Hand size, but with the features of a full-size V-O-M.
20,000 ohms per volt DC; 5,000 AC.
EXCLUSIVE SELECTOR SWITCH speeds circuit and range settings. The first miniature V-O-M with this exclusive feature for quick, fool-proof selection of all ranges.
SELF-SHIELDED Bar-Ring Instrument; permits checking in Strong Magnetic Fields.
Fitting interchangeable test prod tip into top of tester makes it the common probe, thereby freeing one hand.
Unbreakable plastic meter window.
BANANA-TYPE JACKS—positive connection and long life.

The most comprehensive test set in the Triplett line is Model 100 V-O-M Clamp-On-Ammeter Kit, now available at distributors. The world's most versatile instrument—a complete accurate V-O-M plus a clamp-on-ammeter with which you can take measurements without stripping the wires. Handsome, triple-purpose carton holds and displays all the components: Model 310 miniaturized V-O-M, Model 10 Clamp-On-Ammeter, Model 101 Line Separator, No. 311 extension leads and a Leather Carrying-Case, which neatly accommodates all the components. Model 101 literally makes it possible to separate the two sides of the line when using Model 10. Extension leads permit use of Model 10 at a distance from the V-O-M. Complete Model 100 is only $59.50.

For full information see your Triplett distributor
or write
TRIPLETT ELECTRICAL INSTRUMENT COMPANY • BLUFFTON, OHIO

PANEL METERS

AND A VOM FOR EVERY PURPOSE AND EVERY PURSE

630 630-A 630-PL 630-APL 630-NA 630-T 631 310 666-HH 625-NA 666-R
NOW READY
The NEW NRI Home Study Course in
ELECTRONICS
PRINCIPLES - PRACTICES - MAINTENANCE

SPECIAL TRAINING EQUIPMENT
No extra cost. In NRI Electronics training especially developed training kits bring to life theory you learn in easy, illustrated lessons. You get practical experience with Thyatron Tube circuits, Multivibrators, Capacitors, Diodes, Transistors, Telemetry, Computer Circuits and other basic circuits and components.

KIT 1 Get practical experience measuring voltage, current, building circuits.
KIT 2 Build d'Arsonval type Vacuum Tube Voltmeter. Test power line frequencies, high audio, radio frequency signals, resistances.
KIT 3 Practice with resistors, capacitors, coils, work with half, full-wave, bridge, voltage doubler and pi-type filter circuits.
KIT 4 Build circuits with pentode tubes, selenium resistors, transistors, Build oscillator, check signal phase shift with oscilloscope.
KIT 5 Experiment with thyatron tube circuits, Lissajous patterns. Study basic amplitude detector circuits, modulation, demodulation.
KIT 6 Get practical experience with magnetic amplifiers, learn to use modified Prony brake; determine motor torque. Use strobe disc to measure motor speed.
KIT 7 Experiment with multivibrators used as timing generators in binary counters, and as frequency dividers. Learn to use blocking oscillators, thermistors.
KIT 9 Practical experience in telemetry circuits used in earth satellites, remote control devices. Work with basic circuits used in digital and analog computers.
KIT 10 Assemble circuits in electrical and electro-mechanical systems, make valuable practical electronic circuits.

MAIL COUPON—New 64-Page Catalog pictures and describes Training KIts, explains what you learn.

NRI is America's oldest, largest home study Radio-Television-Electronics school. For over 45 years NRI has been training men without previous experience for success in Radio-Television Servicing and Communications. Now, expanded uses of Electronics in industry, business and defense are increasing the demand for Electronic Technicians. Four to seven Technicians are needed for every engineer. To meet this demand NRI announces a complete, comprehensive course in ELECTRONICS—Principles, Practices, Maintenance.

This training stresses basic fundamentals because so many Electronic devices are built around identical Electronic principles. It is for beginners, or for Technicians who wish to expand their knowledge.

This is the Electronic Age. Electronic Equipment is already being used to count, weigh, control flow of liquids, solids, gases. Control exposure in photography, detect fumes, or fire. Inspect at remote points. Supervise traffic. Survey land areas and ocean contours. Search for oil, miles beneath the surface. Measure radiation and control power levels in atomic installations. Control air traffic. Translate one language into another. The MILITARY applications of Electronics are... particularly in space rockets and missiles, tracking devices, etc.,... probably equal all of the uses above. Electronic equipment is used to machine parts through complex cycles. It is used in business to process data, control inventory, prepare payrolls, post, calculate, and in medicine for electrodiagnosis, measure body characteristics, electro-surgery.

Job Counselors Recommend
Right today a career in Electronics offers unlimited opportunity. Job Counselors know the pay is high, jobs interesting, advancement opportunities great. They advise ambitious, aggressive men who want higher pay now and a better future: "For an interesting career, get into Electronics."

Learn More to Earn More
Simply waiting and wishing for a better job won't get you ahead. You have to decide you want to succeed and you must act. NRI can provide the training you need at home in spare time. No need to go away to school. You don't need a high school diploma or previous Electronic experience. This course is planned to meet the needs of beginners. You work and train with components and circuits you will meet throughout your Electronics career. You get especially developed training kits for practical experience that make Electronics easy, simple to learn.

Oldest and Largest School
Training men to succeed, is the National Radio Institute's only business. The NRI Diploma is respected and recognized. NRI graduates are everywhere throughout U.S. and Canada. Mail the coupon today. New, FREE 64-page Catalog gives facts, opportunities about careers in Industrial and Military Electronics, also shows what you learn, facts about NRI's other courses in Radio-Television Servicing and Radio-Television Communications. Monthly payments available.

MAIL THIS COUPON NOW

NATIONAL RADIO INSTITUTE
WASHINGTON 16, D. C. ESTABLISHED 1916

MAIL COUPON—New 64-Page Catalog pictures and describes Training KIts, explains what you learn.

NATIONAL RADIO INSTITUTE Dept. OHF
Washington 16, D. C.

Send me full information without cost or obligation. No salesman will call. (Please print.)

Name Age
Address
City Zone State

ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL
AUGUST, 1960

EDITORIAL
25 Microtelevision—Hugo Gernsback

TEST INSTRUMENTS
26 Automatic Ac Vtvm (Cover feature)—Joe Marshall
29 Transistor Power Supply for the Service Bench—James E. Pugh, Jr.
31 Make an Audio Wattmeter from Your Vtvm—Robert G. Casey
32 Boost Bridge Accuracy with a Null Amplifier—Forrest H. Frantz, Sr.
33 Wall of Sound

AUDIO-HIGH FIDELITY
34 Intercoms and Boat Hailers Improved by Transistors—Robert F. Scott
36 Low-Cost Starved-Current Amplifier—Paul S. Letterer
37 More Bass from Smaller Loudspeakers, Part II—Norman H. Crowhurst
40 Special Effects with a Tape Recorder—John A. Larson
42 Zener Diodes Prevent Speaker Burnout—Ronald L. Ives
43 And Now . . . Reverbation

RADIO
44 Build the Super-Eight—Martin Klein
47 Single-Sideband Transmitter Adjustments—Edward M. Noll
49 No More Ovens
50 "Little Handful" Citizens-Band Transceiver—I. Queen

INDUSTRIAL ELECTRONICS
53 Regulated Low-Voltage Power Supply—Lawrence J. Murphy
54 Introduction to Ultrasonics—Tom Jaski
56 Fluid Amplifier
57 Infrared in Industry—Baron Kemp
59 Grid-Current Limiting Resistors—Dellroye D. Darling

ELECTRONICS
60 Missile Control and Guidance—Marvin Hobbs
68 New Departures in Tubes and Semiconductors—Larry Steckler
72 Parallel/Series Resistance Calculator—S. J. Salva

WHAT'S NEW
73 Pictorial Reports of New Developments

TELEVISION
78 Foldover, Halos and a Cure—Hector O. Algarra
80 TV Clinic—Conducted by Jack Darr
84 Stop Horizontal Jitter—Lawrence Shaw
90 Set or Station Causing Your Color TV Troubles?—Jack Darr
95 Watch Those Peaking Coils—Lawrence Shaw

ON THE COVER

The Knight-Kit ac vtvm out of its case—from the front and from the rear. When an unknown voltage is applied, a motor-driven range switch selects the correct range automatically. Color original by Habershaw Studios

Hugo Gernsback
Editor and Publisher
M. Harvey Gernsback
Editorial Director
Fred Shumann
Managing Editor
Robert F. Scott
Technical Editor
Larry Steckler
Associate Editor
I. Queen
Editorial Associate
Elizabeth Stalcup
Production Manager
Wm. Lyon McLaughlin
Director, Illustration
Fred Neinast
Staff Artist
Lee Robinson
Eastern Sales Manager
G. Aliquo
Circulation Manager
Adam J. Smith
Director, Newstand Sales
Robert Fallath
Promotion Manager

Average Paid Circulation Over 174,000

RADIO-ELECTRONICS is indexed in Applied Science & Technology Index (Formerly Industrial Arts Index)

RADIO-ELECTRONICS, August, 1960, Vol. XXXI, No. 8. Published monthly at Mt. Morris, Ill., by Gernsback Publications, Inc. Second-class postage paid at Mt. Morris, Ill. Copyright 1960 by Gernsback Publications, Inc. No entries reserved under Universal, International, and Pan-American Copyright Conventions. SUBSCRIPTION RATES: U.S. and possessions, $4.00 for one year; $7.00 for two years; $10.00 for three years. Pan-American countries $5.00 for one year; $9.00 for two years; $12.00 for three years. All other countries $5.50 a year; $10.00 for two years; $14.50 for three years.

SUBSCRIPTIONS: Address correspondence to Radio-Electronics Subscription Service, 114 West 16th St., New York 11, N.Y. When requesting a change of address, please furnish our address label from a recent issue. Allow one month for change of address.

GERNSBACK PUBLICATIONS, Inc. Executive, Editorial and Advertising Offices, 114 West 16th St., New York 11, N.Y. Telephone Algonquin 5-7755. Hugo Gernsback, Chairman of the Board; M. Harvey Gernsback, President; G. Aliquo, Secretary. ADVERTISING REPRESENTATIVES and FOREIGN AGENTS listed on page 125.
MAKING MORE MONEY
in TELEVISION
RADIO-ELECTRONICS

NOW! at a price you can afford!

BETTER...MORE COMPLETE...LOWER COST...
WITH NATIONAL SCHOOLS SHOP-METHOD
HOME TRAINING!

BETTER...Training that is proved and tested
in Resident School shops and laboratories. As a School that is
the OLDEST and LARGEST of
its kind in the world.

MORE COMPLETE...You learn ALL PHASES of
Television-Radio-Electronics.

LOWER COST...Other schools make several courses
out of the material in our ONE
MASTER COURSE...and you
pay more for less training than
you get in our course at ONE
LOW TUITION!

TOP PAY...UNLIMITED OPPORTUNITIES
LIFETIME SECURITY CAN BE YOURS!

You are needed in the Television, Radio, and Electronics industry! Trained technicians are in growing demand at excellent pay— in
ALL PHASES, including Servicing, Manufacturing, Broadcasting and
Communications, Automation, Radar, Government Missile Projects.

NATIONAL SCHOOLS SHOP-METHOD HOME
TRAINING, with newly added lessons
and equipment, trains you in your
spare time at home, for these unlim-
ited opportunities, including many
technical jobs leading to supervisory
positions.

YOU LEARN BY BUILDING EQUIPMENT WITH
KITS AND PARTS WE SEND YOU. Your
National Schools course includes
thorough Practical training—YOU
LEARN BY DOING! We send you
complete standard equipment of
professional quality for building various
experimental and test units. You ad-
vance step by step, perform more than
100 experiments, and you build
a complete TV set from the ground up,
that is yours to keep! A big, new TV
picture tube is included at no extra
charge.

EARN AS YOU LEARN. We’ll show you
how to earn extra money right from
the start. Many of our students pay
for their course—and more—while
studying. So can you!

NATIONAL SCHOOLS
Los Angeles 37, Calif.

YOU GET...
• 19 Big Kits—YOURS TO KEEP!
• Friendly, Instruction and Guidance
• Job Placement Service
• Unlimited Consultation
• Diplomas—Recognized by Industry
• EVERYTHING YOU NEED FOR
SUCCESS!

SHOP-METHOD HOME TRAINING
COVERS ALL PHASES OF INDUSTRY
1. Television, including Color TV
2. Radio AM & FM
3. Electronics for Guided Missiles
4. Sound Recording and Hi-Fidelity
5. FCC License
6. Automation and Computers
7. Radar & Micro-Waves
8. Broadcasting and
Communications

MAIL NOW TO
NATIONAL TECHNICAL SCHOOLS, Dept. BG-80
4000 S. FIGUEROA ST. LOS ANGELES 37, CALIF.
Rush free TV-Radio "Opportunity" Book and sample
lesson. No salesman will call.

NAME______________AGE_____________

ADDRESS__________________________ZONE__________STATE_________

CITY__________________________ZONE__________STATE_________

□ Check if interested ONLY in Resident School training at Los Angeles

VETERANS: Give date of Discharge_____________

www.americanradiohistory.com
Scatter Communications
For Armed Forces

A 6500-mile communications system designed to give the Pacific area virtually trouble-free communications has gone into operation. Built for use by the Armed Forces, the Pacific Scatter Communications System uses advanced ionospheric and tropospheric scatter propagation to give better than 99% reliability. Unlike most scatter systems, parabolic antennas are not used. Instead, 200- and 400-foot antenna arrays composed of stacked dual-frequency corner reflectors handle the signals rather than the more usual dishes. The ones shown in the photo are at the Wake Island station.

The scatter technique beams radio signals at the ionosphere or the troposphere, to bounce back to earth in a scattered fashion. The signals are not broken up. They are only scattered. Diversity reception is used. One receiver will pick up the clearest signal. If it should fade, another receiver will pick up another "branch" of the same signal without a lapse. In this way a steady flow of intelligible trouble-free information is insured.

The system, which was built by the Army and Page Communications Engineers, permits reliable communications between a transmitter and receiver 600 to 1,200 miles apart, even under conditions which disrupt normal long-distance radio signals.

Pushbutton Censorship

Advertisers were warned by Ross D. Siragusa, president of Admiral Corp., to keep their commercials on a high plane or risk having their messages turned off by viewers from their easy chairs. He said: "No longer must a viewer go to his TV set to turn it off or change stations. He can do this in a split second with a simple remote control."

Speaking at a meeting of 1,200 Eastern TV dealers at Miami Beach, Fla., Siragusa estimated that 10% of sets being sold today have remote controls. He said: "Advertising men and advertisers on TV can no longer ignore the threat held by an estimated 3,000,000 homes having TV receivers with remote controls. Television is too costly a medium for advertisers to risk pushbutton censorship."

Solid-State Transducer

A solid-state transducer using silicon wire has been developed by Statham Instruments, Inc., Calif. The newly developed transducer has thermal characteristics equal to those of a standard strain gauge. Thermal coefficient of sensitivity is around .015% per Fahrenheit degree with a thermal zero shift of less than .01% of full scale per Fahrenheit degree.

The output level is high—about 30 to 40 times that of a conventional strain gauge. This makes the semiconductor transducer fully compatible with existing telemetry equipment without the need for the amplifiers used to raise the conventional gauge's output level.

It is expected to be on the market in about 5 months.

Recording Standards for Tape

The Magnetic Recording Association has adopted terminology standards on the use of the words channel and track. The most important point in the standards is one that affects the stereo man. It states: "In a multichannel system, the number of channels cannot exceed the number of tracks." In other words, if a particular stereo program is recorded on two tracks you cannot have three-channel playback—the sound that comes from a fill-in speaker that eliminates the hole-in-the-middle does not qualify as a third channel.

Some of the specific definitions:

A channel is a single complete electronic transmission path for sound; it may include one or more separate microphones, an amplifier, one or more loudspeakers. It may have a recorder and reproducer interposed as a time storage device. In a multi-channel system the number of channels is equal to the number of main transmission paths.

A track is a path which contains reproducible information left on a medium by recording means energized from a single channel.

When a time storage device is used, the channel may be divided into two parts: the recording channel and playback channel.

A recording channel includes the means by which sound is prepared for storage on a single track.

A playback channel includes the means by which the recorded sound on a single track is reproduced.

Electronic Highways Come A Step Closer

A full-size electronic highway has had its first public shoewing. Demonstrated by RCA in cooperation with General Motors, two specially equipped cars were guided automatically around a test track at RCA's David Sarnoff Research Center in Princeton, N. J. Acceleration, braking and maintaining a safe distance between vehicles were all automatically controlled by electronic signals from the road. (RADIO-ELECTRONICS described this system in an article by Vladimir K. Zwoykin, "Electronics Guides Your Car". This story in the April, 1959, issue was one of a series on electronic highways.)

During the tests, circuits built into the road were used to inform the cars' "drivers" of simulated road inter-
Electronics

TECHNICIAN

OVER 6,000 FIRMS HAVE EMPLOYED DeVRY TECH GRADUATES!

Thousands of companies in the United States and Canada who have employed DeVry Tech men prove two most important facts: (1) Electronics is one of the biggest, fastest growing opportunity fields of our time; and (2) DeVry Tech graduates are "WANTED" MEN.

Whether DeVry Tech prepares you in spare time at home or in its modern Chicago or Toronto Laboratories, your training is designed to get you ready to meet the exacting standards of industry. You get practical training that not only helps to fit you for a job or a service shop of your own—but also gives you a foundation for a career that can be profitable the rest of your life.

You work over 300 learn-by-doing experiments at home, using DeVry Tech's exclusive Electro-Lab method. You build and KEEP valuable equipment. With another DeVry Tech exclusive, you have the benefit of training movies that you can show over and over until basic points are crystal clear. Special texts guide you every step of the way as well.

HOW DeVRY TECH CAN "BLUEPRINT" YOUR CAREER!

DeVry's faculty not only know how to teach Electronics, but they also understand men. They most likely know the type of problems you face. From this staff you get help, advice and understanding. It is this "human" side of DeVry's program that has caused many of our graduates to say: "DeVry Tech not only trains you for a job, they actually help you blueprint a profitable future!"

NO ADVANCED EDUCATION NEEDED!

Why don't you write for FREE FACTS today? Learn how you TOO can be a member of the great fraternity of DeVry Tech graduates across the continent ... men who were properly trained, encouraged, appreciated and understood! SEND IN COUPON NOW!

EFFECTIVE EMPLOYMENT SERVICE

DeVry Tech's effective Employment Service is available to all graduates without additional cost.

MAIL TODAY FOR FREE FACTS!
DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill., Dept. RE-5Q
Please give me your 2 FREE BOOKLETS, "Pocket Guide to Real Earnings" and "Electronics in Space Travel," also include details on how to prepare for a career in one or more branches of Electronics.

Name_________________________Age__________________
Street__________________________Apt.__________________
City___________________________Zone____State_________
☐ Check here if you face military service.

2075 Canadian residents address: DeVry Tech of Canada, Ltd.
970 Lawrence Avenue West, Toronto, Ontario

AUGUST, 1960
New Perma-Power unit guards against picture tube damage caused by excessive power boost

When you're trying to brighten a 110° button base picture tube, watch those series heaters! Many of the newer sets have controlled warm-up filaments with ratings of 2.34 and 2.68 volts. (Older sets are usually rated at 6.3 volts.)

These new tubes use finer heater wire and closer element spacings—which makes them more efficient, but more fragile. Too much power boost will "blow" these low voltage filaments!

On these newer tubes, you can not safely use a Britener made for older sets. But you can use the new Perma-Power Model C412 on these and older style tubes. For the first time, here's one Britener for all 110° button base series string heaters—the only Britener that works properly for 2.34, 2.68, 4.70, 6.3 and 8.4 volt filaments! No switching necessary—no adjustments required.

The Model C412 Vu-Brite is one of four new Perma-Power Briteners, all engineered to fit properly and work properly. Without excessive inventory, Perma-Power—and only Perma-Power—can now assure you of complete coverage—a Britener that's right for every picture tube in general use today.

Now! one Britener for ALL series string heaters

Perma-Power COMPANY
3100 NORTH ELSTON AVENUE • CHICAGO 18, ILLINOIS

WOW Look what's coming up in RADIO-ELECTRONICS

In future issues:
- 1-Transistor Set Operates 8-inch Speaker
- How Service Technicians Can Avoid Legal Pitfalls
- Radio Control with "Oomph"
- You Can Build an Electronic Timer for Guns
- Design and Build the New Twin-Coupled Amplifier
- Understanding Magnetrons—Industrial Power Generators
- Servicing Sync Stages

Subscription Rates: 1 year—54 2 years—$7 3 years—$10
Subscribe now—rates going up after October 31
RADIO-ELECTRONICS
154 West 14th St. New York 11, N.Y.

NEWS BRIEFS (Continued)

sections, service areas or hazardous conditions ahead. This automatic electronic road can be used by electronically equipped and by non-equipped autos simultaneously. Both produce warning signals. The difference is that the equipped car uses its complement of electronic gear (see photo) to automatically react to electronic signals. The driver of the standard car must keep track of roadside signs and lights that warn him of cars head and other possible dangers.

Hugo Gernsback Award
Leonid Garder of Nyack, N. Y., has been presented a 1-year scholarship for 1960-61. This annual Hugo Gernsback Award goes to an electrical engineering student of outstanding ability and promise of success in electronics. Mr. Garder will be a senior at New York University College of Engineering next September. Several years ago, he and his mother escaped from Russia. They lived in Paris, France, for 7 years but never took out citizenship papers as both Leonid and his mother had always hoped to settle in the US. Today this dream comes true. In Leonid's own words, "I think the man who can appreciate freedom and prosperity most greatly is one who has lived under tyranny, hunger and fear. It is for this reason that I feel especially grateful, to you and to this country for this opportunity."

Winner of the annual $1,000 award is selected by the faculty of the College of Engineering.

Speedy Switching Transistor
A new production technique makes it possible to build switching transistors that work 10 times faster than existing ones. Units made by the new process are called epitaxial diffused transistors. This process forms an extremely thin, lightly doped collector region which is grown on a heavily doped low-resistance layer. The lightly doped area has a high resistance and, by keeping this layer thin, collector resistance is reduced and switching time with it. Epitaxial diffusion makes possible a high-resistance collector layer that is as much as 30 times as thin as usual.

The epitaxial techniques, developed (Continued on page 12)
2 Great **knight-kit**® Citizens Band Transceiver Kits

A PRODUCT OF ALLIED RADIO

YOUR CHOICE OF THE FINEST VALUES IN 2-WAY RADIO EQUIPMENT

FOR AUTO-TO-AUTO OR AUTO TO HOME OR OFFICE

- For Auto-to-Auto or Auto to Home or Office
- For Farming Operations
- Local Trucking, Delivery, Construction Work
- Boat-to-Boat, Ship-to-Shore

Citizens Band Superhet Transceiver Kit

Y-712L

BEAUTIFUL STYLING...UNEXCELLED PERFORMANCE

Have dependable, economical 2-way radio communication with this top-rated, do-it-yourself transceiver. Has two crystal-controlled transmitting positions; operates at maximum FCC legal power input of 5 watts fully modulated. Superhet receiver is continuously tunable over the full 22 channel band; also has two optional crystal-controlled fixed frequency positions. Works just like press-to-talk intercom—speaker also serves as mike.

Ultra-selective, highly sensitive dual-conversion superhet receiver features built-in adjustable squelch and noise limiter. Sensitivity (manual) is better than 1 µV for 10 db S/N; crystal, \(\frac{1}{2} \) µV. Includes built-in AC power supply. Easy to assemble; has dependable printed circuitry and pre-aligned IF transformers. With distinctively styled high-impact case, 5 x 12 x 12". Complete with all parts, wire-type doublet antenna, and one transmitting crystal (available for any channel from 1 to 22—specify preference). FCC application form is included (license is available to any citizen over 18—no exams to take). See below for DC mobile supply, vertical antenna, etc. Wt., 20 lbs.

Model Y-712L. $5 Down. Only $79.95

- Y-729L 3 Ft. Vertical Antenna. 2 lbs. NET. $6.95
- Y-714L Mobile Mounting Bracket. 4 lbs. NET. $5.35
- Y-722L 6-12 V Mobile Power Supply. 6 lbs. NET. $10.95
- Y-769L Optional Receiving Crystal (specify frequency). $1.99
- Y-719L Optional Hand-Held Mike. 1 lb. NET. $9.50

Top Buy Citizens Band Transceiver Kit

Y-713L

NOW have your own private 2-way radio system at an amazingly low cost!

Consists of easy-to-assemble superregenerative receiver and 5-watt transmitter. Ready fits car, boat or desk. Single, one-switch operation permits talk or listen. Receiver tunes all 22 channels continuously. Built-in AC power supply. Handsomely styled case, 7 x 10 x 8". With mike, doublet antenna, and transmitting crystal (specify channel—1 to 22—if you have a preference). See below for antenna, mobile power supply, etc. Shpg. wt., 10 lbs.

Model Y-713L. $2 Down. Only $39.95

- Y-729L 3 Ft. Vertical Antenna. 2 lbs. NET. $6.50
- Y-723L 6-12 V Mobile Power Supply. 6 lbs. NET. $16.95
- Y-724L Mobile Mounting Bracket. 4 lbs. NET. $5.35

ALLIED RADIO CORP., Dept. 68-M

100 N. Western Ave., Chicago 80, Ill.

Please ship: [] Y-712L Transceiver. [] Y-713L Transceiver.

[] Y-729L [] Y-723L [] Y-714L [] Y-724L

[] Y-769L [] Y-719L $______ encased

[] Send latest catalog describing Knight-Kits.

Name ____________________________

Address __________________________

City __________________ Zone ________ State __________

FREE Examination Privilege

We invite you to take advantage of our exclusive free examination offer. Order a Knight-Kit Transceiver. Examine it on arrival. Inspect the quality of the components, the circuitry, the easy-assembly manual. We're so confident you'll want the kit, we can make this offer: if you're not COMPLETELY SATISFIED, just return the kit for full refund!
NOW... THE FIRST ANALYZER DESIGNED EXCLUSIVELY FOR TESTING TRANSISTOR CIRCUIT CAPACITORS!

SPRAGUE MODEL TCA-1 TRANSCAP*

THERE'S NOTHING LIKE IT ON THE MARKET ANYWHERE... AT ANY PRICE!

Here, for the first time, is a precision-made instrument which is specifically designed to safely test low-voltage aluminum and tantalum electrolytic capacitors, film and paper capacitors, and ceramic capacitors. No laboratory or shop working with transistor circuit capacitors can afford to be without one!

CAPACITANCE BRIDGE: 1µµf to 2,000 µµf in five overlapping ranges, with laboratory accuracy.

INSULATION RESISTANCE: 50 megohms to 20,000 megohms. Only 25v d-c is applied, permitting measurements on low-voltage ceramic, paper, mica, and film capacitors. For ceramics rated below 25 volts, IR may be calculated from leakage current measurements at exact rated voltage.

POWER FACTOR: Measured by Wien Bridge from 0 to 50%.

LEAKAGE CURRENT: 0.6µa to 600µa in 7 ranges. Measured directly on meter at exact rated d-c voltage of capacitor. No guessing on eye-width or counting lamp blinks!

A-C BRIDGE VOLTAGE: Only 0.5v is applied to the bridge. The voltage across the capacitor is less than this applied voltage, the amplitude depending upon capacitance being measured. No danger of overheating and ruining even a 1-volt electrolytic or a 3-volt ceramic.

POLARIZING VOLTAGE: Continuously adjustable, 0 to 150v.

STABILITY: Dual regulation of the power supply assures short-time reliability, while specially processed etched circuits and complete encapsulation of the critical meter amplifier insure long-time stability.

MAGIC-EYE TUBE: Simplifies bridge balancing for capacitance and power factor measurements.

HIGH GAIN AMPLIFIER: Sensitivity control for magic-eye null detector permits accurate measurements of small capacitances.

CAPACITANCE DIAL: Latest design jet black dial with brilliant white calibrations for quick, accurate readings from any position.

BINDING POSTS: Shielded for protection against pick-up of strays, assuring greater accuracy during low-capacitance measurements. 5-way connection feature for use with all types of test leads.

SAFETY DEVICES: Automatic discharge of capacitor after testing. Three-wire line cord grounds instrument case.

OPERATING PROCEDURES: Easy-to-follow operating procedures clearly shown on pull-out slide at base of instrument. Always handy for ready reference.

MODERN CASE: Handsome grey Hammerloid finish on heavy-gage steel. Measures 8¼" high, 14½" wide, 9½" deep. Weighs only 21 pounds.

See the remarkable new TCA-1 TRANSCAP at your Sprague distributor or write for descriptive folder M-792a to Sprague Products Company, 81 Marshall Street, North Adams, Massachusetts.

ONLY

$197.50

NET

SPRAGUE®

world's largest capacitor manufacturer

RADIO-ELECTRONICS
how to get
a Commercial
FCC LICENSE

We guarantee
to train you until you receive
Your FCC License
— or your money back

The Master Course in Electronics will provide you
with the mental tools of the electronics technician and
prepare you for a First Class FCC License (Commercial) with a radar endorsement. When you successfully
complete the Master Course, if you fail to pass the
FCC examination, you will receive a full refund of all
tuition payments.

GET THIS HANDY POCKET
ELECTRONICS DATA GUIDE

Free...

Puts all the commonly used conversion factors, formulas, tables, and color codes at your fingertips.

TO GET THIS FREE GIFT, MAIL COUPON
Within 30 Days!

"License and Good Job . . . Thanks"
"After finishing your Master Course, I passed the FCC
exam for the 1st class license. I had my ticket for only
one week and I got a job at WOC-TV, AM-FM. Inci-
dentially, WOC is the oldest radio station west of the
Mississippi. I sincerely feel that if it weren't for taking
your Master Course, I would not have received my 1st
class ticket. So I want to take this occasion to again
thank you for such a fine preparation for electronics
work."

FRANCIS J. McMANUS
Davenport, Iowa

CLEVELAND INSTITUTE OF ELECTRONICS
Desk RE44B, 4900 Euclid Avenue Cleveland 3, Ohio

AUGUST, 1960
THE TUNG-SOL 6080 FAMILY
All fit the same socket...

But which fits...your application

There's often a wide choice of tubes which meet one set of electrical requirements. But depending on many other factors, such as the kind of environment in which the tubes are expected to operate, your choice may be limited. For this reason Tung-Sol produces many tube families for many types of applications where varied operating conditions are expected.

Consider the Tung-Sol 6080 family, for example. The 6080, the 6080WA, the 6080WB and the prototype 6AS7G all fit the same socket. The electrical ratings of these series regulator tubes are the same. But which do you need where?

Knowing the differences can make all the difference!

Technical details on the Tung-Sol 6080 family spelling out the essential differences between these electrically identical tubes are available on request.

The 6080 family is just another fine example of how Tung-Sol gives you just the right tube to do the best job. Tung-Sol Electric Inc., Newark 4, N. J.

GET YOUR FREE SUBSCRIPTION TO TUNG-SOL TIPS

If you still haven't gotten your free subscription to Tung-Sol's widely acclaimed monthly series, Tung-Sol Tips, you still can. Just ask your local Tung-Sol distributor or write directly to Tung-Sol and begin getting your issues regularly. They're jam-packed with technical information covering many significant topics to help the industrial serviceman in his job.

by Bell Telephone Laboratories, can be added to existing diffused-base transistor production lines with little trouble. The process is simple. Single crystal wafers of heavily doped material are cut and polished. Then a thin film (about 0.1 mil) of a lightly doped material is deposited on the wafer to provide the desired collector region. From this point on, standard diffused base techniques are used. The diagrams show the difference in the construction of standard (Fig. 1) and epitaxial (Fig. 2) switching transistors.

Frieda Hennock Passes

The only woman ever to become a member of the Federal Communications Commission died June 20 at the age of 55, following brain surgery.

Appointed to the FCC in 1948, Miss Hennock soon became the most active and controversial member of that body. Her activities were usually directed toward the listener-viewer interest and against those entrepreneurs who considered the TV channels exclusively a means of making money. A ceaseless and uniring campaigner for her ideas, her own remark that she "did the work of five men" was never challenged. Miss Hennock served until the expiration of her term of office in 1955.

Want Pay Raise—Miss TV

A report comes from London that the National Union of Mineworkers in England has requested a pay raise for miners on the nightshift. The reason—they don't get to see any evening TV shows.

Do-It Yourself Kit Not Cheap

A do-it-yourself kit designed to enable engineers to design and fabricate micromodules and electronic circuits that put several hundred thousand parts in a cubic foot of space may be one of the most expensive do-it-yourself projects in the US.

According to Dr. Alan M. Glover, vice president and general manager for RCA's Semiconductor and Materials Div. (they make and sell the kit), the Micromodule Laboratory (Continued on page 16)
Grantham resident schools are located in four major cities—Hollywood, Seattle, Kansas City, and Washington, D.C. Regularly scheduled classes in F.C.C. license preparation are offered at all locations. New day classes begin every three months, and new evening classes begin four times a year. The day classes meet 5 days a week and prepare you for a first class F.C.C. license in 12 weeks. The evening classes meet 3 nights a week and prepare you for a first class license in 20 weeks. For more information about the Grantham resident schools, indicate in the coupon which city of your choice and then mail the coupon to the School's home office in Hollywood, Calif. Free details will be mailed to you promptly.

Get your First Class Commercial F.C.C. License by training at

GRANTHAM SCHOOL OF ELECTRONICS

HOLLYWOOD **SEATTLE** **KANSAS CITY** **WASHINGTON**

This booklet **FREE**!

This free booklet gives details of our training and explains what an F.C.C. license can do for your future. Send for your copy today.

Through HOME STUDY

Grantham training is the easy way to learn more quickly—to prepare more thoroughly—for F.C.C. examinations. And your first class license is the quick, easy way to prove to your employer that you are worth more money.

This correspondence course is directed toward two major objectives—(1) to teach you a great deal about electronics, and (2) to prepare you to pass all of the F.C.C. examinations required for a first class commercial operator's license. We teach you step by step and have you practice with FCC-type tests which you send to the school for grading and comment. You prepare for your F.C.C. examinations under the watchful direction of an instructor who is especially qualified in this field.

To get ahead in electronics, you must have the proper training and your employer must know that you have that training. Your F.C.C. license is a "diploma" in communications electronics granted by the U.S. Government, and it is recognized as such by employers. Grantham School of Electronics specializes in preparing you to earn this diploma.

By attending one of the Grantham resident schools, you can prepare for your first class F.C.C. license in as little as 12 weeks. Or, through the Grantham home study course you can prepare at your own pace. Either way (in a resident class or by home study) your training is in capable hands at Grantham.

If you are interested in details concerning our training, indicate in the coupon below whether you prefer home study or resident classes, and mail the coupon to the School's home office at 1505 N. Western Avenue, Hollywood, California—the address given in the coupon. Our free booklet will be mailed to you promptly.

Please send me your free booklet telling how I can get my commercial F.C.C. license quickly. I understand there is no obligation and no salesman will call.

Name:
Age:
Address:
City: State:
I am interested in: [] Home Study, [] Kansas City classes, [] Hollywood classes, [] Seattle classes, [] Washington classes

Free details concerning our training, indicate in the coupon below whether you prefer home study or resident classes, and mail the coupon to the School's home office at 1505 N. Western Avenue, Hollywood, California—the address given in the coupon. Our free booklet will be mailed to you promptly.
NEW WAYS RCA CAN HELP YOU

set up for greater profits

RCA's big continuing program to improve your business is now bigger than ever!

Today you'll find available to you through your Authorized RCA Electron Tube Distributor a variety of new methods, means and materials to help you SET UP FOR GREATER PROFITS. These new aids and services represent the latest phase of RCA's tailor-made program to help you build your business. They include:

- New equipment for store improvement—to bring added attractiveness to your sales area and greater efficiency to your service area;
- New ideas for successfully selling your service;
- New informative material to help you open up a whole new area of business: COLOR TV SERVICING;
- New conveniences to speed home service calls;

Check with your Authorized RCA Electron Tube Distributor today. Find out how you can get in on these new aids and services to improve your business, build your position in the community, and increase your profits.

RCA Electron Tube Division, Harrison, N. J.

The Most Trusted Name in Electronics
RADIO CORPORATION OF AMERICA
improve YOUR PLACE OF BUSINESS

Attractive sales and service areas are invaluable business assets. Plan yours with components from the RCA Store Improvement Program—all available through your RCA Distributor.

NEW RCA Accessory Bar Kit attaches to wall or shelf-unit standards. Moveable hooks support anything from wire spools and tools to test instruments.

NEW RCA Special Drawer Unit provides a three-way benefit. Attaches under counter as utility drawer in service shop, cash drawer in sales area; or several drawers can be stacked together as a separate stand-up unit.

NEW Space-Saving Shelving Units help you make use of space over doors & windows, under counters.

strengthen YOUR SALESMANSHIP

Here for the first time on a convenient 12” LP record are proven ideas on how to sell your services more effectively. Just sit and listen. Discover how you can apply successful selling techniques to the every-day aspects of your business.

Down-to-earth tips on: • Your Store • Handling Store Customers • Telephone Techniques • Home Service Calls • Advertising—and much more.

develop NEW BUSINESS

Profitable new business awaits you in COLOR TV SERVICING—provided you're ready to take advantage of it. Now RCA—world's foremost color TV authority—offers you a FULL 11-LESSON HOME STUDY COURSE to make you the color TV expert of your community. Prepared by RCA Institutes, it's a complete education in principles and practices of color TV servicing. ACT NOW; the course is a limited-time offer through your RCA Tube Distributor.

And to supplement the course, the famous RCA COLOR TV PICT-O-GUIDE makes an ideal refresher and quick reference on color-TV problems and how to correct them.

speed YOUR SERVICE

Make your home service calls faster, easier. This new lightweight, compact "Quick Call" Tube Caddy has a rugged wooden construction with two-color leatherette covering. This perfect mate to the big RCA "Treasure Chest" is just the thing for service calls that don't require a full tube complement.

New Lightweight "Quick Call" Tube Caddy Standard "Treasure Chest" Tube Caddy
3 GREAT NEW PROFIT MAKERS

Designed to help technicians achieve accuracy, speed and greater profits in their every day work.

OTHER MERCURY TEST INSTRUMENTS THAT HAVE WON THE UNANIMOUS APPROVAL OF TECHNICIANS EVERYWHERE

The speed of a multiple-socket tube tester at an economy price.

Model 101—DEALER NET $39.95

A deluxe tube tester that also tests diodes, rectifiers, fuses, pilot lamps, and tube filaments.

Model 102-P—DEALER NET $59.95

A deluxe tube tester and compact tube caddy...all-in-one.

Model 102-C—DEALER NET $74.10

A valuable assistant in the service-man’s shop.

Model 201-F Self-Service Tube Tester (floor model) DEALER NET...$158.50

Model 201-C Self-Service Tube Tester (counter model) DEALER NET...$109.90

See Your Electronic Parts Distributor!

NEWS BRIEFS (Continued from page 12)

Kit will enable engineers and manufacturers to experiment with micro-modules in their own laboratories, reducing design time dramatically. With the kit an engineer needs only 10 feet of workbench and a tank of nitrogen to go into the miniaturized-circuitry business.

A micromodule kit starts with the completed wafers and includes all equipment needed to build and test up to 10 modules for the exact values and configurations which the design engineer wants. It will sell, Dr. Glover says, for “less than $8,000.”

Transparent Semiconductor

Methods of growing single crystals of gallium phosphide, a transparent semiconductor material, are being developed at Bell Telephone Laboratories. The properties of this substance are also being investigated. Since the material is transparent, it is possible to observe visually the differences which take place under varying conditions of doping and electron density. The largest single crystals produced so far measure 1/4 inch long by 1/4 inch square. The experimental work is aimed at a general understanding of semiconductors and junctions.

Motels Like TV

A nation-wide survey of TV sets, antennas and service revealed that 18,680 out of 19,337 motel rooms have TV sets, according to American Motel Magazine. Most of those who do not have sets installed plan to get them within the next year.

Motel owners indicated that the greatest problem related to room TV installations is not reception or servicing, but instead is the misuse, mishandling and tampering with sets by guests. They rated sturdiness as one of the lesser problems along with theft and antenna trouble. The owners also showed a marked preference for matter antenna systems over indoor antennas and individual room systems.

Piezoelectric Compounds

The discovery of two strong new piezoelectric compounds—zinc oxide and cadmium sulfide—has been reported by Dr. A. R. Hutson of Bell Telephone Laboratories. The degree of piezoelectricity of zinc oxide is about four times as great as that of quartz while that of cadmium sulfide is almost twice as great.

Both zinc oxide (ZnO) and cadmium sulfide are n-type semiconductors with the ZnO having a room-temperature resistivity of less than 10 ohm-cm. This relatively low resistivity effectively shuts out all experimental evidence of piezoelectricity unless the ZnO is first doped with an impurity (lithium) that accepts the excess electrons (which contribute to the conductivity). After doping, the resistivity of the ZnO was raised to 10^9 ohm-cm.
HOW TO Scribe
A "PERFECT" CIRCLE
IN OUTER SPACE

Bell Laboratories guidance system achieves unprecedented
accuracy in steering Tiros weather satellite into orbit

Equipped with TV cameras, tape recorders, solar cells and antennas, the world's most advanced weather satellite, the NASA Tiros I, had to be placed in a precisely circular orbit at a specified altitude to do its job well.

The "shot" was a virtual bull's-eye. The mean altitude was within one mile of that planned. And the deviation from this mean was less than $\frac{1}{2}$ per cent, making it the most-nearly-perfect circular orbit ever achieved with a space vehicle by either the United States or Russia.

The dependability and accuracy of Bell Laboratories' ground-controlled Command Guidance System has been proven before—in the successful test flights of the Air Force Titan intercontinental ballistic missile, and in last year's Air Force Thor-Able re-entry test shots from which the first nose-cone recoveries were made at ICBM distance. Now, with Tiros, the system contributes to a dramatic non-military project. Other uses are in the offing.

This achievement in precise guidance again illustrates the versatility of Bell Laboratories' research and development capabilities—directed primarily toward improving your Bell telephone service.

Bell Telephone Laboratories
World center of communications research and development

AUGUST, 1960
See COMPLETELY RELIABLE and line scale Shows actual Export: Empire Expositers, B&K MANUFACTURING Measures true keeps paying 1801 DYNAMIC MUTUAL Here DYNAMIC MUTUAL TRANSISTOR MODEL LIBRARY, INC. 154 condutor Types. Dyna-Card combines for PROFESIONAL tube types. Dyna-Card tests each section of multiple tubes separately for true Gm, Shorts, Gas, Grid Emission and Life. SIMPLIFIED AUTOMATIC DYNA-CARD SYSTEM Only 60 indexed phenolic Dyna-Cards test over 600 tube types. Dyna-Card automatically sets socket connections. MORE ACCURATE TESTS FOR PROFESSIONAL SERVICING Tests each section of multiple tubes separately for true Gm, Shorts, Gas, Grid Emission and Life. MINIMIZES OBSOLESCENCE Easily kept up-to-date with extra cards and punch supplied with every unit. By checking all tubes in the set, you can Sell More Tubes Per Call INCREASE YOUR INCOME Save Call-Backs and Satisfy More Customers. For complete details about the Gernsback Technicians’ and Hi-Fi Book Club plans.

Dr. Hutson predicted that the compounds would be put to use as ultrasonic transducers for certain applications.

