PORTABLE SCINTILLATION COUNTER

RADIO - ELECTRONICS

TELEVISION - SERVICING - HIGH FIDELITY

FEBRUARY 1956

In this issue:

- How to Construct a Hartley "Boffle"
- Easily Built Echo Unit
- Transistorized Scope Calibrator
- Remote Control for the 630

35¢
U.S. and CANADA

A "Three-Way" Bicycle Radio
(See page 4)

WWW.AMERICANRADIOHISTORY.COM
No one piece of equipment can do more for you. As the electronic field expands your tube tester must do more. Triplett Tube Testers meet this demand. More heater voltages including 3.15, 4.2 and 4.7 volts for 600 mill series string heaters. Quickly locating the bad tubes saves time. Tube sales can be a profitable business in itself.

80% OF YOUR SERVICE JOBS CAN BE COMPLETED WITH A TRIPLETT TUBE TESTER

NEW UNIQUE AND ONLY $79.50
The first low priced tube tester to provide DUAL SENSITIVITY SHORT TEST

Triplett model 3413-B combines provision for conventional short test (0.25 megohms) with high sensitivity leakage test (2.0 megohms)—will test series string tubes without adapter.

Model 3413-B is a money-saver on original cost—a profit maker because it’s faster, more versatile, more flexible operation for more tests in less time. This tester does a better job today and tomorrow—and here’s why:

- New, longer roll chart includes all tubes up to the moment.
- Triplet automatically furnishes revised, up-to-date roll charts regularly if you promptly return registration card. (Included with tester.)
- Flexibility of switching allows you to set up to test any new tube.
- Tests TV picture tube by means of BV Adapter ($4.50) without removing tube from set.
- Reads BAD—?—GOOD direct on big 6-inch meter.
- Short tests (neon) each element with single flip of switch.

And for the ultimate in laboratory quality testing examine

MODEL 3423 MUTUAL CONDUCTANCE TUBE TESTER $199.50
Proportional Mutual Conductance testing of all radio and TV tubes plus selenium rectifiers, crystal diodes, pilot lamps, thyatron, transistors, etc., by a new patented circuit.

At leading Parts Distributors everywhere, see the finest and most complete line of test equipment by

TRIPLETT ELECTRICAL INSTRUMENT COMPANY
BLUFFTON, OHIO

www.americanradiohistory.com
An Invitation...

To men who want to "go places" in TV SERVICING

Find out about this NEW, ALL-PRACTICE WAY of becoming a Professional TV SERVICEMAN

If you have some Radio or Television experience, or if you know basic Radio-Television principles but lack experience—NRI's new Professional Television Servicing course can train you to go places in TV servicing. This advertisement is your personal invitation to get a free copy of our booklet describing this training in detail.

Learn-by-Doing "All the Way"'
This is 100% learn-by-doing, practical training. We supply all components, all tubes, including a 17-inch picture tube, and comprehensive manuals covering a thorough program of practice. You learn how experts diagnose TV defects quickly. You see how various defects affect receiver performance—picture and sound; learn causes of defects, accurately, easily, and how to fix them. You do more than just build circuits.

You get practice recognizing, isolating, and fixing innumerable troubles.

You get actual experience aligning TV receivers, diagnosing the causes of complaints from scope patterns, eliminating interference, using germanium crystals to rectify the TV picture signal, obtaining maximum brightness and definition by properly adjusting the ion trap and centering magnets, etc. There isn't room on this or even several pages of this magazine to list all the servicing experience you get.

UHF & COLOR TV Making New Boom
Installing front-end channel selector strips in modern UHF-VHF Television receivers and learning UHF servicing problems and their solution is part of the practice you get. To cash in on the coming color TV boom you'll need the kind of foundation in knowledge and experience this training gives.

Get Details of New Course Free
Once again—if you want to go places in TV servicing, we invite you to find out what you get, what you practice, what you learn from NRI's new course in Professional Television Servicing. See pictures of equipment supplied, read what you practice. Judge for yourself whether this training will further your ambition to reach the top in TV servicing. We believe it will. We believe many of tomorrow's top TV servicemen will be graduates of this training. Mailing the coupon involves no obligation.

Train at home easily, quickly, for TV's top servicing jobs. NRI's Professional Television Servicing course includes a 17-inch picture tube and all other tubes and components to build a complete TV Receiver, Oscilloscope, Signal Generator, H.F. Probe. Complete training, including all equipment, available now for a low introductory price—under $200 on easy terms.

National Radio Institute, Dept. 6BF
16th and U Sts., N.W., Washington 9, D.C.

Please send my FREE copy of "How to Reach the Top in TV Servicing." I understand no salesman will call.

Name..Age

Address......................................

City..Zone ...State

APPROVED MEMBER NATIONAL HOME STUDY COUNCIL

FEBRUARY, 1956
FEBRUARY 1956

Editorial (Page 33)

Space Electronics by Hugo Gernsback 33

Electronics (Pages 34-41)

Portable Scintillation Counter, Part I—Complete construction details for highly sensitive radioactivity indicator by James W. Bray 34

Simple Cyclic Electrometer by Henry Francis Parks 38

Characteristics of General-Purpose Transistors by Rufus P. Turner 40

What's New? 42

Test Instruments (Pages 44-51)

Transistorized Scope Calibrator by Edwin Bohr 44

Transistor Multivibrator and Balance Generator by Joseph Braunbeck 46

A Standard Potentiometer for Precise Measurements by Forrest H. Frantz, Sr. 48

Radio I.F. Tester by Nathaniel Rhta 51

Audio—High Fidelity (Pages 52-61)

Build This Simple Echo Unit by Daniel M. Costigan 52

Developments in Audio Circuits by Robert F. Scott 54

For Golden Ears Only: Ampex Stereo System; Pro-Plane Prismatic 1 Speaker System by Monitor 57

Building a Boffle by H. A. Hartley 59

Radio (Pages 62-82)

Railroad Radio's First Decade by Leo G. Sands 62

Not All Inductors Are Coiled by H. P. Manly 77

Television (Pages 88-100)

630 Remote Control by Raymond L. Cliff 88

TV Service Clinic Conducted by Jerry Kass 92

Colorador, Part II—Color wheel construction and drive mechanism: alignment and adjustment of the complete system by Perry H. Vartanian and Robert W. De Grasse 97

DEPARTMENTS

Books 143
Business 134
Corrections 104
Correspondence 14
New Devices 108
New Records 102
New Tubes and Transistors 112
Patents 128

People 138
Question Box 125
Technical Literature 141
Techno Notes 113
Try This One 131

ON THE COVER

(Additional photos on page 43)

The Darb Holiday radio, as used by a typical Southern university club.

Color original by Ken Schmid

Average Paid Circulation over 175,000

Associate Member of Institute of High Fidelity Mfrs., Inc.

SUBSCRIPTIONS: Address communications to Radio-Electronics, Radio-Electronics, 640 N. Wolfe Ave., Mt. Morris, Ill., or 52 West Broadway, New York 7, N.Y. When writing an author please furnish an address stamped impression from a recent wrapper. Allow one month for change of address.

SUBSCRIPTION RATES: U. S. T. S. Panama and Canada: $3.50 for one year; $6.00 for two years; $8.00 for three years; single copies 35c. Pan-American countries $1.00 for one year; $1.50 for two years; $2.00 for three years; single copies 45c. All other countries $5.00 a year; $10.00 for two years; $15.00 for three years.

National Schools Graduates Prove
AGE & PREVIOUS EDUCATION
NO BARRIERS TO SUCCESS!

Get into HIGH-PAYING
TELEVISION
ELECTRONICS-RADIO!

Are you between
17-55?
LEARN AT HOME
IN SPARE TIME!
Are you alert, sincere,
ambitious?

Master all Phases with our amazing
Shop-Method Home Training & Practical
Equipment! We have trained Thousands
for Big-Pay Jobs! WE WILL TRAIN YOU!

SET REPAIR IS PROFITABLE!
Our easy Shop-Method Lessons &
Manuals cover this Profitable Field! LOW TUITION. Opportunity
to EARN AS YOU LEARN!
Free Placement Assistance. Help
with technical and personal prob-
lems. Send coupon for free ILLUS-
TRATED BOOK, "Your Future in
TV-Radio-Electronics."

YOU RECEIVE THIS PROFESSIONAL
MULTITESTER—a must for every
Technician! Also standard parts to
build Receivers, Oscillators, Signal
Generator, Continuity Checker,
Short Wave & Standard Broadcast
Superhet Receiver, many other
units. All part of your course, all
yours to keep. Mail coupon today!

FEBRUARY, 1956

OPPORTUNITIES WIDE OPEN IN THESE
AND OTHER SPECIALIZED FIELDS!
Loudspeaker Systems
Hi-Fi, F.M., Tape Recording
Your own business
TV-Radio Service,
Installation-Repair
Sales and Distribution
COLOR TV & ELECTRONICS
— America's Fields of the Future!
Thousands of TRAINED TECHNICI-
ANS will make "small fortunes"
in the next few years.
ATTENTION DRAFT-AGE
MEN! National Schools
training prepares you for HIGHER
RATINGS & PAY GRADES!

50 YEARS' EXPERIENCE
training Men Like Yourself for Success!

ACT NOW! MAIL NOW TO NEAREST OFFICE!

NAME _______________________________________
ADDRESS ______________________________________
CITY ______________________________________
STATE ______________________________________
BIRTHDAY 19

☐ Check if interested ONLY in Resident Training at Los Angeles. VETERANS: Give date of Discharge

NATIONAL SCHOOLS, Dept. RG-26
4000 S. FIGUEROA ST., LOS ANGELES 37, CALIF.
OR 323 WEST POLK ST., CHICAGO 7, ILL.

Please rush FREE TV-Radio Book & Sample Lesson. I understand there
is no obligation, no salesman will call.

www.americanradiohistory.com
RAILROAD AUTOMATION was previewed recently with the New Haven Railroad remotely operating a multiple-unit electric train in the New Rochelle to Rye, N. Y., area. The object of the demonstration was to control the movements of a train from a remote location with no person actually operating the controls on the train. All operation, safety and communication equipment was provided by Union Switch & Signal, Division of Westinghouse Air Brake Co.

The remote control panel (see photo) for the demonstration was located at Larchmont, N. Y. From this point the train was moved east or west, coasted or stopped. The automatic control equipment kept the train from moving unless conditions ahead were safe as determined continuously by the equipment. A visual indicator on the train displayed the control commands transmitted from the wayside station.

The electronic portion of the wayside equipment consists of a power supply, audio oscillator and a carrier modulator.

The equipment produces a carrier frequency modulated by certain audio frequencies and amplifies it to the desired level. The output of the carrier modulator is connected to the existing line wires which parallel the track. The train control panel determines the audio frequencies used for modulation: in the "run" position two audio signals are used, "neutral" requires one signal, "stop" needs no modulation.

The control commands from the wayside station are transmitted to the train through inductive coupling between the modulated carrier current flowing in the line wires and a receiving coil mounted on the lead car of the train.

GUIDED TOUR INNOVATION has each guest provided with a miniature transistor radio and lightweight plastic earphone. Conducted by the Hughes Aircraft Co., visitors are kept posted on what they are seeing by tour guides equipped with headset microphones and broadcasting over small portable transmitters.

The receivers used are Regency transistorized units and can be slipped into a jacket pocket, leaving tourists' hands free for taking notes. The system permits larger groups of visitors to accompany each guide, as it is not necessary to crowd near the spokesman when passing noisy areas and the guide may speak from confined areas.

The transmitter is a small three-tube low-power unit with a range of about 10 feet. Operating frequencies are in the broadcast band, but between local commercial broadcasting stations. The transmitter is installed in a box on wheels so that additional receivers can be carried for replacement if necessary.

The transmitting antenna consists of a small loop mounted inside the cabinet door.

IMAGE CONVERTER is key to making 200-inch telescope atop Mt. Palomar in California in effect a 2,000-inch unit. This would permit astronomers to look three times farther into space than is now possible. Development of the image converter (see "TV Helps Astronomy," Radio-Electronics, June, 1949; "Image Magnifier Amplifies Light," Radio-Craft, August, 1948) is the goal of astronomers and physicists working at several institutions in the United States and Europe.

The image converter gives, on a photoelectric surface, an electronic picture of a stellar view. The electronic picture is then transferred to a photographic plate. Stars too faint to be otherwise caught on a photographic plate can be picked up because the light quanta are used more efficiently. A thin film of aluminum transmits electrons but stops atoms and molecules which would otherwise quickly ruin the photocathode.

WIRELESS THERMOSTAT automatically controls heating system by radio signals. Described as the "control of the future" by Minneapolis Honeywell, the portable device is designed for homes in which electronics would per-
NOW... at home... get D.T.I.'s amazingly effective NEW training in TELEVISION

RADIO-ELECTRONICS! Nothing else like it for providing real LABORATORY-TYPE training at home. Get the kind of thorough, practical experience YOU NEED for the kind of progress YOU WANT in today's tremendous field of Television, Radio and Electronics. Qualify yourself for real money... interesting work... a wonderfully promising future. And when you finish, D.T.I.'s active Employment Service HELPS YOU GET STARTED! Or open your own profitable Television-Radio Service Business.

THOUSANDS OF SUCCESSFUL GRADUATES

WHY has D.T.I. become one of the largest training organizations of its kind? Because it provides EVERY MAJOR HOME TRAINING AID to help make the subject EASIER to learn... EASIER to remember—the kind of training so helpful for REAL PROGRESS. Students get thorough, up-to-date, practical training that TAKES ADVANTAGE of new and improved training developments. Study the ADVANTAGES shown on this page. Think what they can mean to YOU... to YOUR FUTURE! Or come to D.T.I.'s big Training Laboratories in Chicago. MAIL COUPON TODAY for complete facts—including valuable publication, "89 Ways to Earn Money in Television-Radio-Electronics." Also, valuable information for men subject to MILITARY SERVICE.

"One of America's Foremost Television Training Centers"

DeVRY Technical Institute
CHICAGO 41, ILLINOIS
Formerly DeFOREST'S TRAINING, INC.

MAIL COUPON TODAY
DeVRY TECHNICAL INSTITUTE
4141 Belmont Ave., Chicago 41, Ill. Dept.RE-2-M
I would like complete facts including "89 Ways to Earn Money in Television-Radio-Electronics."

Name ___________________________ Age ___________________________
Street ___________________________ Apt. ___________________________
City ___________________________ Zone ___________________________
State ___________________________

D.T.I.'s training is available in Canada.
THE RADIO MONTH

form duties ranging from opening and closing garage doors to cooking.

The electronic system includes a conventional heating thermostat into which is built a tiny loop antenna and a crystal-controlled radio transmitter. The thermostat is set at the desired temperature. If the temperature falls below this setting, the thermostat automatically transmits a signal to a small receiver which converts the impulse into energy for operating a valve on radiators or opening and closing dampers or fuel injectors.

UNQUALIFIED PRAISE is pouring in to RADIO-ELECTRONICS as result of magazine's policy regarding mail-order tube advertisements. (See RADIO-ELECTRONICS, January, 1956, page 57.) Groups representing virtually every branch of the electronic industry—General Electric, Philco, Raytheon, Federation of Radio and Television Service Associations of Pennsylvania, Electro-Voice, RETMA, Simpson and Astron, to name but a few—have responded with letters and telegrams congratulating RADIO-ELECTRONICS on its announcement in the January issue that all mail-order tube advertisers must warrant that tubes offered for sale are new and unused, not mechanical or electrical rejects and not washed and/or rebranded. This policy protects not only our readers, but all legitimate advertisers.

TELEPHONE LINE TV transmission was successfully demonstrated on Dec. 6, 1955, with photographs, printed material and signatures transmitted over 10 miles of ordinary telephone wires. In the first public exhibition of an industrial television system operating without costly microwave or coaxial cables, the Dage Television Division, Thompson Products, in cooperation with the Bell Telephone Co. of Pennsylvania, used a slow-scan transmitter which completed the picture on the screen within 2 to 4 seconds.

 Called Data-Vision, the new TV system is to be used experimentally between branch offices of the Philadelphia National Bank. At the demonstration the Data-Vision camera and monitor (see photo) at the sending end stood within a few feet of the receiver but the material transmitted between them traveled 10 miles. The image appears on 6 x 2-inch viewing screens on the monitor and receiver. Data-Vision requires only an 8-ke bandwidth and can be used wherever there is a need to view at a distance any type of visual information such as pictures, printed or written material, meters and gages.

OUTER SPACE transmitters sending radio waves picked up on earth by sensitive receivers (radio telescopes) number at least 1,906 according to Dr. Martin Ryle of the Cavendish Laboratory, Cambridge, England. His report, made at a meeting of the Royal Astronomical Society, was the result of a thorough sky survey. The great majority of the radio sources are not identified with any visible object, though 500 of them have accurately known positions. More than 30 were found to be very large and may be galaxies in collision. Others are the expanding remnants of supernovas.

THREE NEW TV STATIONS have gone on the air since our last report:

KMUU-TV Maud, T. H. 12
KLEW-TV Lewiston, Idaho 3
WREC-TV Memphis, Tenn. 5

Canada's 32d station, CKRS-TV, Jonquiere, Que., channel 12 has also started operation.

WPFA-TV, Pensacola, Fla., channel 15; KTVE, Longview, Tex., channel 32; and WTVQ, Oklahoma City, Okla., channel 25, have gone off the air.

KSLA, Shreveport, La., channel 12, has changed its call letters to KSLA-TV.

RADIATION CONTROL for all receivers operating in the 30-890-mc range, including TV and FM sets, has been promulgated by the FCC. All sets made after May 1 (uhf TV receivers have a Dec. 31 deadline) must be "certified" as adhering to specific radiation limits on the basis of tests made "on a sufficient number of production units." Radiation at frequencies below 25 mc, such as from sweep, color subcarrier and 21-mc if circuits, must meet specified limits in all new TV sets made after June 30, 1956.

(Continued)
Honesty, now, what special inducement do you have that will cause customers to select you for service instead of your competitor? Men? Shop? Trucks? Test Equipment? In most cases the answer is simple — not a single thing!

The exceptions are service dealers who are among the select group of RAYTHEON BONDED ELECTRONIC TECHNICIANS.

Raytheon Bonded Dealers can offer the public TV-Radio service that is bonded by Raytheon through one of America’s largest insurance companies. This creates customer confidence, sways potential customers, helps get more business and make more money. Yet, this tremendous selling advantage costs Bonded Dealers not one penny.

Why not ask your Sponsoring Raytheon Tube Distributor if you can qualify as a Raytheon Bonded Electronic Technician? If you can, we'll be happy to pay for your bonding.
WIRE
FOR EVERY
ELECTRONIC
PRODUCT

TV CAMERA CABLE
MAGNET WIRE-
HOOK-UP WIRE
TV STUDIO
CABLE
BROADCAST
AUDIO CABLES
MICROPHONE CABLE
INTERCOM CABLE
SOUND SYSTEM CABLES

TV TRANSMISSION
WIRE

Belden
WIREMAKER FOR INDUSTRY
SINCE 1902
CHICAGO
Where Will You Be in ELECTRONICS
6 Months from Today?

ADD TECHNICAL TRAINING to your practical experience

Get Your FCC License In A Hurry!

Then Use Our Amazingly Effective JOB FINDING SERVICE

Get This Valuable Booklet FREE

TELLS HOW—

Here is your GUARANTEE
If you fail to pass your Commercial License exam after completing our course, we guarantee to continue your training without additional cost of any kind, until you successfully obtain your Commercial license.

Our Amazingly Effective JOB-FINDING SERVICE

Helps CIRE Trainees Get Better Jobs

Here are a few recent examples of Job-Finding results:

ELECTRONICS TECHNICIAN

"I was employed by the Boeing Radio Company as a Lab Technician. (This job was filled in your bulletin) I have used the information gathered from your course in so many ways and I know that my training with CIRE helped me a great deal to obtain this job."

Charles D. Sinclair, Cedar Rapids, Iowa

AIRLINES

"I replied to the Job Opportunities you recently and I am now a radio operator with American Airlines. You have my hearty recommendation for your training and your Job-Finding Service."

James A. Wright, Belleville, Ill.

INDUSTRIAL ELECTRONICS

"Upon my discharge from the Navy I used your Job-Finding Service and as a result I was employed by North American Aviation in electronic assembly (radio checkout)."

Glen A. pulling, Fresno, Calif.

GET ALL 3 FREE!

MAIL COUPON NOW

CLEVELAND INSTITUTE OF RADIO ELECTRONICS
Desk RE-67, 4900 Euclid Blvd., Cleveland 3, Ohio

Address to Desk No. to avoid delay

Dear Sir:

I want to know how I can get my FCC ticket in a minimum of time. Send me your free booklet, "FREE! Our Amazingly Effective FCC License Information," and the amazing booklet, "FREE! Our Amazingly Effective FCC License Information." Be sure to tell me about your Technical Training Course.

Please print clearly.

Name

Address

City Zone State

For special ticket rates, send in this mail.

Cleveland Institute of Radio Electronics

Carl E. Smith, Consulting Engineer, President

Desk RE-67, 4900 Euclid Blvd., Cleveland 3, Ohio

FEBRUARY, 1956
1. The Most Complete Line
The CDR Rotor line is COMPLETE to every detail, with a model for every application! A distinct selling advantage because YOU can give your customer EXACTLY what is required! The RIGHT CDR Rotor for the RIGHT job

2. Pre-SOLD For You on TV to millions of viewers through an extensive coverage of audiences in every important TV market. Capture this pre-sold market by featuring these nationally advertised CDR ROTORS

AR-22
Completely AUTOMATIC version of the TR-2 with all the powerful features that made it famous.

AR-1
Completely AUTOMATIC rotor, powerful and dependable. Modern design cabinet, 4 wire cable.

AR-2
Completely AUTOMATIC rotor with thrust bearing. Handsome cabinet, 4 wire cable.

TR-2
Heavy-duty rotor with plastic cabinet, "compass control" illuminated perfect pattern dial, 8 wire cable.

TR-4
Heavy duty rotor, modern cabinet with METER control dial, 4 wire cable.

TR-12
Combination value complete rotor with thrust bearing, Modern cabinet with meter control dial, uses 4 wire cable.

TR-11
Ideal budget all-purpose rotor, new modern cabinet featuring meter control dial, 4 wire cable.

CORNELL-DUBILIER
SOUTH PLAINFIELD, N. J.

THE RADIART CORP.
CLEVELAND 13, OHIO

www.americanradiohistory.com
WHICH ONE OF THESE MUSIC-APPRECIATION RECORDS MAY WE SEND YOU WITHOUT CHARGE

TO DEMONSTRATE A NEW IDEA THAT IS BRINGING A RICHER ENJOYMENT OF MUSIC TO MANY THOUSANDS

Beethoven's "MOONLIGHT" SONATA
Both played by Guiomar Novaes

Mozart's PIANO SONATA IN C MAJOR, K. 545

Tchaikovsky's FIFTH SYMPHONY
Max Rudolf, conducting

Brahms' VIOLIN CONCERTO IN D MAJOR
Walter Goehr, conducting the London Symphony Orchestra

Schumann's PIANO CONCERTO IN A MINOR
Eliot Flabell, Pianist

Richard Strauss' TILL EULENSPIEGEL'S MERRY PRANKS
and Smetana's THE MOLDAU
George Szell conducting the Music Appreciation Symphony Orchestra

Prokofiev's CLASSICAL SYMPHONY
and Britten's THE YOUNG PERSON'S GUIDE TO THE ORCHESTRA

Mendelssohn's VIOLIN CONCERTO IN E MINOR
Alexander Smallens, conducting

On One Side there is a full performance of a great musical work. The records feature artists of distinction. You listen to this performance, and then...

On the Other Side is an analysis of the music, with the main features explained and played separately, so that you can learn what to listen for.

SPONSORED BY THE BOOK-OF-THE-MONTH CLUB, this new idea is designed for those who enjoy good music but who are aware, too often, that they do not listen to it with complete understanding and appreciation. There is no doubt about the reason: most of us are not trained about what to listen for. Music-Appreciation Records meet this need—for a fuller understanding of music—better than any means ever devised. This enjoyable form of self-education can be as thorough as the Music Appreciation courses given in many universities.

YOU SUBSCRIBE BUT TAKE ONLY THE RECORDS YOU WANT... A new Music-Appreciation Record is issued—for subscribers only—every month. On one side of each of these records, there is a full performance of a great musical work by a symphony orchestra. On the other side, there is an illuminating analysis of the work, with the themes played separately and with running explanatory comment. You receive a descriptive Announcement about each record, written by the noted composer and music commentator, Dennis Taylor. After reading this Announcement, you may take the record or not as you decide at the time. You are not obligated to take any specified number of records. And you may stop at any time!

