Microminiature Transistor Amplifier
Electronics Can Save Your Heart
TV Technician Repairs a Weld Timer

Poor Man's Direction Finder
Radio-Electronics
MAY 1960

Electronics Teaches Naval Strategy
LOUDSPEAKERS

TR-10 TRI-ETTE 3-Way Speaker System.

Compare the Jensen TRI-ETTE with any bookshelf speaker and let your own ears tell you the reason for its rocketing popularity... it sounds better! It's what you'd expect from advanced Jensen engineering that begins where others leave off. Efficient too... needs only a 10-watt amplifier. Handsome in graceful contemporary design with fine woods in choice of Walnut, Mahogany or Tawny Ash. Get a TRI-ETTE speaker system for superb mono hi-fi... add another for the finest stereo reproduction in small space at only $119.50 each. Table Base (extra)... $5.45. Matching Floor Stand 14" high (extra)... $12.55.

DF-1 DUETTE 2-Way Speaker System.

A new high in loudspeaker value... a high quality, economically priced 2-way "bookshelf" system made possible by an entirely new and different high compliance 8" FLEXAIR® woofer by Jensen... capable of movement more than twice as far as previously available units... with low distortion bass down to 35 cycles in tube-vented BASS-SUPERFLEX® enclosure. Fine furniture crafted of 3/4" selected veneer in choice of Walnut, Mahogany or Tawny Ash finished on four sides for horizontal or vertical placement. Only $70.50. Table Base (extra)... $5.45. Floor Stand for vertical placement (extra)... $7.50.

You should know there is something better!

Jensen “BOOKSHELF” LOUDSPEAKERS AND KITS

SPEAKER SYSTEMS IN FINE FURNITURE OR KITS FOR STEREO AND MONO HI-FI

USE THESE KITS IN YOUR OWN CABINETRY OR BUILT-IN SYSTEM

KT-33

3-WAY SPEAKER SYSTEM KIT

BASIC ENCLOSURE DATA

For outstanding TRI-ETTE performance in your own enclosure or custom built-in system, the KT-33 Kit is the answer. Includes P12-NF 12-inch FLEXAIR woofer, P8-UM 8-inch midchannel, RP-103A compression driver tweeter, H-F control, crossover network, wiring cable and full instructions for enclosure construction and installation. (Enclosure vent-tube 46MP06 must be ordered separately. Price 50c postpaid, direct from factory.) KT-33 Speaker Kit. Net only $80.00. KDF-1 TWINKIT*. Two matched systems for stereo. Net Only $160.00.

KDF-1

2-WAY SPEAKER SYSTEM KIT

For fine sound at minimum cost, Jensen's KDF-1 DUETTE Speaker Kit gives you complete 2-way system performance. When you make your own cabinet or built-in speaker system and install the KDF-1 Kit you'll save and get the same fine performance of the DF-1 DUETTE furniture model. Includes P8-QF 8-inch FLEXAIR woofer, enclosure vent-tube, P35-VAH tweeter, coupling element, terminal panel, H-F control, wiring material and complete instructions for building enclosure. Not only $29.75.

Jensen

MANUFACTURING COMPANY

6601 S. Laramie Avenue • Chicago 38, Illinois

In Canada: Renfrew Electric Co., Ltd., Toronto

In Mexico: Radios Y Television, S.A., Mexico, D.F.
The NEW NRI Home Study Course in ELECTRONICS

PRINCIPLES — PRACTICES — MAINTENANCE

NOW READY

SPECIAL TRAINING EQUIPMENT
No extra cost. In NRI Electronics training especially developed training kits bring to life theory you learn in easy, illustrated lessons. You get practical experience with Thyatron Tube circuits, Multivibrators, Capacitors, Diodes, Transistors, Telemetry, Computer Circuits and other basic circuits and components.

KIT 1 Get practical experience measuring voltage, current, building circuits.
KIT 2 Build d'Arsonval type Vacuum Tube Voltmeter. Test power line frequencies, high audio, radio frequency signals, resistances.
KIT 3 Practice with resistors, capacitors, coils. Work with half, full-wave, bridge, voltage doubler and pi-type filter circuits.
KIT 4 Build circuits with pentode tubes, selenium resistors, transistors. Build oscillator, check signal phase shift with oscilloscope.
KIT 5 Experiment with thyatron tube circuits, Lissajous patterns. Study basic amplitude detector circuits, modulatation, demodulation.
KIT 6 Get practical experience with magnetic amplifiers, learn to use modified Prony brake; determine motor torque. Use strobe disc to measure motor speed.
KIT 7 Learn effects of positive and negative feedbacks (used in analog computers). Practice varying polarizing voltage and illumination.
KIT 8 Experiment with multivibrators used as timing generators in binary counters, and as frequency dividers. Learn to use blocking oscillators, thermostats.
KIT 9 Practical experience in telemetry circuits used in earth satellites, remote control devices. Work with basic circuits used in digital and analog computers.
KIT 10 Assemble circuits in electrical and electro-mechanical systems, make valuable practical electronic circuits.

MAIL COUPON — New 64-Page Catalog pictures and describes Training Kits, explains what you learn.

NRI is America's oldest, largest home study Radio-Television-Electronics school. For over 45 years NRI has been training men without previous experience for success in Radio-Television Servicing and Communications. Now, expanded uses of Electronics in industry, business and defense are increasing the demand for Electronic Technicians. Four to seven Technicians are needed for every engineer. To meet this demand NRI announces a complete, comprehensive course in ELECTRONICS — Principles, Practices, Maintenance.

This training stresses basic fundamentals because so many Electronic devices are built around identical Electronic principles. It is for beginners, or for Technicians who wish to expand their knowledge.

KIT 10

This is the Electronic Age. Electronic Equipment is already being used to count, weigh, control flow of liquids, solids, gases. Control exposure in photography, detect fumes, or fire. Inspect at remote points. Supervise traffic. Survey land areas and ocean contours. Search for oil, miles beneath the surface. Measure radiation and control power levels in atomic installations. Control air traffic. Translate one language into another. The MILITARY applications of Electronics... particularly in space rockets and missiles, tracking devices, etc... probably equal all of the uses of the Past. Electronic equipment is used to machine parts through complex cycles. It is used in business to process data, control inventory, prepare payrolls, post, calculate, and in medicine for electrodiagnosis, measure body characteristics, electro-surgery.

Job Counselors Recommend
Right today a career in Electronics offers unlimited opportunity. Job Counselors know the pay is high, jobs interesting, advancement opportunities great. They advise ambitious, aggressive men who want higher pay now and a better future: "For an interesting career, get into Electronics."

Learn More to Earn More
Simply waiting and wishing for a better job won't get you ahead. You have to decide you want to succeed and you must act. NRI can provide the training you need at home in spare time. No need to go away to school. You don't need a high school diploma or previous Electronic experience. This course is planned to meet the needs of beginners. You work and train with components and circuits you will meet throughout your Electronics career. You get especially developed training kits for practical experience that make Electronics easy, simple to learn.

Mail this coupon today. New, FREE 64-page Catalog gives facts, opportunities about careers in Industrial and Military Electronics, also shows what you learn, facts about NRI's other courses in Radio-Television Servicing and Radio-Television Communications. Monthly payments available.

MAIL COUPON NOW

NATIONAL RADIO INSTITUTE
WASHINGTON 16, D. C., ESTABLISHED 1914

MAIL COUPON — New 64-Page Catalog pictures and describes Training Kits, explains what you learn.

Name Age
Address ..
City Zone State

NATIONAL RADIO INSTITUTE Dept. DEF
Washington 16, D. C.

Send me full information without cost or obligation. No salesman will call.

(Please print.)

ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL
EDITORIAL
31 Inventions Wanted–Hugo Gernsback

INDUSTRIAL ELECTRONICS
✓ 32 TV Tech Repairs a Weld Timer–Dellroye D. Darling
✓ 35 Using 24-28-Volt DC Relays–George F. Oberto
✓ 36 More Static Control in Industry–Tom Jaski
✓ 39 Industrial Safety Interlock–Ronald L. Ives

TEST INSTRUMENTS
40 A Strobe for Tape–W. E. McCormick
41 Equalize VTVM Readings–Joseph H. Sutton
✓ 42 Hand-Sized Grid-Dip Meter–I. Queen
44 Mini-tracer Speeds Radio Repairs–Dave Stone
45 Chroma Tracer
46 Audio Attenuator–Padder for Low-Level Testing–Harold Reed

ELECTRONICS
✓ 48 The NEWS (Naval Electronic Warfare Simulator) (Cover Feature)–D. C. Redgrave
✓ 54 Electronics Can Save Your Heart–Dr. Bernard S. Post
57 New Sources of Power
58 New at the 1960 IRE Convention

AUDIO–HIGH FIDELITY
59 Postage-Stamp Amplifier–Edwin Bohr
60 Power Amplifier for AC-DC Sets–John A. Dewar
61 Design Your Own Preamp, Part V–Norman H. Crowhurst
62 Night Switch for Hi-Fi–Richard G. Bemis
63 New Features in Stereo Packages–Robert F. Scott

TELEVISION
74 Signal Voltages in the Chroma Matrix–Robert G. Middleton
82 TV Service Clinic–Conducted by Jack Darr
86 Improving the TV Receiver–William Feingold
88 Streamlining the One-Man Shop–Henry J. Miller

RADIO
✓ 94 Poor Man's Direction Finder–Lee Craig
100 Those Tricky Radios–Jack Darr
106 Souping Up That Old Receiver–J. H. Thomas

131 Business and People
130 Corrections
22 Correspondence
136 New Books
134 New Literature
129 New Patents
125 New Products
109 New Tubes and Semiconductors
6 News Briefs
122 Noteworthy Circuits
118 Technicians’ News
115 Technotes
112 Try This One
111 50 Years Ago
NOW! at a price you can afford!

MAKE MORE MONEY in TELEVISION
in Radio - Electronics

TOP PAY...UNLIMITED OPPORTUNITIES
LIFETIME SECURITY CAN BE YOURS!

You are needed in the Television, Radio, and Electronics industry! Trained technicians are in growing demand at excellent pay—in ALL PHASES, including Servicing, Manufacturing, Broadcasting and Communications, Automation, Radar, Government Missile Projects.

NATIONAL SCHOOLS SHOP-METHOD HOME TRAINING, with newly added lessons and equipment, trains you in your spare time at home, for these unlimited opportunities, including many technical jobs leading to supervisory positions.

YOU LEARN BY BUILDING EQUIPMENT WITH KITS AND PARTS WE SEND YOU. Your National Schools course includes thorough practical training—YOU LEARN BY DOING! We send you complete standard equipment of professional quality for building various experimental and test units. You advance step by step, perform more than 100 experiments, and you build a complete TV set from the ground up, that is yours to keep! A big, new TV picture tube is included at no extra charge.

EARN AS YOU LEARN. We'll show you how to earn extra money right from the start. Many of our students pay for their course—and more—while studying. So can you!

LESSONS AND INSTRUCTION MATERIAL ARE UP-TO-DATE, PRACTICAL, INTERESTING. Every National Schools Shop-Method lesson is made easy to understand by numerous illustrations and diagrams. All instruction material has been developed and tested in our own Resident School Shops, Laboratories and Studios.

SEND FOR INFORMATION TODAY . . . it can mean the difference between SUCCESS and failure for you! Send for your FREE BOOK "Your Future in Television-Radio-Electronics" and FREE Sample Lesson. Do it TODAY, while you are thinking about your future. It doesn't cost you anything to investigate!

GET THE BENEFITS OF OUR OVER 50 YEARS EXPERIENCE

YOU GET...
• 19 Big Kits—YOURS TO KEEP!
• Friendly, Instruction and Guidance
• Job Placement Service
• Unlimited Consultation
• Diploma—Recognized by Industry
• EVERYTHING YOU NEED FOR SUCCESS!

SHOP-METHOD HOME TRAINING COVERS ALL PHASES OF INDUSTRY
1. Television, including Color TV
2. Radio AM & FM
3. Electronics for Guided Missiles
4. Sound Recording and Hi-Fidelity
5. FCC License
6. Automation and Computers
7. Radar & Microwaves
8. Broadcasting and Communications

MAIL NOW TO
NATIONAL TECHNICAL SCHOOLS, Dept. RG-50
4000 S. FIGUEROA ST., LOS ANGELES 37, CALIF.

NAME ___________________ AGE ___________________
ADDRESS ___________________
CITY ___________________ ZONE STATE ___________________

☐ Check if interested ONLY in Resident School training at Los Angeles
☐ Check if interested in GI Training

NATIONAL SCHOOLS
Los Angeles 37, Calif.

MAY, 1960
Electronic Engineers Meet

More than 68,000 persons representing all sections of the wide field of electronics met at the international convention of the Institute of Radio Engineers, in New York City March 21 to 24. A total of 270 papers (including at least one proposing the abolition of written papers at conventions) were read. They ranged from discussions of aerospace systems to signals produced by the human organism; from navigation of space vehicles by star radiations to molecular techniques wherein a tiny speck of material may be an amplifier, multivibrator, or switch; from the use of the sun to relay signals to highway radio.

The Radio Engineering Show which forms part of the meet featured exhibits of 850 firms, covering the whole four floors of New York's Coliseum. Some of the more interesting devices exhibited—and some of the more interesting papers delivered—are reported in this department and on page 58 of this issue.

New Switch Concept

The FluxLink switch, developed by Space Components, Inc., has only one moving part (no springs either) and is operated by a magnet located outside the hermetically sealed compartment that houses the moving part and contacts. This allows the units to operate under temperature, pressure (and vacuum) and vibration extremes—as well as in explosive or corrosive atmospheres.

The cutaway photograph shows the switch with the lower contacts closed and the upper contacts open. When the lower section of the actuator is depressed, lines of force from the magnet "piped" through non-magnetic partition by magnetic insets opposite the magnet poles attract the corresponding section of the armature. This snaps the armature over to its other position, closing the upper contacts and opening the lower set. Depressing the upper part of the actuator reverses the procedure.

The units exhibited are ¾ inch long and ¾ inch in outside diameter. The contacts can carry up to 15 amperes at 125 volts ac.

Universe Radio Record Set

The longest-distance radio communication record for the universe was set—at least up to that date—on March 21, when Pioneer V was interrogated for a signal to open the 1959 IRE International convention in New York City.

Since the sun satellite was close to a million and a half miles away at the time and the only radio equipment out so far in space, communication with it constituted a record automatically. (Any later communication would necessarily set up a new record, of course.)

The communication was by way of the great antenna at Jodrell Bank, England. A message sent by telephone from the New York Coliseum was relayed to the satellite by the Jodrell Bank station, triggering the space-traveling transmitter and sending a message back to Jodrell Bank, to be retransmitted to New York.

Only one flaw marred the experiment. Power to the closed-circuit TV which was to bring an oscilloscope view of the signal to the large crowd in the Coliseum, was interrupted twice, once just before the signal was received. The screens of the several TV receivers remained dark through the experiment. The sound signal, a 1,000-cycle note modulating the carrier and being in turn modulated by telemetering information, was clearly audible to all present, however.

Communication via Satellite

Two 17-year old ham operators have used a satellite (either Explorer VII or Sputnik III) or its ionized path as a reflector to complete a two-way communication system. Perry I. Klein, K3JTE, and Raphael Saffir, K3QBW, took turns transmitting the letter Z in Morse code on 21.011 mc. After 35 attempts, Mr. Klein received the Z (at about 1:00 am Feb. 6) and sent back the letter M, meaning "I copy you and your signal is fairly strong," as previously arranged.

Dr. Jerome B. Weisner, director of the MIT Research Laboratory of Electronics, verified the student's claim, but added that more data are desirable.

New FCC Chairman

FCC Commissioner Frederick W. Ford was appointed chairman of the FCC by President Eisenhower to replace John C. Doerfer, who resigned because of criticism of his conduct in office. The President then nominated Edward K. Mills, Jr. to be an FCC Commissioner to fill the unexpired term of Doerfer. The new appointments signaled a tougher stand by the Commission in regulating the broadcasting industry.

Stereo for the Unborn

Many babies commit suicide before birth, by entangling themselves with the umbilical cord in such a way that they are strangled during delivery. A stereo system of picking up sounds from the unborn child as a way of detecting this was described to the recent IRE convention by Dr. F. D. Napolitani and L. E. Garner. Two microphones placed on the mother's abdomen succeeded in picking up the baby's and mother's heartbeat. The directional effect made it possible in some cases to establish the position of the baby and the placenta, thus giving an idea of whether the cord was probably free or not. Though not yet generally accepted by the medical profession, the authors believe such a stereophonic instrument, may well become as standard as the common stethoscope.
JOB OPPORTUNITIES!
EXCITEMENT!
MONEY!
All this can be Yours as a trained Electronics
TECHNICIAN

OVER 6,000 FIRMS HAVE EMPLOYED DeVRY TECH GRADUATES!

Thousands of companies in the United States and Canada who have employed DeVry Tech men prove two most important facts: (1) Electronics is one of the biggest, fastest growing opportunity fields of our time; and (2) DeVry Tech graduates are "WANTED" MEN.

Whether DeVry Tech prepares you in spare time at home or in its modern Chicago or Toronto Laboratories, your training is designed to get you ready to meet the exacting standards of industry. You get practical training that not only helps to fit you for a job or a service shop of your own—but also gives you a foundation for a career that can be profitable the rest of your life.

You work over 300 learn-by-doing experiments at home, using DeVry Tech's exclusive Electro-Lab method. You build and KEEP valuable equipment. With another DeVry Tech exclusive, you have the benefit of training movies that you can show over and over until basic points are crystal clear. Special texts guide you every step of the way as well.

HOW DeVRY TECH CAN "BLUEPRINT" YOUR CAREER!

DeVry's faculty not only know how to teach Electronics, but they also understand men. They most likely know the type of problems you face. From this staff you get help, advice and understanding. It is this "human" side of DeVry's program that has caused many of our graduates to say: "DeVry Tech not only trains you for a job, they actually help you blueprint a profitable future!"

NO ADVANCED EDUCATION NEEDED!

Why don't you write for FREE FACTS today? Learn how you TOO can be a member of the great fraternity of DeVry Tech graduates across the continent... men who were properly trained, encouraged, appreciated and understood! SEND IN COUPON NOW!

EFFECTIVE EMPLOYMENT SERVICE

DeVry Tech's effective Employment Service is available to all graduates without additional cost.

2 FREE BOOKLETS
Send Coupon TODAY!

"One of North America's Foremost Electronics Training Centers"
Accredited Member of National Home Study Council

MAIL TODAY FOR FREE FACTS!
DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill., Dept. RE-5Q
Please give me your 2 FREE BOOKLETS, "Pocket Guide to Real Earnings" and "Electronics in Space Travel;" also include details on how to prepare for a career in one or more branches of Electronics.

Name ___________________ Age ______
Street ___________________ Apt. ______
City ___________________ Zone ______
State ___________________

Check here if you face military service.

Canadian residents: Write DeVry Tech of Canada, Ltd., 626 Roselawn Ave., Toronto 12, Ontario

MAY, 1960
Antenna Fraud

Attorney General Louis J. Lefkowitz (New York State) has charged Moto-Matic Co. with persistent frauds arising out of false and misleading advertising. The claim that a TV socket antenna sold by Moto-Matic (see article on similar device, RADIO-ELECTRONICS, December, 1959, page 100) would turn “ordinary house wiring into a super-power 500-foot television antenna” has sold to the extent of more than $100,000.

The Attorney General’s office said tests show that the $2.98 and $4.98 "Radarex-Tenna" (depending on model) devices are no better than an ordinary pair of rabbit ears and in some cases are worse.

Mr. Lefkowitz obtained a Supreme Court order directing Charles Torrelli to show cause why he should not be enjoined from false advertising practices and why a receiver should not be appointed to safeguard refunds due purchasers of the device. The Attorney General said that, in asking for the appointment of a temporary receiver, his office had discovered that while Moto-Matic had collected more than $117,000, its bank balance had been depleted by withdrawals to the point where the bank account is now less than $10,000. This amount, according to the Attorney General's office, has been placed in escrow to assure refunds to customers who may want their money back.

Japanese TV Arriving

Designed to sell at $69.95, some 15,000 7½-inch screen Japanese receivers are said to have been ordered. They are 14-tube 117-volt ac-powered units with built-in rabbit-ear antennas. The sets are 11 inches deep (front to back), weigh 18 pounds and have metal cabinets finished in a variety of colors. The importer is Star Lite Merchandize Corp. New York, N. Y.

IRE Makes Awards

The Institute of Radio Engineers has named the recipients of six awards for 1960. The Founders Award, given only on special occasions, goes to Haraden Pratt, secretary of the IRE, “for outstanding contributions to the radio engineering profession and the IRE.”

The institute’s highest technical award, the Medal of Honor, was presented to Harry Nyquist, consulting engineer, “for fundamental contributions to a quantitative understanding of thermal noise, data transmission and negative feedback.”

"For contributions to the development of magnetic devices for information processing," the Morris Liebmann Memorial Prize Award goes to J. A. Rajchman, RCA Labs, Princeton, N. J.

(Continued on page 16)
2 Great knight-kit Citizens Band Transceiver Kits

YOUR CHOICE OF THE FINEST VALUES IN 2-WAY RADIO EQUIPMENT

For Auto-to-Auto or Auto-to-Home or Office

Loca Trucking, Delivery, Construction Work

Boat-to-Boat, Ship-to-Store

YOUR CHOICE OF THE FINEST VALUES IN 2-WAY RADIO EQUIPMENT

BEAUTIFUL STYLING...UNEXCELLED PERFORMANCE

Have dependable, economical 2-way radio communication with this top-rated, do-it-yourself transceiver. Has two crystal-controlled transmitting positions; operates at maximum FCC legal power input of 5 watts fully modulated. Superhet receiver is continuously tunable over the full 22 channel band; also has two optional crystal-controlled fixed frequency positions. Works just like press-to-talk intercom—speaker also serves as mike.

Ultra-selective, highly sensitive dual-conversion superhet receiver features built-in adjustable squelch and noise limiter. Sensitivity (manual) is better than 1 µv for 10 db S/N; crystal, 1/2 µv. Includes built-in AC power supply. Easy to assemble; has dependable printed circuitry and pre-aligned IF transformers. With distinctively styled high-impact case, 5 x 12 x 12". Complete with all parts, wire-type doublet antenna, and transmitting crystal (specify channel from 1 to 22—if you have a preference). See below for antenna, mobile power supply, etc. Shpg. wt., 20 lbs.

Model Y-712L. $79.95

Model Y-713L. $39.95

Manufactured and sold exclusively by ALLIED RADIO

Top Buy Citizens Band Transceiver Kit

Now have your own private 2-way radio system at an amazingly low cost! Consists of easy-to-assemble superregenerative receiver and 5-watt transmitter. Readily fits car, boat or desk. Single, one-switch operation permits talk or listen. Receiver tunes all 22 channels continuously. Built-in AC power supply. Handsomely styled case, 7 x 10 x 8." With mike, doublet antenna, and transmitting crystal (specify channel from 1 to 22—if you have a preference). See below for antenna, mobile power supply, etc. Shpg. wt., 10 lbs.

Model Y-713L. $2 Down. ONLY $39.95

Y-729L. 3 Ft. Vertical Antenna. 2 lbs. NET 6.50

Y-723L. 6-12 V. Mobile Power Supply. 6 lbs. 10.95

ALLIED RADIO CORP., Dept. 68-E
100 N. Western Ave., Chicago 80, Ill.

Please ship: [] Y-712L Transceiver. [] Y-713L Transceiver.
[] Y-729L [] Y-723L [] Y-714L [] Y-724L
[] Y-769L [] Y-719L $ enclose

Send latest catalog describing Knight-Kits.

Name __________________________

Address ________________________

City _______ Zone ______ State ______

MAY, 1960
NOW—just in time for baseball TV-viewing (and TV-servicing) CDE has the Hit Capacitor Kit you asked for: 35 popular molded Mylar* tubulars that “shortstop” call-backs! Quality-proven by two years of consistently dependable replacement service, these high temperature, moisture-resistant “PMs” are the values you need and use every day. And now you can have this convenient assortment—plus a sturdy, plastic parts-or-jewel box—all for the price of the capacitors alone! A real “double-header.” Get two “PM Kits” today—one for your shop, another for your service bag—from your CDE Distributor. Cornell-Dubilier Electric Corp., South Plainfield, N. J.

HERE’S THE BOX SCORE

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Mfd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PM 6D2</td>
<td>.002</td>
</tr>
<tr>
<td>5</td>
<td>PM 6D5</td>
<td>.005</td>
</tr>
<tr>
<td>6</td>
<td>PM 6S1</td>
<td>.01</td>
</tr>
<tr>
<td>5</td>
<td>PM 6S2</td>
<td>.02</td>
</tr>
<tr>
<td>5</td>
<td>PM 6S4</td>
<td>.047</td>
</tr>
<tr>
<td>6</td>
<td>PM 6S5</td>
<td>.05</td>
</tr>
<tr>
<td>5</td>
<td>PM 6P1</td>
<td>.10</td>
</tr>
</tbody>
</table>

Voltage: 600 VDCW

Pick the four teams in each major league that you think will be standing in 1, 2, 3, 4-order as of midnight, May 31, 1960 and win $100 worth of any CDE merchandise if the sequence you pick is closest to the actual order. See full contest details in kit.

*DuPont T.M.
do you know what an FCC License Really Can do for you in electronics

1. If you want to get into electronics . . . ?
2. If you are now employed in electronics . . . ?

See what this leading employer Burroughs Corporation has to say:

"An FCC License is a job asset . . .

to any man looking to enhance his career in the field of electronics. At Burroughs Corporation, a licensed man is well regarded because an FCC license attests to his knowledge of electronic theory. The licensed man at Burroughs will be called upon to handle many challenging assignments."

Employers are good judges of the value of an FCC License.

An FCC License . . . Your Best Way To Find Opportunities in Electronics

1. For many good jobs the FCC License is required by law.
2. Prospective employers accept the FCC License as your best proof of technical competence.
3. Preparing for an FCC License is the best way to convert military experience in electronics to good paying civilian occupations.

We Guarantee Your FCC License—Or Your Money Back

The Master Course in Electronics will provide you with the mental tools of the electronics technician and prepare you for a First Class FCC License (Commercial) with a radar endorsement. When you successfully complete the Master Course, if you fail to pass the FCC examination, you will receive a full refund of all tuition payments.

Accredited By The National Home Study Council

Cleveland Institute of Electronics
Desk RE-41B, 4900 Euclid Avenue, Cleveland 3, Ohio

GET ALL 3 VALUABLE BOOKLETS

GET ALL 3 VALUABLE BOOKLETS free!

Just mail the coupon below

Cleveland Institute of Electronics
Desk RE-41B, 4900 Euclid Avenue, Cleveland 3, Ohio

Please send Free Booklets prepared to help me get ahead in Electronics. I have had training or experience in Electronics as indicated below.

☐ Military ☐ Broadcasting
☐ Radio-TV Servicing ☐ Home Experimenting
☐ Manufacturing ☐ Telephone Company
☐ Amateur Radio ☐ Other

In what kind of work are you now engaged? In what branch of Electronics are you interested?

Name ______________________ Age ______________________

Address ______________________

City ______________________ Zone ______ State ______

MAY, 1960
World's Toughest Audience Tests, Approves, Selects E-V ULTRA-Compact Units

Recently, in New York, Boston, and Los Angeles nearly 300 sound room personnel of top high fidelity dealers were given the opportunity to spend an afternoon listening to and rating the "sound" produced by three of Electro-Voice's new ultra-compact speaker systems (Regal, Esquire, Leyton) and six currently popular competitive ultra-compact systems. All nine systems were placed behind an opaque curtain and each listener's selector switch was color-coded but unmarked so he had no way of knowing which system he was hearing. The result of the listening test was that more than 90% ranked Electro-Voice Esquire and Regal units either first or second. And Electro-Voice's economical Leyton was ranked third by over 50% of the participants—thus outscoring systems at double its price.

Now, we don't think this proves a single thing except that there is a heavy percentage of knowledgeable people in New York, Boston, and Los Angeles who could recognize the clarity and purity of sound that we have built into any Electro-Voice speaker system. We long ago discovered that it is impossible to build a speaker that sounds exactly the same to every listener, so we have always strived to create instruments that let our customers listen to the music rather than the speaker.

New Convertible Drivers Bring Public Address Performance to Hi-Fi Levels

The basic characteristics needed to satisfy any critical sound job—wide range, low distortion, and high efficiency—are all combined in E-V's new group of drivers. But there has been one great plus added to the unmatched performance of these units. The same driver can be used on reentrant horns and in compound horns. This means that a single driver will fit the famous E-V Compound Diffraction Horn as well as conventional reflector horns. This unusual versatility is accomplished without any sacrifice of the performance quality of either horn type.

Engineered with careful attention to detail, these drivers feature such exclusives as: ceramic magnets; edge-wise wound voice coils; and dual concentric centering. They are easier to install with their push-type polarized connectors and permit easy diaphragm replacement in the field.

If you are planning a P.A. system don't fail to consider these rugged, weatherproof drivers that have eliminated "peaked" response to provide the tonal balance needed for good musical reproduction and the rising frequency response necessary for clear, crisp voice projection. Available as listed below as well as with 45-ohm voice coils for high-powered inter-com:

What Does E-V's Magneramic 31 Cartridge Can't Do?

The stereo cartridge has rightly been termed the "gateway" to your sound system. If the response characteristics of the cartridge lacks fidelity of reproduction, the system performance will not possess the essential brilliance of the recorded sound. Similarly, if the cartridge fails to provide adequate electrical input to the amplifier, much of the recorded sound's brilliance and quality may be attenuated. The factor of cartridge output influences not only the system gain—but the quality and definition of the sound as well.

In distinct contrast to magnetic type cartridges, the revolutionary, new E-V Magneramic 31 produces an output of 8 millivolts—over 60% higher than most magnetics. Thus, it is possible to play your system at noticeably lower amplifier gain and speaker pad settings. This bonus output is often the difference between marginal and outstanding performance, particularly when employing low-efficiency speaker systems. Lower amplifier gain settings also reduce the likelihood of introduction of tube thermals and transformer hum into the system. You hear what is recorded—clean and true-to-life—without the introduction of stray parasites from the amplifier.

First Users of New Model 644 Mike—Rave About Performance

The all-new Model 644 Sound Spot Microphone introduced by Electro-Voice early this year has already started to prove itself in its initial installations. Here are just a few of the comments received from sound installers and audio specialists throughout the country:

"Move anywhere on the stage and be heard easily throughout the auditorium"...
"Better pick-up of a band across a football stadium than any parabolic microphone ever tried"...
"By using the 644's we turn up the system to more than needed sound without feedback—but with old microphones we could just barely crack the control open"...
"The anticipated feedback in this installation from any normal application would be tremendous. The 644 was installed and all preliminary tests were amazing"...

The microphone that all these men are talking about utilizes a slotted tube on the front that can actually discriminate between sounds arriving from random directions and reduce pick-up from sides and rear by 30 db or more. This new design concept enables the 644 to offer as much as four times greater working distance than the best cardioid; greatly reduced feedback; retention of 'on-mike' presence despite extended working distance; excellent performance out-doors because of elimination of wind noise. Despite the outstanding performance characteristics built into the 644, it is still priced low enough ($110.00 list) to fit most budgets.

Did You Know?

Depending on the weight of the tone arm, a needle exerts as much as 30,000 to 50,000 pounds per square inch pressure on the record groove. So, it's easy to see why even a slight imperfection in the tip could ruin records in a hurry. Don't take chances with your valuable collection. Always select Electro-Voice Power-Point Needles. The only replacement needle line sold by a manufacturer of high-fidelity equipment.

Want more information on any of the items mentioned in the Sounding Board? Simply check the appropriate boxes below and mail the coupon to Dept. 50E, Electro-Voice, Inc. Buchanan, Michigan.
Have you ever seen the SYLVANIA “Bakery”?

“Bakery”? An “Oven”? Yes, but not for bread. For Silver Screen 85 Picture Tubes! Giant ovens (Lehrs) — each about one-third the length of a football field — “bake in” the big differences that make Sylvania Silver Screen 85 the finest replacement TV picture tube... second to none!

The giant ovens heat-treat the glass and bake the phosphor screen and other internal coatings. Important, too — this process removes residual volatile materials such as lacquer and water used in applying the phosphor screen.

This treatment must be done slowly, under careful controls and is very essential to the proper processing of the bulb. This process also assures “stronger” glass, free of undesired strains. It extends picture tube life by ridding the bulb of contaminants that could later cause inter-element leakage, gassing and loss of emission. The manufacturer who employs expensive equipment such as this can assure you of a consistently top-quality product.

So, when you recommend a replacement picture tube, recommend the finest... a Sylvania Silver Screen 85. It gives your customers what they want: better pictures for a longer time. Gives you what you need: profitable TV service calls.

Electronic Tubes Division,
Sylvania Electric Products Inc.,
1740 Broadway, New York 19, N. Y.
Westinghouse Electric Corp.
600 St. Paul Ave.
Los Angeles 17, California

Gentlemen:

We are constantly seeking improved products to recommend and sell to our customers, and we are pleased to inform you and sell to our customers that Westinghouse receiving tubes and picture tubes fall into that category.

We changed over exclusively to Westinghouse tubes and sold to us, we keep complete records of tube failures and customer call backs. Our call backs due directly to tube failures were reduced by over 50 per cent.

It is with complete confidence that we recommend and sell your quality Gold Star picture tubes. The picture quality is excellent, and the tubes are exceeding our greatest expectations. In the past nine months, we have used approximately 500 picture tubes, and as of now, only one has been replaced. Two of which were defective out of the carton, and only one failed in actual use. In fact, we are so confident in the life of the picture tube, that we are now guaranteeing our picture tube replacements for three years.

We have removed two things by the use of your tubes. Greater customer satisfaction and more per dollar for us has the very minimum amount of tube failures.

Please thank your engineers and quality control department for the fine product that they are putting in our hands to sell to the consumers.

Sincerely yours,

ACE RADIO & TV SERVICE

[Signature]

Philip Blank
"call backs reduced by over 50%!"

"It is with complete confidence that we recommend and sell your quality Gold Star picture tubes."

"We are so confident in the life of the picture tube that we are now guaranteeing our picture tube replacements for three years."

"We have gained...greater customer satisfaction, and more net dollars for us due to the very minimum amount of tube failures."

We can't think of a thing to add. Except, perhaps, that your local Westinghouse electronic tube distributor will be happy to introduce you to the line. If your distributor doesn't carry them yet, give us his name. We'll send someone over to enlighten the poor fellow.

YOU CAN BE SURE...IF IT'S Westinghouse

Westinghouse Electronic Tube Division, Elmira, N.Y.
The World's FINEST TUNERS
For the World's FINEST SETS

For more than 15 years, manufacturers of the world's finest receivers have been specifying TARZIAN TUNERS...over 15,000,000 all told!

Sarkes Tarzian, Inc., the pioneer in the industry, is recognized as the world's largest commercial tuner manufacturer with licensees in North and South America, Europe and Australia.

Today, only Tarzian offers manufacturers both the HOT ROD (turret-type) and SILVER SEALED (switch-type)...as well as the newer Hi Fi FM Tuner. All with built-in HIGH-QUALITY...DEPENDABILITY...UNEXCELLED PERFORMANCE...at low cost!

For more information, write to: Sales Department
Tuner Division

SARKES TARZIAN INC
east hillside drive • bloomington, indiana

NEWS BRIEFS (Continued from page 8)

Calendar of Events
PACE Annual Meeting, April 29-May 1, Nevele Hotel & Country Club, Ellenville, N. Y.
Semiannual Convention of Society of Motion Picture and TV Engineers, May 1-7, Ambassador Hotel, Los Angeles, Calif.
National Aeronautical Electronics Conference, May 2-4, Biltmore & Miami Hotels, Dayton, Ohio.
URSI-IRE Spring Meeting, May 2-5, Sheraton Hotel, Washington, D. C.
Western Joint Computer Conference, May 2-5, Jack Tar Hotel, San Francisco, Calif.
National Symposium on Microwave Theory and Techniques, May 8-11, Hotel Del Coronado, San Diego, Calif.
Summer Instrument Automation Conference & Exhibit, May 9-12, Civic Auditorium, San Francisco, Calif.
Electronic Components Symposium, May 10-12, Hotel Washington, Washington, D. C.
Electronic Parts Distributors Show, May 16-18, Conrad Hilton Hotel, Chicago, Ill. Closed show for manufacturers, representatives, distributors.
Radio-Electronics and Gernsback Library will exhibit in Room 504 and Booth 588.
EIA Annual Convention, May 18-20, Pick Congress Hotel, Chicago, Ill.
National Telemetering Conference, May 25-27, Miramar Hotel, Santa Monica, Calif.
Armed Forces Communications & Electronics Association Convention, May 25-27, Sheraton Park Hotel, Washington, D. C.
Annual Radar Symposium, June 1-3, University of Michigan, Ann Arbor, Mich.
Radio Frequency Interference Symposium, June 13-14, Washington, D. C.
Spring Conference on Broadcast & TV Receivers, June 20-21, Graemere Hotel, Chicago, Ill.
Workshop on Solid State Electronics, June 22-24, Purdue University, West Lafayette, Ind.
Congress of the International Federation of Automatic Control, June 22-27, Moscow State University, Moscow, USSR.
National Convention on Military Electronics, June 27-29, Sheraton Park Hotel, Washington, D. C.
New England Electronic Conference, June 27-29, Balsams, Dixville Notch, N. H.

TV Station Changes
The opening of two new TV stations ended the lull we reported last month:
KRET-TV, Richardson, Tex. 23
WSLA, Selma, Ala. 8
KRET-TV's activity is educational.
KLOR-TV, Provo, Utah, channel 11, left the air temporarily because...
What Does F.C.C. Mean To You?

What is the F.C.C. ?

F. C. C. stands for Federal Communications Commission. This is an agency of the Federal Government, created by Congress to regulate all kinds of radio and television broadcasting in the United States.

What is an F. C. C. Operator License?

The F. C. C. requires that only qualified persons be allowed to install, maintain, and operate electronic communications equipment, including radio and television broadcast equipment or any other radio equipment. The F. C. C. determines who is qualified to use such equipment.

What are the Different Types of Operator Licenses?

The F. C. C. grants three different types (or groups) of operator licenses—commercial radiotelephone, commercial radiotelegraph, and amateur.

Commercial Radiotelephone operator licenses are those required of technicians and engineers responsible for the proper operation of electronic equipment involved in the transmission of voices, music, or pictures. For example, a radio operator on board a merchant ship must hold a radiotelephone license. (A knowledge of Morse code is NOT required to obtain such a license.)

Commercial Radiotelegraph operator licenses are those required of the operators actually working with radio communications equipment which involves the use of Morse code. For example, a radio operator on board a merchant ship must hold a radiotelegraph license. (The ability to send and receive Morse is required to obtain such a license.)

Amateur licenses are those required of people who are hobbyists and experimenters. (A knowledge of Morse code is required to obtain such a license.)

Which License Qualifies for Which Jobs?

The THIRDS CLASS radiotelephone license is of value primarily in that it qualifies you to take the examination for the first class license. The scope of authority covered by a third class license is extremely limited.

The SECOND CLASS radiotelephone license qualifies you to install, maintain, and operate all types of radiotelephone equipment except commercial broadcast station equipment.

The FIRST CLASS radiotelephone license qualifies you to install, maintain, and operate every type of radiotelephone equipment (except amateur). The holder of a first class license can work in all radiotelephone stations in the United States, and in its Territories and Possessions. This is the highest class of radiotelephone license available.

How Long Does It Take to Prepare for F. C. C. Exams?

The time required to prepare for FCC examinations naturally varies with the individual, depending on his background and aptitude. Grantham training prepares the student to pass FCC examinations in a minimum of time.

In the Grantham correspondence course, the average student will complete his second class radiotelephone license after from 200 to 500 hours of study. This student should then plan for his first class license in approximately 75 additional hours of study.

In the Grantham resident course, the time normally required to complete the course and get your license is approximately 60 days.

In the DAY course (5 days a week) you should get your second class license at the end of the first 9 weeks of classes, and your first class license at the end of 3 additional weeks of classes. This makes a total of 12 weeks (just a little less than 3 months) required to cover the whole course of study for the second class license.

In the EVENING course (3 nights a week) you should get your second class license at the end of the 15th week of classes and your first class license at the end of 5 additional weeks of classes. This makes a total of less than 5 months required to cover the whole course, from "scratch" through first class, in the evening course.

HERE'S PROOF that Grantham Students prepare for F.C.C. examinations in a minimum of time. Here is a list of a few of our recent graduates, the class of license they got, and how long it took them. Each course was completed in:

- Ron Taylor, 39 S. Franklin St., Chambersburg, Pa. - 12 weeks
- Bore More, P.O. Box 169, Opp, Alabama - 12 weeks
- Donald H. Ferris, Hartford 6, Conn. - 12 weeks
- Robin O. Kinoshita, P.O. Box 375, Hanapepe, Kauai, Hawaii - 12 weeks
- J. H. Reeves, 10621 Ruthven, Los Angeles 47, Calif. - 12 weeks
- Donald H. Ford, Box 101, Graceland, Calif. - 12 weeks
- Janette Dough, 400 Church St., East Troy, Wisc. - 12 weeks

FOUR COMPLETE SCHOOLS

To better serve our many students throughout the entire country, Grantham Schools of Electronics maintain four separate Divisions—Hollywood, Calif.; Seattle, Wash.; Kansas City, Mo.; and Washington, D.C.—offering the same courses in F.C.C. license preparation, either home study or resident classes.

For further details concerning F.C.C. licenses and our training, send for our FREE booklet, "Careers in Electronics". Clip the coupon below and mail it to the School nearest you.

Get your First Class Commercial F.C.C. License quickly by training at GRANTHAM SCHOOL OF ELECTRONICS

1505 N. Western Ave., Hollywood 27, Calif.
408 Marion Street
Seattle 4, Wash.
3123 Gillham Road
Kansas City 9, Mo.
821 - 19th Street, N.W.
Washington 6, D.C.

