BETTER LOUDSPEAKER BASS RESPONSE

Radio-Electronics

TELEVISION • SERVICING • HIGH FIDELITY

SEPTEMBER 1957

HUGO GERNSBACH, Editor

Practical Color TV Installation

•

Electronic Audio Crossover Systems

•

Surveillance Kit Traps Criminals

•

Wide-Range Transistor Oscillator

•

Build-it-Yourself Ignition Analyzer

(See page 46)

35c
U.S. and Canada

www.americanradiohistory.com
Now...

ALL your tubes can be DU MONT

Now there's no need to mix brands when it comes to tubes — you can carry the famous Du Mont picture tubes and back them up, clear across the board with a complete line of receiving tubes from Du Mont.

Du Mont now offers a complete line of tubes for every television, radio, audio and electronic need, and every one is quality-checked to Du Mont's high electronic standards.

Go Du Mont all the way... and watch your sales soar! Write for complete details, or ask your Du Mont distributor...

Television Tube Division,
ALLEN B. DU MONT LABORATORIES, Inc., Clifton, N. J.
Here's a NEW Way to Reach the Top in TV SERVICING

ALL PRACTICE METHOD—PROFESSIONAL TECHNIQUES

Includes 17" picture tube, all other tubes, components for TV receiver. Also 5 inch professional type Scope and highly accurate Signal Generator. Training low in cost; monthly terms.

IF YOU HAVE some Television or Radio experience, or if you know basic Television-Radio principles but lack experience — NRI's Professional Television Servicing course can equip you to go places in TV servicing. This advertisement is your personal invitation to get a free copy of our booklet which describes this training in detail.

You Get Color-TV Textbooks Early

The day you enroll, N.R.I. sends you special Color-TV books to speed your knowledge and understanding of this vast, growing phase of Television. Many full color pictures and diagrams help you recognize defects and help you learn how to correct them quickly and properly. To cash in on the coming Color-TV boom you'll need the kind of knowledge and experience this N.R.I. training gives.

You Learn-By-Doing “All The Way”

This is 100% learn-by-doing, practical training. We supply all the components, all tubes, including a 17" picture tube, and comprehensive manuals covering a thoroughly planned program of practice. You learn how experts diagnose TV receiver defects quickly. You see how various defects affect the performance of a TV receiver—picture, sound and color; learn to know the causes of defects, accurately, easily, and how to fix them.

You do more than just build circuits. You get practice recognizing, isolating and fixing innumerable TV receiver troubles. You get actual experience aligning TV receivers, eliminating interference, using germanium crystals to rectify the TV picture signal, obtaining maximum brightness and definition by properly adjusting the ion trap and centering magnets, etc. There isn't room to list all the servicing experience you get.

SEPTEMBER, 1957
EDITORIAL
31 Electron Keystones, Past and Future—Hugo Gernsback

AUDIO—HIGH FIDELITY
32 Better Bass Response—George L. Augspurger
35 Electronic Dividing Networks—Herbert Ravenswood
38 Assemble This Headset Booster—E. G. Louis
40 Choosing the Phase Inverter, Part II—Norman H. Crowhurst
42 The Copy-Cat—Don V. R. Drenner
43 Power-Line Spikes and Buzz—Harold Reed
44 Variable-Speed Electronic Phono Drive
133 New Records—Monitor

WHAT'S NEW
45 Pictorial Report of New Developments

TEST INSTRUMENTS
46 Ignition Analyzer (Cover Feature)—M. Harvey Gernsback
48 Capacitor Substitution Box—John Dewar
49 Black-Box Oscillator—Edwin Bohr
51 Simple Power-Transistor Test—William C. Caldwell
53 Switch Probe for Rapid Measurement—Forrest H. Frantz, Sr.
54 Simple Method Checks Coil Inductance—Elliott A. McGready

ELECTRONICS
61 Touch-Plate Controller—Richard J. Sandretto
81 Electronic Surveillance Kit, Part I—Louis E. Garner, Jr.
87 Pedro, Layman—Guy Slaughter

TELEVISION
94 Organizing a Profitable Home-Servicing Business—Charles Garrett
100 TV Service Clinic—Conducted by Robert C. Middleton
107 Practical Color Installation, Part I—Robert G. Middleton
117 TV Dx.—Robert B. Cooper, Jr.
121 TV Service Hints—James A. McRoberts

158 Books
153 Business and People
157 Corrections
18 Correspondence
123 Miscellany
124 New Devices
8 News Briefs
137 New Tubes and Semiconductors

140 Patents
143 Question Box
148 Radio-Electronic Circuits
156 Technical Literature
135 Technicians' News
150 Teletypes
145 Try This One
123 35 Years Ago

NEXT MONTH: HOW TO IMPROVE RECORD TRACKING • MARSHALL'S CONTROL UNIT-PREAMPLIFIER • UNDERSTANDING FLYBACK SYSTEMS

ON THE COVER
(story on page 46)
The Heathkit ignition analyzer is being adjusted to show up the spark on four cylinders by Alton Riley, while model Barbara Dixon watches with considerable interest.
Color original by the Latti-mer Studios, South Bend, Ind.

Hugo Gernsback
Editor and Publisher
M. Harvey Gernsback
Editorial Director
Fred Shumman
Managing Editor
Robert F. Scott
Technical Editor
Larry Stecker
Assistant Editor
J. Queen
Editorial Associate
Robert G. Middleton
Television Consultant
Elizabeth Stallop
Production Manager
Cathy Cocozza
Advertising Production
Wm. Lyon McLaughlin
Technical Editor
Sol Ehlich
Art Director
Fred Neinast
Staff Artist
Lee Robinson
General Manager
John J. Lomson
Sales Manager
G. Alqui
Circulation Manager
Adam J. Smith
Director, Newsstand Sales
Robert Fallath
Promotion Manager

Average Paid Circulation
Over 195,000

Associate Member Institute of High Fidelity Mfrs., Inc.

RADIO-ELECTRONICS, September, 1957, Vol. XXVIII, No. 9. Published monthly at Mt. Morris, Ill., by Gernsback Publications, Inc. Remarks and suggestions are welcomed. Editorial, business and advertising correspondence should be addressed to Editor, 154 West 14th St., New York 11, N. Y.

SUBSCRIPTION RATES: U. S., $5.00 per year; $9.00 for two years; $10.00 for three years. Canada, $6.00 for one year; $10.00 for two years; $12.00 for three years.

SUBSCRIPTIONS: Address enrollmests to Radio-Electronics, Subscription Dept., 49-4 S. W. 4 Av., Mt. Morris, Ill., or 154 West 14th St., New York 11, N. Y. When requesting a change of address, please give old as well as new address. Allow one month for change of address.

Copyright 1957 by Radio-Electronics, Inc. All rights reserved, including the right of reproduction in whole or in part in any form. Printed in the United States of America.

Branch Advertising Offices and Foreign Agents:
Postmaster: All noticeable, send Form 3578 to RADIO-ELECTRONICS, 154 West 14th St., New York 11, N. Y.

Radio-Electronics, Inc., 154 West 14th St., New York 11, N. Y.

www.americanradiohistory.com
Let National Schools of Los Angeles, a Practical Resident Technical School for over 50 years, train you at home by Shop-Method for unlimited opportunities in all phases of TV, Electronics, Radio.

You get 19 Big Kits ... all this newest, practical equipment.

GOOD JOBS ... MORE MONEY SECURITY ... ALL CAN BE YOURS!

You are needed in the great modern Television-Electronics industry. Trained technicians are in growing demand, at excellent pay, in sales and service, manufacturing, broadcasting, telecasting, communications, research, and many other important branches of the field. National Schools Master Shop-Method Training, with newly added lessons and equipment prepares you in your spare time, right in your own home, for these fascinating opportunities.

YOU EARN WHILE YOU LEARN

Many students pay for their entire training — with spare time earning. We'll show you how you can, too! You receive material that shows you how to earn extra money servicing TV and Radio receivers, appliances, and doing many other profitable jobs.

YOU GET EVERYTHING YOU NEED

Clear, profusely illustrated lessons, shop-tested manuals, modern circuit diagrams, practical job projects — consultation privilege with our qualified staff.

Don't delay your future another day. Send coupon for full information TODAY.

MAIL POSTAGE — FREE COUPON ... NOW!

1. Fill out coupon in ink.
2. Cut along dotted line and fold coupon.
3. Staple, paste, glue, or tape ends together.
4. Mail today! No postage necessary.

FREE!

NAME
Address
CITY Zone STATE
CHECK if interested ONLY in Resident Training in Los Angeles
VETERANS: Give date of discharge

FOLD ALONG THIS LINE

BUSINESS REPLY CARD
First Class Postage Paid at Los Angeles, Calif.

POSTAGE WILL BE PAID BY NATIONAL SCHOOLS
4000 South Figueroa Street
Los Angeles 37, California

NO Postage Stamp Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY NATIONAL SCHOOLS
4000 South Figueroa Street
Los Angeles 37, California

www.americanradiohistory.com
INTRODUCING BOGEN FLEX-PAK®
custom flexibility in packaged PA

portable . . . or permanent . . . make more sales, more profits

Meet Bogen's Flex-Pak public address line. Here's true portability. Here's easy servicing. And here's all the flexibility, performance and dependability you'll need to satisfy 90% of your commercial applications—without going to the additional effort and delay of expensive custom designs. You can offer Flex-Pak systems in every price range, at practically every popular wattage. Get in touch with your Bogen representative or write for all Flex-Pak specifications and prices. NOTE: We also supply famous make indoor and outdoor speakers, microphones and other accessories for all your Bogen public address system installations. Mail coupon now for the exciting details.

Two of 12 New Amplifiers In The Exciting Flex-Pak PA Line

Deluxe LX30 30-Watt Amplifier
4 Microphone Inputs (panel switch converts one microphone channel for phono or tuner), Built-In Remote Gain-Control Circuit, Exclusive Anti-Feedback Control, Speech Filters, Separate Bass and Treble Tone Controls

Superb L330 30-Watt Amplifier
3 Microphone Inputs (panel switch converts one microphone channel for phono or tuner), Speech Filters, Separate Bass and Treble Tone Controls

MAIL THIS COUPON TODAY FOR DESCRIPTIVE BROCHURES AND PRICES

Dept.NU, David Bogen Co., Inc., P. O. Box 600, Paramus, N. J. Gentlemen: Please send me descriptive literature and price information on your BOGEN FLEX-PAK public address equipment.

NAME:

FIRM

check one • dealer • jobber • sound specialist

ADDRESS: ZONE STATE

CITY

□ Please send me your 24-page, illustrated brochure, "What You Should Know About Sound Systems."
□ Please send me your 56-page, illustrated book, "Understanding High Fidelity," by L. H. Bogen and L. Bianco. (I enclose 25c.)
No Previous Technical Experience or Advanced Education Needed!
Laborers and bookkeepers, store clerks, farmers, salesmen — men of nearly every calling — have taken the DeVry program and today have good jobs or service shops of their own in Electronics.

Here's proof positive that it can be done — done by men like yourself — men who had no previous technical experience, no advanced education.

If you are 17 to 55, we will tell you free how you may prepare for exciting, interesting jobs in Automation Electronics, Radar, Guided Missiles, Communications, Industrial Electronics and many others shown at right. Here is a chance of a lifetime to prepare to cash in on one of today's fastest growing fields. Mail the coupon for details.

DeVry Tech's amazingly practical home method enables you to spend minimum time to get maximum knowledge. In fact, you get exactly the same type of basic training equipment used in our Chicago and Toronto training laboratories — among the finest!

Send coupon for free facts NOW!

Live-Wire Employment Service
DeVry Tech's Placement Department is in contact with some of the best-known employers in the Electronics field. The service is free to all graduates—and DeVry Tech's record in helping to place men has been outstanding.

Draft Age?
We have valuable information for every man of draft age, so if you are subject to military service, be sure to check the coupon.

What a DeVry Tech Diploma Meant to These Men!

G. F. Beane, W. Virginia, was a truck driver. He took the DeVry Tech Training Program, and is now a technical electronics sales representative.

Edward Hahn, Illinois. Was a laborer, now an electronics project engineer with Televia. The DeVry Tech training helped him prepare for his present position.

Nick Barton, Illinois, came directly from high school to DeVry Tech. Now has his own service shop and tells us he is "literally snowed with work!"

George D. Crouch, California, was a retail store clerk. He took the DeVry Program, and today is in the servicing field for himself.

Devry TECHNICAL INSTITUTE
CHICAGO 41, ILLINOIS
(formerly
DeForest's Training, Inc.)

Mail Coupon Today!
DeVry Technical Institute
4141 Belmont Ave., Chicago 41, Ill., Dept. RE9-N
Please give me FREE Sample Lesson and your booklet, "Electronics and YOU!" and tell me how I may prepare to enter one or more branches of Electronics as listed above.

Name
Street
City
Zone
State
Apt.

□ Check here if subject to military training.

DeVry Tech's Canadian Training Center is located at 626 Roselawn Avenue, Toronto 12, Ontario 2004.
SPACISTOR, a new semiconductor amplifier that resembles a vacuum tube rather than a transistor, was announced at a recent New York City press conference by Raytheon. The Spacistor is a reverse-biased p-n junction (negative voltage applied to the p section and positive to the n section) so selected in regard to composition and geometry that the voltage across it (B) can be relatively high (in the order of 100).

Thus there is a voltage drop and a space-charge region throughout the space between the base and collector (B and C in the diagram). Other electrodes (the injector I and modulator M) are so positioned and biased that, while positive to the base, they are negative with respect to the space-charge region at the point of attachment. (Batteries B and B are less than 10 volts.) I is a pressure contact which emits electrons into the Spacistor. Emission is limited by the space charge, as in a vacuum tube. Modulator M is an alloyed contact containing p-type material. It thus forms a p-n junction, and due to its negative bias draws negligible current. Voltages applied to M do affect the space charge and thus vary the amount of current from I. M also has an effect on the space charge, somewhat analogous to that of the screen grid in a tetrode tube, making injector I bias practically independent of the B voltage.

The input and output impedances of the Spacistor are extremely high—30 megohms or more. Transconductance of present Spacistors is still below that of good vacuum tubes though researchers expect to attain considerably better values. Due to the small output capacitance (1 µuf or less is feasible) it is expected that spacistors may be constructed to work at frequencies higher than 1,000 mc.

PANELESSENT DISPLAY lamp which produces glowing figures of any form—or even moving images—when scanned by a light or electron beam from the rear was demonstrated recently by Sylvania. It is expected to have wide uses in air traffic control, radar, instrumentation, education and advertising.

The device operates on the principle of the Sylvania Panelescant lamp, described in the March issue of Radio-Electronics (page 15). An electroluminescent material is sandwiched between two conductive films or plates. When alternating current is applied to the conductors, the material glows.

A base plate of glass acts as the face of the display in the Sylvatron image tube. Over the glass is spread a conductive layer which forms one of the ac terminals (see illustration). The luminescent material is the next layer, and another transparent conducting film is applied over it. The image-producing array, consisting of rows and columns, is placed on this film. Tops and bottoms of the columns (which are a little less than 1/32 inch square and 1/16 inch high) are also coated with a conductive film and the sides with a photoconductive substance. Another piece of glass with a conducting surface (or, as in the illustration, a wire mesh) is placed on the tops of the columns, to form the other ac terminal.

When a dot of light is focused on the top of one of the columns, the light shining through the glass makes the photoconductive material next to it a conductor, carrying the voltage of the top (or rear) terminal to the conductive layer at the bottom of the column and making that area of the luminescent material glow. With proper voltage and frequency, the light from the small area keeps the photoconductive material active and the light continues. It may be erased by turning off the current or may be made self-extinguishing by selecting proper voltages and frequencies. Spillover from activated dots to surrounding areas is controlled by applying attenuating strips of black glass between the columns.
FREE! ALLIED'S 1958 CATALOG

the only COMPLETE catalog for everything in electronics

Get ALLIED's 1958 Catalog—it's complete, up-to-date—404 pages packed with the world's largest selection of quality electronic equipment at lowest, money-saving prices. Get every buying advantage at ALLIED: fastest shipment, expert personal help, lowest prices, guaranteed satisfaction...

WORLD'S LARGEST STOCKS

- Latest Hi-Fi Systems and Components
- Money-Saving, Build-Your-Own KNIGHT-KITS
- Recorders and Supplies
- Public Address Systems and Accessories
- TV Tubes, Antennas and Accessories
- Amateur Receivers, Transmitters, Station Gear
- Test & Lab Instruments
- Specialized Industrial Electronic Equipment
- Huge Listings of Parts, Tubes, Transistors, Tools, Books

EASY-PAY TERMS:
Only 10% down, up to 18 months to pay. Available on orders over $45. Fast handling—no red tape.

featuring:
ALLIED'S money-saving knight-kits:
Finest electronic equipment in money-saving kit form. Over 50 quality kits available—Hi-Fi amplifier, tuner and speaker kits, Hobby kits, Test Instruments, Ham kits (see our KNIGHT-KIT values elsewhere in this publication). ALLIED KNIGHT-KITS are easiest to build and they SAVE YOU MORE.

EVERYTHING IN HI-FI
World's largest selection of quality Hi-Fi components and complete music systems—available for immediate shipment from stock. Save on exclusive ALLIED-Recommended complete systems. Own the best in Hi-Fi for less!

Our 37th Year

ALLIED RADIO
World's Largest Electronic Supply House

SEPTEMBER, 1957
NEWS BRIEFS (Continued)

Lettered signs, radar and maplike displays and even a small moving picture (produced by infra-red projection against the back of a small Sylvatron screen) were demonstrated. Asked about television possibilities, Sylvania executives pointed to the little movie to prove by its rudimentary quality that flat-screen TV was still a long way off. They did not deny, however, that “three or four years and a few million dollars” might make a difference in the picture.

ULTRASONIC LIGHT modulator described at a national convention on military electronics held at the Sheraton Park Hotel in Washington, D.C., consists basically of an ultrasonic cell (a crystal transducer similar to quartz) between two lenses. Light passing through is controlled when a signal is applied, by using optical defraction and piezo-effect principles.

L. Levi, laboratory manager of Fairchild Controls Corp., where the instrument was developed, said that the ultrasonic modulator was more complex but does a better job than the cathode-ray tube because its dynamic range is much greater.

The device can also be used for video recording. The photographic method is more efficient than magnetic tape as more can be recorded on the same amount of tape.

WORLD SERIES IN COLOR TV was announced by Ford C. Frick, commissioner of baseball. Two or more games of the 1957 series will be telecast in color by NBC-TV, he said. Present arrangements call for all games played in the American League city to be broadcast in color. If American and National League cities are so located as to allow traveling time for NBC's mobile color unit, it is possible that some or all of the games at the National League city will also be shown in color.

MICROWAVE DANGER to human health is being studied by the Air Force. Col. George M. Krauf, a surgeon at the Rome Air Development Center in Rome, N.Y., told the American Medical Association that a program to set up safety standards for high-power microwave transmissions has been started. Four universities have been awarded contracts to study the problem.

Among the important aspects under study is whether the only effect on the human body is that of heating, or whether there may be other effects. It has been suggested that molecules in the human body may resonate at certain microwave frequencies and that their structure may be altered thereby.

Some firms already have a safety code for operating microwave equipment. Bell Telephone Labs follows a standard established by the Naval Medical Research Institute, Bethesda, Md. The institute found that power density of 25 mw per square centimeter causes a body temperature rise of 1°. The Bell code requires workers to be

(Continued on page 14)
jobs like these . . .

James Glen:
When Jim enrolled, he was a temporary employee of the City of Tacoma, Washington. He was helping wire and install an interoffice phone system. In the space of 14 months, he completed the Master Course and received his first class license. He is now installing and maintaining mobile and microwave equipment.

James S. Glen, Jr.
2920 Knob Hill Road
Tacoma, Washington

Cleveland Institute

Aerojet-General
American Airlines
American Telephone & Telegraph Co.
Bendix Radio
Braniff Airways
Burroughs Corp.
Capital Airlines
Continental Air Lines, Inc.
Convair
General Electric
Glenn L. Martin Co.
Goodyear Atomic Corp.
*(Plus Many Others)

International Telephone & Telegraph Co.
Mohawk Airlines
Motorola
North American Aviation, Inc.
Northwest Airlines
Philco
RCA
Ryan Aeronautical Co.
TWA
Union Switch & Signal Co.
United Airlines
Western Electric Co.
Westinghouse Electric Co.

Every Cleveland Institute graduate gets this proof of his Technical Qualifications

Accredited by National Home Study Council

Cleveland Institute of Radio Electronics

Desk RE-9, 4900 Euclid Ave., Cleveland, Ohio

Please send Free Booklets prepared to help me get ahead in Electronics. I have had training or experience in Electronics as indicated below:

☐ Military
☐ Radio-TV Servicing
☐ Manufacturing
☐ Amateur Radio
☐ Broadcasting
☐ Home Experimenting
☐ Telephone Company
☐ Other

In what kind of work are you now engaged? ...
In what branch of Electronics are you interested?

Name ... Age
Address ...

City .. Zone ... State

Special Tuition Rates to Members of Armed Forces Desk RE-9
Now...2 Ways to Add UHF to Your Fringe Area Color'ceptor

Here's something really new!
A UHF antenna (Winegard Mod. GG-1) that connects in series with the same lead used for the VHF Color'ceptor. No couplers ... no loss ... no interaction. Perfect results every time! Can be oriented independently from CL-4 or CL-4X. Same general features as on GG-2 shown below. Completely gold anodized. Only $7.95.

New UHF Colinear Yagis
Model GG-2 mounted with CL-4X Color'ceptor

High gain UHF antenna has 4 col. driven elements, 10 directors, 6 reflectors. Pin point directivity. No minor lobes. Flat frequency response. Can be stacked up to 16 bays for up to 21 db gain. Completely gold anodized. Can be ordered factory peaked to favor your channels. Only $14.95.

NEWS NOTE: Color'ceptor, the favorite fringe area antenna of professional installers everywhere, is now even better! —NEW TDM insulators. Low loss, unbreakable—NEW special alloy plus extra reinforcing used in reflectors. Four times more durable—NEW Sunfast gold finish. Permanently anodized.

WHATE'S NEW FROM

...NEW... SUPER TWILIGHT

FOR THE TWILIGHT* TV AREA

Biggest Advance Yet In Antenna Design!

Something new and wonderful has happened to antennas! Now you get the "whole ball of wax" ... mast, lead-in, Antenna, mount ... everything factory-assembled — factory-engineered into one simple, integral unit!

- NO loose parts to assemble
- NO wires to strip

Just take your Twilight out of the box ... pop it open ... put it up as easy as driving 3 nails ... it's as simple as that! Now you can make a complete installation (in most cases without even getting on the roof) in no more time than it takes to pull a TV chassis for repair! Twilight is so easy ... it's a breeze to install.

Engineered for results ... styled to sell ... as new and modern as today!

SENSITIVITY COMPARISON CHART
Note extremely linear frequency response of Twilight

Horizontal Directivity Patterns

NEW PEEK-A-BOO PACKAGE
Makes beautiful display ... lets customer see merchandise without opening carton ... has complete sales story pitched to your customers on back of carton.

Winegard Co.
COMPACT . . . POWERFUL!

WINEGARD TWILIGHT, MOD. TL-283
All Channels 2-83 plus FM
Color or Black and White
All aluminum construction . . . can't stain roof. The Twilight construction includes:
- Mast mounted base with special drive fasteners, roof sealing gaskets and stand-off insulators.
- Antenna width: 87°—Height including mount 53". Net wt.: 41/2 lbs., Shpg. wt.: 6 lbs. Can be mailed parcel post.

You can buy Twilight two ways: complete installation, Mod. TL-283, list $29.95; Twilight head only with standard mast clamp, Mod. 283, list $19.95.

Absolutely Nothing Else To Buy

Twilight Mounts on ANY Surface — Sloping, Flat, Vertical

Side of roof End of roof Peak of roof Flat or trailer

SELL THE LINE THAT HELPS YOU SELL!
List price established nationally in Life magazine at $29.95. Extra long discount structure so you can allow trade-ins or free installation if you wish . . . and still make your normal profit.

Mr. Dealer:
See Your WINEGARD Distributor and Mail Coupon Today!

THIS IS THE TWILIGHT AREA

The "in-between" Twilight area (5 to 35 miles) presents reception problems all its own. Most set owners living within its boundaries have been enjoying neither the finest TV reception nor the poorest.

Because the Twilight area has many of the reception difficulties of both the fringe and primary areas, almost every type of antenna from rabbit ears to large arrays is used here. None of which were actually designed with the Twilight area's actual requirements in mind.

An extensive survey made by the Winegard Company in the Twilight areas of some of our larger cities brought to light these amazing facts:
- 42% of the TV owners were not really satisfied with their reception
- 72% of these dissatisfied TV viewers were using set-top antennas
- 53% didn't like antennas on top of their set
- 34% said set-top antennas were too difficult to adjust
- 49% thought outside antennas were too big and unsightly
- 34% thought outside antennas were too susceptible to corrosion-stained roofs . . . and were ruined by weather
- 49% of all set owners questioned were willing to spend up to $30.00 for a TV antenna that would overcome all these objections. 7% would spend up to $60.00

With the above information, Winegard engineers went to work to produce the first antenna designed specifically for the needs and wants of TV set owners in the Twilight area.

We call this new electronic masterpiece . . . appropriately enough . . . the Twilight!
THORENS
SWISS MADE PRODUCTS
MUSIC BOXES • HI-FI COMPONENTS • SPRING-POWERED SHAVERS • LIGHTERS

TWO NEW TV STATIONS, both Western, started programming since we last reported:

KGEZ-TV, Kalispell, Mont. 9
KPLO-TV, Reliance, S.D. 6
WBLN, Bloomington, Ill., channel 15, closed down.

There were four changes in call letters:

WBOY-TV, Clarksburg, W. Va. 12
(formerly WBLK-TV)
WVUE, Wilmington, Del. 12
(formerly WPTV)
KCTV, San Angelo, Tex. 8
(formerly KTXL-TV)
KSBY-TV, San Luis Obispo, Calif. 6
(formerly KVEC-TV)
WFIR-TV, Evansville, Ind., resumed activities on channel 14 on July 3 after quitting channel 62 on July 1.

These developments change our figures to 502 operating U.S. stations (411 vhf and 91 uhf), 25 of which are noncommercial (6 uhf).

END

This CHANGER tops wow and flutter standards for broadcast turntables

"Under almost all conditions the unit was better than the NARTB specification for broadcast reproducing turntables."

That's what C. J. Lebel of the Audio Instrument Company, an independent testing lab, says about wow and flutter in the Thorens CD-43 record changer.

Mr. Lebel tested three sample changers picked at random from our warehouse stock. Here are the actual test figures for the worst of these three units:

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Line Voltage</th>
<th>Speed RPM</th>
<th>No. Discs on turntable</th>
<th>Wow + Flutter (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>71185</td>
<td>120</td>
<td>33⅓</td>
<td>1</td>
<td>0.2 RMS 0.25 Peak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>0.15 RMS 0.20</td>
</tr>
<tr>
<td>78</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.06 RMS 0.1 Peak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>0.04 RMS 0.08</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1 RMS 0.15</td>
</tr>
</tbody>
</table>

Note that only one measurement lies slightly outside the NARTB standards limit of 0.2% peak wow. All other measurements on this changer were within NARTB peak limits. Note too that all the RMS measurements (prescribed by American Standards Association and believed to be a more accurate index to subjective effect) are well below this limit. And, of course, these outstanding results apply also to the Thorens manual player, audiomatic player, and transcription turntable since they all use the same precision motor.

Now all Thorens units are covered by a 1-year guarantee. This new guarantee plus tests like the above are your assurance that you are getting the best record changer money can buy when you select a Thorens—whether it's for yourself or for your customers. See the Thorens CD-43 at your dealer's today.

FREE! Send for booklet "Hi-Fi and Your Budget" to Thorens Company, Dept E97, New Hyde Park, N. Y. Don't forget to include your name and address.

This page was not included in the content.
PHOTOFACThelp you lick problems like this in just minutes for only *2 1/2¢ per model!

Let's take a look at this problem: A negative picture such as illustrated is the result of a lack of proper AGC voltage—causing one or more stages in the tuner, IF, video detector or video amplifier stages to be over-driven. Look for the following possible causes:

1. AGC control (R6) improperly adjusted
2. Defective keyer (V7A) in AGC circuit
3. Defective RF, mixer, or video IF tubes
4. Defective video detector tube or crystal
5. Defective video amplifier tube
6. Defective coupling capacitor (C42)
7. Defective component in AGC line

With the applicable PHOTOFACT Folder at your fingertips, you can trouble-shoot and solve this problem in minutes. Here's how:

First check the AGC control for possible misadjustment as per instructions in "Servicing In The Field" notes which you'll find in every PHOTOFACT Folder. (You'll easily find the AGC control location on the Tube Placement Chart.)

Using the same chart, you will quickly locate and check the suspected tubes. Tubes and AGC adjustment okay?—then:

- Check waveforms W3 and W4 in the AGC Keying circuit and waveforms in the video circuit to isolate the faulty component. Example: A loss of signal waveform at W4 would indicate an open coupling capacitor (C42). Correct waveforms are always shown right on the PHOTOFACT Standard Notation Schematic.

Correct voltages, also shown on the Standard Notation Schematic, and resistances (in easy-to-read chart form) help you locate faulty components with speed. You'll find, too, how easy and fast it is to locate parts by means of the exclusive PHOTOFACT chassis photo views, with call-outs keyed to the schematic. And finally, you'll find the proper replacements for all components listed in the complete PHOTOFACT parts list.

It's no accident that over fourteen million PHOTOFACT Folder Sets are in use, helping thousands of Service Technicians do their work faster and more profitably every day. PHOTOFACT pays for itself because it automatically boosts your output and earnings.

Use the servicing method you prefer—checking of waveform, voltage or resistance—you'll find all the information you need at your fingertips in PHOTOFACT.

For only *2 1/2¢ per model, PHOTOFACT helps you solve your service problems in just minutes—helps you service more sets and earn more daily!

*Based on the average number of models covered in a single set of PHOTOFACT Folders.

FREE MONEY BACK GUARANTEE!

Got a tough repair? Try this—at Howard W. Sams' own risk: see your Parts Distributor and buy the proper PHOTOFACT Folder Set covering the receiver. Then use it on the actual repair. If PHOTOFACT doesn't save you time, doesn't make the job easier and more profitable for you, Howard W. Sams wants you to return the complete Folder Set direct to him and he'll refund your purchase price promptly. GET THE PROOF FOR YOURSELF—TRY PHOTOFACT NOW!!

FOR SERVICE TECHNICIANS ONLY

Fill out and mail coupon today for Free subscription to the Sams Photofact Index and Supplements. My (letterhead) (business card) is attached.

- I'm a Service Technician: ☐ full time; ☐ part time
- My Distributor is:

HOWARD W. SAMS & CO., INC.

Howard W. Sams & Co., Inc.
2205 E. 46th St., Indianapolis 5, Ind.

☐ Put me on your mailing list to receive the Sams Photofact Index and Supplements. My (letterhead) (business card) is attached.

- My Distributor is:

SHOP NAME

- Shop Name:

ADDRESS

- Address:

CITY

- City:

STATE

- State:

ZONE

- Zone:

S E P T E M B E R, 1 9 5 7

www.americanradiohistory.com
Improve your own music system with a superb new ESL cartridge and arm

ESL PROFESSIONAL SERIES ARM & CARTRIDGE

Breathtaking perfection of reproduction for the most critical broadcast, recording, and laboratory use is now made possible by this superlative reproducer. The ultimate in compromise-free design, plus matchless Danish hand craftsmanship. The precision machined, ball bearing arm fits this cartridge only.

Frequency response: 16-30,000+ cps • M, distortion: almost immeasurably small • Minimum compliance: 6.8 x 10^-6 cm/dyne • Dynamic mass: .001 grams • Vertical force: 1-3 grams
Output impedance: 1.5 ohms • Minimum output voltage: 2.0 mv (1 kc at 10 cm/sec)

ESL-310 arm (1 5/8") without cartridge $57
Diamond stylus: ESL-P1 (0.001"), P2.5 (0.0025"), P2.7 (0.0027"), P3 (0.003") $49.50

ESL CONCERT SERIES CARTRIDGE

The most advanced electronic technology and mechanical skills have devised this magnificent instrument which can improve the finest music reproducing systems. Used for quality control by leading record manufacturers. It greatly prolongs record and stylus life, and will fit any standard mounting arrangement.

Frequency response: 16-30,000+ cps • M, distortion: almost immeasurably small • Minimum compliance: 6.8 x 10^-6 cm/dyne • Dynamic mass: .001 grams • Vertical force: 2-6 grams
Output impedance: 1.5 ohms • Minimum output voltage: 1.5 mv (1 kc at 10 cm/sec)

Diamond stylus: ESL C1 (0.001") or ESL-C3 (0.003") $35.95

ESL/BJ 'SUPER 90' TANGENTIAL ARM

Highly improved, studio model of the world-famous BJ tangential arm which overcomes tracking error, reduces distortion, and increases record life. Self-lubricating ball bearings insure friction-free movement; twin arms virtually cancel resonances. Complete with two plug-in heads accommodating almost all cartridges, including turnover and triple-play models. Counter-weights variable over 40-gram range. Calibrated pedestal permits instant selection of correct stylus overhang. Made in England under the personal supervision of its inventor.

ESL/BJ 'Super 90/13' (1 1/2") $33 • ESL/BJ 'Super 90/16' (1 4") $36.50

ESL TRANSFORMER ACCESSORIES

The ESL cartridge requires with some amplifiers a high quality ESL voltage step-up transformer (or ESL transistor amplifier): the 201 Series for low level magnetic inputs, 301 Series for low or high level magnetic inputs, or the 211 with insensitive amplifiers.

ESL-201 Shielded, unmounted transformer: 1:11 voltage step-up $7.50
ESL-201M An ESL-201, mounted and wired for plug-in connection $11
ESL-201F Same as 201M, plus supersonic filter and switch $15
ESL-301 Shielded, unmounted transformer: 1:30 voltage step-up $9
ESL-301M An ESL-301, mounted and wired for plug-in connection $12.50
ESL-301F Same as 301M, plus supersonic filter and switch $16.50
ESL-211 Shielded, unmounted transformer: 1:24 voltage step-up $6.25

For listening at its best

Electro-Sonic Laboratories, Inc.
Dept. E-35-54 Thirty-sixth St. Long Island City 6, N.Y.
Get Into The Field That's Making Headlines

All over the nation the Television-Radio-Electronics industry is making News — News that means opportunity for YOU. You can cash in on the headlines. I WILL TRAIN YOU AT HOME FOR A TOP-PAY JOB IN TELEVISION

I will prepare you for a spot in America's fastest-growing industry. You can become a trained technician in your spare time without giving up your present job or social life. No experience needed.

LEARN BY DOING

As part of your training I give you the equipment you need to set up your own home laboratory and prepare for a top-pay job or set up your own business. You build and keep a TELEVISION RECEIVER designed and engineered to take any size picture tube up to 21-inch. (10-inch tube furnished. Slight extra cost for larger sizes)... also a Super-Het Radio Receiver, AF-RF Signal Generator, Combination Voltmeter-Ammeter-Ommiter, C-W Telephone Transmitter, Public Address System, AC-DC Power Supply. Everything supplied, including all tubes.

STUDY NEWEST DEVELOPMENTS

My training covers all the latest developments in the fast-growing Television-Radio-Electronics industry. You learn about FM — RADAR — COLOR TV — TRANSISTORS — PRINTED CIRCUITS, etc.

CHOOSE FROM FOUR COMPLETE COURSES covering all phases of Radio, FM and TV

1. Radio, FM and Television Technician Course — no previous experience needed.
2. FM-TV Technician Course — previous training or experience in radio required.
3. TV Studio Technician Course — advanced course for trained men.
4. Color TV Technician Course — includes latest color TV circuits.

EXTRA TRAINING IN NEW YORK CITY AT NO EXTRA COST!

After you finish your home study training in Course 1 or 2 you can have two weeks, 50 hours, of intensive lab work on modern electronic equipment at our associate resident school, Pierce School of Radio & Television. THIS EXTRA TRAINING IS YOURS AT NO EXTRA COST WHATSOEVER!

FCC COACHING COURSE

Important for BETTER-PAY JCBS requiring FCC License! You get this training AT NO EXTRA COST! Top TV jobs go to FCC-licensed technicians.

VETERANS

My School fully approved to train Veterans under new Korean G, I, Bill. Don't lose your school benefits by waiting too long. Write discharge date on coupon.

Radio-Television Training Association

52 EAST 19th STREET • NEW YORK 3, N. Y.

Licensed by the State of New York • Approved for Veteran Training

S E P T E M B E R, 1 9 5 7

www.americanradiohistory.com
CONTAINS 14 DIFFERENT TYPES
This handy G-C sampler kit holds a complete selection for every service application. Contains 2-oz. bottles of Service, Pl-O-Bond, Acrylic, Plastic, Bakelite, Vinylite, Grille Cloth, Model, Wood, Rubber-to-Metal, Electrical-Resistor, Neoprene, Label and Vinyl Cements. Specially priced this month...buy now and save!

No. 345 KIT Special This Month Only $5.97 DEALER NET
FREE! G-C Catalog...send postcard today!

GENERAL CEMENT MFG. CO.
Division of Textron Inc.
400 South Wyman Street • Rockford, Illinois

SEE YOUR G-C JOBBER NOW!

DO-IT-YOURSELFER'S VIEW
Dear Editor:
The hobbyist has absorbed huge quantities of war surplus junk, cheap tubes, do-it-yourself-kits; bought electronics books and magazines; joined clubs and loaded his shop and home with some of the most outlandish combinations of equipment ever assembled. He has test equipment of his own manufacture for some applications, and the finest of laboratory units for others. He skips over the tedious explanations of engineers and tries out his own versions of circuits shown in magazines, thereby using up parts he acquires through the pages of advertising in the same magazine or from parts suppliers' catalogs, from local supply houses or from friends (and the hobbyist has friends). As a group, I think he has proved his right to consideration by the financial contribution he makes to the industry, if nothing else.

A technician who tries to play dog in the manger with the hobbyist finds himself advertised to the hobbyist's friends in a manner that is not apt to help his business. Such a technician fails to take into account the fact that once a fellow takes up the soldering iron for fun and pleasure, the hobby is more expensive than drink.

John E. Davis
Salem, Ore.

MORE ABOUT SPEAKERS
Dear Editor:
I read Mr. H. A. Hartley's letter in the July issue, replying to one by Mr. Paul W. Klipsch in May. The gist of Mr. Klipsch's letter seems to be that you can't hear low frequencies from a small cone; he used a 10-inch cone diameter as an example. Mr. Hartley's letter states that you can; he used an 8-inch cone as an example. Both used amplitude figures to support their arguments.

I believe I have news for these two gentlemen. My company has been trying to develop for speaker cones a material more suitable than paper, which is rather fluttery and not very strong. The work has had considerable success and it will interest Mr. Hartley to know that we eventually used the motor from a Hartley speaker to keep the cone in alignment under heavy loads.

As to the laws of nature: apparently with this cone they don't apply. I can assure Mr. Klipsch that with this cone at 8 inches actual diameter there is an abundance of frequencies where it is (Continued on page 21)
Learn TELEVISION-RADIO
Servicing or Communications
by Practicing at Home in Spare Time

Without extra charge you get special NRI kits developed to give actual experience with TV-Radio equipment. You build, test, experiment with receiver or broadcasting circuits. All equipment yours to keep.

Have the high pay, prestige, good future of a skilled TV-Radio Technician
People look up to and depend on the Technician, more than ever before. Offices, plants, homes everywhere are obliged to buy his knowledge and services. His opportunities are great and are increasing. Become a TV-Radio Technician. At home, and in your spare time, you can learn to do this interesting, satisfying work—qualify for important pay. To ambitious men everywhere here in the fast growing Television-Radio field is rich promise of fascinating jobs, satisfaction and prestige as well as increasing personal prosperity.

Increased Opportunities in Growing Field
A steady stream of new electronic products is increasing the job and promotion opportunities for Television-Radio Technicians. Right now, a solid, proven field of opportunity for good pay is servicing the tens of millions of television and Radio sets now in use. The hundreds of TV and Radio Stations on the air offer interesting jobs for Operators and Technicians.

More Money Soon—Make $10 to $15 a Week Extra Fixing Sets in Spare Time
NRI students find it easy and profitable to start fixing sets for friends and neighbors a few months after enrolling. Picking up $10, $15 and more a week gives substantial extra spending money. Many who start in spare time soon build full time TV-Radio sales and service businesses.

Act Now—See What NRI Can Do for You
NRI has devoted over 40 years to developing simplified practical training methods. You train at home. Get practical experience, learn-by-doing. Address: NATIONAL RADIO INSTITUTE, Washington 16, D.C.
Technical "KNOW-HOW" Can Give You Interesting, Important Work
LEARN-BY-DOING with Kits NRI Sends at No Extra Charge

YOU BUILD AC-DC Superhet Receiver
NRI Servicing Course includes all needed parts. By introducing defects you get actual servicing experience practicing with this modern receiver. Learn-by-doing.

YOU BUILD Signal Generator
You build this Signal Generator. Learn how to compensate high frequency amplifiers, practice aligning typical I.F. amplifiers in receiver circuits. Make tests, conduct experiments.

YOU BUILD Vacuum Tube Voltmeter
Use it to earn extra cash fixing neighbors' sets; bring to life theory you learn from NRI's easy-to-understand texts.

For Higher Pay, Better Jobs
Be a Television-Radio Technician

Broadcasting Offers Satisfying Careers
4000 TV and Radio stations offer interesting positions. Govt. Radio, Aviation, Police, Two-Way Communications are growing fields. Trained Radio-TV Operators have a bright future.

Train at Home the NRI Way
Famous for Over 40 Years
NRI is America's oldest and largest home study Television-Radio school. The more than 40 years' experience training men for success, the outstanding record and reputation of this school—benefits you in many ways. NRI methods are tested, proven. Successful graduates are everywhere, from coast to coast, in small towns and big cities. You train in your own home, keep your present job while learning. Many successful NRI men did not finish high school. Let us send you an actual lesson, judge for yourself how easy it is to learn.

No Experience Necessary—NRI Sends
Many Kits for Practical Experience
You don't have to know anything about electricity or Radio to understand and succeed with NRI Courses. Clearly written, well-illustrated NRI lessons teach TV-Radio-Electronic principles. You get NRI kits for actual experience. All equipment is yours to keep. You learn-by-doing. Mailing the postage-free card may be one of the most important acts of your life. Do it now. Reasonable tuition. Low monthly payments available. Address: NATIONAL RADIO INSTITUTE, Washington 16, D. C.

NRI Graduates Do Important Work

Service Needs More Trained Men
Portable TV, Hi-Fi, Transistor Radios, Color TV are making new demands for trained Technicians. Good opportunities for spare time earnings or a business of your own.

BUSINESS REPLY CARD
No Postage Stamp Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY
NATIONAL RADIO INSTITUTE
Washington 16, D. C.

SAMPLE LESSON
64-page CATALOG both FREE

See Other Side for more information on the Tested Way to Better Pay

www.americanradiohistory.com
CORRESPONDENCE (Cont. from p. 18)
appropriate to go into the basement to listen to them. I suspect that the Massa figures were derived from experiments with a paper cone. If that is the case, perhaps they should be considered as true when applied to paper cones, and to nothing except paper cones.

HAROLD J. LUTH
Harsyd Chemicals, Inc.
Holland, Mich.

MUSICAL COMPUTERS
Dear Editor:
“Syncopation by Automation” in RADIO-ELECTRONICS (June, 1957) reveals in a very lucid manner the virtuosity, as well as the versatility, of man’s newest helpmate, the electronic computer. The mathematical structure underlying musical patterns was well shown, and the close relation of music to other forms of communication and data processing was brought to the reader’s attention—for which my best thanks.

However, this is by no means the only aspect of the application of electronic computers to music. While Push Button Bertha enables dance bands to do without composers, other equally interesting devices will let composers bring their music to listeners without performers.

Computers use the binary system, which is very congenial to music, with its octaves (1-to-2 ratio), and its whole, half, quarter, eighth, sixteenth and thirty-second notes. Many electronic organs use one form or another of binary counters to make up chains of octave frequency dividers. Not only the mathematics inherent in computer programming, but also the logic, can assist the composer in developing works in the larger musical forms (symphony, sonata, etc.) out of relatively short musical themes.

To all this add the results of recent research into language structure, machine translation, information theory and so on, and you have a most promising field. As I am a composer and have done electronic research I am quite excited over the possibilities. Before signing off, I might mention that 10 years ago my article on electronic musical instruments, “Streamlined Instruments for the Modern Age,” appeared in the Musical Courier.

IVOR DARREG
Los Angeles, Calif.

 LICENSING NOT THE ANSWER
Dear Editor:
I am not a full-time operator. Neither do I own or operate a shop in any capacity. Still, after accepting training as an ex-GI and loving the electronics activity, I feel I should say something.

Every letter I’ve read so far has this to say: The automobile mechanic is licensed; there are no shyster, unlicensed lawyers; a doctor is the most ethical of the licensees.

SEPTEMBER, 1957

It’s a sure thing ... the odds are 4 to 1 in your favor!

Put your money on Wirewounds... out of Centralab

Stable mates in Centralab’s long line of champions—Model WW and WN Wirewounds pack a 5-watt control into a 2-watt size, in short- or long-shaft styles. Now, one size takes care of 2-, 3-, 4-, and 5-watt replacements in TV, hi-fi, home and auto radio sets.

Every Centralab Wirewound is a real thoroughbred — and gives you a winning ticket that cuts inventory, helps save time, helps you make more money.

Here’s another sure thing — Centralab Wirewounds are favorites in the rich industrial handicap.

Ask your Centralab distributor about these versatile controls. Complete information on these and other top-quality Centralab components can be found in Centralab’s new catalog 30.

Centralab
A DIVISION OF GLOBE-UNION INC.
921 E. KEefe AVENUE • MILWAUKEE 1, WISCONSIN
21

www.americanradiohistory.com
CORRESPONDENCE (Continued)

I still say it is hogwash!
You can read in your own paper any day of licensed doctors performing illegal abortions. Licensed lawyers are prosecuted for illegal practices. Automobile mechanics (some of them) replace unnecessary parts. Now for the radio-telephone technician. In this area, I’ve yet to see in any paper where a part-time man has been prosecuted for unfair practices. The ones yelling for a licensing plan either are forgetting their own part-time use of their training or they started out with a golden spoon of opportunity—a shop that is already set up for their occupancy.

Do what you will, say what you may, license all you can and someone will find a way to circumvent that license. Take the plain old everyday auto operator.

Look at all of the convictions for licenses fraudulently obtained for any number of them. Revocations speak for themselves.

What I am trying to say is: We have laws to cover practically everything in any trade. All we have to do is use them.

WILLARD L. HENRY
Washington, D.C.

MORE ON TUBE JOCKIES

Dear Editor:

I have been reading the letters written about basement engineers and tube jockeys and would like to add my 2 cents’ worth.

I have a large family to support and got out of ditch digging to get into a more lucrative job. I have two diplomas from correspondence schools and another one from Coyne Radio & Electrical School.

I work for an electrical contracting firm and like the job, but don’t want to loose out on my radio and TV knowledge. I started a little business from my home and I am proud to say I am doing quite well.

As for tube jockeys, basement engineers and even legitimate shops, I can see very little difference. I don’t say tube swapping is infallible but some of these men are as good as the full timers, so, please, let us not throw too much mud!

VIRGIL G. CARTER
El Paso, Tex.

I’D LIKE TO SEE

Dear Editor:

How about a vhf device, transistorized, 108-129 mc, for light plane use, including a bridge null device for direction finding with a transistor amplifier built into the meter?

I am also wondering if a Where to Buy column might have reader interest. For example, I would like to purchase a vhf coaxial tuner for experimental work.

CLAUDE E. LOVE
Palos Park, Ill.

(The idea is interesting. How do the rest of our readers feel? And can anyone help Mr. Love?—Editor)
NOW! YOU CAN ACCURATELY

Pin Point TROUBLE
In Any TV SET
IN 10 MINUTES OR LESS!

No Guesswork! No Headaches!
NO WASTED TIME!

Eliminates the
Toughest Part of TV Servicing

Thousands of experienced TV servicemen snapped up the first edition of this great COYNE TV Trouble shooting book as soon as it came off the press.

The reception of this book by men in the TV service field has been the greatest in our 57 year history—and the reason is simple. There's no guesswork with this new book—no trouble shooting job is too tough when you have this valuable "tool" on the job with you.

"PIN-POINT TV TROUBLES IN 10 MINUTES" cuts the great waste of time in servicing—the time spent FINDING what's wrong... makes you more valuable, putting you in line for more money, greater profits and greater customer satisfaction.

So Complete, So Simple, Nothing Like It Ever Before

THE SYSTEM USED IN THIS NEW BOOK HAS NEVER BEFORE APPEARED IN ANY BOOK. Quick, easy tests tell you in which section of the TV set you will find the trouble. 50 quick-answer CHECK-CHARTS help you pinpoint the exact trouble spot at once from as many as 700 possibilities. Dozens of important diagrams and wave forms, explanations of circuits and design; other valuable data help save you more valuable time trouble-shooting.

Saves You Time... Makes You Worth More Money!

"PIN-POINT TV TROUBLES IN 10 MINUTES" is backed by the famous Coyne Electrical School—written for servicemen. Not a book for the screw-driver mechanic or "do-it-yourself," but an important aid to the experienced serviceman. With it, you can cut servicing time at least 50% and make more money as a fast, expert TV trouble-shooter. This book can save you enough on a single service call to more than pay its low cost! So get yours now. Spiral bound to lie flat. Fits easily into your tool kit for on-the-job reference.

Use it FREE for 7 Days!

You must see this sensational new book to fully appreciate how much time and trouble it can save you. So we'll let you use it for a full week, without cost! Send no money. Just mail the coupon. We'll rush "PIN-POINT TV TROUBLES IN 10 MINUTES" on FREE TRIAL. Try it for 7 days. Then send only $3.95, plus postage, or return the book and owe nothing. You be the judge. Mail the coupon NOW!

COYNE ELECTRICAL SCHOOL
Educational Book Publishing Div.
500 S. Paulina St., Dept. 97-TI, Chicago 12, Ill.

FREE TRIAL OFFER COUPON... MAIL NOW!

Educational Book Publishing Division
COYNE ELECTRICAL SCHOOL, Dept. 97-TI
500 S. Paulina St., Chicago 12, Ill.

I want to try new TV trouble shooting book: "PIN-POINT TV TROUBLES IN 10 MINUTES." Rush my copy for 7 days FREE TRIAL per your offer!

Name_________________________Age________
Address__________________________

[] Check here if you are enclosing $3.95. We pay postage. 7 day money-back guarantee.
INDEPENDENT SERVICE DEALERS!
These useful Shop and Sales Aids were created specially for You!
ASK YOUR
RAYTHEON
TUBE DISTRIBUTOR FOR THEM

Pictured are but a few of a most complete line of tested and proven shop, sales and business aids Raytheon has produced for you. All of them are specially designed to help make your work easier and more profitable. Many are free and the rest available to you through your Raytheon Tube Distributor at far below normal cost.

Ask your Distributor for the new Raytheon Business Builders folder or write to Department F Raytheon Manufacturing Company, Receiving and Cathode Ray Tube Operations, Newton 58, Mass.

RAYTHEON MANUFACTURING COMPANY
Newton, Mass. • Chicago, Ill. • Atlanta, Ga. • Los Angeles, Calif.
Raytheon makes: Receiving and Picture Tubes, Reliable Subminiature and Miniature Tubes, all these: Semiconductor Diodes and Transistors, Nucleonic Tubes, Microwave Tubes.

RADIO-ELECTRONICS
RCA offers you the finest training at home in Radio-TV electronics, TV servicing, Color TV

SEND FOR THIS FREE BOOK NOW!

Pay-as-you-learn. You need pay for only one study group at a time. Practical work with very first lesson. All text material and equipment is yours to keep. Courses for the beginner and advanced student.

RCA INSTITUTES, INC.
A SERVICE OF RADIO CORPORATION OF AMERICA
350 WEST FOURTH STREET, NEW YORK 14, N.Y.

THE DILEMMA OF GIANT MOLECULES

Solution: 2 plus 2 equals 5

Polyethylene is used to protect thousands of miles of telephone cables. It is tough, light and long lasting. Its strength lies in its giant molecules—a thousand times bigger, for example, than those of its brittle chemical cousin, paraffin wax.

But polyethylene has a powerful enemy: oxidation, energized by light and heat, shatters its huge molecules to pieces. This enemy had to be conquered if polyethylene was to meet the rigorous demands of cable sheathing. Paradoxi-}
cally, it was done by making the whole better than the sum of its parts—just as though 2 plus 2 could be made to add up to 5.

To check the ravages of light, Bell Laboratories chemists devised the simple yet highly effective remedy of adding a tiny dose of carbon black. Then antioxidants, such as those commonly used to protect rubber, were added to check attack by heat. But here the chemists encountered a dilemma: although the carbon black protected against the effects of light, it critically weakened the effectiveness of the antioxidants.

To solve this dilemma, Bell Labs chemists developed entirely new types of antioxidants—compounds not weakened by carbon black but which, intriguingly, are very much more effective when carbon black is present. The new antioxidants, plus carbon black, in partnership, provide long-lasting cable sheath—another example of how research at Bell Telephone Laboratories works to improve your telephone service.
Prepare for a Good Paying Job — Or Your Own Business

"I Will Train You at Home in
RADIO-TELEVISION
On Liberal No Obligation Plan!"

New Equipment! New Lessons! Enlarged Course! The true facts are yours in my big new catalog . . . YOURS FREE . . .

JUST MAIL COUPON!

I can train and prepare you in as little as 10 months to step into the big opportunity Radio-Television service field. Train without signing a binding contract . . . without obligating yourself to pay any regular monthly amounts. You train entirely at home in spare hours as fast or as slowly as you wish. You'll have your choice of THREE SPRAYBERRY TRAINING PLANS . . . planned for both beginners as well as the more experienced man. Get the true facts about the finest most modern Radio-Training available today . . . just mail the coupon for my big new 56 page fact-filled catalog plus sample lesson—both FREE.

Train the Practical Way—with Actual Radio-Television Equipment

My students do better because I train both the mind and the hands. SPRAYBERRY Training is offered in 25 individual training units, each includes a practice giving kit of parts and equipment . . . all yours to keep. You will gain priceless practical experience building the specially engineered SPRAYBERRY Television Receiver, Two-Band Radio Set, Signal Generator, Audio Tester and the new SPRAYBERRY 18 range Multi-Tester, plus other test units. You will have a complete set of Radio-TV test equipment to start your own shop. My lessons are regularly revised and every important new development is covered. My students are completely trained Radio-Television Service Technicians.

See for Yourself . . . Make Your Own Decision . . . Mail Coupon Today!

The coupon below brings you my big new catalog plus an actual sample SPRAYBERRY Lesson. I invite you to read the facts . . . to see that I actually illustrate every item I include in my training. With the facts in your hands, you will be able to decide. No salesman will call on you. The coupon places you under no obligation. Mail it now, today, and get ready for your place in Radio-Television.

SPRAYBERRY ACADEMY OF RADIO-TELEVISION
1512 Jarvis Avenue, Dept. 20-5, Chicago 26, Illinois

Mail This Coupon For Free Facts and Sample Lesson
give them what they want...

give them - CDR ROTORS

It's easy for you to give your customers EXACTLY what they want... and at the same time EXACTLY what is BEST for them... because CDR ROTORS are the single answer! The complete line with a model for every need... proven performance and dependability through years of experience. This combination has made CDR ROTORS the favorites everywhere... that's why your customers should have CDR ROTORS!

Especially important for color TV reception. Critical tuning requirements call for CDR Rotors.

CORNELL-DUBILIER
SOUTH PLAINFIELD, N. J.

THE RADIANT CORP.
CLEVELAND 13, OHIO

www.americanradiohistory.com
NEW! 12-WATT Williamson-type HIGH FIDELITY INTEGRATED AMPLIFIER H12 with Preampifier, Equalizer & Control Section KIT $34.95 WIRED $57.95
Compact, beautifully packaged & styled. Provides complete facilities and true high fidelity performance. Direct tape head & magnetic phone inputs with NARTS (tape) & RIAA (phone) equalization circuits. 6-in-8 cone dual triode for variable turnover bass & treble feedback-type tone controls. Output Power: 12 w into 8 ohms. w cont. 25 w pk. 1M Dist. (60 & 6000 cps @ 41): 1.5% db below 1 kHz; 0.5% above 1 kHz. Freq. Resp.: 1 w: ±0.5 db 12 w: 0-50 K; 12 w: ±0.5 db 250 w: 0.5% above 12 w. Harmonic Dist.: 100 w pk. 0.5% @ 1 KHz; 0.3% @ 15 KHz. 2800 cps: 0.1% @ 1 KHz; 0.01% @ 15 KHz. 12 w 6 v. Transient Resp: excellent square wave reproduction (4 usec rise-time); negligible ringing, rapid settling on 10 kc square wave. Inverse feedback: 50 db. Stability Margin: 12 db. Damping Factor: above 8, 200 - 15 k. Speaker Connections: 4, 8, 16 ohms. Tone Control Range: db ±20 d. Tubes: 2 ECC93/12AX7, 1 ECC92/12AU7, 2 EL84, 1 E281. Size: HWD: 5 3/8" x 15" x 8 1/4". 13 lbs. Mounts in or out of cabinet.

NEW! 50-WATT Ultra-Linear HIGH FIDELITY POWER AMPLIFIER HF50 KIT $57.95 WIRED $87.95
Like the HF60 shown below, the HF50 features extremely high quality output transformer with extensively interleaved windings, 4, 8, 16 ohm impedance. Amplifier tube: 50 frequency response @ 1% db below 100000 cps (no load). Harmonic Dist.: less than 0.1% @ 1 kHz; less than 0.25% @ 20 KHz; less than 0.5% @ 100 KHz. Freq. Resp.: ±0.5 db 0.5% above 200000 cps. Output Transformer: (fully interleaved) 1% db. Hum & Noise: 60 db below rated output on magnetic phone input & 8 mv input for rated output: 8 75 db below rated output on high level inputs (0.6 v input for rated output). Matching cover Model E-2. 84.50.