TWO TYPES OF RECORDS AVAILABLE... All Music-Appreciation Records are high-fidelity, long-playing records of the highest quality—33 1/3 R.P.M. on Vinylite. Usually they are of two kinds: first, a so-called Standard Record—a twelve-inch disc—which presents the performance on one side, the analysis on the other. This is sold at $3.50, to subscribers only. The other is an Analysis-Only Record—a twelve-inch disc—priced at $2.40. The latter is made available each month for any subscriber who may already have a satisfactory long-playing record of the work being presented. (A small charge is added to the prices above to cover postage and handling.)

TRY A ONE-MONTH SUBSCRIPTION—WITH NO OBLIGATION TO CONTINUE... Why not make a simple trial, to see if these records really broaden your understanding and deepen your enjoyment of music? The record you choose will be sent to you at once—at no charge. You may end the subscription immediately after hearing this record, or you may cancel any time thereafter.

PLEASE RETURN ONLY IF YOU HAVE A 33 1/3 R.P.M. RECORD PLAYER

AS MY FREE DEMONSTRATION RECORD PLEASE SEND ME

- Beethoven's "Moonlight" & Mozart's Piano Sonata
- Tchaikovsky's Symphony
- Brahms' Concerto
- Straus' Till Eulenspiegel
- Prokofiev's Classical Symphony & Britten's Guide
- Wagner's Overtures
- Mendelssohn's Concerto

Mr. / Mrs. / Miss (Please Print)

Address.

City__________ Zone ______ State _______ Mar 59

FEBRUARY, 1956

13
64% of all Electronic Engineers

USE

Hickok

Dynamic Mutual Conductance

TUBE TESTERS

- **FASTER**
- **MORE ACCURATE**
- **DEPENDABLE**
- **LONGER LIFE**

...are only a few reasons why more engineers prefer Hickok than all other makes of tube testers combined.

NEW DESIGN FEATURES FOR MODEL 750 SHOWN

- Micromho ranges on the dial of the large, Hickok 5" Meter: 0-1500, 0-3000, 0-6000, 0-15,000, 0-30,000 Micromhos. Also, two "Replace-Good" ranges.
- Tests voltage regulator (VR) tubes in accordance with any manufacturer's handbook data or by use of the up-to-date roll chart furnished.
 - A. Accurate DC Voltmeter readings up to 200 volts.
 - B. Accurate DC Milliammeter Measurements up to 100 milliamperes (Both on the Micromho Meter).
- Two DC plate and screen voltages provided—Normal and Low—controlled by a Selector Switch. The Low Range is for use with sub-miniature tubes and for other tubes requiring a low range of plate and screen volts.
- New 0-1500 Micromho range for increased accuracy in testing sub-miniature tubes.
- Four AC signal voltages provided—as low as .25 volt.
- Two "red-green" ranges on the Micromho Meter scale offer easier customer readings.
- Quick and easy scale selection—The Chart identifies the range to be read by the letters from "A" through "H" inclusive. A simple selector switch carries the same letters and identifies the various ranges.
- Short test—Recent Hickok engineering and achievements have provided a highly accurate short test which will show up even the slightest heater cathode leakage condition of a vacuum tube.
- Line adjust knob automatically indicates whether the line voltage is low or high.
- Permits matching of tubes such as 6SN7 when used in critical circuits.
- Forecasts the future life of the tube under test. Tests the gas content of the tube. Tests for tube noise.
- Bias and line fuses prevent accidental damage. Chart arrangement makes for quickest tube selection. The tube's location on the chart is indicated by a key type number stamped beneath the chart openings.

THE HICKOK ELECTRICAL INSTRUMENT COMPANY

10531 Dupont Avenue • Cleveland 8, Ohio

MODIFYING CIRCUITRY

Dear Editor:

Mr. Hightone's approach to servicing is shared by many TV repairmen: "If you can't find the trouble, see if there isn't some way to hide it temporarily."

Most factory engineers have a pretty good reason for selecting the particular components used in a set. Their experience, training and test facilities are almost always much better than those of the technician. So how can Mr. Hightone justify changing component values in sets which have worked just because he is unable to locate the cause of the trouble?

Don't you think, Mr. Editor, that the real technicians have enough problems without articles by men such as Mr. Hightone?

F. J. James

Jacksonville, Fla.

(Service manual on the editor's own set lists these "Production Changes": R87, 100,000 to 330,000; R70, 47,000 to 33,000; R63, 350,000 to 220,000 ohms; R5 removed. "Factory engineers" modify circuitry sometimes, too!"

POST-ACCELERATION

Dear Editor:

In the December, 1955, issue of Radio-Electronics you describe a so-called "new" post-acceleration tube. In the interests of accuracy, I feel that you should make it clear to your readers that the General Electric three-gun post-acceleration color tube which you describe as "new" is, in fact, identical to a three-gun Chromatron or Lawrence tube described by me in the Proceedings of the Institute of Radio Engineers, Vol. 41, No. 7, July, 1953.

The article on the General Electric post-acceleration tube differentiates it from the Lawrence tube by stating that it "differs distinctly in that the potential on it is fixed and no dynamic voltages are applied. All wires are at the same potential." I would like to direct your attention to my paper in the IRE journal wherein I stated: "In this multigun version (of the Chromatron) no color switching is required, and the color grid remains at a chosen fixed potential."

Fig. 4 in my paper is also directly comparable with Fig 3 of your article.

ROBERT DRESSLER

Director of Research & Development

Chromatic Television Laboratories

New York, N. Y.
free

ALLIED'S 1956 value-packed
324-PAGE CATALOG

Everything in Electronics from One Dependable Source

ALLIED RADIO
100 N. WESTERN AVE., CHICAGO 80, ILL.

the only COMPLETE catalog
for everything in TV, Radio, Hi-Fi
and Industrial Electronics

Get allied's 1956 Catalog—it's complete, up-to-date—324 pages packed with the world's largest selection of quality electronic equipment at lowest, money-saving prices. Get every buying advantage at ALLIED: fastest shipment, expert personal help, lowest prices, assured satisfaction. Send today for your FREE copy of the big 1956 ALLIED Catalog.

World's Most Complete Stocks

• Latest Hi-Fi Systems and Components
• P.A. Systems and Accessories
• Recorders and Supplies • TV Tubes,
Antennas, Accessories • Amateur Receivers, Transmitters, Station Gear
• Specialized Industrial Electronic Equipment • Test and Lab Instruments
• Huge Listings of Parts, Tubes,
Transistors, Tools, Books

Featuring Super-Value Knight-Kits—
top quality electronic equipment
in precision-designed kit form

BUY DIRECT AND SAVE

EASY-PAY TERMS
Use our liberal Easy Payment Plan—only 10% down, 12 months to pay—no carrying charges if you pay in 60 days. Available on Hi-Fi and P.A. units, recorders, TV chassis, test instruments, kits, Amateur gear, etc.

HI-FI SPECIALISTS
To keep up with the latest and best in High Fidelity, look to ALLIED. Count on us for all the latest releases and largest stocks of Hi-Fi equipment. We specialize, too, in TV supply—and are foremost in the field of Builders' Kits.

send for the leading
electronic supply guide

ALLIED RADIO CORP., Dept. 2-B-6
100 N. Western Ave., Chicago 80, Ill.

☐ Send FREE 324-Page 1956 ALLIED Catalog.

Name

Address

City ______ Zone ______ State ______
CORRESPONDENCE

(Continued)

INDIANAPOLIS UNITY

Dear Editor:

What’s wrong with NATESA? This is one of the questions raised at the recent meeting for unity in Indianapolis. Perhaps many like myself were reluctant to comment upon it, not knowing exactly how the constitution of NATESA was written. However, since digesting the comments that were made at the meeting and after reading the NATESA’s constitution, one glaring defect appears which perhaps is responsible for so many service groups (and those in the East are not alone, as some would have you believe) being reluctant to accept NATESA in its present form.

The office of president in that organization as it is now constituted carries on the duties of corresponding secretary, as well as those of editor of the house organ, NATESA Scope. Such an arrangement tends to prevent expression of divergent opinion and to make the association appear dictatorial, even though such might not be the case. With all these duties it is no wonder that NATESA cannot find another man to accept the presidency, as they say they have tried. There are too few persons with the initiative, time and ability to carry out the duties of one of these jobs, much less all three. To allow one man to extend himself for all three jobs tends to make him feel that he is the organization and to outsiders that the organization is his.

At any rate, it is certainly plain, with the various comments made during the unity meeting of Oct. 9, 1955, and the results that have been attained since, that something basic is wrong with NATESA beyond personalities. Perhaps the foregoing is that defect.

To go on to another aspect of the unity meeting, as so ably presented by Forrest Baker of the Texas Electronic Association in reference to the position of the individual shops, the local association and the state association in a national group, the format follows the pattern used successfully by national associations in other fields. The conclusion reached by some, that NATESA already has such a form, does not hold up under closer scrutiny. The Texas plan follows the desires of many of us; the individual shops form the local association from which delegates are elected to the state association from which delegates are elected to the national group. As Mr. Baker suggested, to make the national office more efficient and further to cut down travel expense to national meetings, the 48 states could be divided into 4 groups of 12, with a coordinating chairman at the head of each. From these groups could be elected national officers, one from each area, as is done in the National Retail Hardware Association.

As each local association is autonomous, so should each state association be. No directives should be issued by the national association since its prime

Emerson ... famous manufacturer of Phonographs, Radio and Television

CHOOSES GENERAL INDUSTRIES Smooth Power PHONOMOTORS

Emerson chooses GI—like many famous manufacturers, Emerson has found that for quality, performance, and economy, it pays to rely on GI. Emerson selects GI phonomotors for original equipment in its fine phonograph line because Emerson customers expect the best, and the best phonomotors are made by GI. When you need phonomotors for original equipment or replacement purposes, take a tip from Emerson. Specify the best—specify GI.

Write for specifications and quantity-price quotations today,

THE GENERAL INDUSTRIES CO.
DEPT. GE * ELYRIA, OHIO

DESIGNED FOR THE BOOKSHELF with LARGE SYSTEM PERFORMANCE
Only 17½" x 11¼" x 10"
Only 1 Cubic Ft.

KARLSON "8" FOR 8 SPEAKERS

INCREDIABLE!
- Cleanness of Response
- Bass Response
- Dispersion Of The Highs

KARLSON ULTRA-FIDELITY ENCLOSURES

FIR PLYWOOD KIT (Model #K) $17.90
ASSEMBLED PLYWOOD UNIT (Model #50) $28.44

PLEBE-TONE FINISHED UNIT $34.50
KARLSONITE FINISHED UNIT $49.50

THE'S A KARLSON FOR YOU

KARLSON ASSOCIATES, INC. DEPT. T
1610 Neck Road * Brooklyn 29, New York
NOW... RCA trains you at home
to be an expert technician in...

RADIO-TV ELECTRONICS TV SERVICING COLOR TV SERVICING

NOW THREE HOME STUDY COURSES... prepared by instructors of RCA Institutes, engineers from RCA Laboratories, and training experts of the RCA Service Company. Clearly written... easy to understand... the same high caliber instruction as given in the resident classrooms of RCA INSTITUTES.

• COURSE I—RADIO-TV ELECTRONICS—starts you from the ground up to a solid working knowledge of electronics. Without any previous experience, you get a thorough training in radio theory and servicing techniques for AM, FM, home and car radios... plus an introduction to the fundamental theory and practices of television.

• COURSE II—TELEVISION SERVICING—prepares you to advance from radio into the expanding field of television servicing as a well-trained service technician. If you have completed Course I or are now working in the field of radio or TV, Course II will show you the many special techniques of troubleshooting, aligning, checking, and repairing modern black and white TV sets.

NEW TV KIT AVAILABLE WITH COURSE II—there is no better way to learn than by doing and RCA Institutes has developed a large-screen TV KIT available to home study students to build while taking Course II. It has the most modern up-to-date circuitry, actually enabling you to apply at home all the latest servicing techniques.

• COURSE III—COLOR TELEVISION SERVICING—covers all phases of color servicing techniques. It is a practical, down-to-earth course in color theory as well as how-to-do-it servicing procedure. A natural move “up” from Course II or for those now employed in TV.

SINCE 1909, RCA INSTITUTES has trained thousands for successful careers in electronics. Many graduates have established their own paying business. Now this opportunity is available to you at home.

"PAY-AS-YOU-LEARN" PLAN... you pay for one study group at a time, as you progress through the course. Tuition costs are amazingly low. For full details, mail coupon.

SEND FOR FREE CATALOG NOW

RCA INSTITUTES, INC.
A SERVICE OF RADIO CORPORATION OF AMERICA
350 WEST FOURTH STREET, NEW YORK 14, N.Y.
functions are to inform, instruct and assist.

Now let us look a little closer at the NATESA arrangement, offered as being the same: Individual associations join NATESA directly; they do not have to be members of a state or even regional group; there are regional vice presidents, regional secretaries and, lately, sort of tacked-on governors of states, all of whom report to the president of NATESA who issues directives from time to time to all concerned. All these officers are elected by delegates from the local associations directly.

The answer no doubt to the above will be that NATESA did not have state association divisions until recently and therefore the state groups were not more active in the national group. However, my point is that NATESA format is not the same as Texas has proposed and, if the officers of NATESA were really interested in arriving at a merged unity, they would have given more consideration to the ideas expressed by the Texas plan—they certainly knew it followed the desires of other groups including the National Electronic Technicians and Service Dealers Associations.

It is perfectly plain, in spite of disclaimers of dictatorship, the members of NATESA have allowed the organization to become a one-man affair; the fact that the incumbent has been president for at least 5 consecutive years emphasizes it. Thus, many of the delegates who attended the Indianapolis meeting cannot sell their local associations on NATESA—they have no enthusiasm for the selling themselves. There was an attitude of resignation in the closing hours of the meeting of Oct. 9, when it became evident that the delegates of NATESA would accept unity only on their own terms. I and many others went to Indianapolis seeking an amalgamation of thought—we were overly disappointed.

JOHN A. WHEATON
Mineola, N. Y.

TESTING NEW TUBES

Dear Editor:

Here is a gripe—and a problem. The instrument people do their best when they sell a tube tester to keep the tube chart up to date. I have a very reliable unit. However, tube manufacturers come along with three to six new tubes each month and I am unable to check them. Sometimes as much as 6 months pass between additions to the tube chart.

The independent service technician must be prepared to handle a wide variety of tube types and is often criticized when he is unable to test some new tube.

I wonder if there is some way to figure out settings for testing new tubes based on comparing their characteristics with similar older types?

CLIFFORD LESSIG
Radio-TV Service
Milford, N. J.

END

How good will your new tape recorder be?

One of the answers lies in the quality of the magnetic recording head—a basic and important part of all recorders. The better the head, the better the performance you can expect. A Shure magnetic recording head insures a unit constructed to close tolerances... precision specifications... optimum performance of your recorder.

An outstanding example is the "Micro-Gap," a new, high quality magnetic recording head specifically designed for use in professional studio and fine quality home tape recorders. It provides excellent response over an extremely wide frequency range... long operating life at maximum efficiency. For home recordings of professional stature, or for precision data recording equipment, the "Micro-Gap" cannot be excelled.

The "Micro-Gap" is the latest of the Shure family of fine-quality magnetic recording heads. When a tape recorder manufacturer announces a model equipped with any of them, you can be assured of the high quality of the tape recorder... for the choice of a Shure head is proof that the manufacturer is giving you the very best.

The Mark of Quality

Pioneers in Magnetic Recording
Since 1939

SHURE BROTHERS, Inc.
225 West Huron Street, Chicago 10, Illinois

www.americanradiohistory.com
I Will Train You at Home
for Good Pay Jobs, Success in
RADIO-TELEVISION

Practice Broadcasting with Equipment I Send

It's practical to train at home for good Radio-TV jobs and a brighter future. As part of my Communications Course I send you kits of parts to build the low-power Broadcasting Transmitter shown at the left. You use it to get practical experience performing procedures demanded of Broadcasting Station Operators. An FCC Commercial Operator's License can be your ticket to a better job and a bright future. My Communications Course gives you the training you need to get your license. Mail card below and see in my book other valuable equipment you build. Get FREE sample lesson.

Practice Servicing with Equipment I Send

Self-confidence, security, earning power come from knowledge and experience. Nothing takes the place of PRACTICAL EXPERIENCE. That's why NRI training is based on LEARNING BY DOING. You use parts I furnish to build many circuits common to Radio and Television. With my Servicing Course you build a modern Radio (shown at right). You build a Multimeter, use it in conducting experiments, fixing sets in spare time starting a few months after enrolling. All equipment is yours to keep. Card below will bring book showing other equipment you build. Judge for yourself whether you can learn at home in your spare time.

Television Is Growing Fast Making New Jobs, Prosperity

More than 30 million homes now have Television sets and thousands more are being sold every week. Well trained men are needed to make, install, service TV sets and to operate hundreds of Television stations. Think of the good job opportunities here for qualified technicians, operators, etc. If you're looking for opportunity, get started now by writing or Phone my firm at the address below. Your letter will receive prompt attention.

Get My SAMPLE LESSON and 64-Page Illustrated Book BOTH FREE

This card entitles you to Actual Lesson on Servicing, shows how you learn Radio-Television at home. You'll also receive my 64-page Book, "How to Be a Success in Radio-Television." Mail card now!
Train to Home to Jump Your Pay as a RADIO-TV Technician

Get a Better Job—Be Ready for a Brighter Future in America's Fast Growing Industry

Training PLUS opportunity is the perfect combination for job security, good pay, advancement. When times are good, the trained man makes the better pay, gets promoted. When jobs are scarce, the trained man enjoys greater security. NRI training can help assure more of the better things of life.

Radio-Television is today's opportunity field. Even without television, radio is bigger than ever before. Over 3,000 Radio Broadcasting Stations on the air, more than 115 million home and Automobile Radios are in use. Television Broadcast Stations extend from coast to coast now with over 30 million television sets already in use. Over 400 Television stations are on the air and there are channels for hundreds more.

Start Soon to Make $10 to $15 a Week Extra Fixing Sets

Keep your job while training. Many NRI students make $10, $15 and more a week extra fixing neighbors' Radios in spare time, starting a few months after enrolling. The day you enroll I start sending you special booklets that show you how to fix sets. The multimeter you build with parts I furnish helps discover and correct troubles.

SEE OTHER SIDE

F I R S T C L A S S
Permit No. 20-R
(Sec. 34.9, P. L. & R.)
Washington, D. C.

BUSINESS REPLY CARD
No Postage Stamp Necessary If Mailed In The United States

POSTAGE WILL BE PAID BY
NATIONAL RADIO INSTITUTE
16th and U Sts., N.W.
Washington 9, D. C.

J. E. Smith, President
National Radio Institute

The men whose names are published here were not born successful. Not so long ago they were doing as you are now... reading my ad! They decided they should NOW MORE so they could EARN MORE... so they acted!

Mail card below now.

I Trained as These Men.

Lots of Spare-Time Jobs
Now TV Trouble Shooter
Engineer with WHPE
NRI Course Can't Be Beat
Quit Job for Own Business
Extra Money in Spare Time

My Training Leads to Jobs Like These

RADIO PLANTS: Design Assistant, Transmitter Design Technician, Service Manager, Tester, Serviceman, Research Assistant. SHIP AND HARBOR

RADIO: Chief Operator, Assistant Operator, Radiotelephone Operator.

GOVERNMENT: In Army, Navy, Marine Corp, Coast Guard, Forestry Service Dispatcher, Airways Radio Operator, AVIATION

SAMPLE LESSON and 64-Page BOOK BOTH FREE

Have Your Own Business

Many NRI trained men start their own successful Radio-Television sales and service business with capital earned in spare time. Joe Travers, a graduate of mine, in Ashbury Park, N. J., writes: "I've come a long way in Radio and Television since graduating. Have my own business on Main Street!"

www.americanradiohistory.com
FEBRUARY, 1956

SPECIAL OFFER!
(SAVE $15.00)
FASTER SERVICING — BIGGER PROFITS
WITH B & B PIX TUBE TESTER—
REACTIVATOR

B & B's revolutionary eight position Selector Switch and single lead hook-up quickly checks both picture tube and receiver in a fraction of your normal testing time. Abnormalities are instantly readable on big meter dial — no involved circuitry connections — no questionable readings — your examination is finished accurately, dependably in a jiffy.

Servicemen everywhere are making extra dollars by bringing old tubes back to life and tying up future picture tube sales with this instrument on each service call. Single Selector Switch provides twelve separate tests of both picture tube and receiver:

- Tests leakage between grid and cathode
- Tests leakage between heater and cathode
- Tests leakage between grid and screen
- Tests grid-cathode voltage from receiver
- Tests effectiveness of receiver brightness control
- Tests receiver screen voltage supply
- Tests receiver video output signal
- Tests effectiveness of brightness receiver control
- Tests beam current MEASURED AT HV ANODE
- Tests grid control of beam current
- Tests overall receiver performance dynamically

One out of every three TV PIX TUBES can be reactivated successfully the B & B way. Just set Selector Switch in "Beam-Curr" position, turn on HV for three minutes and the job is done safely without damage to the cathode.

OUTSTANDING FEATURES OF THIS INSTRUMENT INCLUDE:
- Sensitive 100 Micrometer meter movement
- Built-in 0-600 Voltmeter (1% accuracy)

Bench Model 701 $54.90
HV Probe $68.85

Special Combination Price $53.85 —
YOU SAVE $15.00

INTRODUCTORY OFFER — LIMITED TIME ONLY — ACT NOW!
10 DAY MONEY-BACK GUARANTEE

Boland & Boyce Inc., 236 Washington Ave., Belleville, N. J.

☐ Kindly ship me as per special offer one Model 701 TV PIX TUBE TESTER REACTIVATOR and one HV PROBE both for $53.85.
☐ Also include leatherette carry case for $5 additional.
☐ Send me Universal High Voltage Probe separately at $13.95.
☐ Send Bias box at $9.90

Enclosed Find $………………. Full price to be shipped prepaid.

$…………. 25% down—shipped balance C.O.D. Railway Express.

Name……………………………………………………………………………………………………
Street……………………………………………………………………………………………………
City…………………………………………………………………………………………………….
State……………………………………………………………………………………………………

www.americanradiohistory.com
The "K.O." is Fantastic!

Features the highest front-to-back ratios ever recorded for any TV antenna:
- Low band: from 20:1 to 50:1 relative VOLTAGE.
- High band: Up to 13:1 relative VOLTAGE.
- High gain: Low band, 7 to 9 DB. High band, 8.5 to 10.5 DB. (Single bay figures). Balanced for COLOR.

Ends co-channel interference! Knocks out "Venetian Blinds"!

Channel Masters "K.O." puts an INVISIBLE BARRIER in the path of rear signals, preventing co-channel interference. The "K.O." is completely preassembled with time-saving "Snap-Lock" Action. 100% aluminum.

LICENSED BY KAY-TOWNES ANTENNA CO., ROME, GA.

New Antennas! New Accessories!

CHANNEL MASTER now provides you

New expanded ACCESSORIES program! Channel Master now becomes the first and only manufacturer in the industry that can supply you with everything you need for an antenna.

DYNAMIC, COLORFUL "Tell and Sell" display carton gets fast sales action at the point of sale. Convenient "carry-away" handle.

www.americanradiohistory.com
CHANNEL MASTER'S

new

TV TRANSMISSION LINE

The first TV wire to give you the benefits of 20 strands per conductor (20/33 pure copper).

Channel Master wire — at REGULAR prices — is the finest, most flexible transmission line you have ever handled. Complete range of web thicknesses available. Colorful display packaging.

Two outstanding lines: (both featuring exclusive 20-strand conductor):

- **"TWIN TWENTY"**
 - Marked every 10 feet. Saves time, ends waste.
 - Full width.
 - Available in silver or brown.
 - Pure VIRGIN polyethylene.

- **"CHALLENGER"**
 - Fine quality transmission line at today's VERY LOWEST PRICES.

installation. From now on, guarantee customer satisfaction with a COMPLETE CHANNEL MASTER INSTALLATION — FROM TOP TO BOTTOM.

new

STANDOUT insulators

Featuring this revolutionary new 2 in 1 screw thread design!

Eliminates the need for stocking separate machine and wood screws. Cuts your inventory investment in standoffs by more than 65%.

- Needle sharp point, made possible by finer thread. Easier to work in wood. Prevents slipping on mast.
- **STANDOUT** buckle has 8 machined threads.
- Convenient "Taper-Tip" strapping, available in galvanized or stainless steel.

All popular types and sizes available, including full assortment of specialized hardware. See your Channel Master distributor.

Copyright 1955, Channel Master Corp.
THE TRANSISTOR

that smashed a frequency barrier

A new transistor invented at Bell Telephone Laboratories can provide broadband, high-frequency amplification never before possible with transistors. The big leap in frequency is made possible by a diffusion process that earlier enabled Laboratories scientists to create the Bell Solar Battery.