Phone: (Holiday) 7-7777
Phone: (Marion) 2-7277
Phone: (Gillham) 6320
Phone: (JE) 3-3514

MAIL COUPON NOW—NO SALESMAN WILL CALL

MAY, 1960

17
...and now **Precision** adds 10 more value-packed items to the PACO Kit Line

1. **NEW PACO “SPEED CHECK” TUBE TESTER KIT**
 - An economy priced tube tester which has been specifically designed to reduce tube testing time to an absolute minimum.
 - Model T-61 (Kit)
 - Net Price: $49.95
 - Model T-61W (Factory-wired)
 - Net Price: $69.95

2. **NEW PACO “IN CIRCUIT” TUNER KIT**
 - Instantly reveals open or shorted capacitors of all types while they are wired into circuit; discloses wired-out and open or shorted electrolytics in one quick test without removing capacitor from circuit.
 - Model C-25 (Kit)
 - Net Price: $19.95
 - Model C-25W (Factory-wired)
 - Net Price: $29.95

3. **NEW PACO FILAMENT TESTER KIT**
 - Quick-checks receiving tubes and TV picture tubes for filament continuity; checks TV and radio set fuses for continuity; checks pilot lamps and TV sets for AG circuit continuity.
 - Model T-5 (Kit)
 - Net Price: $4.50
 - Model T-5W (Factory-wired)
 - Net Price: $6.50

4. **NEW PACO “SPEED CHECK” RESISTANCE BOX KIT**
 - Contains 18 capacitors, selectable on one clearly-marked switch; eliminates the need for maintaining a variety of standard-value capacitors.
 - Model SC-1 (Kit)
 - Net Price: $8.95
 - Model SC-1W (Factory-wired)
 - Net Price: $11.95

5. **NEW PACO DECADE CONDENSER KIT**
 - Ideal for determination of capacitance in all types of experimental circuitry; for use in tuned circuits, filters, RC networks, etc.
 - Model CD-3 (Kit)
 - Net Price: $19.95
 - Model CD-3W (Factory-wired)
 - Net Price: $24.95

6. **NEW PACO RESISTANCE SUBSTITUTION BOX KIT**
 - Permits rapid substitution of 36 values of resistors through use of either of two clearly-identified rotary switches.
 - Model SR-2 (Kit)
 - Net Price: $8.95
 - Model SR-2W (Factory-wired)
 - Net Price: $11.95

7. **NEW PACO RESISTOR/DIVIDER KIT**
 - A flexible and accurate source of substitute resistance; also for use in the determination of resistance values in test development and experimental work.
 - Model RD-5 (Kit)
 - Net Price: $23.95
 - Model RD-5W (Factory-wired)
 - Net Price: $29.95

8. **NEW PACO AM-FM STEREO TUNER KIT**
 - A super-sensitive AM-FM stereo tuner kit; a masterpiece of design, performance and appearance.
 - Model ST-45 (Kit)
 - Net Price: $84.95
 - Model ST-45P (Semi-Kit), with both AM and FM tuner sections factory-wired and completely pre-aligned and calibrated for harmonic line sensitivity.
 - Net Price: $98.95
 - Model ST-45W (Factory-wired)
 - Net Price: $134.95

9. **NEW PACO FM TUNER KIT**
 - A superb FM tuner of exceptional sensitivity and selectivity; brilliantly engineered and styled.
 - Model ST-35 (Kit)
 - Net Price: $79.95
 - Model ST-35PA (Semi-Kit), with tuner section factory-wired and completely pre-aligned and calibrated for harmonic sensitivity.
 - Net Price: $68.95
 - Model ST-35W (Factory-wired)
 - Net Price: $69.95

10. **NEW PACO WIDE-RANGE TWO-WAY SPEAKER SYSTEM SEMI-KIT**
 - Compact, high-efficiency, 2-way speaker system having truly smooth wide-range response; with cross-over network and built-in acoustic balance control.
 - Model L-2U (Unfinished)
 - Net Price: $55.95
 - Model L-2F (Walnut Finish)
 - Net Price: $69.95

NEWS BRIEFS (Continued)

of technical difficulties. We will report its return to programming.

The US count consequently becomes 658, including 474 vhf and 94 uhf. The noncommercial figure is upped to 44.

Canada's tally grows to 61 with two new stations.

MARS Net Schedule

The Net meets on 4030 kc each Wednesday at 9:00 pm EDT. After the May lectures, the Net will revert until September.

Spray Can Changes Chanel

Double-duty spray cans can kill odors and change the station on a TV receiver. At least, according to the New York Daily News, one Edward McBride knows it works. Seems he was in a Bay Shore, N. Y., hospital relaxing after a bath, when some typical hospital odors started to bother him. He requested some deodorant, got it, and used it. But one time he sprayed, the program on the screen of his rented TV receiver changed too. An emergency call for a TV service technician brought the answer. The set's remote control reacted to the hissing sound of the spray can—the spray operated on the remote's ultrasonic frequency. Tests showed this happened with other sets in the hospital too.

Messages From Outer Space

Trying to intercept meaningful messages from other worlds is the job of a sensitive radiotelescope at Green Bank, W. Va. Set up by the National Radio Astronomy Observatory (NRAO) and named Project Ozma, the project is centered around the hope of picking up intelligence-bearing radio transmissions. Dr. Frank Drake of NRAO sums up the project's purpose by stating, "We hope to find a narrow-band radio source, varying in intensity in an apparently logical manner, from the vicinity of single stars not very unlike our own sun."
IMPORTANT: For the man who wants to make big money in Radio-Television!

ONLY SPRAYBERRY TRAINING IN
RADIO and TELEVISION

OFFERS YOU ALL OF THESE VITAL NEW ADVANTAGES TO HELP YOU EARN MORE MONEY FROM THE START!

NEW BUSINESS BUILDERS
...through these practical proven plans and ideas we help you make plenty of extra money in spare time while training.

NEW TRAINING EQUIPMENT
...the famous Sprayberry Training kits have been newly engineered by our staff to offer you the latest in Radio-TV Service Techniques!

NEW TRANSISTOR COURSE
...literally millions of new transistor radios are being used. We show you how to make money fixing them!

NEW HIGH FIDELITY
...there's big money to be made installing and servicing Hi-Fi units. Your Sprayberry training now offers you this valuable and profitable preparation!

The field of Radio-Television Servicing is such a fast moving industry that the best jobs and biggest incomes always go first to the man with the most modern, complete and up-to-date training. Thanks to constant revision and improvement... Sprayberry Training helps you earn more from the start... and keeps you earning more in the months and years ahead!

Make no mistake! All radio-television training is not alike. The basic purpose behind Sprayberry Training is to prepare you as rapidly and as surely as possible to make top money servicing Radio and Television sets and equipment. This is where the big money has been for years... and will continue to be in the years ahead.

It's important for you to know that over 30 years... Sprayberry Training has been preparing ambitious men for success in this interesting and profitable kind of work. Our school has helped hundreds to qualify for the best jobs... or to get started in profitable businesses of their own. Today our student rolls are the largest in our school's history... because the need and demand for Radio-Television Service Technicians has never been more urgent.

Just $6.00 Starts You
To encourage more men to enter Radio-Television at once... to help fill the great need for trained men... we're making it easier than ever before to start training. Just $6.00 enrolls you. This liberal offer is naturally limited. Get the facts now and consider enrollment while these favorable terms are available to you.

KEEP YOUR JOB... while learning
Under the Sprayberry Plan you train entirely at home in spare time. You combine the most modern lesson training with fascinating and invaluable practical work with 25 big kits of parts and equipment that we supply. You get the equivalent of years of shop practice... and you can train as fast or as slowly as you wish. We help you make excellent spare time money while learning... and everything you receive—lessons, books, manuals, equipment—all yours to keep!

This is the Radio-Television industry's most modern and up-to-the-minute training. Sprayberry is the one school that gives you personalized attention and takes a real interest in your progress. Remember... just $6 starts you! Mail the coupon today. Let the facts speak for themselves. Let us send you our new catalog and sample lesson... and prove the kind of opportunity that Sprayberry training can open up for you.

MAIL COUPON—No Salesman Will Call
SPRAYBERRY ACADEMY OF RADIO-TELEVISION
DEPT. 20-L, 1512 W. Jarvis Ave., Chicago 26, Ill.

Please rush all information on your ALL-NEW Radio-Television Training Plan. I understand this does not obligate me and that no salesman will call upon me. Include New Catalog and Sample Lesson FREE.

NAME____________________AGE__________
ADDRESS__________________________
CITY____________________ZONE... STATE...
YOU be the judge of knight-kit®
A PRODUCT OF ALLIED RADIO
quality and value

FREE examination privilege

More and more people are finding out how easy it is to build exciting Knight-Kits, how satisfying they are to own, and how much they save.

If you haven’t yet enjoyed the experience and fun of building and owning a Knight-Kit, we invite you to take advantage of our free examination offer. Order any Knight-Kit, examine it on arrival. Inspect the quality of the components, the circuitry, the easy-assembly manual. We’re so confident you’ll want the kit, we can make this offer: If you’re not completely satisfied, just return the kit for full refund.

Order a Knight-Kit now. Know the thrill of the most satisfying build-your-own experience in electronics.

—ALLIED RADIO

sold exclusively by ALLIED

Y-774 Deluxe 40-Watt Stereo Amplifier, featuring center channel output. Finest amplifier available anywhere in this price range..........................$79.50

Y-731 Deluxe FM-AM Stereo Hi-Fi Tuner, with "Magic Eye" tuning for each section; includes Dynamic Sideband Regulation and multiplex add-in feature...............$87.50

Y-787 FM-AM Hi-Fi Tuner; with AFC and tuned RF stage on FM; includes multiplex jack..........................$49.95

only $5 down

Y-773 Super-Value 20-Watt Stereo Hi-Fi Amplifier, with special clutch-type dual-concentric level control..........................$44.50

only $2 down

see dozens of other GREAT HI-FI KITS
Stereo Deluxe Preamplifier
60-Watt Stereo Amplifier
Stereo Control
25-Watt Amplifier
18-Watt Amplifier
12-Watt Amplifier
FM-AM Tuner
FM Tuner
Speaker Systems, and others
only $2 down
Y-713 Top value, best-selling Citizens Band Transceiver. Tunable 22-channel super-regenerative receiver, 5-watt transmitter
$39.95

only $2 down
Y-125 General-purpose VUVM (11 meg input resistance)
$25.75

only $2 down
Y-143 Model "600" Tube Checker (checks over 700 types) $32.95

only $2 down
Y-608 Lab quality AC VUVM with amazing Automatic Range Selection; reads as low as 100 μV.
$99.50

only $2 down
R-100 Amateur Communications Receiver (Hi-gain, with built-in Q-Multiplier)
$104.50

only $2 down
G-30 Amateur Grid Dip Meter (continuous coverage, 1.5-300 mc) $22.95

full selection of INSTRUMENT KITS
5" Oscilloscopes
Tube Checkers
RF Signal Generator
Signal Tracer
Audio Generator
Sweep Generator
Battery Eliminator
Capacity Checker
Transistor Checker
R/C Tester, plus many others

other fine AMATEUR KITS
50-Watt Transmitter
Self-Powered VFO
100 kc Crystal Calibrator
RF "2" Bridge
Code Practice Oscillator

there's a money-saving knight-kit for every need...see them all in the ALLIED CATALOG

ALLIED RADIO CORP., Dept. 8-E
100 N. Western Ave., Chicago 80, Ill.

Send FREE Catalog featuring Knight-Kits

Name ____________________________
Address __________________________
City _____________________________ Zone _______ State _______

FREE
WHAT YOU CAN DO

Dear Editor:

I have worked in radio, electronics and television for the past 35 years. During this time, I have heard complaints from all sides: Dealers, service shops, customers, engineers, electricians and manufacturers. To me, there is only one answer!

Get behind your local Better Business Bureau. Do something about the handcuffs forced on them by lack of capital and understaffing. It is your fault if they are inadequate to clear up any odorous situation that may exist or arise. I mean you Mr. Dealer, Service technician, Customer or any other honest citizen who wants fair dealing and honest value.

When you get in touch with your BBB, remember they are doing the best they can with the meager tools they have to work with. Ask them, "What can I do to help the situation?" Don't start by demanding this or that. When you have learned what they can or cannot do, then you or your association can act.

I do not see any reason for licensing technicians. Classify them, yes, but do it through a democratic union or association. I say this because this field is basically the same as any other. The man who double-talks the customer into something will disappear; the one who wants to cut a fat hog will have to go into the butchering business.

Yours for fairness and honesty in the best business on earth.

RALPH K. EATON
Richmond, Calif.

INFRARED GUIDANCE NOT NEW

Dear Editor:

Your "Infrared Guided Missiles" story (January, 1960) is not so new as some may think. In 1911-12 I built (for J. H. Hammond, Jr.) while working in Fritz Lowenstein's laboratory, 115 Nassau St., New York City, an infrared automatic guidance device that was known as the "Electric Dog." This was a three-wheeled box. Two wheels were 6-volt motor-powered via a differential gear box; the third was at the other end, turnable on a vertical shaft by opposing electromagnets for steering, like a velocipede.

Up front, two headlight-like "eyes" consisting of 5-inch-diameter lenses with Korn (selenium) photocells, sensed infrared and visible light. A horizontal plate was located between and forward of the two lenses. Sensitive Weston microammeter relays, which I fitted with anti-vibration, mercury-globule fixed contacts, were operated by the selenium cells. These relays in turn operated heavy-current relays for turning the motor on and off, and for operating the steering-wheel solenoids.

A dpdt motor switch permitted either forward or rearward drive for the front-end power wheels. A 6-volt storage cell provided the power.

The Electric Dog would start moving if a light or heat source were turned on 10 to 20 feet away and in angular range of its "eyes." If forward motion were selected by the external, manually operable dpdt switch, the dog would move toward the radiant energy source. For reverse motion it would back away, always facing the "light" in either case.

(Continued on page 26)

RESIDENT SCHOOL COURSES
IN NEW YORK AND LOS ANGELES

Industry needs Electronic Technicians!

Let RCA train you in Advanced Electronics

This is the college-level training you need to work with professional engineers on research, development, or production projects in such fields as: automation, guided missiles, radar, television, computers, and other advanced electronic applications.

RCA Institutes Resident Schools in New York City and Los Angeles offer this comprehensive course that prepares you for any field of electronics you may choose. Other courses in TV and General Electronics, Radio and Television Servicing.

Classes start four times each year. Applications now being accepted.

RCA INSTITUTES
SCHOOLS OF TELEVISION & ELECTRONIC TECHNOLOGY
A Service of Radio Corporation of America
Another Way RCA Serves Education Through Electronics

RCA Institutes, Inc., Dept. RER-50
350 West 4th Street
New York 14, N.Y.
Pacific Electric Building,
610 S. Main St., L.A. 14, Cal.

Please send me your FREE catalog of Resident School courses.

Name ____________________________ (PLEASE PRINT)
Address ____________________________
City ____________________________ Zone __________ State __________

For Home Study Courses See Ad On Opposite Page
LET RCA TRAIN YOU IN ELECTRONICS

RCA Institutes, one of the world's leading electronic technical schools, offers a Home Study Course in...

ELECTRONICS FOR AUTOMATION

...Now you have four comprehensive courses for your electronic training...from basic electronic theory to the more advanced principles of color TV and Automation.

Send for our 64 page Home Study Catalog FREE!

For Resident School courses see ad on opposite page.

RCA INSTITUTES, Inc. Home Study School, Dept. RE-50
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N. Y.

Please rush me your FREE illustrated 64-page book "Your Career in Electronics," describing your home training programs. No obligation. No salesman will call.

Name ... Age ...
Address ... Please print
City ... Zone ...
State ... Veterans: Enter discharge date

CANADIANS — Take advantage of these same RCA courses at no additional cost. No postage, no customs, no delay. Send coupon to:
RCA Victor Company, Ltd., 5001 Cote de Liesse Rd., Montreal 9, Quebec

To save time, paste coupon on postcard.
NEW...TRANSISTORIZED Model PP-1T
tops for every portable use... police, fire, sports, etc.

Features fully transistorized 25 watt amplifier especially designed for low distortion and high stability in any operating conditions. Ruggedly constructed dynamic microphone has controlled response curve for maximum speech intelligibility. Press-to-talk switch gives instantaneous operation, conserves power supply. Special input jack for record player, tuner, or tape recorder... talk/over feature reduces music program level 6 db when microphone button is pressed, allowing voice to be heard over music. Talk/listen switch converts PowrPage into highly directional, sensitive listening device. Powered from standard lantern type batteries. Includes leather carrying strap.

UNIVERSITY LC SERIES
for real high fidelity in weatherproof speakers

- horn-loaded - high efficiency - for fixed or mobile applications

ONLY UNIVERSITY OFFERS 3 GENUINE DUAL-RANGE SYSTEMS... with separate bass and treble drivers

Model PP-2 - Hand-held operation for maximum freedom of action. Slim handle holds pencil batteries. Powrsaver press-to-talk switch. Built-in jack can draw 6-12 volts from boat or auto ignition system.

UNIVERSITY POWRPAQE®
powerful, ultra-compact soundcasting systems
Here is the new Standard Coil Tuner Replacement and Repair Program that enables you to offer better service to your customers at greater profit. Now Standard Coil Products provides the tools that will enable you to cash in on the profitable tuner repair and replacement market.

Tuner Replacement Listing in Sams Photofact
Starting in January, Standard Coil tuner replacement listings will appear in all Sams TV Photofact. Tuner replacement information will be right at your finger tips. Standard Coil is the only manufacturer ever to provide this service.

New TV Tuner Replacement Guide
Lists original equipment TV tuners with the Standard Coil equivalent replacement for each. Also includes major mechanical replacement parts for all Standard Coil Tuners — those used in original equipment as well as the universal replacement. Eliminates all guesswork — minimizes your tuner repair and replacement problems.

48 Hour Factory Guaranteed Repair Service
Standard Coil’s special service department set-up assures factory guaranteed repairs — on a 48 hour in-plant cycle! All repaired tuners carry a six month warranty on defective workmanship and parts failure (excluding tubes). Gives you more time for additional service calls — promptly returns your customer’s set to like new operating condition.

Defective Tuner Trade-In Allowance
Tuners which can not be repaired can be traded in against a new replacement tuner which carries a full twelve month factory guarantee. See your Standard Coil Distributor for complete details on how trade-ins can increase your tuner sales and profits — create greater customer satisfaction.

Jump on the Standard Coil Profit Wagon Today!
For additional details, see your authorized Standard Coil Distributor or write to:

Standard

Coil Products Co., Inc.

2085 North Hawthorne Avenue, Melrose Park, Illinois
The famous MF-2 TV-FM Coupler with its specially engineered circuitry making it the first choice of servicemen everywhere, now requires no wire stripping!

Features Include • Extremely low forward loss • Positive matching • Complete isolation between receivers • Isolates AC from antenna • No twin-lead stripping • Permanent connections • Universal mounting • Attractive unbreakable case.

Two additional models available—the M-2 (recommended for UHF). The MF-4 (for 3 or 4 TV-FM sets fed from single antenna).

If the light were moved, the dog would follow or back away, crablike. For forward motion, it would follow the light or heat source in circles, figure-eights or any other course, within its turning radius of a few feet.

This automatic orientation machine (as we called it) was made to demonstrate the principles of an automatic homing type of radiant-energy-sensing guidance system for torpedoes, using high-power searchlights or the hot smokestacks of enemy battleships as the attracting energy, just as the Sidewinder missiles use the hot exhausts of aircraft jets or engines.

I worked out a double orientation mechanism with a 90° cross-axis for use on aerial missiles, as described in my book Radio Dynamics (D. Van Nostrand Co., 1916) on pages 198–9.

For a remote-command guidance system, this orientation mechanism can be used with an infrared (only) searchlight, to keep the "eyes" always facing the searchlight. If the light is modulated by an ac supply, the missile's receiver is made insensitive to other steady light or heat sources by tuned circuits.

Energy from the target plane or missile is not seen by the "eyes" of the controlled missile. Intermittentions of the searchlight beam for short periods can provide guidance signals.

Does it not seem incongruous that 50 years should elapse before the principle is put to work for national defense?

BENJAMIN F. MIESSNER
Miami Shores, Fla.

HELPFUL HINTS

Dear Editor:

May I express my opinion of your magazine? I think it is excellent. I first came into contact with it in England, my home before I came to Canada in 1958.

Its pages display such a variety of electronic applications that one can never fail to find interest in them. Industrial Electronics is a feature of prime interest, although my work is as a full-time radio-TV technician.

Many jobs that have seemed to be tough-dogs at first have ceased to be such after I have looked through back issues and found a similar problem described. One that comes to mind is a Crosley Super V with lack of vertical hold at high contrast, due to first if grid-coil pickup from the deflection yoke. Screening was the answer to that one.

I quote this example as an idea of the tremendous help one can get by taking time off to read up on other people's problems. No other magazine does this as efficiently as yours does.

F. H. FRENCH
Manitoba, Canada

RECORD OF THE FUTURE?

Dear Editor:

A recent juke-box advertisement suggests that the 7-inch 33⅓-rpm record...
Do Yourself a good Turn

Sell Alliance Tenna-Rotor for Easy Extra Profits

Extra because: 1. A rotator is a natural add-on for every TV set and outdoor antenna. 2. A rotator improves reception for 99 out of 100 sets. 3. The need grows daily with the swing to Color TV.

Easy because: 1. Alliance Tenna-Rotor leadership makes it the name most customers know and respect. 2. Alliance advertising makes selling easier. 3. Alliance control units look modern. 4. Alliance has the complete line.

Booth 223, Electronics Parts Distributors Show You're invited . . . Hospitality Suite 2104-5-6-7

World's Largest Producers of Sub-fractional H. P. Motors and the Famous Genie Automatic Garage Door Openers.

THE ALLIANCE MANUFACTURING COMPANY

ALLIANCE, OHIO (Division of Consolidated Electronics Industries Corp.)

MAY, 1960
STANCI OR

has a complete line of RF-IF COILS

The Stancor name is a synonym for quality and dependability. Just as you rely on Stancor for the best in exact replacement flybacks and yokes, so you can expect the highest standard of performance from Stancor coils. Your parts distributor has them in stock.

CHICAGO STANDARD TRANSFORMER CORPORATION
751 ADDISON STREET • CHICAGO 18, ILLINOIS

yes

RADIO-ELECTRONICS

has in store for you in the months ahead

- Transistor Stereo Preamplifier
- Designing Your Own Twin-Coupled Amplifier
- Toward Smaller Loudspeakers with Bigger Bass
- Photoelectric Controls
- Professional Meter Scales for Everyone
- Trouble-Shooting Sweep Circuits
- Air Ionizers

The June issue of RADIO-ELECTRONICS goes on sale May 26 at all better parts distributors and newsstands.

SUBSCRIPTION RATES
1 year $4 2 years $7 3 years $10

RADIO-ELECTRONICS 154 West 14th St., New York 11, N.Y.

CORRESPONDENCE (Continued)

may become "the singles record of the future."

Why did it flop when brought out some years ago? Was the small spindle hole, vintage 1896, one factor?

Small spindles did little damage until the invention of stack-and-drop automatic changers, although seating the record was—and still is—at best, a fumble. Spindle scratches on record labels show the energy wasted in fumbling for the hole.

Why not start the small 33 on its second try for fame with a modern and practical center? and why not, at long last, give the 12-inch 33 similar advantages:

1. Eliminate the "stabilizing-lever" nuisance.
2. Eliminate center-hole elongation and consequent wow.
3. Simplify changer mechanism. Put it all in the center.
4. Protect delicate stereo grooves with label areas thick enough to separate playing surfaces all the way across.
5. Make it very much easier to stack records.
6. Rejuvenate and revitalize the record and player business with another revolution.

CHARLES W. FARRINGTON
Arlington, Mass.

CRYSTAL OSCILLATOR

Dear Editor:

I recently built the crystal-controlled transistor oscillator described on page 82 of the January (1960) issue and would like to say that I am very pleased with it. I used it with a 10.7-mc crystal.

I have two Heathkit FM-3A tuners and had no success in aligning them with an Army signal generator, an old rf generator and a Heath TV alignment generator. (I have since found out that the crystal used with the TV generator was defective).

I could not find a plastic box of the size called for, so I built it in one about twice as large. This worked out well, as I mounted clips in the box for four penlight cells.

A friend of mine checked the output of the oscillator on his scope. The output was good, but not quite a true sine wave. For some reason the variable capacitor had no effect on the output.

I tried to align my tuners as prescribed by Heath with no results. I thought that the output of the oscillator might be too high and might be biasing the rf and if tubes to cutoff. I wrapped the "hot" lead around the tube instead of connecting it to the grid. It worked fine. I went over the slug adjustments four times (instead of the recommended once) until the readings on the voltmeter did not change.

My tuners now work well and I recommend this oscillator to anyone with a similar problem.

R. E. BORDEN
Encino, Calif.
The specs prove it...your best buy is EICO

TV-FM SWEEP GENERATOR
AND MARKER #368
KIT $69.95 WIRED $119.95

PEAK-TO-PEAK
VTVM #232 & UNIPROBE
KIT $29.95 WIRED $49.95

RF SIGNAL GENERATOR #324
KIT $26.95 WIRED $39.95

DYNAMIC CONDUCTANCE
TUBE & TRANSISTOR
TESTER #666
KIT $69.95 WIRED $109.95
Complete with steel cover & handle

COLOR & MONOCHROME
DC TO 5 MC LAB & TV
5" OSCILLOSCOPE #460
KIT $79.95 WIRED $139.50

FREE CATALOG shows you HOW TO SAVE 50% on 65 models of top quality professional test equipment. MAIL COUPON NOW!

NEW Transistor
Portable Radio RA-6
Kit $29.95 Wired $49.95
Incl. F.E.T.; less 9V batt.
Prealigned RF, IF xferrs; push-pull audio; 6" spkr.

NEW Power & Blas
Supply for
Transistorized
Egpt. #1020
Kit $19.95 Wired $27.95

NEW Tube &
CRT FIL
Testor - 612
Kit $3.95 Wired $5.95
Fast-checks radio/TV tubes, pilot lamps, etc.

Tube Tester #625
Kit $34.95 Wired $49.95
* 4-step freq.-compensated attenuator up to 10 mc.
* Tests 4000 mil series string type tubes
* Illuminated roll-chart
* Pix Tube Test Adapter...

6V & 12V Battery
Eliminator & Charger -1060
Kit $29.95 Wired $38.95
Extra-filtered for transistor equip.
-1060 Kit $38.95 Wired $47.95

EICO
33-00 Northern Blvd., L.I.C., 1, N.Y.
Add 5% in the West. © 1959

SEND FREE CATALOG. name or neighborhood dealer.

FREE SHORT COURSE for Hi-Fi 0 Ham Gear.

PAT. PEND.

Show me HOW TO SAVE 50% on the rest of our instruments:
[] Hi-Fi [] Ham Gear [] Send free short course for service license. Send me FREE CATALOG of our neighborhood dealer.

Name__________________________
Address______________________________________
City__________________ Zone__ State__________

MAY, 1960

29
Exclusive advanced systematized engineering
- Lastest and finest quality parts
- Exclusive "Beginner-Tested" easy step-by-step instructions
- Exclusive TRIPLE quality control
- Exclusive LIFE TIME guarantee at nominal cost

IN STOCK - Compare, then take home any EICO equipment - right "off the shelf" - from 1500 neighborhood EICO dealers throughout the U.S. and Canada.

- EICO, 33-00 N. Blvd., L.I.C. 1, N.Y.

Listen to the EICO Hour, WABC-FM, N.Y., 95.5 M.C., Mon. to Fri. 7:35-8 P.M., Sat., 11-12 P.M.

© 1960 by EICO, 33-00 N. Blvd., L.I.C. 1, N.Y.
INVENTIONS WANTED . . . Our Armed Forces Call for New Electronics Ideas . . .

I n our February, 1959, issue, we printed a list of electronics ideas wanted by our Armed Forces. Here is the latest list, which contains mostly new requests.

Anyone may submit proposals to the National Inventors Council for basic inventions needed for national defense. Such proposals should be submitted separately, typewritten, complete, including references to the basic principles underlying the invention and a discussion of any experimental work or tests that have been conducted. Advantages of the invention as compared to existing devices or techniques should also be listed. It is not necessary that sketches or drawings be professional.

It is suggested that you write for the booklet "Inventions Wanted by the Armed Forces," November, 1959, issue.

-H.G.

819. (Revised) ELECTRONIC TIMER. — Device to measure time intervals, 0.1 usec to 0.00001 seconds, to an accuracy of ±0.1 % or better. The device should be similar to units now capable of resolving to ±0.1 usec over the same time interval.

820. (Revised) HIGH-SPECIFICATION FILTERS. — Extremely sharply-cut-off selectivity filters for the microwave region (L-band or X-band). A significant increase in signal-to-noise ratio would be realized by the use of filters having a bandwidth of a few kilocycles.

840. (Revised) MISS-DISTANCE SYSTEM. — A system which will determine the vector miss distance between a missile and an aerial target. The device should be similar to units now capable of resolving to ±0.1 ssec over the same time interval.

853. PREFORMED SEMICONDUCTOR CRYSTALS FOR DEVICE FABRICATION. — High-quality, monocrystalline crystals grown in ribbons or rods with uniform physical and electrical characteristics to the sizes suitable for direct fabrication into diodes, transistors, solar cells, etc. is desired. The semiconductor material should have properties equal or superior to material presently used in germanium and silicon transistors. The new growing method should permit the direct utilization of the semiconductor for device fabrication, thus eliminating the conventional wasteful and expensive slicing, lapping and polishing operations.

1056. TRANSISTORS. — Transistors with power gain and linear characteristics at extremely small emitter currents and collector voltages permitting efficient operation at very high signal levels.

1060. MICROWAVE TRANSDUCERS. — Transducers which have a high efficiency of converting electrical energy into microwave energy and vice versa. The transducer must have a frequency response flat to 3 db up to 10,000 cycles or more. This device is desired for the study of unstable rocket engines.

1063. PHASE-COHERENT EXCITATION OF MOLECULAR BEAMS IN THE MM-WAVE RANGE. — Ramsey excitation of a molecular beam is of extreme importance in the study of unstable rocket engines.

1070. NEOMONCHIC MICROWAVE CAVITY TIMING METHOD FOR GAS MASERS. — Microwave cavities in X- and K-band should be tunable smoothly and without hysteresis over a range of at least ±2° mc with a sensitivity 1 kc per reproducible control step. No electric or magnetic field is allowed to be present in the cavity besides the microwave field to avoid Stark or Zeeman influences. The total mechanism (without the cavity proper) should not weigh more than 1/2 pound and should be easily adaptable to drive by a servo control to hold the cavity to the exact molecular frequency. The time needed for the tuning device to effect a frequency change of 5 kc should be less than 1 second.

(Continued on Page 120)
For years you have been fixing TV sets. But today a customer comes into your shop and says he has a weld timer that doesn't work right. (Don't think this can't happen to you. With the amount of industrial electronic equipment now in use, and a shortage of trained technicians, more and more plant operators are turning to television technicians to maintain their equipment.)

It's a challenge, so you decide to have a crack at it. What's the first step? Well, let's use the TV man's approach right down the line:

1. **Make and model.** It's a Robotron model 3B weld timer, operating a spot welder.

2. **Symptoms:** When the initiation switch is pushed to make a weld, nothing happens. Power? Yes, the customer looked inside the cabinet, and the tubes were lit.

3. **Examine the equipment.** You'll have to go to the job, because most industrial equipment is permanently installed and wired directly to the power lines.

The unit is in a steel case, the timer section is about 12 x 14 x 18 inches, and has a double front door. Open the small one. Inside we find a control panel with four knobs and three toggle switches.

The knobs are labeled SQUEEZE, WELD, HOLD and OFF. The SQUEEZE knob is calibrated to 120, the HOLD and OFF to 60, and the WELD has two scales, one in red to 15 and one in black to 60. Question the customer (diplomatically, of course), and he tells you the calibration is in cycles of time. The line supply is 120 cycles, so you reason that 1 cycle on the dial equals 1/60 second.

Basic operation

A few more questions, and you learn that SQUEEZE is the time the welder electrodes take to squeeze the work pieces together before a weld can be made. WELD time is the length of time current flows through the metal to develop the correct heat. The length of time the electrodes stay closed while the weld cools and congeals is called HOLD time, and OFF time is the time the electrodes stay open between welds.
to allow the next piece of work to be inserted.

The WELD knob has two ranges, LOW (to 15) and HIGH (to 60) as selected by a toggle switch next to the WELD knob. Of the two remaining switches, one is labeled SINGLE and REPEAT, to allow the machine to work automatically, one weld after another (this is where OFF time comes in) or to limit it to one weld each time the pilot switch is pressed. The last switch is marked WELD and NO WELD, and allows the service technician to test-operate the welder without actually passing weld current.

Now that we have seen the controls, open the main door and we'll have a look at the innards. Inside we find two separate units or panels. One small one, on the back of the control panel, is called the BRAIN panel and carries six small thyatrons, some terminals and a large plug and cable connecting to the power panel in the main case. Turn a “quick-fastener” on the right edge one-quarter turn and the BRAIN panel swings open, revealing the components which make up the timer circuits.

Here is a service technician’s dream! The wiring is open, and the parts are easy to get at. Each part is labeled (1R, 3C, 2T, etc.), to correspond to the circuit diagram. This is certainly an improvement after working on portable TV sets!

\[
\begin{align*}
\frac{1}{a} &= 2 \quad \frac{1}{b} = 3 \\
\frac{1}{c} &= 4
\end{align*}
\]

Fig. 1—Relay symbols (industrial symbol on left): \(a\)—normally open; \(b\)—normally closed; \(c\)—relay coil.

In the rear of the main case we find the power panel, carrying two larger thyatrons, power transformer, relays, fuses, etc. Now here is a feature that appeals both to the user and the technician. If this control requires more extensive repairs than you can make conveniently with the unit in its cabinet, either the BRAIN or the power panel can be removed and replaced without cutting wires, disconnecting leads, etc. Just pull the plugs, turn the quick-fasteners, and remove the panel. This feature cuts down-time and saves thousands of dollars in lost production.

4. Get a schematic. This problem is a little different from fixing TV sets, too. With the variety of industrial equipment in use, it is almost impossible for an independent technician to stock all the service information necessary. However, the owner will usually have the information received from the maker when the control was purchased.

We'll ask the customer for the envelope he received when this timer was installed. Inside are schematics, specifications and a good description of how the circuit works.

A quick visual inspection, substitution of tubes and fuses, and a voltage check tell us that the power panel seems OK, so we'll look for trouble in the brain or timer circuits. Dig out the timer schematic and spend a few minutes studying the description of how the circuit works. (By the way, an electrician or industrial technician would call this a print, as many diagrams are in blueprint form.)

Some of the symbols look a little strange, but common sense tells us that a rectangle with 2R alongside it must be a resistor, 3T is a transformer, and so on. Watch out for relay contacts, though, they're drawn much like a capacitor (Fig. 1).

Another point that you have to watch in an industrial print is the coding. Unlike electronics style (for example, Vi for a tube), the number comes first (1V). In such instances 5V above a
Fig. 3—Simplified schematic shows brain panel of Robotron timer in two languages: a—industrial diagram; b—electronic diagram.

The brain panel with its back door open.

trodes only during WELD time. In the equipment, weld current is controlled by ignition tubes fired by the two thyatrons on the POWER panel, which get their grid voltage from a transformer in 4V's plate circuit. Since we are interested right now in the BRAIN circuits, we can simplify things by assuming the weld current is turned on and off by WCCR, the weld current control relay.

The sequence begins with air being turned on, which happens when IV fires. Our sick timer won't start at all, so we'll look first at this IV circuit. What would you suspect first? The tube, naturally. Although industrial controls use high-quality premium tubes, tube failure is still the most common cause of trouble, just as it is in radio and TV. Try a new 2050 thyatron in place of IV. No change? Well, while we have the tube handy, let's try it in place of the other five tubes. There's another nice thing about industrial service; even though there may be a lot of tubes in a control, you often find that most of them are the same type.

Now that we've tried all the tubes and the control still doesn't work, we'll have to analyze the circuit to see which underchassis component could keep IV from closing the air-valve circuit. But wait: how about the relay itself? Use your TV multimeter to check the
resistance of its coil. A reading of 1,000 ohms or more indicates a burned-out coil. (In this Robotron timer the relay plugs in and can be removed easily for checking or replacement.) While you have the relay out, you might as well check contact resistance too.

If the initiation switch also checks out with the ohmmeter, 1V's cathode and plate circuits are OK. Now there can be only one reason left for 1V not firing—negative grid bias. With a plate voltage of 115 rms, a 2050 will not fire if the grid is negative about 2 volts or more.

The first grid of 1V is tied to 6V's plate, and when 6V conducts a voltage is developed across 4P and 6C with the correct polarity to block 1V. Check the grid voltage on 1V and we find almost 150 volts negative bias.

According to the description on the print, when the timer is at rest, 5V should fire to charge 5C negative to the grid of 6V, keeping 6V blocked. We've already substituted 5V, so there must be some other reason for 5V not firing. But wait—did you notice that faint blue glow inside the tube? 5V is firing. (Thyratrons are nice to troubleshoot. When conducting, they glow.)

Think it out

Sit back and think a minute. If 5V is firing, it must be developing a voltage across potentiometer 3P, negative to 6V's grid. Metering 6V's grid-cathode circuit shows 100 volts negative at the grid, yet 6V keeps firing. As a TV technician, used to dc plate supply and vacuum tubes, it's easy to overlook an important point here. Because the only way to make a thyratron stop conducting is to cut off its plate supply, thyratrons are generally used on ac.

Because 5V and 6V are connected with their plates on opposite supply lines, they cannot conduct at the same time. 5V conducts only when L2 is positive, and 6V conducts only when L1 goes positive. If capacitor 5C were open, there would be a voltage across 3P only when L2 is positive, and 6V can't conduct then anyway. When L1 goes positive, the bias is gone, and 6V fires to charge 6C and blocks 1V.

A TV service scope connected to 6V's grid-cathode circuit will show half-wave pulses at line frequency if 5C is open (Fig. 4), dc with a slight sawtooth ripple if 5C is OK (Fig. 5). (Remove 6V for this check or its firing will cause other, stray signals to appear on its grid.)

This time 5C was bad. Since it is a timing capacitor, it is important to replace it only with a unit that has the same value, tolerance, etc. to maintain the calibration of the hold pot.

Now, clean up, check the operation of the control, present the bill and you're finished with your first job as an industrial electronic technician.

On the way back to the shop you get to thinking. That plant had a lot of electronic equipment and no one to repair it. How many other small shops are there in your town with the same problem? You may have just made the most important service call in your whole career.

END

Using Surplus 24–28-Volt Relays

By GEORGE P. OBERTO, K4GRY

SINCE the end of the Second World War there have been plenty of 24–28 volt dc relays on the surplus market. These could be useful in various control devices, but their odd voltage has often seemed an obstacle to their use. Many people have built expensive 24-volt supplies so they can use these relays.

Most people think of these relays in terms of voltage and not current. Surprising as it may seem, quite a few of them operate on relatively low current. This type has a dc resistance of 200 to 400 ohms, and the higher the coil resistance the less current it will draw.

The applications in Figs. 1 and 2 will work well in most circuits having between 250 and 400 volts dc and drawing 50 ma or more.

The output of the power supply is connected to one terminal of the relay coil. The other terminal of the coil is connected to the load, which can be a receiver, amplifier, transmitter or any circuit which draws enough current to meet the 50-ma or more current requirement of the relay.

When the equipment is turned on, the relay energizes as soon as the tube filaments warm up. In much equipment the power transformer center tap or B-plus is broken, which would de-energize the relay. One switch in the power supply of a piece of equipment can control additional equipment with these relays. A switch can be wired across the relay coil to de-energize it, if you do not want to shut-off power.

The 350-ohm 10-watt adjustable resistor (R) connected across the relay coil in Fig. 1 is used when the equipment would draw too much current through the coil. The resistor is adjusted to give a voltage drop of 24–28 volts across the relay. Measure with a dc voltmeter. Connect the positive test prod of the meter to the B-plus side and the negative prod to the load side of the coil.

If the relay chatters, connect a 10- to 40-uf capacitor across the coil, as shown in Fig. 2. Since the voltage drop is small, the rating of this capacitor need be no more than 50 volts.

The Fig. 3 circuit is most useful for applications where an independent relay power supply is desired. Several relays may be connected in series to give complete control of all circuits. The relays are energized by pressing the spst switch.

If more relays are needed in the circuit of Fig. 5, the power supply can be increased to handle the load.

With a little thinking, additional ways can be found to use these relays, saving yourself the cost of new ones. I have used this method for several years in an AM and SSB amateur station with excellent results.

END
New control systems are built around logic units made up of magnetic amplifiers. The reason: logic units are complex programmed switches and the magnetic amplifier makes an excellent switch.

By TOM JASKI

Last month we discussed magnetic amplifiers and the Ramey units based on that principle. Next we explained how these units are made up into a control system, marketed by Westinghouse under the name CYPAK. The Ramey units are self-saturating. They control because of conduction due to saturation in the on state and nonconduction when saturation is blocked in the off state. In other words, the impedance of an ac winding is varied by partially or completely saturating the core with a small amount of de “bias” current put through another winding on the same core. Thus, a large amount of power in the ac winding can be controlled with small direct-current changes.

Of course we can use conventional magnetic amplifiers to build logic units. To do so we take advantage of the magnetic amplifier's switching characteristics. General Electric makes two industrial control systems based on magnetic amplifiers. One uses conventional and the other special pulsed units. Both systems are important to industry, and are discussed here.

G-E ICD system

Fig. 1 is the circuit of a conventional amplifier used to build logic units. We have two cores, each with a load winding of N turns, and a set of bias, and combined feedback and signal windings common to both cores. The supply is center-tapped, giving us full-wave output. Obviously, the on winding turns the unit on and the off winding turns it off. But the bias winding is also center-tapped, allowing us to apply zero, one unit or two units of bias as we choose or need. (For simplification, we will assume that one unit of bias is 1 ma.) The bias opposes the effects of the signal windings. The feedback will tend to aid the on winding.