The specs are the proof... NEW! BEST BUYS by EICO

HIGH FIDELITY PREAMPLIFIER #HF61 KIT $24.95, WIRED $33.95 With Power Supply: #HF61 KIT $29.95, WIRED $44.95 Will not add distortion or detract from the wide-band or transient response of the finest power amplifiers at any control set price. High quality feedback circuitry throughout plus the complete control & switching faciities. Heavy-gauge solid brass brush panel, expensive controls, one-piece brown colored security cabinet for lasting attractive appearance. Feedback-type, sharp cut-off (12 db/octave) scratch & hum filter. Low-distortion feedback equalization: 5 most common recording curves for LPs & 78s including RRA & Low distortion feedback tone controls: provide large boost or cut in bend or mid-range & volume unaffected. Conventional printed-circuit Senior "Controlpanel" loudness control with complete control & switching faciities for all quality cartridges. Hum-bal control, DC superimposed on filament supply. Convenient controls. Extremely flat wideband response: 25 db 10-100,000 cps. 25 db 12-50,000 cps. Extremely sensitive. Nominal hum, noise below 0.05 mcV mpf. Freq. Resp.: ±3 db 12-50,000 cps. 0.05 db 13-20,000 cps. 0.15 db 20,000-40,000 cps. 0.55 db 40,000-100,000 cps. Harmonic Dist.: 15 db at 1 KHz, 1% db. 35 db below rated output. ACRO-TO-330 Output Transformer (fully interleaved). Speaker Taps: 4, 8, 16 ohms. GZ43 extra rugged transformers (individually-heated cathode eliminates high starting voltage on electrolytics & delays B+ until amplifier tubes warm up). Input level control. Panel mount fuse holder. Both bias & DC balance adjustments. Solid oxide socket provided for input amplifier tubes. 10 lbs. Matching cover Model E-2. 84.50.

NEW! COMPLETE with Factory-Built Cabinet - 2-WAY HI-FI SPEAKER SYSTEM #HF51 $39.95
Genuine 2-way book-shelf size speaker system. Jensen heavy duty woofer (6.8" or magnet) & matching Jensen compression-driver exponential horn tweeter with level control. Smooth clean bass & crisp extended highs free of coloration or artificial brilliance. Factory-tuned bass reflex birch hardwood cabinet (w/kit)! Guaranteed to meet high quality standards. Neatly finished grille cloth framed by a smooth-sanded solid birch molding. Freq. Resp.: meaured 2.4 KHz anechoic chamber with 1 watt input - Woofers: ±2 db 80-1800 cps; ±3 db 2800-10,000 cps. Tweeter Region: 1800-2800 cps, shift in level over this region depends on tweeter level setting. Power handling capacity: 25 watts. Power Input: 22" x 15" x 10". 25 lbs. Matching cover Model E-2. 84.50.

NEW COMPLETE with Preamp Amplifier, Equalizer & Control Section HIGH FIDELITY AMPLIFIER HF-20 KIT $94.95 WIRED $179.95 A low-cost, complete-facility amplifier of the highest quality that sets a new standard of performance at the price. Kit or wired. Rated Output: 20 w (14 w peak). 1 M Distortion 60 & 6000 cps (1%) at rated power: 1% db. Max. Harmonic Distortion between 20 & 20,000 cps at 1 db under rated power: approx. 0.15 db. Mid-band Harmonic Distortion at rated power: 0.5% Power Response: 20 w: ±0.5 db 20-20,000 cps: ±1.5 db 10-40,000 cps. Freq. Resp.: (4 w): ±0.5 db 13-35,000 cps: ±1.5 db 75,000 cps. 5 feedback equalizations for LPs & 78s. Low distortion feedback tone controls: large boost or cuts in bass or treble with mid-freq. & volume unaffected. Loudness control & separate level set control on front panel. Low Z output to tape recorder. Hi-level input switches: input, tape, aux, 2 hi-level inputs for proper loading with all cartridges. Hum-bal control. DC superimposed on filament supply. Extremely fine output transformer: interleaved windings, tight coupling, careful balancing, grain-oriented steel. 12" x 15" x 10". 22 lbs. Matching cover Model E-2. 84.50.

See the "BEST BUYS" NOW IN STOCK at your nearest distributor. Fill out coupon on other side for FREE CATALOG.
Prices 5% higher on West Coast.
the specs prove it... your BEST BUY is

EICO®

for COLOR & Monochrome TV servicing

FREE CATALOG shows you HOW TO SAVE 50% on 50 models of top quality professional test equipment. MAIL COUPON NOW!

NEW! TV-FM SWEEP GENERATOR & MARKER #368 KIT WIRED $49.50 $119.50

NEW! SIGNAL GENERATOR #324 KIT WIRED $26.50 $39.50

350 kc to 435 mc with ONE generator! Better value than generators selling at 2 or 3 times its cost! Ideal for IF-IF alignment, signal tracing & setup of TV, FM AM sets: marker gen.: 400 cps audio testing; lab. work. 6 fund. rectors: 450-400 kc, 1,000-1,200 kc, 1.25-3.5 mc, 3.5-11 mc, 11-37.5 mc, 37-145 mc, 1 harmonic band 111-435 mc. Freq. accurate ±1.5 mc. Linear vernier tuning & excellent stability at most important alignment freq. Etched tuning dial, flex-glass window, edge-light hairlines. Colliptes RF occ. directly - plate-modulated by k-follower for improved mod. Variable depth of int. mod. 0.05% by 400 cps Colliptes occ. Variable gain ext. amplifiers: only 30 v needed for 300 mod. Tuner-mounted over-averaged for max. accuracy. Fine & Coarse (3-step) RF attenuators. RF output 100,000 mc AF sine wave output to 15 v, 5-ohm output Z 2-way jack top binding posts for AF in/out, shielded connector & shielded cable for RF out. 12AUF, 12AV, selenium rectifier, switch-operated. Deep-etched stain aluminum panel; rugged grey wrinkle steel cabinet.

NEW! DYNAMIC CONDUCTANCE TUBE & TRANSISTOR TESTER #666 KIT WIRED "$99" "109" COMPLETE with steel cover and handle. SPEED: one, unexcelled accuracy & thoroughness. Tests all receiving tubes (and picture tubes with adapter). Composite indication of Ge, Ga & peak emission. Simultaneous test of all 1 of 4 combinations of 3 plate voltages, 3 screen voltages, 3 ranges of continuous and variable voltage (with 5% accurate pot). New averaging voltages for 600, 450, 300 mc types. Sensitivity 200 ua meter. 6 ranges meter sensitivity 1 to 30, 0.6 to 20, 10 S-B-input level switches: direct connection of each tube pin. 10 pushbuttons; rapid identification of any tube element in leakage test circuit & speedy test of individual sections of multiple sections in merit tests. Direct-reading of inter-element leakage in ohms. New gear-driven rollchart. Checks input & output transistors separate meter readings of collector leakage current & Beta using internal dc current. Deep-etched stain aluminum panel; rugged grey wrinkle steel cabinet.

NEW! COLOR and Monochrome DC to 5 MC LAB & TV 5" OSCILLOSCOPE #460 KIT WIRED "$79.50" "$129.50" • Features DC Amplifiers!

Flat from DC-4.5 mc, usable to 10 mc. VERT. AMP.: Beta using 2 stage push-pull output Z 3.5% (ext. direct-coupled & push-pull throug). K-follower coupling bet. stages; 1 step-compensation; direct coupled condenser; XVR hit. emiss. ampl. & ramp. PLUS: direct or cap. coupling; bal. & unbal. inputs; edge-light engraved lucite graph scale; dimmer; filter; belz ferris field photometer. High sensitivity range CBT 0.05 usc input time. Push-pull hmr. ampl. flat to 400 kc, sen. 0.6 mc rms/mv; Built-in vol. calibr. X-axis mod. Sawtooth & 60 cps outputs. Attg. control. Retrace blanking. Phasing control.

NEW! PEAK-TO-PEAK VTVM #232 & UNI-PROBE (pat. pend.) KIT WIRED $29.50 $49.50

Full-turn of probe tip selects DC or AC-Omhs. Uni-Probe is exclusive with EICO - only 1 probe performs all functions!

Latest circuitry, high sensitivity & precision, wide range & versatility. Calibration without removing from cabinet. New balanced bridge circuit. High Z input for negligible loading 4½" meter, can be burned-out circuit. 7 non-slip ranges on every function. 4 functions: AC-DC Volts, -DC Volts, AC Volts, Ohms. Uniform 3 to 1 scale ratio for extreme wide-range sensitivity. Zero center, one zero adj. for all functions & range. 15% precision ceramic multiple resistors. Measure directly peak-to-peak voltage of complex & sine waves: 0-15, 15, 30, 100, 250, 500, 1000 ac volts (to 30,000 v with HV probe) 0-10 mc DC, 0-250 mc PRF probe). Ohms: 0.2 ohms to 1000 megs. 12AUF, 12ALS, selenium rectifier; switch-operated. Deep-etched stain aluminum panel; rugged grey wrinkle steel cabinet.

TUBE TESTER 2626 KIT $44.95 Wired $59.95

Test 600 mil string type tubes; illuminated roll-chart. Fix Tube Test Adapter $4.50

6V & 12V BATTERY ELIMINATOR & CHARGER #1090

Sep. volt.-meter & ammeter. Special noise isolator. Calibrated wattmeter. KIT $24.95 Wired $29.95

DELUXE MULTI-SIGNAL TRACER #147

20,000 Ohms/Volt MULTIMETER #565 KIT 24.95 Wired $29.95

1000 Ohms/Volt MULTIMETER #556 KIT $12.95 Wired $14.90

Reads 0.5 ohms 5000 mgs. 10 mfd 30000 volts, power factor. KIT $19.95 Wired $29.95

SCOPES PROBES KIT Wired Peak-to-Peak $4.95 DC Volts $3.75 AC Volts $6.95

High Voltage Probe-1 $6.95 High Voltage Probe-2 $4.95

R-C BRIDGE & R-C-L COMPARATOR #950B KIT $32.75 $57.75

EICO 3000 Northern Blvd., Floral Park, L. I., N. Y. C-9

Show me NOW TO SAVE 50% on Test Equipment & Hi-Fi. Send me FREE Catalog and name of neighborhood distributor.

Name:
Address:

City Zone State
ELECTRON KEystONES, PAST AND FUTURE

. . . What Comes After the Transistor and the Solion? . . .

THE key—or the heart—of electronics, upon which the entire art and industry are built, has, curiously enough, no generic name. It was to be the electron (vacuum) tube with the advent of the transistor, and now the solion, electronics has outdistanced the language. Can we call these devices triggers, relays or valves, as we did once upon a time? No. These names have become meaningless in the face of our rapid technical progress. Our vacuum tubes and transistors are detectors, rectifiers, oscillators and amplifiers—and a host of other things, depending upon what use we make of them.

Perhaps the name kilidion (klidi—Greek for key, + ion) or kiliditon or just klidron could be used for such key devices in electronics.

When the new solion was announced early last July by the U. S. Navy, Bureau of Ordnance, it was disclosed that the new device had been first proposed in 1941 by Dr. D. S. Muzez, presently of Naval Ordnance Laboratory, White Oak, Md. During the past six years, Dr. N. N. Estes and his staff at NOL Defense Research Laboratory worked out the technical details of an entirely new technology which uses the flow of electrons in solutions. Hence the name solion. (Its technical name is an electrochemical integrator.)

The solion utilizes ions in a solution, and thus differs from electrons in a vacuum, such as in electron tubes, or in solids, as in a transistor.

About the size of a golf ball, the solion consumes 100 to 1,000 times less power than a transistor. Differing vastly from former similar devices, the new device simplifies circuitry enormously. By comparison, transistor circuitry becomes "positively complicated," in the words of the physicists who developed the solion.

There are already a variety of solions (none are for sale yet) in existence, most of them for navigational purposes. A rough overall description is difficult, as the solion is a most versatile instrumentality. In one form it converts electric energy to fluid flow by the use of electro-osmosis. In another form it converts fluid flow to electrical variations. The fluid flow can be started by a variety of physical stimuli (see below). While many fluids can be used, the inventors found iodine very suitable. Usually there are two cells, each with an electrode. The cells are divided by a porous diaphragm. Another model uses a detecting electrode of a piece of very closely woven platinum gauze in an orifice between the two cell compartments. This electrode is also its porous diaphragm.

The current flow is started by a very-low-voltage dry cell (less than 1 volt) connected to the solion. The device is extraordinarily sensitive to stimulation by temperature, pressure, light, sound or acceleration.

This makes the solion an ideal device for aerial navigation. While it is not on the market so far, the Government will license manufacturers under its patents. It would appear thus that in due time solions will be commercially available in various forms.

As the device is still in its infancy, it naturally is not anywhere near perfection; it suffers, as have its predecessors, from various deficiencies. These, we feel certain, will be eliminated in the future. Thus, one of its greatest handicaps at present is its very limited operating range—it functions only between 0 and 200 cycles per second.

That brings us the logical question, what comes after the solion? This question, too, was asked when the transistor first came on the scene. The answer is not too simple: future parallel devices will not eliminate the present ones for each new device in this class will most likely have new and special uses, which will not duplicate the old ones.†

Thus the transistor will probably never obsolete all electron tubes nor will the solion eliminate all transistors or electron tubes. But it is quite certain that many future "kilidions" will be discovered. We propose to speculate only on a few.

Gas Types. There have been gas types in the past. Indeed, the original de Forest Audion was poorly evacuated. It was a "soft" electron tube, in contradistinction to present-day "hard" tubes. Yet few true electron gas tubes are in existence today; none, as far as we know, with a plurality of conductive gases. It seems probable that such gaseous electron devices will appear in the future.

Semi-Solid Semiconductors. In all transistors in use today, solid semiconductors are used. There exist many semi-solid chemicals and elements from soft to semi-hard. None of these so far have been developed for "kilidion" purposes. Aside from the ones found in nature, there are also many man-made compositions of this type, some of which may lend themselves to future new "kilidions." As an example of such a substance, peroxide of lead, a soft-brittle chemical, was in use as a very good detector in the early days of wireless.

Atomic Types. Atomic batteries have been a reality for several years now. They usually use radioactive isotopes as a generator of the ensuing electric current. We have on this page called attention several times in the past to the possibility of future atomic type transistors, which at the same time could also be atomic batteries. Hence, they would not be dependent on batteries or an external current supply. Such a development is bound to come about.

Rest assured that the greatest electronic discoveries still lie in the future—the art has barely begun.

—H.G.

†See also Spacistors, page 8 of this issue.

*SSEPTEMBER, 1957

What price 20 cycles—
$\frac{1}{2}$-inch cone excursion—
infinite baffles—reflex systems—radial horn?

By GEORGE L. AUGSPURGER

LISTEN to that bass" is the watchword of the audiophile. The trend toward smaller speaker enclosures has produced real advances not only in reduction of cabinet size, but in extension of bass range and lowered distortion. However, clean bass reproduction is still a headache to the speaker manufacturer. What do we mean by good bass response? The following criteria seem to agree with most available information:

A suitable low-frequency limit is 40 cycles. Although the pipe organ and bass drum occasionally generate powerful fundamentals below 40 cycles, these grants are few and far between, besides being almost impossible to reproduce at natural intensity.

Distortion must be low. This is the most difficult requirement to meet at very low frequencies. Fortunately, there are systems capable of generating satisfactory power in the 40-cycle region with less than 5% distortion. The important thing to keep in mind is that we are talking about sine waves. A common statement is, "I know my speaker reproduces 20 cycles because I can hear the peak of each wave at that frequency." This notion is prevalent not only among amateurs, but I have heard the same misconception expounded by physics professors. But 20 cycles do not mean 20 clicks or rattles or glubs per second—it means a 20-cycle sine wave. The two have nothing in common except the rate of repetition. An honest 20 cycles doesn't sound like much of anything—it is perceived as a rapid change in atmospheric pressure which interferes somewhat with normal hearing.

The useful bass range of the speaker should be audible. At 30 cycles the threshold of hearing lies at about 70 db. A good speaker should be capable of producing an intensity of at least 80 db at 40 cycles.

In this article, 0 db will equal 0.0002 diners per square cm in the listening area of an average room. Thus the figures quoted will be about 3 db below standard measurements taken 18 inches from the speaker in free-field conditions.

"Long-Throw" Design similar to that of Harley. Magnetic field spread out and kept uniform over distance much greater than voice coil length. High coil displacement possible without leaving uniform flux.

Villchur Type Gap Design. Magnetic field concentrated in very small gap. Flux lines cut only small percentage of voice coil winding regardless of its displacement.

Suppose we try to design a speaker system which will meet these specifications. The first difficulty is the size of the vibrating diaphragm or piston. To get reasonable transfer of energy to air at 40 cycles, cone diameter should be about 10 feet. If such a device could be built, it would have fantastic bass efficiency with very little cone movement. Unfortunately, the cone would be so heavy that it would move at all is problematical—except in the case of an electrostatic unit. Perhaps we may someday buy our speaker like a roll of wallpaper and simply hang it up when we want to use it.

But for now, consider an ordinary 12-inch speaker. There is no reason why it cannot generate a thunderous 40-cycle note, provided the cone can move far enough. "Far enough" turns out to be about $\frac{1}{2}$-inch maximum excursion at 40 cycles.

So, why not build a 12-inch speaker whose cone can move back and forth $\frac{1}{2}$ inch? Doing it is a bit difficult for two reasons: first, the magnetic circuit must provide a perfectly uniform field in which the voice coil can travel and, second, the mechanical suspension of the cone has to be perfectly elastic under conditions of maximum cone excursion. At least three commercial systems are designed to generate low frequencies from a single diaphragm. (See Fig. 1). These units allow for large cone movement without introducing nonlinearity in the suspension or magnetic system.

Bozak speakers are built with long magnetic gaps and pronounced but reasonably low cone resonance. Bozak
Fig. 2—AR-1 speaker system (disassembled), designed by Villchur.

specifically recommends that his speakers not be used with any acoustic flummery—they are intended to be mounted in infinite baffles.

The well-known Hartley speaker goes one step further: the cone suspension is so limp that there is practically no bass resonance at all! To increase efficiency, the suspension system ceases to be a major source of bass distortion and there is no tendency to boom at the resonant frequency. Hartley, too, is unwilling to jack up the bass response of his speaker with acoustic tricks. A special Hartley Baffle absorbs the backwave in a filter system which acts as an infinite baffle even though the cabinet is comparatively small.

The AR-1 system

The newest long-throw speaker on the market is shown in Fig. 2. This is the AR-1 system designed by Edgar M. Villchur. Mr. Villchur wanted a perfectly elastic cone suspension and found a beautiful answer in compressed air. The bass driver of the Acoustic Suspension System has extremely low resonance in free air—the suspension is just strong enough to center the voice coil in its magnetic gap. Mounted in the airtight box provided for it, however, the cone pushes against the air trapped behind it and the resonant frequency of the system rises to 42 cycles.

Although above 100 cycles the AR-1 is not very efficient as speakers go, it delivers real acoustic power at low frequencies with little harmonic distortion. Putting out over 90 db (10 watts input) at 40 cycles, the system measures less than 3½% distortion. This is remarkably good for a loudspeaker.

One weak point in any infinite-baffle arrangement is that mechanical resonance is used to compensate for loss of acoustic coupling at low frequencies. Consequently there is a potential ring at the system’s resonance. Hartley damps out the resonance mechanically and also uses a single driver or amplifier bass boost to deliver adequate acoustic power.

Villchur suggests a damping factor of 1 as optimum for the AR-1 and warns that bass response is attenuated if higher damping factors are used. (Factors of 9 to 20 are standard on most amplifiers.) If you insist on tighter electrical coupling with the AR-1, the only way to correct the resultant bass drop is by giving more electrical push to the system.

It is possible to damp the speaker acoustically at its normal resonant peak by installing it in a carefully matched reflex enclosure (Fig. 3). Lansing, Altec, Jensen and Pro-Plane all favor the use of bass-reflex cabinets and claim the following advantages for this design:

1. The speaker is heavily damped at system resonance.
2. Bass response extends further than for the same speaker in an infinite baffle.
3. Since radiation from both sides of the diaphragm is utilized, efficiency is higher than for an infinite-baffle system.

These features are accompanied by lowered distortion at the resonant frequency. The General Electric AI-400 in a 10-cubic-foot Distributed Port enclosure has only slightly more than 5½% distortion at 40 cycles when producing an intensity of 90 db.

But what happens in a reflex system above and below the system resonance? Well, at some frequency above that for which the cabinet is tuned it effectively becomes a closed box and the cone resonates with the air trapped in the enclosure. This resonance is responsible

for the higher of the two characteristic impedance peaks shown in Fig. 4.

Below system resonance the cabinet ceases to exist for the speaker and the removal of acoustic loading results in the lower impedance peak. The only restriction on cone movement below this point is its mechanical suspension system. For this reason, it is desirable to protect reflex cabinets from frequencies more than a half-octave below system resonance. A rumble filter set at about 30 cycles will protect the speaker from subsonic burbling so often responsible for muddy coloration.

Some engineers attempt to flatten both of these peaks, even though they are not necessarily reflected in the unit’s sound output, by introducing acoustic mass and viscosity in carefully calculated amounts. Mr. E. J. Jordan of Goodmans Industries has engineered a series of Acoustic Resistance Units to be used with speakers and cabinets of particular characteristics. The friction-loaded systems are said to have audible response to 20 cycles without excessive distortion.

The friction loading scheme has been carefully worked out to complement the characteristics of very-low-resonance speakers. The usual two-hump impedance curve of a reflex system is not found in the Jordan design; instead the impedance rises to a single peak at the very bottom of the audio spectrum. In effect (greatly simplified), the friction-loaded system is an acoustic sus-

Fig. 4—Impedance curve of a bass-reflex system.

Fig. 3—Reflex type speaker system: Pro-Plane, Prismatic III.
of the enclosure a short distance behind the speaker. The same trick (the precise location of the screen will have to be determined by trial and error) will help get rid of holes or peaks in response due to standing waves set up in the enclosure.

Bass horns

A full-sized horn, compared to a reflex cabinet, loads its driver evenly over a much wider frequency band. The horn is more efficient than other speaker baffles—efficiencies of 50% are not uncommon. From the standpoint of size, however, a horn is even more cumbersome than a 10-foot speaker. Not only must its mouth diameter be at least one-fourth the wavelength of the lowest frequency to be reproduced, but considerable depth is needed as well.

There is only one way to cut down the size of a bass horn significantly without turning it into a tuned pipe. At some point along its length, the cross-sectional expansion of an exponential horn will match that of the conic horn formed by a room corner. It can be chopped off at this point and the corner takes over, but even this shortcut requires a big unit. Fig. 5 shows that a 60-cycle horn must have a mouth area from 8 to 16 square feet if the transition to corner is to be reasonably smooth. The famous Klipschorn (Fig. 6) is an impressive piece of furniture, yet the bass horn has a flare cutoff of about 50 cycles. An acoustic property peculiar to horns is employed to extend the bass response of the K-Horn to below 35 cycles.

Fig. 8—Cross-section of concrete radial horn.

Below its cutoff frequency, a horn acts as a mass coupled to the driver cone. Commercial bass horns use this inductive property in some sort of resonant system to extend response below cutoff. In very large systems like the Jensen Imperial and Electro-Voice Patrician, this squeezes out almost another octave of bass below the point where the horn ceases to be effective. Fig. 7 shows the output of the Imperial at 35 cycles with a 16-watt input.

The octave between 20 and 40 cycles is nice to have, but about the only way to produce these extremely low notes with really satisfactory quality is to use 20 or 30 speakers or an immense horn such as the 11-foot radial monster designed by Doschek (Fig. 8). The radial horn is interesting because it seems to deliver lower frequencies for the amount of space occupied than do more normal noncorner configurations. One of high fidelity's best known pioneers, Maximillian Weil (who was building corner speakers in 1925!) investigated radial horn design years ago, but neither he nor Mr. Doschek has been able to build a unit of practical dimensions for the home.

Newer experimental speakers—large electrostatic units, the corona discharge speaker, direct aural induction—may someday reproduce the thunderous roar of the mighty Wurlitzer at its peak power. But right now the better reflex designs and the acoustic suspension speaker seem to offer the best bass response in moderate-size cabinets.

It is perhaps a pity that while we enlarge our garages to accommodate the new behemoths of the highways, we insist that our hi-fi set be reduced to the size of a suitcase. But then, if we were completely logical, we might learn to play the cello and not bother with hi-fi at all.
Frequency-dividing circuits and how they work

By HERBERT RAVENSWOOD

The modern trend is toward dividing the frequencies delivered to different sections of a speaker system ahead of the power amplifier. The reasons for making this choice in preference to the more conventional crossover network at the power amplifier output have been dealt with elsewhere, so I will not elaborate on them.

These circuits operate at a low power level and use resistive and capacitive elements only, instead of including inductance. Inductance is regarded as undesirable as it is a possible source of distortion and can result in pickup of hum and other stray fields. So we will confine this discussion to the relative merits of different R-C circuits.

One type, and for many purposes the best, is the simple 6-db-per-octave dividing network shown in Fig. 1. This uses identical pairs of resistors and capacitors, except that resistance will be in series and capacitance in shunt for the low-pass output and just the opposite for the high pass. This produces a simple 6-db-per-octave ultimate rolloff, with the 3-db point where the resistance is equal to the capacitor's reactance. The slope at the 3-db point will be 3 db per octave.

This circuit has the advantage of simplicity. It is not likely to get seriously out of adjustment and, when correctly set up, the total energy distributed to the two outputs is constant with frequency—a fact which does not always apply to more complicated circuits.

Its disadvantage is that, for some speaker combinations, frequency separation is not sufficiently definite. A slope steeper than 6 db per octave may be regarded as necessary, to prevent high frequencies from getting to the low-frequency speaker or low frequencies from getting to the high-frequency speaker.

Multiple R-C

The next step is to multiply the number of R-C networks as in Fig. 2. Two networks in each output give an ultimate slope of 12 db per octave, three give an 18-db-per-octave slope and so on. Many circuits just do this. Unfortunately, the response is not all that is expected. The simplest effect of combining two or more networks with the same rolloff point is shown in Fig. 3.

The 12-db-per-octave ultimate slope gives an attenuation of 6 db at the turnover point, with a 6-db-per-octave slope. Similarly, the 18-db-per-octave ultimate slope gives an attenuation of 9 db and a 9-db-per-octave slope. Combining the energy fed through these two networks would leave a dip of 3 db and 6 db, respectively, at the crossover frequencies. This is shown by Fig. 4.

This calculation assumes there is no interaction between successive R and C components in each network. The only way to achieve this, even relatively, is to use a very low value of resistance with a large value of capacitance in the first pair and then go to higher impedances in successive pairs.

Using a 10-to-1 ratio between successive sections will considerably reduce interaction and produce a fairly close approximation of the responses shown in Fig. 3. A typical circuit used to achieve this at 1,000 cycles is seen in Fig. 5.

Using identical components in successive R and C values for both the high- and low-frequency networks, the attenuation at the design point for the two-stage network is more than 6 db; in fact, it is 9.5 db. For the three-stage network, attenuation jumps from 9 to 17 db and, if we go to a four-stage network, it jumps from 12 to almost 24 db. It is evident from this that, unless some adjustment is made, using more

Fig. 1—Simple R-C network is as good as any, unless steep rolloffs are desired.

Fig. 2—The obvious way to get more rolloff is to add stages.

Fig. 3—Response curves for 1-2-3- and 4-stage R-C networks, assuming no interaction.

Fig. 4—Energy response: solid lines, assuming no interaction; dashed lines, identical component values for each stage.

Fig. 5—Circuit for nearest practical approach to solid curve of Fig. 4 for 3 stages. 1,000-cycle crossover.

Fig. 6—Network provides 1,000-cycle crossover without a dip.

Fig. 7—Feedback sharpens knee of curve.
resistors and capacitors to get a steeper ultimate slope results in considerable dip at the crossover frequency. Use of two-stage networks, using the same values as those intended for a single stage, produces a dip of 0.5 db. Three-stage networks cause a 12-db dip and four-stage networks a dip of almost 21 db.

It is fairly easy to see whether this has been done in an actual circuit, simply by examining the values to see if they are the same in both filters.

More often, identical or similar values are used for each stage in the same section, but the low-frequency rolloff point is not the same as the high-frequency rolloff point (Fig. 6). But by bringing the responses together (that is, making the low-frequency rolloff higher and the high-frequency rolloff lower), this dip can be avoided. Many designs do just this.

What seems to be overlooked is that making this change results in a response that is not so very different from the single R-C combination. Without going into mathematics, the slope at the 3-db point is almost exactly 3 db per octave. At a frequency 2 to 1 beyond this (twice or half the 3-db point frequency) the attenuation is almost exactly the same, and would be with a single R-C network, about 7 db. Only when a frequency very much beyond the crossover frequency is reached do the nominal ultimate slopes of 12, 18 or 24 db per octave begin to take effect.

So there is no disadvantage to using more than the single R and C in each network, unless something else is done to accentuate the sharpness of the rolloff. There are two ways to do this, apart from resorting to inductive components and making it into a regular filter.

Feedback type

The first of these is to use the same R-C arrangement but apply feedback, which has the effect of sharpening the turnover point by causing interaction between these two rolloff frequencies. As well as sharpening the turnover point, feedback also extends the frequency range. To offset this, we have to start with a narrower band. For a crossover frequency of 1,000 cycles, for example, the low-frequency turnover point should be 700 and the high-frequency turnover point 1,400 cycles. Application of about 6-db negative feedback will then bring the two stages to a sharper rolloff and cause the turnout point to extend from 700 up to 1,000 cycles and from 1,400 down to 1,000 cycles. This is shown in Fig. 7.

There are a variety of ways in which this principle can be applied. The R-C combinations can be separated by the stage of amplification, or one in the input or grid circuit and one in the plate circuit. Such a circuit is shown in Fig. 8.

Alternatively, the R-C elements can be put together, identical components being used for each network. About 18 db of feedback will be needed, which will extend the rolloff frequency by a ratio of about 2.1 to 1. Thus, making the capacitors' reactance for the low-pass section equal the resistances at 475 cycles, and in the high-pass section at 2,100 cycles and using 18 db of feedback brings the required crossover at 1,000 cycles, with the true 12-db-per-octave rolloff (6 db per octave, 3 db down at 1,000 cycles).

Other combinations of resistance and capacitance can be used with different design points and amounts of feedback. But the end result is similar. This kind of circuit is particularly adapted for the 12-db-per-octave ultimate slope, for which details have just been given. It can be extended to more complicated circuits, giving sharper rolloffs, but this involves the use of a considerable number of tubes and very critical adjustments.

The other type of circuit involves a comparatively recent development: a circuit element called a negative converter. This circuit has been developed experimentally for use with transistors, although it is possible that a similar circuit can be devised for vacuum tubes. This circuit has the property of reflecting an impedance to the input which is the negative of the impedance connected at the output. When an impedance is connected at the output, consisting of resistive and capacitive elements, it will take a certain voltage and current combination, depending upon the impedance. The current reflected to the input circuit will be identical to that of the output circuit, but the voltage will be of opposite phase. Alternatively, we can regard the voltage as being the controlling factor since this is what is applied at the input. In that case the current will be of opposite phase to that which would be taken by the impedance connected at the output.

Applying this to the 18-db-per-octave arrangement of Fig. 9, we see that in the passband, the capacitive elements contribute relatively little. Thus the resistance connected to the output will appear as a corresponding negative resistance at the input and hence will neutralize the next resistance back. This means that the only load on the input circuit is one of the three actual resistances because the other two virtually neutralize one another.

A similar kind of thing happens right up to crossover frequency with the result that, instead of achieving something like 2 db (or more) loss at crossover frequency, the phase shift as well as the attenuation of the last R-C pair, separated by the negative converter, is reversed as a load for the middle R-C pair. This offsets the loss in the middle pair and enables the attenuation at the rolloff point to be only 3 db.

Beyond this point the effect is similar to any three-reactance crossover. Having passed its critical point, the rolloff is accentuated and the resultant response can be made identical to the true 18-db-per-octave constant-resistance type response. This method is particularly applicable to the sharper rolloffs, with an ultimate of 18 db per octave.

Practical problems

There is probably little to choose intrinsically about any of these approaches to the problem. Each circuit, with careful adjustment, can supply the type of response for which it is intended. By careful design, distortion and noise can be kept to an acceptable figure. A number of letters received about these devices, however, complain about either distortion or noise, including hum.

Investigation of these problems usually shows that the trouble is due to the level at which the electronic filters are operated. They are, of course, intended to go between the preamplifier and the power amplifiers. But best results are achieved only if the filters are operated in the correct dynamic range. If the level is too high, they are likely to run into distortion. If it is too low, they are likely to show noise troubles, including excessive hum.
Some filters are deliberately designed to have unity gain, so the output level is the same as the input level. This is a convenient feature because, providing the output level of your preamp and the input level of the power amplifier are correct for the filter, they will give a minimum of trouble in this regard. Other units of this type have quite a considerable gain, possibly as much as 20 db. This means that they may operate with an input of 0.1 volt and give an output of 1 volt, or they may accept an input as high as 1 volt and give an output of 10 volts, which is much more than the average power amplifier needs.

If, in the latter case, you put such a filter between a preamp and power amplifiers that normally operate at a level of a fraction of a volt, you will probably find hum trouble. Perhaps your amplifier gives full output, with the gain control turned all the way up, for an input of 25 volts. Your preamp may deliver an output of 2 volts.

When you feed the preamp output directly into the amplifier, you probably turn the gain control down so that the preamp does not give 2 volts, but only 0.25 volt, and the hum level is quite acceptable. When you turn the gain control up at this stage is that the hum level is only just acceptable, because another 6 db of hum may really make it quite noticeable. However, that 6 db makes all the difference and you never hear it.

Then you inserted an electronic filter and promptly acquired an extra gain of 20 db or more. If you turn down the output of the filter, you may not notice the noise and you turn up the preamp to give 20 db lower output. This way the input to the power amplifier is still 0.25 volt, but the working output from your preamp is only 25 mv. This is getting down into the hum region. If the preamp is designed to give a 2-volt output and has, say, a 70-db hum level (which is quite a good hum level for a preamp), working at 25-mv output will reduce the margin by 35 db so the working hum level is only 32 db, which is quite audible.

The noisy preamp and power amplifier combination is a result of the crossover. By adjusting the volume control you can reduce the hum, but the preamp and power amplifier will always have some noise. The best thing to do is to use an attenuator between each electronic crossover input and the power amplifier so that the levels are adjusted to the maximum each unit can handle. If the power amplifier has a preset gain control, you could use this to adjust the relative level and eliminate undesirable hum.

At the other extreme you may run into distortion troubles. You may like to have the preamp volume control so that, all the way on, the program is as loud as you want it. This means the power amplifier preset volume control has to be turned nearly to the maximum all the way down and the preamp delivers its full 2-volt output.

This, again, is all right when the preamp is connected directly to the power amplifier. It may be introducing slightly more distortion in the output stages of the preamp than an intermediate compromise might, but it is still an acceptable quality.

However, when the electronic filter is inserted and the circuit readjusted for proper overall gain, using the same policy of adjusting so that the preamp's volume control is all the way up for the desired loudness, the filter gets 2 volts at its input and is probably designed to accept only 1 volt, if that. So the electronic filter will be causing distortion unnecessarily.

As mentioned earlier, this kind of trouble is less likely to occur if the filter itself is designed to have unity gain. But it is still advisable to check whether you are using the best level of transfer for the purpose; both distortion and noise-level effects can be cumulative.

If you are operating the whole system at a high level, distortion may be acceptable when only the output stage is producing it. But when you add another small component of distortion due to an electronic filter it may become noticeable, although each piece of distortion might not be serious in itself.

Similarly the noise and hum level from the preamp, caused by working the output at too low a level and using the power amplifier preset wide open, may be quite acceptable in the direct-transfer case. But you add another possible source of noise, in the form of an electronic filter, it may become large enough to be quite noticeable—and even unbearable.

So, after you have selected a circuit that does what you really want it to as regards frequency separation, check that you work all the units at the best level to utilize their full dynamic range. This article may help you determine whether the circuit really gives the response you expect. Any circuit correctly operated will give you reasonably good performance. Practically all these circuits are designed to produce minimum distortion and provide a satisfactory dynamic range. Your problem is to operate it so that it works within this dynamic range and does not try to work either at the top or bottom extreme of the range.

BIBLIOGRAPHY

VARIABLE AUDIO SELECTIVITY

This feature of the GPR-90, a double conversion superhet receiver, extends its usefulness and makes it possible to receive stations whose signals would normally be blocked by background noise and other transmitters.

The variable audio selectivity circuit has four different levels. These are selected with a 3-position rotary switch. The fourth is obtained by adjusting the audio spread control with the selectivity switch in the normal position.

In the first or normal position, the audio bandpass is determined by the circuit consisting of R2 and L (see figure). The resistance of R2 plus the inductance of L comprise the plate load of the 12AX7. This results in a wide flat bandpass suited for broadcast reception.

The output of the 12AX7, which is connected to the audio output stage of the receiver, appears at the output of R3. The frequency response of the circuit is determined by L and C1. The filter is a low-pass type.

This circuit has the advantage of simplicity and is easily adjusted. It has a flat response characteristic and provides good selectivity.

In the second or low-pass position a .005-mf capacitor C1 is added to the circuit, causing a high-frequency response drop of 17 db at 10,000 cycles. This setting is desirable for use in either communications or shortwave reception.

With the audio selectivity control in the third position we have two choices: a wide or a sharp 1,200-cycle peak. At this setting a tuned circuit is formed by L, R2, C2 and C3. By adjusting R2, the audio spread control, either a sharp or wide 1,200-cycle peak is selected. At the wide peak setting there is a 20-db drop from the top peak at 325 to 6,000 cycles. For a sharp peak this drop is at 500 and 3,500 cycles. The sharp-peak position is extremely advantageous for CW reception. Much interference is eliminated and a clear sharp tone can be heard. The wide peak allows speech to be received even under extreme conditions.
assemble this
Headset Booster

Increase the usefulness of your receiver with this transistor unit

Using the headset booster with a communications receiver.

By E. G. LOUIS

A simple accessory that will greatly increase the utility of any moderate-impedance magnetic headset is shown in the photographs—a headset booster amplifier. This low-cost, easily built instrument increases the effective sensitivity of a headset by providing circuit gain while maintaining a high input impedance. When used with a moderate-impedance set (500 to 2,000 ohms), the net result is a substantial increase in input impedance, reducing circuit loading.

The actual gain obtained from the instrument will vary with the type of headset with which it is used. However, the gain should be not less than 10 db and may run as high as 25-30 db.

In any case, every user will find the headset booster a welcome addition to his equipment. The home constructor will find that his crystal receivers have a sensitivity he never thought possible and, in some cases, the instrument's higher input impedance may improve his receiver's selectivity as well. The ham, and especially the novice with his low-cost communications receiver, will find that he can "copy" formerly faint stations with ease. The service or laboratory technician will be able to use his specialized test gear with new convenience.

Circuit description

Basiclly, the headset booster is a self-contained, single-stage transistor audio amplifier (see schematic). A p-n-p transistor is used in a common-emitter configuration. Although a common-emitter amplifier stage generally has a low to moderate input impedance, using a stepdown input transformer insures a high input impedance (approximately 20,000 ohms).

In operation, audio signals are applied to the transformer primary and inductively coupled to its secondary. From here, the signal is applied to the base-emitter circuit of the CK722.

The amplified audio signal drives the magnetic headset connected to the output tip jacks and acts as the collector load impedance. Power is supplied by a single 15-volt hearing-aid battery.

Circuit gain will vary to some extent with the transistor used, since these components are manufactured to fairly broad tolerances. A greater variation in gain will occur with the headset used. Generally, the higher the headset's impedance, the greater the circuit gain. Best results are obtained with 2,000-ohm impedance or higher. Crystal headphones cannot be used with the instrument. In any case, the gain should be at least 10 db, but may be much higher.

There is no provision for a gain control. It was omitted in the interest of circuit simplicity and to keep cost low. In practice the headset booster is generally used with equipment (receivers, test instruments, etc.) already equipped with a gain control. To provide one in the booster would be mere duplication.

Construction hints

Only standard, readily available components are used. Construction details are illustrated by the photographs. The circuit is simple—relatively little con-
This easily built unit is a handy addition to a lab, shop or shack.

Interior view of the wired booster.

STRUCTION time is required. The average person should be able to assemble and wire a unit in one or two evenings. A commercially available prefinished aluminum box measuring 2 3/4 x 2 3/4 x 1 1/2 inches serves as chassis and cabinet. The layout allows all electrical components to be mounted on one half of the box; four small rubber grommets were mounted on the other half and act as rubber feet. The layout is not critical and may be varied to suit the individual builder's taste or to fit a different-sized box or components.

For a professional, factory-wired appearance, the instrument may be labeled with standard decals. These are available through most radio parts suppliers. Either white or black decals show up well on the gray hammer tone finish of the box. The decals are applied after all drilling or other machine work is completed, but before component parts are mounted. After application, the labels should be protected with at least two coats of clear lacquer.

To save the cost of a subminiature socket, the transistor was wired permanently into the circuit. Avoid heat damage during this operation! Each transistor lead is held with a pair of long-nose pliers as it is soldered. The lead is grasped at the connection point and the body of the transistor, with the pliers acting as a heat sink to drain off excessive heat.

Lead dress is not critical, but the usual practice of keeping input and output circuits separated should be followed. The transformer's primary winding is left floating—not either side connected to circuit ground. This arrangement prevents a hot case if the booster is connected into a vacuum tube's plate circuit. In some equipment a headset is connected in series between a vacuum tube's plate and B plus. The headset booster is designed to be used as a direct replacement for a magnetic headset as far as its input connections are concerned.

After the wiring is completed, all connections should be double-checked for possible errors and accidental shorts. Particular attention should be paid to electrolytic capacitor and battery polarities and to the color coding of the transformer leads. Since the battery does not have polarized terminals, the positive terminal of the battery clip should be marked.

A number of modifications may be made in the headset booster's design without adversely affecting operation or performance. Transistors other than the unit specified may be used—typical units are p-n-p types 2N107, 2N34, 2N222 and n-p-n types like the 2N170 or 2N35. However, if an n-p-n transistor is used, the electrolytic capacitor and battery polarities must be reversed. The capacitor's size is not critical. It may have any value from 4 to 15 µF, as long as the unit has a working voltage of at least 15.

With extremely high-impedance headsets (8,000 ohms or more) or with low-impedance units (under 1,000 ohms) an adjustment in the base bias resistor's value may improve performance. Different values for this resistor also may be necessary if a different transistor is used. The best value can be determined experimentally, but should fall between 100,000 ohms and 1 megohm.

Modifications in the electrical hardware may be made at will to suit your needs. A phone plug, coaxial connector or phone plug may be substituted for the phone tips at the end of the input cord. If desired, the tip jacks may be replaced with a phone jack, screw type terminals or any other type of two-terminal connector. The magnetic headset can be wired permanently into the circuit. Finally, the spst switch may be replaced with any suitable equivalent.

Application and use

Like any piece of electronic equipment, the headset booster will give satisfactory performance only if properly used. This instrument is not designed for use as a high-gain preamp nor as a substitute for an audio signal tracer. Rather, it is intended to provide a real boost in a magnetic headset's sensitivity and input impedance.

For optimum results, it is best to consider the headset booster and headset as a single instrument—a magnetic headset with greatly improved sensitivity and a high input impedance.

With this in mind, the instrument's input lead is connected in place of a headset's lead.

When operated in this fashion, the unit will give satisfactory performance whether used with communications receivers, impedance bridges, signal tracers or other pieces of specialized test equipment. Only one precaution is necessary—the gain control of the equipment with which the booster is used should be adjusted for good headset volume. An excessively strong input signal can overload the transistor, with resulting distortion.

END
LAST month we discussed the popular split-load phase inverter. Now we are going to look at some of the less familiar phase-inverter circuits.

The simple paraphase circuit shown in Fig. 6 has the advantage, compared with the split-load inverter, that the available swing from each of the drive tubes comes from the full plate coupling resistor. This means that the available swing from this type of inverter, using the same type of tube, will be twice that for the split-load circuit.

The circuit operates with the normal voltage gain of one tube and thus is somewhat similar in gain to the split-load circuit combined with a preceding stage.

The grid voltage for the second drive stage V2 is obtained by tapping down on the output from V1. Using the gain
\[N = 14 \]
and \[R_g = 62,000 \text{ ohms} \]
conveniently uses close-tolerance (5\%) resistors. This will attenuate not only the amplified waveform, but also any second-harmonic distortion due to the curvature of the first stage. As the grid swing on both stages is the same, the second harmonic contributed by the curvature will be the same. However, the swing applied to the second stage already contains a similar amount of second-harmonic distortion in opposite phase, produced by the first stage. The drive applied to the second output tube grid has its second-harmonic distortion approximately cancelled by this second stage of amplification.

Assume each of these phase-inverter tubes gives 5\% second-harmonic distortion. Output tube V3 has 5\% second-harmonic added to it, while V4 has approximately 0\% second, but about 0.25\% fourth harmonic. When the signals are recombined in the output transformer—assuming no distortion due to the output tubes—the distortion adds up to about 2.5\% second and 0.125\% fourth, due to the drive stage.

In practice, of course, the output tubes are likely to add a bigger component of distortion, so this calculation does not always carry too much weight.

The drawback in this type of circuit is that the equality of drive for the two output tube grids depends upon accuracy of gain in the second of the phase-inverter tubes. If the gain of the tube is not equal to the attenuation provided by the resistances, the drive voltages for the two output tubes will not be equal. As individual tubes are liable to fluctuate in amplification factor and consequent gain by at least 20\%, there can be as much as 20\% deviation in the balance of the drive for the output tubes.

Fig. 6—A simple paraphase circuit.

Fig. 7—one form of a floating paraphase circuit.

Fig. 8—Floating-paraphase circuit improves overall amplifier design by using short-loop feedback.

Fig. 9—Essential parts of long-tail inverter, using return to ground for tail.
There is one extra stage of coupling, for both the low- and high-frequency phase-shift effect, in the feed via the second output tube compared with that by the first output tube. This causes unbalance at extreme frequencies and also makes design or operation of an overall feedback loop more difficult.

Floating paraphase

Some disadvantages of the simple paraphase circuit are overcome in the floating paraphase circuit, shown in Fig. 7. However, the change does not contribute only advantages—it also contributes some disadvantages. If you switch from the split-load inverter to the paraphase to get more drive for your output stage, a change to the floating paraphase will put you nearly back to where you were with the split-load inverter.

It’s true that each output grid receives almost the full swing from one tube because the junction of the three resistors in the design is biased; this does not swing appreciably—only the amount necessary to drive the second half of the paraphase (V2). As this will be less than one-tenth of the drive required for the output tube grid, it will not reduce the plate swing a great deal.

The more serious loss of available plate swing is due to the fact that resistor R1 has to carry the combined plate current of the two halves. This means there will be a voltage drop across R1 approximately equal to that across each of the coupling resistors R2 and R3. Hence, the effective B supply for the phase inverter is virtually that much lower. This will result in an output swing from each half that is only slightly larger than that available from the split-load inverter.

For example, a 12AU7 used as V1 and V2, with a plate coupling resistor of 47,000 ohms and a bias of 7.5 volts, with a plate supply of 300 volts, will give a peak-to-peak swing of 180 volts, from an operating point of 160 volts. This means the split-load circuit will give 90 volts-peak to peak at each grid while the paraphase will give 180 volts peak to peak at each grid. The floating paraphase will drop the effective B plus by about 70 volts, to 230. From this point, a plate coupling resistor of 47,000 ohms for each tube will give a swing of about 120 volts peak to peak.

Independence from tube parameters is considerably improved because plate current fluctuation from the second half of the phase inverter passes through resistor R1, which provides the voltage for swinging its grid. So any variations in transconductance of the second half of the phase inverter are reduced by the effective feedback provided in resistor R1. This usually gives about a 10-to-1 reduction, so a fluctuation of 20% in the transconductance of the tube is likely to produce only a 1 or 2% deviation from balance.

The floating paraphase does not achieve the same distortion cancellation that the simple paraphase does. The two components of second harmonic in the second half of the paraphase drive cancel. In this circuit, negative feedback over the second half (V2) means that its tendency to generate second harmonic is reduced by a 10-to-1 factor. However, this reduction does not apply to the first half (V1). Consequently there is a resultant second harmonic of approximately equal magnitude in the drive to the grids of the output tubes. The second harmonic as well as the fundamental undergoes phase inversion in the second paraphase tube (V2), so the second harmonic generated by the first becomes a permanent addition to the waveform without any reduction due to the phase inversion. The only chance of reducing this component now rests in the overall feedback.

The floating paraphase still suffers from the disadvantage that in an overall feedback loop the second output tube has extra phase-shift components. However, the fact that some negative feedback is in effect applied over the second half of the phase inverter means that these additional shifts are reduced by a corresponding fraction and hence the possibility of a stable design is improved by the same factor as the improvement in stability of balance of the paraphase inverter.

It is possible to apply short-loop feedback with the floating paraphase inverter because each cathode can have its own bias resistor (see Fig. 8).

Long tail

The long-tail (cathode-coupled) inverter is another variation of the paraphase. Here the common resistor R1 is in the cathode circuit instead of in a common portion of the plate circuit (see Figs. 9 and 10). If the return point for the long tail is at ground potential the two grids of the paraphase tubes must be at a dc potential above ground. The same restrictions referring to available swing, mentioned with the floating paraphase, apply to the long-tail circuit.

It is a little better from the viewpoint of stability because the coupling of the second paraphase grid to ground is at ground potential. A large-value coupling capacitor can be used, say 1 uF, without running into difficulties due to its self-capacitance. This enables frequency response of the second half to be extended (both high and low ends) much further than the floating paraphase.

As the grids of the inverter must be at a positive potential, it would be well, in the interest of overall stability, to arrange this by direct coupling as shown in Fig. 10.

An alternative method with the long-tail inverter is to arrange that the grid potentials of the inverter are centered around ground. This means that the negative end of the long tail must be considerably below ground. As many amplifiers that will need the large swing which this circuit provides also use negative fixed bias for the output tubes, it may be convenient to utilize the bias supply—which usually needs a bleed resistor anyway—to provide the negative for the long tail as shown at Fig. 11.

Continuing the previous example, with a 12AU7 (V1 and V2), the circuit of Fig. 9 or 10 is limited to a peak-to-peak swing each side of about 120 volts. Using a bias return point of about 70 volts negative, the circuit of Fig. 11 will give a peak-to-peak swing each side of 180 volts.

The long tail also avoids the distortion asymmetry produced by the floating paraphase because putting the balancing resistor in the cathode means the degeneration it provides will act on both tubes. Use of a ground average potential for both grids means the second grid can be solidly grounded and thus the number of phase shifts in both feeds is nearly identical because the source impedance for the second tube is the impedance set up at the cathode of the first tube. This is quite low—about 1,500 ohms. There is no series coupling capacitor at this point and the shunt capacitances will be very small, hence they will not contribute appreciable phase shifts at high frequencies.

This has covered most of the variations in the popular types of phase inverter. There are, however, some fairly new circuits such as the cross-coupled inverter and types that employ positive feedback from the output stage, but “that’s another story,” so we shall reserve it for another article.
The Copy-Cat

Best features of Ampex 620 and Mullard 520 are combined in this high-quality hi-fi amplifier

Fig. 1—Circuit of the Copy-Cat.

Fig. 2—Response of 4-tube hi-fi amplifier.

There is no final word. The amplifier sounds pretty wonderful driving our Western Electric 728-B in a Karlsion enclosure. We'd say it sounds out of this world or any world except that we can't measure galactic response—yet!

END
HIGH-FIDELITY equipment must be designed and constructed for minimum noise and hum. Random noise consists of thermal agitation, such as occurs in resistors, and shot effect or tube noise due to variations in the rate of flow of electrons within amplifier tubes. This type of noise is distributed uniformly throughout the audio-frequency spectrum.

Hum may be due to 60-cycle alternating current or 120-cycle ripple from the power supply. The 60-cycle variety of hum may be due to numerous causes, including internal conditions in tubes, or circuit design or layout. A 120-cycle ripple may be caused by insufficient filtering and decoupling. It may also be due to filter, decoupling and bypass capacitors in the same container, or too close together under the same chassis, or using a common path to ground.

Remedial applications for random noise and hum are well known and thoroughly covered in technical magazines. But it seems that line spikes and buzzing noise conditions have not been written about extensively, nor is the hi-fi builder as familiar with them as with other types of noise.

Line spikes and buzz can be extremely troublesome to the designer and constructor. The usual careful circuit design and layout, which may minimize random noise and hum, will not always remedy line-spike annoyances. Such things as hum-bucking potentiometers will not do the trick. It is an electrostatic phenomenon, the spikes appearing on the alternating-current wave and being caused by electrical equipment, appliances, etc., attached to power lines. Fluorescent lighting is an extremely efficient producer of this type of noise.

Carefully laid out amplifiers, with good signal-noise ratios as measured with an analyzer, with hum practically inaudible at full gain, may be plagued with this very annoying buzzing noise. I have experimented with numerous arrangements to reduce or remove it and some of the remedial applications follow.

This is an electrostatic condition, so it is wise to use a power transformer with an internal electrostatic shield. It is pointed out in the Radiotron Designer's Handbook (Fourth Edition) that it is essential to use a transformer with an electrostatic shield, even if it supplies only the tube heaters. This shield, which is grounded to the transformer frame, provides some isolation between the primary and secondary windings. See Fig. 1. It was found in one test erator might get across the supply line by bridging between chassis and any common house ground.

Under some conditions, noise may be heard only when the pickup is connected to the amplifier, disappearing when the pickup cable is disconnected. By grounding the pickup arm to the amplifier chassis was found very beneficial in reducing line buzz with some amplifiers. This should include grounding the cartridge metal housing. In a cartridge such as the General Electric variable-reluctance type, the mounting screws do not make contact with the metal cover, which is left floating above ground. A piece of spring wire under the head of one mounting screw, with the other end pressing firmly against the metal cartridge housing, overcame this situation when using a metallic arm. With a plastic arm, the end of the spring wire was soldered to the shield of the pickup cable.

Grounding the amplifier chassis to a

Fig. 1—Electrostatic shielding may reduce some line-carried noise.

Fig. 2—Two line-grounding systems. A safe procedure for, should a capacitor break down, it may short the high side of the ac line to chassis. Then the op-
variable divider across the power supply to the center tap of the filament winding was unbypassed. A 20-mfd capacitor at this point provided a cure. See Fig. 3.

An interesting and useful method of solving this line-spike problem was applied to a hi-fi amplifier employing a voltage-doubling selenium rectifier power supply. A cure could be effected by connecting a capacitor from one side of the ac power line to chassis. As this capacitor had to be fairly large to do the trick, it was considered unsafe and discarded. Therefore we had to find a similar remedy that could be applied to the secondary winding of the transformer rather than the primary winding.

A 0.5-mfd capacitor was first used between one side of the secondary winding and chassis ground, (Fig. 4-a), which resulted in some improvement. The capacitor was then connected across the high-voltage secondary winding as shown in Fig. 4-b. This removed the spikes. The higher the value of this capacitor, the better. However, a limit is imposed by the load placed on the transformer when capacitances are higher.

For instance, the reactance of a 0.5-mfd capacitor at 60 cycles is approximately 5,500 ohms, whereas, for 10 mfd it would be 270 ohms. The current flow in the primary of the transformer without a capacitor was 480 ma. A 0.5-mfd capacitor made negligible change. With a 10-mfd capacitor the primary current increased to 860 ma, causing the transformer to heat.

Due to the interest in the electronic drive unit for phonographs, introduced recently by Fairchild Recording Equipment Co. (Radio-Electronics, July 1957, page 56), we are publishing the complete schematic. The motor itself is a hysteresis type, coupled to the turntable by a belt, a method of coupling which has been more commonly used for recording machinery than playback turntables.

The motor is driven by current supplied from the output of a power amplifier, which receives its signals from an oscillator-amplifier combination which originates voltages of various frequencies. The oscillator-amplifier system is so designed that changes in supply voltage or frequency have negligible effect on the frequency supplied to the motor (it can be used successfully with gas- or diesel-powered emergency power supplies or with battery-powered inverters). In addition to greater stability, the equipment has the advantage of being a purely electronic speed-changing system. The actual frequency supplied to the motor is what is changed, and as a hysteresis motor is a constant-speed device (as referred to its supply frequency) it becomes a very precise variable-speed motor from the mechanical point of view.

The frequencies are supplied by a 12BH7 double triode in a Wien-bridge oscillator circuit. It uses resistors and capacitors only and supplies frequencies of 30, 60, 81 and 141 cycles. The normal 60-cycle frequency is used for the LP speed of 33⅓ rpm. Thirty cycles drives the turntable at 10½ rpm for talking-book records (this is also the speed for automobile phonograph records). The old-time 78's are played with the help of 141-cycle frequency, and 45's at 81 cycles.

The output of the 12BH7 oscillator is amplified through a 12AU7 push-pull buffer-preamplifier, which in turn feeds a 12BH7 driver, cathode-coupled to the 25DQ6 output tubes. An output transformer of the proper characteristics couples the output tubes to the motor.

The system can be operated as an electronic-drive single-speed unit, supplying 60 cycles where line voltages are unstable. Another interesting feature of the equipment is the autotransformer-voltage-doubler power supply. Filament and rectifier voltages are both tapped off the same winding.

Variable-Speed Electronic Phono Drive

DUE to the interest in the electronic drive unit for phonographs, introduced recently by Fairchild Recording Equipment Co. (Radio-Electronics, July 1957, page 56), we are publishing the complete schematic. The motor itself is a hysteresis type, coupled to the turntable by a belt, a method of coupling which has been more commonly used for recording machinery than playback turntables.

The motor is driven by current supplied from the output of a power amplifier, which receives its signals from an oscillator-amplifier combination which originates voltages of various frequencies. The oscillator-amplifier system is so designed that changes in supply voltage or frequency have negligible effect on the frequency supplied to the motor (it can be used successfully with gas- or diesel-powered emergency power supplies or with battery-powered inverters). In addition to greater stability, the equipment has the advantage of being a purely electronic speed-changing system. The actual frequency supplied to the motor is what is changed, and as a hysteresis motor is a constant-speed device (as referred to its supply frequency) it becomes a very precise variable-speed motor from the mechanical point of view.

The frequencies are supplied by a 12BH7 double triode in a Wien-bridge oscillator circuit. It uses resistors and capacitors only and supplies frequencies of 30, 60, 81 and 141 cycles. The normal 60-cycle frequency is used for the LP speed of 33⅓ rpm. Thirty cycles drives the turntable at 10½ rpm for talking-book records (this is also the speed for automobile phonograph records). The old-time 78's are played with the help of 141-cycle frequency, and 45's at 81 cycles.

The output of the 12BH7 oscillator is amplified through a 12AU7 push-pull buffer-preamplifier, which in turn feeds a 12BH7 driver, cathode-coupled to the 25DQ6 output tubes. An output transformer of the proper characteristics couples the output tubes to the motor.

The system can be operated as an electronic-drive single-speed unit, supplying 60 cycles where line voltages are unstable. Another interesting feature of the equipment is the autotransformer-voltage-doubler power supply. Filament and rectifier voltages are both tapped off the same winding.