Calendar of Events

Global Communications Symposium, Aug. 1-3, Statler Hotel, Washington, D.C.
National Audio-Visual Association Convention and Exhibit, Aug. 6-9, Morrison Hotel, Chicago.
National Alliance of Television & Electronic Service Associations Convention, (NATESA) Aug. 18-21, Congress Hotel, Chicago, Ill.
Western Electronic Show & Convention, (WESCON) Aug. 22-26, Memorial Sports Arena, Los Angeles, Calif.
International Conference on Semiconductor Physics, Aug. 29-Sept. 2, Prague, Czechoslovakia.
2nd EIA Conference on Value Engineering, Sept. 7-8, Disneyland Hotel, Anaheim, Calif.
Upper Midwest Electronic Trade Conference, Sept. 16-17, Minneapolis Auditorium, Minneapolis, Minn.
New England High Fidelity Show, Sept. 16-17, Boston, Mass.
ERA Business Management Institute, Sept. 18-23, Urbana, Ill.
National Symposium on Space Electronics and Telemetry, Sept. 19-22, Statler Hotel, Washington, D.C.
Industrial Electronics Symposium, Sept. 21-22, Sheraton-Cleveland, Cleveland, Ohio.
High Fidelity Show, Sept. 23-25, Palmer House, Chicago, Ill.

Subsidiary Rule Eased

The Federal Communications Commission has decided to allow a limited increase in FM subsidiary communications activities. FM broadcasters will be permitted to use multiple subchannels for transmitting material "of a broadcast nature expressly designed for business, professional, educational, religious, and other special groups of subscribers." Examples of this are "doctor-casting" and remote cueing and order circuits.
AUGUST, 1960

make your first move to ROHN

You Have the Greatest Sales Potential by Far With America's MOST COMPLETE LINE OF TOWERS—MASTS ROOF TOWERS Installation Accessories

ROHN TV TOWERS
ROHN makes the finest towers available for television reception! Illustrated is the No. 25 with amazing "zig-zag" cross bracing design. The entire tower is rated 33% stronger than other similar sized towers. Yes, self and install the No. 25 up to 50 feet self-supporting or, properly guyed, up to 360 feet!

Or if you prefer, sell the popular ROHN No. 6 tower with the famous "Magic Triangle" cross-bracing. Both are fully HOT DIPPED GALVANIZED AFTER FABRICATION! Sections in easy-to-handle 10 ft. lengths.

AMATEUR "FOLD-OVER" TOWERS
Specially designed "fold-over" towers are the best ever designed for amateur radio and experimentation. They are the most desired because they "fold-over" completely so you work on the ground for ease and safety. Three sizes, including heavy-duty type to handle any needs. All hot dipped galvanized.

ROOF TOWERS...
in 10, 5, 3, and 2½ ft. heights — very popular — easily shipped — ideal in use — the best ever designed — in hot-dipped galvanized finish — truly a big profit item for you!

TELESCOPING MASTS
Unexcelled in design, structural strength, and sales appeal. All popular sizes, heights, and weights available. Also, mast tubing in exact specifications that's demanded today.

BASES AND MOUNTS
Wide variety of bases and mounts. Special features include "locking" device— also cast aluminum roof mounts — and a host of other installation items... get full details.

from every standpoint, ROHN Towers offer you MORE... more quality, more variety, more advanced design, more sales features, more service, more total sales and more PROFITS! Move forward with these ROHN items!

Get complete catalog from your ROHN representative or jobber or MAIL THIS COUPON:

Gentlemen: Please send me literature on ROHN Towers and Accessories.

<table>
<thead>
<tr>
<th>Firm</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROHN Manufacturing Company
116 Limestone, Bellevue
Peoria, Illinois

www.americanradiohistory.com
CLASS IN ELECTRONICS

Dear Editor:

I have enclosed a photograph of my class of boys aged 11 to 15 whom I have been teaching basic electronics.

The class was started in February, 1960, with 24 boys. So far 17 of them have stayed with it. The class ends in June with each of the boys having built a three-tube radio (if stage, regenerative detector and audio stage).

The only charge to the boys is for parts used. I have donated the time and space needed for the classes.

The class has been so well received by both the boys and their parents that I intend to hold another class this fall in which the boys will build hi-fi amplifiers with about a 5-watt output.

William Porter
Vale, Ore.

[To the rear of the photo are helper and co-instructor Marlowe Trick (left) and William Porter.—Editor]

EXPERIENCE WANTED

Dear Editor:

Mr. Read (Correspondence June, page 26) certainly hit the nail on the head when he said it was nearly impossible to get a job as a TV technician.

I have the same problem. I spent 2 years in a technical school (and have a diploma), still if I ask for a job in a shop, I get the same answer: "Sorry, but you don't have any experience."

Where in the world does a man get that experience? How does a man get to be a so-called "top bench man"? If you can't get a job in a shop and work every day repairing TV's and radios, how can you get job experience?

I spent several hundred dollars learning a trade, but it looks as if it will only be an expensive hobby.

Frank Nelson
Portland, Ore.

[There is a two-fold comment to be made on this problem. One is to the individual, the other is to the industry. Contact your local service association; some have employment services.

It is very possible that men with a problem like this will eventually become the so-called "illegitimate part-timers". Why not set up an employment service if your association does not have one? You may be doing your members a favor in more ways than one.—Editor]

MANUFACTURERS WANTED

Dear Editor:

Since you started the Industrial Electronics section in R-E, I have noticed (several times) that manufacturers are looking for service representatives. Our organization is looking for manufacturers to represent.

We have the best of equipment (Tektronix, Hewlett-Packard, etc.) and are sticking strictly to industrial electronics (no radio or TV). At present, we represent two...
LET RCA TRAIN YOU IN ELECTRONICS

RCA Institutes, one of the world's leading electronic technical schools, offers a Home Study Course in...

ELECTRONICS FOR AUTOMATION

... Now you have four comprehensive courses for your electronic training... from basic electronic theory to the more advanced principles of color TV and Automation.

Electronic Fundamentals

Television Servicing

Color Television

Electronics for Automation

Practical work with the very first lesson. Pay-as-you-learn. You need pay for only one study group at a time.

RCA INSTITUTES, Inc. Home Study School, Dept. RE-80
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N. Y.

Please rush me your FREE illustrated 64 page book "Your Career in Electronics," describing your home training programs. No obligation. No salesman will call.

Name .. Age ..
Address .. Address
City .. Zone
State ..
Veterans: Enter discharge date

CANADIANS — Take advantage of these same RCA courses at no additional cost. No postage, no customs, no delay. Send coupon to:
RCA Victor Company, Ltd., 5581 Royalmount Ave., Montreal 9, Quebec
To save time, paste coupon on postcard.
CORRESPONDENCE (Continued)

manufacturers and are negotiating with several others, but are looking for more.

THOMAS BARTHOLOMEW

P.O. Box 68
Kensington, Md.

WORKING ON PROBLEM

Dear Editor:

Thank you for the copy of June RADIO-ELECTRONICS and your letter in which you invite my attention to your editorial "Recording the Invisible." I certainly support your plea for extensive research on new techniques to observe clear-air turbulence. As a result of the Tell City crash in which clear-air turbulence is alleged to have been a contributory cause, we received a number of suggestions from various people. These included measurements of stellar scintillations (my colleague, F. A. Gifford, a few years ago showed a rough correlation with jet-stream location) and the use of 1-centimeter radar using Doppler technique to detect discontinuities in the dielectric constant which might be associated with strong moisture, temperature and wind gradients.

During the past few years, the Weather Bureau has been attempting to observe tornadoes by radar operating on the Doppler principle, using equipment developed by the Cornell Aeronautical Laboratory. We are assigning a group of radar specialists to our Evansville, Ind., office, which is near the area of maximum frequency and intensity of jet stream occurrence. They will investigate jet-stream detection by use of our new WSR-57 weather radar (when that radar becomes fully operational) and by our Doppler radar. The project will include testing of a new device called an "R-meter" which is attached to the WSR-57 radar and which, we believe, will give us a useful measure of turbulence in clouds. The Evansville project will have the following purposes:

1. Further investigation of the suitability of a Doppler radar as a tornado identifier.
2. Basic research into the spectrum of particle velocity, both vertical and horizontal, in clouds and precipitating echoes.
3. Applied research into the suitability of Doppler radar as an identifier of turbulence, both clear-air and in cloud.
4. Studies relating measurements made during simultaneous operation of the WSR-57 radar, the R-meter and the Doppler radar.

The Air Weather Service has installed an automatic sferics detector in our Kansas City Severe Local Storms office. Many sferics reports are received from areas where there is no precipitation. We are examining these reports to see if they are associated with large temperature, moisture and wind gradients.

HARRY WEKLER
Director of Meteorological Research, Weather Bureau

END

Coverage in depth

You're in the swim with CENTRALAB's Packaged Circuits

You're in the swim with CENTRALAB's Packaged Circuits -- the packaged electronic circuits from the first company to do it in and originate, develop, and manufacture them.

With the electronics industry submerged in packaged circuits (well over one hundred million CENTRALAB units are already in the field), you'll have lots of calls for replacement units -- and CENTRALAB has them available ... well over 150 different circuits, with new ones being added all the time.

The new CENTRALAB Guide tells you how to select, and replace packaged circuits -- and it's available free from your distributor or by writing direct to CENTRALAB. Speak yourself a copy right away!

CENTRALAB

THE ELECTRONICS DIVISION OF GLOBE-UNION INC.
9224 EAST KEENE AVENUE - MILWAUKEE 1, WISCONSIN
CENTRALAB CANADA LIMITED - AJAX, ONTARIO

with

CENTRALAB

PEC

Packaged Circuits

Y.4079

RADIO-ELECTRONICS

9224 EAST KEENE AVENUE - MILWAUKEE 1, WISCONSIN
CENTRALAB CANADA LIMITED - AJAX, ONTARIO

22

www.americanradiohistory.com
Exclusive advanced systematized engineering
• Fastest and finest quality parts
• Exclusive "Beginner-Tested" easy step-by-step instructions

Exclusive TRIPLE quality control
• Exclusive LIFETIME guarantee at nominal cost

Electronics World. Kit $69.95. Wired $109.95, incl. cover.

New HF81 Stereo Amplifier-Preamplifier selects amplifiers, depending on source & feeds into thru type-connection dual 10W amplifiers to a pair of speakers. Provides 28W monophonically, 13W stereophonically. Ganged level controls, separate balance control, independent bass and treble controls for each channel. Identically designed, push-pull EL84 power amplifiers. "Excellent" — SATURDAY REVIEW. "Outstanding... extremely versatile."

Stereo Amplifier-Preamplifier-HF81

FM Tuner HF7600
AM Tuner HF9491
FM/AM Tuner HF7511

100W Stereo Power Amplifier HF99
70W Stereo Power Amplifier HF87
20W Stereo Power Amplifier HF77

Stereo Integrated Amplifier AF411

If you love to create...build Kits

Stereo Amplifier-Preamplifier-HF81

In Stereo and

Mono Hi-Fi... the experts say your Best Buy is EICO

Stereo Automatic Change/Player 1007

NEWI

100W Stereo Power Amplifier HF99
70W Stereo Power Amplifier HF87
20W Stereo Power Amplifier HF77

Stereo Integrated Amplifier AF411

FM Tuner HF7100: Prewired, prealigned, temperature-compensated "front end" is drift-free. Prewired exact to precision 8485 triode traveling tuning indicator. Sensitivity: 1.5 uv for 20 db quieting; 2.5 uv for 30 db quieting, full limiting from 22 vy. IF bandwidth: 200 kq at 6 db points.

AM Tuner HF7516: Selects Hi-Fi wide (20-20000 cps @ 20 db) or weak-station narrow (20-5000 cps @ 20 db) bands. Tuned RF stage for high selectivity & precision eye-trace tuning. "One of the best available." — HI-FI SYSTEMS. Kit $39.95. Wired $65.95. Inc. cover & F.E.T.

New FM/AM Tuner HF920 combines renowned EICO HF100 FM Tuner with excellent AM tuning facilities. Kit $59.95. Wired $94.95. Inc. cover & F.E.T.

New AF-4 Economy Stereo Integrated Amplifier provides clean 4W per channel or 8W total output. Kit $38.95. Wired $54.95. Inc. cover & F.E.T.

HF12000 Stereo Power Amplifier: Dual 50W highest quality power amplifiers. 200W peak power output. Uses superior ultra-linear connected output transformers for undistorted response across the entire audio range of full power, assuring utmost clarity on full orchestra & organ. 60 db channel separation. IM distortion 0.5% at 100W, harmonic distortion less than 1% from 20-20,000 cps within 1 db of 100W. Kit $99.50. Wired $139.50.

HF87 70-Watt Stereo Power Amplifier, Dual 35W power amplifiers identical circuit-wise to the superb HF97, differing only in rating of the output transformers. IM distortion 1.5% at 70W; harmonic distortion less than 1% from 20-20,000 cps within 1 db of 100W. Kit $74.95. Wired $114.95.

HF86 28-Watt Stereo Power Amp. Flawless reproduction at modest price. Kit $43.95. Wired $74.95.

HF5100 Kit: Prewired, prealigned, temperature-compensated "front end" is drift-free, Prewired exact to precision 8485 triode traveling tuning indicator. Sensitivity: 1.5 uv for 20 db quieting; 2.5 uv for 30 db quieting, full limiting from 22 vy. IF bandwidth: 200 kq at 6 db points.

AM Tuner HF7516: Selects Hi-Fi wide (20-20000 cps @ 20 db) or weak-station narrow (20-5000 cps @ 20 db) bands. Tuned RF stage for high selectivity & precision eye-trace tuning. "One of the best available." — HI-FI SYSTEMS. Kit $39.95. Wired $65.95. Inc. cover & F.E.T.

New FM/AM Tuner HF920 combines renowned EICO HF100 FM Tuner with excellent AM tuning facilities. Kit $59.95. Wired $94.95. Inc. cover & F.E.T.

New AF-4 Economy Stereo Integrated Amplifier provides clean 4W per channel or 8W total output. Kit $38.95. Wired $54.95. Inc. cover & F.E.T.

HF12000 Stereo Power Amplifier: Dual 50W highest quality power amplifiers. 200W peak power output. Uses superior ultra-linear connected output transformers for undistorted response across the entire audio range of full power, assuring utmost clarity on full orchestra & organ. 60 db channel separation. IM distortion 0.5% at 100W, harmonic distortion less than 1% from 20-20,000 cps within 1 db of 100W. Kit $99.50. Wired $139.50.

HF87 70-Watt Stereo Power Amplifier, Dual 35W power amplifiers identical circuit-wise to the superb HF97, differing only in rating of the output transformers. IM distortion 1.5% at 70W; harmonic distortion less than 1% from 20-20,000 cps within 1 db of 100W. Kit $74.95. Wired $114.95.

HF86 28-Watt Stereo Power Amp. Flawless reproduction at modest price. Kit $43.95. Wired $74.95.
The specs prove it...your best buy is EICO®

A TV-FM SWEEP GENERATOR AND MARKER #368
Kit $69.95 Wired $119.95

B PEAK-TO-PEAK VTVM #232 & UNIPROBE
Kit $29.95 Wired $49.95

C RF SIGNAL GENERATOR #324
Kit $26.95 Wired $39.95

D DYNAMIC CONDUCTANCE TUBE & TRANSISTOR TESTER #666
Kit $69.95 Wired $109.95
Complete with steel cover & handle

E COLOR & MONOCHROME
DC TO 5 MC LAB & TV
5” OSCILLOSCOPE #460
Kit $79.95 Wired $139.50

FREE CATALOG shows you HOW TO SAVE 50% on 65 models of top quality professional test equipment. MAIL COUPON NOW!

NEW Transistor
Portable Radio RA-6
Kit $29.95
Wired $49.95

NEW Power & Bias Supply for
Transistorized Eqpt. #1020
Kit $19.95
Wired $27.95

NEW Tube & CRT Fil.
DRT Fil.
Test #612
Kit $3.95
Wired $5.95

Series/Parallel
H.C. Combination
Box #1140
Kit $13.95
Wired $19.95

RVFM Probes
Kit Wired
Peak-To-Peak $4.95 $6.95
RF $3.75 $4.95
High Voltage $2.50 $3.75
High Voltage $1.75 $2.95
Scope Probes
Demodulator $3.75 $5.75
Direct $2.75 $3.95
Low Capacity $2.75 $3.95

Send me FREE Catalog, name of neighborhood dealer.
Name ____________________
Address ___________________
City State ___________________

PAT. PEND.

EICO
33-00 Northern Blvd. I.I.C. 1, N.Y.
Add 5% in the West. 1960

RADIO-ELECTRONICS
MICROTELEVISION

... A New and Important Development Looms ...

MICROELECTRONICS, the new and coming art,* is due to branch out into many new directions in the very near future. One of these is micro-television, or miniature TV.

Why, one might ask, is such a development necessary or even desirable? A simple answer is to extend direct sight into inaccessible regions into which we cannot look today. In industry, in biology and medicine, in surveillance and intelligence, in missiles and spacecraft, there exists an urgent demand for micro or miniature TV to bring clear vision via the smallest possible dimension to the human eye or to a recording instrument.

Thus an airplane pilot cannot see the underside of his plane, the landing gear, the tail, the wing undersides, etc. Strategically located miniature TV cameras could tell him instantly of any misfortune at a glance on a mini-screen.

Medical researchers at the University of Melbourne, Australia, have recently designed a TV camera so small it can be swallowed. It is supposed to bring direct sight into the stomach at work. They are using a 1/4-inch TV picture tube developed by scientists in Germany. They hope to project clear pictures, magnified 30 to 40 times, of the various digestion processes and dysfunctions of the stomach onto a standard TV screen.

While this is a good beginning, we cannot hope soon to insert tiny TV cameras into such inaccessible parts of the human anatomy as the bladder, various sinuses, the arteries into the heart and other organs.

Nor need we do so. We can use standard iconoscopes by attaching the recently developed optical cables to them. Made of flexible glass fibers, these stranded cables can be less than 1/8 inch in diameter and conduct light readily. Each glass fiber, the thickness of a thread, transmits its own quota of light. When they are fashioned into a supple cable of hundreds of glass fibers, a strong light can be conducted around curves and corners.

Thus we can mount a powerful yet tiny electric light bulb directly behind the end of the light cable and illuminate the inside of an artery, look into the ear or other organ at will, via TV. Urologists urgently need such a tool which, inserted through the ureter, can view the kidney for lesions, stones or similar disorders.

For other purposes we also require mini-TV transmitters. For surveillance at a distance, optical cables are useless—here inconspicuous tiny cameras are needed that can be readily concealed.

In missiles and spacecraft such as satellites, the weight of 1 ounce and the space of 1 square inch are often extravagant, and frequently not permissible. Hence micro-TV transmitters are vital here. How small can a TV camera shrink? No one knows.

A fly’s compound eyes see exceedingly well; so do those of other much smaller insects. Suppose for the sake of illustration, we build a TV camera with an aperture 1/16 inch in diameter. Can we scan in such a small dimension, say 1/16 inch by 1/16 inch? Theoretically, yes. (10,000 lines in 2 1/4 inches is equal to about 525 lines on a screen about 1/10 inch square.) Such small cathode-ray deflection—if we use cathode rays—requires less power, less voltage. Cutting down the spot size uses fewer electrons to paint the picture, but the latter is proportionately smaller, too. Then, at the receiving end, the tiny picture can be enlarged and thrown on a standard screen. Certainly all this will not be accomplished free of all faults, tomorrow. Yet electronic engineering has solved more difficult problems in the past. We may be certain that minitelevision will be an accomplished fact in the foreseeable future.

The special TV applications cited above will also have their counterparts in the public domain during the present decade.

Twenty-four years ago the present writer first spoke of minitelevision.** In an article entitled “The Future of Short Waves,” we described television eyeglasses. They comprised an eyeglass frame on which were built two separate miniature TV receivers weighing but a few ounces. The images on the two tiny screens were to be postage-stamp size, but as the screens were only a fraction of an inch from the eyes, the small size would not matter. The dual images, though tiny, would be sharp and clear, exactly like the view one has through binoculars. In addition, it was foreseen that the images would also be stereoptical (three-dimensional). The TV eyeglasses were to be a completely self-contained TV receiver; tiny earphones were to convey the sound directly into the ears.

Today, or in the near future, there is no reason why sound cannot be added to the TV eyeglasses. It can be via bone conduction—hearing-aid glasses are in existence right now. As a personal TV receiver that does not disturb others in the same room, to view TV in bed, at home or in hospitals, the self-contained TV eyeglasses are an ideal adjunct. With recent transistor developments, TV eyeglasses should be here soon.

Pocket TV receivers also should make their appearance during the next few years. It would not surprise us if they were first made in Japan. They will have a 2- to 3-inch screen and give sharp definition. There will be a collapsible blind for viewing even in strong outdoor light. Completely transistorized with a flat picture tube, the set should be very light and compact. It probably will be energized by atomic type batteries. —H.G.

**October, 1986, Short-Wave Craft magazine.

AUGUST, 1960

Radio-Electronics
Hugo Gernsback, Editor
Automatic Ac Vtvm

No hands! The meter picks the range itself, then lights a light to show you which one you're on!

By JOE MARSHALL

Electronics is basic to industrial automation. Yet, it is paradoxical but true that there has been little automation in the basic tools of electronics—particularly in the measuring and test instruments so essential to both development and maintenance of electronic devices. Punched-card tube testers and some very expensive digital voltmeters are the only examples of general-purpose automatic instruments that come to my mind. Now Allied Radio presents its Knight-Kit ac vtvm, a very clever example of automation in electronic instrumentation.

The instrument, an ac vtvm, measures ac voltages from 20 cycles to 2.5 mc with an accuracy of 1 db or better. It has exceptionally high sensitivity. The full-scale reading is 3 millivolts on the lowest range (this permits reading voltages as low as 200 microvolts) and 300 volts on the high range. It is unique in providing automatic or "self-seeking" switching between the 11 ranges.

When the probes are applied to a circuit, the voltage to be measured actuates a sensing and control circuit that seeks out the meter range that provides an approximate mid-scale reading. A red pilot light indicates which range is in use. There is no need for manual switching, either to choose the initial range or to adjust the range to a rising or falling voltage. The entire switching cycle takes place in less than 3 seconds.

Some of the advantages of automatic switching are immediately obvious, but there are some that may not be apparent to a casual glance. For example, the most useful scale for audio measurements is the db scale. But this scale is not linear. The most exact readings are obtained in the range between +2 db and -6 db. In this range the scale is divided into divisions of 0.2 db. From -5 to -10, the graduations are in 0.5 db, and from -10 to -15 in 1 db intervals. Clearly, the most accurate reading can be obtained when the meter range is adjusted so the indication falls between -10 and -2 db. The automatic switching of the vtvm tends to keep the reading at this point.

Automatic switching is a particular convenience when working with an impedance bridge or in measuring the response of equalizers, tone controls, etc. with a steep response slope (where the response, for example at 20 cycles may be 40 db below or above the response at 10,000 cycles). In these applications, the range switch of a conventional vtvm might have to be changed as many as half a dozen times.

Trigger circuit

The heart of the Knight-Kit automatic ac vtvm is a trigger circuit which energizes a small reversible electric motor that drives an indexing rotary switch. It works like this:

The output of a three-stage amplifier is applied to a bridge rectifier circuit. The rectifier provides a positive voltage at one corner, and a negative voltage at the opposite one. The meter is connected to read this difference in voltage. A rectifier in shunt with the meter bypasses any voltage in excess of the fundamental range of the meter.

A difference amplifier consisting of the two sections of a 12AX7 is also connected to the bridge so that the positive side goes to one grid, and the negative side to the other grid. The output of this difference amplifier is connected to the grids of two trigger circuits comprised of the two sections of a 12AT7 connected as a cathode-coupled flip-flop trigger. One trigger operates when the output of the bridge rectifier is greater than a certain maximum voltage; the other when the rectifier output falls below a certain minimum voltage.

Each of the triggers actuates a relay which applies a dc voltage to a motor which, in turn, revolves a multi-deck rotary switch. The switch moves the input of the three-stage amplifier to various taps on a voltage divider, thus reducing (or increasing) the voltage fed into the amplifier. The relay in trigger 1 applies a voltage to the motor which turns it in a counterclockwise direction. It thus switches the amplifier to a lower tap on the voltage divider.

This reduces the voltage applied to the amplifier by 10 db (per step). If the reduced voltage at the output of the bridge rectifier is now below the peak value needed to actuate trigger 2, the relay opens, the driving voltage is removed from the motor and the proper range is established.

On the other hand, if the voltage delivered by the rectifier is below a certain value, the trigger 2 is actuated. Its relay applies a voltage of opposite polarity to the motor, which now turns clockwise, driving the rotary switch to a higher tap on the voltage divider.

26

Knight-Kit ac vtvm.

RADIO-ELECTRONICS
This increases the input to the amplifier by 10 db. If the voltage delivered by the rectifier is now above the threshold, the trigger relay opens, the motor stops and again the range is established.

If the first step does not increase (or reduce) the voltage to the amplifier sufficiently, the trigger will remain on, and the motor will continue to turn until a position on the divider is reached that delivers a voltage that falls between the two thresholds.

What happens

The alternating-current output from the amplifier is fed to the bridge (CR2, CR3, C24-a and C24-b). Part of the bridge output goes to the meter and part to the trigger circuit. As the output of the amplifier goes positive, current flows from ground through R87 and on through CR2. Here the current divides, part flowing through C24-a, the remainder through the meter and C24-b. When the output of the amplifier goes negative, part of the current flows through C24-a, the meter and CR3. The remainder flows through C24-b and CR2. A pulsating direct current (always of the same polarity) is therefore supplied to the meter.

The trigger circuit input voltage is taken from the bridge rectifier circuit. The positive side of the bridge feeds through R27 into the grid of V5-a. Since the triggers operate in a similar manner, only trigger 2 will be described. As the output at the bridge circuit approaches the full-scale meter value, the bias on the grid of V5-a decreases, causing the tube to conduct more heavily. This increase in current results in a higher voltage drop across cathode resistor R60. Since R60 is common to both cathodes of V5, the voltage at the cathode of V5-b will also increase. At the same time that the cathode goes positive, a negative signal is applied to the grid of V5-b, causing less current to flow through the second half of the tube. As the current decreases, the voltage drop across the plate load resistor also decreases. This causes a more positive signal to be applied to the grids of V6-a and of V7-a. The bias on the grid of V6-a is such that the tube is normally held at cutoff. When a large enough signal is applied to this grid, the tube starts to conduct. The current flow energizes plate relay K1, which, in turn, actuates the range switch motor. The entire switching system is thus a feedback-controlled mechanical servo system.

So much for the automatic switching. The vtvm section starts with a cathode follower which feeds the first of three pentode amplifiers. The range is selected by switching the grid of the first amplifier tube (V2) up and down a voltage divider in the cathode circuit of the cathode follower. Each step in the divider produces 10 db of attenuation. Actually, though the meter has 11 range positions, the voltage divider has only 6 steps. When the input voltage is 1 or more, a 60-db attenuator is switched into the input of the cathode follower and the range switch starts again at the top of the voltage divider and goes down it again for the upper ranges. In other words, the divider is used twice, first, on the low ranges without the 60-db attenuator, and then on the high ranges with the 60-db attenuator.

The three-stage pentode amplifier is operated with low plate loads to widen the response. The second stage is peaked at the high end with inductor LI. There are two feedback loops. The first runs from the cathode of the third amplifier to the cathode of the first. The feedback control (R27) in this loop sets the circuit gain to provide the right reading for a known input voltage for calibration purposes. The second loop goes from the output of the bridge rectifier to the cathode circuit of the second amplifier. The two loops give a total of 30 db of feedback and result in the very flat response.

A cathode follower (the triode section of the 6A8), fed from the cathode of the third amplifier, has its output connected to jacks on the panel so the output of the amplifier can be used for feeding a scope, etc. This gives the user a wide-band amplifier with a gain of approximately 34 db (when the range switch is in the lowest position) and a frequency response flat from 30 cycles to 300,000 cycles and within 1 db from 20 cycles to 1.5 kc.

Amplifier gain is kept constant by a rather elaborate regulated power supply using two 6DR7's and a 6651. The output voltage is adjusted with pot R52. When properly set, the regulation is within 1%.

Motor and range switch.

DC is used on the heaters of the first three stages of the amplifier. There is also a separate 5-volt dc supply for the range-switch motor.

Included with the vtvm are components for a simple source of low voltages to calibrate the instrument and adjust the trigger circuits. It supplies .00065 (0.65 mV) and .0051 (3.1 mV) volt ac when fed by 6.3 volts from the heater chain. The vtvm has two jacks on the rear which supply this voltage.

A kit was bench-tested by the author. It took about 24 interrupted hours to assemble. The job could be done in less time. The calibration and adjustment procedure is simple and effective. An accurate dc voltmeter is helpful in properly adjusting power-supply voltage. If the line voltage falls between 115 and 120, calibration accuracy will be good enough for most applications. But if an accurately calibrated signal generator is used, the accuracy of the meter can be made to approach that of the signal source. The linearity is extremely good, both over the scale of a single range and from range to range.

The Knight-Kit automatic ac vtvm is a valuable and time-saving addition to the busy audio lab and represents a big value at its price of just under $100.
A N adjustable, regulated power supply is often needed in checking and servicing transistor radios. The output of a battery charger is in the correct range, but its high ripple makes it unusable. This unit converts a battery charger into a regulated transistor power supply suitable for service-bench use, testing or checking, and for powering experimental transistor projects.

The voltage supplied by most chargers is either 6 or 12 volts or both. Current ratings run from 2 or 3 amperes for the smaller chargers to 10 or 12 amperes for the larger units.

The converter is a transistor filter and regulator that converts the rectified, unfiltered charger output into a well-regulated nearly pure dc output that is adjustable in level from 1.5 to 6 or 12 volts in 1.5-volt steps. The maximum current rating varies from about 0.7 to 1.8 amperes, depending on which output voltage step is used. The current rating can be increased to the maximum current rating of the charger by adding more power transistors in parallel with V1 and V2. Ripple percentage increases with loading and the maximum level is less than 0.25% at full load.

In addition to being used with battery chargers, this converter can also reduce ripple level and regulate battery eliminators with outputs up to about 20 volts. These units ordinarily use a large filter capacitor across their output, which makes it possible to eliminate C. This unit can also be used with any 6- or 12-volt ac filament supply by adding a rectifier in series with one of the converter input leads.

When compared with L-C filters, the converter has better regulation, lower ripple and an adjustable output. Its disadvantages are that it is more easily damaged by overload and that the batteries must be replaced annually.

Design

Before starting construction, it is advisable to see that your battery charger is suitable. Aside from having usable voltage and current ratings, the rectifiers must be able to take the maximum peak inverse voltage safely.

Most manufacturers rate rectifiers on a maximum rms input-voltage basis (generally either 18 or 26 volts) and give no peak inverse rating. The peak inverse voltage with the capacitor across the output is only about 7 volts greater than with a fully charged storage battery attached (for 6-volt systems, 3.5 volts). This difference becomes less as loading is increased and, if the manufacturer has provided a reasonable safety factor, it should be satisfactory. To determine this voltage for your charger, measure the rms voltage across each half of the secondary winding (or the entire winding for a half-wave rectifier) without load. Multiply by 1.41 to obtain the peak voltage and double it for the peak inverse with capacitor load.

If the charger is an inexpensive one, the transformer regulation may not be adequate and the voltage under no-load conditions may be too high. If so, it can be reduced somewhat by placing a resistor across the input of the converter—ahead of fuse F. This resistor should be of such value as to limit the voltage across C to 20 volts maximum with no load across the converter output. If a 6-volt charger is used, it should be no more than 10 volts.

The transistors are connected in parallel in a conventional emitter-follower regulator circuit. The resistor (R) between the bases is used to get equal emitter current so that each transistor does half the work. Check the emitter current through both transistors while under full load. Connect a low resistance in the base lead of the transistor having the greatest emitter current and adjust until these currents are equal. The resistor value is determined by the difference in transistor characteristics. In this case it was 22 ohms. If more transistors are added to increase the maximum output current, they should be connected in parallel with V1 and V2 and a similar resistor used in each of their bases to obtain equal emitter currents.

Four factors must be considered in determining maximum permissible out-
TEST INSTRUMENTS

put current: maximum collector current, maximum collector-to-base voltage, maximum transistor dissipation and the point where the base current rises rapidly. The 2N256 transistor has a maximum collector-current rating of 3 amperes and a maximum collector-to-base rating of 30 volts. The table shows that neither rating is important in limiting the maximum output current. In all cases up to 9 volts output, it is the maximum transistor dissipation rating (6.25 watts per transistor) that is important and the output current must be limited so this value is not exceeded. In the 10.5- and 12-volt cases, both base current and ripple voltage increase rapidly at low currents above those shown in the chart and thus limit the load current before maximum dissipation is reached. After construction is completed, the maximum permissible load current for each output voltage should be determined for your converter, as it may vary for each unit.

Transistors are easily damaged by overloads and for this reason a fast-acting fuse rated just above the maximum permissible current of 1.8 amperes is used. This fuse will need to be a different value (1.5 amperes) for a 6-volt system or if more transistors are added. The charger overload breaker should not be relied upon for overload protection.

Type-D cells are used in the base circuit as the voltage-determining element to keep maintenance costs low. Mercury batteries can be used to maintain a more constant output voltage if desired. The batteries can also be replaced with voltage reference diodes, but their high cost rules them out in most cases. Small flashlight cells can be used, but if space is available, the larger ones should be used for economy. For 6-volt chargers, use four cells; 12-volt chargers need eight.

Construction

A large (2 x 7 x 11-inch) aluminum chassis was used to provide a good heat sink for the transistors, plenty of room for the batteries, and a convenient space for placing the charger. Connecting plugs allow it to be removed for battery charging duties.

A short length of 1⁄4-inch copper braid soldered to a spade type solder lug is used to connect either the posi-
MAKE AN AUDIO

Add an external voltage divider and multiplier and draw a new scale, and your vtvm will measure audio watts

By ROBERT G. CASEY

The essential difference between a vtvm and an "audio wattmeter" is that the vtvm reads voltage with respect to another point, usually ground, while the wattmeter reads voltage across a known impedance. By using the formula $W = E^2 / R$ and a scale calibrated in watts, the meter reads directly in watts.

For example, if 2 volts appears across a 4-ohm speaker, wattage is 2/4 or 1 watt. The same voltage across an 8-ohm speaker would be 0.5 watt. If the voltage across the speaker doubled, the wattage would be four times the original amount. Consequently, every impedance must have a different wattage scale, or a dividing network must change the voltage fed to the vtvm as the load impedance is changed. The latter method is the more common, and 4, 8, 16, and 600 ohms were selected as the most commonly used hi-fi speaker impedances.

To select the correct wattage scale to correspond to the voltage scale, let's consider $W = E^2 / R$ or $E = \sqrt{WR}$. For any given wattage, the lowest resistance will have the lowest voltage developed across it. At 4 ohms, the vtvm's 3-volt range would be equal to 2.25 watts. By increasing this rating to 3 watts, the voltage across the load will be 3.464. By using a divider proportional to 3.464 to 3, the voltage to the vtvm will be 3 volts when the voltage across the divider is 3.464 volts and the vtvm reads directly in watts. Fig. 1 shows how this is done.

At 8 ohms, 3-watts would be 4.899 volts. So this time we need a voltage divider with a ratio of 4.899 to 3. This can be done in two ways, as shown in Fig. 2.

In a similar manner, the voltage to the 16- and 600-ohm impedances are calculated to be 6.932 and 44.272 volts, respectively. This means that the final meter shunts will look like one of the two circuits shown in Fig. 3.

The other vtvm ranges can also be used as wattmeter ranges. They translate as follows:

<table>
<thead>
<tr>
<th>Wattmeter Reading</th>
<th>Corresponds to Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.25</td>
<td>0.966</td>
</tr>
<tr>
<td>0.5</td>
<td>1.225</td>
</tr>
<tr>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>1.732</td>
</tr>
<tr>
<td>1.25</td>
<td>1.986</td>
</tr>
<tr>
<td>1.5</td>
<td>2.121</td>
</tr>
<tr>
<td>1.75</td>
<td>2.291</td>
</tr>
<tr>
<td>2</td>
<td>2.449</td>
</tr>
<tr>
<td>2.25</td>
<td>2.508</td>
</tr>
<tr>
<td>2.5</td>
<td>2.740</td>
</tr>
<tr>
<td>2.75</td>
<td>2.873</td>
</tr>
</tbody>
</table>

When making this unit, remember the load resistors must have a wattage rating higher than any wattage to be measured and should be noninductive types.

Remember that the wattage varies as the square of the voltage, so the new range gets a log scale. The following group of markings will aid calibration:

<table>
<thead>
<tr>
<th>Wattmeter Range (volts)</th>
<th>Wattmeter Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.3 mw</td>
</tr>
<tr>
<td>0.1</td>
<td>3 mw</td>
</tr>
<tr>
<td>0.3</td>
<td>30 mw</td>
</tr>
<tr>
<td>1</td>
<td>300 mw</td>
</tr>
<tr>
<td>3</td>
<td>3 watts</td>
</tr>
<tr>
<td>10</td>
<td>30 watts</td>
</tr>
<tr>
<td>30</td>
<td>300 watts</td>
</tr>
</tbody>
</table>

Fig. 1—To measure wattage across 4-ohm speaker, use this arrangement.

Fig. 2—Two ways of measuring wattage across 4- and 8-ohm loads: a—parallel divider; b—series divider.

Fig. 3—The completed wattmeter section can take either of these two forms: a—parallel dividers; b—series dividers.

AUGUST, 1960

www.americanradiohistory.com
A simple Wheatstone-bridge calculator was described in "Divide and Multiply with a Wheatstone Bridge," in the June issue of Radio-Electronics, page 48. That article showed how to build and use the calculator. This article describes a transistor null amplifier which can be used to increase the unit's sensitivity and extend its use to include measuring resistance.

The increased null-meter sensitivity upgrades the unit's accuracy while the transistor circuit reduces battery drain. The null-amplifier circuit can also be used anywhere an extra-sensitive null meter is needed. The components required are not expensive and you can make the modification in an hour or two.

The unit's basic circuit is shown in the diagram. A 2N407 transistor amplifier drives the 0-1-ma meter in the modified unit. R2 and R3 bias the transistor base. R1 is the null-signal-input limiting resistor.

When S1 is depressed, BATT 1 feeds current to the transistor. R3 is adjusted for mid-scale (0.5 ma) meter deflection. This is the meter null setting. Such a null is considerably more convenient than the 0-ns meter null of the original circuit. To null the bridge, depress S1 and S2. Although the meter null can drift, it doesn't matter. If S1 is depressed and the meter reading does not change when S2 is alternately depressed and released, the bridge is nulled regardless of the meter reading. This feature lets the transistor amplifier work without an emitter stabilizing resistor that would reduce gain or require a higher battery voltage for equivalent gain.

To measure resistance
To modify the bridge for resistance measurements, pots A and C are taken.

By FORREST H. FRANTZ, SR.
The new null-detector circuit can be used in any instrument requiring a sensitive zero-center null meter. It may be used in instruments like "Mr. Math" (Radio-Elektronics, June 1958). The cost of the null-meter parts is considerably less than the cost of a sensitive zero-center microammeter.

END

WALL of SOUND

THIS bank of 480 speakers was not built for esthetic effects, as the title might suggest, but for the serious study of the physical effects of high-intensity sound. It will be used by the Wright Air Development Div., Wright-Patterson Air Force Base, Ohio, for whom it was designed and constructed by Stromberg-Carlson.

The system is flat from 20 through 20,000 cycles, at powers up to 14,000 watts. The speakers are arranged in 32 baffle of 15 speakers each—3 woofers and 12 tweeters, all specially built to deliver high fidelity sound at unusual acoustic power. Power is supplied from two 7,000-watt amplifiers. An alternate pair of 200-watt amplifiers is used for low-power work.

Four inputs are provided: sinewave; white noise; tape recordings of jet engines, missiles or other noise; and external. The four input sources can be mixed in any desired combination and supplied to the amplifiers at any required level for input on a meter. A safety precaution makes it necessary for the operator to "turn down the volume" before energy can be applied to the high-power amplifiers.
Semiconductors increase the efficiency, convenience and usefulness of the equipment in which they are used.

With the notable exception of their use in portable radios, consumer and home entertainment products have been slow to use transistors. The latest commercial adaptations to come to our attention are a combination foghorn, megaphone and public address system, and intercom systems.

Transistor intercoms

Over the years, the popularity of intercom systems has been dimmed somewhat by complaints of hum, high heat radiation, shock hazard and high current consumption. Several firms have developed transistor intercom systems that eliminate all these disadvantages.

The talk-listen switches turn the amplifier on and off so there is no standby current drain. Heat radiation is almost nonexistent and hum level is comparable to that of a good hi-fi audio amplifier. And, best of all, there is no shock danger from the battery or low-voltage power supply.

Typical of the transistor intercoms are the Fanfare systems made by Fanon Electric Co. The 1500 is a 2-station system with a master and remote. The 1506 is a 6-station unit for use in master-to-master, master-to-remote or any combination of master and remote units for up to 6 stations. The 1512 is a similar master unit designed for up to 12 remote stations of various types.

Three types of remotes are available. The model 150 is the common type with a three-position TALK-LISTEN-DICTATE switch. The 151 is a simple unit without switch. It is used for remote baby tending and in cases where it is not necessary to initiate a call to the master. The 156 has a six-station selector switch for calling any one of six masters in the system. The system may consist of a master and five remotes, all masters or an intermix circuit with two or more master with remotes. Thus, a variety of hookups become possible.

The amplifiers in the Fanfare series 1500 intercoms use four p-n-p transistors. Two type FAN-11's (Fanon type number) are used as voltage amplifier...
and driver, and a pair of FAN-12's are used in the class-B power output stage. Fig. 1 is the circuit of the 1506 master with 150 and 151 remotes. The connections to the master terminate in a cable with ten insulated leads and a shielded conductor. Terminal boxes (not shown) are available for connecting this cable to the interconnecting cables of the other stations.

Five slide switches on the 1506 select the remote(s) to be contacted. The mode switch is left in the STANDBY position when the system is not in use. This disconnects the battery from the positive return lead in the amplifier. To initiate a call from the master, the caller selects the remote or remotes by closing the corresponding slide switches and then throwing the mode switch to TALK. This applies power to the amplifier, connects the master's speaker-mike unit to the input, and the hot side of the slide switches to the amplifier's output. When the mode switch is released, it automatically returns to the LISTEN position so the remote(s) is connected to the input and the master's speaker to the amplifier's output. When the conversation is over, the party at the master turns off the system by flipping the switch to STANDBY.

A party at a 150 (or 1506) remote initiates a call by throwing the switch to TALK or DICTATE. One section of the switch connects the remote to the amplifier's input. The other section turns on the amplifier by completing the circuit between the positive side of the battery and the positive return through the white and gray cable leads and terminals 3 and 4 on the remote.

The system can be set up for nonprivate operation (master can monitor remotes at will) by connecting a jumper between terminals 1 and 2 on the master. If the setup is for private operation, any remote can be made nonprivate by leaving its switch in the DICTATE position. This is useful for baby sitting or other instances where it is necessary to monitor activities from a distance. A jumper is required between terminals 3 and 4 on any master that talks to a remote but is not used in an all-master system. (The mode switches on the master and remotes are spring-loaded to return to LISTEN when released from the TALK position and have positive detents to lock in the DICTATE and STANDBY positions.)

The Fanon type PSA power supply (Fig. 2) may be used in place of batteries in a system with up to four masters. The supply cable terminates in snap type connectors matching the battery connector in the master unit. When this supply is used, terminals No. 5 on each master must be connected together through an additional lead in the cable.

The Portahorn

RCA's Portahorn model CRM-S1A is a transistorized public-address system, intercom, signaling device, automatic foghorn and boat horn for all marine craft ranging from large commercial vessels to small pleasure craft. It may be used with a hydrophone to locate underwater sounds from schools of fish, divers, etc.

The Portahorn operates from two self-contained batteries and may be used ashore by fire, police and emergency departments, airport personnel, construction, railroad, surveying and civil defense crews and others requiring a portable sound system with a range of up to 2 miles. Its 12-volt supply consists of two RCA VS000 6-volt batteries in series.

