters out the rf pulsations (Fig. 2-c).

To recover the sync from the top of the complete video signal, we pass it through a circuit which "splits off" the top 25% of the signal which contains the sync information we want.

We can do this with a vacuum tube in an amplifying circuit. By adjusting the grid bias, we can control the percentage of the signal which appears in the plate circuit (Fig. 3). By biasing it so that it is normally below cutoff, we can allow only the top 25% of the signal to be passed on into the plate circuits as seen in Fig. 4. We can do this by applying a fixed de bias to the grid or we can use grid-leak bias (possibly the oldest circuit in electronics!).

The incoming signal charges the coupling capacitor and the grid-leak resistor causes a negative voltage to build up on the grid due to the flow of grid current. The grid acts like a diode plate. By varying the values of the resistor and coupling capacitor, we can make the grid seek whatever bias level we need. Note here that tubes used in this type of circuit must always have a very sharp-cutoff characteristic so that the desired sync pulses are clipped cleanly off the top of the signal.

In actual operation the desired bias level can be readily found in any TV set. How? By measuring the peak-to-peak voltage of the video signal applied to the grid. The effective grid bias must always be 75% of the peak-to-peak value because we want to block the lower 25% (the video) and allow only the top 25% to pass through.

Fig. 5 shows the horizontal sync clipper and amplifier stages of an RCA KCS-68. Twin triodes (6SN7's) are set up so that the first triode acts as separator and the last pair as an amplifier (the other half of V1 is the vertical sync separator). Bear in mind that both vertical and horizontal circuits are identical even though one works with 60 cycle sync, the other with 15,750-cycle sync. The functions are exactly the same. Only the time constants of the resistors and capacitors are different—to get the most output at that frequency and to prevent interaction between horizontal and vertical sync.
The voltages shown on the sync separator V1 are the actual operating voltages. Note the relationship between the grid-cathode voltage and the peak-to-peak voltage of the signal. Measuring from the cathode to the grid, we read -21 volts (bias). The signal is shown at an amplitude of 100 volts peak-to-peak. Although this is nowhere 75%, it is within the manufacturer's tolerance limits. Notice the waveform shown on the grid at V2-a: the heavy line between pulses is what's left of the video signal. For perfect operation, this video signal should be completely clipped off. In practical circuits, it is often merely compressed very tightly! Actually, if we can get this down to a level like that shown, it won't affect sync-circuit operation at all.

Now we have a signal consisting entirely of horizontal sync pulses, at an amplitude of 40 volts peak to peak, on the grid of the last sync-amplifier stage. The sync is taken from a low-impedance point—across the 820-ohm cathode resistor. Notice the 82-µf capacitor used to couple the horizontal sync to the horizontal afc. This value is deliberately small and is common to all horizontal sync circuits. Its purpose is to present a very high impedance to the vertical sync pulses (in case any of those are floating around) and to pass the higher-frequency horizontal pulses with little loss. In vertical sync circuits, the opposite is found—small capacitors are used as bypasses (connected from plate to ground) so the high-frequency pulses find an easy route to ground while the low-frequency vertical pulses pass merrily on.

A duplicate of this circuit is used to separate, clip and amplify the vertical sync pulses. These are then fed through a vertical integrating network to the vertical oscillator.

You'll find this circuit in many of the older TV sets and in some of the newer ones—it is highly efficient when correctly designed. Older sets used 6SN7's; later ones 12AT7, 12AX7, etc.

Combination circuits

Noise-rejection circuits have been incorporated into many sets, usually in the form of separate tubes biased to clip off noise impulses. More recent sets use a circuit which combines the functions of sync separator, sync clipper, amplifier and noise rejector, all in one. The original tube used in this circuit was the 6B6G, a pentagrid converter type familiar to all radio technicians.

Basically, this tube is called a dual-control heptode. Its internal structure is designed so that either grid 1 or 3 can control the electron stream. The remaining grids are the suppressor (G5) and the "combined screen grid" (G2, G4). In radio work, the cathode, G1 and G2 are used as an equivalent triode with G2 the oscillator "plate." Because of its physical location (nearest the cathode), G1 will have a greater effect on the electron stream than G2—it takes a much smaller voltage on G1 to cut the electron stream off completely than it would take on G3. Aside from

(Continued on page 90)
SUPERIOR'S NEW MODEL 770-A

VOLT-OhM MILLIAMMETER

FEATURES:
• Compact—measures 3½" x 5½" x 2½".
• Large "Full View" 2½"-diameter & 850 microampere D'Arsonval type meter.
• House in round-cornered, molded case.

SPECIFICATIONS:
6 AC VOLTAGE RANGES: 0-15/30/50/100/200/1000 Volts.
6 DC VOLTAGE RANGES: 0-1.5/3/6/10/15/150 Ma.
3 RESISTANCE RANGES: 0-10,000 Ohms, 0-1 Megohm, 0-10 Megohms.
3 DC CURRENT RANGES: 0-15/150/1500 Amps.
3 DECIBELS: +38 db to +18 db, +14 db to +3 db, +3 db to -58 db.

The Model 770-A comes complete with test leads and operating instructions. Price is $15.85. Terms: $2.58 after 10 day trial then $1.00 monthly for 5 months.

SUPERIOR'S NEW MODEL 79

SUPER-METER

WITH NEW 6" FULL VIEW METER

SPECIFICATIONS:
D.C. VOLTS: 0 to 15/30/50/100/200/500/1000 Volts.
AC. VOLTS: 0 to 15/30/50/100/200/500/1500 Volts.
D.C. CURRENT: 0 to 15/150/1500 Ma.
AC. CURRENT: 0 to 1.5/15 Ma.
RESISTANCE: 0 to 1,000/10,000 Ohms.
CAPACITY: 0 to 10 Megohms.
REACTANCE: 15 to 25 Megohms.
INDUCTANCE: 15 to 25 Megohms.
DECIBELS: +6 to +18, +14 to +38, +38 to -38 db.

The following components are all tested:
(1) Microampere D'Arsonval type meter made by an automotive tester. (2) Sensitive direct-reading resistance range incorporates a selenium rectifier. (3) Complete with all D.C. voltage and current ranges. (4) Complete with all A.C. voltage ranges. (5) Complete with all A.C. current ranges. (6) Complete with all resistance ranges. (7) Complete with all capacitor, inductance, reactance ranges. (8) Complete with all semiconductor ranges. (9) Complete with all radio frequency ranges.

Model 79 comes complete with operating instructions, test leads and carrying case. Price is $34.95. Terms: $6.85 after 10 day trial then $3.60 monthly for 5 months.

FOR REPAIRING ALL ELECTRICAL APPLIANCES, MOTORS * AUTOMOBILES

DID YOU EVER?

1. Order merchandise by mail, including deposit or payment in full, then wait and write...wait and write?
2. Purchase anything on time and sign a lengthy complex contract written in small difficult-to-read type?
3. Purchase an item by mail or in a retail store then experience frustrating delay and red tape when you applied for a refund?

Obviously prompt shipment and attention to orders is an essential requirement in our business...We ship at our risk! 5"
Model 82A comes housed in a handsome, portable, saddle-stitched Texon case. Price is $36.50. Terms: $6.00 after 10 day trial then $6.00 monthly for 3 months.

SUPERIOR'S NEW MODEL TW-12
STANDARD PROFESSIONAL

TUBE TESTER

"Uses the new self-cleaning Lever Action Division for instant testing. Because all elements are numbered according to positive, negative number. resulting reading"

Price: $47.50. Terms: $11.50 after 10 day trial then $6.00 monthly for 3 months.

SUPERIOR'S NEW MODEL 83A
C.R.T. TESTER

Tests and Rejuvenates

ALL PICTURE TUBES

Model 83-A comes housed in a handsome, portable case—complete with socket for all black and white tubes and all color tubes. Price is $53.85. Terms: $6.00 after 10 day trial then $6.00 monthly for 3 months.

SUPERIOR'S NEW MODEL 85
TRANS-CONDUCTANCE TYPE

TUBE TESTER

"Employs latest improved TRANS- CONDUCTANCE circuit. Cost saving elimi-

nates the troublesome 'damping chamber' and other phase failure. This provides the most suitable method of simulating the manner in which tubes are housed in radio receivers, amplifiers and other circuits. Amplification factor, frequency response, and extreme emulsion are all covered in one meter reading."

Price: $55.50. Terms: $11.50 after 10 day trial then $6.00 monthly for 3 months.

SUPERIOR'S NEW MODEL 88
TESTS ALL TRANSISTORS AND TRANSISTOR RADIOS

AS A TRANSISTOR RADIO TESTER

An R.F. Signal source, modulated by an audio signal, will detect and inject itself into the radio receiver. From the antenna through the R.F. stage, past the mixer into the I.F. Amplifier and detector stage and on down to the audio stage. The audio signal is then filtered and mixed through the receiver. The output of the built-in National Transistor Signal Tester and the output of the receiver are then compared. The receiver will show whether the trouble is induced by the test set or the receiver.
this, the tube works exactly like any other pentode amplifier.

In Fig. 6, signals from the video amplifier are applied to both control grids. The signal on G1 comes from the grid circuit of the video amplifier, that on G3 from its plate circuit. The signals are thus always 180° out of phase because of the phase reversal caused by the signal passing through the video amplifier.

Signal amplitudes are shown on the diagram. Note that the signal on G1 is much lower than on G3. In this circuit, G3 acts as the main control grid, so to speak, and G1 gets a vest, functioning only now and then. You might think of G1 as a sort of "spare tire." Most of the time you don't need it, but when you do need it, you need it bad! For the present, let's forget G1 entirely.

We want to show amplification first, so we use a tube with a sharp cutoff characteristic for the cleanest sync separation. (Later circuits used a tube especially built for this service, the 6CS6 and other high-speed tubes with sharp cutoff characteristics.) By selecting proper grid resistors and capacitors, we can get the correct bias by the grid-leak effect mentioned before. The video signal charges the grid capacitor to the proper value and the tube remains cut off until the sync tips rise above this voltage. The tube then conducts, passing only the sync pulses. The video signals here are positive-going (the most positive portion of the waveform). If a high-value grid-leak resistor is used on G3, the grid draws current when the signal arrives. This current flows through the grid resistor, causing the grid to become more negative. This sets the cutoff point and we have what we wanted, sync separation. In some circuits, you'll find G3 returned through the grid resistor to a source of positive voltage. This improves the sync-clipping action and causes the tube to clip off a small part of the tops of the sync pulses. This removes small irregularities and noises which might have arrived with the signal.

Noise rejection

So far, we've been talking about the sync-separating action of this tube and neglecting G1 entirely. Let's wake it up and put it to work. This grid has a small, reversed-polarity video signal on it. If the incoming signal is strong and clean, G1 has nothing to do. Its normal bias is so adjusted that the incoming sync tips are just above cutoff and it has no effect on the signals passing through the tube. If the signals are weak and noisy, the grid-leak action on G3 will cause its operating point to shift, allowing strong noise pulses and weak sync pulses to pass through. This makes oscillator action erratic.

Normally, G1's bias is set so that incoming signals just do not cut off the tube. Now, if a strong noise pulse comes through, it causes G1 to cut the tube off, stopping the electron stream entirely for a small fraction of a second (Fig. 7). The grid circuit has a very fast time constant so that it can cut the tube off then "let go" very rapidly. This has the effect of simply chopping the offending noise pulse cleanly out of the circuit. It is not allowed to pass through at all, but instead leaves a small "hole" in the signal, sync or both. Because of the very short duration of most noise pulses—and because of the inherent flywheel action of both oscillators—this hole punching has no visible effect on the picture. The oscillators are stable enough to miss a sync pulse or two.

One thing to check when working around this type of circuit is the adjustment of the noise-gate control. It may be found masquerading under any one of several names on the back of the set. You can always identify it by the fact that it is connected so as to vary G1's bias. Remember, normal action of this grid is nothing at all! It should just sit there and have no effect on the signal—unless a strong noise pulse comes through. Misadjustment of the control can have very bad effects. If it is set up too high, G1 will quickly proceed to keep the tube cut off all the time! This has the highly undesirable effect of removing all sync! Correct adjustment procedure is: Turn the control up until you can see the sync being groomed. Turn it further until the picture will become very shakily and unstable. Now, turn the control in the opposite direction until the picture becomes stable, then turn it slightly past that point.

The second part of this series will cover BUV's (6BU5, 8BU5, etc.) and sync circuits.

cut off tube on noise pulses.

(Continued from page 87)
RCA training at home can be the smartest investment you ever made

Look what you get in the Course in Radio and Electronic Fundamentals

PLUS ALL THIS AT NO EXTRA COST...

15 KITS

to build a Multimeter, AM Receiver and Signal Generator. Kits contain new parts for experiments, integrated so as to demonstrate what you learn in the lessons and to help you develop technical skills. Each kit is fun to put together!

MULTIMETER
A sensitive precision measuring instrument you build and use on the job. Big 4½" meter with 50 micromill meter movement. 20,000 ohms-per-volt sensitivity d-c, 6,667 a-c.

AM RECEIVER
Have the satisfaction of building your own radio receiver with this high-quality 6-tube superheterodyne set. Big 5" speaker, fine tone!

SIGNAL GENERATOR
A “must” for aligning and trouble-shooting receivers. Build it for your own use. 170 KC to 50 MC fundamental frequencies for all radio and TV work.

Practical work with the very first lesson! Pay-only-as-you-learn! No long-term contracts to sign! No monthly installment payments. Pay only for one study group at a time if and when you order it!

Stake out your future in electronics now!
SEND FOR OUR FREE HOME STUDY CATALOG TODAY!

Just fill out this card and drop it in the mail—no postage needed.

RCA INSTITUTES, INC.
A Service of Radio Corporation of America
350 West Fourth Street
New York 14, N.Y.

The Most Trusted Name in Electronics

RCA INSTITUTES INC. Home Study School, Dept. ZRE-21
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N.Y.

Without obligation, rush me the FREE 64-page illustrated book describing your electronic training program (check one). No salesman will call.

Home Study □ Los Angeles Resident School □ New York Resident School □

Name __ (Please Print)
Address _______________________________________
City ___ Zone... State...

Veterans: Enter discharge date...........................

CANADIANS—Take advantage of these same RCA courses at no additional cost. No postage, no customs, no delay. Enclose this card in envelope and mail to:
RCA Victor Company, Ltd., 5581 Royalmount Ave., Montreal 9, Quebec.
RCA TRAINING CAN BE THE SMARTEST INVESTMENT YOU EVER MAKE

With RCA Institutes Home Study training you set your own pace in keeping with your own ability, finances and time. You get prime quality equipment as a regular part of the course...and you never have to take apart one piece to build another. Perhaps most important, RCA's liberal Pay-As-You-Learn Plan is the most economical home study method because you pay only for lessons as you order them...one study group at a time! If you drop out at any time, for any reason, you do not owe RCA one penny! No other obligations! No installment payments required! Licensed by New York State Education Department.