It is fairly obvious how logic units can be built from these amplifiers. If we have 2 ma of bias and require an on signal at both terminals 1 and 2 (1 ma and 1 ma), we obviously have a two-input AND unit. (There must be a signal at both inputs to cancel the bias.) If we tie the two input terminals together (either the two on or the two off terminals), and supply only 1 ma of bias, we simply have a switching unit. If we set the bias at 1 amp and supply separate signals for either 1 or 2 (1 ma or 1 ma), we have an OR unit (either input cancels the bias). With zero bias the feedback winding keeps the unit saturated even when the input signal is removed. This becomes a memory unit, which remains on or off, according to the latest pulse signal. We can similarly manipulate the bias and the off windings to produce a NOT and an OR-NOT circuit. With zero bias the feedback winding keeps the unit saturated even when the input signal is removed. This becomes a memory unit, which remains on or off, according to the latest pulse signal. We can similarly manipulate the bias and the off windings to produce a NOT and an OR-NOT circuit. The name OR-NOT is most often contracted to NOR, and this is what we shall use.

Last month we also discussed how these logic units are used to make a control system. With this type of conventional magnetic amplifier, we can also use a relay as the final element.
Fig. 4—NOT unit uses no bias. Extra terminals (on all units) allow use without feedback winding.

Fig. 5—Circuit of 3-input OR unit from terminals (on all units) allows use with indicating that it opposes the action of a bias winding and a signal winding. The bias winding is shown in reverse, and an input to all the core signal windings. The general arrangement is shown in Figs. 6 and 7. Any one core can block the gating current, and an input to all the core signal windings is required for an output. The system is powered by pulses derived from a 60-cycle power supply by saturable reactors and rectifiers. We'll not go into detail on how this is done since it takes a lot of space. But there is one noteworthy feature about this G-E system: The bias windings in any one system or section of a system are all connected in series, and we get fail-safe operation by including a relay to turn off all supply power. The reasoning is that, if bias fails, a unit would turn on. This might have disastrous results if it does so out of sequence. Rather than have such failure, they would turn off the entire system.

The G-E systems are also packaged in plug-in units, like their competitor, the CYPAR. Ready-made buses allow simple plug-in construction for control systems. Such units feature an obvious economy in service and troubleshooting.

Before leaving magnetic amplifiers to go on to other static switching systems, let's take a brief look at other functions that by magnetic amplifiers can handle.

Other switching units

Knowing the switching characteristics of the magnetic amplifier, we might ask ourselves if they can be used to build flip-flops, one of the more common types of switching circuits. They can. Fig. 8 shows a magnetic amplifier flip-flop. We have two cores with appropriate gate (or two), one for signal windings, the other for feedback windings. The latter also serve as bias windings. The rectifiers provide the dc voltages used to saturate cores, and the power winding also generates some dc voltage in the rectifiers.

When we consider conventional flip-flops, we are accustomed to thinking of the tubes in terms of conducting and cutoff. In magnetic amplifiers, the saturated state corresponds to the conducting state and the nonsaturated to the cutoff state. However, a saturated magnetic amplifier (unlike the cathode circuit in a tube flip-flop) does not generate a bias, since no voltage is induced in the winding, while in the cutoff state a very large voltage is induced in the bias winding.

Now look at Fig. 8. The bias windings are in series with each other. Assume that core 1 is saturated and this circuit conducting. Since no voltage is generated in bias winding 1, but a large voltage in the bias winding on core 2, which aids the voltage generated by the power winding, core 1 has a relatively large dc in its bias (feedback) winding, keeping the core saturated. If we apply a signal to the signal winding, this core momentarily desaturates a bit. This causes a voltage to be induced in the bias winding on 1, which, after rectification, produces a dc in the bias winding on core 2, which aids the voltage generated by the power winding on core 2, giving it a bit of magnetization toward saturation. This in turn decreases the dc feedback fed to the bias winding on core 1, and so on. So we get the typical runaway or regeneration process as we know it from other kinds of flip-flops. Thus, with a strong enough signal in the signal winding, the units will change.
INDUSTRIAL ELECTRONICS

COUNTER INPUT PULSES

RF POWER
0.5 MC

C BLOCKING

IN38(4)

CLIP

4.7K

-3V BIAS

GATE INPUT PULSES

GATE OUTPUT (GATED PULSES)

Fig. 8—Magnetic amplifier flip-flop. Demodulation and filtering are required to get clean square wave output.

Fig. 9—Magnetic audio amplifier is theoretically possible, but not very practical.

AF INPUT

AC LINE

Control system built from G-E Megamp logic units. Power supply is on the bottom.

Encapsulated units are G-E multi-purpose conventional Megamp logic units. Pilot lamp in center of unit lights to indicate when unit is on.

ability steels used in the magnetic amplifiers described. So we use a ferrite, something which looks like the material in the loopstick, but has radical magnetic characteristics which have an even squarer magnetization curve than those we have been showing. Ferrites also have three states, saturated in either direction and not saturated.

For the flip-flop in Fig. 8, we need not consider the negatively saturated state. If we operate the units with positive-going pulses only, there is no way in which the cores could reach negative saturation.

Magnetic-amplifier applications

We have been talking mostly in terms of digital types of control systems, and thus have been busy with switching characteristics of magnetic amplifiers and similar devices. But these are not the only functions that can be labeled static control. We can make many kinds of analog or continuously variable controls with magnetic amplifiers. And if this is possible, we should even be able to build radios and audio amplifiers with them. This has in fact been done, and in several ways.

We can balance magnetic amplifiers so well that we can actually balance out the carrier and end up with only the modulation. This kind of amplifier is shown in Fig. 9. The rectifiers as well as the magnetic amplifier windings must balance perfectly. This is very difficult to achieve, particularly to a point where the average hi-fi fan is satisfied with the hum elimination. Another solution
is to make the carrier such a high frequency that we cannot hear it. But remember, even if the speaker cone does not respond to the signal, it still dissipates energy in the speaker, reducing its efficiency to audio signals. The amplifier of Fig. 9 is theoretically possible, but practically not a very good instrument. However they have been made and they have terrific gains, but we can still do the same thing more economically in other ways. The radio receiver shown in Fig. 10 is also possible, but not particularly practical.

Much more practical and applied daily in industry are motor control systems using magnetic amplifiers. A typical arrangement is shown in Fig. 11. The diagram is self-explanatory. Fig. 12 shows a comparison between a thyratron-controlled direction motor drive and its magnetic equivalent. The polarity of the input signal determines the direction the motor turns. In both cases, the control polarity determines which INPUT magnetic amplifier (or saturable reactor) reaches saturation first. This lets the thyratrons fire or the output magnetic amplifier "half" to feed current to the motor. The phase relationship between the windings determines the direction the motor rotates.

We have covered some of the more common applications of magnetic amplifiers and a small portion of their possible or even their actual uses. We could not even begin to describe them all. But there are other industrial static controls which also merit consideration. They include vacuum tubes, transistors, Unijunction transistors, controlled rectifiers, and special devices which handle either analog control or digital control.

These devices can be and have been combined into control systems fully as sophisticated, and perhaps as reliable as the magnetic devices, and in our next discussion we will view such static control devices and their many applications.
Here is a pocket-size strobe that measures accurately tape speeds of 3 1/4, 7 1/4 and 15 inches per second. Since it contains a built-in diode rectifier that flashes a 1/4-watt high-brilliancy neon lamp 60 times a second, it requires no external light source. This feature permits on-the-spot checks wherever 117-volt 60-cycle current is available. Though small enough to be carried in a shirt pocket, the strobe will reach to the hub of a 7-inch reel.

To make the strobe, first cut the polystyrene handle pieces to the dimensions given in Fig. 1. Cement the two spacers to the bottom with polystyrene cement, leaving a 1/4-inch channel between them, as shown in Fig. 2.

Next, attach a male line plug to a 10-inch length of No. 18 lamp cord, and wire up resistor, diode and lamp, as shown in Fig. 3. Cover soldered connections with pieces of spaghetti split lengthwise.

Position the base of the neon lamp even with the ends of the spacers, and press the cord, resistor and diode into the bottle polystyrene cement (3 oz.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 8 x 1/4-inch sheet polystyrene</td>
<td>(1)</td>
</tr>
<tr>
<td>4 x 8 x 1/8-inch sheet polystyrene</td>
<td>(1)</td>
</tr>
<tr>
<td>Length No. 18 lamp cord (10 inches)</td>
<td></td>
</tr>
<tr>
<td>Male line plug (1)</td>
<td></td>
</tr>
<tr>
<td>1/8-inch diameter spaghetti (4 inches)</td>
<td></td>
</tr>
<tr>
<td>IN38 diode (1)</td>
<td>(1)</td>
</tr>
<tr>
<td>NE-2H 1/4-watt neon lamp</td>
<td>(1)</td>
</tr>
<tr>
<td>10,000-ohm 1/2-watt resistor</td>
<td>(1)</td>
</tr>
<tr>
<td>Pencil clip (1)</td>
<td></td>
</tr>
<tr>
<td>Rivet, 1/8-inch diameter, 1/4 inch long</td>
<td>(1)</td>
</tr>
<tr>
<td>Rivet, 1/16-inch diameter, 1/4 inch long</td>
<td>(1)</td>
</tr>
<tr>
<td>4 x 4-inch pasteboard</td>
<td>(1)</td>
</tr>
<tr>
<td>Rubberband (1)</td>
<td></td>
</tr>
<tr>
<td>Wood glue</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1—Dimensional drawing of the polystyrene parts of the tape strobe. Fig. 2—How the polystyrene parts are put together. Fig. 3—Wiring the strobe unit. Fig. 4—Close-up of the handle assembly. Fig. 5—This is how the strobe disc is mounted.
the channel between the spacers. Then fill the channel with polystyrene cement. Hold the neon lamp and the bottom handle piece together with a rubber band, and apply a generous drop of cement between them at the base of the lamp (Fig. 4). Put this assembly aside to dry.

Cut out the strobe dial and glue it to a 3-inch diameter pasteboard disc. Press flat until dry.

Put a 3/16-inch diameter by 1/2-inch long tubular rivet through the center of the strobe disc. The cross on the strobe dial locates its center accurately. Split the rivet and peen it over, distorting its hole as little as possible. The assembled disc should spin freely on a 1/16-inch drill shank.

Sand the edge of the disc assembly evenly all around until it is exactly 9 inches in circumference. This dimension is important. It can be checked by pencilling a starting mark on the underside of the disc and rolling it over the face of a ruler.

Cement the top handle piece in place, aligning the upper and lower rivet holes with a 1/16-inch drill shank. Slip the strobe disc into the handle. Its inside edge will be under the bead of the neon lamp, which acts as an anti-wobble (Fig. 5).

Fasten the strobe disc in the handle with a 1/16-inch diameter by 1/4-inch long rivet. At this point, a word of caution is in order. Polystyrene is a temperamental material. It is better to cement the end of the rivet to the bottom handle piece than risk cracking it trying to spread it with a hammer.

Next, a pencil clip, with its wrap-around flattened out and trimmed, is cemented to the handle.

TEST INSTRUMENTS

Fig. 6-Cut out and use this strobe dial in your unit.

Round off the handle corners to suit, and the strobe is finished.

To check tape speed, plug the strobe into any handy extension, and turn the recorder on. Press the strobe disc gently against the tape on the recorder's supply reel. Either near the neon lamp or beyond the end of the handle where the polystyrene "pipes" the light, observe the circle of radial lines on the strobe disc corresponding to the speed at which the recorder is set.

If the tape is traveling too slowly, the lines will appear to slip backward. If it is traveling too fast, they will creep forward. Let's hope the lines remain stationary, for when they do, the tape is moving along at exactly the right speed.

EQUALIZE VTVM READINGS

VTVM users have often noted that the DC+ meter indication is normally slightly higher than (or conceivably, slightly lower than) the DC- indication. This difference is explained as the result of the bridge tube operating on different sections of its characteristic curve, and some have said that nothing can be done about it except to try to find a bridge tube with a more linear characteristic curve.

However, a far easier and more certain method is to connect a high-ohmage resistor across the meter on the high side, to reduce the meter sensitivity on this side. The sensitivity reduction is slight and is of no moment anyway, since the difficulty here is that the meter is relatively too sensitive on the high side. The procedure below is outlined for the Heathkit 7-A, but can easily be adapted to other vtvm's having a similar switching arrangement.

If the meter indication is higher on the DC+ side, calibrate on the DC- side. Then temporarily connect a 100,000- or 250,000-ohm carbon potentiometer across positions 15 and 18 of selector switch deck 2. (Position 15 is most easily reached at the meter "+" connection (A), while position 18 is most easily reached at the ZERO-ADJUST control (C)). Now rotate the temporarily connected pot until the meter indication is the same on the DC+ as on the DC- side. Disconnect the pot, without changing its setting, and with the ohmmeter note the resistance used. (My V7-A required approximately 80,000 ohms.) Then select a 1/2-watt 10% carbon resistor which gives the same, or nearly the same, ohmmeter indication. A series or parallel pair of resistors may give a closer match. Finally, insert this resistor or pair permanently across positions 15(A) and 18(C) as above.

Alternatively, if the meter indication is higher on the DC- side, calibrate on the DC+ side. Then proceed as above, except that switch positions 18(C) and 22(B) will now be used.—Joseph H. Sutton
**A GRID-DIP meter is indispensable for measuring tank resonance. It is helpful when winding coils and for tuning up circuits. The device may be transistorized (see Radio-Electronics, May, 1956, page 34) but the tube version is better. A tube does not load its tank coil, so it permits higher sensitivity and wider tuning range with a given tuning capacitor. A tube is more stable with respect to ambient temperature and operating voltages. Finally, a tube is less expensive than an rf transistor. Unfortunately, portability is often impractical because of the physical size of a tube and its need for heater power. This grid-dip instrument overcomes these disadvantages. Its range is 3.4 to 31 mc at full efficiency, and 30-55 mc at reduced efficiency. Coils for lower frequencies may be wound if desired.

The tube is a IAH4 flat subminiature made by Raytheon. (Other manufacturers make it as a round subminiature.)

The B-battery is a Burgess Y20 which measures 1 3/4 x 1 3/4 x 9/16 inches and should last more than 100 hours. The A-supply is much smaller. It is a nickel-cadmium cell (Eveready N32T) that should last about 5 hours in this circuit, and may be recharged again and again. In the life of a dip meter, 5 hours usually means many weeks, perhaps months. I keep a spare N32T fully charged for immediate replacement when the cell becomes exhausted.

Circuit details

One of the unit's features is high-low switch S1 (Fig. 1) which shorted out part of the coil winding. Therefore, two bands are available with a single coil. Without changing coils, frequency coverage is 3.4 to 15 mc! This is a wider stretch than was covered by the transistor dip meter (previously mentioned) with its two coils. Yet bandwidth is excellent, each dial range being a frequency ratio of only 2 to 1.

Like other dip meters, this one acts as a variable-frequency signal generator when needed. But there is an extra feature. When a crystal is plugged in, and the tank tuned appropriately, the signal is crystal-controlled! This can be done on a crystal fundamental and its odd overtones! Simply tune the tank for approximately an odd harmonic and watch the meter dip.

Low-frequency crystals work best on overtones. My 3.2-mc rock generates third, fifth and even seventh overtones, the latter becoming tricky to tune.

Obviously, the crystal feature comes in handy when you calibrate the instrument. You can locate easily and exactly any frequency (and its overtones) for any handy crystal.

An earpiece jack lets you monitor external signals. For example, you can tune your ham rig by zero-beating it against the dip meter.

My IAH4 is so small that it fits between the variable capacitor and the B-battery (see photo). The tube is wedged in upside down and its socket is plugged onto the tube. My tube has an external metal shield coating which I scraped off to keep it from shorting against the dip meter.

A-CELL-DIP meter is indispensable. A lead is soldered to the tab of the negative terminal to make circuit connection. Use a minimum of soldering heat.

The tuning capacitor is a two-gang superhet type with an 11-plate oscillator section and a 19-plate antenna section. It measures about 1 1/4 inches on each of its three dimensions. Maximum capacitances are approximately 230 µuf (antenna) and 110 µuf (oscillator). There is no reason why other capacitors with nearly the same capacitance should not work. I tried a very tiny unit (Lafayette MS-261) and found it worked well, but with slightly reduced bandwidth.

For the rf choke I use the larger winding of a broadcast type oscillator coil (Lafayette MS-265, terminals 2 and 5.)

Coil data

Winding the tank coils is the hard part, but the following specifications will save you time and work: Coils are wound on Millen No. 45005 or other 1-inch forms with five prongs. Only

Fig. 1—Circuit of the 3-tube unit.
three prongs are actually used; the others serve as tie terminals.

All coils are close-wound following the specifications in Fig. 2, and all are wound in the same direction. The actual direction does not matter, of course. A ¾-inch space is left between coils L1 and L2. Note the smaller diameter of L3. It is wound to be self-supporting and is placed inside the coil form.

You may have to vary the number of turns in your particular instrument, but Fig. 2 will serve as guide. Note how S1 shorts out one winding when it is closed, to tune to the upper half of the frequency range. When S1 is open, both windings are effective.

Following are the frequency bands covered by the dip meter:

LF COIL
- S1 open: 3.4-7.5 mc
- S1 closed: 6.9-15.5 mc

HF COIL
- S1 open: 13.7-31.0 mc
- S1 closed: 28.0-55.0 mc

Note that the coils are designed to overlap. Furthermore, I have favored the ham bands by resonating them at the high-capacitance end of each range. Bandspread is much better at this end. Here are typical dial calibrations:

<table>
<thead>
<tr>
<th>DIAL</th>
<th>LF coil, S1 open</th>
<th>HF coil, S1 open</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>3.5</td>
<td>9</td>
</tr>
<tr>
<td>42</td>
<td>4.0</td>
<td>14.0</td>
</tr>
<tr>
<td>68</td>
<td>5.0</td>
<td>15</td>
</tr>
<tr>
<td>91</td>
<td>7.0</td>
<td>97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIAL</th>
<th>LF coil, S1 closed</th>
<th>HF coil, S1 closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7.0</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>7.3</td>
<td>67</td>
</tr>
<tr>
<td>33</td>
<td>9.0</td>
<td>92</td>
</tr>
<tr>
<td>80</td>
<td>12.0</td>
<td>97</td>
</tr>
<tr>
<td>95</td>
<td>15.0</td>
<td></td>
</tr>
</tbody>
</table>

To measure an unknown tank, couple its coil to that of the dip meter. Start with a spacing of 1 inch or less and start tuning from the low-frequency side. When you find the dip, separate the coils because a smaller dip is more accurate. To use the instrument as a crystal-controlled signal source, plug in the desired crystal and tune for a dip (again from the low side). Stop as soon as you note the beginning of a dip. Tuning for maximum dip may result in instability.

Calibrate the dial by listening to the dip signal on an all-wave receiver or with the help of several crystals (as mentioned above).

R2 controls the meter setting for any given range. The meter does not have to be set for full scale, of course, but it should be in the upper half for a more distinct dip. Meter readings tend to decrease with increasing frequency range. The lowest band easily gives full-scale readings. On the highest band, the maximum readings will be near mid-scale.

END

Fig. 2—Coil data for grid-dip coils covering 3.4 to 55 mc in four bands.
The signal tracer is a time-honored instrument universally used for troubleshooting and isolating defective stages in many types of electronic equipment. It is used as a detector-amplifier to check the operation of rf and if amplifiers. It can be used as a straight audio amplifier to check phono cartridges, microphones and preamps and the operation of audio circuits and to detect noise and hum in amplifiers.

This test instrument is so versatile and useful that I built a compact transistor unit to fit into a rear pocket or small toolbox so it could be on hand at all times. Battery requirements are modest and the transistors are almost indestructible. This combination of long life, ruggedness and dependability is hard to beat.

An rf signal is applied to the unit through the probe's dc-blocking capacitor C5 to the diode, for detection. For audio use, C6 serves as a dc-blocking capacitor, and the signal is applied directly to potentiometer R1, which doubles as the diode load and its gain control. The detected audio signal is coupled to V1's base.

The push-pull output stage (V3, V4) is driven by a 2N215 voltage-amplifier driver (V2), and produces more than adequate sound output from the miniature speaker. A 100-µv input at V1's base gives an audible response, at a total battery drain of 6 to 8 ma.

Construction kinks

The only critical consideration is the location of the 2N220 input stage and gain potentiometer R1. They must be mounted close to plug P1, and as far as possible from the output stage to minimize coupling between input and output.

The rest of the circuit is straightforward. I used two pieces of copper-clad laminate board for a chassis—one to mount the input circuit, the other for the driver and push-pull output. Driver transformer T1 and output transformer T2 are mounted at right angles to each other to minimize coupling.

The input probe connector can be any good quality type that is strong enough to support the probe’s weight and stand the pressures of use. I used Cinch series 300 plugs and sockets because they are rugged enough to take rough handling and are easily adapted for probe construction.

The rf probe is fabricated from a standard test probe and connector. If necessary, enlarge the inner diameter of the probe body by drilling carefully. Then slip the capacitor and diode into the probe housing. Solder the probe tip to the capacitor and the diode lead and ground wire to the connector terminals. File a little notch in the connector shell to allow the ground lead to pass through freely, then assemble the shell over the unit to fit into the pocket.

The audio probe is made from a banana plug and plug connector. It may
Connections on each end extends the probe's lead and the ground lead are attached also be necessary to enlarge the inner diameter of the banana-plug body to the plug tip. The other capacitor lead and the ground lead are attached to the connector terminals and assembled the same as the rf probe.

A 24-inch cord with mating connectors on each end extends the probe's reach into tight corners or deep chassis. The battery is a small 9-volt unit and can be mounted with a mounting clamp in any position where space is available.

Final check

When the unit is completed, carefully check transistor connections and battery polarity. Incorrect polarity may ruin the transistors! Throw power switch S to ON and listen for the characteristic rushing noise produced by the first transistor stage. The 2N220's internal noise is amplified by the succeeding stages and indicates that the amplifier is working. If nothing is heard, remove the battery power immediately and recheck the circuit or transistors.

If all seems well, apply an audio signal from a generator or phono cartridge for a check of the amplifier's performance. Then connect the rf probe and test it with an operating broadcast receiver tuned to a strong local station. Connect the probe ground to the receiver ground and place the probe tip at the detector tube's diode pin or the plate of the last if amplifier. The station program should be heard loud and clear if the probe is wired correctly.

Using the tracer

Very little audio input is needed to operate the signal tracer as a straight audio amplifier. Always start with the gain control turned down, for it is easy to overload and distort the small speaker's response with too much input. Don't use the tracer for a check of fidelity for it is designed for maximum sensitivity without regard to frequency response.

For rf testing, the probe's ground lead must be connected to the power supply ground of the receiver under test. This may be the chassis or, in ac-dc types, the common ground at the power switch or the filter capacitor negative lead.

Start at the detector diode side of the last if transformer and work your way toward the front of the set. The sequence should be detector diode, last if amplifier plate, then grid, next if amplifier plate, and so on. If there is no output at any of these test points, the stage is defective and the defective components can be isolated.

The probe may load the mixer plate or input if grid in some receivers. If this happens, inject a tone-modulated rf if signal into the receiver's front end to get an output from the tracer.

This instrument will return the modest investment of parts and construction time a hundredfold by its usefulness and versatility. The old-timer knows the value of a good signal tracer, and the younger technician will be delighted with the help this servicing aid can give.

Test instruments

When a color TV receiver gives a good black-and-white picture but does not produce a color picture, something is obviously wrong with the set's color circuitry. A fast but accurate way of checking these circuits is to follow the chroma signal to determine if it is coming through. A tuned dc voltmeter (chroma tracer) will do this job.

One such unit can be built around a 6AM8. The tube's pentode section serves as a tuned 3.58-mc amplifier while the diode forms a vtvm (see diagram). Resistor R1 adjusts the unit's sensitivity. If the value shown does not give a wide enough range for very high signal levels, increase its resistance or connect a 1.5-µf capacitor in series with C1. R2 and R3 form a network that develops a voltage in the meter circuit which cancels the 6AM8 diode's contact potential. This arrangement zeroes the meter when no signal is present. R5's value may have to be changed slightly to get zero deflection.

After building the unit, it must be aligned. To do so, connect the chroma tracer's probe to the subcarrier generator of an operating color receiver. Then adjust transformers T1 and T2 and trimmer capacitor C2 for maximum meter deflection.

The chroma tracer lets us measure the chroma signal and only the chroma signal, thanks to the 3.58-mc tuned amplifier. By following the chroma signal through the color circuits, the technician can find out where it disappears and start looking for trouble in that stage.

The chroma tracer is a useful instrument, it is not intended to replace the oscilloscope. It only supplements the scope.—Sylvania News
TEST INSTRUMENTS

When testing audio amplifiers we would often like to check the microphone input vs amplifier output, and noise levels with a microphone input. Unfortunately, the voltage delivered across its characteristic load impedance by a low-impedance mike or other low-impedance device is so low that it cannot be measured with an ordinary audio vtvm.

The standard way of getting around this problem is to set an audio generator to some output level that can be easily measured and use pads to reduce the signal to the fraction of a millivolt we apply to the amplifier's input, rather than try to use a microphone to supply the input signal. But making the necessary pads on short notice or trying to find the ones you used the last time is time-consuming.

I solved this problem by putting all the pads (L-pads) into a single box; a Signal Padder as I call it. By turning a single rotary switch, I can now select the proper impedance source for the amplifier and the desired input voltage.

How it's made

All parts are built into a 2% x 2% x 1% -inch aluminum box. I installed two banana plugs on the back of the box so it would plug right into my oscillator. Binding posts on the left side of the case are connected to the banana plugs and are used to take voltage readings. Leads from the banana plugs to the pads are kept short and are twisted together. The circuit is shown in Fig. 1. Just remember to keep all leads as short as possible and you won't have any trouble. A chart cemented to the top of the case lists levels and impedances.

Using the padder

After the unit is plugged into or otherwise connected to your oscillator, connect an audio vtvm to its input binding posts. The amplifier is connected to

By HAROLD REED

Tiny passive unit for making practical amplifier noise tests with inputs of 1 mv or smaller

The completed Signal Padder.

Banana plugs on the instrument's rear plug into an audio oscillator.
The circuit of the L-pads is in Fig. 2. When not referring to a 1-mw power level, use the following simple equations: $R_1 = Z/C$ and $R_2 = Z/B$ where Z is the output impedance and B and C are from a table of values from a handbook. R_1 is also equal to the impedance multiplied by the voltage ratio. So $R_1 = E_1/E_2(Z)$. R_2 can also be determined for attenuations from 20 to 100 db simply by dividing the impedance the pad is to work into by 0.95. Thus $R_2 = Z/0.95$.

References

END
A WAR game, as defined at the Naval War College, is a "generic term describing the means for simulating the play of systematic strategic or tactical operations of opposing forces." In the past, war games were played with small models of ships, aircraft and submarines manipulated on the floor of a large auditorium. The opposing sides consumed hours of time to play out only a few minutes of actual action. Experienced senior officers did the umpiring. They used the roll of dice to predict the probabilities of damage.

The speed and complexity of modern warfare have outstripped these methods. Fortunately, the very technological concepts that have given rise to the new concepts of naval operations have also provided the means for updating war games. The Navy Electronic Warfare Simulator (NEWS) is the vehicle developed to answer the nuclear-age need in war gaming technique. Costing over $7.25 million, containing 250,000 terminations interconnected with 2,500 miles of wiring, using 10,000 tubes and drawing an equipment electrical load of about 250,000 volt-amperes, the NEWS is an electronic engineer's dream—one of the most elaborate electronic equipment systems ever assembled under one roof.

General description

The NEWS is primarily a two-sided electromechanical warfare simulator making available the elements of mobility, firepower and intelligence to opposing commanders for use in controlling assigned forces as programmed in an operational war game. Command decisions are based on simulated information the commanders receive (similar to what they would receive in actual combat at sea), and result in interactions which are then assessed and evaluated by the NEWS in percentage of damage to engaged forces.

Outputs of the assessment and evaluation processes modify the mobility, firepower and intelligence available to the two forces. Human umpires can interpret or override any portion or all of the computed damage results. These modifications are fed back to the commanders, who are now confronted with a new situation requiring a new estimate and new decisions. This continuous dynamic "closed-loop" play in real time provides the technique for the conduct of educational war games.

Functional areas

The NEWS occupies a building a block long and three stories high, and extending to over 35,000 square feet of floor space. Within that area are 20 command centers, a large umpire area, a communication control room, main control room and equipment room. Fig. 1 is a simplified schematic that shows the NEWS major components and the flow of electronic and mechanical data.

The 20 command centers (10 to each side) are manned by the commanders and staffs of the active forces in a war game. Each command center has facilities for maneuvering forces (one to four forces per command center), obtaining radar detection and evaluated CIC (combat information center) information, weapon control (four weapons per force) and communications (eight voice and one teletype channel per command center). Plotting boards maintain navigation information, and meters indicate the percentage of own-force effectiveness remaining at all times. One of the command centers on each side is that of the admiral, who has only one force (his flagship) and directs the action through communications to other command centers, as would be the case in a real engagement.

The umpire area is dominated by the great square master plot screen, 15 feet to a side. The movements of all 48 forces (24 to a side) are projected on this screen as shaped, colored images (green, white or amber) by 48 optical...
Fig. 1—Simplified composite schematic of the NEWS shows all major components and indicates flow of electrical and mechanical data.
Positioning forces

A grid coordinate system positions all forces in the NEWS. The simulated ocean area is gridded into 4,000 x-coordinates measured from the western ocean boundary to the east, and into 4,000 y-coordinates measured from south to north. The z-coordinate, for aircraft altitude and submarine depth, is introduced into the display system via the force characteristics panels.

The umpires have facilities to control the "ocean size," making the screen represent an area 40, 400, 1,000 or 4,000 miles on a side; the problem speed, 1, 2 or 4 times clock time; damage assessment, and other factors such as force and weapon characteristics, communication networks and intelligence-type information to command centers.

The communication control room sets up and patches networks as required by the commanders. It also contains facilities for leaking communications from one of the opposing sides to the other when the umpires detect violations of radio security. The main control room houses the 48 navigational computers, one of which appears on the cover picture, also the controls for area size, problem clock time and problem speed. The equipment room includes the damage computer and various electronic and electromechanical components of the maneuver and display, and the communications subsystems.

Navigational computer

When a commander in a command center maneuvers his force by adjusting the course and speed dials, he is remotely transmitting a signal to one of the navigational computers (see cover picture). The computer simulates the course and speed of his force by generating rectangular coordinate data from the course and speed inputs (polar voltages) so that the movement of a force—on any of the four ocean sizes and at any of the three clock speeds—can be presented on the master plot screen.

Speed is set in—either locally on the front of the computer (Fig. 2) or remotely from the parent command center—by a speed switch. (Fig. 3 is a side view of the computer opened for inspection or service.) The speed control motor rotates in the direction specified by the switch to increase or decrease the speed setting. The motor shaft rotation transmits speed output information to local and remote indicators and to the speed voltage resolver. A top-speed-limiting facility located on the force characteristics panel is connected electrically to this speed system to limit the top speed of the force.

Course information is set in—either locally or remotely—by a course switch. The course control system is generally similar to the one for speed. Speed input is represented by a 60-cycle voltage and course input by the mechanical angle of a shaft.

The output of the speed Variac is exactly proportional to the speed dial setting controlled by the speed switch. This output is applied to the stator terminals of the sine-cosine resolver,
a transformer in which the angle between primary and secondary windings is continuously adjustable. It resembles a small wound-rotor induction motor with two stator windings at right angles to each other. The speed voltage \(E \) is fed into the stator winding and the motor shaft, geared to the course dial, rotates through an angle \(\theta \) in accordance with course information.

The output of the resolver is, then, two rectangular (x and y) voltages proportional to the speed and course. (The x-coordinate \(E_x \) is equal to \(E \) sine \(\theta \) and the y-coordinate \(E_y \) is equal to \(E \) cosine \(\theta \).) These coordinate voltages, after suitable amplification, are applied to one of the optical projectors, which displays a shaped image representing that particular force on the screen. The projector unit (containing the lamp and reflector) of the optical projector is supported by a gimbal mounted in a pivot support and positioned by the x and y synchro voltage input. The heading of the shaped image—as distinct from the position—is controlled by a separate synchro voltage from the computer course information.

In addition to positioning the image of its force on the screen, each computer supplies a number of other outputs, including digital counter readings to the parent command center (also displayed on its own front panel) as well as information used in the command center to plot own-force position for navigational purposes. The course and speed information is furnished to the radar display system and the damage computer.

The navigational computers have three auxiliary control functions that provide greater convenience and more flexibility in programming and operation. Rapid traverse enables the force controlled by the computer to be slewed rapidly across any ocean size before the start of a game. Transmission sync provides rapid rotation of the electro-mechanical transmission input shafts to permit meshing the change gears in a few seconds. Position matching is a remotely controlled operation for matching the position of one force with that of another (such as an aircraft on the deck of a carrier or a Polaris missile in a submarine). With this feature it is possible to slave three forces to one master force, or to three different ones.

Damage computer subsystem

The damage computer is the most novel equipment from an electronic standpoint. Unfortunately, its complexity prevents its being described in detail here. This partial treatment is due only to the difficulty of describing it—the subsystem is possibly the most important feature of the NEWS, and would be well worth an article in itself. The reader can get a rough idea of its complexity from the flow diagram, Fig. 4. Not all the components shown in that diagram will be mentioned, and those that are must in most cases be discussed in terms of what they do, without attempting to explain how they perform their functions.

One of the features of the damage computer is a sequential switch that somewhat resembles a magnified telephone-exchange stepping switch. It consists of 193 vertical rows (192 weapons and one test circuit) of 14 active contacts each, all arranged on the periphery of a circular tube. Fourteen brushes sweep across the active contacts of each vertical row once a second.

Another portion of the computer consists of a bank of 2,000 Helipots, grouped in 20 horizontal rows of 100 pots each.

To simplify the required machine parameters, the 192 weapons (4 each for each of the 48 forces) are divided into a possible 20 weapon types (such as 5-inch guns, missiles, torpedoes or depth charges) and the 48 forces are grouped into a possible 20 target types (such as cruiser, destroyer, aircraft or submarine).

To follow the operation of the damage computer subsystem, let us assume that the commander of White Force 25 sees a pip on his radar. He interrogates (or probes the pip with an electronic eye) this target, and obtains such information on it as has been pre-programmed. (This information may change during an action—for example, a pip at maximum radar range may give only the bearing of an opposing force; as range decreases, the type of target, its range and other information may become available, as would be the case in a real engagement.) The commander decides to acquire (place himself in readiness to fire on) this target with his weapon C. (The four weapons on force are identified as A, B, C and D.) The acquisition button of weapon C is pressed, starting a chain of events. The computer picks up, from the navigational computer, the coordinates of the weapon and the target (Green Force 1) and calculates the range. It also computes, from a number of factors, a probability of a hit, and, if there is a hit, the amount of damage that might be inflicted. A steady light is
lighted on the weapon target status boards (matrix) in the umpire area to let the umpires know what target the weapon has engaged. Five of the potentiometers, those programmed for weapon 25C against target Force 1, in the 2,000-pot bank are connected to the sequential switch and their output is sampled once per second for calculation of the hit probability and damage per hit. All this flow of information takes place even though the weapon does not fire at the target. But unless the weapon fires, there is no output from the hit resolver and damage resolver.

When the commander of White Force 25 presses his firing button, two pulses are sent out. One rings an "under attack" gong and lights an indicator for Green Force 1 for 25 seconds. It also causes the steady light for weapon 25C in the umpire area to blink for 25 seconds, informing the umpires that firing has commenced.

The other pulse is routed through the sequential switch to the hit resolver, where it triggers a gate. A random noise generated in the hit resolver is trying to feed pulses continuously through this gate. The length of time the gate is open is determined by the height of the hit probability pulse (50 to 80 volts) as determined by the computer. If the gate is open long enough for three noise pulses to get through, a hit pulse is generated. Employment of the noise generator results in a randomization of hit probability not under human control.

If a hit resolver gate pulse is received, the damage resolver generates damage pulses through a gate as in the hit resolver. Each damage pulse represents 1% damage to the target. The number of damage pulses generated is proportional to the voltage of the damage weighting pulse from the control function computer. The damage weighting pulse varies between 50 and 80 volts, with 50 volts representing zero and 80 volts representing 100% damage. If the damage resolver is operated in the "fixed" mode, the damage pulses have a frequency of about 45 kc and their number is proportional to the amplitude of the damage weighting pulse. If the damage resolver is operated in the "random" mode, a chance factor is introduced. The pulses occur at random intervals and the number of pulses will vary above and below that which would be expected from the amplitude of the damage weighting pulse.

Since there is only one damage resolver in the system, the pulses must

Fig. 4——The damage computer. Simplified schematic and
be routed to the correct target. The coincidence gate is again used. The damage pulses are routed to all tubes in the damage distributor but there is no output from them until another pulse is received. This is a 30-volt pulse P3 fed from the vertical row of the sequential switch for (in our example, 25C) the weapon to the acquisition switch assembly. The acquisition switch for weapon 25C is pointed at Force 1, so the tube in the damage distributor for Force 1 is gated. The damage pulse then feed through this tube to the vehicle effectiveness remaining converter (VERC). In the VERC, the damage pulses are recorded by electronic counters and the percent damage is converted into percent effectiveness voltage. The counters of an undamaged vehicle will read 0%, and its effectiveness voltage will be 28, giving an effectiveness reading of 100% on the effectiveness meters. After a hit which causes, for example, 25% damage, the damage resolver will generate 25 pulses which will give a reading of 25 on the vehicle effectiveness register converter damage counters. This produces an effectiveness voltage of 21, which gives an effectiveness of 75% on the effectiveness remaining indicators.

The percent effectiveness voltage is transmitted from the vehicle effectiveness register converter to the control indicator, effectiveness remaining indicators in the target command center, umpire area and the force characteristics panel in the control room.

If the target damage equals or exceeds 100% (effectiveness remaining is zero), additional outputs from the VERC indicate to the umpires that the force has been killed and also prevent the force killed from doing further firing.

Another feature of the damage computer, one not always used, is permitting the firing force to know he has registered a hit. To do this, the coincidence gate is again employed. The hit pulse generated in the hit resolver is on one line and fed to all tubes in the hit indication driver group. A 100-volt synchronizing pulse (P4) from channel 8 of the sequential switch goes out on the vertical row to the weapon channel in the hit indication driver group. In our example, weapon 25C vertical row is connected to the tube for 25C and, if a hit is made, a pulse is fed through a switch (manually preset) on the control indicator to the command center. If permitted, the commander of Force 25 knows when he has obtained a hit.

While the discussion on the computer subsystem, a lot of words, the actual hit computation, damage assessment and hit indication for any one weapon take place within 4.5 milliseconds. The damage computer subsystem can sample all the possible 192 engagements once each second.

Summary
The NEWS represents a novel concept in the employment of a computer as a military problem aid. Computers have been used to help analyze various aspects of warfare, but in these cases mathematical models describing a rigid situation have been fed into them, and an outcome, or series of outcomes, has been the generated result. In the NEWS the situation is not rigid, and the computer serves to assist in the rapid assessment of weapon employment as dictated by the opposing commanders. The NEWS does not provide for automatic operation but rather for manual variation in the parameters of the various elements of warfare. The skill in the exercise of professional military judgment is the most important element in the NEWS.

The full potential of the Navy Electronic Warfare Simulator is rapidly gaining recognition, though years of operational experience may be required to realize all its potentialities. It has already provided the US Navy with an immeasurably valuable vehicle on which to further the education of its officers and to provide them the opportunity to gain significant command experience in various aspects of modern naval warfare.

FLOW DIAGRAM FOR HIT COMPUTATION AND DAMAGE ASSESSMENT.
Two electronic instruments promise to help you live longer by keeping your heart pumping

By DR. BERNARD S. POST*

Medical electronics is the special field which deals with all electronic devices and techniques used in the diagnosis and treatment of disease in the human body. It also includes special pieces of apparatus used in basic medical research. Among such equipment are two items which are more spectacular than others in their application. These are the cardiac Pacemaker and cardiac defibrillator.

The Pacemaker is used if the heart has stopped completely or is not beating rapidly enough to maintain life, as in certain forms of heart block where the pulse rate may fall to a rate of 30 or less. The heart is essentially a four-chambered pump (Fig. 1) which operates on a mechanical force basis. It pumps blood through the organs, supplying them with nutrition and oxygen and a way to eliminate waste products. The chambers of the heart contract in a definite sequence called the cardiac cycle. The contractions are controlled and timed by nerve impulses. These impulses are electrical in nature, as has been demonstrated with oscilloscopes and electrocardiographs.

In some situations the nerve mechanism in the heart is either poisoned by the toxic products of disease or scar tissue constricts the conducting tissues in the heart. When this happens, some of the impulses which initiate the normal contraction cycle are blocked and insufficient contractions take place per minute. This causes a deficit in the supply of food and oxygen, which can result in death. In these cases there is time to supply the patient with an artificial Pacemaker which takes over the nerve tissue's job and sets up a cycle of impulses that keep the heart beating properly. This equipment, if available, can also be used on a patient who may have died suddenly from shock or during surgical procedure. If used promptly, normal heart action may be re-established.

There are other diseases which affect the human heart by setting up a period of wild, asynchronous contractions of all the chambers. This condition is called fibrillation and may involve either auricles or ventricles or both. When the heart fibrillates, it twitches in all directions at the same time and there is no concerted, unified pumping action. The condition rapidly leads to death because, even though the ventricles are beating, the body is not getting enough blood to carry on its vital function. The defibrillator is a piece of equipment used to re-establish a suitable rhythm. It delivers a pulse to the ventricles each time a switch is depressed. This pulse, known as a countershock, has a fixed 0.15-second duration with a 1.5- to 3-amp current. The shock will sometimes stop the heartbeat completely, after which the Pacemaker is applied. Or the heart may be shocked out of fibrillation and made to beat...
regularly on its own. Countershock voltage may be applied in steps up to 750 and up to 15 amps can be applied through the closed chest wall. The power relay contacts and isolation transformers will safely transmit 12,000 watts. The automatic timing circuit which fixes the impulse duration at 0.15 seconds will not allow successive counter-shocks more often than one per second, to protect the patient from undue heating.