This transistor is a 3-layer semiconductor "sandwich." High-frequency operation is obtained by making the central layer exceedingly thin. This was difficult to do economically by any known method.

The new diffusion process, however, easily produces microscopic layers of controllable thickness. Thus it opens the way to the broad application of high-frequency transistors for use in telephony, FM, TV, guided missiles, electronic brains and computers.

The new transistor shows once again how Bell Laboratories creates significant advances and then develops them into ever more useful tools for telephony and the nation.

A Bell scientist checks temperature as arsenic vapor diffuses into germanium, creating 4/100,000-in. layer.

Experimental model of Bell's new high-frequency transistor. It has a cut-off frequency of at least 500 mc and can be used to amplify 2500 independent voices simultaneously.
WANTED: 200,000 TV SERVICE MEN!

GET IN ON THIS
2 BILLION DOLLAR PLUM!

200,000 — That's how many service men will be needed to handle television-radio-electronics industry requirements in the next few years. That's the figure given by the director of product service for CBS-Columbia — a man in a position to know.

2.7 billion dollars to be spent just for service and installation of TV sets in American homes by 1957! That's the figure given by one of the top men in the entire industry — the president of Radio Corporation of America.

Think What This Means For You!
Here is a field still in its infancy — New jobs with top pay and a secure future are being created every day — Here is a chance for you to get into a growing field with unlimited opportunity for advancement — Here is your chance to set up your own business and be your own boss — Here is your opportunity to get in on a 2 billion dollar plum by becoming a Television Technician.

LEARN BY DOING

As part of your training, I give you the equipment you need to set up your own home laboratory and prepare for a BETTER PAY TV JOB. You build and keep a professional TV RECEIVER complete with big picture tube (designed and engineered to take any size up to 21-inch) ... also a Super-Het Radio Receiver, AF-RP Signal Generator, Combination Voltmeter-Ammeter-Ohmeter, C-W Telephone Transmitter, Public Address System, AC-DC Power Supply. Everything supplied, including all tubes.

EARN WHILE YOU LEARN
Almost from the very start of your course you can earn extra money by repairing sets for friends and neighbors. Many of my students earn up to $25 a week ... pay for their entire training with spare time earnings ... start their own profitable service business.

LEARN TELEVISION AT HOME IN YOUR SPARE TIME

Trained men get the top jobs. You can qualify for one without giving up your present job or social life. My lessons are especially prepared for you to study at home — even if you have absolutely no experience in this field.

CHOOSE FROM THREE COMPLETE COURSES
covering all phases of Radio, FM and TV
1. Radio, FM and Television Technician Course — no previous experience necessary.
2. TV Technician Course — previous training or experience in radio required.
3. TV Cameraman and Studio Technician Course — advanced training for men with Radio or TV training or experience.

EXTRA TRAINING IN: NEW YORK CITY AT NO EXTRA COST!
After you finish your home study training in Course 1 or 2 you can have two weeks, 50 hours, of intensive modern equipment at our associate resident school, Pierce School of Radio & Television. THIS EXTRA TRAINING IS YOURS AT NO EXTRA COST WHATSOEVER!

FCC COACHING COURSE — Important for BETTER-PAY JOBS requiring FCC License! You get this training AT NO EXTRA COST! Top TV jobs go to FCC-licensed technicians.

FREE!
I'll send you my new 40-page book, "How to Make Money in Television, Radio, Electronics," a free sample lesson, and other literature showing how and where you can get a top-pay job in Television.

MAIL THIS COUPON TODAY!

VETERANS

LEARN BY DOING

VETERANS NON-VETERANS

Licensed by the State of New York • Approved for Veteran Training

RADIO TELEVISION TRAINING ASSOCIATION
52 EAST 19th STREET • NEW YORK 3, N. Y.

FEBRUARY, 1956

L. C. Lane, B.S., M.A.
President, Radio-Television Training Association; Executive Director, Pierce School of Radio & Television.

www.americanradiohistory.com
FIELD REPORT NO. 9
FOR BEST BLACK AND WHITE, AND COLOR RECESSION...

JAMES S. JEWELL
JEWELL TV-APPLIANCE CO.
BECATUR, MICHIGAN

I RECENTLY TRIED THE JFD STAR-HELIX ANTENNA WHEN INSTALLING MY FIRST COLOR SET AND WAS MORE THAN PLEASED WITH THE RESULTS. I HAD TRIED OTHER FRINGE ANTENNAS, BUT NOTHING WAS GIVING A CONSISTENT, SNOW-FREE SIGNAL, EVEN ON BLACK AND WHITE, FROM GRAND RAPIDS-CHANNEL 8, WHICH IS ABOUT 50 MILES AWAY. NOW WITH THE JFD STAR-HELIX, EVEN COLOR SIGNALS ARE STEADY AND FREE FROM SNOW, WE ARE ALSO RECEIVING GOOD SIGNALS FROM FAR AWAY AS 125 MILES FROM CHICAGO ON CHANNELS TWO, FIVE, SEVEN AND NINE.

CHARLES M. BOLINGER
BOLINGER RADIO & TV SHOP
CARROLLTON, MISSOURI

FOR AN AVERAGE INSTALLATION WE SIMPLY USE A SINGLE STAR-HELIX—IT IS SO DIFFICULTLY SIT SPOT WE STACK TWO OF THEM. IN EITHER CASE IT DOES AN EXCELLENT JOB FOR US ON BOTH MONOCROME AND COLOR AS WELL AS CUT ABOUT ONE-THIRD OFF THE INSTALLATION TIME. WE NOW USE THE STAR-HELIX IN MOST LOCATIONS WHERE PREVIOUSLY IT WAS NECESSARY TO USE A STACKED ARRAY OF SOME TYPE IN ORDER TO GET SATISFACTORY RECEPTION.

CHARLES M. BOLINGER
BOLINGER RADIO & TV SHOP
CARROLLTON, MISSOURI

FOR AN AVERAGE INSTALLATION WE SIMPLY USE A SINGLE STAR-HELIX—IT IS SO DIFFICULTLY SIT SPOT WE STACK TWO OF THEM. IN EITHER CASE IT DOES AN EXCELLENT JOB FOR US ON BOTH MONOCROME AND COLOR AS WELL AS CUT ABOUT ONE-THIRD OFF THE INSTALLATION TIME. WE NOW USE THE STAR-HELIX IN MOST LOCATIONS WHERE PREVIOUSLY IT WAS NECESSARY TO USE A STACKED ARRAY OF SOME TYPE IN ORDER TO GET SATISFACTORY RECEPTION.

SERVICEMEN EVERYWHERE AGREE ON JFD ANTENNAS

EXPERIENCE IS THE BEST TEACHER. THAT'S WHY MORE AND MORE SERVICE-DEALERS, AT HOME AND ABROAD, ARE STANDARDIZING ON JFD TV ANTENNAS. THEY'VE LEARNED THAT A JFD ANTENNA ASSURES THEIR CUSTOMERS THE FINEST POSSIBLE RECEPTION IN BLACK AND WHITE TODAY, AND COLOR TOMORROW. THEY'VE SEEN HOW JFD INSTALLATIONS BUILD CUSTOMER CONFIDENCE—THE BEST INSURANCE FOR FUTURE BUSINESS. SO WHY COMPROMISE YOUR REPUTATION WHEN IT COMES TO QUALITY RECEPTION? ASK YOUR DISTRIBUTOR TO SHOW YOU THE JFD ANTENNA THAT SOLVES YOUR PROBLEM... FITS YOUR PURSE.

YOUR REPUTATION GOES UP WITH A JFD ANTENNA!
MANUFACTURING CO. INC. BROOKLYN 4, N.Y.
INTERNATIONAL DIVISION:
15 MOORE STREET, N.Y.C.
CANADIAN DIVISION:
51 MCCORMACK STREET, TORONTO 14, ONTARIO
GO FORWARD WITH JFD ENGINEERING!

RECOMMEND LISTED OTHERS ARE SNOW CHANNELS WE USE AS TRUNKING FOR BLACK AND WHITE.

ELIO PURA
KING CITY TV
KING CITY, CALIFORNIA

WE HAVE EIGHT POSSIBLE TV CHANNELS IN KING CITY, TWO ARE SNOW-FREE, BUT THE OTHERS ARE FRINGE. THEY ARE LISTED AS Follows:
CHANNEL 3 SOUTH
SANTA BARBARA, CALIF.
CHANNEL 4 NORTH
SAN FRANCISCO, CALIF.
CHANNEL 5 NORTH
SAN FRANCISCO, CALIF.
CHANNEL 6 SOUTH
SAN LUIS OBISPO, CALIF.
CHANNEL 7 NORTH
SAN FRANCISCO, CALIF.
CHANNEL 8 NORTH
SALINAS, CALIF.
CHANNEL 10 N/E
SACRAMENTO, CALIF.
CHANNEL 11 NORTH
SAN JOSE, CALIF.

STACKING A JFD STAR-HELIX ON ROTOR MAKES POSSIBLE VIEWING ON ALL EIGHT CHANNELS. ANY PERSON WISHING A GOOD ANTENNA INSTALLATION, "WE RECOMMEND A JFD STAR-HELIX ANTENNA."

VIOLET M. HOYT
KING TV-SERVICE
KEALAKEKUA, KONA, HAWAII

*IT IS SO SIMPLE TO ASSEMBLE THAT EVEN I HAVE GONE OUT ON ANTENNA JOBS WHEN MY HUSBAND WAS BUSY IN THE SHOP, AND WITH A COUPLE OF UN-TRAINED HELPERS, HAVE MADE PERFECT INSTALLATIONS. WE ARE LOCATED 100 MILES FROM THE NEAREST TV TRANSMITTER, AND THE STAR-HELIX ANTENNA PULLS IN A BEAUTIFUL PICTURE, WITH NO GHOSTS.

JOHN A. ETCHINSON
F. O. BROOKS APPLIANCES
FLOMA, ILLINOIS

WE ARE USING THE NEW STAR-HELIX ANTENNA AND FIND THAT IT OUT PERFORMS ANY OTHER ANTENNA WE HAVE EVER USED. FLOMA IS LOCATED APPROXIMATELY ONE HUNDRED MILES FROM STATIONS EAST, WEST, NORTH AND SOUTH AND WE REQUIRE AN ANTENNA THAT WILL SEPARATE THESE STATIONS AS WELL AS BRING IN RECEPTION, THE NEW STAR-HELIX WILL DO AN EXCELLENT JOB IN SEPARATING THESE STATIONS, THUS ELIMINATING CO-CHANNEL INTERFERENCE.

EVAR FRAZIER
FRAZIER FURNITURE CO.
BLACKWELL, OKLAHOMA

"AFTER TRYING NUMEROUS ANTENNAS HERE IN A FRINGE AREA, WE HAVE SETTLED ON STAR-HELIX BECAUSE OF ITS FRONT TO BACK RATIO. WE FIND IT IS THE FINEST ANTENNA WE HAVE USED FOR NO BACK GAIN."

CARL H. HAMER
HORDER-WELCH CO.
SAN FRANCISCO, CALIF.

"WE ARE USING JFD ANTENNAS AND FIND THEM TO BE THE BEST ANTENNAS WE HAVE EVER USED. THEY PROVIDE US WITH THE BEST RECEPTION POSSIBLE IN A FRINGE AREA."

*IT IS POSSIBLE TO INSTALL A JFD ANTENNA IN A MOUNTAIN HAMMOCK WHERE THE LOAN IS 15 MILES FROM THE NEAREST TV TRANSMITTER. THE STAR-HELIX ANTENNA PULLS IN A BEAUTIFUL PICTURE, WITH NO GHOSTS.

JAMES S. JEWELL
JEWELL TV-APPLIANCE CO.
BECATUR, MICHIGAN

I RECENTLY TRIED THE JFD STAR-HELIX ANTENNA WHEN INSTALLING MY FIRST COLOR SET AND WAS MORE THAN PLEASED WITH THE RESULTS. I HAD TRIED OTHER FRINGE ANTENNAS, BUT NOTHING WAS GIVING A CONSISTENT, SNOW-FREE SIGNAL, EVEN ON BLACK AND WHITE, FROM GRAND RAPIDS-CHANNEL 8, WHICH IS ABOUT 50 MILES AWAY. NOW WITH THE JFD STAR-HELIX, EVEN COLOR SIGNALS ARE STEADY AND FREE FROM SNOW, WE ARE ALSO RECEIVING GOOD SIGNALS FROM FAR AWAY AS 125 MILES FROM CHICAGO ON CHANNELS TWO, FIVE, SEVEN AND NINE.

FOR AN AVERAGE INSTALLATION WE SIMPLY USE A SINGLE STAR-HELIX—IT IS SO DIFFICULTLY SIT SPOT WE STACK TWO OF THEM. IN EITHER CASE IT DOES AN EXCELLENT JOB FOR US ON BOTH MONOCROME AND COLOR AS WELL AS CUT ABOUT ONE-THIRD OFF THE INSTALLATION TIME. WE NOW USE THE STAR-HELIX IN MOST LOCATIONS WHERE PREVIOUSLY IT WAS NECESSARY TO USE A STACKED ARRAY OF SOME TYPE IN ORDER TO GET SATISFACTORY RECEPTION.

SERVICEMEN EVERYWHERE AGREE ON JFD ANTENNAS

EXPERIENCE IS THE BEST TEACHER. THAT'S WHY MORE AND MORE SERVICE-DEALERS, AT HOME AND ABROAD, ARE STANDARDIZING ON JFD TV ANTENNAS. THEY'VE LEARNED THAT A JFD ANTENNA ASSURES THEIR CUSTOMERS THE FINEST POSSIBLE RECEPTION IN BLACK AND WHITE TODAY, AND COLOR TOMORROW. THEY'VE SEEN HOW JFD INSTALLATIONS BUILD CUSTOMER CONFIDENCE—THE BEST INSURANCE FOR FUTURE BUSINESS. SO WHY COMPROMISE YOUR REPUTATION WHEN IT COMES TO QUALITY RECEPTION? ASK YOUR DISTRIBUTOR TO SHOW YOU THE JFD ANTENNA THAT SOLVES YOUR PROBLEM... FITS YOUR PURSE.

YOUR REPUTATION GOES UP WITH A JFD ANTENNA!
MANUFACTURING CO. INC. BROOKLYN 4, N.Y.
INTERNATIONAL DIVISION:
15 MOORE STREET, N.Y.C.
CANADIAN DIVISION:
51 MCCORMACK STREET, TORONTO 14, ONTARIO
GO FORWARD WITH JFD ENGINEERING!

RADIO-ELECTRONICS
www.americanradiohistory.com
If you're willing to lose your job tomorrow to a technically-trained man, turn the page, mister

But, if you're interested in an honest-to-goodness career in the vigorous young electronics industry, here's how you can step ahead of competition, move up to a better job, earn more money, and be sure of holding your technical job even if the brass is firing instead of hiring.

The "how" is CREI training in radio-television-electronics. You don't have to be a college graduate. You do have to be willing to study—at home. You can do it while holding down a full-time job. Thousands have. However, you must have some prior electronic experience, either in military service, professional employment, experimenting, or ham operating. Since 1927 CREI has provided alert young men with the technical knowledge that leads to more responsibility, more job security, more money. More than a quarter century of experience qualifies CREI to train you.

What qualifies you for CREI? If you have a high school education, you're off to a good start. If you have a knack for math, so much the better. If you are currently working in some phase of the electronics industry, you'll get going faster. But remember this: CREI starts with fundamentals and takes you along at your own speed. You are not held back by a class, not pushed to keep up with others who have more experience or education. You set your own pace. Your CREI instructors guide you through the lesson material and grade your written work personally. You master the fundamentals, then get into more advanced phases of electronics engineering principles and practice. Finally you may elect training at career level in highly specialized applications of radio or television engineering or aeronautical radio.

How good is CREI training? Here are a few ways to judge. Ask an electronics engineer, if you know one. Ask a high-school or college physics teacher. Ask a radio station engineer. Check up on our professional reputation: CREI home study courses are accredited by the Engineers' Council for Professional Development; CREI is an approved member of the National Council of Technical Schools. Ask personnel managers how they regard a man with a CREI "ticket." Look at this partial listing of organizations that pay CREI to train their own personnel: All American Cables & Radio, Inc.; Canadian Aviation Electronics, Ltd.; Canadian Broadcasting Corporation; Columbia Broadcasting System; Hoffman Radio Corp.; Machlett Labs.; Glenn L. Martin Co.; Magnavox Co.; Pan American Airways, Atlantic Division; Radio Corporation of America; United Air Lines. Finally, ask a CREI graduate to tell you about our Placement Bureau, which currently has on file more requests for trained men than we can fill.

What's the next step? The logical one is to get more information than we can cram into one page. The coupon below, properly filled out, will bring you a fact-packed booklet called "Your Future in the New World of Electronics." It includes outlines of courses offered, a resume of career opportunities, full details about the school, and tuition details. It's free.

Note: CREI also offers Residence School instruction, day or evening, in Washington, D.C. New classes start frequently. If you are a veteran discharged after June 27, 1954, let the new GI Bill help you obtain resident instruction. Check the coupon for more data.

CAPITOL RADIO ENGINEERING INSTITUTE

Accredited Technical Institute Curricula • Founded 1927

3224 16th St., N. W., Dept. 142-C, Washington 10, D. C.

Please send me your course outline and FREE illustrated booklet "Your Future in the New World of Electronics," describing opportunities and CREI home study courses in Practical Electronics Engineering.

CHECK FIELD OF GREATEST INTEREST

☐ Practical Radio Electronics Engineering
☐ Broadcast Radio Engineering (AM, FM, TV)
☐ Practical Television Engineering
☐ Practical Aeronautical Electronics Engineering

To help us answer your request intelligently, please give the following information:

NAME

ADDRESS

EMPLOYED BY

SCHOOL BACKGROUND

EXPERIENCE

CHECK: ☐ Home Study ☐ Residence School ☐ Veteran

FEBRUARY, 1956

27
THE ALUMINIZED TUBE THAT IS PRE-SOLD

Sure, you are already sold on the advantages of aluminized tubes. You know that the CBS Silver Vision aluminized screen with its silver-activated phosphors and the CBS small-spot gun mean clearer, sharper, brighter pictures.

But your woman customer (76.9% of TV service customers are women) doesn’t understand electronics or CBS advanced-engineering as you do.

She does know and respect the name CBS... she has confidence in Garry Moore and in the Good Housekeeping Guaranty Seal.

So all you have to do is take advantage of Garry’s pre-selling over the CBS Television Network. Just remind her that there are no finer tubes made than CBS Silver Vision tubes...

And, like all CBS tubes, they have the Good Housekeeping Guaranty Seal. She’s already pre-sold by Garry Moore and national magazine advertising. You build profitable customer confidence and sales every time you recommend CBS Silver Vision tubes.

Show the CBS carton with the Good Housekeeping Guaranty Seal

Garry Moore
famous CBS Television Star

CBS-HYTRON
Danvers, Massachusetts
A DIVISION OF COLUMBIA BROADCASTING SYSTEM, INC.
RADIO-ELECTRONICS
Prepare for a Good Paying Job—Or Your Own Business

"I Will Train You at Home in RADIO-TELEVISION On Liberal No Obligation Plan!"

New Equipment! New Lessons! Enlarged Course! The true facts are yours in my big new catalog . . . YOURS FREE . . . JUST MAIL COUPON!

I can train and prepare you in as little as 10 months to step into the big opportunity Radio-Television service field. Train without signing a binding contract . . . without obligating yourself to pay any regular monthly amounts. You train entirely at home in spare hours . . . you train as fast or as slowly as you wish. You’ll have your choice of THREE SPRAYBERRY TRAINING PLANS . . . planned for both beginners as well as the more experienced man. Get the true facts about the finest most modern Radio-Training available today . . . just mail the coupon for my big new 56 page fact-filled catalog plus sample lesson—both FREE.

Train the Practical Way—with Actual Radio-Television Equipment

My students do better because I train both the mind and the hands. Sprayberry Training is offered in 25 individual training units, each includes a practice giving kit of parts and equipment . . . all yours to keep. You will gain priceless practical experience building the specially engineered Sprayberry Television Training Receiver, Two-Band Radio Set, Signal Generator, Audio Tester and the new Sprayberry 18 range Multi-Tester, plus other test units. You will have a complete set of Radio-TV test equipment to start your own shop. My lessons are regularly revised and every important new development is covered. My students are completely trained Radio-Television Service Technicians.

See for Yourself... Make Your Own Decision

Mail Coupon Today!

The coupon below brings you my big new catalog plus an actual sample Sprayberry Lesson. I invite you to read the facts . . . to see that I actually illustrate every item I include in my training. With the facts in your hands, you will be able to decide. NO SALESMAN will call on you. The coupon places you under no obligation. Mail it now, today, and get ready for your place in Radio-Television.

SPRAYBERRY ACADEMY OF RADIO
111 North Canal Street, Dept. 20-H, Chicago 6, Illinois

Mail This Coupon For Free Facts and Sample Lesson

SPRAYBERRY ACADEMY OF RADIO
Dept. 20-H, 111 N. Canal St., Chicago 6, Ill.

Please rush all information on your ALL-NEW Radio-Television Training Plan. I understand this does not obligate me and that no salesman will call upon me. Include New Catalog and Sample Lesson FREE.

Name ____________________________ Age ______

Address ___________________________

City __________________ Zone ______ State ______

FEBRUARY, 1956
SAVE $1.25!

Make your service library complete! Have the needed data at your fingertips WHEN YOU NEED IT!

If broken into "lessons" and sent to you as a "course," you regard this new Ghirardi training book as a bargain at $1.00 OR MORE! Instead you buy BOTH big books at the bargain price of only $12.00 (you save $1.25!).

COMPLETE TRAINING FOR BETTER RADIO-TV SERVICE JOBS!

Radio & Television Receiver

1 Circuitry & Operation

It's less expensive to repair ANY radio or television set when you know all about its circuits and just why and how each one works! You locate troubles in much less time and with less testing. You repair them faster, better—not more profitably!

That's why **Radio & Television Receiver CIRCUITRY AND OPERATION** in special-edition trade size is so important to everyone who wants to be well equipped to handle today's complex receivers! First it gives a complete understanding of basic circuits and their variations. It teaches you to recognize each one quickly. Then it shows how to eliminate useless testing and guesswork in making repairs.

Thus, this book gives you the kind of above-average training that takes the "headaches" out of servicing—the kind that fixes you for the better-paid jobs! Covers all basic circuits used in modern TV and radio as well as photo pick-ups and record players.

SAVE MONEY ON INSTRUMENTS!

Work better with fewer instruments—get more work out of your old ones!

Here, at last, is an instrument book especially for servicemen, amateurs and experimenters!

Basic Electronic Test instruments help you work better and faster with fewer instruments; shows how to increase the usefulness of old instruments: to choose the right instrument for each job; how to understand instrument readings and put them to practical use; how to avoid buying unnecessary instruments . . . and lots more.

Over 500 instruments from the old standby to the very latest ones are fully described and explained. Work-saving shortcuts are included.

In addition, the following topics are covered: short tests; simple test leads; resistors, capacitors, inductors, transformers, solenoids, relays; power supplies; simple circuits; common trouble symptoms; troubleshooting techniques; circuit diagrams; alignment; troubleshooting techniques for TV receivers . . . and much more! A handy book is a complete training course in the latest instruments including grid-dip oscillators, TV sweep and marker generators; TV image pattern generators, square wave generators, distortion meters, etc. Dozens of time-saving "tricks" help you just get started over again. Check Basic Electronic Test Instruments in coupon for 10-day FREE trial.

BE AN EXPERT ON MAGNETIC RECORDING!

This how-to-do-it book makes it easy to specialize in one of the fastest-growing electronic fields.

This is a real future for men who specialize in the fast-growing field of magnetic recording in any of its many branches:

- From high fidelity sound to broadcasting, to sound recording, industrial communications, secret communications (speech scrambling), remote radio, industrial sound and noise measurements and many others.
- Magnetic recording is an important factor.

MAGNETIC RECORDING

by S. J. Regan

242 pages, 146 illustrations

Price $3.00

SHORT CUT TO TELEVISION REPAIRS

No. 1.

Eliminate useless testing. Fix sets twice as fast! Just turn the dial of the handy, pocket-size Chirardi & Middleton PIX-O-FIX TV Troubleshooting Guide. When the picture in the PIX-O-FIX window matches the screen image on the television set you're repairing, you've got your flaw.

PIX-O-FIX when they only cost the trouble.

Next it indicates the exact receiver section in which the trouble has probably happened. Then it gives step-by-step repair instructions.

PIX-O-FIX TV TROUBLE-FINDER GUIDES

Only $2 for a 150-page set: PIX-O-FIX No. 1 and No. 2.

PIX-O-FIX then shows the causes of the trouble.

If specified to the exact receiver section in which the trouble has probably happened. Then it gives step-by-step repair instructions.