Choose YOUR FUTURE from this list of courses:
- Radio and Electronic Fundamentals (see reverse side)
- Television Servicing
- Color Television
- Electronics for Automation
- Transistors

Course	**Qualifications**	**Length of Course**
A | Advanced Electronic Technology (T-3) | High School grad, with Algebra, Physics or Science | Day 21/4 yrs. Eve. 6/14 yrs.
B | TV and General Electronics (V-7) | 2 yrs. High School, with Algebra, Physics or Science | Day 11/4 yrs. Eve. 4/14 yrs.
C | Radio & TV Servicing (V-3) | 2 yrs. High School, with Algebra, Physics or Science | Day 9 mos. Eve. 2/14 yrs.
D | Transistors | V-3 or equivalent | Eve. 3 mos.
E | Electronic Drafting (V-9) | 2 yrs. High School, with Algebra, Physics or Science | Eve. Basic: 1 yr. Advanced: 2 yrs.
F | Color TV | V-3 or equivalent | Day 3 mos. Eve. 3 mos.
G | Audio-Hi Fidelity | V-3 or equivalent | Eve. 3 mos.
H | Video Tape | V-3 or equivalent | Eve. 3 mos.
I | Technical Writing (V-10) | V-3 or equivalent | Eve. 3-18 mos.
J | Computer Programming | High School grad | Day 6 weeks Eve. 24 weeks Set. 30 weeks
K | Radio Code (V-4) | 8th Grade | Eve. as desired
L | Preparatory Math & Physics (P-0) | 1 yr. High School | Day 3 mos.
M | Preparatory Mathematics (P-0A) | 1 yr. High School | Eve. 3 mos.

FIRST CLASS PERMIT NO. 10662 NEW YORK, N. Y.

BUSINESS REPLY MAIL
No Postage Stamp Necessary if mailed in U. S.

Postage will be paid by —

RCA INSTITUTES, INC., Dept. ZRE-21
350 West Fourth Street
New York 14, N. Y.

RCA Institutes is one of the largest technical institutes in the United States devoted exclusively to electronics. Co-educational Day and Evening classes. Free Placement Service. Applications now being accepted.

SEND FOR THIS FREE ILLUSTRATED BOOK TODAY. Fill in the other side of the postage-free card and check Resident School.

RCA INSTITUTES, INC., A Service of Radio Corporation of America
350 W. 4th St., N. Y. 14, N. Y. • 610 S. Main St., Los Angeles 14, Calif.

The Most Trusted Name in Electronics
TEST SPEAKER SPEEDS INDUSTRIAL REPAIRS

Minimum parts and maximum utility makes this simple unit worth its weight in tunnel diodes

By WILLIAM F. KERNIN

SPEAKER substitution boxes are nothing new—they are probably as old as radio servicing itself. However, here is an up-to-date version of this handy device. It was designed mainly for servicing commercial and industrial intercom and sound systems where compact test gear is essential. As such, it is a versatile instrument that is just as much at home on the service bench aiding in the repair of radio, TV and hi-fi sets as it is in the field.

Fig. 1 shows the circuit. An efficient 2½-inch speaker plus an universal line-to-voice-coil transformer form the heart of the unit. Potentiometer R provides full control of volume. A standard 50-ohm pot—readily available—was used. However, an 8- or 16-ohm T-pad control may be used, if desired.

Note the two input jacks—J1 for Hi z, J2 for Lo z. J1 feeds the transformer's primary. There is a choice of taps to provide the desired input impedance—500, 1,000, 1,500 or 2,000 ohms. The transformer's 8-ohm secondary feeds volume control R through the normally closed jack J2. This jack is the low-impedance input and connects direct to the VOLUME control. When J2 is in use, the transformer secondary is disconnected from the volume control.

A 4 x 4 x 2-inch black crackle-finish utility box houses the unit. Cement a sheet of speaker grille cloth to the front panel and use a metal L-frame to cover the rough edges (see photo). For lettering, use decals, protected with a couple of coats of clear Krylon spray.

For example, suppose—using the Hl z input—you trace the program or signal to the input of a certain speaker transformer (Fig. 2). Then, use the Lo z input to check for the signal at the output of the matching transformer at this station. If it isn't there, the fault is in the transformer. If it is there, skip to the speaker terminals.

A happier solution is EMC TEST EQUIPMENT ... finest precision instruments at the lowest possible prices!

Model 102 Voltmeter
Features a 3 3/4% accurate 600 microammeters D- and A-coupled, plus meter with 3 AC current ranges and the tangent zero adjustment for both resistance, capacitors, and inductance. AC Voltage—5 ranges: 0 to 150, 150 to 300, 300 to 600, 600 to 1,500, 1,500 to 3,000 volts. DC Voltage—5 ranges: 0 to 150, 150 to 300, 300 to 600, 600 to 1,500, 1,500 to 3,000 volts. AC Current—5 ranges: 0 to 30, 30 to 60, 60 to 100, 100 to 200, 200 to 500 mil amps. DC Current—5 ranges: 0 to 100, 100 to 200, 200 to 500, 500 to 1,000, 1,000 to 2,000 mil amps. Resistance—5 ranges: 0 to 300, 300 to 600, 600 to 1,500, 1,500 to 3,000, 3,000 to 6,000 ohms. Inductance—1 range: 0 to 1000 mhos. Kit, $9.95.

Model 204 Tube Battery-Ohm
Capacity Tester
Eliminates the need to test individual tube characteristics with a conventional battery tester. Completely transformerless. Battery polarity is checked automatically. Tests all types of tubes, 6 to 6BQ. Complete coverage from 0 to 1-3 megohms. Model 204P, illustrated. $15.95. Model CRA, Cathode ray tube adapter, $4.50.

Model 700 RF-AF Crystal
Marker TV Bar Generator
Complete coverage from 16 cycles to 108 megacycles on fundamentals. For generating and measuring audio, carrier and swept signals. A complete set of four tubes. Use with: 6AL5, 6AS7, 6H12, 6G12, 6S6G. Model 204P, illustrated. $24.95.

Model 293 Tube Tester

Model 104 Voltmeter
Features a 3% AC microammeter, with 3 AC current ranges and the tangent zero adjustment for both resistance, capacitors, and inductance. AC Voltage—5 ranges: 0 to 150, 150 to 300, 300 to 600, 600 to 1,500, 1,500 to 3,000 volts. DC Voltage—5 ranges: 0 to 150, 150 to 300, 300 to 600, 600 to 1,500, 1,500 to 3,000 volts. AC Current—5 ranges: 0 to 30, 30 to 60, 60 to 100, 100 to 200, 200 to 500 mil amps. DC Current—5 ranges: 0 to 100, 100 to 200, 200 to 500, 500 to 1,000, 1,000 to 2,000 mil amps. Resistance—5 ranges: 0 to 300, 300 to 600, 600 to 1,500, 1,500 to 3,000, 3,000 to 6,000 ohms. Inductance—1 range; 0 to 1000 mhos. Kit, $19.95. Model MVT, 30,000 volt probe for Model 104, $7.95.

Yes, talk to me more, send me FREE—our complete catalog of the complete EMC line. RE-261

NAME
STREET
CITY
STATE

EMC
Electronic Measurements Corp.
625 B'way, New York 12, N. Y.

www.americanradiohistory.com
Here are the features that make them the largest selling and most accepted tower for television, radio, industrial and communications uses:

- **ZIG-ZAG CONSTRUCTION**—proven zig-zag design means sturdiness and dependability that is truly outstanding. Tower sections are completely assembled and electric welded throughout for maximum strength and greater economy in erection.
- **HOT DIPPED GALVANIZED AFTER FABRICATION**—Entire tower sections are completely zinc coated after fabrication for the finest outer protection possible. Being galvanized after fabrication means no uncoated bolt holes, weld spots or seam to rust. All ROHN Towers last for longer and have less maintenance than competitive towers because of this feature.
- **HIGHEST QUALITY MATERIAL USED**—only highest quality laboratory-certified steel tubing is used (not pipe). Quality steel plus heavy gauge combined to give far greater strength than competitive towers.
- **COMPLETE LINE FOR WHATEVER YOUR NEEDS**—fully self-supporting towers are available to 170 feet or lower; heavy duty guyed towers available up to 500 feet. Whatever your needs, check ROHN.
- **UNEXCELLED ENGINEERING**—all ROHN Towers are engineered to meet the most rigid requirements as outlined by all major communications equipment manufacturers and electronic industry associations.
- **UNIVERSAL ACCEPTANCE**—Hundreds of thousands of Rohn Towers are in use all over the world. They have withstood the "test of time"—the only true test as to the superiority of a tower. So why settle for less than the BEST? Insist on the largest selling tower in the world—ROHN.

For your needs and for all allied tower accessories, contact your local ROHN salesman or write direct for full information.

Send the Handy Coupon Indicating Your Needs

ROHN Manufacturing Company
Box 2000
Peoria, Illinois

Send me complete literature on the following ROHN Products:

- TV Towers
- Amateur Towers
- Communication Towers
- ROHN Accessories

Name

Address

City

State

Mercury Model 800 CRT Tester-Reactivator

- **Tests**
 - Emission
 - Inter-element leakage
 - Life expectancy...
 - Estimates the remaining life of picture tube
- **Repairs**
 - Inter-element shorts
 - Welds open elements
- **Reactivates**
 - Low emission tubes with a controlled high voltage pulse
 - Reactivation is seen and controlled on the meter

- Also accommodates the new 8-pin, 7-pin, and 14-pin base picture tubes
- Also provides the newer 2.35 and 8.4 filament voltages
- Tests the red, green and blue sections of color tubes separately

Housed in hand-screw wood carrying case.

Model 800

$49.95

Mercury Electronics Corp. 77 Searing Avenue, Mineola, New York

Case looks crowded, but really isn't.

The same technique, in expanded form still applies.

As we have a volume control in the test speaker box, even quite high-level audio distribution systems can be checked without fear of overdriving the test speaker.

Industrial intercom servicing demands speed in restoring a troubled system to proper operating order. The service technician must use any and all devices that can shave minutes off down time. For such work, the test speaker has proven indispensable. With it, the faulty intercom unit or section of intercom line can usually be located in minutes.

Fundamentally, each junction box at each station must be checked. Here, the test speaker is substituted for the receiving units in the system by clipping it across the corresponding leads. The test cable used with the speaker consists of about 4 feet of single-conductor shielded microphone cable terminated in a PL 55 plug on one end and a pair of alligator clips on the other.

When a defective intercom is located, service it by aural signal tracing. The amplifier circuitry can be checked by injecting an audio signal into successive stages of the intercom, starting at the output transformer and moving back through the circuit. A compact, single-frequency audio oscillator serves nicely as a signal source. The test speaker becomes the output monitor, or "remote" station, for the intercom under test. Its volume control must be turned down to avoid audio feedback. With this set-up, the intercom's switching is easily checked.

A little practice soon familiarizes the technician with this system of aural checkout. Many shortcuts and tricks will become apparent through experience with a system.

The test speaker box also serves as a local speaker for conveniently checking and setting up remotely controlled mobile radio installations. Other typical systems serviced include church sound installations, small office and business intercoms, sound movie projector setups, and plant music distribution systems. Wherever a test speaker is needed, this version of the speaker substitution box fills the bill nicely.

Small enough to be tucked into the tool box, it goes along on most every service call as an extra measure of convenience. END
TVL TWIST-LOK® CAPACITORS
These 'lytics take on the toughest TV and radio duty, give maximum trouble-free service, without HUMM! They are dependable at extremely high and low temperatures. Cathodes are etched to meet the needs of high ripple currents, high surge voltages.

TVA ATOM® CAPACITORS
Atom tubulars are service favorites because they fit anywhere, work anywhere. They're the only small size 85 C (185° F) capacitors in ratings up to 450 WVDC. They have low leakage current, long shelf life, and withstand high ripple currents, high surge voltages.

VL VERTI-LYTIC® CAPACITORS
These single-ended molded tubulars are the ideal replacement for units of this type found on printed wiring boards. Keyed terminals assure fast manual mounting and correct polarity. Resin end fill protects against drying of electrolyte or entrance of external moisture.

TE LITTL-LYTIC® CAPACITORS
The very best ultra-miniature replacements for transistor circuits, offering unusual reliability through all-welded construction. No pressure joints to cause "open" or intermittent circuits. Long shelf life—extremely important in sets used only part of the year.

EVERY 'LYTIC YOU NEED...
- every value
- every rating
- every style

Shown here are the more popular of Sprague's big family of Electrolytic Capacitors, the broadest in the industry. Other types include Metal-encased Screwbase; Plastic-encased High-MF; Metal-encased Octal-base; Ultra-low leakage Photoflash. All are listed and described in Sprague's NEW Catalog C-613A. Get your copy from any Sprague distributor, or write Sprague Products Company, 81 Marshall Street, North Adams, Massachusetts.

SPRAGUE®
THE MARK OF RELIABILITY
WORLD'S LARGEST CAPACITOR MANUFACTURER

FEBRUARY, 1961
LEADER TEST INSTRUMENTS

new "LEADER" test instrument

LAG-55 AUDIO GENERATOR SINE SQUARE

A multi-purpose generator for measurements on audio equipment - amplifiers, speakers, networks. Three waveforms: sine, square and complex for all types of measurements including response, distortion, transient and I-M distortion checks. Full range is from 20 to 200,000 cps, output 5 volts with minimum amplitude variation throughout whole range.

The LEADER test instruments are being used in the more than 36 countries, attesting their excellence in design, performance and usefulness.

OHMATSU ELECTRIC CO. LTD.
850 TSUASHIMA-CHO KOHOKU-KU YOKOHAMA, JAPAN

HIGH-QUALITY AUDIO

The diagram shows the audio stages of a Schneider radio, designed for good listening quality for both AM and FM.

The first stage of this European radio uses a 6AU6 pentode, with grid bias obtained through the high-value grid resistor. Plate and screen are fed B-plus through a decoupling circuit consisting of a 47,000-ohm resistor and a 0.1-mfd capacitor. It avoids coupling between the two audio stages and insures some additional filtering for the preamp stage.

The output stage uses a 6AQ5 power amplifier. An R-C circuit across the output transformer primary introduces a certain amount of permanent tone control. Adjustable tone control is also provided—in the feedback chain. Feedback voltage is taken across the output transformer secondary and fed through a complex filter before being applied to the control grid of the first stage. The filter consists of two T-circuits in series, one being a low-pass and the other a high-pass filter. The tone-control potentiometer shorts more or less of one or the other of the filters, giving bass and treble control with smooth variation.