Battery drain is around 70 ma with zero signal input and approximately 500 ma for full output. Standard equipment consists of the electronic unit, batteries, an 8½-inch-diameter 15-watt re-entrant type horn loudspeaker and a pushbutton reluctance type microphone with a 63-inch coiled cord. Weight with batteries is 13½ pounds.

The speaker is mounted on top of the cabinet in a fitting permitting 360° horizontal rotation and 90° vertical swing. The speaker may be removed, located at a remote point and connected to the amplifier through an extension cord.

Basically, the Portahorn consists of an audio amplifier driving the speaker, an audio oscillator to supply the horn tone and a multivibrator to key the oscillator to sound the foghorn at regular intervals.

A somewhat simplified schematic of the versatile Portahorn is shown in Fig. 3. There are two audio input jacks. The AUXILIARY jack works into the base circuit of the preamplifier and is for the hydrophone, radio, tape recorder, phonograph or telephone pickup coil. The

Fig. 2—Fanon PSA power supply.

Fig. 3 (below)—RCA Portahorn.

Fig. 4—Talk-listen switch for the Portahorn.

Fanon 1506 six-station master.

Fanon model 150 remote.
Audio—High Fidelity

MICROPHONE jack in the base circuit of the first stage of an amplifier is for the mike supplied with the unit.

The 2N217 audio oscillator for the horn is a Hartley type operating in the range of 400 to 500 cycles and designed for high harmonic content to deliver a melodious, penetrating sound. The secondary of the oscillator transformer T3 is connected to sections of the horn switch (S2) and AUTOMATIC FOGHORN switch (S3). S2 is a dpdt toggle switch shown in its normal position. When this switch is pressed for signalling, attracting attention or sounding a warning, T3’s secondary is connected to the base of the preamplifier transistor and operating voltage is applied to the oscillator to sound the horn.

S3 is a dpst toggle switch that is normally open. When it is closed, the 1,500-ohm resistor in V7’s collector circuit is put in series with the voltage supply to the oscillator. The transistors in the multivibrator conduct and cut off alternately. When V7 is cut off, the oscillator receives sufficient voltage to operate. When it is conducting, the voltage drop across the resistor is too great to allow the oscillator to operate and sound the fohorn. The multivibrator is set so the fohorn sounds for 2 seconds and is off for 6 seconds.

The TALK—LISTEN switch (Fig. 4) converts the Portahorn into an intercom unit. In the TALK position, the instrument is used as a power megaphone, PA.

IN 1950, a paper titled “Ultra-High Gain Direct-Coupled Amplifier Circuits” was presented by Dr. Walter K. Volkers at the IRE Convention in New York. The paper described how the amplification factor of a pentode may be greatly increased beyond conventional values by lowering the screen voltage below 10% of the plate supply voltage and by increasing the plate load resistance 10 or more times over conventional values. This type of operation results in extremely small plate currents, hence the descriptive term “starved-current” operation.

Based on this principle, a small amplifier was built some years ago (March, 1954, issue; page 45) using a 6A6 as the “starved-current” amplifier and a 6V6 as power output tube. It performed well—it had a 92-db power gain and required 2-mv input for 100-mw output. However, its frequency response was limited—about 180 to 2,500 cycles.

Further experiments produced another interesting starved-current audio amplifier with somewhat different characteristics. It uses even fewer parts and has a wider frequency response but lower gain. It uses a 6AN8 triode-pentode, with the triode acting as a cathode-follower power amplifier. In addition to the output transformer, only four resistors are required. In this amplifier a potentiometer volume control is substituted for one of the resistors and a dc blocking capacitor is added at the input. These features make the amplifier suitable for general experimentation.

With a plate supply of 140 volts, total current drawn is about 23 ma. With a 10-mv input (rms, 400 cycles) the power output into a 3.2-ohm speaker is a little less than 1 mw. This represents a power gain of 63 db. Frequency response is +3 db from about 150 to 7,000 cycles and about 5 db down at 80 and 9,000 cycles.

The 1-mw power output certainly seems a far cry from high-fidelity amplifiers capable of putting out 20, 40 or even 100 watts. However, let's keep a few things in mind: These high-quality amplifiers are designed to give linear and distortion-free reproduction on transient sounds whose instantaneous power level may reach such values. The average level of power required is quite a bit lower. The actual power required depends on the size of the room, the efficiency of the speaker used and the personal tastes of the listener.

In general, for listening at ordinary conversational level, about 200 mw seems to be sufficient. Furthermore, since the human ear responds logarithmically to sound amplitudes, a reduction of power output by a factor of 200 will seem to be about one-third the previous volume. Listening tests proved the output from a 5-watt FM speaker to be adequate with a 10-mw input. With 20-mw input, output is about 3 mw. The system begins to overload near 30 mw—both tops and bottoms of the waves are clipped.

Since this amplifier is designed primarily for low input signals, no self-bias resistor was used. Contact potential between cathode and grid provides the necessary bias. With a 140-volt plate supply, the screen voltage is 2.6 and the total current drain is about 23 ma. This results in a triode plate dissipation of about 2.9 watts, a little greater than allowed by tube manufacturers' specifications.

Operation at a lower plate-supply voltage is possible too. With 110 volts at 10 ma, power output is about 0.4 mw with 10-mv input. Plate dissipation is now a little more than 3 watts. While building, the amplifier screen voltage was adjusted experimentally with a potentiometer (with 10 mw in and 140 volts B-plus) until the output voltage (as displayed on a scope) was greatest with least visible distortion and minimum plate supply current. This is not as complicated as it sounds. After a few trials, one gets the feel of the adjustments. When the optimum has been determined, replace the potentiometer with fixed resistors.

The whole amplifier is mounted on a 3 1/2 x 5 x 1-inch aluminum chassis, but could be made even smaller.
Part II—Five more ways to get big bass from little speakers

By NORMAN H. CROWHURST

LAST month we looked at some popular types of enclosures. There were horns, infinite box baffles, the Baffle, bass reflexes and back-loaded horns. But in all these types the lowest frequency available is strictly proportional to the size of the speaker. The quest is for smaller units that give big bass.

Acoustic suspension

Trying for smaller speakers means that units utilizing propagation effects are out of the question because this method takes space. We have to live with types that depend on, use or take cognizance of the speaker’s resonance. Making the enclosure smaller always tends to raise the resonant frequency. Lowering it again by artificial means tends to reduce efficiency.

First in this direction was the acoustic suspension unit. This is a variation of the infinite baffle, but with a change in proportions. Instead of using an ordinary speaker with a resonance around 50 to 100 cycles, the speaker’s resonance is lowered “off the map” to around 10 cycles. Then the stiffness added by the box is the major control, bringing the resonance up again to 35 or 40 cycles.

In the infinite baffle, the major control is the diaphragm suspension, which is mechanical, and the box has to be big so the stiffness added by the air is relatively small. In the acoustic suspension, the stiffness due to air in the box is the major consideration, so the box can be small.

Getting the unit resonance down can be achieved by two methods: a—making the suspension more compliant or floppy; b—making the cone heavier.

If the first method is adopted, more latitude for movement is required, so a larger air gap to move in is also required. This means a bigger magnet or a loss in efficiency.

In the other method, the extra weight may be either in the coil or the cone itself. An average speaker cone weighs about 10 to 15 grams. A “heavy” one weighs 35 grams or more. Putting the extra weight in the coil means some of the efficiency lost by widening the gap is regained by using more of the extra width. Putting it in the cone helps the rigidity problem, but otherwise cuts down efficiency.

Associated with this choice is one of coil length. If the suspension is made more compliant or floppy, the cone can move a lot farther, even out of the gap. To avoid this causing nonlinearity in drive, some extend the voice coil beyond the gap (Fig. 1) so more coil comes in when the middle section moves out. But this means only a fraction of the coil is producing drive at any instant. The dead coil in series with the active part also reduces efficiency.

A popular compromise right now uses a cloth surround, suitably impregnated, which gets the free resonance down to a little below 30 cycles. Then the air in the box is used to bring up the resonance to its usual place, so that a low resonance of 40 to 60 cycles is possible, using half mechanical and half acoustical stiffness.

This approach is not strictly acoustic suspension but it retains good efficiency and achieves an acceptably small size (until next year maybe!). A look at the market today shows a variety of combinations in this area, each of which is supported by suitable arguments for that particular combination.

Another variant puts a division in the box, with holes in it (Fig. 2). This partially decouples part of the air spring through a mass and in this way lowers and spreads the resonant effect. The holes, by the way, are not small enough to make the second section a resonator in itself; they merely modify

Fig. 1—The lengthened voice coil allows turns to be in the gap at all times (although not always the same turns).

Fig. 2—A variation of the infinite baffle that makes the inside of the box effectively larger than it really is.
effect, the last two we shall consider represent departures from established concepts. In the variable-mass idea, the starting point is the fact that, to keep resonance down to a low frequency with a small speaker, the cone mass has to be made larger, but this effectively prevents it from radiating at higher frequencies.

The variable-mass principle uses what is basically a light cone, but couples a somewhat flexible mass to it. At low frequencies, because of the relatively large movements involved, the relative flexibility of this coupling is poor and the whole mass moves with the cone, bringing down its resonance. At higher frequencies, the smaller, more rapid motion forces the flexibility of this coupling to “give” progressively more until only the cone moves.

It's a bit like having your cake and eating it too. By distributing the compliance throughout the mass—the whole piece is made of a special foam plastic—it does not suddenly leave off moving with the cone, but produces quite a smooth response over a wide range.

Bi-Phonic coupler

This latest innovation really starts from another point. The designer had noted that the bass-response problem with most speakers was making a satisfactory enclosure of one type or another. In many of them great pains are taken to prevent side panels from vibrating. In this design, he dispenses with the usual enclosure altogether, and uses a panel designed to vibrate as the radiating element, instead of the more conventional cone (see RADIO-ELECTRONICS, April 1960, page 94).

Most small loudspeakers use units with cones that are proportionately smaller than the enclosure. This is what makes the cone require large movement at low frequencies (with the exception of the ducted reflex). But this design uses a flat diaphragm, much larger than most woofers, as a complete loudspeaker.

Of course this makes the diaphragm much heavier than usual too. So we would not expect it to radiate much in the higher frequencies. This problem is overcome by using a material that is much stiffer as well as being heavier—a thin wood panel, specially treated. So much for variations of the dynamic or moving-coil type.

Wide-range electrostatic

Just as everyone comes up with different variations on the old theme with the well-tried dynamic units, the wide-range electrostatic makes its appearance, and some are surprised to find it is not as big as they predicted it would have to be—“the whole wall of a room at least!” Since it is not unduly large and is sensibly flat, it can qualify for inclusion in a discussion of smaller speakers for bigger bass.

Can you imagine trying to make a dynamic speaker work using a miniature neon tube for the moving coil? It seems that earlier attempts at wide-range electrostatics were about that much off base. The diaphragm needs room to move, like a dynamic unit, and it needs commensurate driving voltages, which in turn require new insulation techniques. It’s that simple.

But this does introduce a relatively new concept: the large-diaphragm loudspeaker. With this change in design, radiation resistance now becomes a considerable part of electrical input impedance, which helps.

However, this new field is only beginning. It seems that one way to use it is just to stand it by the wall, in which case the whole unit acts as its own air coupler, using the cavity behind it, which is quite uncritical.

Probably amplifiers should be designed specifically for driving this type unit, in view of its dramatically different impedance—high and capacitive. Its high-end response is very smooth, but something will probably have to be done about its directional effects. But that’s another story.

But to get back to the small-speaker-big-bass aspect. It looks as if the people who used to tell us a unit had to be big to give real bass must be developing a taste for felt hats right now. True, all these approaches involve some loss of efficiency, due to the variety of reasons we have discussed. But proper choice of parameters results in a variety of products in which you would hardly know efficiency had been sacrificed.

If everybody believed in the **Golden Rule**

we wouldn’t have had to establish our mail-order tube sales policy. But since there are people in business who have been known to live up to only the first three words of that precept, we have found it necessary to insist that mail-order tube advertisers tell you either that their tubes are new and unused—or that they are seconds, rejects or imperfect if that's the case. Otherwise RADIO-ELECTRONICS will not accept their advertising.
<table>
<thead>
<tr>
<th>Audio—High Fidelity</th>
<th>Unit Requirements</th>
<th>System Features</th>
<th>Enclosure Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMALL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Size</td>
<td>Mass</td>
<td>Size</td>
</tr>
<tr>
<td>Audio—High Fidelity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPECIAL EFFECTS with a TAPE RECORDER

By JOHN A. LARSON*

Want to have more fun with your tape recorder? Try the five stunts described here.

One of the most versatile instruments in the world of sound is the magnetic tape recorder. Its unique ability to capture sound, store it on a thin piece of magnetic tape and then faithfully play it back again when desired and as often as desired, is the key to a practically infinite variety of applications. Many of these are well known: the playing of prerecorded music tapes, both stereo and monophonic; home recording of the family or of a party; recording from radio, TV or a disc player. These are the usual applications.

But let's go beyond the usual and look at some of the special effects possible with the tape recorder, effects that can bring a barre full of extra fun, entertainment and value to its user.

One of the easiest is adding reverberation. A recorder with separate record and playback heads is required so some of the playback signal, which is received by the playback head a fraction of a second after it is recorded, can be fed back into the original. This is done by jacking the output signal back into the line input signal (Fig. 1). The reverberation effect can be altered, using the playback level control, from that of a large hall to a large cathedral, or to a longer delay that becomes a distinctive echo of several words. Too high a level will cause immediate overloading—on a VU meter the needle will try frantically to run itself through the right side of the scale. The best echo is obtained by keeping just below this overload level.

The lower the playback level position, the lower the echo effect. Earphones are a highly desirable aid to obtaining just the desired amount of reverberation. The 7.5-ips speed is best for cathedral effects and for a large-hall or slight echo effect. If a definite repeating echo is wanted, drop the speed to 3.75 ips. The echo will distinctly repeat over and over, gradually growing fainter. The speed and length of the repeat can be altered by the playback level control.

Sound-on-sound

One of the most discussed special effects is adding an additional sound to a previously recorded sound. There are various ways to do this, all dependent upon the kind of recorder you are using. For example, let's record a girl singer whom we want to sing a duet with herself—the first part soprano, the second part alto.

The prime requirement is a recorder that has separate record and playback heads (this is essential to almost all special effects). Of these, the special recorder to work with is one that can record stereo as well as half-track, and therefore has a split-erase head and a two-track record head. (The Ampex model 900 is an example of this kind of semiprofessional recorder.)

The first recording to be made is the master track. We'll have the girl sing her soprano part for this. Plug the mike into track 2 (usually the bottom track—most recorders when in the single record mode will record on the top track, which would be track 1). Record the girl's soprano part on track 2. Rewind the tape to the beginning. Jack the output of this master channel which is on track 2 into the input of track 1, and use earphones to monitor the master channel (Fig. 2). Plug the mike into track 1's mike input. Because of the recorder's split-erase head, we can record on track 1 without erasing the master channel on track 2. Now, when the recorder is turned on, the playback head picks up the previously recorded master of the girl's soprano part on track 2 and feeds...
it through the patch cord to the record-head input of track 1. At the same time, the girl (listening through the earphones to the soprano part) sings her alto part in unison, and the two signals are combined on track one. The balance of the two signals is adjusted with the playback and recording level controls. Track 1 can be re-recorded again and again, until satisfactory, without erasing the master channel on track 2.

With recorders that record monophonic only, but can play stereo, the method is somewhat similar, except that because the recorder records only mono it will record on only track 1. Therefore a special step is necessary to get the master channel down to track 2, where it cannot be erased when adding the girl's alto part. Here's how to do it: Record the master channel of the girl singing soprano on track 1. When the recording is completed, do not rewind. Instead, turn the reels over, just as is done with half-track monophonic tapes when the other half is to be recorded, and jack the output of track 2 (which is where the master channel is now that you have turned the reels over) into the input of track 1. After adjusting playback and record levels, start recording. This records the master channel of the soprano part in reverse onto the new track 2.

When the "reverse" recording is finished, change the reels again back to normal. A copy of the original master channel is now on track 2, ready to play forward in the normal way. This copy is henceforth considered the master channel, as the original master on track 1 will be erased when adding the girl's alto part. Since your track 2 output is already jacked into track 1's input (and earphones are inserted into this circuit, as previously explained), recording can begin on the girl adding her alto part (and listening to the soprano part on track 2 through the earphones, as previously explained).

Another method for getting sound-on-sound, but involving considerable alteration and time, is to place the playback head of a recorder before the erase head. This is possible on some machines. In this case, the already recorded signal is heard by the girl through monitor earphones and at the same time the signal is routed to the high-impedance input of the record head. Right after this—a few milliseconds—the tape is erased by the erase head. The clean tape that reaches the record head receives the combination of the first signal plus the second signal (the girl's alto part) being added through the microphone.

Speed variation effects

We can get dramatic effects by altering the speed of a tape recording of a solo instrument—piano, electronic organ or guitar. A tape recorder with two speeds is required. Have the musician play a selection on his instrument at three-fourths the speed he normally plays it (a metronome may be necessary), and one octave lower than usual. Record this at 3.75 ips.

After the recording, rewind and play it back at 7.5 ips. This will make the music one octave higher than recorded, bringing it back to its correct key. Since the speed is one and one-half times as fast, the fingering technique sounds incredible and practically impossible for even the most accomplished musician.

Sound-on-sound can be added to this effect. For instance, first record the right hand only. Then add the left hand by following the technique outlined for sound-on-sound. If an electronic organ is used, another set of stops or pedal notes can be added. Or the solo guitarist could add a partner or several partners, by repeating the process several times (each time that you get further from the original master, however, more background noise is added, so there is a point of diminishing returns).

Tape with slide shows

A tape recorder can activate an automatic slide changer and at the same time be the sound track for the slide show, playing narration and music. The trick is that, when recording the narration and music on the sound track, a practically inaudible 25-cycle tone is recorded wherever a slide change is wanted. When playing the tape during the show, the 25-cycle tone activates a relay that will cause the automatic slide changer to change slides (see Fig. 3).

The tone does not have to be 25 cycles. As long as it is practically inaudible, yet within the capabilities of the recorder's preamp, it will work. A separate amplifier, tuned to the desired inaudible tone, operates the relay which changes the slide by triggering the mechanism of the automatic slide changer.

Another method is to splice strips of metal foil into appropriate places in the tape, which when running through a contact, would activate the relay.

There are many other ways too—a silence on the tape of so many seconds can activate a relay. One company markets a system in which a short slit is made horizontally in the middle of the tape, through which the relay-activating contact is made.

The simplest method, of course, although not automatic, is to record an...
Mary Had a Little Lamb

You can get an effect resulting in a hilarious game of tongue twisting if you have a tape recorder with separate heads for playback and recording. It is called Mary Had a Little Lamb or the speech testing game. The trick depends on being able to listen to the signal being recorded on the tape just a few instants after it is recorded.

Connect headphones to the amplifier's output. Set the recorder for normal record from a mike, and the record level for normal voice volume. Then turn up the playback level fairly high. A loud signal reaches the contestant's (or victim's) ears. When everything is arranged, start the tape machine going and ask the contestant to recite Mary Had a Little Lamb fairly fast and with no pauses. The contestant will not be able to do it! Make sure the phones are fitted tightly over the listener's ears.

Here's what happens: After a signal is recorded it takes about 1/6 second for it to be played back through the headphones. When the contestant's voice reaches his ears 1/6 second after he spoke (and is louder than the voice "inside his head"), the normal speech-hearing process is interrupted and confused. It makes the victim stutter and pronounce words incorrectly or drawn out. In attempting to repeat the poem, he will usually say something like, "Mary had ah-ah-ahhhhh li-li-li-little laaaaammmmmmmb." Ask the contestant to give his name and address and he won't be able to.

Remember, playback level must be high—loud enough to override a person's normal inner voice—but not so high that it will blast eardrums. Set up the level in advance, after a brief trial, to determine the best setting.

Actually, the game can be beat—by speaking very distinctly, clearly and fairly slowly. This makes the effect a valuable tool in speech improvement and correct word pronunciation.

Experiment yourself

The effects outlined here are, of course, only a few of those possible, but are those most often attempted. The actual method of producing them will vary between different makes of recorders and modifications may be necessary on some recorders. Likewise, the potential of other effects depends upon the particular make and type of recorder.

The only limit to the many special effects that can be achieved with the remarkably versatile magnetic tape recorder is one's own imagination. Start experimenting—that's how the effects mentioned came about.

Zener Diodes Prevent Speaker Burnout

By RONALD L. IVES

SPEAKER burnouts caused by overdriving are common to some hi-fi systems. The reason—many amplifiers have an output that far exceeds the rating of the speaker it drives. Feeding 100 watts to a speaker rated at only 25 is not only acoustically unhappy, but usually causes financial distress too. And the system is out of service while the speaker is being repaired.

Thanks to semiconductor developments, this trouble can be eliminated at a cost somewhat less than one speaker repair: Simply shunt the speaker with a Zener diode voltage limiter.

Zener diodes resemble ordinary rectifier diodes but have the property, when connected backward across the circuit, of conducting whenever the applied voltage exceeds a certain fixed and specific values.

A pair of Zener diodes connected across the speaker as in Fig 1-a or 1-b, or a single double-anode Zener, connected as in Fig. 1-c, will supply the required protection.

To determine what voltage rating the diodes you use should have use the formula:

\[E = \sqrt{2} \cdot W \]

where \(E \) is the voltage rating of the Zener diodes; \(W \) is the speaker rating in watts; and \(Z \) is the speaker impedance in ohms. The factor \(\sqrt{2} \) is introduced because the voltages which operate the Zener diode are peak volts while those in the speaker circuit are computed on an rms basis. Of course, both Zener diodes should have the same voltage rating.

To determine the wattage rating of the Zeners use:

\[\text{Wattage} = \frac{\text{amplifier max power output}}{\text{number of Zener diodes in circuit}} \]

An ample margin of safety should be allowed here, as we have a divided loud consisting of inductance (the speaker) and a pair of nonlinear resistors (Zener diodes).

In operation, the amplifier-speaker system works just as if the Zener diodes were not present as long as their voltage rating is not exceeded. When any peak voltages exceed the Zener rating, the diodes conduct, clipping the audio peaks at the Zener voltage level and dissipating the surplus power as heat.

Present indications are that Zener diodes are almost immortal, if operated within their ratings. A more specific figure cannot be given at this time as many of the first Zener diodes are still working perfectly in continuous commercial service.
AND NOW...REVERBERATION

Delay lines add realism to hi-fi sound systems

LITTLE by little high-fidelity sound reproduction has crept closer and closer to the original. Some people indeed feel that with a good hi-fi system matched against a good orchestra, the orchestra might come out second best. In that never-ending search to make sound reproduction at least as good as the real thing, something new—reverberation—has been added.

Reverberation is the term for short-time echoes that are produced by instruments, soloists or choruses performing in a concert hall. Some say that when it is used the living room does become a concert hall.

But how do you add reverberation to a hi-fi system? Philco, Westinghouse and Zenith have announced that they are adding reverberation to their new lines of hi-fi packages. The secret is a delay line made under license from the Hammond Organ Co. Let's see how they use it.

The basic diagram in Fig. 1 shows the system. The reverberation input (at the plate of the 6AQ5 in Fig. 1) is fed to a field winding that activates two ferrite rotors. This causes each of the rotors to turn in proportion to the signal in the field winding. The greater the signal, the greater the rotation. Each rotor is connected to a mechanical delay line of discrete length, diameter and winding pitch (they look just like springs). The twisting motion applied to those lines takes a few milliseconds to travel from one end to the other. At the far end, this twisting force turns another rotor which induces a signal into another field winding, again in proportion to the amount of turning, but now delayed from the original signal.

The two lines produce delays of 29 and 37 milliseconds. Because the delay line is operated as an open-ended or unmatched system, some of the energy is reflected back over the line. These repeated reflections decay logarithmically and make the reverberation realistic. The amount of the reverberation is controlled by a simple four-position attenuator switch. [In the February, 1956, issue (page 52) and in the July, 1952, issue (page 51) Radio-Electronics showed how to build similar reverberation devices called echo boxes.]

Zenith's method is called Sound Reverb. Fig. 2 shows how it works. Part of the input signal is tapped off and fed to a 6CS7 sound-reverb driver. It is amplified and then fed to two transducers that convert the signal into mechanical vibrations. These vibrations travel back and forth along their respective delay lines, gradually decaying until they are below an audible level.

Each time a vibration reaches an output transducer, a portion is picked off and converted into an electric signal and amplified by a 12AX7 sound-reverb amplifier. At this point, the level of the reverberation can be adjusted with a reverberation control. The reverberation signal then goes to the difference channel where it is amplified, fed to the matrix and combined with the original signal, and sent on to the speaker system.

The audiophile, by using either of these new systems, can bring the concert hall one step closer to his living-room.

Fig. 1—Basic Philco arrangement, how Philco adds Reverberaphonic Sound to a stereo hi-fi amplifier. Instead of the right and left inputs being directly connected to their respective amplifiers, they go to a pair of 12AX7's. This signal then goes on to the proper amplifiers. However, a sampling of each channel is taken off the plate of each input triode, combined, amplified and fed to a pair of delay lines. At the other end of the delay lines, the signal is amplified again and inserted into both the left and the right channels. This gives the desired few microseconds' delay that produces reverberation.

The delay lines are the heart of the system. Fig. 2—Zenith uses this system to add reverberation.
By MARTIN KLEIN

Are you tired of making excuses for that little four- or six-transistor pocket radio, for its poor tone quality (from a 2-inch speaker) or its comparative lack of sensitivity and power? Have you ever taken it to a beach or picnic only to find that in the open it was audible only if held right up to the ear? If so, you will be interested in building this eight-transistor circuit into the back of a 6-inch speaker baffle. The extra room (in addition to accommodating the bigger speaker) allows for a 7-inch ferrite antenna for maximum sensitivity, a full-size tuning capacitor and volume control, and four flashlight (size C) cells for long life and economical replacement. The 6-inch baffle gives the set a solid plywood housing and looks good on a shelf, table, or even hung on the wall. Adding a handle makes the set a rugged portable.

The radio uses eight transistors in a superheterodyne circuit—a separate mixer and oscillator, two if transistors, a transistor detector (this provides more gain than the usual diode de-
tector), a low-noise driver and two transistors in push-pull output.

The cost of buying all parts new should be in the neighborhood of $35, but a well stocked junkbox should be able to pare this figure considerably, especially if you have built a transistor set before and are leaving it idle because of the reasons mentioned above.

Construction details

The first step is to cut out a piece of bakelite board 6% x 2% inches for the chassis. Perforated board has extra holes for later experimentation, but a solid sheet is just as good. Glue or tape a sheet of white paper onto the board and lay out a parts arrangement as in the photograph. Now drill holes for the leads on the components. A hand power drill will make short work of this hole-making. Cut and file holes for the transistor sockets, the if’s, the oscillator coil and the transformers. If these holes are tight, you can just squeeze the parts into place, or, if they are loose, a drop of cement will hold them. The if and audio transformers can also be held with a small metal bracket.

After drilling the holes, peel the paper off the chassis and begin wiring.

Start by tinning and fastening a piece of wire along each side of the board as shown to serve as ground and B-minus buses. Most of the parts are wired by their pigtail leads or by short lengths of insulated wire. Use spaghetti on any leads which need insulating.

I found that the best wiring order was to start with the output stage and work backward to the driver, detector, if’s and mixer and oscillator. In this way, it is possible to check each stage as you build it. If you do not want to do this at every stage, at least stop after wiring the driver transistor socket. At this point you can temporarily wire in the volume control, the speaker and the batteries and check out the entire audio section. An audio signal applied to the input should produce a clear loud tone in the loudspeaker.

Any oscillation or motorboating at this point is probably due to R20, the 18,000-ohm resistor, producing too much feedback. If this happens, either remove R20 entirely or try a higher value.

When you are sure the audio section is functioning properly, go on to complete the chassis wiring. Be very careful with electrolytic polarity, oscillator coil terminals (the diagram shows the coil with brass screw down) and if terminals (the diagram is a bottom view of the if). Follow the manufacturer’s diagram for the color code of the output and driver transformers. Be sure to leave leads long enough to reach the larger components in the cabinet.

Mount the speakers after you have finished wiring the chassis. Drill holes and mount the tuning capacitor and volume control at either side of the cabinet. The trimmer, C3, is mounted just below the tuning capacitor with its shaft in a small hole in the cabinet. This allows it to be adjusted from the outside. Next screw in the battery clamps and wire them carefully, leaving a lead on the plus and minus sides and one between the two middle cells. You may have to scrape away some wood from inside the cabinet to fit in the loop or you can mount it at an angle if you prefer. It comes mounted on a fiber board which can be drilled for mounting on the screws holding in the loudspeaker, or it can be glued in place.

Now put the chassis in place and hold it with two small clamps, one at each side. Wire in the final components. Shielded wire on the hot side of the volume control will reduce hum pickup.
but this is not absolutely necessary. Drill four holes in the bottom of the cabinet for access to the three if transformers and the oscillator coil. Check the battery leads again and then insert the eight transistors. If you have the patience, recheck all wiring. If not, hold your breath and turn the set on.

At this point one of three things can happen: you might get no sound; you might get a whine of oscillation or motorboating, or you might be thrilled to hear your favorite radio station blasting you with a loud commercial.

If you are greeted with silence, turn the set off immediately and check all wiring. Make sure the batteries are making contact in their holders with correct polarity. Check the if's and oscillator coil for opens or shorts. You can localize the trouble by injecting an audio signal at the base of the driver transistor, a 455-ke signal at the base of each if transistor and a 1,000-ke signal at the base of the mixer transistor. A good quick check of the local oscillator is to place the set near a known good receiver. Tune the good receiver to the high end of the dial. Rotating the tuning capacitor should at some point produce a whistle in the good set. This will occur when the Super-Eight is set 455 ke below the high-end setting of the good set.

If the radio oscillates on all stations, check the battery condition first. Try changing the value or completely removing R20. Check all electrolytics by bridging them with good units. If the set oscillates only on some settings of the dial,unaligned if's may be at fault.

Alignment

When you do get the set receiving stations, begin the alignment procedure. You will need an rf signal generator and a meter across the voice coil leads. Inject signals into the set by looping a few turns of wire from the signal generator output around the ferrite antenna coil. First set the generator at 455 kc with 400-cycle modulation. Adjust the if transformers, starting with the last one, T5, for maximum output. With the generator and the tuning gang set at 1400 kc, adjust trimmer C2-a for maximum output. Next set the generator and tuning gang to 600 kc and adjust the oscillator coil for maximum output. Adjust trimmer C3 to make sure the set tunes the entire broadcast band. When the other parts are aligned, tune the generator and tuning gang to 1000 kc and adjust the slide on the loop antenna for maximum output. Since there are so many adjustments, it is wise to go back and repeat the alignment procedure several times for best results.

If motorboating is still present on stronger signals after alignment, try detuning the if transformers slightly, changing the values of the neutralizing capacitors, C14 and C15, or simply rotate the set for less signal pickup.

When you have finished aligning the radio, screw on a back of wood or aluminum, add a nice tuning dial and, if you wish, a handle, and you are all set to enjoy your favorite radio programs.

As with most electronics items, you do not have to follow exactly the procedures outlined in this article. This circuit could be built in almost any non-metal case (metal shields the antenna), and the parts arrangement is not very critical. You might even want to use a larger case for plenty of room to experiment. The transistors used don't have to be the ones specified. For instance, the popular CK722 or 2N107 might be used in the audio stages, with the CK760 being used for the rf applications. It is okay to experiment as long as you use p-n-p transistors and don't exceed any ratings. It is also a good idea to make a periodic check of new transistor listings for the appearance of higher-gain lower-noise transistors to use in your Super-Eight.

How it works

The Super-Eight has a superheterodyne circuit. The tuned circuit of C1-a, C2-a and T1 receives the incoming rf signal. Meanwhile C1-b, C3-b tunes the oscillator section to a frequency 455 kc above the incoming signal. The rf and oscillator signals are mixed by V1 to produce a resultant signal of 455 kc. This signal is amplified by V3 and V4, which are coupled by T3, T4 and T5. These transformers are tuned to 455 kc and also serve to match the output impedance of one transistor (approximately 20,000 ohms) to the input impedance of the next (about 600 ohms). C14 and C15 provide a neutralizing network to prevent the if's from oscillating. Next V5 separates the audio component from the carrier signal and amplifies it. The dc voltage across R13 is filtered by C21, R16 and C20 to serve as an automatic gain control by biasing the if transformers for higher gain on weaker signals and lower gain, comparatively, on stronger signals. The audio component is then fed through the volume control and into the driver transistor which amplifies it further. The signal then is fed into T6 which acts as a phase splitter, providing V7 and V8 with signals which are 180° out of phase, so they can operate in push-pull fashion. The final signal goes into the output transformer which matches the output impedance of the push-pull stage to the loudspeaker voice-coil impedance. Resistor R20 is used to provide a bit of negative feedback to the base of the driver transistor to improve frequency response. It can cause oscillation if it feeds back too much signal to the driver.

“I should have known better than to let you pick our wall paper!”

www.americanradiohistory.com
SINGLE-SIDEBAND Transmitter Adjustments

Using a piece of commercial gear as an example, the author shows some of the adjustment techniques for SSB transmitters

By EDWARD M. NOLL

SINGLE-sideband transmission (SSB) has many attractive features. The best use can be made of these only if the transmitting equipment is aligned and working properly. For peak performance, the undesired sideband must be removed as effectively as possible, and, in pure single-sideband transmission, the carrier must be suppressed completely.

This signal is supplied to the balanced modulator, tube V2 (Fig. 2). The carrier is injected into the common-cathode circuits of the balanced modulator. Audio from the preamplifier is supplied through an audio gain control to the grid circuit of the balanced modulator. Beneath the audio preamplifier (in the block diagram) is the voice-operated control circuit (VOX). The transmitted single-sideband input signal is mixed with a signal from a 4.287-mc crystal. For upper-sideband output, the crystal frequency is 5.112 mc. Notice that a trimmer is connected across one crystal. It is adjusted to produce an exact 4.7-mc single-sideband output, regardless of which sideband is chosen for transmission.

The sideband-selector mixer is tuned by attaching an rf indicator to the if amplifier's output. A typical indicator circuit for this observation is shown in Fig. 3. It is a simple diode detector that supplies dc to a high-resistance dc meter. The 4.7-mc if amplifier transformer is first peaked with the sideband-selector switch set on the lower-sideband position. A changeover is then made to the upper-sideband position and the small trimmer capacitor C18 adjusted for an output peak.

Carrier suppression

One of the operations performed by a single-sideband modulator is to remove the carrier completely. Doing this reduces interference problems on crowded channels because carrier interference beats are avoided. The balanced modulator must be adjusted carefully to provide exact carrier cancellation. Potentiometer R13 in the cathode-grid

After the single-sideband signal is formed, it must be stepped up (heterodyned) to the operating frequency. Nonlinear defects must not be introduced in this mixing process. Proper tuning and correct adjustment of the linear amplifier that builds up the strength of the SSB signal is important. Mistuning contributes distortion or adds spurious signals that defeat the best features of single-sideband transmission.

To obtain a better knowledge of the techniques, let us consider some of the recommended service procedures for the Eldico SSB-100F transmitter, shown in the photograph. The single-sideband generating section is represented by the upper group of blocks in Fig. 1. The carrier oscillator operates at 413 kc. The transmitter goes on the air automatically when the operator speaks and shuts off again as soon as he stops speaking.

The output of the balanced modulator is a double-sideband carrier-suppressed signal. The crystal filter that follows removes one of the sidebands to supply a single-sideband carrier-suppressed signal to the sideband selector stage that follows. This signal is mixed with the crystal-controlled injection signal to generate a 4.7-mc single-sideband signal which is supplied to the 4.7-mc if amplifier. The exciter output is derived from the cathode of this stage and fed to the vfo mixer.

The sideband-selector mixer employs two crystals and a switch. This permits transmitting either the upper or lower sideband. For lower-sideband output, the single-sideband input signal is mixed with a signal from a 4.287-mc crystal. For upper-sideband output, the crystal frequency is 5.112 mc. Notice that a trimmer is connected across one crystal. It is adjusted to produce an exact 4.7-mc single-sideband output, regardless of which sideband is chosen for transmission.

The sideband-selector mixer is tuned by attaching an rf indicator to the if amplifier's output. A typical indicator circuit for this observation is shown in Fig. 3. It is a simple diode detector that supplies dc to a high-resistance dc meter. The 4.7-mc if amplifier transformer is first peaked with the sideband-selector switch set on the lower-sideband position. A changeover is then made to the upper-sideband position and the small trimmer capacitor C18 adjusted for an output peak.

Carrier suppression

One of the operations performed by a single-sideband modulator is to remove the carrier completely. Doing this reduces interference problems on crowded channels because carrier interference beats are avoided. The balanced modulator must be adjusted carefully to provide exact carrier cancellation. Potentiometer R13 in the cathode-grid

Fig. 1—Simplified block diagram of Eldico SSB-100F transmitter.

Fig. 2—Balanced modulator circuit used in the Eldico unit.
circuit of the balanced modulator, tube V2, provides a carrier-balance adjustment. R13, with resistors R11 and R15, injects a certain level of carrier into each grid circuit. The amount of carrier, injected can be controlled precisely with this potentiometer (to correct for slight variations in tube and circuit characteristics) to obtain exact cancellation in the output.

A receiver or other type of output indicator can be used to check and adjust the RF output. If a carrier is still present, R13 should be adjusted until it disappears or a minimum of carrier is audible from the receiver.

In the Eldico transmitter, it should be mentioned that an AM signal can be transmitted. An AM signal is formed when the carrier is reinserted at the grid of the sideband-selector mixer. The source of this carrier is the carrier oscillator itself. The amount of carrier added can be controlled with a potentiometer R51. At times in transmission it is helpful to convey a weak carrier as well as the sideband. This can be accomplished by injecting a very-low-amplitude carrier via potentiometer R51.

Undesired sideband removal

The crystal sideband filter of this transmitter is factory preset and does not require adjustment. In case of filter failure, it is recommended that it be returned to the factory for adjustment.

A reasonably good check of the performance of a sideband removal filter can be made with a receiver and an audio oscillator that delivers a pure sine wave to the input of the transmitter. With the transmitter modulated by a 1,000-cycle tone, for example, it should be possible to tune the receiver through the undesired sideband-frequency spectrum without hearing any signal. In other words, when tuning, across the frequency spectrum only one signal should be noted, the desired single sideband.

An accurate signal generator, such as a BC-221 (military surplus), and a sensitive output indicator can be used in checking and aligning single-sideband filters. Whatever signal generator is used, it must have wide bandspread and accurate calibration in the filter spectrum to be checked. Spot frequency checks can be made and an approximate curve of the filter can be plotted.

Fig. 4—Typical panoramic display. Note that although attenuated, the carrier and undesired sideband are still present.

A very exacting method of measuring and checking the performance of a single-sideband system is to use a panoramic spectrum analyzer. Such an instrument (made by the Panoramic Radio Products, Inc.) displays the desired frequency range on a calibrated oscilloscope screen. It also includes a calibrated signal source for supplying the necessary test signal to the single-sideband transmitter. A typical display for such a test procedure is shown in Fig. 4.

VOX circuit

The VOX circuit's job is to turn the transmitter on whenever a signal is picked up by the microphone. In the transmitter under discussion, a portion of the audio preamplifier output is supplied through VOX linear control R11, to the first VOX stage. The audio output of this stage goes to a diode rectifier, which places a dc bias on the grid of the relay control tube that causes it to conduct and actuate the VOX control relay.

When the relay is energized, it puts the transmitter on the air by closing the B-plus circuit. When there is no signal from the microphone, a high bias on the grid of the relay control tube shuts down the transmitter so as not to interfere with any incoming signal.

A problem that must be overcome by a VOX system is the sound from the receiver speaker causing the transmitter to go on the air. Cancellation is used to prevent this trouble. An audio signal from the receiver is supplied to one half of the VOX tube. At the same time, the audio signal from the preamp (from the microphone which is picking up sound from the speaker) goes to the first half of the VOX tube. The two signals are amplified and fed to the two halves of the relay control tube where they mix and cancel with the result that the relay which turns on the transmitter is not actuated.

When adjusting a VOX circuit, the VOX gain control is turned up until sufficient audio signal from the preamp is supplied to operate the relay. With speaker output at a normal listening level, the QT (anti-trip) control that regulates the receiver audio signal amplitude is adjusted until sufficient audio is added to prevent the speaker output from operating the VOX relay.

Linear conversion and amplification

After the single-sideband signal has been formed in the exciter, it must be stepped up in frequency and power by a linear system. The single-sideband signal is in the form of a modulation envelope and, if it is to pass undistorted, it must not encounter amplitude nonlinearity. Remember that after an AM signal is modulated, any succeeding amplifier must be linear. Generally, class-B linear rf amplifiers are used to increase the power of a modulated-rf signal.

The amplifier linearity must be especially good in a single-sideband modulation envelope to prevent distortion and introduction of spurious sideband components. Otherwise, intermodulation distortion components can be developed in the undesired sideband spectrum, in which case the careful removal of the undesired sideband in the exciter is to no avail. It is apparent then that the linear amplifiers used in single-sideband transmission must be tuned carefully to provide the very best straight-line performance.

This transmitter contains a built-in 1-inch waveform oscilloscope and associated circuits are incorporated to monitor the linearity and assist in the adjustment of the rf stages. The circuits of the waveform monitor are designed to show a trapezoidal modulation display (Fig. 5). The modulating signal for the oscilloscope's horizontal amplifier comes from the scope detector at the output of the exciter. This signal gets to the horizontal amplifier through the power and signal cables to the exciter unit. Modulated rf is supplied to the vertical deflection plate through a

Fig. 5—Trapezoidal modulation patterns as seen on a scope.
capacitor from the tank circuit of the final amplifier.

Vfo and output stages

The output of the exciter is supplied to the vfo mixer section. This unit comprises a linear mixer and a class-A wide-band if amplifier. Vfo output goes to a band-selection section and the final power amplifiers of the transmitter. The driver amplifier is operated class-A with the final amplifier biased to class AB.

The final amplifier does the major part of amplifying the modulation envelope to a high power level. Its linearity is especially important. Inverse rf feedback is employed to minimize any amplitude distortion of the emitted envelope. The feedback path is from the plate of the final amplifier to the cathode circuit of the driver.

To insure the necessary linearity for single-sideband transmission, the amplifier stages must be tuned to resonance exactly and must also be neutralized very carefully. Finally the final amplifier must be properly excited and correctly loaded. The influence of improper drive or incorrect loading is demonstrated by the nonlinearity of the trap-rectifier output signal to ignite the bulb. Consequently, it acts as a short circuit in the transmission line between the antenna and the receiver input. An alternative arrangement is to use a protective diode and series resistance in the input stage of the receiver. The rf power supplied to the transmission line when the transmitter is on causes the diode to conduct and places a shunt across the receiver input. If some signal does leak through to the grid, the series resistor acts as a limiter, the flow of grid current developing a high cutoff bias, effectively blocking signal entrance into the receiver.

Two-tone test signal

One common method used to adjust single-sideband transmitters is to use a two-tone input signal and oscillographic display. In the two-tone test procedure, two pure sine waves are passed through the system to produce the overlapping sinusoidal pattern indicated in Fig. 7. Such a two-tone signal can be formed by applying a pure sine wave audio input (a 1,000-cycle tone, for example) and reinserting some of the carrier to the same amplitude as the single-sideband tone generated. In the case of the Eldico transmitter, a two-tone signal can be developed at the grid of the sideband-selection mixer. The 1,000-cycle audio tone can be applied to the phone-patch input of the audio amplifier. This would produce a single sideband separated by 1,000 cycles from the carrier at the sideband-selector stage grid. To form the two-tone test signal, the carrier amplitude is now increased until it has the same amplitude as the sideband signal.