Pacemaker circuit

Fig. 2 is a typical example of Pacemaker circuitry. Power to the instrument is controlled by an ON-OFF-STANDBY switch (S) located on the front panel. All power is disconnected in the OFF position. In STANDBY, all circuits are activated with the exception of the pulse output jacks to the patient's electrodes. These are energized in the ON position. With the switch in ON or STANDBY, the POWER INDICATOR glows. The PULSE INDICATOR is excited only in the ON position and only when a pulse occurs. This makes the lamp flicker once for each pulse. A typical power supply consists of a transformer and selenium rectifier. They are used in a conventional half-wave rectifier supply that delivers approximately 325 volts dc. Ripple is filtered by R6 and C1.

The pulse is produced by the blocking oscillator pulse generator composed of V1 and associated circuits. This is how it works: Assume that C2 and C3 are charged in such a manner that V1's grid is negative with respect to ground. If this potential is large enough, V1 is cut off and no plate current flows. V1's grid potential will then rise slowly toward the voltage dictated by the setting of the HEART RATE control (R2) as C2 and C3 charge through R2, R3 and R4. At some point in this charging cycle, V1 will start drawing plate current which will flow through winding L2 of T2. This current flow induces a voltage in L1 the upper part of T2 in the diagram. This in turn causes the grid to go even more positive, which causes even more current to flow in L2. This regenerative action takes place very rapidly and the current drawn by V1 increases to the saturation point of T2. Now there can be no further change in current flow through the lower portion of T2's winding. In 2 to 3 milliseconds, the voltage on T2's grid begins to drop, causing current through V1 to decrease. A similar but opposite action to the buildup portion of the pulse cycle, takes place, returning the circuit to cutoff. In so doing, C2 and C3 are discharged to a negative voltage with respect to ground and the slow charging of the capacitors starts another pulse cycle. RECT2 is used as a diode and prevents negative overshoot of the pulse at V1's filament. R5 and C4 form a shaping network to round off the top of the output pulse. The pulses flowing in the filament return circuit of V1 are coupled to the electrodes through T3. R9 is the PULSE AMPLITUDE control.

The HEART RATE control (R2) sets the interval between pulses, and therefore the pulse rate, by controlling the capacitor voltage toward which C2 and C3 rise during the charging part of the cycle. The pulse at V1's filament is coupled to the output through coupling transformer T3. Pulse amplitude is controlled by R9. The schematics presented are not meant to be used as a guide for the construction of a pacemaker. (Circuitry in such equipment...
is critical and requires careful laboratory trial and checking before they can be used, since improper use could result in death.)

The cardiac pacemaker is often combined with a device which monitors the electrical activity of the heart to alert the operator if the rate falls below a safe level. The patient is wired to the circuit and remains connected to the equipment at all times, whether he is in bed or on the operating-room table. In cardiac surgery, the hookup is made to the limbs so that the chest is free for the surgical procedure. The equipment consists of three parts which are unified in construction. On the left in the head photo is the pacemaker section; on the right, the automatic monitor, and above, a specialized oscilloscope called an electrocardioscope. The apparatus is compact and simple to operate. The oscilloscope controls are standard. The pacemaker controls consist of two potentiometers. One of them controls the rate of stimulation (between 30 to 180 impulses per minute). The other varies the voltage amplitude continuously from 0 to 150. A neon signal light is activated by each impulse for visual reassurance that the current is flowing to the heart muscle. Note also the switching device which activates a jack plug to transmit impulses directly to the exposed heart during surgery if necessary. These internal electrodes may be placed directly by the surgeon if desired. The three monitor controls include a potentiometer to regulate the audio component of the electrocardiographic tracing on the scope; a second one to increase the sensitivity of the alarm system which goes off simultaneously with the pacemaker if the patient's heart rate falls below a safe level, and a third to vary the interval between heartbeats (periods of asystole). A neon signal light flickers for each heartbeat. A panel light indicates power to the preamplifier through the on-off alarm switch.

Reading heart action

The electrical activity of the heart is picked up through the patient's electrodes, amplified by a self-contained electronic circuit, and displayed on a long-persistence oscilloscope tube for continuous visual monitoring of the patient's electrocardiogram. The scope has a writing rate of 1 inch per second and a total sweep time of 3 seconds. Electrosurgical instruments do not disturb the operation of this instrument. The typical waveform picked up from cardiac output is shown in Fig. 3.

The heart's contractions are timed and controlled by nerve impulses which arise within the heart itself. As these impulses stream through the heart, they leave the tissue through which they pass momentarily electronegative with respect to the rest of the heart and body. The resultant shifting of this electronegative area with the passage of the nerve impulse constitutes a minute electrical current change which produces the waveform shown in Fig. 3. This wave is referred to physiologically as depolarization. When the impulse has passed, the muscle tissue returns to its normal state by a process called repolarization.

The letters P, Q, R, S, T are arbitrary names given to each part of the total heart-contraction waveform. The P-wave is the deflection produced by auricular depolarization. The Q-wave is the initial negative deflection caused by ventricular depolarization. It precedes the R-wave, which is the first positive deflection during ventricular depolarization. S is the first large negative deflection of ventricular depolarization. This does not contradict the statement concerning the Q-wave, since that is not always present and when it is, it usually is of very small amplitude. For this reason, I referred to it as the initial negative deflection. The T-wave is considered to be the repolarization of the ventricular muscle. Sometimes a repolarization wave for the auricular muscle is also seen, and when present, is referred to as the T-*wave. However, it is rarely seen in the usual electrocardiographic examination of the heart.

The QRS complex which represents the ventricular contraction is further amplified by the monitor while all other electrical activity is filtered out. The QRS is converted to a neon flash and a sharp audible note of about 800 cycles. The audible signal of each heartbeat immediately indicates any abnormality, making it unnecessary to view the scope constantly. This has its greatest advantage in the operating room. If the heart should stop or slow down, an alarm will immediately go off. A loud continuous 800-cycle tone (high A) will sound when the time interval between any two heartbeats exceeds the time set by the systole (interval) control on the instrument. This time may be varied from 1 to 10 seconds (6 to 60 beats) per minute. When the alarm sounds, the pacemaker section is energized through a relay timing circuit, and begins to produce monophasic round-topped 3-millisecond impulses. These are optimum for cardiac stimulation but can cause no physical damage. The low internal impedance (less than 80 ohms) permits better than adequate power output even across very low body resistances.

Thanks to close cooperation between medical men, electronic engineers, and workers in medical electronics, progress has been accelerated in this field in the last 15 years. Equipment for diagnostic and therapeutic purposes has been produced to fill each need as it arose, so today our instruments border on what would have been unbelievable 20 years ago. Recent reports mention transistor cardiac pacemakers small enough to be implanted in the body tissues (2 inches in diameter by ½ inch in thickness and permanently encased in epoxy resin) and with a battery life of nearly 5 years. These are in operation in a number of human patients as well as laboratory animals. This has taken the patient out of his bed and made a useful human being out of him, rather than a medical oddity.
SOME—or maybe a great deal—of our future electric power may be generated by one of the unconventional means shown on this page. This was the theme of a recent demonstration at the Westinghouse Research Laboratories.

Basically, it was pointed out, the ideas are not new—their application to power production is. The fuel cell dates back to Sir Humphrey Davy in 1802, thermoelectricity to Seebeck in 1821, and thermionic effects to Edison in 1878 and magnetohydrodynamics to Faraday in 1831.

The devices that were demonstrated produced direct current at potentials ranging from a fraction of a volt to about 30 volts, and powers from 0.2 watt to 5 kilowatts.

At present all are highly experimental, and electricity produced by them is far more costly than by conventional methods. But even now one or another of these generators may be economic for certain applications, such as those in which noise or vibration cannot be tolerated, or for use in remote areas (the Russians sell a kerosene-powered thermoelectric generator to operate a radio in remote areas).

Within a few years, it is expected that the power available from devices using these techniques will be vastly increased, with possibly a corresponding drop in initial cost and fuel expense.

In the fuel cell at A, carbon and oxygen or air are consumed in a high-temperature furnace (about 800°C) to produce electricity. Such cells may be capable of producing 2 kw per cubic foot of cell (excluding surrounding furnace). In the thermionic converter (B), a vacuum-tube cathode (filament) at high temperature emits electrons which are collected at the anode and do useful work passing through a load to the cathode. This unit produced small amounts of power at 3-volts—lit a pilot lamp brightly and turned a tiny fan. The tube is a “soft” type, containing cesium gas.

This magnetohydrodynamic generator (see RADIO-ELECTRONICS, January, 1960, page 8) blasts ionized gas through a magnetic field at velocities from 1,000 to 2,000 miles per hour to generate current. The generator shown (C) produces about 1 watt—a larger unit demonstrated at the same time was capable of 5-kw output. The thermoelectric generator at D consists of a large number of thermocouples, uses propane gas for heating. It produces 100 watts. A 1,000-watt unit—powered by nuclear fuel—is under construction.
Stereo at 1½ ips

Dr. Peter Goldmark of the CBS Laboratories unveiled a new tape playing and recording system at the IRE convention. It consists of a revolutionary new tape that produces good sound at 1½ ips and a stereo tape-changer mechanism that plays for five hours without attention. The tape is 150 mils wide and carries three tracks. Two are the ordinary stereophonic pair. The third track—situated in the center of the tape—is intended to carry the reverberated and delayed sound which is an important part of what the listener hears in a concert hall.

Experiments show this sound adds greatly to the illusion of realism. Each track is 40 mils wide.

The tape is wound in sealed cartridges approximately 3½ inches square and 5/16 inch thick. Each tape plays 64 minutes and can be rewound in 20 seconds. Dr. Goldmark stated that Zenith in this country and Grundig in Germany intend to market the equipment in 1961.

The CBS instrument may not be the only tape changer to appear in the near future. Another changer was described to the convention by Marvin Camras, whose work was largely responsible for our present-day magnetic recording equipment. Camras' changer is to be compatible with existing tape recorders and players, only a takeup reel with a ball detent in the hub (costing about $50) would be necessary, said Camras. Inexpensive adapters could modify the same players for semi-automatic operation. The system is applicable to all type speeds and modes of operation.

Human Body a Broadcaster?

Muscles of the human body originate radio-frequency signals, members of the IRE were told at the recent convention. Frequencies as high as 150 kc have been detected, but higher-frequency radiations may exist.

According to Dr. Volkers of Cohu Electronics, one of the authors of the paper presented to the IRE convention, signals are emitted by muscles in action, such as those of the chest while inhaling. No signals were sent out during exhalation, though they continued if the subject inhaled and held his breath. Another interesting feature is that some of the smaller muscles of the body transmit stronger signals than larger ones. Thus, exceptionally strong signals are sent out from the muscles of the little finger. The only part of the body that does not transmit signals, Dr. Volkers found, is the head! The signals are in the form of sharp spikes.

Varicaps Tune Auto Radio

One of the few new departures that appeared at the Radio Engineering Show was a remote radio tuner in a car steering wheel. Exhibited as an experimental model by Hughes Aircraft Co., the tuner uses voltage-variable capacitors to tune the receiver. Pushbuttons in a head mounted in the center of the steering wheel select stations. The receiver itself may be mounted in the usual place (where it may be tuned manually when expedient) or in any other desired location in the car.

Ultrasonics Measures Liquid Flow

Two papers presented at the convention described how ultrasonics can be used to measure flow of liquids. Both pointed out that the speed of sound is low enough that, in a moving stream, a transverse acoustic wave is carried along by the stream as it passes through the water. If acoustic signals—sonic or ultrasonic—are introduced into a flowing stream—either a river or in a pipe—and reflected from the opposite side of the stream, they will have traveled a longer distance in a flowing liquid than in a still one, and the length of the path would increase with the speed of liquid flow. Thus, measuring the time required for the signals to return measures the rated flow. One of the papers, presented by Miller, Richardson and Serotta of Raytheon, discussed measuring river flow; the other, by Dahlke and Welkowitz of Gulton Industries, measurement of flow in pipes. END
HERE is a microminiature transistor amplifier you can build and hide behind a postage stamp. The circuit-board area is less than 0.5 square inch. The circuit is ultra simple, too. The only components are three transistors, three resistors and one capacitor. Cost is low, and assembly is unusually easy.

Circuit simplicity and reductions in commercially available component sizes make a home-built amplifier of such exceedingly small size possible. Resistors are 1/10-watt type and the electrolytic capacitor is the minimum-size variety sealed in a ceramic or aluminum sleeve.

The transistors are the smallest available, 2N207's. However, other slightly larger transistors, the 2N105 for example, can be used without increasing the circuit board size.

Circuit details

The direct-coupled circuit is a Philco development and appears on the data sheet for the 2N207. The collectors of V1 and V2 operate at about 0.3 volt. This mode of operation yields somewhat less than normal gain, but is tremendously simple and gives a considerable reduction in transistor-produced input-stage noise.

Resistor R3 supplies bias current for the input transistor (V1) and, because of the direct coupling, subsequently controls the bias current for the second stage and output transistor V3.

Because transistors, even of the same type, vary enormously in the amount of no-bias current flow (ICo), R3's value must be selected experimentally to provide optimum bias for V3.

Bias variations caused by changes in temperature are reduced by dc negative feedback, since R3 connects to V3's collector. For example, as V1's ICo increases with temperature, V3's collector voltage decreases. This reduced voltage causes less current to flow through R3, partially compensating for the increased ICo.

Generally, the circuit compensates against temperature changes of bias and operating point to about 100°F. Above this temperature, the transistors may be driven into nonlinear operation. This, of course, results in distortion and greatly reduced power output.

Fig. 1 gives the circuit details. Input and output impedances are both about 1,000 ohms. Maximum output voltage into the earphone is approximately 0.5.

Earphone resistance is important. Earphone voltage drop affects the bias and operating conditions of all three stages. Use an earphone with a dc resistance of approximately 1,000 ohms. Most 2,000-ohm impedance earphones actually have resistances of about 1,000 ohms.

If in doubt, measure the earphone resistance with an ohmmeter. Also, its dc resistance may be marked on the box.

A volume control is needed to prevent overloading and distortion on loud signals from the microphone or other pickup device. Fig. 1 shows how a 5,000-ohm volume control and microphone connect to the amplifier input.

Fig. 1-b gives an alternate connection for coupling from a crystal detector or similar source.

Build one yourself

Fig. 2 shows the printed-circuit wiring for this unit. However, ordinary prepunched or solid insulating board and standard wiring also work. Drill holes, pull the leads through and tie them together with short pieces of small wire.

If equipment is available for drilling small holes, use No. 76 wire drills for the lead holes. This size is excellent for capacitor, resistor and transistor leads.

Wire the circuit, but omit resistor...
Power Amplifier for AC-DC Sets

By JOHN A. DEWAR

If you have ever tried to connect a power amplifier to an ac-de receiver, you know the difficulties involved with hum and line connections. The power output amplifier described here solves the ac-de coupling problem and also kills another bird with the same stone.

Being a little Scottish by nature, I have long worried about what to do with power transformers from c'olete radios. Many of these with a 2.5-volt secondary to 6.3 volts impossible. However, by using a 1619 tube, we can still use the 2.5-volt secondary and extend the useful life of those old transformers. (New, this tube runs about $4; surplus is available.)

The 1619 is a metal tube, similar to the 6L6 but with a 2.5-volt 2-amp directly heated filament that can handle up to 36 watts of audio in class-AB operation.

Characteristics of the 1619 are:

<table>
<thead>
<tr>
<th>Class</th>
<th>Plate (volts)</th>
<th>Screen (volts)</th>
<th>Plate (mA)</th>
<th>Bias (volts)</th>
<th>Plate (watts)</th>
<th>Screen (watts)</th>
<th>Load (1kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>400</td>
<td>350</td>
<td>50</td>
<td>-20</td>
<td>17.5</td>
<td>14,000</td>
<td>6,000</td>
</tr>
<tr>
<td>AB</td>
<td>400</td>
<td>300</td>
<td>75</td>
<td>-16.5</td>
<td>36</td>
<td>6,000</td>
<td>3,000</td>
</tr>
</tbody>
</table>

The amplifier (see photo and diagram) is built into a 4 x 11-inch chassis and incorporates a unique system for coupling to the ac-de receiver. The push-pull output transformer from the obsolete radio is used as the push-pull to input transformer for the amplifier. The receiver's voice-coil winding is connected to the voice-coil winding of the input transformer. This couples the audio but isolates the amplifier from the ac-de set as long as the input transformer is left floating. Also, since the dc resistance of the input transformer's grid winding is low, the amplifier can be driven into the region of class-AB operation without running into serious distortion caused by grid current.

Any additional tendency toward oscillation can be cured by connecting a .05-µf microeminute ceramic capacitor from V2's collector to terminal 5. Do not connect capacitance across the microphone or earphone because this will produce resonances and an undesirable amount of sea-shell ringing and noise enhancement.

You can get considerably more gain and lower frequency response results if C1 is increased to 10 µf or more. It may, however, increase the amplifier's size slightly.

\[END \]
HAVING discussed the salient points of the various important sections of a preamp, we can now design a complete unit.

The exact shape will depend upon your choice of styling, but there are some construction features that should be mentioned from the viewpoint of performance. A preamp has to handle extremely small signals and bring them up to a level suitable for the input of the basic amplifier. This means that hum and other spurious sounds must be minimized.

To do so, the low-level circuits should be adequately shielded and kept away from possible radiating fields from which they may pick up hum. This is an advantage of the long low type of construction that has become popular in preamp styling. It permits the input to be kept well away from the power transformer and other power-supply components.

You can save yourself considerable trouble in hum elimination by using an aluminum chassis rather than a steel one. All power transformers radiate a certain amount of hum field, and the steel chassis tends to convey it throughout its length while the aluminum chassis does not.

The entire amplifier should be enclosed in a metallic casing, preferably aluminum. This provides integrated shielding for all the low-level stages and avoids the necessity for shielding individual leads. The latter practice causes difficulty with high-frequency response because shielded leads introduce extra capacitance to ground, which means that the high-frequency rolloff will be quite severe. Use a completely enclosed construction, so the tubes and their associated circuits are all surrounded by a metallic shield, and arrange the layout so the signal path progresses steadily across the chassis from left to right with the minimum lead length between any two points, to get the best all-around performance.

General circuit plan

Assume we want the low-level input to take 1 mv from a pickup and give 2 volts from the preamp output, to provide a margin for the usual amplifier input—in the region of 0.5 to 1 volt. One half of a 12AX7 operating with a 270,000-ohm plate-coupling resistor and a following-stage grid resistor of 470,000 ohms will give a gain of 66, according to the tube manual. Three such stages will give a gain of 66^2 or 28,000, or 109 db.

We need equalizing circuits that will introduce 20-db attenuation and our tone control circuit should provide a similar loss. This will leave a net gain of about 69 db, which allows 3-db margin over the 66 db we set for ourselves (1 mv in to 2 volts out). This looks as if we could use two 12AX7's, using the spare half for a cathode-follower output (Fig. 1).

From this we can sketch out the approximate level at different points, as in Fig. 1 to see how we can arrange the sequence. With a 1-mv input, the first stage will give a gain (in round figures) of 60, producing 60 mv at the plate. If we put the equalization in at this point, it will reduce the level to 6 mv at the grid of the second stage, which is 16 db higher in level than the grid of the first stage and hence keeps a safe margin above noise.

The second stage will give a further gain of 60, bringing the level up to 360 mv at its plate. We also need a high-level input for radio, TV, crystal pickup or tape sources, each of which may be in the region of 0.5 to 1 volt, and none of which require this phono equalization. So the output of the second stage is a convenient point to place a high-level input.

Next we can add the volume control, followed by the tone control. The tone control brings the maximum level down into the region of 36 mv. The last of the three amplifying stages brings the level up to a maximum of 2 volts—all specified output level.

Here we can insert the loudness control and finish off with the cathode follower. It provides a low source impedance for the connecting link to the power amplifier and insures that loading by the power amplifier input impedance does not affect loudness-control performance or any other part of the preamplifier in any way.

We have based this calculation on the 12AX7, but this tube is notoriously metochromatic and hum-generating in low-level application. But the 7025 has electrical characteristics identical to those of the 12AX7, and it is specially constructed to be non-microphonic and have low hum for preamplifier use.

Power supplies

With the amount of bass emphasis given by the equalizer (and possibly

Fig. 1—Preliminary figuring; first the general tube plan is laid out and prospective signal levels at various points filled in.

MAY, 1960

61

*Author: Understanding Hi-Fi Circuits, Ger-}

back Library.
with the aid of a 100-µf electrolytic capacitor and a resistor to provide the necessary voltage drop to protect the tube heaters.

The dropping resistor must be carefully adjusted to avoid burning out the heaters. Start with a value that is obviously too large—say 50 ohms—and work your way down until you get 24 volts or a little less. If you start the wrong side of 24 volts, you may well blow the tubes.

A 3,300-ohm cathode resistor gives correct bias for each stage. To get maximum gain it is bypassed by an electrolytic capacitor. A 100-µf 6-volt unit is satisfactory.

For the B-supply, a transformer with a 500-volt center-tapped secondary rated at 20 ma is ample. A pair of selenium rectifiers feeding a resistance-capacitance filter give adequately smooth B-plus at each point.

To minimize feedback problems caused by the common B-supply, the cathode-follower feed is decoupled on the first stage, while the middle two stages have a common B-plus feed point as shown in Fig. 3. This insures that any common coupling through the supply will always be negative feedback. This can occur only under maximum gain conditions, with bass boost, volume control and loudness control all set at maximum.

The resistors are calculated to provide the right plate voltages at each supply point. Each tube takes 0.45 ma (according to the tube manual). The rectifier will give about 300 volts on the 10-µf electrolytic. Allowing 50 volts' drop in the feed to the cathode follower requires little filters. A further 100,000 ohms to the first stage will give it about 200 volts. The feed to the middle stages also uses 56,000 ohms to give 250 volts B-plus.

Equalization

Now for the audio circuits. We decide we want three equalizations: one for the RIAA curve which gives a 20-db low-frequency boost between 50 and 500 cycles and a high-frequency rolloff commencing at 5,129 cycles. The ffr, for older London records, requires a 14-db low-frequency boost, with the critical points at 150 and 750 cycles, and a 20-db downward step for the high end, with the critical points at 1,000 cycles and 19 kc. Finally, a curve to suit the European 78 is desirable. It gives a 20-db low-frequency boost, with the critical points at 25 and 250 cycles, with no high rolloff at all. If a special equalization is needed, it can be added in a similar manner.

The maximum low-frequency boost required for any of these is 20 db, although the ffr requires only 14 db. So we can use a 1-megohm series resistor from the plate-coupling resistor of the first stage to provide the top end of the boost network as a starting point.

For the European 78 characteristic, which has no high rolloff, connecting this circuit to the grid of the second stage causes a loss of high frequencies due to about 50-µf stray capacitance to ground. This will be across a resistance of approximately 100,000 ohms. To compensate for this, connect a 5-µf capacitor across the 1-megohm resistor.

For each of the 20-db boosts, the bottom-end resistor should be about 120,000 ohms. The capacitor has to be modified to give the right turnover point in each case. For a 14-db boost, the bottom-end resistor must be about 220,000 ohms.

To get the boost in the right place, the turnover point should be at 500 cycles for the RIAA. For a 120,000-ohm reactance at 500 cycles, we need .0025 µf. For the European 78, we need a capacitor with a 120,000-ohm reactance at 250 cycles. This requires .005 µf. For...
the ffrr we need a capacitor with a 220,000-ohm reactance at 750 cycles. This requires .001 μf. The circuit so far is shown in Fig. 4.

As a precaution against switching clicks when the switch is turned on, connect a 10-megohm resistor between the switch contact and ground, to keep each of these capacitors discharged when not in the circuit, as shown in Fig. 5.

To take care of the high-frequency rolloff, the RIAA requires a capacitance with a 100,000-ohm reactance at 2,120 cycles. Here 750 μf will serve. For the ffrr characteristic, we need a 12,000-ohm resistance in series with a capacitance giving a 110,000-ohm reactance at 1,000 cycles. This requires .0015 μf. This takes care of the three equalization characteristics, which can be wired as shown in Fig. 6. A three-pole four-position switch is used to select phono equalization characteristics in three positions. The fourth position is for high-level input.

Volume and tone controls

To satisfy the loading requirements of the second stage, a 500,000-ohm LEVEL control should be used. This is the minimum value to secure maximum gain from the second stage. At same time, the resistance of the second stage, looking back from the top end of the volume control, is somewhat less than 100,000 ohms while the maximum source resistance, looking in at the slider of the volume control, occurs when this is approximately 300,000 ohms from the bottom and will be a resistance of 150,000 ohms. So the source resistance, looking back into the volume control from the tone control circuit (Fig. 7), will be a maximum of 130,000 ohms and a minimum, near its bottom position, in the region of zero.

It should have a logarithmic taper to give the correct range discussed in the article on this subject. An inexpensive little luxury is the 100,000-ohm preset potentiometer connected in the high-level input, which adjusts the input so program switching does not drastically alter level.

If we make the top-end resistor of the tone-control divider network 1 megohm, and the bottom-end resistor 120,000 ohms, we should get tone compensation which is practically unaffected by the volume control setting. The bass-boost capacitor should have a reactance of about 120,000 ohms at about 500 cycles, which requires .0025 μf. The rolloff capacitor should be about 250 μf. The bass control should be 2.5 megohms as an optimum value. If more control is required, 5 megohms may give better results but this runs the risk of putting too much resistance in the grid circuit of the third stage.

High-frequency rolloff needs a capacitor with a 120,000-ohm reactance at 2,000 cycles. A 620-μf unit is about right. For high-frequency boost, the capacitance should have a 1-megohm reactance at 2,000 cycles—about 75 μf. Another 2.5-megohm control serves as the TREVLE control. The completed volume and tone control circuit is shown in Fig. 7.

Next is the loudness control. Its circuit is shown in Fig. 8.

Cathode-follower output

The cathode follower for this circuit is quite simple. The same circuit values can be used, putting the 270,000-ohm resistor in the cathode circuit instead of the plate. However, it is advantageous to use a somewhat lower value as we do not need maximum gain and we do not want to strangle the tube. About 150,000 ohms would probably be better, with a bias resistor in the region of 2,700 ohms. The grid-to-bias point resistor can be lower than usual—in the region of 100,000 ohms. This will not appreciably load the loudness control circuit, because of the feedback in the cathode follower which is in the region of 34 db, which will multiply its effective value by 50, to 5 megohms.

The output coupling capacitor choice depends on the input resistance of the basic amplifier. If it is 100,000 ohms, a 0.25-μf capacitor will give less than 1 db loss at 20 cycles. If the basic amplifier input resistance is 250,000 ohms, a 0.1-μf capacitor will give the same results. But if the input resist-
Wiring to the switch is kept well away from the case and connected to the chassis. If they have a metallic case, serious difficulties can result. If you connect (a crystal pickup, for example), it’s also a good idea to run them close to the case.

Coupling capacitor values have not been given. There are four. To find the 3-db point in the whole amplifier, it will correspond with 0.75 db each, if they are all the same. If this frequency is made 10 cycles, we shall have a 1-db loss at 20 cycles in overall response, which should be acceptable. So the 3-db point of each coupling should be at about 3.5 or 4 cycles. For the first stage, the associated resistance can be as low as about 600,000 ohms (100,000 ohms in the plate and 500,000 ohms in the following grid), so we should use 0.1 μF. For the coupling from the third stage to the loudness control, 0.1 μF again is needed, while the input to the cathode follower looks like 5 megohms, so .01 will be adequate here.

This completes the story as far as values are concerned. The input resistor is suited to the type of pickup used. The high-level input is 100,000 ohms. If a larger value is needed for satisfactory operation of whatever you connect (a crystal pickup, for example), it can be changed without causing serious difficulties.

A final point is ground wiring. If the following points are observed, you should have no trouble with hum or instability.

- Wire all ground returns to the associated stage, and make the ground a single continuous bus running from input to output.
- Connect the ground bus to the chassis only at one point, preferably near the input end. Avoid using electrolytic capacitors that provide a ground to chassis. If they have a metallic case connected to their negative lead, isolate the case from the chassis, and connect it to the ground bus at the appropriate point, which should be near the output end or where the transformer center tap is.
- Keep all heater current out of the ground bus. Wire the heaters separately, including the supply and filtering, and ground the negative side at one point only.
- You may like to add an on-off switch, attached to the input to control the volume or loudness control. If so, be sure the ac wiring to the switch is kept well away from audio circuits, especially low-level ones. Follow the same precaution if you add a pilot light. As stated earlier, it pays to keep audio leads short, and it’s also a good idea to run them close to the chassis.

The completed unit makes a neat little amplifier. It is extended to include the power amplifier and its associated components.

For hi-fi system owners who like to be lulled to sleep by the soothing strings of Mantovani or some other favorite musical selection, here is a device that automatically shuts off all components after the last disc has ended.

It is an adaptation of a feature now available on many record changers. The changer’s built-in automatic shutoff is extended to include the power amplifier and its associated components.

An inexpensive hookup of six components on a small chassis completes the project in an evening at home. The basic component is the 6-volt single-pole double-throw relay. It is mounted near the center of one cover of a 4 x 4 x 2-inch cabinet. Mounted next to the relay are two ac outlets for the turntable and amplifier. On the other side of the relay, a dpdt toggle switch and a 117-volt neon pilot light assembly are mounted (see photos).

The relay’s coil is connected in series with the turntable motor when switch S is in the AUTO position. Using only 6 volts, this relay has no undesirable effects on the 105-130-volt turntable motor circuit. (The model used by the author is Garrard model RC-88.) This relay passes ac line power for the amplifier through its contacts when in the energized position. After the last record has played, the automatic shutoff of the turntable motor stops current through the relay, which opens, turning off line current to the amplifier.

The neon pilot light is connected across the alternate amplifier power circuit and is on when the relay is energized in the AUTO position. In the NORMAL position the pilot lamp is out. A 220,000-ohm resistor (R) is a current limiter for the lamp circuit.

There must be a common ground between the night switch and the main power amplifier to keep the neon bulb from glowing dimly in the NORMAL position when the equipment is not in use. If, upon original hookup, this does not put out the glow, reverse the plug from the power amplifier. The lamp will still glow dimly in the NORMAL position when the power amplifier is on. I have not found a solution to this problem. Any suggestion will be appreciated.

If the record player is in operation when the switch is thrown from NORMAL to AUTO, there is a noticeable pop in the sound system. This is an unavoidable reaction caused by the mechanical operational delay of the relay over that of the dpdt switch. So be sure the system is turned off before switching in the night switch. Also, remember to place the switch in the NORMAL position before restarting the record player the next morning. Pleasant dreams.
FROM HEATHKIT®

...12 NEW AND WONDERFUL STEREO, MARINE, AMATEUR & TEST GEAR ITEMS!

HEATHKIT AA-50 $79.95
New hi-fi stereo features!
25/25 watt stereo amplifier kit
In one handsome package, you get both stereo power and control, with a host of deluxe features. Hi-fi rated at 25 watts per stereo channel (50 watts mono), this new Heathkit design includes channel separation control; new mixed center speaker output; stereo reverse and balance controls; separate tone controls for each channel with ganged volume controls, and five switch-selected inputs for each channel. Ease of assembly is assured by two circuit boards, minimizing the possibility of wiring errors. Adjustment of individual channel controls gives a pseudo-stereo effect to even monophonic program material. 30 lbs.

HEATHKIT DF-3 $99.95
Now is the time to build marine equipment and Heath brings you a new 3-band direction finder kit
Featuring a nine-transistor circuit . . . flashlight battery power supply . . . pressembled, prealigned tuning section . . . three bands (beacon and aeronautical, broadcast, and marine-telephone) . . . and a new "sense" antenna system that eliminates 180° ambiguity in bearings . . . this beautifully styled, splash-resistant, rugged instrument is an incomparable value at its low Heathkit price. 13 lbs.

MONEY-BACK GUARANTEE
Heath Company unconditionally guarantees that each Heathkit® product assembled in accordance with our easy-to-understand instruction manual must meet our published specifications for performance or your purchase price will be cheerfully refunded.

Build now for summer fun & enjoyment
HEATHKIT® GIVES YOU MORE IN THESE TEN WAYS:

1. Building a Heathkit is easy—Check-by-step instruction manuals make it virtually impossible for you to fail.
2. Building a Heathkit is quick—No complicated, technical jargon for you to decipher; at most, a Heathkit takes only a few evenings to assemble.
3. Building a Heathkit is economical—Mass production and purchasing economies are passed directly along to you, our customers.
4. Building a Heathkit is educational—As you build, you learn...more about electronics, more about the component units and when and where to add them.
5. Building a Heathkit is fun—Nothing quite equals the sense of achievement you receive when you successfully complete a Heathkit unit and “tune-in” for the first time.
6. Your Heathkit is Guaranteed—Every Heathkit unit is guaranteed to meet advertised performance specifications...or your money will be cheerfully refunded.
7. Your Heathkit is available on Convenient Credit—Our time payment plan makes it possible for you to order now...pay later.
8. Your Heathkit is Tops in Quality—The very finest in electronic equipment comes to you in kit form from the Heath Company.
9. Heathkit Dealers can Serve you Locally—Carefully selected Heathkit representatives are available in most localities.
10. Heathkit Service is Customer Service—Our staff of technical experts is always ready to answer your questions or help you if you have any difficulty.

For boatsman, fisherman or skindiver
a new, low-cost, depth sounder kit
Completely transistorized, this invaluable marine accessory enables you to detect submerged objects and their depth as well as to gauge the depth of the water and the nature of the bottom from 0 to 100 feet. Self-contained power supply uses 6 standard flashlight cells and 1 long-life 9 V battery. Attractively styled, two-tone marine-green cabinet uses “tongue and groove” joints for splash protection; all metal parts treated to resist corrosion. Transducer may be mounted permanently through hull or temporarily outboard. 10 lbs.

A wonderful addition to the “ham shack”
two new 6 and 10 meter transceiver kits
They’re combination transmitters, designed for crystal control, and variable tuned receivers operating on the 6 and 10 meter amateur bands (50 to 54 mc from HW-29 and 28 to 29.7 mc for HW-19) in either fixed or mobile installations. Highly sensitive superregenerative receivers pull in signals as low as 1 microvolt; low power output is more than adequate for “local” net operation. Other features include: built-in RP trap on 10 meter version to minimize TVI; adjustable link coupling on 6 meter version; built-in amplifier metering jack and “press-to-talk” switch with “transmit” and “hold” positions. Can be used in ham shack or as compact mobile rigs. Not for Citizens Band use. 10 lbs.

Wherever you are...wherever you go
you can carry your music with you
6-transistor portable radio kit
Assembled in only a few hours, both of these models incorporate superior design features that will give you portable listening enjoyment day after day. Vernier tuning control gives smooth, easily-separated station tuning. Large 4” x 6” PM speaker with heavy magnet provides “big set” richness of tone. Operates on standard size “D” flashlight batteries. Six Texas Instrument transistors.

XR-2L (simulated leather and plastic) 7 lbs.
XR-2P (high-impact plastic) 6 lbs.
ORDERING INSTRUCTIONS

Fill out the order blank below, giving us your name and address in the space provided at right. Include charges for parcel post according to weights shown. Express orders are shipped delivery charges collect. All prices F.O.B. Benton Harbor, Mich. A 20% deposit is required on all C.O.D. orders. Prices subject to change without notice.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Model No.</th>
<th>Price</th>
</tr>
</thead>
</table>

Ship via. □ Parcel Post □ Express □ C.O.D. □ Best Way

Please send my free copy of your complete catalog.

Name ___________________________ Address ___________________________

City ___________________________ Zone ________ State ________

Learn more about the wonderful world of electronics! Educational kit

Teaches, as you build, the basic “yardsticks” of electronics—opens up many fascinating areas of study for youngsters and adults alike. At less than the cost of a few textbooks on the subject, here’s a complete basic electricity course resulting in a volt-ohm-milliammeter of a thousand-and-one uses. See the practical results of what you are learning—the EK-1 is first in a series of educational kits prepared by Heath. 4 lbs.

Here it is! A new manual stereo record player kit

Made by famous Garrard of England, the AD-10 is a compact 4-speed player designed to provide trouble-free performance with low rumble, flutter and wow figures. Rubber matted heavy turntable is shock-mounted, and idler wheels retract, when turned off, to prevent flat spots. Powered by line-filtered, four-pole induction motor at 16, 33⅓, 45 and 78 rpm. Supplied with Sonotone STA4-SD ceramic stereo turnover cartridge with .7 mil diamond and 3 mil sapphire styli. 10 lbs.

It’s easy and economical to go stereo with these two Heathkit “compatibles”—stereo preamp kit (AA-20)

Made for each other, either of these components can be incorporated with your present stereo system. The preamplifier (AA-20) features 4 inputs in each stereo channel and gives you a choice of 6 functions. It will accommodate a magnetic phonograph (RIAA equalized), a crystal or ceramic phonograph, and 2 auxiliary sources (AM-FM tuners, TV, tape recorders etc.), and is completely self-powered. 8 lbs.

Hi-fi rated 14/14 watt stereo power amplifier kit (AA-30)

Two 14-watt high fidelity amplifiers, one for each stereo channel, are packaged in this single-compact, handsomely styled amplifier (AA-30). Ideal for use with the AA-20, any stereo preamp or with a pair of monophonic preamps, it features individual amplifier gain controls and speaker phase reversal switch. Output terminals accommodate 4, 8 and 16 ohm speakers. 21 lbs.

Outstanding professional quality . . . mutual conduction tube tester kit

An impressive list of electronic and mechanical features make this tube tester one of the finest values in the industry. Tests Gm (amplifiers) from 0-24,000 microhmhos, Emision, Leakage, Grid current (14 microampere sensitivity), Voltage regulators (Built-in Variable DC Power Supply), low power thyatron and eye tubes. Features 300, 450 and 600 ma constant current heater supplies. Life test. Hybrid tube test, built-in switch operated calibration circuit. Large easy-to-read meter, constant tension free rolling roll chart mechanism. Includes 7 wiring harnesses. Assembly skill of technician or higher recommended. Assembly time, 40 hours average. Black leatherette case with white trim, nylon feet, removable top. (27 lbs.)

New, all transistor “Mohican” general coverage receiver kit

The “Mohican” is the first all transistor communications-type receiver in kit form and first to use ceramic IF transformers. Covers 550 kc to 30 mc on five bands, with five separately calibrated bands to cover amateur frequencies (including 11 meter citizens band). Powered by 8 standard size “C” flashlight cells. Built-in 54” whip antenna, flywheel tuning, tuning meter, and headphone jack. Truly an outstanding receiver! Batteries not included. 20 lbs.

FREE CATALOG!
Over 150 items of stereo, marine, amateur and test equipment are illustrated and described in the complete Heathkit Catalog.

HEATH COMPANY Benton Harbor 20, Mich.

□ Please send my free copy of your complete catalog.

Name ___________________________ Address ___________________________

City ___________________________ Zone ________ State ________
Zenith has extended stereo control (A) on panel of their hi-fi instruments. Clockwise rotation moves indicator from monaural to standard stereo to extended stereo (C). Balance control (B) is mounted coaxially with stereo range control.

Fig. 1—Simplified circuit of Zenith extended stereo system.
Audio—High Fidelity

channel carries the combined information of both channels and provides good monophonic hi-fi reproduction when the difference channel is eliminated. The difference channel is responsible for the separation or spread in stereo reproduction.

The output transformers of the L + R and L – R power amplifiers are connected as a matrix network so the information originating in the left channel of the source comes out of one speaker while that from the right channel comes out of the other. The stereo effect is controlled by varying the magnitude of the R – L signal fed to the difference amplifier. When no signal is fed to the difference amplifier, the system operates monophonically with the sum signal appearing in both speakers. Standard stereo is obtained with the control set for equal signals fed to the sum and difference amplifiers, and extended stereo is obtained when the greater signal is fed to the difference channel.

Fig. 1 is a simplified circuit of the Zenith extended-stereo system. Right and left signals from the stereo cartridge are fed through J1 and J2 to the arms of the dual BALANCE control. The sections of this control are connected so the signal to the grid of one of the preamplifiers increases as the signal to the other decreases in proportion.

Circuit analysis

Assume that at a given moment the stereo source delivers minus L (–L) and minus R (–R) signals to inputs J1 and J2, respectively. The left preamp inverts the phase of the signal and amplifies by a factor A, equal to stage gain. If, in this case, stage gain is 2, a +2L signal will appear at the plate and at the junction of C1 and C4.

The plate load for the left preamp (V1-a) consists of R1 and R2 in series. This network forms a voltage divider developing a +L voltage at the junction. This +L signal is tapped off and fed through a network consisting of C2, R4 and C3 to the grid of V1-b, the right preamplifier.

The incoming –R and the +L signals appear as an L – R signal on V1-b’s grid. The phase is inverted and the amplified signal Δ(R – L) appears at the plate and across R6, the STEREO control. A portion of this voltage is tapped off and fed through a network consisting of C2, R4 and C3 to the grid of V1-b, the right preamplifier.

The matrix network consists of the secondaries of output transformers T1...
ALL-AMERICAN KITS
... EVERY PART AMERICAN MADE
Complete with easy assembly instructions.

Model TR-1
$23.95

SIX TRANSISTOR RADIO
Fun to build ... a pleasure to hear. No dangerous high-voltage ... it's battery powered. Even a child can hook-up the all-transistor circuits. Place it anywhere ... play it anywhere. Beautiful all-wood cabinet and perfect sound from full-fidelity 4" Alnico PM Speaker enhances any room. 9 ½" x 8 ¾". Order Model TR-1. Battery not included.

Model FP-1
$34.95

3-SPEED FOUR TRANSISTOR PORTABLE PHONOGRAPH
Play records ANYWHERE ... and learn basic Hi-Fi, with easy hook-up printed circuits. Plays for approx. 100 hrs. on 4 flashlight batteries. Full-fidelity speaker, balanced tone-arm, and special 5-pole motor insure big sound. Adaptable for stereo. Plays 7", 10", or 12" records at 33 ½, 45 and 78 rpm. All-weather case with hardware. Order Model FP-1. Battery not included.

MONEY BACK GUARANTEE
Money back if not completely satisfied.

AVAILABLE FROM:
Mc Gee Radio — Kansas City, Mo.
Dow Radio — Pasadena, Calif.
OR MAIL COUPON BELOW

TO: ALL-AMERICAN KITS CO., DEPT. RE-1
1830 N. Sheffield Ave., Chicago 14, Ill.