The two PIX-O-FIX units No. 1 and No. 2 cover 47 separate television troubles . . . just about anything you're likely to be called to fix. No. 1 identifies 24 of the most common troubles and gives 192 causes and 205 remedies for them. No. 2 covers 23 more advanced troubles not included in No. 1. Together, they are a comprehensive guide to quick, trouble-free operation of any TV set. No TUNE IS ONLY $2.00 for the two. Money refunded if you are not more satisfied than specified. Specify PIX-O-FIX in coupon.

USE COUPON FOR 10-DAY FREE TRIAL!

30 RADIO-ELECTRONICS
Here’s How to Get Started in RADIO-ELECTRONICS!

More service experts got their basic training from this big book than any other of its type!

Here’s basic training you can really understand—written by A. A. Ghirardi who has probably trained more service experts than any other man living today! From start to finish, it is practical training that can help you for a BIG PAY job in any branch of radio-television equipment.

Ghirardi’s RADIO PHYSICS COURSE is the oldest book of its kind—and still a best seller! BECAUSE IT IS SO AMAZINGLY CLEAR AND COMPLETE. You can understand it, even without any previous radio or TV training!

36 COURSES IN ONE!

Starts with Basic Electronics. Then it takes you step by step through the entire field from basic circuits, components, instruments, etc., to their final application in radio and TV equipment. You can buy newer, costlier training—but you can’t buy better training at anywhere near the price. Ask the men who know!

Here’s the data you need to fix old sets in a jiffy

Just look up the how-to-fix data on that old radio you want to fix.

First time out of 5, this giant, 744-page Ghirardi RADIO TROUBLESHOOTER’S HANDBOOK tells what is likely to be causing the trouble ... since how to fix it. No guesswork involved. No wasted time. Using it, even beginners can easily fix old sets which might otherwise be throwaways because obsolete information is lacking. With a few simple repairs, most of these old sets can be made to operate perfectly for years to come.

THE ONLY GUIDE of ITS KIND!

Cuts service time in half!

Included are common trouble symptoms and their remedies for over 4,800 models of old home, auto radio and recent changes thereafter. Apex, Arvin. Atwater Kent, Bellingham, Brunswik, Clarion, Crosley, Emerson, Fada, G-E, K-Mart, Muncie, Motorola, Philco, Pilk, RCA, Silvertone, Spartron, Stromberg-Carlson, and dozens more. Includes hundreds of pages of invaluable tube and component data, service dials, etc.

Save with Ghirardi TROUBLESHOOTER’S HANDBOOK in coupon. Price only $6.50, 10-day trial.

Now! PASS FCC LICENSE EXAMS easier! faster!

Train for big pay in communication’s most interesting jobs

Here, at last, is a guide to FCC License Examinations—written so you can easily understand AND REMEMBER it. Covers ALL EIGHT exam elements and includes answers to 2,200 typical questions with straight-to-the-point answers. Includes full data on the recent changes in examination elements 1 and 2. (Many folks do not even know these changes exist!) Covers all necessary examination data from electrical radio fundamentals to navigation and related subjects. Anyone who has basic radio training will find Johnson’s LICENSE MANUAL the ideal training book for making this all-important step ahead in his career! Price only $8.00. Use coupon.

LICENSE BOOKS are SOLD by LEADING BOOK STORES
Do you OVERPAY for QUALITY instruments?

EICO's mass purchasing and world-wide distribution, together with advanced electronic design, produce values never before possible...to give you Laboratory Precision at Lowest Cost!

GET the MOST for YOUR MONEY! Don't buy ANY test instrument till you put the EICO INSTRUMENT (kit or wired) equivalent before you—and...

Compare advanced electronic design: see the latest in circuitry and features.

Compare finest components: see the famous brands you know and trust, such as GE, Centralab, Mallory, etc.

Notice ease of construction and operation: Exclusive "Beginner-Tested" Manuals make assembly and operation step-by-step, quick, crystal-clear.

"You build them in one evening—they last a lifetime!"

Check 5-Way Guarantee: Only EICO gives you this exclusive complete protection! EICO guarantees components, instructions and satisfactory operation—AND guarantees service and calibration for the LIFETIME of the instrument, at less than cost of handling.

Compare feature for feature, dollar for dollar.

There's an EICO distributor right nearby in your own neighborhood—over 1200 coast-to-coast. EICO planned it that way so that you can easily examine EICO BEFORE YOU PUT DOWN ONE CENT OF YOUR MONEY!

COMPARE any of EICO's 46 models SIDE BY SIDE with ANY competitor. Then YOU judge who's giving you the MOST for your money.

Over 500,000 EICO instruments in use...You'll agree EICO gives you LABORATORY PRECISION AT LOWEST COST.

FREE 1956 EICO CATALOG!

 Tells you how to SAVE 50% on your test equipment costs!
SPACE ELECTRONICS

... Another new branch of electronics is in the making...

IN THE reasonably near future, man will have extended his domain into outer space. Indeed, as this is written, the United States Government is actively engaged in pushing our frontiers in exactly that direction. By 1958 our Government will have launched between 6 and 10 satellites the size of basketballs, which will gravitate between 200 to 700 miles above the Earth. (They will not travel in circular paths around the Earth, but will have elliptical orbits varying from 200 to 700 miles above our planet.)

These tiny satellites will be launched during the International Geophysical Year in 1958. They will be equipped with a variety of electronic telemetering gear, sending to Earth a multitude of data for analysis by our scientists. The distance of 200 to 700 miles above the Earth is still not in a perfect vacuum and there will be some drag on the satellites from the Earth's atmosphere which will eventually slow them down, after which they will crash to Earth.

As we proceed to push farther into open space, a number of new conditions will be found. Once you get to a distance of several thousand miles away from the Earth, you have to contend with a number of new factors. Chief among these is the cold of interstellar space, where temperatures near absolute zero prevail. While absolute zero is —459.4° Fahrenheit, such a temperature will probably not be reached anywhere in the physical universe. We have, however, already approached close to this point. Thus, for instance, Prof. Kamerlingh Onnes, of the University of Leyden, has reached a temperature of —457.6°F.

In 1946, scientists at Johns Hopkins University of Baltimore announced that radio broadcasts can be picked up and detected without the use of tubes, electric current, antenna or capacitors. They were experimenting with an infra-red bolometer to which was connected a strip of columbium nitride. When placed in a cryostat, an instrument which cools down to about 15° above absolute zero, or —444.4°F, a loudspeaker placed in the bolometer circuit gave out broadcast music. The strange phenomenon was due to the strip of columbium metal which, when cooled to near absolute zero, became superconductive.*

At such low temperatures, Professor Onnes sent tremendous currents through very fine conductors that would ordinarily have become white hot or volatilized. However, when cooled to near absolute zero, ordinary conductors become superconductors because they become superconductive to the electric current. Here they lose all resistance. Once an electric current is started in such a conductor, the current keeps on flowing indefinitely. Here we have to do with a sort of "perpetual-motion current," which, in outer space, is likely to be used for undreamt-of purposes.

The field of superconductivity and superconductors in outer space opens up an entirely new and fantastic development for the future. One may speculate, for instance, about placing various electric or electronic devices into outer space and starting them going. Once started they would keep functioning forever without the need of any further outside electric current. This may sound shocking to the mundane engineer, who may doubt the possibility of a state where current is constantly furnished without the use of outside energy. However, if we look at the Earth and other larger heavenly bodies that have been moving in their orbits for billions of years without outside power supplying the motion, the idea no longer seems so far-fetched. Coming nearer to Earth, the unlocking of titanic powers from the atom also points the way to almost free energy. However, possibly the greatest advances in space electronics will come through the use of solid-state semiconductor electronics at near absolute zero available in outer space.

Thus, for instance, the recent solar electroluxes which convert sunlight directly into electricity have been tried out only in our atmosphere, which interposes a very effective shield between pure sunlight and our Earth. Once we can take these electroluxes into open space and expose them directly to sunlight without a dense atmospheric blanket intervening, we will really have efficient use of sunlight, and perhaps sufficient energy to power future space ships.

I foresee perhaps the greatest advances in electronics in solid-state electronics in outer space when our present transistors will become supertransistors as well as atomic transistors. We can foresee a variety of future supercooled solid semiconductors pressed into electronic service with results quite unimaginable today.—H. G.

*See the editorial "Superadio," in our April, 1947, issue.
PORTABLE SCINTILLATION COUNTER

Part I—Complete construction details for highly sensitive radioactivity indicator

By JAMES W. BRAY

The scintillation counter is an extremely useful tool for uranium prospecting, health-hazard surveys and decontamination work. Its sensitivity far surpasses that of the Geiger counter, which make it ideal for surveys of low-grade deposits. It also makes possible prospecting from aircraft and other moving vehicles. This article describes a portable scintillation counter which can be constructed without much difficulty by the average electronic experimenter.

The circuit is a modification of one that appeared originally in Circular No. 536 of the United States Geological Survey "Portable Scintillation Counters for Geologic Use," and with minor changes has been used in at least two commercial scintillation counters.

When gamma rays from radioactive material (such as uranium) strike certain types of crystals, the crystals emit tiny flashes of light or scintillations. The crystal material usually used to detect gamma rays from uranium is sodium iodide in a hermetically sealed unit. One end of the crystal is covered with a thin metal such as aluminum. Gamma rays pass through this metal and strike the crystal. The other end is closed by a piece of special glass, optically coupled to an RCA 6199 multiplier phototube.

The crystal and tube are coupled by applying a thin coating of Dow-Corning...
DC-200 Silicone Coupling Fluid between the glass surface of the crystal and the end window of the tube. The coupling fluid transfers a maximum of light (scintillations) from crystal to tube.

Scintillations thus received at the phototube in the end of the tube are passed through 10 dynode stages, each with a difference of potential of 100 volts more than the preceding one. This voltage is supplied by a 900-1,000-volt supply and a voltage divider (Fig. 1).

By a process of secondary emission, the current flow caused by the light flashes is amplified up to 1,000,000 times. The amplified pulses appearing at the anode of the tube are coupled to a monostable multivibrator, commonly known as a one-shot or univibrator (V1, V2).

The random pulses at the anode of the phototube trigger the univibrator, producing one uniform output pulse for each input pulse. The CALIBRATE control R3 affects the bias on V2 and to some extent the bias on V1; it varies the input sensitivity of the instrument.

Ranges are selected by switching different resistors into the plate circuit of V2. Two time constants can be selected by switching S2, which puts either C3 or C4 in the circuit. These values give time constants of approximately 1 and 10 seconds. The metering circuit uses a vacuum-tube voltmeter, commonly called a ratemeter; R7 zeros the meter.

A potential of 900 to 1,000 volts is needed to supply the 10 dynodes of the phototube. To obtain this a special type of low-current high-voltage supply is used. It operates as follows:

The battery fires the neon bulb in a relaxation oscillator circuit. These pulses are applied to the grid of V6. Amplified pulses cause a reactive voltage to be developed across L in the plate circuit of V6. This high voltage is rectified by V5, filtered, and regulated by V4, a corona regulator tube.

In this unit a voltage in excess of 1,000 gave more signal output from the phototube. To use the 900-volt 5841 tube already on hand, three neon bulbs (NE-2) were added in series to give the correct higher-voltage output. Satisfactory results are obtainable,
however, using the 5841 or VXR 1000 tubes alone in the circuit shown. Some compensation for a drop in battery voltage is provided by feedback between the output voltage and the grid of V6.

The dynode voltage divider (R1) is made up of 22-megohm resistors. Two of these, in series (44 megohms), are used between the cathode and first dynode. An ordinary voltmeter or vacuum-tube voltmeter cannot be used to measure accurately the voltage from this supply; an electrostatic voltmeter is the only type suitable. However, the builder can determine whether or not the supply is working properly by using a conventional voltmeter and comparing readings with the voltages shown. These values serve merely as indications and do not define the actual voltage present. The UTC 0-13 reactor was chosen for L because it was the only miniature available which would work satisfactorily in this circuit. Substitution of another type is not recommended.

Construction

The entire instrument is housed in a .30 caliber ammunition case. These cases are the new aluminum type, available on the surplus market. The case is 6⅝ inches high, 3⅟₄ inches wide and 10½ inches deep. A metal stiffener under the front panel was first removed to reduce weight and allow for easier assembly. The old handle was removed and welded joints filed smooth.

Electronic circuits were all constructed on ⅛-inch Bakelite panels (see photos) separated by ⅛-inch brass spacers. Panels (two required) are of uniform size, 9⅜ x 3⅜ inches. Locate suitable mounting points for the brass spacers and drill both Bakelite panels and the front panel simultaneously. Now place the meter as near the top of the front panel as possible. Drill holes and put the meter in place.

Put the range switch (Fig. 2) together as follows: Next to the knob end, put on a Centralab PA-30-1-11-position wafer section; Next, a ¼-inch wafer and then a blank wafer; then a ¼-inch wafer, S1-e, is installed. (This is one which has no rotating contact and can be a PA-30 type with the center removed.) This forms the part of S1 which will extend above the subpanel. Drill three holes and mount the switch on the subpanel. It should be mounted as close to the meter as possible, allowing space for decal markings on the front panel. Note that the switch shaft extends through the subpanel to permit operation of the other sections.

Below the subpanel, assemble two PA-32 (dp-5-position) wafer sections with 5/16-inch spacers between them. Resistors for the different ranges are located between the top- and second-wafer sections, S1-e and S1-f. These resistors, R4, R5 and R6 should be selected ½-watt types. The accuracy of the ranges will depend upon their tolerance. Precision types were not used, however, as correct values were found by selection from several standard 10% resistors. For ease of assembly all resistors and jumpers associated with S1 should be soldered in place before final mounting of the switch. The two sections below the subpanel — S1-a and b, and S1-e and d — are for battery switching.

Exact locations of tubes and other components are not given because, the layout can be arranged to suit the constructor. Parts placement is not critical. Keep input leads short and well shielded. Distributed capacitances should be kept at a minimum in the univibrator circuits; short direct leads are the best.

A short length of coax (RG58/U or RG59/T) runs between the input socket from the phototube and the input of the univibrator (C2-R2). Tubes are mounted in rubber grommets. Where 6007 tubes are used, drill the size hole specified for the grommet; holes must be slightly enlarged to allow space for the oval-shaped Raytheon (CK533AX or CK526AX) tubes. A slight undercutting is necessary in the ¼-inch panel to make the grommets fit. A larger grommet with 5/16-inch hole will fit snugly around the Victoreen SS-1 tube.

The neon bulb serves double duty. In addition to its use in the power supply, it is used as a pilot light. To extend it through the front panel, a bracket 3 3/16 inches high is bent from aluminum and mounted on top of the subpanel; a rubber grommet holds the bulb in place. This puts it slightly above the top panel where it is covered with a Johnson neon pilot assembly with a clear bezel. Remove the socket and base of the assembly and saw off the mounting threads close to permit fitting between panel and neon mounting bracket.

The potentiometers R3 and R7, and S2 (the time constant switch) are mounted below the subpanel with the shafts of R7 and S2 long enough to extend through the front panel. After these...
components have been mounted, holes can be located in the front panel. The calibration shaft does not appear above the front panel. To allow for more hand space this shaft was recessed in a bushing attached to the front panel. A screwdriver slot was sawed to allow tuning. A snap-on phone jack cover (from surplus equipment) keeps water out.

Drill holes for the S2 and R7 shafts large enough for rubber grommets which fit tightly around the shafts to make water-resistant seals. The meter and pilot bezel are fitted with cork gaskets. Cement the heavy rubber gasket which comes with the case into place inside the top panel.

The type of construction used is a modified printed-circuit arrangement in which terminal lugs are riveted to the subpanel wherever needed. Components are then mounted between these lugs and with careful layout leads will be very short. Terminal lugs are obtainable from Cinch or Useco. Lacking these, conventional soldering lugs held against the panel with small screws, or even small screws themselves, can be used as standoffs for the various components. Leads from tubes are soldered directly to lugs mounted around the periphery of the tube. L1 is mounted in a ¾-inch hole with a mounting strap of the type used for tubular capacitors. Use flexible leads to the meter long enough for removing the subpanel for inspection without taking the leads off the meter.

Use good-quality mica capacitors for C7 and C8. Ceramic types were tried but found to be inferior to the mica in this circuit. Flat ceramic bypasses can be used for other capacitors except C9 which is a 200-volt tubular and C5 and C6 which are 1,000-volt tubulars.

Battery arrangement

One of the Bakelite panels mentioned is used as a battery mounting board (see photo). All batteries are mounted here except flashlight cells B5 and B6. To allow space for the lid to open and close with batteries intact, 22 ½ volt batteries B3 and B4 were mounted at the rear of the board (away from the hinge).

Mountings for B3 and B4 (see photo) were made from two 30-amp fuse clips attached to the mounting board (mounting brackets can be purchased). On each end is a contact assembly made from contacts taken from an old relay. They were shaped and bolted to small strips of Bakelite secured to the board with angle brackets. B1 and B2 are fastened to the board by a long spring stretched across the top of the batteries and hooked onto a screw at one end. This mounting keeps batteries in place and permits quick replacement.

The batteries are connected by leads running underneath the panel to a four-terminal strip. A length of four-conductor cable was used to connect from the terminal strip to the circuit. At the circuit end, leads from this cable go directly to points of connection on the switch, etc. The cable should be run to the back of the mounting board and sufficient length allowed to fold back the battery board for access to the components on the subpanel. The cable is held on both panels with cable clamps.

The mounting (Fig. 3) for B5, B6 was constructed from two pieces of Bakelite, brass spacers and some large soldering lugs (or eyelets). Contacts are formed by using two of the relay contacts mentioned and stiffening them on top with an additional piece of spring brass. The bottom contact is a piece of spring metal soldered to one of the base lugs. Recess all mounting screws in the base to prevent shorting. Other lugs simply hold the batteries in position. Connection to B5 and B6 is made with another length of four-conductor cable.

With the scintillation counter completed the constructor will want to test the instrument. The following is a list of sources for obtaining radioactive samples:

E. Barie Fletcher, 5289 Madiera Drive, N. E., Albuquerque, N. M. Uranium rock samples, 25 cents each.
New Brunswick Laboratory, U. S. Atomic Energy Commission, P. O. Box 110, New Brunswick, N. J. Calibrated samples, analyzed, and marked with uranium percentage. Write for particulars.

TO BE CONTINUED
S INCE the beginning of time man has compared and measured everything with which he came in contact. Primitive man was content to compare objects with stones, trees and mountains whose sizes he remembered. He did not worry much about accuracy. That had to await the machine age when it became a necessity. As man became more civilized he began to compare sizes with the length of his step or other parts of his body. These varied with the individual, but all primitive man was concerned with was what related to his own personal needs. Time was practically no importance though he did develop the sundial to keep some track of it. About 6,000 B.C the Egyptians established and recorded the first standards of measurement. The basic unit of length was the cubit, the distance from the point of the elbow, with the forearm bent, to the end of the middle finger of the outstretched hand. In 4,000 B.C, 2,000 years later, the cubit was standardized to 18.21 of our present inches and so remains to this day.

The next important unit was the digit, the diameter of the middle portion of the middle finger—approximately ¾ inch, 1/24 cubit. The span was the length from the tip of the thumb to the tip of the little finger in the Pharaoh's outstretched hand—½ cubit.

The relationship of digit and span to cubit still survives in our system of measuring time—12 hours ante meridian and 12 hours post meridian, a total of 24 hours each day.

These are obviously divisible by 6, a sacred number worshipped by the Chaldeans. So they developed our circular measurement of 360°, the time division of the hour into 60 minutes and the minute into 60 seconds.

Our foot is generally accepted to be the result of a regal decree by an ancient king whose right foot was about the length of our present 12 inches. The word yard stems from the Chaucerian-era words yerde (y pronounced as u) and yerde both meaning a rod, stick or wand. King Henry I officially decreed that its length was to be from the tip of his nose to the tip of his thumb with his arm outstretched. This was about three times the length of his foot, hence our foot and yard. Retaining the mystical number 6 he established a new standard of length—the fathom, which is 6 feet.

The metric system was the next development. It was imposed on the French people by the first Republican Convention of the French Revolution. The head of this Special Weights and Measurements Committee, the famous scientist, Lavoisier, was publicly thanked for his work and then sent to the guillotine to receive a haircut from which he obviously never recovered!

This system not only divided length, area and volume by 10 but also time—the day was to be 10 hours; an hour, 10 minutes; minutes each 10 seconds, and seconds were further subdivided by multiples of 10.

The metric system, particularly its time measurement, has never been too popular in Great Britain and America nor even in France where it originated.

Time has been very important in the past 20 centuries but its full and proper significance in science was revealed by Einstein's famous theory of relativity which postulated time as the extra, or fourth, dimension. Because of this theory nuclear advances became possible and science has been able to present us with such Frankensteins monsters as the atomic and hydrogen bombs! None of these could have evolved without consideration of time in the formula.

Be that as it may, time does concern us all. Electronics is greatly concerned also with circuitry and devices to keep or measure time or to control apparatus within predetermined time limits. One of these applications is the electrotimer.

Basically, it works on a multivibrator principle. A multivibrator is essentially two similar resistance-coupled amplifiers, the output of each feeding the input of the other. The rate of oscillations produced is governed by the R-C (resistance-capacitance) parameters used. Since a capacitor charges or discharges nonlinearly, the multivibrator oscillator is a relaxation type oscillator. Its waveform is irregular, so it is rich in harmonics. The output waveform can be altered to make an almost symmetrical square wave. Because of this harmonic richness, this type oscillator can be, and is, used to create an infinite variety of musical tones in electronic organs. And because the waveform is a pulse type, it is widely used in electronics, television and in the electrotimer.

Electrotimers divide into two main groups: fixed-position variable, using decade switches with R-C carefully measured for each switch step, and continuously variable where the timing speed is set with a watch or oscillo-

* Henry Francis Parks Laboratories, Portland, Ore.
before proceeding to the next one. The following assembly procedure may save some time:

Insert four rubber feet on the bottom of box, rubber grommet on the right side and 3-lug Cinch-Jones terminal strip on the back. Mount the filament transformer at slight angle as shown, solder short lengths of hookup wire to the tube socket and mount it. Then install the fuse holder.

Wire input a.c. power—with strain knot—and include toggle power switch, connecting properly to filament transformer.

Check all wiring to this stage of assembly, then mount the LM11 Potter & Brumfield relay so that contacts are to the rear, connecting one end of each of the signal light leads for the time being. Install the two potentiometers and the rotary switch, and complete wiring to the above points.

Mount the two large 1-µf capacitors on the lower shelf (see photo), using a capacitor support. Mount the shelf to the rear of box. Connect additional wiring to these points. The three 10,000-ohm resistors are connected in the shape of a Y—one end of the third resistor being left for connection later to high voltage.

Mount the two electrolytic 16-µf capacitors and Federal selenium rectifiers on the upper shelf. Wire these together. Then mount upper and lower shelves, using collars for spacing the two shelves.

Mount the signal lamp holders on the front panel. Bring wires from LM11 relay (see above) and connect lamps. Complete circuit by connecting all ground and the one high voltage leads. You are now ready for final test.

Set the fast-slow switch to slow. Both potentiometers should be set to the extreme left. As soon as the 6SN7 is at a reliable operating temperature—after about 1 minute—the unit will start to time at its lowest speed, which is about once per minute.

Moving the potentiometers to the right will increase speed. For further increase, return the potentiometers to their extreme left positions. Then turn S1 to fast. Slowly moving the two potentiometers to the right will increase the speed until you reach maximum, about 60 miles.

The timer operation is plainly seen because the NC (normally closed) and the NO (normally open) signal lights will go on or off according to the speed. You can time with the unit to obtain a maximum or a minimum off or vice versa or anything between these extremes by varying the potentiometers.

Check the actual time of operation with a watch on the longer ranges and with an oscilloscope on the shorter ranges. You can use any dial plates and log the timing results for duplication in the future. The unit has found wide use in life-testing relays, solenoids, small motors and other electronic equipment.
General-Purpose Transistors

By RUFUS P. TURNER

The tables accompanying this article list the important electrical characteristics of currently available domestic transistors. Only conventional general-purpose transistors are included, power types having been discussed separately in an earlier article. (Radio-Electronics, August 1955, page 90.)

Since we compiled our last list, principally for the book Transistors, Theory and Practice (Gernsback Library), the transistor picture has enlarged considerably. The present tables include 116 types from 16 manufacturers. Reference to Table I shows that the point-contact type of transistor has almost completely disappeared, having been replaced by only two versions (the 2N32 and 2N33 of Transistor Products Inc.) remaining in our listing. Of the junction types, only 20 are p-n-p. Four are silicon. One transistor (Philco SB100 surface-barrier type) technically is neither a junction nor a point-contact but is of special fabrication somewhat resembling the p-n-p type. Four transistors listed have...
maximum temperature ratings of 150°C, 16 are rated for 100°, 18 for 65° and 26 for 76°. Five tetrodes are available. (See Table II.)