The two-tone modulation envelope so formed can be picked up with a coupling loop at the output of the transmitter and conveyed directly to the vertical deflection plates of a test oscilloscope. If the two-tone signal is not distorted with the transmitter operated at rated output, it indicates that the linearity of the system is good. When the two-tone sine waves are compressed or misshapen there are nonlinearity defects in the transmitter.

T-R switching

In single-sideband transmission systems, it is often convenient to use the same antenna for transmission and reception. The common form of antenna switching relay can be employed. However (and particularly in the case of VOX operation), some form of automatic switching is preferable. A simple TR arrangement as shown in Fig. 6 uses a neon bulb or some form of rectifier to shunt or bias off the input stages of the receiver when the transmitter is in operation. In a neon-lamp circuit, the transmitter output is of sufficient amplitude to ignite the bulb. Consequently, it acts as a short circuit in the transmission line between the antenna and the receiver input. An alternative arrangement is to use a protective diode and series resistance in the input stage of the receiver. The rf power supplied to the transmission line when the transmitter is on causes the diode to conduct and places a shunt across the receiver input. If some signal does leak through to the grid, the series resistor acts as a limiter, the flow of grid current developing a high cutoff bias, effectively blocking signal entrance into the receiver.

Two-tone test signal

One common method used to adjust single-sideband transmitters is to use a two-tone input signal and oscillographic display. In the two-tone test procedure, two pure sine waves are passed through the system to produce the overlapping sinusoidal pattern indicated in Fig. 7. Such a two-tone signal can be formed by applying a pure sine wave audio input (a 1,000-cycle tone, for example) and reinserting some of the carrier to the same amplitude as the single-sideband tone generated. In the case of the Eldico transmitter, a two-tone signal can be developed at the grid of the sideband-selection mixer. The 1,000-cycle audio tone can be applied to the phone-patch input of the audio amplifier. This would produce a single sideband separated by 1,000 cycles from the carrier at the sideband-selector stage grid. To form the two-tone test signal, the carrier amplitude is now increased until it has the same amplitude as the sideband signal.

The two-tone modulation envelope so formed can be picked up with a coupling loop at the output of the transmitter and conveyed directly to the vertical deflection plates of a test oscilloscope. If the two-tone signal is not distorted with the transmitter operated at rated output, it indicates that the linearity of the system is good. When the two-tone sine waves are compressed or misshapen there are nonlinearity defects in the transmitter.

T-R switching

In single-sideband transmission systems, it is often convenient to use the same antenna for transmission and reception. The common form of antenna switching relay can be employed. However (and particularly in the case of VOX operation), some form of automatic switching is preferable. A simple TR arrangement as shown in Fig. 6 uses a neon bulb or some form of rectifier to shunt or bias off the input stages of the receiver when the transmitter is in operation. In a neon-lamp circuit, the transmitter output is of sufficient amplitude to ignite the bulb. Consequently, it acts as a short circuit in the transmission line between the antenna and the receiver input. An alternative arrangement is to use a protective diode and series resistance in the input stage of the receiver. The rf power supplied to the transmission line when the transmitter is on causes the diode to conduct and places a shunt across the receiver input. If some signal does leak through to the grid, the series resistor acts as a limiter, the flow of grid current developing a high cutoff bias, effectively blocking signal entrance into the receiver.

Two-tone test signal

One common method used to adjust single-sideband transmitters is to use a two-tone input signal and oscillographic display. In the two-tone test procedure, two pure sine waves are passed through the system to produce the overlapping sinusoidal pattern indicated in Fig. 7. Such a two-tone signal can be formed by applying a pure sine wave audio input (a 1,000-cycle tone, for example) and reinserting some of the carrier to the same amplitude as the single-sideband tone generated. In the case of the Eldico transmitter, a two-tone signal can be developed at the grid of the sideband-selection mixer. The 1,000-cycle audio tone can be applied to the phone-patch input of the audio amplifier. This would produce a single sideband separated by 1,000 cycles from the carrier at the sideband-selector stage grid. To form the two-tone test signal, the carrier amplitude is now increased until it has the same amplitude as the sideband signal.

The two-tone modulation envelope so formed can be picked up with a coupling loop at the output of the transmitter and conveyed directly to the vertical deflection plates of a test oscilloscope. If the two-tone signal is not distorted with the transmitter operated at rated output, it indicates that the linearity of the system is good. When the two-tone sine waves are compressed or misshapen there are nonlinearity defects in the transmitter.

T-R switching

In single-sideband transmission systems, it is often convenient to use the same antenna for transmission and reception. The common form of antenna switching relay can be employed. However (and particularly in the case of VOX operation), some form of automatic switching is preferable. A simple TR arrangement as shown in Fig. 6 uses a neon bulb or some form of rectifier to shunt or bias off the input stages of the receiver when the transmitter is in operation. In a neon-lamp circuit, the transmitter output is of sufficient amplitude to ignite the bulb. Consequently, it acts as a short circuit in the transmission line between the antenna and the receiver input. An alternative arrangement is to use a protective diode and series resistance in the input stage of the receiver. The rf power supplied to the transmission line when the transmitter is on causes the diode to conduct and places a shunt across the receiver input. If some signal does leak through to the grid, the series resistor acts as a limiter, the flow of grid current developing a high cutoff bias, effectively blocking signal entrance into the receiver.

Two-tone test signal

One common method used to adjust single-sideband transmitters is to use a two-tone input signal and oscillographic display. In the two-tone test procedure, two pure sine waves are passed through the system to produce the overlapping sinusoidal pattern indicated in Fig. 7. Such a two-tone signal can be formed by applying a pure sine wave audio input (a 1,000-cycle tone, for example) and reinserting some of the carrier to the same amplitude as the single-sideband tone generated. In the case of the Eldico transmitter, a two-tone signal can be developed at the grid of the sideband-selection mixer. The 1,000-cycle audio tone can be applied to the phone-patch input of the audio amplifier. This would produce a single sideband separated by 1,000 cycles from the carrier at the sideband-selector stage grid. To form the two-tone test signal, the carrier amplitude is now increased until it has the same amplitude as the sideband signal.

The two-tone modulation envelope so formed can be picked up with a coupling loop at the output of the transmitter and conveyed directly to the vertical deflection plates of a test oscilloscope. If the two-tone signal is not distorted with the transmitter operated at rated output, it indicates that the linearity of the system is good. When the two-tone sine waves are compressed or misshapen there are nonlinearity defects in the transmitter.

T-R switching

In single-sideband transmission systems, it is often convenient to use the same antenna for transmission and reception. The common form of antenna switching relay can be employed. However (and particularly in the case of VOX operation), some form of automatic switching is preferable. A simple TR arrangement as shown in Fig. 6 uses a neon bulb or some form of rectifier to shunt or bias off the input stages of the receiver when the transmitter is in operation. In a neon-lamp circuit, the transmitter output is of sufficient amplitude to ignite the bulb. Consequently, it acts as a short circuit in the transmission line between the antenna and the receiver input. An alternative arrangement is to use a protective diode and series resistance in the input stage of the receiver. The rf power supplied to the transmission line when the transmitter is on causes the diode to conduct and places a shunt across the receiver input. If some signal does leak through to the grid, the series resistor acts as a limiter, the flow of grid current developing a high cutoff bias, effectively blocking signal entrance into the receiver.

Two-tone test signal

One common method used to adjust single-sideband transmitters is to use a two-tone input signal and oscillographic display. In the two-tone test procedure, two pure sine waves are passed through the system to produce the overlapping sinusoidal pattern indicated in Fig. 7. Such a two-tone signal can be formed by applying a pure sine wave audio input (a 1,000-cycle tone, for example) and reinserting some of the carrier to the same amplitude as the single-sideband tone generated. In the case of the Eldico transmitter, a two-tone signal can be developed at the grid of the sideband-selection mixer. The 1,000-cycle audio tone can be applied to the phone-patch input of the audio amplifier. This would produce a single sideband separated by 1,000 cycles from the carrier at the sideband-selector stage grid. To form the two-tone test signal, the carrier amplitude is now increased until it has the same amplitude as the sideband signal.

The two-tone modulation envelope so formed can be picked up with a coupling loop at the output of the transmitter and conveyed directly to the vertical deflection plates of a test oscilloscope. If the two-tone signal is not distorted with the transmitter operated at rated output, it indicates that the linearity of the system is good. When the two-tone sine waves are compressed or misshapen there are nonlinearity defects in the transmitter.
"little handful"

CITIZENS-BAND TRANSCEIVER

Many readers were interested in the Citizens-band transceiver described in October, 1959. This low-power set is completely transistorized and remarkably efficient. However, any home-built crystal oscillator may be off frequency because of the crystal, the circuit or the tuning. Since tolerance is only .005% in the Citizens band, it was recommended that a licensed radio technician make the necessary frequency adjustments and tests. Now the FCC requires that the oscillator be a ready-built unit or a manufacturer’s kit. Home-built units are out! [FCC Rules & Regulations, Part 19.71 (c.).]

A new rf unit made by International Crystal Manufacturing Co. solves this problem. Known as the TRT-1, it combines a crystal oscillator and an rf amplifier. The unit comes completely wired and is factory-tuned to your specific channel (or in the 10-meter ham band, if desired). Its oscillator coil is precisely tuned and sealed to maintain accurate frequency. This stage must not be tampered with.

The TRT-1 uses crystals with a .0025% tolerance! Compare this with .005% crystals which leave no room for circuit and tuning errors.

A compact Citizens-band transceiver based on the TRT-1 has been constructed, tested and found satisfactory. The set consists of the TRT-1, audio amplifier, battery, speaker and antenna. A two-position spring-return switch is normally in the receive position. Depressing a lever type knob switches the unit to transmit. This energizes the TRT-1, changes the amplifier into a modulator and connects the speaker as a microphone. Fig. 1 is a block diagram of the transceiver.

Tests showed that the compact unit provides dependable two-way communications over a line-of-sight range up to ½ mile. On occasion, a greater range is possible but cannot be counted on. The printed-circuit transmitter insures frequency stability and meets FCC requirements.

The detector and audio stages (Fig. 2-a) are assembled on a 3¾ x 2½-

Transistors and miniature parts make possible the small size of this portable unit.

Fig. 1—Block diagram of the transceiver. Fourth section of switch, not shown, cuts off power to receiver when transmitting.
The circuit of the transmitter is an assembled, ready-to-use unit; (upper right corner)—location of major parts on oscillator-rf circuit board.

Fig. 2-a—Circuit of the transmitter. Note that the transmitter is an assembled, ready-to-use unit; (upper right corner)—location of major parts on oscillator-rf circuit board.

inch perforated board. There is a cut-out for the rear of the speaker. This unit can be tested as a receiver before being put into the metal box.

R1, the Superregen control, is set only once, so it is not a panel adjustment. Volume control R5, a screwdriver adjustment through the panel, controls amplifier gain. Be sure it is set below the point where the modulator distorts or overloads during transmission, or where the receiver howls.

Coil L consists of 15 turns of No. 28 enameled wire on a 1/4-inch slug-tuned core. This is not critical since C4 does the actual tuning. It has a screwdriver setting. Or you can use a conventional knob-tuned capacitor for C4.

T1 is an Argonne AR-104 transformer with an added winding. To make the new winding, remove the mounting bracket and core by prying or knocking out laminations one at a time. Also remove some insulating paper to make room. Then wind on about 40 turns of No. 38 enameled wire. Next, replace the core and bracket. Don't worry if one or two laminations don't seem to go back on when you are finished.

Note the voltage divider across the

AUGUST, 1960
new winding (Fig. 2). It reduces the signal from the microphone (speaker). If the signal is weak (modulation is low), connect terminal 9 on the rotary switch (Fig. 2) directly to the upper end of the new winding rather than the top.

With the receiver performing correctly, you will hear a loud hiss from the speaker. This noise is reduced when a signal comes in.

The transmitter

The TRT-1 strip measures 2½ x 1½ inches. Its circuit is shown in Fig. 2. Two changes (shown as dotted lines) were made.

Antenna terminal A1 is not used. In its place, I added a 10-µf capacitor directly to V55's collector and used A2 as the antenna terminal. This gave me a higher output from my 3-foot whip antenna. If your antenna is much longer, A1 will work better and you won't need the capacitor and A2. Tests show no perceptible frequency change when A2 is used instead of A1.

A 470-ohm resistor is added to reduce voltage to the oscillator. I use 10 volts (two 5-volt batteries in series). The resistor reduces oscillator voltage to 0 (the value specified by the manufacturer).

The amplifier's slug-tuned coil should be adjusted for maximum output (with antenna connected) with the aid of a field-strength meter. Don't touch the oscillator coil; it has been set at the factory. Fig. 2-b shows the parts layout and terminal arrangement for the TRT-1.

The three-plate, two-position rotary switch is mounted on the side of the metal box. It is normally in receive position, held there by a spring return. Depressing the knob rotates the switch to its transmit position. The switch is mounted so leads to the amplifier, TRT-1 strip and speaker are kept short.

The transceiver case measures 6 x 4 x 2 inches. The antenna plugs into the banana jack mounted on top. A phono jack on the side of the transceiver is for an external power supply when the transceiver is used at home. This conserves battery life.

The unit has been tested under many conditions. When used to communicate with a second set at street level, it is effective for more than 1,000 feet. It can maintain contact with a mobile transceiver for at least 1½ mile. These distances hold over territory with few obstructions; not in cities, where effective range may be severely restricted (even for 5-watt base stations). In a suburban area, this transceiver produced a signal-strength reading of 86 in a communications receiver three or four blocks away.

Batteries last a long time, however, it is best to save them for outdoor work only. When used indoors I connect the set to a 9-volt power supply through phone jack J2.

Transistor-powered

FM Auto Radio

FM RADIO in the family car is rapidly moving out of the electronic curio class and is about to become a standard accessory. European FM-AM auto radios such as the Blaupunkt, Becker and Philips have been available and distributed in limited quantities. Tuners designed as accessories for the car's AM radio are made by Gonset (see "Converter Puts FM in Your Car," RADIO-ELECTRONICS, August, 1959), Bendix ("FM Tuner For Your Car," RADIO-ELECTRONICS, January, 1959), Kinematix Inc., Granco and a few other small manufacturers.

A universal type FM-only auto radio that can be installed in any automobile with a 12-volt negative-ground electrical system has just been introduced by Motorola. Called the FM-900, it is designed for underdash installation and operates from the car's AM radio antenna. It has connections for a rear-seat speaker and an FM-AM radio switch to permit operating the car's AM radio through a common 3.2-ohm speaker system.

The receiver has seven tubes, three transistors and a selenium rectifier. The line-up consists of a 12DT8 rf amplifier and converter, two 12A6G if amplifiers, two 12AU6 cascade limiters, a 12AL5 ratio detector, a 12AU7 af amplifier and driver and a pair of 2N176's in a push-pull output stage.

The receiver's front end is the popular one-tube type employing a 12DT8. The rf amplifier is a grounded-grid type whose low input impedance provides a good match for the antenna. This circuit also provides low-noise operation and effectively isolates the oscillator section from the antenna, thus minimizing radiation. The antenna connects through an L-C type high-pass filter that acts as an isolating network that prevents interaction between the receiver's input circuits. Arc voltage is tapped off the grid-leak resistor of the first limiter and applied to the rf amplifier grid to prevent overloading the converter.

The converter is an autodyne type using the remaining triode section of the 12DT8. The rf amplifier plate and converter grid circuits are slug-tuned. A special voltage-variable capacitor is used across the converter grid coil for automatic frequency control (afc). The value of this capacitor and the resulting oscillator frequency are controlled by the level of the de bias voltage derived from the ratio detector output.

The if system consists of two if amplifiers and two limiters using seven 10-7-mc tuned circuits. The limiters use grid-leak bias and low screen and plate voltages for good AM rejection. When the grid voltage rises above a predetermined level (limiting threshold), the grids draw current and increase the average negative grid bias. This limits the plate voltage swing so there is no corresponding increase in if output when the input signal exceeds the minimum value.

A ratio detector is used to increase the AM rejection beyond that provided by the dual limiters. The de component of the detector output is applied to the afc diode.

The audio amplifier uses a 12AU7 af amplifier and driver and class-B 2N176's in a push-pull output stage. Power output is 9 watts undistorted, 15 watts peak. A negative-feedback loop provides a response that rises in amplitude with increasing frequency. The arrangement is balanced so that with the standard FM de-emphasis, the overall response is flat from 50 to 10,000 cycles.

The circuit features a combination bass and treble control working in conjunction with a tapped volume control. At the extreme clockwise setting of the tone control, the response is flat at the low end and rises on the high end. Backing off approximately 15° produces a response curve with some bass boost. As the control setting is further reduced, the highs are attenuated with a further increase in bass boost.

The FM-900 has a built-in fader control for use with a dual-speaker system. An auxiliary switch is provided for switching the speaker or speakers to either the FM radio or the AM radio. The combination of switch and fader control makes possible a number of interesting speaker and radio combinations.
Regulated

low-voltage Power Supply

By LAWRENCE J. MURPHY

BOTH silicon and Zener diodes have characteristics that make them very useful in many practical circuits. Regulated power supplies with voltage and current ranges suitable for most transistor circuits are easily designed with such diodes.

In the very near future, diodes will be used widely in every phase of radio, television and electronic design. They have completely changed concepts of dc power supply design. It had previously been impractical in many cases to use voltage multiplier circuits because of filament power requirements. Semiconductor diodes completely solve that problem. They eliminate the need for power transformers and rectifier tubes. Diode rectifiers operate efficiently, keep cool and lend themselves to compact, lightweight designs. These characteristics should lead to their use in all types of electronic equipment.

The simplest single-phase low-voltage regulated power supply (see diagram) requires a minimum of diodes for rectification and regulation. Since the rectifier in this circuit conducts only when the upper ac input terminal is positive, the first filter capacitor, C3, is charged only once during each cycle of the supply voltage. The same thing is true when the filter capacitor C4, which charges only during the negative portion of the cycle. The ripple frequency, therefore, is equal to the supply voltage frequency. When RECT 1 conducts during the half-cycle the upper ac terminal is positive, filter capacitor C3 is charged instantaneously to the peak of the ac input voltage (less the conducting voltage drop through the diode) and maintains the dc voltage during the negative cycle.

R1 (R2) minimizes the large surge currents in half-wave circuits. Current flowing through R1 causes a voltage drop which is greatest when the surge current reaches its peak and which assumes a steady value when, after the first few cycles, the capacitors become fully charged. Resistor R1 also acts as a fuse and protects relatively expensive components against a short circuit across the load.

Unusually low values were used for C1 and C2 so that their reactance could be used to drop the voltage fed to the rectifiers. Do not use larger values without increasing the voltage ratings of C3, C4, C5 and C6 and selecting Zener diodes with a higher dissipation rating.

The functions of RECT 2, R2, C4 and C6 in the negative section of the rectifier are the same as those of the positive section.

Voltage regulation is provided by Zener diodes D1 and D2. These are connected across the power supply's load. This combination is fed from the unregulated supply voltage, E1, through series dropping resistors R3 and R4. The flat voltage characteristic of the Zener holds the load voltage essentially constant on the load current or supply voltage changes. A change in load current results in a corresponding change in Zener voltage. Therefore, the voltage drop across resistors R3 and R4 remains unchanged with variations in load current. A change in input voltage E1 produces a corresponding change in Zener voltage which causes the change in voltage drop across resistor R3 and R4 necessary to cancel the change in input voltage, thus holding the load voltage constant.

Characteristics of the supply are:

Voltage Range
Input: 80–120 ac
Output: ±22 volts, can be increased or decreased with selection of Zener diodes for required voltage.

Current Range
Maximum set by Zener diode ratings. Can be increased by using high-current-capacity diodes.

Voltage Regulation: ±0.5%

Advantages
A low-cost transformerless power supply.

Reference

Circuit of the regulated supply.

*Engineer of Shops, Western Electric Co., N.Y.C.

AUGUST, 1960
Introduction to ULTRASONICS

Sound waves, too high in frequency for the human ears to hear, are vital to modern industry. They are used to shake, break, weld, boil, cut, grind and clean.

By TOM JASKI

ELECTRONICS has given modern industry one of the most versatile and most powerful tools invented by man. It slams molecules of matter against each other to shake, break, weld, boil, cut, grind and clean. It detects minute flaws or measures the thickness of an ultrathin sheet of steel with extreme precision. It combines solids and liquids which nature had never intended as mixtures. It kills germs, cuts through brain tissue with great precision, sets off burglar alarms and controls television sets. All this with but one tool, ultrasonic waves.

We have mentioned only a few of its applications. The future will bring many others, including amplification, detection and communication that will stagger the imagination.

What are ultrasonic waves? They are waves like sound waves that cause periodic rarification and densification.
Ultrasonic

Basic circuit for an ultrasonic thickness gauge.

we identify in a very limited range as sound, but they are beyond the range of sound—beyond the normal range of human hearing. Any soundlike wave above 20,000 cycles qualifies as ultrasonics, including vibrations up to a frequency of 25,000,000,000 cycles per second (25 kHz) in solid material and liquids!

Experiments with ultrasonics have been carried out for a long time. The versatile and fantastic genius Sir Francis Galton invented one of the first useful tools for ultrasonic experiments 100 years ago. He made a Galton whistle, now better known as a dog whistle. It produces sound waves above human hearing which a dog can perceive. Of course nature preceded us in our endeavors as usual and provided bats with an ultrasonic “radar” system so accurate that they can fly in the dark between thin wires strung only a few inches apart without ever touching them!

How is this tool used in industry? Let us first look into why it is such a powerful tool. Matter, in spite of what our senses tell us, is mostly space. The molecules of even the hardest steel are separated by enormous distances compared to the size of the molecules. And in this space the molecules are in constant random motion. When we heat a substance, this motion increases, and the hotter we make it the more the molecules move. If we manage to push some of these molecules around, they will in turn push on other molecules. It is this transferred push that allows a sound wave to travel through a substance. The distance between molecules is shorter for solids than for air and the chance of the molecules colliding with each other is much greater. This explains why sound travels faster through solids than liquids and faster through liquids than gases. If we find a frequency which is a submultiple of the natural frequency of the molecules of the material and shake them up with it, there is a resonance. The molecules are flung together in some places and torn apart in others. This is called cavitation. If you have ever seen ultrasonics impinging on a water bath, you may remember the violent action it evokes!

This wild shaking of molecules can be used in many ways. If we want to mix different molecules, we just shake them together in lumps and they are soon intermingled thoroughly. This is emulsification. If the molecules tend to stick together in clusters and we want to spread them evenly through a solution, we shake them and call the process homogenizing. If we use an abrasive powder and slam it fast and hard against a piece of metal, again and again, it eventually chews through the hardest surface. This is used in ultrasonic grinding and machining. In similar ways we use ultrasonics for cold welding, cleaning, foaming beer and what have you.

Gauging and measurement is a little different. When the moving molecules in a dense piece of matter reach the end of that material and find a vacuum or just air, few of them find gas molecules to push so they bounce back against other molecules in the solid and start a wave back from the bound-

Ultrasonic gauge tests thickness of nose cones for Nike-Hercules missiles.

Ultrasonic setup for cleaning miscellaneous metal parts.

Cleaning small watch parts with ultrasonics.
FLUID AMPLIFIER

A TINY nonelectronic amplifying device—it measures about 3/4 inch across and .003 inch deep—has been announced by the Army's Diamond Ordnance Fuze Laboratory. Three scientists working together developed the unit which uses either liquid or gas under pressure as the source of power and operates at frequencies up to 20 kc.

The basic principle of the device is simple (Fig. 1). Liquid or gas under pressure is fed to the power jet input. A power-pressure stream fed through either the right or left control jet directs the power jet to either the right or left output. Since the power stream is controlled by a much lower powered jet, the device is an amplifier.

When properly arranged, a simple fluid multivibrator can be made (Fig. 2). Here, the power jet input is at A. A control jet (B) directs the power jet to the right (if the control jet was at C the power jet would be deflected to the left). The fluid (or gas) flows around back to the input. Now control is switched to C and the jet moves around to the left. Periodically switching control jets produces a flow at each output in the best multivibrator fashion.

Intended uses for the device include powering pistons and air motors. (Audio amplifiers for liquid noise were not foreseen in the near future.) To send signals over a distance, pressure switches would convert fluid pressure outputs into electric impulses.
Infrared in Industry

By BARRON KEMP

Every object whose temperature is above absolute zero (approximately -273°C) radiates energy in all wavelengths of the electromagnetic spectrum. Most of this radiation is in the infrared portion. Thus, every object from heavenly bodies to human ones is a natural radiator of invisible infrared energy.

Infrared is the portion of the electromagnetic spectrum starting at the deep red and extending to the microwave radar region. It is measured in terms of a wavelength unit—the micron—which is one-millionth of a meter; symbolized by the Greek letter µ (mu). The infrared energy emitted by an object is radiant power which may be expressed in lumens, lumen-seconds, watts, ergs or any of these quantities per unit area of radiating surface.

The infrared spectrum

The visible portion of the electromagnetic spectrum starts with the violet (about 0.4 µ) and extends to the deep red (about 0.75 µ), which is the lower limit of the eye’s sensitivity. Infrared energy starts at the deep red (hence its name—“beyond the red”), extending from about 0.75 to about 1,000 µ. Infrared thus bridges the gap between visible light and the microwaves used for high-definition radar; from about 500,000,000 down to 1,000,000 mc.

The infrared spectrum is divided into three regions (Fig. 1). The near infrared is just beyond the long wavelength threshold of the human eye (about 0.75 µ) and extends to about 3.0 µ. The intermediate infrared region starts at about 3.0 and extends to about 30 µ; the far infrared, from about 30 to 1,000 µ, completes the spectrum.

Infrared characteristics

Some of the characteristics of infrared are like those of visible light; others more closely resemble radar waves. Parabolic mirrors and lenses can be used to collect and focus infrared energy (as with visible light); yet infrared radiation passes through materials—such as silicon and germanium—which are opaque to visible light.

The radiation emitted by an object is directly related to its temperature. All substances are composed of atoms whose electrons are constantly undergoing energy changes due to thermal action. These energy changes generate the radiated electromagnetic energy. Radiation characteristics from several sources are shown in Fig. 1. This chart shows that the sun’s 2,500°C radiation peaks at approximately 0.5 µ. Another significant peak is that of bright red heat (about 1,000°C), a temperature just a little higher than that of a jet exhaust. Boiling water (100°C) has a peak at 7.8 µ. Finally, room temperature (20°C) peaks at about 10 µ.

Infrared energy should not be confused with the transfer of thermal energy by conduction or convection. Thermal transfer requires a physical medium, such as air, through which the heat can travel; infrared propagates through a vacuum as well.

Infrared radiation is sometimes incorrectly called “heat radiation” because all warm objects emit the radiation and objects which absorb the radiation are warmed. A notable example of this is in baking or toasting bread. However, infrared radiation itself is not “heat.”

Black-body radiation

In their simplest form, the laws predicting infrared characteristics are written for a “black body.” This is defined as an object which would, if it existed, absorb all and reflect none of the radiation falling upon it. Such a black body would, when illuminated, appear perfectly black and would be invisible except when its outline might be revealed by obscuring an object beyond it.

The rate of emissivity of radiant
Infrared camera made by Barnes Engineering, Stamford, Conn. It can measure temperatures from remote position, or take "heat" pictures of radiating object.

energy from a black body is expressed by the Stefan-Boltzmann law. The distribution of the radiant energy is described by Wien's displacement law. Black-body radiator (perfect emitters which obey these laws) have the spectral distribution shown in Fig. 2. The emissivity of a black body is unity (1). Other bodies (gray bodies) which do not have this perfect quality have emissivities less than 1. Gray bodies obey the same theoretical laws as black bodies, but energy radiated is proportionately less.

Emissivity is the ratio of the radiation emitted by an object to the radiation emitted by a black-body radiator at the same temperature and under similar conditions. The emissivity may be expressed for the total radiation of all wavelengths (total emissivity), as a function of wavelength (spectral emissivity) or for some very narrow band of wavelengths (monochromatic emissivity).

Wien's displacement law states that the peak wavelength varies inversely as the absolute temperature of the radiating object. The wavelength (at which peak radiation occurs) is equal to a constant (k) divided by the absolute temperature of the object. Absolute temperature equals the Celsius (Centigrade) temperature plus 273. The constant (k) for a black body has a value of 2.900. This constant has other values for various gray bodies.

The Stefan-Boltzmann law states that the radiance (total energy radiated per unit area of radiating surface) is proportional to the product of the emissivity and the fourth power of the absolute temperature. The total radiation from an object is equal to the product of its area (in square centimeters), the fourth power of the absolute temperature, a constant which is equal to 5.672 x 10^-8 and the emissivity.

Infrared systems

Infrared systems are classified as passive where the natural radiation of an object is utilized. They are called active when the object must be illuminated by an external source of infrared energy (such as a searchlight). The infrared system may also be classified according to the type of detecting element as thermal or non-image-forming, when the change in temperature of the detector is utilized (such as the thermocouple or thermistor), or photo or image-forming when a photograph of some type results. Infrared photographic film or an infrared television camera tube may be used.

The simplest infrared system is the passive one which detects an object by its (the object's) own temperature. The basic units of such a system are the source of radiant energy (the object), the medium through which the infrared is transmitted (generally air), the optic (and scanning) system, the detector and the signal processing and presentation equipment (Fig. 3).

The radiation in a passive infrared system is generated by the object to be detected. The optical system may be either a lens or mirror arrangement for directing the radiation onto the detector element that converts the infrared radiation into an electrical signal. Unwanted background radiation is also received, but usually the target (or prime radiator) and background differ in spectral properties (wavelength) so that a filter can be placed in front of the detector to block undesired radiation. This method is used to enhance the ratio between primary radiation and background. The electrical output of the infrared detector is amplified and may be presented on any standard indicator or used to operate control circuits.

The active infrared system is similar to the passive system just described except that a source of radiation is provided to illuminate the target. The reflected radiation is received by the detector the same as in the passive system (Fig. 4).

An important use of the active infrared system is its application to communications. An infrared source is modulated by voice or code and the radiation transmitted through suitable optics and filters to remove the visible light. The receiver consists of a collecting optical system and an infrared-sensitive detecting element upon which the modulated radiation is focused. The signal is then amplified and fed either to a

Fig. 2—Radiation curves for black bodies of different temperatures.
Grid-Current Limiting Resistors

By DELROY D. DARLING

To most TV technicians "anode" is the name an industrial technician gives to the plate of tube. However, anode is a correct name for any positive element. If you make a grid positive with respect to the cathode, it becomes an anode, and electrons will flow to it just as if it were the plate.

Grid current is nothing new to a TV man. It is used to develop bias, limiting action, etc. But in most radio and TV equipment grid current is so small it does no harm to the tube. In industrial controls, however, thyratrons often have their grids connected to sources that can supply considerable current. Something has to be done to keep the tube from passing enough grid current to destroy itself. The anode circuit of a 2050 thyratron, for example, can pass more than 100 ma continuously, but the control grid can't handle more than about 10 or 15 ma without damage. The second or "shield" grid has similar limitations.

Fig. 1 shows a simple photocell circuit in which grid current can be a real problem. A negative bias on the shield (grid 2) blocks tube conduction unless the phototube conducts (when light strikes it), allowing the control grid to go positive. Since the anode is supplied with 60-cycle ac, it is only necessary to make the shield grid negative when the anode is positive. (The tube can't fire on the negative half cycles.) For simplicity, ac is used on the shield grid, 180° out of phase with the anode supply. This means that half the time the shield is negative, which is OK; but the other half of the time it is positive, and grid current can flow.

The simplest way to control this grid current is with a series limiting resistor, as shown in Fig. 1. The value isn't critical; 20,000 ohms to 100,000 ohms will do. When the shield grid goes negative, no grid current will flow.

Fig. 2-a—Waveform of anode supply, b—waveform of shield-grid supply, c—actual voltage appearing on shield grid with series resistor.

Applications are appearing in navigation and automatic-landing systems for aircraft, weather research and numerous outer-space projects.

Other applications for infrared are found in photography, aerial mapping, communications and control techniques. There are, of course, many applications of infrared energy in heating, cooking and therapeutic treatment where the heating effects alone—due to absorbing the radiant energy—are important. From this we get infrared cooking, paint drying and the blistering off of tomato skins as a substitute for mechanical peeling.

Infrared energy is in use all around us. Infrared techniques have proved their worth in many industrial applications and are considered indispensable in many others. The possibilities of its application are limited only by the imagination and skill of the user.

Research and development projects are constantly working to advance the state of infrared technology as infrared takes its place among the tools of science. Whatever may be the ultimate goal of infrared, there is no doubt that it will play a prominent role in industrial electronics.

Fig. 5—An infrared communications system.

Applications are appearing in navigation and automatic-landing systems for aircraft, weather research and numerous outer-space projects.

Other applications for infrared are found in photography, aerial mapping, communications and control techniques. There are, of course, many applications of infrared energy in heating, cooking and therapeutic treatment where the heating effects alone—due to absorbing the radiant energy—are important. From this we get infrared cooking, paint drying and the blistering off of tomato skins as a substitute for mechanical peeling.

Infrared energy is in use all around us. Infrared techniques have proved their worth in many industrial applications and are considered indispensable in many others. The possibilities of its application are limited only by the imagination and skill of the user.

Research and development projects are constantly working to advance the state of infrared technology as infrared takes its place among the tools of science. Whatever may be the ultimate goal of infrared, there is no doubt that it will play a prominent role in industrial electronics.
MISSILES take the form of either aircraft flying within the earth's atmosphere or rockets propelled within or outside the earth's atmosphere. Turbo- or ram-jet aircraft operating as missiles, are stabilized and guided by adjusting the position of the flight-control surfaces—rudder, elevator and ailerons. The three motions of a missile which the flight surfaces can affect are known as roll (when one wing becomes alternately higher and lower than the other), pitch (alternate nose-up, nose-down oscillations) and yaw (deviation to right and left of correct compass course (Fig. 1). In addition, the direction of the propelling thrust may be varied to change the course of rocket-driven missiles. This method is particularly applicable when rocket-powered missiles are traveling outside of the earth's atmosphere.

The direction-controlling elements of a missile are usually moved by either fluid-driven or air-driven pistonlike devices. In a typical hydraulic system, oil is the fluid and is brought to the required pressure by a hydraulic pump. A valve whose position is controlled by the amplified output of the guidance channel determines the direction and amount of fluid flow. This driving medium adjusts the position of the actuator piston, which is linked to and regulates the movement of the control element—whether it be the thrust control of a rocket or the rudder (or other control surface) of a jet aircraft (Fig. 2).

Because of the high speeds of most missiles, the actuators must respond very rapidly to any corrective impulses as required. The guidance signals must be amplified sufficiently to insure positive servo-valve operation ahead of the actuators.

Stability control
The surface and thrust controls of pilotless aircraft and rockets must provide for flight stability as well as guidance. In other words, the missile can be guided into the desired trajectory only if it is in stable flight, not wobbling on and off course.

Before considering guidance-signal sources, let us examine the key component for achieving flight stabilization, the gyroscope. Since the early 1900's, engineers have been using the gyroscope to stabilize and direct the motion of torpedoes, ships and aircraft. Without the gyroscope, modern guided missiles would not exist in their present form.
form, if at all. Gyroscopes placed about the missile flight axes can help furnish signals to restore the missile to stable flight in its original direction.

Two basic characteristics of the gyroscope make it a very important tool in missile stabilization and guidance. One is its axial rigidity in space; the other is its tendency to precess when subjected to external forces.

When a gyro rotor is brought up to speed and aligned in a given direction in space, it can be used as a flight-axis reference for an aircraft or missile. By “picking signals” off the gimbals in which the rotor is mounted and amplifying and passing them through appropriate servo and actuator arrangements, the flight control surfaces can be moved to restore the missile to its desired course.

Another important consideration, the rate at which the missile is deviating from its course, can be measured by the precession of a rate gyro and also fed into the control system. A typical combination of a position gyro and a rate gyro to control the roll of a missile is shown in Fig. 3. Combinations of gyroscopes to provide flight stability around the three axes of flight motion have been known for some time as “autopilots.”

Guidance

Such autopilots can give the missile flight stability, but guidance signals must be fed from radio, radar, accelerometer, programmed or additional gyroscope sources to bring the missile into a desired flight path. Guidance systems vary somewhat, depending upon whether moving or fixed targets are being attacked. Typical moving targets are enemy aircraft, ships or tanks in motion. Fixed targets are cities, industrial centers and military installations.

A moving target presents a special problem. Information relative to its position, velocity and direction must be obtained and used to guide the missile to it. The faster the target moves the greater is the problem of catching it with an attacking missile. If several targets are to be intercepted at any given time, the problem becomes even more complex. A missile may strike close enough to a fixed target (with an atomic warhead) if it is simply aimed at the correct angle and given the necessary velocity. Just as with guns firing at moving targets, it is necessary to use a computer to determine the angle at which the missile should be aimed. Calculations must take into account the speed of the target and the factors affecting the missile’s direction and time of flight.

Whether inside the missile or outside, the computer is part of the automatic system (Fig. 4). In general, wherever a comparison must be made between the missile’s position and the course which it should follow to intercept its target, a computer is a necessary system element.

Both analog and digital computers are used in a wide variety of missile applications. The allowable weight and volume of the computer vs the required accuracy are determining factors in the choice of type.

Passive systems

The simplest type of guidance system—and probably the most foolproof one—can be realized in attacking targets which radiate some form of energy that the missile can sense. Such radiation might be sound, light or heat. If the target radiates enough energy, the guidance may be completely passive, using only a receiver of the radiation. As far as is known, no modern missile operates on sound or light radiated from the target, but excellent ones have been developed to home on the heat of aircraft engines (or other targets). Examples are the US Sidewinder and the British Firestreak which home on infrared energy.

Another type of passive guidance uses inertial navigation principles and has been applied successfully to ballistic missiles.

Active and semi-active guidance

Any guidance system which requires the radiation of energy, either from the missile or another source, to select and track the target is an active or semi-active type. If the target-tracking signal is radiated from the missile, the guidance is active, if it is radiated from a source outside of the missile the guidance is said to be semi-active. Semi-active guidance is most widely used by defensive missiles which, before they are launched, preferably track incoming aircraft from a surface point, such as from the ground or from a ship. Command guidance, beam-riding and semi-active homing are in this category.

The basic concept of command guidance is this: Directing or commanding signals are sent to the missile from a control point instructing it as to the course it must take to intercept the target. In one rather well known form, one ground radar system tracks the aircraft and another tracks the missile. Taking into account the speed and direction of both target and missile, a ground-based computer determines the corrections in the missile’s course to intercept the target. Commands can be sent to the missile over a separate radio channel or are modulated onto the missile-tracking radar and sent to the missile by that route. Certain versions of the Nike missile, designed to intercept high-flying aircraft over major populated or critical defense areas, are guided by a radar command system (Fig. 5).

Beam-riding guidance is another variation of the active technique. A
single radar beam tracks the target and the missile travels up this beam to intercept it. As some have said, it makes the radar beam lethal. After a beam-riding missile is launched, its first flight phase is controlled by its autopilot. Then it travels through a so-called collecting beam radiated from the ground and is brought under ground control. From this phase, its receiver picks up signals from the central guidance beam and it follows this narrow cone of radiated energy to the target. Actually, the ground (or shipboard) radar sweeps out a conical beam around the target. Radar-beam modulation permits the missile’s receiver to identify deviations of its course from the center of the conical scan. Signals developed within the missile as a result of any “off-course” modulation are fed to a computer which determines the corrections necessary to intercept the target (Fig. 6).

Homing methods

Both command and beam-riding guidance are semi-active systems. However, they are usually not specifically identified in this fashion. In another guidance method—homing (passive homing involving infrared seekers has already been mentioned), it is necessary to qualify the particular system as either active or semi-active. In active homing the missile carries the entire guidance system within itself. But, in semi-active homing, separate radar equipment tracks the target and is said to “illuminate” it and provide a reflected signal for the missile.

Since a complete radar system (transmitter and receiver) involves a substantial amount of equipment (even for short operational ranges), active homing has not been popular. Semi-active homing keeps equipment in the missile to a minimum just as in passive homing. Only the receiver and tracking antenna are required. It is an accepted guidance system for certain modern defense missiles.

The British Bloodhound, a semi-active homing missile, is one of the most widely used missiles produced outside of the USA. Made in England, it is used for defense against jet bombers by England, Sweden and Australia.

In operation, combined or separate early-warning and tactical-control radar pick up the target aircraft at some distance from the defense point. As the target approaches, a “target-illuminating” radar takes over the tracking and “illuminates” the incoming aircraft (Fig. 7).

Prior to missile launching, it provides accurate target position data to the launchers, so that the missile is pointed toward the target before launching. After launching, the missile’s receiver extracts yaw and pitch information from the reflected radar signal so that its antenna can be pointed at the target (and the missile’s wings moved to steer it into an interception course).

In the US, the Army missile known as the Hawk also depends upon semi-active homing. Its name is derived from “Homing All the Way Killer.” Its principal application is stated to be against high-speed, low-flying aircraft.

Ballistic missile control

The rocket exhaust of a long-range ballistic missile soon propels it beyond the earth’s atmosphere, so that wings and aerodynamic surfaces are of little value in controlling its flight path. The only practical means of exercising control (and guidance) is by controlling the direction of the rocket engine’s thrust. One system moves vanes in and out of the exhaust. Another moves a deflector ring—known as a “jetavator”—across the thrust stream.

However, a more widely used technique for large missiles, such as ICBM’s and IRBM’s uses one or more gimbaled engines. In this design, the entire combustion chamber of the rocket engine (with its exhaust nozzle) is moved in a gimbal mount to give the desired thrust direction. Small auxiliary thrust directors, called vernier engines, usually

An Air-Force Atlas InterContinental Ballistic Missile (ICBM) thundering aloft from its launching pad at Cape Canaveral, Fla.
supplement the main rocket engines. They are quite effective in controlling the roll of the missile as well as furnishing limited pitch and yaw corrections.

Ballistic missiles present a special problem when it comes to guidance—the target is not contacted by either self-generated or reflected radiation. Its position is established by geographic coordinates, and the missile's behavior is similar to that of a long range artillery shell. The principal difference is that the ballistic missile can be guided over a somewhat greater portion of its flight path than the shell. After the shell leaves the gun barrel, it receives no further guidance. However, the ballistic missile can be guided as long as there is enough fuel to power the rocket engines.

As mentioned above, long-range missiles are well beyond the earth's atmosphere (effectively) before their fuel is cut off and they begin their free fall to the target. By analogy, the guidance system for a ballistic missile establishes a hypothetical "gun-barrel" in space, which for long-range missiles, extends several hundred miles from the launching site.

The ballistic path

If a rocket is stabilized and launched in a vertical position, it will rise perpendicular to the earth's surface and fall back to a point near the launching site. It could be stabilized with an autopilot.

However, rockets with vertical trajectories are primarily for research purposes. Missiles must travel some distance from their launching site if they are to operate as military weapons. The missile must be tilted from the vertical position after it is launched.

One of the first practical applications of ballistic missiles was the historic German V-2. It was launched vertically and stabilized with an autopilot consisting of gyroscopes to sense yaw, pitch and roll deviations. But, one of the gyroscopes was processed in accordance with a timed program to tilt the missile along the pitch axis. Because it was tilted to the proper angle, the V-2 traveled approximately 200 miles from its launching site.