Send _TR-1 Radio Kits. I enclose $23.95 ea.
Send _PP-1Phone Kits. I enclose $34.95 ea.
Send _PP-1 Batteries. I enclose $1.10.
□ Ship C.O.D.

NAME
ADDRESS
CITY STATE

AUDI O—HIGH FIDELITY

The Motorola model SK30 comes in mahogany, blond, and walnut finishes.
Many thousands of servicemen today insure their professional reputation and make each job more profitable—with B&K testers. Each model is based on actual servicing experience, and combines both speed and accuracy. Each is designed to meet individual servicing needs. Each is a top value, with features that mean more for your money.

Measures true dynamic mutual conductance—not just emission. Makes complete tube test under the actual dynamic operating conditions of the TV set. Tests complete set in minutes. Shows your customer the true tube condition. Sells more tubes right-on-the-spot. Saves costly callbacks. Pays for itself over and over again. It's good business to choose B&K.

MODEL 650. Fastest and most complete portable Tube and Transistor Tester. Checks over 99% of the tubes most widely used in television receivers. Tests each section of multiple tubes separately for Gm, Shorts, Grid Emission, Gas, and Life. Includes spare sockets and filament voltages for future new tube types. Tests transistors, too. Net, $179.95

MODEL 675. Completely reliable, long-service Automatic Tube and Transistor Tester. Only 60 indexed phenolic Dyna-Cards test over 99% of tubes most widely used in television receivers. Tests each section of multiple tubes separately for Gm, Shorts, Grid Emission, Gas, and Life. Easily kept up-to-date with extra cords and punch included. Tests transistors, too. Net, $169.95

MODEL 550. Low-cost professional model for limited budgets. Provides 52 tube sockets to test more tubes faster, easier. Accurately quick-checks most of the television tubes usually encountered in everyday service work. Tests each section of dual tubes separately for shorts, grid emission, gas content, and leakage. No multiple switching. Big value. Net, $119.95

See Your B&K Distributor or Send for Bulletin ST24 E
to bridge a woofer between taps on the output transformers of the left- and right-channel amplifiers. When multi-channel speaker systems are used for the outside channels, the woofer is often bridged across the low-frequency outputs of the right- and left-channel cross-over networks.

Another method is to feed the sum of the left and right input signals to a third amplifier through a low-pass filter and feed the individual left- and right-channel signals to their respective amplifiers through high-pass networks.

Some of Motorola's phonographs and combinations feature a "three-channel" stereo system with a separate low-frequency (below 300 cycles) amplifier for the center channel. Fig. 2 shows the circuit of the HS-768 and HS-793 power amplifier chassis used in the SK28, SK29, SK30 and SK31 models. All models in this series have a 15-inch woofer in the center channel. The SK28 and SK30 have 8-inch dual-cone mid-range speakers and 5-inch tweeters in the right and left channels. The SK29 has 6 x 9-inch mid-range units and 5-inch tweeters. The SK31 is similar to the SK28 and has a pair of 5-inch tweeters in each of the outside channels.

The right- and left-channel signals from the preamplifier are applied directly to the inputs of the single-ended right- and left-channel amplifiers through two-section high-pass filters C1, R3, C4, R6 and C2, R4, C5, R7 respectively. The incoming signals from the preamp are mixed in R1 and R2 to produce a center-channel signal that is the sum of the signals in the right and left channels. The L+R signal is applied to the input of the bass (center-channel) amplifier through a 300-cycle low-pass filter composed of C3, R5 and C6. Signals below 300 cycles readily pass through the filter and on to the push-pull bass power amplifier and the 15-inch woofer.

When used on a monophonic source, the function switch on the preamplifier and control chassis (not shown) connects the right- and left-channel inputs. The system then functions as a twin-channel amplifier with electronic cross-over at 300 cycles.

The Magnavox circuit
Magnavox stereo units using the 182
series chassis have separate bass and treble amplifiers for each stereo channel. Each bass channel uses push-pull 6V6's delivering around 12 watts and the treble channels use single-ended 6V6's with 3 watts output. The schematic of one of the stereo channels is shown in Fig. 3.

The signal from one channel of the stereo source is fed to 1,000-cycle high- and low-pass filters in parallel. Signals below 1,000 cycles pass through the low-pass filter (L1, C2) to the 12AT7 voltage amplifier and phase inverter to the push-pull grids of the 6V6-GT power amplifier tubes. The high-pass filter (C1, L2) feeds signals above 1 ke to half of a 12AX7 treble voltage amplifier driving a single 6V6-GT. The bass and treble amplifiers have negative feedback from their respective speakers to the cathode of the input stage.

The stereo balancing circuits vary with different versions of the 182 chassis. In the 182-20 and -31 chassis, the bass amplifiers are carefully engineered for equal gain and output and a master balance control is connected across the inputs ahead of the crossover filters as in Fig. 3. Separate treble level controls are connected in the grid circuits of the treble amplifiers. In the 182-00 and 182-10 versions, the bass balance control is between the low-pass filter and the input grid of the second channel. Here, the resistor corresponding to R3 in the second channel is a potentiometer with its arm connected to the input grid.

END

Dictionary of Color TV Controls

Don't know which color TV control does what? Here's a simple detailed chart that lists all the color TV controls a technician is likely to encounter. It tells what the control does, what it looks like, what it's called, where to find it and how to use it.

No-Parts Radio

Well practically none. Two-transistor matchbox radio has a total of six parts. Coupling capacitors and resistors are eliminated by using a novel direct-coupled design. Battery drain is low, size is small, cost is low.

MAY, 1960
SIGNAL VOLATGES in the CHROMA MATRIX

By ROBERT G. MIDDLETON

VALUES and relations of signal voltages used in color TV matrices are important to the bench technician. He must know what should be present before he can determine what's wrong. Matrix circuits are used only in color receivers. One type recovers a chroma signal from a mixture of two other chroma signals. Another type obtains a primary color signal from a mixture of chroma and Y (luminance) signals.

A G - Y matrix is used in receivers with R - Y and B - Y demodulators. A B - Y matrix is used in receivers with R - Y and G - Y demodulators. Old-style receivers used R G B matrices, following I and Q demodulators. Still other matrices are used in receivers which demodulate R - Y and Q, and those which demodulate X and Z. The bootstrap demodulator has a built-in G - Y matrix in the cathodes of the demodulator tubes.

To the beginner, the wide variety of matrices seems confusing. However, it helps to remember that the color pic- (Continued on page 79)
MAN WITH PROFIT IN HIS POCKET
Mr. Van Akkeren, President of Van's Radio and Television Service, Sheboygan, Wisconsin, who has been in the servicing business since 1924 says, "We average about 1,000 calls per month. With that many calls we must keep our call-backs to a very minimum and maintain good customer relations. We are doing that by using dependable Raytheon tubes and operating as a Raytheon Bonded Dealer."

HE'S MR. ...ONE OF 10,372

Mr. Van Akkeren, President of Van's Radio and Television Service, Sheboygan, Wisconsin, who has been in the servicing business since 1924 says, "We average about 1,000 calls per month. With that many calls we must keep our call-backs to a very minimum and maintain good customer relations. We are doing that by using dependable Raytheon tubes and operating as a Raytheon Bonded Dealer."

Here's how you,

NATIONAL ADVERTISING:
A year-round customer build-up for Bonded TV Service. Every month a powerful ad in TV Guide, number one weekly magazine in the U.S.A. with over 7,500,000 circulation.

LOCAL TIE-IN WITH NATIONAL ADS:
Raytheon Bonded Dealer ads appear in each local program listing section of TV Guide. This gives you the opportunity to list your name in the TV Guide edition covering your area.

MERCHANDISING KIT:
Every Bonded Dealer gets a Merchandising Kit. It's a complete advertising and promotion program that includes your Bonded Dealer Certificate, Identification Card, Creed Display, Newspaper ad mats and 90-day Repair Bonds, everything you need to start you on the way to more profits.

BUSINESS BUILDERS:
Your local Raytheon Distributor is ready to provide many other promotion and merchandising extras. Your name in the Classified Telephone book, outdoor and transportation advertising, and a whole program of business and shop aids for your store.
The Raytheon Bonded Dealer Program is an exclusive program limited to qualified independent TV service technicians with adequate service facilities. You get all the benefits and advantages of a nationwide service program, prestige of the nationally respected Raytheon name and the exclusive competitive advantage of being local headquarters for Bonded TV-Radio Service. The Raytheon Bonded Dealer Program is backed by top-quality Raytheon products, technical service, sales aids, promotion materials, business-building advertising materials and much more. It’s a complete program designed to pay off in customer confidence and in more business and more profits for you.

too, can benefit as a Raytheon Bonded Dealer!

STORE IDENTIFICATION:
Eye-catching red and gold window valance, smart looking outdoor signs, truck and door decals and colorful window displays make your entire place of business more attractive.

NEW, OFFICIAL BONDED DEALER MAGAZINE:
The Raytheon Bond is the official magazine for Bonded Dealers only. In it is summarized the latest merchandising and advertising plans, technical articles and other material available to Bonded Dealers.

EXCLUSIVE 90-DAY REPAIR BOND:
Here is the most dynamic goodwill builder in TV servicing history! As a Raytheon Bonded Dealer, you will have working for you the salespower of an official 90-day Repair Bond. Proof that you and Raytheon stand behind your superior workmanship. Each bond provides space for your itemized bill listing all parts and service, along with the Bonded Dealer Code of Ethics.
I'm interested in becoming a Raytheon Bonded Dealer and taking advantage of the nationally advertised program and the exclusive use of the 90-day Repair Bond. I understand that this program is limited to full-time, independent TV-Radio Service Dealers.

Firm Name

Business Address

City Zone State

Telephone Number

Your Signature & Title
(Continued from page 74) ture always works with the same grid-cathode voltages. Hence, no matter what type of matrix is used, the end result at the picture tube is the same. This is shown in Fig. 1. The end result of matrix operation is always as if the output of the red camera were connected to the red gun in the color picture tube, the blue camera to the blue gun and the green camera to the green gun.

G - Y matrix

Many color receivers have used, and still use, the G - Y matrix system.

Fig. 8—Keyed rainbow generator display.

Fig. 9—First and seventh "pipe" null if G - Y matrix is operating correctly shown in Fig. 2. In this arrangement, the G - Y matrix follows the R - Y and B - Y chroma demodulators.

Let us see how a color signal is processed. Fig. 3 shows a complete color signal from the picture detector applied to the Y and chroma channels. This is a color bar. It has a Y signal upon which the 3.58-me chroma signal rides. These are broken down in Fig. 4. The Y signal passes through the Y amplifier to the picture-tube cathodes. The chroma signal is stopped by the Y amplifier. The chroma signal passes through the chroma channels. The Y signal is stopped by the chroma channels.

The chroma signal is demodulated in the chroma circuit. It is applied as a square wave (envelope of the chroma signal) to the picture-tube grids, as shown in Fig. 5. A chroma signal always has a certain phase, as shown in Fig. 6. This diagram shows also that a G - Y matrix has peak outputs on a (G - Y) chroma signal.

We also see from Fig. 6 that R - Y and B - Y are separated 90° in phase. Or, we say that R - Y and B - Y are in quadrature. An R - Y demodulator has zero output (nulls) on a B - Y signal. Likewise, a B - Y demodulator nulls on an R - Y signal. Many color bar generators have a (G - Y) /90° signal — this is a chroma signal in quadrature with G - Y. Hence, a G - Y matrix nulls on a (G - Y) /90° signal, as in Fig. 7. Note that, as we expect, the R - Y and B - Y channels do not null on a (G - Y) /90° signal.

Many color bar generators are the keyed-rainbow type. They display color-difference stripes on the picture-tube screen as in Fig. 8. If we connect a scope at the G - Y matrix output, we see the pattern shown in Fig. 8. The first and seventh "pipes" are (G - Y) /90°. Hence, we find the first and seventh nulls on the scope pattern, if the G - Y matrix is operating properly.

Similar tests can be made in any chroma channel with a keyed-rainbow signal, as shown in Fig. 10. It makes no difference whether the chroma channel is a demodulator circuit or a matrix circuit. A number of modern receivers interchange the B - Y demodulator and G - Y matrices, as in Fig. 11. However, the test results are the same in the R - Y, B - Y and G - Y channels. This is a very useful point to keep in mind.

A G - Y matrix operates as shown in Fig. 12. It combines -0.51 of R - Y with -0.19 of B - Y to make the G - Y signal. Note that the output from the B - Y demodulator is 78% higher than the output from the R - Y channel. This is done to obtain unadjusted chroma values. You will recall how an FM signal is pre-emphasized at the transmitter and de-emphasized at the receiver to get a better signal-to-noise ratio on high frequencies. In somewhat the same manner, the chroma signal is readjusted at the color TV transmitter to avoid overmodulation of the picture carrier. The chroma signal must then be readjusted at the color receiver to get true colors.

In this readjustment, R - Y is reduced to 0.877 and B - Y to 0.493 of its initial value. Hence, the relations between the received signal and the signal as applied to the color picture tube are as illustrated in Fig. 13. B - Y is given 78% greater amplification than R - Y.

The circuit details for a typical G - Y matrix are seen in Fig. 14. Matrixing is handled by the three resistors connected to the grid of the G - Y matrix tube. The tube is merely a phase inverter and amplifier. The matrixing mixes the R - Y and B - Y signals in the three grid-circuit resis-
TELEVISION

![Diagram of a color bar pattern]

Fig. 14—Typical circuit of a G–Y matrix.

Fig. 15—Chrominance phase diagram shows each color in terms of phase angle with respect to burst phase.

Fig. 16—When a color bar pattern is being transmitted, a saturated red bar develops the indicated square-wave voltages in the color receiver circuits.

Hence, the red chroma signal has a phase which produces output only from the red gun, in spite of the fact that the three cathodes have a 30% Y signal present. The phase of the red chroma signal works as shown in Fig. 16. It gives a 70% grid signal to the red gun. This grid signal adds to the 50% Y signal to give 100% output from the red gun. The B – Y channel delivers a −30% output to the blue grid. This cancels the 50% Y signal on the blue-gun cathode. The G – Y matrix delivers a −30% output to the green grid. This cancels the 30% Y signal on the green-gun cathode.

When we sweep the chroma signal 360° around the chroma phase diagram, the outputs from the three chroma channels appear as in Fig. 17. This diagram shows that output is least from the G – Y matrix, next highest from the R – Y demodulator and highest from the B – Y demodulator. If we use a keyed or unkeyed rainbow signal, the curves shown in Fig. 17 can be checked with a scope, at the outputs of the color receiver's three chroma channels.

Fig. 17—Relative outputs from the three chroma channels using a keyed or unkeyed rainbow signal.
The Magnavox CT316 chassis showed symptoms of a simple age defect—no picture on a strong signal, but a picture on a weak signal. The age circuit was "simple" too. It consisted of an age detector biased so that only the sync tips sticking up above the noise made the tube conduct. The age detector is followed by one stage of amplification and filtering, a clamp, and a bleed to the B-plus line to supply the tuner age bias. When measured, age voltage was too low for the scads of microvolts coming into the tuner. A finger across the antenna input terminals brought in a smeary picture and a lower age voltage.

To add to the confusion, all the resistors, capacitors and other components in the detector and age circuits checked out OK. A scope couldn't be used because of the IF overload. The set would work with external age bias, but what could be causing the trouble? I decided to run a quick check of the overall response curve. It showed a nearly perfect response. A little tired and very disgusted, I doused the light and turned to leave. A passing glance at the scope pattern, as I reached out to turn it off, stopped me cold. In the dark room I could see a fence about 1/8 inch high along the entire length of the response curve. I started to look for the high-voltage arc which usually causes this sort of display. There was a tiny blue corona around the nut that fastens the high-voltage filter capacitor to an insulating strip and the ground return. Two turns of the nut and the corona disappeared.

This could not cause the age trouble, I thought, but by this time I was becoming a firm believer in ghosts and gremlins. On removing the alignment harness, what should appear but a perfect picture. By this time I was wondering what could have happened to cause this set of circumstances.

A little careful checking showed that the lead connected to the age clamp tube was routed near the corona. The corona pickup was being rectified by the age clamp tube and was bucking out the age voltage generated by the sync pulses and causing the gain of the IF strip to increase until the signal was blocked.

When I placed my finger across the antenna input terminals, I reduced the age voltage but I also cut down the input signal to a point that the IF was not completely overloaded, producing a smeary picture. —F. L. H., Roanoke, Va.
We get many letters wanting details about changing a metal-shell picture tube to a glass type. This is a comparatively easy conversion, and one which is sure to find favor with all technicians who will work on the set in the future.

The first step is to select a glass-bulb tube with electrical characteristics close to the original. For example, the popular (in its day) 21MP4 can be replaced by a 21YP4, with only physical changes, mounting, etc. The -YP4 is not quite an inch longer, but other dimensions are very close. (One note here: watch out for faceplate curvature! For example, if you tried to replace a 21MP4, which has a spherical faceplate, with a 21FP4, which has a "cylindrical" faceplate, the result would be a large gap at most places in the front mask.)

The most difficult part will be mounting the new tube. If the set is a console, the new tube can be mounted on the front of the cabinet, especially if they included a chassis - shell picture tube to a cabinet without fouling on the back corners. The yoke can always be moved to allow the set to go back into the cabinet. These can be made out of heavy fabric straps against the front of the cabinet. These can be made out of luggage straps as sold in auto-supply stores, or any available material. They must be heavy enough to support the weight of the tube, at least 1 inch in width and very strong. Make some kind of a fastening like the gadget shown in the small detail of Fig. 3, so that the straps can be pulled very tight. This one consists of a small plate of metal, held down by screws, the strap is passed under it, pulled tight, then held in place by tightening the screws. Yoke brackets can also be added, if the finished rig looks flimsy. With a few exceptions, chassis-mounted tubes are always provided with yoke brackets. These are the easiest: the old tube is removed and the insulating ring adapted to fit the new tube by trimming it with a sharp pocketknife or tin shears. In some cases a pair of wooden blocks can be cut out and fastened to the front corners of the chassis to hold the tube (Fig. 4). These are usually cut to fit each individual set. Be sure to make them small enough to allow the set to go back into the cabinet without fouling on the back corners. The yoke can always be moved back to take up the extra inch, as these brackets are usually adjustable. (If not, they can be made so by drilling a couple of new holes here and there.)

If there are no yoke braces on the original chassis, they can be made up out of the helpful sheet-metal strap. Bend it to a right angle lengthwise, to give it greater rigidity and fasten it to an open place on the chassis or to the sides if there are no open places on the chassis. (Most of the sets upon which this job will be done are older models and there is usually some open space on the chassis.)

Regular conversion kits are available for quite a number of the older sets, like the Stewart-Warner 9300 series for example. These include all wooden blocks, straps, and screws needed to make the changeover. However, with a drill, saber saw, a few bolts and nuts and a bit of native ingenuity, the TV technician can make almost any tube fit any chassis he wants to, in just a short while.

Hum-bars in color TV

I have a Motorola TS 902 color TV, converted. There is a hum bar visible on the screen when there is no signal applied. It appears as a dark bar moving swiftly from bottom to top, and also appears on the scope as a pip moving left to right through the signal pattern. When a station is tuned in, this hum bar disappears, sometimes for quite a while, then returns, at times moving very slowly, usually from top to bottom. It seems to be coming to the picture tube through the video output tube. I disconnected the regular filament supply of the CRT, fed it with dc and still got the hum bar. The 60-cycle signal seems to be strongest on the screen leads if I clip my probe on the insulation.—L. S. L., Englewood, Colo.

This would seem to be a case of our old friend "marginal electrolytics." You said before that you had shunted several of the filter capacitors without result. I believe, from the "timing" of the hum bar that you mention, that the trouble is going to be found somewhere in or around the vertical output stages.

Fig. 1—Bracket supports yoke and rear of picture tube.

Fig. 2—Bracket may use nut and bolt (a) or screw and captive nut (b).

Fig. 3—Straps support weight of tube.

Fig. 4—Wood blocks hold front of tube.
TELEVISION

Notice that the hum bar moves rapidly when there is no incoming signal (hence no sync) and disappears, then re-appears, moving very slowly, with sync.

Electrolytics with a high power factor will often give misleading results on a shunt test because of the internal leakage (which is, after all, the main cause of the high power-factor condition). To get a reliable test, disconnect each suspected unit and replace it with a known good unit of the same or larger size. Trace your power supply lines with a direct probe (not a low-capacitance probe—it will attenuate the low-frequency ripple signals!) and see what kind of ripple you’ve got on them.

The most likely capacitors in this case would be those “nearest” to the screen leads to the CRT. If they are OK, then go back to the capacitors around the vertical output stage, as I said before. It is quite possible that some of the pulse voltage from this stage is leaking into the video.

You might also investigate the electrolytics in and around the vertical convergence circuits. A 60-cycle pulse stage is leaking into the video. If this doesn’t solve the problem, try replacing some of the pulse voltage from this stage with a direct probe and see what kind of ripple you’ve got on them.

The capacitors in the circuit of the horizontal oscillator most unstable. This sounds as though you have a marginal defect in the horizontal oscillator. In other words, the oscillator is just barely working and the slightest disturbance throws it out of sync, making it stop completely. The collapse of the horizontal sweep is giving you the resistant having shifted in value. The most likely one would be the 470,000-ohm unit which feeds the horizontal oscillator. If it has increased in value, a common complaint, it would make the oscillator most unstable. Also, check the resistors in the grid circuit of the control section of the horizontal oscillator (Fig. 5). Some trouble was found with these if they drifted too far off tolerance. Replace with 5% resistors.

Tricky horizontal hold

The horizontal hold control in an Admiral 18XP4BZ chassis is very sensitive. When the raster jumps out of sync, a sawtooth wave shows up vertically and the screen goes blank. I can lock it back in again with the hold control, but it does the same thing over again. —B. M., Delton, Mich.

This sounds as though you have a marginal defect in the horizontal oscillator. In other words, the oscillator is just barely working and the slightest disturbance throws it out of sync, making it stop completely. The collapse of the horizontal sweep is giving you the resistor having shifted in value. The most likely one would be the 470,000-ohm unit which feeds the horizontal oscillator. If it has increased in value, a common complaint, it would make the oscillator most unstable. Also, check the resistors in the grid circuit of the control section of the horizontal oscillator (Fig. 5). Some trouble was found with these if they drifted too far off tolerance. Replace with 5% resistors.

Transistor antenna booster

Do you have a diagram for a transistor single-channel antenna booster for a TV set? This one will be used on a single set, and I’d like to find one that wouldn’t cost a fortune to build. —A. A., Rutland, S. D.

Transistor antenna boosters are being
NEW ARKAY SQ-9 ‘SKY-VOX’
CITIZENS BAND TRANSCEIVER

fully pre-wired and prealigned front end
KIT $79.95
Only
Factory wired $119.95

Records and plays back in STEREO
and 4 track monaural
Now you can afford the satisfaction and pride of owning a professional quality tape deck. The MS-5 features amazing simplicity of design and operation, yet is engineered to broadcast professional quality stereo tape deck ... PLUS:

- Oversized All metal tape fingers for longer tape life
- Double shoe brakes for split-second non-slip stops
- All metal tape fingers for longer tape life
- Oversized capstan insures constant tape speed
- 2 speed Stereo and monaural operation

Fully pre-wired and prealigned front end
KIT $79.95

只

ARKAY HFT-7 FM-AM Tuner
Another Golden '60 component with the Lifetime Guarantee

KIT $320.00 $49.95 Wired

ARKAY CS 20-watt Stereophonic Dual Amplifier-Preamplifier
Another Golden '60 component with the Lifetime Guarantee

KIT $649.95 $99.95 Wired

ARKAY VT-10 Vacuum Tube Voltmeter
Another Golden '60 component with the Lifetime Guarantee

KIT $259.50 $47.95 Wired

Critical vertical hold

I'm working on a CBS 22C07M TV. The vertical hold control won't stop the picture until it is right at the grounded end, and then it's very critical.—A. W. A., Queens, N. Y.

If you have to run the vertical hold control all the way to the grounded end, you undoubtedly have too much resistance in the circuit. In other words, the 2.2-megohm resistor between the hold control and the oscillator grid has increased in value, or the hold control itself has increased. Check both of them to be sure. While we normally don't think of trouble in controls, it is still very possible for one to increase in resistance, just as a standard carbon resistor does! Check the amplitude of your vertical sync pulse by applying a scope to the oscillator grid and rolling the picture slowly downward with the hold control. The sync pulse should be visible as a small pip on the waveform (Fig. 6). If this is too small, it will not lock the oscillator as it should. Check sync amplifier and separator tubes, and the vertical integrator network.

Picture "bouncing"

In a Sylvania 225MU TV set the picture bounces up and down whenever the sound is turned up to high levels. Turning the volume down below normal listening level eliminates the picture, but bringing it back up makes it bounce. I have changed all the tubes in both vertical and sound circuits. What might be causing this problem?—P. B., Waldron, Ark.

This is caused by incorrect bias on either the vertical output tube or the sound output tube. Change the 0.1-uf capacitor in the grid circuit of the vertical output and the .005 uf input coupling capacitor in the sound output.
TELEVISION

A slight leakage in either of these will alter the bias so that the sound output tube draws more than its normal plate current. When high sound peaks are encountered, the added current drain lowers the voltage on the vertical oscillator and output, making the picture shift position.

Vertical instability

Can you give the reason why an RCA KCS-124 TV will not stop rolling vertically? It does this on all channels. It can be fixed momentarily, then a change in the picture when a commercial comes on will start it again.—V. J. D., Washington, D. C.

This trouble is due to insufficient vertical sync amplitude. In the field, the most common cause is a weak 6CG7 tube. This is used as a sync amplifier and vertical oscillator. If a new tube doesn’t cure the trouble, check the plate voltage on the sync section. It should be 65 volts on pin 1, the plate. The 6BU8 should have 185 volts on pin 8, the plate, and 110 volts on pin 9, the screen grid. The GAW8 first sync separator should have 75 volts on pin 3, the plate. Changes of value of any of the plate load resistors would cause sync trouble.

The 0.033-µf capacitor on the grid of the 6CG7 should be checked for leakage, also the 0.0056-µf capacitor on the grid of the vertical oscillator.

Incidentally, before taking any drastic steps, be sure that the vertical height and linearity controls are properly set. If they aren’t, this may cause vertical instability.

Dim raster

We have a CBS TV which has only a dim raster, no control of brightness and no picture. I suspected the brightness control, but it checks out. Is it a bad picture tube?—A. M. P., Calif.

Watch this one, you’ve got a beautiful “dim raster” symptom here! It is possible that you have a defective picture tube. Only testing with a reliable CRT checker will show it up. However, before doing this, change the sync-separator/video amplifier 6U8 tube. A short in the 6U8 will show exactly the symptoms described, which are the same as a heater-cathode short in the picture tube. The short removes bias and picture signals from the tube, leaving a low-brightness raster and no pix. END

“Takes a while to warm up.”

MAY, 1960
EMC advances in Audio and Test Equipment - by far the Best Values obtainable in Wired or Kit form.

EMC Model 801
RC Bridge and In-Circuit Capacity Checker
A new comprehensive resistance and capacity checker. It measures capacitors for actual value, leakage, and power factor. In addition it measures capacitors while still connected in their original circuits for opens, shorts or intermitents.

Model 801 Wired $38.95 - Model 801 Kit $24.95

EMC Model 802
Signal Tracer and Generator
Generates its own audio, IF and RF signal for tracing. Uses both a magic eye tube and a speaker for signal detection. Checks noisy components. Checks and compares magnetic, ceramic and crystal cartridges. Supplied with two shielded audio probes and RF crystal demodulator probe. Model 802 Wired $38.95 Model 802 Kit $24.95

EMC Model 107A
Peak to Peak Vacuum Tube Volt - Ohm Capacity Meter
6" meter cannot burn out - entirely electronic. Measures peak to peak AC volts to 2800 volts in 6 ranges. Measures capacity in 6 ranges from 50 mmfd to 5000 mfd. Measures resistance in 6 ranges from .2 ohm to 1000 megs. Measures DC volts to 1000 volts in 6 ranges. Input resistance 16.5 megs. Model 107A Wired $51.40 - Model 107A Kit $36.50

EMC Model 214 Stereo Amplifier
A compact, highly attractive dual 14W amplifier with built-in preamplifiers having 56 watts peak power output. Has rumble filter and contour control switch. Extremely low distortion and noise level. It can be used as a 28 watts peak power amplifier or as a monaural amplifier so arranged that one preamplifier is used to drive the internal amplifier while the other preamplifier is used to drive any existing monaural amplifier.

Model 214 Wired $106.80 - Model 214 Kit $68.90

Television Improving the TV Receiver

Keyed-age systems can cause warm-up buzz.
Here's a simple way to get rid of this annoyance

By WILLIAM FEINGOLD

A ll television receivers have some sort of age to help maintain a constant video detector output regardless of variations in the signal at the antenna. The simpler systems used in lower-cost sets usually allow a three- or four-fold variation at the detector; the deluxe receivers generally hold the change to about 10%. This article deals with a strange performance complaint that is a byproduct of this better age action.

Two resistors and a crystal diode are the only additional parts.

Quietrole the Answer to Noisy Controls and Switches

Over 12 Years of Proven Superiority

Costs Just Pennies more than the poorest substitute...

Supplied in Spray can and 2, 4, 8 oz. bottles

Train Quickly! Oldest, Best Equipped School of its Kind in U.S.

Get practical training in New Shop-Labs of Coyne. Prepare for a better job and a successful future in a top opportunity field. Advanced education or previous experience not needed. Employment service to graduates.

Enroll NOW—Pay Later

Finance Plan and Easy Payment Plan. Also Part Time Employment help for students.

FREE BOOK Clip coupon or write to address below for Free Illustrated Book, "Guide to Careers," describes all training offered. No obligation and No Salesman Will Call. Act NOW.

B. W. Cooke, Jr., President
CHARTERED
C O Y N E
1501 W. Congress Pkwy.
Chicago, Dept. 50-5C
TELEVISION

These deluxe sets invariably use keyed age. This circuit derives control bias for the set's rf and if stages by using a keying pulse supplied by the horizontal deflection system. Therefore, during warmup and prior to lock-in of the horizontal system, no control bias is applied to the rf and if stages. This lack of control voltage allows overload- ing, and intermodulation takes place between the video and the sound. The result is a raucous 60-cycle buzz blasting out of the speaker.

Although this situation is not new and has been more or less tolerated by the general public for a number of years, a simple innovation has pushed it into the aggravation stage in the last year. Many manufacturers are now incorporating preset volume controls with either push-pull or a push-pull on-off switch. This leaves the volume set for normal listening during warmup instead of at the lower level that is generally used with the rotary on-off system.

Readers who would like to eliminate this annoying warmup buzz can easily make the necessary modification. Except for the three new elements—R1, R2, and D1—the diagram shows a conventional TV circuit.

Operating theory is straightforward. During warmup, the overloaded if strip puts an abnormally high signal voltage on the video detector which rectifies it, thereby deriving a high negative voltage. This negative voltage is used to bias the audio amplifier into cut-off during this period. The voltages in the diagram show that the warmup video voltage is -22. The values of R1 and R2 are selected so E2 is -16 volts during warmup and the audio amplifier is cut off. When the detector finally falls to its normal value of -2 volts, E2 goes a little positive, thereby restoring the audio tube. In the interest of audio quality, we preserve the negative contact voltage of E3 (-0.7 volt), so a germanium diode clamp is added to keep the value of E2 from going too far positive.

WHEN THE CAT'S AWAY

An Indiana housewife blamed a neighbor's amateur operation for her distorted TV picture. She was not satisfied when an FCC field inquiry indicated that her receiver, rather than the ham, was at fault. So she wrote to President Eisenhower. However, a second visit by an engineer of the Chicago office showed that the disturbance had been eliminated. The method used was unique. On a day when the lady of the house (described by her husband as the "dominant member of the family") was away, the helpful amateur, with the consent of the woman's husband, but without her knowledge, installed a wavetrap and a line filter in her set to make up for its poor interference-rejection capabilities. — Kilocycling With the FCC

NO STRIP!

4 NEW B-T COUPLERS

In just a matter of seconds, new quality engineered B-T couplers featuring 'No-Strip' terminals provide a low loss, matched installation for superior multi-set performance.

B-T 'NO-STRIP' TERMINALS

Speedy, Secure Positive Installation — No Stripping. Simply slide the 300 ohm ribbon into groove provided on the coupler and tighten slotted hex head terminal screws. 12 sharp teeth bite through the insulation making positive electrical contact...secure, weather-proof. Eliminates loss and impedance mismatch caused by exposed wires.

2-SET COUPLER—MAXIMUM INTER-SET ISOLATION—MINIMUM SIGNAL LOSS

Model A-102 Two-Set Coupler delivers more signal to each TV or FM set, with greater inter-set isolation than other couplers. A new original B-T circuit with phase cancellation feature automatically defeats interfering signals. No ghosts, no smears, ideal for color TV and FM. List $3.50.

NEW B-T COUPLERS — FOUR-SET, HI-LO AND UHF-VHF

A-104 FOUR-SET COUPLER — Low-loss 300 ohm directional coupler only 7.5 db insertion loss and 12 to 20 db inter-set isolation. Flat response 50 to 220 mc. List $4.95.

A-105 HI-LO ANTENNA COUPLER — Combines low-band and high-band VHF antennas or provides separate VHF and UHF outputs from a common line or antenna. List $2.95.

A-107 UHF-VHF ANTENNA COUPLER — Combines VHF and UHF antennas, or provides separate VHF and UHF outputs from a common line or antenna. List $2.95.

SMARTLY STYLED • WEATHERPROOF • NON-BREAKABLE CASE

Available at parts distributors. For further information write Dept. RE-5.

BLONDER-TONGUE LABORATORIES, INC.
9 Alling Street, Newark 2, N. J.

The largest manufacturer of TV Signal Amplifiers, UHF Converters and Master TV Systems
TEST equipment that rolls to where it's needed is one of the secrets of the unorthodox time-saving design of a busy one-man TV repair shop in Sarasota, Fla.

A technician's time is his prime commodity, and needless waste of it can mean the difference between profit and loss, especially in a one-man operation. With this in mind, Martin J. Stahl, Jr., revamped his Television Service Laboratory in an unusual manner for maximum efficiency.

"It invariably happened that if I opened a TV set at one end of the bench, the test instruments I needed were at the other end," says Stahl. "And in between stood several sets in the process of repair or check, or being fixed. Often this meant time in moving equipment around to get at the instrument.

Not a single meter or piece of test equipment is mounted at a fixed location in Stahl's shop—all instruments are completely mobile. "To have a shelf with $2,000 worth of equipment laid out on it may be impressive to the customer, but it can mean the loss of a lot of money to the one-man shop owner," say Stahl. He achieved the mobility by mounting his test units on pipe frames with legs on large furniture casters.

Among his other efficiency innovations: "I count it a must to have a long workbench, and mine is 23 feet long." This means that when he yanks a chassis out of its cabinet, the case can be pushed back out of the way on the 50-inch tabletop, right behind the chassis. Thus seven sets are easily accommodated at one time on the long bench. If a hurry-up job comes in, it is placed in an unused space on the bench, the needed instruments rolled down to it and work begun at once.

Stahl's lengthy bench eliminates needless handling of test equipment or receivers. "By the end of the day I'll often have half a dozen sets on the bench proving themselves," he explains. "If a part has to be ordered, I don't need to pick up or lift the chassis. It is simply pushed back out of the way toward the rear while awaiting the arrival of the component." Note the test instruments mounted on a castered rolling frame (at left). Another feature of the shop is the use of lighting designed to minimize glare and eyestrain.
Important to the small shop is an adequate supply of parts to stave off needless trips to the supply house. Stahl keeps small parts in baby-food jars to insure maximum visibility and easy inventory keeping.

Stahl spent $300 for this Hickok video scanner and considers it an excellent investment as a time saver. It's connected to the antenna system so he can get a test pattern on every set. Thus he can quickly check the size, height and linearity of a picture at a glance; he also uses it to judge bandwidth of video if stages and for troubleshooting sync circuits. "It eliminates guesswork and saves time," he states, "which is the essence of a one-man shop."

Unlike Mohammed and the mountain, Stahl glides his rolling-stock test equipment to the jobs, eliminating the lugging of heavy sets to fixed instruments. This arrangement speeds service in the one-man shop.

The shop owner finds a slate handy for reminders to himself and to make a graphic portrayal of ailments, costs and parts to an inquiring set owner. Stahl also keeps a pad for each set undergoing repairs. He marks the parts used and their cost as he installs them in the set, so when the job is ended only a fast calculation is required to total up the bill. If necessary, there's room for another man at his long bench, and "a glance at the pads enables you to see the progress of each job and what parts have been used up to the moment."
A Home Study Program for Engineering Technicians and Professional Engineers Comparable in Technological Content to College-Level Electronics Residence Courses.

CREI's Extension Division offers combinations of courses in advanced electronics engineering technology to meet present or future employment requirements, and step up your earning power.

A CREI program, the product of 33 years experience, is neither short-cut nor magic formula. It is an accredited home study curriculum which may take as little as 18 months, or as much as 3 years, depending upon the course selected and amount of stick-to-itiveness brought to bear. The program is designed specifically for men employed in a technical capacity in the electronics industry, where a shortage of manpower with advanced technical education not only exists, but shows every likelihood of increasing.

Now fifth in volume among American industries, the electronics industry offers almost unlimited employment and advancement opportunities. Applications of new electronic developments in automation, instrumentation, industrial electronics, aeronautical electronics, guided missiles, servomechanisms, computers, astronautics and telemetering create new jobs every day. Yet, paradoxically, industry growth does not always mean individual growth. Companies actively seeking men with modern, advanced technological knowledge are simultaneously firing mediocre men who lack this knowledge.

CREI students (more than 20,400 are currently enrolled) keep pace with the needs of the ever-advancing electronics industry and are eagerly sought by employers who offer solid opportunities for rapid promotion.

Since 1927 we have directed the technical education of students in advanced electronics engineering technology. We developed the prototype civilian electronics course for the Army Signal Corps in 1941, supplied 300,000 texts to the U. S. Navy in a special course for radio technicians in the South Pacific in 1943, trained hundreds of technicians during World War II for the Signal Corps. We co-founded

RADIO-ELECTRONICS
the National Council of Technical Schools, which first established scholastic and business standards for the technical school field. We were among the first three technical institutes whose curricula were accredited by the Engineers' Council for Professional Development. In 1946 we instituted the group training programs used by companies representing the cream of the electronics and aviation industries. CREI courses are widely employed today in company-sponsored educational plans by companies throughout the U. S. and Canada.

What does this record of achievement mean to you as a CREI student? It means that industry and the Armed Services alike respect CREI men. It means that your CREI diploma is a door-opener. Significantly, Help Wanted ads often specify "CREI education or equivalent required." Our Placement Bureau, which helps graduates and advanced students find more desirable positions, is always available to CREI men. While no placement guarantees will be made by CREI or any other reputable institution, for many years the demand for CREI graduates and advanced students has far exceeded the supply.

CREI HOME STUDY ADVANTAGES.

This advanced technical education is accomplished on your own time, during hours chosen by you. You waste no time in travel. You have plenty of time to do your best. Your work is under the supervision of a regular staff instructor who guides your progress step by step. Courses are prepared and taught by men experienced both in teaching and in electronics, presented in easy-to-understand form, kept up to date by periodic revision. Experience in more than three decades of home-study teaching, during which time we have corrected and commented on many hundreds of thousands of examinations, enables us to anticipate questions in our lesson material.

CREI STUDENTS are professional electronics engineers and technicians, all over the world and in every phase of electronics, about one-third military, the rest civilian. Their median age is 28. In 1958 they devoted approximately 1,572,400 hours to 104,831 lesson texts, answered and were individually graded upon 1,048,310 searching questions and engineering problems. They studied advanced electronics engineering technology associated with transistors, microwaves, forward scatter, computers, servomechanisms, radar, electronic navigational devices and the entire field of modern electronics. New students enrolled during the year are on the missile ranges of Vandenburg AF Base and Cape Canaveral. They are at Alamogordo and China Lake, at SAC bases around the world. They are in the research laboratories and manufacturing plants where the latest electronic equipment is designed and produced. They maintain electronic equipment for United Air Lines, and Trans-Canada Air Lines. They share in electronics at All America Cables and Radio, Inc., and The Martin Co. They work for USIA (Voice of America) and Columbia Broadcasting System, for Gates Radio and Federal Electric, to name but a few. All of the firms mentioned offer their personnel CREI education under company sponsorship. CREI men are found by the hundreds among field engineers of major electronic manufacturers. They're across the world and across the street. They're men you'll compete with—to gain or hold your place in the electronics profession.

If ambition is part of your make-up—if you want to convert interest and energy into dollars of income—if you want to convert your spare evening hours into material benefit and the personal satisfaction that comes with advancement and respect of your associates—then CREI's home study education assures you of:

1. A solid foundation of college-level, advanced technical electronic engineering knowledge.
2. A means of keeping abreast of the complex developments in electronics.
3. The ability to communicate intelligently with your engineering associates and superiors.
4. The best preparation for professional advancement in electronics as the industry demands more qualified personnel.

QUALIFICATIONS FOR CREI. College degree is not essential. If you have had basic electronic education, practical experience in electronics and a high school education, you can probably qualify. A good way to find out: Use the postage-paid card. It will bring you the free 54-page book which has launched thousands on their advanced careers: "Insurance for Your Future in the New World of Electronics." Tuition is reasonable and may be paid monthly. It takes just one $10-a-week raise to repay your investment in CREI education and leave you a substantial bonus the first year. Available to veterans under GI bill.

RESIDENCE SCHOOL in Washington, D. C. for those who can attend classes. Day and evening classes start at regular intervals. Qualified graduates earn AAS degree in approximately 27 months. Electronics experience not required for admission.

CAPITOL RADIO ENGINEERING INSTITUTE
ECPD Accredited Technical Institute Curricula. Founded 1927
Dept. 1405-G1 EE
3224 16TH ST., N.W.
WASHINGTON 10, D. C.
If you are a boating enthusiast and cannot afford a professional radio direction finder, you can find out where you are and where you are heading by using a pocket-size transistor radio as a direction finder. Some of them work very well for this purpose. And their cost starts at about $25 and runs all the way up the scale. Even the man with a rowboat can now have a radio direction finder!