Method of listing
Listing by manufacturers remains the most practical way to tabulate transistor data. It seems unfortunate that we cannot list numerically by type number, but the reason becomes obvious when one notes the differences in ratings of just one type, the 2N23A, as manufactured by Radio Receiver, Sylvania and Transistor.

Table I lists absolute maximum ratings on all characteristics of triodes. Table II gives the same data for tetrodes. Table III shows typical operation. In the limited space of these pages it is impossible to present the multitude of typical operating conditions under which the listed transistors are capable of working. We accordingly have selected that mode of operation which seems to give a fair indication of the performance to be expected of a particular type.

Where gaps appear in the tables, the pertinent data have not been released by the manufacturer and we do not take the liberty of calculating the values. When a certain transistor appears in Table I but is omitted from Table III, typical operating data have not been available.

Manufacturers
The transistor manufacturers are indicated in the tables by the following abbreviations:

Amperex—Amperex Electronic Corp., 230 Duffy Ave., Hicksville, N. Y.

G-E—General Electric Co., Electronic Equipment Div., Syracuse 1, N. Y.

Geo’l Trans—General Transistor Corp., 95-18 30th Blvd., Jamaica, L. I.

Gem Prod—Germanium Products Corp., 26 Cornelia Ave., Jersey City 4, N. J.

Hydro—Hydro-Aire Inc., Burbank, Calif.

Raytheon—Raytheon Manufacturing Co., 55 Chapel St., New Haven 58, Mass.

RCA—Radio Corporation of America, Tube Div., Harrison, N. J.

Sylvania—Sylvania Electric Products Inc., Electronics Div., Waterbury, Mass.

Texas Inst—Texas Instruments Inc., 6000 Lomolno Ave., Dallas 9, Tex.

Transistor—Transistor Products Inc., 241 Crescent St., Waltham 55, Mass.

Transistor—Transistor—Electronic Corp., Metairie, La.

Tung-Sol—Tung-Sol Electric Inc., 500 Bloomfield Ave., Bloomfield 4, N. J.

Westinghouse—Westinghouse Electric Corp., Electronic Tube Div., Elmira, N. Y.

Changes have been reported to the author by the following companies: **Hydro-Aire** Inc. advises that their transistor activities have been taken over by Mar-Vista Electronics with the same address for the time being. National Union Electric Corp. has ceased manufacturing transistors and presently is developing new types. Its older units therefore are not listed in these tables. **Radio Receiver Co**. Inc. announces its temporary discontinue of transistor manufacturing but advises that it has a sizable stock and "to all intents and purposes is in the germanium business."

Abbreviations

The following abbreviations are used in the tables or footnotes:

- **a** alpha (emitter-to-collector current gain)
- **β** beta (base-to-collector current gain)
- **Ca** capacitance (p-n-p collector positive)
- **Cn** capacitance (n-p-n collector negative)
- **Cbb** common-base circuit
- **Cee** common-emitter circuit
- **di** diode circuits
- **dc** direct current
- **if** intermediate frequency
- **ma** milliamperes
- **mc** megacycles
- **mm** milliwatts
- **m** microamperes
- **μ** microcoulombs
- **μf** microfarads
- **v** volts

END

FEBRUARY, 1956

41

Please note that the content of this excerpt is a mixture of electronics-related text and a table intended to be read as a reference. However, the table is not fully transcribed here. The table details various transistor specifications such as maximum ratings, typical operation, and technical data. The table is important for understanding the technical specifications of different transistor models.
12-VOLT TV RECEIVER is a British development. A true portable, it weighs 30 pounds and uses a 9-inch picture tube. The set measures 13 x 10½ inches and is housed in an aluminum-covered plastic case. It will run for 12 hours on a 12-volt auto battery. With a telescopic whip antenna it receives TV and FM up to 30 miles from the station. The set is intended to sell for the equivalent of $168 and its manufacturers, the Ekco Co., expect large sales to rural dwellers, car owners and others who may wish to see TV at points where there is no electricity. A switch, however, makes it a standard set operating on house current.

SOLAR-POWERED RADIOS are increasingly popular among experimenters. Admiral is the latest to build an experimental transistor portable powered by the sun. A man-sized job, it uses eight transistors and a seven-cell solar battery. The set also has a standby battery for twilight operation—at night a 100-watt bulb can activate it. Ray de Cola, Admiral's director of engineering, looks forward to further experimental models with automatic gain control to compensate for light changes on cloudy days, improved solar cells and rechargeable batteries. Eventually, he says, using troublefree printed circuits, the solar-powered radio could be sealed in a one-piece plastic cabinet and conceivably given a lifetime guarantee.
HEARING AID that can be worn in the ear is the latest in ultra-subminiaturization. Miracle-Ear, made by the Dahlberg Co., Minnesota, uses three Raytheon transistors no larger than safety match heads. It is powered by a mercury cell only 1/8 inch thick and 7/16 inch in diameter, which lasts up to 50 hours. The battery inserts under hinged lid on top of case. There is no off-on switch or volume control since the 55-db amplification—suitable for persons with moderate hearing loss—is within the range in which the ear adjusts itself to volume changes. Used with a molded earpiece, the aid is worn in the ear. If desired, it may be worn behind the ear, with the plastic tube and earpiece shown in the photo.

ELECTRONIC RANGE that cooks a 5-pound roast in 30 minutes (normal time 3 hours in gas oven) is available. Photo shows technician with the magnetron cooking unit. Using Raytheon's Radarange unit, the stove looks like a compact oven for a standard kitchen unit. Because only the food becomes hot, the range can be put into a wooden cabinet. Besides speed, advantages are cleanliness, convenience (foods can be cooked in serving dishes which remain cool) and safety (no hot pans to burn hands). The range is made by the pioneer Tappan Stove Co. and will cost about $1,000. Frequency is 240 mc and operation from 220-volt line.

WHAT'S OLD? is the query the instrument to our left brings up. The pocket test set is more ancient than we might imagine, to judge from the patent date (1898) printed on this meter which is apparently intended for checking 1.5-volt dry and probably 2-volt storage cells. Not only is it a pocket job, but is built into a watch case with stem and ring for attaching to a chain.

The meter is a vane type with two coils and a gear wheel and balance spring that suggest the whole job was constructed by a watchmaker "from items to be found in the junk box."

TEST-EM-YOURSELF is becoming a commonplace slogan in many areas. For the benefit of the technician who has not yet seen one of the things, here is how a "self-service" tube tester looks.

HOLIDAY RADIO
The Darb Holiday all-purpose radio is a 4-tube portable that uses separate power packs for line operation, 6 volts dc or dry batteries. Set plugs into the desired power pack or can be mounted remotely, as in the bicycle installation shown here. Push buttons permit tuning in one of three stations. There is no variable tuning.
MODERNIZE your oscilloscope with this simple and accurate circuit. Only four components are needed: a transistor, a three-cell voltage standard and two resistors. For all its simplicity, this calibrator (Fig. 1) is more accurate and stable than vacuum-tube calibrators built into more expensive oscilloscopes. These advantages, and several yet unmentioned, are possible because of the tremendously high low-voltage efficiency of junction transistors. There is no vacuum-tube counterpart to this circuit. This means the calibrator is not a transistorized version of some earlier form of vacuum-tube calibrator. It is something new that would have been impossible without the transistor.

Nearly all vacuum-tube calibrators operate by clipping a sine wave when it exceeds a standard reference voltage. This results in a square wave of amplitude equal to the reference voltage, obtained from a gas voltage-regulator tube. The VR tube is notorious for its poor absolute stability. It is easy to find a 3-volt variation from tube to tube, and once the tube is in place there are further variations caused by age, load, and environment. Special regulator tubes, such as the 5651, could be used with a considerable increase in stability. But these special purpose or industrial types are more expensive and difficult to obtain. Anyway, I have seen only one calibrator—and a very expensive one at that—which used this improved reference tube.

There are other sources of error with these vacuum-tube circuits. For example, the clipping diodes are not perfect rectifiers and their clipping action slopes within a 1-volt region. Thus, the clipping level must be high. Since two diodes are used, the error even with a level of 100 volts is 2%.

One last undesirable feature of the vacuum-tube circuit is that the output impedance is high, usually 100,000 ohms or more. Thus a serious error is introduced whenever the circuit is loaded, even with 1 megohm. To sum it up, the best accuracy for commercial calibrators under the best conditions is ±5%. The accuracy of this simple transistorized calibrator, under poor conditions, is twice this good.

Voltage standard
The transistorized calibrator has a voltage standard much more accurate and stable than the gas regulator tube. It uses ordinary mercury cells as the standard. These cells are highly stable under wide variations of temperature, age and loading. Fig. 2 is a typical regulation curve for a mercury cell similar to those used in the calibrator. Believe it or not, in at least one application requiring a precise calibrating voltage, the standard (Weston) cell has been replaced with a mercury cell. They do, however, use a special current-drain type of stabilization circuit. As the reader probably knows, the familiar H-shaped standard cell has up until now had no peer.

Three mercury cells in series furnish a 4-volt reference for the calibrator. This in turn controls with equal precision the amplitude of the output waveform. The e.m.f. of the mercury cell is somewhat less than that (1.6 volts) of the ordinary zinc-carbon dry cell. Also, the center pole of the mercury or RM cell is negative.

Vacuum-tube calibrators, we noted, operate by clipping a sine wave. Our transistorized calibrator, in contrast, behaves like a single-pole single-throw switch being thrown off and on at a 60-cycle rate. This transistor, in other words, acts as a switch between the precision 4-volt reference and the output terminals.

In fact, the transistor comes pretty close to being the ideal switch. When it is in the on position, there is virtually no voltage drop across its terminals; in the off position the leakage current is usually about only 5 microamps. Thus, the transistor adds very little error to the instrument. Poor transistors, however, do sometimes bring about errors and distortions of the output amplitude and waveform. (This trouble and its remedy will be discussed later.) The two resistors in the circuit in no way affect the precision of the output amplitude, hence they can be ordinary 10% carbons.

The transistor circuit, unlike the vacuum-tube circuit, has a low output impedance of 2,200 ohms, reducing loading errors to almost zero.

By EDWIN BOHR

Accurate and stable unit uses mercury cells as standard

Fig. 1—Schematic of the calibrator.

Fig. 2—Mercury-cell characteristic.

Fig. 3—Diagrams show alternate methods of using the scope calibrator.

TEST INSTRUMENTS

TRANSISTORIZED SCOPE CALIBRATOR

Normal output of scope calibrator.

Abnormal output with poor transistor.
Only three external connections to the calibrator (Fig. 1) are necessary: the ground, input and output.

A 60-cycle signal is fed into the calibrator from the scope heater line. When this signal is near zero or in the positive portion of the cycle, the collector does not conduct (is cut off) and the full reference voltage is available across the output terminals. This is because there is no voltage drop across R2. As the base voltage swings negative the base-emitter loop begins to draw full current. The voltage drop from collector to emitter now approaches zero, effectively shorting the output terminals and causing the full reference voltage to appear across resistor R2.

This results in a square wave developed across R2 exactly 180° out of phase with the square wave across the output terminals. If desired, the calibrated output can be taken from this resistor rather than from collector to ground. This alternate connection is shown in dashed lines.

Resistor R1 in series with the input terminals and the transistor base limits the base current to a value several times greater than necessary to cut off the collector-emitter "switch" completely.

The calibrator output rise time, sharpness of corners and tilt of the flat top (see photo) are better, in most respects, than the output of a good-quality vacuum-tube calibrator. An Amperex OC-70 transistor was used in the instrument when this photograph was made. The OC-70 is a high-quality hermetically sealed unit designed primarily for hearing-aid circuits.

Fifteen transistors, in large part CK722's, were tried in the calibrator. All gave excellent performance except one that produced a distorted wave-shape (see photo). However, we were able to make even this transistor work by plugging it in backward: i.e., inserting it into the socket so the emitter is used as the collector, the collector as the emitter. This will not harm the transistor! The tiny indium dot forming the collector is larger than the emitter, indium dot. Otherwise, the emitter and collector of a junction transistor are identical.

Normally, a 6-volt signal from the scope heater feeds the calibrator input. This assumes one side of the heater line is grounded. If the heater winding has a grounded center tap, only 3 volts will be available for the calibrator input. Nevertheless, the calibrator works almost as well on 3 volts as 0. The sides of the square wave are not as steep with 3 volts.

Calibrator operation

Fig. 3-a shows how the calibrator can be connected to the input of an oscilloscope by a pushbutton transfer switch. When the button is pressed, the calibration voltage is fed to the scope input. The pushbutton should be mounted on the scope front panel as close as possible to the vertical input terminals. All leads should be kept as short as possible.

The calibrator terminals are labeled according to the nomenclature of Fig. 1. Terminal 2 receives the 60-cycle voltage through the switch. If one side of the heater line is grounded, the switch must go to the ungrounded side. With a center-tap-grounded transformer, the switch wire may be connected to either side of the tube heater.

Another arrangement, Fig. 3-b, simply brings the calibrator output to a connector post on the oscilloscope front panel. A jumper is then used to bridge this calibration point to either the vertical or horizontal deflection as is necessary. This system is standard on several scopes with built-in calibration.

In this last arrangement, the calibrator operates whenever the scope is turned on, therefore consuming current from the reference cells while the scope is in operation. This may be undesirable if the scope is used extensively. If so, a pushbutton can be used to operate the calibrator only when needed. This switch would be connected in series with terminal 2 of the calibrator and the heater line.

There is no need to switch the mercury cells on and off. With no input signal the drain on these cells is negligible and they should last, theoretically, about 40,000 hours. This is probably longer than their shelf life and may not be a realistic figure. But it does point out the long life than can be expected of the cells.

Scope cabinets can become pretty warm inside. Because of the temperature rise, it is advisable, although not absolutely necessary, to mount the calibrator near the bottom of the case.

The mercury cells are available from several mail order jobbers or they can usually be obtained almost anywhere as hearing-aid replacement cells. They are Mallory RM-625-RT. This type has a metal tab, connected to the negative terminal, which can be bent and soldered to the side of the next cell for a series connection. When soldering to these cells, be quick or the cell may overheat and be ruined. After they are soldered it is a good idea to check them with a voltmeter.

Almost any junction transistor should work in the circuit; n-p-n units can be accommodated by reversing the polarity of the reference cells, i.e., connecting the positive battery terminal to the collector.

The output from the transistorized calibrator was compared with a mechanical chopper operating from the same three mercury cells with no observable difference in the square-wave amplitude. This and other checks led me to believe the accuracy is around 2%.

If an inexpensive transistor is used, the calibrator should cost no more than $5 to build. There is no necessary calibration or adjustment; just assemble it and it is ready to operate at full accuracy.

END
THOUGH transistors generally demand their own circuitry, there are some good vacuum-tube circuits that function nicely with transistors. As the phase relations of a grounded-emitter transistor resemble those of a grounded-cathode vacuum tube, it is possible to substitute junction transistors for vacuum tubes in most oscillator circuits.

The multivibrator and two-terminal sine-wave generator perform well with junction transistors, with the transistorized two-terminal L-C having a great advantage over other transistor oscillators. As with vacuum tubes, the circuit oscillates on higher frequencies than single-transistor oscillators with the same components. While transistors must be selected for other oscillators, most transistors, even though not oscillating in single oscillators, work well on r.f. in this circuit.

The multivibrator is in principle a two-stage R-C-coupled amplifier (Fig. 1). The output voltage of the second tube is fed back to the grid of the first.

Fig. 2—Tube-transistor comparison.

Because of this feedback the circuit starts to oscillate at a frequency determined by the time constants of R and C. The circuit will also oscillate if you substitute an element with similar amplifying and phase-shift relations in place of the vacuum tubes. Fig. 2 shows how the grounded-emitter circuit of a junction transistor corresponds to the grounded-cathode circuit of the vacuum tube.

If you make the grid of the vacuum tube more positive, plate current increases and the plate becomes less positive due to the voltage drop across the load resistor. Thus, all “mountains” of a sine wave applied to the grid are transformed into “valleys” of the anode voltage. Now look at the grounded-emitter circuit of a p-n-p junction transistor. If the base is made more negative with respect to the emitter, collector current increases and the voltage drop across the load resistor causes the collector to become more positive. So, a sine wave is “turned over” the same as with a vacuum tube, a grounded-emitter transistor producing the same 180° phase shift as a grounded-cathode vacuum tube.

Fig. 3 shows the circuit of the transistorized multivibrator. It produces an output waveform rich in harmonics, though they are not as rectangular as those produced by tubes. Nevertheless, there are harmonics up to 50 mc when the circuit oscillates at about 100 cycles. An oscilloscope pattern of the output waveform is shown in Fig. 4. The waveform is more complex than with tubes because the transistor requires input power.

There is a sine-wave oscillator circuit which resembles the multivibrator: the two-terminal circuit of Fig. 5. In principle it is a multivibrator with a resonant L-C circuit between the grids. In the old days of radio the two-terminal oscillator (then called a balance generator) was used because of two advantages; there is no need for a tapped coil or feedback winding, any resonant circuit connected between the grids will oscillate; the balance generator worked up to very high frequencies even with the poor tubes of those days.

Some say this was the first circuit which ever produced CW in the 2-meter band. Today we have similar difficulties—only a relatively few individual transistors oscillate in the radio-frequency band. It would seem that the balance generator might help to reach higher frequencies even with components not suitable for oscillating in ordinary circuits. It has been found that it is so. The transistorized balance generator (Fig. 6) oscillates over the entire medium-wave band with individual transistors which are otherwise suitable only for audio purposes. If you omit the resonant circuit, you have a multivibrator again. Therefore, it is possible to combine both circuits with the oscillator being used either as a multivibrator or sine-wave oscillator.

The combined circuit

Fig. 7 is the circuit of the combined oscillator. Two CBS-Hytron 2N36 transistors work with grounded emitters. The bias is obtained by 330,000-ohm resistors between the bases and negative supply. In each collector lead there is a 3,900-ohm load resistor. The two .05-uf coupling capacitors connect the output of each transistor with the base input of the other.

Fig. 3—Transistorized multivibrator.
Without any L-C circuit connected to terminals A and B, the circuit works as a multivibrator and the waveform between A and B is shown in Fig. 8. The circuit oscillates at about 100 cycles. If you connect terminals A and B to the input of a radio receiver, you will hear the 100-cycle signal over all bands up to 10 meters. Thus the circuit makes an excellent multivibrator for test and alignment purposes. With only a pen-light cell used as a voltage source, the unit may be built ultra-compact.

When you connect a resonant circuit to terminals A and B, the oscillator produces sine waves of a frequency determined by the L-C circuit. For low-frequency purposes any capacitor and choke arrangement may be used. The sine wave produced in that case may be seen on a scope. If you want to hear the audio frequency, use your headphones as the inductor. If the capacitor is omitted, higher frequencies will be generated. If the L-C ratio is too high, the sine waves are distorted as shown in Fig. 9.

To use this circuit as an i.f. alignment generator, connect a transformer to A and B. For covering the medium-wave band, any wavetrap or crystal set may be used. The battery voltage may be as little as 1.5, though higher voltages of about 4.5 are desirable to obtain higher output on high frequencies. With a battery voltage of about 4.5, a current of 1 ma will be drawn by the circuit when oscillating, which increases to 2 ma when oscillation ceases. The sine-wave output between A and B is about 2 volts r.m.s. at 100 cycles, decreasing to about 0.5 volt at 1.5 megacycles.

Construction

As I planned to build the oscillator into another piece of test equipment, the unit is laid out so that it can be easily soldered into any hookup. The layout may be seen in the photos. A 2 x 3-inch polystyrene sheet serves as a “chassis.” Only four soldering connections have to be made if the oscillator is connected into any larger hook-up. When assembling the unit be careful not to apply excessive heat to the transistors when soldering.

As it is much easier to get transistors oscillating with this circuit, it should be of interest to everybody interested in experimenting with transistor oscillators at high frequencies.
TEST INSTRUMENTS

A STANDARD POTENTIOMETER

Laboratory type instrument is simple and reliable

FOR PRECISE MEASUREMENTS

By FORREST H. FRANTZ, SR.*

MEASURING dc voltages of less than 0.25 volt is difficult and extremely inaccurate with a conventional multimeter or vtm. In measuring small voltages with a multimeter, additional inaccuracy is imposed by circuit loading. Since small voltages do not have to be determined frequently, a null type instrument may be tolerated. The null potentiometer is an invaluable instrument for the technician and experimenter.

The potentiometer is a laboratory type instrument which, used with other devices, provides an accurate standard for checking instrument calibration, a precise means for measuring voltage, current and resistance.

The potentiometer's claims for accurate measurement are: It draws no current from the source of emf under measurement at the null and consequently does not load the circuit; its accuracy does not depend on the calibration of a moving-coil type meter; the potentiometer carries its own internal calibration standard; measurement is made by comparison of the unknown emf with a known voltage drop; the potentiometer reads true emf regardless of series or internal resistance.

Potentiometer theory

Null principle: If the voltage between points A and C (Fig. 1) is exactly equal to that between B and C and if the polarities are the same, the voltage between points A and B is exactly zero, and the galvanometer (or current meter) will not be deflected. This follows from Ohm's Law: since I equals E divided by R, when E is zero, I must be zero. For the null case, if E_{SC} is a battery of unknown voltage and E₁₀ is a standard battery of known voltage, unknown E_{SC} is equal to known E₁₀. To extend the null principle in the measurement of voltages without requiring an impractical number of standard batteries of odd voltage values, the potentiometer principle must be used.

Potentiometer principle: If the voltage drop between terminals F and H (Fig. 2) of the linear potentiometer is E volts, the voltage drop between terminals F and G is E times the number of degrees of rotation from F to G divided by the number of degrees of rotation from F to H. Resistance between FG is proportional to the percentage of total rotation and current through R at any point is the same in this series circuit. Since E equals I times R, it follows that the potentiometer principle as stated must hold.

Fig. 3 shows an elementary null-potentiometer circuit. Battery E₅ is the voltage source which causes current to flow through STANDARDIZE rheostat R2 and potentiometer R1. E5 is a standard battery. Assume that the R1 scale is calibrated from 0 to 100 and that E5 is 1 volt. If wiper contact G of R1 is rotated to H (100 on the dial) and switch S is thrown to position 2, R2 may be rotated till the galvanometer reads zero. Then the voltage drop across R1 is exactly 1 volt.

Now, if an unknown potential E₅ (of less than 1 volt) is connected to terminals P and Q, switch S set to position 1 and R1 rotated till galvanometer current is zero, the value of E₅ may be read directly from the dial of R1 by properly placing the decimal point. Thus, if the dial reads 25, E₅ is 0.23 volt. A momentary-contact (normal-off) switch is usually connected in series with the galvanometer and

* Physics Department, Mississippi State College.

www.americanradiohistory.com
sliding arm G of the potentiometer. This switch protects the meter and prevents continuous loading of E_S or E_X before null adjustment is made. As an additional precaution a series resistance is often inserted between the positive terminal of E_S and terminal 2 of the switch. This limits current drawn from E_S before a null is reached and, since no current is drawn at the null, no error is introduced in standardizing the potentiometer.

Potentiometer circuits vary in complexity and cost from the simple hookup of Fig. 3 to very elegant and extremely accurate arrangements costing over $500. It is possible to achieve ±1% accuracy in easily built potentiometers of modest cost without special calibration against an expensive standard. The instruments with extremely accurate potentiometers and standard cells and very sensitive galvanometers, can measure with less than .05% error. Instruments of this accuracy have to be standardized frequently since they tend to drift with changes in room temperature.

My potentiometer was constructed with a parts investment of less than $10. The instrument is extremely accurate for so small an investment. The circuit is shown in Fig. 4 and is very much like that of Fig. 3. Note that a voltage divider is provided off R1 to give ranges of 1, 0.1 and .01 volt. This voltage divider loads R1 and causes a slight deviation in the dial scale (Fig. 5) from absolute linearity.

Another voltage divider is used in conjunction with the standard mercury cell. This divider furnishes a standard emf of 1 volt for the potentiometer. The arrangement draws 0.1 ma from the standard cell when the potentiometer is standardized. This is ordinarily avoided in potentiometer circuits when extreme accuracy is sought and as an economic precaution. Since the other components of the potentiometer limit the accuracy to approximately 1%, the error caused by this small drain on the standard cell is negligible. The divider resistances should be 1%-tolerance deposit type resistors. As an alternative, wirewound potentiometers may be used for the divider resistances. They may be set permanently, using an accurate Wheatstone bridge. Composition carbon resistors should be avoided since they are subject to drift with the passage of time.