Radio-Electronics
TELEMETRY SHIP is one of six which will form a 3,000-mile chain of floating bases in the Atlantic Ocean. The ships, operated for the USAF’s Air Research and Development Command (ARDAC), have been modified with special electronic equipment to record and transmit data concerning missile tests to Cape Canaveral, Fla., where the range station of ARDAC’s Air Force Missile Test Center is located. Helical telemetry antennas are housed in the twin plastic radomes on the ship’s bridge.

The electronic equipment on the ships will be operated by RCA. The No. 2 holds function as the telemetry centers. They have been dehumified, air-conditioned, soundproofed and insulated to insure accuracy of the recorded data.

NEW MICROWAVE AMPLIFIER uses a ferrite material as the active element. Theoretical operation of the solid-state device was predicted by Dr. H. Suhl. The unit was built and operated at Bell Telephone Laboratories. The device requires a ferrite sample, placed in a microwave cavity which is simultaneously resonant at two separate frequencies. Microwave power, at a frequency equal to the sum of the two signal frequencies, is then pumped into the cavity. A dc magnetic field, properly oriented and strong enough to cause gyromagnetic resonance at this sum frequency, is also applied. Through nonlinear coupling in the ferrite, amplification or oscillation will occur at either of the lower frequencies.

RADIO-TRIGGERED CAMERA operates over distances of 1 mile or more. The Praktina FX Radio Control Unit is designed to be used with the Praktina 35-mm camera and is distributed by the Standard Camera Corp. The receiver is connected to an electric motor attached to the camera. When the photographer presses a button on the transmitter, a relay circuit in the receiver closes. A sequence of operations takes place in which the shutter is released to take the picture, the film is transported to the next frame and the shutter wound for the next exposure. The unit will have many uses in the field of intelligence and surveillance. Banks could install the unit over vaults and tellers’ cages to provide a visual record of criminals’ faces and actions for police.

ELECTRONIC DIAMOND-GRINDING machine automatically forms and polishes jewels to a cone-shaped tip for diamond phonograph needles. After two years of research, Walco Products has developed what is said to be the first process for automatic production of diamond phonograph needles. An expected price cut, about 40%, due to this automation, should make diamond needles a common feature of hi-films. Until now the cost of diamond styli are recognized as the best type to systems, has been very high.
IGNITION ANALYZER checks car trouble electronically

By M. HARVEY GERNSBACH EDITORIAL DIRECTOR

T HE scene on our front cover this month shows a sports-car fan checking the ignition system of his MG with the new Heathkit Ignition Analyzer. This unit—a highly specialized form of oscilloscope—displays the waveshape of the voltage across the breaker points in any internal combustion engine. It is equally useful for automobile, boat or aircraft engines. The trace on the analyzer screen can be interpreted to help pinpoint troubles anywhere in the ignition system—breaker points, ignition coil, distributor, ignition leads or spark plugs, making tedious ignition repairs much easier.

Ignition analyzers of this type have been marketed previously (Radio-Electronics, December, 1955, page 34), but these units were designed for professional use and sold for nearly $1,000. This is the first unit of its kind, within the price range of the hobbyist or the semi-pro.

The analyzer comes in kit form so we decided to assemble one for testing. ("We" is used here in the editorial sense since the actual assembly and wiring were done by our 12-year-old son.) He had no trouble doing the job—completely without supervision—which speaks well for the completeness of the instructions. We checked it out when finished and it was OK except for one wrong connection. Total assembly time: about 8 hours, just a couple of evenings.

The circuit

The analyzer (Fig. 1) uses a 5BP1 to display the information on the screen. A 1V2 is used as high-voltage rectifier, supplying about 2,200 volts to the cathode-ray tube.

Since the voltage pulse across the breaker points of an internal combustion engine is sizable, very little vertical amplification is required for adequate vertical deflection sensitivity. Only half a 12AU7 is needed, with cathode degeneration to reduce gain further. However, unlike conventional scopes, wide bandwidth is not needed so frequency compensation, with its usual loss of gain, is unnecessary.

Sweep circuits

The horizontal sweep departs even more from conventional scope circuitry. The high-voltage transient which causes the spark in a spark plug is capacitance-coupled to the analyzer's horizontal sweep by clipping a test clip to the insulated spark-plug wire. The wire's insulation acts as the dielectric of a capacitor. A low-pass filter (the 10-ohm resistor and 90-µuf capacitor at the 6AL5 trigger diode input) removes the sharpest spikes in the transient before it is applied to the trigger diode.

The trigger diode shunts positive pulses to ground and passes only negative pulses of an amplitude selected by the setting of the TRIGGER control which adjusts the bias on one of the diodes. The negative pulse from the diode is applied to a one-shot multivibrator (the 12AU7 pulse generator), triggering it to produce a single positive pulse each time a negative pulse is applied. The

Ignition system defects can be located in minutes with this build-it-yourself instrument.

www.americanradiohistory.com
amplitude and width of this pulse are of course dependent only on multivibrator circuit constants and are completely independent of the size of the pulse originating in the engine.

A portion of this pulse is fed (via the LEFT EDGE control) through an isolation cathode-follower stage (half of a 12AU7) to the sweep generator. The first section of the sweep generator is a charging diode (half of a 12AU7). The positive pulse charges a capacitor, selected by the COARSE SPEED control. The capacitor discharges through the FINE SPEED control potentiometer and the 1-megohm resistor in series with it.

The usual capacitor discharge circuit has the discharging resistance in shunt with the capacitor. This causes an exponential drop in capacitor voltage as the discharge proceeds. In the Heathkit circuit the voltage across the resistor is held at a fixed level of from 50 to 60 by an NE-51 neon lamp between the FINE SPEED control and the load resistors of the sweep cathode-follower section of the sweep generator. Because of this, voltage drop across the capacitor occurs at a constant rate per unit of time, continuing until the voltage reaches a nonlinear region or a new pulse recharges the capacitor. With the analyzer connected to an engine, regularly recurring pulses are supplied to the sweep generator and the discharge never reaches the nonlinear region. The resulting sweep voltage is like a sawtooth.

This voltage is applied to the sweep cathode-follower grid and of course appears at the cathode, too. Part of the cathode signal is fed to the grid of the horizontal amplifier (half of a 12AX7). The other half of the 12AX7 is coupled to the first half through a 27,000-ohm common-cathode resistor. Its grid is grounded to signal voltages and so it functions as a grounded-grid amplifier. A voltage divider sets the grid bias.

The sawtooth voltage is amplified by each half of the 12AX7 and appears across both plate load resistors. However, because of the cathode-coupled grounded-grid arrangement on the second half of the 12AX7, the voltages at each plate are opposite in phase although nearly equal in amplitude. These out-of-phase voltages are applied directly to the two horizontal deflection plates of the C-R tube, providing horizontal sweep triggered by the high-voltage trampents in the ignition system of the engine under test. Sweep rate depends on the setting of the SPEED controls and the spark repetition rate of the engine, a function of its rpm.

At their slowest settings the SPEED controls give full-screen display of all sparks for an engine idling at 400 rpm. At their fastest settings, they give full-screen display of a single spark at 7,500 rpm for a four-cylinder engine, at 6,000 rpm for six, and at 3,750 rpm for an eight. Of course, by changing the settings of the SPEED controls a single spark can be seen at 400 rpm, and all sparks can be seen simultaneously at 7,500 rpm.

Use, interpreting displays

To use the analyzer, the probe cable for the vertical input is connected across the low-voltage breaker points of the engine. The horizontal input cable is capacitively coupled to one of the high-voltage wires leading to a spark plug, as shown in Fig. 2. When the engine is started, adjustment of the FINE SPEED, COARSE SPEED, LEFT EDGE and TRIGGER controls should produce a pattern similar to Fig. 3 or 4, depending on the setting of the controls and engine speed. Fig. 3 shows the pattern display from a single spark of an engine in good condition with part of the next spark showing at the right. The legend accompanying the figure explains the significance of the various parts of the trace. Adjustment of the LEFT EDGE control permits the spark from each cylinder to be viewed in turn. Fig. 4 shows the display for four cylinders. The first spark at the left is that of the plug to which the horizontal sweep cable is attached. The following sparks appear in their firing order. A six-cylinder engine would display six sparks. With an eight, it may not be possible to show eight sparks at one time (we couldn’t in our tests) except at idling speed. In this event, start out with the spark-plug clip lead attached to the wire of the plug which is No. 1 or 2 in the firing sequence. Then after viewing the five or six sparks displayed with this connection, shift the clip to the lead going to plug No. 6, 7 or 8 to view the sparks from these cylinders.
TEST INSTRUMENTS

Fig. 3—How a single spark looks.
A—Points open, high voltage in coil starts spark. A–B, duration of spark.
B—Energy level in coil has dropped to point where spark extinguishes. B–C, remaining energy in coil dissipates without spark.
C—All energy in coil dissipated.
D—Points close. D–A, dwell time (time that points are closed).

4—A 4-cylinder display pattern.

5—“Missing-cylinder” indication.

6—Effect of narrow spark gap.

This same technique may be necessary when viewing a single spark from each cylinder in turn.

Figs. 5 and 6 show two displays produced by different ignition defects. In Fig. 5 there is no spark at one cylinder. Fig. 6 shows a spark that is too long and too weak. A multiple-cylinder display as in Figs. 5 and 6 or a single-cylinder display as in Fig. 3 can be selected by an adjustment of the two SPEED controls. The single display permits detailed examination of each cylinder's spark.

Other uses
Dwell time (the length of time the points are closed in each cycle) can be measured by using the scale on the face of the C-R tube. It is also possible to check the synchronization of dual ignition systems.

A few minutes’ use of the analyzer demonstrated its value in quickly localizing the source of ignition-system defects in an automotive engine. The multiple-cylinder display made the job of locating a bad sparkplug child’s play. Of course, as in any type of electronic servicing, a piece of test equipment will not interpret—that’s the job of the operator. His skill in interpreting what he sees determines how quickly a defect can be rectified.

Capacitor Substitution Box

By JOHN A. DEWAR

Anyone who has used resistor and capacitor substitution boxes for service or development work knows how valuable they are. However, capacitor substitution boxes available in kit form often go up to only 0.22 μf. This box has a range of 0.5–82.5 μf, supplying 126 capacitances in 0.5-μf steps. Only seven capacitors are used, singly or in parallel to supply the desired value.

The 0.5- and 1-μf capacitors are papers, the rest electrolytics. Polarity is indicated by color-coding the panel terminals.

A 4 x 8 x 2-inch chassis with a bottom plate is used for a cabinet. Numbers to show capacitor values were clipped from a small calendar and glued to the panel. I used pushbutton switches but spst toggle switches are just as good.

END
The Black-Box Oscillator

By EDWIN BOHR

Merely by adding a tuned circuit, you have a two-transistor pocket oscillator with a range up to 30 mc

Typical tuned-circuit components that will oscillate when connected to the box.

We are tempted to call this gadget a black box. But, speaking humorously, it is really just a gray box with two terminals and a switch on the outside.

But it does have an interesting black-box property. Connect a tuned circuit to the terminals and it oscillates. Feedback loops or taps are unnecessary. It works with quartz crystals, too!

The tuned circuit can be anything from very low audio frequencies to those in the 10-meter band. The maximum oscillating frequency depends upon the Q of the tuned circuit and the particular transistors used. Without special attention to coil Q and using SB-100 transistors, the box functions to 30 mc.

There are few components inside: only a battery, a couple of transistors and a few small parts. The circuit is equally simple and uncomplicated (see Fig. 1).

Circuit theory

Two transistors are connected to form a positive feedback loop. The output of one supplies the input of the other. One transistor is grounded-base and the other is grounded-collector connected. Neither configuration introduces phase shift (except for the phase shift of the transistors themselves).

For example, if the emitter of V1 goes positive, its collector passes more current and becomes less negative because of the voltage drop across the tuned circuit. (Going less negative is equivalent to a positive signal swing.)

As V2's base goes more negative (less positive) the emitter voltage follows this change and also goes more negative—or vice versa.

If a tuned circuit is connected across J1 and J2, the voltage change across it will be amplified by V2 and coupled to the emitter of V1. More current will flow in V1 and, consequently, cause more drop across the tuned circuit. Thus V1's current climbs until the drop across the tuned circuit is equal to the available battery voltage. When this point is reached, current can no longer increase.

Capacitors C4 and C5 can couple only changing signals. Therefore, the signal buildup stops at this point and begins to collapse, since this is the only further change possible. When the collapse is complete, buildup starts over again.

This buildup and collapse continues at the resonant frequency of the tuned circuit.

If the tuned circuit is replaced by a 1,000-ohm resistor, another mode of oscillation, determined by the R-C time constants of capacitor C4 and associated circuit resistances, results. The oscillator frequency, because of the large value of C4, is a slow putt-putt.

When a very-low-Q tuned audio circuit is used, it may oscillate at either the L-C or R-C frequency. Suppose we use headphones with a parallel capacitor as the tuned circuit. Phones are poor inductors and most of their reactance is pure resistance. Because of this, the circuit, as the power switch is flipped on and off, may give either a putt-putt or audio-tone oscillation.

Up to about 4 mc, oscillator output is about 2.6 volts, which is the available collector voltage for a single transistor. Above this frequency, output tapers off to about 0.5 volt at the highest operating frequency. The method of measuring the unit's output is seen in Fig. 2.

Three capacitors (C1, C2 and C3) are placed on the breadboard chassis. They bypass rf from the mercury battery leads. Capacitor C5, paralleling C4, is necessary because of the notably poor rf characteristics of electrolytics.

Fig. 1—Circuit of the two-transistor oscillator.

Fig. 2—Measuring the oscillator-box output at radio frequencies. Use a scope at audio frequencies.
These capacitors should be miniature units. Ceramic or paper types are satisfactory. The photo shows we used two ceramic and two paper units. The ceramics are smaller and less expensive, so they are recommended.

The battery voltages deserve some mention and explanation. A standard TR-115R Mallory mercury cell with a nominal output voltage of 6.5 powers the box. For our application, voltage taps at 1.3 and 3.9 volts are necessary. These connections are made by puncturing the cardboard-cover sleeve and soldering two extra connections to the battery. This will be explained later.

The 1.3-volt tap biases V1 in the forward direction so it will conduct. This bias current flows through the base to the emitter and through resistor R1 back to the battery. V1’s collector current is approximately equal to the bias voltage divided by the value of the emitter resistance.

A 2.6-volt section of the battery provides V1’s collector voltage. This potential plus the 1.3-volt section is the bias voltage for the V2. Finally, the 2.6-volt remainder is applied to the collector of V2. This arrangement ties the collector voltages and currents down to good, stiff voltage points, resulting in excellent immunity to temperature and transistor variations.

It might be well to mention that, generally, surface-barrier transistors such as the SB-100 have more uniform characteristics than alloy-junction types. The surface-barrier type also has a much lower value of temperature-induced leakage current.

At present, surface-barrier transistors are more expensive than high-frequency alpha cutoff junction units. However, Philco has just initiated a new automated transistor plant at Spring City, Pa., and their SB transistors are now appearing in personal radios. It should not be long until prices begin to tumble. (A new pair of transistors, the SB-101 and SB-102, will ultimately replace the -100. The SB-101 is a direct replacement—the more expensive -102 may, however, be worth getting for this application.—Editor)

Although the megacycle end of the oscillator-box performance will suffer, transistors other than the SB-100 may be used. A 2N137, 2N136 or 2N135 can be substituted directly without circuit change.

Construction hints

As the photos show, the case is an aluminum Flexi-Mount unit with two General Radio type binding posts mounted on one end and the on-off switch on top. The two transistors and other components are mounted on a small pegboard terminal card. This card is held in the case and the connecting wires and the fact that it is wedged into the box corner and against the switch. A small piece of felt or foam rubber in the cover presses the card into this position when it is closed.

The battery is held in place with a clip riveted to the case. Use aluminum rivets like those on display in most hardware stores. They are very soft and really ideal for this job.

Making the tap connections to the TR-115R mercury cell is easy. First notice that the cell cases are the positive electrodes. All connections will be made to these. Because of this, the 1.3-volt tap is made to the case of the second cell. Locate the second cell from the positive end by running your thumb nail over the cardboard jacket. Now, punch a hole in the jacket over this cell and enlarge it enough to scrape the cell case and make the solder connection.

Solder to the outermost circular spine. The surface must be scraped before soldering. Now, quickly tin a small spot of scraped area with a hot iron and a good grade of resin-core solder. A pre-tinned lead can then be tacked to the tinned area of the cell. Use the same procedure for the second tap. Caution! Overheating will ruin the mercury cell.

Long leads were left on the SB-100 transistors as a precaution against lead breakage near the glass seal and excess soldering heat reaching the interior. Be sure battery polarity is correct. Wrong battery polarity can damage the transistors.

Only two of the battery leads are broken, leaving a very small current drain—only about a μ—on the battery when the unit is off. Practically speaking, we can forget it. It is usually interesting to note the expected battery life. Using the TR-115R about 160 hours of operation can be expected.

Using the unit

One of the photos shows an assortment of tuned-circuit components for the box, ranging from a miniature transformer-tuned audio circuit to a five-turn coil for megacycle operation. Crystals also work if they are shunted with an rf choke to provide a direct current path around the crystal. This choke can be slug-tuned or shunted with a capacitor to vary the crystal frequency slightly.

Representative tuned circuit arrangements are shown in Fig. 3. The diagram in (Fig. 2) shows how a diode and multimeter can be connected to indicate the strength of oscillation of the tuned circuit at radio frequencies. At audio frequencies, it is better to use an oscilloscope. In any of these cases, the dc resistance of the tuned circuit should be as low as possible. Of course, this is no problem at radio frequencies, but miniature audio components and earphones possess quite a bit of built-in resistance and may cause oscillation at an R-C frequency.

Quite frankly, we found this box much more useful than we first imagined. It is our prize workbench gadget. Every day or so some opportunity arises to prove its usefulness. END

Fig. 3—Four types of tuned circuits used with the oscillator.
Simple Power-Transistor Test

By WILLIAM C. CALDWELL

HIGH-POWER transistors are becoming popular in auto radio applications, where they are used in the audio output stage. Their role is important—to reproduce the signal at an amplified level and to develop enough power to drive the speaker properly.

In view of their popularity, it has become essential for the radio technician to have a method of measuring the amplifying ability of the transistor and determine whether the unit is good or bad.

The transistor, unlike the vacuum tube, is a solid device with no element insulated by air or vacuum from its associated elements. It will generally operate at lower voltages than a tube, and depends more on current than voltage to activate it. All these factors point to using an ohmmeter as a measuring stick, since it has a self-contained low-voltage supply and is capable of measuring current, which is inversely proportional to resistance.

Although much has been written about ohmmeters being dangerous in transistor testing, we have checked thousands of power transistors without damaging one. The real danger is, we believe, in the use of ohmmeters in checking small, low-power transistors which can be damaged much easier.

The first test of a p-n-p power transistor is for leakage between emitter and collector with the base left open. As seen in Fig. 1, with a voltage of opposite polarity applied to the emitter and collector, one of these elements has a reverse bias, drawing all available current carriers away from the junction between collector and base. The negative collector voltage is chosen because this is the way it will be required to operate in the amplifier circuit. The resulting current is known as Ieo (current between collector and emitter with base open) and becomes excessive if the transistor is shorted, leaky, or has suffered a voltage breakdown. The same circuit can be represented by an ammeter and battery in series, exactly what an ohmmeter contains. The internal battery of the ohmmeter, usually 1.5 or 3 volts, supplies the voltage, and the resistance reading indicates what if the transistor is capable of drawing at the applied voltage. The lower the resistance, the greater the leakage current will be. Zero ohms indicates the transistor has suffered a complete punch-through where areas of the collector material are actually touching the emitter internally. This is the most common cause of transistor failures.

Transistor temperature and ohmmeter scale used play important roles in obtaining leakage readings. The transistor should be at room temperature, as low-resistance readings may be obtained at high temperatures on normal transistors. The only scale used should be R x 1. Readings taken on other scales will be confusing and meaningless for this test. Base and emitter leads must be disconnected from the circuit before attempting to check the transistor. (The ohmmeter should be a low-resistance series type. Certain meters, such as low-ohm shunt types or a very-high-resistance series meter, will not give intelligible results. — Editor)

Gain test

The next step is to make certain the
transistor will amplify. For this check, the same ohmmeter connections that were employed during the leakage test are used, and a 1,000-ohm resistor is added, as shown in Fig. 2, between the transistor base and collector. A notable decrease in resistance should be observed on the ohmmeter as this is done. This is due to the base current being in the collector circuit and responding to changes in current through it. The greater the collector current, the lower the resistance.

As the 1,000-ohm resistor is added, the base receives some negative voltage from the ohmmeter battery, causing a difference in potential between base and emitter. This draws current carriers out of the emitter, reducing the internal emitter-to-collector resistance and also causing more collector current (Ic) to flow. If, during the gain test, the resistance reading does not change from what it was during the leakage test, the base is probably open. If the reading after the resistor is added is over 50 ohms, the power transistor has very low gain. Typical gain readings are 10–30 ohms, with extra-high-gain units measuring 5–10 ohms and some lower-gain types 30–50 ohms.

Caution: Meter polarity may have been wrong. Try reversing the leads before rejecting the transistor.

The dc gain, or dc beta, in a common-emitter circuit may be easily estimated by this extremely simple test. The formula for this is:

\[\text{Approximate current gain} = \frac{1.200}{R} \]

where R is the direct reading in ohms. The accuracy of base-to-collector gain factor thus obtained is usually best for transistors measuring between 13 and 50 ohms, which represents current gain factors of about 25 to 80. Higher-gain units usually have estimated conservatively by this formula, as will be shown by the following data taken during the experiments with this test.

The equivalent circuit during the gain test is shown in Fig. 3. R2 represents the internal resistance in the meter, which includes a series resistor to adjust 0 ohms and a minute amount of meter resistance. A typical value for R2 may be 8–15 ohms, depending on meter design. This resistance has a slight effect on base current, since base current Ia must flow through both R1 and R2. This means that as collector current increases, which it will do for higher-gain units, the corresponding voltage drop across R2 will tend to retard base current slightly. If base current is decreased, the collector current will also be affected. However, the gain estimates by the formula given have a higher degree of accuracy than might be imagined at first glance, as shown by the following data. Power transistors used were of various types and applied into the simple gain-test circuit:

Table:

<table>
<thead>
<tr>
<th>Transistor</th>
<th>R (Ω)</th>
<th>Vbe (V)</th>
<th>Ia (mA)</th>
<th>Ic (mA)</th>
<th>Gain</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11.5</td>
<td>0.13</td>
<td>0.55</td>
<td>60</td>
<td>109</td>
<td>105</td>
</tr>
<tr>
<td>B</td>
<td>15.0</td>
<td>0.12</td>
<td>0.65</td>
<td>51</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>C</td>
<td>19.0</td>
<td>0.12</td>
<td>0.72</td>
<td>45</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>D</td>
<td>42.0</td>
<td>0.12</td>
<td>1.00</td>
<td>28</td>
<td>28</td>
<td>29</td>
</tr>
</tbody>
</table>

The ohmmeter used above was an RCA model WV-77A. R is the measured value of the ohmmeter during the gain test (Fig. 2); Vbe is the voltage between base and emitter (shown because it remains almost constant). Ia is the base current (calculated by the voltage drop across the 1,000-ohm resistor) and Ic is the collector current (measured with a separate ammeter).

Test Results

Note how closely the measured current gain \(\frac{I_C}{I_A} \) for each transistor compares to the current gain estimated by our formula \(\frac{1.200}{R} \). This represents the current gain at fairly low values of Ia and would probably be very close to small signal beta. To obtain an estimate of large signal gains, higher values of forward bias are used in laboratory checks and the collector load resistance is removed (the collector connected directly to the power source). The collector current is then set at much higher value, and the base current is read. To determine how closely our simple gain test compares to the larger current gain tests, a series of over 1,000 transistors were run through both tests. The following are examples of 10 transistors from various manufacturing sources, checked first by our simple ohmmeter test and then through the laboratory 1.2-ampere test:

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Leakage (mA) (R X 1)</th>
<th>Ohms in Ohm Meter (See Text)</th>
<th>Est. Gain</th>
<th>Actual Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>750+</td>
<td>42</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>500</td>
<td>38</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>C</td>
<td>750+</td>
<td>25</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>D</td>
<td>300</td>
<td>23</td>
<td>52</td>
<td>44</td>
</tr>
<tr>
<td>E</td>
<td>750+</td>
<td>15</td>
<td>80</td>
<td>88</td>
</tr>
<tr>
<td>F</td>
<td>300</td>
<td>14</td>
<td>86</td>
<td>88</td>
</tr>
<tr>
<td>G</td>
<td>200</td>
<td>13</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>H</td>
<td>100</td>
<td>11</td>
<td>109</td>
<td>130</td>
</tr>
<tr>
<td>I</td>
<td>150</td>
<td>9</td>
<td>133</td>
<td>160</td>
</tr>
<tr>
<td>J</td>
<td>45</td>
<td>7</td>
<td>171</td>
<td>220</td>
</tr>
</tbody>
</table>

Note: + indicates meter near high end of scale, but the exact reading is unimportant. Meter used for above test: Simpson model 260.

All of the ohmmeters used in these checks had a lead potential of 1.5 volts on the R X 1 scale. Models using 3 volts on the R X 1 scale have been tried, with very little change in readings. This is due to the stabilizing effect of the 1,000-ohm resistor on base current. Slightly higher than normal gain readings (lower resistance readings) may be obtained in some cases, when the lead potential is 3 volts on the R X 1 scale.

The leakage-gain test does not check diode voltage ratings on the transistor. However, most power transistors which have suffered voltage breakdowns in service are completely shorted between emitter and collector. Those prone to breakdowns may show excessive leakage or extremely high gain on the test. This system of measuring gain may be used to match transistors for reliable push-pull amplifier operation. Transistors which are not well matched cause distortion in push-pull audio amplifiers. The amount of distortion which can be tolerated depends principally upon the application in which the amplifier is employed.

This test is not designed for the small low-power transistors. It should not be used on small medium-power transistors sometimes found in audio driver stages. It is designed only for the power units used in the output stage of auto radio receivers, which are capable of handling about 0.5 amp or more collector current. Only p-n-p units have been used for this type of test to date, due to the techniques involved in the manufacturing of these transistors and the characteristics of the materials used. However, if power n-p-n units should come into the picture, it is expected that this test will give reliable readings by simply using the opposite meter polarity during the checks.

Almost any ohmmeter employing an R X 1 range may be used. Since lead polarity is extremely important, it would be well to determine this by checking with a separate voltmeter. Simply place the ohmmeter to be used for transistor testing on the X 1 scale, and connect to a voltmeter. With the two common leads tied together, if the voltmeter goes in a negative direction (against the bottom pin), the common lead of the ohmmeter is actually connected to the positive pole of the internal battery. However, if the voltmeter reads correctly, the common lead is the negative one. The voltage, in either case, should be 1.5 to 3.0 for this test.

Fig. 3—Equivalent circuit during gain test.
One instrument does the work of three when this switch probe is used

By FORREST H. FRANTZ, SR.

In determining the performance of an electronic circuit, several measurements are usually made, a condition is varied and the measurements are repeated. This may be repeated for the same measurements a number of times.

A typical example is the study of audio-amplifier frequency response (see Fig. 1-a). Here an audio generator is connected to the amplifier. At point 1, generator output voltage is measured so that it may be maintained constant; at point 2 the output of the first stage is measured and at point 3 the output of the total amplifier. The measuring instruments may be audio vtmv’s or oscilloscopes. Since the measurements will be repeated at several frequencies, measurement is more rapid when three meters or three oscilloscopes are used. This is not economically feasible for most of us. However, the probe switch described in this article will extend the utility of a single instrument and make the measurement process as fast and convenient as a three-instrument procedure. Fig. 1-b shows the switch probe and a single meter connected to make the measurements. The colors refer to the color coding of the switch-probe leads for easy identification. If a single meter is employed without the switch probe, a considerable amount of time is spent moving the instrument probe from one point to another. Furthermore, this presents a chance to apply the instrument probe to a terminal other than the actual test point.

The probe switch also provides a convenient means of making quick measurements at several points on intermittent radio or TV chassis without disturbing the chassis. The two switching circuits make it possible to employ two instruments simultaneously wherever a common ground can be used. As an example, a dc vtmv might be employed with one switch section and a scope with another section.

The big advantages of a probe switch are:
- Your eyes are free to read your instruments.
- Both hands are free for switching and writing, recording or plotting when required.
- There’s no chance of measuring at the wrong terminal once you’ve clipped into the circuit.

Construction hints

Construction is simple and at most requires only an hour or two. The switch should be mounted in a metal case to provide electrostatic shielding. This one was housed in a commercial box. Alternate switch terminals are tied to ground to provide shielding between switch terminals, and all leads are shielded to keep the circuits under test isolated. Be sure to tie all shields together and ground to the box at a common point. The shielded leads and switch indexes are color-coded for quick connection and switch identification, by painting their outside coverings. A dot of the same color or the name of the color is placed on the panel at the switch knob position where the lead has a closed-circuit connection to the instrument lead. Bring the A leads out one side of the box, the B leads out the other for ease in tracing. The box
Simple Method Checks Coil Inductance

By ELLIOTT A. McCREADY

Use your scope and signal generators to determine coil inductance

Checking coil inductance as you wind it.

DESIGNING a coil when reasonable accuracy is desired can be quite a chore. Those of us not possessing an impedance bridge usually resort to the cut-and-try method, which invariably means a lot of work and questionable results.

The formulas used in the design of large multilayer coils are extremely unwieldy. Using them for calculating single-layer solenoids for rf use isn't quite so tough, but then we run into the problem of the increase in inductance brought about when we insert a powder-iron core. (This is the point at which the textbook is thrown into the fire and the constructor winds a coil that looks good.)

The following method of checking inductance "as you wind" has been found invaluable for use in the construction of loudspeaker crossover inductors and air- or iron-core coils for use at frequencies up to a few megacycles. Don't try to use it with filter chokes as their inductance varies rather widely with the current they carry. The range of this method is limited only by the frequency response of the oscilloscope used as a measuring device.

A sensitive measuring device such as an oscilloscope and a signal generator or audio oscillator are required. The scope should have a fairly wide-band vertical amplifier if this method is used at radio frequencies.

The inductor to be measured and a capacitor of known value are connected in series (see diagram). The capacitor should be chosen so that it will resonate with the inductor within the frequency range of the signal generator. For instance a 0.1- to 1.0-µf capacitor used with a fairly hefty-looking coil would probably resonate at audio frequencies, while a small mica capacitor (500 µf on down) would be a good bet when checking a coil which is obviously used at radio frequencies. The coil and capacitor form a series-resonant circuit. Its impedance, for our purposes, is zero at the resonant frequency.

With the equipment connected as shown in the diagram, reduce the scope's horizontal gain to zero, set the vertical gain for a 1- to 2-inch trace and vary the frequency of the oscillator, starting with its lowest frequency. If a modulated signal generator is used, switch off the internal modulation. The first null on the oscilloscope will be the fundamental resonant frequency of the coil and capacitor. After locating the null, advance the horizontal gain control and tune the oscillator off frequency on both sides to be sure that the trace is still a reasonable sine wave. If a sharp pulselike waveform appears, reduce the output of the oscillator until the output is again a sine wave and recheck the null. A pulselike wave will give an erroneous reading.

Circuit of a coil-inductance test.

The use of a reactance chart like that found in the Radio Amateurs' Handbook will quickly show the value of the inductance under test. A highly detailed chart very easy to use appears on the inside back cover of Terman's Radio Engineers' Handbook. For increased accuracy the following equation can be used to determine the inductance of the coil under test:

\[L = \frac{0.025}{Cf} \]

where \(L \) is the inductance in microhenries, \(C \) the capacitance in microfarads and \(f \) the resonant frequency in megacycles.

The accuracy of this test will depend on the accuracy of the capacitor used. Good-quality paper units are usually accurate within 20% and micas within 5% or better.

One of the advantages of being able to test for inductance is that the test can be performed as coil winding progresses. I use a needle-point test prod to pierce the insulation of the wire. Frequent checks while winding will result in a coil that performs as it is supposed to when inserted in the circuit.

END
HERE is the story of two old radios I rebuilt recently. Business was slow and I was ready to work on anything, when a customer walked into the shop. He asked me to help bring his radio in, an old Zenith 42. This is a bulky cabinet job with the power supply and speaker on the lower shelf and the rest upstairs. A thick cable connects the two sections. I started to say that this set was not worth working on, but these words were never uttered. He was waving some green stuff in front of my eyes, causing my vocal cords to fail. The customer asked me if $30 would be enough. I said it’s more than enough, immediately realizing I had said the wrong thing.

I looked at the power supply, a Zenith ZE-11. Its case was new and shiny and I figured it was good. The chassis was put on the bench. Its layout was perfect. All the old parts were easy to get at. All the tubes were good. The speaker (it was one of those old field coil jobs) needed some cleaning. I checked the power supply again. The only things visible were the two 81 rectifier tubes. Testing showed them to be good. I turned the set on and started to tune the radio. It sounded darn good. I was thinking this $30 is easy money. The set was spread out on the bench—sort of breadboard style, when I bumped the power supply and the fan started.

There was a loud combination of hissing, crackling, popping and a small explosion. I pulled the plug. After the smoke cleared I took stock of the situation. The power supply had blown its lid. Lifting it off, I saw a jumble of bare wires, bleeder resistors and smoking transformers. Things looked bad. The insulation had dried out and crumbled with the passing of time. This lack of insulation included the power transformer leads.

It was an awful-looking mess. I had to rebuild the supply. With the schematic before me, I got to work. Some parts were substituted for those called for in the circuit. By a stroke of luck and some fancy thinking, the power unit was made to operate once again. However, the new parts had cost a large part of the $30 I had figured as gravy. Even worse, I had worked for almost nothing. Although the customer was pleased with his set, I did not dare ask for more money. I had a sickly remembrance of saying that $30 was more than enough.

Second time around

Some days later, I was again confronted with an old radio. It was a Philco table model that played on only a few stations. There was some bad hum which new filter capacitors could cure. Remembering my recent experience I approached this set with extra caution. Doing some deliberate thinking, I mentally ran over a couple of items. The power supply seemed to be OK. I knew the speaker was good. A few stations could be heard. It had to be capacitor trouble. I decided to take the job and told the customer that I would work on his set only during my spare time. He said all right and I collected for parts in advance. All details were typed on my bill. After the customer signed the original copy he received a copy of the agreement.

Getting off to a flying start, I discovered that this set had no model number and there was no sign of one. Shucks, this would be easy to find in my guide book. The set had six tubes. Philco sets with six tubes were compared to the one on the bench. Nothing matched and I checked again with the same results. Someone must have switched an original tube. Which one was it? It could not be determined. Oh well, in Philco radios, volume controls have numbers on them. This limited me to eight possibilities. Looking the set over again I found a shadow tuning indicator. Of the eight circuits in question only two had this indicator. One of these had a phono jack. The set I was looking for did not so I finally had the right circuit. It was a Philco 630. I marked this number on the chassis.

The set should have had two 78 tubes. There was only one. A 6D6 had been substituted for the other.

With the correct schematic before me I replaced all the capacitors in the radio. Some were not marked. Without the diagram to refer to, this radio would have presented real problems!

Eventually the job was finished. However, during a 10-hour air test the set decided to play on the upper end of the band only. This meant the oscillator coil had failed. A new one was obtained and installed. The set was given another 10-hour test and passed with flying colors. When the owner received his radio, he was so pleased that he gave me an extra $5.

So what?

If an old radio seems to be in fair shape, don’t be afraid to tackle it. Make sure the customer understands that it will be worked on only during your spare time. Collect money for parts in advance. This should be fairly high. Assume the worst and the advance fee will pay for anything that might come up. If there is money left over apply it toward the labor. Labor should run about $15. Using $10 in parts would require you to charge $25 for the job. This is why only expensive old radios should be rebuilt. It would not pay for the customer to have a radio rebuilt that only cost $15 when it was new. And don’t forget—if it looks very bad refuse the job!
By R. M. MENDELSOHN

Radio

In recent years, many public-safety and public-service radio communications services have switched to FM and moved to the 152-162 mc band. Since this band is now used by municipal police and fire departments, public transportation and utilities companies and maritime mobile services, it is of vital importance in Civil Defense activities. Equally important in CD work are the nearby 2-meter (144-148 mc) amateur band, used for organized local communications in disasters and other public emergencies, and the Civil Air Patrol frequency (148.14 mc).

Unfortunately, the few commercial receivers available for the 152-162 mc band do not cover the 2-meter amateur band or the CAP frequency, while those which cover the 2-meter and CAP frequency do not cover 152-162 mc. This article describes a receiver, specially designed for Civil Defense monitoring, which provides continuous coverage from below 144 to above 162 mc and is built for less than $25. Basically it is an FM receiver, but a strong AM signal may be received by tuning slightly away from the carrier frequency. The FM discriminator will not be able to balance out the large variation in amplitude present on the AM signal and will therefore provide audio detection. Operated in this manner, it is satisfactory on strong signals but loses its volume as the signal becomes weaker. Because the receiver is designed primarily for monitoring local stations operating with moderately high power, and for portability, its circuitry is deliberately kept simple. The design is flexible enough to permit the addition of various refinements.

The receiver uses a conventional FM circuit: converter stage, two 10.7-mc IF amplifier stages, ratio detector and a two-stage audio amplifier. Its circuit is shown in the diagram. A 12ATT7 twin triode is used as a combined oscillator and mixer, with coupling provided by internal capacitance between the triode units. 6BJ6’s are used as IF amplifiers because of their low heater current requirements (150 ma each). A 6T8 triode-diode triode is used as the ratio detector and first AF amplifier, and a 6AK6 as the output amplifier.

A simple half-wave power supply, using a selenium rectifier, was provided for compactness. Although even more space could be saved by omitting the isolation transformer and using series-string heaters, the change would introduce a serious safety hazard, particularly since a metal cabinet is used.

A ratio detector is used as it does not require a limiter and is much quieter between signals than the limiter–discriminator and makes an audio squelch circuit unnecessary. Little arc is provided as finding of local signals is practically nonexistent at these frequencies. Some arc action is caused by the grid-bias network R6L–C12, which reduces the gain of the second IF amplifier stage on strong signals.

Construction details

Receiver construction is seen in the photos. The front section of the tuning capacitor is used for the oscillator and the rear section for the mixer. A double-bearing capacitor of the type listed or an equivalent salvaged from surplus equipment should be used to allow reasonably precise calibration of the tuning dial. This consideration is important because stations of the type to be monitored transmit intermittently, making it difficult to find the one desired by ear alone.

To achieve portability, small components are used where possible. Ceramic capacitors were used for all bypassing and coupling applications. Even the 2-uf stabilizing capacitor (C16) is a miniaturized electrolytic about the size of a 1-watt resistor.

No difficulties should be encountered if the circuit and layout shown are followed. The 120,000-ohm resistor across the primary of the last IF transformer cures local oscillation in the receiver shown and may not be necessary in others.

The IF and ratio-detector circuits of this receiver are best aligned with a

Circuit of five-tube CD monitor.

R11, 1-1000 ohms
R12-10,000 ohms
R13-1 megohm
R14-220 ohms
R15, 13-470 ohms, 1 watt
R16-510 ohms, 1 watt
R17-47,000 ohms
All resistors '%2 watt unless noted
C1-15 uf, ceramic
C2-5 uf, ceramic
C3-15 ppF per section, 2 sections, variable (Hammond type HC25-15X or equivalent)
C4, 9, 10, 11-3300 uf, ceramic
C5, 12-470 uf, ceramic
C6-70 uf, ceramic
C7-330 uf, ceramic
C8-14, 19, 24–80 uf, ceramic
C10, 15–300 uf, ceramic
C11-40 uf, 150 volts, electrolytic
C12-40–35–20 uf, 150 volts, electrolytic
F-fuse, 5 amp
J-coaxial connector
L1-12 turn, No. 12 bare copper wire, 1/4 inch wide, 1/2 inches long, center-tapped
L2–25 turns No. 24 enameled wire, close-wound on a 1/2 inch diameter megohm resistor
L3–1/2 inch diameter, 1 megohm resistor, 1 inch long
S-off–on switch, spot on R12
T1-2–if transformer, 10.7 mc (Miller 1463)
T2-ratio detector transformer, 10.7 mc (Miller 1445)
T3-Power transformer, primary, 117 volts; secondary, 125 volts, 50 ma; 6.3 volts, 2 amps
T5-Output transformer, primary, 8000 ohms; secondary, 3.2 ohms
T6-12ATT7
V1-6B6J
V2-3386
V3–478
V5–6AK6
Rectifier, selenium, 117 volts (rms), 50 ma
Speaker, 4.5 inches
Chassis, 5 x 8 x 1 inch
Case, 5 x 6 x 1 inches
Pilot-light assembly, with 6–8 volt type 40 or 67 bulb
Miscellaneous hardware
sweep generator and oscilloscope. Use standard methods for if adjustment and detector balancing. However, for those who do not have a sweep generator, there is a method of alignment using a conventional signal generator and voltmeter.

A signal generator capable of delivering fundamental output at 142 to 162 mc should be used to align the front end. If such a generator is not available, suitable harmonics of a low-frequency generator may be used. As a last resort, the front end can be aligned on received signals, provided the mixer and oscillator coils were made to the specific dimensions.

1. Temporarily solder a matched pair of 100,000-ohm resistors between point A in the diagram and ground (shown with dashed lines). Connect a vtvn or 20,000-ohms-per-volt dc voltmeter between A and ground, with its negative terminal at A. Tune the signal generator to 10.7 mc and connect it through a .01-sf isolation capacitor to the mixer-grid terminal (pin 7) of the 12AT7 socket.

2. Adjust both slugs of transformers T1 and T2, and the primary slug in T3 for maximum reading on the meter. During these adjustments, reduce the output of the signal generator if necessary, keeping the meter reading below 2 volts.

3. After all five slugs have been adjusted, connect the voltmeter between points B and C. Carefully adjust the secondary slug of T3 for zero reading on the meter. This adjustment completes the alignment of the if and ratio-detector stages.

4. Reconnect the voltmeter between point A and ground, and connect the signal generator to the antenna connector. Tune the generator to 162 mc and set the tuning capacitor with its rotor about 80% out of mesh. Then adjust the oscillator trimmer C7 until the voltmeter indicates that the 162-mc signal from the generator is coming through. Keeping the voltmeter reading below 2 volts by use of the generator output attenuator, adjust the mixer trimmer capacitor (C2) for maximum reading.

5. Retune the signal generator to 142 mc and try to tune in the signal on the receiver by adjusting C3, the main tuning capacitor. The signal should come through with C3 at about 80% of full capacitance. If it does not, open or squeeze mixer coil L1 until it does and continue these adjustments until a maximum reading is obtained. If the adjustments appreciably change the dimensions of the mixer coil, retune the generator to 162 mc and repeat step 4. Several adjustments back and forth may be necessary to obtain good tracking over the entire band.

An 18-inch whip plugged into the antenna connector should be adequate for local reception. An outside antenna will add many signals from farther away.

Several refinements may be added if desired. For example, frequency stability can be improved by using a regulated plate-voltage supply for the oscillator. Because of the low B-supply voltage the regulator tube should be an OA3. Better space conservation and less current drain can be obtained with a 5551 voltage-reference tube as a regulator. This miniature tube draws a maximum of 3 ma and will provide 87 volts regulated. A substitute, less expensive than a tube but not as stable, is a NE-51 neon bulb.

A source of avc voltage is available at point A and may be used, by the addition of the proper R-C filters, in the same manner as in an AM receiver. The avc voltage can also be used to trigger an audio squelch circuit to provide absolute quiet between transmissions. Another addition for those who want to look for weak signals is an rf amplifier stage. This stage may be an untuned broad-band type so a variable capacitor is not required. An rf stage will also minimize the possibility of radiation from the rf oscillator which might cause interference with other services.

SEPTEMBER, 1957

57
Flea-power transmitter for phone operation has a built-in VFO

10-meter transistor rig goes

The whole works fits into a miniature case.

Inside view showing suggested component layout.

By CAPT. READ C. EASTON, USAF, W1NAO/7

URING recent work with Griffith's crystal-controlled 10-meter transistor rig, the problem of being rock-bound (fixed-frequency) on today's superactive amateur bands became too great to be ignored. Many times we were unable to complete contacts with the little rig due to our inability to move out from under heavy interference. We decided to build a 10-meter rig, VFO-controlled. In doing so we ended up with about three times greater output than Griffith with one less transistor.

Since W7MPQ's success with the transistorized Colpitts circuit was evi-

Parts list for schematic (above left)
- R1-2,200 ohms
- R2-1,000 ohms
- R3-1,5,000 ohms
- R4-4,8,000 ohms
- R5-37,000 ohms
- R7-470 ohms
- All resistors 1/2 watt
- C1-5 µf, variable (Hammarlund APC 50 cut to I stator and I rotor plate) or Mac 5 or equivalent
- C2-3,7,12 µf, ceramic trimmer
- C3-56 µf, silver mica
- C4-4-100 µf, silver mica
- C5-7-100 µf, disc ceramic
- C6-50 µf, variable (Hammarlund APC 50) or equivalent
- C7-100 µf, disc ceramic
- C10-150 µf, variable (Hammarlund APC 100) or equivalent
- J1-Closed circuit phone jack
- J2-Miniature coaxial connector (Amphenol 31-817)
- L1-15 turns No. 32 enamelled wire, close wound on National XE-50 form
- L3-10 turns wire, 2.5 mh
- L3-8-turn section of B & W No. 301 Miniductor
- L4-3-turn section of B & W No. 301 Miniductor
- V1-58-100 (Philco)
- V2-L-5108 (Philco)
- Case 5 x 3 x 2½ inches

Dial, knobs, miscellaneous hardware
dent, a series-tuned (Clapp) version is used for the vfo. A fundamental oscillator frequency of 28 mc was selected for several reasons. Among them were unusual output about stability and output voltage versus frequency; frequency pulling of the oscillator by amplifier tuning, and effects of modulation on the oscillator.

Using a Philco SB-100 transistor in the vfo, sufficient output is obtained to drive a Philco L-5108 transistor to a 2-mw output, measured in the 28.0-29.5-mc range. As expected, the output falls off a minor degree at the high-frequency end of the range. The oscillator frequency can be pulled about 200 kc by tuning the amplifier output tank. Once the amplifier is tuned and the oscillator brought back to its original frequency, stability is surprisingly good. Frequency drift was not noticed during a 1-hour four-way local contact.

Modulation technique

Modulation was obtained by connecting a carbon microphone in series with the negative battery terminal and the cold emitter of the amplifier tank circuit. This is roughly the equivalent of plate modulation in a vacuum-tube amplifier, but here it produced narrowband frequency modulation. Audio quality was very good.

The oscillator frequency was then halved, since it was reasoned that something of the sort should be expected with the vfo and modulated amplifier on the same frequency. This change slightly reduced frequency swing due to modulation, but the transmitter's output power increased to a little over 5 mw.

This power output falls just short of being three times that measured on the W7MPO push-pull final amplifier. Better coupling efficiency and more drive to the amplifier seem to be the two major factors in obtaining this improvement.

Data received from Philco\(^2\) contain a very interesting chart showing the decrease in transistor collector efficiency as the operating frequency approaches the transistor's maximum usable frequency (comparable to the alpha cutoff frequency). As the ratio between operating and maximum frequencies approaches unity, collector efficiency approaches zero, being approximately 25% at an F/F\(_m\) ratio of 0.50. This helps explain the improvement in performance of the vfo rig as the oscillator frequency is lowered.

Construction of the transmitter presents no unusual problems and should be clear from the photographs and diagram. Component values are not critical, although variation in individual transistor characteristics makes minor experimental value changes worth while.

Several components are surplus items, but in all cases their direct equivalents are available commercially. Specific examples are the vfo coil form which is a National XR-50 and the variable capacitors which are the Hammond APC variety. The amplifier tank coil and link are made from one section of B & W Miniductor No. 3011 coil stock. Separate batteries power each stage to avoid interaction via a common power supply impedance.

A wide-open field-strength meter is used for making tuning adjustments. (The term wide open indicates that an rf choke replaces the conventional tuned circuit in the meter so that it is not particularly frequency-sensitive.) Once an approximate frequency setting is set with the vfo, the amplifier tuning and loading capacitors are adjusted for maximum meter reading. By leaving the meter connected to the antenna lead there is no loss of signal strength, according to all stations contacted.

Output power

The method of power output measurement is simple and apparently reliable. The only equipment needed is a vtvm with a diode probe and a non-inductive resistor of known value. We used a Heathkit DX-3 with a 100-ohm 2-watt carbon resistor as the load (at these power levels one can't be too careful). By placing the resistor (shunted by the diode probe) across the transmitter output link and tuning the amplifier tank and link circuit for maximum vfo output, the voltage across the load is determined. Substituting the measured voltage and resistor values in the conventional power formula gives the power output.

Connecting the vtvm and field-strength meter across the load resistor and alternately disconnecting one meter while watching the other, we found that neither meter significantly affects the load so as to invalidate the readings obtained.

Purely as a shot in the dark, we set the transmitter's output frequency at 30.3 mc and used the little rig as a vfo exciter for a Central Electronics 10A SSB exciter on 21 mc. While not completely successful due to frequency instability previously unnoticed, results were good enough to warrant further investigation.

Frequency instability was undoubtly due to operating voltages somewhat in excess of the transistor manufacturer's recommendations and the lack of a high-quality double-bearing variable capacitor in the vfo. By operating the vfo in the 12-mc range (for 21-mc SSB output), frequency stability and output power are expected to improve considerably with less input power.

Data obtained during operation of this little rig should lend encouragement not only to those few hardy souls striving for communication with minimum power, but also to those contemplating the construction of an all-transistor receiver for the higher frequencies.

GATED-BEAM OSCILLATOR

By Charles Erwin Cohn

In the 6BN6, unlike conventional pentodes, the cathode current is not markedly affected by grid action. If plate current is cut off by grids 1 or 3, the total cathode current flows to the accelerator grid (grid 2). If a positive voltage on G1 or G3 increases the plate current, the accelerator current drops. This corresponds to negative transconductance between G1 and G2 or G3 and G2, making a negative-resistance oscillator possible.

Fig. 1 is a simple oscillator using this effect. A tuned circuit is connected between G1 and ground and is capacitance-coupled to G2. If G1 goes positive, the plate current increases and accelerator current decreases, making it (G2) more positive. Since G1 and G2 are coupled by the 0.1-uf capacitor, the original disturbance that drove G1 positive is reinforced and the circuit oscillates. Output can be taken from G2 or the plate.

About 15 volts rf output was obtained with this circuit oscillating at 550 kc. Grid 3 may be keyed or modulated. A 0.4-volt 60-cycle signal provides about 60% modulation. The cathode potentiometer should be adjusted for most linear modulation. The cathode and G3 can be grounded directly if the circuit is not modulated or keyed.

Fig. 2 shows the circuit with G3 in the oscillator and G1 used for modulation. This circuit has more output and modulation sensitivity. Here, 0.1 volt gives 40% modulation.

This circuit makes an excellent superhet converter when the 100,000-ohm grid resistor is replaced by the antenna or rf coil and the plate resistor by the primary of the first if transformer. Adjust the cathode potentiometer for maximum gain and minimum modulation distortion.
In radio repairing—as in any other business—efficiency is spelled M-O-N-E-Y! So it's plain common sense for a technician to latch onto anything that increases his efficiency. There are many devices he can use to turn out better work and save time. Four such easily built, low-cost units are described here. Over the years we have found them to be, not merely useful, but downright indispensable!

Open heater detector

The first one is an open heater detector used to locate quickly the dead tube in those ac-de series heater strings. Usually when these sets conk out, just one tube is at fault. We use a special outlet to test these sets. The hot leg of the line that feeds it has an ac socket connected in series with it. If a 10-watt bulb is inserted in the socket, it will indicate current flow through the outlet whenever an appliance or radio is plugged in and turned on.

If the set's heater is not open, the bulb will light. If it doesn't, we have an open circuit. We substitute one tube at a time and watch the indicator. When the bad tube is replaced, the bulb lights. This will not locate a bad on-off switch or an open line cord nor will it be useful in sets that have more than one open heater. But the majority of the time, a set can be serviced right on the counter by unskilled personnel. Fig. 1 is a drawing of the hookup.

Short indicator

Another highly useful rig is the one we call the “short indicator.” This gadget will let you actually see the short! Many sets develop shorts between plates of the tuning capacitor, which are sometimes difficult to remove. Again an ac socket in series with one side of the line is used. This time with a 25-watt bulb.

After all connections are removed from the capacitor, ac is applied through this hookup. Shorted plates are, showing a blue spark at the point of the trouble. Since the current in the line is limited only by the 25-watt bulb, be careful while working with this hookup.

This gadget will also burn out any dust particles between the plates. Be sure to remove all connections to the capacitor before testing. Fig. 2 shows this hookup.

Wireless output meter

Our third aid will help keep your customers happy. Their radios will have that oomph that sets have only when aligned with an output meter. The ear is no substitute for that instrument! Voice coil connections are often too hard to get at and ear alignment is all that these sets get. You can get around this difficulty with a wireless output meter.

It consists of an ordinary 5- or 6-inch PM speaker, a mike transformer and a low-current (rectifier type) ac meter. The hookup is seen in Fig. 3. This gadget, moved close to and facing the set's speaker will work as a microphone, picking up the tone from the set and translating it into an ac voltage which is read on the meter. The mike transformer's high stepup ratio makes this possible. Use it for a while and notice the difference in performance.

The slicer

The fourth and last time saver is the cheapest to construct but is worth its weight in plutonium. I venture to say that not one ac-de radio in 10 tracks properly! How many times have you run across a set that had two or more stations fighting to be heard right in the middle of the broadcast band? How can we alleviate this situation? Take a piece of plastic, such as that used for the dial face in older radios. Cut it to the shape of a crescent. Now you have “the slicer,” a gadget that acts like a magic wand when used properly.

Get in the middle of the band, with your generator feeding a 1,000-ke signal to the set. Now insert the slicer between a stator and rotor plate of the tuning capacitor's antenna section. Do this slowly and watch the output meter as the slicer begins to add capacitance to that section. Does the meter needle rise or fall as the slicer enters between the plates? If it rises, that section of the gang needs more capacitance. If it falls, either there is too much or just enough capacitance. To correct, bend the end plates either in or out as needed. Be sure to bend only the section of the gang that affects the frequency you're on.

These gadgets will save you time and money. Your reputation for fine service will gain and you personally will know the feeling of satisfaction that comes with a job well done.
By RICHARD J. SANDRETT0

Gently touch a small metal disc. Instantly a doorbell rings, room lights go on, a door automatically opens and closes behind you or the toy electric train in the store window alternately stops, starts and reverses. A contact-sensitive relay controls the action.

Either a single OA4-G or 1C21 thyratron is used in its simple circuit. Once installed the controller can be forgotten, operating reliably for only a few pennies a year.

Briefly this is how it operates: A single wire connects a touch plate to the controller. The touch plate is simply a piece of metal mounted on an insulating section of plastic. Whenever a person or any other large conducting object touches the metal, the capacitance between his body and ground fires the thyratron. This causes the plate relay to close and some device is actuated.

The controller has both practical and amusing applications. The author made the following novel installation at his home: The touch plate shown in the photograph was mounted at the front door where a doorbell button would ordinarily be located. Whenever a caller touches the disc, the door chime instantly sounds. At the same time the porch light turns on automatically.

My unit is adjusted so that, if no one answers within 25 seconds, the light automatically turns off. If someone is close by and they turn on the light in the living room. The porch light will stay on only 9 seconds. This is completely automatic and does not interfere with normal living-room or porch-light operation.

Fig. 1.—A general purpose relay. A circuit description of the porch-light-door-chime installation will follow that of a general purpose controller.

Circuit details

Fig. 1 is the circuit of the general-purpose unit. The selenium rectifier charges C1 to the peak value of the line voltage—approximately 165 (1.414 times 117). Yet the thyratron does not conduct until it is fired by a triggering starter-anode potential.

When the tube is fired, the plate relay closes. One contact opens, breaking the circuit which charged C1. Its closing contact shorts out the tube's plate-cathode connections and thyratron conduction instantly stops. Now the plate relay is connected directly across C1, which discharges through the relay. The relay armature is held in for a period determined by the capacitance of C1 and the relay coil resistance. Standby operation is restored when the armature drops out. R1 limits the surge current recharging C1 at this moment. Spdt relay contacts are needed for circuit resetting; therefore a dpdt relay is used. This allows a second pair of spdt contacts for the controlled circuit.

Slightly increased relay hold-in periods can be obtained if an experimentally selected resistance (R2) is placed as indicated by dotted lines (Fig. 1).

Actuator plates

There are three types of actuator plates. Each utilizes the already grounded side of the power line so only one wire is needed to connect the plate to the controller. Capacitance between the connecting line and ground must be kept at a minimum except for the first type. Otherwise, sensitivity decreases as capacitance increases and a large capacitance may even fire the unit. The

Fig. 2.—Actuation plates: a—pushbutton, b—contact control, c—capacitance.

(Continued on page 75)
everybody's doing it!

You'll get plenty of these detailed pictorial diagrams in your Heathkit construction manual to show where each and every wire and part is to be placed. Everything you do is spelled out in pictures so you can't go wrong.

That's what makes it such fun!

1. You get higher quality at lower cost by dealing direct, and by doing your own assembly.
2. You receive personal, friendly, service (before and after sale) for complete satisfaction.
3. You benefit from the latest in engineering designs because of our concentration on kit-form equipment only.
4. You may depend on performance as advertised—backed by Heath's world-wide reputation for quality.
5. You can take a full year to pay with the HEATH EASY TIME PAYMENT PLAN.

and here's why...

Heathkits
BY DAYSTROM

...fun to build and a thrill to own!

Motion picture and TV personality, Jackie Coogan, looks on with unbelieving interest as his 14-year-old son, Anthony, prepares to assemble his latest Heathkit, a hi-fi FM tuner. The Coogans have found out about the fun and savings of building their own electronic equipment the Heathkit way...so why don't you?

Read the step...perform the operation...and check it off—it's just that simple. These plainly-worded, easy-to-follow, steps are combined with pictorial diagrams to take you through every phase of assembly. Let our experience be your teacher!
HEATHKIT EXTRA PERFORMANCE 70-WATT AMPLIFIER KIT

For really high performance, with plenty of reserve power, the W-6M is a natural. The full 70-watts output will seldom, if ever, be required. However, this reserve insures distortion-less sound on power peaks. The W-6M will load along at normal listening levels and yet is always ready to extend itself when program material demands it, without the least amount of strain. The output circuit employs 6550 tubes with a special-design Peerless output transformer for maximum stability at all power levels. A quick-change plug selects 4, 8 and 16 ohms or 70-volt output and the correct feedback resistance. A variable damping control is also provided for optimum performance with any speaker system. Extremely good power supply regulation is possible through the use of a heavy-duty transformer along with silicon-diode rectifiers, which are noted for their very long life, and yet are smaller than a house fuse. Frequency response at 1 watt is +1 db from 5 cps to 80 kc with controlled hf rolloff above 100 kc. At 70 watts output harmonic distortion is below 2% from 20,000 cps and IM distortion below 1% from 60 and 6,000 cps. Hum and noise 88 db below full output. In addition to high performance, its fine appearance makes it a pleasure to display in your living room. Proper layout of chassis insures ease of assembly by eliminating those cramped and difficult places to get at. Clear instructions—and top quality components. Get started now and make this amplifier the heart of your hi-fi system. Shipped express only. Shpg. Wt. 50 lbs.