Some additional boost is gained since the screen grid is connected to the shunt resistance of the low-pass filter.

The system drives two speakers, a 7 x 10-inch elliptical and a 4-inch electrostatic tweeter. Quality is excellent. On music the response curve shows +16db at 80 cycles and +5db at 4,000 cycles with respect to 800 cycles.—A. V. J. Martin
THE A.E.S. Gigolo

A MIRACLE IN SOUND

After two years of research and development a speaker system we can unconditionally guarantee to be the finest bookshelf unit you have ever heard, REGARDLESS OF PRICE, or your money back.

Over 2500 test systems are now in use in private homes in the Ohio and Michigan area. The acceptance has been unbelievable. Never before a sound so realistic to so many people in so many different homes! These are the facts that enable A.E.S. to make this bold offer.

SIZE: 24" wide, 12" high, 9½" deep.

Response: 19-21,000 CPS

This unit will operate at maximum efficiency with amplifiers from 8 to 75 watts.

In limited quantity, and for a limited time only, $15.00 complete, plus shipping.

FEBRUARY, 1961

ORDER BLANK

A.E.S., Inc.
3338 Payne Avenue, Cleveland, Ohio

Gentlemen please ship ____________ Gigolos.

I understand these units are guaranteed and if I am not satisfied I may return for a full refund of sales price, $15.00 each.

Name

Address

City and State

Enclosed find check. money order.

www.americanradiohistory.com
Continued expansion of the PHILCO COMPUTER DIVISION has created a number of positions for persons with a minimum of 2 years of data processing equipment maintenance and/or installation experience.

Successful candidates will undergo advanced computer training in the PHILCO 2000 System at our Willow Grove, Pa. plant.

ASSIGNMENTS AVAILABLE IN MAJOR CITIES THROUGHOUT U.S.A.

Contact
Mr. John Felos
Professional Employment Manager
COMPUTER DIVISION
WILLOW GROVE, PA.

PHILCO

Customer Service Engineers

OUTSTANDING CAREER OPPORTUNITIES

INDUSTRIAL types predominate this month, but a new entertainment type power transistor that will sell for less than $2 balances the scales.

Entertainment types

The leading items this month are a PADT unit that could be used in FM tuners, a new power transistor and five new receiving-tube replacements.

2N1517

A p-n-p post alloy-diffusion transistor (PADT) designed for use as an if, rf or video amplifier and for oscillator-converter applications in the medium and very high frequency ranges. Available power gain at 100 mc is 10 db minimum.

Maximum ratings of the Amperex 2N1517 are:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_C (ma)</td>
<td>20</td>
</tr>
<tr>
<td>I_C (ma)</td>
<td>10</td>
</tr>
<tr>
<td>I_S (ma)</td>
<td>1</td>
</tr>
<tr>
<td>$I_{S (reverse)}$ (ma)</td>
<td>1</td>
</tr>
<tr>
<td>P_C (mw at 25°C)</td>
<td>83</td>
</tr>
</tbody>
</table>

Low-cost power transistor

A new power transistor from RCA foreshadows the production of all-transistor high-fidelity sound equipment on an economically practical basis. The new transistor, now being sampled to the home entertainment industry, is expected to sell for less than $2 when it becomes commercially available early this year.

The device is described as a developmental drift-field power type which incorporates special processing techniques and can deliver high audio power for monaural and stereo sound equipment when operated either from a car battery or standard house current.

Technically, the transistor is a p-n-p germanium unit and can be used in both class-A and class-B audio amplifiers. It has an alloyed emitter, diffused collector and graded base.

Late Releases

No specs available at this time but Raytheon has announced the addition of five new entertainment type tubes to its replacement-tube line.

Two audio tubes are on the list: a 7-pin 7543 designed as a low-hum non-microphonic replacement for the 6AU6, and the 9-pin 14GT8, a duplex diode—hi-mu triode for use as an FM detector and af voltage amplifier.

The one video tube on the list, the 9-pin 6GN8, is a miniature triode-pentode with the triode section designed for use as a voltage amplifier or sync separator and the pentode section for video amplifier service.

The last two tubes are the octal-based 10EG7, a twin triode with dissimilar sections (one designed as an oscillator, the other as an amplifier for a TV receiver's vertical deflection section), and the 7-pin 2ER5, a miniature, remote-cutoff frame-grid tetrode for vhf television tuners.

Industrial types

Some tiny transistors with the same specs as their big-brother equivalents get us off to a running start. Then come two tiny units that could be lost in a thimble—almost.

Subminiature transistors

A group of subminiature germanium transistors, 21 times smaller than presently available units with the same characteristics, has been introduced by Raytheon. Electrical equivalents of the 2N404, 2N428, 2N416, 2N417, 2N388 and 2N440, the new subminiatures are 2N799, 2N805, 2N811, 2N813, 2N815 and 2N821, respectively. In the photo, a standard and its equivalent subminiature unit are held side by side.

TI 450, TI 451

Two silicon n-p-n double diffused mesa transistors. These subminiature
units, intended for switching circuits, are only 0.18 inch in diameter and 0.5 inch high. Yet, despite their tiny size, they can dissipate as much as 450 mw at 25°C.

Absolute maximum ratings of these two Texas Instruments transistors are:

- \(V_{CB} \) = 25
- \(V_{CE} \) = 5
- \(V_{CE} \) = 20

Electrical characteristics are:

- \(I_{CBO} \) (reverse collector current) (mA) = 0.5
- \(I_{CBO} \) (common-base output capacitance) (µF) = 5

Maximum ratings at 25°C are:

- \(V_{CE} \) = 15
- \(I_{C} \) (mA) = 2
- \(P_{total} \) (mw) = 25

Maximum switching characteristics are:

- \(t_{r} \) (rise time) (µsec) = 18
- \(t_{f} \) (fall time) (µsec) = 12
- \(t_{w} \) (storage time) (µsec) = 10

Particle detectors

Solid-state particle detectors for detecting X-rays, gamma rays and other types of radiation have been developed by Semi-Elements Inc. Tests of prototype units show that the sensitivity of these X-ray detectors can be compared directly with the sensitivity of crystal photomultiplier X-ray detector combinations currently in use.

Correction

In the editorial in the January issue, it was stated that the program "Sea Hunt" was a CBS Network program. The program was a recorded Ziv-United Artists production shown on WCRS-TV in New York City and independently on a number of other stations throughout the US. The Columbia Broadcasting System network is not involved with it in any way. The error is regretted.

FEBRUARY, 1961
P706 TRANSOLAR RADIO

Motorboating on solar operation will generally occur only at high volume settings when the light level reaching the solar cells is low. Should the motorboating occur at normal volume and light levels, C17 (150 µf, 6 volts) may be open. (See partial schematic.)

Bridging a capacitor across C17 while the set is in operation on the solar cells will determine if the capacitor is defective. There will be no change in operation on battery if C17 is open.—Hoffman Tech Talk

G-F N5 CHASSIS

Residual audio buzz in the 17-inch models may be caused by the leads from the vertical hold control running too close to the volume-control terminals. This vertical pickup on the volume-control terminals appears as a buzz in the speaker which may be changed in pitch by adjusting the vertical hold control.

The simple cure is to dress the gray and yellow vertical hold-control leads away from the volume-control terminals to eliminate the buzz condition.—4-E Service Talk

MOTOROLA TS-542

When this receiver came into the shop, it showed critical horizontal and vertical hold and would intermittently lose sync. The trouble was traced to a 27-µf capacitor connected to pin 9 of the 3BU8 sync separator. The capacitor was leaky. When it was replaced with a new 27-µf unit, the trouble cleared up.—M. L. Leonard

ANTENNA NOTE

We never, but never, install an antenna, carrying a booster transformer, that towers 50 feet above the roof of a three-story house without checking the transformer first. If you don’t test it, you may have to take down the antenna, shinny up the mast or borrow a satellite to make repairs that a few minutes spent in pretesting would have permitted you to make on the ground. We use only the best types of heavy-duty transmission lines for lead-ins and anchor them securely to minimize wind damage.
After the scope was on for an hour or so, the intensity control would not cut the beam off. The trouble was a leaky 0.1-uf 12-kv capacitor in the control-grid circuit. Replacing the unit with a 0.1-uf 16-kv capacitor solved the problem. The higher-voltage replacement also makes future replacement unlikely. This also applies to other scopes.—Elmer Woods

IDENTIFYING DUAL DIODES

The new line of G-E TV receivers employs three dual-diode combinations. One is the horizontal phase detector (WT16X7). Two are used in the sonic-suppression receiver circuitry, the first as a signal detector (WT16X8) and the other as a bias rectifier (WT16X9). Physically these diodes appear to be much the same but electrically they differ greatly. The phase detector has common anodes, and the bias rectifier is series-connected. While each diode is plainly marked, a simple ohmmeter check can eliminate any confusion with these components.

The diagram below shows the measurements taken with a Simpson 260 meter. A vttt/2 may be used and the polar-

dities of conduction shown will remain the same. However, the values may differ somewhat depending on the particular model you use.—G-E Service Talk

HEATHKIT EA-1 AMPLIFIER

There is a circuit quirk in the Heathkit EA-1 3-watt amplifier. The EF86 audio amplifier tube obtains its screen voltage from the cathode of the EL84 power amplifier through a 270,000-ohm dropping resistor. The screen is bypassed by a 25-uf 25-volt electrolytic capacitor. The EL84 cathode runs at 46 volts, while the voltage on the EF86 screen is reduced to 24 volts by the dropping resistor. However, if the EF86 tube ever burns out, there will be no more screen current, and thus no drop across the dropping resistor. The voltage at the screen will then rise to 46 volts, severely overvolting the electrolytic and possibly damaging it. Thus, when capacitor replacement is necessary, install a 50-volt unit.—Charles Erwin Cohn

End

SUPREME 1961 TV Manual

AMAZING BARGAIN

The new 1961 TV manual is the bargain of the year. Covers all important sets by every make in one giant volume. Your price for this 8-by-11-inch manual is only $3. Each super-value defies all competition. Other annual volumes at only $5 each. Factory service material simplifies repairs. Includes all data required for quicker TV servicing. Practically tells you how to find each fault and make needed repair. More pages, more diagrams, more service data per dollar of cost.

TELEVISION SERVICING COURSE

Let this new course help you in TV servicing. Amazing bargain, complete, only $3. Full price for all lessons. Giant in size, mammoth in scope, topics just like a $200.00 correspondence course. Lessons on picture faults, circuits, adjustments, short-cuts, UHF, alignment facts, hints, antenna problems, trouble-shooting, test equipment, picture analysis, Special only...

SIMPLIFIED RADIO SERVICING (Introduction to TV)

Because TV servicing is a great deal like servicing radios, many practical points without any equipment. Also several sections on using of instruments. Introduction to TV servicing, circuits, troubleshooting, etc. This manual will give you a complete TV servicing background. Order now, only...

RADIO VOLUMES

SUPREME is your best source for all popular radio diagrams and data. Covers everything from the most recent 1959 radios to pre-war oldtimers, home radios, stereo, combinations, transistors, FMs, and auto sets. Sensible values. Only $2 for many volumes. Supreme prices for those used combinations and auto radios. Volumes small sizes, your choice. Price varies with size. $4.50 each. Send coupon for a complete list. These popular radio service manuals...

Supreme Publications

Sold by All Leading Parts Jobbers

FEBRUARY, 1961

NO-RISK TRIAL ORDER COUPON

| NO | 1960 | Popular RADIO Diagram Manuals of only $250 each..... | Rush today TV manuals checked X below and...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td>Radio manuals at left. Satisfaction guaranteed.</td>
<td></td>
</tr>
<tr>
<td>1957</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1954</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1949</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1948</td>
<td>Popular RADIO Diagram Manuals of only $250 each.....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This GROUP ONLY

$2 EACH

Send C.O.D.

Name:
Address:

I am enclosing $1.00

Send C.O.D.

I am enclosing $1.00 deposit.

Tommy Tune, Services, 1575.

t

End
THRESHOLD INDICATOR
Patent No. 2,954,527
Richard W. Bradmiller, Winter Park, Fla. (Assigned to Aceo Karadins, Cincinnati, Ohio)

This circuit indicates when signal amplitude goes above a first threshold value, and also when it drops below a second and lower threshold.

The input signal is rectified and applied as a positive bias to the base of the transistor (Fig. 1). When it is large enough, the circuit begins to oscillate. Output will be proportional to signal. Oscillations continue until the signal falls below its off threshold, which is lower than its starting point since the oscillator tends to remain operating once it starts (see Fig. 2).

The gating point is set by the emitter resistor. The output may be rectified and measured to determine whether the circuit is oscillating.

WIDE-BAND AMPLIFIERS
Patent No. 2,935,696
Cyrus Frank Ault, Clinton, N. J. (Assigned to Allen B. Dumont Labs., Inc., Clinton, N. J.)

This circuit combines two amplifiers to obtain extremely wide bandwidth. A1 is a de difference amplifier with flat response from dc to as high as 60 Hz as practical; A2 is an ac amplifier which overlaps A1 and remains effective to as high a frequency limit as design permits.

ULTRASONIC SOLDERING
Patent No. 2,951,975
Bosson Curtis, Fair Lawn, N. J. (Assigning to Alcor Instruments, Inc., Little Ferry, N. J.)

It is well known that soldering as well as cutting and mixing can be performed with the aid of a transducer vibrating at an ultrasonic rate. This inventor finds greater efficiency when the transducer is shock-excited periodically and allowed to vibrate at its own resonant (ultrasonic) frequency.

www.americanradiohistory.com
SOLDERING IRON. Model A-1990, 50-watt pencil type. Removable handle screws to cover tip and barrel for carrying while hot or for shirt pocket storage.—L. E. ElectroLABs, Inc., 1126 Broadway, Hewlett, N. Y.

PUSH-PULL SWITCH/CONTROLS, C172. Each control can be used with a variety of shafts.—Clorox Manufacturing Company, Inc.—Dover, N. H.

NEW TOOL. Tri-Tap. For tapping new threads or renewing old in metal or plastic. Sizes 0-32, 6-32 and 10-32.—CBS Electronics, Division of Columbia Broadcasting System Inc., Danvers, Mass.

SERVICE CASE. 40-tool capacity. Top grain leather case in black or brown with felt type lining.—Xcelite Inc., Orchard Park, N. Y.

SLIDING PISTON TRIMMER. Capacitance values from 0.4 µf to 99 µf. Glass or quartz dielectric. Standard, differential, split-stator, open or sealed construction.—JFD Electrodyes Corp., 6101 16th Ave., Brooklyn 4, N. Y.