However, in addition to establishing the correct pitch angle of the ballistic missile, it is important to cut off the rocket thrust when an exact velocity is attained to insure a desired range. The range of a ballistic missile is determined by its direction and speed at the point of thrust cutoff. To determine the fuel cutoff point, it is necessary to measure the velocity at which the missile is traveling in its flight path. One method for doing this uses the Doppler effect. A small transponder in the missile can indicate the Doppler frequency shift to a ground station, from which a command signal can be sent to cut off the fuel at the desired missile velocity. In another method, an integrating accelerometer measures the missile's velocity and establishes the correct point for shutting off the rocket engine.

To be accurate, a ballistic missile must also be on course from a lateral or yaw viewpoint. Modern missiles employ combinations of radar and inertial guidance or inertial guidance alone to establish correct pitch and yaw angles as well as the correct point for thrust cutoff. A system using both radar and inertial techniques is known as radar-inertial guidance. The radar portion of the system operates like a command guidance type from ground to missile and adds computed corrections to supplement the accelerometer signals of the inertial portion. The goal of inertial guidance designers—to obtain sufficiently accurate information from the accelerometers, without radar tracking—has been realized for some systems.

Bibliography

HEATHKIT Presents 18 New Kits for

GO STEREO IN STYLE . . . WITH HEATHKIT QUALITY AND ECONOMY!

ECONOMY STEREO AM/FM TUNER KIT (AJ-10)
Full fidelity AM and FM reception, plus up-to-the-minute design features are yours at minimum cost with this new Heathkit stereo tuner. Features include: 2.5 uv. sensitivity for 20 db of quieting; individual flywheel tuning; separate magic-eye tuning indicators for AM and FM; AM bandwidth switch; 3-position (off-half-full) automatic frequency control (AFC); FM multiplex adapter output; built-in FM rod antenna; terminals for external AM and FM antennas, "AM," "STEREO" and "FM" function selector switch. 14 lbs.
AJ-10
$59.95
$6.00 dn., $6.00 mo.

HI-FI RATED 25/25 WATT STEREO AMPLIFIER KIT (AA-50)
In one handsome package, you get both stereo power and control, with a host of deluxe features. Hi-fi rated at 25 watts per stereo channel (50 watts monophonic), this new Heathkit design includes channel separation control . . . new mixed center speaker output . . . stereo reverse and balance controls . . . separate tone controls for each channel with ganged volume controls . . . five switch-selected inputs for each channel (stereo "mag. phono," tape head, three hi-level). Extra input for mono "mag. phono." Special outputs for tape recording. 30 lbs.
AA-50
$79.95
$8.00 dn., $8.00 mo.

FREE CATALOG
Send for your copy today! . . . describes over 150 Heathkit hi-fi, ham radio, test, marine and general products.

www.americanradiohistory.com
HEATHKIT®... FOR FLEXIBILITY and COMPATIBILITY!

ECONOMY STEREO PREAMPLIFIER KIT (AA-20)
A low-cost, versatile stereo preamplifier control center. Four inputs each channel accept magnetic cartridge, crystal or ceramic cartridge; and tuner, tape, TV, etc. Six position function switch gives flexible stereo or monophonic use. Features cathode follower outputs plus hi-level outputs for tape recorder drive, calibrated Baxandall-type tone controls for each channel, clutch-type volume controls, filament balance controls, and accessory AC sockets. Self-powered. Styled in black and gold. Shpg. wt. 8 lbs. $34.95 AA-20

PROFESSIONAL RATED
35/35 WATT BASIC AMPLIFIER KIT (AA-40)
Doubles as a superb dual 35 watt stereo amplifier or a full-fledged 70 watt monophonic amplifier. Features: mixed-channel center speaker output; individual level controls; "Stereo-Mono" switch (ties both amplifiers to one level control for monophonic use); dual outputs for 4, 8, 16 and 32 ohm speakers. Paralleling outputs for 70 watt monophonic use matches 2, 4, 8 and 16 ohm speakers. 41 lbs. $79.95 AA-40 $8.00 dn., $8.00 mo.

Now... a complete Mobile PA Sound System in easy-to-build, HEATHKIT® form!

MOBILE PA SOUND SYSTEM
Perfect for political campaigns, advertising, sporting events. The powerful amplifier operates from any 12-v. car battery. Features an all-transistor circuit; inputs for microphone and music source. Two channel mixing circuit "fades" auxiliary input when used with microphone supplied... lets you override music with voice without changing control settings. Outputs for 8 and 16 ohm speakers. Mounts easily under auto dash. Mobile PA Amplifier Kit (AA-80): 7 lbs... $39.95

COMMERCIAL SOUND SYSTEM (CSS-1): consists of AA-80 Amplifier, microphone; plywood car-top carrier; one 16 ohm, 15 watt outdoor speaker. 24 lbs... $84.95

COMMERCIAL SOUND SYSTEM (CSS-2): same as above except with 2 speakers. 30 lbs... $99.95

EXTRA HORN SPEAKERS (401-38): As described above, 6 lbs... $19.95

SAVE 50%... ON THE WORLD'S BEST QUALITY KITS!

www.americanradiohistory.com
CITIZENS BAND TRANSCEIVER KIT (GW-10 Series)
Superb 2-way Citizens Band communication! Superheterodyne receiver may be switched to crystal control or continuous tuning. Featured are an automatic "series gate" noise limiter, to minimize ignition interference, etc.; and adjustable squelch control to silence receiver during "standby." Press-to-talk microphone features a coil-cord connection to the transceiver. Transmitter is crystal controlled on any one of 23 assigned channel frequencies chosen. Order model GW-10A for 117 v. AC operation, and GW-10D for 6 or 12 v. DC operation; both have self-contained power supply. 11 lbs.

GW-10A (117 v. AC) or GW-10D (6 or 12 v. DC) $62.95 ea.

6 & 10 METER HAM TRANSCEIVER KITS
Combined crystal controlled transmitters and variable tuned receivers. Operate fixed or mobile. 10 lbs.

HW-19 (10 meters) $39.95 ea. (less XTAL)

HW-29 (6 meters)

3-BAND "MARINER" TRANSISTOR DIRECTION FINDER KIT (DF-3)
Priced far below pre-assembled units of comparable quality, the DF-3 includes such important features as: 9-transistor circuit; 6 flashlight battery power supply; pre-assembled, pre-aligned tuning section; new modern styling; rugged aluminum splash-proof cabinet. Covers broadcast band, beacon and aeronautical band, and marine-telephone band. Special "sense" antenna eliminates "double null" effect common in many direction finders. Circuit has high gain IF amplifier and audio output amplifier delivering up to 380 mw of audio power to the large 4" x 6" weatherproof speaker. 13 lbs.

DF-3 $99.95

TIME PAYMENTS!
Use Heath's convenient time payment plan ... only 10% down on orders of $55 or more.

EDUCATIONAL KIT
First of a series ... designed to teach, as you build, the basic "yardsticks" of electronics. Consists of kit and test-workbook. Finished vol-ohm-milliammeter has many uses. 4 lbs. EK-1 $19.95
MUTUAL CONDUCTANCE TUBE TESTER KIT (TT-1)
An impressive list of electronic and mechanical features make this tube tester one of the finest values in the electronics industry. Tests Gm (amplifiers) from 0 to 24,000 micromhos, Emission, Leakage, Grid Current (1⁄4 microampere sensitivity), Voltage Regulators (built-in variable DC power supply), Low Power Thyatron and Eye tubes. Features 300, 450 and 600 ma constant current heater supplies, Life Test, Hybrid Tube test, built-in switch-operated calibration circuit. Large, easy-to-meter. Constant tension, free rolling illuminated chart. Kit includes 7 wiring harnesses. Assembly skill of technician or higher recommended; assembly time, 40 hours average. Black leatherette case with white trim, nylon feet, removable top. A specialized tool of unusual value that will pay for itself many times over! 27 lbs. $134.95 (TT-1) ($13.50 dn., $12.00 mo.)

send today for Your FREE HEATHKIT® CATALOG
Over 150 items of hi-fi, marine, amateur, test and general equipment are illustrated and described in the complete Heathkit catalog.

WORLD-WIDE, ALL BAND RADIO RECEPTION
- Ceramic IF "Transfilters"
- Five Bands
- Flashlight battery power

10 TRANSISTOR "MOHICAN" GENERAL COVERAGE RECEIVER KIT
First kit of its kind uses ceramic IF "Transfilters." Covers 550 to 30 mc on 5 bands, with 5 separately calibrated bands to cover amateur frequencies (including 11 meter citizens band). Powered by 8 flashlight batteries. Built-in 54" whip antenna, tuning meter, headphone jack. (less batteries) (20 lbs.) GC-1 $109.95 $11.00 dn., $10.00 mo.

HEATH COMPANY, Benton Harbor 20, Michigan

Please send the following HEATHKITS:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MODEL NO.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ship via () Parcel Post () Express () COD () Best Way
() SEND MY FREE COPY OF YOUR COMPLETE CATALOG

Name __
Address __
City __ Zone ________ State ________
Dealer and export prices slightly higher.

www.americanradiohistory.com
NEW DEPARTURES in TUBES and SEMICONDUCTORS

By LARRY STECKLER
ASSOCIATE EDITOR

Right out of the laboratory are these new, interesting devices that will soon be common in modern electronics.

NEW and previously unheard-of tubes and semiconductor devices have been appearing in droves. Some you will see in this year’s TV receivers—square-faced picture tubes, a nine-pin miniature envelope designed to replace many octal type tubes, and an etched picture-tube face that stops faceplate reflections. Others fit industrial applications—gallium arsenide tunnel diodes, Hall-effect devices, a high-power electron gun for radar, a method of aluminizing low-anode-voltage cathode-ray tubes, and multi-headed transistors.

Reflection-free TV

From Corning Glass comes a bonded-faceplate 19-inch picture tube that halts faceplate reflections. This square-cornered tube with a bonded safety-glass face is used by Sylvania in their new line of TV receivers. It is a 114” deflection tube carrying the type number 19AFP4. (Similar tubes will probably be made in other sizes in the near future.) The faceplate is etched to form a prismatic surface that traps and diffuses light from outside sources. The etched surface has no noticeable effect on the picture as seen on the screen. It is just as bright and clear as that on a standard picture tube.

Distorted or blocked-out TV screens caused by such things as reflected room lights or a burst of sunlight through a venetian blind are prevented. The photo shows how effective the etched screen is.

The bonded faceplates on these new tubes have another advantage too. There is no air gap between the picture tube and the safety glass to gather dust. The one outside surface can be cleaned easily. There is no safety glass to remove to get at the face of the picture tube. Corning says the bonded-glass face is so hard that it will not be damaged by ordinary household abrasives—even if applied with steel wool!

Bantam tube replaces octals

A new kind of tube construction puts the elements that now fit inside an octal tube into a miniature nine-pin envelope. The new tube makes for easier design of printed circuits by reducing component congestion. Some of the first tubes to feature this new Sylvania-developed construction are:

The 17HC8—a medium-mu triode-pentode for use as a vertical deflection oscillator and amplifier in TV.

The 6EW7—a double triode, one section for use as a

Two TV sets that are identical in all but the picture tube show the effectiveness of the reflection-free tube face introduced by the Corning Glass Works. Corning’s new tube is on the right.

Sylvania’s 9-pin bantam tube and the octal type it supersedes.
Super-power electron gun. Intensity of electron beam is equivalent to concentration of 5 million 40-watt light bulbs.

vertical deflection oscillator, the other as a vertical deflection amplifier.
The 10EW7—identical to the 6EW7 except for its higher heater voltage requirement.

Aluminized low-voltage CRT's

Out of the laboratories of Thomas Electronics, Passaic, N.J., comes a development, using new processes, techniques and materials, that makes it possible to aluminize a cathode-ray tube that operates with anode potentials as low as 2 kv. Previously, they were aluminized only when operated at voltages greater than 5 or 6 kv.

Aluminized CRT's have several advantages over non-aluminized types. The main one is an increase in brightness—as much as 90%. The increased brightness makes it possible to reduce beam current. This reduces line width and therefore improves overall resolution.

In addition to precision oscilloscopes, aluminized tubes can be used for radar display screens and other systems that call for the ultimate in light output and screen stability. The new aluminizing techniques are, of course, applicable to TV picture tubes designed for use in transistor portable sets, where acceleration voltages are low.

Gallium arsenide tunnel diodes

Gallium arsenide is a little known and rarely used semiconductor material. The more common germanium and silicon are extensively used for transistors and rectifiers. They are elements and are therefore much easier to purify and use. But because of its unique properties for electronic components, better in some cases than either those of germanium or silicon, gallium arsenide has been under intensive investigation for some time.

The new aluminizing techniques that can therefore possible to reduce beam aluminized types. Previously, they were aluminized at 1960.

The main advantage of the 6EW7 is a greater than 90% increase of brightness which makes it possible to reduce beam current. This reduces line width and therefore improves overall resolution.

In addition to precision oscilloscopes, aluminized tubes can be used for radar display screens and other systems that call for the ultimate in light output and screen stability. The new aluminizing techniques are, of course, applicable to TV picture tubes designed for use in transistor portable sets, where acceleration voltages are low.

Multi-headed transistors

Electronic Transistors Corp., North Bergen, N.J., has announced that it has developed and is now manufacturing multi-headed transistors in an effort to reduce the size of transistor circuits.

The multi-headed transistor is a combination of any type or types of transistors. They can be put together in every variation and combination desired. Each multi-headed unit will contain the two individual transistors specified by the purchaser. The combination of individual transistors in the multi-headed package does not create any interference between transistors. The two units in the package are completely separate and do not contact each other.

1,000-ampere electron gun

A new electron gun that removes one of the basic obstacles to extending radar power and target detection has been
Only Pyramid offers you so much! Only Pyramid gives you highest quality capacitors plus so many "all new" extras.

THE VU-PAK
An entirely new way to package capacitors... clear plastic tubes, plainly labeled and packed with the highest quality electrolytic twist-mount capacitors. Each re-usable Vu-Pak comes with a blank label, ideal for storing small parts and tools on your bench or in your tool kit.

EXTRA OFFER!
Save 50 Vu-Pak labels and get the fabulous new Pyramid storage rack the Capac-o-mat, at tremendous savings from your authorized Pyramid distributor. The Capac-o-mat fits right on your shelf, is dust-free and holds 54 Vu-Paks.

JEWEL BOX
Handsome tan plastic, high impact cabinet with 9 drawers, contains 45 assorted Mylar-paper Gold Dip capacitors, type 151. Practical... convenient... for storage in your shop, or home. Actual value of the Jewel Box with 45 Gold Dip capacitors—$19.50, dealer net only $9.25.

Gold Dip capacitors are also available in Clear-Vu paks... 5 to a package. Find them on Pyramid's new Whirl-o-mat on your favorite parts distributor counter.

"GOLD STANDARD" 111 KIT
Clear lucite hinged box containing 75 Pyramid's popular assorted Gold Standard Mylar capacitors. You'll find so many uses for the Gold Standard 111 Kit. Actual value is $26.00, dealer net only $13.00.

515 LYTIK KIT
Hinged cover, clear lucite box with 15 assorted miniature low voltage electrolytic capacitors for transistorized circuit replacements, type MLV. This Kit is a constant companion to any busy serviceman. Actual value, $20.60, dealer net only $10.30.

END
SELECT THE BLONDER-TONGUE TV/FM SYSTEM DESIGNED TO BRING IN THE BEST RECEPTION IN YOUR AREA

NEW BLONDER-TONGUE ALL-CHANNEL TV/FM AMPLIFIER MODEL HAB

Provides high gain (23 dB ± 1 dB) on all VHF channels including the FM band. Ideal amplifier for home systems or pre-amplifier for large or small master systems. 69.50 list.

NEW BLONDER-TONGUE SINGLE-CHANNEL ANTENNA MOUNTED TV AMPLIFIER MODEL CB

Enclosed in a weather-proof housing, this versatile performer can be used in the home as a pre-amp or booster to increase signal strength for a single weak channel, or in conjunction with other CB amplifiers to make an economical and powerful multi-channel system. 17 dB gain: CH. 2-6; 15 dB, CH. 7-13. 52.50 list.

NEW BLONDER-TONGUE B-24 POW-R BOOSTER

Powerful booster or amplified coupler provides sharp, clear pictures on 1, 2 or more TV sets with only one antenna. 10 dB gain as 1-set booster, 5 dB gain per set as amplified 2-set coupler. No-loss 4-set distribution system with B-T A-104 4-set coupler. 24.95 list.

Available at parts distributors. For further information write Dept. RE-8

BLONDER-TONGUE LABORATORIES, INC.
9 Alling St., Newark 2, N. J.

- hi-fi components • UHF converters • master TV systems • industrial TV cameras • FM-AM radios

AUGUST, 1960

71
By S. J. SALVA

ONE of the biggest headaches in electronic work is having to break off in the middle of a job to figure values for parallel resistance or series capacitance. The calculator described here eliminates much of this pencil and paper work—thereby saving time and the aspirin supply.

The value of any two resistors in parallel or any two capacitors in series can be found by setting the first value on the left scale with the right indicator arm and the second value on the right scale with the left arm. The answer is read at the intersection of the two arms. By using standard multipliers, \(\times 10 \), \(\times 100 \), etc., the full range of values can be covered.

In Fig. 1, for example, to determine the value of an 800- and a 700-ohm resistor connected in parallel, we set the right arm to indicate 800 on the left scale. Then we set the left arm at 700 on the right scale, and the answer is read as 370 ohms.

The calculator is easily constructed. Simply cut any light sheet of material to the size of the chart—plastic, or even cardboard will do—and glue the chart (Fig. 2) in place. Using clear plastic or celluloid of thin stock, construct two arms similar to the one in the drawing. A straightedge and a sharp nail should be used to scribe a line down the center of each arm. Rub a bit of India ink into the scribed lines, wipe off the excess, and you have a couple of first-class indicators. The arms are attached to the board as shown in Fig. 1. Small rivets or eyelets will serve for this.

The calculator's size limits accuracy to about 2%. In circuits where greater accuracy is required, it will still be necessary to use the formulas, or make a bigger calculator!

END
PONDEROUS PILLARS built by General Electric Co. dwarf workman. Each one is 60 feet long, 42 inches in diameter and weighs 7½ tons. Twenty of them are required to support each of four 1,500-ton radar reflectors, part of the Air Force’s Ballistic Missile Early Warning System in Greenland.

WEATHER EYE is tiny RCA vidicon TV camera tube. For months, two of them have been orbiting the earth in weather satellite TIROS, taking more than 20,000 photographs. One of these cloud-formation pictures is shown in the background.

POWER BOOSTER by Sperry Gyroscope Co. uses 100-amper electron beam to generate the megawatts of microwave power which allows military radars to "see" missiles at longer range. Pointed white cone (upper left) is ceramic window which is transparent to microwaves, yet maintains tube's high vacuum.

DIFFRACTION PATTERN of an electron beam is the result of passing the beam through 3 layers of tin and bismuth totaling 10" centimeter (.000,000,394 inch) thick. The strong inside ring is due to the tin; the second strong ring is produced by the bismuth. It is difficult to interpret the pattern as three separate ones are superimposed, but it does prove that the structure of matter is symmetrical. Photo made in conjunction with work done by Prof. Hans Richter, Stuttgart, Germany.
A CREI college-level extension program in advanced electronic engineering technology that offers you...

high professional status and better income

DYNAMIC EXPANSION OF ELECTRONICS INDUSTRY CREATES OUTSTANDING JOB OPPORTUNITIES. No other major field of engineering has enjoyed a more rapid growth or promises a more brilliant future than electronics. New developments in space exploration, guided missiles, automation, computers, and many other fields create new jobs daily, jobs which have to be filled by men with a modern advanced education in electronics. The shortage of competent electronic personnel will grow more acute over the next decade, and salaries and professional stature of technical men are expected to reach new highs.

The fact that new positions must be filled by men with an up-to-date education is evidenced by the experience of the CREI Placement Bureau, where the demand for graduates and advanced students has far exceeded the supply for several years. It is of interest to note that many leading companies regularly visit CREI strictly for the purpose of recruiting CREI graduates and students.

Many CREI students have learned that they do not have to complete the program to realize considerable increases in their status and income. Their own employers realize that if you are ambitious enough to pursue this college-level program, you are a better candidate for rapid promotion. Professional people in supervisory positions recognize the value of CREI education.

HOME STUDY IS CONVENIENT AND TIME SAVING. You will find more than 20,500 CREI students working in most every phase of electronics in all 50 states and in most foreign countries of the free world. Just like them, you can pursue the CREI
CREI's Extension Division now offers you a college-level program in electronics comparable in technological content to advanced residence courses.

CREI offers college-level opportunity to the man who wisely realizes that the recognition and rewards in electronics are now going to other men—especially the man with modern advanced education.

Within two to four years, depending on the courses you select and amount of stick-to-itiveness brought to bear, you can complete the CREI program in advanced electronic engineering technology. The program was developed hand-in-hand with leading private companies and government agencies contributing to the Nation's efforts in electronics, communications, missiles and space exploration.

OFFICIALS OF PRIVATE COMPANIES AND GOVERNMENT AGENCIES APPROVE CREI FOR THEIR OWN PERSONNEL.

The quality and advanced standing of the CREI educational program is readily seen in the appreciation expressed for it by both industry and government. At present there are 5,240 U. S. Navy electronics personnel enrolled in CREI extension programs. More than fifty leading electronic organizations in this country and in foreign nations actually pay all or part of the tuition for employees taking CREI courses. The list below comprises a few of these organizations:

- National Broadcasting Company
- Jerrold Electronics Corporation
- Pan American Airways
- Radio Corporation of America
- Canadian Aviation and Electronics
- Federal Electric Corporation
- The Martin Company
- Voice of America
- Canadian Broadcasting Corporation
- Northwest Telephone Company
- Commercial Cable, Incorporated
- Canadair Limited
- Columbia Broadcasting System
- All America Cable and Radio
- Canadian Marconi
- MacKay Radio
- United Air Lines
- Gates Radio Company
- Mohawk Airlines
- Florida Power and Light Company
- British Air Force, Army, Navy

program while you continue your regular full-time job. You study at home during hours chosen by you, and you are not rushed. Also, you do not have to waste valuable time traveling to and from but can concentrate on your studying at the hours most convenient to you.

The courses are prepared in easy-to-understand format, and your progress is guided all along the way by the CREI staff of experienced instructors. These instructors always stand ready to give you personal assistance and help whenever you may need it.

TO THE SERIOUS-MINDED MAN, CREI OFFERS THESE IMPORTANT BENEFITS:

* You gain a solid college-level education in electronics; you keep abreast of continuous new developments and sophistications in the field of electronics.
* You can gain higher status and enjoy the increased respect of your associates.
* You facilitate more rapid professional advancement and corresponding increases in pay.
* You gain the personal satisfaction that comes from working and communicating intelligently with technical colleagues and superiors.

The accredited program is designed to meet your present and future employment requirements and to increase your professional status and earning power.

PROFESSIONAL STANDING

CREI was founded in 1927 and is one of the oldest technical institutes in America. We co-founded the National Council of Technical Schools, and we were among the first three technical institutes whose curriculum were accredited by the Engineers' Council for Professional Development. The U. S. Office of Education lists CREI as "an institution of higher education."

QUALIFICATIONS FOR CREI

You qualify for CREI study if you have a high school diploma or equivalent, and if you have had basic electronic training and practical experience in some phase of electronics. Tuition is reasonable and may be paid monthly, if you wish. Veterans qualify for this program under the GI Bill.

CREI RESIDENCE SCHOOL

CREI conducts a residence school in Washington, D.C. for those who can attend classes. Day and evening classes start at regular intervals. Graduates earn AAS Degree in 27 months of study. Electronics experience or training is not required for admission.

SEND FOR THIS FREE 48-PAGE BOOK TODAY...USE POSTAGE-PAID CARD ATTACHED. Write for the detailed and informative book "Insurance for Your Future in the New World of Electronics." It is yours for the asking without cost or obligation. The book gives details about curriculum and CREI and answers several searching questions about the future in electronics. The book is of vital interest to every man employed in electronics.

The Capitol Radio Engineering Institute

3224 16th Street, N.W., Washington 10, D. C., Dept. 1408-G

ECPD Accredited Technical Institute Curricula • Founded in 1927

August, 1960

www.americanradiohistory.com
FOLDOVER, HALOS and a CURE

By HECTOR O. ALGARRA

HORIZONTAL foldover is a common and annoying problem, yet few technicians know why or how it happens. To understand this problem better, let's begin by analyzing a case of foldover.

Line A in Fig. 1 shows one line of video information. The inactive portion between the end of one line of video information and the start of the next line has a 10.16-µsec duration. This is made up of a 1.27-µsec front porch, a 5.08-µsec horizontal sync pulse and a 3.81-µsec back porch.

Line B (Fig. 1) shows the sawtooth signal that is fed through the yoke to control the horizontal sweep. Naturally, we want a retrace time shorter than the inactive portion of the video information. An 8-µsec retrace is good and is easy to get when the horizontal stages are carefully designed.

At the start and end of the raster are the two porches. Therefore we get two small black stripes at each side of the picture (Fig. 2). Actually, these black bands are off the face of the TV picture tube and appear only if the picture is moved to the right or left by adjusting the centering controls.

However, if the retrace time is longer than usual (line C, Fig. 1), it extends into the video portion of the picture and the video information starts during the retrace period and appears on the screen as shown in Fig. 3. This type of foldover can appear on the right side of the screen too. When this happens, the retrace starts too soon and lasts too long.

Fig. 4 shows another type of retrace trouble. This one we run into on a number of American-built 110° deflection TV sets. Again lines A and B are correct. Line C shows a retrace time that is too long but does not run into the video information. It kills the back porch but, since the signal and active trace start at the same time, no serious harm is done. However, this can result in the porch level appearing during retrace as a halo on the screen (see photos) that overlaps the video information. This halo appears on light-contrast pictures and during camera changes when the screen is blank. It occurs because brightness is turned up and contrast decreased, making the inactive portion of the TV signal visible.

Technical director, Tele-Royal, Buenos Aires, Argentina.
The solution to the halo problem is to cut off the CRT during retrace. In this way, as long as the retrace time stays inside the front and back porches, there can be no halo, as the retrace can cause no video information.

Normally, we would keep a tube cut off by applying a pulse to its cathode. However, in the modern TV set, video is applied to the picture tube cathode. Any sweep pulses fed to this cathode would reduce video output and affect the set's sync.

The control grid cannot be used either. Vertical blanking pulses are usually fed to this grid and horizontal pulses cannot be added without keeping electrode impedance high at 15,750 cycles. The result would be horizontal ringing in the picture.

Because of these problems we decided to apply negative pulses to the screen grid of the picture tube. Fig. 5 shows the circuit we use. It also eliminates retrace lines.

The 12AU7's plate connects to the CRT screen. Its grid is fed pulses from the flyback through a simple R-C network. These pulses keep it cut off during the normal scanning period. While it is cut off it has no effect and the CRT operates normally. However, during horizontal retrace the triode conducts, lowering the voltage applied to the screen enough to cut off the tube. We used a 12AU7 since the other half of the tube was needed for another purpose. However, almost any medium-mu triode can be used with the same results.

Halos caused by the porch level appearing during retrace.

CRT screen enough to cut off the tube.

END

Higher accuracy, bigger scale than any comparable V-O-M!

ONLY WESTON MARK II ANALYZER OFFERS THESE OUTSTANDING FEATURES

Accuracy: ± 2% full scale DC; ± 3% AC.
Scale Length: 4.63” long for easy reading.
Ranges: Resistance — up to 10 megohms in five steps (with protection fuse).
AC Voltage in six ranges to 1,600 (at 1,000 V/V). DC Voltage in seven ranges to 4,000 (at 20,000 V/V). DC ma — 1.6, 8, 80, 800, DC μA — 80. DC amperes — 8. DB — +15 to +54 in six ranges.
Simplified Operation: Single dial for range and function switching.
Small Size: Rugged case of crackproof plastic, 6.25” x 7.50” x 3.25” for maximum handling convenience.
Other Features: Exclusive Weston CORMAG® mechanism for magnetic shielding, electrostatic shielding provided by housing, etched circuit; spring-backed jewels for shock and vibration resistance.

Order from your local Weston distributor. For information, write to: Weston Instruments Division, Daystrom, Incorporated, Newark 12, N. J. In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 19, Ont. Export: Daystrom's International Sales Division, 100 Empire St., Newark 12, N. J.
There is a drastic difference between hum and buzz in the sound section of a TV set, although the two might be confused at times. Hum, per se, is a smoother sound and should be familiar to all technicians. The basic hum waveform is a sine wave, as it originates in the power supply or in heater-cathode leakage in some of the tubes. In either case, the root would be in the 60-cycle power supply voltage, and it would have the sine-wave form (Fig. 1-a).

Buzz, on the other hand, can come from quite a few places and assumes quite a few different shapes. The most familiar buzz is caused by overloading in the if amplifier (through some fault in the age network or supply). It has a rough or raspy sound. The waveform (Fig. 1-b) shows why. There is a bit of a problem in differentiating, by ear alone, between buzz pulses originating in the sync or video if stages, and those coming from the vertical sweep circuits. It takes a scope to show exactly which is which.

If the trouble is sync buzz from an overloaded if stage (Fig. 1-c), it will quite obviously have the shape of the vertical blanking pulse from the TV signal, which it is! There are two quick checks for this: Remove the antenna connector. If the buzz stops, it was probably from the signal. If it is still there, it must be from the vertical oscillator. The second check is to move the vertical hold control while listening to the buzz or watching it on the scope. If the frequency of the buzz changes with the position of the hold control, it must be originating in the vertical output or oscillator stages. (Check those electrolytics!)

Another prevalent source of buzz is the vertical blanking signal at the picture tube which is related (though distantly) to the high voltage. Turn the brightness control up and down; if the buzz amplitude changes, the sound is coming from the stray fields around the picture tube and high-voltage supply. Shielding is the best cure for this, the buzz must be kept out of the signal circuits.

The origin of the buzz signals can be identified by their characteristic shape on a scope. Apply the scope to different stages of the audio circuit. Buzz pulses can even be found in the 4.5-mc sound if in the form of AM on the FM sound signal.

No circuit changes were necessary although I did change the damping tube from a 6W4-GT to a 6AX7-GT. Brightness and contrast are OK, but the picture lacks detail. "Drive" lines are present when the brightness is at a comfortable viewing level. I would appreciate any hints or circuit changes which would be useful in remedying the conditions I have stated.—L. P. C., Spokane, Wash.

I don't see anything in your conversion itself to cause this trouble, as the two picture tubes are electrically identical. Therefore, your trouble would lie in some part of the video circuits—tuner, video if, video detector, or video amplifier.

Fig. 1—Hum and buzz waveforms: a—hum, a sine wave; b—buzz, sharp spikes; c—sync buzz from an overloaded if stage.

Fig. 2—Video amplifier circuit of RCA 21T207. Adding resistor and capacitor eliminates retrace. For loss of details in picture, check all parts shown, especially peaking coils.
NEW! WINEGARD BOOSTER COUPLER WBC4

Operates 1 to 4 TV Sets and delivers more signal power. Amplifies all channels 2-13 plus FM.

More features, more power, easiest to install
• For operating one set, WBC4 delivers up to 12.5 DB gain all channels. operates 2, 3, or 4 sets with up to 6 DB gain for each set • Powerful frame grid ECC88 tube, shielded and protected (trans-conductance 12,500 micromhos) • Ultra low noise figure • High quality steel housing with baked enamel finish • Compact, only 4¼"x3½"x2½" • Mounts anywhere, behind TV set, in attic, on baseboard • Quick disconnect plug for antenna lead-in • No-strip lead-in terminals • On-off switch • Cord and plug for 117 volt - 60 cycle power supply.

Now with one compact package of power, you can install one to four TV sets and get sharper, clearer TV reception even in fringe areas. Ordinary couplers reduce signal going to the set, but the Winegard WBC4 gives the signal power boost you need for perfect television. Installs quickly, easily — 4 no-strip terminals, for 4 TV sets, 2 on each side.

$27.50 LIST

FREE! SPECIAL INTRODUCTORY OFFER
For a limited time only, Winegard is including a Solid Brass Wall Plate and plug free with each WBC4 Booster Coupler. $3.50 value FREE!

Winegard ANTENNA SYSTEMS
THE WINEGARD CO. • 3013 SCOTTON BLVD., BURLINGTON, IOWA

www.americanradiohistory.com
TELEVISION

This is quite common in the older series of TV chassis of all makes. If you'll check (preferably by substitution) all the tubes in that string, you'll very likely find some of the original ones! They are quite apt to be weak, leaky or shorted after years of use. Replace all that show less than 50% of normal transconductance and recheck the set.

Check the settings of the ion-trap magnet and the focus magnet until both are exactly right. Most of these chassis used PM focusing units and these will inevitably interact with the ion trap to a certain extent. Adjust both (also the picture centering magnet) until the scanning lines are at their brightest and best focus, on a blank raster.

If picture detail is poor, especially on thin vertical lines, check the peaking coils and resistors in the video amplifier plate circuit (Fig. 2). This series uses combination shunt-series peaking and an open or short in one of the peaking coils would cause a severe loss of fine detail. This will also result in upsetting the dc plate voltages on the video amplifier tube. Check the age circuits for leaky capacitors, increased-value resistors and for proper age action on a fairly strong signal.

If you have drive lines in the picture, back off the horizontal drive control until they just disappear. However, from the phrasing of your letter, I have a feeling that you are referring to vertical retrace lines (especially since this chassis does not use a vertical retrace eliminator and is prone to showing retrace lines if the picture controls are not set exactly right). To eliminate these permanently, connect a 0.022 µf capacitor in series with a 6,800-ohm resistor from the green wire on the yoke plug (the center of the vertical output transformer) to the grid of the picture tube, pin 2. This should take them out for good.

Marker generator trouble

My sweep and marker generator does not provide what I consider a usable marker. Perhaps it needs some adjustment that only the average shop can't handle.—R. C. S., Jr., Troy, N. Y.

A good way to check the marker output voltage is with a field-strength meter. Connect the generator output to the input terminals of the meter. Using the generator on marker output only, tune the generator and meter successively through the low and high channels. At least 20,000 µv is desirable for marking, and up to 100,000 µv is useful in tuner alignment. The generator output cable must be properly terminated to get flat output on all channels.

Hot flybacks

The flyback of a Silvertone 128.015-5 TV burns out about every month! This is the third one, and now it is burning up. Can you recommend a replacement that won't burn out?

Also, I can't find a replacement part...
for a Sentinel 1U-1124, the first sound if coil. Can you give me the number of a replacement for this?—D. W., Medina, N. Y.

A Triad type D-19 will replace the flyback in Silverton. The original part number was N24898, wasn't it? But before making any further replacements, I would give this chassis a very careful cold check. Test the electrolytics, the output and damper tubes, the yoke and everything about that circuit. Such short life on the flyback indicates a severe overload, probably an intermittent condition.

If nothing shows up on the cold check, replace the flyback and measure the horizontal output tube (6BQ6) plate cur- rent. This should be slightly less than 100 ma. From the symptoms you give, I expect you'll find it slightly more than this value. If the flyback is running too hot, it will break down in a short time. Check your horizontal linearity adjustment and set it for the d-c plate current. Check the screen voltage of the horizontal output tube and reduce it, if necessary, to get that plate current down to normal.

I'm a bit confused about just which "sound if" coil you need. If it is the sound pickoff coil, in the video amplifier plate circuit, you can use a Miller 1469. If it is the interstage transformer, use a Miller 6208. These two coils can be used in any circuit of this type.

Vertical white line

I have an RCA KCS-68 chassis with no horizontal deflection at all. All I've got is just a vertical white line in the center of the screen. I checked the deflection yoke, linearity and width controls, and put in a new flyback transformer. Voltages check OK except for the two damper tubes, which have 350 volts on both plate and cathode. I'll follow the advice in any information.—H. J., York, Pa.

This trouble is in the yoke. You have at least three clues which point to this. First, the absence of horizontal deflection, although you do have enough high voltage to make the vertical line. (This is mildly unusual, as yoke troubles usually result in a complete extinction of the raster.) Second, the damper voltages. If the "flyback pulse" from the yoke was coming through as it should, you'd have boost voltage. Complete loss of boost shows trouble somewhere in the yoke. Third, you have replaced everything else that could be causing this trouble; ergo, there is only the yoke left. So, by a process of elimination, you have a defective yoke! Check the whole thing very closely and replace it. I knew a technician (my wife's husband!) who once spent quite a while checking an obviously defective yoke, at the yoke terminals, only to find later a wire broken at the yoke plug! So, as this set has a new plug, look that over closely, as well as all other sources of trouble, R-C network, etc., before replacing.

Side-convergence troubles

Two RCA CTC7A color TV chassis on my bench have the same trouble. In making convergence adjustments with vertical bars, the blue tends to be on the right side of the bars on the left side of the right-hand bars. Purity in good. The blue amplitude and tilt controls move the blue dots up and down in the middle as they should, and the right and left blue controls move the lateral blue lines up and down as they should. The dynamic controls move the blue properly, and the blue moves up or down, but I can't get the sides of the screen converged. If it's OK on one side, it's out on the other!—T. M. D., Fort Lauderdale, Fla.

There were several changes in this chassis, as compared to the CTC5 series, especially in the convergence section. Several of the controls have been combined. The control RG-2, for example, moves both red and green at the sides of the screen.

Fig. 3 is a sketch of the convergence-board assembly. This is the proper convergence board. After completing your vertical convergence adjustments, set the generator for a cross-hatch pattern with the finest lines obtainable. Recheck center convergence. Now adjust B-1 (L801) to make the blue lines at the right of the screen straight. Adjust control B-2 (R805) to make straight blue lines at the left side. If the lines cannot be straightened, move the clip between W and 4, on the back of the convergence board, to 4 and G.

Now adjust the coil RG-1 (L802), to converge the vertical lines at the right side. Check coil RG-2 (L803) to be sure that the horizontal lines at the right are converged properly. Check coil B-1, to make the blue fall on the red-green lines. Return RG-1, if necessary.

Adjust RG-3 (R806) to converge the vertical lines on the left. Adjust RG-4 to converge red-green horizontal lines, at the left. If you're unable to get full convergence on the left side with these adjustments, change the clips on the back of the convergence board: Move clip from 8 and G to 8 and V. Move clip from 12 and G to 12 and W. Now repeat the adjustment of RG-3 and RG-4, and you should have ample range to get the proper convergence.

The cause of the trouble here was not the blue lines themselves, but the fact that the red and green lines were not meeting them at the proper place.

Fig. 3—Printed-circuit convergence assembly of CTC7A. Certain terminals on the right side of the board are interconnected by clips.

That's a pretty general rule for all convergence procedures: set up the blue, then move the rest to meet them. If any final touching up is needed, it can be done with the static adjustments.

Bad horizontal oscillator

On a Capehart LF-115 TV, the horizontal oscillator operates at a lower frequency after the set warms up. A white vertical line about 2 inches wide shows on the raster a little to the left of center, and a whistle is heard. Disconnecting the horizontal oscillator signal from the grid and applying an outside driving signal clears up the trouble, except for the loss of horizontal sync. The raster is OK. I have substituted several parts, including the ringing, width and keyer coils and the tubes. I wound the vertical sweep coils and noticed the same horizontal waveform on the scope.—W. J. F., Baltimore, Md.

You had the clue in the horizontal waveforms which showed up with the vertical sweep disabled. This has shown up in several sets lately and puzzled several technicians until the cause was discovered. The trouble is probably a lack of decoupling in the B-plus supply. Check all electrolytics in the filter system, especially the output filters, for loss of capacitance or high power factor. You will probably have to disconnect each one and shunt it with a good one to make a conclusive test. If the power factor has gone bad on a filter, just bridging it with another one will not always clear up the trouble. The suspected unit must be completely out of the circuit and a good one in. Another possibility here would be leakage between two sections of a multiple electrolytic. Using the scope at a horizontal sweep frequency, check the B-plus supply lines for traces of horizontal pulse. Even at 60 cycles the horizontal sweep shows up as a distinct fuzz on the trace.

side.
Fig. 1—Jitter with long flutter rate. Displacement to right persists for several consecutive fields.

By LAWRENCE SHAW

SUDDEN side-wise shifts of a TV picture (or raster) are characteristic of horizontal jitter. The entire screen may be involved or only sections of horizontal lines. The second image may be equal in intensity but is usually weaker, resembling a ghost. Jitter is distinguished from ghosts by the back-and-forth jump or flutter.

The rate of shift can be rapid or very slow. A slow jitter may look like Fig. 1. Here the picture is displaced to the right for several fields and returns to its normal starting point on the left for a few fields. The intensity of the double image is proportional to the length of time spent in each of the two fields.

A rapid jitter may present only a confused jumble of lines. The horizontal shift can be seen only on close inspection. Such a picture closely resembles the multiplex overlapping of images produced by too high a horizontal frequency.

Causes of Jitter

Instability of the horizontal sweep is the underlying cause. Any part of the sync system from the transmitter to the horizontal output tube in the receiver can be at fault. As an example let's take one type of jitter which occurs frequently and see why it happens.

Ghosts from reflections, either transmitted-wave or lead-in, produce visible symptoms in the form of a second picture (or ghost). More important is the presence of a second sync pulse in the composite video signal (Fig. 2). The "ghost" pulse will try to trigger the horizontal oscillator just like the true pulse. Despite the AFC system, the oscillator will often try to lock on to both pulses. If both pulses can make the horizontal oscillator waver between them, we get horizontal jitter.

When the horizontal oscillator is triggered by the true pulse, horizontal sweep starts farther to the left, as shown in Fig. 2. When the spurious second pulse takes control, the horizontal lines start farther to the right. The type of displacement shown by Fig. 2 causes tear-out of sections of lines—not a complete tearout, but part of the picture is displaced to the right. If the horizontal oscillator locks onto the false pulse for half the time, we would get an effect similar to that in Fig. 1. A number of fields will start at the extreme left in response to the true sync pulse of the direct signal. Then some fields—not necessarily the same number—and usually less—will start farther to the right in response to the spurious or false pulse.

The vertical ghost pulse may not be strong enough to trip the vertical oscillator because the long time constants of the integrator network tend to prevent this condition. Therefore, vertical instability may or may not accompany horizontal jitter.

The ghost can be seen on the TV screen. The presence of the false sync pulse may be observed on a scope connected at the video detector. As a final check, switch the TV set to a channel which has no ghost or a much weaker one. If a ghost pulse was the trouble, jitter will either disappear or become less evident.

To cure horizontal jitter caused by ghosts, get rid of the ghost—try antenna orientation, a more directional antenna, matching the transmission line, etc. If the tuner picks up too much
Subscription rates go up with the November issue
Subscribe now and save
One year $4—Two years $7—Three years $10

154 West 14th Street New York 11, N. Y.

NEXT MONTH

NEON BULB AS VOLTAGE INDICATOR
A new use for this versatile little light. Here's a simple device that measures voltage without loading the circuit. Quite a range too—70 to 2,700 volts, ac or dc.

EXPERIMENTAL TUNNEL DIODE OSCILLATOR
For the experimenter who wants to be there first! Work with the latest semiconductor device. Explicit details show you how to make an oscillator that works at 5 kc, and at 1 and 10 mc. Use it as a code oscillator or low-power transmitter. Includes a brief but thorough introduction to tunnel diode principles.

PORTABLE, EASY-TO-BUILD RADIO CONTROL TRANSMITTER
So easy to make yet it packs enough power to work up to a half mile in open country—or over six blocks in the city. That 3A5 delivers more power than any transistor. Operate it under FCC Class-C rules—you don't need a license examination.

DECADE AMPLIFIER FOR YOUR METER
Step up the sensitivity of your scope or meter. This amplifier will boost weak inputs 10 or 100 times at the turn of a switch. Yet it's remarkably simple to build—and even easier to calibrate. It uses only three tubes.