MODEL W-6M: Consists of W-6M kit, plus WA-P2 preamplifier. Express only. Shpg. Wt. 59 lbs. $129.70

HEATHKIT HIGH FIDELITY FM TUNER KIT

This tuner can bring you a rich store of FM programming, your least expensive source of high fidelity material. It covers the complete FM band from 88 to 108 mc. Stabilized, temperature-compensated oscillator assures negligible drift after initial warmup. Features broadbanded circuits for full fidelity, and better than 10 uv sensitivity for 20 db of quieting, to pull in stations with clarity and full volume. Employs a high gain, cascode RF amplifier, and has AGC. A ratio detector provides high-efficiency demodulation without sacrificing hi-fi performance. IF and ratio transformers are prealigned, as is the front end tuning unit. Special alignment equipment is not necessary. Edge-lighted glass dial for easy tuning. Here is FM for your home at a price you can afford. Shpg. Wt. 8 lbs.

MODEL FM-3A: $25.95
(with cabinet)

HEATHKIT BROADBAND AM TUNER KIT

This AM tuner was designed especially for high fidelity applications. It incorporates a special detector using crystal diodes, and the IF circuits feature broad band-width, to insure low signal distortion. Audio response is +1 db from 20 cps to 9 kc, with 5 db of preemphasis at 10 kc to compensate for station rolloff. Sensitivity and selectivity are excellent, and tuner covers complete broadcast band from 550 to 1600 kc. Quiet performance is assured by 6 db signal-to-noise ratio at 2.5 UV. Prealigned RF and IF coils eliminate the need for special alignment equipment. Incorporates AVC, two outputs, two antenna inputs, and built-in power supply. Edge-lighted glass slide-rule dial for easy tuning. Your "best buy" in an AM tuner. Shpg. Wt. 8 lbs.

MODEL BC-1A: $25.95
(with cabinet)

HEATHKIT MASTER CONTROL PREAMPLIFIER KIT

Designed for use with any of the Williamson-type amplifiers, the WA-P2 has five switch-selected inputs, each having its own level control to eliminate blasting or fading while switching through the various inputs, plus a tape recorder output. A hum control allows setting for minimum hum level. Frequency response is within +1/2 db from 15 to 35,000 cps. Equalization provided for LF, RIAA, AES, and early 78's. Separate base and treble controls. Low impedance cathode follower output circuit. All components were specially selected for their high quality. Includes many features which will eventually be desired. Shpg. Wt. 7 lbs.

MODEL WA-P2: $19.75
(with cabinet)
HEATHKIT ADVANCED-DESIGN 25-WATT HIGH FIDELITY AMPLIFIER KIT

Designed especially to satisfy critical audio requirements, the W-5M incorporates the extra features needed to complement the finest in program sources and speaker systems. Faithful sound reproduction is assured with a frequency response of ±1 db from 5 to 160,000 cps at 1 watt, and harmonic distortion is less than 1% at 25 watts, with IM distortion less than 1% at 20 watts. Hum and noise are a full 99 db below rated output, assuring quiet, hum-free operation. Output taps are 4, 8, and 16 ohms. Exclusive Heathkit features include the "tweeter saver", and the "bas-bal" balancing circuit, requiring only a voltmeter for indication. Years of reliable service are guaranteed through the use of conservatively rated, high quality components. KT66 tubes and Peerless output transformer are typical. Shipped express only. Shpg. Wt. 31 lbs.

MODEL W-5: Consists of W-5M kit above plus model WA-P2 preamplifier. Express only. Shpg. Wt. 38 lbs. $79.50

MODEL W-5M $59.75

HEATHKIT DUAL-CHASSIS 20-WATT HIGH FIDELITY AMPLIFIER KIT

The model W3-AM is a Williamson-type amplifier built on two separate chassis. The power supply is on one chassis, and the amplifier stages are on the other chassis. Using two separate chassis provides additional flexibility in installation. Features include the famous acrosound model TO-300 "ultrainear" output transformer and 5881 tubes for broad frequency response, low distortion, and low hum level. The result is exceptionally fine overall tone quality. Frequency response is ±1 db from 8 cps to 150 kc at 1 watt. Harmonic distortion is less than 1% and IM distortion is less than 1.5% at 20 watts. Hum and noise are 88 db below 20 watts. Designed to match the speaker system of your choice, with taps for 4, 8, or 16 ohms impedance. A very popular high fidelity unit employing top quality components throughout. Shipped express only. Shpg. Wt. 29 lbs.

MODEL W-3A: Consists of W-3AM kit above plus model WA-P2 preamplifier. Express only. Shpg. Wt. 37 lbs. $69.50

MODEL W-3AM $49.75

HEATHKIT SINGLE-CHASSIS 20-WATT HIGH FIDELITY AMPLIFIER KIT

The model W4-AM Williamson-type amplifier will amaze you with its outstanding performance. A true Williamson circuit, featuring extended frequency response, low distortion, and low hum levels, this amplifier can provide you with many hours of listening enjoyment with only a minimum investment compared to other units on the market. 5881 tubes and a special Chicago-standard output transformer are employed to give you full fidelity at minimum cost. Frequency response extending from 10 cps to 100 kc within ±1 db at 1 watt assures you of full coverage of the audio range, and clean sound amplification takes place in circuits that hold harmonic distortion at 1.5% and IM distortion below 2.5% at full 20 watt output. Hum and noise are 95 db below full output. Taps on the output transformer are at 4, 8 or 16 ohms. Shipped express only. Shpg. Wt. 28 lbs.

MODEL W-4A: Consists of W-4AM kit above, plus model WA-P2 preamplifier. Express only. Shpg. Wt. 35 lbs. $59.50.

MODEL W-4AM $39.75

Heathkits...

BY DAYSTROM

bring you the lasting satisfaction of personal accomplishment

HEATHKIT GENERAL-PURPOSE 26-WATT HIGH FIDELITY AMPLIFIER KIT

The model A-9C will provide you with high quality sound at low cost. Features a built-in preamplifier with four separate inputs, and individual volume, bass and treble controls. Frequency response covers 20 to 20,000 cps within ±1 db. Total harmonic distortion is less than 1% at 3 db below rated output. Push-pull 6L6 tubes are used, with output transformer tapped at 4, 8, 16, and 500 ohms. A true hi-fi unit using high-quality components throughout, including heavy-duty "potted" transformers. Shpg. Wt. 33 lbs.

MODEL A-9C $35.50
HEATHKIT "BASIC RANGE" HI-FI SPEAKER SYSTEM KIT

The extremely popular Heathkit model SS-1 Speaker System provides amazing high fidelity performance for its size. Features two high-quality Jensen speakers, an 8" mid-range woofer and compression-type tweeter with flared horn. Covers from 50 to 12,000 CPS within ±5 db, in a special-design ducted-port, bass reflex enclosure. Impedance is 16 ohms. Cabinet measures 11 ½" H x 23" W x 11 ½" D. Constructed of veneer-surfaced plywood, ¾" thick, suitable for light or dark finish. All wood parts are precut and predrilled for easy, quick assembly. Shpg. Wt. 30 lbs.

HEATHKIT "RANGE EXTENDING" HI-FI SPEAKER SYSTEM KIT

Extends the range of the SS-1 to ±5 db from 35 to 16,000 CPS. Uses 15" woofer and super-tweeter both by Jensen. Kit includes crossover circuit. Impedance is 16 ohms and power rating is 35 watts. Measures 29" H x 23" W x 11 ½" D. Constructed of veneer-surfaced plywood, ¾" thick. Easy to build! Shpg. Wt. 80 lbs.

HEATHKIT SINE-SQUARE GENERATOR

The new AG-10 provides high quality, sine and square waves over a wide range, for countless applications. Some of these are: radio and TV repair work, checking scope performance, as a variable trigger source for telemetering and pulse work, and checking audio, video and hi-fi amplifier response. Frequency response is ±1.5 db from 20 CPS to 1 MC on both sine and square waves, with less than 0.05% sine wave distortion, 0.1 to 20,000 CPS. Sine wave output impedance 600 ohms. Square wave output impedance 50 ohms, (except on 10x ranges). Square wave rise time less than .15 usec. Five-position band switch—continuously variable tuning—shielded oscillator circuit—separate step and variable output attenuators in ranges of 10, 1, and .1 volts for both sine and square wave, with extra range of .01 volt on sine wave. Both sine and square wave can be used at the same time without affecting either wave form. Power supply uses silicon-diode rectifiers. Shpg. Wt. 12 lbs.

HEATHKIT AUDIO ANALYZER KIT

The AA-1 is actually three instruments in one compact package. It combines the functions of an AC VTVM, an audio wattmeter, and an intermodulation analyzer. Input and output terminals are combined, and high and low frequency oscillators are built in. VTVM ranges are 0-0.1, .1, .3, 1, 3, 10, 30, 100 and 300 volts (RMS). Wattmeter ranges are 15 mw, 1.5 mw, 15 mw, 150 mw, 1.5 w, 15 w and 150 w. IM scales are 1%, 3%, 10%, 30% and 100%. Provides internal load resistors of 4, 8, 16 or 600 ohms. A tremendous dollar value. Shpg. Wt. 13 lbs.

HEATHKIT "LEGATO" HIGH FIDELITY SPEAKER SYSTEM KIT

The quality of the Legato, in terms of the engineering that went into the initial design, and in terms of the materials used in its construction, is matched in only the most expensive speaker systems available today. The listening experience it provides approaches the ultimate in aesthetic satisfaction. Two 15" theater-type Altec Lansing speakers cover 25 to 500 CPS, and an Altec Lansing high-frequency driver with sectoral horn covers 500 to 20,000 CPS. A precise amount of phase shift in the crossover network brings the high frequency channel into phase with the low frequency channel to eliminate peaks or valleys at the crossover point, by equalizing the acoustical centers of the speakers. The enclosure is a modified infinite baffle type, especially designed for these speakers. Cabinet is constructed of veneer-surfaced plywood, ¾" thick, precut and predrilled for easy assembly. Frequency response 25 to 20,000 CPS. Power rating, 50 watts program material. Impedance is 16 ohms. Cabinet dimensions 41" L x 22½" D x 34" H. Choice of two beautiful cabinets. Model HH-1-C in imported white birch for light finishes, and HH-1-CM in African mahogany for dark finishes. Shpg. Wt. 195 lbs.
HEATHKIT AUDIO SIGNAL GENERATOR KIT

The model AG-9A is "made to order" for high fidelity applications, and provides quick and accurate selection of low-distortion signals throughout the audio range. Three rotary switches select two significant figures and a multiplier to determine audio frequency. Incorporates step-type and a continuously variable output attenuator. Output indicated on large 4½" panel meter, calibrated in volts and db. Attenuator system operates in 10 db steps, corresponding to meter calibration, in ranges of 0.003, 0.1, 0.3, 1, 3, 10, 30, 100, and 300 volts RMS. "Load" switch permits use of built-in 600-ohm load, or external load of different impedance. Output and frequency indicators accurate to within ±5%. Distortion less than .1 of 1% between 20 and 20,000 cps. Total range is 10 cps to 100 kc. Shpg. Wt. 8 lbs.

$34.50

HEATHKIT HARMONIC DISTORTION METER KIT

All sounds consist of dominant tones plus harmonics (overtones). These harmonics enrich the quality and brightness of the music. However, additional harmonics which originate in the audio equipment, represent distortion. Used with an audio signal generator, the HD-1 will accurately measure this harmonic distortion at any or all frequencies between 20 and 20,000 cps. Distortion is read directly on the panel meter in ranges of 0.1, 3, 10, 30 and 100% full scale. Voltage ranges of 0.1, 3, 10, 30 and 300 volts are provided for the initial reference settings. Signal-to-noise ratio measurements are also permitted through the use of a separate meter scale calibrated in db. High quality components insure years of outstanding performance. Full instructions are provided. Shpg. Wt. 13 lbs.

$49.50

HEATHKITS...

BY DAYSTROM

are well known for their high quality and reliability.

HEATHKIT AUDIO VTMK KIT

This new and improved AC Vacuum Tube Voltmeter is designed especially for audio measurements and low-level AC measurements in power supply filters, etc. Employs an entirely new circuit featuring a cascode amplifier with cathode-follower isolation between the input and the amplifier, and between the output stage and the preceding stages. It emphasizes stability, broad frequency response, and sensitivity. Frequency response is essentially flat from 10 cps to 200 kc. Input impedance is 1 megohm at 1000 cps. AC (RMS) voltage ranges are 0.01, .03, .1, .3, 1, 3, 10, 30, 100 and 300 volts. Db ranges cover -50 db to +52 db. Features large 4½" 200 microampere meter, with increased damping in meter circuit for stability in low frequency tests. 1% precision resistors employed for maximum accuracy. Stable, reliable performance in all applications. Shpg. Wt. 5 lbs.

$29.95
HEATHKIT COLOR BAR AND DOT GENERATOR
The CD-1 combines the two basic color service instruments, a Color Bar Generator and White Dot Generator in one versatile portable unit, which has crystal-controlled accuracy and stability (no external sync lead required). Produces white-dots, cross hatch, horizontal and vertical bars, 10 vertical color bars, and a new shading bar pattern for screen and background adjustments. Variable RF output on any channel from 2 to 6. Positive or negative video output, variable from 0 to 10 volts peak-to-peak. Crystal controlled sound carrier with off-on switch. Voltage regulated power supply using long-life silicon rectifiers. Gain knowledge of a new and profitable field by constructing this kit. Shpg. Wt. 12 lbs.

HEATHKIT "EXTRA DUTY" 5' OSCILLOSCOPE KIT
This fine oscilloscope compares favorably to other scopes costing twice its price. It contains the extra performance so necessary for monochrome and color-TV servicing. Features push-pull horizontal and vertical output amplifiers, a 5UPi CRT, built in peak-to-peak calibration source, a fully compensated 3-position step-type input attenuator, retrace blanking, phasing control, and provision for Z-axis modulation. Vertical amplifier frequency response is within ±1.5 and ±5 db from 3 CPS to 5 MC. Response at 3.58 MC down only 2.2 db. Sensitivity is 0.025 volts RMS/inch at 1 kc. Sweep generator covers 20 CPS to 500 kc in five steps, five times the usual sweep obtained in other scopes through the use of the patented Heath sweep circuit. Etched-metal circuit boards reduce assembly time and minimize errors in assembly, and more importantly, permit a level of circuit stability never before achieved in an oscilloscope of this type. Shpg. Wt. 21 lbs.

HEATHKIT ELECTRONIC SWITCH KIT
A valuable accessory for any oscilloscope owner. It allows simultaneous oscilloscope observation of two signals by producing both signals, alternatively, at its output. Four switching rates. Provides gain for input signals. Frequency response +1 db, 0 to 100 kc. A sync output is provided to control and stabilize scope sweep. Ideal for observing input and output of amplifiers simultaneously. Shpg. Wt. 8 lbs.

HEATHKIT TV ALIGNMENT GENERATOR KIT
This fine TV alignment generator offers stability and flexibility difficult to obtain even in instruments costing several times this low Heathkit price. It covers 3.6 mc to 220 mc in four bands. Sweep deviation is controllable from 0 to 42 mc. The all-electronic sweep circuit insures stability. Crystal marker and variable marker oscillators are built in. Crystal (included with kit) provides output at 4.5 mc and multiples thereof. Variable marker provides output from 19 to 60 mc on fundamentals and from 57 to 190 mc on harmonics. Effective two-way blanking to eliminate return trace. Phasing control. Kit is complete, including three output cables. Shpg. Wt. 16 lbs.

HEATH COMPANY A Subsidiary of Daystrom, Inc. BENTON HARBOR 20, MICH.
SEPTEMBER, 1957

www.americanradiohistory.com
HEATHKIT TUBE CHECKER KIT
Eliminate guesswork, and save time in servicing or experimenting. The TC-2 tests tubes for shorted elements, open elements, filament continuity, and operating quality on the basis of total emission. It tests all tube types encountered in radio and TV service work. Sockets are provided for 4, 5, 6 and 7-pin, octal, and loctal tubes, 7 and 9 pin miniature tubes, 5 pin hytron miniatures, and pilot lamps. Tube condition indicated on 4½" meter with multi-color "good-bad" scale. Illuminated roll chart with all test data built in. Switch selection of 14 different filament voltages from 75 to 117 volts. Color-coded cable harness allows neat professional wiring and simplifies construction. Very easy to build, even for a beginner. Shpg. Wt. 12 lbs.
MODEL TC-2 $29.50

HEATHKIT HANDITESTER KIT
The small size and rugged construction of this tester makes it perfect for any portable application. The combination function-range switch simplifies operations. Measures AC or DC voltage at 0-10, 30, 300, 1000 and 5000 volts. Direct current ranges are 0-10 ma and 0-100 ma. Ohmmeter ranges are 0-3000 (30 ohm center scale) and 0-300,000 (3000 ohm center scale). Very popular with home experimenters, electricians, and appliance repairmen. Slips easily into your tool box, glove compartment, coat pocket, or desk drawer. Shpg. Wt. 3 lbs.
MODEL M-1 $14.50

HEATHKIT PICTURE TUBE CHECKER KIT
The CC-1 can be taken with you on service calls so that you can clearly demonstrate the quality of a customer's picture tube in his own home. Tubes can be tested without removing them from the receiver or cartoons if desired. Checks cathode emission, beam current, shorted elements, and leakage between elements in electromagnetic picture tube types. Self-contained power supply, and large 4½" meter. CRT condition indicated on "good-bad" scale. Relative condition of tubes fluorescent coating is shown in "shadowgraph" test. Permanent test cable with CRT socket and anode connector. No tubes to burn out, designed to last a lifetime. Luggage-type portable case. Shpg. Wt. 10 lbs.
MODEL CC-1 $22.50

HEATHKIT ETCHED-CIRCUIT VTVM KIT
This multi-purpose VTVM is the world's largest selling instrument of its type—and is especially popular in laboratories, service shops, home workshops and schools. It employs a large 4½" panel meter, precision 1% resistors, etched metal circuit board, and many other "extras" to insure top quality and top performance. It's easy to build, and you may rely on its accuracy and dependability. The VT-A will measure AC (RMS) and DC voltages in ranges of 0-1.5, 5, 15, 50, 150, 500 and 1500. It measures peak-to-peak AC voltage in ranges of 0-4, 14, 40, 140, 400, 1400 and 4000. Resistance ranges provide multiplying factors of X1, X10, X100, X1000, X10k, X100k, and X1 megohm. Center-scale resistance readings are 10, 100, 1000, 10k, 100k, 1 megohm and 10 megohms. A db scale is also provided. The precision and quality of this VTVM cannot be duplicated at this price. Shpg. Wt. 7 lbs.
MODEL VT-A $24.50

HEATHKIT 20,000 OHMS/VOLT VOM KIT
This fine instrument provides a total of 25 meter ranges on its two-color scale. It employs a 50 ua 4½" meter, and features 1½ precision multiplier resistors. Requires no external power. Ideal for portable applications. Sensitivity is 20,000 ohms-per-volt DC and 5000 ohms-per-volt AC. Measuring ranges are 0-1.5, 5, 50, 150, 500, 1500 and 5000 volts, AC and DC. Measures direct current in ranges of 0-150 ua, 15 ma, 150 ma, 500 ma and 15 a. Resistance multipliers are X1, X10 and X100, with center-scale readings of 15, 150, and 15000 ohms. Covers -10 db to +65 db. Easy to build and fun to use. Attractive bakelite case with plastic carrying handle. Shpg. Wt. 6 lbs.
MODEL MM-1 $29.50

HEATHKITS
BY DYSTROM
let you fill your exact needs from a wide variety of instruments

Priced low to fit your budget

Handitester

Picture Tube Checker

20,000 Ohms/Volt VOM

High quality test gear you will be proud to own

TUBE CHECKER

ETCHED-CIRCUIT VTVM

68

RADIO-ELECTRONICS

www.americanradiohistory.com
HEATHKIT RF SIGNAL GENERATOR KIT
Even a beginner can build this prealigned signal generator, designed especially for use in service work. Produces RF signals from 160 kc to 110 mc on fundamentals in five bands. Covers 110 mc to 220 mc on calibrated harmonics. Low impedance RF output in excess of 100,000 microvolts, is controllable with a step-type and continuously variable attenuator. Selection of unmodulated RF, modulated RF, or audio at 400 CPS. Ideal for fast and easy alignment of radio receivers, and finds application in FM and TV work as well. Thousands of these units are in use in service shops all over the country. Easy to build and a real time-saver, even for the part-time service technician or hobbyist. Shpg. Wt. 8 lbs.

MODEL SG-1
$19.50

HEATHKIT LABORATORY RF GENERATOR KIT
Tackle all kinds of laboratory alignment jobs with confidence by employing the LG-1. It features voltage-regulated B+, double shielding of oscillator circuits, copper-plated chassis, variable modulation level, metered output, and many other "extras" for critical alignment work. Generates RF signals from 100 kc to 30 mc on fundamentals in five bands. Meter reads RF output in microvolts or modulation level in percentage. RF output available up to 100,000 microvolts, controlled by a fixed-step and a variable attenuator. Provision for external modulation where necessary. Buy and use this high-quality RF signal generator that may be depended upon for stability and accuracy. Shpg. Wt. 16 lbs.

MODEL LG-1
$48.95

HEATHKIT DIRECT-READING CAPACITY METER KIT
Here’s a fast, simple capacity meter. A capacitor to be checked is merely connected to the terminals, the proper range selected, and the value read directly on the large 4½" panel meter calibrated in mmf and mfd. Ranges are 0 to 100 mmf, 1,000 mmf, .01 mfd, .1 mfd full scale. Not affected by hand capacity. Shpg. Wt. 7 lbs.

MODEL CH-1
$29.50

Heathkits...
are educational as well as functional

HEATHKIT “IN-CIRCUIT” CAPACI-TESTER KIT
With the CT-1 it is no longer necessary to disconnect one capacitor lead to check the part, you can check most capacitors for "open" or "short" sight in the circuit. Fast and easy—to save your valuable time in the service shop or lab. Detects open capacitors from about 50 mmf up, so long as the capacitor is not shunted by excessively low resistance value. Will detect shunted capacitors up to 20 mfd (not shunted by less than 10 ohms). Does not detect leakage.) Employs 60-cycles and 19 megacycle test frequencies. Electron beam "eye" tube used as indicator. Compact, easy-to-build, and inexpensive. Test leads included. Shpg. Wt. 5 lbs.

MODEL CT-1
$7.95

HEATHKIT CONDENSER CHECKER KIT
This handy instrument uses an electron beam "eye" tube as an indicator to measure capacity in ranges of .00001 to .005 mfd, .05 mfd, 50 mfd and 1000 mfd. Also measures resistance from 100 ohms to 5 megohms in two ranges. Checks paper, mica, ceramic and electrolytic capacitors. Selection of five polarizing voltages. Shpg. Wt. 7 lbs.

MODEL C-3
$19.50

HEATHKIT VISUAL-AURAL SIGNAL TRACER KIT
Although designed originally for radio receiver work, the T-3 finds application in FM and TV servicing as well. Features high-gain channel with demodulator probe, and low-gain channel with audio probe. Traces signals in all sections of radio receivers and in many sections of FM and TV receivers. Built-in speaker and electron beam eye tube indicate relative gain, etc. Also features built-in noise locator circuit. Provision for patching speaker and/or output transformer to external set. Shpg. Wt. 9 lbs.

MODEL T-3
$23.00

HEATH COMPANY A Subsidiary of Daystrom, Inc. BENTON HARBOR 20, MICH.

SEPTEMBER, 1957

www.americanradiohistory.com
HEATHKIT IMPEDANCE BRIDGE KIT

The model IB-2A employs a Wheatstone Bridge, a Capacity Comparison Bridge, a Maxwell Bridge, and a Hay Bridge in one compact package. Measures resistance from 0.1 ohm to 10 megohms, capacitance from 100 mmfd to 100 mfd, inductance from 0.1 mh to 100 h, dissipation factor (D) from 0.002 to 1, and storage factor (Q) from 0.1 to 1000. A 100-0-100 ma meter provides for null indications. The decade resistors employed are of 1% tolerance for maximum accuracy. Completely self-contained. Has built-in power supply, 1000-cycle generator, and vacuum-tube detector. Special two-section CRL dial insures convenient operation. Instruction manual has entirely new schematic that clarifies circuit functions in various switch positions. A true laboratory instrument, that will provide you with many years of fine performance. Shpg. Wt. 12 lbs.

HEATHKIT "LOW RIPPLE" BATTERY ELIMINATOR KIT

This modern battery eliminator incorporates an extra low-ripple filter circuit so that it can be used to power all the newest transistor-type circuits requiring 0 to 12 volts DC, and the new "hybrid" automobile radios using both transistors and vacuum tubes. Its DC output, at either 6 or 12 volts, contains less than 3% AC ripple. Separate output terminals are provided for low-ripple or normal filtering. Supplies up to 15 amps on 6 volt range or up to 7 amps on 12 volt range. Output is variable from 0 to 6 or 0 to 16 volts. Two meters constantly monitor output voltage and current. Will also double as a battery charger. Shpg. Wt. 23 lbs.

HEATHKIT ISOLATION TRANSFORMER KIT

The model IT-1 is one of the handiest units for the service shop, home workshop or laboratory. Provides complete isolation from the power line. AC-DC sets may be plugged directly into the IT-1 without the chassis becoming "hot". Output voltage is variable from 90 volts to 130 volts allowing checks of equipment under adverse conditions such as low line voltage. Rated for 100 volt amperes continuously or 200 volt amperes intermittently. Panel meter monitors output voltage. Shpg. Wt. 9 lbs.

Heathkits...

are designed with high-quality, name-brand components to insure long service life

HEATHKIT "Q" METER KIT

At this price the laboratory facilities of a Q Meter may be had by the average service technician or home experimenter. The Q Meter permits measurement of inductance from 1 microhenry to 10 mihenry, "Q" on a scale calibrated up to 250 full scale, with multipliers of 1 or 2, and capacitance from 40 mmfd to 450 mmfd ± 3 mmfd. Built in oscillator permits testing components from 150 kc to 18 mc. Large 4½" panel meter is featured. Very handy for checking peaking coils, chokes, etc. Use to determine values of unknown condensers, both variable and fixed, compile data for coil winding purposes, or measure RF resistance. Also checks distributed capacity and Q of coils. No special equipment is required for calibration. A special test coil is furnished, along with easy-to-follow instructions. Shpg. Wt. 14 lbs.

HEATHKIT REGULATED POWER SUPPLY KIT

Here is a power supply that will provide DC plate voltage and AC filament voltage for all kinds of experimental circuits. The DC supply is regulated for stability, and yet the amount of DC output voltage available from the power supply can be controlled manually from 0 up to 500 volts. At 450 volts DC output, the power supply will provide up to 10 ma of current, and provide progressively higher current as the output voltage is lowered. Current rating is 130 ma at 200 volts output. In addition to furnishing B+ the power supply also provides 6.3 volts AC at up to 4 amperes for filaments. Both the B+ output and the filament output are isolated from ground. Ideal unit for use in laboratory, home workshop, ham shack, or service shop. A large 4½" meter on the front panel reads output voltage or output current, selectable with a panel switch. Shpg. Wt. 17 lbs.
HEATHKIT DX-20 CW TRANSMITTER KIT
The Heathkit model DX-20 'straight-CW' transmitter features high efficiency at low cost. It uses a single 6DQ6A tube in the final amplifier stage for plate power input of 50 watts. A 6C68 serves as crystal oscillator, with a 5U4GB rectifier. It is an ideal transmitter for the novice, as well as the advanced-class CW operator. Single-knob band switching is featured to cover 80, 40, 20, 15, 11 and 10 meters. Pi network output circuit matches various antenna impedances between 50 and 1000 ohms and reduces harmonic output. Top-quality parts are featured throughout, including "potted" transformers, etc., for long life. It has been given full "TVI" treatment. Access into the cabinet for crystal changing is provided by a removable metal pull-out plug on the left end of the cabinet. Very easy to build from the complete step-by-step instructions supplied, even if you have never built electronic equipment before. If you appreciate a good, clean signal on the CW bands, this is the transmitter for you! Shpg. Wt. 18 lbs.

HEATHKIT DX-35 PHONE AND CW TRANSMITTER KIT
The DX-35 transmitter can be thought of as the "little brother" of the DX-100. It features both phone and CW operation on 80, 40, 20, 15, 11 and 10 meters. A single 6146 tube is used in the final amplifier stage to provide full 65 watt plate power input on CW, or controlled carrier modulation peaks up to 50 watts for phone operation. Modulator and power supplies are built right in and single knob band switching is combined with a pi network output circuit for complete operating convenience. The tight fitting cabinet presents a most attractive appearance, and is designed for complete shielding to minimize TVI. Back panel control provides convenient switch selection of three different crystals, reached through access door at rear of cabinet. A most remarkable power package for the price. Complete step-by-step instructions with pictorial diagrams to assure your success in assembly. Shpg. Wt. 24 lbs.

HEATHKIT DX-100 PHONE AND CW TRANSMITTER KIT
Listen to any ham band between 160 meters and 10 meters and note how many DX-100 transmitters you hear! The number of these fine rigs now on the air testifies to the enthusiasm with which it has been accepted by the amateur fraternity. No other transmitter in this power class combines high quality and real economy so effectively. The DX-100 features a built-in VFO, modulator and power supplies, complete shielding to minimize TVI, and pi network output coupling to match impedances from approximately 50 to 600 ohms. Its RF output is in excess of 100 watts on phone and 120 watts on CW, for a clean strong signal on all the ham bands from 10 to 160 meters. Single-knob band switching and illuminated VFO dial and meter face add real operating convenience. RF output stage uses a pair of 6146 tubes in parallel, modulated by a pair of 1625's. High quality components are used throughout, such as "potted" transformers, silver-plated or solid coin silver switch terminals, aluminum heat-dissipating caps on the final tubes, copper plated chassis, etc. This transmitter was designed exclusively for easy step-by-step assembly. Shpg. Wt. 107 lbs.
HEATHKIT "AUTOMATIC" CONELRAD ALARM KIT

This conelrad alarm works with any radio receiver, AC-DC-transformer operated—or battery powered, so long as the receiver has AVC. Fully complies with FCC regulations for amateurs. When the monitored station goes off the air, the CA-1 automatically cuts the AC power to your transmitter, and lights a red indicator. A manual "reset" button reacts to the transmitter. Incorporates a heavy-duty six-ampere relay, a thyratron tube to activate, the relay, and its own built-in power supply. A neon lamp shows that the alarm is working, by indicating the presence of B+ in the alarm circuit. Simple to install and connect. Your transmitter plugs into an AC receptacle on the CA-1, and a cable connects to the AVC circuit of a nearby receiver. A built-in sensitivity control allows adjustment to various AVC levels. Receiver volume control can be turned up or down, without affecting alarm operation. Build a Heathkit CA-1 in one evening and comply with FCC regulations now! Shpg. Wt. 4 lbs.

MODEL CA-1
$13.95

HEATHKIT "Q" MULTIPLIER KIT

The Heathkit Q Multiplier functions with any AM receiver having an IF frequency between 450 and 460 KC, that is not "AC-DC" type. It derives its power from the receiver, and needs only 6.3 volts AC at 300 ma (or 12 VAC at 150 ma) and 150 to 250 volts DC at 2 ma. Simple to connect with cable and plugs supplied. Adds additional selectivity for separating signals, or will reject one signal and eliminate heterodyne. A tremendous help on crowded phone and CW bands. Effective Q of 4000 for sharp "peak" or "null". Tunes any signal within IF band pass without changing the main receiver tuning dial. A convenient tuning knob on the front panel with vernier reduction between the tuning knob and the tuning capacitor gives added flexibility in operation. Uses a 12AX7 tube, and special high-Q shielded coils. Instructions for connecting to the receiver and operation are provided in the construction manual. A worthwhile addition to any communications, or broadcast receiver. It may also be used with a receiver which already has a crystal filter to obtain two simultaneous functions, such as peaking the desired signal with the crystal filter and nulling an adjacent signal with the Q Multiplier. Shpg. Wt. 3 lbs.

MODEL QF-1
$9.95

HEATHKIT GRID DIP METER KIT

A grid dip meter is basically an RF oscillator for determining the frequency of other oscillators, or of tuned circuits. Extremely useful in locating parasitics, neutralizing, identifying harmonics, coil winding, etc. Features continuous frequency coverage from 2 mc to 250 mc, with a complete set of prewound coils, and a 500 ua panel meter. Front panel has a sensitivity control for the meter, and a phone jack for listening to the "zero beat." Will also double as an absorption-type wave meter. Shpg. Wt. 4 lbs.

Low Frequency Coil Kit: Two extra plug-in coils to extend frequency coverage down to 350 kc. Shpg. Wt. 1 lb. No. 341-A. $3.00

MODEL 09-1B
$19.95

HEATHKIT ALL-BAND COMMUNICATIONS-TYPE RECEIVER KIT

This communications-receiver covers 550 kc to 30 mc in four bands, and provides good sensitivity, selectivity, and fine image rejection. Ham bands are clearly marked on an illuminated dial scale. Features a transformer-type power supply—electrical band spread—antenna trimmer—headphone jack—automatic gain control and beat frequency oscillator. Accessory sockets are provided on the rear of the chassis for using the Heathkit model QF-1, Q Multiplier. Accessory socket is handy, also, for operating other devices that require plate and filament potentials. Will supply +250 VDC at 15 ma and 12.6 VAC at 300 ma. Ideal for the beginning ham or short wave listener. Shpg. Wt. 12 lbs.

Cabinet: Fabric covered cabinet with aluminum panel as shown. Part no. 91-15A. Shpg. Wt. 5 lbs. $4.95.

MODEL AR-3
$29.95

Heathkits... are outstanding in performance and dollar value

B Y D A Y S T R O M

R A D I O - E L E C T R O N I C S
HEATHKIT REFLECTED POWER METER KIT

The Heathkit reflected power meter, model AM-2, makes an excellent instrument for checking the match of the antenna transmission system, by measuring the forward and reflected power or standing wave ratio. The AM-2 is designed to handle a peak power of well over 1 kilowatt of energy and may be left in the antenna system feed line at all times. Band coverage is 100 meters through 2 meters. Input and output impedances for 50 or 75 ohm lines. No external power required for operation. Meter indicates percentage forward and reflected power, and standing wave ratio from 1:1 to 6:1. Another application for the AM-2 is matching impedances between exciters or R.F. sources and grounded grid amplifiers. Power losses between transmitter output and antenna tuner may be very easily computed by inserting the AM-2 in the line connecting the two. No insertion loss is introduced into the feeder system, due to the fact that the AM-2 is a portion of coaxial line in series with the feeder system and no internal connections are actually made to the line. Complete circuit description and operation instructions are provided in the manual. Cabinet size is 7-3/8" x 4-1/16" x 4-6/8". Can be conveniently located at operating position. Shpg. Wt. 3 lbs.

MODEL AM-2
$15.95

HEATHKIT VARIABLE FREQUENCY OSCILLATOR KIT

Enjoy the convenience and flexibility of VFO operation by obtaining the Heathkit model VF-1 Variable Frequency Oscillator. Covers 160-80-40-20-15-11 and 10 meters with three basic oscillator frequencies. Better than 10 volt average RF output on fundamentals. Plenty of output to drive most modern transmitters. It features voltage regulation for frequency stability. Dial is illuminated for easy reading. Vernier reduction is used between the main tuning knob and the tuning condenser. Requires a power source of only 250 volts DC at 15 to 20 milliamperes and 6.3 volts AC at 0.45 amperes. Extra features include copper-plated chassis, ceramic coil forms, extensive shielding, etc. High quality parts throughout. VFO operation allows you to move out from under interference and select a portion of the band you want to use without having to be tied down to only two or three frequencies through use of crystals. “Zero in” on the other fellow’s signal and return his call on his own frequency! Crystals are not cheap, and it takes quite a number of them to give anything even approaching comprehensive coverage of all bands. Why hesitate? The model VF-1 with its low price and high quality will add more operating enjoyment to your ham activities. Shpg. Wt. 7 lbs.

MODEL VF-1
$19.50

REFLECTED POWER METER

MODEL 20-

VARIABLE FREQUENCY OSCILLATOR

BALUN COIL SET

HEATHKIT 6 OR 12 VOLT VIBRATOR POWER SUPPLY KITS

These little power supply kits are ideal for all portable applications with 6 volt or 12 volt batteries, when you are operating electronic equipment away from power lines. By replacing the power supplies of receivers, small public address systems, or even miniature transmitters with these units, they can be used with conventional 6 or 12 volt batteries. Use in boats, automobiles, light aircraft, or any field application. Each unit provides 260 volts DC output at up to 60 milliamperes. More than one power supply of the same model may be connected in parallel for increased current capacity at the same output voltage. Everything is provided in the kit, including a vibrator transformer, a vibrator, 6X4 or 19X4 rectifier, and the necessary buffer capacitor, hash filter, and output filter capacitor. Shpg. Wt. 4 lbs.

6 VOLT MODEL VP-1-6
12 VOLT MODEL VP-1-12
$7.95 Each

HEATHKITS... are the answer for your electronics hobby.

HEATHKIT BALUN COIL KIT

The Heathkit Balun Coil Kit model B-1 is a convenient transmitter accessory, which has the capability of matching unbalanced coaxes lines, used on most modern transmitters, to balance lines of either 75 or 300 ohm impedance. Design of the bifilar wound balun coils will enable transmitters with unbalanced output to operate into balanced transmission line, such as used with dipoles, folded dipoles, or any balanced antenna system. The balun coil set can be used with transmitters and receivers without adjustment over the frequency range of 60 through 10 meters, and will easily handle power inputs up to 250 watts. Cabinet size is 9 square by 5 deep and it may be located any distance from the transmitter or from the antenna. Completely enclosed for outdoor installation. Shpg. Wt. 4 lbs.

MODEL B-1
$8.95

HEATH COMPANY A Subsidiary of Daystrom, Inc. BENTON HARBOR 20, MICH.

SEPTEMBER, 1957
HEATHKIT ELECTRONIC IGNITION ANALYZER KIT

Previous electronic experience is not necessary to build this fine ignition analyzer. The construction manual supplied has complete step-by-step instructions plus large pictorial diagrams showing the exact placement and value of each component. All parts are clearly marked so that they are easily identified. The IA-1 is an ideal tool for engine mechanics, tune-up men, and auto hobbyists, since it traces the dynamic action of voltage in an ignition system on a cathode-ray tube screen. The waveform produced is affected by the condition of the coil, condenser, points, plugs, and ignition wiring, so it can be analyzed, and used as a "sign-post" to ignition system performance. This analyzer will detect inequality of spark intensity, a poor spark plug, defective plug wiring, breaker-point bounce, an open condenser, and allow setting of dwell-time percentage for the points. An important feature of this instrument is its ability to check dynamic performance, with the engine in operation (400 to 5000 RPM). It will show the complete engine cycle, or only one complete cylinder. Can be used on all types of internal combustion engines where breaker-points are accessible. Use it on automobiles, boats, aircraft engines, etc. Shpg. Wt. 18 lbs.

MODEL IA-1
$59.95

HEATHKIT PROFESSIONAL RADIATION COUNTER KIT

This Heathkit professional-type radiation counter is simple to build successfully, even if you have never built a kit before. Complete step-by-step instructions are combined with giant-size pictorial diagrams for easy assembly. By "building it yourself" you get a modern-design, professional radiation counter priced far below comparable units. Provides high sensitivity with ranges from 0-100, 600, 6000 and 60,000 counts-per-minute, and 0.02, 0.1, 1.0 and 10 miliroentgens-per-hour. Employs 900-volt bismuth tube in beta/gamma sensitive probe. Probe and 8-foot expandable cable included in kit price, as is a radiation sample for calibration. Use it in medical laboratories, or as a prospecting tool, and for civil defense to detect radioactive fallout, or other unknown radiation levels. Features a selectable time constant. Meter calibrated in CPM or mR/hour in addition to "beep" or "click" from panel-mounted speaker. Prebuilt "packaged" high voltage power supply with reserve capacity above 900 volt level at which it is regulated. Merely changing regulator tube type would allow use of scintillation probe if desired. Employs five tubes (plus a transistor) to insure stable and reliable operation. Kit price includes batteries. Shpg. Wt. 8 lbs.

MODEL RC-1
$79.95

Heathkits...
are supplied with comprehensive instructions that eliminate costly mistakes and save valuable time

HEATHKIT ENLARGER TIMER KIT

The ET-1 is an easy-to-build electronic device to be used by amateur or professional photographers in timing enlarger operations. The calibrated dial on the timer covers 0 to 1 minute, calibrated in 5-second gradations. The continuously variable control allows setting of the "on" cycle of your enlarger, which is plugged into a receptacle on the front panel of the ET-1. A "safe light" can also be plugged in so that it is automatically turned "on" when the enlarger is turned "off." Handles up to 350 watts with built-in relay. All-electronic timing cycle insures maximum accuracy. Timer does not have to be reset after each cycle, merely flip lever switch to print, to repeat time cycle. A control is provided for initial calibration. Housed in a compact plastic case that will resist attack of photographic chemicals. A fine addition to any dark room. Shpg. Wt. 3 lbs.

MODEL ET-1
$11.50

HEATHKIT BATTERY TESTER KIT

The BT-1 is a special battery testing device that actually "loads" the battery under test (draws current from it) while it is being tested. Weak batteries often test "good" with an ordinary voltmeter but the built-in load resistance of the BT-1 automatically draws enough current from the battery to reveal its true condition. Simple to operate with "good-weak-replace" scale. Tests all kinds of dry cell batteries within ranges of 0-15 volts and 0-180 volts. Slide switch provides for either 10 ma or 100 ma load, depending upon whether you're testing an A or B battery. Not only determines when battery is completely exhausted, but makes it possible to anticipate failure by noting weak condition. Ideal for testing dry cell hearing aid, flashlight, portable radio, and model airplane batteries. Test batteries in a way your customers can understand and stimulate battery sales. Shpg. Wt. 2 lbs.

MODEL BT-1
$8.50

RADIO-ELECTRONICS

74

www.americanradiohistory.com
HEATHKIT CRYSTAL RADIO KIT

The Heathkit model CR-1 crystal radio is similar to the "crystal sets" of the early radio days except that it has been improved by the use of sealed germanium diodes and efficient "high-O" coils. The sealed diodes eliminate the critical "cats whisker" adjustment, and the ferrite coils are much more efficient for greater signal strength. Housed in a compact plastic box, the CR-1 uses two tuned circuits, each with a variable tuning capacitor, to select the local station. It covers the broadcast band from 540 to 1600 kc. Requires no external power whatsoever. This receiver could prove valuable to emergency reception of civil defense signals should there be a power failure. The low kit price even includes headphones. Complete step-by-step instructions and large pictorial diagrams are supplied for easy assembly. The instruction manual also provides the builder with the basic fundamentals of signal reception so that he understands how the crystal receiver functions. An interesting and valuable "doo-it-yourself" project for all ages. Shpg. Wt. 3 lbs.

HEATHKIT TRANSISTOR PORTABLE RADIO KIT

Heath engineers set out to develop a "universal" AM radio, suitable for use anywhere. Their objective was a portable that would be as much "at home" inside as it is outside, and would feature top quality components for high performance and long service life. The model XR-1 is the result of these efforts. Six name-brand (Texas Instruments) transistors were selected for extra good sensitivity and selectivity. A 4" by 6" PM speaker with heavy magnet was chosen to insure fine tone quality. The power supply was designed to use six standard size "D" flashlight cells because they are readily available, inexpensive, and because they afford extremely long battery life (between 500 and 1000 hours). Costs you no more to operate than what you pay for operating a small table-model radio from the power line. An unbreakable molded plastic was selected for cabinet material because of its durability and striking beauty. Circuit is compact and efficient, yet components are not excessively crowded. Transformers are prealigned so it is ready for service as soon as construction is completed. Has built in rod-type antenna for reception in all locations. Cabinet dimensions are 9" L x 8" H x 3½" D. Comes in holiday gray, with gold-anodized metal speaker grille. Compare this portable, feature by feature, to all others on the market, and you'll appreciate what a tremendous dollar value it represents! Shpg. Wt. 4 lbs.

HEATHKIT BROADCAST BAND RADIO KIT

This table-model broadcast radio is fun to build, and is a fine little receiver for your home. It covers the standard broadcast band from 550 to 1600 kc with good sensitivity and selectivity. The 5½" PM speaker provides surprisingly good tone quality. High-gain IF transformers, miniature tubes, and a rod-type built in antenna, assure good reception in all locations. The power supply is transformer operated, as opposed to many of the economy "AC-DC" types. It's easy to build from the step-by-step instructions, and the construction manual includes information on operational theory, for educational purposes. Your success is assured by completely detailed information which also explains resistor and capacitor color codes, soldering techniques, use of tools, etc. A signal generator is recommended for final alignment. Shpg. Wt. 10 lbs.

Cabinet: Fabric covered cabinet with aluminum panel as shown. Shpg. Wt. 5 lbs. Part no. 91-9A. $4.95.

HEATHCOMPANY A Subsidiary of Daystrom, Inc. BENTON HARBOR 20, MICH.
SEPTEMBER, 1957

HEATHKITS... are easy and fun to build, and they let you learn by "doing-it-yourself"
HEATHKIT FUEL VAPOR DETECTOR KIT
Protect your boat and its passengers against fire or explosion from undetected fuel vapor by building and using one of these fine units. The Heathkit Fuel Vapor Detector indicates the presence of fumes on a three-color "safe-dangerous" meter scale and immediately shows if it is safe to start the engine. A pilot light on the front panel shows when the detector is operating, and it can be left on continuously, or just used intermittently. A panel control enables initial calibration of the detector when installed. Features a hermetically-sealed meter with chrome bezel, and a chrome-plated brass panel. It is very simple to build and install, even by one not having previous experience. Models FD-1-6 (6 volts DC) and FD-1-12 (12 volts DC) operate from your boat batteries. The kit is complete in every detail, even to the inclusion of a spare detector unit. Shpg. Wt. 4 lbs.

HEATHKIT BATTERY CHARGE INDICATOR KIT
The Heathkit model CI-1 Marine Battery Charge Indicator has been designed especially for the boat owner, although it has found use in service stations, power stations, and radio stations where banks of batteries are kept in reserve for emergency power. It is intended to replace the hydrometer method of checking storage batteries, and to eliminate the necessity for working with acid in small, below-decks enclosures. Now it is possible to check as few as one, or as many as eight storage batteries, merely by turning the switch and watching the meter. A glance at the meter tells you instantly whether your batteries are sufficiently charged for safe cruising. Dimensions are 2-7/8" W x 5-11/16" H x 2" D. Operates on either 6 or 12 volt systems using lead-acid batteries, regardless of size. Simple installation can be accomplished by the boat owner in fifteen minutes. Shpg. Wt. 3 lbs.

HEATHKIT ELECTROLYSIS DETECTOR KIT
The Heathkit model ED-1 Electrolysis Detector indicates the extent of electrolysis currents between the boat's common ground and underwater fittings, except on boats having metal hulls. These currents, undetected, could cause gradual corrosion and deterioration of the propeller or other metal fittings below the water line. It is particularly helpful when installing electrical equipment of any kind, or to determine proper polarity when power is obtained from a shore supply. Easy to build, the model ED-1 consists of a hermetically-sealed, waterproof meter, sealed sensing plate, and sufficient wire to install, including the necessary hardware. Mounts on instrument panel where it can be easily seen. Requires no power for operation, and gives instant warning to guard your boat for a lifetime. Shpg. Wt. 2 lbs.

HEATHKIT RF POWER METER KIT
The Heathkit RF Power Meter Kit is designed to sample the RF field in the vicinity of your transmitter, whether it be marine, mobile, or fixed. Output meter is merely placed in some location close to the transmitter, to pick up RF radiation from the antenna. Requires no batteries, electricity, nor direct connection to the transmitter. It provides you with a continuing indication of transmitter operation. You can easily detect if power is dropping off by comparing present meter readings with past ones. Operates with any transmitter having output frequencies between 100 kc and 250 mc, regardless of power. Sensitivity is 0.3 volts RMS full scale, and a special control on the panel allows for further adjustment of the sensitivity. Meter is a 200 ua unit, mounted on a chrome-plated brass panel. The entire PM-1 measures only 31/2" W x 61/4" L x 2" D. An easy way to put your mind at ease concerning transmitter operation. Shpg. Wt. 2 lbs.

Heathkits...
B Y D A Y S T R O M
now offer you completely modern marine equipment with outstanding design features
HEATHKIT TRANSISTOR
RADIO DIRECTION FINDER KIT

The Heathkit Transistor Radio Direction Finder model DF-1 is a self-contained, self-powered, 6-transistor super heterodyne broadcast radio receiver incorporating a directional loop antenna, indicating meter, and integral speaker. It is designed to serve primarily as an aid to navigation when out of sight of familiar landmarks. It can be used not only aboard yachts, fishing craft, tugs, and other vessels which navigate either out of sight of land or at night, but also for the hunter, hiker, camper, fisherman, aviator, etc. It is powered by a 9-volt battery. (A spare battery is also included with the kit.) The frequency range covers the broadcast band from 540 to 1600 kc and will double as a portable radio. A directional high-Q ferrite antenna is incorporated which is rotated from the front panel to obtain a fix on a station and a 1 ma meter serves as the null and tuning indicator. The controls consist of: tuning, volume and power (on-off), sensitivity, heading indicator (compass rose) and bearing indicator (antenna index). Overall dimensions are 7½" W x 5½" H x 5½" D. Supplied with slip-in-place mounting brackets, which allow easy removal from ship bulkheads or other similar places. Shpg. Wt. 5 lbs.

MODEL DF-1
$49.95
(Available after November 15)

HOW CAN YOU MISS?
The Heath Company maintains a technical consultation service, should you experience some sort of difficulty in construction or operation. Although only a very small percentage of our customers ever have occasion to use this service (usually only beginners in electronics) it is still reassuring to know that technical help is available when needed. A service department is also available, should you wish a complete factory check of operation and alignment or repair. After you build your first Heathkit you'll realize how easy it is.

Free Catalog
Send for this informative booklet listing more than 100 "do-it-yourself" kits.

Pioneer in
"do-it-yourself"
electronics

HEATH COMPANY
A Subsidiary of Daystrom, Inc.
BENTON HARBOR 20, MICH.

ORDER BLANK

NOTE: All prices subject to change without notice.
Enclosed find () check () money order for
Please ship C.O.D. () postage enclosed for

On Express orders do not include transportation charges; they will be collected by the express agency at time of delivery.

ON PARCEL POST ORDERS include postage for weight shown. ORDERS FROM APPO's must include full remittance. All prices F.O.B. Benton Harbor, Mich.

NAME
ADDRESS
CITY & ZONE
(PLEASE PRINT)

QUANTITY
ITEM
MODEL NO
PRICE

SHIPS VIA
□ Parcel Post
□ Express
□ Freight
□ Best Way

□ SEND FREE Heathkit Catalog

TOTAL

POSTAGE

SEPTEMBER, 1957

77
Because of a continued increase in the demand for Pickering high fidelity products—manufacturing facilities have been expanded, and more efficient fabrication techniques have been developed. As a result—we are happy to announce new low audiophile net prices for the Series 350 Twin Flux-valve Cartridge, and the Series 3500 "T-Guard" Styli. Prices of the Series 350 Fluxvalve Cartridge now start at a modest $24. Now! Everyone can afford the world's finest cartridge.

Pickering & Company, Inc.

P.S. We are also excited about our new Series 370 Single Fluxvalve Cartridge—why not see and hear the 370 at your hi-fi dealer today—we know that you will be excited too. P.C.

At better Hi-Fi Shops everywhere—Write for complete brochure and prices to Dept. RE1

"For those who can hear the difference" FINE QUALITY HIGH FIDELITY PRODUCTS BY

PICKERING & COMPANY, INC., Oceanside, N. Y.
When you build your High Fidelity sound system, use THE VERY BEST LOUDSPEAKERS YOU CAN GET

You are planning to build, or improve, your high fidelity sound system. Unstintingly, you will pour out your enthusiasm, time, and energy to get the finest music reproduction you can bring into your home. Get a loudspeaker that will do full credit to your handiwork...install a JBL Signature Extended Range Loudspeaker, or two-way speaker system, in your enclosure.

JBL Signature Loudspeakers are made with the same careful craftsmanship, the same precision forming and fitting that you would use if you set out to make the finest loudspeaker the world had ever heard. JBL Signature precision speakers are the most efficient loudspeakers made.

With a JBL Signature Loudspeaker in your high fidelity system, you can exhibit your components with pride, confident that those you have made yourself are being demonstrated in the most effective way possible.

MODEL D130—15" extended range loudspeaker The only 15" extended range speaker made with a 4" voice coil is the world-famous JBL Signature D130. The large voice coil stiffens the cone for crisp, clean bass, smooth, extended highs. Your basic speaker, the D130 works alone at first, later becomes a low frequency driver when you add a JBL signature high frequency unit and dividing network to achieve the ultimate excellence of a JBL Signature two-way system.

MODEL D123—12" extended range loudspeaker with outstanding "presence" and clean response throughout the entire audio spectrum, the D123 features an unusual shallow construction. Only 3¾" deep, it is designed to mount flush with the wall, between studding, in any standard wall or partition. Frequently, the D123 is used in multiples in "infinite baffle" wall installations. In this case the JBL Signature 075 is a logical high frequency unit to add when you advance to a two-way system.

JBL Signature two-way systems are available as kits

086 KIT This two-way system is made up of units which have been acclaimed by impartial authorities as the finest available anywhere today. Included in the kit are the 100-4C Low Frequency Driver, N500H Network, 375 High Frequency Driver, 397-509 Horn-Lens Assembly. These are the same units— Including the serpentine acoustical lens—which are used in The Hartsfield... units designed originally for installation in the most modern theaters in the world.

002 KIT Including some of the newest speakers made, the JBL Signature 002 Kit includes a D123 for low frequency reproduction, N2500 Network, 075 High Frequency Unit. The 002 Kit is moderately priced, yet gives the user all the advantages of a two-way system made with independent drivers.

'001 KIT Probably the most popular high quality two-way system on the market, the JBL Signature 001 system consists of a 130A Low Frequency Driver, N200 Network, 175DLH High Frequency Assembly. The D130 may be substituted for the 130A without disturbing the balance or coverage of the system.

MODEL D208—8" extended range loudspeaker A precision transducer in every sense of the word, the famed JBL Signature 8" D208 is made with the same care and precision as the larger units in the James B. Lansing Sound, Inc. line. If space and cost are major considerations, the D208, properly enclosed, provides the most satisfyingly satisfactory sound you can get. It is widely used in top quality systems where extension speakers are desired for areas other than the main listening room.

MODEL 175DLH high frequency assembly The acoustical lens is only available on JBL Signature high frequency units. The 14 element lens on the 175DLH disperses sound within the listening area over a 90° solid angle, smoothly with equal intensity regardless of frequency. The acoustical lens is the greatest contribution to lifelike high frequency reproduction in 20 years, and it was developed for use with high fidelity equipment by James B. Lansing Sound, Inc. In addition to the lens, the 175DLH consists of a high precision driver with complex phasing plug and a machined aluminum exponential horn. Designed for crossover at 1200 cycles with the JBL Signature N1200 Network.

MODEL 075 high frequency unit Another exclusive for James B. Lansing Sound, Inc. is the ring radiator in the JBL Signature 075 high frequency unit. A ring, rather than a diaphragm, radiates into the annular throat of an exponential horn. The result is high frequency reproduction of unmatched smoothness and clarity, absolutely free of resonances and strident peaks. The horn is beautifully machined from aluminum, the entire unit a gratifying, solid piece of fine craftsmanship. Designed for crossover at 2500 cycles with the JBL Signature N2500 Network.

There are many more kits and loudspeakers in the JBL Signature line. Whatever your needs, you will find exactly the right unit or system in the complete JBL Signature catalog. Send for your free copy. A limited number of technical bulletins are also available. Please ask only for those in which you are vitally interested.

JBL means JAMES B. LANSING SOUND, INC.
2439 Fletcher Drive • Los Angeles 39, California

Please send me the following:
□ Free Catalog of JBL Signature Products
□ Name and address of Authorized JBL Signature Audio Specialist in my community

TECHNICAL BULLETINS ON:
□ D130 □ D123 □ D208 □ 175DLH □ 075 □ 130A □ 150-4C

Name
Address
City Zone State

SEPTEMBER, 1957

www.americanradiohistory.com
ELECTRONICS

ment. The connection-wire hole must also be sealed with several coats of cement.

The 250-ohm potentiometer shown in 2-b and 2-c are not used unless a completed unit falsely fires. Then they are mounted on the controller and R4 adjusted to balance out the most likely cause of false firing—the ground capacitance of the connecting line. Inserting this control allows sensitivity adjustment, too.

A piece of conducting metal foil attached to a window or other piece of glass or plastic forms the third type of actuation plate. This is shown in Fig. 2-c. Body capacitance fires the unit when a person places his hand on the opposite side of the glass. The intervening glass reduces sensitivity. Consequently larger pieces of metal foil and thinner glass give greater sensi-

Fig. 3—Details of contact control actuation plate.

Fig. 4—Schematic of the combination door-chime and porch-light control.

Basically the Fig. 4 circuit differs from that of Fig 1 only in the method of resetting. During standby periods virtually the full line voltage appears across the controller terminals because little current is drawn through the porch-light or chime transformer. When the tube is fired the closing relay contacts short out the controller connections, causing the chime to sound and the lamp to light unless it has already been switched on manually.

Many homes have a double wall switch for the living room and porch lights. Replace the porch-light switch with a two-way unit (split) and connect a wire from the chime transformer to the proper terminal. If the common wire to the switches is already the ungrounded side of the power line, all three controller connections are then made to the switches. The door chime is connected directly to the transformer secondary. Although current will be flowing through the chime for many seconds it is unlikely that its coil will overheat.

The component values given are those used in the author's own unit. Resistors R1 and R3-R4 must be experimentally selected, however, for each individual unit. R1 extinguishes the tube just before the relay opens, but its value must not be so low that the relay armature is drawn in during standby periods. R3-R4 adds considerable length to the relay hold-in period. Decreasing resistances are tried for R4 until a hold-in period of approximately 20 seconds is obtained. After the unit has been in operation several weeks and the components have aged, a high parallel resistance R3 can be added to obtain a longer relay hold-in period. A large value of capacitance has been used for C1. Greater capacitances, obtained by adding capacitors in parallel, will give longer hold-in periods.