FEBRUARY, 1961

TUBES TESTER, model 111. For all radio and TV tubes including latest. Operates by setting 3 controls, inserting tube into socket and pressing button. Built-in CRT socket for picture tubes. Tube chart in metal compartment. Gray hammer tone steel case.—Mercury Electronics Corp., 77 Searing Ave., Mincola, N. Y.

REPLACEMENT FLYBACK TRANSFORMERS. HO-315 replaces Olympic Flyback Tr-3599-B.

ISOLATION TRANSFORMER, model 111-60. Variable output voltage from 90 to 150 in 0.75-volt steps with 2 heavy-duty 4-position switches. 300-watt power rating continuous duty or 590-watt in intermittent duty. Built-in meter with 101-volt accuracy for monitoring output voltage. 6/4 x 9/4 x 5 inches. 22 lbs.—Heath Co., Benton Harbor, Mich.

MINIATURE TUBULAR ELECTROLYTICS. Type BMT, plastic cases. 3/16- to 5/4-inch diameter. 1- to 2,000,000-ohm capacitance. Voltage ratings, 5 to 50. —6.91 by +65°C operating range.—Hillside Condenser Co., 1615 N. Throop St., Chicago 22.

TRANSISTOR THEREMIN KIT. All parts and instructions. Operates through audio amplifier. Powered by single small battery. Pitch range (Continued on page 108)
For the Man Who Wants an Advanced Home-Study Program in Electronic Engineering Technology or Nuclear Engineering Technology...

CREI opens the door to HIGHER STATUS, BETTER INCOME, and a SECURE FUTURE in the forefront of TECHNOLOGICAL ADVANCEMENT

The world of science is the world of the future. There is no career more stimulating, challenging, or rewarding than that of working with topflight scientists and engineers to develop deep space probes and orbital satellite systems...package nuclear power reactors to provide economical, long-lasting power anywhere in the world...electronics and radioisotopes for use in medicine, agriculture and industry...missile systems for the Armed Forces...computers and data processing systems which will become accepted necessities by finance, industry and government...to develop a thousand and one concepts that will make our world a better and safer place for all. You can have a career—or speed up your present career—in one or more of these areas if you are eligible to enroll in a CREI home-study program...a program recognized everywhere as excellent insurance for a secure future, high professional stature, and better income.
CREI's Extension Division now offers you college-level programs combining the technological content of advanced residence courses with convenience and economy of home study.

The quality of a CREI education may be gauged by the fact that the demand for CREI graduates and students at the CREI Placement Bureau has far exceeded the supply for several years. Many leading companies and Government agencies send representatives to CREI every year to hire graduates and students for their technical staff. The CREI educational programs were developed in conjunction with leading industrial concerns and government agencies directly interested in the nation's scientific and technological future.

There are now more than 20,000 CREI students in all the 50 states and most countries of the free world. You, too, can follow your CREI program while you remain in your present job. You study at home, when and as you choose ... and you avoid the time and expense of commuting to a residence school. Within two to four years, depending upon the courses you select and the time you have to apply, you can complete a CREI program in engineering technology. The courses are written in easy-to-understand format, and your personal progress is carefully guided by CREI's competent faculty.

CREI programs bring you the latest technical advances and breakthroughs.

Recent advances and new techniques have placed great importance on how modern and up-to-date the individual's education is. Recognizing this, CREI maintains a large staff of engineers, educators and scientists who occupy prominent positions in government and industry. These men continuously revise the CREI courses and incorporate all new technical information. CREI courses are the most modern you will find ...

The CREI program is designed to meet your present and future employment needs and to increase your professional status and earning power.

CREI students frequently gain promotions and increases in pay long before they complete the program. As a graduate you will find that you gain stature and respect among your professional colleagues and supervisors, and that you enjoy a personal satisfaction that comes from working and communicating intelligently with your associates. CREI graduates are important members of the engineering team. Your employer will recognize the assets of your up-to-date education ... to your personal advantage.

Officials of private industry and government approve CREI for their own personnel.

The National Broadcasting Company ... Radio Corporation of America ... Pan American Airways ... The Martin Company ... Canadair Limited ... Canadian Marconi ... the Voice of America ... the British Air Force, Navy and Army ... and some 50 other electronic and nuclear organizations actually pay all or a substantial part of the tuition for employees taking a CREI home-study program. Right now, there are 5,249 U. S. Navy personnel enrolled in the CREI extension program.

Official accreditation and recognition.

Founded in 1927, CREI is one of the oldest technical institutes in America. CREI co-founded the National Council of Technical Schools, and was one of the first three institutes whose curricula was accredited by the Engineer's Council for Professional Development. The U. S. Office of Education lists CREI as an "institution of higher learning."

CREI conducts a residence school

in Washington, D. C., for those who wish to attend classes. The regular program of 27 months leads to an AAS degree. No previous technical experience or training is necessary for the residence school.

Qualifications for enrollment.

You qualify for CREI enrollment if you have a high school diploma or equivalent, and if you have had basic technical training or practical experience. Send for free catalogue for details. Tuition is reasonable, and veterans can take advantage of the G.I. Bill.

NEW 56-Page Catalog Gives Important Facts About Electronics, Nucleonics ... and CREI. Send Post-Paid Card Attached For Your Free Copy.

Just published to include new courses being offered by CREI, this informative catalogue discusses the electronic and nuclear industries and answers searching questions about future manpower requirements and career opportunities. The catalogue describes all the courses, the alternative programs ... it introduces the faculty who will be carefully guiding your progress ... and it points out how the courses are especially laid out for home study. The catalogue is yours without cost or obligation, and it is of vital importance to every man desiring to further himself in the expanding world of science and technology. Mail this card today for your copy of "Your future in Electronics and Nuclear Engineering Technology."

The Capitol Radio Engineering Institute

FEBRUARY, 1961

107
(Continued from page 103)

nearly 4 octaves.—R. A. Mung Co., Box 263, Ithaca, N. Y.

FM TUNER, FM-200. If it stages. Sensitivity of 0.5 microvolt for 20-db signal-to-noise ratio for 72-ohm antenna. Capture ratio 1.5 db.

Special circuit automatically locks out afe when tuning knob is touched and restores afe when hand is removed.—Fisher Radio Corp., 21-21
44th Drive, Long Island City 1, N. Y.

REPLACEMENT SPEAKER, model 320.42. 1.4-
ounce Alnico V Magnet. 6 watts power handling.

4 to 10 inches. Used in many auto radios.—Quan-Nichols Co., 236 E. Marionette Rd., Chicago.

CARTRIDGE FOR 78-RPM, 3-mil stylus. Full frequency response from 10 to 20,000 cycles.

Interchangeable with stereo LP cartridge on London-Scott arm.—H. H. Scott Inc., Dept. P

AUTOMATIC TURNTABLE, Laboratory Series
Type A. Balanced tone arm; full-size, full-weight

back preamplifier. Power amplifier. Wide-range
speaker. Dynamic microphones.—North American
Philips Co. Inc., High-Fidelity Products Div.,
230 Duffy Ave., Hicksville, N. Y.

STEREO AMPLIFIER, Realistic 10/4, 40 watts.
Two 20-watt stereo channels with 80 watts peak

4-track. Tape drive mechanism. Recording/play-

STEREO TAPE RECORDER, Continental 200.

monaural. 78, 45, and 78 rpm. 3-channel
operation. 6 inputs selectable from front panel.
Tape recorder output. Outlet jack for 3rd-channel
speaker.—Radio Shack Corp., 730 Commonwealth
Ave., Boston 17, Mass.

STEREO AMPLIFIER, model S-500II, 80
watts. 1 set basic controls. Ten 2-channel con-
trols. Stereo normal/reverse and phase-inversion

switches. Dual amplifier monophonic operation
with either input source.—Sherwood Electronic
Laboratories, Inc., 4300 N. California Ave.,
Chicago 14, Ill.

STEREO AMPLIFIER KIT, #31154. 70 watts.
35 per channel. IHFM music power rating 86
watts. Center-channel output. Output recording
jacks independent of volume and tone-control
settings. Tape monitor switch. Separate, switch-
able 34- and 134-inch equalization. Cordovan
gray with beige and sand-gold front panel of
heavy, extruded aluminum. Supplied with parts,
tubes, solder, wire, instructions.—Allied Radio
Corp., 100 N. Western Ave., Chicago 89, Ill.

www.americanradiohistory.com
The civilian version of the extremely successful illustrated training course used by the U. S. Navy has been turned out naval trained technicians in record time. More than 100,000 naval trainees learned basic electronics and became “picture-book” transmitters. The modern course we offer also presents BASIC ELECTRONICS in a “picture-book” manner that everyone can grasp, regardless of previous education. Only a knowledge of the basics of electricity is necessary. So successful has the Rider published course proven in industry, that the nation’s leading firms use it to teach their personnel. And, now you can master the basics of electronics at home with this same “learn-by-pictures” training course! (This course is available only from John F. Rider Publisher, Inc. or its dealers).

HERE’S HOW THIS EASY, ILLUSTRATED COURSE WORKS: Every page covers one complete idea. There’s at least one carefully selected illustration on that same page to explain it. Then, at the end of every section, you’ll find review pages that highlight the important topics you have just covered. You build a thorough step-by-step knowledge at your own pace—as fast as you yourself want to. The illustrations—more than 500 of them and the text are the perfect combination to make the subject of electronics completely understandable.

BASIC ELECTRONICS COURSE NOW AVAILABLE IN TWO WAYS

BASIC ELECTRONICS 5-VOLUME COURSE AVAILABLE AS HERETOFORE. The 5-volume civilian version of the U. S. Navy course covers vacuum tube circuits and power supplies, amplifiers, oscillators, transmitters, and receivers. This is the same as has been available hereto.

BASIC ELECTRONICS EXPANDED COURSE. The INTEGRATED EXPANDED course consists of 6 volumes, including the 5-volume course, plus a 6th volume which introduces the areas of semiconductors, transistors, and frequency modulation. Transistors and semiconductors are the most modern devices in electronic technology. Everyone interested in the broad subject of electronics now must have a familiarity with transistors and semiconductors. If you are interested in learning the basics of electronics, this 6-volume course is the best that you can buy. If you are among the great many tens of thousands who have completed the 5-volume course, the 6th volume on semiconductors and transistors, and FM is a book which you should own. It can be bought separately.

BASIC ELECTRONICS: $170, set of Vols. 1 to V in soft covers, $11.55; $170-H, all 5 vol. in single cloth binding, $12.75.
BASIC ELECTRONICS EXPANDED course, $170-X, sets of Vols. 1 to VI in soft covers, $13.85; $170-XM, 6 volumes in single cloth binding, $16.45.
BASIC ELECTRONICS Vol. 6 only, $170-6 soft cover, $2.90; $170-6H cloth, $3.95.

ALSO AVAILABLE — A 5-VOLUME COURSE ON BASIC ELECTRICITY

For those who wish to master the basics of electricity before they progress in electronics, there is BASIC ELECTRICITY. This is the civilian version of the course on electricity used by the U. S. Navy to turn out trained technicians. (This course is available only from John F. Rider Publisher, Inc. or its dealers.)

More than 900 carefully selected illustrations supported by crystal-clear text make electricity completely understandable. $189, 5 vol. soft covers, $11.25 per set; $189-H all 5 vols. in single cloth binding, $12.75.

These and many other Rider titles are available at bookstores, electronic parts distributors, dept. stores or direct; Send for new catalog.

Buy these books today—No matter where you buy these books, we guarantee satisfaction or your money back within 30 days of purchase.

JOHN F. RIDER PUBLISHER, INC., 116 West 14th Street, New York 11, N. Y.
Canada: Chas. W. Pointon, Ltd., 66 Racing Rd., Rosedale, Ont.
India: Asia Publishing House, Bombay and other cities.

CUT OUT AND MAIL TODAY

OLSON CATALOGS

We will send you a new issue every 6 weeks for a full year—NO CHARGE! Compare our World Famous Values.

MAIL TO: OLSON ELECTRONICS
(Formerly Olson Radio)
716 5th St., Akron 8, Ohio
SEND FREE CATALOGS
Send Dial Telephone @ $7.93, plus postage

NAME

ADDRESS

CITY

ZONE

STATE
There is an Atlas Speaker Ideally Suited for Every Job

All Atlas P. A. speakers are highly efficient, especially in the voice frequency range, providing the extra "punch" needed to override high level background noise. Most are 100% weatherproof, aluminum and diecast parts are treated with corrosion inhibitors; then finished in "stone hard" baked enamels. The CJ Cobra-Jector horns are constructed of nonresonant, indestructible fiberglass, and HU and TP speaker horns of aluminum, finished in gun-metal grey. The HU and TP speakers are particularly designed for efficient talkback operations. The peaked characteristics within the voice frequencies increase the sensitivity of these speakers as pickup devices.

All HU and CJ speakers are equipped with attractive "Versalock." This rugged, reliable mounting bracket, completely adjustable both horizontally and vertically, provides positive locking in any position.

The DU-12 and DC-5, Atlas' renowned DeCor projectors, are styled to harmonize with any decor, modern or traditional. Send for free catalog to Dept. RE-2

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER</td>
<td>7.5 w</td>
<td>7.5 w</td>
<td>25 w</td>
<td>7.5 w</td>
<td>25 w</td>
<td>7.5 w</td>
<td>25 w</td>
<td>25 w</td>
<td>7.5 w</td>
<td>6 w</td>
</tr>
<tr>
<td>IMPEDANCE*</td>
<td>8 ohm</td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>2-10 kHz</td>
</tr>
<tr>
<td>NET PRICE</td>
<td>$16.20</td>
<td>$20.10</td>
<td>$22.35</td>
<td>$18.00</td>
<td>$24.60</td>
<td>$43.50</td>
<td>$31.20</td>
<td>$34.50</td>
<td>$19.80</td>
<td>$13.20</td>
</tr>
</tbody>
</table>

* Input range limited to frequencies above turn-on cutoff. ** All models available in 45 ohms at slightly higher prices.

NOTEWORTHY CIRCUITS

RE: ONE-TURN-MOTOR CONTROL

On pages 157 and 158 of the October, 1956, issue, Mr. Schulman described an ingenious control for a one-turn motorized display table. When a switch was momentarily pressed, the table—operated by a 1-rpm motor—started, made one complete revolution and then stopped. The original circuit required a relay with dpdt contacts. The diagram shows how I simplified the circuit to use a relay with spst normally open contacts.