The layout of the dial scale is shown in Fig. 5. The original is 5 1/2 inches in diameter but you can make it larger if desired. The scale is calibrated through 280°. The resistance change in the control specified is linear through 280° but the mechanical range of rotation is 300° so the scale must be carefully positioned so 0.5 in is reached when the arm of the control is exactly midway (electrically) between the ends of the range. The scale shown in the front-view photo is a special type that is not needed for most applications.

Fig. 1—Demonstrating null principle.
Fig. 2—The potentiometer principle.
Fig. 3—Simple potentiometer circuit.
Fig. 4—Schematic diagram of the potentiometer—all values are shown.

Underchassis view of potentiometer.

View shows mounting of standard cell.
TEST INSTRUMENTS

Using the potentiometer

Be sure the X-standardize switch is set in the X position when the potentiometer is not in use. To use the potentiometer, connect a galvanometer or current meter to the M terminals. I was able to obtain a satisfactory null for voltages as low as 10 mv with the 150-sa range on my multimeter. To measure less than 10 mv, a more sensitive meter should be used to obtain a more definite null.

To standardize the potentiometer

Fig. 5—Instrument potentiometer scale. Throw the X-standardize switch to STAND, set the range switch to the 1-volt position and rotate the R1 dial to the extreme clockwise position (1.0). Close S1 and adjust the standardize control for null indication on the meter. This completes standardization. Throw the X-standardize switch back to the X position.

To measure a voltage of 1 or less connect the unknown voltage to the X terminals. Close S1 and adjust the range switch and R1 till meter null occurs. Read the voltage directly from the R1 dial and multiply by the value indicated on the range switch. Thus, if R1 reads 0.82 and the range switch is set to the 0.1 range, the voltage is 0.082. This procedure also applies to the measurement of contact potentials.

To adjust an external potentiometer for precision voltage division connect the potentiometer to be adjusted as shown in Fig. 6. The battery is a 1.5-volt flashlight cell and R1 is approximately equal to R2. For example, assume that the divider is to have a 10 to 1 ratio (if 100 volts is impressed across AC of R2, the voltage from BC is to be 10). On the instrument, set R1 to 1.0, the range switch to 1 volt, close S1 and adjust R1 (Fig. 6) for a null with AC connected to the X terminals. Now move X connection from A to B, switch range switch on the potentiometer to 0.1 volt and adjust R2 for a null. This completes adjustment of R2 for voltage-divider operation. To obtain a larger divider ratio it is advisable to use a large value of fixed resistance in conjunction with a potentiometer; this allows more precise adjustment.

To measure potentials greater than 1 volt (the potentiometer will generally be used in this way only when accuracy is important and to check the accuracy of a voltmeter) adjust a potentiometer for voltage division as outlined above. Terminals B and C of R2 (Fig. 6) are left connected across the X terminals. (The battery and rheostat R1 are disconnected and the unknown voltage is applied across terminals A and C of R2.) The resistance of R2 should be large if the current drawn from the unknown source of emf is to be kept negligible. A 10-to-1 divider will extend the 1-volt instrument range to 10 volts; a 100-to-1 divider will extend it to 100 volts, the 0.1 range to 10 volts and the 0.01-volt range to 1 volt.

To measure temperature connect a thermocouple to the X terminals. The thermocouple emf depends on the metals of which it is made. Some general physics texts provide tables and charts of thermocouple voltages for wide ranges of temperature. A simple inexpensive thermocouple may be made by twisting a short length (about an inch) of copper wire and a short length of constantin wire together. (Try any resistance wire.) A thermocouple may be used to measure extremely high temperatures.

To measure resistance accurately use a standard Rx of known resistance and accuracy in conjunction with the unknown resistance as shown in Fig. 7. If Rx and R, are exactly equal, the accuracy with which R2 may be determined is equal to the accuracy of the standard. If one of the resistors is less than 10 times the value of the other, the resistance of the unknown may be determined to within 1%. First, measure the voltage across R2, then measure the voltage across R,.

\[
R_x = \frac{R_E}{R_2}
\]

Many other accurate measurements may be made with the potentiometer. Current may be determined by measuring the voltage drop across a known resistance and applying Ohm’s law. Potentiometer resolution may be determined by noting the smallest change in voltage obtainable for a small change in shaft position. The internal resistance of batteries and power supplies may be determined by measuring the emf with and without load and applying Ohm’s law. The accuracy of volt-, ohm- and milliammeters may be determined by comparison, using the methods outlined above. The meter resistance and the voltage or current required for full-scale deflection of a basic meter movement may be determined with a potentiometer. By exercising some ingenuity in applying it, the user will find this laboratory type instrument most useful in his work or hobby.

Fig. 6—Circuit for adjusting potentiometer for precision voltage division.

Fig. 7—Arrangement for accurate resistance measurement with potentiometer.

"Press this button—and it moves over to you."

RADIO-ELECTRONICS
Most radios, home or portable, are superhets. To align, test and adjust such sets an i.f. signal generator, an audio tone and a continuity tester should be available. This instrument can make all these tests. It is a compact transistorized circuit using a single CK722 or equivalent junction transistor powered by a single penlight cell.

Most radio receivers have an i.f. center frequency of 455 kc, but several off-beat values are found—for example, 456, 460, 465 kc. Therefore the generator frequency should be variable to meet any occasion. The range of this tester is approximately 450-500 kc. The variable feature also comes in handy when it becomes necessary to shift an i.f. from its standard value to reduce interference. If output on the broadcast band is needed, the second or third harmonic may be used. For example, the second harmonic of 460 kc is 920 kc on the radio dial and its third harmonic is 1380 kc, also in the broadcast band. Incidentally, this generator is easily calibrated by listening for its harmonics on a nearby radio receiver.

Radio alignment may be done by ear or with an a.c. voltmeter across the voice coil of a speaker. In either case the i.f. must be amplitude-modulated. In this tester, the i.f. is self-modulated. The transistor used in this generator oscillates at an i.f. but blocks periodically at an audio rate. A Radio Receptor RR118 and several Raytheon CK722’s were tried. When heard on a highly selective (crystal-filtered) radio, separate beats will be heard on both sides of the carrier. On an ordinary broadcast receiver, these side-bands merge to form an audible tone. Trimmer C controls the modulation. If its capacitance is too small, the generator puts out an unmodulated (CW) carrier. Capacitance should be increased until reliable modulation is obtained over the entire dial.

An i.f. generator should have some sort of attenuator. Unless the output voltage can be controlled there is no way of estimating stage gain or overall sensitivity. Controlling the i.f. output also permits testing high-gain i.f. strips with the a.v.c. off, yet without overloading. The potentiometer is the attenuator in this circuit, J1 the variable output terminal. For stubborn sets, those badly misaligned or in a poor state of repair, there is also a high-output terminal, J2. An a.f. tone is useful for testing a radio detector, audio stage or speaker. It is available at terminal J3 and is generated by the blocking process. Headphones may be connected in series with the tone signal to check for open circuits. Since audio passes through a capacitor, this test also shows whether a capacitor is normal or open. The tone will vary with the value of capacitance in series. The normal tone from my tester is about 400 cycles. With a 0.005 mf capacitor in series, frequency increases to about 1,000 cycles (and becomes weaker). With 150 µf in series the tone goes to about 5,000 cycles and becomes very weak. A shorted capacitor given the same indication as a closed path. An open capacitor will interrupt the path, so nothing is heard in the phones.

This audio signal is only a fraction of a volt and is safe enough to be used in any circuit including those using transistors; yet there is ample signal for testing amplifiers and for comfortable listening on phones.

The radio tester is very compact and entirely self-contained. The transistor takes very little current so that the cell will last indefinitely. I placed the entire instrument in an aluminum box 3¾ x 2½ x 1¾ inches. The controls include two dials (tuning and output), a toggle on-off switch, two insulated terminals (a.f. and high i.f.), one ground terminal and an RCA type phono jack to take a shielded output lead.

Parts for radio tester

1-270,000-ohm ½-watt resistor; 1-10,000-ohm potentiometer; 1-10 µf, 1-0.05 µf capacitors; 1-50-µf mica; 1-50-µf air, trimmer capacitors; 1-transistor, CK722 (socket optional); 1-8-µm coil; 1-2.5-hundred-thousand-mho coil, variable (Grayburne Vari-choke, TV width coil, etc.); 1-penlight cell; 1-s.p.s.t. switch; 3-jacks; 1-chassis, approximately 3¼ x 2½ x 1½ inches; 1-lead with alligator clips and plug (use shielded lead).

Coil L is any unit that can be tuned to the i.f. band and should be adjustable. This makes it easy to set it to the desired band. The required inductance is approximately 2.5 mh. A Grayburne Vari-choke, TV width control or similar coil is suitable.
BUILD THIS SIMPLE ECHO UNIT

A mechanical sound-delay device produces novel echo effect in music and voice

By DANIEL M. COSTIGAN

THE listener can generally hear a certain amount of echo effect in most popular commercial recordings made within the past few years. This is the result of a recording technique which, not too long ago, was used only to create novelty effects. The recording industry has discovered that this technique, when skillfully handled, can make a recording sound richer and far more interesting than older methods where reverberation was purposely suppressed.

This echo effect is achieved by several methods, including the use of actual hard-walled chambers, planned placement of microphones and special electrical devices which simulate an echo by delaying the sound mechanically before it reaches the microphone. The sound-delowering mechanism is often a metal spring or network of springs with a driving unit at one end and a microphone at the other. The unit described here is based on this method.

The unit (see photos) consists entirely of such easily acquired items as a screen-door spring, a disc-recording head as the driver, a discarded head- phone for the pickup, a modified a.c.-d.c. phono amplifier and a few rubber shock mounts.

Fig. 1 shows the basic layout of the unit. (Only the components shown within the dotted lines are described.) The driver is a low-impedance, magnetic type disc-recording head which can be connected directly across the speaker of the amplifier to which the original sound is being fed. The spring is of the normally compressed type having fairly low tension. A simple test for the required tension is holding one end of the spring in the hand and noticing how far the other end drops. The farther the spring sag under its own weight, the greater will be the echo effect produced. The one used in this unit is approximately ½ inch in diameter and 1 foot long when unstretched.

The microphone (pickup) is a stand-

Fig. 1—Block diagram of apparatus for producing musical echo effect.
Phono amplifier, terminal strip and output transformer mounted on top.

Under side view of the phono amplifier and the attached subchassis.

TONE CONTROL

ECHO CONTROL JACK

125A

Fig. 5—Cross-sectional view shows method of shock-mounting echo unit.

Parts for echo unit

Resistors: 1—220,000; 1—270,000 ohms; 1—megohm ½ watt; 1—3,300 ohms, 2 watts; 1—125 ohms, ½ watt.

Capacitors: 1—.001, 1—.025, 1—.05 µ, 400 volts; 1—8 µ, 50 volts, electrolytic.

Miscellaneous: 1—a-c-d-c. phone amplifier; 1—12AU6 and socket; 1—screen-door spring (see text); 1—low-impedance disc-recording head; 1—1,000-ohm magnetic headphone; 1—output transformer to match 500, 1—2-terminal barrier strip; 2—rubber shock mounts; 1—subchassis (see text); 5—rubber ½-inch grommets; 1—½ x 2-inch plywood mounting board; 1—4-inch rubber grommets; 1—cabinet for mounting unit.

and 1,000-ohm headphone unit with its cover and diaphragm removed, the spring replacing the diaphragm as the vibrating element. It will probably be necessary to do some experimenting to determine the spacing between the spring and the pickup. I found that the most gain could be had by letting the eye hole at the end of the spring rest firmly on the phone casing. This particular type of pickup was chosen because it has no direct mechanical contact with the spring and therefore allows the spring to vibrate more freely and prevents any damage to the pickup in case the spring should vibrate excessively.

The recording head, or driver, is energized by the output of a standard amplifier and the resultant vibrations are transmitted through the spring to the pickup. A stiff piece of wire, extending from the needle chuck of the recording head through one end of the spring, provides the necessary mechanical coupling. The voltage generated in the pickup by the vibrating spring is then amplified and fed to an auxiliary speaker which operates simultaneously with the one to which the recording head is connected. The echo amplifier is a standard a-c-d-c phone amplifier modified by the addition of an extra stage of voltage amplification.

Fig. 2 is a schematic of the modified amplifier. The only changes made, other than the added stage (shown within the dashed lines), were replacing a 200-ohm ballast resistor in the heater circuit with one of 125 ohms, and altering the heater wiring to accommodate the 12AU6. Also, since I intend to use the unit with an electronic organ, the gain control on the original amplifier was replaced by a phone jack and the circuit changed to accommodate a shunt type control which will be mounted on the organ console and connected to the echo unit by a shielded cable. This change, of course, is optional.

The added stage was built on a subchassis measuring 2 x 2 x ½ inches (Fig. 3) and attached to the phono amplifier chassis at the end nearest the first amplifier stage. I had to cut a rectangular opening in the side of the echo unit to clear the large electrolytic capacitor protruding from the bottom of the chassis. The shielded lead connecting the pickup to the amplifier is also run through this opening.

Shock mounting is a necessity because even the most feeble external vibration reaching the spring will be picked up and amplified. In this unit, the spring was stretched between two rubber shock mounts of the type used in military communications equipment and available on the surplus market. Each end of the spring was attached to its mount by a machine screw and a U-shaped metal clip (Fig. 4). The spring, when mounted, was stretched to about 1½ times its normal length.

The rest of the shock mounting was done with ordinary rubber grommets. The pickup, for example, was disassembled and the two screws which hold the entire unit together were replaced by longer ones to allow a pair of grommets mounted on a metal plate to be added when the unit was reassembled. Two holes, large enough to clear the grommets, were then drilled through the mounting board and the pickup assembly fastened over them. The mounting board measures approximately 3 x 20 inches. The driver was mounted on a metal plate which, in turn, was isolated from the mounting board by grommets. This whole unit, consisting of driver spring, pickup and mounting board, was then isolated by grommets (Fig. 5) from the base of the rectangular case which houses it.

The driver was mounted in the middle, instead of at one end of the unit, to give added support and to avoid a flimsy spring. I found that changing the position of the driver had very little effect on the amount of echo produced. Of course, if it is mounted too close to the microphone, there will be an inductive coupling which will decrease the echo effect considerably. All metal objects within the immediate vicinity of the microphone, including the spring and the pickup casing, should be grounded to provide hum protection.

END
Developments in AUDIO CIRCUITS

By ROBERT F. SCOTT

Fig. 1—Schematic of the Van-Amp, a low-level variable crossover network.

S OON after installing a crossover network in a wide-range speaker system we sometimes begin to question the network's performance. Are the speakers matched to the amplifier? Is the crossover point optimum for this combination of speakers and enclosure? Will this crossover network be satisfactory if I change one of the speakers or the enclosure? Some experimenters avoid these questions by constructing complex multiple-channel amplifiers. This may be O.K. for the avid constructor but what about the fan who has just sunk $200 or so into a commercial amplifier? The General Apparatus Co. has recently developed a solution to this problem in the form of a variable low-level crossover network called the Van-Amp.

The unit, shown in the photographs and Fig. 1, is available wired or in kit form. It is inserted between a pre-amplifier and high- and low-frequency amplifiers, each driving a speaker suited to its range, power output and output impedance. The crossover frequency is continuously variable from 90 to 1,100 cycles. Each channel provides a maximum gain of 8 times and works into amplifiers with input impedances of 500,000 ohms or more.

Individual level controls permit the gains of the two channels to be varied for the desired balance as dictated by room acoustics, speaker enclosure and the listeners' preference. When the Van-Amp is used, IM distortion may be reduced because separate amplifiers are used for high and low frequencies. Low-impedance cathode-follower output circuits permit feeding amplifiers 10 feet or so away without attenuating the high frequencies.

When the Van-Amp and two amplifiers are used with a three-speaker system, the setup is the same except
that a fixed 2,200-cycle crossover network is used between the tweeter and mid-range speaker.

Circuit of the Van-Amp

The variable crossover network is not nearly as complex as some of the simpler phono preamplifiers and equalizers. 6AV6 voltage amplifier V1 is the input stage feeding the high- and low-frequency channels. The output signal appears across high- and low-frequency level controls R1 and R2 in parallel. The arms of these controls feed the grids of cathode followers V2-a and V2-b.

The frequencies are separated by variable high- and low-pass filters between the cathode followers and the output terminals. Each filter is designed for a slope of 12 db per octave. The cutoff frequency for the high-pass filter is controlled by R3 and R4 and the frequency of the low-pass filter by R5 and R6. The controls are ganged and wired so the cutoff points of the filters increase and decrease together.

The power supply is conventional, using a 250-volt 25-ma transformer in a half-wave circuit. Fixed bias (24 volts) for the cathode-follower grids and the tube heaters is obtained from a tap on the bleeder across the output of the supply.

Speaker-saver circuit

The voice coils of expensive low-wattage speakers can be quickly burned out if we are not careful to monitor the output of modern audio amplifiers delivering 20, 30, 60 or even 100 watts. Realizing this danger, E. H. Scott has included in the model 265-A 65-watt amplifier a unique continuously variable "snubber" circuit to reduce the possibility of speaker damage by sustained overloading. The speaker-saver circuit is shown in Fig. 2. It operates by reducing the power amplifier plate and screen voltage, and thus the output, when it exceeds a level which has been set by a preset variable control.

A constant voltage type of electronically regulated supply is used for the plates and screens of the push-pull parallel 1614 output tubes. A 6080 low-mu twin-triode similar to the 6A57 is used as a series regulator. The effective plate-cathode resistance of the paralleled halves of the 6080 act as a variable resistance in series with the B plus supply to the output stage. The effective resistance is controlled by the bias on the 6080 grids. This, in turn, is controlled by the pentode section of a 6AM8 (V1-a) that operates like the control tube in a conventional voltage-regulated supply.

The 390,000-ohm resistor R is the plate load for V1-a. The voltage drop across this resistor determines the grid voltage and voltage output of the 6080. The 4,000-ohm potentiometer in the cathode return of V1-a sets the bias and the limiting level. When this calibrated control is set for a predetermined maximum power output, the plate current of V1-a flows through R and sets the grid bias on the 6080.

V1-b is connected as a rectifier across the secondary of the output transformer, developing a positive voltage on the control grid of V1-a. When sustained output exceeds the preset level, the positive voltage developed by V1-b decreases the effective bias on V1-a, causing it to draw more current. The increased drain increases the voltage drop across R and raises the bias on the grids of the 6080. The internal resistance increases and the supply voltage to the output stage drops to the level dictated by the desired power output. The time constant of the R-C network in the output of V1-b is long so the circuit does not operate on peaks of the program material and the full dynamic range is unimpaired.

Transistor phono preamp

Transistors are common in small personal type radios, hearing aids and specialized test equipment. Now they have invaded the high-fidelity audio equipment field. RCA uses a 2N104 transistor phono preamp in the new 6-HF-1 and the 6-HF-2 radio-phonograph combinations neatly eliminating a.c. heater hum trouble so common in low-level stages. Circuit is shown in Fig. 3.

The 2N104 is a p-n-p type R-C-coupled to a 6C4 a.f. amplifier. Equalization for the four more common recording curves is provided by switching in suitable R-C networks between the transistor output and the compensated volume control in the grid circuit of the 6C4.

Although it may not be immediately apparent in Fig. 3, the preamplifier circuit is a modification of the basic circuit in Fig. 4-a. When transistor applications and circuits were first developed, this arrangement was called a grounded-emitter circuit because the emitter was conveniently returned to the positive side of the battery and...
Directly to ground. In Fig. 4-a the input is applied between the base and emitter and the output is taken on load resistor R_1 connected in series with the battery between the collector and emitter. Except for the reversal in power-supply polarity, this circuit is the equivalent of the vacuum-tube amplifier in Fig. 5-a.

It is not always practical to use a grounded-positive supply so the similarity of Figs. 3 and 4-a may not be immediately obvious. However, since the emitter is common to both the input and output circuits, we conveniently call this arrangement a common-emitter circuit. It is now readily identified as such regardless of power supply polarity or where the ground is connected.

Since the circuit in Fig. 4-a normally uses a grounded-positive supply, a modification was made in the preamplifier (Fig. 3) to permit the use of the grounded-negative supply, used for the vacuum tubes, in the rest of the circuit. The basic circuit modified for a grounded negative supply is shown in Fig. 4-b. In this circuit and in Fig. 3, load resistor R_1 is transferred to the emitter side of the battery and the collector and negative end of the battery are grounded. This corresponds to the common-cathode amplifier shown in Fig. 5-b.

The transistor (Fig. 3) is biased by the current flow through the 100,000-ohm resistor in an arrangement analogous to cathode bias in a vacuum tube. This increases the base current and lowers the input impedance to provide a better match for the 1.5-ohm dynamic pickup. The low input impedance also enables the transistor to handle large input signal voltages without clipping. The pickup is connected directly between the base and emitter so the circuit is not degenerative.

Wireless intercom

After nearly 20 years, wired-wireless or carrier-current intercoms are staging a comeback. In this system, each station is a radio transceiver with a carrier frequency usually in the range of about 100 to 400 kc. The radio signal travels from one station to the other along the power lines so no additional wiring is required. In addition to normal applications, such systems are ideal for baby-tending in large homes, apartments and other locations where both stations are on the same side of the power-line distribution transformer.

The model RF1 Com-ette, made by Webster Electric, is a typical system consisting of two r.f. transceivers, each using the circuit in Fig. 6. The selector switch is normally in the listen position so the circuit is set up for receiving. Throwing the switch to talk or dictate converts the circuit for transmitting. The switch locks in the uppermost (dictate) position so the unit can be used conveniently for dictation or for monitoring sound at a remote point.

The r.f. carrier signal is generated by V1, a 50C5, in a modified Clapp oscillator circuit. The frequency is factory set at 175 kc but it can be varied from 175 to 250 kc with an adjustable slug in oscillator coil L1. When the selector is set to talk or dictate, the speaker serves as a microphone working into the grid of the triode-connected 12AU6 a.f. amplifier. The signal is amplified and fed to the grid of V2, used as a Heising modulator to modulate the plate and screen voltages of V1.

When the selector is set to listen, the incoming signal is tapped off the power line and applied to a germanium diode. The signal is detected and the audio and d.c. components directly coupled to the grid circuit of the 12AU6 audio stage.

A positive voltage is tapped off the B supply and fed to the cathode of V3 through a 39,000-ohm series resistor and the 500,000-ohm squelch control.

This control permits the positive bias on the cathode to be varied from about 3 to 24 volts to control the gain of the stage. The control is normally set so V3 is biased to cutoff by the voltage on its cathode. The germanium diode detector is connected directly to the grid of V3 and is connected to develop a positive voltage when a signal is being received. The incoming signal provides sufficient positive bias on the grid to overcome the cutoff bias on the cathode and permit the stage to conduct with normal amplification.

The output of the 12AU6 is amplified by V2 to develop an audio voltage across modulation choke L2. This voltage is tapped off and applied to the output primary winding on the transformer. The 0.47-uf capacitor prevents the plate voltage from being shorted to ground through the transformer. The output level for receiving is set by the 11,000-ohm volume control across the output primary.

END
The Ampex stereo system is the first thoroughly practical complete package compact enough for any home or apartment, simple enough to require no special skill or judgment in installation and capable of providing a dramatically successful demonstration and fulfillment of the realism promised by proponents of stereophonic sound projection.

It consists of two 620 amplifier-loudspeakers and the new 612 tape-playback mechanism. It is complete—nothing but stereo tape is required to provide stereo sound—and available either in three small portable cases (at $694, see photograph below) or in handsome cabinetry (at $699). In either form the system will occupy far less space than any really adequate single-channel hi-fi system.

The 612 tape playback uses the same mechanism employed in the 600 tape recorder but with no provisions for recording. It has a single half-track head for normal tapes and a double half-track head for stereo tapes. A switch provides a choice of either stereo or single-channel operation (even with stereo tapes). In the stereo position each of the two amplifier-loudspeakers is fed independently by one of the half-tracks of the double head. In single-channel operation both amplifier-loudspeakers are operated in parallel with input from the single head for greater output reserve and a wider spreading of the sound source.

The 612 will handle any available 7½-ips single-track, double-track normal tape or stacked double-track stereo tapes. It will not handle staggered stereo tapes or 3½- or 15-ips normal tapes. It plays back NARTB equalized tapes within 2 db from 50 to 12,000 and within 4 db from 30 to 15,000 cycles. The only criticism I have is that the acoustic noise from the motor and drive is rather high with the result that—unless the 612 is placed out of hearing range or covered—the noise ratio at low listening levels in a quiet room is a good bit higher than with good diec playback equipment. The 612 can be purchased separately for use with conventional hi-fi systems or for custom stereo installations.

To summarize my evaluation of 620 amplifier-loudspeaker in the October, 1955, issue: Although not in the same class as the best space-in-no-object systems, it provides possibly the highest fidelity per cubic inch of space occupied and an overall quality which satisfies high-fidelity standards and musical needs.