These portable transistor sets are powered by a self-contained battery. Most are superheterodyne receivers. Two of the imported types I tested proved very sensitive and their built-in loop antennas have extremely good directional qualities. One of them has directional characteristics superior to those of a radio direction finder costing more than six times as much.

A radio direction finder consists of a radio receiver with a loop antenna. Practically every AM broadcast receiver on the market has one built in. Since the suitability of an ordinary radio receiver as a direction finder depends upon the directional characteristics of its antenna, not all radio sets make useful direction finders.

A loop antenna provides strongest reception when its edge is pointed in the direction from which the signal is coming (Figs. 1-a and -b). When the loop is turned (in the case of built-in loops, the whole set is turned) so its open end faces the incoming signal, reception is poorest. The antenna's maximum-signal position is very broad while the minimum-signal position or "null" is quite narrow. There are two maximum-signal positions and two nulls (Fig. 1-c). This is true because the loop has two sides. Since the nulls are much sharper, they are used for determining direction. The two nulls are supposed to be 180° apart. But, in practical loops there is some error. They may be a few degrees removed from 180°, so some error in taking bearings is to be expected. In professional direction finders (DF), special care is taken to minimize this error. This is done by balancing the loop with respect to ground. Fig. 2 shows why unbalance occurs and Fig. 3 shows various means for correcting un-
RADIO

balance as used in professional DF units.

It is easy to determine the suitability of a small transistor radio as a direction finder. Merely take an accurate map and note your location. Then take bearings on various radio stations whose transmitter locations are known. These bearings (nulls) should conform with lines drawn on the map from your location to the radio stations. By reversing the set 180° to use the opposite null position, you can quickly check the loop's balance. One of the low-priced sets had only a 1° error compared to a professional direction finder which has the fine-buck error of 6°. Both units were tested at the same location.

Professional direction finders and portable radios give two nulls, so the navigator has to determine which of the two directions is the correct one. For instance, if he knows he is south of the station on which he has taken a bearing, he knows that the bearing to the north is not the one to use. Some professional DF units have a sense antenna which eliminates this location.

Both units were tested at the same site null position, you can quickly check the maximum-signal positions is much easier to get rough bearings, a jig on which is

It is difficult and time consuming to get an accurate reading. For instance, if he knows he is south of the station on which he has taken a bearing, he knows the north is not the one to use. Some professional DF units have a sense antenna which eliminates this error.

The book uses many worked-out numerical examples to make induction heating techniques and processes completely understandable. Questions and problems are included so that you can check your progress. The book is written in the belief that an understanding of the basic laws leads the way to an understanding of each specific application. For example, an intrusive induction heating machine for tiny gyroscope spindles operates in accordance with the same laws as a massive induction furnace melting a thousand pounds or more of nothing alloy. Other industrial heating applications include hardening a part to prevent wear; making the metal plastic for forging or hot-forming into a desired shape; brazing or soldering two parts together; to melting and mixing the ingredients which go into the high-temperature alloys which make jet engines possible and numerous other areas.

If you are seeking a career or if you wish to expand your knowledge of this vital subject, this 'picted-text course' is most reading. More than 250 carefully selected illustrations.

Prices subject to change without notice.

RIDER 'PICTURED-TEXT' COURSES

BASICS OF INDUCTION HEATING (Pictured-Text Course)

by Chester A. Tudbury—2 Volumes

With dramatic force, pictorially and verbally, this two-volume 'Pictured-Text' course makes it easy for you to understand the fundamentals of induction heating—how it is and how it works. It describes and explains the operation of the more common types of industrial induction heating machines in use today; presents material to assist in developing a quantitative understanding for new applications and it deals with electrical and thermal aspects in detail and touches upon some of the mechanical problems associated with fixtures (holding workpieces of different sizes and shapes).

The book uses many worked-out numerical examples to make induction heating techniques and processes completely understandable. Questions and problems are included so that you can check your progress. The book is written in the belief that an understanding of the basic laws leads the way to an understanding of each specific application. For example, an intrusive induction heating machine for tiny gyroscope spindles operates in accordance with the same laws as a massive induction furnace melting a thousand pounds or more of nothing alloy. Other industrial heating applications include hardening a part to prevent wear; making the metal plastic for forging or hot-forming into a desired shape; brazing or soldering two parts together; to melting and mixing the ingredients which go into the high-temperature alloys which make jet engines possible and numerous other areas.

If you are seeking a career or if you wish to expand your knowledge of this vital subject, this 'picted-text course' is most reading. More than 250 carefully selected illustrations.

Prices subject to change without notice.
SUPERIOR'S NEW MODEL 77

VACUUM TUBE VOLTOMETER
WITH NEW 6" FULL-VIEW METER

Compare it to any peak-to-peak V.T.V.M. made by any other manufacturer at any price

- Model 77 completely wired and calibrated with accessories (including test leads and portable carrying case) tells for only $42.50.
- Model 77 employs a sensitive six inch meter. Extra large meter scale enables you to print all calibrations in large easy-to-read type.
- Model 77 uses new improved SICO printed circuitry.
- Model 77 employs a 12AU7 as D.C. amplifier and a 6N26 's at push-to-talk voltage rectifiers to assure maximum stability.

AS A DC VOLTMETER: The Model 77 is identical to Model 59. Instead of a 6N26, an additional stage has been added to the Model 77 to provide lower self-bias. The Model 77 employs a 12AU7 as D.C. amplifier and a 6N26 's at push-to-talk voltage rectifiers for lower self-bias.

AS AN AC VOLTMETER: Measures RMS values. The input impedance is between 1,000,000 and 100,000 ohms. If the grid is driven into the "cut-off" level in TV receivers, there will be no noticeable change in the meter reading.

AS AN ELECTRONIC OHMETER: Because of its wide range of measurement, this instrument shows up glaring defects of the circuit by a balanced push-pull amplifier.

Model 77 comes complete with operating instructions, probe and test leads. Use it on the bench—use it on calls. A streamlined carrying case, included at no extra charge, accommodates the tester, instruction book, probe and leads. Operates on 110-120 volt 60 cycle.

$38.50-Terms: $10 after 10 day trial, then $6.50 per month for 3 months if satisfactory. Otherwise return, no explanation necessary!

SUPERIOR'S NEW MODEL 79
SUPER-METER WITH 6" FULL-VIEW METER

A Combination VOLT-Ohm Milliammeter.
Plus CAPACITY, REACTANCE, INDUCTANCE AND DECIBEL MEASUREMENTS.
Also Tests Selenium and Silicon Rectifiers, Silicon and Germanium Diodes.

Specifications

D.C. VOLTS: 0 to 2.5, 7, 15, 30, 100, 300, 1500, 3000, 10,000
D.C. CURRENT: 0 to 0.005, 0.05, 0.25, 1.0, 2.5, 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000, 25000, 50000, 100000
RESISTANCE: 0 to 1000, 10000, 100000, 1000000, 10000000
CAPACITY: 1 to 1000, 10000, 100000, 1000000, 10000000
REACTANCE: 50 to 2500, 2500 to 25000, 25000 to 250000
INDUCTANCE: 50 to 1000, 1000 to 25000, 25000 to 100000

Model 79 comes complete with operating instructions and test leads. Use it on the bench—use it on calls. A streamlined carrying case included at no extra charge accommodates the tester, instruction book, probe and leads.

$42.50 NET

GENOMETER / Signal Generators in One!

- R.F. Signal Generator for A.M.
- R.F. Signal Generator for F.M.
- Audio Frequency Generator
- Color Dot Pattern Generator
- Marker Generator

A versatile all-inclusive GENERATOR which provides all the outputs for servicing: A.M. Radio, F.M. Radio, Amplifiers, Black and White TV, Color TV.

VARIABLE AUDIO FREQUENCY GENERATOR: The Model TV-50A Genometer provides a variable audio frequency from 50 Hz to 500 kHz. All self-bias and biasing for the audio amplifier are automatically adjusted at the factory by our engineers. The Model TV-50A Genometer provides a variable audio frequency from 50 Hz to 500 kHz. All self-bias and biasing for the audio amplifier are automatically adjusted at the factory by our engineers. The Model TV-50A Genometer provides a variable audio frequency from 50 Hz to 500 kHz. All self-bias and biasing for the audio amplifier are automatically adjusted at the factory by our engineers. The Model TV-50A Genometer provides a variable audio frequency from 50 Hz to 500 kHz. All self-bias and biasing for the audio amplifier are automatically adjusted at the factory by our engineers.

$38.50 NET

CROSS HATCH GENERATOR: The Model TV-50A Genometer will project a cross-hatch pattern on any TV picture tube. The pattern will consist of non-shifting, horizontal and vertical lines intersected to provide a stable cross-hatch effect.

DOT PATTERN GENERATOR FOR COLOR TV: Although you will be able to use most of your regular standard equipment servicing Color TV, the one addition which is a "must" is a Dot Pattern Generator. The Dot Pattern projects on any color TV Receiver tube by the Model TV-50A Genometer will enable you to adjust for proper color convergence.

$47.50 NET

EXAMINE BEFORE YOU BUY!
USE APPROVAL FORM ON NEXT PAGE

96 RADIO-ELECTRONICS
SUPERIOR'S NEW MODEL TW-11

TUBE TESTER

STANDARD PROFESSIONAL

- Tests all tubes, including 4, 6, 7, Octal, Lock-in, Hearing Aid, Thyatron, Miniatures, Sub-miniatures, Valves, Subminiatures, Proximity fuse types, etc.
- Uses the new self-flushing Lever Action Switches for individual element testing. Because all elements are numbered according to pin-number in the RMA base numbering system, the user can instantly identify which element is under test. Tubes having topped filaments and tubes with filaments terminating in more than one pin are evenly tested with the Model TW-11 as none of the pins may be placed in the neutral position when necessary.
- The Model TW-11 does not use any combination type sockets. Instead, individual sockets are used for each type of tube. Thus it is impossible to damage a tube by inserting it in the wrong socket.
- Free-moving built-in roll chart provides complete data for all tubes. All tube listings printed in large easy-to-read type.

NO MONEY WITH ORDER

explanation necessary. await your satisfaction as indicated on this or the facing page for

ment and pay balance on approval. It is completely satisfactory! I will pay on

The Model TW-11 operates on 165-130 Volt 60 Cycles A.C. Comes housed in a handsome portable saddle-stitched Texon case. Only

SUPERIOR'S NEW MODEL 82A

Multi-Socket Type

TEST ANY TUBE IN

10 SECONDS FLAT!

1. Turn the filament selector switch to position specified.
2. Insert tube into a numbered socket as designated on your chart (over 600 types included).
3. Press down the quality button—THAT'S ALL! Read emission quality direct on bad-good meter scale.

SPECIFICATIONS
- Tests over 600 tube types
- Tests 694 and other gas-filled tubes
- Employs new 4” meter with sealed air-damping chamber resulting in accurate vibrationless readings
- Use of 22 sockets permits testing all popular tube types and prevents possible obsolescence
- Dual Scale meter permits testing of low-current tubes
- Test and pin straighteners mounted on panel
- All sections of multi-element tubes tested simultaneously
- Ultra-sensitive leakage test circuit will indicate leakage up to 5 megohms

Production of this Model was delayed a full year pending careful study by Superior’s engineering staff of this new method of testing tubes. Don’t let the low price fool you! We claim Model 82A will outperform similar looking units which sell for much more — and as proof, we offer to ship it on our examine before you buy policy.

Model 82A comes housed in handsome, portable Saddle-stitched Texon case. Only

SUPERIOR’S NEW MODEL 83

C.R.T. TESTER

TESTS AND REJUVENATES ALL PICTURE TUBES

ALL BLACK AND WHITE TUBES
From 50 degree to 110 degree types —from 8” to 30” types.
- Model 83 is not simply a rehashed black and white C.R.T. Tester with a color adapter added. Model 83 employs a new improved circuit designed specifically to test the older type black and white tubes, the newer type black and white tubes and all color picture tubes.
- Model 83 provides separate filament operating voltages for the older 6-3 types, 6-4 types.
- Model 83 employs a 4” air-damped meter with quality and calibrated scales.
- Model 83 properly tests the red, green and blue sections of color tubes individually — for each section of a color tube contains its own filament, plate, grid and cathode.

Model 83 comes housed in handsome portable Saddle-stitched Texon case—complete with sockets for all black and white tubes and all color tubes. Only...

SHIPPED ON APPROVAL

NO MONEY WITH ORDER — N.O.C.D.

Any instrument on this or the facing page for 10 days before you buy. If completely satisfied then send down payment and pay balance on indicated on coupon. No Interest or Finance Charges Added! If not completely satisfactory return unit to us, no explanation necessary.
Here's stereo, the way it was meant to be heard — the way it was recorded — with complete channel separation. Clevite "Brush" Hi-Fi Headphones capture all the realism — the living presence of stereo recordings — deliver sound reproduction unparalleled with speakers. Uniform frequency response is exceptionally flat to 10,000 cycles. Large, soft ear cushions, contoured for comfort, extend low frequency response and filter room noise for undisturbed private listening. Clevite "Brush" Hi-Fi Headphones can be installed quickly and easily in any stereo set with no added preamplification. Monaural models are also available.

Get in on this important new market for quality Hi-Fi Headphones. Write, wire or phone Clevite "Walco" today!

An HO gauge model-railroad turntable makes a handy lazy Susan for rotating a tiny transistor radio used as a direction finder.

(Continued from page 95)
Sprague Difilm does it again! First to give you at regular prices the finest molded tubular capacitor made—the Difilm Black Beauty...and now the newest Difilm capacitor—the Orange-Drop dipped capacitor.

Sprague Orange-Drop Capacitors are especially made for easy installation in tight spots...where only an exact replacement will fit. They are the exact same dipped capacitors used by leading manufacturers in many TV sets.

WHY ORANGE-DROPS BEAT HEAT AND HUMIDITY

Sprague Orange-Drop Mylar-Paper Dipped Capacitors combine the proven long life of paper capacitors with the effective moisture resistance of film capacitors. Their duplex dielectric of kraft paper and polyester film is impregnated with HCX®, Sprague's exclusive hydrocarbon material which saturates the paper and fills voids and pinholes in the film before the HCX polymerizes. The result is a solid, rock-hard capacitor section which is then double-dipped in bright orange epoxy resin for moisture protection. Leads are neatly crimped for easy installation on printed wiring boards.

Sprague Orange-Drop Capacitors are a natural teammate for the molded Difilm Black Beauty®. Black Beauties, born out of engineering to tough missile standards, are still far and away the best replacement capacitors—better than any other molded or dipped...paper, film, or film-paper combination...capacitor made for entertainment electronics.

Where a dipped capacitor is called for, no other dipped unit can match the Orange-Drop. Your distributor is stocked with all popular ratings in 200, 400, 600, and 1000 volts in handy Sprague Kleer-Paks. Order some today.

*Du Pont Trademark

Don't be vague—insist on Sprague® the mark of reliability

Another tested reliable product by the world's largest capacitor manufacturer

MAY, 1960

99
RADIO-ELECTRONICS

The Old-Timer shows the Young Ham how to solve some of the radio woes that give technicians bald heads

By JACK DARR

He Old-Timer came in through the shop's back door, a smug expression on his face. He jingled a small stack of dimes in his hand and he whistled softly. The Young Ham was piled up on his end of the bench, with his face buried in a copy of Mad magazine. Despite the presumably hilarious nature of his reading material, he looked very unhappy. On the bench completely disassembled, a small radio lay.

"Well, Junior, what's your trouble?" asked the Old-Timer jovially. "You look a wee bit sour!"

"You'd be sour, too, if you had this little stinker!" said the Young Ham bitterly. "All it'll do is squeal and squall. There ain't a thing wrong with it, but it just won't work!"

"Well, now," soothed the Old-Timer, pocketing his dimes, "lessee what goes on." He bent over the little set, turning it on. As it warmed up, sure enough, all he could get was an assortment of birdies, squeals and whistles. "Hmm," he said, turning the signal generator on. He clipped the output lead to the loop frame, and tuned the generator back and forth, moving the radio dial once in a while. The Young Ham watched him sourly. "That's all you're gonna get!" he growled.

"Well, now, I wouldn't say that." The Old Timer grinned. "Come on, I'll buy the coffee with some of this money I just won off Doc and Max. Had to sink a long putt on the seventh to do it, too!" He grabbed the copy of Mad out of the Young Ham's hands, and dropped it in the wastebasket as they shot out the back door and across the alley to the drugstore. Settled there with their coffee, the Young Ham said, "All right, quit looking so smug. You didn't find out what was the matter with that set that quick!"

The Old-Timer merely grinned knowing, and stirred another spoonful of sugar into his coffee. "All right, then, what's wrong with it? I give up!"

"Well," said the Old-Timer, "you gotta remember that I was fixin' them things when you were just a gleam in your father's eye! I've seen a lot of troubles an' I've done just what you did m'self quite a few times! Tell me, have you aligned that set?"

"Yeah," said the Young Ham, "I touched it up some. Didn't seem to help though. Just squealed worse! I can't get anything on the lower half of the dial."

"Thought so. Well, I'll show you when we git back to th' shop, but I can tell you now. Your if on that set is neatly peaked at around 650 kc!"

"650!" cried the Young Ham. "How can that be? An' how can that cause all that oscillation?"

"Well, when you keep on 'aligning' a set by hand, without usin' a signal generator, you unconsciously get farther an' farther away from the right frequency," explained the Old-Timer. "Can't help it. First thing you know, the if's away off. When it gets up into the broadcast band, like this one, you begin to get beats between the set oscillator, the signal an' everything else, an' your whole set goes kapoot. Bein' so far off frequency, you get outside the bandpass of th' if transformers and your gain goes away down, so th' set is weak." He paid for the coffee out of his stack of dimes and they returned to the shop. There he turned the little set on again and called the Young Ham. "Looky here now. I've showed you this before, but you seem to need it ag'in, so c'mere."

The Young Ham surreptitiously retrieved his new Mad from the wastebasket and peered over the Old-Timer's shoulder; "See here now. I'm feedin' an if signal into th' set by coupling into th' loop." He turned the generator dial back and forth. "I am! Well! Let's try this then." Turning the set over, he connected the generator to the grid of the if amplifier tube. Moving the generator dial, he finally found the signal. "Now look there. 640 kc. Not too close to 455 kc, is it?" The Young Ham gaped in amazement.

Don't fiddle with alignment

"How did the thing get so far off?" he asked.

"Fiddlin' with it!" snapped the Old-Timer. "Tryin' to align the if's on a broadcast signal! It just 'ca'n't be done!' Even I can't do it, smart as I am! Calibration, yes. You can set th' oscillator trimmer right on a signal, but you just can't align the if that way. Now, see here." He connected a vtvm to the ave network, near the volume control, set the signal generator to 455 kc, and proceeded to adjust the transformer for a peak reading. Several times he was forced to stop and turn down the signal generator level until at last he was satisfied. Moving the generator lead to the mixer grid lead, on the top of the tuning capacitor, he repeated..."
the process for the input if transformer. Removing the signal generator lead, he ran the dial back and forth. Several stations came in fairly well.

"Now, Junior." He grinned. "We can use broadcast stations for a signal generator at this point. Here's a station at 1200 kc, KLCO. How far away in Potow, anyhow? 60 miles? That's about right. Don't want to use th' local station, he's too strong. So, we know he's on exactly 1200 kc, within 4 or 5 cycles if th' chief engineer's on his toes. So, we set th' dial on 12 and adjust the oscillator and antenna trimmers for maximum ave readings an' then we got it." He ran the tuning back and forth. Now several stations came in loud and clear without a sign of a whistle or oscillation.

"Now," continued the Old-Timer, "let's try the low end. Lucky this one's oscillator coil has a tunable core. Some of 'em haven't, and there's not much you can do with 'em. But on this one, just pick up a station near 600 kc, set the generator to 455 kc. "Right here somewhere," replied the Old-Timer.

"Yeah, that's it," said the Old-Timer. "Now you're beginning to get th' point. Remember, your if stages are a fixed-tuned bandpass amplifier an' you can't align them properly without usin' an accurate signal source. Best method, look up th' correct intermediate frequency for that particular set in the service data file. Although most of th' sets nowadays, outside of th' transistor models, use 455-ke if's, still you never can tell when somebody'll try to throw you a curve. Better be safe an' look it up. Only takes a minute and then you're sure."

Lightning strikes twice

The next day the Old-Timer came into the shop only to find the Young Ham in the identical attitude he had been in the day before. Another small radio lay on the bench before him. This time he was simply glaring at it. The new Mad lay in the far corner of the shop where he had flung it. The Old-Timer grinned at the woebegone expression on the youth's round face.

"Oh, no!" he said. "Not again! What is it this time?"

The Young Ham snarled at him. "I tried everything you told me yesterday on this and it's worse than the other one! I aligned it real careful! Just when I get it right up to where it ought to peak, the blasted thing goes into oscillation! The only way I can stop it is to detune one of the if transformers! Now what's the matter? I thought I had 'em pretty well down, but now I don't think I'll ever learn anything about 'em!"

The Old-Timer laughed sympathetically. "Well now, don't be a defeatist! Let's see what's wrong. Seems to me I've had the same kind of troubles in the past. Fact, I've had a lot of 'em! Lessee here," and he turned the set on. In truth, it did oscillate wildly. Turning it over, he carefully touched the tip of a finger to several points, then picked up an electrolytic capacitor from a drawer. He carefully bridged it across the filter capacitor in the set. The oscillations stopped and the set played sweetly. The Young Ham's jaw dropped.

"You mean the thing had a bad filter capacitor?" he howled. "Why, that dirty *-$@! I thought I had 'em pretty well down, but now I don't think I'll ever learn anything about 'em!"

The Old-Timer laughed sympathetically. "Well now, don't be a defeatist! Let's see what's wrong. Seems to me I've had the same kind of troubles in the past. Fact, I've had a lot of 'em! Lessee here," and he turned the set on. In truth, it did oscillate wildly. Turning it over, he carefully touched the tip of a finger to several points, then picked up an electrolytic capacitor from a drawer. He carefully bridged it across the filter capacitor in the set. The oscillations stopped and the set played sweetly. The Young Ham's jaw dropped.

"You mean the thing had a bad filter capacitor?" he howled. "Why, that dirty *-$@! I thought I had 'em pretty well down, but now I don't think I'll ever learn anything about 'em!"

The Old-Timer laughed sympathetically. "Well now, don't be a defeatist! Let's see what's wrong. Seems to me I've had the same kind of troubles in the past. Fact, I've had a lot of 'em! Lessee here," and he turned the set on. In truth, it did oscillate wildly. Turning it over, he carefully touched the tip of a finger to several points, then picked up an electrolytic capacitor from a drawer. He carefully bridged it across the filter capacitor in the set. The oscillations stopped and the set played sweetly. The Young Ham's jaw dropped.

"You mean the thing had a bad filter capacitor?" he howled. "Why, that dirty *-$@! I thought I had 'em pretty well down, but now I don't think I'll ever learn anything about 'em!"

The Old-Timer laughed sympathetically. "Well now, don't be a defeatist! Let's see what's wrong. Seems to me I've had the same kind of troubles in the past. Fact, I've had a lot of 'em! Lessee here," and he turned the set on. In truth, it did oscillate wildly. Turning it over, he carefully touched the tip of a finger to several points, then picked up an electrolytic capacitor from a drawer. He carefully bridged it across the filter capacitor in the set. The oscillations stopped and the set played sweetly. The Young Ham's jaw dropped.

"You mean the thing had a bad filter capacitor?" he howled. "Why, that dirty *-$@! I thought I had 'em pretty well down, but now I don't think I'll ever learn anything about 'em!"

The Old-Timer laughed sympathetically. "Well now, don't be a defeatist! Let's see what's wrong. Seems to me I've had the same kind of troubles in the past. Fact, I've had a lot of 'em! Lessee here," and he turned the set on. In truth, it did oscillate wildly. Turning it over, he carefully touched the tip of a finger to several points, then picked up an electrolytic capacitor from a drawer. He carefully bridged it across the filter capacitor in the set. The oscillations stopped and the set played sweetly. The Young Ham's jaw dropped.

"You mean the thing had a bad filter capacitor?" he howled. "Why, that dirty *-$@! I thought I had 'em pretty well down, but now I don't think I'll ever learn anything about 'em!"

The Old-Timer laughed sympathetically. "Well now, don't be a defeatist! Let's see what's wrong. Seems to me I've had the same kind of troubles in the past. Fact, I've had a lot of 'em! Lessee here," and he turned the set on. In truth, it did oscillate wildly. Turning it over, he carefully touched the tip of a finger to several points, then picked up an electrolytic capacitor from a drawer. He carefully bridged it across the filter capacitor in the set. The oscillations stopped and the set played sweetly. The Young Ham's jaw dropped.

"You mean the thing had a bad filter capacitor?" he howled. "Why, that dirty *-$@! I thought I had 'em pretty well down, but now I don't think I'll ever learn anything about 'em!"

The Old-Timer laughed sympathetically. "Well now, don't be a defeatist! Let's see what's wrong. Seems to me I've had the same kind of troubles in the past. Fact, I've had a lot of 'em! Lessee here," and he turned the set on. In truth, it did oscillate wildly. Turning it over, he carefully touched the tip of a finger to several points, then picked up an electrolytic capacitor from a drawer. He carefully bridged it across the filter capacitor in the set. The oscillations stopped and the set played sweetly. The Young Ham's jaw dropped.

"You mean the thing had a bad filter capacitor?" he howled. "Why, that dirty *-$@! I thought I had 'em pretty well down, but now I don't think I'll ever learn anything about 'em!"

The Old-Timer laughed sympathetically. "Well now, don't be a defeatist! Let's see what's wrong. Seems to me I've had the same kind of troubles in the past. Fact, I've had a lot of 'em! Lessee here," and he turned the set on. In truth, it did oscillate wildly. Turning it over, he carefully touched the tip of a finger to several points, then picked up an electrolytic capacitor from a drawer. He carefully bridged it across the filter capacitor in the set. The oscillations stopped and the set played sweetly. The Young Ham's jaw dropped.
of assorted frequencies to ground on a B-minus if you want to be correct about it. So, it was a little off, and don’t have from the Young Ham, he might have. Then, when you’re aligning a set you wind up building up a large signal in the return paths back to the power supply, an’ th’ first thing you know, it finds a feedback path somewhere, and th’ set goes into oscillation. Like I said before, y’ don’t necessarily have to have the customary loud hum. This capacitor’s just got too high a power factor; in other words, it has resistance as well as capacitance, that’s all.”

“Well!” marvelled the Young Ham. “I sure didn’t think of that.”

“Well, if you can kinda keep that schematic in mind, an’ make a logical deduction about just what’s happenin’, you won’t have too much trouble,” said the Old Timer. “Experience is a great help, too! Every time you run into some characteristic trouble like this, make a note of it, an’ pretty soon you’ll have a mental file of dang near all of ’em.”

“How can you remember all of the darn things?” asked the Young Ham.

Try this one

“I got news for you. You can’t! The Old Timer grinned. “However, if you got a good groundin’ in the basic facts about a radio an’ you remember how it works, you can get pretty close most of th’ time. Say, by the way, I got one for you; almost like this, only worse. Came in this mornin’ while you were in school an’ I saved it for you!”

Ignoring the very sarcastic “Thank you!” Suiting action to words, he went to the other end of the bench and brought back another small radio. “Here, try this out and see what you think of it. Gimme a tentative diagnosis on it, I gotta run across the street a minute.”

When he returned, he found the little radio playing sweetly on the local station. The Young Ham beamed up at him. “Hey, Dad-O! Listen to that!” said the Old Timer, turning the sweep generator and oscilloscope on and hooking them up to the set (Fig. 2). He set up the generator to produce a pattern on the screen (Fig. 3). “Now, there’s a response curve of the if stages. See, I locked the generator to th’ mixer grid an’ the scope to the detector output, right here at the top of the volume control. Now, by settin’ th’ signal generator up to produce an FM signal, swept about 30 kc at the if, I got an idea of what the if stage response looks like. See that funny-shaped pattern (Fig. 3-a)?" That don’ look right, does it?”

“Shouldn’t it be more symmetrical, more rounded, instead of havin’ that sharp point?” asked the Young Ham.

“Right, Junior. You’re sharp as a tack today!” said the Old Timer. “That ‘point’ indicates that the thing is just on th’ verge of bustin’ into oscillation! See those little ‘squiggles’ on th’ base line there? Those are always a good clue. That an’ th’ sharp point and th’ general one-sidedness of the pattern. Now, let’s adjust the if transformers until we git this thing a bit more symmetrical, huh?” Suiting action to words, he retuned the if adjustments. As he worked, the pattern gradually assumed the rounded shape of Fig. 3-b. “Now then," he said, disconnecting the instruments, “lessee what she sounds like.”

“Hey, that’s a lot better,” said the Young Ham. “Just now, just what was causing that?”
“Well, that’s a little hard to say, precisely,” said the Old Timer, honestly. “Might have been darn near anything: too hot if tubes, some stray coupling in the wiring, filter capacitor just right on th’ verge of bein’ too high in power factor, not enough shielding or even a fault of the design of the set! This you usually find in th’ cheaper sets. Poor ol’ designer tryin’ to get more out of it than he put in, an’ drivin’ even a fault of the design of the set!”

Power factor, not enough shielding or right on th’ verge of bein’ too high in things: too hot if tubes, some stray coupling, caused by a little-bitty feedback path somewhere in th’ set. You couldn’t tracked it down other ways, but this is a heck of a lot easier! Of course, if you do try this on some set and you can’t git th’ pattern to come up like it oughta, then you start lookin’ for other troubles: temporarily replace the filter capacitors; shield the if tubes; check th’ lead dress on plate and grid wires; check th’ ave bypass capacitors, and all of the other things you could do to eliminate feedback paths in both plate and grid return circuits. If you’ll do this while you watch your scope pattern, it’ll tell you right away whether what you just did really helped or not.”

“This is a kinda old signal generator, isn’t it?” asked the Young Ham. “Do they make them any more? Seems as if it isn’t?” asked the Old-Timer. “Now, suppose you wanted to align the if stages on one of them, on AM f’rinstance. Would you like to find some way to do this while you watch your scope patterns.”

“Right! At least, you ought to, if you’re gonna call the thing hi-fi,” answered the Old-Timer. “Now, suppose you wanted to align the if stages on one of them, on AM f’rinstance. Would you just peak it like you did this one? Or would you like to find some way to flat-top th’ if response curve so’s it would pass all those frequencies. Remember, the standard bandpass for a regular if is only 10 kc and most of ‘em a lot less’n that!”

RADIO

Fig. 3—Incorrect (a) and correct (b) scope patterns.
the transistor... work with it... have fun with it... understand it better with the new Gernsback Library book...

TRANSISTOR PROJECTS

Gernsback Library Book No. 89
160 Pages $2.90

One of the best ways to learn more about transistors is to work with them. But are you a little timid about getting started? Scared by some of the things you've heard about these mighty mites? Forget it—skip the theory and plunge right into practical work with this new Gernsback book. The first two chapters alone will save you many times the price of the book. Chapter one clears away a lot of hazy misconceptions that block the way to success in transistor projects. Chapter two gives you some hard earned hints that will save you money by avoiding a lot of pitfalls and it shows how to put transistors to uses that will give you undreamed of results. These are all practical hints learned the hard way by the authors themselves. Matter of fact the whole book is practical. The rest of the chapters make up an all-star lineup of transistor projects culled from the pages of RADIO-ELECTRONICS Magazine. They’re written by the top transistor authors and experimenters in the business. And every project works. They’ve been tested by the authors.

SOME OF THE THINGS YOU CAN MAKE

All kinds of transistor radios, test instruments and accessories, off-beat projects like remote transistor ear, mini-amplifiers, electronic counters, etc. Open the doors to hours and hours of fun, enjoyment and profit. Get this new transistor book—Transistor Projects today.

ORDER THESE BOOKS TODAY AT YOUR DISTRIBUTOR— OR USE THIS COUPON

Gernsback Library, Inc. Dept. 50
154 W. 14th St. * New York 11, N. Y.

Please send me postpaid the books checked.

My remittance of $________ is enclosed.
\[\square\] 89 Transistor Projects
\[\square\] 76 \[\square\] 75 \[\square\] 63 \[\square\] 61

Name: _____________________________
Street: ____________________________
City: __________________ Zone: __________

RADIO-ELECTRONICS
Dependability is a built-in feature of all Delco Radio Service Parts!

Take speakers, for instance. Delco electronic speakers are built rugged for long life and resistance to extreme weather conditions. You can rely on them for exceptional power handling and rich distortion-free tone.

Delco's popular 8-inch "Hi-Fi" speaker, No. 8007, provides the most power and tonal range for the money. Designed for replacement use and high fidelity audio systems, it's a good, fast seller with price and quality appeal.

For speakers, transistors, transformers and other fine parts for Delco and other radios, see your Delco Electronic Parts Distributor. He carries the complete line. Other extras you get with Delco are: • Wide selection of special application parts • Complete technical training program • Effective warranties • Dealer identification signs.

Stock with Delco Electronic Parts—more dependability and reliability for your customers, more profit for you.
Souping up that **OLD RECEIVER**

For more sensitivity add a tuned rf stage that uses the coils already in the all-wave receiver.

By J. H. THOMAS

If you like to listen to foreign stations and amateurs, and your receiver is an inexpensive shortwave unit, here's how you can pull in European stations you never knew existed, as well as many amateurs inaudible up to now. The whole job won't cost much, nor will it take more than about 20 minutes of your time. It's just a matter of adding a 12BA6, two resistors, four capacitors and an rf choke to the circuit and doing a little rewiring. A simple job that adds a lot of sensitivity to the simplest receivers.

Many inexpensive all-wave receivers don't have an rf stage. To add a complete rf stage, with coils, third section of tuning capacitor, third section of bandspread capacitor and additional wafer on the bandswitch could be done,
I'm loaded with performance, man

(NO SYNC PROBLEMS WITH ME)

I've got everything you need in a horizontal oscillator: No heater-cathode leakage to throw a TV set out of sync. No microphonism to tear the picture. And long, long life to eliminate call-backs for you.

The new CBS 6CG7 offers you total reliability ... proved in performance by leading TV set manufacturers. You, too, can profit from the total reliability of CBS tubes. Just make it a habit always to replace with CBS.

The CBS 6CG7 is a premium-performance tube. Hum-free coil heaters assure long life. And combined with a ring getter and pinched cathodes, they virtually eliminate heater-cathode leakage... notorious for causing loss of horizontal sync. Twin top micas and semi-automated precision assembly minimize microphonism. Truly the CBS 6CG7... best in the industry... has advance-engineered features found only in premium-performance tubes.

TOTAL RELIABILITY ...proved in performance

CBS ELECTRONICS
Danvers, Massachusetts
A Division of Columbia Broadcasting System, Inc.
Receiving, industrial and picture tubes • transistors and diodes • audio components • and phonographs

MAY, 1960
BUILD THIS SUPERB
Schober ORGAN
FROM SIMPLE KITS
and save over 50%

Give Your Family A Lifetime
of Musical Joy With A Magnificent
Schober Electronic Organ!

Now you can build the brilliant, full-range Schober CONSOLETTE or the larger CONCERT MODEL with simple hand tools! No skills are needed; no woodworking necessary. Just assemble clearly marked electronic parts guided by step-by-step instructions. You build from kits, as fast as or slower as you please ... at home, in your spare time -- with a small table serving as your entire work shop.

Pay As You Build!

Start building your organ at once, investing just $18.94! The superb instrument you assemble is as fine, and technically perfect, as a commercial organ you save over 50% on quality electronic parts, high-priced labor, usual store mark-up!

Free Booklet

Send for 16-page booklet in full color describing Schober organs you may build for home, church or school -- plus articles on how easy it is to build your own organ and how pleasant it is to learn to play. Also available is 10" LP demonstration record (price $2.00 -- refundable on first order). Send for literature. No obligation and no salesman will call.

Mail This Coupon For FREE Schober Literature And Hi-Fi Demonstration Record TODAY!

The Schober Organ Corp., Dept. RE-4
2248 Broadway, New York 24, N.Y.

RADIO

but would be relatively costly and difficult to fit into the receiver. It is simpler to add a tuned rf stage using all the present coils (and no more) and make the converter an untuned stage. In this way, you will not detract from the selectivity (as you would with an untuned rf stage); you will, at least, maintain the signal to noise ratio and you will gain a great deal in sensitivity.

Here's how I did the job on my Heath AR-3. The modified circuit is shown in the diagram and photo. The connections to pin 7 of the 12BE6 are unsoldered, and the entire group of coils is then connected to the 12BA6 as shown. The plate of the 12BA6 is fed through an rf choke and a 100-µf capacitor couples it to the grid of the 12BE6. Keep the connections to the grids short, and well away from the heater leads. The receiver should be realigned, paying particular attention to the rf section. Oscillator action should not have been affected by the change. The socket for the 12BA6 needs no sheet-metal work and no separate support, if you use solid No. 20 for the connecting wires. The socket gets enough support from the short wires (unless you intend to ship your receiver somewhere).

For the broadcast band, the extra rf amplification was not really needed and, if you feel you want to be able to do without it there, the new amplifier connections can be switched in and out so you can switch back to the original circuit at once. This switch should be a three-pole two-position unit at least, one section to switch the connections to the 12BA6 grid, a second to switch the connections to the 12BE6 grid and the third to parallel a small trimmer with the rf section of the tuning capacitor, which needs a little more capacitance with the 12BA6 in the circuit. A 3-15-µf trimmer should be adequate. The selectivity of the AR-3 is normally quite good, except for strong interfering signals on the short-wave bands. For this reason, Heath has put out the Q multiplier, which is a feedback type of amplifier giving tremendous selectivity but no additional sensitivity. With this modification, which does not affect the use of the Q multiplier, you can have the additional sensitivity as well. The performance of the whole assembly, if carefully aligned, comes much closer to that of the more expensive receivers, particularly on the 10-30-me band.

Sputniks can now be heard, when they are around. Try it out. If you decide you don't like the result, you can take it all out with a soldering iron in a minute. I'll bet you keep it in!
TUBES rule this month. There is a power-output audio type, a high-gain twin triode for cascode amplifier service, a couple of pentodes for if amplifier use and a full-wave rectifier. Protecting the interests of the semiconductor field are a couple of vhf silicon transistors and a line of Zener diodes.

6EW6, 4EW6
These tubes are miniature high-transconductance sharp-cutoff pentodes designed for service as if amplifiers. The 4-volt version has a controlled heater warmup time for series-string operation. The tubes are identical except for heater ratings. The 6EW6 has a 6.3-volt, 400-ma and the 4EW6 a 4.2-volt 600-ma heater.

Typical operating characteristics of these Sylvania tubes as a class-A1 amplifier are:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>6EW6</th>
<th>4EW6</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_T</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>I_{G3}</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>$R_{E,inf}$</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>I_E</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>I_A</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>g_m</td>
<td>14,000</td>
<td></td>
</tr>
<tr>
<td>R_5 (approx)</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

6CA4
A full-wave vacuum rectifier tube in a 9-pin miniature envelope intended for use in high-fidelity equipment. The tube has a unipotential cathode with a 6.3-volt heater and has high-voltage insulation between the cathode and heater. The 6.3-volt heater eliminates the need for a separate heater winding on the power transformer.

Maximum design-center ratings of
NEW TUBES & SEMICONDUCTORS (Continued)

the RCA 6CA4 in rectifier service are:

\[
\begin{align*}
V_g &= 1,000 \\
V_a &= 350 \\
I_t &= 450 \\
I_{out} &= 150
\end{align*}
\]

7543

A sharp-cutoff pentode in a 7-pin miniature envelope intended for use in high-gain resistance-coupled amplifiers where low hum and minimum microphones are essential.

GLASER-STEERS GS-400

GENTLY AUTOMATIC

YOUR HIGH FIDELITY DEALER IS NOW SHOWING THE NEW GLASER-STEERS GS-400 THE GENTLY AUTOMATIC CHANGER THAT PAMPERS YOUR PRECIOUS RECORDS

Gently automatic, the new GS-400 handles your treasured records with utmost care preserving the brilliance of their original performance for many additional playings.

Gently automatic, it combines the finest record playing features with all the automatic conveniences of a record changer. The GS-400 draws upon the major engineering advances developed in the famous GS-77 to provide precise tracking of stereo and monophonic records and trouble-free operation for optimum performance.

The GS-400 in your high fidelity system, brings out the best in the other components and, at the same time, keeps the cost of the system in a moderate range. Attractive Holiday Grey operation: 16, 33, 45, 78 rpm rumble, wow and flutter

GS-400 FEATURES -

- Gently automatic, with 'Turntable Pause' and now changer with silver trim, white turntable pad.
- A series of beam-power tubes of the octave type designed for use in the audio-output stages of stereo or mono phonographs. As the tubes have high power sensitivity at low supply voltages and can deliver relatively high power output at low plate-load resistance, they make possible compact, low-cost 3-tube stereo systems. The 6FE5's heater is rated at 6.3 volts, 0.2 amps. The 50FE5's heater is rated at 60 volts, 150 ma.

Typical operating characteristics of the RCA 'FE5 (two tubes in cathode-bias operation) are:

\[
\begin{align*}
V_g &= 130 \\
V_a &= 130 \\
R_g &= 75 \\
R_t &= 75 \\
I_t (zero sig ma) &= 150 \\
I_t (max sig ma) &= 150 \\
I_{low} (zero sig ma) &= 120 \\
I_{low} (max sig ma) &= 172 \\
H_M &= 7.2 \\
H_M (max sig ma) &= 8 \\
P_{max} (max watts) &= 17 \\
R_t &= 20 \\
I_t &= 7 \\
R_t &= 9.5 \\
I_t &= 1,000
\end{align*}
\]

ECC88/6DJ8

A high-gain twin-triode with frame-grid construction in a 9-pin miniature envelope. The tube offers high reliability for instrumentation, industrial controls, nuclear electronics, communication and broadcast equipment and TV tuners. The tube is especially useful

MILLER

FM high fidelity tuner

- top performance at a moderate price

Miller has designed every quality feature into this tuner, to bring you big value.

There's a tuned R.F. stage for good image rejection. There's ultra-stable permeability tuning. Dual limiters provide maximum noise control. The oscillator stage is completely shielded to maintain radiation well below FCC requirements. Tuner has AFC with defeat control, and cathode-follower audio output. Multiplexing outlet provided.