The circuit is shown as it is with the motor at rest. When S1 is momentarily pressed, it closes the circuit to the motor and simultaneously applies voltage to the relay coil through S2's normally open contacts. The relay contacts close, shunting S1 so the motor continues to run. When the arm of S2 falls off the cam lobe, it opens the circuit to the relay coil and completes the motor circuit through S2's normally closed contacts. The motor continues to run until S2's arm rides up on the cam lobe and opens the circuit.—David C. Crocker, W1TM0

IMPROVING FM TUNER

When I first constructed the Sweet FM tuner (Radio-Electronics, October, 1958), sensitivity and selectivity were poor and I began experimenting in an effort to improve these characteristics. Dx and quieting sensitivity can be enhanced by substituting a 6AK5 for the 6BH6 rf amplifier and adding a 6A6U6 limiter (see diagram). The 6A5K approximately doubles the sensitivity and produces a very clean output.
bias at the limiter grid. The slight increase in heater and B-plus drain was the only cost of this improvement.

The limiter was mounted directly behind T6, and the added 10.7-mc rf transformer (J. W. Miller 1463) was placed directly behind V4. The table shows the detector output with and without limiter when receiving three fringe-area stations on an attic antenna.

Detector output volts

<table>
<thead>
<tr>
<th>Station</th>
<th>No limiter</th>
<th>With limiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>KFMB</td>
<td>0</td>
<td>-3.0</td>
</tr>
<tr>
<td>KPL1</td>
<td>-1.63</td>
<td>-4.5</td>
</tr>
<tr>
<td>KGB</td>
<td>-1.8</td>
<td>-4.5</td>
</tr>
</tbody>
</table>

The combination of limiting and ratio detector gives very good results over a wide range of signal levels.

Incidentally, the joke was on me. All my original troubles were eventually traced to a poor ground return in the rf amplifier stage.—Robert W. McDonald

SINGLE-PULSE CIRCUIT

In an industrial application we needed an electronic counter that would be actuated by the first of a series of pulses and not affected by any succeeding ones. A very simple circuit was developed around a 2D21 thyatron biased so it is cutoff with normal plate voltage applied. The tube (see diagram) is made to conduct by applying a positive-going pulse to the grid circuit. If the amplitude of this pulse exceeds the bias the tube conducts. The grid loses control over plate current, and any further pulses applied to the grid are greatly attenuated in the output (cathode) circuit. In this case, the output due to the second pulse is only about 0.2% of its original amplitude.

Output is taken from across the cathode resistor, either directly or through a coupling capacitor. With direct coupling, a positive-going step function of voltage is generated when the tube conducts. The step function ranges from 4 to 19 volts, depending on the setting of the bias control. When the output is taken off through a capacitor, we develop a pulse whose shape depends on the coupling capacitance and the load. The bias control is set so the tube is cut off with S1 closed. Opening S1 restores the circuit to its non-conducting state after it has been triggered.

A normally open pushbutton or other momentary switch and a 270,000-ohm resistor can be connected as shown in dashed lines between B-plus and the input for manual operation. Closing the switch produces one step function or pulse in the output, depending on the output circuit.—Paul S. Lederer

NOW! In stock at your distributor

SMT

SUB-MINIATURES

For all transistorized electronics

Unsurpassed where size is essential in countless replacement applications. Available in full range of capacities and voltages . . . SMT, SMTU (up-right), upright positive, upright common, upright common negative and non-polarized.

Order from your distributor now. Our new SMT catalog is available upon request.

BRAND NEW UNITED'S FIRST QUALITY TUBES

DISCOUNTS up to 80% OFF

GUARANTEED ONE FULL YEAR! NOT USED! NO PULLS! WHY PAY MORE?

<table>
<thead>
<tr>
<th>Qty. Tube</th>
<th>Price</th>
<th>Qty. Tube</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbey</td>
<td></td>
<td>Abbey</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1.00</td>
<td>100</td>
<td>1.50</td>
</tr>
<tr>
<td>500</td>
<td>2.00</td>
<td>1000</td>
<td>3.00</td>
</tr>
<tr>
<td>5000</td>
<td>4.00</td>
<td>10000</td>
<td>6.00</td>
</tr>
</tbody>
</table>

SEND FOR COMPLETE PARTS CATALOG WITHOUT COST USE THIS AD AS ORDER BLANK

UNITED RADIO

CO.
BOX 1000 B
NEWARK, N.J.

Subject to Prior Sale
$5 MINIMUM ORDER

www.americanradiohistory.com
Service Technicians! YOU EARN MORE... YOU RATE with the public when you own the PHOTOFACT® service data library!

You enjoy maximum earnings as the owner of a complete PHOTOFACT Service Data Library! It's inevitable, because no matter how expert you are, you can always save more time on any job, get more jobs done daily—EARN MORE, DAY IN AND DAY OUT...

What's more—as the owner of a complete PHOTOFACT Library, you know your customers' sets best. You can actually show each customer you have the PHOTOFACT Folder covering his very own set. Result: You command public respect and acceptance which paves the way to more business and earnings for you.

HOW TO STAY AHEAD...
Yes, the truly successful Service Technicians are those who own the complete PHOTOFACT Library, who can meet and solve any repair problem—faster and more profitably. And these men keep ahead because they're on a Standing Order Subscription with their Distributors to receive all new PHOTOFACTS as they are released monthly. (They're eligible for the benefits of membership in PEET, too—see below!)

ONLY $10 DOWN puts the complete PHOTOFACT Library in your shop—and you have up to 30 months to pay. See your Sams Distributor today, or write to Howard W. Sams

NOW THE TIME TO JOIN

THE POWERFUL NEW PROGRAM FOR QUALIFIED TECHNICIANS
If you now own a PHOTOFACT Library or plan to own one, you can apply for membership in "PEET." It's the first industry program really designed to build powerful public acceptance for the Service Technician who qualifies. Builds enviable prestige and business for its members. Benefits cost you absolutely nothing if you qualify. Ask your Sams Distributor for the "PEET" details, or mail coupon today.

TECHNICIANS' NEWS

FLAT-RATE TV SERVICE
A group of California TV service associations has set up a list of flat-rate charges for various service jobs. The scale is based on a study of rates conducted by five TV service organizations: San Francisco Television Service Association; Television Service Dealers Association of San Mateo County; Alameda County Television & Radio Association; Television & Electronics Association of Marin, and the Diablo Valley Radio & Television Association.

Cards handed out by members of these groups list a local-zone service fee which covers removal of the chassis to the shop for service, readjustment and adjustment of set in home at a $10.70 fee. The cards also explain that repairs when the set is taken to the shop are priced at the $10.70 figure plus any specific pricing fees that apply to the particular job. There are 38 of these fixed rates and a group of special-service prices.

The list of fees starts off with $8.40 for work on the ac input circuit, continue with a $3 charge for cleaning and lubricating controls, $15.80 for repairing a turret tuner and end up with complete video and sound alignment for $15.80. Charges for replacing in-warranty parts are also suggested.

COLOR TV SERVICE SCHOOL
Newton, N. C.—A course on servicing color TV receivers is being sponsored by the Catawba County Radio & Television Association, a member of the N. C. Federation of Electronics Associations. The course is intended to upgrade the TV technician by teaching him practical color TV repairs. Classes are held in shops of association members and are open to all technicians working in the member shops.

WANT JOBER CODE
Detroit, Mich.—A group of 150 service dealers met as guests of the Television Service Association at the Pick-Fort Shelby Hotel to discuss jobber codes and hear a plan to help combat chain or drugstore tube testers. The TSA suggested code reads:

- Sell only to full-time service dealers with a sales tax license, and a service dealer's license where applicable.
- Maintain delivery schedules only to full-time service dealers.
- Classify students, hams and experimenters, and set up reduced discount schedules accordingly.
- Stock products of manufacturers who assign a willingness to maintain a "to the trade" attitude.
is given by field engineers of Motorola and specifically cover service techniques for the 19-inch transistor portable TV. Initial classes held in eight cities across the US were for service managers of Motorola’s distributor network. These people then conduct similar training programs for the dealers and technicians in their respective areas.

A WRONG MADE RIGHT . . .

A sentence in Admiral’s customer instruction sheet accompanying each portable radio which stated, “Power is supplied by one 1.5-volt ordinary battery obtainable at any drug or hardware store,” has been called, by NATESA headquarters, to the attention of Willis Wood, national service director. He promptly wrote back to advise that reference to drug and hardware stores will be dropped and “your dealer” substituted. Thanks to Admiral for that quick action.—NATESA Scope

ESFTA LICENSING FORUM

Athens, N. Y.—Following a recent meeting of the Empire State Federation of Electronic Technicians Associations at the Hotel Wellington, a second and final open forum on licensing was held. The discussion concerned mostly the

Course for Technicians

Chicago, Ill.—Nearly 100 TV service technicians went back to school for 2 days to learn the latest servicing techniques and practices, necessary for servicing transistor TV’s. The course

CSEa TECHNICAL MEETING

Pasadena, Calif.—The California State Electronics Association and the Radio Television Technicians Association met at Vasa Hall. Members were invited to bring along any test instruments which did not perform properly. Stan Gilkinson, technical committee chairman, helped members with test-equipment problems.

A B&K calibrator was on hand for use as standard to check vom’s and vtvm’s. A variable square-wave generator and a wide-band scope were also set up, enabling technicians to check the frequency response of their scopes against a properly operating unit.

TEAm meets

St. Louis, Mo.—Details of TEAM’s (The Electronic Association of Missouri) certification and bonding program were explained to some 100 service dealers at a recent association meeting at the Coronado Hotel.

Under the program, qualified and tested members will receive a shield and identification cards to serve as guides to the public in its selection of TV repair firms. The program will be policed by TEAM with the cooperation of the Better Business Bureau.

EXplain to your CUSTOMer . . .

Analogies are useful for explaining difficult subjects. Most of us learned about electrical circuits in terms of water pipes and tanks.

TV sets are things that people do not understand, so explaining to a customer why he has to pay for another repair soon after getting a new picture tube is often difficult. But using an analogy can make the task easier.

For example, you can use this approach: “Suppose you take your car to a garage and get a couple of new tires installed. Then a few days later the rear end goes. You will probably curse your luck, but won’t blame the mechanic who fitted the tires, nor will you expect to have a new rear end installed free. Now your TV set is like that car. It consists of . . .”

Another time the car analogy can be used is when your customer is deciding to buy a super-deluxe TV set for $590,
spots a portable for $125 and asks, "Why is that TV set so much cheaper than this one? Isn't it any good?"

Your answer could be, "It's like comparing a Ford with a Cadillac. There is no doubt that the Ford is an excellent, solidly built car. It's the same with the cheaper TV. To produce a reliable set at that price, the manufacturer has cut out all features that are not absolutely essential. What is left is a good, solid, no-frills set. But, after all, it is the little extras that make the difference. Now take this set, besides automatic picture control and remote control, it has . . ."

An argument based on this approach will usually reassure the customer and neatly place the choice back on his own shoulders.—Service Engineer, England

NCFEA MEMBERSHIP MEETING
Durham, N. C.—Annual membership meeting of the North Carolina Federation of Electronic Associations, Inc. elected 1960-61:
President, Charles McBroom of Durham; vice president, Howard Stutts of Newton; treasurer, Joe Woods of Greensboro; secretary, Garland Hoke of Durham. Jim Hornaday of High Point was continued as editor of the association publication, The Printed Circuit.

Later, J. B. Archer of the Department of Labor addressed the meeting on the need for training employees for coming needs. He pointed out that statistics indicate a probable shortage of trained people in the next few years.

Next, Charles Bates, associate state supervisor of trade and industrial education, spoke on his department's desire to help NCFA with its training program and also read a release issued by the Department of Public Instruction with respect to the NCFAA licensing program.

END

50 Years Ago
In Gernsback Publications

HUGO GERNSBACK, Founder

Modern Electrics 1908
Wireless Association of America 1919
Electrical Experimenter 1920
Radio News 1921
Science & Invention 1925
Television 1927
Radio Craft 1928
Short-Wave Craft 1930
Television News 1931

Some larger libraries still have copies of Modern Electrics on file for interested readers.

In February, 1911, Modern Electrics
Tele-Microphonograph.
New Electrolytic Detector.
New Marconi Circuit.
A Non-Heating Spark Gap, by D. E. McKisson.
80-Foot Wireless Mast, by R. C. Bodie.
A Hot Wire Meter, by P. W. Wormser.
Rotary Tuner, by E. J. Sortore.
Simple Detetor Stand, by J. N. Davis.
Compact Tuning Device, by J. E. Crockford.
Electrolytic Detector, by A. P. Gompf.
Take the backache out of AUTO RADIO SERVICING

with this
NEW GERNSBACK TECHNICIANS’ CLUB BOOK

The toughest part of servicing auto radios is getting them in and out of the car. This book shows you how. But that's not all it does. It points out key differences between servicing home and auto sets, tells you how to set up shop, install rear seat speakers, troubleshoot and repair all types of sets, tuners, power supplies, other components, suppress interference. Includes a chapter on FM, auto phonographs and TV. Get this book now and build your business, increase your income. Read how you can get it and others that will help you get ahead in servicing at spectacular discounts.

YOU CAN GET THIS $4.60 BOOK FOR ONLY $3.25

THE G/L TECHNICIANS’ BOOK CLUB has helped thousands of service technicians everywhere:
- Do Faster Servicing
- Earn More Money
- Save money on the books you need to get ahead.

Here's how it can help you!
This club offers hard-cover editions of today's best servicing books by well-known authors AT A DISCOUNT OF 27%! Through mass printing and direct distribution we can offer you these $4.60 books AT A SPECIAL LOW PRICE plus a few costs postage.

If you prefer—select any one of these books
Fundamentals of Semiconductors—By M. G. Scroggie.
How to Get the Most Out of Your VOM—By Tom Jaski.
Printed Circuits—By Morris Moses.
The VTM—By Rhys Samuel.
(Reprinted by request)
Servicing Transistor Radios—By Leon D’Alro.
Oscilloscope Techniques—By Alfred Haas.

SEND NO MONEY! MAIL THIS COUPON TODAY!

GERNSBACK LIBRARY, INC., Dept. 21C
154 West 14th St., New York 11, N. Y.
Enroll me in the G/L TECHNICIANS’ BOOK CLUB. Begin my membership with the following title. (Please list one only)

<table>
<thead>
<tr>
<th>Name:</th>
<th>please print</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td>Zone...State...</td>
</tr>
</tbody>
</table>

When a set is received for servicing, we often find a new line cord has been spliced to the old one close to the chassis. Obviously, the old line cord

SIMPLIFY MOUNTING PROBLEMS
Mounting radio parts such as transformers is a cinch if you have a tube of Duro plastic aluminum or steel at hand. You can literally solder or weld the part to the metal chassis without ever plugging in a soldering iron. And once dry, the liquid metal forms a strong bond between part and chassis.