The relay is from a surplus marker-beacon receiver and is carefully adjusted for maximum sensitivity.

The connections of this controller—or any device requiring relays or additions to the original house wiring should be made by an electrician familiar with local codes. Also, it is advisable to obtain written permission from your fire-insurance agent before installation.—Editor.

ORDER FROM ALLIED RADIO
Dpt. 02-J-7, 100 N. Western Ave., Chicago 80, Ill.
CONTRARY to most radio and TV programs, novelists and motion pictures, not all undercover work is strictly cloak and dagger, nor are all espionage agents slickly bruitettes with long-stemmed cigarette holders or tall, thin, hollow-cheeked, monocle-wearing, heel-clicking middle-aged men with thick accents. And not all counter-intelligence agents are clean-cut, blond young men in trench coats. Often, a successful agent is a highly trained electronics technician.

In fact, some of the most interesting, yet least publicized, applications of electronics have been in the field of undercover investigations and counter-intelligence operations. Detectives, police officers and government agents frequently use electronic equipment to obtain evidence on known or suspected criminals or to discover illegal activities. Counter-intelligence operatives find electronic equipment valuable in breaking up spy networks and sabotage groups.

While nearly all the equipment used in espionage work is highly classified, the type used in counter-intelligence and police work is not especially secret, although not too well known outside the fields in which it is used. Many of the most useful pieces of equipment can be duplicated easily and at moderate cost by a competent technician.

The most useful electronic item in counter-intelligence work is not any one item but a kit of essential electronic instruments, tools and accessories. With a complete kit, an operative can meet various situations as they arise in the field, without returning to “home base” for some special unit. The basic electronic components in such an electronic surveillance kit are shown in the photographs.

Basically, the kit consists of an audio amplifier, an assortment of sensitive pickup probes and transducers, and various types of output devices. In addition, spare parts, installation materials and tools are included. All the components fit into a lightweight, sturdy and easy-to-carry case.

The amplifier

The heart of the kit is a compact, high-gain, battery-operated amplifier. Except for the input and output jacks and the lack of a built-in microphone, its circuitry is very similar to that of a hearing aid. The circuit of a suitable amplifier is seen in Fig. 1. Interior and exterior views of an assembled model are shown in the photographs. This unit incorporates a commercially available three-stage printed-circuit amplifier in its design.

Audio signals obtained from a sensitive pickup probe are applied to input jack J1 and to the grid of the first amplifier stage, a CK512AX subminiature hearing-aid type tube.

After amplification through two more stages, the output signal appears across miniature audio chokes L1 and L2, the output stage’s plate load impedance and is coupled through blocking capacitor C6 to the output jack J2. Either high-impedance magnetic or crystal phones may be connected to this output jack.

An external volume control R9 also serves as the grid return resistor for the second stage. Screen grid voltages are furnished through resistors R1 and R4. Capacitor C2 and resistor R3 form a decoupling and isolation network for

Fig. 1—Miniature amplifier’s circuit.
Complete amplifier fits into a small plastic case.

Layout of kit. Everything is securely fastened to case.

Amplifier layout, heart of the surveillance kit.

the first stage. Grid bias for the output stage is obtained from the voltage drop across R7, in series with the B-minus supply. The screen grid of the final stage returns directly to B plus.

Power is obtained from a 1.5-volt A battery and a 22.5-volt hearing-aid type B battery. All components within the dashed line (Fig. 1) are part of the printed-circuit amplifier.

Since a printed-circuit amplifier is used, the actual wiring and assembly of the kit's amplifier is a relatively simple operation. The printed circuit's lead connections are identified in Figs. 1 and 2.

The amplifier and power supply can be built into a small plastic or metal case. The unit, shown in the photographs, was built into a two-compartment plastic box, with the printed circuit and its associated components in one compartment and the batteries in the other. The amplifier was shielded by lining its compartment with aluminum foil.

Although circuit layout is not critical, IN jack J1, OUT jack J2 and volume control R9 should be located so that the circuit's input and output leads are kept well separated and do not overlap. Lap type joints are satisfactory for all soldered connections. Bare leads should be protected by lengths of insulating spaghetti.

Accessory equipment

Although it is the most important single component in the surveillance kit, the amplifier alone is of little value. The kit's utility depends on the variety and versatility of its accessory pickup and output devices. The basic electronic accessories included in the kit are identified in the photos. While a kit may be made up using the amplifier and two or three of the accessories, utility is maximum when all are included.

Rf pickup. The circuit of this probe is shown in Fig. 3. This accessory is used with the amplifier to receive and detect radio signals. It is useful for identifying and locating hidden or "planted" radio and "wired wireless" transmitters in a room, office or building. Since such transmitters may be operated at almost any frequency, the probe is untuned and detects whatever radio signal may be present. In this respect it is very similar to rf probes used with oscilloscopes and vtvm's in radio-TV servicing.

In operation, radio signals coupled through capacitor C1 appear across

www.americanradiohistory.com
To insure valid statistics, this tabulation covers the largest selling brands, based on a four-year survey (April 1953 to March 1957) of classified and "Swap or Sell" ads for used high fidelity loudspeakers. All ads authenticated as placed by private individuals in Audio, High Fidelity and Music At Home.

<table>
<thead>
<tr>
<th>PERCENTAGE OF TOTAL INSERTIONS</th>
<th>SPEAKER "A"</th>
<th>SPEAKER "B"</th>
<th>SPEAKER "C"</th>
<th>UNIVERSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 1/2%</td>
<td>23 1/2%</td>
<td>16 1/4%</td>
<td>13%</td>
<td></td>
</tr>
</tbody>
</table>

Fewest number of ads offer University equipment... outstanding testimonial of user satisfaction.

We have always believed that the tremendous volume of University speakers sold in the past to hi-fi enthusiasts attested to the genuine listening satisfaction designed into all our products.

We think that all legitimate hi-fi loudspeakers sound pleasing, but the acid test of listening satisfaction is a speaker's "staying power". Does it grow with your hi-fi tastes, continue to please year after year . . . or is it obsolete before its time . . . ready for swap, sale or discard?

Yes, in the "Swap or Sell" columns of the leading audiophile magazines, you soon know which of the prominent brands of loudspeakers readers outgrow . . . and, by the absence of such ads, which of these leading loudspeakers remain in the home!

The record speaks for itself. This accurate survey, taken over a span of four years, shows that speaker "B" has almost 50% more "for sale" listings than University . . . while speaker "A" is offered more than three times as often! Here is indisputable unsolicited testimony from average hi-fi users themselves that University stays sold, continues to serve year after year as a source of rich musical pleasure.

University offers the largest selection of speakers and components to meet every size and budget requirement.

LISTEN

University sounds better
PRECISION

... manufacturers of fine electronic test instruments for over 25 years...

PACO

quality test instruments in kit form

For the first time — a line of test instrument kits engineered and produced under the auspices of a major test equipment manufacturer... and conveniently available directly from your own local electronic parts distributor.

PRECISION

25 years of experience is your assurance of PACO’s superior quality, styling, performance and value.

COMING SOON...

Model G-30 — RF Signal Generator
Model Z-80 — Audio RF Signal Tracer
Model M-40 — High Sensitivity V-O-M

Model C-20
RESISTANCE — CAPACITY-RATIO BRIDGE KIT
10 mmfd to 2000 mmfd
½ ohm to 200 megohms.
Net Price: $20.95

Available and on display at leading electronic parts distributors. Write for descriptive bulletin.

PACO ELECTRONICS CO., INC.
70-31 84th Street, Glendale 27, L. I., N. Y.

A DIVISION OF PRECISION Apparatus Company, Inc.

Export: 458 Broadway, New York 13, New York

ELECTRONICS

input resistor R₁ and are applied to a simple diode detector. The detected rf signal appearing across diode load resistor R₂ has rf, audio and dc components. The rf component is removed by a simple R-C filter (R₃ and C₃). Finally, output coupling capacitor C₂ blocks the dc component and allows only the detected audio signal to be fed to the amplifier.

The rf pickup is built into a short length of metal or fiber tubing. If fiber tubing is used, the inside surface should be lined with aluminum foil to serve as a shield. The probe's shield, whether foil or a metal tube, is connected to circuit ground and to the shielding braid of the output cable. A 3- or 4-foot shielded output cable is provided, with its end terminated in a plug to match the amplifier's IN jack. A separate ground lead attached to the probe's shield is useful under some conditions.

Induction pickup. This accessory is used to listen in on telephone or intercom conversations. Construction details are shown in Fig. 4. The induction pickup consists of a high-impedance coil (2,000 ohms or more) mounted on a high-permeability core. A coil salvaged from a sensitive plate relay can be used. A gap, large enough to slip over a standard telephone line or intercom lead, is left in the core piece.

The core and coil assembly is mounted in a small aluminum can which serves as an electrostatic shield. The can and one side of the coil are connected to the outer braid of a 3- or 4-foot shielded...
SOMETHING IS BEING DONE FOR INDEPENDENT SERVICE

This free booklet gives you all the details of your big Independent Service-Dealer national advertising campaign and the promotional tie-in material to help you increase your business.

The program is important to your own future. A nationwide survey conducted among independent service-dealers revealed that 88 out of every 100 of you are concerned for the future of independent service and want this campaign continued. Because of your remarkable interest, it is being continued. And it will be expanded as your interest and support grow.

Learn all about your Independent Service campaign, its supporting material, and how you can get the most from them. Ask your CBS Tube distributor for your free copy of booklet PA-163, or write to us.

Remember — each time you buy CBS tubes, you support your own independent Service-Dealer program. Keep it going ... keep it growing ... always specify CBS tubes.

CBS-HYTRON, Danvers, Massachusetts
A Division of Columbia Broadcasting System, Inc.

For the best entertainment, tune to your local CBS station.
Fall is the season for selling—and AMPHENOL's new Color-Couplers are profitable selling items! Connecting two, three or four TV sets to one antenna system, Color-Couplers work with flawless efficiency—effective isolation, low loss and properly matched impedances for clear, bright pictures. Flat signal response makes them tops for color and equally good for Black & White TV—can be used with FM radio, too.

<table>
<thead>
<tr>
<th>Item Code</th>
<th>Description</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>114-097</td>
<td>Two Set Color-Coupler</td>
<td>$2.95</td>
</tr>
<tr>
<td>114-098</td>
<td>Three Set Color-Coupler</td>
<td>3.95</td>
</tr>
<tr>
<td>114-099</td>
<td>Four Set Color-Coupler</td>
<td>4.95</td>
</tr>
</tbody>
</table>

An attractive, 3 color display comes free with Color-Couplers at a special introductory price. On your counter, this display will not only catch the eye—it will catch the sale, too!

ADDITIONAL SELLING FEATURES
- Super-reliable Resistor Network
- Decorator Colors—Grey or Cocoa
- Modern Design; Tough, Weatherproof Case
- Built-in Strain Relief for Twin Lead
- Two-way Mounting; Indoors or Out

FREE COUNTER-TOP DISPLAY

See your DISTRIBUTOR—today!

AMPHENOL ELECTRONICS CORPORATION
chicago 50, illinois
THE trouble with you guys,” Pedro was saying when I walked into the little restaurant around the corner from my shop, “is you don’t believe in the simple approach.” Pedro used to work for me when he was a kid. Now he’s in the radio-TV business for himself. He was sitting at a table with two fellows I recognized as engineers from Capital Electronics, across the street.

“Hi, men,” I said, easing myself into a chair across from Pedro and signaling Sadie, the waitress. “What’s the hassle about?”

“No hassle, Herk,” Adams, chief project engineer for Capital, grinned at me. “Only Pedro’s reading us off about the channel-switching arrangement on one of those tuners we developed for the International TV people.”

“You bet,” Pedro said vehemently. “You know the one, Herk. That job with the screwy switching. Ain’t that a mess?”

“I’m with Pedro on that, fellows,” I said, taking a sip of the steaming java Sadie set down in front of me. “ Seems like a little redesigning could simplify that switching arrangement about a thousand percent. It’s a heck of a thing to service.”

Phillips, Capital’s industrial design man and a guy with a slippery temper, shook his head. “It works, doesn’t it?”

“Sure it works. Until a speck of dirt bridges across the switch terminals. Then you’ve got a 2-hour disassembly job before you can get in to wipe a little carbon tar across the contacts.”

“You service guys have to make a buck,” Adams said. “If nothing went bad, you’d starve to death.”

“Pedro’s point is that tuner could have been simplified,” I tried to explain. “If you’d used shunt coils, one end of each coil could have been grounded.”

“Certainly,” Pedro cut in scathingly. “That would have made half as many switching contacts and twice the clearance between them.”

“It’s not always that easy,” Phillips said, his voice beginning to rise like a heterodyne on the far side of zero beat... “I don’t remember just why we used series coils in that particular tuner. But there was a reason.”

“Sure there was,” Pedro shot back. “It’s against an engineer’s religion to do anything the simple way.”

“What’s on the fire now, fellows?” I asked, trying to change the subject. Pedro isn’t a bit diplomatic sometimes, and I figured I’d better slip a conversational wedge in here before he needled these guys too much.

“The usual stuff,” Adams said, draining his coffee cup. “A little of this and a little of that.”

“Oh, fine,” Adams grunted. “Twenty-six weeks in the Army electronic school and now he’s an expert in the field.”

I figured I’d better come to Pedro’s defense. I said, “Hold the phone, guys. Pedro’s just needling you birds, but he’s half right at that. I think most radio men could do a passable job of design engineering if they took a crack at it. You’d be surprised how much you can learn servicing other people’s mistakes.”

Put up or shut up

Phillips swung around to me with his eyes arcing over. “Put your money where your mouth is, Herk,” he said. “Put up or shut up.”

“Take it easy, Phillips,” Adams soothed. “This is just a friendly argument. Don’t go getting sore about it.”

Certainly,” Pedro cut in. “You must have a guilt complex.” He winked at me. “And think how embarrassing it would be to have a mere layman redesign a design engineer.”

“That does it,” Phillips exploded. You could smell the ozone as he got to his feet. “You smart guys make me tired. If you’re not willing to make a bet out of it, keep your yaps shut.”

“Willing?” Pedro echoed. He stood up, grinning. “Man, we’re eager!” He winked at me again. “Name your weapons, boys.”

“Hold it,” Adams said. “You’re nuts, Pedro. Designing is our business. You’d lose your shirts.”

“No maybe, Pedro,” I bleated, getting up. “This has gone far enough. Include me out.”

Phillips turned on me. “Chicken, huh?” He was wearing that nasty, high-voltage smile. His eyes were still spitting sparks.

“No,” I said. “Not at all. It’s just that...”

Pedro cut me off. “Name your stakes, gentlemen. Herk and I’ll cover. Then we’ll agree on a project.”

I stood there with my mouth open while Pedro and the two engineers decided on the stakes. If we won, Adams was to buy us out retail the best TV set in my shop, and Phillips was to do the same from Pedro’s place; but they would be to get the merchandise free, gratis, if we lost. The arrangements were complete before I found my voice.

Then I shouted, “Hey, how about getting my views on this thing. I can’t afford to...”

“Forget it, Herk,” Pedro said placatingly. “We can’t lose. You know these guys have to do everything the hard way.” He turned back to the men from Capital. “Now then, what sort of project shall we make it?”

“We’ve got one in the works,” Adams said. “Should be a simple little thing. One of our industrial accounts needs a sheet counter.”

Phillips was beginning to cool off again. He said, “Let’s sit down and

By GUY SLAUGHTER
Professional Recognition, General Electric All-American

Announcing

The General Electric All-American Awards for TV Service Technicians Who Have Distinguished Themselves in Public Service

General Electric proudly establishes the All-American Awards to honor the TV Service Technicians of America for their good citizenship in many fields of public service.

Individually and as members of some three hundred trade groups, TV Service Technicians make many unheralded contributions to the welfare and happiness of their communities.

You will find them repairing TV sets without charge in children's hospitals—teaching disabled veterans how to service TV sets—teaching school children elementary electronics—applying their specialized technical knowledge to many important fields of public service.

G-E All-American Award trophies will be presented to the eleven TV servicemen who, in the opinion of the judges, have achieved the most distinguished records during the two year period ending September 30, 1957.

In addition, General Electric will present $500 to each winner for use in community improvement activities.

Nominations may be made by any individual, club or association. Simply write a letter describing the community service performed, give the name and address of the serviceman you are nominating, and mail it before October 19th to the All-American Awards Committee, General Electric Company, Owensboro, Ky.

Full-page General Electric national advertising spotlights community service of independent TV-radio technicians such as yourself.

Your customers and prospects are being asked to help select an All-American award-winning team of 11 outstanding service dealers.

A complete package of promotion aids and display tie-ins is waiting for you. Your G-E tube distributor has this timely, colorful material. Ask him to help make your shop All-American service headquarters!

These advertising tie-ins can open your door wide to new fall business—Easel-back display, "Football Time Is TV Tune-up Time"...Large football-theme window banner...Eye-catching window streamers...Special direct-mail folder and postcard...Newspaper mats..."Set-owners' TV Service Guide", a business-building booklet to give to service prospects.
INCREASED SERVICE VOLUME—CAMPAIGN OFFERS YOU BOTH!

FOOTBALL IS HERE. The star-studded entertainment programs are back. Millions of TV owners need to have their sets checked for top performance. Timed for this fall market, General Electric has kicked off its All-American campaign in support of the TV-service profession—the biggest ever—to 25,000,000 readers of LIFE. Full-page ads feature the all-around job service dealers like yourself are doing in and for the community...point to shops like yours as neighborhood TV-radio service headquarters.

To assist you further as an independent TV technician...to help identify your shop as first choice for tune-up work...General Electric has ready for you, through your G-E tube distributor, a new, timely kit of displays and advertising aids that will catch the eye of football fans and other set-owners who want tune-ups and repairs.

You also can make good use of the special football schedule shown below, carrying your name and address. It's a reminder item that prospects for TV-service work will value and keep with them for many months.

Phone your G-E tube distributor! Ask him how you can tie in now with this big General Electric fall campaign to strengthen your community standing, and underscore your reputation for service! Distributor Sales, Electronic Components Division, General Electric Company, Owensboro, Ky.

AVAILABLE IN QUANTITIES: 1957 college and professional football schedule, with space for your name and address. Everybody wants one. You can use this handy pocket guide to make friends for your shop and as All-American reminder advertising. Ask your G-E tube distributor how to obtain the copies you need!

Progress Is Our Most Important Product

GENERAL ELECTRIC
sturdy, steel PERMA-TUBE TV masting is corrosion proof

Perma-Tube, most famous name in TV masting, stays strong because it is corrosion proof. Perma-Tube is treated with vinsynite—then coated with a metallic vinyl resin base both inside and outside. Perma-Tube is guaranteed to be free from rust in a salt spray test of 500-hours minimum to ASTM Specification 13 117-49T. Longer mast life is assured.

Resistance to bending in Perma-Tube is greater than in galvanized masting. Machine-fitted joints speed field assembly, insure close tolerance for strength and rigidity. Joints are stronger than the tubing itself.

Five diameters of fitted joint Perma-Tube are available, ranging from 2½" OD to 1¾" OD. Telescoping masts can also be erected up to 50 feet high, using 10 foot lengths of high strength J&L 16-gauge Perma-Tube.

Get complete details on popular Perma-Tube TV masting. Write to the Jones & Laughlin Steel Corporation, Dept. 496, 3 Gateway Center, Pittsburgh 30, Pa.

Jones & Laughlin
...a great name in steel

ELECTRONICS

have some more coffee, and we'll brief you on the specs."

"Roger," Pedro said. "Sit down, Herk. And close your mouth."

"Sure," I said. I sat down and closed my mouth and thought about the beautiful blend combination AM-FM-phonograph TV console in my front window, and how I was going to miss it after I delivered it to Adams free. Sadie showed up with the coffee pot and filled the mugs. I sighed, feeling bereaved at my imminent loss, and turned my attention back to the conversation.

"Okay," Pedro was saying, "That's it then. And it's agreed that the simplest workable counter wins. Right?"

"Right," Adams and Phillips said.

"Two weeks?" Pedro asked.

"Two weeks," Adams said. "And may the best men win." He winked at Phillips, and I said a mental goodbye to my console for the third time. "We'll be seeing you," Adams added, and he and Phillips left.

I turned to Pedro, shaking my head sadly. "You and your big mouth."

"You did all right, yourself, Herk," Pedro said, grinning at me.

"That console cost me five hundred clams," I said bitterly. "Why didn't I pass up my coffee today?"

"Cut it out, Herk. This is for the honor of all radio men everywhere." Pedro looked serious for a change. "And anyway, we're going to win. Don't worry about a thing."

"You know what?" I said thoughtfully. "I may kill myself."

We're going to win?

Pedro came into my shop one afternoon about a week later.

"Hi, Herk," he called cheerily.

"How's it going?"

"Drop dead," I said. "What're you so happy about?"

"You get that cabinet for me?" he wanted to know, ignoring my question.

"Yesterday," I said. I jerked my thumb toward the bench. "Over there in the corner."

Pedro walked over to where the thing lay and gave it a quick scan. It was a little 5 x 6 x 9 steel cabinet from the local radio parts jobber's shelves. On top of the cabinet I had mounted the conventional magnetic counter Adams had supplied us with. It was a 5-digit affair, whose count advanced 1 number for each time a current of 10 milliamps flowed through its coil and actuated its armature.

"Looks good, Herk," Pedro said.

"Thanks," I said. "It was nothing. But what about the control circuit. You got any ideas?"

"I'm working on it. No problem, really."

"Sure," I said, skeptically. "What kind of circuitry you figuring on?"

"The simplest kind," Pedro said cryptically. "I'll see you later." He tucked the cabinet under his arm, grinned at me and took off.
from affecting the photocell.

The control circuit consists of a photocell and amplifier, feeding the counter. Each time a sheet of tinplate is flipped into the rack, incident light is reflected into the cell housing at some time during the sheet's travel, initiating the signal which the amplifier then causes to actuate the counter mechanism. Because we have tipped the photocell housing to this particular angle, light changes caused by personnel moving back and forth in front of it do not affect the cell."

"A question, please," Pedro cut in. "A friend of mine at the mill tells me overhead cranes move back and forth over the assorting tables all the time, but how do you keep the resultant light changes from affecting the photocell?"

"Simple," Adams grinned. "We

Rectifier replacement is now further simplified by the "Miraculous Twins"—the M-150 for all radio sets and the M-500 for television and electronic devices. Just two models will fulfill most of your rectifier requirements. Write for further information on these popular Sarkes Tarzian Silicon Rectifiers.

Sarkes Tarzian Inc.

RECTIFIER DIVISION
DEPT. R-1, 415 NORTH COLLEGE AVE., BLOOMINGTON, INDIANA
IN CANADA: 700 WESTON RD., TORONTO 9, TEL. ROGERS 2-7535
EXPORT: AD AURIEMA, INC., NEW YORK CITY

SEPTEMBER, 1957
ELECTRONICS

Don't. The photocell feeds an amplifier which is, so to speak, tuned. That is, only a steep wavefront can key the amplifier input and initiate a signal that will trip the counter. The cranes move so slowly that the light fluctuation is gradual and not rapid enough to key the amplifier.

"I see," Pedro said, nodding.

"Clever. The amplifier is designed for high-frequency response and won't pass lows. Right?"

"Exactly," Adams smiled benignly.

"But the reflected light from a sheet of bristle to the rack strikes the photocell as a short burst of light, and therefore its signal is high-frequency."

"Ingenious," Pedro admitted. I groaned. I hadn't expected him to give up without a fight. "A little complex," he added, "but ingenious."

Adams frowned. "Nothing complex about it, Pedro. Perfectly straightforward. Four tubes and a photocell!"

"Try ours," Pedro offered. He picked up the gadget in the steel cabinet, carried it over to the assorting rack, set it down on the table, plugged the line cord into the socket on the table's lip. He walked back and winked at me.

It works!

Adams reset our magnetic counter to zero, moved his own gadget out of the way and motioned for the girl to begin sorting. Adams plunged a finger into the rack our counter ticked over another digit. Adams watched a while, then motioned the girl to stop.

"Okay, Pedro, explain your gadget."

"Sure," Pedro said. "Be glad to."

He walked over to the gadget, pointed to a hole in the side of the cabinet. "Each sheet acts like a huge palm-leaf fan; when it falls into the rack, it creates a little puff of air."

Adams and Phillips looked at each other. Adams' eyebrows rose. "So?"

"So," Pedro said, grinning over at the other. "Our gadget's simple. "So?"

"Okay, Pedro, explain your gadget."

"I remember," Pedro said, grinning wider, "I remember well. Our circuitry is fairly simple. It consists of one microswitch with a balsa-wood veneer cemented to its arm to catch the puff of air, plus one dropping resistor, one selenium rectifier to feed the magnetic counter and one red brick."

"Is this a joke?" Adams spluttered.

"What's the brick for?"

"To make the cabinet heavy," Pedro said. "So you fellows wouldn't knock it. It was practically complete when you hefted it behind our backs."

Adams got my blond console job all right. But, thanks to Pedro, he paid for it. Through the nose. . . .
From DELCO RADIO:

a complete line of replacement parts

for your Delco Radio service work!

It's one-stop service from the world leader in auto radio! Your Delco Electronic Parts Distributor gives you fast delivery on all items, plus a truly profitable Delco Radio independent dealer program that includes:

1. A technical training program conducted by factory engineers.
2. An attractive warranty policy.

Delco Radio also offers a wide selection of Special Application Parts for your convenience and profit. Get the facts today.
Organizing a Profitable Home Servicing Business

With the necessary attention and planning, home service can function as smoothly and as profitably as bench servicing.

By CHARLES GARRETT

LANE'S Radio Shop in New London, Conn., has increased its profit, enlarged its list of steady customers and secured public respect for its organization by applying a systematic, professional approach to its TV home-servicing business. We at Lane's have given careful attention to all its aspects and the effort has paid off. Where home service was once considered secondary to bench service, it is now correctly treated as the primary part of the business. Home service comprises about 70% of our TV servicing.

This article will detail our somewhat elaborate service-call equipment, how we try to inspire customer confidence and goodwill while on house calls, and how we went about increasing the efficiency of our home service from the shop end.

Tube-caddy contents

Along with a full complement of TV tubes including two or more of the common varieties, an assortment of fuses and the usual assortment of tools, we supply the tube caddy with the following extra items for servicing efficiency:

1. A large mirror to facilitate rear-panel adjustments. Mirrors are available in either glass or unbreakable stainless steel—the better investment.

2. A flashlight with a spare bulb and batteries.

3. An assortment of dial lamps for tuners, rotor boxes, boosters, radios, etc.

4. A small, neat drop cloth is an important piece of service equipment. It is not only used to protect rugs and varnished floors, but is often wrapped around a dusty TV chassis to protect the technician's clothes when the set is carried out of the house (see Fig. 1).

5. A quick-heating soldering gun to be used, not so much for replacing parts, as for repairing obvious wiring defects, including those accidentally caused by servicing and handling the chassis.

6. An inexpensive TV picture-tube brightener, carried for testing, installation and sale. With it, a quick check can be made of the picture tube when the complaint is low brightness.

7. A small volt-ohmmeter is a must. It takes the guesswork out of checking for open fuses, fused resistors, speaker voice coils, etc.

8. Two ac interlock jumper cords—one for the standard interlock and the other for the older Zenith type. An interlock type line cord is also in the caddy for replacement purposes.

9. An antenna-terminal jumper also makes for convenient servicing on sets (Philco, RCA, Stromberg-Carlson, etc.) whose antenna leads from the tuner plug into pin sockets on the back cover. The jumper allows the back cover of a set to be completely removed and placed out of the way and still have a connection between the antenna lead-in wire and the receiver's tuner lead-in.

10. A dispenser of service-record tags. A service-record tag (Fig. 2) pasted to the back of every receiver is also a servicing aid. Printed on the tag is the company's name, address and phone number. On it the technician notes the tubes and parts installed, their function, any adjustments made and the date the work was performed.

On future calls the technician will have a convenient record of the tubes and parts replaced and the date they were installed. This ends disputes as to whether tubes and parts previously changed are within their warranty period. A repetitious failure of one particular tube or part can indicate the need for bench service.

11. A screw-on, plunger type control cleaner is indispensable on house calls. It allows a scratchy or noisy control to be cleaned without removing the chassis from the cabinet, saving 10 to 15 minutes of valuable servicing time. Ours paid for itself in less than a week (see Fig. 3).

12. Paper bags. A few small paper bags tucked into the tube caddy have proved to be ideal for holding small parts when a chassis is pulled for shop service. A paper bag holding knobs, chassis bolts, back-cover screws and cabinet accessories is stored inside the empty cabinet to prevent loss of these hard-to-replace parts.

13. A complement of the common radio and phonograph tubes for phonographs, small table and portable radios is available to the outside technician. About one out of five TV customers asks the technician—or the shop when he calls for TV service—about having his radio or phonograph repaired. This extra service has been profitable to us.

The following 31 extra tubes handle most modern radio and phonow work:

Portables: 11L6, 1R5, 1S4, 1S5, 1T4, 1U4, 1U5, 3S4, 3V4.
Ac radios: 5V3-GT, 6BA6, 6BE6, 6SA7, 6SK7, 6SQ7, 6X4.

Fig. 1—Drop cloth protects clothes when carrying a dusty chassis.

Fig. 2—Adhesive tags are attached to the set. They aid the technician on the next service call, and are good advertising.
Technician his dealer delivered, back, argue, removing model brightener. A filament-continuity tester. This simple instrument is handy when servicing series-string TV and radio receivers. Our shop picked these up as a bonus with tube orders. When purchased, they cost $3 or $4—a worthwhile investment.

Build confidence

The public's confidence in our organization's integrity and fairness is more valuable to us profitwise than all the skill, experience and knowledge of our technical staff. We believe that, like a politician, a service company is judged by what it does, not by what it says in its advertisements. The following are some of the approaches that we have proved to be most effective.

All defective tubes and parts are left with the set owner (see Fig. 4) and, when a chassis is returned from the shop, the old tubes and parts are also returned. This simple practice may not actually prove much, but to our customers it is a symbol of integrity.

We use only standard-brand, well advertised and individually boxed tubes. The set-owner comment, "I never heard of that brand," would mean that he believes it is not a first-quality product and would reflect on our service.

We try to keep the tube caddies uncluttered, well-arranged and completely stocked by periodic and systematic checks and inventories (see Fig. 5). A misarranged, half-stocked caddy not only looks unprofessional to the set owner, but is unprofessional. Inventories are easier when empty tube boxes are put into the tube caddy backward so that the used tubes are obvious.

Where practical, we install new picture tubes in the home—and from a sealed container. When a picture-tube replacement is indicated, a tube brightener is tried first or a less expensive rebuilt tube is offered. If a brightener is installed, a refund is made on it when the set owner decides to purchase a new tube—from our service company, of course. Most customers prefer new tubes to rebuilt ones or the temporary correction sometimes afforded by a brightener.

A receipt is left by the outside technician for the receiver, listing make, model and serial number (Fig. 6), when removing it for shop service. If a technician has ever heard a set owner argue, as happened to me a few years back, that the wrong chassis was delivered, he will see the value of this receipt. Fortunately for me, the TV dealer had the chassis serial number in his files and got me off the hook.

If the customer is not home when the technician calls, a business card is left in the door or mailbox with the time

(Continued on page 98)
SHIPPED ON APPROVAL
NO MONEY WITH ORDER
NO C.O.D.

Superior's New Model TD-55
EMISSION TYPE
TUBE TESTER
FOR
| The Experimentor or Part-Time Serviceman, who has delayed purchasing a higher priced Tube Tester. |
| The Professional Serviceman, who needs an extra Tube Tester for outside calls. |
| The busy TV Service Organization, which needs extra Tube Testers for its field men. |
Speedy, yet efficient operation is accomplished by:
1. Simplification of all switching and controls.
2. Elimination of old style sockets used for testing obsolete tubes (26, 27, 57, 59, etc.) and providing sockets and circuits for efficiently testing the new Naval and Sub-Minar types.

MODEL TD-55
Terms: $6.95 after 10 day trial then $5.00 per month for 4 months.

$5.00 per month
Terms: $6.95 after 10 day trial then $5.00 per month for 4 months.

MODEL TW-11
Terms: $11.50 after 10 day trial then $5.00 per month for 6 months.

MODEL TV-12
Terms: $22.50 after 10 day trial then $10.00 per month for 5 months.

MODEL TV-40
Terms: $5.85 after 10 day trial then $4.00 per month for 2 months.

SUPERIOR'S
STANDARD PROFESSIONAL
TUBE TESTER

NOISE TEST: Phone jack on front panel for plugging in either真空 or external amplifier detects microphonic tubes or noise due to faulty elements and loose internal connections.

EXTRAORDINARY FEATURE
SEPARATE SCALE FOR LOW-CURRENT TUBES
Previous type tube testers, It has been standard practice to use one scale for all tubes. As a result, the calibration for low-current types has been reduced to a small portion of the scale. The extra scale used here greatly simplifies testing of low-current types. Housed in hard-rubber oak cabinet.

NET $47.50

SUPERIOR'S
NEW MODEL
TV-12

TRANS-CONDUCTANCE
TUBE TESTER

SAFETY BUTTON—protects both the tube under test and the instrument meter against damage due to overload or other form of improper switching.

EXTRA FEATURE!
Model TV-12 Also Tests Transistors!
A transistor can be safely and adequately tested only under dynamic conditions. The Model TV-12 will test all transistors in that approved manner, and quality is read directly on a special "transistor only" meter scale.

Housed in hard-rubber oak cabinet.

NET $72.50

SUPERIOR'S
NEW MODEL
TV-40

PICTURE TUBE TESTER
NOT A GADGET—NOT A MAKE-SHIFT ADAPTER, BUT A WIRED PICTURE TUBE TESTER WITH A METER FOR MEASURING DEGREE OF EMISSION—AT ONLY $15.85

Tests ALL magnetically deflected tubes . . . in the set . . . out of the set . . . in the carton!

EASY TO USE: Simply insert line cord into any 110 volt A.C. outlet, then attach test socket to tube base (Ion Trap need not be on tube). Throw switch up for quality test . . . read direct on Good-Bad scale. Throw switch down for all leakage tests. Only . . .

NET $15.85

USE APPROVAL FORM ON NEXT PAGE
NO INTEREST OR FINANCE CHARGES ADDED!

If not completely satisfied, you are privileged to return the Tester to us, cancelling any further obligation.

RADIO-ELECTRONICS
TRY FOR 10 DAYS

before you buy!

then if satisfactory pay in easy, interest free, monthly payments. See coupon below.

Superior's New Model 770-A
POCKET-SIZED VOLT-Ohm MILLIAMMETER

USING THE NEW "FULL VIEW" METER
71% MORE SCALE AREA

Occupies exactly the same space used by the older standard 2½". Meters, yet provides 71% more scale area. As a result all calibrations are printed in large easy-to-read type.

Superior's New
SUPER-METER
Model 670-A
A Combination VOLT-Ohm MILLIAMMETER PLUS Capacity, Reactance, Inductance and Decibel Measurements

D.C. VOLTS: 0 to 7.5/15/75/150/1000/1500 Volts A.C. VOLTS: 0 to 15/30/60/150/1000/1500 Volts AMPERES: +1/2/5/15/25/50/100/150/500/1000/1500/10,000 Volts

D.C. CURRENT: 0 to 0.1/0.5/1.0/5.0/10.0/50.0/100.0/500.0/1000.0/5000.0/10,000.0/50,000.0

D.C. RESISTANCE: 0 to 1,000/10,000 Ohms / 10,000/100,000 Ohms

D.C. CAPACITANCE: 0 to 0.001/0.005/0.01/0.05/0.1/0.5/1.0/5.0/10.0/100.0/500.0/1000.0/5000.0/10,000.0 microfarads

A.C. CURRENT: 0 to 0.1/0.5/1.0/5.0/10.0/50.0/100.0/500.0/1000.0/5000.0/10,000.0/50,000.0

A.C. RESISTANCE: 0 to 0.1/0.5/1.0/5.0/10.0/50.0/100.0/500.0/1000.0/5000.0/10,000.0/50,000.0

A.C. CAPACITANCE: 0 to 0.001/0.005/0.01/0.05/0.1/0.5/1.0/5.0/10.0/100.0/500.0/1000.0/5000.0/10,000.0 microfarads.

IT'S A CONDENSER BRIDGE
IT'S A SIGNAL TESTER
IT'S A TV ANTENNA TESTER

Superior's New
GENOMETER
Model TV-50
7 Signal Generators in One!

R.F. Signal Generator for A.M.
R.F. Signal Generator for F.M.
Audio Frequency Generator

R.F. SIGNAL GENERATOR: 100 Kilocycles to 60 Megacycles on fundamentals and from 60 Megacycles to 180 Megacycles on powerful harmonics.

VARIABLE AUDIO FREQUENCY GENERATOR: Provides a variable 300 cycle to 200,000 cycle peaked wave audio signal.

BAR GENERATOR: Pattern consists of 4 to 16 horizontal bars or 2 to 20 vertical bars.

CROSS HATCH GENERATOR: The pattern consists of non-shifting horizontal and vertical lines interlaced to provide a stable cross-hatch effect.

Bar Generator
Cross Hatch Generator
Color Dot Pattern Generator
Marker Generator

DOTT PATTERN GENERATOR (FOR COLOR TV):

The Dot Pattern projected on an any color TV Receiver tube by the Model TV-50 will enable you to adjust for proper color convergence.

MARKER GENERATOR: The following markers are provided: 189 Kc., 262.5 Kc., 463 Kc., 620 Kc., 1000 Kc., 1400 Kc., 1600 Kc., 2000 Kc., 2500 Kc., 3579 Kc., 45 Ms., 5 Ms., 10.7 Ms., 3579 Kc is the color burst frequency.

Complete with shielded leads...

MOSS ELECTRIC DISTRIBUTING CO., INC.
Dept. D-381, 3494 Testa Ave., New York 34, N. Y.

Please send me the units checked. I agree to pay down payment within 10 days and to pay the monthly balance as shown without any interest or extra charges added. It is further understood that should I fail to make a payment when due, the full unpaid balance shall become immediately due and payable.

Name ____________________________
Address __________________________
City ____________________________ Zone State

All prices net. F.O.B. N.Y.C.

SEPTEMBER, 1957

www.americanradiohistory.com
TELEVISION

Fig. 7—If the customer is not at home, a card left in the door shows you were there.

(Continued from page 95)

the technician called noted it and requesting the customer to call the shop and make new arrangements to have his set serviced (see Fig. 7). Otherwise, the customer would be irritated because he would assume we failed to show up as we had promised.

Improving efficiency

Our service equipment and our efforts at building consumer confidence and goodwill are constantly in the forefront of our field of attention. We are always trying to improve our equipment and the treatment of our customers. We know from experience that when we improved one or the other or both, either our profits increased or the business ran smoother with fewer customer complaints.

Careful attention to certain small business details plus a new approach or two to the handling of service calls makes the difference between profit and loss in our home-service business. Some of these practices may seem obvious; nevertheless, they are listed because at one time we did not follow them:

A systematic method of receiving calls for home service adds to its efficiency by preventing loss of a customer's call as sometimes happens when phone calls for service are noted on scratch pads. We now use a commercially available phone-call book (Fig. 8) that provides us with an efficient method of receiving calls, convenient call slips for the outside technician and a permanent shop record of all calls.

Our schedule of house calls always gives preference to callbacks—the unpleasant and inevitable part of TV servicing. When these special calls for service are not handled promptly, dissatisfied customers take their business elsewhere.

We found that it is particularly important that the same technician who handled the original call handle the callback. He can deal more easily with an irate customer than another technician who may be unaware both of the customer situation and the original complaint. In general, set owners seem to prefer to have a regular technician than various men service their sets.

A two-priced service-call system has proved to have certain advantages. For example, many TV calls amount to little more than a misadjusted front-panel control, a simple rear-panel adjustment (horizontal drive, centering, etc.) or, as sometimes happens, the antenna lead-in wire is disconnected or improperly connected to the set's antenna terminals. Also, noncorrectable outside interference sometimes is the cause of the trouble. The repair in most of these cases is fast and simple.

It is embarrassing for the technician to charge and annoying to the set owner to pay the full service-call price for seemingly so little work performed. Our company charges $4 (for example) with the first $1.50 applied as house call and the next $2.50 as set service. Then when the complaint is a trivial matter quickly and easily correctable only the $1.50 house call is charged. The full price of $4 is charged when the technician has to go into the receiver to correct the trouble.

This practice has been well received by set owners and, in the long run, the seemingly lost $2.50 has been recovered many times over, due to our customers recommending us to their friends.

A complete file on each customer is a necessity if home-service efficiency is to be improved and maintained. Each customer's card lists all work performed on his sets—both home and bench service. Special information is often noted on it—directions on how to get to his home, a repetitious complaint he may have, whether he pays promptly, whether he tries to repair his set himself and whether he is a chronic complainer and a consistent nuisance-callback customer (see Fig. 9). A customer with an unprofitable service record is dropped.

Over a period of five or six years, by applying a systematic and detailed approach and some trial and error, our efficiency and profits have steadily increased to where home service is the major source of income in our TV servicing business.

END
The "GEM" of them all --

ROHN TOWERS

Rohn Towers are the only complete line of towers ... from the No. 6 "all purpose" tower which is most suitable for TV installations, to the giant No. 40 communications tower. Hot-dipped galvanized finish is featured in the entire line.

No. 6 Tower is ideal for heights 50-120'. Features Magic Triangle construction that assures great strength, stability and durability. Stocking Rohn No. 6 Towers means you can fulfill practically all tower needs!

No. 40 Communications Tower for extreme heights and heavy duty work. Uses large 18" equilateral triangular design which allows heights up to 300 ft. for lesser heights where considerable strength is needed. Used widely for radio communication and micro wave throughout U. S. Sell this tower for these requirements existing in your locality.

Both the No. 6 and No. 40 Towers are in 10' sections and are easily installed without special equipment. Also available: No. 30 Towers and a unique space-saver Packaged Tower, the latter available in heights from 24' to 64'.

ROOF TOWERS

5 "Superior Design" roof towers in heights from 2 1/2' to 10'. Most all models are collapsible for easy shipping and storage. All models ideal answer for quick, inexpensive roof top installation. Get full information on this fine line of roof towers.

NEW BASE

Same day" installation base available NOW for No. 6 and P. T. Towers! Use this unique base that permits "on the spot" erection and on the ground assembly. Towers are then merely "walked up" into position.

ROHN "superior design" LINE

TUBING

True hot-dipped galvanized tubing coating both inside and out. Machined to perfection . . . available with 6" expanded end or plain -- and in either 5' or 10' lengths. Painted if desired also available.

ACCESSORIES

A full line of accessories are available -- all -- Hot Dipped Galvanizing! Some of the items are: rotor posts, house brackets, spade brackets, peak and flat roof mounts, instant drive-in bases, hinged base sections, telescoping mast bases, guying brackets, UHF antenna mounts, erection fixtures, and a variety of mounts and supports for masts or tubing.

ROHN offers these exclusives

- Hot-dipped galvanizing - unequalled design and engineering
- mass production for low cost - universal customer acceptance
- pioneer manufacturers - complete line.

GET COMPLETE DETAILS AND CATALOG NOW

Rohn Mfg. Co., 116 Limestone, Bellevue
Peoria, Ill.

Gentlemen: Please rush me complete details on the full line of Rohn Towers and Accessories.

FIRM: __________________________
NAME: __________________________
ADDRESS: ________________________
CITY: __________________________ STATE: __________

SEND COUPON TODAY!

"World's Largest Exclusive Manufacturer of TV-Communications Towers"

ROHN Manufacturing Co.

116 LIMESTONE, BELLEVUE
PEORIA, ILLINOIS PHONE 4-9156
N servicing color TV receivers, we find that quick checks are among our most valuable aids for localizing trouble. Although a complete book could be written on this subject, we can cover a few of the highlights. Ever have a set with a good monochrome picture and no color?

Loss of color

The complaint of no color can be due to a fault in the antenna system, such as a break in the lead-in which produces strong standing waves. The best quick check is to apply a rainbow-generator signal to the receiver's antenna input screen and if a rainbow pattern is obtained on the screen of the color picture tube, the trouble is in the antenna system. If a rainbow pattern is not obtained, the trouble is in the receiver.

When no color is the trouble, always check the settings of the color-ciller-threshold, age threshold, and noise-gate controls before working on the chassis. Remember that Junior may have been playing technician. This is the do-it-yourself era and a disappointed do-it-yourselfer sometimes dislikes to admit that he tried and failed.

If operating thresholds are ample and no color is still the problem, turn the fine-tuning control to inject sound into the picture. If the chroma channels are operative, you will see predominantly blue interference, with some red and a little green. Blue is normally predominant because the gain of the B-Y channel is higher than that of R-Y and G-Y. If you see color interference of this type, the trouble is in the color sync section. If you do not see the interference, the chroma signal is not getting through.

If you obtain normal color interference patterns you can conclude that the color subcarrier oscillator is operating because the chroma signal can evidently pass through the color detectors. However, you can also conclude that the color subcarrier oscillator is running off-frequency so that the rainbow signal, or a station signal, runs rapidly on the screen and appears as a neutral gray (we cannot see the three primary colors when they are in rapid motion).

That's about all the space that the boss will give us for quick checks this month. Maybe we can slip in a few more next time, if you want them.

Cascode tuner

Can I install a Standard Coil cascode tuner in an RCA T120 TV receiver? Will I get better reception? Is this a split-sound receiver? - J. H.

Although a cascode tuner can be installed, there are several considerations to be taken into account, some of which might deter you from the job. A properly installed cascode tuner can be expected to provide better weak-signal reception. The T120 is a split-sound receiver.

The first consideration is mechanical: experience quickly teaches that the amount of work required to mount and secure a different tuner in the correct operating position is often excessive, and costs more than the customer is willing to pay.

From the electrical standpoint, you will require a 23-mc, since this receiver has a 23-mc if strip. Since the receiver has a low-impedance feed from the mixer to the first if tube, you need a tuner with a low-impedance output.

Although cascode tuners are available with low-impedance output at 45 mc, a survey of jobbers indicates that a tuner to meet your requirements would have to be improvised. There are two ways of handling this problem:...
WHERE
Would You
be Today
in Radio-TV
Electronics
IF . . .
you had sent for
this FREE Valuable Booklet 12 Months Ago

Thousands of men did send for it. They read it. And
now they are a full year ahead in their march toward:

- a better job
- better pay
- promotion
- greater security
- greater confidence
- better living for
 self and family

All these benefits can be yours . . . if you act now to see what
the rapidly expanding field of
Electronics offers you. Take that
first big step this minute. No
obligation whatsoever!

CAPITOL RADIO ENGINEERING INSTITUTE
ECPE Accredited Technical Institute Curricula. Founded 1927
3224 16th St., N.W., Washington 10, D. C.

Please send me your course outline and FREE Illustrated Booklet
"Your Future in the New World of Electronics" . . . describing
opportunities and CPE home study courses in Practical Electronics
Engineering Technology.

CHECK
FIELD OF
CAREER
GREATEST
INTEREST

Electronic Engineering Technology
Broadcast (AM, FM, TV) Engineering Technology
Television Engineering Technology
Aeronautical Engineering Technology

Name . Age .
Street .
City . Zone . State .
Check: □ Home Study □ Residence School □ Korean Veteran

To help us answer your request intelligently, please give the fol-
lowing information:

EMPLOYED BY .

TYPE OF
PRESENT WORK .

SCHOOL
BACKGROUND .

ELECTRONICS
EXPERIENCE .

IN WHAT BRANCH OF ELECTRONICS
ARE YOU MOST INTERESTED?

www.americanradiohistory.com
MR. ELECTRONICS MAN:

If you’re willing to lose your job tomorrow to a technically-trained man, don’t read this!

But, if you’re interested in an honest-to-goodness career in the vigorous young electronics industry, here’s how you can step ahead of competition, move up to a better job, earn more money, and be sure of holding your technical job even if the brass is firing instead of hiring.

The “how” is CREI training in radio-television-electronics. You don’t have to be a college graduate. You do have to be willing to study—at home. You can do it while holding down a full-time job. Thousands have. However, you must have some prior electronic experience, either in military service, professional employment, experimenting, or ham operating. Since 1927 CREI has provided alert young men with the technical knowledge that leads to more responsibility, more job security, more money. More than a quarter century of experience qualifies CREI to train you.

What qualifies you for CREI? If you have a high school education, you’re off to a good start. If you have a knack for math, so much the better. If you are currently working in some phase of the electronics industry, you’ll get going faster. But remember this: CREI starts with fundamentals and takes you along at your own speed. You are not held back by a class, not pushed to keep up with others who have more experience or education. You set your own pace. Your CREI instructors guide you through the lesson material and grade your written work personally. You master the fundamentals, then get into more advanced phases of electronics engineering principles and practice. Finally you may elect training at career level in highly specialized applications of radio or television engineering or aeronautical radio.

How good is CREI training? Here are a few ways to judge.

Ask an electronics engineer, if you know one. Ask a high-school or college physics teacher. Ask a radio station engineer.

Check up on our professional reputation: CREI home study courses are accredited by the Engineers’ Council for Professional Development; CREI is an approved member of the National Council of Technical Schools. Ask personnel managers how they regard a man with a CREI “ticket.” Look at this partial listing of organizations that choose CREI to train their own personnel: United Air Lines, Canadian Broadcasting Corp., Trans-Canada Airlines, Douglas Aircraft Co., Glenn L. Martin Co., Columbia Broadcasting System, All-American Cables and Radio, Inc., Gates Radio Co., Canadair Ltd., Federal Electric Corp., and U. S. Information Agency (Voice of America). Finally, ask a CREI graduate to tell you about our Placement Bureau, which currently has on file more requests for trained men than we can fill.

What’s the next step? The logical one is to get more information than we can cram into one page. The coupon on reverse side, properly filled out, will bring you a fast-packed booklet called “Your Future in the New World of Electronics.” It includes outlines of courses offered, a resume of career opportunities, full details about the school, and tuition details. It’s free.

Note: CREI also offers Residence School instruction, day or evening, in Washington, D.C. New classes start frequently. If you are eligible for training under the new G.I. Bill of Rights, check coupon for more data.
TELEVISION
(Continued from page 100)

47,000-ohm resistor into the grid circuit of V4 as shown in Fig. 1.

The cascode tuner has a mixer plate (output) circuit arranged as shown in Fig. 2. If your particular tuner is not exactly the same type, make sure that a grid coupling capacitor is provided. If it is not provided, you must supply it.

Connect the tuner output to the input of the first RF stage, being sure to suspend this lead in free air as it is hot with if signal. Connect heater and age lines as usual, but make sure you have enough B-plus voltage— at least 225 volts. The cascode tuner has two RF tubes in series and requires more B voltage than other configurations.

Fig. 2.— Mixer plate circuit of a typical cascode tuner.

Finally, use a good sweep and marker generator and scope to align the if system properly. The output coil in the mixer plate peaks at about 22.6 mc and the if input coil peaks at about 26.5 mc. The trap operates at 27.25 mc.

Buzz in sound

On a service call for a Sylvania 2IT108M, we were having trouble getting channel 2, until I accidentally found that disconnecting one side of the lead-in brought 2 in OK. However, the other channels were then unsatisfactory. There is a buzz in the sound which cannot be tuned out—S. T.

On the basis of the data supplied, it would appear that there is a wide variation in field strength, which the age system of the receiver cannot contend with. Since disconnecting one side of the lead-in improved reception on channel 2, it appears that your basic trouble is probably overload. Because the buzz cannot be turned out, overload may also be present on all channels.

It sounds like an age problem and, if you cannot correct it by replacing tubes in the signal circuits and the age section, you will have to pull the chassis. To localize the trouble definitely to the age section, it is advisable to apply override bias to the age bus with a bias box. If you can obtain normal reception on any chosen channel when you adjust the bias box suitably, the trouble will be found in the age system. Sometimes this type of trouble can be eliminated by adjusting the tuner's oscillator slugs as slight misalignment will also cause a buzz in the sound. Another possible remedy is a light pad across the antenna terminals. A 3- or 6-dB drop in signal strength should knock out the buzz without hurting reception on other channels.

Remote tuner

I wish to convert a G-E 901 chassis to place the tuner 80 feet away from the receiver.—A. P.

The conversion of the G-E 901 chas-

SEPTEMBER, 1957

www.americanradiohistory.com
TELEVISION

Fig. 3—Modification makes a remote tuner for the G.E. 901 possible.

sis for removal of the tuner is not easy nor economical. However, it is not impossible. To move the tuner 20 feet from the chassis requires converting the tuner output to very low impedance so that 75-ohm ribbon line can be fed to the receiver. (I assume from your letter that you do not contemplate using any electromechanical gadget for remote operation of the tuner.)

To obtain the necessary low output impedance from the tuner, I suggest that you add a 6J6 tube to it, using both triode sections connected in parallel to obtain high performance. The tube is utilized as a cathode follower (see Fig. 3). The if output from T1's secondary is applied to the grid of the cathode follower, and a 47-ohm cathode resistor is used to drive the line to the receiver.

Note that the secondary of T1 is now returned directly to ground. This takes care of driving the line and brings us to the output end of the line. Here we have to convert back from the low line impedance to the high grid impedance of the first if amplifier tube V3. Impedance is converted by improvising a suitable transformer from an if coil tunable through the 23-mc band—a two-turn primary is wound directly over the if coil and connections are made as in Fig. 3.

There is inevitably some signal loss through the cathode follower and the impedance transformer but unless you are concerned with weak-signal reception, this should not be a practical disadvantage.

Use a good sweep and marker generator and scope, and carefully align the if system for the response specified in the receiver service notes. Don't peak T1 too near the frequency of V9's plate transformer or you will have trouble with regeneration or oscillation.

Excessive horizontal drive

The owner of a Spartan 15V215 chassis reports that a vertical drive bar has been on his screen since he got the set. I noticed it only after I repaired some other trouble. The owner reports that he took the set back to the store but was shown another similar Spartan set which also had the bar and was told that in time it would go away.

It looks like a simple case of horizontal overdrive, but I sacked off on the drive control all the way and the trouble persists. It seems as though some slight circuit change should be made to reduce the drive. I experimented with changing b for the drive control circuit and did get the drive lowered to a point where the line disappeared, but the horizontal sweep was then distorted.—J. L., Flint, Mich.

The drive bar you report did appear on many sets in the production. While it is possible to reduce drive by altering the drive circuit, it is far simpler to reduce the plate supply to the horizontal oscillator. This circuit is fed from the B-boost supply through a 56,000-ohm resistor. The voltage on the plate of the vertical oscillator can be decreased, and hence the drive, by increasing the plate-dropping resistor. Some later models use a 100,000-ohm resistor and this is not too much; you may have to use more. With lower oscillator output the drive control can then be adjusted to remove the center compression or drive line.

Increasing sensitivity

A set came in with poor contrast. Checking revealed that the tuner gain was good and there was no snow. However, the sensitivity of the if amplifier was poor as indicated by the low voltage developed across the video detector load. I have good test equipment and am experienced in alignment, and I went over this receiver (Sylvania 1-520) with a fine-tooth comb. The front end and the if amplifier are adjusted perfectly as per Sylvania instructions. Further, I made a thorough check of all voltages in the if amplifier, and all components are within tolerance limits. Any suggestions you can give would be appreciated.—B. L., Philadelphia, Pa.

Judging from your address you are in a strong signal area and your problem is not one of reception. Although Sylvania has never made any circuit modifications toward improving this condition, I have found this chassis to be extremely sensitive to changes in values in the if circuits—both component and voltage values.

On one chassis the cathode resistor of one of the if stages measured 55 ohms. This was well within the 25% limits of the 47-ohm resistor specified. On replacing it with a resistor that measured exactly 47 ohms, the increase in if gain was astounding. Thus, the proper approach here is to replace all 47-ohm cathode resistors with exact selected values. Do the same with all other components that might affect the.
CUT TESTING TIME IN HALF — DOUBLE TUBE SALES

Measures true dynamic mutual conductance with laboratory accuracy under actual operating conditions right in the home. Makes complete tube test in seconds. Quickly detects weak or inoperative tubes. Shows customer the true condition and life expectancy of the tubes and sells more tubes right on the spot. Cuts servicing time, saves costly call-backs, wins customer confidence, and brings more profit. One extra tube sale on each of 5 calls a day pays for the Dyna-Quik in a few weeks.

NEW Model 650

Today's Fastest, Most Complete, Portable
DYNAMIC MUTUAL CONDUCTANCE
TUBE & TRANSISTOR TESTER

Offers New Features—More Features! Checks over 99% of the tubes most widely used in television receivers, plus popular home and portable radio tubes. Tests over 500 tube types. Lists over 125 tube types, with settings, on socket panels for maximum operating speed. Complete listing in fast telephone-index type selector. Includes 16 spare sockets and sufficient filament voltages for future new tube types. Phosphor bronze socket contacts. Tests each section of multiple tubes separately for Gm—Shorts—Grid Emission—Gas Content—and Life. Gives instantaneous Heater Continuity check. Shows tube condition on “Good-Bad” scale and in micromhos. Special bridge assures automatic line compensation. Simple to operate. No multiple switching—No roll chart. Includes pin straighteners. Transistor Tester checks junction, point contact and barrier transistors, germanium and silicon diodes, selenium and silicon rectifiers.

Net, $169.95

FAMOUS Model 500

World's Fastest Selling Portable
DYNAMIC MUTUAL CONDUCTANCE TUBE TESTER

This is the B&K quick-check tube tester that has revolutionized TV set servicing! Servicemen say: “Best tube tester I've ever owned for speed and dependability,” “Wonderful instrument, makes money,” “Paid for itself several times. Really indispensible!” “Have two...one for the shop and one for house calls!” “Adds income and saves unprofitable call-backs!” That is why thousands of the Model 500 are now in profitable use all over the nation. Tests tubes for Shorts, Grid Emission, Gas Content, Leakage, and Dynamic Mutual Conductance—in a matter of seconds. Life Test detects tubes with short life expectancy. Shows tube condition on “Good-Bad” scale and in micromhos. One switch tests everything. No multiple switching—No roll chart. Special bridge maintains automatic line compensation. 7-pin and 9-pin straighteners.

Net, $109.95

See your B&K Distributor, or write for Bulletin 600-650-E

*Names on request

B & K MANUFACTURING CO.
3726 N. Southport Ave. • Chicago 13, Illinois
Export: Empire Exporters, 439 Broadway, New York 13, N. Y.
YOU NEED THESE FEATURES:

- Meter Movement Protection up to 500 times overload is provided by a rectifier network.
- The 555A Measures: AC Current, DC Current, AC Voltage, DC Voltage, Output, Resistance
- 43 Unduplicated Ranges
- Separate Range and Function Switches
- Double Magnetic Shielding
- 3% DC, 4% AC Permanent Accuracy
- Easy to Read, Four Color Scales 4 7/8" long
- Metal Case with Die Cast Bezel 6 1/8 " x 4 3/8 " x 2 3/8"
- Sensitivity: 20,000 Ohms/Volt DC, 2000 Ohms/Volt AC

TELEVISION

if tubes' operating characteristics (including the age circuit) and you will most likely obtain a significant increase in gain.