NEW STEREO PICKUPS
What kind of stereo pickup is best for you? This clinically unbiased analysis will help you decide. In the first of a not-to-be-missed series, audio expert Julian Hirsch weighs the merits of the new CBS Professional 55, the Sonotone 8TA and the Connoisseur. You'll want to keep this for reference.

Radio Electronics
September Issue
on sale August 25

Reserve your Copy—or subscribe now
signal directly, it can cause a ghost. This kind of ghost pulse may lead the true pulse and the image will be displaced to the left rather than the right.

If the jitter from a ghost cannot be eliminated by getting rid of the ghost, careful adjustment of the horizontal oscillator's frequency and hold controls will help. Also check the afe circuit and pull in the best possible operating condition. Check the sync circuit for proper clipping action with a scope. A slight change in the clipping level will often clip more of the false pulse than the true one and the jitter may be removed. These ideas should be applied only if conventional methods fail to rid the set of the ghost pulse.

Internal false sync pulses

Closely allied to jitter caused by an external ghost is the jitter caused by false horizontal sync pulses produced in the TV set. Such false pulses are produced in two ways:

- Injection of a false pulse back into the set at some earlier stage.
- Production of a spurious pulse by regeneration.

Other causes are pulses that are similar to false sync pulses—video information that has not been clipped properly in the sync clippers or strippers. Peaks of video information near the black level can act as such false sync pulses if they occur near the horizontal sync pulse. This trouble can be detected by noting that the jitter occurs only when black portions of the picture are at the extreme left or right edges. (Move the picture sideways so you can check the edge.)

Adjust the sync stripping action to remove the picture information more completely to cure this type of jitter. A scope will reveal video information in the supposedly stripped sync.

Injection and regeneration can occur at any stage or over any number of stages wherever the sync signal is present in its normal passage from antenna to the horizontal sweep circuits. Fig. 3 is a block diagram showing these stages. A common cause of jitter is injection of the horizontal sweep into the antenna circuit, caused by dressing yoke leads too close to the transmission line or tuner. The remedy is obvious—move them away. The yoke-antenna path shows how the horizontal sweep—although on frequency—will produce a delayed pulse if injected back into the set. A similar trouble can arise if the yoke leads are too close to the first, and even the second, video if stages.

The lead to the driven element of the picture tube carries a high-amplitude composite video signal. Naturally, it contains high-amplitude sync pulses. And if this lead runs too close to the yoke leads or to earlier stages of the set, a false sync pulse and horizontal jitter may be produced.

Injecting sync pulses from a sync stage into an if stage can cause jitter. Fig. 4 is an interesting example. A sync screen bypass capacitor C1 and age filter capacitor C2 are connected to the same ground lug. The solder was not applied to the lug, so only the ends of the capacitor leads were really soldered together. The contact resistance Rx of the leads to ground was often high and resulted in the circuit shown in Fig. 5. The sync fed directly through to the age line and the grid of an if tube. Once this ground was resoldered, the set worked perfectly. The sync no longer modulated the composite if signal.

Regeneration in the video amplifier or in the if will produce a delayed pulse. The mixer can be considered an if amplifier in this sense. And the mixer acts like an rf amplifier as far as the previous if tube is concerned. Regeneration anywhere along the line followed by the sync may produce a spurious pulse and jitter.

Frequency shifts

One kind of jitter results from changes in the horizontal frequency which are not caused by a false pulse. For example:

- A resistor that changes value.
- A capacitor that changes value and affects the horizontal frequency.
- A loose coil in a shielded can in some types of oscillator circuits.

Adjust the sync stripping action to remove the picture information more completely to cure this type of jitter. A scope will reveal video information in the supposedly stripped sync.

Injection and regeneration can occur at any stage or over any number of stages wherever the sync signal is present in its normal passage from antenna to the horizontal sweep circuits. Fig. 3 is a block diagram showing these stages. A common cause of jitter is injection of the horizontal sweep into the antenna circuit, caused by dressing yoke leads too close to the transmission line or tuner. The remedy is obvious—move them away. The yoke-antenna path shows how the horizontal sweep—although on frequency—will produce a delayed pulse if injected back into the set. A similar trouble can arise if the

yoke leads are too close to the first, and even the second, video if stages.

The lead to the driven element of the picture tube carries a high-amplitude composite video signal. Naturally, it contains high-amplitude sync pulses. And if this lead runs too close to the yoke leads or to earlier stages of the set, a false sync pulse and horizontal jitter may be produced.

Injecting sync pulses from a sync stage into an if stage can cause jitter. Fig. 4 is an interesting example. A sync screen bypass capacitor C1 and age filter capacitor C2 are connected to the same ground lug. The solder was not applied to the lug, so only the ends of the capacitor leads were really soldered together. The contact resistance Rx of the leads to ground was often high and resulted in the circuit shown in Fig. 5. The sync fed directly through to the age line and the grid of an if tube. Once this ground was resoldered, the set worked perfectly. The sync no longer modulated the composite if signal.

Regeneration in the video amplifier or in the if will produce a delayed pulse. The mixer can be considered an if amplifier in this sense. And the mixer acts like an rf amplifier as far as the previous if tube is concerned. Regeneration anywhere along the line followed by the sync may produce a spurious pulse and jitter.

Frequency shifts

One kind of jitter results from changes in the horizontal frequency which are not caused by a false pulse. For example:

- A resistor that changes value.
- A capacitor that changes value and affects the horizontal frequency.
- A loose coil in a shielded can in some types of oscillator circuits.

Adjust the sync stripping action to remove the picture information more completely to cure this type of jitter. A scope will reveal video information in the supposedly stripped sync.

Fig. 4—Poorly soldered joint on common ground of a sync and an age capacitor pair resulted in jitter. Sync fed into age and if grids.
spook and the jitter at the same time.

Localizing frequency shifts is simplified by observing the raster and comparing it with a picture. If the raster jumps—jitter—particularly if the set is shaken or jarred, the trouble is somewhere after the sync takeoff from the video stages. We may suspect a shift in the horizontal feedback (transverse) or feedback from a stage after the video into one ahead of it.

With a picture present, the presence of a false sync pulse is readily seen on a scope connected at the video detector. The picture may flutter, but the fluttering pulse is definitely established at this point. Since the contrast control is in the video section, it varies the video gain and the amplitude of the sync, if taken off after the stage controlled by the contrast control. Less sync amplitude means less feedback and this often furnishes a clue. If sync is removed prior to the stage which contains the contrast control, this test fails.

A trimmer capacitor can be installed from the sync line to ground temporarily. Some sets have such a trimmer as a sync lock range control. It works by bypassing some of the sync signal to ground or B-minus, reducing sync amplitude. If such a reduction (by varying the trimmer) makes the jitter disappear, the stage following it must be feeding energy back into an earlier stage. (Excessive sync input is another possibility. If so, just adjust the trimmer and leave it in the circuit as a permanent cure.)

Break the sync feed to the a fc and sync the horizontal oscillator manually with the hold (or frequency) control. If jitter persists, on either raster or picture, the trouble is in the horizontal system somewhere after the point of the horizontal feedback from the horizontal sweep circuits into preceding portions of the set can be uncovered by this method.

At this stage of troubleshooting, check the grid waveform of the horizontal amplifier. First check the horizontal amplifier manually. No jitter of the wave should show if the trouble follows the horizontal amplifier. If present, search for the cause at the input (to the horizontal amplifier) or ahead of it.

This check will distinguish some cases of pseudo-jitters caused by intermittent components in the horizontal output circuit. These are:

- Defective yoke section
- Defects in the centering controls and circuits
- Low flyback windings. Often, these jitters are excited by microphonic action caused by the speaker. The test may fail if the waveform is fed back to the horizontal afc for comparison and the oscillator is not held in sync manually.

If the trouble is likely to be found in the if or front end, we may go into these stages with an rf probe and scope. At some point we will find the injected or otherwise generated false pulse. By doing so, we localize the stage into which it is injected (or produced) and can give it a thorough going over.

Alternatively, use a signal generator to inject a signal into each if and if grid in turn. The generator is amplitude-modulated in this test—rf injection without modulation will not furnish a sync signal. The grid of the preceding stage is grounded with a jumper, or a large capacitor.

For example, suppose we are checking the circuit shown in Fig. 6. If jitter is produced with the signal generator’s output at point A, but not at B (grid of first if grounded), we can assume trouble in this if stage. It might take the form of the gimmick coupling shown (a horizontal yoke lead too close to the grid of the first if, etc.).

Sometimes the feedback is along B-plus or a-c lines. A quick test is to shunt each bypass capacitor to ground here. Use a 0.1-µf 600-volt capacitor.

Sometimes jitter is caused by too long a time constant in the anti-hook filter in the horizontal afc control lead to the horizontal oscillator. If so, suspect a change in value of the resistors. Shunt each one with a potentiometer and vary it. If the jitter disappears, you have localized the trouble. Do not use too low a value of resistance as a replacement unless a check is made to see that hook (pulling at top of picture) is not the result of this modification.

After removing the jitter, retune the horizontal oscillator and any stability controls associated with it. Check all channels after completing the job. END

More profit
per call...satisfaction for all!

Choice as original equipment by
manufacturers in the U.S. & abroad

From all points come good words
about Hitachi tubes—on all points,
tubes that can’t be beat for perfor-

mance and reliability. Most popu-
lar types are available ... each made
with strict quality-control to fully
meet top American standards. Yet
important cost savings guarantee
you extra profits. And distribution’s
on a localized prompt-delivery basis.

HITACHI

RECEIVING TUBES

MADE BY

HITACHI

Choice as original equipment by
manufacturers in the U.S. & abroad

From all points come good words
about Hitachi tubes—on all points,
tubes that can’t be beat for perfor-

mance and reliability. Most popu-
lar types are available ... each made
with strict quality-control to fully
meet top American standards. Yet
important cost savings guarantee
you extra profits. And distribution’s
on a localized prompt-delivery basis.

THE SAMPSON COMPANY

ELECTRONICS DIVISION, 2244 S. Western Ave., Chicago 8, Ill.

See your HITACHI Distributor

—or write for CATALOG S50-R

A COMPLETE LINE

OF QUALITY ELECTRONIC COMPONENTS
SUPERIOR'S
NEW MODEL 77

VACUUM TUBE VOMETER

WITH NEW 6” FULL-VIEW METER

Compare it to any peak-to-peak V.T.V.M. made by any other manufacturer at any price

- Model 77 wattmeter is the only wattmeter made. The wattmeter is isolated from the measuring circuit by a double isolated transformer.
- Model 77 uses a selenium-rectifier power supply resulting in less noise and greater stability of ammeter and voltmeter readings.
- Model 77 uses 10% low loading, high sensitivity, six inch meter. A streamlined carrying case includes an extra set of leads, instruction book, probe and leads. Operates on 110-120 volt 60 cycle.

20,000 OHMS PER VOLT ALUMETER

THE ONLY 20,000 OHMS PER VOLT V.O.M. SELLING FOR LESS THAN $50 WHICH PROVIDES ALL THE FOLLOWING FEATURES:

- A built-in isolation transformer automatically isolates the Model 80 from the power line when carefully stored.
- A selectivity, 1% zero temperature coefficient metalized resistors are used as multipliers to assure unchanged accurate readings on all ranges.

SPECIFICATIONS:

- DC VOLTS: 0 to 3/15/30/150/300/1500 volts at 1/15/30/150/300/1500 Megohms.
- A.C. VOLTS: 0 to 3/15/30/150/300/1500 volts at 1/15/30/150/300/1500 Megohms.
- 100 SCALE RANGES: 0 to 1,000 ohms/10,000 ohms/100,000 ohms/1,000,000 ohms.
- RESISTANCE RANGES: 0 to 1,000 ohms/10,000 ohms/0.1 to 10 Megohms.
- CAPACITANCE RANGES: 0.005, 0.05, and 0.5 Mfd. to 50 Mfd.
- D.C. CURRENT RANGES: 0 to 1,000 microamperes, 0 to 10,000 microamperes, 0 to 15 Amperes.
- DECIAMPS: 6 to +40 db, +11 db to +38 db, +31 db to +50 db.
- MODELS 80 Alumeter comes complete with operating instructions, test leads and portable carrying case.

$42.50 NET

SUPERIOR'S
NEW MODEL 80

20,000 OHMS PER VOLT ALUMETER

THE ONLY 20,000 OHMS PER VOLT V.O.M. SELLING FOR LESS THAN $50 WHICH PROVIDES ALL THE FOLLOWING FEATURES:

- 6 INCH FULL-VIEW METER provides large easy-to-read calibrations. No squinting or guessing when you use Model 80.
- METERED SCALE permits fine accurate measurements where fractional readings are important.
- CAPACITY RANGES permit you to accurately measure all condensers from 300,000 MFD to 30 MFD in addition to the standard volt, current, resistance and decibel ranges.
- HANDSOME SADDLE-STITCHED CARRYING CASE included with Model 80 Alumeter at no extra charge enables you to use this fine instrument on outside calls as well as on the bench in your shop.

Model 80 - ALUMETER . . . Total Price $42.50 . . . Terms: $12.50 after 10 day trial, then $6.00 monthly for 5 months if satisfactory. Otherwise return, no explanation necessary!

GENOMETER

7 SIGNAL GENERATORS IN ONE!

- R.F. Signal Generator for A.M.
- F.M. Signal Generator for F.M.
- Audio Frequency Generator
- Color Dot Pattern Generator
- Marker Generator

GENOMETER: A versatile all-inclusive GENERATOR which provides all the outputs for servicing:

A.M. Radio • F.M. Radio • AM-Amplifiers • Black and White TV • Color TV

BAR GENERATOR: The Model TV-50A projects an actual Bar Pattern on any TV Receiver Screen. Pattern will consist of 4 to 16 horizontal bars or 7 to 10 vertical bars.

$47.50 NET

CROSS HATCH GENERATOR: The Model TV-50A Generator will project a cross-hatch pattern on any TV picture tube. The pattern will consist of non-shifting, horizontal and vertical lines interlaced to provide a stable cross-hatch effect.

DOT PATTERN GENERATOR (FOR COLOR TV)

Although you will be able to use most of your regular standard equipment for servicing Color TV, the one addition which is a "must" is a Dot Pattern Generator. The Dot Pattern will project on any color TV Receiver tube by the Model TV-50A which will enable you to adjust for proper color convergence.

$47.50 NET

EXAMINE BEFORE YOU BUY!

USE APPROVAL FORM ON NEXT PAGE

88

RADIO-ELECTRONICS
SUPERIOR'S NEW MODEL TW-11

TUBE TESTER

STANDARD
PROFESSIONAL

- Tests all tubes, including 4, 5, 6, 7, Octal, Lock-in, Hearing Aid, Thyratron, Miniatures, Sub-miniatures, Naval, Submarines, Proximity fuse types, etc.
- Uses the new self-cleaning Lever Action Switches for individual element testing. Because all elements are numbered according to pin-number in the RMA base numbering system, the user can instantly see which element is under test. Tubes having tapped filaments and tubes with filaments terminating in more than one pin are fully tested with the Model TW-11 as any of the pins may be placed in the neutral position when necessary.
- The Model TW-11 does not use any combination type sockets. Instead individual sockets are used for each type of tube. Thus it is impossible to damage a tube by inserting it in the wrong socket.
- Free-moving built-in air rail chart provides complete data for all tubes. All tube listings printed in large easy-to-read type.

NOISE TEST: Phone-jack on front panel for plugging in either phones or external amplifier will detect microphonic tubes or noise due to faulty elements and loose internal connections.

EXTRAORDINARY FEATURE

SEPARATE SCALE FOR LOW-CURRENT TUBES: Previously, an emission-type tube testers, it has been standard practice to use one scale for all tubes. As a result, the calibration for low-current types was restricted to a small portion of the scale. The extra scale used here greatly simplifies testing of low-current types.

The Model TW-11 operates on 165-190 Volt 60 Cycles A.C. Comes housed in a handsome portable saddle-stitched Texon case. Only $47.50

SUPERIOR'S NEW MODEL 82A

TUBE TESTER

Multi-Socket Type

TEST ANY TUBE IN 10 SECONDS FLAT!

1. Turn the filament selector switch to the position specified.
2. Insert tube into a numbered socket as designated on the chart (over 600 types and 1000 numbers)
3. Press down the quality button—THAT'S ALL! Read emission quality direct on bad-good meter scale.

SPECSIFICATIONS

- Tests over 600 Tube types
- Tests 60/4 and other Gas-filled tubes
- Employs new 4" meter with sealed air-damped chamber resulting in accurate vibrationless readings
- Use of 50 sockets permits testing all popular tube types and prevents possible obsolescence
- Dual scale meter permits testing of low current tubes
- Panel of 9 pitch straighteners mounted on panel
- All sections of multi-element tubes tested simultaneously
- Ultra-sensitive leakage test element circuit will indicate leakage up to 5 megohms

Model 82A comes housed in handsome, portable saddle-stitched Texon case. Only $36.50

SUPERIOR'S NEW MODEL 82

C.R.T. TESTER

TESTS AND REJUVENATES ALL PICTURE TUBES

ALL BLACK AND WHITE TUBES

From 50 degree to 110 degree types —from 6" to 30" types.

- Model 83 is not simply a rehashed black and white C.R.T. Tester with a color adapter. Model 83 employs a new improved circuit designed specifically to test the older type black and white tube, the newer type black and white and all color tubes.
- Model 83 provides separate filament operating voltages for the older 6.3 volt types.
- Model 83 employs a 4" air-damped meter with calibrated scales.
- Model 83 properly tests the red, green and blue sections of color tubes individually—for each section of a color tube contains its own filament, plate, grid and cathode.

“A.C. Comes housed in handsome portables saddle-stitched Texon case. Only $38.50

NEW ORDER

NO MONEY WITH ORDER — NO C.O.D.
ALMOST all color TV troubles originate in the receiver. But something goes wrong at the transmitter every now and then. This can complicate spotting the fault, unless the technician recognizes the defect for what it is. Let me say right now that this is not a criticism of transmitter engineers. Most of them are highly skilled, conscientious men. But equipment does fail, as any operating engineer will testify.

I will describe and identify these troubles, by symptoms, so the service technician can recognize them and distinguish receiver faults from transmitter troubles. In addition, this may give TV technicians some idea of the tremendous amount of work it takes to deliver the almost perfect pictures we see every day. (It may help cut down on some of the nuisance calls to the control room, too!)

TV stations are checked continuously. The FCC demands regular records on the performance of every piece of equipment which could possibly affect signal quality. Most tests are made weekly, and a very thorough complete check of the entire installation (called the “Proof of Performance” tests) is made once a year. Hourly logs of all meter readings must be kept by the operators and be available for inspection by FCC field engineers at any time.

The competent chief engineer of a TV transmitter keeps this high standard of performance through constant maintenance work on his equipment and by making many tests, which will be described later. However, error will rear its ugly head occasionally, for mis-calibrating even a minor piece of equipment can cause large errors, which may go unnoticed. For this reason, the chief engineer is always grateful for genuine trouble calls.

Color transmitter tests

Color TV demands the most exacting adherence to performance standards. Unless the TV transmitter and every piece of its associated equipment are absolutely perfect, color reproduction will be distorted. Even a very slight droop in the overall response curve, especially around 6 mc, can attenuate the color burst and ruin reception. As one engineer said, “Quite frankly, it is possible to get by with murder in black-and-white and still come up with pretty fair results. But a transmitter correctly adjusted for color must come up with a beautiful black-and-white picture!”

Here are a few of the tests and measurements made on color TV transmitters in addition to the standard frequency, power output, sync and modulation-percentage tests made on monochrome. They are: amplitude vs frequency response, differential gain or gamma, differential phase, and envelope delay. Each of these, if not exactly correct, can produce trouble.

Amplitude vs frequency response

The amplitude response of the transmitter must be absolutely uniform (flat) to all signals in the video range, up to and very definitely including the color subcarrier—beyond 6 mc, in fact. In other words, there must be no frequency-sensitive elements in the transmitter that could attenuate any frequency as the signals pass through.

This is tested by a sweep generator and oscilloscope sideband analyzer. The scope produces a 60-cycle sweep display that shows the amplitude response of the visual transmitter. The range of the input sweep carries the signal from well below the video to well above the audio carrier.

Causing your COLOR TV TROUBLES

By JACK DARR

Fig. 1—Vestigial-sideband carrier produced by modern TV transmitter.

Fig. 2—Transmitter signals: a—standard monochrome video; b—color information corresponding to the modulation in a; c—completely modulated color TV signal with color bursts and amplitude variation.

www.americanradiohistory.com
(gain) of the transmitter to signals of differing levels passing through it. For example, if the transmitter had a gain of 50% for signals at a 50% amplitude level, and a gain of 70% for a signal of 90% of amplitude, the differential-gain factor would be very bad!

Poor differential-gain factors cause compression and stretch in monochrome transmitters. It affects color transmissions even more, because of the tremendous number of signals the equipment must carry simultaneously (Fig. 2). A standard monochrome video signal with sync pulses is shown in Fig. 2-a. Color information corresponding to the modulation in Fig. 2-a is shown in Fig. 2-b. Fig. 2-c is the corresponding waveform of a completely modulated color signal, with color bursts and the variation in amplitude drawn out. The central line of the modulated signal shows the average values of the Y, or brightness signal. This value is used by monochrome receivers to make a picture. As you can see, the average value of the rf modulation from the color signal at any given instance is approximately zero, compared to the amplitude of the brightness signal. Therefore, color signals do not affect monochrome sets.

Poor differential gain also causes saturation errors in color transmission. If the amplitude of a color signal is distorted in passing through the transmitter, its relationship to the hue and brightness signal is changed and the transfer characteristics are incorrect. It shows up on the receiver screen as pasty faces with no color, shading, bad flesh tones, etc. Even in black-and-white transmissions, it can cause wash-out of highlight areas such as faces.

A very interesting method of checking this is given in Fig. 3-a. A staircase signal representing equally varying levels of modulation is passed through the transmitter (Fig. 3-a). Superimposed on each step is a 3.58-mc subcarrier frequency (Fig. 3-b). Each step represents a 10% increase in modulation for the transmitter. On the bottom step, the transmitter is 10% modulated, on the middle step 50%, and on the top step 90%. Thus, the system's response is measured at every practical level of modulation. Each step is carefully set for equal amplitude.

The resultant signal is picked off the rf transmission line to the antenna. It is demodulated (by a very linear detector!) and fed to an oscilloscope through a high-pass filter (Fig. 4). The filter takes out the low-frequency staircase component of the signal and leaves only the modulation (the 3.58-mc subcarrier frequency). The result should be a perfect rectangle on the scope screen (Fig. 5). Any nonlinearity of the modulation appears as a change in the long sides of the rectangle. A decrease in amplitude makes the figure trapezoidal and indicates compression somewhere in the system. Needless to say, all elements used in this test must be perfectly linear if the results are to be of any value.

Differential phase

This type of distortion can be measured with the same equipment as the preceding one, with the addition of a phase shifter. We compare the signal from the transmission line (through the high-pass filter) to a reference 3.58-mc signal which is 180° out of phase coming from the signal generator which produces the modulation. This reference phase is shifted to produce a null. The number of degrees needed to produce the null indicates the phase shift for that component level of the staircase. It must never be more than ±10° for any step.

This measurement is very important. The phase distortion it can cause affects the relationship of hue to burst, and green faces and purple people become a gruesome reality! It can be caused in transmitter systems by improper inductances in tuning circuits, excess or insufficient capacitance in others, stray wiring capacitance, improper tube operating voltages and several other things.

Envelope delay

Here is a type of distortion caused by nonlinearity in the system's phase characteristics. It allows different components of the composite video signal to pass with varying amounts of time delay. This distorts the vital relationship between luminance and chroma!

Fig. 3a—Waveform from a staircase generator used to check transfer characteristics; b—same waveform with 3.58-mc burst signal.

The modern TV transmitter produces a vestigial-sideband type of carrier (Fig. 1). All video information is in the upper sideband. If the amplitude of this sideband is not uniform, the higher-order modulation product can be attenuated severely, resulting in a loss of the higher frequencies which contain the chroma information and the subcarrier burst.

Since the color subcarrier's amplitude determines the saturation of the color being transmitted, any amplitude nonlinearity causes trouble. For example, if the transmitter droops at the high end, colors whose carriers are in that vicinity will be paler and washed out compared to colors which lie in the lower-frequency regions. While color information is carried on both amplitude and phase relationships, trouble in either one causes improper color rendition.

Droop at the upper end (dashed line in Fig. 1) also attenuates the burst. The sharp spike at the right of the video carrier curve is the sound carrier and is furnished by a separate transmitter, so it does not affect the video transmitter. It is shown merely as a reference point. For best results, the video transmitter should be flat to a point well beyond the sound transmitter's frequency.

Fig. 4—Hookup for checking differential gain at the TV transmitter.

Fig. 5—Scope display with hookup shown in Fig. 4.

Differential gain—gamma

One absolutely necessary condition for perfect color transmission is that neither the amplitude nor phase of the chrominance signal be changed by the luminance signal. Also, the luminance (brightness) signal must not be changed in any way as it passes through the transmitter. This is known as the differential gain (or gamma) of the system and simply means the response
Transistor Radio Servicing
CAN be Highly Profitable

The ONLY Complete Transistor Radio Service Lab
Everything you need for less than $50

Check Transistors, Diodes, Rectifiers...
SENCORE TRC4 TRANSISTOR CHECKER
Accurately checks all transistors in hearing aids, radios and power transistors in auto radios. Tests for opens, shorts, leakage, current gain. Measures forward-reverse current ratio on all crystal diodes. Measures forward and reverse currents on selenium rectifiers. With set-up chart for accurate checking of each transistor. Size, 5x4½x2½". With batteries, DEALER NET $19.95

Replace Batteries During Repair...
SENCORE PS103 BATTERY ELIMINATOR
All-new "Transi-Pak," twin to TRC4 Checker above. Provides variable DC voltage to 24 volts; 1.5-volt biasing tap ("a must" for servicing Philco and Sylvania radios). Metered current output, to 100 ma. Handles 200-ma peaks. Two 200-mfd electrolytics provide proper filtering and low output impedance. No hum or feedback problems. Ideal for alignment using station signal; adjust IF slugs for max. current, also ideal for charging nickel-cadmium batteries. Size, 5x4½x2½". With batteries, DEALER NET $9.95

Find Defective Stage in a Minute...
SENCORE HG104 HARMONIC GENERATOR
New signal generator designed primarily for fast signal-tracing of transistor radio circuits. No need to unsolder all transistors. Provides RF, IF and audio signals simultaneously, drastically cutting service time. Traces from speaker to antenna. Clear 1000-cycle note signal is heard in speaker from all good stages. Signal weakens or stops at defective stage. Equally as effective for testing TV, hi-fi and other audio circuits also. Size, 3½x4½x1½". With batteries, DEALER NET $19.95

TELEVISION

nance signals and causes color fringing and ringing. The symptom is known among engineers as a funny-paper effect because of the misregistered colors. The picture looks like a funny-paper whose colors have not been printed exactly where they should have been.

The causes are excessive vestigial-sideband attenuation of the transmitter, the lower sideband characteristics of the receiver, and excessive high-frequency rolloff in the region of the sound carrier in both receiver and transmitter. It can make trouble even in monochrome transmissions.

Corrections at the transmitter

At the TV transmitter, a correction is applied to the color signal to prevent overmodulation. (It has been discussed in every color TV textbook ever written, so we'll not go into detail here.) Briefly, it makes the resultant of the two curves (transmitter and receiver) come out to an ideal response curve and all frequencies are reproduced exactly alike.

One problem at the transmitter is chroma clipping. It occurs when high-level chrominance passes into the buffer region and is clipped out. The result is a loss of color in the clipped portion, usually a highlight such as a person's forehead—it turns white where it should be flesh-colored. It is similar to the white compression mentioned in the section on differential gain. It can also happen if the receiver's video amplifier is not quite up to snuff. A weak or gassy tube can cause a very similar symptom, even in monochrome pictures. Therefore, check everything in the video section first!

Troubles in receivers

There is one infallible method of finding out whether the trouble is in the receiver or the transmitter—tune to another station. If the same defect shows up, the fault is almost certainly in the receiver.

Sync-video difficulties

One ever-present possibility for transmitter trouble is in maintaining correct sync-video ratio (Fig. 6). This ratio is displayed on a monitor scope on every transmitter control console. If the station has a remote studio connected to the transmitter through a microwave link, the sync-video ratio is monitored at the studio and again at the transmitter. Despite these precautions, errors can still creep in. The major source is in the misalignment of the monitor scopes on the console or in misreading by operating personnel. The correct ratio is 75% video, 25% sync.

It can be roughly checked by the technician, with a known good receiver. Just take a scope reading at the output of the video detector or video amplifier. The sync percentage (roughly!) should be about that stated. There is only one way to make this anything like a valid test—use at least three stations and compare their sync-video...
Fig. 6—Waveform used to check for proper sync-video ratio.

ratios. For best results, make the rf input level approximately equal on each station. This can be done by padding the strong stations down to the level of the weakest. Take a reading on the suspected station, then quickly tune to the others. If there is trouble in one station, the difference will be obvious.

If the set is used on a community antenna system or in an area that has several stations of approximately equal signal strength, the condition is easy to detect. The bad station’s pictures will be very black (excessive contrast) and show a tendency to roll or fall out horizontally at the slightest disturbance. All other stations will display normal contrast and be much more stable. Adjust input signals to the same level and check the sync-video ratio on all stations with a scope.

Poor sync-video ratio almost always causes color troubles, even if it does not do much harm to black-and-white reception. This is due to attenuation of the color burst by severe compression of the back porch of the horizontal sync pulse where the color burst lives.

Color misregistration, as discussed above, is not too common, but several well-authenticated cases have been found. In one, all the reds in the picture were shifted slightly to the left.

[At this point, someone is sure to rise up in the back row and say, “But that would be a red lead! If there were differences in the delay time in some piece of equipment, wouldn’t that cause a lag (shift to the right)? This would mean that the red signals were getting here before they leave the transmitter!”]

This is quite true, and the actual cause was never identified, although the piece of equipment causing it was a terminating amplifier at the end of a 73-mile coaxial cable between two cities. The cable had been swept out several times, and pronounced “undetected for color; not over a 3-mc bandwidth!” Since the amplifier has been replaced, the same cable has been carrying beautiful color for several years! Locating this defect required NBC specialists and cooperation of nearly everyone in the whole state.

Transmitter engineers are human too. An operating engineer once connected a video cable to a multiple network outlet to get a signal to a workshop about 50 feet away. The network
TELEVISION

was not in use at the time and this looked like a good source of test signals. Unfortunately, he forgot to remove the piece of cable. When a color program came down the network, the result was horrible! Very low burst, no color and extremely bad ringing! The open end of the cable was producing reflections and fouling the whole network from that point on! (Since the guilty engineer happened to be on a coffee break at the time, the operating crew had a terrible time finding out what had gone wrong!)

Color and video tape

More and more color programs are being recorded on video tape. While the tape's average response is excellent, here again trouble can rear its ugly head! Several bad effects such as color phase-shift and hue-shift banding and color saturation banding can creep in. Since these defects originate in the tape recorders, they are easily recognized—each produces the characteristic pattern of horizontal bars, changing every 17–19 lines. Video tape is scanned in a very special way—by revolving heads mounted on a drum which actually travel across the tape which also moves like conventional tapes. One defective head on these machines will produce the characteristic pattern. It can always be identified by the horizontal bar structure.

Receiver checking

Needless to say, if the technician suspects a given transmitter of causing troubles, he must observe certain precautions before making any complaint. Be sure the receiver which shows the trouble is in perfect working order. Better still, check to be sure that identical symptoms are seen on a large number of receivers. In color troubles, be very sure that the color receiver is absolutely OK before making complaints. Again more than one set should be checked. Color temperature adjustments on the picture tube, both static and dynamic convergence, screen setting, and most especially, the setting of the noise canceller control should be carefully checked.

A lot of possibilities

Signals traveling on a network must pass through maybe 1,000 to 2,000 miles of coaxial cable or microwave links. While doing this, they also pass through 100 to 250 repeater amplifiers. With about 40 tubes in each amplifier, there are something like 4,000 to 10,000 tubes. Each one must pass the color signal perfectly! As one engineer said, "There are about 10,000 reasons why the thing can't possibly work at all, but it does!"

I would like to express my sincere thanks to Mr. John Barth, chief engineer of KV00-TV (channel 2, Tulsa, Okla.), for his very generous help in preparing this article. KV00-TV is one of the nation's leading color TV stations and has received several commendations on the excellence of its maintenance!
TELEVISION
WATCH THOSE PEAKING COILS!

By LAWRENCE SHAW

WHILE most TV service technicians know that improperly positioned peaking coils can cause oscillation in video amplifiers, few seem to realize that loss of fine detail can result from improper positioning.

In one particular case, two coils (L1 and L2 in the schematic) were placed parallel to each other. Even though the two were in the same video amplifier plate circuit, mutual inductance lowered the effective inductance of both coils and caused trouble. The primary function of a peaking coil in a video circuit is to form a highly damped reso-

nant circuit that builds up the response at about 3.5 to 4.0 mc. This boosts the amplitude of the higher video frequencies so these detail-carrying frequencies will satisfactorily reproduce the fine detail of the picture. Loss of inductance will cancel this desirable design and cause poor detail.

Loss of inductance increases the boost frequency. If the increase places the new bandpass above the video range, the effectiveness of the coils is nullified. Similarly, if the inductance is increased—by reversing the leads to one coil or physically turning a coil (of the pair) 180°—the resonant frequency is lowered and picture detail decreases. How much loss occurs depends on the mutual coupling and other factors.

The safe thing to do is to put the coils at right angles to each other. Then the self-inductance of the individual peaking coils is largely unaffected by mutual inductance—either aiding or opposing. At the same time, separate the coils as much as possible to reduce mutual inductance further.

America's Most Popular Tube Tester
more than 25,000 now in use

SENCORE LC3 LEAKAGE CHECKER
Whips those "tough dog" tube troubles...

Ask any serviceman who owns one ... or try one for just one day of servicing in your shop. You'll see for yourself how much time the LC3 can save you. Checks for leakage between all elements, whether caused by gas, grid emission or foreign particles. Also checks leakage on all capacitors with voltage applied—excluding electrolytics. Provides instant filament checks in "Fill-Check" position—no need for a second filament checker. One spare pro-heating socket and new roll chart prevent obsolescence. New charts provided—no charge. Leakage sensitivity; 100 megohms, control grid to all other elements; 50,000 ohms, heater to cathode. Size, 7¾x3½x3. Weight, 3 lbs; For 110-120 volts, 60 cycle AC. DEALER NET 2895

NOW ... checks 172 tube types—more than any other checker of this type.

NEW ... replaceable Roll Chart prevents obsolescence.

Check Filaments of All Receiving Tubes and Picture Tubes

FC4 FILAMENT CHECKER
For fast, easy checking of all tube filaments, without pulling chassis. Neon light goes out if tube filament is good. Also acts as continuity and voltage tester. Neon lamp glows when 115 v. AC is applied by cheater cord, providing a check on power to TV set. Size, 3½x1x1. With leads. DEALER NET 295

Check 3- and 4-Prong Vibrators . . . Faster, Easier

VB2 "VIBRA-DAPTOR"
Plugs into any tube checker; ideal for use with LC3 above. To check 6-v. vibrators, set for 6AX4 or 6SN7; for 12-v. vibrators, set for 12AX4 or 12SN7. Two No. 51 lamps indicate whether vibrator needs replacing. Instructions on front panel. Steel case. Size, 15½x3½x3. DEALER NET 275

See your Parts Distributor NOW!

ATTENTION

- Service Technicians' Associations
- Club Members
- Student Groups

Special subscription rates to RADIO-ELECTRONICS are available to associations, clubs, schools, employee groups, etc. For information write — G. Aliquo

Radio-Electronics 154 West 14th St., New York 11, N. Y.
By far the BEST VALUE obtainable in either wired or kit form...compare and you'll agree "THE BEST BUY IS EMC."

EMC Model 211 Tube Tester - The smallest, lowest priced, domestic made tube tester on the market. It is completely flexible and obsolescent proof. It checks each section of multi-purpose tubes separately, checks all typical, typical 9-prong and miniature tubes for shorts, leaks, opens, intermittenents as well as for quality. Quality is indicated directly on a two color meter dial using the standard emission test. Comes complete with instructions and tube charts in ring bound manual.

Model 109 - $22.90 Kit $14.90

EMC Model 109 - Voltiometer - Features 20,000 Ohms volts DC sensitivity and 10,000 Ohms per volt AC sensitivity. Uses a 4½, 40 microampere meter, with 3 AC current ranges, and 3 resistance ranges to 20 megohms. 5 DC and AC voltage ranges to 5000 volts and 3 DC current ranges; also 5 DB range.

Model 109 - Kit $25.00

EMC Model KVT - 30,000 volt Probe for Model 109 $7.95

EMC Model 107A - Peak to Peak Vacuum Tube Volt-Ohm Capacity Meter - 0" meter cannot burn out - entirely electronic. Measures peak to peak AC voltages to 2800 volts in 6 ranges. Measures capacity in 6 ranges from 30 micro to 5000 mfd. Measues resistance in 6 ranges from 2 ohms to 1000 megs. Measures DC volts to 1000 volts in 6 ranges. Input resistance to 16.5 megs. Wired $51.40 Kit $38.50

Yes, tell me more, send me FREE a detailed catalog of the Complete EMC Line. Dept. RENM

NAME

STREET

CITY

STATE

96 RADI0-ELECTRONICS

NEW TUBES and SEMICONDUCTORS

There is about an even break this month between tubes and semiconductors. All the tubes happen to fall in the entertainment type group and all the semiconductors in the industrial group.

Entertainment Types

One new entry for hi-fi, a beam power pentode, appears this month. Also presented is some dope on shadow grids and a line of tubes that pays for labor if in-warranty replacement is required.

7695

The 7695 is a beam power pentode in a 9-pin miniature envelope. It features high power sensitivity as an audio power amplifier. In class-A1 operation it can deliver 4.5 watts with a 130-volt B-plus supply.

Characteristics of the Sylvania 7695 as a Class-A1 amplifier are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd (watts)</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Pe (ma)</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Ie (ma)</td>
<td>9</td>
<td>130</td>
</tr>
<tr>
<td>Ic (ma)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Rl (ohms)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Rp (ohms)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Lmax (volts)</td>
<td>6,950</td>
<td>6,950</td>
</tr>
<tr>
<td>Dist. (%Vdb)</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

6FG5

The first General Electric receiving tube to use a "Shadow Grid". This extra grid is located in front of and is precisely aligned with the screen grid. (see the diagram). It is grounded to the cathode and for this reason repels electrons flowing from the cathode to the plate. As a result, the electrons are steered around the wires of the screen grid. This keeps electrons from hitting the screen grid, reducing screen current and making possible a drastic reduction in screen dissipation. One practical advantage of the shadow grid is that the screen can be operated at the same voltage as the plate, eliminating the need for a dropping resistor and bypass capacitor. Another advantage is the exceptionally low noise figure. Also, higher transconductance is possible, making it possible in some designs to reduce a three-tube if strip to two tubes.

Average characteristics of the 6FG5 are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vp</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Ie (ma)</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>g5 (uhms)</td>
<td>9,500</td>
<td>9,500</td>
</tr>
</tbody>
</table>

New tube policy

A service technician who has to make a callback to replace any of the 10 tubes Raytheon has given their Uniline label gets a new tube from his dealer and $1 as a labor allowance. This covers any tube failures during the warranty period. The 10 Uniline tubes were selected by service technicians throughout the US who were asked to list the 10 most troublesome tubes they encounter. These 10, which are now the Uniline 10, are: 1B3-GT, 1X2-A/B, 6BC6-A, 6CG7, 6AU4-GTA, 6X8, 6BG6-GTA/B, 6SN7-GTB, 12AT7 and 6AX4-GT.

Industrial Types

On the heavy-duty end is a high-current high-power transistor, a group of four tunnel diodes and four very-
high-current switching transistors.

DA3F3

Here is a high-current high-power germanium p-n-p transistor primarily intended for converting a 12-volt supply to either dc or square-wave ac at any output voltage. The DA3F3 has collector diode and reach-through voltage ratings of 60 volts. Its exceptionally low thermal resistance permits a steady-state power dissipation of 100 watts at 25 °C, 65 watts at 50 °C, and 25 watts at 75 °C.

Performance specifications of the Minneapolis-Honeywell DA3F3 are:

- **hFE**
- **V(rms) (max) [m] [abs]**
- **V(rms) (max) [m] [abs]**
- **hFE [volts at peak]**
- **Typical electrical specifications at 25 °C are:**

 - **Ic (peak current) [ma] 10 10 5 5**
 - **Ic (valley current) [ma] 10 10 5 5**
 - **Ic [voltage peak] [v] 0.5 0.5 0.5 0.5**
 - **Ic [voltage at valley] [v] 0.1 0.1 0.1 0.1**
 - **Ic [peak current on diode characteristic] [v] 1 1 0.98 0.98**
 - **Ic [total series resistance including leads] [ohms] 8 8 8 8**
 - **Ic [negative resistance] [ohms] 20 20 40 40**
 - **C [total capacitance] [p] 40 40 40 40**
 - **Rs [series resistance] [ohms] 1 1 1 1**

Note: CATHode IS ELECTRICAL CONTACT WITH CASE ANODE LEADS CONNECTED INTERNALLY between the case and leads.

Absolute maximum ratings of this group of Texas Instruments tunnel diodes at 25 °C are:

- **Forward current [ma] 20 20 20 20**
- **Reverse current [ma] 20 20 20 20**
- **Disipation [mw] 30 30 30 30**

Typical electrical specifications at 25 °C are:

- **Ic (peak current) [ma] 10 10 5 5**
- **Ic (valley current) [ma] 10 10 5 5**
- **Ic [voltage peak] [v] 0.5 0.5 0.5 0.5**
- **Ic [voltage at valley] [v] 0.1 0.1 0.1 0.1**
- **Ic [peak current on diode characteristic] [v] 1 1 0.98 0.98**
- **Ic [total series resistance including leads] [ohms] 8 8 8 8**
- **Ic [negative resistance] [ohms] 20 20 40 40**
- **C [total capacitance] [p] 40 40 40 40**
- **Rs [series resistance] [ohms] 1 1 1 1**

CTP-1552, -1544, 1545, 1553

A group of p-n-p very-high-current germanium switching transistors that are especially adaptable to use in high-power dc to dc converters with outputs in excess of 600 watts. Extremely low saturation voltage, guaranteed collector leakage current even at high temperatures and maximum applied voltages for good reliability, and controlled gain spread are a few of the advantages offered by the units.

TV-RADIO Servicemen or Beginners...

Send for Coyne's 7-Volume Job-Training Set on 7-Day FREE TRIAL!

Answers ALL Servicing Problems QUICKLY...

Makes You Worth More On The Job!

Put money-saving, time-saving TV-RADIO-ELECTRONICS know-how at your fingertips—examine Coyne's all-new 7-Volume TV-RADIO-ELECTRONICS Reference Set for 7 days at our expense! Shows you the way to easier TV-Radio repair—time-saving, practical working knowledge that helps you get the BIG money! How to install, service and align ALL radio and TV sets, even color-TV, VHF, FM and transistorized equipment. New photo-instruction shows you what makes equipment "tick". No complicated math or theory—just practical facts you can put to immediate use in the shop, or for ready reference at home. Over 3000 pages; 1200 diagrams; 10,000 facts;

Spend NO MONEY! Just mail coupon for 7-Volume TV-Radio Set on 7-Day FREE TRIAL! We'll include the FREE BOOK below. If you keep the set, pay only $3 in 7 days and $3 per month until $27.25 plus postage is paid. Cash price only $42.50. Return set at our expense in 7 days and owe nothing. Either way, the FREE BOOK is yours to keep. Offer limited, so act NOW!