—Albert Mason

BATTERY PROTECTION
We use fingernail polish to coat the positive poles of extra flashlighrt cells carried in the tool kits of service personnel. The polish insulates the cells so they don't lose their charge when stored among tools. When we are ready to use a battery, the polish is peeled off.

—Harry J. Miller

TV ANTENNA ALIGNMENT
To do a rapid one-man job of aligning a TV antenna, loosen the clamps on the mast, and tie a long length of clothesline to each end of the crossarm. Drop the line down over the roof, bring into a window near the set, then through the window and into the room. Line up the antenna by working the two clotheslines, then retighten the mast clamps.

—J. M. Harris

NEW LINE CORD
When a set is received for servicing, we often find a new line cord has been spliced to the old one close to the chassis. Obviously, the old line cord
wore out and the owner spliced a new one on, not considering himself capable of connecting the new cord directly into the set’s wiring. However, this is a useful extra service the technician can perform. It takes only a couple of minutes to disconnect the old line cord from the set, cut the splice and wire the new cord in instead.—Charles Erwin Cohn

PENCIL-IRON TINNING

When a file is used on the screw-on tip of a pencil iron preparatory to tinning, there’s a good chance of loosening the heating-element barrel that the tip screws onto. Rather than chance this possibility of ruining the heating element, unscrew the tip and screw it onto a bolt or screw clamped in a vise. —Joe C. Allen

UNIVERSAL VISE

For work on devices that are hard to hold in just the right position—such as small electronic chassis—you can use a panoramic tripod head. A small angle bracket is welded to a C-clamp, and a hole tapped for 3/8-20 thread to fit the tripod screw. A same-size machine screw is used to fasten the pan head to a piece of scrap material to clamp in the vise jaws.—Hugh Lineback

CORRECTIONS

Capacitors C9, C10, C11 and C12 were mistakenly identified as mica types in the parts list for the stereo preamp in the December issue. Actually, the units used were metallized paper in epoxy resin cases of about the same size and color as conventional mica units. Miniature high-grade paper or metallized paper units can be used for these components and for C13, C17 and C18.

We thank Mr. A. J. Aitken, of Sunnyvale, Calif., for bringing this to our attention.

Mr. Parker reports that the rf choke in his “Transitone” on page 35 of the December issue in a Thordarson WC-30 45–215-mh width/linearity coil instead of the horizontal oscillator coil named in the parts list.

TUNERS REPAIRED $8.50
24-Hour Service 6-Month Warranty
Repair Charge includes
ALL Replacement Parts

Sarkes Tarzian, Inc., pioneer in the Tuner Manufacturing business, offers fast, dependable, factory repair service on all makes and models. Cost—$8.50 per unit. $15 for UV combinations. Now offering 6-month warranty against defective workmanship and parts failure due to normal usage. Tuners repaired on approved, open accounts. Replacements available at low cost on tuners beyond practical repair.

Tarzian-made tuners easily identified by this stamping. When inquiring about service or replacements for other than Tarzian-made tuners, always give tube complement . . . shaft length . . . filament voltage . . . series or shunt heater . . . IF frequency, chassis identification. And, allow a little more time for service on these tuners. Use this address for fast, factory repair service;

SERVICE MANAGER • TUNER DIVISION DEPT. C

Sarkes Tarzian Inc. 2600 Westfield Drive Bloomington, Indiana

Please mention RADIO-ELECTRONICS when answering advertisements

Electronics-Technicians

Bachelor of Science Degree, 30 Months

Save Two Years! Time

- Radio-Television Plus Color Technician (12 Months)
- Electronics Technician (12 Months)
- Industrial Electronics Technician (12 Months)
- Electronics Engineering (B.S. Degree)
- Electrical Engineering (B.S. Degree)
- Mechanical Engineering (B.S. Degree)
- Civil Engineering (B.S. Degree)
- Architecture (B.S. Degree)

Heald College ranks FIRST West of the Mississippi in “Who’s Who in America” Approved for Veterans

DAY AND EVENING CLASSES
Write for Catalog and Registration Application. New Term Starting Soon.

Heald’s Engineering College
Established 1863
Van Ness at Post, RE
San Francisco, Calif.
General Electric Distributor Sales Operation, Owensboro, Ky., entered the replacement capacitor market with a complete line of electrolytic and paper-Mylar types. To help introduce the line to distributors and dealers, the company included a package of fried grasshoppers to dramatize its “hop” into the replacement field with an introductory selection of 10 of the most widely used capacitors.

Sylvania Electric Products, Electronic Tube Div., Emporium, Pa., recently produced its 2,000,000,000th receiving tube. This achievement comes less than eight years after the manufacture of its 1,000,000,000th tube. A technician at the plant is shown checking voltages of tubes on an automatic conveyor prior to final testing.

Shure Bros., Evanston, Ill., has begun construction on a 38,000-square-foot manufacturing addition to its plant. Norman E. Schmidt, Evanston director of building; Tom Friedman, architect; Delight capacitor kits consisting of assortments of Mylar-paper molded capacitors and 3 trout flies in reusable plastic boxes.

Amperex Electronic Corp., Hicksville, N. Y., is offering service technicians a Goodrich ice bucket free with a special assortment of its most widely used radio and TV replacement tube types.

Thomas Roy Jones (left) was elected chairman of the board, Daystrom, Inc., Murray Hill, N. J. John B. Montgomery succeeds him as president. Mr. Jones will continue as chief executive officer.

Mr. Montgomery, a former Air Force general, comes to Daystrom from General Electric’s Flight Propulsion Div., where he was vice president and general manager.

Hugh J. Daly joined Globe Electronics, a division of Texton Electronics, Inc., Council Bluffs, Iowa, as vice president in charge of sales and marketing. He had been vice president in charge of sales with the Magnecord Div. of Midwestern Instruments.

Joseph Gibbs, Paul Pusecker and Jack Wellington have been named Midwestern, Eastern and Western sales managers, respectively, for Blondor-Tongue Labs, Newark, N. J. Gibbs has been with the company for the past seven years. Pusecker is being promoted from sales engineer, and Wellington joins the company from Shell Electronics.

Bert W. Johnson, Evanston city manager, and S. N. Shure, president of the company, are shown (left to right) at the groundbreaking ceremony.

Pyramid Electric Co., Darlington, S. C., has been sponsoring a series of 3-day sales and engineering seminars at its plant for representatives from all sections of the country. A. H. Bennett, Pyramid engineer, is shown conducting a lecture for one of the groups. Pyramid also introduced two new Sportsmen’s

www.americanradiohistory.com
Glen E. Davidson (left) was appointed vice president and director of marketing for the Heath Co., Benton Harbor, Mich. He joined the company from the Frudolz Candy Co., where he had headed an extensive marketing division.

Prior to that he was director of marketing for the W. A. Sheaffer Co. Alan Robertson was promoted to product-line manager. He had been senior project engineer in the amateur-radio section. Joe Shafer, project engineer, succeeds him.

John H. Hauser was advanced to the new position of general manager, distributor sales, for CBS Electronics, Danvers, Mass. He was previously distributor sales manager.

Thomas P. Clements was promoted to sales manager of the Distributor Div., Hickok Electrical Instrument Co., Cleveland, Ohio. He joined the company in 1958 as test equipment sales manager.

Walter A. Clements, vice president, distributor division of Littelfuse, Inc., Des Plaines, Ill., was honored on his tenth anniversary with Littelfuse at an annual dinner at which service awards were presented to employees. He is shown (left), receiving the presentation from E. V. Sundt, chairman of the board of directors, as T. M. Blake, president, looks on.

John M. O'Malley (left) was promoted to superintendent of manufacturing of Charest Manufacturing Co., Dover, N. H. He has held executive positions with a number of New England firms. Douglas Haynes, production control manager of the company, was promoted to production manager.

Table: TV Picture Tubes at Lowest Prices

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Price</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube</td>
<td>With Old Tube</td>
<td>With Old Tube</td>
<td>With Old Tube</td>
</tr>
<tr>
<td>27EP4</td>
<td>15.95</td>
<td>15.95</td>
<td>16.50</td>
</tr>
<tr>
<td>27HP4</td>
<td>13.95</td>
<td>13.95</td>
<td>14.50</td>
</tr>
<tr>
<td>24HP4</td>
<td>13.95</td>
<td>13.95</td>
<td>14.50</td>
</tr>
<tr>
<td>24DP4</td>
<td>13.50</td>
<td>13.50</td>
<td>14.00</td>
</tr>
<tr>
<td>21XP4</td>
<td>11.50</td>
<td>11.50</td>
<td>12.00</td>
</tr>
<tr>
<td>21XD4</td>
<td>11.50</td>
<td>11.50</td>
<td>12.00</td>
</tr>
<tr>
<td>21AGP4</td>
<td>11.00</td>
<td>11.00</td>
<td>11.50</td>
</tr>
<tr>
<td>21AP4</td>
<td>11.00</td>
<td>11.00</td>
<td>11.50</td>
</tr>
<tr>
<td>21CDP4</td>
<td>11.00</td>
<td>11.00</td>
<td>11.50</td>
</tr>
<tr>
<td>21CBP4</td>
<td>11.00</td>
<td>11.00</td>
<td>11.50</td>
</tr>
<tr>
<td>20H</td>
<td>10.50</td>
<td>10.50</td>
<td>11.00</td>
</tr>
<tr>
<td>20C</td>
<td>10.50</td>
<td>10.50</td>
<td>11.00</td>
</tr>
<tr>
<td>16GP4</td>
<td>8.50</td>
<td>8.50</td>
<td>9.00</td>
</tr>
<tr>
<td>16RP4</td>
<td>8.95</td>
<td>8.95</td>
<td>9.50</td>
</tr>
<tr>
<td>14RP4</td>
<td>8.50</td>
<td>8.50</td>
<td>9.00</td>
</tr>
<tr>
<td>14QP4</td>
<td>8.50</td>
<td>8.50</td>
<td>9.00</td>
</tr>
<tr>
<td>13QP4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>12QP4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>11QP4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>10Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>9Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>8Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>7Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>6Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>5Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>4Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>2Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>1Q4</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3M</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3S</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3SP</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3SS</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3SPS</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3SSP</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3SPSS</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3SSPS</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3SSSP</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
<tr>
<td>3SSSS</td>
<td>5.95</td>
<td>5.95</td>
<td>6.50</td>
</tr>
</tbody>
</table>
March 20-23, 1961
New York Coliseum and Waldorf-Astoria Hotel
Members $1.00, Non-members $3.00
Age limit—over 18

MAIL COUPON TODAY!

Find out how you can get this book free!

the V.T.V.M. by Rhys Samuel published at $2.50—contains a wealth of information on how the V.T.V.M. works... how to use it. Send for particulars on how to get this valuable book.

Mail to Dept. P-1
General Techniques, Inc.
Manufacturers of Quality Electronic Kits
1270 Broadway, New York City 1, N. Y.

Name______________________
Address______________________
City_________________________
Zone_________________________
State_________________________

FREE Catalog of The WORLD'S FINEST GOV'T SURPLUS ELECTRONIC BARGAINS

MAGNAVOX AUDIO AMPLIFIER

 dipping for the Navy for Intercommunication and amplification of radio signals
Uses 2 J1248 tubes to build-out with high quality tubes. Precision for electronic components, for electronic equipment. Also used for 12 Volt Dynistor and Instruction Book.
Available for operation 12, 120 and 230 VAC 50-60 Hz. Complete with 3 J1248 Tubes (115 Volt), Wire Harness
$2.95

FAIR RADIO SALES
2133 ELIDA RD. • P.O. Box 1105 • LIMA, OHIO
Price-$19.95

TEST EQUIPMENT Catalog No. AP916 features manufacturer's specialized line of professional products. Descriptions, specifications and prices for all sorts of professional products.
August 1961, 92 Pages
Prices as listed

STEREO RECORD AND TAPE CATALOG No. 104 in three sections: records, 8- and 4-track tapes. Sections subdivided into music categories: Classical, popular; jazz and other types by artist, group, orchestra or title.—Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.

STEREO HI-FI treated in three booklets, one on all-in-one stereo receivers, FM/AM tuners and amplifiers; another stereo preamplifiers and amplifiers, FM and loudspeakers in kit and prewired form, and a third with tips on room settings and their decoration.—Harman-Kardon, Ames Court, Plainview, N. Y.

Tester for the V.T.V.M. by Rhys Samuel published at $2.50—contains a wealth of information on how the V.T.V.M. works... how to use it. Send for particulars on how to get this valuable book.

Mail to Dept. P-1
General Techniques, Inc.
Manufacturers of Quality Electronic Kits
1270 Broadway, New York City 1, N. Y.

Name______________________
Address______________________
City_________________________
Zone_________________________
State_________________________

FREE Catalog of The WORLD'S FINEST GOV'T SURPLUS ELECTRONIC BARGAINS

MAGNAVOX AUDIO AMPLIFIER

 dipping for the Navy for Intercommunication and amplification of radio signals
Uses 2 J1248 tubes to build-out with high quality tubes. Precision for electronic components, for electronic equipment. Also used for 12 Volt Dynistor and Instruction Book.
Available for operation 12, 120 and 230 VAC 50-60 Hz. Complete with 3 J1248 Tubes (115 Volt), Wire Harness
$2.95

FAIR RADIO SALES
2133 ELIDA RD. • P.O. Box 1105 • LIMA, OHIO
Price-$19.95

TEST EQUIPMENT Catalog No. AP916 features manufacturer's specialized line of professional products. Descriptions, specifications and prices for all sorts of professional products.
August 1961, 92 Pages
Prices as listed

STEREO RECORD AND TAPE CATALOG No. 104 in three sections: records, 8- and 4-track tapes. Sections subdivided into music categories: Classical, popular; jazz and other types by artist, group, orchestra or title.—Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.

STEREO HI-FI treated in three booklets, one on all-in-one stereo receivers, FM/AM tuners and amplifiers; another stereo preamplifiers and amplifiers, FM and loudspeakers in kit and prewired form, and a third with tips on room settings and their decoration.—Harman-Kardon, Ames Court, Plainview, N. Y.

Any or all of these cataloges, bulletins, or periodicals are available to you on request direct to the manufacturers, whose addresses are listed at the end of each item. Use your letterhead—do not use postcards. To facilitate identification, mention the issue and page of RADIO-ELECTRONICS on which the item appears. UNLESS OTHERWISE STATED, ALL ITEMS ARE EXPRESS. ALL LITERATURE OFFERS ARE VOID AFTER SIX MONTHS.

CONDENSED TUBE CATALOG for use as quick reference guide to initial equipment as well as replacements. Descriptions and basic specs on manufacturer's full line. 25 pages.—Amperex Electronic Corp., Advertising Dept., 220 Duffy Ave., Hicksville, N. Y. Use letterhead.