SPECIFICATIONS: A six-tube unit, it has a tuning range of 86 to 110 Mc. Typical sensitivity is 1.0 \(\mu \)V for 20 db quieting; 2.1 \(\mu \)V for 30 db quieting. Typical selectivity: 200 kc at 6 db. Frequency response: 15 to 25,000 cps. Distortion is less than \(\frac{1}{2} \% \) at rated output, and warmup drift is negligible. Size: 9" wide, 4" high and 7" deep.

Model 580 - in attractive 2-tone cabinet PRICE: $69.50
Model 579 - sub-assembly only, completely wired $37.50

Write for literature and name of nearest dealer.

J. W. MILLER COMPANY

5917 South Main Street, Los Angeles 3, California

Manufacturers of Quality Radio and TV Equipment Since 1923

GS-400 FEATURES -

- 4-speed automatic and manual operation: 16, 33, 45, 78 rpm + rumble, wow and flutter virtually invisible + counter balanced, die-cast aluminum arm + damped acoustically isolated arm—shock suspension prevents mechanical feedback through arm pivot. Resonance is negligible + 4-pole, hum-shielded motor for smooth constant speed + full precision for 2, 1, or 4 terminal, stereo and mono cartridges + single-knob control sets all operations + double-tunnel melting switch and RC network maintains silence for both stereo channels + quick-change cartridge holder.
in cascode amplifier service where it provides low-noise performance.

Characteristics (each section) of the CBS ECC88/6DJ8 are:

- $V_p = 90$
- $V_c = -1.3$
- $I_r (\text{ma}) = 15$
- $g_m (\text{mhos}) = 12,500$
- $\beta = 33$

International Rectifier offers an economy line of silicon Zener diodes. These units feature low Zener impedance values and very sharp Zener knees. They are available in 50-mw and 1-watt rated series and standard EIA voltage steps from 5.6 to 27 volts.

2N715, 2N716

A pair of n-p-n double-diffused mesa silicon transistors designed for use as vhf oscillators and amplifiers at frequencies up to 200 mc.

Maximum ratings of these Texas Instruments transistors are:

- $V_c = 50$
- $V_c = 70$
- $V_c = 35$
- $V_c = 40$
- $V_c = 5$
- $V_c = 5$
- $P_t (\text{mw}) = 500$
- $P_t (\text{mw}) = 500$

Typical characteristics at $25^\circ C$ are:

- Oscillator output power ($V_c = 30$, $I_c = 25 \text{ ma}$, $f = 70 \text{ mc}$) $P_t (\text{mw}) = 250$
- Amplifier power output ($V_c = 30$, $I_c = 25 \text{ ma}$, $P_c (\text{ac}) = 120 \text{ mw}$, $f = 70 \text{ mc}$) $P_t (\text{mw}) = 400$
- $h_{fe} (V_c = 10$, $I_c = 15 \text{ ma}$) $h_{fe} (\text{min}) = 10$
- $h_{fe} (V_c = 10$, $I_c = 15 \text{ ma}$) $h_{fe} (\text{max}) = 50$

50 Years Ago

In Gernsback Publications

HUGO GERNSBACK, Founder

Modern Electrics 1908
Wireless Association of America 1908
Radio News 1918
Science & Invention 1918
Television 1927
Radio-Craft 1929
Short-Wave Craft 1930
Television News 1931

Some larger libraries still have copies of Modern Electrics on file for interested readers.

In May, 1910, Modern Electronics

- Bellini-Tosi Station at Boulogne, by A. C. Marlowe.
- De Forest Radio Telephone Experiments.
- Auxiliary Loose-Coupled Tuner, by Walter E. Keefer.
- 16-Mile Wireless Station Using the Duplex Aerial, by Richard H. Foster.
- Wireless Registry.
- Simple Helix.
- Duplex Aerial.

Over 65 different types. Low cost. Send for Catalog S-590.

SWITCHCRAFT®

5579 N. Elston Ave., Chicago 30, Ill.

Stocked by leading Electronic Distributors

Please Mention RADIO-ELECTRONICS When Answering Ads
TV TUNERS REBUILT

All Makes & Models

VHF or UHF Tuners Overhauled

$9.95 Net

90 Days Warranty

Combination UHF/VHF Units

$19.90

Fast Service—48 Hours, All Types

Prices include labor and minor parts only, defective tubes and damaged major parts are extra at net prices.

Forward tuner complete with tubes, shield cover and any damaged parts. State fault.

QUOTE MAKE AND MODEL

F.O.B. CHICAGO OR TORONTO

We will ship C.O.D.

CASTLE TV TUNER SERVICE

5710 N. WESTERN 136 MAIN ST.

CHICAGO 45, ILL. TORONTO 13

U.S.A. CANADA

BATTERY REPLACEMENT

Some years ago a complete line of transistor batteries labeled the VS series appeared on the market. Among them was a 4-volt unit called the VS308. Many experimenters used this battery in their radios and other equipment. Unfortunately, it was discontinued some months ago. If you cannot find a suitable replacement, try this:

Obtain an Eveready battery No. 226 (a 9-volt unit with 6 cells that is roughly twice the length of a VS308 and has about the same diameter). Pry off the metal envelope and split the stack in half to get two 4.5-volt batteries. At the split you will note black, carbony surfaces.

To complete the new batteries, rip apart an old VS308, salvaging the terminal plates and cardboard pieces (one red and one black to indicate polarity). Add one terminal plate and cardboard disc to each 4.5-volt stack at its open surface. Use a rubber band to hold everything under pressure and you have two new batteries, each about the same size as a VS308.

The catalogs list P6M (Burgess) and VS300A (RCA) as equivalent to the Eveready 226—1. Queen

SOLDERLESS CONNECTORS

Several solderless connectors which allow rapid substitution of parts in experimental circuits are available. However, most of these connectors are expensive. After a great deal of experimenting, a solderless connector which I call a “connect-em” was developed to permit parts to be changed quickly and without damage. And best of all, each connect-em costs only a few pennies!

To make the construction of experimental circuits a pleasure at a minimum of cost, you can assemble a supply

IT'S THE NEW MARK II FROM WESTON:

an advanced new design for the WORLD'S FINEST PORTABLE ANALYZER

Here's an all-new version of the famous WESTON MODEL 980 Volt-Ohm-Milliammeter... engineered to offer you

• INCREASED RANGE. High-voltage range has been extended to 4000 volts.

• INCREASED SENSITIVITY. D-C sensitivity of 20,000 ohms/volt; accuracy within 2% of full scale.

• IMPROVED SHIELDING. Cormag® mechanism assures positive magnetic shielding; housing shields against electrostatic interference.

• GREATER RUGGEDNESS. Spring-backed jewel movement resists shock, vibration; case is impact-resistant. Ohm-ranges are fuse-protected.

• SIMPLIFIED CONTROL. Single dial control for range and function switching.

• NEW COMPACTNESS. Size and weight are reduced for maximum convenience and portability.

Order from your local Weston distributor. For information, write to Weston Instruments Division, Daystrom, Inc., Newark 12, N. J. In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 19, Ont. Export: Daystrom's International Sales Division, 100 Empire St., Newark 12, N. J.
of these solderless connectors from washers and grommets available in most radio supply houses. Obtain some 3/8-inch diameter metal washers with a 3/4-inch hole, and an equal quantity of soft gum-rubber grommets to fit a 5/16-inch mounting hole. The extra 1/16-inch makes a tight fit when the grommets are inserted in the washers.

To use a connect-em, simply insert the leads of transistors, resistors and capacitors between the grommet and the inside edge of the washer. To use tube sockets, potentiometers and parts which do not have leads, solder a length of solid wire to each terminal so they may be used with this connector.—Roscoe Siceloff

DROP-CLOTH POCKETS

Have your wife sew a pocket into each corner of your drop cloth. Use them to store a set of dusting cloths, sponges and other cleaning items. This is an especially good idea if your caddy or toolkit happens to be a bit overcrowded. Snap fasteners on the pockets will keep the contents from falling out.

—Joe C. Allen

SHARPENING A PUNCH

Eventually a chassis punch losse its keen edge and doesn’t cut as efficiently as it should. If you have a dull punch resharpen it by laying the punch and die ring on an oil stone and slowly rotating them with a circular motion, using moderate pressure. Don’t rock the punch up on edge while sharpening or you will get an uneven cutting edge.

If you don’t have an oil stone, a piece of very fine sandpaper tacked to a perfectly flat surface will do the job nicely.—John A. Comstock

TAPE PROTECTS CHEMICALS

If you’ve ever opened your toolkit and discovered a tube of service cement, lubricant or weatherproofing compound punctured, you probably wished there were some way to keep this from happening again. Fortunately, there is a way. Just wrap each tube with overlapped strips of electrician’s plastic tape. Leave enough of each tube unwrapped to identify its contents.—Scott Mack

REDUCE NUISANCE CALLS

Quite often I make a house call to find nothing wrong except that the antenna leads have been pulled off the back of the set. This is common on sets which can be swiveled, since the leads are moved each time the set is turned.

TIE ANTENNA LEADS TO BACK COVER WITH STRING

THE BUSINESSMAN IN THE SERVICEMAN SUIT

Features GOLD ANODIZED HI-FI BANSHEE TV ANTENNAS by JFD of course!

Customer confidence is your most important product. This is why more reputation-conscious servicemen rely on Hi-Fi Banshee performance. Now—there are 16 new, improved Banshees to give you the length and strength to power your business. Make the smart move today to Hi-Fi Banshees at your JFD distributor.

JFD ELECTRONICS CORPORATION

WHEN REPLACING OLD ANTENNAS—INSTALL THE HI-FI HELIX . BANSHEE . OR FIREBALL

THE BRAND THAT PUTS YOU IN COMMAND OF YOUR MARKET!
I solve this problem by tying each antenna lead to the back cover with string a few inches below the antenna terminals. This keeps the leads from breaking at the antenna terminals. Holes seldom have to be drilled as most back covers are perforated for ventilation.—Albert J. Krakowski

EARPIECE REPAIR

Some of the transistor radio earpieces have rubber ear inserts. After being used for a while, the ear insert gets sticky and the rubber eventually "rots" away. When this happens you have to get a new insert. You can make your own by simply obtaining a plastic cap like those on the plastic squeeze bottles that glue comes in. I used a cap from a 2-ounce bottle of Fuller’s all-purpose adhesive. Drill a 5/32-inch hole in the small end of the cap. Then slip it over the earpiece knob. If the cap slides off the knob, sand the knob lightly and apply a small amount of glue.—Leo Leap

SHOCK ABSORBERS

Shock-absorbing pads for delicate electronic instruments, record changers, motors, etc. can be made from ordinary discarded garden hose. Cut a section of the hose into small pieces. Drill or punch a small hole through the center of each section as shown in the photos. These holes are for the attaching screws or bolts. If more convenient, the pads can be permanently fastened to small wooden blocks that are attached to the equipment. In addition to stopping vibration, these pads will keep a motor (for example) from creeping on a smooth surface.—Glen F. Stillwell

DOUBLE-DUTY ALLEN WRENCH

To get at Phillips-head screws in cramped quarters, grind one end of an Allen wrench to fit the screw slots. Pocket-sized, such a screwdriver will loosen the most stubborn screw, and its unaltered end can be used for the regular Allen setscrews.—S. Clark

DOUBLE PROFITS

with these two ILLINOIS “HOT” LINES

You really make extra profits with ILLINOIS UMP Twist Prong Capacitors which are especially designed for TV replacement. Each capacitor is fully guaranteed for one year... and is needed and in demand for replacement use NOW!

Here are popular, fast moving capacitors which mean repeat business for you. They withstand extreme moisture and temperature conditions. Made of highest quality and unconditionally guaranteed for one year, these attractively-priced capacitors are packaged in eye-appealing boxes.

ILLINOIS “UMP” and “ELECTROMITE” Capacitors are available from leading electronic parts distributors.

Export Department: 15 Moore Street, New York 4, New York

TELECTRO Series. 900 Stereo Tape Deck

ADDS VERSATILITY...

3-speeds, 4-track head for every kind of stereo and monaural tape, with interchangeable head assemblies. Stereo and monaural recording and playback facilities.

CONVENIENCE...

Unique pushbutton controls for fast, positive tape handling. Special brake design permits easy reel rotation. Solenoid operated auto shut-off.

ENJOYMENT...

Twenty, fifty, five hundred playings from now, your tapes will still sound clean, crisp, mint-fresh, long after discs have developed pops and scratches.

ECONOMY...

You can add a Telectro Stereo Tape Deck for as little as $89.95. There are five models in all, one perfectly suited to your requirements.

TO YOUR HIGH FIDELITY SYSTEM

Telectro also makes a complete line of tape preamplifiers, design-mated for use with Telectro tape decks. See the Telectro Series 900 stereo tape decks at your high fidelity dealer. For further information, write Dept. RE-5.

TELECTRO a product of TELECTROSONIC Corp.
35-28 - 37th Street
Long Island City 1, N. Y.
AIR-CONDITIONER FAN MOTORS

Experience in our shop has shown that many RCA air-conditioner fan motors, which appear defective because of open windings, actually have a cold-solder joint where the motor winding connects to the built-in thermal overload. The next time you run into a fan motor that doesn’t run when power is applied, disconnect the fan motor leads from the switch and check resistance with an ohmmeter. If no resistance is read between the black and white wires, but you get a reading between green and white a cold-solder joint may be causing the trouble. To check, remove the motor from the air conditioner, remove the bolts holding the end covers in place, remove the cover opposite the side the leads come out. Then carefully cut the tape holding down the black lead and withdraw the thermal overload. Check the joint between the overload and the enameled wire. If defective, resolder and reassemble the unit, and you have saved your customer a motor replacement.—W. C. Warren.

CBS U3T616

There was a bend in the picture at the top of the screen. A check of the circuit revealed hash on the AFC line to the horizontal oscillator. I couldn’t locate any bad components, so I had to get the hash off the AFC line. To do so, I broke the line and installed an 18,000-ohm resistor (any unit rated between 10,000 and 25,000 ohms will work). Then I bypassed both sides to ground with a couple of .01 uf capacitors. This filtered out the hash and restored normal operation.—W. G. Edlick.

BENDIX CHASSIS T-19

One of these sets came into the shop with a complaint of hum pickup. Normal methods could not stop the hum. Finally, we discovered that the hum was being picked up by the filament wiring of V11, 12, 7 and 9 from the green lead coming from pin 1 of V11. The solution was to dress the filament wiring as far as possible from the green lead.—Larry Steckler.

FREEING IF COIL SLUGS

Quite often trying to touch up the IF alignment of an auto radio becomes a major job because one or two slugs refuse to budge. Usually, this is caused by the natural silver or gold anodized from Hi-Fi Fireballs now having driven Fireball design. When replacing old antennas—install the Hi-Fi Helix, Banshee, or Fireball, the brand that puts you in command of your market! —JFD Electronics Corporation.

THE BUSINESSMAN IN THE SERVICEMAN SUIT

Features

HI-FI FIREBALL
TV ANTENNAS

by JFD

Satellite dipoles plus famous ghost-killing Twin-Driven Fireball design. Make the smart move today to Hi-Fi Fireballs at your JFD distributor.

JFD ELECTRONICS CORPORATION
Brooklyn 4, New York, U.S.A.

WHEN REPLACING OLD ANTENNAS—INSTALL THE HI-FI HELIX... BANSHEE... OR FIREBALL

THE BRAND THAT PUTS YOU IN COMMAND OF YOUR MARKET!

THE BUSINESSMAN IN THE SERVICEMAN SUIT

Features

HI-FI FIREBALL
TV ANTENNAS

by JFD

Customer confidence in your experience goes up when you install the JFD Hi-Fi Fireball!

Newly improved and expanded to give you 8 natural silver or gold anodized models to choose from—Hi-Fi Fireballs now have fringe-proven

JFD ELECTRONICS CORPORATION
Brooklyn 4, New York, U.S.A.

WHEN REPLACING OLD ANTENNAS—INSTALL THE HI-FI HELIX... BANSHEE... OR FIREBALL

THE BRAND THAT PUTS YOU IN COMMAND OF YOUR MARKET!
ANTENNAS
Complete line of VHF, UHF, VHF/UHF, and FM antennas. Famous Inline (reissue U.S. Pat. 23,273) is considered by impartial authorities as the finest broadband VHF antenna ever built.

ACCESSORIES
Antenna or set couplers, array or other important products—all carefully engineered to highest quality standards.

TWIN LEAD
Both receiving and transmitting types are made by AMPHENOL, including the "hottest" twin lead on the market—AMPHENOL MARINE CORE, super low-loss Polyfoam.

COAXIAL CABLES
AMPHENOL's Cable-bility is famous: More types of RG-7/U (Polyethylene and Teflon), more experienced engineering, most modern production facilities.

FORD 74BF, 75BF
Transistors used in the audio output circuits of hybrid auto radios are a hardy breed, but they can be damaged by excessive heat. To guard against this they are mounted on the outside of the set and, as an additional precaution, usually in a heat sink. Under certain conditions this is not enough protection.

After a severe heat wave last sum-

OUT-OF-SYNC COLOR ON PURPOSE
Classroom instructors and shop supervisors can make highly effective demonstrations of out-of-sync color patterns by using this stabilizing method:

Feed the voltage from the red gun back to the grid of the vertical sweep oscillator through a 0.1-uf blocking capacitor and a 1-megohm pot. Lock the pattern with the pot.

To make the demonstration, display a color bar or rainbow pattern on the screen of the picture tube. Next, throw the burst afc off balance, so the pattern loses color sync. Finally, adjust the 1-megohm pot to lock the out-of-sync pattern.

By holding the pattern still on the screen, the instructor can point out its details to much better advantage. Students can also study the pattern more effectively when it is not moving on the screen.

The effect of high or low off-frequency operation of the color subcarrier oscillator can be shown by turning the burst afc one way or the other, by greater or lesser amounts.—Robert G. Middleton

TECHNOTES (Continued)
by wax the manufacturer drops into the core to keep vibration from affecting the receiver's alignment. Trying to force the slug may damage it, the coil or the alignment tool.

Most auto radio if slugs require a hex alignment tool and, as these tools are nonmetallic, they cannot be used to apply heat to the slug. Placing the receiver under a heat lamp will eventually soften the wax, but this needlessly subjects many parts to extreme temperatures.

I find that an easy way to soften the wax holding an if slug is to heat an Allen wrench of the proper size with a soldering iron and insert it into the slug opening. This not only provides maximum transfer of heat but also provides a means of starting the slug. —Albert J. Krukowski

AMPHENOL DISTRIBUTOR DIVISION
BROADVIEW, ILLINOIS

Amphenol-Borg Electronics Corporation
mer I had to replace the transistor in half a dozen Ford hybrids (models 74BF and 75BF) that had weak or no sound. No other faulty component or circuit defect could be found in any of these sets to account for the sudden epidemic of transistor failures. Each of these cars must have been parked in hot sunshine with their windows closed long enough to bake the transistor, increasing its conduction to the point where it was permanently damaged. —Chase Bass

DON'T FORGET TUBE SHIELDS

Forgetting to replace tube shields can cause a lot of trouble. Interference beats in the picture, if oscillation, degraded picture, distorted sound and critical fine tuning can result. Proper placement of tube shields in the tuner, pix if strip and audio if are especially important. Check grounding springs for good contact between tube shields and chassis.—W. C. Warren

MARK GRID-CAP LEADS

Many older radios in use now have grid-cap leads. When servicing these sets, it is best to mark the grid-cap leads. Two same-sized (but different type or application) tubes close together can have the same color and length grid-cap leads. These leads come from the top of one lead and the other from the top of the other tube. To identify these (after removing from tubes) mark two squares of adhesive tape with the letter A. Put one on the tube and the other on the matching wire. Do the same for other tube, using a different letter of course.—A. von Zook

RCA 800 SERIES PORTABLES

The set came in with a jagged vertical line on the right side of the picture which we properly analyzed as parasitic oscillations in the horizontal out-

ATLAS PAGING SPEAKER

STYLED FOR MODERN DÉCORS

The New Atlas DU-12 Perfect for the Most Discriminating Applications. For the first time here's a loudspeaker that doesn't look like one. Modeled along the sleek, straight lines of a modern lighting fixture, and finished in brushed satin aluminum, the Atlas DU-12 is styled to harmonize and enhance the most ultra of modern décors. Acoustically, the Atlas DU-12 offers high intelligibility, efficiency and directivity — features that mark it as a fine quality loudspeaker. The frequency response of the DU-12 is "tailored" to reproduce speech with clean, crisp articulation, its horn type construction and universal mounting bracket provide complete directional control, confining the sound coverage to the required service areas. And, there's no wiring exposed to mar its appearance because all connections and line put stage. The solution was simple: we inserted a 120-ohm 1/2-watt resistor in the screen grid of the horizontal output tube, a 1TDQ6-A.—C. S. Lawrence

ELECTROSTATIC-FOCUS CRT'S

These picture tubes are designed to be self-focusing despite variations in the voltage applied to the focus electrode of the tube. However, focus can sometimes be improved by trying the various voltages found throughout the chassis on the focus electrode.—Larry Stockler

END

ATLAS SOUND CORP.
Service Technicians! YOU EARN MORE... YOU RATE with the public when you own the PHOTOFACT® service data library!

You enjoy maximum earnings as the owner of a complete PHOTOFACT Service Data Library! It's inevitable, because no matter how expert you are, you can always save more time on any job, get more jobs done daily—EARN MORE, DAY IN AND DAY OUT...

What's more—as the owner of a complete PHOTOFACT Library, you know your customers' sets best. You can actually show each customer you know your customers' sets best. You enjoy maximum earnings as the owner of a complete PHOTOFACT Library, you EARN MORE, DAY IN AND DAY OUT...

HOW TO STAY AHEAD...
Yes, the truly successful Service Technicians are those who own the complete PHOTOFACT Library, who can meet and solve any repair problem—faster and more profitably. And these men keep ahead because they're on a Standing Order Subscription with their Distributors to receive all new PHOTOFACTS as they are released monthly. (They're eligible for the benefits of membership in PEET, too—see below!)

For PHOTOFACT Library Easy-Buy Plan details and Standing Order Subscription today, or write to Howard W. Sams...

NOW IS THE TIME TO JOIN

THE POWERFUL NEW PROGRAM FOR QUALIFIED TECHNICIANS

If you now own a PHOTOFACT Library or plan to own one, you can apply for membership in "PEET." It's the first industry program really designed to build powerful public acceptance for the Service Technician who qualifies. Builds enviable prestige and business for its members. Benefits cost you absolutely nothing if you qualify. Ask your Sams Distributor for the "PEET" details, or mail coupon today.

HOWARD W. SAMS & CO., INC.
1726 E. 38th St., Indianapolis 6, Ind.

☐ Send me full details on the new "PEET" Program. Include full information on the Easy-Buy Plan and Free File Cabinet deal.

☐ I'm a Service Technician ☐ full-time; ☐ part-time

My distributor is ____________________________

Attn: ____________________________

Address ____________________________

City ____________________________ Zone State ____________________________

G-E SERVICE POLICY

"Television receiver servicing traditionally has been done primarily by independent servicers and this fact is recognized by the newly issued company-wide policy statement."

These words from Steven R. Mihalic, product service manager for G-E's TV receiver department, sum up G-E's present attitude toward TV repairs.

WORTH JOINING

According to TESA News of Wisconsin, the average income of a TESA member is about $1,000 more a year than non-members, or about $6,000 as compared with $5,000. Lack of management skills is the main cause of the lower income. An example of this is unprofitable pricing schedules. The article also says that white shirts are good for business. The members say that the shirts give them more prestige, respect and customer confidence.
The actual policy statement says that "the company believes "that its partici-
pation in product service activity is a
natural, desirable and essential part of
producing and marketing its products . . . There are many competent and
efficient independent service organiza-
tions engaging in this activity as a
profitable business . . . Both the com-
pany and its customers depend on such
organizations to keep many kinds of
equipment in good operating condition.
Service manuals and service parts are
made available to qualified independent
service organizations in this work."

NEW OFFICERS

The Electronic Service Dealers Asso-
ciation (ESDA) of Cowlitz County
(Wash.) has elected Les Eddy presi-
dent; Forrest Duvall, vice president;
Angel V. Heckman, secretary-treasurer,
and Rollie Mietzke and George Gorans,
directors. Their program for the year
includes a motion to join NATESA.

ANTI-LICENSE INJUNCTION

The Kansas City Chapter of TEAM
(Mo.), has secured a temporary injunc-
tion against enforcement of the license
ordinance in their city. W. C. Pecht,
editor of Team News, says they can
carry the case to the Supreme Court if
necessary.

TESA MILWAUKEE ELECTS

TESA of Milwaukee, Wis., has elected
officials for the coming year. They are
Larry Dorst, president; Arthur Nilson,
vice president; Daniel Smith, secretary;
Lee Cowen, treasurer; Ed Bruning,
NATESA director.

NEW LOCAL

Technicians in the Mansfield, Ohio,
region have formed the TESA of Mans-
field Area. Officers for the NATESA-
affiliated group are: Fred Plew, presi-
dent; Benny Welker, vice president;
Paul Hersch, secretary; Walter Brandt,
treasurer; Don Queen, chairman, board
of directors. The group has about 50
members at present.

OHIO OFFICERS

TESA of Ohio has elected Marvin A.
Miller president; Robert Allen, vice
president; Wade Campbell, secretary,
and Adolph Stanguts, treasurer.

TRI-STATE CONVENTION

The fourth annual Servicing Industry
Telerama (1960) will be held in Atlantic
City, June 24, 25 and 26. The Stede-
burne Hotel, located on the boardwalk,
and its connecting motel, the Empress,
were selected to play host.

Manufacturers will be invited to dis-
play their products and services to the
delagates.

Room assignments will be made with
preferred accommodations going to
the earliest requests. If you are inter-
ested and have not received a reserva-
tion form, write to the Tri-State Coun-
cil of Television Service Associations,
4616 Westfield Avenue, Camden, New
Jersey.

PASadena ELECTION

The Pasadena Chapter of the Radio
Television Technicians Association of
California has elected Virgil Gaither
president. Other officers elected are:
Ken Mendes, first vice president; Dave
Wyman, second vice president; Bob
Kealey, secretary; Chester W. Shep-
herd, treasurer. Directors are Stan Gil-
kinson; Richard B. Hartwell and
Wayne B. Hartwell.

POSSIBLE LEGISLATION

Legislation, sponsored by Senator
Joseph F. Periconi of the Bronx and
Assemblyman Francis P. McCluskey of
Wantagh, that would require licensing
of TV service technicians and service
dealers was sent to committees in both
the N. Y. State Senate and House. A
written test for a license would be re-
quired of any technician who does not
have at least 4,000 hours of service ex-
perience (or equivalent) or 2,000 hours
of experience and completion of an
approved course of study. Licenses
would run for a period of 2 years.

TESA MEETING

TESA of Missouri elected new of-
cficers: Earl Steffens, president; Wm.
Frazure, secretary; Carl Adcock, treas-
urer; Ed Engel, chairman of the board.
Benton Linder, Harry Robbins, Earl
Bess, Troy Braustetter, Ken Cleaton,
Wm. Reagon, Fred Reichman and
Albert Hawn were elected area vice
presidents.

ESFETA FOR BILL

The Empire State Federation of
Electronic Technicians Associations re-
novied the New York State license bill
at a recent meeting. It was ESFETA's
unanimous opinion, according to Melvin
Cohen, secretary, that the bill "is favor-
able to public welfare and safety and
will also protect the consumer from in-
competents and TV repair frauds."

Officers will be elected at the next
meeting, which will be held on May 1
in Binghamton. For more information
on time and place, write to Melvin
Cohen, R. D. 1, Hudson Falls, N.Y.

TECHS BUY PARTS

A group of service shops in the
Minneapolis area have incorporated a
parts-supply house, according to John
W. Hemak of Minnesota Television
Service Engineers, Inc. (MINTSE).

The move was made because of unsatis-
factory relations with local parts job-
bers.

SAMS BOOKS

"101 More Ways to Use
Your Scope in TV"

This book derives from the
author's own experiences in help-
ing his teenage son understan-
d this fascinating subject
and rewarding hobby. (Jay
Stamley, the writer, is a frequent
contributor to leading electron-
ic magazines.)

Profusely illustrated, the book
includes 45 chapters which progressively
introduce the newcomer to the
basic fundamentals of conjec-
turing electronic devices,
such as a "one-hour radio," a
home broadcaster, short-wave tuner, etc. The
book is unique in that all the projects described
are indexed by brand name,
model and chassis number for
quick reference. Each hint is
accompanied by a flow sheet
diagram or schematic. An
unavailable store reference:
a real time-saver.

"Servicing Transistor Radios" Vol. 5

The latest volume in this best-
selling series contains more
than 100 models of popular transistor radio
models produced in 1960-69. You get
the latest volume in this best-
selling series.

"Video Speed Servicing" Vol. 4

This book is unique in that all the projects described
are indexed by brand name,
model and chassis number for
quick reference. Each hint is
accompanied by a flow sheet
diagram or schematic. An
unavailable store reference:
a real time-saver.

END
Medical Disclaimer:

The text contains scientific and technical information. It is recommended to consult a healthcare professional for advice on any matters concerning health. This text is for educational purposes only and should not be used as a substitute for professional medical advice.

Technical Details:

- The text discusses the implications of increased requirements on missile systems, including the reliability of guidance systems.
- It mentions the use of printed circuits in guidance systems, which contribute to increased missile reliability.
- The text emphasizes the importance of antennas in receiving intelligible signals over a wide range of frequencies.
- It highlights the role of ionically conductive materials in improving communication techniques.

Technical Notes:

- The text notes the importance of specific materials, such as hydroxyl ions, in the composition of ionically conductive materials.
- It discusses the role of electronic conductivity in achieving increased reliability in communication systems.
- The text underscores the need for improving communication techniques to handle increased missile guidance needs.

Additional Resources:

- The text directs readers to consult various resources, including the World Publications Services and the New Liberal News for further information.
- It encourages readers to explore a wide range of products and technologies available from various manufacturers, including TELRON SMASHES PRICES and TELRON ELECTRIC CO.

Technical Insights:

- The text provides insights into the technological advancements in communication and guidance systems, emphasizing the need for innovation to meet increased demands.
- It highlights the importance of maintaining single lobe patterns and being circularly polarized for effective communication.
- The text discusses the role of antenna design and materials in achieving improved communication performance.

Technical Applications:

- The text applies to communication and guidance systems in missiles, focusing on the need for increased reliability and efficiency.
- It discusses the use of ionically conductive materials and electronic conductivity in achieving improved performance in these systems.

Technical Limitations:

- The text acknowledges the limitations in achieving complete reliability in communication and guidance systems.
- It notes the need for ongoing research and development to address these limitations.

Technical Challenges:

- The text addresses the challenges in ensuring the full potential of guidance systems is realized, highlighting the need for continued innovation and improvement.
- It underscores the importance of addressing challenges in areas such as electronic conductivity and ionically conductive materials.

Technical Future:

- The text looks to the future, emphasizing the need for continued investment in research and development to meet the increasing demands on missile systems.
- It highlights the potential for improved communication techniques and increased reliability in guidance systems through ongoing advancements in technology.

Technical Priorities:

- The text prioritizes the development of improved communication techniques and increased reliability in missile guidance systems.
- It suggests focusing on ionically conductive materials and electronic conductivity to achieve these goals.

Technical Action:

- The text encourages readers to take action by exploring and supporting advancements in technology, particularly in the areas discussed.
- It invites readers to participate in ongoing discussions and developments in communication and guidance systems.
message. Thus, the guidance of missile systems and the accuracy of telemetered data are severely affected by noise. Today's techniques of eliminating radio noise in receivers only limit or dampen the noise, or eliminate both the noise and the intelligible portion (during occurrence of noise) of the signal.

1136. ANALOG COMPUTER. A requirement exists for an analog computer which will give an output representing the distribution of a function of a number of variables, each having its own distribution, to be used as inputs.

1137. EMERGENCY UTILIZATION OF TV TRANSMITTERS FOR ANTI-AIR DETECTION. Feasibility study and operational plans should be prepared to utilize certain military radar components in conjunction with existing TV stations to provide anti-air detection in times of urgency.

1138. FIELD PORTABLE DIGITAL RADAR. Since most data transmission systems today employ digital techniques, it appears reasonable that digitally compatible radars be designed for use with such data transmission systems. The radars output will be purely digital for the functions of tripwire video antenna position, etc.

1139. DEVELOPMENT OF A WIDE-ANGLE, COLD-CATHODE, HIGH-RESOLUTION CATHODE-RAY TUBE. To accommodate new military electronic systems, it is necessary to develop a high-resolution (in the order of 500 lines per inch), cold-cathode, cathode-ray tube. Such a device would have a wide application in military data display systems.

1140. DEVELOPMENT OF A LARGE-SCREEN, HIGH-RESOLUTION, MULTICOLOR SYSTEM FOR RADAR AND ALPHA-NUCLEAR DATA DISPLAY. This display system should be capable of displaying radar data in real time, at a resolution of at least 1,250 lines an inch and with a minimum of three colors. It should also be capable of accepting alphanumeric characters for simultaneous display with the radar.

1141. "SAFE AREA" DESTRUCTION OF MISSILES ENTERING DEFENSE AREAS. A technique should be developed to correlate long-range tracking radar capability and a high-speed frequency scan directional radio with combinations of times and frequencies for the purpose of either causing self-destruction of a missile in a "safe area" or changing the flight path.

1142. INSTRUMENTATION TO STUDY THE REACTIONS OF ACTIVE HUMAN TEST SUBJECTS WHEN SUBJECTED TO ENVIRONMENTAL STRESS. Skin thermocouples and rectal thermometers have been developed which can be worn by active clothed test subjects. These sensors, together with their associated instrumentation, are reliable, convenient and do not cause discomfort to the subject. More recently, a telemetering system for measuring pulse rates consisting of a sensor and a small transistorized radio transmitter has been designed which can continuously measure heart beats and is now ready for user tests. Similar telemetering devices are required for measuring other physiological factors such as blood flow, cardiac output, oxygen consumption, tidal volume, breathing rate and chemical makeup of the breath.

END
LEADER TEST INSTRUMENTS

new "LEADER" test instrument

LAG-55 AUDIO GENERATOR SINE SQUARE

A multi-purpose generator for measurements on audio equipment - amplifiers, speakers, networks. Three waveforms sine, square and complex for all types of measurements including response, distortion, transient and I-M distortion checks. Full range is from 20 to 200,000 cps. output 5 volts with minimum amplitude variation throughout whole range.

The LEADER test instruments are being used in the more than 36 countries, attesting their excellence in design, performance and usefulness.

OHMATSU ELECTRIC CO. LTD.
2596, 5-Chome, Kamimeguro, Meguro-ku, Tokyo, Japan
Cable Address "OHMATSUELEC" TOKYO

NOTEWORTHY CIRCUITS

TWO LIGHT-CONTROL CIRCUITS

I was interested and surprised to see the circuit presented by Rufus P. Turner in the November, 1959, issue (page 98) for controlling a light bulb. I have been using a similar circuit for several months. The circuit I use employs the same transistors selected by Mr. Turner. The difference is that I put the light bulb in the emitter circuit. I do this because my circuit controls two separate bulbs powered by separate input signals. If the bulbs had been in the collector circuit, I would have had to isolate the transistors' cases from the chassis to keep their outputs separate. I work with 12 volts and use bulbs that draw about 90 mA at 12 volts.—Christopher W. Farrell

IMPROVED DETECTOR

Readers who built the unique AM tuner described in the December, 1958, issue, page 80, may be interested in a change in the detector circuit which I have tried. It increases sensitivity with no reduction, and a possible improvement in fidelity. The avc can be taken off at point X.—Frederick Butterfield

MOUNTING POWER TRANSISTORS

In many circuits using power transistors, the transistor's case must be fastened to a heat sink (usually the chassis) to allow for heat dissipation. However, in some circuits, particularly push-pull arrangements or any other where the chassis may be connected to
70% OFF ON BRAND NEW TUBES

GUARANTEED ONE FULL YEAR!

You can rely on Rad-Tel's speedy one day service!

Use this as your order form:

Name .. Address ..
City .. Please print plainly

Send for free trouble shooter guide and new tube & parts catalog.

Not affiliated with any other mail order tube company.

TERMS: 25% deposit must accompany all orders — balance C.O.D.

$1 HANDLING CHARGE FOR ORDERS UNDER $5. Subject to prior sale.

Please add postage. No C.O.D.'s outside continental U.S.A.
TIME TO CLEAN UP YOUR SYSTEM... Norelco® T-7 LOUDSPEAKERS with voice coil magnets of Ticonal-7 steel (30% more efficient* than Alnico V)

*... 30% more efficient response to the full signal range of your amplifier... WHETHER ITS RATED OUTPUT is 10 WATTS or a HUNDRED...

at any listening level from a whisper to a shout!

Guild-crafted by Philips of the Netherlands to give you THE CLEANEST SOUND AROUND

Ask for a demonstration wherever good sound is sold or write to:

NORTH AMERICAN PHILIPS CO., INC.
High Fidelity Products Division, 230 Duffy Avenue, Hicksville, L.I., N.Y.

NOTEWORTHY CIRCUITS (Continued)

the positive end of the power supply, the p-n-p power transistor must be insulated from the chassis. The reason is simple: the transistor's collector is connected to its case and must be at a negative potential. So naturally it can't be connected to a positive chassis.

This brings up an unusual problem. A good thermal connection to the chassis is needed for heat dissipation, yet the case of the transistor must be insulated from the chassis.

Two solutions to this problem, currently used in auto radios, are described in RCA Application Note AN-171. You can use anodized aluminum washers or mica washers. The mica is a natural insulator and the anodizing process coats the aluminum washer with aluminum oxide making it a good insulator without destroying its heat dissipation properties.

The diagram shows how to mount the power transistor using either the anodized aluminum or the mica insulating washer. Be sure you don't forget the fiber insulating washer between the mounting bolt and the chassis. If you use the aluminum washer, make sure that all burrs have been removed from the holes in the chassis. If this isn't done, they may scrape away the anodized layer and short the washer to the chassis.

SLEEP ALARM

The Driver-Larm is a new device to prevent long-distance drivers, night watchmen and others with lonely boredom jobs from falling asleep, by sounding a loud buzz in their ear as soon as the head tips or nods. The device, a product of Driver-Larm, Inc., of Kansas City, Mo., consists of a transistor oscillator and earpiece suspended on a lightweight headband. The earpiece—a center-tapped 500-ohm dynamic type—is the inductor in a Hartley oscillator. The oscillator is controlled by a carefully balanced mercury switch that is open when level and closed when tilted. When the wearer's head begins to roll or nod from fatigue or boredom, the switch tips and turns on the oscillator. This produces a buzz or audio tone loud enough to startle the wearer awake.
new
PRODUCTS

TRANSCIEVERS for Citizens band use, either kit or wired form. Model 760 (R if kit), 117 volts ac, has superheterodyne receiver with rf stage, 5-watt transmitter. Pi output network matches most antennas. Models available for 6 to 12 volts dc. Electronic Instrument Co., Inc., 2500 Northern Blvd., Long Island City, N. Y.

TRANSCIEVER SET. Completely transistorized Duo-Com 100 operates in 27-mc Citizens band. Receiver—double-conversion superheterodyne, dual crystal-controlled, glass-B audio amplifier. Transmitter—crystal-controlled, 100-mw input. Uses 8 penlight cells. 20 ounces.—Osborne Industries, Forest Park, Ill.

TRANSCIEVER KIT has 5-watt power input to rf output stage, 2½-watt audio power output. Models G-115 (117 volts ac), G-12 (12 volts dc), G-6 (6 volts dc) with Astatic microphone, crystal and tubes. Super-regenerative receiver. Grove Electronic Mfg. Co., 4108 W. Belmont Ave., Chicago 41, Ill.

NOISE SUPPRESSOR model GNP has high-Q parallel-tuned circuit to be connected in series with car's generator. Reduces generator noise in 14-30-me range. Can be used with mobile amateur and Citizens-band equipment.—Globe Electronics, 22-30 S. 34 St., Council Bluffs, Iowa.

STEREO CARTRIDGE model 34. Pink response to 25,000 cycles, low of 16 cycles. Ceramic Channel separation of 24 db at 1,000 cycles. 4 output leads to avoid energy crossover through common lead.—Sensen Industries, Forest Park, Ill.

STEREO TUNER KIT, completely prealigned, needs no ad-
tional minor alignment or trimmer tracking adjustments. Model ST-S2PA has 16-kc whistle filter in AM section. FM sensitivity 20 for 25-db quieting. Flywheel tuning, afc, AM trf stage, FM grounded-grid rf stage, 13 tubes.—Paco Electronics Co., Inc., 70-31 84th St., Glendale 27, N. Y.

STEREO TUNER model KN-135 for stereo, AM only or FM only. 50-ohm antenna input (FM), flywheel-weighted tuning controls. FM sensitivity 40 for 20-db quieting. AM sensitivity 10 for 20-db signal-to-noise ratio, FM response 20,000 cycles within 0.5 db. Supplied with two 36-inch audio cables, AM and FM antennas.—Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.

MODERNIZE MUSIC SYSTEMS with the NEW

Audio/Clock

A smart, practical addition to every music or P.A. system. Available with either standard or modern clock dial. Ideal for industry, motels, offices, homes and schools.

Audio/Clocks Available for Three Different Types of Mounting. The non- resonant fiberglass baffle accommodates an 8" speaker. Slotted sound ports disperse audio over a wide area. Rugged sealed clock motor available for 24 or 110 VAC, 60-cycles.

Write for literature
BUILD 20 RADIO CIRCUITS AT HOME with the New Progressive RADIO "EDU-KIT"®

All Guaranteed to Work!

PRACTICAL HOME RADIO COURSE $26.95

NOW INCLUDES

• 12 RECEIVERS
• 3 TRANSMITTERS
• 1 VOLTMETER
• 1 AMPLIFIER
• 1 SIGNAL TRACER
• 1 SIGNAL INJECTOR
• 1 CODE OSCILLATOR

FREE EXTRA

WHAT THE "EDU-KIT" OFFERS YOU

The "EDU-KIT" offers you a complete practical radio course at a rock-bottom price. Our kit is designed to train Radio & Electronics Technicians, new radio enthusiasts, experimenters, hobbyists and home contractors. The "EDU-KIT" offers you self-teaching radio theory, construction, servicing, basic Hi-Fi and TV repairs, code, FCC amateur radio operator and technician certification examination course, how to read and construct circuit diagrams, how to build professional radio equipment, how to build radios. Today it is no longer necessary to spend $240 for a Course, but to spend $26.95 for a kit, and you can do this without delay.