Horizontal drive range

A Crosley chassis 472 came in with a condition of horizontal foldover that could be varied by turning the horizontal drive control. The best effect was obtained with the trimmer to its maximum capacitance. This also improved the width and brightness. I replaced this control with a capacitor of about 180 µf, with the condition improved considerably. My major concern now is if I am overdriving the horizontal output tube. The set appears to be working fine.—L. S., Groton, Conn.

The set you have is probably an early production model using a 68-µf capacitor. It was found that this drive control was not sufficient to adjust for certain tubes, and the later models of this chassis increased their drive range by replacing the 68-µf capacitor with a 330-µf unit. Thus, you might do well to insert a 330-µf drive control—
you may get still better performance from the horizontal sweep circuits.

Color-killer adjustment

A customer has a Stromberg-Carlson model K-1 color TV set on which I have made several calls to adjust the color-killer control. Unfortunately, I cannot get a schematic for this set and thus hesitate to make any circuit changes or even detailed troubleshooting. However, I would appreciate some information on the setting and adjusting of the controls that cause interference when switching from a color to a black-and-white program.—T. S., Rochester, N.Y.

You did not state positively just what the trouble was nor the nature of the interference. However, the color-killer control can be adjusted in the home by tuning in a black-and-white picture. Then turn the chroma control to its mid-position. Adjust the color-killer control for a 920-kc beat (a coarse vertical beat) and then readjust until the beat just disappears. The color-killer control will now be adjusted so that the chroma control can be left in its mid position even though there is no color signal present. This also eliminates adjustment of the chroma control between color and black-and-white programs. If the above fails to react as stated, you have no alternative but to go carefully over the color-killer circuit and, if nothing else, replace any components that are off-value by more than 10%.

NEXT MONTH'S TV SERVICE CLINIC discusses COLOR PICTURE ANALYSIS

PHAOSTRON INSTRUMENT AND ELECTRONIC COMPANY
151 Pasadena Avenue, South Pasadena, California

106
ARE you going to buy one, or be one?” Red asked pointedly.

“Two more coffees,” Fuzzball called. “I’ll drink mine naked,” he added.

Red reached for a pass-wipe and gave the counter a couple of swipes.

“Joe cleans this counter once a year,” he remarked, “whether it needs it or not.”

“I got troubles,” Fuzzball confided.

“You mean this color TV installation?”

“Yep. Confidentially, I don’t know all the answers,” Fuzzball admitted.

“Fuzz, you don’t even know the questions. You got black-and-white service savvy, but you don’t know from nothing about this color rat race.”

“Sure don’t,” Fuzzball said. “Where do I start in at?”

Red set his cup down slowly. “Well, you know I always give a color set a rough setup and check it out before it’s delivered. You got a problem, but it’s only an installation problem. It starts with the customer.

“You have to explain that the receiver must be permanently located in the room and left there. If it’s moved to another corner of the room, the change in stray magnetic fields is likely to throw the purity off.”

“You’re saying that the colors won’t be right, and a black-and-white picture will be tinted,” suggested Fuzz.

“Roger.”

“So what would cause a change in stray fields if the set is moved?”

“Use your bean, man. There’s usually pipes in the wall, radiators and plenty of metal in any building. Even the earth’s magnetic field can affect color purity, it says in the better books,” Red advised.

“I guess that’s about the only problem with the customer?”

“Got news for you,” Red retorted. “next you got to tie down what kind of lighting will be used for most of the program viewing.”

“You got me showed,” Fuzz protested, “why?”

“Well, if Mrs. Jones likes to use her color set mostly during the daytime, you have to balance the picture tube for daylight. Because, the picture tube won’t show a neutral raster for tungsten lighting, or for fluorescent lighting, when it is balanced for daylight. If she likes to use the set mostly in the evening, you have to darken the room, turn on the light that is going to be used, and balance the picture tube for that particular kind of light. Otherwise, she will complain that the screen is tinted red, or blue, or green and you’ll have a callback.”

“How do I set up the picture tube for a neutral raster?” Fuzz asked.

“To start with, just turn the screen controls for the picture tube until the raster is neutral. You can get to the background controls later on.”

“Let’s take this step by step,” Fuzz suggested, “and some’ll rub off.”

“It better,” Red replied. “Now that we know where the set will be located, and what type of room lighting will be used, we remove the back from the cabinet and look for the high-voltage interlock.”

“Do all sets have interlocks?”

(Continued on page 110)
TRIO'S 1958
ZEPHYR FAMILY
OF ANTENNAS

FOR DISTANCE
Flat Responce That Gives
Good Reception on Both
Black & White & Color

Uses The
EXTENDED "WING" DIPOLE
A New And Improved Wing Dipole
And The
"WING" DIRECTOR
THE POWER PACKED PAIR

Zephyr®
PIONEER
FOR EXTREME DISTANCE
Uses The
EXTENDED "WING" DIPOLE
And The
"WING" DIRECTOR
COLLINEAR DIRECTOR
for increased gain
on the highs

THE POWER PACKED THREESOME

EXTENDED "WING" DIPOLE—the composite dipole that brings the power of the yagi to every channel.

Now improved with the Extended Wing for increased gain, broader band width, and greater sensitivity on all channels. The main advantage of the "Wing" dipole over conventional dipoles functioning on the third harmonic of the lows is that three high band elements plus the integrated director are contained within the area normally taken up by a low band dipole. This gives increased gain and directivity on the high channels. The design of the "Wing" dipole gives forward Yee to the low band section of the dipole for ultimate gain on the low channels.

Export Sales Div., Scheel International Inc., 5909 N. Lincoln Ave., Chicago, U.S.A.
Cable Address: HARSCEEL

www.americanradiohistory.com
ZEPHYR ROYAL®

FOR THE MAXIMUM
In TV Enjoyment

New
EXTENDED "WING" DIPOLE

With The
"WING" DIRECTOR

COLLINEAR DIRECTOR

STAGGER - TUNED

THE NATION'S BEST PERFORMING ANTENNA ON BLACK & WHITE
EXCELLENT FOR COLOR RECEPTION

STAGGER-TUNING
The use of "stagger-tuned circuits" in the I.F. stages of TV receivers is well known to television service men. This principle is applied in the design of Trio's Zephyr Royal to provide flat frequency response necessary for improved TV reception. Since the "Wing" dipoles provide resonance and a single lobed pattern on each of two frequencies, the array of three dipoles makes possible the choice of six predetermined frequencies on channel 2, 4, 6, 7, 10, and 13, a flat frequency response such as indicated in Figure A can be obtained by tuning the antenna on these frequencies—an equally flat response is obtained on channels 3, 5, 8, 9, 11, 12. The dotted line indicates the frequency response of the "Wing" dipoles alone. These three dipoles, in combination with each other and with the "Wing" director system, provide the over-all gain and flat response shown by the solid line.

"WING" DIRECTOR—the revolutionary new director specifically designed to enhance the power and sensitivity of the "Wing" dipole.

The "Wing" director is as revolutionary a contribution to antenna design as was the introduction of the "Wing" dipole. This highly efficient director is effective on both high and low channels having greater sensitivity than conventional directors. Used in conjunction with the "Wing" dipole, the "Wing" director adds up to 1.5 db gain on specific channels. A compact, well designed system, the "Wing" director eliminates several stubbed directors to make a smaller, more highly efficient all-channel antenna.

TRIO Manufacturing Company
GRIGGSVILLE, ILLINOIS

SEPTEMBER, 1957
(Continued from page 107)

"Not all. There are different types of interlocks to watch for, too."

"Gimme a frinstance," suggested Fuzz.

"Well now, when you take the backboard off an Admiral, you'll see a poly tube about 4 inches long and half an inch in diameter that pulls out of the interlock with the backboard. When you take the backboard off a Sylvania set, there's a wire lever springs back from the high-voltage cage—closes a switch that shorts the high voltage."

"I reckon I shouldn't turn the set on with the high voltage shorted."

"You know it," Red replied. "You'll blow the flyback fuse quick, if you try. "How can you check the interlock?"

Fuzz asked next.

"In case you're working with the Admiral type, you shove a poly tube into the interlock. Walco makes a handy cheater of this type. But if you're working with the Sylvania type, you look for a hooked trigger wire to hold the interlock open while the back is off the set."

"Tell me more."

"Well, you have to learn how the cabinet comes apart."

"Dog bite! You mean the cabinet comes apart?"

"In most cases. On an RCA, the top can be removed so you can stand in front of the picture tube while you're making the setup. On a Hoffman, the side of the cabinet swings out. On a Sentinel, both sides and top can be lifted off."

"That's a real good steer, Red," Fuzz acknowledged gratefully.

"Be my guest, buddy. Now you're ready to go to work. The first job will be blood, sweat, and tears, but it gets easier as you learn the ropes."

"How do I go about making the setup?"

Measure the high voltage

"You remember about setting the screen controls for a fairly balanced or gray raster. Of course, the customer’s brightness control—that’s the master brightness control—must be set high enough too. Now we usually have to measure the high voltage."

"Skip it, Red. I been measuring high voltage for years."

"Down, boy. You're going to have to run like hordes to keep up with the foot of the class."

"What are you driving at?"

"These color picture tubes run at 25 kv," Red explained, "and you don’t go poking around with a high-voltage probe like in a black-and-white set that has low voltage and low current. That 25 kv will spray and are like crazy if it’s not treated with care. Now, if you’re using a Walco cheater, you can stick the high-voltage probe down inside the hollow cheater and measure the high voltage on a meter. If you’re working with some other kind of set, like a Packard Bell, is isn’t convenient to measure high voltage directly. So you put a voltmeter across a resistor mounted on the side of the high-voltage cage. Then you adjust the high-voltage pot until you read 0.9 volt; the high-voltage will then be set to 25 kv."

"Suppose you don’t set the high voltage?"

"That is ungodly," Red advised. "You may work all day on convergence and draw a blank."

"Then you have to check and set the high voltage on every color receiver?"

"Not quite all," Red explained. "On some Motorolas, the old TS-362A frinstance, you don’t have a triode regulator tube. Instead, a Victoreen 25kv hydrogen bleeder tube is used in the set. It looks like a big black club mounted on the horizontal chassis."

"You don’t worry about the high voltage when a bleeder regulator tube is used?"

"Right. Unless the set has been in service for a long time, the bleeder will do its job automatically. Of course, it might eventually have to be replaced, like any other tube."

"No kidding, I really appreciate these tips," Fuzz said gratefully.

"I didn’t know you cared," Red replied. "Anyway, next we have to make all the usual black-and-white setup adjustments, like linearity, height, and width."

"Suppose I goof and forget."

"You’ll just knock yourself out. If you converge the picture tube, and then go back to the linearity and height adjustments, you’ll mess up the convergence and throw all your hard work down a rat hole."

"What comes after setting up the linearity, height, and width?"

Now, the beam magnets

"Then you connect a white-dot generator to the set and see whether the picture tube is in rough convergence. We rough-converge the sets before they leave, and in most cases you will be OK on this one. However, if the white dots in the center of the screen are splitting up into red, green and blue dots, you have to get on the beam magnets and bring the center screen into convergence."

"Take it easy," Fuzz protested. "Where are these beam magnets?"

"They’re mounted around the neck of the picture tube, just back of the yoke," Red explained. "There's three of them; one for red, green and blue. They have little round knobs, and when you turn a beam magnet, it moves its own beam, mainly. But there’s some interaction—the red beam magnet also moves the blue and green dots to some extent."

"Sounds easy enough," Fuzz replied. "But don't forget this," Red cautioned, "on the Motorola set, for example, there is a beam-retraction lever; it's thrown to one side during shipment so the iron cores of the magnets don't rest against the glass neck of the tube. Unless you remember to throw the retraction lever and lower the magnets to the tube, you'll never get the picture tube converged."

"Where is this retraction lever at?"

"It’s mounted on the back of the yoke, between the yoke and the beam magnets."

"So we have three beam magnets to work with at this time?"

"Nope, there are four. In addition to the blue beam magnet, there is a blue lateral corrector magnet."

"Translation, please."

"Well, this blue lateral corrector is mounted on the neck of the picture tube nearest the base. It looks like the ion trap magnet used on some black-and-white sets. But it’s not an ion trap—and there’s no ion trap on a color picture tube. The blue lateral corrector is a strap and spring arrangement, with
a magnet that can be pushed or turned in or out. In some sets, the magnet is rotated in the strap mounting."

"Fill me in on these beam magnets and lateral corrector."

"Here's the pitch: The blue gun will be mounted straight up or straight down on the neck of the picture tube. The red and green guns are mounted 120° around the neck from the blue gun. The convergence magnets are built so that the blue beam magnet moves the blue dot only up and down. We need to move it sideways, too, to get convergence. You adjust the blue lateral corrector for this sideways motion."

"Then I reckon the green and red beam magnets would make the green and blue dots move diagonally?"

"You're right on the stick," Red said admiringly.

"I do it by osmosis," Fuzz explained.

"So, when you adjust the red and green beam magnets, you get opposite diagonal travel of the color dots, and the red and green dots cross over at some point and converge. Then, you adjust the blue beam magnet and the blue lateral corrector to converge the blue dots with the yellow dots—of course, when you overlap the green and red dots, you get yellow dots."

"And when the blue dots overlap the yellow dots, I'll get white dots?" Fuzz hazarded.

"Right again," Red said admiringly, "you're the genius type. Now, you'll find the beam magnets and lateral corrector produce convergence only in the center part of the screen. The picture tube will be out of convergence on both sides, and at the top and bottom."

"What do I do about that?"

"For the moment, nothing. We need to get only rough convergence at this time, because we have to set up the purity and purity is affected by convergence if the convergence is way out."

"You spoke about purity before," Fuzz recalled.

"Yep. And now we have to get down to brass tacks. We check the purity by turning off the blue and green guns. The red field is produced with a heavier beam current, which is a little harder to control—so, if we set up purity on the red field, the green and blue fields will usually fall in OK."

"How do I turn off the blue and green guns?"

"Depends on the set," Red observed. "On a Motorola, for instance, the grid leads to the color guns are terminated with plugs, which can be unplugged from the amplifier circuits and plugged into grounding jacks on the back of the vertical chassis."

"How do I know which lead is which?"

"They're color-coded. Look at the leads coming from the socket of the picture tube. Among them, you will see a red, a green and a blue lead. We ground the blue and green leads."

"That leaves a red field on the screen of the picture tube."
TELEVISION

“"You’re so right!”
"But only on a Motorola,” Fuzz remarked.

"Check, on an RCA set, you use another method: you shine 100,000-ohm resistors to ground from the terminals of the green and blue grid leads.”

“I guess you could always turn the green and blue screen controls down to minimum,” Fuzz suggested.

"Right again. And on some color receivers, that’s the only practical way of getting the red field by itself.”

"How high do I set the red screen control?"

"That’s a good question, and I like good questions.” Red replied. "Usually you’ll have a red screen control provided. But on the Hoffman set the red screen is controlled by fixed resistors, and you don’t adjust the level.”

"Should the red screen control be tuned wide open on the other sets?"

"Not always. You have to be careful here. Sometimes you can set the red screen control too high, and damage the color picture tube. Check the receiver service manual, find out how much red screen current is allowable, and don’t exceed the limit.”

"So I have to measure the red screen current in such cases?” Fuzz asked.

"Yep. But you usually measure it indirectly, just like you often measure the high voltage indirectly. The service manual will tell you how to make the measurement.”

Purity setup

"How about setting up the purity?”

"There are three adjustments for purity. In the first place, the yoke should be slid to the point of best purity along the neck of the picture tube.”

"Then you don’t mount the yoke clear forward against the flare of the tube, like it’s a black-and-white tube.”

"Absolutely not. There is no danger of neck shadow in a color tube, because the neck is large. The yoke is mounted on slotted brackets and is located for best red field purity. At the same time, you adjust the purity magnets on the neck of the tube.”

"What’s with these purity magnets?” asked Fuzz.

"They are a pair of flat ring magnets located between the convergence magnets and the lateral corrector. You might guess that the purity magnets were centering magnets, like on some black-and-white tubes, but they’re not for centering—they control the purity.”

"Then how do I center the raster?”

"You’ll find a couple of pots on the chassis like in the old-time black-and-white receivers. Now, the purity magnets will change the picture centering, but the off-centering is corrected by the centering pots.”

"Do I adjust the purity magnets?” asked Fuzz.

"Well, each of the flat rings has a tab and you can rotate the two rings face-to-face by pulling these tabs apart, or moving them closer together. (See (Continued on page 116)
COLOR TV DESERVES TOP
ANTENNA PERFORMANCE WITH
ALLIANCE TENNA-ROTOR

Meet The Constant Changes In Television!
Cash in on Color...as well as Black & White

Beautiful decorator colors—Ivory, Forest Green and Standard Mahogany Grain. Alliance Tenna-Rotor control cases blend with the color scheme in any room.

COLOR TV DESERVES TOP
ANTENNA PERFORMANCE WITH
ALLIANCE TENNA-ROTOR

Beautiful decorator colors—Ivory, Forest Green and Standard Mahogany Grain. Alliance Tenna-Rotor control cases blend with the color scheme in any room.

Meet The Constant Changes In Television!
Cash in on Color...as well as Black & White

Customers for COLOR TV make more sales for Alliance Tenna-Rotor. Viewers will not tolerate color that's "ghostly" or weak. Properly installed outdoor antennas with Alliance Tenna-Rotor assure maximum directivity—help to overcome interference and deliver full color that's all there!

THE ALLIANCE MFG. CO., INC.
(Division of Consolidated Electronics Industries Corp.)
ALLIANCE, OHIO

In Canada—ALLIANCE MOTORS, Schell Avenue, Toronto 10

SEPTEMBER, 1957
How far can you go in electronics without a degree?

2 years ago, degreeless Bill Miles had reached a blind alley in his career. Yet today, with IBM, he's actually supervising engineers in America's biggest electronics project. Here's how this technician broke through the "education barrier."

"Training and local assignments," recalls Bill Miles, "were what caught my eye when I saw an IBM ad in 1955. So I investigated. Now here I am with an advanced electronics education under my belt—and responsibility as a Group Supervisor in Project Sage. I work on the world's largest and most advanced computer. I live in my home town. And my future in the company is what I make it. Yet only 2 years ago, I thought I'd gone as far as a technician ever could!"

Becomes radar technician

Bill's background is typical of thousands of capable, ambitious technicians who never acquired a formal engineering degree. His interest in electronics, aroused in Camden, New Jersey, high school, was nourished by a 3-year stint as Aviation Radar Technician in the Navy's "Black Cat" air-sea rescue squadron.

Takes night courses

Discharged in 1946, Bill married a girl he'd known in high school. During the next 9 years, Bill was teacher in a radio-TV institute, TV service man, TV company technician, and chief supervisory TV technician. All the while he pursued an engineering education at night. But growing family responsibilities made it more and more difficult.

Finds doors barred

However, feeling he was equipped for greater responsibility, Bill, now 30, investigated several companies but found that, while they liked his abilities, his lack of degree barred the door to any significant future advancement.

Enters IBM school

In May, 1955, when he moved his family to Kingston, New York, and started at IBM, Bill wasn't quite sure what to expect. The 8-month training course—valued at many thousands of dollars per man—had been the big magnet for him. He hoped the future would match his expectations.

Meets head of school

"Sixty of us started school at IBM, attending class 8 hours a day. The course consisted of about 20 subjects, mostly dealing with computer circuits and units, and maintenance techniques. The teaching was adult, superb. During training, we received a living expense allowance, over and above salary. We kept our own grades, and every 6 weeks when we reviewed them with the instructors, they asked us for ways to improve the course. I expected a casual 'hello' when I met the Division Manager of Education, but he talked to me for an hour about myself and my interests. The real concern IBM has for you as an individual, both before and after they hire you, is undoubtedly one reason why we all began to take a lot of pride in this outfit."

Joins home-town computer site

Bill had joined IBM as a Field Systems Engineer. After graduation, when 10 of his classmates were immediately promoted to specialized assignments, Bill was assigned to a computer site near his home in Mount Holly, New Jersey, with IBM paying his moving expenses. For the first two months he helped install the SAGE computer, an important link in America's air defense. Ultimately, such computers will ring America's entire air defense perimeter. Looking back, Bill notes, "I'll admit the work was laborious and difficult, but still I have a sense of great accomplishment. Together we all helped create something of value from almost nothing."
World's largest computer

"The computer is probably the largest one in the world, with over a million components. Flattened out, it would probably fill a ball field. The computer analyzes radar data on every object in the sky. Then it checks each object against available traffic information and identifies it as either friendly or hostile. It can make suggestions, but it can't send a Nike missile against what it thinks is a 'baddie.' Only airmen can make that decision."

Miles does diagnostic programming on the Operating Console of the Sage Computer

Miles nails down problem with Site Manager R. Schimmel

Buys house, car

Bill has bought a 7-room house in Mt. Holly. When not busy with his son and twin daughters, he likes to bowl. He drives a new automobile. He's enjoying the good life, and expects it to get even better. His employee benefits alone represent a cash value of many hundred dollars a year. He expects the IBM-sponsored General Education Program will prepare him for higher management responsibilities. Later, Bill's manager said, "He's currently assuming the responsibilities of an electrical engineer."

But the question remains: Is Bill really an engineer?

The "professional" engineer

"No, I certainly don't consider myself a 'professional' engineer, qualified to design machines, for instance. But the point is, I'm doing work ordinarily done by engineers... work usually denied to men without a degree."

IBM upgrades technicians

Could he do this elsewhere? "Of all the companies I know, IBM appears to be one of the few upgrading the technician to the level of engineering responsibility. Fortunately for me, IBM had the imagination to get men without degrees and encourage them to rise in responsibility and income to the level of their native talents... not what their formal education dictates."

Both titles gain

Is this a sign that the educational system is wrong? "Not at all," answers Bill Miles. "A Doctor's, a Master's, a B.S. degree stand for something and always will. But if a technician can perform many jobs that traditionally belong to the engineer, they both stand to gain. The technician, because he gets much of the engineer's salary, satisfaction and recognition; the engineer, because he is free to do work which only a man with his formal training can do. When everybody wins, and nobody loses, it's the sign of a good thing."

Since Bill Miles joined IBM, opportunities in the Project Sage program, destined for long-range national importance, have grown more promising than ever. If IBM considers your experience equivalent to an E.E., M.E. or Physics degree, you'll receive 8 months' training, as a Computer Systems Engineer. If you have 2 years' technical schooling or the equivalent experience, you'll receive 6 months' training, as a Computer Units Field Engineer, with opportunity to assume full engineering responsibility. Assignment in area of your choice. Every channel of advancement in entire company open—and IBM is leader in a field that's skyrocketing in growth. All the customary benefits and more. WRITE to Mr. Nelson O. Heyer, Room No. 3109, IBM, Kingston, New York. You'll receive a prompt reply.
Here's how to GET MORE WORK OUT OF YOUR Oscilloscope!

A Complete, easily understood guide to using the handiest service instrument of them all
MODERN OSCILLOSCOPES AND THEIR USES

By Jacob H. Ruiter, Jr.

Enlarged 2nd Edition
contains the latest data on everything you need to know about scopes.

MORE THAN 30 NEW PICTURES...plus 50 more pages on use of scopes in Color TV, servicing, Industrial Electronics, Teaching, even in Atomic Energy work.

It goes right down to "tricks tactics" in explaining how oscilloscopes operate. Then you learn exactly how to use your "scope to handle tough jobs easier, faster and better.

WORK EASIER—BETTER—FASTER!

Each operation is explained step by step. You learn to determine just where and how to use the "scope on specific jobs, how to make connections and adjust circuit components, how to set the controls; and how to analyze oscilloscope patterns fast and accurately.

370 illustrations including dozens of pattern photos make things doubly clear.

No other type of specific service training can mean so much to you in boosting your efficiency and earning power! Send coupon NOW for 10-day FREE examination!

PRACTICE 10 DAYS—FREE!

TELEVISION

(Continued from page 112)

"Black and White Adjustments in Color TV," Radio-Electronics, January 57.)

When the tabs are together you have the weakest purifyfield, because the poles of the two rings cancel. When you pull the tabs apart, the purity field is increased. The complete purity assembly can be rotated on the neck of the tube and you work with both adjustments, along with the yoke position, until you get the purest red field.

"You said there was a third adjustment for purity, too."

"There is. You will find that when you get the best purity possible by adjusting the purity magnets and yoke position, the edges of the picture tube will still show impurities. Cinch down the yoke and go to the rim magnets around the edge of the picture tube. You adjust these rim magnets for good edge purity."

"How many are there?" Fuzz asked.

"Admiral uses six and Motorola eight," Red replied. "Some new sets have gone back to the old arrangement in which you don't have any rim magnets, but instead a large rim coil wound around the edge of the picture tube. When you have a rim coil, you look for a pot that adjusts the amount of dc current through the coil."

"The rim-coil adjustment would be easy," Fuzz observed. "How do I adjust these purity magnets?"

"Depends," Red replied. "On some sets, the rim magnets are held by spring clips, and you just rotate the magnets in the clips. But on other sets, you can pull the magnets away or move them closer to the tube, as well as rotating them."

"That's fine, then," Fuzz agreed, "if the purity comes out OK. Suppose it doesn't look satisfactory after the adjustments are made?"

"You must have been reading my mail," Red replied. "It can happen! In such a case, you have to degauss the picture tube."

"How do I do that?" asked Fuzz.

"We'll cover that tomorrow," Red promised.

"Back to the salt mines?"

"Chop-chop," Red agreed, tossing two bits on the counter.

END

(If you liked this article and want more like it drop us a line and tell us so.—Editor.)
TELEVISION

By ROBERT COOPER, JR.

CONFUSION! This one noun would appear to summarize the total state of dx during the last few months. Sporadic-E skip hit the whole country with a fury not seen since the summer of 1954. Areas such as the Northwestern States found themselves the recipients of more skip in a single 2-week period than they would normally get in a whole summer. This was especially apparent in the field of double-hop E reception over distances of 2,000 miles or more.

Station call letters even added to the problems of the dx enthusiast. The call KTCA first began to show up on channel 2 on the night of May 22, being seen over a wide area in the Mid-Atlantic States. Master call-letter lists showed this station was on channel 4 in Hawaii! Imagine the elation that must have followed this logging, only to learn later that the station really is on channel 2, but in Minneapolis, Minn. Even the FCC can be confused when issuing call letters.

During many of the better E-skip openings, dx'ers found so many stations skipping in on the lower channels that station identification was all but impossible for hours on end. The comment of Robert H. Gordon of Harrisburg, Pa., with his log of May 22 is quite typical of those received: "There were too many stations coming through at the same time—impossible to log." Believe it or not, there are times when dx can get just a bit too good!

Leon Henner of Riverdale, N.J., notes dx reception in full color on June 3 from station KTBS Shreveport, La. Although I am sure this is not a first, it is the first reported instance we have of good-quality color dx reception.

Problems with reception from television stations "south of the border" cropped up again this summer. New stations in Cuba and Guatamala were reported over wide areas. Station TGBOL on channel 3 appears to be originating from Guatamala City, Guatamala. It is reported as received on many points along the Gulf Coast.

In response to our plea for any unusual reports of reception from the south on May 1-2, dx'er Doris Johnson of Longview, Wash., notes fading signals from the southeast, channel 2, 1602-1612 with Spanish or Portuguese audio but no video that would sync in. Doris also reports that on May 8, 1101-1103, while receiving KNX, channel 2, Los
NEW!

ARKAY

SF-6—Dual channel, preamp with cathode follower outputs. Can be used with tape deck, mag. phone, tuner, or aux. equipment. The construction of the SF-6 allows for use as a conventional pre-amp. Features include 6 position tone switch: Simultaneous volume controls; Loudness control. Bass control ± 16 db. @ 60 cps; Treble control ± 16 db. @ 10,000 cycles; 3 position Hi-Filter and Lo-Filter. Freq. response ± 3 db. 20 to 40,000 cps. Sensitivity—tape, 4 mv. for .5 volt output; phono, 6 mv. for .5 volt output-tuner and aux. 3 volt output. DC kit, Built-in power supply.

Kit $34.95 Wired $69.95

HI FI

KITS AND PREWIRED

MODEL SA-23—Dual channel pre-amp drives a monaural 25 watt Linear Williamson amp, with your present amplifier for unsurpassed realism at Binaural sound. Channel 1—25 watt amp; freq. resp. ± 2 db. @ 20 watts, 20 to 20,000 cycles; sens. tape phone—4 mv. for .5 volt output-tuner aux. ± 3V for 25 watts; Loud Control; Volume Control—controls dual channels; Bass Control and Treble Control 2 pos., “Lo-Cut” and “Hi-Cut” filters; Equal; switch for all labels plus NARTB tape head.

Channel 2—5 volt output—some sens. as channel 1; same pre-amp features. Just add your present Hi-Fi amp. to channel 2 and prepare yourself to enjoy the sound reproduction only ARKAY stereo can offer.

Kit $59.95 Wired $89.95

STereo

NEW!

ARKAY

SF-11—a binural tuner designed to provide the listener with stereo HI-FI of exceptional quality. Because each section contains own tuning condenser I.F. strip, detector and cathode follower outputs, monaural tuning of AM or FM is possible. Arkay “Miracle Ear” sensitivity on FM gives 4 mv. for 20 db. quieting; Bandwidth 200 KC, 6 db. down; freq. resp. ± 3 db. 20 to 20,000 cycles. Noise level—65 db. A.C.F. adj. cathode follower output: 75 microsecond de-emphasis network. Arkay “Miracle Ear” sensitivity on AM gives 3 mv. for 20 db. quieting; Bandwidth 100 KC, freq. resp. 20.6.000 cycles, adj. cathode follower output.

Kit $47.95 Wired $69.95

Arkay

120 Cedar Street New York 6, N. Y.

Acknowledgments

Arkay

120 Cedar Street New York 6, N. Y.

118

Radio Electronics
Mr. Service Dealer:

A PHILCO ANTENNA ON YOUR CUSTOMER'S ROOF

...is like a boost in station power!

Now, Philco brings you a complete line of quality antennas. These antennas were designed and engineered to reproduce the best picture far out into the fringe whether receiving a picture in black-and-white or color. Field and Laboratory tests conducted under the most exacting conditions with actual on-the-air programs give you the complete assurance that you can sell Philco antennas and rotors with confidence in any TV area. See your local PHILCO DISTRIBUTOR for the full story on Philco quality antennas and rotors.

AP22 Rotor Control: Heavy duty, long life automatic rotor with automatic finger-tip control unit providing dependable and fool-proof operation. Attractive, stream-lined cabinet with modern styling.

AP22 Rotor: Weather-tested and proven for long-service-free-life. Designed by service-experienced engineers to highest quality standards.

PHILCO CORPORATION • ACCESSORY DIVISION • PHILA. 34, PA.
SEPTEMBER, 1957
TELEVISION

will be small in nature and weak in strength.

No major meteor showers are predicted for September-October, although several minor ones do occur in the late evening hours, local time. North-south paths should be the most productive for meteor-scatter work during the next two months.

We still do not have any instances of true F2 reception into the United States from stations using American standards, but there is no way of telling what this fall will bring. Watch for signs of reception from South America around noon local time, channel 2. Reception from the Hawaiian Islands may be possible on channel 2 during the latter part of October, when it is noon at the mid-point of the path between you and the islands. Again, watch channel 2.

Report forms

RADIO-ELECTRONICS continues to make television dx report forms available, free of charge, to readers of this column. Simply send a postcard with your name and address to TV Dx Column, RADIO-ELECTRONICS, 154 W. 14th St., New York 11, N.Y.

CORRECTIONS

In the parts list for the amplifier on page 55 of the July issue, the power transformer T1 is listed as a Chicago type PV-200. However, the voltage and current output given were not that of the PV-200, but that of an experimental transformer used in the prototype design. The designer recommended the PV-200, which has more current reserve than lower rated voltage and, therefore, due to the lower resistance of its high-voltage winding, would deliver to the plate a dc voltage approximating that of the unit used in the original model.

Fig. 3 of the article "Portable Moisture Meter" (page 78 of the April issue) specifies 3/32-inch brass rod for the probe. The correct diameter is 1/4 inch. Our thanks to Frederick H. Kuck of Dayton, Ohio, for calling this error to our attention.

Texas Instruments Inc. reports that it has discontinued manufacturing the type TI200 and TI208 transistors listed for V3 and V4 in the hearing aid on page 55 of the April issue. The designer of the hearing aid informs us that the transistors are not critical in his circuit and that G-E 2N107's can be used for V1, V2 and V3, and a 2N170 (n-p-n) for V4. He suggests temporarily substituting 5,000-ohm potentiometers for R5 and R7 and adjusting them for best output with V1 and V2 collector currents of approximately 200 μA each. Replace the pots with fixed resistances of the same circuit value.

Capacitor C4 (not shown in the schematic) is connected across R5 in some versions of the circuit.
THE great majority of TV repairs are routine. However, the minority include cases of particular interest. The following are typical of these intriguing problems:

Ungrounded Aquadag coating

The outer coating of Aquadag on TV picture tubes is normally grounded through springs. Failure of these springs to make contact with the coating may result in a high-voltage burn when the Aquadag is touched, since the body is in series with a capacitor of about 500 μF across the high-voltage line.

Eliminating neck shadows

Try as you may, a small amount of neck shadow will remain at the corners of the picture tube. Technicians usually attempt to eliminate these shadows by adjusting the ion-trap magnet, focus magnet and deflection yoke (shaving some of the insulation from the yoke has worked) I use magnetic bias.

Magnetize the metal band and yoke frame so the picture is deflected more to one side than the other. This can be done by charging an electrolytic capacitor through the yoke, causing a decaying pulse of current through the horizontal coil. Since the current flows in only one direction, it magnetizes the yoke frame slightly. The field shifts the electron beam slightly, usually enough to eliminate the corner shadow.

A small electrolytic capacitor—8 to 10 μF—is used to limit the strength of the magnetic bias. If a stronger field is desired, the process can be repeated. Be sure the surge voltage of the capacitor exceeds the supply voltage at the yoke terminals.

Fig. 1 shows how this process is carried out in an Olympic model 21K62. However, it may be applied to any TV receiver. This set had a shadow on the left side of the screen. Since the elimination of a left-side shadow requires temporary reversal of the yoke leads, elimination of right-side shadow will be considered first.

Form the electrolytic capacitor if it has not been in use recently. Connect one side to ground and the other to B plus. Keep it there for 10 minutes.

Thoroughly discharge the capacitor by disconnecting it and shorting its leads. Then touch the positive side of the capacitor to the opposite side of the yoke to which the flyback transformer and B plus are connected—keep it this way for a few seconds.

When the capacitor contacts the yoke lead, the raster will shake sideways violently. When the capacitor is removed, the raster will return to a new position, shifted sideways by a fraction of an inch. If the shift is insufficient, repeat the process. Don't overd it. If the shift is too great, apply magnetic bias in the opposite direction.

To eliminate left-side shadow, reverse the yoke terminals and repeat the capacitor charge. Return the yoke leads to their normal position and look at the picture. Do not attempt to judge the amount of shift with the yoke leads reversed—the indication will be erroneous. Repeat the process until the desired amount of shift is obtained.

Corrector-magnet vibration

Any vibration of the corrector magnet causes picture jitter. If the magnetic field varies vertically, it causes horizontal jitter; horizontal variation of the magnetic field produces vertical jitter. On the particular set—a Zenith 21K20—the motion was horizontal. A check uncovered a loose corrector-magnet mounting screw. This permitted vibration caused by sound waves from the loudspeaker.

The service call started with a complaint of intermittent jitter. The controls were varied and it was discovered that turning up the volume produced jitter during loud passages.

Substituting the shop speaker and holding it away from the chassis did not produce the jitter. This indicated a micromagnetic component was influencing the vertical sweep. All tubes in the vertical sweep and sync sections and the focus and yoke assemblies were tapped with a rubber mallet. Finally, the corrector magnet was tapped: tightening its mounting cured the trouble.

Residual yoke magnetism

If this magnetism deflects the electron stream exactly vertically or horizontally, little harm is done so long as the positioning controls can produce a picture without neck shadows. Unfortunately, this seldom occurs when the yoke is magnetized by an external magnetic field. (A random scrape with the ion-trap magnet or a magnetized tool can magnetize it permanently.)

To demagnetize the yoke, subject it to a powerful ac magnetic field—sufficient to saturate the magnetic structure completely—and then move the yoke slowly out of that field.

An ordinary brass-cased compass needle can provide a very sensitive test for residual yoke magnetism. Orient the needle so that the scale's zero point rests under either end of the needle while the compass is away from any strong magnetic fields. (Move it a few inches; if it still points in the same direction, it is not in a strong field.) Now lower the compass into the yoke structure till it rests on the yoke (Fig. 2). Any magnetic field other than that exactly in line with the needle will reveal itself as a deflection of the needle, proportionate to the strength of the magnetic field. About 20° deflec-

![Fig. 1—Applying a magnetic bias.](image1)

![Fig. 2—Deflection yoke holds compass.](image2)

![Fig. 3—Section of if input circuit.](image3)
Introducing...

The Mallory

Gold Label

Vibrator

Here is a line of vibrators especially designed and constructed to provide the very best in dependability and performance...Mallory Gold Label Vibrators.

The Gold Label line is the result of over 27 years of pioneering and leadership in vibrator design and manufacturing. The exclusive Mallory buttonless contacts, used in this design, eliminate sticking and arcing—insure fast starting—provide up to 100% longer life. Driving power requirements are lower. It's the quietest vibrator on the market.

For the very best in dependable performance, rely on Mallory Gold Label Vibrators. See your Mallory Distributor.

TELEVISION

operation is the maximum tolerable. Fig. 2 shows the compass in position with a deflection greater than the tolerance. The picture on the screen was so far displaced that the positioning control could not center it.

Remove the compass and turn the yoke 90°. Reinsert the compass—stray fields at right angles to the first test will reveal themselves. Rotation of the yoke by a quarter turn should be tried even if the needle is apparently undisturbed when the first trial is made.

Intermittent bars

This trouble kept step with the associated sound but was broader and less sharply defined than sound bars due to improper adjustment of the sound trap in an intercarrier receiver. Jarring the chassis (Sylvania 1-518-1), and particularly jarring shield cans L53 and L64 (Fig. 3), caused flashes on the screen. Removing the speaker from the chassis proved that the trouble was due to a microphonic part or parts shaken by the speaker, since the trouble disappeared with the removal of the speaker.

Tapping showed that C184, a 270-µuf capacitor, was sensitive to jarring. A piece of Scotch tape, fastening the capacitor to the chassis, damped the capacitor sufficiently to cure the trouble.

Poor brightness control

An RCA model 21D827 operated at a high brightness level accompanied by an oversized raster. The brightness control was practically inoperative. Signal strength, both video and audio, seemed good.

Measurements at the socket of the 21AP4 revealed a bias of 14 volts maximum. Normally, this should have reached 58 volts. The schematic (Fig. 4) showed several possible sources of B-plus leakage that would cause this condition. None could be found with a portable multimeter.

Disconnecting the 3,300-ohm resistor, part of the retrace-elimination circuit, permitted proper operation of the brightness control and restored normal bias voltages. Retrace lines could be seen, but this was to be expected.

Since the trouble was apparently due to a defect in the retrace-elimination circuit, C183 was replaced and the trouble corrected. Later testing of C183 with a vtvm showed the capacitor to be leaky.

END

www.americanradiohistory.com
YOUR customers see YOUR story...

in MALLORY advertising to TV set owners

For nearly four years, consistent Mallory advertisements in TV GUIDE—read by over 4 million TV set owners—has been explaining to your customers some facts that they should know. We've been telling the public that TV and radio service is a skilled profession, and that you service engineers are doing a mighty important and responsible job in keeping them supplied with entertainment, news, sports and all the other good things that fill the air today.

For many years, Mallory has taken the lead in working with and for the service professions—by promoting standardization, publishing helpful reference material, providing assistance on technical and customer-relations problems. This advertising campaign is a part of our continuing program of support for you service engineers in the important work you are doing for today and for the future.
Colorful
Comfortable

Get Kraeuter's
All New "CG" Pliers

in red, blue,
green, yellow
& orange

Kraeuter has done it again. Now for the first time you can secure comfort and color along with Kraeuter quality at no increase in cost.

Every Kraeuter solid joint plier has a cushion grip of thick vinyl to make your tough jobs easy. All Kraeuter "CG" cushion grips provide easy identification—easy to locate in your tool box—ideal for departmental color coding in your plant. All Kraeuter "CG" cushion grip pliers assure you comfort and ease on the job.

Whether you use side cutters, diagonals, lineman's or one of the other quality pliers in Kraeuter's long line, you will find "CG" cushion grips a standard feature at regular prices.

Ask your distributor for Kraeuter "CG"s today and put ease in your work.

BUY THE FINEST
BUY KRAEUTER BUY AMERICAN

kraeuter & co., inc
FOR 100 YEARS THE FINEST IN HAND TOOLS 1860-1960 NEWARK, N. J.

Model T-201 enables each gun of a 3-gun color kinescope to be tested on tube testers designed for monochrome tubes. With model T-101 each gun of a 3-gun color kinescope can be operated singly or combined.—Perma-Power Co., 3100 N. Eiston Ave., Chicago 18, Ill.

PICTURE-TUBE TEST ADAPTER, model C 49. Designed for use with B & K models 300 and 350 Cathode Rejuvenator Testers. For testing and rejuvenating color TV and 110° picture tubes. Tests each color-tube gun separately.—B & K Manufacturing Co., 3731 N. Southport Ave., Chicago 13, Ill.

REPLACEMENT YOKE, MDF 89, 90° cosine deflection yoke replaces RCA 100586 and 101147. Used in more than 85 models and chassis produced in 1953-56.—Merit Coil & Transformer Corp., 4427 N. Clark St., Chicago 40, Ill.

YOKE REPLACEMENTS, 9 types: YJ1, YJ3, YJ8, YJ4 for G-E; YJ5, YJ6, YJ7, YJ8 for Motorola and YJ9 for Zenith.—Thoridan & Meissner Manufacturing Co., 7th and Belmont Ave., Mt. Carmel, Ill.

MOLDED POTENTIOMETERS, type AS, 1/4-inch diameter. Rat ed at 1/2-watt continuous duty. Linear taper. Locking type screwdriver-slotted shafts.—Ohmite Manufacturing Co., 3630 Howard St., Skokie, Ill.

TV FLYBACK, EFR 91. Exact replacement for Scott-Meck part No. THC-10021 used in 33 chassis and models.—Rogers Electronic Corp., 49 Bleeker St., New York 12, N. Y.

SUN BATTERY. 18 x 18 inches. Consists of nine 6 x 6-inch B-60 selenium cells.—International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif.

BIAS SUPPLY, model BES, improved version. Replaces batteries for alignment and age.
FOR RELIABILITY... WHICH CAPACITOR DO YOU PREFER?

PYRAMID...

SAID 4.6 OUT OF EVERY 6 SERVICEMEN

CAPACITORS—RECTIFIERS FOR ORIGINAL EQUIPMENT—FOR REPLACEMENT

PYRAMID ELECTRIC COMPANY

1445 HUDSON BLVD., NORTH BERGEN, NEW JERSEY
NEW DEVICES (Continued)

D'ya hear the swing is to EMC

MUTUAL CONDUCTANCE TUBE TESTER — EMC Model 206P
One of the finest pieces of tube testing equipment at a price comparing favorably with emission-type testers. This completely flexible model using lever-type switches offers extremely accurate results with ease of operation.
$83.90 (hand rubbed carrying case)

VOLT-OMH-CAPACITY METER — EMC Model 107
Directly measures capacity, resistance and complex waveforms peak to peak. Some of the high quality features at no extra cost are: expanded scale cannot burn out... measures 50 mfd to 5000 mfd... inductance from 1.4 henries to 140,000 henries in 4 ranges... 1% multipliers for voltage capacity and resistance measurements.
$35.90 wired & tested $35.50 kit form

TRANISTOR CHECKER — EMC Model 210
New economical transistor checker contains these high quality features:
• Checks all PNP and NPN transistors
• Measures gain in three ranges
• Measures leakage on two color (PoW — Good) Scale
• Housed in a molded bakelite case
• Supplied complete with batteries
$10.95 wired and tested
$7.95 kit form

New White Dot-Cross Hatch — Bar Generator
EMC Model 800
Lowest priced, quality color and monochrome generator available... price adjustor color convergency, width, linearity, line trap and yoke, etc.
$39.90 wired and tested
$22.50 kit form

Wide Band Oscilloscope For Color
And Monochrome TV
EMC Model 601
EMC Model 601 oscilloscope gives you the highest quality features ever found in this price field. Exclusive features: full 5 mc bandwidth for color TV servicing — push-pull vertical amplifier, 0.02 volt per inch sensitivity — 5 µF — 5" scope tube — 60 cycle phase-locked control — DC positioning controls eliminates overshooting and bounce — built-in peak to peak calibration reference — 2-step compensated attenuator input — multivibrator sweep, from 15 cycles to over 75 kilocycles.
$117.90 wired and tested

Yes, I want to see for myself, send me—FREE—a detailed catalog of the complete EMC line of precision test equipment.
NAME ___________________________ RE-9
STREET ___________________________
CITY St. ___________________________

EMC ELECTRONICS MEASUREMENTS CORP.
855 BROADWAY, NEW YORK 12, N. Y.
EXPORT DEPT.—70 BROADWAY, N. Y., 12, N. Y.

TRACING AND DECODING DEVICES

RF POWER METER — model
PM-1. Measures rf power. Operates with transmitters having output frequency between 100 ice and 250 mc, 0.3 volt-rms full-scale sensitivity. 200-µa meter. — Heath Co., 205 Territorial Rd., Benton Harbor, Mich.

WAVEFORM ANALYZER, model 850. Adapts service or laboratory oscilloscope to troubleshooting TV and radio receivers above chassis without connection to circuit.—Winston Electronics, Inc., 4512 Main St., Philadelphia 27, Pa.

TEST PROBE, E-Z Hook. Fastens over wire. Spring-loaded insulated nylon foot holds probe in place. Fits large or small condensers—E-Z Hook Test Products, 1338 Woodburn Ave., Covington, Ky.

TUBE CONTINUITY CHECKER, Test-A-Tube, Model 217
Detects burnt-out tubes in series-diagram strings. Lamp, powered by internal battery, indicates continuity.—Rue Products, 1628 Venice Blvd., Venice, Calif.

PORTABLE OSCILLOSCOPE, model 685. Ac and dc amplifiers; both have dc to 750 kc response and 26-mv-rms-per-inch sensitivity. Illuminated calibrated screen.—Hickock Electrical Ind.

LIQUID REFRIGERANT, Jiffy

Www.americanradiohistory.com
"CHOOSE YOUR PARTNER"

WITH EVERY CLAROSTAT PICK-A-SHAFT* CONTROL YOU GET YOUR CHOICE OF SHAFT AT NO EXTRA COST!

Select the control you want — ½-watt composition-element, regular, tapped or dual; 2-watt wire-wound; 3-watt wire-wound; or 4-watt wire-wound. Then choose from any one of the 13 shaft types. There's one for every need.

Ask your Clarostat Distributor...

for Performance... Dependability... Quality...

Controls and Resistors
CLAROSTAT MFG. CO., INC., DOVER, NEW HAMPSHIRE
In Canada: CANADIAN MARCONI CO., LTD., TORONTO 17, ONT.
NEW DEVICES (Continued)

Arco Electronics, Inc., 111 S. Vermont Ave., Los Angeles 4, Calif.

SELENIUM RECTIFIER TESTER

ER, SRT-1. Checks power rectifiers in and out of circuit for quality, fading, shorts, opens, arcing and life expectancy.

Century Electronics Co., Inc., 111 Roosevelt Ave., Mineola, N. Y.

FUSE CADDY. Fits in technician's tube caddy. Contains 10 L-C fuse types to cover most service requirements.

Littlefuse, Inc., Des Plaines, Ill.

TEST-CLIP ADAPTER. Fits all types of banana jacks. Has spring-tension test clips for simplified testing of resistors, capacitors, diodes and similar wire-lead type components.

Grayhill, Inc., 561 Hillgrove Ave., La Grange, Ill.

TUNER CONTACT CLEANER Contecore K-4, contains sulfur-free oil and cleaning cloths for tuner and switch contact cleaning.

Standard Coil Products Co., Inc., Melrose Park, Ill.

CLOCK-RADIO KNOBS. Four new types. 1109 for late Westinghouse; 1110, Zenith; 1111, Motorola; 1112. Philco. 7 colors.

Colman Tool & Machine Co., Amarillo, Tex.

RELAY RACKS, Space Saver.

Radio, 165-08 Liberty Ave., Jamaica 33, N. Y.

INTERCOM, 6- or 12-station systems. Special feedback circuits give low distortion and high speaker damping for smooth, clear sound.

Fisher Berkeley Corp., 5633 Grove Street, Oakland 9, Calif.

INVERTERS, ATR Universal

PORTABLE LAMP, Multi-Lamp.

Fastens to small brackets that can be mounted wherever needed. 18- or 24-inch arms. Ball-bearing swivel. Aluminum reflector.

Moffatt Products Inc., 4824 Triton Dr., Minneapolis 22, Minn.

HIGH-POWER DRIVERS. Model PA-HF (illustrated) 50-100 watts, 70-10,000 cycles. Watertight housing. PA-50 same mechanism as PA-HF but includes a heavy-duty multi-impedance line-matching transformer built into driver housing.

University Loadspeakers, Inc., 80 S. Kensey Ave., White Plains, N. Y.

AUDIO CABLES. 3160, for speaker extension lines from 16-500 ohms; 3170, for high-power low-loss speaker extension lines; 3750, also for high-power low-loss applications; shielded.

Belden Manufacturing Co., 4617 Van Buren St., Chicago 80, Ill.

AUDIO CONTROL UNIT. Kit, KT-3700, or wired, LT-20. DC for all filament, 1M distortion below 0.04% at 1 volt. Harmonic distortion about 0.25% at 5 volts. Dual cathode-follower output stages. 24 equalization positions. 7 inputs.—Lafayette
Wintronix Analyzers

Electronic "Wonder Drugs" for Troubleshooting Pains

Here are the instruments you need to diagnose ailments fast and profitably in today's complicated—often inaccessible—TV, radio & hi-fi sets.

These four Wintronix Analyzers swiftly turn wasted trouble-shooting time into profitable parts replacement time on more and more jobs. Obscure radio and TV faults get tracked down fast by Winston's specialized reference signals and measurements. Like X-rays, they quickly give a complete picture of circuit operation—at far lower cost, with fewer circuit connections, and with less set-up time than with separate conventional instruments.

Today, issue a prescription to yourself for a healthier servicing business—see and try these new Wintronix Analyzers at your local parts distributor or write for detailed literature.

Wintronix Analyzers

Induced Waveform Analyzer

Model 850

Top-O'-Chassis Troubleshooting... greatest servicing advance in years! Perfect for Portable TV

Localizes defective stage in entire TV receiver in less than 5 minutes—without a direct circuit connection. Accepts any scope for spotting defects quickly by the modern, easy-to-use Induced Waveform Method. Unique, Phantom Detector Probe makes any tube a convenient test point. Just slip probe successively over each tube, then view and trace waveforms on scope from antenna thru RF, IF, audio, video & sync. Speeds servicing of TV, radios, amplifiers, instruments, industrial and laboratory equipment tool. Compatible for color.

$169.95 Net

Intermittent Condition Analyzer

Model 828

Pinpoints intermittents without waiting...cooking...or freezing.

Exclusive new principle makes any TV or radio super-sensitive to intermittents and noisy components...without waiting for breakdowns. Saves time and bench space. Cuts callbacks by detecting borderline components before they fail. Special Wintronix Probe and capacity pickup attachments let you hear intermittents thru built-in speaker.

$89.95 Net

AGC Circuit Analyzer

Model 825

AGC Troubles Won't Fool You Any More!

Saves hours by detecting hard-to-find AGC faults that may look like sync trouble, etc. Furnishes standard, adjustable r-f signal to antenna, monitors AGC action; checks AGC bias for opens and shorts; measures action of gated pulse systems, supplies AGC bias to restore operation by substitution.

$79.95 Net

Sweep Circuit Analyzer

Model 820

Rapid, Dynamic Sweep Testing

Completely troubleshoots entire sweep circuits and restores raster by substituting for defective stage. Tests all flybacks and yokes for continuity and shorts. Self-calibrating. Compatible for color.

$69.95 Net

Model 915/960 Adaptor converts Model 820 to a Sync Circuit Analyzer for signal substitution of vertical and horizontal sync pulses.

$14.95 Net

Winston Electronics Inc.

4312 Main Street, Philadelphia 27, Pa.

SEPTEMBER, 1957

www.americanradiohistory.com
IN-CIRCUIT CONDENSER TESTER

Model CT-1

- **Check in-circuit:**
 - Quality of over 80% of all size condensers—excluding leakage, shorts, opens, and intermitents.
 - Value of all condensers 200 mfd.
 - Electrolytics for quality—any size.
 - Transformers, sockets and wiring.

- **Checks out-of-circuit:**
 - Quality of 100% of all size condensers—including leakage, shorts, opens and intermitents.
 - Value of all condensers 55 mfd.
 - Electrolytics for quality—any size.
 - High leakage to 300 megohms.
 - New or unknown condensers.

Features:
- Ultra-sensitive 2 tube drift-free circuitry.
- Multi-color direct scale precision readings for both quality and value—incircuit or out-of-circuit.
- Cannot damage circuits—they operate at low potentials.
- Electronic eye balance indicator for even greater accuracy.

Model CT-1K kit $24.95
Model CT-1W wired $34.95

IN-CIRCUIT SELENIUM RECTIFIER TESTER

Model SRT-1

- The SRT-1 checks all power rectifiers (selenium, germanium and silicon, rated from 10 ma. to 500 ma.) both in-circuit and out-of-circuit, with 100% effectiveness.
- Quality (current emission)
- Fading (after warm-up)
- Shorts
- Opens
- Arcing
- Life Expectancy

Features:
- Will not blow fuses—ever when connected to a dead short.
- Large 3" highly accurate meter sensitive yet rugged.
- Separate meter scales for in-circuit and out-of-circuit tests with 3% accuracy.
- No shock hazards.

Model SRT-1K kit $22.95
Model SRT-1W wired $29.95

NEW DEVICES (Continued)

Inverters. For operating tape recorders, TV sets, dictating machines, etc., from dc voltages in automobiles, buses, trucks and dc districts. Provides 110-volt ac output at 60 cycles.

- Wattages from 80 to 600—American Television & Radio Co., 300 E. 4th St., St. Paul 1, Minn.

TAPE RECORDER, Model B-36. 3 motors, no rubber bolts, gears or friction rollers. Separate recording and playback heads and amplifiers. 8-inch coaxial speaker, 40-12,000 cycles. —Electronic Applications, 150 E. 35th St., New York, N. Y.

LOW-FREQUENCY SPEAKER, model 18-1W. 18 inches, 10,000 cycles, 25 watts. 5-pound Alnico magnet. Fundamental resonance 19 cycles—Racon Electric Co., Inc., 1261 Broadway, New York 1, N. Y.

TONE TAMER, A 2% inch tweeter in series with a volume control for radio, hi-fi, or TV set. Remote speaker and volume control. Set, set and tweeter or tweeter alone can be used. 20 feet of wire. —Echo Electronics Corp., 87-97 57th St., Elmhurst 12, N. Y.

TRANSCRIPTION TONE ARM, Garrard TPA/10. Adjustable length, tracking angle, stylus pressure and mounting height.

HI-FI TUNER, S-5E, AM, FM, and SW. Covers 1.1-33 mc, 3-5 mc, 8.1-25 mc, 88-108 mc and 545-1600 kc, 12 x 9 1/2 x 7 1/2 inches—Ercona Corp., 551 Fifth Ave., New York 17, N. Y.

ANTENNA, ASP 137. Attaches to auto rain gutter for temporary mobile mounting. For frequencies between 108-174 or 460-470 mc. —Antenna Specialists Co., 12435 Euclid Ave., Cleveland 6, Ohio.

BEAM ANTENNAS, Hy-Gain

- **Triple Spanners.** Precut, prewired and adjusted for 10-, 15- and 20-meter operation. Handle 1 kw on all bands. —Hy-Gain Antenna Products, 1958 N Street, Lincoln, Neb.

AUTO ANTENNA, Tenma Bulletin. Swivel base permits top or side mounting. Vertical or angular masts. - Tenma Manufacturing Co., 7880 Garfield Blvd., Cleveland 25, Ohio.

MOBILE ANTENNA, model M-2. Transmitting and receiving antenna for amateur mobile, broadcast reception, industrial service and emergency con-

CENTURY'S IN-CIRCUIT TEST INSTRUMENTS NOW available in KIT FORM

NOW YOU CAN BUILD THE INSTRUMENTS YOU'LL WORK WITH DAY-IN, DAY-OUT...

You asked for out test instruments in KIT form! Here they are! Two of the most advanced kits available today. The components are of the finest name brands...the step-by-step instructions the ultimate in simplification...and the completed instruments the most indispensable in your every day work.

ORDER TODAY

Start cashing-in on the precious time in-circuit testing will save you...

CENTURY ELECTRONICS CO., INC.

109 Roosevelt Ave., Dept. 109, Mineola, N. Y.

Please rush the instruments in the form I have checked below.

- **In-Circuit Condenser Tester**
- **In-Circuit Selenium Rectifier Tester**
- **In-Circuit Selenium Rectifier Tester**

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-1K</td>
<td>$24.95</td>
</tr>
<tr>
<td>CT-1W</td>
<td>$34.95</td>
</tr>
<tr>
<td>SRT-1K</td>
<td>$22.95</td>
</tr>
<tr>
<td>SRT-1W</td>
<td>$29.95</td>
</tr>
</tbody>
</table>

Payment enclosed (Century pays all shipping charges).

Send C.O.D. I will pay upon delivery—plus charges.

Name ________________________

City ________________________ State ________________________

130

www.americanradiohistory.com
George Tally is one of the Hughes Field Engineers assigned to an Air Force base in California. He is highly respected, for, to the personnel of this base, he represents all the technical knowledge of the Hughes Aircraft Company. Hughes Field Engineers are responsible for all phases of support for the maximum field performance of Hughes electronic armament controls systems and guided missiles.

The background and experience they gain by such activities provide an over-all systems knowledge which is unsurpassed. Their training assures them an unlimited future in the field of electronics.

IF YOU ARE AN ENGINEER OR PHYSICIST interested in this stimulating and rewarding type of work, send a brief outline of your experience to the address below.