FREE DIAGRAM BOOK!

"Learned more from them than 5 years work!" "Learned more from your first two volumes than from 5 years work."

- Gay Blues, New York
- "'Swell set for either the service man or the beginner. Every service bench should have one."—Melvin Maschbruch, Iowa

FREE BOOK—FREE TRIAL COUPON!

Educational Book Publishing Division
Coyne Electrical School
1455 W. Congress Parkway
Dept. 80-T1, Chicago 7, Illinois

Please send me Coyne's 7 Volume Applied Practical TV-Radio-Electronics Set on 7-Day FREE TRIAL for 7 Days FREE TRIAL on your offer. Include "Patterns & Diagrams" bonus FREE copy with offer. I want CTP-1545, 1546, 1547, 1548.

Coyne Free Book—Free Trial Coupon

Name ____________________________
Address ____________________________
City ___________________ Zone ______
State ____________________________

Check here if you want Sun Start Service at no additional charge for 7-Day Monday-Thursday delivery.

87 - Aug., 1960
Sonotone's 1960 census.........over 10,000,000 (yes, 10 million) cartridges now in use!

Only a few years ago, Sonotone invented the ceramic cartridge...and has been setting sales records ever since. And no wonder! Over the years, Sonotone has developed its fine cartridge line to the point where today it's the standard of the industry. Models available for virtually every type of phonograph...used as original equipment by over 70 manufacturers. In fact, Sonotone has already sold over 10,000,000 cartridges. Your customers will hear the difference...with Sonotone ceramic or new crystal cartridges.

Sonotone

ELECTRONIC APPLICATIONS DIVISION, ELMSFORD, N. Y., DEPT. C2-80
IN CANADA, CONTACT ATLAS RADIO CORP., LTD., TORONTO

BATTERIES • CARTRIDGES • SPEAKERS • TAPE HEADS • MIKES • ELECTRONIC TUBES

NOTEWORTHY CIRCUITS

TRANSISTOR BETA TESTER
A simple instrument for measuring a transistor's beta (current gain), awarded US Patent No. 2,894,206, was developed by G. M. Montgomery of the National Bureau of Standards. To use the unit, S2 is placed in the proper position for the transistor to be tested, and the transistor is plugged in. Then potentiometer R is adjusted until the circuit oscillates at an audio frequency and a tone is heard from the speaker. By calibrating the dial on the instrument, beta can be accurately measured over a range from 10 to 170.

The circuit is designed so the transistor adjusts itself to an operating point that is fixed at a collector voltage of 5 and collector current of 1 ma.

FLASH-UNIT CONTROL
This simple unit controls ac-powered electronic flash units and insures a proper flash each time you snap the shutter. The circuit is arranged so that when the flash capacitor charges to 450 volts, the relay puts a 10-watt lamp in series with primary of the flash unit's power transformer. If the flash bulb isn't triggered, the voltage on the flash capacitor drops slowly. When it drops 12–14 volts, the transistor loses control of the relay and turns the unit back on. This cycle is repeated until the bulb is triggered. The 10-watt lamp reduces sparking at the relay contacts.

To set up the control unit, insert a...
50,000-ohm potentiometer for \(R_c \). Starting at zero resistance, adjust it until the relay pulls in at 450 volts. Remove the pot, measure its resistance and, insert a fixed ½-watt resistor in its place.

Note that one contact of the Sigma electrolytic substitution box described here is a combination of several ideas. Basically, a substitution box is a systematic arrangement of the parts to be substituted around a multiple contact switch. However, substituting electrolytics is different. A defective component in a power supply can blow (literally explode) electrolytics as fast as they are replaced. The cause—the capacitor was charged too fast with too much current. This box avoids the problem by using a high series resistance to extend charging time and a neon lamp to indicate full charge.

On the hazard side, how many times have you bridged a test capacitor across a faulty unit and later found that accidental contact with leads gave you an unexpected jolt? This doesn't happen here, because whenever a capacitor is switched out of a circuit it is shunted with a 100-ohm resistor to discharge it.

No exact construction details are given since the size of the electrolytics determines the cabinet size. However, there are two points that apply to all units:

Do not use "bargain" electrolytics in your substitution box. Choose only high-quality components. The extra cost will be repaid by dependable performance and long life. Don't make any connections to the substitution-box chassis, and use insulated binding posts and clips.

To use the device, \(S_2 \) should be in position 1. Then turn \(S_3 \) on. After the neon lamp lights, move \(S_2 \) to position 2. When disconnecting the device, place \(S_3 \) in the off position to discharge the capacitors. The binding posts are for connecting an external test capacitor. By selecting the proper group of capacitors you will have a substitution box that meets your needs exactly.—Ronald Witek

Simplified Rectifier Stack

Various types of rectifier stack circuits are shown in the diagram. By placing a blank piece of cardboard over the portion of the circuit to the right of the first dashed line, a half-wave rectifier is shown. As you move the cardboard to right, a voltage doubler, tripler, quadrupler, and quintupler are revealed in turn. The voltage and current ratings of rectifiers \(\text{RECT 1, 2, 3, etc.} \) are alike. Capacitors are identical in capacitance but not voltage. \(C_2 \) has double the rating of \(C_1 \), \(C_3 \) has three times the voltage rating of \(C_1 \) and so on.—Barb Jamison

August, 1960

New 4-Way Pocket Tool

A real "working partner" for removing backs of TV sets and installing antennas.

1 It's a 1/4" nut driver! Fits Parker-Kalon screws.
2 It's a 7/16" nut driver! Ideal for antenna installations.
3 It's a No. 1 Phillips screwdriver!
4 It's a 3/16" slotted screwdriver!

Xcelite, Inc. • Orchard Park, N.Y.
Canada: Charles W. Pointon, Ltd., Toronto, Ont.
NOW! YOU CAN Master Mathematics

At Home — In Only 10 Minutes A Day!

Prepare yourself NOW for a good future and higher paying job by learning mathematics this amazingly simple way— at home, in your spare time!

Can You Spare 10 Minutes A Day?

A "Must" for Men Who Want to Get Ahead

Clearly explains all basic principles, equations, probabilities, roots, volume, etc. You solve any problem in geometry, trigonometry, navigation, architecture, designing. You compute speed, velocity, rates, integral formulas; analyze sales, production charts; figure statistics, insurance, physics, electricity, radio. TV. MUCH MORE!

Try Complete Course FREE

Send no money. Just mail coupon today for FREE 10-day examination of all five home-study books. If not convinced this great set will let you "write your own ticket" to a higher paying job, return and owe nothing. But mail No-Risk Coupon NOW to: D. VAN NOSTRAND COMPANY, INC., Dept. 188, 120 Alexander St., Princeton, N. J.

FREE EXAMINATION COUPON

D. VAN NOSTRAND COMPANY, INC., Dept. 188, 120 Alexander St., Princeton, N. J.

Please send me FREE examination of 5-volume set of MATHEMATICS FOR SELF STUDY. If not satisfied may return books within 10 days and owe nothing.

Name _____________________________
Address ___________________________
City __________________ Zone _______ State ______

SAVE: Send full payment of $1.13.50 WITH this examination. We will credit you all delivery charges, return privileges and refund guaranteed.

(In Canada: 25 postage. In Toronto 16-page samples higher.) Foreign and A.P.O.—please send $1.13.50 with order.

ELECTRONIC THERMOSTAT
Patent No. 2,929,968
Henry K. Henschel, Flushing, N.Y. (Assigned to Syracuse Electric Products, Inc., Wilmingtn, Del.)

Zener diode D is normally operated below breakdown and very little current flows through it. As heat reaches the thermistor, its resistance drops. More current flows through D until the breakdown point is reached. At this point, sufficient current flows through the relay winding to energize it. This opens the contacts from the power line, permitting the oven to cool. The thermistor resistance rises again, forcing D below breakdown.

The feature of this invention is the sharp transition from breakdown to blocking conditions of the Zener. This gives a positive, high-speed switching action.

AUTOMATIC SKY SPY
Patent No. 2,931,857
John Hoss Hammond, Jr., and Ernest Leon Chaffee, Gloucester, Mass.

The specifications of this patent reveal mechanical and electronic controls for an automatic TV camera in an airplane which may be directed by remote or automatic means. The camera is exposed for an instant to the ground view. For a longer interval that follows the camera tube is scanned and the still picture is transmitted by radio. After a suitable length of time another view is exposed, and so on. An oscillating mirror helps to minimize blind spots of the plane.

At the receiving station, the polarity of the output signal is set to negative. It is photographed directly on film to obtain a positive. After rapid processing and drying, the film is projected. If desired, the series of still pictures may be combined to form a continuous view of the ground.

INTERMODULATION INDICATOR
Patent No. 2,929,889
Hyman Hurwitz, Washington, D. C.

Intermodulation distortion occurs when two or more signal frequencies interact to generate sum or difference frequencies. This circuit uses two test signals. One frequency (f1) is fixed at 60 cycles. The other (f2) is variable. Both are applied to the amplifier under test. When there is distortion, the amplifier output contains the beats (f2 - f1) and (f2 + f1).

A balanced modulator receives two signals; the amplifier output and f2. These signals do not appear at the output, but their beats do. Therefore, if there is intermodulation in the amplifier a 60-cycle output (f1) will pass through the 60-cycle filter (f2 - f1 + f2) or (f2 + f1 - f2). The meter can be calibrated in percent of distortion.

CRYSTAL OSCILLATOR FOR FM
Patent No. 2,913,677

Conventional crystal oscillators are "stiff" in their control over frequency and do not permit frequency modulation to any extent. This rela-
tively simple crystal circuit produces wide-band stable FM. V1, V2 constitute the rf oscillator. Feedback occurs through C3 and through a series-tuned cathode network. Ls, Cs (C3 is actually a capacitive reactance tube, V4) to grid voltage, an af signal, controls the value of Cs and thus varies the oscillator's instantaneous frequency. The cen-
ter frequency is maintained by a crystal which is loosely coupled into the network.

SEMICONDUCTOR GATE
Patent No. 2,929,923

In the usual method of optical recording on film, a narrow aperture passes a light beam while an audio signal varies the width of this opening to control the amount of light exposing the film.
Hi-Fi set owners are a "finicky" lot. Won't compromise with audio quality. It's easy to help them get the fine sound reproduction they want. When the trouble is a tube, do what profit-minded dealers have been doing for years with radio and TV sets. Replace defective tubes with SYLVANIA superior-quality TUBES.

ESPECIALLY FOR HI-FI AUDIO

SYLVANIA 6BQ5... power pentode used in many medium-to-high power output stages.
SYLVANIA 6973... power pentode popular in medium-to-low power output stages.
SYLVANIA 12AX7... high-mu twin triode used in many high-gain preamplifiers.
SYLVANIA 7025... a "sophisticated" 12AX7, featuring exceptionally low noise and low microphonics.
SYLVANIA 7199... triode-pentode, featuring low hum and low microphonics, used in high-gain preamplifier and phase inverter stages.

TOP PERFORMANCE AND LONG LIFE...

that's what your customers get with SYLVANIA TUBES! What do you get? Fewer callbacks and satisfied customers who send you more customers. Yes, there's no doubt about the "sound profits" that are yours when you use SYLVANIA TUBES. Electronic Tubes Division, Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y.
new PRODUCTS

TRANSCEIVER for 27-me Citizens band, 4 channel crystal-controlled transmitting and receiving channels. Tunable receiver for all 23 channels.

Mounting bracket. Microphone with push-to-talk switch. 2 Mark VII models: 117 volts ac and 6 volts dc; 177 volts ac and 12 volts dc.—Radio Corp. of America, 30 Rockefeller Plaza, New York 20, N. Y.

TRANSCEIVER, Pocketphone, for 27-me Citizens band. Power input to final stage under 100 mw; no license is required unless used to contact licensed stations or equipment. Crystal-controlled receiver and transmitter. Built-in speaker serves as mike. Battery life expectancy 1 year.—Globe Electronics, 22-30 S. 34 St., Council Bluffs, Iowa.

Ray-Tel. 4-channel crystal-controlled Citizens-band transceiver. Squeal, ave, noise limiter. Push-to-talk switch on mike. 117 volts ac or 12 volts dc. Power input 5 watts.—Raytheon Co., Waltham 54, Mass.

SINGLE SIDEBAND microphones, models 440 and 440SL (shown). Response 300 to 3,000 cycles with rising characteristic for maximum intelligibility. Identical except 440SL has grip-to-talk switch and 410 standard microphone thread. High impedance. For use with amplifier with input impedance of 100,000 ohms or more. Open-circuit voltage — 55.2 db.—Shure Brothers, Inc. 225 Hartley Ave., Evansboro, Ill.

MICROPHONE for industrial, mobile use (Citizens band, ham radio and ship-to-shore). Model PA-77: response 100 to 9,000 cycles. Impedance 50,000 ohms. Built-in switch operates relay for transmit-receive switching. 5-foot single-conductor shielded cable. 2 color-coded switching conductors in one jack.—Poly-ethylene impact-resistant case.—Lafayette Radio Corp., 165-08 Liberty Ave., Jamaica 33, N. Y.

DYNAMIC CARDIOID microphone for recording and PA use. Knight model KN-550: directional pickup pattern for high front-to-back ratio. Response 60 to 13,000 cycles, output level — 57 db. Impedance either 150 ohms or hi-Z. On-off switch, 18-foot cable and stand-

ard thread to fit all floor and desk stands. Stock No. 92 S 179.—Allied Radio Corp. 100 N. Western Ave., Chicago 80, Ill.

LOUDSPEAKER and integrated cabinet and wall metal baffle model SK-775 2 1/4 inches deep. 12-in magnet structure in front of speaker. Impedance 8 ohms, response 90 to 9,000 cycles. Voice-coil diameter 1 1/2. —Lafayette Radio Corp., 165-08 Liberty Ave., Jamaica 33, N. Y.

PICKUP ARM. 2 Professional

TELEVISION

Only from famous COYNE do you get this modern up-to-the-minute TV Home Training. Easy to follow instructions—fully illustrated with 2150 photos and diagrams. Not an old Radio Course with Television tacked on. Includes UHF and COLOR TV. Personal guidance by Coyne Staff, Practical Job Tips to help you EARN MONEY QUICKLY IN A TV-RADIO SALES AND SERVICE BUSINESS—part time or full time. COSTS MUCH LESS—pay only for training—no costly "put together kits."

SEND TODAY FOR FREE BOOK
SEND COUPON or write to address below for Free Book and full details including EASY PAYMENT PLAN OR FOR OBLIGATION—NO SALESMAN WILL CALL.

G. N. COYNE, Jr., Pres.
COYNE ELECTRICAL SCHOOL
Chartered as an educational institution NOT FOR PROFIT
305 W. Congress Pl., Dept. 668, Chicago 7, III.
COYNE Television Training Div.
New Coyne Building, Dept. 668,
305 W. Congress Pl., Chicago 7, I I I.
Send FREE BOOK and details of your Television Home Training offer.

Ask By Name For GENUINE your assurance of brand name quality "NO NOISE" PRODUCTS

NO-NOISE TUNER-TONIC with PERMA-FILM

- Cleans, lubricates, restores all tuners, including water type.
- Non-toxic, non-inflammable.
- For TV, radio and FM sets.
- E.S.O. guaranteed — little does it cost.

2 oz. Bottle $10.00 6 oz. $2.25
Not to Servicemen Not to Servicemen

NO-NOISE VOLUME CONTROL and CONTACT RESTORER
- Cleans, lubricates, restores all tuners, including water type.
- Non-toxic, non-inflammable.
- For TV, radio and FM sets.
- E.S.O. guaranteed — little does it cost.

3 oz. Bottle $1.00 6 oz. $2.25
Not to Servicemen Not to Servicemen

FRE 5" PLASTIC EXTENDER

At your Jobbers

COYNE TRAINS YOU IN SPARE TIME AT HOME

"NO NOISE" PRODUCTS

Gernsback LIBRARY

Low-cost, paper-covered books on all phases of TV, radio, audio-high fidelity and practical electronics.

On Sale At All Better Parts Distributors

FREE 5" PLASTIC EXTENDER

Push Button Assembly
For Pan-Pan Applications
Does Not Glue Shells

RUBBER COAT

6 oz. $2.25
Not to Servicemen

At your Jobbers

FREE RUBBER COAT

At your Jobbers

FREE sample LESSON

Learn at Home to Fix APPLIANCES

Electronic Chemical Corp.
813 Communipaw Avenue Jersey City 4, N. J.

Electronic Chemical Corp.
813 Communipaw Avenue Jersey City 4, N. J.

Free Sample Lesson

Electronic Chemical Corp.
813 Communipaw Avenue Jersey City 4, N. J.

At your Jobbers
NEW PRODUCTS (Continued)

models: M322 for 12-inch records; M35C for 16-inch records. Ball bearings at all pivot points to reduce drag. Head is changeable.

Shure Brothers, Inc., 222 Hartrey Ave., Evans-

TURNTABLE. Hysteresis synchronous motor, 33 1/2 and 45 rpm, single-speed motor. Speed change mechanism uses double stepped cone on motor shaft. Shaft suspended in graphite nylon bearings. Dynamically balanced. Rumble down 50 db (referred to 1,000 cycles). Wow 0.15%, flutter 0.1%. Turntable 12 inches in diameter, turned from nonferrous material. Neon indicator glows when power is on. Encon Corporation, 24 W. 46 St., New York 36, N. Y.

PORTABLE RECORDER. Model TR-250. 2 1/4 x 7 1/4 x 8 1/4 inches. Amplifier uses 5 transistors, is powered by 9-volt 60-

PORTABLE RECORDER. 20-hour battery. Motor powered by 8 pentelight cells. Built-in meter indicates recording level and battery condition. Two speeds: 7 1/2 and 15 inches per second.

Hi-Fi controls mounted on speaker cabinet, wall or woodwork. No. 966, L-pad speaker volume control rated at 3 watts peak, 8 ohms. No. 967 speaker selector switch. No. 669 stereo switch selects any of 3 stereo sources for amplifier input. No. 963 (shown) 1-megohm matched stereo volume control. Switchcraft, Inc., 5555 N. Elston Ave., Chicago 30, Ill.

STEREO CARTRIDGE. All plastic construction except for crystal element, stylus and mounting bracket. Series 12 high-output cartridges designed to improve tone quality and sound cost. Model 12TL output 1 volt; 12TH output 2.5 volts. Recommended load 1 megohm channel separation 15 db.—Sonitone Corp., Elmsford, N. Y.

STEREO TUNER. Aria (model T2001). FM response 30 to 15,000 cycles = 0.75 db. Distortion 1% or less on both AM and FM.

Harry S. Schober,INC., 1000 Pennsylvania Ave., Washington, D. C.

Looking?—you stand a better chance of finding what you want if you advertise in...

RADIO-ELECTRONICS Opportunity Adlets

See details at head of this column.

OPPORTUNITY ADLETS

ROCKET FUEL, CHEMICALS, Model Mike Kit, Parts. Catalog 25, CENTRAL ROCKET COMPANY, Waynesboro, Virginia.

LEARN CIVIL and criminal investigation at home. Each 10 lesson set. INSTITUTE APPLIED SCI-

PROFESSIONAL ELECTRONIC PROJECTS. Organs, Timers, Computers, etc.—414

BROOKLYN, N. Y.

BROADCAST EQUIPMENT, Inc., 108 St., Corona 08, N. Y.

спорד

CASH PAID! Sell your surplus electronic tubes. Want unused, clean radio and TV receiving, transmitting, spe-

COMPONENTS, Records, Tapes, FREE Wholesale Cata-

COMPONENTS, Records, Tapes, FREE Wholesale Cata-

ELECTRONICS, 154 W 14 St., New York 11, N. Y.

AUG. 1960

TUNE ELECTRONIC ORGANS ACCURATELY—QUICKLY

WITH A NEW SCHOBER AUTOTUNER

Every organ owner and service tech-

An automatic strobe indicator visually shows the accur-

Black plastic case with etched sili-

TUBES — TV and Radio tubes—Guaranteed. Sate up to 30%.

MAIL ORDERS FILLED PROMPTLY • FULLY GUARANTEED

THE SCHOBER ORGAN CORPORATION, Dpt. RE

42 West 61st Street, New York 23, N. Y.

Manufacturers of the World-Famous Schober Organ Kits.

www.americanradiohistory.com
BUILD 20 RADIO CIRCUITS AT HOME with the New Progressive RADIO "EDU-KIT"Ò
All Guaranteed to Work!

PRACTICAL HOME RADIO COURSE
ONLY $26.95

NOW INCLUDES
12 RECEIVERS
3 TRANSMITTERS
WAVE GENERATOR
AMPLIFIER
SIGNAL TRACER
SIGNAL INJECTOR
CODE OSCILLATOR
FREE EXTRAS
SET OF TOOLS
RADIO & ELECTRONICS TESTER
ELECTRIC SOLDERING IRON
PRACTICAL CIRCUIT MAKER INSTRUCTION MANUAL
SHIP IN RADIO-TV CLUB: CONSULTATION SERVICE & HINTS-WEBSITE
PRINTED CIRCUITRY
FLUX-CUTTERS
ALIGNMENT TOOLS
TERMINATE CIRCUIT
COUPLED VALUE
FREE DISCOUNT CARD

WHAT THE "EDU-KIT" OFFERS YOU
The "EDU-KIT" offers you an outstanding practical home radio course at a rock-bottom price. You will be introduced to Radio & Electronic Technology. You will learn to construct radio circuits, perform jobs and conduct experiments to illustrate the functioning of each part. You will receive a written instruction book, carrying pages, and all parts included in the "EDU-KIT." You will enjoy the same training and service that all students receive at the famous Progressive Radio Institute.

THE KIT FOR EVERYONE!
The Progressive Radio "EDU-KIT" was specifically designed for anyone who has long wanted to learn Radio or Electronics. As a catalog of the "EDU-KIT," you will find a wealth of easy-to-follow instructions. You will learn to build radio sets and to repair them through the laboratory manual that is included in the "EDU-KIT." You will learn the function, theory and wiring of these parts. Whether you build a simple radio or a complete radio circuit, you will gain valuable practical experience and an understanding of basic radio theory and practice.

PROGRESSIVE TEACHING METHOD
In the "EDU-KIT" you receive a complete course in Radio in the Laboratory. In this course you learn Radio from basic parts through complete radio sets. You will learn the theory, construction, servicing, and repair of Hi-Fi and TV receivers. You will receive a written instruction book, carrying pages, and all parts included in the "EDU-KIT." You will enjoy the same training and service that all students receive at the famous Progressive Radio Institute.

INQUIRIES
Inquiries are welcome from all students. Your questions will be answered by our staff of experienced instructors. We will make every effort to help you understand and master the subject matter of your course. Our instructors are experienced professionals who will be happy to answer your questions and help you in any way they can.

ORDER FROM 8-RECIEVE FREE BONUS RESISTOR AND CONDENSER KIT
Send your order and receive a free bonus resistor and capacitor kit. This kit includes everything you need to get started.

Modifications
- Models H6M (monophony) and H6B (bipolar) 4-section tele- scoping dipoles extend to 36 inches. Weighted base has felt bottom.
- Clear Beam antenna Corp., 21341 Roscoe Blvd., Canoga Park, Calif.
- CURVE TRACER for tunnel diodes. Use with any type of scope. Check diodes from all manufacturers. With optional shunt, reads negative resistance at any point on curve.
- Texas Instruments, Inc., 3600 Buffalo Speedway, Houston 6, Texas.
- DECADE BOX of power resistors, model 280C, allows any value from 1 to 999,999 ohms, to be selected in 1-ohm steps. Maximum power 225 watts. Resistance may be changed in working circuit without resistace breakdown between steps, protecting meters or other instruments.
- Clarostat Mfg. Co., Inc., Dover, N. H.
- PLUGS with built-in cable clamps, Littei-Plug Nos. C-25-1 and C-27-1 come with black plastic, red plastic and shielded handles, respectively.
- Switchcraft, Inc., 555 N. Elyson Ave., Chicago 30, III.
- FLEXIBLE-SHAFT TOOL grinds off rivet heads for easy removal of defective transmis- sion parts.
- Models H6M (monophony) and H6B (bipolar) 4-section tele- scoping dipoles extend to 36 inches. Weighted base has felt bottom.
- Clear Beam antenna Corp., 21341 Roscoe Blvd., Canoga Park, Calif.
- CURVE TRACER for tunnel diodes. Use with any type of scope. Check diodes from all manufacturers. With optional shunt, reads negative resistance at any point on curve.
- Texas Instruments, Inc., 3600 Buffalo Speedway, Houston 6, Texas.
- DECADE BOX of power resistors, model 280C, allows any value from 1 to 999,999 ohms, to be selected in 1-ohm steps. Maximum power 225 watts. Resistance may be changed in working circuit without resistace breakdown between steps, protecting meters or other instruments.
- Clarostat Mfg. Co., Inc., Dover, N. H.
- PLUGS with built-in cable clamps, Littei-Plug Nos. C-25-1 and C-27-1 come with black plastic, red plastic and shielded handles, respectively.
- Switchcraft, Inc., 555 N. Elyson Ave., Chicago 30, III.
- FLEXIBLE-SHAFT TOOL grinds off rivet heads for easy removal of defective transmis- sion parts.
- Models H6M (monophony) and H6B (bipolar) 4-section tele- scoping dipoles extend to 36 inches. Weighted base has felt bottom.
CARBON RESISTORS

ELECTROLYTIC CONDENSERS

CARBON RESISTORS

complete your radio circuit - 510.5 - 50.5 - 500 - 1000 - 2000 - 10,000 - 100,000 - 1,000,000 - 10,000,000

DX-16 Super Deluxe TV Kit

Dimensions 17%\" x 10\" x 16\"
Shipping weight 8 lb. net.

Includes LIFE-SIZE step-by-step Building Instructions

Complete Kit with set of WESTINGHOUSE TUBES $99.49

Also sold on EASY-PAYMENT PLAN Buy LIFE-SIZE Instructions - $2.49 and build Parts as you build.

BUILD YOUR OWN CABINET FOR TV CHASSIS

Comparable to the type that Top Mfrs. use on hi-priced TV sets.

KABINET with 90% of the job done, includes:

FRONT SECTION in Solid Mahogany, Walnut or Blond Finish.

SIDE, BACK, MASK, SAFETY GLASS, ETC.

And EASY-TO-FOLLOW ASSEMBLY INSTRUCTIONS

Parts, TV tube, transformer supplied in kit. Compare with radio panel unlabeled: For matching Model specify type or number of CRT used. Radio price-Mahogany, Walnut or Blond. (Shipping weight 16 lbs).

21\" CABINET KIT $26.97

23\" TV Cabinet Kit . $28.47

24\" or 27\" TV Cabinet KIt . $28.47

24\" or 27\" Front Panel Assembly . $24.97

BROOKS RADIO & TV CORP., 84 Vesey St., Dept. A, New York 7, N. Y.

AUGUST, 1960
PHOTOFACT — "There Is No Other..."

Service Technicians! YOU EARN MORE... YOU RATE with the public when you own the PHOTOFACT® service data library!

You enjoy maximum earnings as the owner of a complete PHOTOFACT Service Data Library! It's inevitable, because no matter how expert you are, you can always save more time on any job, get more jobs done daily—EARN MORE, DAY IN AND DAY OUT...

What's more—as the owner of a complete PHOTOFACT Library, you know your customers' sets best. You can actually show each customer you have the PHOTOFACT Folder covering his very own set. Result: You command public respect and acceptance which paves the way to more business and earnings for you.

HOW TO STAY AHEAD...
Yes, the truly successful Service Technicians are those who own the complete PHOTOFACT Library, who can meet and solve any repair problem—faster and more profitably. And these men keep ahead because they're on a Standing Order Subscription with their Distributors to receive all new PHOTOFACTS as they are released monthly. (They're eligible for the benefits of membership in PEET, too—see below!)

ONLY $10 DOWN puts the complete PHOTOFACT Library in your shop—and you have up to 30 months to pay. See your Sams Distributor today, or write to Howard W. Sams

NOW IS THE TIME TO JOIN

THE POWERFUL NEW PROGRAM FOR QUALIFIED TECHNICIANS
If you now own a PHOTOFACT Library or plan to own one, you can apply for membership in "PEET." It's the first industry program really designed to build powerful public acceptance for the Service Technician who qualifies. Builds enviable prestige and business for its members. Benefits cost you absolutely nothing if you qualify. Ask your Sams Distributor for the "PEET" details, or mail coupon today.

"PEET"

HOWARD W. SAMS & CO., INC.
1726 E. 38th St., Indianapolis 6, Ind.

☐ Send me full details on the new "PEET" Program.
☐ Send full information on the Easy-Buy Plan and Free File Cabinet deal.
☐ I'm interested in a Standing Order Subscription.
☐ I'm a Service Technician ☐ full-time; ☐ part-time

My distributor is ____________________________

Shop Name ____________________________

Attn: ____________________________

Address ____________________________

City ____________________________ Zone State ____________________________

TECHNICIANS' NEWS

TV CLINIC
Texas Electronics Association Inc. will hold its eighth annual TV Clinic in Houston this year. The dates are Aug. 5, 6 and 7. There will be speakers on all phases of management and technical know-how. The management program will be conducted by specialists from the Business Administration School of the University of Texas.

The latest in test equipment, components, TV sets, radios, tape and hi-fi gear will be exhibited.

The sessions will be held at the Shamrock Hilton Hotel, which has set aside more than 200 rooms at special convention rates. A program of entertainment has been planned for the ladies, and baby sitters will be available.

SEE YOUR AGENT!
On Jan. 7, 1960, one of the member firms of Television Service Engineers (Kansas City, Mo.) was burglarized to the extent of $1,400, according to The Supreme Effort, the TSE magazine. While this in itself is not unusual, the point worth noting is that the owner of the shop is still trying to settle with his insurance company.

TSE checked into the matter by contacting the insurance-company adjusters. They were told that there is no doubt that a loss occurred and that the policy is supposed to cover such a loss. TSE was also told that they were unable to arrive at a settlement that would satisfy the terms of the policy relating to "proof of loss."

According to the adjuster it is necessary to prove (through invoices) that each item covered was purchased and then prove (through sales records) that the item was not sold.

He stated specifically that inventory records are not considered adequate to prove possession, even when reconciled with purchase and sales records since the inventory. In many instances, the proof would have to consist of a complete audit of all business transactions since the company was founded (and even then there could be certain items not covered).

The Supreme Effort comments that the cost of such an audit might be greater than the loss involved. It recommends that all technicians go over their insurance policies with their agent and attorney. You may not have the coverage you think you have.

TRAINING PROGRAM
A 5-day refresher course in meter repairs has been announced by Weston
Instruments Division of Daystrom Inc. The course, keyed for experienced instrument repair technicians, will take place in regular plant production areas. It involves intensive training in assembly and casing of small instruments, assembly calibration, checking and calibration of large instruments. Information on special tools and equipment will be supplied. Instruction is free, but the technician must pay for all other personal charges. Those interested are asked to write to Daystrom Inc., Weston Instruments Div., 2530 Polk St., Union, N. J.

TEAM'S NEW OFFICERS
The Electronic Association of Missouri has elected Art Mayer their president; Robert Lucas, vice president; Harvey Davis, secretary-treasurer; Tom Dooly, recording secretary, and A. Payne, sergeant at arms. A. Payne, "Beaver" Beeson, W. C. Feent (editor, TEAM News), and C. W. Omohundro were elected directors.

BONUS, TRAINING PLANS
Montgomery Ward & Co. has expanded its service program to include a bonus plan for TV and appliance technicians. The company has developed a time-allowance system for different types of repair jobs. Each job is allotted a certain number of "performance credits," with each credit being equal to 1 hour's work. The figures used to set up these allotments were obtained from company repair-service records. Any technician who earns more than the allotted number of credits (a 40-hour week represents 40 credits) receives a bonus. A 40-hour-per-week man with 50 credits gets $10 bonus.

The plan takes into account cancelled calls, excess travel time, wrong address, two-man calls.

In addition to the bonus plan, the company has instituted a training program that will cover eight major mechanical and electrical lines representing about 95% of all serviceable items. These include television; refrigeration, laundry, radio and hi-fi equipment; heating and cooking equipment, water systems, gas engines and electric houseware.

Every Ward technician will receive at least 1 week's training during 1960.

WCATT ELECTS
The Worcester County Association of Television Technicians (Mass.) has elected as president Clem Daigneault, former secretary. Other officers include: Dave Balou, vice president; Ed Sulkosky, secretary, Art St. Pierre, treasurer, and Al Stark, business agent.

ESFETA MEETS AUG. 7
The next ESFETA meeting will be held on Aug. 7 at Buffalo. It will convene at 10:00 a.m. For the exact location, write to Melvin Cohen, corresponding secretary, Rural Delivery 1, Hudsons Falls, N. Y.

TECHIS, DISTRIBUTORS AGREE
Independent service dealers and 14 parts distributors in the Philadelphia (Pa.) area have come to an agreement on handling the problem of wholesalers selling to the general public. The distributors have agreed to the following:

Discourage retail sales by charging retail prices to non-technician customers and crediting the technician nearest the customer's address with the price difference.

All cash-purchase slips will now contain the name and address of the purchaser.

Part-time servicemen are encouraged to
TECHNICIANS' NEWS (Continued)

obtain and use tax numbers from the state.

High-fidelity users will pay retail prices for replacement parts and supplies.

All advertising literature mailed to service dealers will be in sealed envelopes, not open flyers.

Distributors will discontinue Yellow Page advertisements and use only bold-face listings.

Morris Green, president of Almo Radio Co., Inc., said: "We recognize the problems faced by the servicemen, and feel we just can't turn our head away. We feel we've come up with a pretty good tentative solution. We hope the retail customers will begin to realize they can get the same price breaks at service dealers as they can ... by us. This will not be accomplished overnight, but we feel we have a good start. We also hope the agreement sets a pattern for the industry at large to follow..."

HEADS LICENSE COMMITTEE

Daniel Hurley has been appointed to head the Empire State Federation of Electronic Technicians Associations Inc. License Committee by Irving Toner, ESFEITA president. All unlicensed technicians in New York State are urged to contact Mr. Hurley at 410 Florida Road, Syracuse, N. Y. He will be glad to receive your suggestions and will keep you informed on the license bill's progress.

TESA TO EDUCATE PUBLIC

The Television & Electronic Service Association of Greater Buffalo, Inc. (N. Y.) has launched a campaign to educate the public on "what to look for in fair and honest treatment" by technicians.

"Not all television repairmen are gyps, and we want people to know the protection they can receive by dealing with a member of the association," said Edward J. Danuher, vice president.

During the past year, 2,000 complaints against technicians in the Buffalo area were made to the Better Business Bureau.

A BBB spokesman said the association has been helping to adjust complaints. He also said: "Many of our calls are from people with older TV sets. Their repair bills run up to $50."

INTERFERENCE SOURCES

Two of the major sources of television and radio interference are defective (or forgotten) heating pads and electric blankets, according to Herb Pinkham and Bob Campbell, trouble-shooters for Puget Power and City Light, respectively. TSA Service News (TSA King County, Washington) reports that the interference can take several forms, but generally is pulses of buzz type noise.

The offending article is usually in the house, but may be as far as a block away. Occasional cases may be found where a person uses a heating pad and then puts it away, plugged in. END
PLASTIC CUP CURES CORONA

In some sets (particularly Admirals), strong corona discharge between the high-voltage rectifier’s cap and nearby areas of the high-voltage cage is difficult to correct. A simple solution to the problem is to invert a plastic drinking cup over the tube. This trick works where corona does not fail. Any plastic drinking cup that fits can be used. Fasten it to the chassis near the base of the tube with plastic tape.—John A. Constock

AUTO GENERATOR NOISE

When uhf receivers (part of a communications system operating on the public service frequencies) are installed in late-model cars, one of the most frequent causes of noise is the car’s generator. The ordinary 0.5-mf generator capacitor is seldom any help since this type filter is not effective at uhf.

The filter shown in the diagram eliminates this trouble. It consists of a choke coil wound on a 6-inch length of 1-inch dowel. It is made up of 19 turns of No. 12 wire. A .006-mf mica capacitor is used as the bypass.

The choke will handle the output of the ordinary generator. Its winding spacing should be about the diameter of the No. 12 wire.—A. G. Sydenor

ADMIRAL 122DX12

A bowling-alley proprietor thought his TV set was a silver lining to the damp, rainy day clouds that kept a few patrons around. But when the picture on the set developed a silver lining on damp days he was quite understandably perturbed. The outside technician changed all tubes in the tuner, if and pix detector stages to no avail. Then he pulled the chassis.

In the shop the set proved a dog to service. A perfume atomizer was used to dampen various sections under the chassis to produce the symptom.

The silvery picture was caused by

The new Dynakit Stereophonic Preamplifier has all the quality features which you require for the finest high fidelity reproduction. This handsomely styled control unit is a model of classical quality and contemporary simplicity.

BEST IN EVERY WAY

* Best Performance
Frequency response within 1 db @ 8 cps to 40 kc. Distortion (either internal harmonic) less than .05%. Response and distortion unaffected by settings of volume control. Undistorted square wave performance demonstrates outstanding short transient performance. Noise and hum inadequate at normal listening levels. High gain permits operation with lowest level cartridges. (1 millivolt input gives 1 volt output on RIAA input.)

* Finest Quality Components
1%, tolerance components used in critical equalization-determining circuits. Tone control components matched to provide absolutely flat response at center settings. Highest quality plastic molded capacitors, low noise resistors, conservatively operated electrolytics, plated chassis and hardware, all lead to long life with interchangeability of specifications. One year guarantee on all parts.

* Greater Flexibility
7 stereo inputs (or 14 monophonic ones) provide for all present and future sources. Special input provides option for special equalization characteristics. Provision for tape feedback, amplifier, and monitoring tape recorders. Independent tone controls for each channel. Exclusive Dyna “Blend” switch to control stereo separation. Unique feedback scratch filter takes out the hash and leaves in the music. Rear panel ac outlets enable switching other components with preamp on-off switch. Self-powered (with dc heater supply) permits use with any amplifiers.

* Outstanding Appearance
Choice of bone white or charcoal brown textured finish cover. Solid brass, etched front panel. Designed by Raoul Ibarqums, prominent industrial stylist. Requires only 13” by 13½” panel space and can readily mounted on any thickness of panel with convenient PM-3 auxiliary mounting kit.

* Easiest Assembly
About 8 hour average assembly time—from one to one-fourth that of other kits. Assembly speeded by use of pre-assembled printed circuit boards plus ultra-simple and accessible layout of parts. Complete pictorial diagrams included plus step-by-step instructions so that no technical skill is required. Also available fully wired and individually tested.

DYNACO, INC., 3916 POWELTON AVENUE, PHILA., 4, PA.
CABLE ADDRESS: DYNACO, PHILA.
exact replacement Stancor transformers that do the job... and do it better

Flybacks • Yokes • Power Transformers

Your distributor has them in stock—along with many other types and the complete line of Stancor Coils. Complete replacement listings in Photofacts and Counterfacts.

CHICAGO STANDARD TRANSFORMER CORPORATION
3501 WEST ADDISON STREET • CHICAGO 18, ILLINOIS

TV TUNERS OVERHAULED ALL MAKES AND MODELS $9.95 NET
SAME DAY SERVICE ON POPULAR TYPES—48 HOURS ALL OTHERS
Overhaul charge includes labor and minor parts; tubes and major parts are extra at net prices.
Tuner to be overhauled should be shipped complete; include tubes, shield cover and any damaged parts. Quote model and state complaint. Pack well and insure.
WE WILL SHIP C.O.D.—F.O.B. CHICAGO OR TORONTO

Castle TV Tuner Service
5710 N. WESTERN U.S.A. • 136 MAIN ST.
CHICAGO 45, ILL. TORONTO 13 CANADA

RADIO-ELECTRONICS

video overload produced by low age voltage. The age at the tuner showed as much as 2 volts positive. The grid lead to the 6BZ7 was connected to the vtm through a 47,000-ohm isolating resistor. The grid was 3.2 volts positive. A new 6BZ7 gave approximately the same reading.

The tuner’s side plate was removed and the interior searched with a dentist’s mirror and flashlight beam. Considerable grime was noticed, particularly on neutralizing capacitor C120 (3.6 µf). Resistance readings between socket pins 1 and 2 confirmed the suspicion of a leak from plate to grid. The capacitor was cleaned with rubbing alcohol on the end of a pipe cleaner. Resistance between pins 1 and 2 disappeared. The symptom was cured. So, on a humidity-caused symptom, do not forget to humidify the tuner! —Lawrence Shaw

FORD 74BF

This hybrid had weak sound with only locals being received. On the bench, a signal tracer picked off normal reception at the transistor base, but not beyond that point. A voltage check showed zero potential between ground and the transistor’s collector. Closer examination revealed a break, held intact by insulation, where the output transformer lead enters a terminal lug attached to the collector. This lug was removed and a new one soldered to the lead before attaching it to the collector, as excessive heat can ruin a transistor. This repair restored the set to normal operation.

Transistor life after a breakdown in one of its circuits is often short, and always difficult to estimate. To avoid callbacks and customer ill-will, replace when in doubt. Because I didn’t, this one was back dead the following week. —Chase Bass

ZENITH 7704

This AM-FM receiver was brought in one morning by the owner, who said something about a thunderstorm or lightning. I plugged it in cautiously after checking the resistance across the plug with the switch on. To my surprise it played perfectly. Some other work needed doing so this set was left to cook. It played for several hours and I had almost decided that there was nothing wrong with it when I decided to turn it off and on a few times to shock it electrically and pos-
and now...

an independent tone arm that measures up to

SHURE STANDARDS

...for use with any quality cartridge
...monophonic or stereo

new safety for records

Surface wear is held to absolute minimum through flawless tracking made possible by an ingenious and unprecedented combination of adjustments. Optimum static and dynamic balance, precise height, correct cartridge "overhang" and incredibly accurate stylus force are quickly achieved and easily maintained without guesswork.

new sound from records

Modern high-compliance, light tracking cartridges (Shure M3D compliance is 4.0 x 10^-6 cm/dyne; 3 gm. tracking) require arm balance of a high order in all planes to deliver ALL the sound, undistorted. The Shure arm pivots on drag-free precision bearings. Precision adjustments assure optimum suspension and permanent balance, regardless of cartridge characteristics.

new simplicity in installation and operation

Installs completely from top side of motorboard. Special cable and plug assembly eliminates hum problem, speeds up and simplifies installation. Eliminates soldering. All you do is plug in one end of cable to tone arm, the other end to amplifier. Lock-on heads are instantly interchangeable. Direct-reading stylus force gauge with instant disconnect, and "micrometer" counterweight assembly permit visual static balance checks.

TONE ARM M32: for 12" records .. $2995 net.
TONE ARM M33, for 16" records $319.50净.

Shure Brothers, Inc., 222 Hartrey Avenue, Evanston, Illinois

CARTOONS

RADIO-ELECTRONICS pays $3.00 for good cartoon ideas and $15 and up for finished work.

RADIO-ELECTRONICS

154 West 14th St. New York 11, N.Y.

FREE! CATALOG OF HI-FI, RADIO, TV PARTS & ACCESSORIES — yours for the asking!

VIDAIRE ELECTRONICS MFG. CORP. 44 Church St. New York N.Y.

A NOTE TO THE HI-FI BUYER

AIR MAIL us your requirements for an IMMEDIATE LOWEST PRICE QUOTATION Components, Tapes and Recorders SHIPPED PROMPTLY AT LOWEST PRICES WRITE TODAY FOR FREE CATALOG AUDIO 714-B Lexington Ave. UNLIMITED New York 22, N.Y.
If you are a career-minded engineer or technician...

RE-DIRECT your future aims to high standing in NUCLEAR ENGINEERING technology

Learn Nuclear Engineering Technology through an advanced home study program offered by CREI Atomics. Enrollment is limited.