CUSTOM STEREO GUIDE presents room arrangements and decorating tips. Contains sections on how to select stereo components and what they are, kit-building and technical information. In addition, experts instruct on reading technical specifications and rating one component against another.—H. H. Scott, Inc., Dept. P., 111 Powderville Rd., Maynard, Mass.

STEREO RECORD AND TAPE CATALOG No. 104 in three sections: records, 8- and 4-track tapes. Sections subdivided into music categories: Classical, popular; jazz and other types by artist, group, orchestra or title.—Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.

STEREO HI-FI treated in three booklets, one on all-in-one stereo receivers, FM/AM tuners and amplifiers; another stereo preamplifiers and amplifiers, FM and loudspeakers in kit and prewired form, and a third with tips on room settings and their decoration.—Harman-Kardon, Ames Court, Plainview, N. Y.

TEST EQUIPMENT Catalog No. AP916 features manufacturer's specialized line of professional products. Descriptions, specifications and prices accompanied by manufacturer's model 850.—Triplet Electrical Instrument Co., Buffalo, Ohio.

STEREO HI-FI treated in three booklets, one on all-in-one stereo receivers, FM/AM tuners and amplifiers; another stereo preamplifiers and amplifiers, FM and loudspeakers in kit and prewired form, and a third with tips on room settings and their decoration.—Harman-Kardon, Ames Court, Plainview, N. Y.

TEST EQUIPMENT Catalog No. AP916 features manufacturer's specialized line of professional products. Descriptions, specifications and prices accompanied by ample photos and drawings.—B&K Manufacturing Co., 1801 W. Belle Plaine, Chicago 13, Ill.

ELECTRONICS SUPPLIES Catalog No. 121 rounds up descriptions, prices and prices for assorted TV parts and tubes, microwave equipment, radio parts, tubes and amateur gear, aero-marine radar and test equipment tools. 51 indexed
FEBRUARY, 1961

Professional Technicians Use CASTLE'S Complete TV TUNER OVERHAUL

VHF TUNERS • UHF TUNERS • UV Combinations* Castle overhaul charge includes all labor and minor parts and written 90 day warranty. Tubes and major parts are extra at net prices. Tuner to be overhauled should be shipped complete; include tubes, shield cover and any damaged parts. Write down model number and state complaint. Pack well and insure.

SAME DAY SERVICE! On Popular Types 48 Hours most Others

CABLE PATS

FREE! CATALOG OF HI-FI, RADIO, TV PARTS & ACCESSORIES—yours for asking!

Vidaire ELECTRONICS MFG. CORP. 111 BATTLESHIP TPE. - BOSTON, Mass.

OUT OF SPACE?

You bet we'd be... if we were to tell you all about AUDION. Out of this World Hi-Fi Values, write for free Catalog.

You'll be amazed...

at our low, low hi-fi prices. Write for FREE discount catalog A-12, or send for our special quotations on your component needs.

HERald ELECTRONICS COMPANY 126 Liberty St., New York 8, N.Y.

PUZZLED?

KIT didn't work? Probably cold solder joints!

World's Finest

MULTICO RE

FIVE-CORE SOLDER

Sold only by Radio Parts Distributors.

BATTERIES for transistor radio and electronic instrument service are listed in new catalog. Both round types in various sizes and ratings from 1½ to 22½ volts and flat types in 9- and 22½-volt models offered. Condensed replace-

PHONOGRAPH REFERENCE CHART and Service Guide lists 1,321 player models of which 1,006 use manufacturer's stereo and mono ceramic cartridge as original equipment and shows how they can be used as replacements in balance of 215. Complete list of replacement needles extra feature.—Sonotone Corp., Elmsford, N.Y.

PRICES-FINDER INDEX for manufacturer's radio and portable phonograph replacement parts features automatic indexing and includes current information on all catalog items.—General Electric Radio & Television Div., Electronics Park, Syracuse, N.Y. $2.95.

INVENTORY GUIDE for more than 800 tube types provides monthly inventory record and shows what percentage of total inventory each tube should represent for a balanced stock.—Westinghouse Electronic Tube Div., Elmira, N.Y. 35c.

AUDIO PARTS AND EQUIPMENT for industrial and professional applications are cataloged in Electronic Components for the Space Age. Completely indexed by product and manufacturer. Industrial tube cross reference guide to military standards. Prices.—Harvey Radio Co., Inc., 103 W. 43rd St., New York 36, N.Y.

GENERAL ELECTRONICS products for use of service technicians, hobbyists and researchers in 64-page catalog, FR-61-G. Includes TV and radio chemicals, alignment tools, service aids and hardware.—GC Electronics Co., Div. of Textron Inc., 400 S. Wyman, Rockford, Ill.

1961 CATALOG of latest electronic and stereo high-fidelity equipment includes among its offerings manufacturer's kit and pre-assembled items, stereo hi-fi components of all major manufacturers, tools, books, optics, cameras and material for the hobbyist, student and experimenter. Over 320 pages—Lafayette Radio Electronics Corp., 165-08 Liberty Ave., Jamaica 33, N.Y.

BATTERIES for transistor radio and electronic instrument service are listed in new catalog. Both round types in various sizes and ratings from 1½ to 22½ volts and flat types in 9- and 22½-volt models offered. Condensed replace-

www.americanradiohistory.com
BOOKS

- Books—All 10c, 2600 titles, all subjects, catalog free. COSMOP, Clayton, Ga.

- Diagrams for Repairing Radios, televisions, TV. Give make and Model. DIAGRAM SERVICE, Box 672 RE, Hartford 1, Conn.

- Television Remote Control.$7.00. Free literature—254 Monroe St., Passaic, N.J.

- Learn while asleep. Hypnotize with your recorded, phonograph or amazing new electronic Educator endless tape recorder. Catalog details free. SLEEP-LEARNING ASSOCIATION, Box 24-RD, Olympia, Wash.

- All makes of electrical instruments and testing equipment repaired. New and used instruments bought, sold, exchanged. HAZELTON INSTRUMENT CO., 128 Liberty Street, New York, N.Y.

- Components, recorders, tapes. FREE WHOLESALE CATALOGUE. CARSTON, 215-T East 88th St., New York 28, N.Y.

- AMPEX, Concertone, Crown, Magnegold, Presto, Norelco, Bogen, Tandberg, Sherwood, Rek-O-Kut, Scott, Shure, Dynakit, others. TRUDES BOYNTON STUDIO, DE, RE, 10 Pennsylvania Ave., Tuckahoe, N.Y.

- Hi-Fi problems solved on the spot by "The Hi-Fi Doctor." Audio, Acoustic, Radio Engineer, professional visits, day, evening. New York area. WILLIAM BOHNS, Plana 7-8569.

RADIO-ENGINEERING

ADVERTISMENTS

ANTENNAS

- 250 power telescopic lens kit.

RADIO-ELECTRONICS

ANALYZERS

ANSWERS TO EFFECTS QUIZ (page 31)

1. The Hall effect is the phenomenon that a conductor in a magnetic field will have a potential difference on one side of it. In fact, the effects show up with virtually no magnetic field in some semiconductors, and a potential difference may be seen in a neon tube. (But of course there is always some magnetic field from the earth.)

2. The Thomas effect is the fact that a temperature gradient in a metal is accompanied by a current in the negative direction of the field. The result is that, in a conductor with a current in it, the heat due to the effects is slightly greater or less than can be accounted for. In copper, this is more noticeable when the current flows from hot to cold, but when it flows from cold to hot, the difference cannot be accounted for in the Thomas effect.

3. The Pelzer effect is often mistakenly associated with thermocouple effect, because it does take place in a thermocouple. But in fact it is a separate effect. There are two ways in which we pass a current through two dissimilar metals at a junction, the junction effect or the Thomson effect. Only the Thomson effect is independent of the Joule effect.

4. The Miller effect is applied in line measurement of the sweep of sawtooth waves. The effect is that the grid-plate capacitance of a triode modifies the effective diode capacitance. It varies in effect as the plate and grid voltages, frequency, thus contributing to linearity.

5. The Barkhausen effect is when we mix electric fields and light. Stark discovered that strong electric fields will displace the spectral lines of various elements into different lines which relate to the polarization of the material. If you did not get this one, it means only that you are not a professor of physics. If you are, shame on you!

6. The Barkhausen effect is the orientation of the magnetic forces in a ferromagnetic body. The Barkhausen effect accounts for the steep rise in the magnetization curve up to the "knee." It is created by the sudden reorientation of a number of elements which are already rotated. The Barkhausen effect is generally better known for his discovery of self-oscillation in vacuum tubes when a grid is at a higher potential than the plate.

7. The Seebeck effect is the one you are looking for when you use a thermocouple. It is the effect that causes the loop formed by connecting two junctions of dissimilar metals to carry a current if the junctions are at different temperatures. When you use a thermocouple, the couple itself is one junction while the other junction is formed by the connection of the wire. Actually there are two "cold" junctions here, but the effects do not depend on what wire they are made to different metals (of the thermocouple wires).

8. The Doppler effect is the apparent shift in frequency when sound or light is approaching or receding from the observer. Most well known is the apparent change in tone of a locomotive whistle when it approaches and leaves at great speed.

Solve yourself—if you did not know all the answers, then you learned something new! END

Transistor TV is an actual fact. This book explains the new circuits and shows how to align and service them. It begins with the fundamentals of transistors for those who have had little experience with them previously. The tuner, sync separator, deflection system and other TV circuits are discussed from a practical viewpoint for practical men.

The final chapter covers test equipment, transistor handling and other topics. Actual circuits and recommended alignment procedures are given.

According to this author and engineer, "with stereo it is difficult to separate fact from fiction." Here he evaluates the pros and cons, giving not only his own views of the subject but those of other sound experts. He describes the problems and techniques in a way to help the layman select and enjoy his equipment.

Among the topics clearly discussed are stylus and record wear, speakers and their placement, amplifiers, acoustics and broadcast stereo. He compares stereo and mono, disc and tape, and includes charts and photos of typical hi-fi installations.—IQ

How to sell audio equipment and installations effectively is the basis of this book. It covers the subject carefully, including subjects such as development of a sound merchandising program, selection of the sales engineer, conservation of sales time, application of your product and a breakdown of the public-address system into its component parts. A second section, called application series, shows nine types of audio systems that are used commercially and details what types of audio equipment are needed in these applications.

Starting with a description of the principles and construction of various types of meters, the book goes on to describe the many ways meters can be used. Some of the topics include: power

FEBRUARY, 1961
measurement and wattmeters, meters adapted for rf measurements, general electrical tests and measurements, specialized measurements and advanced meter features.—LS

This is a very unusual and useful transistor book. It describes more than 150 practical, tested circuits of all kinds, from simple to complex. Among them are low- and high-frequency amplifiers, oscillators, logic circuits, switches, flip-flops, and power supplies. All have been selected for proven performance and wide interest, and all values are specified.

Each chapter is preceded by design information on the circuits. It explains the theory and basic design. Formulas, graphs and references are given.—IQ

This latest edition includes material on tunnel diodes and their applications. Like the earlier manuals, it is a complete handbook on transistors, Unijunctions and controlled rectifiers. Design equations, circuits and test information make it useful to designers, engineers and experimenters.—IQ

TELEVISION ANALYZING SIMPLIFIED (2nd Edition), by Milton S. Kiver. B & K Manufacturing Co., 1801 W. Bell Plaine Ave., Chicago 13, Ill. 5 1/2 x 8 1/2 in. 128 pp. $1.50.

The book opens with brief descriptions of TV servicing by tube testing, voltage and resistance measurements and signal tracing with a scope. The author then introduces the B & K Television Analyst and describes its use as a point-to-point TV signal injector. The last 14 chapters are devoted to detailed coverage of the Television Analyst as it is used to troubleshoot various sections and circuits in the TV receiver.—R.F.S.

GETTING THE MOST OUT OF VACUUM TUBES, by Robert S. Toner, Howard W. Sams & Co. Inc., 1720 E. 38 St., Indianapolis, Ind. 5 1/2 x 8 1/2 in. 160 pp. $3.50.

Engineers say that a tube should give good service for at least 5,000 hours, perhaps as many as 10,000. Yet most defects in electronic equipment are caused by tubes failing before their time. This book, by an authority, points out the causes for early failure and how to avoid them. It shows how poor circuit design can affect tube performance, and it gives basic facts of tube testing.

If you are a user of tubes, a circuit designer or a maintenance technician, this book will help you get better service from your electronic equipment.

This well known and well read text has been brought up to date. It is written to show radio technicians how math can help them in their work. It

(Continued on page 128)
AT LAST! A home study course covering all phases of electric and electronic organ servicing.

A NEW COURSE
An extensive course covering every make of organ—repair, regulating, and troubleshooting.

Electronic ORGAN SERVICING
Your Opportunity To Get Into A New, Rapidly Expanding Field At The Start. Don't Miss It!!

WRITE NOW FOR FREE BOOKLET
NILES BRYANT SCHOOL
Dept. E., 3731 Stockton Blvd.
Sacramento 20, California

GET INTO ELECTRONICS
V.T.I. training leads to success as technician, instal. engineer, special-dish radio servicing. Training in numerous fields. 21,000 miles
studied. Teachers are former technicians. Full employment facilities. Home study or short-cuts. AA degree in electronics in 29 mos. B.S. in electronic
communications approved. Graduates in all branches of electronics with major companies. Start February, September.

NEW! FREE "Your Career" booklet.
MAIL coupon today!

LEARN THE SHORT-CUTS
Professional TELEVISION.
All-Practice TRAINING
Jump your chances fixing black-and-white and color sets. Get
into the top-pay bracket. N.U.I.'s concentrated spare time, home
study program can do it for you. You'll be set fast, easier.
Special course for Radio-TV servicemen—not for beginners.
Write National Radio Institute, Dept.18FT, Washington 15, D.C. Just say, "Send me Professional TV Servicing Catalog."

ELECTRONICS
PREPARE FOR A GOOD JOB!
BROADCAST ENGINEER
RADIO SERVICING AUTOMATION
TELEVISION SERVICING
BLACK & WHITE—COLOR
APPROVED FOR VETERANS AND SURVIVORS OF VETERANS
BUILDING, AIR CONDITIONED
SEND FOR FREE LITERATURE
BALTIMORE TECHNICAL INSTITUTE
1425 EUTAW PLACE, BALTIMORE 17, MD.

MILWAUKEE SCHOOL OF ENGINEERING
1025 NORTH MILWAUKEE STREET • MILWAUKEE 1, WISCONSIN

Prepare for your career in
ELECTRONICS
ELECTRICAL ENGINEERING
RADIO-TV COMPUTERS

Through study at the Milwaukee School of Engineering, you can gain a
sound technical education—and
open the door to a rewarding career
in the space age as an engineer or en-
geineering technician.