HUGHES
RESEARCH & DEVELOPMENT LABORATORIES Scientific Staff Relations, Hughes Aircraft Co., Culver City, California
TUBULAR CONDENSERS 01-400v, 02-400v, 03-400v, 04-400v, 01-400v, 25-400v... 5e ea.
0.5-400v, 1-400v, 2-400v, 3-400v, 4-400v, 5-400v, 6-400v, 7-400v, 8-400v, 9-400v, 10-400v, 15-400v, 20-400v... 8e ea.
0.047-400v, 0.06-400v, 0.075-400v, 0.1-400v, 0.15-400v, 0.2-400v, 0.3-400v, 0.4-400v, 0.5-400v, 0.6-400v, 0.7-400v, 0.8-400v, 0.9-400v, 1-400v, 1.5-400v, 2-400v, 3-400v, 4-400v, 5-400v, 6-400v, 7-400v, 8-400v, 9-400v, 10-400v, 15-400v, 20-400v... 12e ea.
2.2-400v, 4.7-400v, 10-400v, 22-400v, 33-400v, 47-400v, 100-400v... 18e ea.
4.7-400v, 10-400v, 22-400v, 33-400v, 47-400v, 100-400v... 25e ea.
25-400v, 47-400v, 100-400v... 35e ea.
100-400v, 150-400v, 200-400v, 250-400v... 45e ea.
1000-400v... 65e ea.

CARBON RESISTORS

1/2 WATT 10% 10, 30, 47, 100, 150, 330, 390, 470, 500, 680, 820, 1k, 1.5k... 2e ea.
1k, 2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 15k, 20k, 25k... 4e ea.
22k, 47k, 100k, 220k, 680k... 4e ea.
470k, 1M, 2M, 3M, 4M, 5M, 6M, 7M, 8M, 9M, 10M... 5e ea.
100M, 200M, 300M, 400M, 500M, 600M, 700M, 800M, 900M, 1K... 7e ea.
1M Ohm... 15e ea.
10M Ohm... 20e ea.
100M Ohm... 25e ea.
1K Ohm... 30e ea.
10K Ohm... 35e ea.

WIREWOUND RESISTORS 100w, 250w, 500w, 1000w, 2500w... 14c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 40c ea.
1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 80c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 40c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 80c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 40c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 80c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 40c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 80c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 40c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 80c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 40c ea.
1/2w, 1w, 2w, 5w, 10w, 20w, 50w, 100w, 200w... 80c ea.

The Bond of Her Majesty's Royal Marines

Capitol T-10000

If you like band music or have a child playing in a band, you should have this. Not as impressive sound-wise as some other band recordings and not as symphonic in quality as the fare of even our high-school bands. It presents faithfully a big band as heard in a stadium or big auditorium. The band presents the music of the Boat Retreat and the Tattoo Finale, two of the big ceremonies for British military bands. Especially notable is the precision of the drum section, as the drums are placed in unison that the rolls are almost as distinct as if a single drum were playing.

Rodzinski conducting Philharmonic of London

Westminster XWN-18453

The most often played orchestral versions of the most spectacular highlights from Wagner's operas. The recording does not do complete justice to the music as the above version of Rites of Spring, but it does set it across with more than adequate impact and with considerable detail.

Hi-Fi Feast for Orchestra

Quadril conducting Philharmonic Symphony of London

Westminster XWN-18451

In any contest for the best hit, demonstration and showoff recording, this one would be hard to beat. It is impossible to overstate it. The music presents just about every possible instrument and every possible tool to equipment, it includes such all-time favorites as Sperreer's Adagio, Dvořák's Slavonic Dances, Saint-Saëns or Italia, Marcha Japonese, Exposure and three remarkable modern compositions: Messiaen's L'oiseau l'etrange, Varese's Synchrony and Cowell's Harmonic. The drums are terrific, the high highs magnificent and the overall sound as spectacular in presence and realism as clear as modern records can offer. Recommended to every hi-fi owner, dealer, salesman and those looking for a perfect gift for a hi-fi fan.

Gold and Silver

Great Old World Waltzes in High Fidelity

Paulik conducting Vienna State Opera Orchestra

RTS-1002

Having scored such hits with its service of dance music of the various Strausses, Vandersau now has wisely arranged to give us the same authentically Viennese performances of eight familiar waltzes of other composers with the same gorgeous sound. Included are Gold and Silver, Skater's Waltz, Waxing of the Danube, Over the Waves and others which most listeners will find familiar. The disc produces very sharp high highs, fine definition and high presence. Equally fine for demonstration at louder levels and for just listening at lower levels.

Razz McTazz in Hi-Fi

Nickelodeon Music

San Francisco 33001

Although this was one of the earlier recordings of nickelodeon music, which we may have somehow, it is still one of the best from the standpoint of fidelity and listening pleasure. These are very close-up recordings of instruments in exceptionally original conditions. The set include the ordinary player piano, plus piano with xylophone and drums, a French organ, a mechanical movie-instrument organ, the Hi-Watt organ, Wurlitzer organ, and piano with chimes. The verisimilitude on playback in the home is greatly aided by the lack of room resonance in the recording. Great fun, especially for the old folks who can remember those days.

Pinkey-Plunk-Plunk in Hi-Fi

Mechanical Piano

San Francisco M-33010

This is a valuable and highly interesting survey of player-piano music from the 'Nineties to
NEW RECORDS (Continued)

the present, played on an instrument apparently in original condition and presenting really virtu-
oso performances by some of the best known recordists and in some instances by the com-
posers themselves—an especially valuable case is the rendition of the Maple Leaf Rag by its com-
poser, Scott Joplin. Nostalgia, history and plain listening pleasure are all well served in this col-
lection. For the few bucks this record costs plus a good hi-fi you can get the full benefit of the player piano with about 20 of the best rolls of player-piano music ever recorded. Indeed, you can improve on the original in that you can reduce the loudness if you want to spare the neighbors.

Hot, Happy and Honky
RCA LPM 1437
Del Wood is a Nashville, Tenn. gal, whose honky-tonk roots were a legend, locally and lately has achieved national attention. Her virtuosity rivals that of the old-time player piano, the spirit of ramtime is unadulterated by any modernisms whatever, and her improvisa-
tions are amply clever. RCA has done a really marvelous job of recording the honky-tonk piano. Del is backed by various rhythm sections from the Grand Ole Opry. The presence can be very real.

Sorire Tsigane
Players for Hungarian National Ballet Orchestra
Vox VX-25-330
Here is a real treat both musically and high-
fidelity-wise. Authentic gypsy music in rich per-
formances by an authentic band of virtuosos from the outstanding gypsy bands of Budapest, with remarkable improvisations on the fiddle, clarinet and cimbalon. The sound is gorgeous round with a big bass and a clean high end, despite the high level of cutting, high spirited music should please even the highbrow.

Mexico, Alta Fidelidad
Mexican Folk Ensembles
Vanguard VRS-9009
More authentic folk music by highly competent performers. This presenta 19 songs and dances of the Veracruz region performed by highly unusual ensembles of stringers and punctu-
ated in some dances with the sound of flying feet. Most of the instruments are plucked, and present unusual transients. The voices are typ-
ically untrained, but the choice of melodies is a representative sampling of the vintage of the country. For a field recording this is very fine.

LAIDOV: Eight Russian Folk Songs
Enchanted Lake, Kiki Mora, Baba Yaga
Balakirev: Islamei and Oriental Fantasy
Perlea conducting Bamberg Symphony
Vox PL 10-280
Overshadowed by the Russian giants who pre-
ceded and succeeded him, particularly his star pupil, Prokofiev and Stravinsky, Lisov com-
piled some delightful program music of which this recording gives an excellent sampling in stunning sound. It is notable for its fine defin-
tion and liveliness, a combination which everybody should cherish for, but few achieve. Should delight both the musical and the hi-fi ears. The Balakirev, an orchestral rendering of a piano work, is a nice dividend.

The American Scene
Concert of American Band Music
Band of Her Majesty's Welsh Guards
Vox VX 25, 280
Bossey & Hawkes publishes band music for which our thousands of amazingly good high school bands provide an excellent market. Ap-
parently, B & H have made a smart deal with Vox to record a dozen of their newest works and package them with miniature conductor's scores as a sort of showcase offering that can also be used as a point of reference and com-
parison. An excellent idea very well executed both in musical and recording terms. It should be pleasing to anybody who likes the brass band, to music students as a sampling of modern con-
cert band music and to hi-fi fans in general for the excellent sound.

The Big Sound on Broadway
Ray Bohr on organ
RCA Victor LPM 1339
Some of the most popular Broadway tunes of recent years (I Whistle a Happy Tune, Once in a Life with Amry, Whatever Lola Wants) are cleverly and amusingly arranged and played on a theatre organ with a fair pedal and a good assortment of various effects. The recording is commendably clean and close-up enough to pro-
vide good definition and yet with enough liveness to produce a high degree of presence, without the fatigue which too much echo with its attendant acoustic distortion is all too likely to produce. One of the better organ pops.

Music of Sylvestre Revueltas
Surinach conducting
MCM Chamber Orchestra
MCM E-3496
The late Revueltas was one of Mexico's two significant modern composers (the other was Chaves). I reviewed his delightful suite, Ota-
vor Radio last year. Here are a half dozen of his chamber works very sympathetically presented by Surinach and the MCM Chamber Orchestra, a combination that can now justly claim to be definitive in modern Latin music. Among the short works on this disc are a Mexican overture, a Hungarian Rumble and Noise CHECK, 300 my in Aux, 100 cycles, -300 my in Rumble and Noise.

300 my in Aux, 100 cycles, -300 my in Rumble and Noise.

Mexico, Alto Fidelidad
Mexican Folk Ensembles
Vanguard VRS-9009
More authentic folk music by highly competent performers. This presenta 19 songs and dances of the Veracruz region performed by highly unusual ensembles of stringers and punctu-
ated in some dances with the sound of flying feet. Most of the instruments are plucked, and present unusual transients. The voices are typ-
ically untrained, but the choice of melodies is a representative sampling of the vintage of the country. For a field recording this is very fine.

LAIDOV: Eight Russian Folk Songs
Enchanted Lake, Kiki Mora, Baba Yaga
Balakirev: Islamei and Oriental Fantasy
Perlea conducting Bamberg Symphony
Vox PL 10-280
Overshadowed by the Russian giants who pre-
ceded and succeeded him, particularly his star pupil, Prokofiev and Stravinsky, Lisov com-
piled some delightful program music of which this recording gives an excellent sampling in stunning sound. It is notable for its fine defin-
tion and liveliness, a combination which everybody should cherish for, but few achieve. Should delight both the musical and the hi-fi ears. The Balakirev, an orchestral rendering of a piano work, is a nice dividend.

The American Scene
Concert of American Band Music
Band of Her Majesty's Welsh Guards
Vox VX 25, 280
Bossey & Hawkes publishes band music for which our thousands of amazingly good high school bands provide an excellent market. Ap-
parently, B & H have made a smart deal with Vox to record a dozen of their newest works and package them with miniature conductor's scores as a sort of showcase offering that can also be used as a point of reference and com-
parison. An excellent idea very well executed both in musical and recording terms. It should be pleasing to anybody who likes the brass band, to music students as a sampling of modern con-
cert band music and to hi-fi fans in general for the excellent sound.

The Big Sound on Broadway
Ray Bohr on organ
RCA Victor LPM 1339
Some of the most popular Broadway tunes of recent years (I Whistle a Happy Tune, Once in a Life with Amry, Whatever Lola Wants) are cleverly and amusingly arranged and played on a theatre organ with a fair pedal and a good assortment of various effects. The recording is commendably clean and close-up enough to pro-
provide good definition and yet with enough liveness to produce a high degree of presence, without the fatigue which too much echo with its attendant acoustic distortion is all too likely to produce. One of the better organ pops.

Music of Sylvestre Revueltas
Surinach conducting
MCM Chamber Orchestra
MCM E-3496
The late Revueltas was one of Mexico's two significant modern composers (the other was Chaves). I reviewed his delightful suite, Ota-
vor Radio last year. Here are a half dozen of his chamber works very sympathetically presented by Surinach and the MCM Chamber Orchestra, a combination that can now justly claim to be definitive in modern Latin music. Among the short works on this disc are a Mexican overture, a Hungarian Rumble and Noise CHECK, 300 my in Aux, 100 cycles, -300 my in Rumble and Noise.

300 my in Aux, 100 cycles, -300 my in Rumble and Noise.

Mexico, Alto Fidelidad
Mexican Folk Ensembles
Vanguard VRS-9009
More authentic folk music by highly competent performers. This presenta 19 songs and dances of the Veracruz region performed by highly unusual ensembles of stringers and punctu-
ated in some dances with the sound of flying feet. Most of the instruments are plucked, and present unusual transients. The voices are typ-
ically untrained, but the choice of melodies is a representative sampling of the vintage of the country. For a field recording this is very fine.

LAIDOV: Eight Russian Folk Songs
Enchanted Lake, Kiki Mora, Baba Yaga
Balakirev: Islamei and Oriental Fantasy
Perlea conducting Bamberg Symphony
Vox PL 10-280
Overshadowed by the Russian giants who pre-
ceded and succeeded him, particularly his star pupil, Prokofiev and Stravinsky, Lisov com-
piled some delightful program music of which this recording gives an excellent sampling in stunning sound. It is notable for its fine defin-
tion and liveliness, a combination which everybody should cherish for, but few achieve. Should delight both the musical and the hi-fi ears. The Balakirev, an orchestral rendering of a piano work, is a nice dividend.

The American Scene
Concert of American Band Music
Band of Her Majesty's Welsh Guards
Vox VX 25, 280
Bossey & Hawkes publishes band music for which our thousands of amazingly good high school bands provide an excellent market. Ap-
parently, B & H have made a smart deal with Vox to record a dozen of their newest works and package them with miniature conductor's scores as a sort of showcase offering that can also be used as a point of reference and com-
parison. An excellent idea very well executed both in musical and recording terms. It should be pleasing to anybody who likes the brass band, to music students as a sampling of modern con-
JOIN GRAND COUNCIL

The Lower Bucks County Television Service Dealers Association (LBCTSDA) unanimously passed a resolution to join the Philadelphia TV Service Grand Council.

The Council represents TV service groups within a 50-mile radius of Philadelphia. Its purpose is to see that the consumer receives expert, ethical service.

Speaking for the group, Art Margolis pointed out that this is not just a local movement and that similar organizations are forming all over the country.

GUILD MAKES AWARD

High-school students of Mineola, N. Y., were honored for their achievements in the study of electronics by the Radio & Television Guild of Long Island. Christopher Stratigos, guild president, presented a bronze plaque to William Slagle, president of the school's general organization.

The plaque was inscribed "To the students of Mineola High School who have accomplished much through the application of their electronic studies to encourage the study of all engineering and technical sciences by the young people of Long Island."

Students of the school have completed construction of a cyclotron and an electronic computer in the course of their classes during the past year.

NEW SERVICE GROUP

Northern Illinois TV service technicians and service dealers have formed the Electronics Technicians Association of Northern Illinois. The new group has about 80 members. Association president is William B. Mosley. Vice presidents are Ray Dumas, Gene Leander and Robert Stromeyer. The association meets once a month to discuss trade problems.

ELECTION IN ST. LOUIS

The Television Electronic Service Association of St. Louis, Mo., has elected Wally Hirschberg of Hirschberg Television Technicians as president. He succeeds Barney Lewis, Lewis Radio & Television, who was chairman of the board.

Other new officers are: Ralph Newberry, Southampton Electronics Co., executive vice president; Harry Haus, Jennings TV Service, first vice president; Ray Wirte, Wallblen Electronics Inc., second vice president; Fred Riechman, Teltronic Laboratories, secretary; Robert Matteson, Matteson Radio & Television, treasurer, and Charles Luensman, Calco Electronics, sergeant-at-arms.

Howard Freiner, Walter Berganti, Vincent J. Lutz, Tom Knowles, J. G. Alexander, Russ Adelman and Nick Koclanes were named as directors.

TSA FAVORS LICENSING

The Television Service Association (TSA) of Metropolitan Washington, D. C., went on record favoring licensing of television service technicians and service dealers. The group intends to present such a proposal, for the District of Columbia, to Congress.

Recent association elections placed Robb Peters, American Parts & Service, in the association president's chair. Bernard Bogomovits, TV Boys, became vice president. Carl Johnston, Car's Mobile TV, treasurer. Robert Trolinger and George B. Sharpe were elected to the board of directors.

LICENSING DELAYED

The Missouri State Legislature ended its session before acting on a bill to provide for licensing television service technicians. Backers of the bill expect it to be reintroduced next year.

In California a licensing bill was referred to the Interim Committee for further study. This move postpones legislative action until the next meeting of the legislature.

TUBE-FRAUD PROBE

TESA, CINCINNATI MEETS WITH BBB

A meeting between representatives of the Television Electronic Service Association (TESA), Cincinnati, Ohio and a representative of the local Better Business Bureau was recently held at the Hotel Sinton. The purpose of the meeting was to promote better understanding and cooperation between TESA and the bureau. Discussion included the various types of complaints received by the bureau and ways and

SEPTEMBER, 1957

Dpt. 02-J-7, 100 N. Western Ave., Chicago 80, Ill.

135

Here is a typical Knight-Kit value—
available only from ALLIED—one of 45
great Knight-Kits you’ll find
in our special Supplement No. 165.
Write for your FREE copy today.

TSA FAVORS LICENSING

The Television Service Association (TSA) of Metropolitan Washington, D. C., went on record favoring licensing of television service technicians and service dealers. The group intends to present such a proposal, for the District of Columbia, to Congress.

Recent association elections placed Robb Peters, American Parts & Service, in the association president's chair. Bernard Bogomovits, TV Boys, became vice president. Carl Johnston, Car's Mobile TV, treasurer. Robert Trolinger and George B. Sharpe were elected to the board of directors.

LICENSING DELAYED

The Missouri State Legislature ended its session before acting on a bill to provide for licensing television service technicians. Backers of the bill expect it to be reintroduced next year.

In California a licensing bill was referred to the Interim Committee for further study. This move postpones legislative action until the next meeting of the legislature.

TUBE-FRAUD PROBE

TESA, CINCINNATI MEETS WITH BBB

A meeting between representatives of the Television Electronic Service Association (TESA), Cincinnati, Ohio and a representative of the local Better Business Bureau was recently held at the Hotel Sinton. The purpose of the meeting was to promote better understanding and cooperation between TESA and the bureau. Discussion included the various types of complaints received by the bureau and ways and

SEPTEMBER, 1957

Dpt. 02-J-7, 100 N. Western Ave., Chicago 80, Ill.

135

Here is a typical Knight-Kit value—
available only from ALLIED—one of 45
great Knight-Kits you’ll find
in our special Supplement No. 165.
Write for your FREE copy today.

TSA FAVORS LICENSING

The Television Service Association (TSA) of Metropolitan Washington, D. C., went on record favoring licensing of television service technicians and service dealers. The group intends to present such a proposal, for the District of Columbia, to Congress.

Recent association elections placed Robb Peters, American Parts & Service, in the association president's chair. Bernard Bogomovits, TV Boys, became vice president. Carl Johnston, Car's Mobile TV, treasurer. Robert Trolinger and George B. Sharpe were elected to the board of directors.

LICENSING DELAYED

The Missouri State Legislature ended its session before acting on a bill to provide for licensing television service technicians. Backers of the bill expect it to be reintroduced next year.

In California a licensing bill was referred to the Interim Committee for further study. This move postpones legislative action until the next meeting of the legislature.

TUBE-FRAUD PROBE

TESA, CINCINNATI MEETS WITH BBB

A meeting between representatives of the Television Electronic Service Association (TESA), Cincinnati, Ohio and a representative of the local Better Business Bureau was recently held at the Hotel Sinton. The purpose of the meeting was to promote better understanding and cooperation between TESA and the bureau. Discussion included the various types of complaints received by the bureau and ways and
SAMS "BEST SELLER" BOOKS
FOR THE TECHNICIAN • STUDENT
EXPERIMENTER • HOBBYIST

USE THIS HANDY ORDER FORM

- Pinpoint TV Troubles in 10 Minutes. Amazingly practical procedures for solving TV troubles. Includes over 50 time-saving check charts, dozens of diagrams and test methods, circuit explanations, etc.—a real timesaver for TV repairs. 289 pages; $5.50 x 8 1/2"; fully illustrated. Only … $3.95
- TV Servicing Guide. Quick reference guide for Technicians. Trouble symptoms are illustrated by picture tube screen photos and proper repair procedures are clearly described. Covers every phase of the TV circuit, 132 pages; $5.50 x 8 1/2"; fully illustrated. Only … $2.00
- Tape Recorders. Explains recorder theory, tape characteristics, how recorders work; covers motorboard mechanisms, drive motors, volume indicators, bias oscillators, amplifiers, magnetic heads, equalization circuits. 176 pages; $5.50 x 8 1/2"; illus. Only … $2.73
- Transistor Circuit Handbook. The authoritative book on transistor types, construction, characteristics, applications, circuitry, techniques for wiring and testing. Covers every phase of the subject. 430 pages; 6 x 9"; illus. Only $4.95
- Hi-Fi Handbook. Invincible data on Hi-Fi design, selection and installation, including fidelity, sound theory, analysis of all components (speakers, enclosures, amplifiers, tuners, etc.), systems design, proper selection and installation. 240 pages; $5.50 x 8 1/2"; illus. Only … $3.60
- Servicing AGC Systems. Describes operation and circuit variations of AGC systems; explains applicable servicing techniques. Illustrated by actual case histories and photos of symptoms. 132 pages; $5.50 x 8 1/2"; illus. Only … $1.73
- Learning Electricity Fundamentals. The complete fascinating story of electricity: history, electron theory, static electricity, uses of arcwires and fuses, resistance, Ohm's Law, magnetism, electro-magnetics, transformers, generators and motors, circuits and controls, practical wiring, etc. 436 pages; 6 x 9"; illus. Only … $4.00
- Transistors. A very practical, complete book on Transistors and their application in TV, Radio-Electronics. Explains theory, circuitry, installation, testing techniques and servicing. 100 pages; $5.50 x 8 1/2"; illus. Only … $1.50
- Color Television. An outstanding training course for Technicians. Covers principles of the color TV system; color receiver circuitry, installation and servicing of color receivers. Includes color blocks outlining use of color test equipment. 240 pages; $5.50 x 11"; profusely illustrated. Only … $6.95
- Electronic Motor Locators. Explains basic types and their operation; tells how to construct your own units; describes applications. Covers interesting uses in industry as well as in prospecting and mine location. 124 pages; 5 1/2 x 8 1/2"; illus. Only … $2.30

END

OUT OF DATE?

Maybe! But about some things, the publishers of Radio-Electronics believe it's a good idea to remain old fashioned. For instance, we feel that when our readers buy anything advertised in our magazine by mail order, they have the right to know exactly what they are buying. For that reason, in January 1956, we established the rule that mail order advertisers must tell prospective buyers just what they're selling.

If the tubes are not new and unused, or if they are rejects or substandard in any way, the advertiser must say so specifically in his ad, or we will not accept it. We feel it's never "out of date" to protect our readers.

TECHNICIANS' NEWS (Continued)

means of handling such complaints. Mr. George Young, BBB representative, has agreed to speak before TESA members at a future meeting.

SCOPE SCHOOL UNDERWAY

Wayne Lemons has begun his Scope School at York Radio in Jefferson City, Mo. The school is free to all technicians and refreshments are served by York Radio. The session will run once a week for 6 or 8 weeks. This is the third school to be held by Mr. Lemons in southern Missouri. All have attracted large groups and almost all those who have attended feel they picked up some ideas to help speed their servicing.

ST. LOUIS SURVEY

The Television Electronic Service Association of St. Louis has held a few short interviews with people in various professions to find out their opinions on licensing. Here are the results of the interviews:

Mr. M. Conrad—Electrical Engineer

Q—Do you believe the engineering profession would be better off if they were not required to be licensed?

A—Definitely not.

Q—Do you believe that licensing of engineers stifles competition and discourages young men from entering this field of endeavor?

A—No, it does not limit competition and it does attract higher type men to enter the field.

Miller Electric Co.—
Electrical Contractors

Q—It has been said that it is not what an electrical contractor knows but who he knows that determines if he gets a license or not. Do you believe this is true?

A—No, I do not.

Q—Would you prefer not to be required to obtain a license?

A—No, I think our license law is a good thing. I would not want to operate without it.

Meyer Plumbing Co.—
Plumbing Contractor

Q—It is reported that an army of amateur plumbers has been created to defeat the original purpose of legislation to require plumbers to be licensed. Is this true?

A—No, it is not true.

Q—Under the plumbing licensing law is it hard for a young man, just getting started, to get a job as an apprentice?

A—No, they are coming in new every day.

Q—Could a man get proper experience working as a part-time plumber on his own?

A—Absolutely not.

ORDER FROM YOUR NEWSSTAND

Order from your local newspaper, or mail to Howard W. Sams & Co., Dept. 2-27
2201 E. 46th St., Indianapolis 5, Ind.

Send checks drawn on American banks (other checks will be accepted). Your copy of the book(s) will be sent to you immediately upon receipt of your payment. If you do not wish to receive the book, your money will be refunded in full. We regret that books cannot be canceled after receipt in our office. Sams Books are sent postpaid. Sales tax must be added to orders shipped to Illinois.

MR. GEORGE YOUNG, BBB Representative, agreed to speak before TESA members at a future meeting.

SCIENCE

Mr. Young has agreed to speak before TESA members at a future meeting.
Among this month's releases are a number of television receiving tubes. Of particular interest is a 24-inch 110° picture tube. For the transistor booster there is a group of three high-frequency (15-120-mc) tetrode transistors.

24AHP4

A 110°, rectangular, glass picture tube of the low-voltage, electrostatic-focus and magnetic-deflection type. It has a spherical Filterglass faceplate and aluminized screen. Its minimum screen area is 332 square inches. A straight electron-gun design eliminates the need for an ion trap. The tube has a 6-volt 0.6-amp heater and is manufactured by RCA.

Maximum ratings in grid-drive service are:

- Ultron voltage 20,000
- V0 (pos value) 1,000
- (neg value) 500
- V2 (neg peak) 200
- (neg bias) 140
- (pos bias) 0
- Peak heater-cathode voltage 180

5CQ8

A multi-unit tube of the nine-pin miniature type containing a mediummu triode and sharp-cutoff tetrode. This tube, announced by RCA, may be used in many black-and-white and color TV applications, particularly as a vhf oscillator and mixer in tuners of sets utilizing a 40-mc if. It has a 4.7-volt 600-ua heater with a controlled warmup. Except for heater ratings, it is identical with the 6CQ8.

Maximum ratings in converter service:

- Triode as Oscillator 300
- Tetrode as Mixer 300
- V0 (pos bias) 0
- Plate dissipation (watts) 2.7

Weller soldering guns make safe repairs to Heat-Sensitive Components

A WELLER Soldering Gun gives you precise control of heat. This feature is especially important when replacing heat-sensitive components. Here are some typical applications:

1 REPAIRING PLASTIC-MOUNTED I-F TRANSFORMERS. Your Weller Gun gives you precise heat control for this delicate operation. Prevents melting of plastic sockets; enables you to repair loose contacts and hair-thin coil-winding wire without damage.

2 SOLDERING VOICE COIL CONNECTIONS. Heat-control characteristic of Weller Guns enables you to repair loose or broken voice coil connections on the reflecting surface of paper resonating cone. The slightest mishandling of a soldering iron would burn cone.

3 REPLACING CRYSTAL OSCILLATOR. Controlled heat is imperative for replacing crystal oscillator in color demodulator circuits. With a Weller Soldering Gun you get perfect heat control, thus avoid damage to delicate crystal element.

4 REPAIRING REMOTE-CONTROL TUNING UNITS. Your Weller Soldering Gun fits neatly into the small spaces between the terminal tabs on telephone-type relay stacks. Also, heat shut-off feature of gun prevents damage to insulation.

There are professional model Weller guns for every type of service work.

Your choice of models...ranging from 100 to 230 watts single heat and 100 to 275 dual heat types. Suitable for every kind of service operation. All models high in 5 seconds; provide instant, triggermatic control of temperature.

ORDER FROM YOUR ELECTRONIC PARTS DISTRIBUTOR

Weller ELECTRIC CORP.

501 Stone's Crossing Road, Easton, Pa.
TOWARD THE ULTIMATE IN TV RECEPTION

DE RO
PROVEN
by Performance!

PERSONNA-TONE Model PS-20
Remote Control EXTENSION SPEAKER
High-quality sound for chair-side TV listening; 4x6 speaker, selector switch and volume control for TV set. Personna-Tone, or both speakers, wood veneer cabinet. Complete with cables.

DUAL-TONE Model DT-32
Dual Speaker VOLUME CONTROL
For home radio sound extension. Two volume controls—one for each speaker. Volume of either speaker adjusts to any level independently. Airmate cable for all ears.

All-Purpose DE RO-JUVENATOR
One rejuvenator replaces all: Model RU-5—universal 6-wire for one or all series or parallel element TV sets, both electrostatic and electromagnetic. Restores brilliance and contrast to tube.

SAVE $—PAY PART-BY-PART—HAVE FUN
Assembling the SCHOBER ELECTRONIC ORGAN in KIT form

NO SPECIAL SKILLS NEEDED

Compact CONSOLE

One of the many exclusive features of this exceptional organ is the handsome console in a wide variety of finishes. It is equally at home in a traditional or modern setting, and takes little more space than a spinet piano.

Free Literature

Complete descriptive booklet and price list are available on request. And, if you wish to hear the glorious pipe organ tone of the Schober Electronic Organ, a 10" long-playing demonstration recording is available for $2. This is refundable when you order. Write today and see what a fine instrument you can get at such a great saving.

THE SCHOBER ORGAN CORP.
2248-E Broadway, New York 34, N. Y.
*Designed by Richard H. Dorf

NEW TUBES & SEMICONDUCTORS (Cont)

<table>
<thead>
<tr>
<th>Tube</th>
<th>g. input (watts)</th>
<th>g. input (watts)</th>
<th>Peak heater–cathode voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>6N645, 6, 7, 8, 9</td>
<td>0.6</td>
<td>0.5</td>
<td>200 200</td>
</tr>
</tbody>
</table>

These are diffusion-silicon semiconductor rectifiers produced by Texas Instruments. Hermetically sealed in a hard glass case, they have gold-to-gold contacts and a 2-million-to-1 front-to-back current ratio.

Maximum ratings are:

1N645: 46 47 48 29
Peak inverse voltage: (-65 to 150°C) 225 300 400 500 600
Average rectified forward current (25°C) (ma) 400 400 400 400 400
(150°C) (ma) 150 150 150 150 150
Recurrent peak forward current (25°C) (amps) 1.25 1.25 1.25 1.25 1.25
Power dissipation (25°C) (mw) 600 600 600 600 600

6DJ8
A high-pervance beam-power tube designed especially for use as a horizontal-deflection amplifier in color television receivers. It has a 6.3-volt 2.5-amp heater. This is also a RCA tube.

12AZ7
This is a general-purpose high-mu twin triode of the nine-pin miniature type intended for applications in vhf television receivers, including use as a cathode-drive amplifier and frequency converter. Produced by RCA, it has a center-tapped heater for 12-volt 0.225-amp or 6-volt 0.45-amp operation.

www.americanradiohistory.com
NEW TUBES & SEMICONDUCTORS (Contd.)

Maximum ratings for each section as a class-A1 amplifier are:

V_r	300
V_{ce} (neg bias)	50
Plate dissipation (watts)	2.5
Peak heater-cathode voltage	200

IN1150

A full-wave silicon rectifier has been designed to replace type 83 tubes where long life is a primary consideration. It is made by Sarkes Tarzian.

Typical operating characteristics of the IN1150 are:

<table>
<thead>
<tr>
<th>Capacitor Choke</th>
<th>input filter filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac input (volts, rms)</td>
<td>1100 1100</td>
</tr>
<tr>
<td>Dc output (ma)</td>
<td>750 750</td>
</tr>
<tr>
<td>Minimum external impedance per section (ohms)</td>
<td>0.5</td>
</tr>
<tr>
<td>Minimum filter input choke (henries)</td>
<td>1</td>
</tr>
</tbody>
</table>

Surface-barrier notes:

RETMA type numbers have been given to Philco surface-barrier transistors. The SB-101 is a 2N344, SB-102 a 2N345 and the SB-103 a 2N346. These transistors are also being manufactured by Sprague under a Philco license.

3N29, 30, 31

Three germanium tetrode transistors for high-frequency application have been announced by General Electric. With a common base connection and a bandwidth of 2 mc, they are rated for a minimum of 10-db gain at 120 mc for the 3N30, 90 mc for the 3N29 and 15 mc for the 3N31.

Maximum ratings are:

F₁ minimum (mel)	0.8
V_{ce} minimum (mel)	7
V_{be}	1
V_c	1
I_o (ma)	2
P._D (mw)	0.5

Other types:

A 670-amp liquid-cooled germanium power rectifier has been introduced by International Rectifier Corp.

Another high-power semiconductor rectifier has been announced by General Electric. Ratings up to 1200 amps per cell are available.

SEPTEMBER, 1957
COMPARE THE NEW SIMPSON COLORSCOPE MODEL 458 WITH ANY OSCILLOSCOPE ON THE MARKET. IT IS AN ADVANCED, SEVEN-INCH, HIGH-GAIN, NARROW-BAND SCOPE ESPECIALLY DESIGNED FOR COLOR-TV SERVICE. IDEAL FOR BLACK AND WHITE, TOO.

100% RESPONSE AT 3.58 MC COLOR-BURST!

DUAL BANDWIDTH—NARROW OR WIDE!

FLAT FREQUENCY RESPONSE, WITHIN 1 DB TO 4.5 MC!

RISE TIME LESS THAN 0.05 MICROSECOND (WIDE BAND)!

FULL RANGE COMPENSATED VERTICAL ATTENUATOR?

PRICE COMPLETE WITH SHIELDED INPUT CABLE AND OPERATOR'S MANUAL $229.95

FOUR EXTRAORY PROBE ARE AVAILABLE TO PROVIDE THE SIMPSON COLORSCOPE WITH STILL GREATER UTILITY.

SEE YOUR DISTRIBUTOR FOR DETAILS OR WRITE—

SIMPSON ELECTRIC COMPANY
WORLD'S LARGEST MANUFACTURER OF ELECTRONIC TEST EQUIPMENT
5200 W. KINZIE ST., CHICAGO 44, ILLINOIS
PHONE: ELMERS 9-1121

IN CANADA: SIMPSON LTD., LONDON, ONT.

VOLUME CONTROL CIRCUIT
Patent No. 2,768,248

Albert S. Harris, Fort Wayne, Ind. (Assigned to Parworths Research Corp., Fort Wayne, Ind.)

Many volume control circuits operate with variable-mu tubes, the gain changing with grid bias. Such a circuit causes distortion because of tube nonlinearity. This new method uses the straight portion of a tube characteristic for amplification. Input is fed to both the grid and cathode of the same tube. These signals oppose each other because in any tube the grid and cathode potentials are out of phase. By maintaining a steady grid signal and varying the cathode signal, the output of the tube may be controlled as desired.

The full input is delivered to the grid of V1 (see diagram). V2 receives two signals: one at the grid from the tap on R1, the other at the cathode (from the other triode). Initially, R2 is set for maximum resistance and R1 for the full volume desired. (See Radio-Electronics: "Transistor Radio Uses No Power Supply," April, 1955, and "Free-Power Receivers," April, 1957.) As R2 is reduced, a smaller output voltage becomes available across the V1 cathode load. This output cannot exceed the input. Therefore, R2 can be used as a volume control. As it is reduced, it delivers less cathode input to V2 to oppose this tube's grid input.

For avo, a tube may be substituted for R2. Tube bias would be controlled by signal strength. With a stronger signal, the tube resistance (represented by R2) would become lower and increase the cathode signal to V2. In this turn this would tend to lower the tube's output to compensate for the rising input voltage.

MULTIPLE FREQUENCY CRYSTAL OSCILLATOR
Patent No. 2,773,187

Norman J. Regnier, San Laundro, Calif. (Assigned to Hoffman Electronics Corp.)

Crystal oscillators suffer from one big disadvantage: A crystal has only one fundamental frequency. If a great many crystals may be needed. In this new circuit, harmonics of crystals are combined to provide many output frequencies.

The diagram shows the basic arrangement. Any desired harmonic (up to the sixth) may be generated from each crystal. These two signals are added or subtracted as required, and the mixer output is filtered and tuned to the desired signal. The output is an integral harmonic ranging from 1 to 48 mc. The highest frequencies are listed below, together with the manner in which each is obtained. This table can be extended down to 1 mc.

<table>
<thead>
<tr>
<th>Desired Frequency (7 mc)</th>
<th>Harmonic (8 mc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>6</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
</tr>
<tr>
<td>46</td>
<td>3</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

In each case the harmonics were added. For some frequencies it is necessary to subtract.

TRANSISTOR POWER FROM LOCAL RADIATION
Patent No. 2,777,057

Jacques J. Pouletier, Princeton, N. J. (Assigned to RCA)

Transistors require so little power that in many cases they can operate from radiation picked up from local broadcast stations. The signals at the grid and cathode of V2 are 180° out of phase and, therefore, these signals oppose each other.

The antenna is broadly tuned so that all signals over a wide frequency range may be utilized to power the transistor. A diode rectifies the voltage which appears across R with polarity as shown. Therefore the emitter is biased positive and the collector goes negative as required. Signals from the tuned tank are applied between emitter and base for amplification.

RADIO-ELECTRONICS
ESSE RADIO CO.
42 WEST SOUTH ST.
INDIANAPOLIS 25, IND.

SEPTEMBER, 1957

HEY! LOOK!! $2500

REC-TRANS COMBINATION

Order a Rec.-Transmitter Combination For Mobile Use, Fixed Station, or For Wireless Intercom.

BC-604 Transmitter—$59.95 ea.

30 watt crystal-controlled, 10 selectable channels. Each receiver, either variable or fixed. Output approx. 50,000 Mc. in 24 volt D.C. or 120 volt A.C. Current draw not supplied with the price of $59.95. Tubes and accessories supplied, bring your own 100 lbs. Price $59.95 each. Order a receiver and transmitter combination and save at least 10% on the wireless intercom.

BC-603 Receiver—$17.50 ea.

10 tube 50-500 Mc. superheterodyne circuit. Ei receivers, either variable or fixed, each receiver, either variable or fixed. Output approx. 50,000 Mc. in 24 volt D.C. or 120 volt A.C. Current draw not supplied with the price of $59.95. Tubes and accessories supplied, bring your own 100 lbs. Price $59.95 each. Order a receiver and transmitter combination and save at least 10% on the wireless intercom.

Mobile Hams Attention!

112-24 V. VIBRATOR F. POWER SUPPLY—$5.95

Electrically adjustable transmitter vibrator. Can be used as a variable or fixed frequency oscillator. A.D.T. Ltd., Toronto, Canada. Price $5.95 ea.

TS-9 Handset—$2.95

Ideal for your mobile rig. Contains 250 im. vol. head piece and alternate button control. Electronically designed. Made in Canada. Price $2.95 ea. Also available for all other size busses. Exceedent in all respects. Price $2.95 ea.

Golf Car Motor—$5.50

New 1/4 hp. battery-operated motor for building your own race or special type. Operates from 24 volt D.C. with speed of 6000 rpm. Measures 5½ x 6½ x 5”. Shaft. Wt. 14½ lbs. Price $5.50 ea.

30 AMP. BATTERY CHARGER WHILE SUPPLY LASTS—at $5.50 ea.

SURPLUS ENGINE—NEW—at $12.95

New Torque Amplifier Only at $9.75

For use WITH SYNCHRON SIZE S. 6. Provides torque multiplication and ease in handling of input in 100% RF field. 10 turn ratio. Designed for RF output. Transformer included. Price $9.75 ea.

SYNCRO Motor and Generator Only at $9.95 Per Pair

SYNCHROS, SELSYNS, AUTOSYNs!!! At money-saving prices!!!

LARGE QUANTITY

20,000 in stock

110 V. 60 Cycle Units

<table>
<thead>
<tr>
<th>New</th>
<th>Size</th>
<th>Approx.</th>
<th>Approx.</th>
<th>Approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor</td>
<td>Length</td>
<td>Diameter</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>7D</td>
<td>50</td>
<td>3.134</td>
<td>3.630</td>
<td>5.480</td>
</tr>
<tr>
<td>7D</td>
<td>75</td>
<td>3.400</td>
<td>3.900</td>
<td>7.500</td>
</tr>
<tr>
<td>7D</td>
<td>100</td>
<td>3.690</td>
<td>5.000</td>
<td>10.000</td>
</tr>
<tr>
<td>7D</td>
<td>150</td>
<td>4.500</td>
<td>5.480</td>
<td>15.000</td>
</tr>
</tbody>
</table>

110 V. 400 Cycle Units

<table>
<thead>
<tr>
<th>New</th>
<th>Size</th>
<th>Approx.</th>
<th>Approx.</th>
<th>Approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor</td>
<td>Length</td>
<td>Diameter</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>50</td>
<td>3.134</td>
<td>3.630</td>
<td>5.480</td>
</tr>
<tr>
<td>5D</td>
<td>75</td>
<td>3.400</td>
<td>3.900</td>
<td>7.500</td>
</tr>
<tr>
<td>5D</td>
<td>100</td>
<td>3.690</td>
<td>5.000</td>
<td>10.000</td>
</tr>
<tr>
<td>5D</td>
<td>150</td>
<td>4.500</td>
<td>5.480</td>
<td>15.000</td>
</tr>
</tbody>
</table>

Price New (Glass and brass) $12.95.

Price $9.95 ea. in lots of 100 or more.

CT—General Purpose Transformers, 3—D—Mainsfall Transformer, 110 V. 60 Cycle:

Price $9.95 ea. Each includes transformer, 110 V. 60 cycle. Price $9.95 ea. In lots of 10 or more.

General Electric. Specify, Bendix, Ford & GE in stock.

Receiver R-1/ARR-1—at $1.95

A two-stage RF amplifier in range of 324-258 Mc. Ideal for conversion to various frequencies. 250 Mc. oscillator, or other uses. Uses 1|2 stage amplifiers. Can be modified to meet any specifications. Price $1.95 ea.

Metal Locators—at $39.50

The Famous M-1 Odograph, over $5,000 value—$39.50

See Nov. 1944 Electronics for Full Description

This is a survey instrument for automatically drawing a picture of any vehicle in which it is attached transiently. These instruments will, currently for automotive applications, be built by Corp. of Engineers, U.S. Army. Guaranteed good condition, ideal for reconnaissance, oil and gas, work. Price $39.50 ea. In lots of 25 or more. Price $39.50 ea. In lots of 50 or more. Price $39.50 ea. In lots of 100 or more. Price $39.50 ea. In lots of 250 or more. Price $39.50 ea. In lots of 500 or more.

Price $39.50 ea. In lots of 250 or more. Price $39.50 ea. In lots of 500 or more.

Price $39.50 ea. In lots of 250 or more. Price $39.50 ea. In lots of 500 or more.

ESSE RADIO CO.

42 WEST SOUTH ST.
INDIANAPOLIS 25, IND.

SEPTEMBER, 1957

REMIT SHIPPING CHARGE AND INSTRUCTIONS WITH ALL ORDERS OTHERWISE ORDERS WILL not BE SHIPPED.

EXPRESS COLLECT ALL ITEMS GUARANTEED TO YOUR SATISFACTION OR MONEY REFUNDED IF RETURNED PREPAID WITHIN 10 DAYS OF RECEIPT.
ACROSOUND
TO-340
OUTPUT
TRANSFORMER

Specifically designed for the
GENALEX 88-50 CIRCUIT

The new Acrosound TO-340 output transformer provides the best in high fidelity performance in the Genalex 88-50 circuit. Lows are solid and articulate...highs sparkle in unexcelled transient reproduction.

Here's why: The Acrosound TO-340 is specifically designed for the circuit, perfectly matching the KT-88 output tubes in self-bias operation. Screen taps are located according to Genalex recommendations for best Ultra-Linear operation of KT-88 output tubes.

Screen and plate windings are interleaved and tightly coupled for maximum power output over the greatest bandwidth.

For the ultimate in high fidelity reproduction, make sure you get an Acrosound transformer. Look for it in quality amplifiers and kits...or use it to convert your present amplifier to Ultra-Linear operation.

Acrosound TO-340 output transformer is priced at $39.75 at leading distributors.

Please send information on the complete line of Acrosound output transformers.

Name
Address
City

ACRO PRODUCTS COMPANY
369 SHURS LANE, PHILADELPHIA 28, PA.

RADIO - ELECTRONICS

ACCELERATION VOLTAGE COMPENSATION
Patent No. 2,777,018

An unregulated acceleration voltage on a cathode-ray tube is apt to cause deflection difficulty. Electron-beam "stiffness" increases with accelerator voltage. This new deflection amplifier includes means to compensate for this difficulty.

The amplifier has two push-pull stages and a control tube V5. E1 is the unregulated acceleration voltage for a cathode-ray tube (not shown). If, for any reason, it should increase, V5 bias (obtained from R1) goes more positive. This tube acts as cathode load for the last stage V3. V4. Therefore, amplifier gain will rise. Deflection output will increase to compensate for the added beam stiffness resulting from a larger E1 (which speeds up the beam and makes it harder to detect).

E2 is the amplifier power supply. R2, R3 are feedback resistors. The deflection output terminals are A and B.

STABILIZED DISCRIMINATOR
Patent No. 2,755,378

Harris Stover, Cedar Rapids, Iowa (assigned to Collins Radio Co., Cedar Rapids, Iowa)

The conventional FM detector needs at least two adjustments which can be difficult because they interact. This one has a simple tuning circuit which cannot be detuned by variations in previous stages (see diagram.)

Cathode follower V1 is coupled to a phase splitter (shown in dotted box). The parallel tank is tuned to make its net inductive reactance equal the capacitive reactance of C1, at center frequency. When this is done, maximum current flows through the splitter when there is zero deviation and E1 will lag E2 by 90°. Note that E1 also appears (through a capacitor) between point P and ground.

E1 feeds a phase inverter V2 which supplies 2 voltages: E3, in phase with E1; E5, out of phase with it. There are supplied to the discriminator stage composed of V3, V4.

When the frequency of signal E drops, the splitter becomes inductive. Now E1 lags by more than 90°, and the output goes negative. When the signal frequency rises, the splitter will become capacitive, and the output will therefore go positive.

C2, R3 form a filter to keep high frequencies out of the output circuit while permitting the low discriminator variations to pass, in accordance with standard de-emphasis practice. END

www.americanradiohistory.com
Question Box

STRAIGHT AC FOR G-E 250

I have a model 250 G-E portable ac-battery radio using a 2-volt storage cell and vibrator for dc operation. Can I convert it for straight ac operation.

The G-E model 250 battery-ac portable is easy to convert for straight ac operation. Simply remove the battery, and eliminate the vibrator and storage battery — C. M. P., Denver, Colo.

The G-E interference is caused by the surveillance radar at the airport. This equipment operates with a 1300-mc carrier pulsed at 360 cycles per second. The system radiates 1.25 megawatts (1,250,000 watts) of power in a very narrow beam rotating at 6 rpm. You hear a 360-cycle beep each time the radar beam is aimed in your direction.

Radar engineers at the airport report that your problem is a common one that is very difficult to solve. They have the same trouble with their vhf and uhf receivers. Adequate shielding seems to be the only solution.

Try disconnecting the antenna from the set and see if the interference level drops. If it does, then some of the interference is riding in on the antenna and the rest is coming in on the power line or being picked up by direct radiation through space to one or more of the audio grids.

The first step is to prevent the signal from entering the set through direct pickup or via the power line. Try shielding the inside (or outside) of the receiver cabinets with fine copper mesh or aluminum foil with mesh over the back and ventilating holes. Make sure that all surfaces are bonded together and grounded to a good external ground. (On ac-de sets you must be especially careful that the shield does not contact the chassis.)

Try a good line filter such as the Meissner 15-7615 or Cornell-Dubilier IF-18 with the shortest possible line cord to the set. (These and similar high-grade filters are expensive so you had better make arrangements to return yours to the dealer if it does not attenuate or eliminate the interference.) Install shields on all voltage-amplifier tubes and bypass each grid and cathode to ground with a miniature ceramic capacitor of around 50 µf or smaller. Make the connections directly between the tube pins and ground with the shortest possible leads. These capacitors minimize the possibility of grid rectification of the signal in the audio circuits.

If disconnecting the antenna attenuates the signal, then a 1300-mc trap will be useful. Reconnect the antenna and try a half wave length shorted stub as a trap across the set's antenna terminals. For 1300 mc the trap will be approximately 3.75 inches long. (See "TV Service Clinic" in the May, 1957, issue.) Start with a 4-inch length of 300-ohm ribbon (or coax if the set has a 72-ohm input) and use a razor blade—or thumbtack for coax—to short the stub at the open end while listening to the interference. Move the short-
QUESTION BOX (Continued)

In the original circuit application, the signals were taken from plate and cathode of the phase splitter. In your scope a 12A7 cathode-coupled phase inverter is the first stage supplying signals of both polarities. The diagram shows how the signal can be tapped off the plates. The added circuitry is shown in dashed lines.

RATCHET RELAY

I'm building the radio-controlled model boat from plans in the July, 1953, issue. I can't find the Lionel reversing relay specified in the parts list. Can you help me? — R. W. W., Mineola, N. Y.

The reversing relay specified was used in type 80 gauge model locomotives and is no longer available. A suitable substitute is available from Madison Hardware Co., 105 E. 23d St., New York, N. Y. Ask for the "reversing unit for model boats."

END

Two Great Names get together...

Plasti-Kote
and Argos

Developed by electronic engineers - with the highest dielectric strength - 800 volts/mil.

The best ever offered for coating terminals, rust proofing antennas and other electronic uses.

$1.27 Dealer Net
16.4 oz.

Ask your Argos parts distributor now!

Argos PRODUCTS COMPANY
110 MAIN STREET • GENOA, ILLINOIS

Bob Middleton
says:

"Here is a real Service Short Cut, SIGNAL TRACING WITH A VOLTOMETER!"

For information, see your Jobber or write to:

Futuristic Co.
915 S. Broadway
Park Ridge, Illinois

144
TUBE AND TOOL CARRIER

How much time does it take to change a tube? In some shops it requires these motions: First, the suspected tube is pulled from the chassis, the number is read and a trip made to the shelves to get a new tube; then it is carried to the bench, removed from the carton and inserted into the set. If the new tube does not cure the trouble, it is removed from the set, recarton and carried back to the shelves.

Think of the time this process could waste during the period of a year!

This tube and tool carrier holds 94 tubes and saves much of this waste motion. To replace a tube one simply takes it out of the carrier and inserts it into the set. If the new tube is not needed, it is simply replaced in the carrier...all over in a few seconds.

Further, the carrier holds most of the important hand tools and an assortment of resistors, capacitors, pots, etc. This makes the unit very convenient for working on consoles. With a multimeter and the carrier most sets can be serviced right where they sit and there is no need to make several trips to the bench for the different items as they are needed.

Along in a separate toolbox so they would be available if needed.

For shops that handle both radio and TV work, several of these carriers can be made and stocked with the appropriate tubes and parts for the job. For instance, one carrier could be reserved for auto radio service and it could contain all tools, vibrators, suppressors, capacitors and tubes commonly needed so they could be taken to the car in one trip. Another could be assigned to table radios to permit rapid interchange of tubes. If such an arrangement is adopted, different colors could be used to paint the carriers to identify them.

Construction is easy. The top pieces which hold uncartoned tubes must be drilled on the same centers to assure that they will accept a tube in each hole. First, lay out one piece to the dimensions shown on the drawing, then

The carrier is simple, lightweight and ideal for servicing in the field. Its wires are clearly marked and the tooling and parts are clearly defined. For complete description of the carrier, get your copy of the Aerovox Catalog. It is sent free on request.

AEROVOX "DURAMICS"

utilize a dense steatite case to provide exceptional protection against humidity. All terminal leads are firmly imbedded into the end seals so that they will not pull out or work loose even under the most severe operating conditions.

AEROVOX "DURAMICS"

have that exclusive Aerovox end-fill which will not soften or flow nor separate from the case at any rated temperature.

AEROVOX "DURAMICS"

have excellent power-factor, insulation resistance and temperature characteristics. Operating temperatures from -55°C to +65°C. Available in 10 standard voltage ratings from 200 to 15,000 VDC.

Your local Aerovox Distributor always carries a stock of Aerovox "DURAMIC" Capacitors in a wide range of capacitance values and voltage ratings. While you're there ask for your free copy of the latest Aerovox Catalog with complete listings of all Aerovox components.

AEROVOX CORPORATION

Distributor Sales Division NEW BEDFORD, MASS.
TRY THIS ONE (Continued)

clamp the other piece under it and drill through both with a ¾-inch drill. This pilot hole guides the larger drills. Also be careful when making the cutout for the handle as it must be a tight fit to assure a rigid carrier.

Small brads hold the carrier together. Assemble the three top pieces first, then add the ends and the shelves. The tool holders are ¾ x ¾-inch strips drilled and cut out to fit the individual tools. They are attached when the rest of the carrier is completed. These holders are simple to make and no details are shown on the drawing.

After painting, determine which tubes will be used most and assign a space to each. Then scratch the tube numbers alongside the assigned holes. This makes it easier to locate tubes and identify missing ones. If the tube numbers are selected carefully, the carrier should not ordinarily require filling during a day’s work. When a tube is used from the shelves, reinsert the empty carton numbered end first. This will hold the cartons in place on the shelves and make it easy to find the empty carton when refilling the carrier.—S. L. Karal

SOLDERING PAD

An asbestos shingle tacked to one corner of the workbench makes an excellent spot on which to “park” a hot soldering iron. It prevents scorching the bench top and is a handy pad for use when soldering small parts together.—John A. Comstock

MORE GAIN FOR WILLIAMSON AMPLIFIERS

The split-load phase inverter used in Williamson amplifiers can be modified to give an increase in gain of about 50% by changing one connection. No detrimental effects were noticed and the amplifier characteristics remained unchanged.

The diagram shows the modified circuit. The first half of the 6SN7 acts as a straight voltage amplifier, directly coupled to the grid of the second half. The low side of the cathode load of the inverted triode is tied to the first cathode. Gain, measured from the input to either side of the inverter output, was 14. This modification increased the gain by 7.

Maximum output for each side runs about 30 volts and the trick connection has no effect on this factor. A slight degree of positive feedback obtained by coupling the cathodes causes the increase in gain. At the same time, the advantage of negative feedback from the output stage is retained.—Bill Kerns

HIGH-WATTAGE SUBSTITUTION BOX

Resistor substitution boxes are invaluable in service and design work. However, most are rated at 1 watt, which limits their usefulness. A higher-wattage unit can be constructed with only twelve 10-watt resistors. It will supply resistances from 25 to 72,075 ohms in 25-ohm steps.

All resistors are in series and each one has a spst switch across it. (see diagram), allowing any resistor to be inserted or removed from the circuit.

T-M KITS

Advanced designs for the best in high fidelity reproduction
Build and save do-it-yourself
See them at your local radio parts distributor

New 60 WATT HIGH FIDELITY AMPLIFIER-PREAMP KIT

An integrated high power amplifier package for the audio perfectionist — complete with versatile preamplifier in one compact high styled unit — at a budget price. Undistorted power output is guaranteed to be 60 watts from 20 to 20,000 cps. Intermodulation is 1% at 60 watts and below 0.25% at ordinary listening levels.

Model 19K Cabinet 7.50

New 25 WATT HIGH FIDELITY AMPLIFIER-PREAMP KIT

Too quality integrated amplifier preamplifier system on a single chassis at exceptionally low price. Performance equals or exceeds any available amplifier up to rated power of 25 watts.

Model T/35.04 $59.95

Cabinet 7.50

WILLIAMSON TYPE 20-WATT AMPLIFIER

Frequency response flat and smooth thru entire audible range + Less than 0.025% distortion at normal listening levels + Excellent transient characteristics.

Model TM-15A, complete with tubes — sockets, terminal strips, and connectors mounted $49.95

PREAMPLIFIER with Cathode Follower Output

4 input channels + Separate bass and treble controls + P-3-position equalizer + AC output for auxiliary equipment + Powered by main amplifier.

Model TM-17P, complete $19.95

HI-FI FM TUNER

Self-contained power supply + Tuning range 87.5-108 Mc + 200 Mc 1F bandwidth + Grounded-grid RF stage + AFC with front-control cut-off + Microvernier tuning + No-drift ratio detector + 4-Hz sensitivity for 20 dB tuning + Standard decoupling network + 0.8 volt RMS cathode-follower output + 3.2 volt RMS high-impedance output + 300 ohm input impedance + Switch-controlled AC receptacle for auxiliary equipment.

Write for latest catalog to a product of TECH-MASTER CORPORATION 75 Front St., B-Box 1, New York

146

www.americanradiohistory.com
Excitingly new!

DX-16 Super Deluxe TV KIT

For the CUSTOM-BUILT CHASSIS that even a high school student can build.

The DX-16 SUPER DELUXE TV KIT is a worthy successor to the famous #630 TV KIT . . . a product in which we took a leading role. In designing and engineering this NEW KIT, we used the #630 as a standard of comparison for POWER, STABILITY and FRINGE AREA RECEPTION . . . resulting in a NEW TV CHASSIS equal in performance and with even greater versatility.

NEW IN DESIGN—Mounts Horizontally, Vertically or Sideways.

* Produces a Superior 16-Tube Chassis with 30-Tube performance.
* Latest advanced Intercarrier Circuitry and Multi-section Tubes.
* Standard Cascode Tuner for Selectivity and Fine Definition.
* 16KV Output—Operates 21" and other size 70" Picture Tubes.
* 5 Microvolts Video Sensitivity (20 volts peak to peak at CRT grid).
* 3 Hi-gain Video I.F. Stages for excellent Contrast and Details.
* AGC Level and Area Control, for adjusting reception to signal area.
* All Video and I.F. Coils are factory pre-aligned and tuned.
* Horizontal Sweep Circuit is the famous RCA Synchronguide Network.
* Latest circuits for Full Horizontal and Vertical blanking.
* Large Power Transformer 250ma for dependable service.
* Large 12" Concert-tone Speaker.

COMPLETE KIT

Dimensions 17½" x 16" x 5½" Shipping weight 9½ lb.

Shipping weight 9½ lb. of the low, low introductory price of only . . .

$79.97

ALL COMPLETE with SET OF WESTINGHOUSE TUBES and WESTINGHOUSE 21" #21YP4Aluminized CRT . . .