THE KIT FOR EVERYONE

The Progressive Radio "EDU-KIT" requires no previous knowledge of radio as it is carefully designed and prepared for any person with the slightest grade of general intelligence. It is a self-teaching course which can be mastered in all parts of the world, by many Radio Technics and Guides in first class counting and retrieving. It is used for training and rehabilitation of Armed Forces Personnel, World War III Veterans, and old men in all parts of the world, by many Radio Schools and Clubs in this country and abroad.

BUILD 20 RADIO CIRCUITS AT HOME

The "EDU-KIT" is complete with all parts and instructions necessary to build 20 different radio and electronics circuits, each guaranteed to operate. Our kits contain tubes, tube sockets, variable, electrolytic, mica, ceramic and paper dielectric condensers, selenium rectifiers, volume controls and switches.

THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructions necessary to build 20 different radio and electronics circuits, case guaranteed to operate. Our kits contain tubes, tube sockets, Mica, ceramic, high impedance, ceramic, high impedance condensers, tube sockets, variable, electrolytic, mica, ceramic and paper dielectric condensers, selenium rectifiers, volume controls and switches.

UNCONDITIONAL MONEY-BACK GUARANTEE

The Progressive Radio "EDU-KIT" has been sold by many thousands of individuals, each guaranteed to operate. Our kits contain tubes, tube sockets, Mica, ceramic, high impedance, ceramic, high impedance condensers, tube sockets, variable, electrolytic, mica, ceramic and paper dielectric condensers, selenium rectifiers, volume controls and switches.

ORDER FROM A SELECTED FREE GIFT RESISTOR AND CONDUCTOR SET

Send "EDU-KIT" Postcard, I enclose full payment of $26.95.

Send "EDU-KIT" Card, I will pay $26.95 by postal money order, cashier's check or bank draft.

Send me FREE additional information describing "EDU-KIT."

Name
Address

Progressive "EDU-KITS" Inc. 1165 Broadway, Dept. 156-G New York, N. Y.

NEW PRODUCTS (Continued)

STEREO AMPLIFIER model 2151, built-in preamp, 15 watts output each channel response 30 to 30,000 cycles with in 0.5 db at 1 watt, 8 tubes, 6 front-panel controls; 4, 8- and 16-ohm outputs each channel 5 inputs per channel.—Olson Radio Corp., 263 S. Forge St., Akron, Ohio.

TRANSISTOR AMPLIFIER has 6-watt output, works on 6 volts dc. Model 1A has 8 transistors, inputs for microphone, magnetic, ceramic and crystal phone, 4-, 8- and 16-ohm outputs.—Transonic Enterprises, Inc., P. O. Box 1936, Miami 1, Fla.

REMOTE SPEAKER model SK-155 has 2 volume controls, one for speaker itself, second for volume of TV-set or radio speaker.—Lafayette Radio Corp., 165-48 Liberty Ave., Jamaica, N. Y.

MICROPHONES in the $30 price range. Model 215H, dynamic high impedance, response 50 to 12,000 cycles at —56 db. Model 215L, low impedance, same as 235H, except output is —71 db. Model 301, ceramic, high impedance with response 30 to 12,000 cycles at —58 db. Model 311 (illustrated), ceramic, high imped- ance, 300 to 5,000 cycles at —56 db, for Citizens-band use. Astalite Corp., Conneticut, Ohio.

7-CHANNEL RECORDER model 183SK operates for 4½ hours on a single 4,800-foot ½- inch reel of tape. Tape speed 3.75 ips. Rewind time less than 2 minutes. Modular plug-in amplifiers. Response 300 to 2,000 cycles within 2 db.—Telecords Corporations, 3517 37th St., Long Island, N. Y.

AUDIO CABLE for stereo and monaural use. No. 8212 has spri- ral tin-plated-copper shield, cellu- lar polyethylene insulation for lower capacitance and loss. Belden Manufacturing Co., 4647 W. Van Buren St., Chicago, Ill.

4-WAY POCKET TOOL model 609 serves as 4- and 7/16-inch nut driver, 3/16-inch screwdriver and No. 1 Phillips driver. Patented spring holds the double-end blade firmly in socket.—Xcelite, Inc. Orchard Park, N. Y.

RECHARGEABLE BATTERY can be recharged hundreds of times. Nickel-cadmium cells charged by up-regulating current and plugging unit into 117-volt ac outlet. Model FC-5 fits any flash- light using 2 D-cells, provides power for (3 hours) about twice the duration of the company's Model FC-2 consumer cartridge.—Sonotone Corp., Elmsford, N. Y.

GAIN CONTROL for master TV antenna system. Model MAC...
NEW PRODUCTS (Continued)

Provides automatic signal regulation for any amplifier with over 16 db gain and an output between 0.5 and 25 volts. Control maintains level within 1 db for 10 db signal variation. -Bion-er-Tongue Labs., Inc., 9 Allin- St., North Haledon, N. J.

VIND-VELOCITY INDICATOR also shows wind direction. Model F-507 has 3 scales: direction, velocity 0 to 25 mph and 0 to 100 mph. Power supplied by built-in battery, no power drain except when reading direction. Transmitter assembly fits 14-inch pipe or mast. Lafayette Radio Corp., 162 Liberty Ave., Jamaica 33, N. Y.

TRANISTOR TESTER model K-4 A & K checks units in oscillator circuit. Determines if transistor is open, shorted, noisy or has high leakage value. Checks power and general-purpose, p-n-p or n-p-n types. Powered by two 6-volt batteries. -Kier-uff & Co., 6303 Cesarin St., Los Angeles 72, Calif.

SUBSTITUTION BOX for electrolytic capacitors. 10 capacitance combinations from 10 to 150 uf at 350 volt. 2 or more model CDE units may be connected in parallel for unlimited capacitance range. -Cornell-Du- bilt-El'Ectric Corp., S. Plain-field, N. J.

AC VTVM 834X608 has automatic motor-driven range selector. Panel lights indicate range in use. Motor unit capable of driving selector switch through 500 range positions.

When you order merchandise by mail . . .
Include your address and postal zone number.
Type or print if you can—it's just to write clearly.
Don't send cash—use checks or money orders.
Include allowances for postage charges if you know the weight of what you're ordering.

Yes, you got this big, brand new book, "150 Radio-Television Picture Patterns and Diagrams Explained", absolutely FREE! Complete 11x14" Schematic Diagrams on leading models Radio and TV Sets help you service them. Easy-to-read, large 81/2x11" pages, with full instructions on how to use the diagrams. A "must" in every repair kit. You get this book as a FREE Gift for asking to see Coyne's new 7-book set, "Applied Practical Radio-Television!"

At Last! Money-Making "Know-How" On Transistors, Color TV and Servicing
Coyne's great 7-volume set gives you all the answers to servicing problems—quickly! For basic "know-how" that's easy to understand, you'll find everything you want in Volumes I to 5 on over 5000 practical facts and data. Every step from fundamentals to installing, servicing and troubleshooting all types of radio and TV sets. So up-to-date it includes the latest on COLOR TV and FHE. All this plus Volume 7—TRANSISTOR CIRCUITS—the most complete book ever published on the applications of tran- sistors in electronics. Now! Set has colorful de- scriptions and ingenious drawings.

EXTRA! 668-Page TV Cyclopedia Included!
For repairman and TV with tools also get Vol. 6—famous Coyne Cyclopedia. Answers problems on servicing, alignment, installation, etc. in over 1250 pages. Use the same TV-ROD LIBRARY FREE for 7 days; get the Service Manual FREE! -Coyne Electrical School.

Get This Valuable Book FREE

Just For Examining COYNE'S New Set "Applied Practical Radio-Television" on 7 DAY FREE TRIAL!

FREE! 5 Years Of Valuable Supplements

FREE BOOK—FREE TRIAL COUPON!

This is the businesslike approach to service record keeping. Triplicate forms serve as order form, invoice, service record, with spaces for comments and information on every job. Separate listings for receiving tubes, pix tube, parts, sales numbers, labor and tax charges, signatures, etc., in book. $6.50 for dust-proof box of 10, in stock at your distributor. Write for your free folder describing Dave Rice's Official Order Books, including an actual size sample copy of the handy order form.

For customer's prices on every replacement part, parts flat rate and hourly service charge data, refer to national, Dave Rice's Official Pricing Digest listing over 63,000 items. $2.50.

ELECTRONIC PUBLISHING CO., INC.
180 N. WACKER DRIVE
CHICAGO 6, ILLINOIS

COYNE ELECTRICAL SCHOOL
1455 W. Congress Pkwy., Dept. 58-T1, Chicago 7, Ill.

FREE BOOK—FREE TRIAL COUPON!

ELECTRONIC PUBLISHING CO., INC.
180 N. Wacker Drive
Chicago 6, Illinois
NEW PRODUCTS (Continued)

The June issue of Radio-Electronics is on sale May 26.
Order your copy now from your dealer.

11 ranges from .003 to 300 volts in 2½ seconds. Can be used as preamp for other test equipment. Panel switch allows locking on any range.—Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.

VTVM model VT-10 has 6-inch 100-amp meter. Twisting tip of multi-probe allows it to function as either ac, dc, rf or lo-cap probe. Amplifier-rectifier circuit has frequency-compensated attenuator.—Century Electronics Co., Inc., 111 Roosevelt Ave., Mineola, N.Y.

TUNING INDICATOR model TM-1. Built-in meter shows when transmitter is radiating maximum power. Can be used as relative field-strength meter or to indicate when antenna is properly matched. Tenna-meter can be used with Citizens-band or amateur gear.—Globe Electronics, 2230 S. 34 St., Council Bluffs, Iowa.

PULSE GENERATOR for troubleshooting if, rf and audio circuits. Self-contained transistorized units in probe form. Oscillator frequency about 1,000 cycles. Output audible in audio circuits. When Noy-Z-Ject is applied to if-rf circuits, its pulse waveform excites any resonant circuit into oscillation which acts as carrier for 1,000-cycle signal of the Model D-800.—Doss Electronic Research, Inc., 820 Baltimore, Kansas City 5, Mo.

TRANSCEIVER for 27-me Citizens band has built-in 12-volt dc power supply. Transmitter output 5 watts. Model G-11 has adjustable squelch control, simple push-to-talk operation, 117-volt ac supply available.—Gonset Div., 801 S. Main St., Burbank, Calif.

YOU CAN ALSO DO THE BIG JOBS WITH WIZARDS

THE WIZARD 300* E'LECTRO-MAGNETIC COUPLER FOR ALL SINGLE ANTENNA MULTIPLE-OUTLET SYSTEMS IN TV FLAT LINE

HOTEL - 120 Outlets - One Antenna - No Amplification: Residence of Bob Barker, MC of the popular daytime NBC show Truth Or Consequences.

HOUSING PROJECT - 2,549 Wizards Installed To Date: L.A. Housing Authority, Los Angeles, California.

APARTMENT - 39 Outlets - One Antenna - No Amplification: The Del Rio - 10236 Old River School Road, Downey, Calif.

APARTMENT - 48 Outlets - Two Antennas (24 Outlets each) - No Amplification: The Paramount Riviera - 12447 Paramount Blvd., Downey, California.

THE WIZARD 300

The high electrical efficiency of the Wizard 300 is proven in many installations where more than thirty receivers are being operated from a single antenna without amplification.

Information on any of the above jobs and a brochure covering Wizard System installations is available. Write Dept.

CHARLES ENGINEERING, INC.
6053 Melrose Avenue • Los Angeles, California

YOU CAN ALSO DO THE BIG JOBS WITH WIZARDS

THE WIZARD 300* ELECTRO-MAGNETIC COUPLER FOR ALL SINGLE ANTENNA MULTIPLE-OUTLET SYSTEMS IN TV FLAT LINE

*Pat Pend

$1.95 LIST PRICE

$7.50 BUY FROM YOUR FAVORITE DISTRIBUTOR

Fifteenth Edition

800 PAGES
REMOTE VIEWER
Patent No. 2,912,394
Edward F. Flint, Rochester, N. Y. (Assigned to Eastman Kodak Co., Rochester)

This invention combines optics and electronics for viewing an image from a remote point. The basic arrangement shows, from left to right: a scanning prism, objective, formed image (represented by an upright arrow), relay objective, TV camera, transmission cable, CRT. The advantages of this arrangement are that the image may be viewed in comfort and may be magnified as desired; the viewer is not limited to an eyepiece, difficult to maneuver.

SELF-TUNED FM DETECTOR
Patent No. 2,915,631
Ole Kristian Nilssen, Collingswood, N. J. (Assigned to Radio Corp. of America)

For minimum distortion the passband of an FM detector should accept equal sweeps about the center frequency. Fig. 1 shows f correctly centered along the response curve A. The average load voltage will be zero.

Fig. 2 shows a typical ratio detector, with reverse-biased diode D added for automatic tuning. D has capacitance which increases with reduced bias.

Due to drift or mistuning, the response curve may shift, for example to curve B (Fig. 1). Equal sweeps about f now produce a negative load voltage which is fed (through filter R-C)
NEW PATENTS (Continued)

to the number of D. This increases the reverse bias and, therefore, reduces the current for the stage and is thus turned to a higher frequency to reduce the original passband, curve A.

REFLEX STAGE
Patent No. 2,916,616

ARCHIE F. NOVIA, ROCHESTER, N. Y. (Assignor to General Dynamics Corp., Rochester, N. Y.)

This reflects the cathode of the radio tube.

The modulated rf signal is fed to the emitter, detected audio is fed to the base. Good filtering removes the rf from feeding back into the stage.

POWER-LINE ALARM
Patent No. 2,906,897

ARTHUR LANDER, JR., KANSAS CITY, MO. (Assignor to United States, in the interest of Civil and Defense Mobilization)

Civilians defense or other emergencies can be announced in several ways. Sirens are used, and Convol procedure is well known. Here is a new method which is effective because the power line is the sounding medium.

The line frequency is generally controlled very closely. The signal, second or fourth order harmonics may be injected into the line. Note that the voltmeter is maintained within 15% of normal, so that ordinary power functions are not interfered with. The patent does not describe how to detect the audio harmonics, but such methods are known. The harmonics may be used to set off an alarm, turn on a radio, etc.

CORRECTIONS

There is an error in the specifications for the driver transformer (T4) in the "Transistor Auto Radio" on page 40 of the March issue. Parts list and diagram show T4's secondary impedance is 8,000 ohms. The correct impedance is 8 ohms. Thanks to Ronald Stephens of Chicago and A/c Orval A. Bair, Jr., of Forbes AFB, Kansas, for this correction.

In the "TV Service Clinic" of the February issue drawings A and B of Fig. 6 (page 78) were inadvertently reversed. Thanks to Gilbert H. Prier, Moses Lake, Wash., for reporting this error.

Mr. Malcolm Snow of West Searboro, Me., points out that when the switch is open, the positive end of BAT is 13.5 volts above ground and this battery will tend to discharge through the emitter-collector circuits of the transistors. Longer B-battery life is insured by using a standard dpst switch instead of the dpst type used by the author. The added switch section should be installed so it disconnects the positive side of the 15-volt battery from the line to the emitters of V1 and V2.

“ONE DOLLAR” buys As much as $15 worth—Everything Brand New and sold to you with a money back guarantee.

DEDUCT 10% on ANY ORDER of $10 or OVER—Plus a FREE SURPRISE PACKAGE

<table>
<thead>
<tr>
<th>ASSET AS $1</th>
<th>ASSET AS $2</th>
<th>ASSET AS $3</th>
<th>ASSET AS $4</th>
<th>ASSET AS $5</th>
<th>ASSET AS $6</th>
<th>ASSET AS $7</th>
<th>ASSET AS $8</th>
<th>ASSET AS $9</th>
<th>ASSET AS $10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3" PM SPEAKER</td>
<td>2 - 3" PM SPEAKER</td>
<td>3 - 3" PM SPEAKER</td>
<td>4 - 3" PM SPEAKER</td>
<td>5 - 3" PM SPEAKER</td>
<td>6 - 3" PM SPEAKER</td>
<td>7 - 3" PM SPEAKER</td>
<td>8 - 3" PM SPEAKER</td>
<td>9 - 3" PM SPEAKER</td>
<td>10 - 3" PM SPEAKER</td>
</tr>
</tbody>
</table>

HAPPY TO ORDER—Simply tear out advertisement and pencil mark items wanted (X in square is sufficient), enclose with money order or check. You will receive a new copy of this ad for re-orders.

ON ALL ORDERS—Include stamps for postage, will be refunded. Larger orders shipped express.

BROOKS RADIO & TV CORP., 84 Vesey St., New York 7, N.Y.

OPPORTUNITY ADLETS

Radios & TV's at wholesale, importers, buyers, sellers. Minimum 10 words. Cash most acceptable. Allow 20-30% over wholesale. Discounts, 10%, for 12 consecutive issues. Must be in at least two ads. 10¢ a word for July issue must reach us before May 15, 1960.

RADIO-ELECTRONICS

154 West 14 St., New York 11, N. Y.

NEW ANTENNAS 10" loop, $1.50 or $1.25 in 2's. Retube, type MN 1 or Bredero, price 3.50. ANTENNAS 5-7000.

HANDY TO ORDER—Simply tear out advertisement and pencil mark items wanted (X in square is sufficient), enclose with money order or check. You will receive a new copy of this ad for re-orders.

WORLDWIDE ADLETS—Include stamps for postage, will be refunded. Larger orders shipped express.

NEW PATENTS

LEARN CODE. Qualify for Amateur or Commercial License, special free book, CANDLER, Dept. RE-5, Box 2250, Detroit, Mich.

COMPONENTS, Toys, Tape, FREE Wholesale Catalogs, DUBINSKY, 932 W. 24th St., Chicago 18, Ill.

LD REPRINTS, commercialized, for Hi-Fi cabinets from C T DISTRIBUTORS, Box 72, Stoughton, Wis.

DOUNCHES up to 800 in Hi-Fi amplifiers, volume, speakers, etc, individual plans or complete plans, HAMILTON EXCHANGE, 1775 West 6th Street, Brooklyn 34, N. Y.

HIGHLY EFFECTIVE REVIEW for FCV, Commercial Electronics, W. M. Panke, Jr., 6890 S. Kimbark, Dept. FCV, Box 2144, Jackson, Miss.

DIAGRAMS FROM TV & FM RADIos. Editors’ FM, 52, Give trade, model, DIAGRAM SERVICE, Box 672, Radio Craft, Baltimore 2, Md.

RADIO & TV TUBES. From Authorized Distributor of Name Brands, Manufactured by Sony, National, General. Names, Types, Ratings, Specifications, Prices, etc., Radio Craft, 1449 W. Lake St., Chicago, Ill.

HAM SUPPLY—Need a new piece of gear? Need to order or trade parts, or wish to advertise? Write us for your monthly—national circulation. 10¢ per word without illustration. SELF SATELITE, Inc. 23 East Wacker, Chicago 1, Ill.

(Continued on page 131)
General Electric Receiving Tube Dept., Owensboro, Ky., launched a new national advertising and sales promotion campaign to back up service technician sales on its Black-Daylite line of TV picture tubes. Commercials on the Today network TV show will highlight the program. Dave Garraway, MC of the Today show, and Gordon E. Burns, G-E’s distributor sales manager (right), show one of the banners to be used during the promotion, as Fred J. Nataly, G-E manager of distributor advertising, looks on.

Electro-Voice, Buchanan, Mich., reports that its dynamic transistor microphones are being used in all United Air Lines DC-8 and Boeing 720 jetsliners. Here stewardess Joan Chettero demonstrates the E-V No. 625 handset.

Sencore, Addison, Ill., released a new complete Substitution Service Lab, which contains the Handy 36 for direct capacitor and resistor substitution, the Electro Sub for electrolytic capacitor substitution and the RS 106 Rectifier Troubleshooter for selenium and silicon rectifier substitution, all conveniently packed in a handy display-carrying case.

Sencore has simplified trouble shooting rectifiers and diodes with this unique substitution unit. The RS106 gives you a positive check everytime... Substitute for suspected rectifier or diode... watch picture or listen to sound and you'll know in seconds whether or not the rectifier or diode should be replaced. No guess work, no soldering mess, no time lost. The RS106 actually costs less than having loose rectifiers and diodes in the shop for testing and is worth many times more. Ask your Distributor to show you the RS106.
BUSINESS AND PEOPLE (Continued)

RCA Electron Tube Div., Harrison, N. J., introduced a new store-improvement program for independent TV service technicians. It consists of more than 35 business and service aids designed to make the service shop a more powerful selling tool. Professional window displays, practical benefit units and attractive sales area layouts are all part of the plan.

Standard Coil Products Co., Inc., Melrose Park, Ill., is underway on a new ad campaign to introduce its complete TV tuner repair and replacement program. Distributors will stock specially designed shipping cartons which will be instantly recognizable as tuner repair jobs and then given immediate attention. A special service department has been established by Standard Coil to give 48-hour in-plant repair service. James O. Burke (center), Standard Coil president, and A. H. (Buzz) Forbes (right), distributor poles manager, discuss the ad program with Joe H. Morin, vice president of Burton Browne Advertising, the agency which handles the account.
Perma-Power Co., Chicago, orbited a new spring promotion on its Vu-Brite TV tube brighteners—offering an unbreakable flashlight free with the purchase of 12 Vu-Brites.

L. Berkley Davis (left) was elected a vice president of General Electric Co. General manager of the Electronic Components Div., Owensboro, Ky. He started as an engineer with the former Ken-Rad Tube & Lamp Corp., in 1934, and was an executive with that company when it was acquired by G-E in 1945. Louis M. Robb was appointed to the new position of manager of market development. He had been administrator of distributor sales.

Harry A. Gilbert was appointed to the new position of vice president of Blonder-Tongue Laboratories, Newark, N. J. He had previously been controller of the company.

Ed Claflley joined Glazer-Stears Corp., Newark, N. J., as merchandise manager, consumer products. He is well known in hi-fi dealer circles and in the distributor phase of the business.

Arlie J. Holmes was promoted to the new post of distributor sales manager of Xcelite, Inc., Orchard Park, N. Y. Holmes had previously held the position of assistant sales manager.

George Elliot was promoted to manager, distributor sales, of Amperex Electronic Corp., Hicksville, N. Y. He had been in charge of export sales, sales to other tube manufacturers, and sales of Valve tubes.

The June Issue of RADIO-ELECTRONICS Will be on sale MAY 26. Order your copy now from your favorite newdealer.
Factory assembled, ready for finishing. Makes your 8" speaker sound like a million! Mace of 1/2" hardwood ply, beautifully grained and smoothly sanded. 10" h. x 16" w. x 9" d. 9 lbs. Order two for matched stereo performance.

MODEL 1
4½ cubic feet of baffle space assures you crisp, cleanest bass response from any 12" system. Full-grained white birch ply, with pre-attached bracing cleats for easy assembly. Kit includes everything you need for assembly. 20" h. x 20" w. x 12½" d. (20" legs). 25 lbs. $11.95

MODEL 2
Clear-grained on four sides for bookshelf or floor use. Acoustically accurate for 12" systems, with adapter board for 8" speakers. Sturdy, 5/8" ply eliminates unwanted resonances, improves bass response. 14" h. x 21" w. x 11¾" d. 20 lbs. $23.50

MODEL 13
Finishing kit: includes generous quantities of everything you need to do a professional, finish-grade appearance. Specify: Mahogany, Cherry, Maple, Ebony. $9.85

Ten-day money-back guarantee. All items shipped freight collect. Please send check or M.O. (No COD's)

HOMEWOOD INDUSTRIES, Inc.
38A Court Street, Brooklyn 1, N.Y.

Please send me:
() Model 6 □ Model 1 □ Model 2 (Birch) (Walnut)
() Model 13
() Homewood catalog
I enclose remittance in the amount of $____

Name ____________________________
Address ____________________________
City ___________________ State ________

GERNSBACK LIBRARY
Low-cost, paper-covered books on all phases of TV, radio, audio-high fidelity and practical electronics
ON SALE AT ALL
BETTER PARTS DISTRIBUTORS

QUESTIONS OR SUGGESTIONS: Send to Ernie L. Stein, 1000 E. Boundary Ave., York, Pa.

Did you get a bum steer by being directed to a pickup which is stereo in name only? Many so-called stereo cartridges fail to provide channel separation in the vital midrange and high frequencies, resulting in only one ear rather than two-ear reproduction.

Join the musicians, engineers, and music lovers who have switched to the magnificent new ESL-C99 MICRO/FLEX—world's newest stereo cartridge. Hear the difference ESL's phase control can make in your two-ear listening pleasure. Only $49.50 at your dealer's.

Are you still without the triumphant ESL-S1000 GYRO/BALANCE arm? It improves the performance of any cartridge; only $34.95 including shell.
TUBE-TUBE interchangeability directory lists approximately 450 foreign tube types and their exact or similar replacements. This 4-page directory, ICE-197, is available from distributors or the manufacturer.—Commercial Engineering, Electron Tube Div., RCA, Harrison, N. J.

TUBE-SUBSTITUTION Guide lists 416 tubes and their appropriate substitutes. Included in the listing are more than 100 foreign tube types. An 8-page booklet, 5 1/2 x 8 1/2 inches, can be obtained from distributors or the manufacturer.—Vis-U-All Products Co., 640 Eastern Ave., S. E., Grand Rapids 6, Mich.

TRANSISTORS and diodes are listed in the second issue of Semi-Conductor Directory. All major manufacturers and types are listed in numerical order with specifications, applications and prices. The directory is punched for loose-leaf insertion.—Lafayette Radio, 165-08 Liberty Ave., Jamaica 38, N. Y.

RADIO FUNDAMENTALS, a 2-page bulletin with covering letter, written by M. N. Boltman, briefly reviews two radio servicing books.—Supreme Publications, 1760 Balsam Road, Highland Park, Ill.

TRANSFORMER CATALOG lists more than 750 transformers for industrial, communications and radio and TV applications. Besides audio and power transformers, the catalog lists chokes, yokes, flybacks and transistor transformers. Copies may be obtained from distributors or the manufacturer.—Chicago Standard Transformer Corp., 3501 16th St., Chicago 12, Ill.

ZENER DIODES are cataloged in Bulletin SR-260. This 6-page folder lists 152 standard types and instructions on selecting diodes from 1,584 standard and special-voltage-tolerance types.—International Rectifier Corp., El Segundo, Calif.

KNOBS and components are described in a 4-page catalog Control Knobs and Mechanical Components. Specification drawings are shown for knobs, test jacks and binding posts, pull handles and captive hardware.—William H. Weed, Mechanical Components Dept., Industrial Apparatus Div., Raytheon Co., 100 River St., Waltham, 54, Mass.

SHORT HAM COURSE to help potential amateur radio operators get their Novice license has questions and answers, Morse code and abbreviations in common usage. The four-page Short Course for the Novice License can be used by itself or in conjunction with other material.—Electronic Instrument Co., Inc., 33-00 Northern Blvd., Long Island City, N. Y.
MAGNETIC AND ELECTRICAL FUNDAMENTALS by Alexander Efron. John F. Rider Publisher, Inc., 116 W. 14 St., New York 11, N. Y. 51/2 x 8 1/4 in. 124 pp. $2.50

This book emphasizes fundamental magnetic and electrical laws and theories. It teaches about charges at rest and in motion, generation of emf, measurements, circuits and Ohm's law. Common everyday things like lightning, the permanent magnet, exposure meter, compass, etc., are explained by basic theory. It makes a fine first book on the subject. —IQ

A graduate course in microwave engineering is based on this book. Its author is the inventor of a low-noise traveling-wave tube, and some of the information is presented in book form for the first time.

Among the selected topics are: transmission system, propagation along wire helix, coupling modes, amplifiers using waves and beams, and ferrites. The book ends with problems. —IQ

This work will be an indispensable tool for design engineers, patent attorneys, missile men, laboratories, libraries, schools, technical writers and research workers. It has exact definitions of modern terms, systems, components and elements in the electronics and nuclear engineering fields, including recently declassified information. There are about 14,000 entries and 1,400 illustrations. Cross-references are extensive. Under the word "antenna" for example, there are 206 entries and 92 illustrations. Graphs and schematics are liberally scattered throughout the book. —MG

HOW TO USE GRID-DIP OSCILLATORS, by Rufus F. Turner. John F. Rider Publisher, Inc., 116 W. 14 St., New York 11, N. Y. 51/2 x 8 1/4 in. 103 pp. $2.50

The grid-dip oscillator is a device for indicating resonance, so it can measure capacitance, inductance, etc. This book shows practical setups for devising transmitter, antenna, and other measurements. All are clearly explained and illustrated. Nearly all agree with the latest in lab procedures. Commercial instruments are described and illustrated in the last chapter. —IQ

TRIPLE PINDEX. RCA, Commercial Engineering Dept., Electron Tube Div., Harrison, N. J. 51/2 x 8 1/4 in. $1.75

With this guide you can concentrate on three things at once. Over 1,500 tube basings are triply presented—you can view three basings at the same time.

Also listed are more than 400 picture tube basings, over 200 industrial receiving types and more than 200 foreign types. —IQ

101 WAYS TO USE AUDIO TEST EQUIPMENT by Robert G. Middleton. Howard W. Sams & Co., Inc., 1726 E. 38 St., Indianapolis, Ind. 51/2 x 8 1/2 in. 136 pp. $2.50

Know-how is an important ingredient in making tests and measurements. This book, by an authority, shows the best setup and procedure for tests on equipment, amplifiers, components, sys-
NEW! LAFAYETTE HE-15
CITIZENS BAND 11 METER
SUPERHETERODYNE TRANSCEIVER

MADE IN U.S.A.

COMPLETELY WIRED
NOT A KIT!

Not Superregenerative but SUPERHET!

Unequaled Performance and Design...The Greatest VALUE In The Citizens Band Field!

- 5 Crystal Controlled Transmitting Positions: Operates at a maximum FCC legal power input of 5 watts fully modulated.
- Superheterodyne Tunable Receiver Over Full 22 Channel Band: RF stage in both Transmitter and receiver, 3 watts audio output plus large 4" speaker.
- Complete with Transmitting Crystal: Removable front plate for easy accessibility of crystals. Channel 9 crystal supplied.
- 4 Dual Function Tubes, plus 2 Single Function Tubes, plus 2 Rectifiers for 12 Tube Performance: Compares with units costing 3 times as much. Unexcelled reception on land and sea with coverage up to 20 or more miles depending on antenna height and terrain.
- Planetary Vernier Tuning: Controls include 3 position function switch (transmit, receive, plus transmit with spring return) and squelch noise limiter control switch.
- High Output Crystal Microphone: 2 position push to talk slide switch, especially designed for sustained transmit operation with a minimum of background noise.
- Adapts for Use Anywhere: Modern compact styling. Brackets are supplied for easy mounting of unit in auto, truck or boat. Addition of 6 or 12 volt power supply (separately supplied) adapts transceiver for mobile operation. Only 4½“D x 6“W x 4“H.
- Anyone Can Operate: No examination or technical knowledge required — Any citizen 18 years or older is eligible for a license. Simply fill out FCC application supplied with HE-15 Transceiver.

HE-15 Factory Wired and Tested (Less antenna). Only 5.00 Down
He-17 Whip Antenna
He-16 Power Supply For 12 Volts
He-18 Power Supply For 6 Volts

FREE! 1960 CATALOG
CUT OUT GIANT SIZE PAGES FREE

LAFAYETTE RADIO
P.O. BOX 222
JAMAICA 31, N. Y.
DEPT. JE-6

NAME ____________
ADDRESS ____________
CITY ________ ZONE ________ STATE ________

Call Letter Card Holder
Coax Antenna Connector
5 Position Crystal Selector
3 Position Function Switch
Planetary Vernier Tuning
High Output Crystal Microphone
with 2 Position Push to Talk Slide Switch
Squelch Control Switch

REMovable Front Plate for Easy Crystal Accessibility

FREE!
1960 CATALOG
CUT OUT GIANT SIZE PAGES — FREE

137
NEW BOOKS (Continued)

ADVANCED MAGNETISM AND ELECTROMAGNETISM. Edited by Alexander Schure. John F. Rider Publisher, Inc., 116 W. 14 St., New York 11, N. Y. 5/2; 8 1/2 in. 96 pp. $2.50.

This book teaches with the aid of algebraic equations and numerical examples. Ferromagnetism, inductance, hysteresis are among the topics. The basic laws of Faraday, Lenz, Ampere and Biot are developed and explained. Modern applications like the cyclotron, spectrometer, and betatron are discussed.

This book offers a good foundation for more serious study in this field.—IQ

HOW TO GET THE MOST OUT OF TAPE RECORDING, by Lee and Sheridan. Rob-er Corp., 869 Broad St., Utica, N. Y. 8 1/2 in. 128 pp. $1.

A better title for this comprehensive little book would be "All About Tape Recorders and How to Use Them." For beginners, not for people who've used tape recorders for any length of time.

A TECHNICAL WRITER'S HANDBOOK by Margaret Norgard. Harper & Bros., 49 E. 33 St., New York, N. Y. 6 x 9 in. 241 pp. $3.75.

One of the best practical guides for the technical writer ever to appear. It points out clearly and simply what to do and what not to do, shows how to prepare a manuscript and goes into grammar, punctuation, abbreviations, style and types of technical writing. If you are getting ready to write a technical manuscript for the first time, this book can help you make your try a good one.—LS

This branch of engineering grows more important each year. Here the reader will find a complete and up-to-date account of pulse methods, multiplexing, data processing methods. Various transducers, receivers, antennas, transmitters, are discussed and compared. No previous knowledge of the subject by the reader is presumed.

Much attention is given to satellite telemetry. Schematics, diagrams and actual photos appear often. A bibliography is included.—IQ

This theoretical book concerns the specialist who deals with lines that carry power or communication signals. It shows how the interference is caused and how to reduce it. It includes much useful data such as charts and formulas for calculating mutual inductance, measurement of noise, calculation of interference, star-delta and other transformations, acoustic and electric shock effects, etc.—IQ

A troubleshooter's book that also discusses antennas, test equipment and alignment. Although British TV standards differ in some respects from our own, the fundamental servicing remain the same. This is a practical book that covers its ground systematically and clearly.

Chapters carry headings like "No Raster, Normal Sound" and so on. A chart then lists circuits likely to cause the defect and the text suggests methods for localizing same. Synes, sweep and age networks receive special attention.

This book can help beginners as well as experienced technicians.—IQ

A handy guide that presents complete schematics and parts lists of all G-E radios and phonographs from 1957-1959. It also includes a picture guide section to help the technician identify the model number of any set.

END
GET INTO
ELECTRONICS
V.T.E. training leads to success as
technicians, field engineers, special-
stations in communications, guided mis-
lettes, radar, control, automation.
Basic and advanced courses in theory
and laboratory, among others: Antenna,
Electronics Maintenance, Automatic
Equipment Maintenance, R.C.P., air-
conditioning, audio, television, radio,
and all branches of electronics—many
approved. Most graduates graduate in
9 months or equivalent. Catalog.
VALPARAISO TECHNICAL
INSTITUTE
Dept. C
Valparaiso, Indiana

ENGINEERING COURSES
B.E.
Option Electronics or Power
Mechanical, Civil & Physics
Also in Liberal Arts & Business
Administration—Accounting
presented through
HOME STUDY
Valparaiso Institute
PACIFIC INTERNATIONAL
C.A.S.
5719-M Santa Monica Blvd.
Hollywood 38, Calif.

PHOTOS
RADIO-ELECTRONICS can use
good photographs of service
benches, service shops, high-fidel-
ity audio layouts, and any other
interesting and original radio-
electronic devices.
We will pay $7.50 each for good
professional photos or equivalent,
suitable for reproduction.
Full information on subject
photographed will increase their accept-
ability.
THE EDITOR
Radio-Electronics
154 West 14th St.
New York 11, N. Y.

LEARN TRANSISTOR
Electronics At Home!
Prepare now for a profitable
career in this growing field. Learn
theory, construction and applica-
tions of all types of transistors
with this proven home-study
course from the Philco Techno-
logical Center.
FOR FREE INFORMATION
PLEASE WRITE TO:
PHILCO
TECHNOLOGICAL CENTER

ELECTRONICS
PREPARE FOR A GOOD JOB!
BROADCAST ENGINEER
RADIO SERVICING APPLI-ICATION
TELEVISION SERVICING
BLACK & WHITE—COLOR
APPROVED FOR VETERANS AND SURVIVORS
OF VETERANS
BUILDING AIR CONDITIONED
SEND FOR FREE LITERATURE
Baltimore Technical Institute
1425 Eutaw Place, Baltimore 17, Md.

ELECTRONICS BOOKS
I.C.S. will send you FREE 3
valuable booklets that tell you
where the big-pay
domestic jobs are in Radio-TV
Electronics and
how you can "cash-in" on a
big way on your future.
There's no
obligation. Don't delay. Mail the
coupon now!

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 40038D, Scranton 15, Penna.

MILWAUKEE SCHOOL
OF ENGINEERING
Dept. RE-560, 1025 N. Milwaukee St.,
Milwaukee, Wisconsin
When you graduate from the
Milwaukee School of
Engineering, you are
prepared for a dynamic
career as an Electrical
Engineer or Engineering
Technician. Under
a faculty of specialists,
you gain a sound
technical education in
modern, completely
equipped laboratories
and classrooms. As a
result, MSOE graduates
are in great demand
and highly accepted by
industries nationally.

Prepare for your career in
ELECTRICAL ENGI\NNEERING
ELECTRONICS
COMPUTERS
RADIO-TV

FREE CAREER BOOKLET!
If you're interested in any
phase of electronics, radio or
television, be sure to look
into the programs of study
offered by the Milwaukee
School of Engineering. Just
mail the coupon.

SCHOOL DIRECTORY
BARRY'S MAY SPECIALS

- Glocke Approx. 6 W @ 500 Ma, 1800 Volts, 1200 W. 6.00 P.M. 2.50. Glocke D. 1.50.
- Raytheon 6 A Amps. Glocke 5 A Amps. 6.00 P.M. 2.50. Glocke D. 1.50.
- Heavy Duty Ionizer. Wt. 5 lbs. Mkt. Bracket. Motor op. 6.00 P.M. 2.50. Graph. Complete @ $1.00 end. Glocke 4-1/4, 1.00. Choke 1-1/4, 1.50.
- GIC Permalon Cap 1 Mfd. W. 2.00. 1200 V. 1.00. Glocke 0.50. Blow. 250 watts. New. 0.50.
never before such quality of performance and versatility of application at such low price

Yes, here's a classic design in modern, compact microphones—small, slender, unobtrusive, a beauty in simplicity. But the greatest achievement is in the magnificent performance quality of the Series among a great host of applications.

The Dynamic Models 335H (high impedance) and 335L (low impedance) operate with highest quality characteristics in TV and radio broadcast usage, in professional or home recording, public address, almost unlimited other lavalier, hand or stand applications.

The Ceramic Model 331 is a voice range unit specifically engineered for excellence in communications applications, 27 megacycle citizens' band use, and paging.

Ceramic Model 333 is a wide-range microphone offering a similarly high new level of perfection for tape recording, P. A. Systems, etc.

Crystal Model 332, with satin chrome body and cap, black grille, is already famous through widespread use. Performance throughout the series is of the highest order. Thus, the greatest news of all concerning these new Astatic Units is their amazingly low cost! Check out these new Astatic Microphones at your first opportunity.

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Output</th>
<th>Frequency Range</th>
<th>Impedance</th>
<th>Finish</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>331</td>
<td>Ceramic</td>
<td>-56 db</td>
<td>200-5000</td>
<td>High</td>
<td>Black Body and Grille, Chrome Cap</td>
<td>$17.90</td>
</tr>
<tr>
<td>333</td>
<td>Ceramic</td>
<td>-58 db</td>
<td>30-12,000</td>
<td>High</td>
<td>Chrome Cap</td>
<td>17.90</td>
</tr>
<tr>
<td>335H</td>
<td>Dynamic</td>
<td>-56 db</td>
<td>50-12,000</td>
<td>High</td>
<td>TV Grey Body, Chrome Cap and Grille</td>
<td>26.50</td>
</tr>
<tr>
<td>335L</td>
<td>Dynamic</td>
<td>-57 db</td>
<td>50-12,000</td>
<td>Low</td>
<td>Chrome Cap</td>
<td>23.50</td>
</tr>
</tbody>
</table>

NOTE: Model 331 has momentary-on, spring-return switch, furnished with hang-up bracket. Cables provide for audio and relay connections. All other models have slide switch with "lock-on" position, are complete with lavalier and stand adaptor with 5/8"-27 thread.
to help you sell more

RCA Silverama Picture Tubes

... the All-New replacement picture tubes that command premium price and profits.

Here are the facts—proof that RCA Silverama is your customers’ best picture tube buy.

FREE OF GLASS DEFECTS. Glass cord lines, scratches, chips, or buffed faceplates are common defects found in many brands of tubes made with used glass. Surest way to avoid these defects and also obtain the latest optical advances in faceplate engineering: an All-New RCA Silverama!

ALL-NEW. Of the three largest-selling brands of replacement TV picture tubes, only RCA Silverama is guaranteed 100% all-new—new glass, new gun, new phosphor, new everything! You’ll get written proof—right on the warranty card.

FINEST SCREEN QUALITY. Advanced screen coating and bonding processes combined with RCA’s giant vibration-free screen settling machines assure the maximum in picture screen quality and uniformity.

RCA “KNOW-HOW” RCA’s continuous product research and advanced design engineering have resulted in RCA Silverama picture tubes being steps ahead of all other brands.

WORLD’S FINEST. RCA Silverama is manufactured in the world’s most modern manufacturing plant using all-new premium-quality materials. Result: RCA Silverama is the world’s finest picture tube.

RCA

RADIO CORPORATION OF AMERICA
Electron Tube Division
Harrison, N. J.

Visit RCA at the 1960 Electronic Parts Distributor Show. Our Booth is North Exhibit Hall No. 874, and our Display Rooms, 659-661.