At MSOE, new classes begin quarterly. Previous educational, military,
and practical experience evaluated for advanced credit. Veteran approved. Write for more information today.

Associate in Applied Science degrees—2 years
Electronics Communications Technology
Electrical Power Technology
Computer Technology
Air Conditioning Technology
Industrial Technology
Metallurgical Technology
Bachelor of Science degrees—4 years
Electrical Engineering
— Communications option
— Electrical Power option
Mechanical Engineering
Pre-technology program, scholarships,
financial aid, and placement service
available.

1 MILWAUKEE SCHOOL OF ENGINEERING
Dept. RE-261, 1025 N. Milwaukee St., Milwaukee 1, Wis.
(Please Print)
Name . Age
Address
City State
Course interest

SAY YOU SAW IT
ADVERTISED IN...
LAFA YET E
9-TRANSISTOR CITIZENS BAND "WALKIE TALKIE"

Complete Portable Two-Way Communications For Everyone
NO LICENSES, TESTS OR AGE LIMITS

ONLY 49.95
2.00 DOWN
2 for 96.50

Pocket Size — 63/8" x 31/4" x 15/8"
Fully Transistorized — 9 Transistors plus 1 Diode
Transmits & Receives From 1.5 to 7 Miles (Depending Upon Conditions)
Crystal Controlled with Superheterodyne Receiver
Push-To-Talk Operation
Uses 8 Inexpensive Penlight Batteries
Up to 70 Hours Battery Life
46 Inch Telescoping Antenna
Earphone For Personal Listening
Weatherproof Leather Carrying Case with Shoulder Strap.

As simple and easy to use as your telephone and twice as handy—weighs only 18 ounces and slips easily into your pocket. Just two controls ensure fast, efficient operation—on/off switch and push-to-talk. Low input power of 100MW permits operation without FCC license or permit. Perfect for hunting, fishing, boating, virtually all sports. Use at work—construction, warehouse, office, farm or for in-plant communications. Supplied with 8 penlight batteries, earphone, leather carrying case with shoulder strap and matched crystals for channel 10.

LAFA YET E HE-15A
CITIZEN'S BAND TRANSCEIVER

Maid Superregenerative but SUPERHET!
Completely Wired

HE-15A Wired & Tested (less antenna)
HE-19 Whip Antenna
HE-16 Power Supply for 12 Volts
HE-16 Power Supply for 6 Volts

MAD E IN U.S.A.

LAFA YET E HE-20
DELUXE CITIZEN'S BAND TRANSCEIVER

MADE IN U.S.A.
COMPLETELY WIRED! NOT A KIT

Sensitivity and selectivity that equals and surpasses that of the finest units available. Two will provide an effective communication system up to a distance of 20 miles, depending upon terrain and antenna height. Tuneable Superheterodyne Receiver section covers all 22 assigned channels with a sensitivity of 1 microvolts and provides for 4 crystal controlled receiving channels. 5 watt crystal-controlled transmitter operates on any 4 of 23 channels. Features include an adjustable squelch control, a highly effective series gate noise limiter, foolproof dependable relay switching plus a built-in "5" meter with switch to measure signal strength and to check on wattage input to final. Complete with rugged push-to-talk ceramic microphone, built-in 12V DC/115V AC power supply for mobile and fixed use plus matched crystals for channel 9.

PLEASE INCLUDE SHIPPING CHARGES WITH ORDER
165-08 LIBERTY AVENUE, JAMAICA 33, N.Y. • OTHER LOCATIONS

NEW YORK, N.Y.
100 6th Avenue
NEWARK, N.J.
24 Central Avenue
BRONX, N.Y.
542 E. Fordham Rd.
PARAMUS, N.J.
182 Route 17
BOSTON, MASS.
110 Federal Street
PLAINFIELD, N.J.
139 W. 2nd Street
Build A Path to A New World of Entertainment

ENGINEERING:
Created with the non-technical builder in mind. There's much more fun in assembling your own kit... and it's so easy.

DESIGN:
Each kit has the fine professional looking touch. Styled to blend with every decor.

VALUE:
You can't get better units at these money saving prices.

QUALITY:
Top performance due to high quality parts and engineering.

All Lafayette Kits are Available on the Easy Pay Plan.

MONEY-BACK GUARANTEE
Lafayette Kits are exclusive products of Lafayette Electronics. Each Lafayette Kit must meet or exceed its published specifications, or your money is refunded in full.

Lafayette Radio Dept. JB-1
P.O. Box 190 Jamaica 31, N.Y.

Send me the FREE 324-Page 196' Catalog No. 610

Cut Out and Paste On Post

Name
Address
City
State
Zone

www.americanradiohistory.com
terial will soon reveal the almost total absence of coloration introduced by the AR-3. The sounds produced by this speaker are probably more true to the original program than those of any other commercially manufactured speaker system we have heard. On the other hand, the absence of

"From the Hirsch-Houck Laboratories' report on the AR-3 loudspeaker in the October, 1960 High Fidelity. A reprint of the complete report will be sent on request.

AR-3's (and other models of AR speakers) are on demonstration at AR Music Rooms, at Grand Central Terminal in New York City, and at 52 Brattle Street in Cambridge, Massachusetts. Prices are from $89 to $225.

AOCUSTIC RESEARCH, INC., 24 Thorndike St., Cambridge 41, Mass.

For that

NEW IDEA

visit the

IRE SHOW

March 20-23, 1961

New York

Coliseum and Waldorf-Astoria Hotel

Members $1.00, Non-members $3.00

Age limit—over 18

(Continued from page 124)

reviews arithmetic and discusses algebra, trig, logs and vectors. Mathematical methods are applied to ac networks and tube circuits. Use of the slide rule to lighten calculations is described. Numerical examples are worked out.

Among the many math tables are logarithms, squares, trig functions and wire values. A two-color format emphasizes portions of circuits, headings, rules and equations, to make the book extra readable. Recommended for self-study, review and reference.—IQ

DAVE RICE'S OFFICIAL PRICING DIGEST, Vol. IV, No. 1. Electronic Publishing Co. Inc., 180 N. Wacker Dr., Chicago 6, Ill. 300 pp, 3 1/4 x 8 1/4 in. $2.50.

This handy book contains a complete list of resale prices for more than 63,000 electronic components. It also includes a table of flat-rate and hourly service charges based on and showing regional and national averages. This book is definitely useful to the service technician as a reference when listing charges for replacement parts.—LS

This is an up-to-date reference book on noise in physical devices. It discusses noise in tubes, metal films and semiconductors. The first chapters review the physical basis for measuring noise and mathematical techniques. A complete volume on the subject, it's excellent for research workers in TV, radioastronomy, telecommunications and measurement.—IQ

A basic guide to radio for the beginner. Also useful as a text. With numerous illustrations and easy-to-read text, this book takes the beginner with little or no electronic knowledge through electricity, magnetism, Ohm's law, vacuum-tube principles, resonance and tuning, receiving circuits, short-wave sets, radio transmitters, to a closing chapter called Looking Ahead in Radio.—LS
RAD-TEL

GUARANTEED

GUARANTEED ONE FULL YEAR!

NOT USED—NOT PULLED OUT OF OLD SETS

EACH TUBE INDIVIDUALLY AND ATTRACTIVELY BOXED!

Up to 75% Off on BRAND NEW TUBES

You can rely on Rad-Tel's speedy one day service!

CATALOG.

WHY PAY MORE? - BUY DIRECT FROM RAD-TEL FOR SAVINGS AND PERFORMANCE IN RADIO AND TV TUBES

TRANSISTORS — AT FABULOUS DISCOUNTS

<table>
<thead>
<tr>
<th>Price</th>
<th>Type</th>
<th>Rating</th>
<th>Electrical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEND FOR FREE TROUBLE SHOOTER GUIDE AND NEW TUBE & PARTS CATALOG

RAD-TEL TUBE CO.

55 Chambers Street
Newark S. N. J.

FEBRUARY, 1961

www.americanradiohistory.com

NOT AFFILIATED WITH ANY OTHER MAIL ORDER TUBE COMPANY

TERMS: 25% deposit must accompany all orders—balance C.O.D. $1 HANDLING CHARGE FOR ORDERS UNDER $5. Subject to prior sale. Please add postage. No C.O.D.'s outside continental U.S.A. Dept. RE-261.
These men are getting practical training in...

ELECTRICITY

ON REAL

Motors • Generators • Switchboards • Controls • Electrical • Automatic • Control Units

TELEVISION

ON REAL

TV Receivers • Black and White • Color • FM and AM Radios • Repair • Service

Train in NEW Shop-Labs of COYNE

in Chicago—Electrical and Electronic Center of the World. Prepare for a better job and a successful future in a TOP OPPORTUNITY FIELD. Train in real full size equipment at COYNE where thousands of successful men have trained for 60 years—largest, oldest, best equipped school of its kind. Professional and experienced instructors show you how, then do practical jobs yourself on more than a quarter of a million dollars worth of equipment. No previous experience or advanced education needed. Employment Service to Graduates.

Mail Coupon or Write to Address Below for Free Book—"Guide to Careers." Whether you prefer ELECTRICITY, TELEVISION-RADIO or COMBINED ELECTRONICS, this book describes all training offered.

Information comes by mail. No obligation and NO SALESMAN WILL CALL.

B. W. Cook, Jr., Pres. Founded 1899

COYNE ELECTRICAL SCHOOL

Chartered as an Educational Institution Not For Profit 1501 W. Congress Pkwy., Chicago 7, III., Dept. 21 of

MAIL COUPON OR WRITE TO ADDRESS BELOW

COYNE ELECTRICAL SCHOOL

New Coyne Building Dept. 21-SC

1501 W. Congress Pkwy., Chicago 7, Ill.

Send BIG FREE book and details of all the training you offer. I am especially interested in:

[] Electricity [] Television [] Both Fields

Name ____________________________

Address ____________________________

City ____________________________ State ____________________________

Unlike most other schools, we do not employ salaried...

ADVERTISING INDEX

Radio-Electronics does not assume responsibility for any errors appearing in the index below.

- Moss Electronic Inc. 88-89
- National Radio Institute 27-28, 96, 114
- National Technical School 23
- Ohm's Electric Co., Ltd. 96
- Olson Radio Corp. 109
- PACO Electronics Co., Inc. 87
- Perma-Power Company 68
- Philco Computer Div. 98
- Picture Tube Outlet 119
- Planet Sales Corp. 123
- Progressive "Edu-Kits" Inc. 100
- RCA Tube Div. 108
- R.C.A. Test Equipment Div. 112
- Radial Tube Co. 129
- Radio Shack Corp. 108
- Radio TV Training School 23
- Riden, (John, Jr.) 106
- Rinehart & Co. 16-17
- Rohm Mfg. Co. 111
- Sams (Howard W.) Co., Inc. 70, 112-113
- Scott, (H. H.) Inc. 29
- SENCORE (Service Instruments Corp.) 81
- Sprague Products Co. 95
- Standard Kollmann Industries Inc. 3rd Cover
- Supreme Publications 101
- Swing-O-Lite Co. 101
- Switchcraft, Inc. 114
- Sylvania Electric Products Inc. 21
- TAB 118
- Tarzian, Sarks Inc. 117
- Tri Mfg. Co. 10
- Triphlett Electrical Instrument Co. 2nd Cover
- Turner Microphone Company 73
- United Radio Company 111
- University Loudspeakers, Inc. 14
- Vachet Electric Company 112
- Vidalie Electric Mfg. Corp. 121
- Vitekne Company 84-85

SCHOOL DIRECTORY PAGES 124, 125
- Baltimore Technical Institute
- Niles Bryant School
- Indiana Technical College
- International Correspondence School
- Middlecut Institute of Electronics
- Milwaukee School of Engineering
- Motorola Training Institute
- National Radio Institute
- Northrop Institute of Technology
- Pacific International College of Arts & Sciences
- Phila. Wireless Technical Institute
- Philco Technological Center
- Tri-State College
- Valmaraiso Technical Institute

CHECKS ALL POWER RECTIFIERS WITHOUT DISCONNECTING RECTIFIER FROM CIRCUIT

An exciting new development by Mercury enables you to check the quality of all types of power rectifiers in use today without disconnecting rectifier from circuit. Now, by simply clipping test leads across rectifier right in the circuit and depressing test switch you get an instant reading indicating whether rectifier is good or bad.

- Internally fused...case fully insulated from the power line
- Cannot damage or over heat the rectifier under test
- Cannot burn line fuses, even when checking a shorted rectifier
- Long lasting etched aluminum panel
- Handsome hammer-tone steel case

$27.50 Net

Mercury Electronics Corp. 77 Searing Avenue, Mineola, New York

Mercury Model 600 In-Circuit-Rectifier Tester

CHECKS ALL RECTIFIERS (selenium, germanium, silicon, copper oxide, etc.) BOTH IN-CIRCUIT AND OUT-OF-CIRCUIT.

- Quality
- Shorts
- Open
- Fading
- Life Expectancy

See your electronics parts distributor! Model 600

Mercury Electronics Corporation

www.americanradiohistory.com
look to this sign of assurance!

The Distributor displaying this sign will solve your tuner problems at a profit to you.

He has available the New Standard Tuner Replacement Guide, including replacement parts listings. This is the only Guide of its kind in the world. Covers all Standard tuners produced through 1959. Includes replacements for many tuners not produced by Standard. He handles our 48-hour Factory Guaranteed Repair Service and Trade-In Allowance on unrepairable Standard tuners.

See This Authorized Distributor Today

standard kollsman
INDUSTRIES INC. Formerly Standard Coil Products Co., Inc.
2085 N. HAWTHORNE AVENUE, MELROSE PARK, ILLINOIS
How do your customers rate you?

Your reputation is based largely on what happens after you leave the scene of each service call. For this reason the name on the tubes you install makes a world of difference. RCA tubes are designed and manufactured to assure customer confidence in you as well as in RCA.

RCA tube quality is your best insurance against call-backs due to premature tube failure.

RCA tube performance puts your workmanship in the best light and protects it through rigid quality control.

RCA's trademark symbolizes a name and reputation customers have respected for decades.

Your customers know that those red-white-and-black RCA tube cartons in your tube caddy represent the most trusted name in electronics. Remember, customer confidence is the cornerstone of your business.

To protect your service reputation before, during and after every service call, make sure your next tube order specifies . . . RCA TUBES.

RCA ELECTRON TUBE DIVISION, HARRISON, N. J.

The Most Trusted Name in Electronics

RADIO CORPORATION OF AMERICA

www.americanradiohistory.com