The system delivers a genuine stereophonic effect with the best tapes, in rooms ranging in size from 10 x 12 to 14 x 25 feet. The illusion is very high that the orchestra is in the same room, and with most tapes, that some instruments are on the left, some on the right and others in the middle. Furthermore, adjusted and positioned properly, the stereo effect is fairly independent of the position of the listener. It is not necessary to sit rigidly in one critical spot as has been the case with many previous improvisations; within an angle of about 45° on each side of center the stereo effect is maintained to a degree which depends on the tape itself. The system offers no problems either in installation or adjustment. Anybody who can follow simple instructions should have no trouble achieving good results.

The Ampex demonstration tape provides three modes of sound: 1. single channel with a single sound source; 2. single channel with two spaced sound Pro-Plane Prismatic I speaker system.

Three-section Ampex stereo system.

By MONITOR

* * *

The Ampex system was greatly superior with most tapes to my own reference system which consists of a 50-watt amplifier feeding $300 worth of speakers in a wall. However, as might be expected, my own system was superior in the awesome-ness of the bass, the definition and overall faithfulness of tonal quality. I imagine the same comparison will hold, both ways, for other top-quality combinations of amplifiers and loudspeakers.

Though the Ampex system is meant to be used as a complete system and it is much easier to obtain fine effects when it is installed complete, owners of fine single-channel systems may add a single 620 and 612. I would not recommend mixing the Ampex with other components unless one already has a good system on hand. The use of dissimilar channels requires more care, trouble and skill in adjustment.
AUDIO—HIGH FIDELITY

However, the 620 is small enough so that in almost any room it should be possible to find a position in respect to the present speaker system which yields a good stereo effect.

Connect the left output of the 612 to the big speaker system, the right to the Ampex. In most tapes the left channel carries the heavier bass and will benefit most from a better speaker system. It will be more difficult to balance the system because the differences in tonal balance of dissimilar systems modifies the stereo effect; but once a workable combination of volume and tone is found, it will hold for most tapes.

Such a combination will have some idiosyncrasies that the Ampex system complete will not have. For one thing, the "tonal polarity" is not the same on ear was not accustomed to the work of dealing with the additional stimuli (and quite possibly because the room acoustics were not correct).

Furthermore, to obtain the sense of directionality, the miking is close-up and when played back in the home the listening perspective is very likely to be of the first two or three rows in the auditorium and, in a small room, even in the middle of the orchestra. This perspective will not seem as real and satisfactory to some as to others. Also, stereo recording is still in its infancy and produces some startling and even disturbing effects occasionally. For example, the sound of the orchestra fills the auditorium and seems to be coming from the walls, while at the same time the orchestra are still standing or even sitting on the stage! (Anthony Doschek, the designer, is a well known violinist who has played with the Chicago and Pittsburgh symphonies, as well as a competent engineer; he maintains that mere engineering or normal quality control is no more capable of producing a really fine speaker than it has proved capable of duplicating a Stradivarius.)

The speaker is mounted at an angle so that the highs are directed upward from the floor. Possibly the most distinguishing quality is the unusual dispersion of sound or widening of sound source which results in far less "hole-in-the-wall-effect" than most speaker systems yield. This widening is somewhat comparable to the widening of a light source by a prism; hence the name Prismatic.

The efficiency is very good. Electrical inputs of from 10 to 50 mw average and 150 to 500 mw in peaks will yield a p'tny loud sound in even a big living room. The system does not entirely eliminate a trace of the ringing characteristic of bass-reflex systems (though I think that only an experienced and critical ear will notice it) and it produces no significant degradation of quality or transient response which is excellent.

There are some commendable novelties which deserve copying. For one, all production models are "polarized" and polarized the same way so that, if the connection from a voice coil is made to the same terminals on two or more Prismatics, they will all be in phase. Also, the cone will move forward if the positive side of the line is applied to the right terminal facing the back of the cabinet. Third, every individual system is tuned to take up tolerances in individual speakers and enclosures and to produce specified performance not the design or instrument on which the ear. (Anthony Doschek, the designer, is a well known violinist who has played with the Chicago and Pittsburgh symphonies, as well as a competent engineer; he maintains that mere engineering or normal quality control is no more capable of producing a really fine speaker than it has proved capable of duplicating a Stradivarius.)

The housewife would undoubtedly like the fact that the entire grille can be removed without tools in a few seconds and the grille cloth, which is fine and crisp, can be sent to the cleaners for refurbishing. The enclosure, though small, is heavy because it is made of %-inch marine plywood and rigidly put together to avoid mechanical vibration. The finish is Formica in a choice of colors.

Pro-Plane also has a Prismatic II which is twice as large, uses two Axiettes, delivers about 3 db more bass with about 1/3 octave more of range and takes high inputs with less strain. It sells for $119.50.
The speaker housing to be described here is not a stunt, not an attempt to have something different for differences' sake. I produced its prototype many years ago and since then it has been developed and improved. It was an attempt to solve the problem of how to house a high-fidelity speaker so that the sound coming from the speaker was still hi-fi; it did not owe allegiance to any preconceived idea of what constituted a high-fidelity housing but was developed out of a reasonably good knowledge of how acoustical materials behave. Many types of housing have been produced since then but I still like it best, not because I thought of it, but because I find it adds no coloration to the reproduction.

The odd name means simply "box-baffle" shortened to one word. It is a box baffle. And if the picture suggests that it is rather too boxy-looking for the average living room, remember that it can be of almost any shape and dressed up how you like it; what matters is the arrangement of components inside the box. As the mathematical analysis is extremely difficult, I shall try to give the argument without recourse to what the scientist would call a rigorous proof.

For adequate bass response, the sound waves from the back of a speaker diaphragm must be separated from those coming from the front because they are in exact opposite phase and if merged would cancel. In the higher frequencies this cancellation does not occur as the wavelengths of the higher frequencies are not appreciable compared with the size of the speaker diaphragm. At low frequencies, however, the wavelength can be several feet, so some device must be used to separate the front radiation from the back; such a device is called a baffle.

The bass response is a function of the baffle size and Fig. 1 shows the bass cutoff in db for different sizes of baffle. Since the important dimension is the shortest distance from the front to the back of the speaker diaphragm, the most economical baffle, in terms of consumption of material, is a circle. However baffles are usually cut from lumber; cutting circles means wasted material and circles are difficult things to handle. Thus, the most convenient shape for a baffle is square, and Fig. 1 gives the sizes of the sides of squares for the results desired. That part of the baffle outside a circle of equal diameter contributes nothing to the performance and may even detract from it.

When a speaker is mounted in the exact center of a square baffle, interference sets up irregularities in the response so there has grown up a tradition that speakers should be mounted off-center. This removes some of the irregularities, but the moment the speaker is removed from the center of the square the effective baffle size is reduced since the shortest path is still the effective baffle size. Moreover, a flat-fronted speaker baffle can cause distortion of the forward radiation of the speaker because the frontal sound waves are hemispherical and impinge on the front of the baffle as well as on the air in front of the speaker. These wavelets (a convenient term for part of a hemispherical wavefront) are reflected from the baffle in a forward direction, out of phase with the direct radiation thus causing distortion.

It is desirable, therefore, to break up the flat front of the baffle by bending it into a three-dimensional form such as a box, preferably with the front edges and corners heavily chamfered. The ideal form to avoid out-of-phase radiation is the sphere. But apart from the difficulty of making a sphere there is the problem of getting the speaker into it. However, the sphere introduces the notion of a completely enclosed speaker housing (and a housing is a baffle).

Before considering boxes, open or closed, another property of the flat baffle must be considered. An infinitely rigid baffle would have no resonance of its own, but practical baffles can and do vibrate. Their natural resonant frequency is determined by their size, whether they are free-edge or solidly framed. Their resonant frequency is also a function of their stiffness, as can be seen in the analogy of the tympani of an orchestra, which can be tuned by

*H. A. Hartley Co., Inc.

Fig. 1—Bass loss with finite baffles.

Fig. 2—Nodal lines in a baffle. 1 indicates fundamental with no node; 2-7, second-harmonic nodes; 8, third; 9-12, fourth; 13-16, fifth; 17-20, sixth; 21, seventh; 22, second to seventh harmonics.
tightening or slackening the membranes. An untunable drum, such as the big drum of a brass band, emits a fundamental frequency determined by the size of the skin and its predetermined degree of tightness; plus a range of harmonics controlled by the type of drumstick, the depth of the drum and whether it is single- or double-ended. A drum with two skins is analogous to a closed speaker housing.

The magnitude of the harmonics depends on the force with which the membrane has been hit. By the same argument the flexing of a speaker baffle is a function of the power applied to it by the power fed into the speaker. Harmonics of the natural fundamental resonant frequency of the baffle develop along nodal lines in the baffle (Fig. 2). If the fundamental is 60 cycles the second harmonic is 120, the third 180 and so on. The baffle would node something like the last sketch in the figure with all harmonics present up to the seventh—a nasty sight. If the flat baffle is formed into a cubical box, the front and all the side will node in a somewhat similar manner for each of the elements of the box is itself a membrane. The front, however, is fixed on four edges, the four sides on three edges. If the box is a closed box, all six membranes are fixed on four edges. The nodal pattern will be identical in all six sides with a closed box, but with an open box the four sides will equal each other but differ from the nodes of the front. How much effect this can have on smoothing the overall response is almost impossible to estimate; a rectangular box will give different nodal patterns for front, top and bottom and sides.

Assuming now, the desirability of having a box rather than a flat baffle, both for acoustic and convenience reasons, what sort of box is best? Baffle-wise, the equivalent size of a box is again the shortest possible path from the front of the speaker to the back, if the back is open. If the back is closed, the box will form, in theory at any rate, an infinite baffle. But there is a very big difference between this sort of infinite baffle and a real infinite baffle such as the wall of sound with a hole in it. The box must be a complete insulator against sound of any frequency and magnitude and it must impose no restraint on the speaker mounted in it. Moreover, the interior of the box must not reflect a sound wave of any frequency, otherwise curious effects on speaker performance will be noticed. It does not require much thought to suggest that a box having such desirable properties would be extremely difficult to make within reasonable dimensions.

There is a further serious snag. The air contained within the box is compressible but it is also elastic. If the diaphragm of the speaker moves backward, the air within the box will be compressed and will tend to resume its natural volume by pushing the cone forward. If the cone moves forward, the air will be rarefied and will try to resume its normal volume by sucking the cone back. It might be thought that the cone movement is so small that this could be ignored, but practical tests prove that it cannot. The effect of mounting a speaker in a closed box is to raise its natural resonant frequency because the springiness of the air is added to that of the cone suspension, and the bigger the cone the greater the effective raising of the resonant frequency of the speaker.

Further drawbacks are that, first, the air contained within the box has its own natural resonant frequency, usually called “air-column resonance,” which will be added to the acoustic output of the speaker as one-note coloration; second, the sound waves reflected from the internal sides of the box will create a complex pattern of speaker loading that still further causes deterioration of the speaker output. Lining the box with sound-absorbing material cannot possibly damp low-frequency reflected waves because, in a practical layout, the material is too thin for the long wavelength of low-frequency sound waves; such lining will only damp out high frequencies. And no lining can kill air-column resonance, for so long as there is an impeded air inside the box it will resonate at its own frequency.

A more popular type box housing is the phase-inverter or bass-reflex cabinet. In this the resonant frequency of the air column should be exactly the same as the bass resonant frequency of the speaker. The effect will be to neutralize the excessive output of the speaker at its resonant frequency by imposing a load on the speaker movement. If the speaker one wishes to use has a well-marked bass resonance, a carefully designed bass-reflex housing will make it sound much better and increase the power-handling capacity of the speaker at low frequencies. But no internal padding will prevent internal low-frequency reflected waves, nor, in either a completely closed box or a bass-reflex housing, will nodding of the cabinet sides be prevented without extremely rigid panels and construction. Good speaker housings of conventional designs are heavy, some even being sand-filled for rigidity; reinforced concrete is even better.

Construction of the Baffle

Electrical filters are made up from resistance, inductance and capacitance. Mechanical filters (acoustics is a form of mechanics) consist of masses, springs and friction. The acoustic filter is encountered whenever sound-absorbing treatment is applied to any surface, for sound is absorbed by a combination of springiness of the material used (a hard surface reflects sound almost completely) and the friction in penetrating the material. There is no particular difficulty in absorbing high frequencies, owing to the short wavelengths involved, but, as already has been pointed out, low frequencies have long wavelengths.

It occurred to me that the inside of a box containing a speaker could be made nonresonant by hanging screens of soft material across the box, acting as springs to check the passage of the sound waves. However, if the screens were not perforated the first screen would be subject to severe stresses, since the whole wavefront would impinge on the screen and stretch it beyond its limit of elasticity, making it useless after the first impact. Accordingly, I cut a large hole in the first screen, sufficient to clear the speaker chassis, and then added a second screen with a smaller hole, a third with a still smaller hole and so on. This produced a graded filter. And as the absorption of the long waves through the filter was also increased by steps, the successively smaller holes lined up and the air pressure lessened with each step.
That these screens do what is intended was proved by my earlier models which had screens made from upholstery's wadding (industrial cotton wool) stretched across wooden frames. After some use the layers of cotton in each screen gradually separated so that the whole interior of the box became full of "exploded" cotton; the energy of the sound waves was truly absorbed by the cotton screens. However, this interfered with the notion of graded filters with intervening space, and a change was made to the kind of felt used underneath carpets. This material is convenient to use and, being felted on a burlap core, does not lose its shape. Compressed felt is not suitable, having insufficient springiness, and fortunately the uncompressed variety is also the cheapest. A nominal thickness of 3/4 inch is about right.

Fig. 3 shows a single screen made up ready to slide into the box. The lumber frame is made from 2 x ½-inch unplanned stuff. The frame is shown notched to prevent slipping (the joints need not be glued), but the joints could be nailed. The felt is cut 2 inches larger all round the frame and tacked into place as shown, a square 2 x 2-inch piece being taken out of each corner to avoid overlapping. The sizes of the holes depend on the size of the speaker chassis, for the first frame must just clear the largest diameter so that it presses hard against the inside of the front of the box. The taper of the successive holes is not critical and Fig. 4, which shows a stack of five frames, gives a good idea of the sort of graduation wanted. The frames in this photograph were 17 inches overall.

Fig. 5 shows a cross-section of a complete Baffle with all frames in place. There are two complete tapered filters and the rearmost screen, which has no hole, is tacked to the back of the last frame, the felt being cut the same size as the frame. The depth from front to back should never be less than 15 inches and can, with advantage, be as much as 24 inches—the deeper the Baffle the better the bass response because of greater absorption. The back is not closed solidly since complete absorption of the lowest frequencies is not aimed at. What comes out of the back is so attenuated that it does not interfere with the performance of the speaker. But if that little were trapped inside the box by a solid back, there would be deterioration of response.

The outer box is best made from laminated board not less than ½ inch thick. It should be strong at the joints since the felt on the frames is jammed tight at the corners and exerts a pressure all over the sides of the box so as to damp out nodes. Fig. 6 shows the first frame in place hard against the back of the front of the box and the speaker leads left trailing. These should be passed through the hole of frame 2 but then taken down to the bottom of the box and trapped between the frames and box. This is shown in Fig. 7 which also shows six frames in place, the five of Fig. 4 and the first of the second filter. Figs. 6 and 7 show a box which is an 18-inch cube, so there are eight frames and nine screens (the last being tacked to frame 8 and without a hole); the box of Fig. 5 was only 15 inches deep so there is room for only seven frames and eight screens.

It is becoming widely appreciated that it is better to us two or more small speakers than one large one. Large speaker cones are heavy and do not respond well to transients; they are much more liable to node and lose output at low frequencies and they seem to have an inborn tendency to "booth" at a fixed frequency, possibly due to air-column resonance within the cone angle. A single Baffle can contain two or more speakers with a tapered series of holes for each speaker; separate frames are unnecessary.

A popular size of speaker housing is about 18 x 30 inches and this is about right for two identical speakers arranged in a vertical pair. The frames for such a cabinet would be about 17 x 29 inches and unless made of strong lumber might sag in the longer sides. But this can be avoided by inserting an intermediate strut in each frame, thus virtually giving each speaker its own "sub-Baffle." Fig. 8 shows a finished Baffle with four identical speaker units connected in series-parallel. There was enough room to provide for strong frames and each screen is a sheet of felt pierced with four holes, each centered on a speaker. Intermediate supports were not needed.

The Baffle system can be applied to any rectangular container, whatever the size and proportions. Its basic advantages are complete elimination of air resonance within the enclosure, substantial reduction of resonances and nodes within the material of the cabinet itself, noninterference with the performance of the speaker, substantial increase in effective baffle size as compared with an empty box. It is inert; it adds nothing, takes nothing away. And by virtue of that it does nothing to reduce the bass resonance of the speaker.

I confess that it was originally produced to my idea as a speaker that do not have a bass resonance, so on the face of it the Baffle may not seem a very good proposition for a more conventional speaker as compared with a bass-reflex housing. I say "on the face of it," but I think that speakers are frequently not given a square deal in the way they are housed. I believe it is fundamentally wrong to view the speaker in its housing as a cute combination of resonating systems for the speaker should be an impersonal undistorting entity, having no defects of any sort.

It is not an easy matter to design a speaker without a bass resonance. The way to overcome that disability is to introduce a trap filter in the amplifier to attenuate, sharply, the frequency at which the speaker resonates so that the ultimate acoustic output from the speaker is level for a level input to the amplifier. A trap circuit can be designed with absolute precision whereas a bass-reflex cabinet is at best an approximation only, since one is dealing with parameters that cannot be measured with precision. I have used such circuits in conjunction with conventional speakers housed in Baffles and achieved far better reproduction than was possible from the same speakers in a resonating housing such as a reflex cabinet. It seems to me that first we must have a level response from the speaker, then place it in an aperiodic housing. The Baffle is such a housing and its use will clean up the performance of any decently designed speaker at low cost and with very little trouble.

Note: Proprietary rights in the Baffle are vested in the author who has indicated that he raises no objection to readers constructing Baffles for their own personal use. Commercial exploitation rights are strictly reserved. END
SAVINGS in operating costs of more than $100,000,000 annually are being realized by the American railroads through improved communications. This statement—recently made by Richard G. May, vice president of the Association of American Railroads—was the first public announcement by the railroads placing a dollar value on communications. It had been generally acknowledged that radio, sound systems and expanded wire line communications were helping railroads operate more efficiently but no estimate as to the number of dollars saved had been made.

The latest available figures indicate that 145 railroads have been authorized to install and operate 16,792 radio and inductive-carrier transmitters serving over 46,000 miles of road bed.

The total railway mileage in the United States exceeds 220,000. American railroads operate over 25,000 locomotives and approximately 25,000 cabooses. Approximately 70,000 radio units will be required to equip all trains and right of way completely with radio communications facilities.

More radio stations have been authorized than have been installed; it is estimated that about 10,000 are in actual service. The authorizations include stations not only on locomotives and cabooses, at wayside points and yard offices, but also on maintenance equipment, trucks and automobiles. The railroads operate thousands of highway and materials-handling vehicles so the overall potential is far in excess of 70,000 radio units.

Therefore, less than 10% of the nation's railroad radio requirements have been fulfilled almost 10 years after the introduction of v.h.f. radio for such applications. Notwithstanding, the recent activity in railroad radio is gratifying to those in the industry. The number of authorizations has doubled during the past 2 years.

The saturation point is far off. In fact, it will never be reached because the replacement market will continue. Some of equipment installed shortly after the end of the war is already being replaced. Obsolescence and rising maintenance cost of old equipment will create a demand for newer facilities.

The first permanent railroad radio systems were installed in classification yards where their economic advantages were most apparent. Today, the emphasis is on main lines where the movement of freight can be handled much more efficiently with rapid communications. Approximately 75% of new installations are for road use.

Equipping trains with radio is not a new idea. Way back in 1914 the Delaware, Lackawanna & Western Railroad experimented with spark transmitters to determine the practicability of communicating between wayside points and moving trains. In 1936 RCA worked with the Pennsylvania Railroad on caboos-to-engine communication.

Ten years ago, v.h.f. radio in the 152-162-mc band was tried out in railroad applications and was found to be very satisfactory. The low power requirements, short antenna length, freedom from noise, limited and controllable range and multiple reflection characteristics combine to make v.h.f. ideal.

The military SCR-522 v.h.f. transmitter-receiver unit designed for airborne applications was modified and pressed into service in experimental installations. When it had been determined by field tests that v.h.f. was the answer, several manufacturers designed and started building two-way equipment for railroad applications. One of the earliest units used AM and provided excellent performance but was abandoned in favor of an FM unit because of the popular demand at that time for frequency-modulated systems.

The first permanent railroad radio authorizations were granted by the FCC.
to the Denver & Rio Grande Western Railroad and the Baltimore & Ohio Railroad. These were followed shortly by grants to others, including the Santa Fe System; Burlington Lines; Milwaukee Road; Elgin; Joliet & Eastern; Gulf Mobile & Ohio; Central of Georgia; Northern Pacific; Seaboard Air Line and the Delaware, Lackawanna & Western Railroad.

In 1945 the Baltimore & Ohio Railroad conducted tests between Baltimore and Washington to determine the practicability of using radio communications between wayside stations and fast trains in areas of high traffic. The following year the Seaboard Air Line Railroad tried v.h.f. radio for point-to-train communication between Atlanta and Birmingham. It was found that a portable walkie-talkie with less than 1/10 watt r.f. power output operated inside of a steel railroad coach provided excellent communication with a fixed station 8 miles away. However, this does not mean that the low-power unit will provide such excellent range under other than freak or ideal conditions.

Several manufacturers spent considerable time and money during the early years of railroad radio in developing suitable special equipment and demonstrating that radio was a reliable means of train communication and that its economic advantages were worthy of consideration.

Its wide-scale application did not occur immediately and for very justifiable reasons. The railroads first had to be convinced that radio could be justified economically in the face of long-established operating and labor policies. Secondly, they had to be assured that the equipment would perform adequately with reasonable maintenance and that the manufacturer would remain in the railroad radio business on a permanent basis to stand by his equipment. The railroads listened and watched several companies enter and leave the field.

By 1949, railroad radio was expanding on a serious basis. The Chicago South Shore & South Bend Railroad installed radio along its entire main line, permitting headquarters personnel to contact all freight train crews and maintenance personnel instantly. The Erie Railroad has since equipped its entire main line from Chicago to Jersey City with radio facilities. The Pennsylvania Railroad has installed a wide-spread inductive radio system and the Great Northern is in the process of extending radio along hundreds of miles of main line in the prairie and mountain areas it serves. The list of systems now in service is impressive.

Railroad equipment
To meet operating requirements the equipment in a locomotive may have to operate on two or three channels which are selected by a switch on the control box. One channel may be for communicating with yard offices, a second for contacting the dispatcher or wayside operators and a third for cabooseto-engine and train-to-train communications. In cabooses, two channels usually suffice, one for cabooseto-engine and one for point-to-train and train-to-train contacts.

Yard systems generally use a single base radio station operated from a remote control point and one or more dispatch points all interconnected by wire lines. Where range requirements are short, and they generally are in yard service, individual portable stations like the RCA CTR-1A may be installed permanently or temporarily as required on the desks of yard masters, clerks and other supervisors. Each portable unit is independently operated. Wire lines are not required and individual base stations may communicate with each other as well as with engine crews.

On the main line and on branches, radio stations are being installed by many railroads for providing contact with the crews of moving trains and for emergency point-to-point communication between base stations.

These base stations may be operated independently by personnel at these points. In some instances, they are linked together by wire lines to permit remote control from the dispatcher's office at hours when the base stations are unattended. Special devices permit the dispatcher to select individual wayside base stations. The already heavily loaded dispatcher's telephone line is often used for interconnecting base stations, using step type selective devices for cutting in as desired.

New equipment and techniques are being developed to permit remote control of wayside base radio stations without additional loading on the dispatcher's selective ringing system. Wire line carrier current equipment may be used for deriving a radio control channel independent of the busy dispatcher's line. In the future, microwave relay systems will be used for controlling wayside stations.

Wayside stations may operate on one channel so all concerned may listen to all train conversations within range. However, where traffic is fairly heavy, a two-channel system is often specified, one channel for point-to-train talking.

Should wire lines fail, wayside base radio stations may be pressed into service for point-to-point communications. Facilities can be provided for remote control of the base stations nearest each end of the line break.

All railroad radio systems in the United States, with the exception of the inductive setups, operate in the 152-162-nc band and it is anticipated that the railroads will soon start...
making use of these before some other services attempt to pressure the Government into taking them away from the railroads because of nonuse.

Railroad mobile radio units are available in two distinct types: single-package sets and three-package combinations. In the single-package type, the transmitter, receiver and power supply chassis are bolted together and enclosed in a single metal cabinet. The three-package combinations consist of a separate transmitter, receiver and power supply in individual drawer type enclosures.