ONLY A LIMITED NUMBER OF MEN will be accepted at this time for this program of home study offered by CREI ATOMICS, an expertly-staffed extension division of The Capitol Radio Engineering Institute.

U.S. Atomic Energy Commission states about the severe shortage of trained people in nuclear technology: "...the immediate goal is to retrain, through short courses...those already grounded in traditional disciplines." Through CREI Atomics you can now combine your present technical and engineering experience with knowledge in nuclear engineering and technology. The result: increased career opportunities and corresponding income advantages as the nuclear field develops.

Program of study includes—

Nuclear Physics, Reactor Physics, Thermodynamics, Reactor Technology, Reactor Controls, Instrumentation for Reactor Control, Isotopes, Health Physics—many other subjects.

Now you'll really know how to use OSCILLOSCOPES!

Get this complete guide to using the handiest instrument of all.

Men who know how to use scopes don't guess about trouble-shooting and tough alignment problems. They pinpoint troubles and adjust them quickly and accurately—and this famous 240-page manual teaches you the methods they use.

MODERN OSCILLOSCOPES get right down to earth in showing you where and how to use these versatile instruments. Particular attention is paid to AM, FM and TV alignment procedures. Every detail is explained from connecting the scope and setting its controls to adjusting components in the chassis being tested. Illustrated instructions teach you to analyze problems. This manual includes data on quantitative measurements and use of 'scopes in lab work, industrial electronics, atomic work and teaching. 157 illustrations. Price $6.50.

PRACTICE 10 DAYS FREE

CREI Atomics

3224 16th Street, N.W.
Washington 10, D.C.

Please send me complete information about CREI ATOMICS.

name

street

city state

job title

CRT COATING

Occasionally a service technician will discover a TV set whose picture tube has a defective aquadag coating. A CRT in this condition offers a poor ground connection to the ground return spring, sometimes resulting in arcing that disturbs vertical sync, causes noise specks in the picture, and a noisy discharge when the voltage builds up enough to arc to the chassis. This is not uncommon, but does present an excessive type of fault that is often overlooked. Often, this trouble occurs only on particularly damp days, when the moisture content of the air permits a high-voltage discharge through the air at the surface of the tube, between the coating and chassis.

To remedy this situation, simply paint the sealed surface of the picture tube with one or more coatings of Carbon X, a liquid solution commonly used to touch-up noisy volume controls. In a matter of minutes the Carbon X dries into a thin conductive coating around the ground spring and eliminates the arcing. This solution can even be used to completely renew the conductive coating on the outside of the CRT.—George D. Philpot

HINT FOR EXPERIMENTERS

Electronic experimenters will find that ordinary window shade brackets can have several useful applications. For example, in building experimental circuits they can be used as mounting brackets for controls and as standoff insulators for wires. If bare wire is used, a small rubber grommet is snapped into the "eye" of the bracket. In most cases, the eye will have to be enlarged slightly by reaming or drilling.—Scott Mock

INTERNATIONAL ENERGY AGENCY...A WORLD PLAN...NEEDS EXPERTIS

NORELCO SPEAKERS

Electronic AD-3000 (pair)...
Price $24.95

NORELCO AMPLIFIERS...

Yaesu 1214-A NOW with FREE accessory...$139.95

COMMISSIONED ELECTRONICS...CO.

1720 Columbus Road
Washington, D.C.

RECORDING TAPE

TAPE RECORDERS

HI-FI COMPONENTS

SPECIAL PACKAGES

Tape Recorder Model

Speaker Model

Standard Values

FREE DESCRIPTIVE CATALOG

SPECIAL DEAL QUOTE

BONAFIDE ELECTRONICS

Dept. RED, 8936 Cordell St., N.Y. 7, N.Y.
WE WILL NOT BE UNDERSOLD

RADIO-ELECTRONICS
TRY THIS ONE (Continued)

NONMAGNETIC METER CASE
Mounting meters in iron cases for bench use can cause errors unless the instrument is specially calibrated. As much as 10% error may be noted between readings in and out of an iron case, because of magnetic shunting.

Satisfactory meter cases can be made with sheet-iron sides and backs if the front panel is nonmagnetic. A piece of fiberboard attached to the metal frame with screws or rivets will make an ideal mount.—Hugh Lineback

UNUSUAL ANTENNA JOB
The customer reported his antenna was blown down during a wind storm, so immediately upon arrival I climbed to the roof to reinstall the torn-out roof mount.

"Hey, don't do that!" the excited customer called out from below, as I lifted the antenna to set it back into its mount.

"Why not?" I shouted back.

"Because I get better pictures with the antenna lying on the roof. All I want you to do is install the antenna in that position," was the immediate answer.

What a request! Before attempting to do anything more, I put the antenna back where it had fallen and climbed down from the roof to have a ground-level talk with the customer, and a look at the set.

Sure enough, reception was much better with the antenna on the roof than with it in the roof mount! Remembering that old business motto "The customer is always right" (and he was this time), I reinstalled the antenna in a lower position that gave reception equal to the antenna lying on the roof.

Moral: If the customer's house happens to have aluminum-foil insulation, try several low positions when you install that TV antenna. It may mean a

OXFORD
- The Leader

Largest exclusive SPEAKER manufacturer in the world
6 factories located throughout the U.S.A.

OXFORD Components,
A Division of Oxford Electric Corp.
556 West Monroe St., Chicago 6, Illinois

Oxford Speakers are available from
recognized electronic parts distributors.

TARZIAN Offers 48-Hour,
Direct Factory Service
on Tuner Repairs

only

$8.50

That's right. Net, $8.50 per unit and $15 for UV combinations, including ALL replacement parts. 90-day warranty against defective workmanship and parts failure. Tuners repaired on approved, open accounts. Replacements offered at these prices* on tuners not repairable:

VHF 12 position tuner $22.00
VHF 13 or 16 position $23.00
VHF/UHF combination $25.00
UHF only $15.50

*Subject to change

Tarzian-made tuners are easily identified by this stamping on the unit. When inquiring about service or replacements for other than Tarzian-made tuners, always give tube complement... shaft length... filament voltage... series or shunt heater... IF frequency, chassis identification and allow a little more time for service. Use this address for fast, 48-hour service:

SARKES TARZIAN, Inc.
Att.: Service Mgr., Tuner Division
East Hillside Drive
Bloomington, Indiana

Fill in coupon for a FREE One Year Subscription to OLSON RADIO'S Fantastic Bargain Packed Catalog—Over 300 of Low, Low Wholesale Prices on Brand Name Speakers, Changers, Tubes, Tools, Hi-Fi, Stereo Amos, Tuners and thousands of other Electronic Bargains.

NAME

ADDRESS

CITY ZONE ... STATE

If you have a friend interested in electronics, send his name and address for a FREE subscription also.

OLSON RADIO CORPORATION
710 S. Forge St., Akron 8, Ohio

www.americanradiohistory.com
NEW TRANSISTORIZED

ELECTRONIC EQUIPMENT

MODEL PS-3 $69.50 net
0-25v. DC variable output voltage

REGULATED DC POWER SUPPLY

Now service technicians and industrial users can afford the performance of a regulated variable-voltage power supply.

Set it and forget it—Voltage remains essentially constant at any output voltage setting regardless of load (within ratings) and AC supply voltage fluctuations.

Extremely Low Ripple—Less than 1 MV (.001 V) RMS for all conditions of rated operation...less than 1/2 MV (.0005 V) for AC line voltage between 115 and 120 volts.

Output—0-200 MA, 0-15 volts. 0-100 MA, 0-25 volts.

Input Voltage—110 to 130 volts, 60 cycles.

Cost—$5950 max., for above mentioned ratings.

Sold by leading Electronic Distributors. Send for Catalog Sheet PS-3

ELECTRO PRODUCTS LABORATORIES

AT ONE-HALF THE COST!

HANDLE TOUGH SERVICE JOBS

as slick as you do the easy ones!

This giant, 827-page guide brings you the kind of PROFESSIONAL Service training that helps you handle the toughest radio-television-electronic jobs as slick as it is possible to do the easy ones.

For beginners, Radio & TV Receiver TROUBLE-SHOOTING AND REPAIR is a complete, easily understood training course. For experienced servicers, it is an ideal way to "break up" on specific jobs; to develop better troubleshooting methods and shortcuts; and to find quick answers to puzzling problems.

COMPLETE TRAINING in modern Professional methods

Invaluable step-by-step guides help you troubleshoot in less time—and with a minimum of testing. Each service procedure, from locating troubles to fixing them fast and accurately, is covered in text and by more than 417 how-to-do-it illustrations. Price only $7.50.

PRACTICE 10 DAYS...FREE!

Send $7.50 with order and Rinchart pays postage. 10-day money-back guarantee.

TRY THIS ONE (Continued)

signal difference of several microvolts or more!—John A. Comstock

HANDY HEAT SINK

An ordinary metal hinge with a small machine screw and wing nut through a pair of its mounting holes makes a handy heat sink when you have to solder or unsolder a heat-sensi-

tive component from a circuit. Just unscrew the wing nut a little way, slip the sink over the component's lead and tighten the nut again. This is much easier than using pliers—particularly if the soldering job happens to be a three-handed one.—Terence A. Carlson

HOLE SHRINKING

After tightening and loosening a self-tapping screw several times, the threads on the tapped metal become loose. This also happens when machine screws are used with tapped holes in sheet metal. To make the hole tight again, just shrink it!

Sheet metal can be compressed into the hole by center punching. Six or so sharp punches with a prick punch around the hole and about ¼ inch away does for most cases. Hold a hammer against the other side so that the metal does not bend if it is thin. If six punches do not do the job, try more or punch the same holes again.—Robert James

STICKY RELAY CURE

If the moving armature of a relay touches the pole piece after it has pulled in, the relay may not release the armature at the prescribed dropout current or voltage across it.

The cure is smooth insulating material cemented to either the pole piece or the armature. Use varnished cambric, Mylar, etc. Cellophane tape is good in an emergency but crinkles with age.

Be sure to remove any surplus adhesive as the relay may be even more sticky if the surface is not smooth.—James Allen

COMPOUND FILLS HOLES

When installing antennas on roofs, I find it handy to carry a tube of callk

compound in my toolkit to fill holes made by guy-wire anchors, and in window sills where a lead-in feeds through. The compound is more convenient to carry than tar since it comes in a tube like toothpaste and just one squeeze fills most holes.—Joe C. Allen

www.americanradiohistory.com
W. S. Parsons was re-elected vice president of Globe-Union, Inc., Milwaukee, Wis., parent company of Centralab, in an administrative reorganization resulting in increased divisional autonomy. He was also appointed president of Centralab Electronics Div. Walter E. Peek (left) was elected vice president, marketing, of Centralab, a new position created in line with the reorganization. He had been general sales manager. Bruce E. Vinkemulder, former assistant general sales manager advanced to marketing manager. G. C. French, Jr. was appointed vice president, manufacturing; and R. L. Wolff, vice president, engineering.

Herbert W. Clough, vice president, marketing, of Belden Manufacturing Co., Chicago, was elected to the board of directors.

William Djinis is now chief engineer in charge of all scientific activities of Electro-Sonic Laboratories, Inc., Long Island City, N.Y. An author and physicist, he had been head of the Physics Research Department of General Bronze Electronics Corp.

Jensen Industries, Forest Park, Ill., is merchandising its new line of phonograph drive wheels, idlers, pulleys, tires and belts in a new Wheel Deal display rack. The new line includes 75 wheels that may be used in phonographs made by 29 leading manufacturers.

L. Edward Cotsen, formerly distributor sales manager of Tang-Sol Electric Inc., Newark, N.J., was advanced to assistant to the vice president in charge of sales. Richard L. Jandl (left), previously regional original equipment markets sales manager succeeds him. Harold F. Cook (right), becomes manager of marketing services, directing the advertising, sales promotion, market research and sales planning departments.

Jerrold Electronics Corp., Philadelphia, Rep of the Year Award went to Ray R. Hutmacher Associates, Chicago. Walter Goodman (left), division manager, is shown making the presentation to Ray Hutmacher as Lou Waeltman (right) Jerrold Midwest regional manager, looks on.

Raytheon Co., Waltham, Mass., presented the grand prize in its treasure hunt for industrial electronics salesmen to Joseph Donahue, Wholesale Radio &

Field Engineers

For Univac Missile-Guidance Computers!

Field engineers are now being selected for maintenance assignments on ultra-reliable Univac missile-guidance computers and other military electronic data processing systems.

Openings involve maintenance of the Univac ICBM guidance computer, first of its size to be completely transistorized.

Applicants must have at least 2 years formal education in Electronics with 3 or more years in maintenance or maintenance-instruction. Experience should be associated with complex electronic equipment such as TV, radar, sonar or digital computing systems.

Before assignment, you will receive 2 to 6 months training at full pay in our St. Paul, Minnesota, laboratories. Benefits include company paid life insurance, hospitalization, medical and surgical benefits, relocation expenses and living allowances at field sites.

Openings also for qualified instructors with backgrounds similar to above.

Send complete resume of education and experience to:
R. K. Patterson, Dept. Q-8

Remington Rand
Univac

Division of Sperry Rand Corporation
2750 W. Seventh St., St. Paul 16, Minn.

www.americanradiohistory.com
GONSET LOW-COST
2-WAY RADIO

Built for rugged "industrial-type" service where dependability is essential!

Two models available: G-12 four-channel unit, and lower cost G-11 single-channel unit. Ideal for making up 2-way industrial communications systems for buildings...yards...warehouses...aviation...branch businesses...contractors. Also for fishing, boating, hunting—special events. 11-meter Citizens Band radio offers virtually unlimited business or personal usage in vehicle, office, boat or plane. Simple licensing—no exam or special skills...merely fill out simple FCC form.

G-12 CITIZENS COMMUNICATOR
Every feature for dependable operation under heavy business and commercial use! Trans/rec channels are crystal-controlled for highest stability, ease of tuning. Features press-to-talk operation, front panel channel selector, ANL adjustable squelch, transmitter tuning indicator, built-in speaker. FCC type accepted.

Compact! fits into tight quarters—only 4½" H, 7" W, by 10" D, weighs only 11 pounds. Built-in power supply is universal 12VDC/117VAC (optionally available with 6VDC/117VAC) operates from power mains or vehicular battery.

G-11 CITIZENS COMMUNICATOR
Similar to G-12 except for single-channel operation, and mounting arrangement (3 models: 6VDC, 12VDC or 117VAC).

G-12..149.95 per unit
G-11..124.50 per unit

SUGGESTED PRICE INCLUDES P.T.T. MICROPHONE AND TRANS/REC CRYSTAL FOR ONE CHANNEL.

Write for details and FREE Citizens Band radio booklet!

GONSET DIVISION Dept. RE
Young Spring & Wire Corp.
801 South Main Street, Burbank, Calif.

Gentlemen: Rush complete details on your Citizens Band radio, and free booklet!

NAME

ADDRESS

GONSET
Division of Young Spring & Wire Corporation
801 SOUTH MAIN ST., BURBANK, CALIFORNIA

BUSINESS AND PEOPLE (Continued)

Parts Co., Baltimore, Md. John Hickey (left center), industrial products manager of Raytheon's Distributor Products Div., is shown presenting $500 and tickets for a 16-day tour of Europe to the winner. John T. Thompson (left), general manager of the division, and Paul Cunningham (right), Baltimore area sales manager, look on.

Triplett Electrical Instrument Co., Bluffton, Ohio, is breaking ground for a new addition to its plant—the second major expansion in 3 years. R. L. Triplett, (center) chairman of the board and founder, looks on as his two sons, M. M. Triplett (left), vice president, and W. R. Triplett (right), president, prepare to dig in. Municipal officials and civic leaders look on.

Sencore, Addison, Ill., has been holding a series of time-saving clinics sponsored by local distributors throughout the United States and Canada. Photo shows a group on Long Island sponsored by Gem Electronics. Ed Flaxman, Sencore vice president, and Steve Fisher, New York representative, were on hand to answer technical questions and to introduce the company's new tube tester, the Mighty Mite.

Switchcraft, Inc., Chicago, Ill., developed a low-cost, practical language laboratory system which it states will help revitalize language training libraries. Tom Dowell, distributor sales manager, demonstrates the equipment to a group of language students.

Hickok - Electrical Instrument Co., Cleveland, Ohio, celebrated its 50th anniversary at a dinner attended by civic and industrial leaders. Mrs. Robert D. Hickok, Sr., widow of the company's founder, was presented with a bronze plaque authorized by the board of directors. She is shown with R. D. Hickok, Jr., president of the company.
TIME TO CLEAN UP YOUR SYSTEM...

Norelco® T-7 LOUDSPEAKERS
with voice coil magnets of Ticonal-7 steel (30% more efficient) than Alnico V)

... 30% more efficient response to the full signal range of your amplifier... WHETHER ITS RATED OUTPUT is 10 WATTS or a HUNDRED... at any listening level from a whisper to a shout!

Guild-crafted by Philips of the Netherlands to give you

THE CLEANEST SOUND AROUND
Ask for a demonstration wherever good sound is sold or write to:

NORTH AMERICAN PHILIPS CO., INC.
High Fidelity Products Division, 230 Duffy Avenue, Hicksville, L.I., N.Y.

FREE
Full Year's Subscription to RADIO SHACK'S Sensational ELECTRONICS CATALOGS

Send coupon today! See world's largest and best line of electronic equipment! Invaluable to pros, exciting for hobbyists. Over 100,000 items - stereo, hi-fi, ham radio, tapes - at money-saving prices. 15-day home trial on any item. Satisfaction Guaranteed.

TYPICAL RADIO SHACK VALUE!
"Realistic" 2-speed Tape Recorder $49.50
Radio Shack dual-track portable! Wt. only 17 lbs. Has separate record, playback, erase heads. Mike, 5" reel.

MAIL COUPON NOW
Radio Shack Corp., 730 3rd St., Denver, Colo.
Without further request, send latest catalog plus every issue for year—all FREE.

Name: ____________________________
Address: _______________________
Post Office or City_________ Zone____ State_____

Experts disagree

- Engineers choose the new ESL-C99 Micro/Flex stereo cartridge because its patented, inherently linear D'Arsonval movements and exclusive Micro/Flex separating system.

- Musicians, on the other hand, prefer the ESL simply because it makes records sound better.

- Are you enjoying this superlative cartridge yet? It's only $49.50 at your dealer's.

FOR LISTENING AT ITS BEST

Electro-Sonic Laboratories, Inc.

Dealers: D.S. 848 9th St., Long Island City 6, NY
Want to know ALL about TRANSISTORS and other SEMICONDUCTORS?

Here's a series that takes you up the semiconductor trail from basic theory to advanced techniques. Read them all and be an expert on semiconductor theory and practice. Semiconductors are claiming more and more applications in electronics every day. Prepare for the future—get these books today!

On sale at parts distributors—or order direct

TRANSPORT TECHNIQUES
How to work with transistors. What to avoid. How to test them, measure them, take care of them. Not much math or theory but helped with all sorts of practical hints— including some construction projects for test instruments, amplifiers, gas-filled counters, etc. No. 51 144 pages. $2.00

TRANSPORT PROJECTS
The best of the hands-on do-it-yourself projects featured in Radio-Electronics Magazine. Top writer-authorities like Rufus P. Turner, J. Queen, Edwin Ball and Leonard D'Airo give you step-by-step information on how to use transistors in building radios, instruments and accessories. Clears away many misconceptions. Lets you in on plenty of inside hints. No. 89 160 pages. $2.90

SERVICING TRANSISTOR RADIOS
By Leonard D'Airo.
How to make money servicing these new members of the electronics family. An expert technician tells you how to solve the many specialized problems you'll meet. Shows you the pitfalls to avoid, the techniques to master. Many helpful troubleshooting charts included plus a chapter on transistor characteristics, interchangeability charts and substitution data. No. 76 226 pages. $2.50

TRANSPORT CIRCUITS
By Rufus P. Turner.
A workbook for the experimenter. Gives you over 150 tested transistor circuits for all types of electronic equipment.

FUNDAMENTALS OF SEMICONDUCTORS
By M. O. Scroggie, BSEE
This outstanding British authority gives you a clear, authoritative, and complete study of the whole field of semiconductors. In this truly superior book, he covers the whole range of semiconductor devices—transistors, rectifiers, photoelectric devices—everything. Tells you how they are used and what their future's likely to be. Virtually a complete course on semiconductor fundamentals. No. 92 160 pages. $2.75

TRANSISTORS—THEORY AND PRACTICE (2nd edition)
By Rufus P. Turner.
The book on transistors. This popular authority comes more into this book than any other book in its price range (and many priced much higher). Discusses why transistors work, what you can do with them, measurements, tests, equivalent circuits, care. Completely revised. Much new material added. No. 75 160 pages. $2.95

GERNSBACK LIBRARY, INC., Dept. 8D
154 West 14th St., New York 11, N.Y.

Gentlemens:
Please send me the books checked below—postpaid. My remittance of $ is enclosed.

☐ 92 ☐ 89 ☐ 76 ☐ 75 ☐ 63 ☐ 51

Name ____________________________ Price ______
Street ___________________________________
City ____________________________ State ______

NEW LITERATURE (Continued)

3415 W. Broadway, Council Bluffs, Iowa.

AUTOMATION is the subject of 16-page Bulletin GED-3908. Process control, computing, instrumentation, monitoring and control of machines, sensing and communications—the six key functions of automation—are discussed.—General Electric Co., Schenectady 5, N.Y.

PICTURE-TUBE MANUFACTURE is the subject of Six Miles Of Sylvania Craftsmanship. This 24-page, fully illustrated booklet describes the techniques and facilities used in making TV picture tubes. Available from distributors or manufacturer.—Sylvania Electric Products, Inc., 1100 Main St., Buffalo 9, N.Y. 10c

TOOLS are described and illustrated in 24-page catalog No. 103A. Pliers of all types, wire-skinning and other specialized tools and tool kits and toolboxes are covered.—Mathias Klein & Sons, 7200 McCormick Rd., Chicago 45, Ill.

LOUDSPEAKERS are covered in an 8-page catalog Crescendo Speakers. High-fidelity, automotive and public-address units are described.—Federated Industries, Inc., 4477 Elston Ave., Chicago 30, Ill.

RESISTORS and electronic hardware are covered in Catalog No. 62. Couplings, binding posts, handles, knobs, shaft locks, washers, precision resistors, tapped resistors and standoffs are but a few of the items described and illustrated.—Sterling Precision Corp., Instrument Div., 17 Matineock Ave., Fort Washington, N.Y.

CITIZENS BAND posters are available for marinas and boat landings which continuously monitor Citizens band channel 13 (unofficially selected as a national calling frequency). Qualified marinas or landings should send letter or card to manufacturer stating that they continuously monitor channel 13.—Kaar Engineering Corp., 2995 Middlefield Road, Palo Alto, Calif.

COMMUNICATIONS EQUIPMENT for amateur, aircraft and broadcast use is listed in 94-page 1960 General Catalog. Transmitters, receivers, radars, transponders, antennas and a spectrum analyzer are among the many items covered.—Collins Radio Co., Cedar Rapids Div., Cedar Rapids, Iowa.

CIRCUIT HANDBOOK has 30 battery-powered transistor circuits. Transistor Circuit Handbook for the Hobbyist shows schematics for audio and entertainment equipment, transmitter modulators, preamps and rain alarms. Available from distributors or from manufacturer.—Sylvania Electric Products, Inc., P. O. Box 37, Buffalo 9, N.Y. 50c.

SMALL PANEL METERS are described in Bulletin GEA-7054, 12 pages of specifications, features, ordering instructions and prices. A description of custom features for special applications is included.—General Electric Co., Schenectady 5, N.Y.

END
Purchasing A HI-FI SYSTEM?

Send Us Your List Of Components For A Package Quotation

WE WON'T BE UNDERSOLD!

All merchandise is brand new, factory fresh & guaranteed.

AIREX RADIO CORPORATION
64-RE Cortlandt St., N.Y. 7, CO 7-2137

all new edition
up-to-date component prices
PLUS
the quick easy way to figure service charges
EQUALS

Pure Rie's OFFICIAL PRICING DIGEST

VOL. 4, NO. 1

Flat rate and hourly service charges, based on and showing regional and national averages, plus up-to-date list or resale prices on over 63,000 components. Arranged alphabetically by manufacturers and products, numerically by part number. Compact, convenient size fits in tube caddy, toolbox or pocket. $2.50 per copy from your distributor.

ELECTRONIC PUBLISHING COMPANY, INC.
180 N. WACKER DRIVE, CHICAGO, ILL.

MAIL ORDER HI-FI

You can now purchase all your HI-FI from one reliable source and be assured of perfect delivery. Carston makes delivery from stock on most HI-FI, accessories and tape within 48 hours. SEND US A LIST OF YOUR HI-FI REQUIREMENTS and we will gladly mail you our FREE complete catalog.

CARSTON STUDIOS
1255 E. 89 RD.
New York, N. Y.

PACKAGE HI-FI or SINGLE COMPONENTS
You'll find our prices low and service fast.
Write for our quotation
CENTER ELECTRONICS CO., INC.
74-R Cortlandt Street, New York 7, N.Y.

ELECTRONICS Engineering-Technicians
Bachelor of Science Degree, 30 Months

Save Two Years' Time

Radio-Television Technician (12 Months)
Electronics Technician (12 Months)
Industrial Electronics Technician (12 Months)
Electronics Engineering (B.S. Degree)
Electrical Engineering (B.S. Degree)
Mechanical Engineering (B.S. Degree)
Civil Engineering (B.S. Degree)
Architecture (B.S. Degree)

Heald College ranks FIRST West of the Mississippi in "Who's Who in America"

Approved for Veterans
DAY AND EVENING CLASSES
Write for Catalog and Registration Application. New Term Starting Soon.

Heald's ENGINEERING COLLEGE
Established 1863
Van Ness at Post, R.E.
San Francisco, Calif.

NEW BOOKS

ZENER HANDBOOK. International Rectifier Corp., El Segundo, Calif. 100 pp. $2. The Zener diode has become an important and useful member of the semiconductor family. This handbook discusses theory and design considerations. Applications include dc and ac, af and rf circuits, computers and circuit protection—IQ

ELECTRONIC GUIDE. References for Research Div., Electronic Guide Publishing Co., Burbank, California. 7 x 10 in. 191 pp. $7.50. This directory lists all the electronic articles that have appeared in close to 50 periodicals of seven nations. It covers the year 1959. The articles listed are arranged by title under appropriate category headings.

As presented on its jacket, this text contains "a complete description of the theory, design and application of digital counters and computers, including the interpretation and use of their output." Though written for the student or practicing electronic engineer, the text is not too difficult for the electronic experimenter. Twelve chapters take the reader from nonsinusoidal waveforms to analog and digital converters. Of course, there are stops along the route to cover binary and decade counters, readout indicators and circuits, number systems, storage devices and other important topics.—LS

BASIC ULTRASONICS, by Cyrus Glickstein. John F. Rider Publisher, Inc., 116 W. 14 St., New York, N. Y. 6 x 9 in. 144 pp. Soft cover $3.50. Cloth cover $4.60. Handled in the modern picture-book style, this work gives the beginner in ultrasonics a clear idea of the subject. It is divided in three sections. The first, "General Theory", explains exactly what ultrasonics is. The second, "Equipment", shows chiefly how it is generated. The third gives the applications of ultrasonics to a large number of measuring, therapeutic and other uses. The author, Cyrus Glickstein, is well-known to our readers, having had a number of articles published in this magazine.—FS

FUNDAMENTALS OF SEMICONDUCTORS, by M. G. Scroggie. Gernsback Library, Inc., 154 W. 14th St., New York 11, N. Y. 5 1/2 x 8 1/2 in. 160 pp. $2.95. If you don't understand the Hall effect, electroluminescence, masers, Zeners or thermistors, you need this book. Of course, transistors also receive considerable attention.

Written for electronic technicians, it

A U G U S T , 1 9 6 0
is highly informative and easy to follow. The first few chapters discuss atomic systems, energy, junctions and other physical concepts. From this theory you will be able to understand the function and use of special devices like Spacers, Unjunctions, solar generators and tunnel diodes, to mention only a few of the many semiconductors described here.—IQ

A GUIDE TO STEREO SOUND, by David Tardy. Popular Mechanics Press, 200 E. Ontario St., Chicago 11, Ill. 9 1/2 x 6 1/4 in. 192 pp. $4.95.

An explanation for the beginner who gets confused by long-winded theoretical explanations of what stereo is and how it works. Here, written in simple, uncomplicated language is the story of stereo, starting with "Why Stereo" touching on "Sound & Location, Amplifiers for Stereo" and ending with "Stereo Storey."—LS

A basic introduction to Citizens radio for all who are interested in Citizens radio equipment or want to know more about this rapidly expanding field. Its nine chapters and three appendices cover the many aspects of Citizens radio.—LS

101 WAYS TO USE Ham TEST EQUIPMENT, by Robert G. Middleton. Howard W. Sams & Co. Inc., 1720 E. 38 St., Indianapolis, Ind. 5 1/2 x 8 1/2 in. 168 pp. $2.50.

The grid-dip meter, antenna impedance meter, bridge, voltmeter and scope are the instruments most often mentioned in this book. The author shows how to use them to test, measure and adjust receivers, transmitters, filters, amplifiers, antennas, etc. All procedures are given in detail, making it easy for any ham to keep his shack in first-class operating condition.—IQ

MASERS by J. R. Singer, John Wiley & Sons, Inc., 440 Fourth Ave., New York 16, N. Y. 6 x 9 in. 147 pp. $5.60.

The maser is a relatively new instrument of modern science. It is useful at very high frequencies as an oscillator, amplifier, or frequency standard. Though expensive and complex, it has the important advantage of low noise. The author discusses solid and gaseous types, two-level and three-level, and shows how they are used. No advanced math is required; but the author does rely on equations to explain the theory.

BOOKS (Continued)

SCHOOL DIRECTORY

PREPARE FOR A GOOD JOB! BROADCAST ENGINEER RADIO SERVICING AUTOMATION

TELEVISION SERVICING BLACK & WHITE—COLOR

APPROVED FOR VETERANS AND SURVIVORS
BUILDING AIR CONDITIONED
SEND FOR FREE LITERATURE

BALTIMORE TECHNICAL INSTITUTE
1425 EUTAW PLACE, BALTIMORE 17, MD.

ELECTRONICS CAREER KIT

FREE!

If you're interested in breaking into a good-paying job in Radio-TV-Electronics, I. C. S. will send you absolutely free a famous Career Kit with 3 famous booklets that have helped thousands of others—just like yourself—on the road to real success. Includes:

2 "JOB CATALOG" of opportunities in your field of interest.
3 "SAMPLE LESSON" (math) to demonstrate the famous I. C. S. method.

Send today for your free I. C. S. Career Kit with these 3 famous booklets. There's no obligation. This may be the big break you've been waiting for. Mark and mail the coupon today.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 371864G, Scranton 15, Penn.
SCHOOL DIRECTORY

SCIENCE \ ENGINEERING

INDIANA TECHNICAL COLLEGE

- LEARN
- RADAR MICROWAVES
- COMPUTERS - TRANSMITTERS
- CODE • TV • RADIO
- Philadelphia Technical Inst.
- 1523 F St., Philadelphia 2, Pa.
- A Non-Profit Corp.
- Founded in 1918
- Write for free Catalog to Dept. RE-8
- Sept. classes now forming

GET INTO

ELECTRONICS

For your chance to succeed at
- Technician and managerial opportunities.
- In the fascinating field of electronics.
- Training in transistors, radar and automation.
- Basic, fast-advanced courses in theory and
- Practically every phase of electronic engineering.
- Graduates are entering industry in every field,
- Small enrollment. High School graduate or
- The Pioneer School
- Established 1896

ENGINEERING

HOME STUDY COURSES

Courses written by world authorities in
- engineering and science and proved successful by thousands of our graduates. One
- hour each day in your spare time will start you off to higher
- preparation and prestige.
- Personalized instruction methods ensure rapid progress. Fill in the coupon and
- indicate the course of interest. We will send you a complete outline of the course and a
- booklet describing the Institute and our advanced teaching methods.

MAIL THIS COUPON TODAY

CANADIAN INSTITUTE OF SCIENCE & TECHNOLOGY LIMITED
- 795 Century Bldg., 412, 5th St. N.W., Wash., D.C.

NAME

ADDRESS

CITY

STATE

COURSE OF INTEREST

Canadian Institute of Science and Technology

MAIL COUPON TODAY

MILWAUKEE SCHOOL OF ENGINEERING
- Dept. RE-60, 1025 N. Milwaukee St.
- Milwaukee, Wisconsin

Please send FREE "Your Career" booklet.
I am interested in

□ Electronics □ Radio TV
□ Computers □ Electrical Engineering
□ Mechanical Engineering

(PLEASE PRINT)

Name

Age

Address

City...

Zone... State...

I am eligible for veterans education benefits.

Discharge date...
ELECTRONIC ORGAN
NAME 122
Please send checks throughout with minimum to 200,000 cps, mentions including response, distortion-complex-amplifiers, speakers, measurements.

A -55 transient meat

LEADER ELECTRONIC ORGAN
Send for free literature.

ELECTRONIC ORGAN ARTS
441 YORK BLVD., LOS ANGELES 47, CALIF.

TV PICTURE TUBES
At Lowest Prices

I BRO 1 .. 12.00 17FQ 4 12.75 21AP4 10 15.00 21AP4 12.75
1 CLP 16.95 18AP4 11.00 21AP4 11.00
1 HP 16.00 18AP4 10.25 21AP4 10.25
1 BP 16.00 18AP4 10.25 21AP4 10.25
1 WP 12.50 21AP4 11.25 21AP4 11.25
1 SPA 12.50 21AP4 11.25 21AP4 11.25

1 year warranty
Aluminated tubes $3.00 for 2-1/2" and additional. Prices include the return of an accept-able-aluminum tube when returned with this order. 1450 tubes and materials including the electronic gun are subject to 25% discount. Modulators, sweeposcillators are not returned. aluminum tube, fine without resorting to deep math. This author has done it.

This is a lab course for college electronics students. Experiments cover the use of test equipment, operation of circuits, tests and measurements. Both tube and transistor circuits are included.

Books (Continued)
to FM—modulation, transmitters and receivers. A chapter is, however, given to AM transmitters and receivers, and the rest of the book covers installation, antennas, selective calling systems and servicing—FS

It isn't an easy task to write a good book on microwaves without resorting to deep math. This author has done it. He explains the mysteries of transmission lines, waveguides, antennas and oscillators from a physical standpoint. Vectors are introduced to pave the way for Poynting's formula and Maxwell's equations, but most of the math is left for footnotes.

The book begins with the elements of fields, charges and electromagnetic. It ends with discussions of microwave tubes, radar and communications.—IQ

This is a lab course for college electronics students. Experiments cover the use of test equipment, operation of circuits, tests and measurements. Both tube and transistor circuits are included.

Readers need a good knowledge of theory and math to gain full benefit from this book. It is not for beginners.

You too, can join in the fun. This book tells about radio, remote control, models and how they go together. It contains chapters on receivers, transmitters, batteries, actuators and relays. Simple and complex units are discussed. You will also find the latest PCC regulations as they apply to control. END

THE ARTISAN ELECTRONIC ORGAN

BUILD YOUR OWN Electronic Organ
Concert Quality
SPECIAL 50%
ADVERTISING INDEX

Radio-Electronics does not assume responsibility for any errors appearing in the index below.

Aires Radio Corp. ...119
All American Radio Co.109
Amphenol-Rose Electronics Corp.82
Arkay International Inc.123
Artistic Circuits Inc.313
Audion ..111
Audio Unlimited113
B & K Mfg. Co. ..18
Barry Electronics Corp.123
Bell Telephone Labs71
Blonder-Tongue Labs71
Bonafide Radio ..112
Brooke Radio & TV Corp.105
Capitol Radio Engineering Inst.74, 77
Castleton Studios119
Castle TV Tuner Service110
Center Electronics119
Cleveland Institute of Radio Electronics119
Commissioned Electronics Co.112
Comp-Extreme, Inc.97, 102
CREC-Atomics ..113
Datatron, Inc. ...79
DeVry Technical Institute112
Denison ..109
Electro Products Labs.114
Electro-Sonic Labs.20
Electronic Chemical Corp.102
Electronic Instrument Co.23, 24
Electronic Measurement Corp.96
electronic Organ Arts117
Electronic Publishing Co., Inc.119
Germack Library ...118
Gossen Div. of Young Siring & Wire Corp. ...118
Grantham School of Electronics13
Head Engineering College119
Heath Company ..119
Indiana Technical College102
Illinois Condenser Co.123
Key Electronics ...102
Lafayette Radio ...124
Merrcury Electronics16
Moss Electronics Inc.88, 89
National Radio Inst.3, 102
National Technical Schools107
North American Philips Co.117
Ohmatt Electric Co. Ltd.122
Orange Radio Corp.12
Opportunity Adlets103
Oxford Components, Inc.105
Perma-Power Company8
Picture Tube Outlet122
Precision "Electro" Inc.110
Pyramid Electric Co.70
RCA Electron Tube Div.14, 15, 106, 108
RCA Institutes ...98
Radio Shack Corp.117
Remington Rand Univac112
Rheemhart & Co., Inc.112, 114
Richmond Mfg. Co.103
The Sampson Company87
Sams (Howard W.) & Co., Inc.106, 107
Schuster Dorem Co.100
Senore ..92, 93, 94, 95
Shave, Inc. ..113
Sonotone Corp. ...98
Sylvania Electric Products, Inc.101
TAB ..120
Sarkas Tarsian, Inc.120
Triplet ...113
Triumph Electric Corp.12
D. Van Nostrand Co., Inc.100
Vidare Electric Mfg. Corp.111
Warren Dist. Co. ...122
Weston Electrical Instrument Corp.79
Winegard ..89
Xcelite, Inc. ...81

SCHOOL DIRECTORY PAGES 120, 121

Baltimore Technical Institute
Canadian Institute of Science & Technology Ltd
Institute Technical College
International Correspondence School
Milwaukee School of Engineering
Niles Belden School
Philco, Wireless Technical Institute
Philips Technical Center
Saeki Unlimited
Tri-State College
Valparaiso Technical Institute

ADVERTISING REPRESENTATIVES: Los Angeles: 1611 First Street, Santa Monica, Calif., Tel. (310) 394-2311, New York: 110 Broadway, New York, N. Y., Tel. (212) 432-2073

FOREIGN AGENTS: Great Britain: Atlas Publishing and Distributing Co., Ltd., 18 Bride Lane, London E.C. 1

AUGUST, 1960

123
LAFAYETTE HE-15 CITIZENS BAND 11 METER
2-WAY SUPERHETERODYNE TRANSCEIVER

MADE IN U.S.A.

COMpletely Wired
Not A Kit!

64.50

ONLY 5.00 DOWN
Not Superregenerative but SUPERHET!

NEW! LAFAYETTE
RADIO FIELD INDICATOR
A Must For Ham & Citizens Band Operators

- Provides a Continuous Indication of Transmitter Output - Rugged 200 VA Meter Movement - Completely Portable - Requires no Electrification, Batteries or Transmitter Connection. With this rugged, new radio field indicator you can check performance of your radio, mobile or fixed transmitter - actually measures the RF field generated by any Transmitter between 100K and 250MC regardless of power. Features a 200 VA meter movement with a variable sensitivity control. Phone jack at rear of instrument accepts earphone thus enabling an aural check of oscillator output. Antenna extends from 24" to 104". Powerful magnet on bottom plate allows easy mounting on car dashboard or metal surfaces. Use anywhere, no electricity or batteries. Dimensions: (less antenna) 3¼"H x 2¼"W x 2"D. Net 7.95

7.95

NEW LAFAYETTE TELESCOPIC
CITIZENS BAND WHIP ANTENNA

3.95

NEW! LAFAYETTE "Tiny"
6 Transistor Radio
SENSATIONAL PERFORMANCE

In a Small Package!

- 6 Transistor Plus a Germanium Diode
- Superheterodyne Circuit - Vest Pocket Size
- Built In Earphone Jack For Private Listening
- Trouble-Free Printed Circuit

Engineered and constructed with the jewel like precision of a fine watch - true superheterodyne circuit, with push-pull audio output, powers either the built-in dynamic speaker or the personal-type earphone. Extremely sensitive - built in ferrite - rod antenna brings in distant stations like locals. Employs standard 9 volt battery for economical service. Heavily shielded, in smart black and gold rugged plastic case. Measures only 4½" x 2½" x 1¼" and weighs a mere 10 ounces. Complete with battery, carrying case and earphone. Shpg. wt. 2 lbs.

FS-256 "Tiny" 6 Transistor Radio...Net 19.95

19.95

PLEASE RUSH ITEMS CHECKED!

- HE-15 CITIZENS BAND TRANSCEIVER
- TM-14 RADIO FIELD INDICATOR
- FS-256 "Tiny" 6 TRANSISTOR RADIO
- HE-19 WHIP ANTENNA
- FREE 308 PAGE CATALOG 600

Enclosed Find $.......(Please include postage to cover shipping)

FREE 308 Giant Size Pages!

Everything in Hi-Fi and Electronics

LAFAYETTE RADIO,
P. O. BOX 222, JAMAICA 33, N.Y. Dept. JH-6

Lafayette LOCATIONS - NEW YORK, N. Y. - BRONX, N. Y. - BOSTON, MASS. - NEWARK, N. J. - PLAINFIELD, N. J.

RADIO-ELECTRONICS
Astatic 77
Dynamic Cardioid Microphone

with the industry's most positive anti-feedback characteristics

LIST PRICES
Model 77 (Illustrated)
Chrome Finish, $82.50;
Gold Finish, $92.50;
Model 77L (Head only),
Chrome Finish, $72.50;
Gold Finish, $82.50;
Model G-77 (Complete with G-Stand),
Chrome Finish, $97.45.

When you're looking for the ultimate in cardioid microphones, consider these advanced features of Astatic's Model 77 and see if you don't agree that no other manufacturer has SO MUCH TO SING ABOUT—the most positive anti-feedback characteristics ever achieved, -18 db; exclusive Mylar diaphragm that is pop-proof and blast-proof, retains like-new flex properties for more years; an exclusive sintered bronze method of acoustic phase shifting that creates the industry's top directional characteristics; -52 db output and exceptionally flat response through 30 to 15,000 cps.

Do one thing for your own satisfaction. On your next installation, make a direct comparison of the Astatic 77 with any other cardioid. We'll guarantee —when anyone mentions the word "cardioid" again, you'll sing the praises of this incomparable Astatic instrument.

Astatic Corporation, Conneaut, Ohio

Export Sales: Robson Agencies Inc. 431 Greenwich St., New York 13, N.Y., U.S.A.

GO BY BRAND
—GO BUY ASTATIC

Singing sounds better when there's an Astatic Microphone about

www.americanradiohistory.com
How do your customers rate you?

Your reputation is based largely on what happens after you leave the scene of each service call. For this reason the name on the tubes you install makes a world of difference. RCA tubes are designed and manufactured to assure customer confidence in you as well as in RCA.

- **RCA tube quality** is your best insurance against call-backs due to premature tube failure.
- **RCA tube performance** puts your workmanship in the best light and protects it through rigid quality control.
- **RCA's trademark** symbolizes a name and reputation customers have respected for decades.

Your customers know that those red-white-and-black RCA tube cartons in your tube caddy represent the most trusted name in electronics. Remember, customer confidence is the cornerstone of your business.

To protect your service reputation before, during and after every service call, make sure your next tube order specifies... RCA TUBES.

RCA ELECTRON TUBE DIVISION, HARRISON, N. J.

The Most Trusted Name in Electronics

RADIO CORPORATION OF AMERICA

SIGN OF A SERVICE JOB WELL DONE