$99.97

WESTINGHOUSE OR CBS PICTURE TUBES

BRAND NEW in Factory Sealed Cartons—With a Full Year Guarantee

17" W 21YP4A $22.66 21" W 21YP4A Aluminized $32.21 24" W 21YP4A Aluminized $49.35 27" W 21YP4A Aluminized $74.31

21" TV CONVERSION KIT

NOW . . . Anyone with even a limited knowledge of TV—can Convert Any Size, any Make TV RECEIVER to operate 21" or any 70" Picture Tube. COMPLETE SET OF ESSENTIAL PARTS includes matched set of Todd 70" COSINE DEJECTION YOKE and TODD MV FLYBACK TRANSFORMER, FOCAILIZER, 20KV FILTER, DRIVE TRIMMER, LINEARITY COIL, CONDENSERS, RESISTORS. Your Price . . . List Price $33.50 Price...$13.95

Similar 90° Kit for 24" or 27" CRT . . .

$15.98

UNIVERSAL Picture Tube MOUNTING BRACKETS

For All 32½" to 37½" picture tubes

Complete Including Stand and 3/4" Tube $6.97

PULSE KEYED AGC KIT

Latest type, most accurate and the easiest Kit to install in any make TV RECEIVER. Includes the #630. Improves performance and issues a steady picture at all voltages.

COMPLETE SET OF PARTS . . .

$4.59

STANDARD CASCODE TUNER

For better all-around performance. Includes a complete Tuner Instruction and diagrams with all extra parts needed.

$15.97

FLYBACK TRANSFORMER

Latest single JHS type for the 21" and all 70" Picture Tubes. Use in all Inter-carrier circuits for Full Horizontal and Vertical blanking.

$8.46

COIN SIZE DEJECTION YOKE

The coin size yoke is the DX-16 yoke, with the following important differences: Will not stick to the chassis, to the download, or to the decoder. This is the same type we supply with our kits. See pages 170 to 172 for detailed instructions and diagrams.

$4.92

BROOKS RADIO & TV CORP., 84 Vesey St., New York 7, N.Y.

TELEPHONE Cortland 7-2359

SEPTEMBER, 1957

147
NEON NOVELTY BLINKER

The diagram shows how three neon lamps, three capacitors and three resistors can be arranged so the lamps fire sequentially in either direction as desired. This arrangement makes a beautiful classroom demonstration of time constants and ring oscillators, and can be applied to window displays, electronic toys, signals on model railroads and many other uses.

All capacitors and resistors are chosen to have equal values. For example: all resistors, 3 megohms; all capacitors 0.05 µf.

HIGH-VOLTAGE REGULATOR

Invented by John D. Burke, Radio-Electronics author and former American TV service technician, now living in Hamchurch, Essex, England, this circuit appeared in Wireless World. It is intended for lengthening the life of high-voltage rectifiers in horizontal flyback systems and for increasing the possible current output and range of the C-R tube's brilliance.

According to Mr. Burke, about one-quarter of all service calls (in Britain, that is) involve replacing the high-voltage rectifier. He maintains that breakdowns resulting from open or shorted heaters and loss of cathode emission are caused by the rectifier heater growing cooler just when the picture makes heavy demands for C-R tube current. This appears to be inherent in flyback systems.

To combat this effect the new regulator device has a coil in the rectifier's heater circuit, the reactance of which is varied by the C-R-tube beam current so that an increase of beam current causes an increase of heater current and vice versa.

One such circuit, illustrated by the diagram, uses a moveable armature which is pulled into a driving coil by increasing C-R-tube beam current (against the action of a spring or gravity). This armature is mechanically coupled to a moveable core in the variable-reactance coil in such a way that increasing beam current reduces the reactance. The driving coil can be connected into the beam current circuit at A, B or C marked with a cross.

INTERMITTENT LOCATOR

Often a tube in a series-heater string will develop an intermittent heater so sensitive that any slight mechanical or electrical shock will restore it to normal operation before you can locate the defective circuit. This is particularly trying because it may be hours or even days before the trouble returns.

The diagram shows an inexpensive intermittent locator that is safe and easy to use. Type NE-2 or NE-51 1/25-watt neon lamps are wired in a string with individual series resistors. A shunt resistor of about 300,000 ohms is paralleled across the indicator lamp used for 50-volt tubes. This prevents the lamp from glowing on a good tube. Test leads with insulated miniature clips are wired to the lamps and connected across individual heaters.

Check the operation of the intermittent locator by connecting it to a...
RUFUS P. TURNER, popular transistor authority and engineer, takes transistors out of the laboratory and puts them on the work bench. He has collected over 100 practical circuits for amplifiers, oscillators, and other equipment, along with the basic power supplies, amateur equipment and other units. All were designed by experts—some by the author himself. All were tested in the author’s laboratory—and all of them work! No waterering-down of the real transistor testing or theoretical explanation circuits! This book offers a treasure chest of building blocks which will save hours of remorseless designing. You can put these circuits to an infinite number of uses other than those originally suggested. No one who works with transistors at home or in the lab can afford to miss Turner’s latest book. Order your copy now.

MORE AF OUTPUT FROM RF SIGNAL GENERATORS

Most of the rf signal generators on the present-day market modulate the rf signal with a 400-cycle audio oscillator. Many of these generators provide front-panel terminals where the audio output is independently available. Although this audio signal may vary in voltage from several volts, it is usually too small for such applications as impedance and distortion measurements.

A simple method of increasing the audio output is to add a linear voltage-amplifier stage between the oscillator and output jack. The diagram shows such an amplifier added to the Heathkit SG-8. The circuit is efficient and introduces a minimum of distortion, approximately 2% at 1-volt maximum input. Output is 6.5 volts for 0.5-volt input. Power requirements are small and usually obtainable from the instrument power supply.—Warren J. Smith

MAIL THIS COUPON TODAY

Gernsback Library, Inc., Dept. 97
154 West 14th St., New York 11, N.Y.

Me remittance of $2.75 is enclosed. Please send me the books checked below postpaid.

1. No. 63 Transistor Circuits, $2.75
2. No. 61 Instrument Techniques, $1.50
3. No. 62 Transistor Theory & Practice, $2.00

Press 10% higher in Canada.

NAME

please print

STREET

CITY

STATE

END
Why do electronic technicians prefer Quam speakers? In filling out their survey questionnaires, they mentioned such reasons as:

- Adjust-a-Cone Suspension
- High quality dependable performance
- Adjustable mounting bracket
- Better construction
- No call-backs

Thank you,
Mr. Serviceman.
We appreciate the vote of confidence.

Brand Name Surveys of Chicago, Illinois, asked 22,000 service technicians from coast to coast, "What brand of replacement speakers do you prefer?" Overwhelmingly, from Maine to California, the preference was for Quam. In fact, twice as many servicemen now prefer Quam as the next most popular brand—and as many prefer Quam speakers as the other three leading brands combined! This is the fourth consecutive year in which Quam has led the survey.

QUAM-NICHOLS COMPANY
236 EAST MARQUETTE ROAD • CHICAGO 37, ILLINOIS

OPPORTUNITY ADLETS
Rate—60¢ per word (including name, address, and initial). Minimum 25 to 10 words. Cash must accompany order. Discount: 15% for 10 consecutive issues. Minimum or objectionable ads not accepted. Copy for November issue must reach us before September 15, 1957.

RADIO-ELECTRONICS,
154 West 14 St., New York 11, N. Y.

EARN COLLEGE DIPLOMA through correspondence. Also jobs leading to degrees, Science, Engineering, AUEER, Central Valley, New York.

HIGH-PURITY SPEAKERS REPAIRED - AMPHYTE Speaker Service, 70 Vesey St., New York 7, N. Y.
HA 7-2560.

CARL PAID! Sell your surplus electronic tubes. Want unused, clean transmitting, special purpose, receiving, TV type, magnetic, high-frequency, broadcast, etc. Also complete or parts equipment. Cash paid. Send specific details in full letters. No airmail, air post, wire or telephone. BARNEY, 512 Broadway, New York 12, N. Y. WALTER 8-7600.

SHORTED TILT CONTROL
The 7.5-ohm resistor fuse in a Motorola TS-902 blew out as fast as it could be replaced. This fuse protected the B-plus power supply so it was suspected that an electrolytic capacitor had gone bad or that a selenium rectifier had cocked out. The electrolytic cans were cool and the seleniums checked OK. An ohmmeter check at the filter output showed suspiciously low resistance. The B-plus lead was disconnected and the ohmmeter indicated trouble down the line. The filter system was first suspected because another receiver of the same type had previously given this trouble.

A low-ohms ohmmeter was then used to run down the trouble. By going step by step in the direction of progressively lower readings, a short was soon localized in the blue vertical tilt control (see diagram). Replacing the control cleared up the trouble.—Robert G. Middleton

WESTINGHOUSE V-2287

The 19-inch picture tube used in this set may settle, due to its weight, and the neck of the tube will become off center in the convergence assembly. In some cases the neck may come to rest on the blue beam convergence magnet and shatter the ferrite core. To correct this the picture tube itself should be more tightly clamped to its mountings. The convergence assembly should then be centered on the neck of the tube before convergence adjustments are begun. The convergence coil and core assemblies should all be adjusted to be flush with the neck of the tube.—Westinghouse Service News

www.americanradiohistory.com
THE COMPLAINT was intermittent drift on stations, producing a static like noise. Placing a vtm across the 6SA7 oscillator grid showed a change in bias voltage when the set started to pop and drift. Oscillator grid leak capaci-
tor C10 was found to have an intermittent short. Replacement cleared up most of the static.
I then found a defective first if transformer T1. Replacing this cured the trouble. The B-plus section was arcing to ground, causing the inter-

mitten static.—G. P. Oberto

RCA KC96

Failure of the high-voltage fuse is usually caused by a condition in the horizontal circuit that results in abnormal current through the fuse. In this chassis, however, the vertical output circuit should also be checked if the cause of fuse failure cannot be readily determined.

The plate and screen currents of the vertical output tube flow through the high-voltage fuse and can cause fuse failure if the vertical output tube or associated circuit cause abnormally high current through the fuse. When the high-voltage fuse fails for no ap-

parent reason, the possibility of an intermittent condition in the vertical output circuit should not be overlooked.—RCA Television Service Tips

VANISHING VOLTAGE

A Du Mont RA109 came into the shop with an unusual condition. The set acted normally until the sound started. A few seconds later the filaments of both 5U4's slowly faded out. No other tube filaments were affected. This happened each time the set was turned on. Changing the rectifiers made no difference.

An ac meter placed across the 5U4 filament pins showed that the voltage dropped from 5 down to 2 after the warmup period.

Trouble was suspected first in the power transformer and second in the B-plus supply. A thorough check of that circuit showed nothing but, with the 1/4-amp fuse removed, the 5U4's remained lit and normal sound was obtained.

By elimination we found that replacing one of the two 6BG6 horizontal output tubes cleared the trouble, giving both normal picture and sound. Un-

fortunately, the defective 6BG6 cracked on removal and we could not determine why and how the tube could affect the

STOP CB* WITH C-D

"STOP SERVICE CALL BACKS with Cornell-Dubilier's popular "UP" Twist Prong Electrolytics — specified by leading manufacturers as original equipment, adopted by "profit-conscious" technicians and the top choice for wide-coverage replace-

ment service. Call-back-free dependability is the big reason why more C-D Capacitors are in use today than any other make. Complete catalog available. Write to Dept. ST-47, Cornell-Dubilier Electric Corp., South Plainfield, New Jersey.

SAVE TIME AND MONEY—INSIST on C-D Twist Prong ELECTROLYTICS.

stop call backs...insist on

CORNELL-DUBILIER CAPACITORS

OPPORTUNITY ADLETS

(Continued from page 150)
A COMPLETE LINE OF:
- TV KITS
- INSTRUMENT KITS
- HI-FI KITS
- HI-FI Speaker Systems
- HI-FI CABINETS

A wide assortment to house any make Hi-Fi units. Exquisitely styled. Beautifully finished. Cannot be equalled anywhere.

Write for Complete Catalog

NEW! Transistorized
VTVM—VOM KIT $39.95 for Kit
Only $10 gets you started. This covers the 1st stage. Balance in 2 stages; pay as you go. Also, factory wired for $7.95.

HI-VOLTAGE RECTIFIERS

Many high-voltage supplies which use a 2X2 or similar rectifier, with the cathode at high-voltage, have the rectifier socket mounted on posts below the chassis. The tube is shoved through a hole in the chassis and into its socket. Usually these holes in the chassis are just big enough to clear the tube base. This encourages high-voltage leakage from the socket, along the side of the tube to the chassis. By making the hole at least ¼-inch larger than the tube all leakage at this point can be eliminated.—Charles Erwin Cohn

TECHNOTES (Continued)

5U4 filaments and not blow the fuses.
—Frank Salerno

(If there was an internal short in the 6BG6 causing the plate to draw an unusually large amount of current from the power transformer, the transformer could become saturated, causing a drop in all secondary voltages. This would not necessarily draw enough current to blow the fuses in the set. The 5U4's, drawing 6 amperes for the filaments, would show visible effects of this while you might not be able to notice any change in other tubes drawing much less current.—Editor)

TRAVELING DOTS

It was a Hoffman 703. The set could be converged but not for long. The red dots would soon start to drift. If the set was turned off for a while, convergence would be fine when it was turned on again. Then it would slowly start to drift off again. Checking in the

shop turned up B plus that dropped as the receiver operated. We traced this to a selenium rectifier in the power supply. With a new rectifier the voltage held steady and convergence was normal. The drift was caused by a change in the picture-tube voltage when the B plus to the cathode of the regulator tube dropped.—Robert G. Middleton.

RAPID LINE CHECK

To save a lot of time and effort in checking for open transmission lines and avoid lowering the mast to check continuity try this: When installing an antenna put a 300-ohm, 5-watt vitreous-enamedled resistor across the antenna terminals. We find that it stands up under all kinds of weather conditions and because of its inductance a low value can be used. The first time that this antenna line has to be checked it will take no more than a few minutes with an ohmmeter.—H. Lawrence

Sny "Spray" or "Drop" it

Now QUIETROLE offers you both types of containers. Either way assures you of the same unfailing results that QUIETROLE is known for.

Make your next purchase QUIETROLE, get both and learn the difference between quality and poor substitutes. QUIETROLE is the original product of its kind, it is a FIRST of the industry and you can depend on it to end your noisy control and switch troubles.
Raytheon Manufacturing Co., receiving and cathode-ray tube operations, Newton, Mass., was recently host to a group of 12 Raytheon bonded electronic technicians from the East Haven, Conn., area. The group, sponsored by J. V. Electronics, Raytheon's East Haven distributor, visited the company's tube plants in Quincy, Newton, Waltham, Bedford and Wayland, Mass. In the evening they were treated to a dinner and Boston Red Sox ball game. In the photo, Raytheon's assistant distributor sales manager, J. Hickey, shows the group the second edition of the company's transistor applications book.

Littelfuse Inc., Des Plaines, Ill., designed a new dispenser-display for distributors. As a result of a field survey, the display incorporates many desirable features recommended by distributors for easy up-keep and inventory control. The dispenser will hold 7,600 fuses in a minimum space—more than any other available dispenser.

Wen Products Inc., Chicago manufacturer of soldering guns and power tools, reports that the first-prize winner in its recent sales contest, Wilmington Hardware, Wilmington, Calif., sold over $800 worth of items in three months using the Wen Self...
NOW... THIS NEW BOOK HELPS YOU...
ENJOY HIGHER FI!

At last, a book written just to help give your hi-fi system the golden voice you want—within the limits of your budget! In his latest book, UNDERSTANDING HI-FI CIRCUITS, Norman H. Crowhurst, hailed on both sides of the Atlantic as an outstanding hi-fi authority, tells you which phase inverter is best, whether fixed or self bias gives less distortion in the power output stage, the merits of triode vs. pentode, how to use feedback, etc. He answers hundreds and hundreds of other questions to help you decide for yourself which circuit is best for you to reach the performance level you want.

This unusual book, handsomely bound in a deluxe 2-color gold leaf-stamped cloth cover, sells nationally for $5 but through the unique G/L Audio Hi-Fi Book Club, you can get it at the wholesale price of only $3.75! Read how you can get UNDERSTANDING HI-FI CIRCUITS and other great books by top drawer hi-fi writers like Marshall, Hoefler, Burstein and others—all at a saving of 25%.

How to Get This Book At a Big Saving!

To enroll in the G/L Audio Hi-Fi Book Club fill in your name and address and indicate the book you want on the coupon below. SEND NO MONEY!

We will send you the book you choose for a 10-day inspection in your own home. If you like it keep it and send your remittance of $3.75—the special wholesale club price. (We pay postage)

If not satisfied simply return the book in the container in which you received it.

A new book will be sent to you on the same no-risk, free inspection plan for every four months.

You agree to take a minimum of only four books for the whole period of enrollment—no time limit. You may cancel any time after that.

Other Books Already Published

Basic Audio Course—by Donald Carl Hoefler. Complete coverage of theory and fundamentals from the physics of sound to advanced techniques, including amplifiers, feedback, power supplies, distortion, attenuators, speaker systems, and so much more it is impossible to list all here.

Books for Future Publication

These books will be published one-at-a-time at regular intervals and sent to club members for home inspection, just as soon as they come off the press.

- Elements of Tape Recorder Circuits
- High-Quality Audio
- Audio Data Book
- Loudspeaker Enclosures

All these exclusive features yours with membership

Handsome and durable gold leaf stamped cloth covers
SAVINGS OF 25% over the $5 retail price!

——— NO-RISK COUPON ———

GERNSBACK LIBRARY, Inc., Dept. 97-B
154 West 14th St.
New York 11, N.Y.

Enclose me in the G/L Audio Hi-Fi Book Club, Regis try membership with the book mailed below.

UNDERSTANDING HI-FI CIRCUITS
BASIC AUDIO COURSE
MAINTAINING HI-FI EQUIPMENT
Send me more information about the G/L Audio Hi-Fi Book Club

Name ____________________________
Street ___________________________
City ____________________________ State ___________________________

Remember YOU SEND NO MONEY! You keep only the books you want—pay only for those you keep!

Each month a different product or kit will be on sale. Photo shows the G.C TV and Furniture Beauty Kit, which was featured to inaugurate the program in July.

L. F. Holleran, general marketing manager of the RCA Electron Tube Division, Harrison, N. J., has become manager-distributor products in a reorganization of the division into separate units for engineering, manufacture and sale of industrial and entertainment electron tubes. John B. Fasse, manager-personnel, becomes manager—entertainment tube products; C. E. Burnett, manager-cathode-ray and power-tube operations, becomes manager—industrial tube products.

John M. Glynn (left) and Joseph R. Richmond were promoted to assistants to Tom Crawford, sales manager of Tooe Deutscheinann Corp., Norwood, Mass. Glynn was formerly sales admin-istrator, and Richmond sales expediter and director of distribution and jobber relations. The company also announced the appointment of Robert L. Stone, a former field and project engineer, to assistant manager of the Engineering Division.

Louise R. Burroughs was elected vice president for broadcast and recording equipment at Electro-Voice, Buchanan, Mich. With the firm since it was founded in 1927, he had been chief engineer.

Wayne L. Steinbarghe was honored at a surprise dinner commemorating his 24 years of service with Cornell-Dubi-
lier, South Plainfield, N. J. At the same time he was appointed special field representative for the company. Leroy E. Menut, left, toastmaster of the banquet, is shown congratulating Steinbarg on his promotion.

Douglas M. Considine joined Hughes Aircraft Co., as director of marketing for Hughes Products Group, with headquarters in Los Angeles. He previously operated his own marketing consultation firm and prior to that was merchandising manager for P. R. Mallory Co.

William H. Attshuler was appointed vice president of manufacturing at Jensen Industries, Forest Park, Ill. Previously he held a similar position with Shure Bros.

Joe E. Morin (left) was promoted to general sales manager of Howard W. Sams & Co., Indianapolis. He had been manager of the new industrial division.

In his new post he succeeds J. C. Keith who resigned as vice president in charge of sales to serve as a merchandising consultant for the company.

John Messerschmitt (left) of Renewal Tube Sales Division of Ampex Electronic Corp., Hicksville, N. Y., was named assistant to Frank Randall, vice president and general sales manager of the company. George Elliot, former office manager, was appointed manager of export and tube industry sales.

Sam W. Archer, assistant operations director of United Motors Service Division of General Motors Corp., Detroit, Mich., was promoted to assistant general sales manager-merchandising.
A SUPER MAGNET

- AT A SUPER SAVING!

LIFTS MORE THAN 20 TIMES ITS
OWN WEIGHT!

Now for a limited time only—you can buy this Little Giant magnet, the most powerful ever made, at a sensational bargain price! The low, low price of $1.50 is less than 50% of what you'd usually pay for this type magnet. Experimenters and hobbyists will find hundreds of uses for this powerful 4 oz. Alnico permanent magnet. CAN LIFT 5 LBS. EASILY. Through a special pur-
chase plan we are able to offer these Super magnets at this amazing low price. A limited quantity only. First come first served. Order several today. Low price includes keeper. Measures 1 1/2 x 1/2.

Item No. 86
Special Bargain Price
(Ships. Chgs. 10c)
$1.50
(Regularly priced at $3.50)

POWERFUL ALL PURPOSE MOTOR

Sturdy shaded pole A.C. induction motor. 15 watts, 1200 rpm. 2 1/2" x 1 1/2". Mounts on base of 3 3/4". shaft, 3/16" diameter. 110-115 volts, 50-60 cycles. A.C. only. Unusual buy $2.45

ITEM NO. 185
UNUSUAL BUY
$2.45

250 POWER TELESCOPE LENS KIT

Make your own high powered 6 ft. telescope! Kit contains 2" diameter, 75" focal length, ground and polished objective lens and necessary eye pieces. Magnifies 5x to 25x. Full instructions.

ITEM NO. 48
New Special
$2.95
(Chips. Chgs. 50c)

Hudson Specialties Co.

140 W. 14th St., Dept. RE-57
New York 7, N. Y.

Order single roll reinforcements for tubes circled below. (Be sure to include remittance charges.)

Name ____________________________
Address ____________________________
City _______________ State ___________

Raypar Incorporated

7800 W. Addison St., Chicago 34, Ill.

156 RAYPAR ELECTRONIC COMPONENTS

WIRE AND CABLE

Catalog No. 857 contains many additions to this manufacturer's line, including audio cables, mike cables and hook-up wire conforming to MIL specifications. Products are grouped according to use and applications.

Belden Manufacturing Co., 4647 W. Van Buren St., Chicago 10, Ill.

ELECTRONIC PARTS

Two-color electronic parts Catalog 6A100 lists tubes, vibrators, auto aerials, speakers, auto radio components, and all parts for Auto Eye, automatic headlamp control. Parts are alphabetically listed by make of car and indexed.

Delco Radio Div., General Motors, Kokomo, Ind.

SPEAKERS

Illustrated Catalog Q-N 57 lists 114 replacement, outdoor, public address, intercom and hi-fi speakers and rear seat auto speaker kits. Specifications including type, field, power handling, dimensions and prices are given.

Quan-Nichols Co., Marquette Rd. and Prairie Ave., Chicago 37, Ill.

TRANSISTOR APPLICATIONS

Volume II of Raytheon's Transistor Applications book is now available. It contains 80 pages of new transistor circuits with full construction details. A transistor interchangeability chart is also presented.

Raytheon Manufacturing Co. From local Raytheon Distributors. 50c.

AUTO-RADIO PARTS

This colorful 28-page Auto-Radio Replacement Guide and Catalog includes transformer and coil replacement data for 46 makes of auto radios.

Merrill, Coil & Transformer Corp., 4427 N. Clark St., Chicago 40, Ill.

MASTER INDEX

This 48-page booklet gives a complete cross index to material in all Supreme Publications' Television and Radio Service Information manuals. Supreme Publications, 1700 Balsam Rd., Highland Park, Ill. 25c.

WALL CHART

A revised edition, M-270 Ceramicchart, has just been published. Two colors. Shows where each type of ceramic capacitor is used in typical circuits and color coding of the units.

FREE! 360 pages of the Newest in ELECTRONICS HIGH FIDELITY • RADIO • TV

NEWARK'S NEW CATALOG 1958

Offers you a fast, efficient, dependable way of selecting the finest components in the field at the lowest prices.

NEWARK ELECTRIC COMPANY
Write Dept. RE9
223 W. Madison St. • Chicago 6, Illinois

TECHNICAL LITERATURE (Continued)

RELAYS

A comprehensive, illustrated Catalog No. 1957-C8 from a firm that specializes in relays. Some of the many types listed are: actuator, differential, polarized, mercury wetted, rotary and telephone relays.

Relay Sales, Inc., Box 186, W. Chicago, Ill.

MARINE RADIO

ST-69, a 4-page illustrated leaflet, contains a detailed description of various types of marine radio equipment. Lafayette Radio, 163-08 Liberty Ave., Jamaica 83, N.Y.

TRANSISTOR CHART

Wall chart shows applications, maximum ratings and typical characteristics of 56 types of germanium-junction alloyed transistors. An interchangeability chart is also presented.

General Transistor Corp., 91-27 138th Pl., Jamaica 35, N.Y.

GENERATING PLANTS

Pocket-sized booklet describes the three general groups of electric plants: ac, dc and battery charging.

D. W. Owsen & Sons Inc., 2600 University Ave., S. E. Minneapolis 15, Minn. Ask for Blue Book.

EQUALIZERS, WAVE FILTERS

Illustrated Catalog No. 12-ElI lists standard networks which may be used to build up almost any type of af response characteristic. Principal uses are in the fields of sound recording, television and broadcasting, telecommunications, scientific research and motion pictures.

Cinema Engineering, 1100 Chestnut St., Burbank, Calif.

AUDIO GLOSSARY

In this 12-page glossary 99 hi-fi and tape recording terms are presented. Among the terms defined are: frequency response, binary recorder, signal-to-noise ratio, crossover network and VU meter.

Minnesota Mining & Manufacturing Co., Dept. M7-177, 900 Bush Street, St. Paul, Minn.

TRANSFORMERS

A one-sheet circular lists four special-purpose transformers and describes Ultra-linear output, vibrator and power transformers.

Aero Products Co., 369 Shars Lane, Philadelphia 28, Pa.

CORRECTION

There is an error in Fig. 3 of the article "Harmonic Analysis Made Easy" on page 89 of the June issue. Ordinates 0 and 6—the beginning and the end of the square wave—are both given at the maximum value of the wave or 25. This makes the dc component 16.7 rather than the 15 which it obviously is from the graph. (These should have been both shown as the average of the square wave at the point or 15.) We thank Mr. Arthur Hogrefe of New Cumberland, Pa., for the correction.

BUILD THE BEST-BUILD ALLIED'S OWN Knight-kits

Here is a typical Knight-Kit value—available only from ALLIED—one of 15 great Knight-Kits you'll find in our special Supplement No. 165. Write for your FREE copy today.

Model $13.50 Y-702

Light Source Kit Only: Sealed-beam bulb; capped filament; removable red filter. 6 x 6 x 4.7. Shpg. wt. 3/5 lbs.

Model Y-702. Net, F.O.B. Chicago...

OTHER Knight-kit HOBBYIST VALUES

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Broadcast Kit Y-705</td>
<td>$10.50</td>
</tr>
<tr>
<td>Wireless Photo Kit Y-244</td>
<td>$28.50</td>
</tr>
<tr>
<td>Phone Amplifier Kit Y-701</td>
<td>$8.50</td>
</tr>
<tr>
<td>Phone Oscillator Kit Y-760</td>
<td>$55.50</td>
</tr>
</tbody>
</table>

See our Supplement No. 165 for 12 other Knight-kit hobbyist values.

FREE SUPPLEMENT featuring Knight-kits

Send for our FREE Supplement No. 165 featuring 42 great Knight-Kits, including Test Instruments, Hi-Fi, Hobbyist and Amateur kits. Write for your copy today.

ORDER FROM ALLIED RADIO

Dpt. O2-J-7, 100 W. Western Ave., Chicago 80, Ill.

Many facts not always found in a hi-fi publication are presented in clear, everyday language. The book aims at artistic as well as technical phases of hi-fi. It describes the nature of hearing, stereophonic methods and the principles of acoustics and, also, how to conduct audio tests and make measurements without elaborate equipment.

Important chapters include distortion, dynamic range, transient response and equalization. There are practical schematics on expansion and compression circuits. One chapter shows how to select elements and match them up to complete a hi-fi sound system.—IQ

The metallic rectifier is an important item in power supplies and ac meter instruments. It has other applications like suppression and peak clipping. This book describes in detail the operation and application of the big 3 in metallic rectifiers: copper-oxide, selenium and magnesium-copper sulfide.

In addition to rectifiers themselves, the author discusses rectifier circuits, voltage multiplication and ac meter requirements. The coming miracle in rectifiers, the silicon junction diode, is covered briefly in the final chapter.—IQ

This booklet, on topics relating to tanks and tube oscillators includes many mathematical analyses and circuit descriptions. Medium and low frequencies receive the bulk of attention, with a few pages devoted to very high frequencies.

Some sections may puzzle readers. At one point there is mention of radiation from a modern 1-mc radio or TV transmitter. TV at 1 me? A distinguishing feature of the Colpitts as against the Clapp oscillator is the fact that the latter uses a pentode, according to the author.—IQ

An extensive compilation of data sheets from the various transistor manufacturers. In this single source we can find all important factors and curves relating to design and construction of transistor devices. Special types such as the fieldistor, field-effect transistor and avalanche types are included. The handbook also lists transistor batteries, thermistors and components.

This is a rapidly moving field and new types are being announced all the time. Many recent transistors are not found here and others that have become obsolete are still included. However, the technical data are basic and will be found useful by technicians, experimenters and designers.—IQ

A guide for radio and television technicians written in clear language and generously illustrated, the text begins with modern electron theory and continues through operation of point-contact, junction and other transistors. A number of transistor circuits are then analyzed and new developments and transistor servicing discussed. The book closes with a chapter of experiments with transistors.—LS

A tour of physics, covering topics such as electricity, alternating current, electronics and cosmic rays, for the layman.

SATELLITE! by Erik Bergaust and William Beller. Hanover House, Garden City, N. Y. 8 1/2 x 5 1/2 inches, 287 pages, $3.95.

An earth satellite is soon to be launched. Electronic devices will play a major part in its operation. Among those covered in this book are photon counters, radar tracking, doppler-radar system, telemetering systems and possible use of satellites as microwave relay stations. It is written with the layman in mind—brief, easily understood, without long technical discussions.—LS

INTRODUCTION TO PRINTED CIRCUITS, by Robert L. Swigget. John F. Rider Publisher, Inc., 116 W. 14 St., New York, N. Y. 5 1/2 x 8 1/2 inches, 101 pages. $2.70.

Printed circuits are the key to the automation program of the electronics industry. As such they are becoming more widely used. This book describes each type of printed circuit in electronic equipment today. Their characteristics, functions and servicing techniques are discussed.

A radio or phonograph reproduces music; an electric organ produces music. Many methods of producing music electrically are discussed. Advantages, disadvantages and limitations of electrical systems are examined. Written for those interested in the making or appreciation of music and electronic amateurs and specialists.—LS

INSTRUCTIONS FOR AUTO RADIO REMOVAL, 1st Edition. Howard W. Sams and Co., 2203 E. 46 St., Indianapolis, Ind. 5 1/2 x 8 1/2 inches, 103 pages. $2.95.

Removing a radio from a car has always been a problem, mainly due to lack of information. Here 22 of the 1955 model cars are listed with complete instructions for removing the radio. Detailed diagrams and photos point out all mounting bolts and indicate whether the radio drops down, lifts up or pulls straight out. A list of necessary tools is provided.

A systematic and comprehensive survey of linear antennas and arrays of linear antennas. For the engineer and advanced student.—LS

MARINE RADAR, by D. G. Lang. Pitman Publishing Corp., 2 W. 45 St., New York, N. Y. 4 1/2 x 7 1/2 inches, 229 pages. $4.75.

Radar, an important but complex unit aboard ship, is described here for service technicians. Components and circuits are covered in the first part of the book. Topics include wave shapers and generators, transmission lines, cavity resonators and antennas. Use and testing of a complete receiver are discussed. For self-study readers, questions appear at the end of each chapter.

—IQ
Radio experts solve your engineering problems
Save $8.50 on newly revised RADIO ENGINEERING LIBRARY

At your fingertips in one convenient source—facts, standards, practices, data for the whole field of radio engineering. Covers current developments in transistors, other semi-conductors, microwave tubes, pulse techniques, color TV, and much more. Covers everything from tube and circuit fundamentals through essentials of major fields of application.

OVER 4000 PAGES OF PRACTICAL MATERIAL!

Fine text-backed volumes of data, graphs, charts and tables give information quickly. Indexed material on CRT, frequency modulation, instruments and methods for measuring high frequency, etc. Selected by radio specialists as most helpful material for engineers, students, and others interested in broadcasting, aircraft radio, and related fields. The book is packed with helpful information, quick facts, charts and graphs, and will be a valuable tool for years at a special price of $2.90.

10-DAY FREE TRIAL

McGraw-Hill Book Co., Dept. RE-9
330 W. 41st St., New York 36, N. Y.
Read for 10 days free trial, the Radio Engineers' Library. If 10 days I will send (check one)
$12.50 for 3rd ed.; or $17.50 in 10 days and $7.00 a month until $49.50 is paid—saving of $8.50 over regular price of $58. Otherwise I will return book postpaid.

Name

Address

City and State

Employed by

Pay as you use on EASY TERMS

3rd Ed.—Fundamentals of Vacuum Tubes (Kastmann); 3rd Ed.—Electronics & Radio Eng'g. (Terman); 2nd Ed.—Communication Engineering (Kovacs); 2nd Ed.—High Frequency Techniques (Hunt); 4th Ed.—Radio Eng'g. (Hinney).

PLEASE READ RADIO-ELECTRONICS EVERY MONTH

END

BOOKS (Continued)

This well-known authority has a remarkable way of explaining hard things the easy way, and without mathematics. Assuming no previous knowledge of the subject, he does an excellent job on the basic topics of radio: transmission lines, circuits, tubes, transistors, vectors, etc. Beginners and technicians will find this a worthwhile book.

The first chapters are for beginners. They show properties of symbols, abbreviations and schematics. Elementary principles of capacitance, inductance and ac circuits follow. More advanced chapters include C-R tubes, superheterodyne principles, antennas, and others.—IQ

This text for senior and graduate engineering students provides a description and analysis of circuits and techniques common to the newer fields of electrical engineering. Beginning with linear networks, the book continues through subjects such as waveforms encountered in pulse circuits, basic non-linearity of tubes and semiconductors, and wave-form-generating circuits. These basic blocks are then assembled into pulse and digital systems like radar, television and digital computers.—LS

RADIO AMATEUR'S HANDBOOK, 54th Edition, by Headquarters Staff of American Relay League, West Hartford, Conn. 6 x 9 inches, 576 pages text plus 32-page vacuum-tube and semiconductor section, 136-page catalog section and index. $3.50.

This newest edition of the best known radio book covers a large amount of new equipment in all categories.

A chapter on television is included in the basic-theory sections. Transmitters designed for the novice will be found and the tube supplement has been completely rewritten. All changes necessary to bring the text up to date have been made.—LS

SCATTER PROPAGATION, Theory and Practice, by Ira Kamen and George Dondulakis. Howard Sams & Co., Inc., 2205 E. 46 St., Indianapolis, Ind. 5½ x 8½ inches, 197 pages. $3.

After an introduction to scatter propagation, telling what it is and why it is used, chapters are broken down into two-chapter sections. Chapters 2 and 3 discuss ionospheric communications systems and ionospheric scatter system equipment, respectively; Chapters 4 and 5 are entitled Tropospheric Propagation and Tropospheric Propagation Equipment.

As would be expected, more space is given to tropospheric communications, which are adaptable to broad-band systems and multichannel links. Chapter 3 contains much information on the "how" of scatter propagation. A number of schematics are shown in Chapter 5 and the discussion is highly practical.

A further chapter on digital systems and the technician whose interest is in maintenance rather than in design and installation. A final chapter describes the DEW line and other northern scatter and radar setups.—FS

To understand fully and evaluate, one must first analyze and compare. Mr. Crowhurst uses these two methods to present the true facts of high fidelity. For example, the chapter on output stages shows the differences between transformer and R-C coupled, fixed and automatic bias, triode and pentode, Ultra-linear and cathode follower. Input stages, equalizers, loudness controls, feedback, inverters, etc. are equally clearly explained. A chart gives typical values of distortion, efficiency and drive for each type of circuit. Each chapter includes data and charts to show the merits and features of each circuit.

If you are puzzled by the claims and counter-claims of audio designers and hi-fi listeners, this book will give you the low-down on hi-fi.—IQ

TECHNICIAN'S HANDBOOK, CBS-Bytron Technical Service, 100 Endicott St., Danvers, Mass., 5½ x 9 inches, 450 pages. $1.50.

This is the first edition of a combined tube and semiconductor manual. Tubes are listed numerically and alphabetically with full data on common types. Seldom-used types are cross-indexed in charts, grouped as diodes, mixers, etc.

Crystal diodes, silicon power rectifiers and transistors are listed separately. Special purpose tubes are grouped by function: power triode, gaseous diode, rectifier, uhf, etc. The appendix deals with ratings of rectifiers, TV deflection tubes, series-string heaters and color codes. The binding is loose-leaf and supplementary sheets on new tubes and transistors will be supplied.—IQ

HANDBOOK OF SOUND REPRODUCTION, by Edgar M. Villehur, Radio Magazines, Inc., P.O. Box 629, Mineola, N. Y., 6 x 9½ inches, 217 pages. $6.50.

For the serious student of high-fidelity the various aspects of sound are covered first. This is followed by a complete discussion of the types of equipment needed for hi-fi sound, including speakers, turntables, power amplifiers, tone controls, equalization, power supplies, pickups and methods of testing and measurement.—LS

END
The document contains a variety of advertisements and announcements related to vocational training in electronics and engineering. The text includes information about the programs offered by various institutions, such as the RADIO TELEVISION ENGINEERING program at INDIANAPOLIS ELECTRONIC SCHOOL, the ELECTRONIC SCHOOL of Electronics, and the TRI-STATE COLLEGE. The text also highlights the benefits of completing such programs, such as increased earning potential and opportunities for advancement. The document includes a cover letter from American Radio History, which is likely related to the field of radio and television technology.

The text contains several key points:
- **College Graduates Get Ahead Faster!**
- **Electronics Technicians Are In Demand!**
- **TRI-STATE COLLEGE**
- **TOP-FLIGHT ELECTRONICS**
- **Radio-Television**
- **Let RCA Train You for a Life Career in Advanced Electronics**
- **Milwaukee School of Engineering**

The document is a mixture of advertisements and educational content, aimed at attracting individuals interested in pursuing careers in electronics and engineering. The text provides detailed information about the programs offered, including requirements, costs, and benefits.

Your choice of school is highly important to your career in

INDUSTRIAL ELECTRONICS

RADIO TELEVISION

ELECTRONICS COMMUNICATIONS

Become an ELECTRICAL ENGINEER or an ENGINEERING TECHNICIAN at MSOE in Milwaukee

Choose from courses in:

- **ELECTRICAL ENGINEERING**
- Bachelor of Science degree in 26 months—Communications or Electrical Power.
- **ENGINEERING TECHNICIAN**
- Associate in Applied Science degree in 18 months—Electronics Communications or Electrical Power.

MSOE—located in Milwaukee, one of America’s largest industrial centers—is a national leader in electronics instruction with complete facilities, including the latest laboratory equipment, visual aid theaters, amateur radio transmitters—offers 93 subjects in electrical engineering, electronics, radio, television, electrical power, and electricity.

Advisory committee of leading industrialists. Courses approved for veterans. Over 30,000 former students. Excellent placement record. Previous educational, military, and practical experience is evaluated for advanced credit.

Quarters Begin September, January, April, July.

Choose wisely—your future may depend on it! Mail coupon today!
Radio-Electronics does not assume responsibility for any errors appearing in the index below.

Acro Products Co. ... 112
Aermotor Co. ... 100
Aerovox Corp. ... 145
Alliance Manufacturing Co., Inc. ... 113
Allied Radio Corp. 9, 22, 80, 104, 117, 135, 148, 157, 163
Amperex Electronics Corp. ... 22
Amphenol Electronics Corp. ... 86
Argos Products Co. ... 144
Arkay, Inc. ... 118
B & K Manufacturing Co. ... 105
Barry Electronics Corp. ... 162
Bell Telephone Labs. ... 26
Benco Television Associates, Ltd. ... 139
Bogen (David) Co., Inc. ... 6
Brooks Radio & Television Corp. ... 132, 147
CBS-Hytron ... 85
Capitol Radio Engineering Institute ... 101, 102
Carston Studios ... 116
Castle Television Services, Ltd. ... 103
Centralab Division of Globe Union ... 21
Century Electronics ... 130
Chicago Standard Transformer Corp. ... 111
Cisin (H. G.) ... 156
Clarostat Manufacturing Co., Inc. ... 127
Cleveland Institute of Radio Electronics ... 10-11
Columbia Wire & Supply Co. ... 158
Cornell-Dubilier Electric Corp. ... 28, 151
Coyne Electrical School ... 23, 139, 149
Delco Radio Division of General Motors ... 93
DeRo Electronics ... 138
Devry Technical Institute ... 7
Dressner ... 116
DuMont (Allen B.) Labs. ... Inside Front Cover
Electro-Sonic Labs. ... 16
Electro-Voice, Inc. ... Inside Back Cover
Electronic Brain Enterprises ... 160
Electronic Instrument Co. (EICO) ... 29, 30
Electronic Measurement Corp. ... 126
Electronic Publishing Co., Inc. ... 117
Esse Radio Co. ... 141
Futuramic ... 144
Garfield (Oliver) Co. ... 149
General Cement Manufacturing Co. ... 18
General Electric Co. ... 88-89
Gernsback Library, Inc. ... 149, 154
Heath Co. ... 62-77
Hudson Specialties Co. ... 156
Hughes Aircraft & Development Co. ... 131
IBM ... 114-115
Indiana Technical College ... 158
Jackson Electrical Instrument Co. ... 159
Jensen Industries ... 138
Jones & Laughlin Steel Corp. ... 90
Kraeuter & Co., Inc. ... 124
Kuhn Electronic Products ... 158
LMB ... 158
Lafayette Radio ... 164-165
Lansing (James B.) Sound, Inc. ... 79
BUILD THE BEST-- BUILD ALLIED'S OWN

knight-kits

LOWEST COST--because our giant buying power passes biggest savings on to you--you do the easy assembly, get professional results and SAVE!

knight-kits

EASIEST TO BUILD because KNIGHT-KIT "Step-and-Check" instruction manuals are marvels of clarity--it's just like having a good instructor at your side.

knight-kits

MONEY-BACK GUARANTEE: When properly assembled, KNIGHT-KITS fully meet published specifications, or we refund your money.

knight-kit HI-FI VALUE
SENSATIONAL HI-FI FM TUNER KIT

Model Y-751
$37.75
★ Deluxe custom hi-fi styling
★ AFC and flywheel tuning
★ Printed circuit--easy wiring

The best-looking, best-performing tuner kit your money can buy. Covers 88 to 108 mc; features AFC (with special disabling circuit); pre-adjusted RF coils; pre-aligned IF's; cascode broadband RF amplifier; drift-compensated oscillator; illuminated locator pointer. Sensitivity is 10 microvolts for 20 db of quieting across entire band. Ideal for use with Knight-Kit 20-Watt Amplifier or any amplifier with phone-tuner switch. 13 x 8 x 4; Complete, ready for easy assembly. Shpg. wt.: 12 lbs.

Model Y-751. Net, F.O.B. Chicago $37.75

See our Supplement No. 165 for additional knight-kit Hi-Fi values

free SUPPLEMENT

featuring knight-kits

Send for our FREE Supplement No. 165 featuring 45 great Knight-Kits, including Test Instruments, Hi-Fi, Hobbyist and Amateur kits. Write for your copy today.

ORDER FROM ALLIED RADIO
Dept. 07-J7, 100 N. Western Ave., Chicago 30, Ill.

www.americanradiohistory.com
NEW 180 PAGE ELECTRONIC CATALOG FEATURING THE BEST BUYS IN THE BUSINESS

The newest and largest assortment of Electronic, Radio and TV parts, Hi-Fi and Public Address Components and systems, Test Equipment, Tubes for Kits, and miniaturized components for Transistor Circuits, Ham Equipment, Builders Kits, Tools, Books, Microscopes, Binoculars, Telescopes, Cameras, and Drafting Equipment—ALL AT LOWEST PRICES—Catering to the amateur-minded dealer, serviceman, engineer, technician, experimenter and hobbyist. CRAMMED FULL OF MONEY SAVING BUYS.
SEND FOR YOUR FREE COPY TODAY.

PROFESSIONAL TRANSCRIPTION TURNTABLE AND VISCOUS-DAMPED TONE ARM

PK-300 TRANSCRIPTION, FM-300 TONE ARM, HARDWOOD RIGID W/GENUINE DIAMOND AND SAPPHIRE STEEL.

LATEST UPDATED MODEL PK-300 TRANSCRIPTION TURNTABLE

New 3-speed instrument with built-in stroboscope and viewer for exact speed determination, and magnetized brake for instaneous speed variation. Precision engineered to meet professional standards for wow, flutter and flat torsion. Heavy 12" cast aluminum rim-driven turntable. Variable speed control stick below tone arm for exact adjustment of each speed within ± 7% using efficient frictionless magnetic brake. Heavy-duty constant speed 4-pole induction motor freely suspended and isolated by check-muscles to eliminate vibrations. R-F filter network suppresses "pop" in speakers. Fully a delight for the connoisseur. Sizes 12'/2" x 14" and requires 2½' clearance above and ¾" below motorboard. For 115-120V and 60/50 cycle AC. Power consumption 12 watts. PK-200...

LAFAYETTE'S FM-AM TUNER KIT

* SIMPLIFIED DETAILED INSTRUCTION MANUAL
* MEETS FCC REQUIREMENTS FOR PROFESSIONAL
* GROUNDED GRID TRIODE PLUGGER
* MEETS VACUUM & METAL SPECIFICATIONS

FREQUENCY RANGE: FM: 88-108 MC; AM: 550-1605 KC. ANTENNA INPUT: FM: 200 ohms; AM: Ferrite isoparametric and high-impedance external antenna. CONTROLS: 2-set function control for AM, FM, PHONO, TV and a tuning/DC control. DISTORTION: Less than 1% rated output. FREQUENCY RESPONSE: FM: 3 db drop to 30,000 cps; AM: 3 db drop 5000 cps. SENSITIVITY: FM: 5 mc for 30 db gain; AM: Log 5000 microvolts per meter. SELECTIVITY: FM: 2000 KC bandwidth. 60 db down — 550 KC. TECHNICAL SPECIFICATIONS:

KT-100...Net 30.95

ML-105—Metal case for shelf. Shpg. wt.: 3 lbs.

IMPROVED 12" HI-FI COAX. SPEAKER

* FREQUENCY RANGE 30-15000 CPS
* HANDLES 20 WATTS OF POWER
* COMPLETE WITH LEVEL CONTROL
* POWERFUL TS-5 MAGNETS
* SPECIAL SHEEPSKIN-EDGED CONE

A Lafayette exclusive import and exceptional value. Consists of a 12" woof- er, 2-1/2" tweeter, and 1-1/2" dome mounted 5½" tweeter in a heavy-duty, crossover network. The special processed cone has a sheepskin edge to suppress unwanted modal vibrations and insure beautiful tone quality. Highly efficient TS-5 magnets. Level control provides 40db, and 2db drop in output. Specifications: 15 watts, 30 db. Dimension: 8 ohms. Rugged all-metal frame. Free shipping: from this country, would cost at least 49.50. Shpg. wt.: 11 lbs.

LAFAYETTE HI-FI LP TEST RECORD

Ideal for audiophiles who build a bass-reflex speaker enclosure, or wants to check the environment of his sound system. Two-side, 12" LP record covers cartridge and stylus test, turntable reproduc test, evenness and minimum recording of stylus and tone arm test, cartridge. Equalization checks, sound effects, tuning base reflect enclosures, and a group of delightful music test selections. Specially recorded with path-stabilized arms at 30% BPM, and master cut on an orchestra that produces the quietest noises in the industry. Complete with instructions for use and colorful protective envelope. Shpg. wt.: 1 lb.

PR-10. HI-FI Test Record...Net 2.25

LAFFYETTE MASTER AUDIO CONTROL CENTER WITH BINAURAL CHANNEL AND DUAL VOLUME CONTROL

LAFAYETTE MASTER AUDIO CONTROL CENTER is not only the finest high fidelity preamplifier, characterized by unmatched features, but it has been functionally designed to keep pace with the conversion of your present hi-system to binaural (stereophonic) sound.

FEATURES
1. Incorporates an extra channel and dual volume control for binaural reproduction.
2. DO on all tube filaments for maximum luma and negative feedback in every stage.
3. IM distortion and harmonic distortion no low, it is practically unmeasurable at normal operating levels. IM is below 0.01% at 1'000 ± approximately ⅛ of 1%. even at 50.
4. Dual cathode follower output stages.
5. High gain for low level pickups.
6. Separate tunnel and roll-offs controls .35 positions of equalization.
7. Printed circuit construction.
8. "Totalized" styling, brilliantly executed.
9. Designed for ease of installation and operation.

FOR FURTHER DETAILS WRITE FOR BULLETIN ST-74.

LAFAYETTE CATALOG

165-08 LIBERTY AVE. JAMAICA 33, N. Y.

NAME...SEND FREE ADDRESS LAFAYETTE CITY CATALOG ZONE

STATE...CUT OUT AND MAIL TODAY!
LAFAYETTE SENSATIONAL VALUES!

LAFA YETTE SIGNAL GENERATOR
NEVER BEFORE HAS A COMPLETELY WIRED AND TESTED INSTRUMENT OF SUCH ACCURACY AND QUALITY BEEN OFFERED AT SUCH A PRICE!
• FREQUENCY 120 Kc TO 260 Mc
• 120 Kc TO 130 Mc ON FOUNDATIONAL LABORATORY ACCURACY AND QUALITY

A completely wired and tested instrument not to be confused with units sold in kit form at a lower price, but with a quality and accuracy of instruments 3 to 4 times its price. Range switches cover the full 12 decades of range, generate signals of 120,000 to 130,000 cps, 320,000 to 360,000 cps, 1,100,000 to 1,130,000 cps, 3,100,000 to 3,150,000 cps, and 32,000,000 to 32,500,000 cps. Use of a multimode switch permits selection of any of the above ranges. The built-in audio amplifier provides pure audio distortion free output. Also included are an internal sythetic range generator. The equipment is furnished with a 12 inch dial plate. The complete instrument is mounted in a rugged metal case which provides for extra protection against internal damage. For radio testing the 400 cycle signal can be used separately. The audio output of the instrument is 500 mV at 400 Mc per volt. A 3% precision resistors, 50 mfd. Transistors are used throughout.
ELECTRONICS! PHYSICS! ENGINEERING! MATHEMATICS!

Now—Get the Definitions You Need QUICKLY, EASILY, EXACTLY with the GREAT NEW INTERNATIONAL DICTIONARY OF PHYSICS AND ELECTRONIC TERMS

Contains: Principal Terms of Classical and Modern Physics—Terms of Pure and Applied Science!

Saves Time, Shortcuts Work, Increases Efficiency!

Over 12,000 Terms—Over 500,000 Words—Over 1,000 Pages

Here is a unique, authoritative, up-to-the-minute dictionary, especially tailored to meet the ever-growing demands of our electronic and atomic age! Prepared by an international group of distinguished scientists and educators, this great work is designed to provide quickly and easily—clear-cut, incisive definitions that will be invaluable in your everyday work. No other single volume today is so useful as a general reference in physics—or so helpful to all for whom a familiarity with physics is increasingly essential.

Serves the Needs of All Those Who Work with Present-Day Physics

All the principal terms used in classical and modern physics, terms of pure and applied science, are defined in this new, big, 1,000-page dictionary. Over 12,000 definitions and articles: laws, relationships, equations, basic principles and concepts, as well as the most widely used instruments, apparatus and their components. Sixteen major subject divisions, covering every field, include:

Wherever possible, definitions which have been established or recommended by recognized groups are included. Many terms that have been defined from the subject areas bordering on physics will be particularly helpful. For those without an extensive mathematical background, both "simple" and more rigorous definitions as well as definitions of the more common mathematical terms encountered, are given.

MAIL THIS COUPON TODAY

D. Van Nostrand Company, Inc. Dept RE-97
120 Alexander St., Princeton, N.J.

Send the "International Dictionary of Physics and Electronics," to examine FREE for 10 days. Within ten days I will remit price (check edition desired) plus small postage, or return it and owe nothing. Thumb-indexed Ed. $22.50 (Regular Ed. 20.00) I want it on easy terms. After ten days I will either remit $7.50 ($5.00 for reg. ed.) plus few cents postage and then pay $5.00 a month for three months, or return book, postpaid, and owe nothing.

Name ____________________________
Address __________________________

City ____________________________ Zone ______ State _________

In Canada: Order from D. Van Nostrand Company, Ltd., 25 Hollinger Road, Toronto, Canada

Helpful Cross-Referencing Plan Enables You to Find Easily, Quickly, the Definition You Are Looking For

The vast fund of facts and figures in this unique dictionary is knit together by a proven system of cross-referencing. Every topic is fully explained in basic terms, and then every word important to the explanation that is further defined elsewhere in the book is printed in bold face type, to show there is an entire article on the subject. You find at once the fullest, further information about all related topics—you correlate all information from physics and related sciences, for a well-rounded, integrated knowledge of the various aspects of every subject.

SPECIAL OFFER—EXAMINE FOR 10 DAYS FREE!

We invite you to examine the INTERNATIONAL DICTIONARY OF PHYSICS AND ELECTRONIC TERMS for ten days ABSOLUTELY FREE! If you are not completely satisfied just return the Dictionary without obligation. In the event that you keep the Dictionary, you may use our easy monthly terms at no extra cost.
NEW Ultra-Sonax and SuperSonax Very High Frequency Drivers, Diffraction Horns and Revolutionary E-V Sonophase Throat Design

No other manufacturer gives you very high frequency drivers combining all the customer benefits of these uncommon new Electro-Voice models. Today's folded horn and phase loaded speaker systems with their low first-octave response require flat, extended high range response beyond the very limit ofaudibility if essential musical balance is to be achieved. These very high frequency drivers, employing the time-tested diffraction principle and the new Avedon Sonophase throat design, overcome range and sensitivity limitations, function without distortion at the highest ranges.

All three models—T35, T35B and T350—have 180° dispersion patterns, program capacities of 50 watts, peak 100 watts, voice coils one inch in diameter and 16 ohms impedance. Chart shows other characteristics of each model.

And These are the Reasons Why
The Avedon Sonophase Throat Design

The unique throat design illustrated here overcomes a problem common in conventional high frequency drivers. This is diaphragm deformation at high frequencies, occurring at frequencies above 5 kilocycles. Piston action is destroyed, the phase is shifted and the result is destructive interference.

These Electro-Voice UHF drivers solve the diaphragm deformation problem with a longer sound path from the center of the diaphragm. This restores proper phase relationship. This is important above 12 kilocycles, where sound must be taken from the center of the diaphragm and from the outer edge simultaneously. The diagram shows E-V's Sonophase construction.

The Hoodwin Diffraction Horn

This is the Electro-Voice development which is used in all E-V horns to disperse sound equally in all lateral directions from a single point source. This is especially important in stereophonic reproduction to preserve the undistorted depth and width of the original sound. Diffraction horns insure balanced levels of both right and left stereo speakers. These drawings tell the diffraction horn story:

Electro-Voice

ELECTRO-VOICE, INC. • BUCHANAN, MICHIGAN

Specifications

<table>
<thead>
<tr>
<th></th>
<th>T35</th>
<th>T35B</th>
<th>T350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response</td>
<td>± 2 db 2 kc—18 kc</td>
<td>± 2 db 2 kc—18 kc</td>
<td>± 2 db 2 kc—21 kc</td>
</tr>
<tr>
<td>RETMA Sensitivity</td>
<td>57 db</td>
<td>54 db</td>
<td>60 db</td>
</tr>
<tr>
<td>Magnet Weight</td>
<td>7 oz.</td>
<td>4 oz.</td>
<td>1 lb.</td>
</tr>
<tr>
<td>Gauss</td>
<td>12,500</td>
<td>9,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Size:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horn:</td>
<td>5 1/4 in. long x 2 in. wide</td>
<td>3 1/2 in. maximum</td>
<td>7 1/6 in. long x 2 1/2 in. wide</td>
</tr>
<tr>
<td>Pot Diameter:</td>
<td>2 in.</td>
<td>3 1/2 in.</td>
<td>3 1/2 in.</td>
</tr>
<tr>
<td>Depth:</td>
<td>3 1/4 in. overall</td>
<td>3 in. overall</td>
<td>4 1/2 in. overall</td>
</tr>
<tr>
<td>Shipping Weight</td>
<td>3 lbs.</td>
<td>3 1/2 lbs.</td>
<td>9 1/6 lbs.</td>
</tr>
<tr>
<td>Net Price:</td>
<td>$25.00</td>
<td>$22.00</td>
<td>$60.00</td>
</tr>
</tbody>
</table>

Figure A—This shows how sound disperses equally in all directions from a single point source.

Figure B—In Figure B two sound sources are shown. On the axis, at point "A", double the sound pressure results as the resultant pressures are in phase.

Figure C—But in Figure C, if the distance between the two sources is 1/2 wavelength or greater, the sound from the two sources will be considered out of phase for points off the axis, resulting in decreased sound pressure.

Figure D—Figure D will show the deficiencies in horns of wide lateral dimensions compared to the wavelength being emitted. Any horn mouth can be considered as a group of small point sources of sound. They must bear the sound down the axis by their very nature.

Figure E—Figure E shows representative horns illustrating that horns must have a certain length, as well as cross sectional area along this length and at the mouth to load the driver diaphragm down to the lowest frequencies to be reproduced. The lower we go, the longer must be the horn and the greater the mouth area.

Figure F—Figure F shows that narrowing the horizontal area and extending the vertical dimension of the horn mouth preserves the loading area necessary for good low end response, disperses the sound perfectly in the horizontal direction where it is so necessary, and keeps interfering reflections off the floor and ceiling.
FOR PROFITABLE PICTURE TUBE SALES

IT TAKES TWO—RCA and YOU!

Silverama Picture Tube sales are zooming, because you’re recommending and installing Silverama replacement Picture Tubes. Sales are zooming, too, because we’re making RCA Picture Tubes better than ever, and telling your customers so—in ads like these. Have you seen these week-after-week ads in LIFE, SATURDAY EVENING POST, TV GUIDE? They reach over 40 million people every insertion.

Take a selling tip from RCA’s advertising! Don’t sell your customers a picture tube. Sell them “A BETTER PICTURE” — with an RCA Silverama Picture Tube, naturally.

RCA PICTURE TUBES
RADIO CORPORATION OF AMERICA
Electron Tube Division, Harrison, N. J.