FM is universally used. Transmitters and receivers are fixed-tuned and crystal-controlled. Transmitter power output ratings run from 10 to 30 watts although 60-watt units are available. Receiver sensitivity is in the order of 1 microvolt for 20 db of quieting.

Inductive-carrier train communications systems (Fig. 1) which operate on frequencies between 75 and 200 kc depend upon wayside telephone wire lines to act as conveyors of the signal. Wayside stations are directly coupled to the wire lines whereas mobile units are coupled inductively (the transmitter feeds current into the rails, inductively energizing nearby wire lines). A large loop antenna is generally used on cabooses and locomotives.

The main advantage of inductive-carrier systems is their extended range far in excess of that obtainable with v.h.f. systems. However, inductive-carrier mobile units require more power than v.h.f. radio and are more costly.

More than 90% of train and yard engine communications stations use v.h.f. radio; inductive carrier accounts for less than 10%. Both systems provide excellent communications.

Most diesel-electric locomotives have 64-volt storage batteries kept charged by an auxiliary generator. Some, however, use 32- or 110-volt batteries. Radio equipment in a diesel locomotive is powered by the battery and installed in a shock-mounted rack in the nose of the locomotive, under a seat or in the engine compartment, depending upon the type of locomotive or the preference of the railroad. The available d.c. is converted to a.c. by a vibrator type inverter, rotary converter or motor generator set. Most radio equipment (Fig. 2) used in locomotives is designed to operate from an a.c. source although one manufacturer has introduced a unit with a vibrator type power supply for operation directly from a 64-volt battery source.

Two types of axle-driven generators are widely used: d.c. generators and a.c. generators with rectifiers. The d.c. generator is a standard device widely used in passenger-car service. The alternator-rectifier system is newer and popular in caboose applications. It consists of an alternator with a rotating field which supplies three-phase a.c. to a selenium rectifier which in turn furnishes d.c. to the battery and the load. The use of air-driven generators for battery charging and powering radio equipment has been tried by the Rock Island Lines. Air is obtained from the brake system with safety devices preventing brake trouble.

The caboose presents a problem because it is seldom provided with an electrical system. Thus, when installing radio, it is necessary to provide electric power. Internal combustion engine driven generators were tried but most have been discarded in favor of axle-driven generator and battery systems.

Cabooses are being equipped with 12- or 32-volt electrical systems. A few have been fitted with 6-volt battery systems but the slightly increased cost and operating advantages of 12-volt setups have caused most railroads to specify the higher voltage. A caboose electrical system is similar to that of a conventional passenger coach. A generator is driven by the car axle through a belt drive system.

A 12-volt system is generally used when only the radio equipment and a minimum, if any, of lights are to be operated. When the load requirements are greater, 32-volt systems are more desirable in caboose applications.

With a 12-volt electrical system, the radio equipment used usually operates directly from a 12-volt d.c. source. When 32-volts d.c. is available, an inverter is generally used with a.c.-operated radio equipment.

Portable pack sets are being used in cabooses in lieu of regular heavy-duty railroad radio equipment to avoid the installation of electrical power systems. The conductor may call the engineer with his pack set but, because of short battery life, he does not monitor transmissions from the locomotive. Furthermore, pack sets in cabooses will not permit wayside stations to call the conductor directly. Instead, the engineer is usually alerted by radio and by whistle or other signals the conductor is notified to turn on his radio. When trains are more than a mile long, whistle signals are sometimes inadequate.

The antenna used on a locomotive or caboose may be a simple quarter-wave whip about 18 inches long or a sturdy, electrically shortened one designed specifically for limited clearances. A loudspeaker, handset and control unit are installed in the locomotive cab convenient to the engineer, fireman or both. In the case of multiple-unit locomotives with a cab at each end, it is customary to equip both cabs with complete, independent systems. However, some roads install control equipment in each cab with a common radio unit for both. This requires cabling and interconnecting devices between locomotives. Failure to disconnect the connectors when uncoupling locomotive units has resulted in damage and when the units are separated and used in other combinations, one or both cabs may be left without radio.

The railroads have gained considerable experience in the use of radio and even faster expansion can be expected. Labor no longer looks upon radio as a job snatcher. Instead, it finds that jobs are more comfortable and secure because radio saves steps and places the employer in a better competitive position which means more jobs.
FOR THE ENTIRE ELECTRONICS INDUSTRY

more than 65 top-quality models to choose from, including such outstanding kit designs as......

V-7A VACUUM TUBE VOLTOMETER: Easily the world's largest selling VTVM. Features peak-to-peak scales—etched metal circuit board—1% precision resistors—full wave rectifier and AC input circuit—reads rms and peak-to-peak AC, DC, and ohms.

O-10 LABORATORY TYPE OSCILLOSCOPE: The world's largest selling oscilloscope kit, and the most successful oscilloscope in history. Designed especially for color and black-and-white TV service work. Its 5 megacycle bandwidth and new 500 Kc sweep generator readily qualify it for laboratory applications. Features easy-to-assemble etched metal circuit board construction.

WA-P2 HIGH FIDELITY PREAMPLIFIER: This is the world's largest selling hi fi preamplifier kit. Features complete equalization, 5 separate switch-selected inputs with individual pre-set level controls, beautiful modern appearance, high-quality components.

HIGH FIDELITY AMPLIFIERS: Five Heathkit Models to choose from at prices ranging from $16.95 to $59.75. Power output range from 7 to 25 watts.

DX-100 TRANSMITTER: A 100 watt phone and CW ham transmitter, offering the greatest dollar value available in the ham radio field today.

Greatest Dollar Value Through Factory-To-You Selling!

ONLY Heathkits CAN GIVE YOU ALL OF THESE DISTINCTIVE ADVANTAGES!

The Most Complete Construction Manuals for Easy Assembly.

Originality of Design—Developed Through Pioneering in the Kit Instrument Field.

Greatest Dollar Value—Finest Quality with Real Economy.

Direct Contact with Manufacturer—Lower Price, Guaranteed Performance.

Etched Metal, Prewired Circuit Boards—Save Construction Time, Improve Performance.

High Quality Standard Components for Long-Life Service.

HEATH COMPANY A Subsidiary of Daystrom, Inc. BENTON HARBOR 20, MICHIGAN

FEBRUARY, 1956

www.americanradiohistory.com
HEATHKIT ETCHED CIRCUIT

5" OSCILLOSCOPE KIT

This deluxe quality oscilloscope has proven itself through thousands of operating hours in service shops and laboratories. Features the best in components—and the best in circuit design.

Features amplifier response to 5 Mc for color TV work, and employs the radically new sweep circuit to provide stable operation up to 500,000 cps. In addition, etched metal, pre-wired circuit boards cut assembly time almost in half, and permit a level of circuit stability never before achieved in an oscilloscope of this type.

Vertical amplifiers flat within ±2 db—5 db from 2 cps to 5 Mc, down only 1% db at 3.5 Mc. Vertical sensitivity is 0.025 volts, (r.m.s.) per inch at 1 Kc. 11 tube circuit employs a 5UPJ CRT.

Plastic molded capacitors used for coupling and bypass—performed and cabled wiring harness provided. Features built-in peak-to-peak calibrating source—retrace blanking amplifier—push-pull amplifiers and step-attenuated input.

HEATHKIT ETCHED CIRCUIT

5" OSCILLOSCOPE KIT

This is a general purpose oscilloscope for the more usual applications in the service shop or lab, yet is comparable to scopes costing many dollars more.

Features full size 5" CRT (3BPI), built-in peak-to-peak voltage calibration—3 step input attenuator—phasing control—push-pull deflection amplifiers—and etched metal pre-wired circuit boards.

Vertical channel flat within ±3 db from 2 cps to 200 Kc, with 0.09 V. rms/inch, peak-to-peak sensitivity at 1 Kc. Sweep circuit from 20 cps to 100,000 cps. A scope you will be proud to own and use.

HEATHKIT LOW CAPACITY

PROBE KIT

Scope investigation of circuits encountered in TV requires the use of special low capacity probe to prevent loss of gain, circuit loading, or distortion. This probe features a variable capacitor to provide correct instrument impedance matching. Also the ratio of attenuation can be controlled.

$350

Shpg. Wt. 1 lb.

HEATHKIT ETCHED CIRCUIT

SCOPE DEMODULATOR PROBE KIT

Extend the usefulness of your Oscilloscope by observing modulation envelope of R.F. or I.F. carriers found in TV and radio receivers. Functions like AM detector to pass only modulation of signal and not signal itself. Applied voltage limits are 30 V. RMS and 500 V. DC.

$350

Shpg. Wt. 1 lb.

HEATHKIT ETCHED CIRCUIT

3" OSCILLOSCOPE KIT

This compact little oscilloscope measures only 9½" H. x 6½" W. x 11¾" D., and weighs only 11 lbs! Easily employed for home service calls, for work in the field or is just the ticket for use in the ham shack or home workshop. Incorporates many of the features of the Model OM-1, but yet is smaller in physical size for portability.

Employing etched circuit boards, the Model OL-1 features vertical response within ±3 db from 2 cps to 200 Kc. Vertical sensitivity is 0.25 V. RMS/inch peak-to-peak, and sweep generator operates from 20 cps to 100,000 cps. Provision for r.f. connection to deflection plates for modulation monitoring, and incorporates many features not expected at this price level. 8-tube circuit features a type 3GPI Cathode Ray Tube.

$2950

Shpg. Wt. 14 lbs.
DESIGNED FOR YOU: Heath Company test equipment is designed for the maximum in convenience. Besides being functional, Heathkits represent the very latest in modern physical appearance, and incorporate all the latest circuit design features for comprehensive test coverage.

HEATH COMPANY
A Subsidiary of Daystrom, Inc.
BENTON HARBOR 20, MICHIGAN
The Model TS-4 features a controllable inductor for all-electronic sweep, improved oscillator and automatic gain circuitry, high RF output, center sweep operation, and improved linearity. It sets a new high standard for sweep generator operation, and is absolutely essential for the up-to-date service shop doing FM, black-and-white TV, and color TV work.

Voltage regulation and effective AGC action insure flat output over a wide frequency range. Electronic sweep insures complete absence of mechanical vibration. Sweep deviation controllable from 0 up to 40 Mc, depending upon base frequency. Effective two-way blanking.

Fundamental output from 3.6 Mc to 220 Mc in 4 bands. Crystal marker provides markers at 4.6 Mc and multiples thereof. Crystal included with kit. Variable marker covers from 19 Mc to 60 Mc on fundamentals, and up to 180 Mc on harmonics. Provision for external marker.

Heathkit LINEARITY PATTERN GENERATOR KIT

The new-design Model LP-1 produces vertical or horizontal bar patterns, a cross-hatch pattern, or white dots on the screen of the TV set under test. No internal connections required. Special clip is attached to the TV antenna terminals. Instant selection of the pattern desired for adjustment of vertical and horizontal linearity, picture size, aspect ratio, and focus. Dot pattern presentation is a must for color convergence adjustments on color TV sets.

Extended operating range covers all television channels from 2 to 13. Produces 0 to 12 vertical bars or 4 to 7 horizontal bars.

Heathkit LABORATORY GENERATOR KIT

The Heathkit Model LG-1 Laboratory Generator is a high-accuracy signal source for applications where metered performance is essential. It covers from 100 Kc to 30 Mc on fundamentals in 5 bands. Modulation is at 400 cycles, and modulation is variable from 0-50%. RF output from 100,000 µv. to 1 µv. 200 µa, meter reads the RF output in microvolts, or percentage of modulation. Fixed step and variable output attenuation provided.

Features voltage regulation, and double copper plated shielding for stability. Provision for external modulation. Coaxial output cable (50 ohms).

Heathkit CATHODE RAY TUBE CHECKER KIT

This new-design instrument holds the key to rapid and complete picture tube testing, either in the set, on the work-bench, or in the carton. Tests for shorts, leakage, and emission. Features Shadowgraph test (a spot of light on the screen) to indicate whether the tube is capable of functioning.

The Model CC-1 tests all electromagnetic deflection picture tubes normally encountered in television servicing. Supplies all operating voltages to the tube under test, and indicates the condition of the tube on a large "GOOD-BAD" scale. Features spring loaded test switches for operator protection.

The CC-1 is housed in an attractive portable case and is light in weight — ideal for outside service calls.

Heathkit DIRECT READING CAPACITY METER KIT

Not only is this instrument popular in the service shop, but it has found extensive application in industrial situations. Ideal for quality control work, production line checking, or for matching pairs.

Features direct reading linear scales from 100 mfd to .1 mfd full scale. Necessary only to connect a capacitor of unknown value to the insulated binding posts, select the correct range, and read the meter. The CM-1 is not susceptible to hand capacity, and has a residual capacity of less than 1 mfd.
This is one of the biggest signal generator bargains available today. The tried and proven Model SG-8 offers all of the outstanding features required for a basic service instrument. High quality components and outstanding performance.

The SG-8 covers 150 Kc to 110 Mc on fundamentals in 5 bands, and calibrated harmonics extend its usefulness up to 220 Mc. The output signal is modulated at 400 cps, and the RF output is in excess of 100,000 uv. Output controlled by both a continuously variable and a fixed step attenuator. Also, audio output may be obtained for amplifier testing. Don’t let the low price deceive you. This is a professional type service instrument to fulfill the signal source requirements in the service lab.

1. **Heathkit ... IMPEDANCE BRIDGE KIT**
 The IB-2 features built-in adjustable phase shift oscillator and amplifier, and has panel provisions for external generator. Measures resistance, inductance, dissipation factors of condensers, and storage factor of inductance.
 - D, Q, and DQ functions combined in one control.
 - ½% resistors and ½% silver-mica capacitors especially selected for this instrument.
 - A 100-0-100 microammeter provides null indications. Two-section CRL dial provides 10 separate "units" with an accuracy of .5%. Fractions of units read on variable control.
 - MODEL IB-2
 - Shpg. Wt. 12 Lbs.
 - $59.50

2. **Heathkit "Q" METER KIT**
 The Heathkit Model QM-1 will measure the Q of inductances and the RF resistance and distributed capacity of coils. Employs a 4½" 50 microampere meter for direct indication. Will test at frequencies of 150 Kc to 18 Mc in 4 ranges. Measures capacity from 40 mmf to 450 mmf within ± 3 mmf. Indispensable for coil winding and determining unknown condenser values. A worthwhile addition to your laboratory at an outstandingly low price. Useful for checking wave traps, chokes, peaking coils, etc. Laboratory facilities are now available to the service shop and home lab.
 - MODEL QM-1
 - Shpg. Wt. 14 Lbs.
 - $44.50

3. **Heathkit 6-12 VOLT BATTERY ELIMINATOR KIT**
 This modern battery eliminator will supply 6 or 12 volt output for ordinary automobile radios as well as 12 volts for the new models in the latest model cars. Output voltage is variable from 0-8 volts DC, or 0-16 volts DC. Will deliver up to 12 amperes at 6 volts, or up to 7 amperes at 12 volts. Two 10,000 microfarad filter capacitors insure smooth DC output. Two panel meters monitor output voltage and current. Will double as a battery charger. Definitely required for automobile radio service work.
 - MODEL BE-4
 - Shpg. Wt. 17 Lbs.
 - $31.50

4. **Heathkit DECADE RESISTANCE KIT**
 Twenty 1% precision resistors provide resistance from 1 to 99,999 ohms in 1 ohm steps. Indispensable around service shop laboratory, ham shack, or home workshop. Well worth the extremely low Heathkit price.
 - MODEL DR-1
 - Shpg. Wt. 4 Lbs.
 - $19.50

5. **Heathkit VIBRATOR TESTER KIT**
 Tests vibrators for proper starting and indicates the quality of the output on a large "GOOD-BAD" scale. Checks both interrupter and self-rectifier types in 5 different sockets. Operates from any battery eliminator delivering variable voltage from 4 to 6 volts DC at 4 amps. Ideal companion to the Model BE-4.
 - MODEL VT-1
 - Shpg. Wt. 6 Lbs.
 - $14.50

6. **Heathkit DECADE CONDENSER KIT**
 Provides capacity values from 100 mmf to 0.011 mmf in steps of 100 mmf. ± 1% precision silver-mica condensers used. High quality ceramic switches for reduced leakage. Polished birch cabinet. Extremely valuable in all electronic activity.
 - MODEL DC-1
 - Shpg. Wt. 3 Lbs.
 - $16.50
The Heathkit Model TC-2 is an emission type tube tester that represents a tremendous saving over the price of a comparable unit from any other source. At only $29.50, you can have a tube tester of your own, even if you are an experimenter, or only do part time service work. Extremely popular with radio servicemen, it uses a 9½" meter with 3-color meter face for simple "GOOD-BAD" indications that the customer can understand. Will test all tubes commonly encountered in radio and TV service work.

Ten 3-position lever switches for "open" or "short" tests on each tube element. Neon bulb indicates filament continuity or short between tube elements. Line adjust control provided. The roll chart is illuminated.

Sockets provided for 4, 5, 6, and 7-pin, octal, and loctal tubes, 7 and 9 pin miniature tubes, and the 5 pin Hyatron tubes. Blank space provided for future socket addition. Tests tubes for opens, and shorts, and for quality on the basis of total emission. 14 different filament voltage values provided.

Heathkit PORTABLE TUBE CHECKER KIT

The Model TC-2P is identical to the Model TC-2 except that it is housed in a rugged carrying case. This strikingly attractive and practical two-tone case is finished in proxylin impregnated fabric. The cover is detachable, and the hardware is brass plated. This case imparts a real professional appearance to the instrument. Ideal for home service calls, or any portable application.

Heathkit TV PICTURE TUBE TEST ADAPTER

The Heathkit TV picture tube test adapter is designed for use with the Model TC-2 Tube Checker. Test picture tubes for emission, shorts, and thereby determine tube quality. Consists of 12-pin TV tube socket, 4 ft. cable, octal connector, and necessary technical data. (Not a kit.)

Heathkit CONDENSER CHECKER KIT

Use this Condenser Checker to quickly and accurately measure those unknown condenser and resistor values. All readings taken directly from the calibrated panel scales without any involved calculation. Capacity measurements in four ranges from .00001 to 100 mfd. Checks paper, mica, ceramic and electrolytic condensers. A power factor control is available for accurate indication of electrolytic condenser efficiency. Leakage test switch—selection of five polarizing voltages, 25 volts to 450 volts DC to indicate condenser operating quality under actual load conditions. Spring-return test switch automatically discharges condenser under test and eliminates shock hazard to the operator. Resistance measurements can be made in the range from 100 ohms to 5 meg-ohms. Here again, all values are read directly on the calibrated scales. Increased sensitivity coupled with an electron beam null indicator increases overall instrument usefulness.

For safety of operation, the circuit is entirely transformer operated. An outstanding low kit price for this surprisingly accurate instrument.

Heathkit SIGNAL TRACER KIT

This signal tracer is extremely valuable in servicing AM, FM, and TV receivers, especially when it comes to isolating trouble to a particular stage of the circuit under test. This visual-aural tracer features a high gain RF input channel to permit signal tracing from the receiver antenna input clear through all RF, IF, detector, and audio stages to the speaker. Separate low-gain channel provided for audio circuit exploration. Both visual and aural indication by means of a speaker or headphone, and electron beam "eye" tube as a level indicator. Also incorporates a noise locator circuit for DC noise checks, and a built-in calibrated wattmeter (30-500 watts). Panel terminals provided for "patching" output transformer or speaker into external circuit for test purposes. Designed especially for the radio and TV serviceman. Cabinet size: 9½" wide x 6½" high x 5" deep. A real test equipment bargain.
Used with a sine wave generator, the Model HD-1 will check the harmonic distortion output of audio amplifiers under a variety of conditions. Reads distortion directly on the meter as a percentage of the input signal. Operates between 20 and 20,000 cps. High impedance VTVM circuit for initial reference settings and final distortion readings. Ranges are 0-1, 3, 10, and 30 volts full scale, 1% precision resistors. Distortion scales are 0-1, 3, 10, 30 and 100% full scale. Requires only .3 volt input for distortion test.

Heathkit AUDIO ANALYZER KIT

This instrument consists of an audio wattmeter, an AC VTVM, and a complete IM analyzer, all in one compact unit.

Use the VTVM to measure noise, frequency response, output gain, power supply ripple, etc. Use the wattmeter for measurement of power output. Internal leads provided for 4, 8, 16, or 600 ohms. VTVM also calibrated for DBM units. High or low impedance IM measurements made with built-in 6KC and 60 cps generators. VTVM ranges are .01, .360 volts in 10 steps. Wattmeter ranges are .15 mw. to 150 w. in 7 steps. IM scales are 1% to 100% in 5 steps.

Heathkit AUDIO GENERATOR KIT

This new Heathkit Model features step-tuning from 10 cps to 100 Kc with three rotary switches that provide two significant figures and multiplier. Less than 1% distortion. Frequency accurate to within ± 5%.

Output monitored on a large 4 4/4" meter that reads voltage or db. Both variable and step-type attenuation provided. Meter reads zero-to-maximum at each attenuator position. Output ranges (and therefore meter ranges) are 0-0.003, 0.01, .03, 1, 3, 1, 3, 10 volts. Step-tuning provides rapid positive selection of the desired frequency, and allows accurate return to any given frequency.

Heathkit AUDIO OSCILLATOR KIT

(SINE WAVE — SQUARE WAVE)

The Model AO-1 features sine wave or square wave coverage from 20-20,000 cps in 3 ranges. It is an instrument specifically designed to completely fulfill the needs of the serviceman and high fidelity enthusiast. Offers high level output across the entire frequency range, low distortion and low impedance output. Features a thermistor in the second amplifier stage to maintain essentially flat output through the entire frequency range. Produces an excellent sine wave for audio testing, or will produce good, clean, square waves with a rise time of only 2 microseconds.

Heathkit RESISTANCE SUBSTITUTION BOX KIT...

Provides switch selection of 36 RTMA 1 watt standard 1% resistors ranging from 15 ohms to 10 megohms. Numerous applications in radio and TV work, and essential in the developmental laboratory.

Heathkit AC VACUUM TUBE VOLTMETER KIT...

The Heathkit AC VTVM features high impedance, wide frequency range, very high sensitivity, and extremely wide voltage range. Will accurately measure a voltage as small as 1 mv. at high impedance. Excellent for sensitive AC measurements required by laboratories, audio enthusiasts and experimenters. Frequency response is substantially flat from 10 cps to 50 Kc. Ranges are .01, .03, 1, 3, 1, 1, 10, 30, 100, and 300 v. RMS. Total db range = -52 to +52 db. Input impedance 1 megohm at 1 Kc.

Heathkit CONDENSER SUBSTITUTION BOX KIT...

Very popular companion to Heathkit RS-1. Individual selection of 18 RTMA standard condenser values from .0001 mfd to .22 mfd. Includes 18" flexible leads with alligator clips.
HEATHKIT HAM GEAR
for high quality at moderate cost

DOLLAR VALUE: You get more for your Heathkit dollar because your labor is used to build the kit instead of paying for someone else's. Also, the middleman's margin of profit is eliminated when you deal directly with the manufacturer.

1 Heathkit DX-100 PHONE & CW TRANSMITTER KIT

The reception given this amateur transmitter has been tremendous. Reports from radio amateurs using the DX-100 are enthusiastic in praising its performance and the high quality of the components used in its assembly. Actual "on the air" results reflect the careful design that went into its development.

The DX-100 features a built-in VFO, modulator, and power supplies, and is completely bandswitching for phone or CW operation on 160, 80, 40, 20, 15, 11, and 10 meters. All parts necessary for construction are supplied in the kit, including tubes, cabinet, and detailed step-by-step instructions. Easy to build, and a genuine pleasure to operate.

Employed push-pull 1555's modulating parallel 6146's for RF output in excess of 100 watts on phone and 120 watts on CW. May be excited from the built-in VFO or from crystals (crystals not included with kit). Features five-point TVI suppression: (1) pi network interstage coupling to reduce harmonic transfer to the final stage; (2) pi network output coupling; (3) extensive shielding; (4) all incoming and outgoing circuits filtered; (5) inter-locking cabinet seams to eliminate radiation except through the coaxial output connector. Pi network output coupling will match 50 to 600 ohm non-reactive load. Illuminated VFO dial and meter face. Remote control socket provided.

The chassis is made of extra-strong 16 gauge copper-plated steel. It employs potted transformers, ceramic switch and variable capacitor insulation, solid silver loading switch terminals, and high-grade well-rated components throughout. Features a pre-formed wiring harness, and all coils are pre-wound.

High-gain speech amplifier for dynamic or crystal microphones, and restricted speech range for increased intelligibility. Plenty of audio power reserve. Measures 29x7" W. x 12½" H. x 16" D. Schematic diagram and complete technical specifications on request.

Shipped Motor Freight Unless Otherwise Specified $50.00 Deposit Required on C.O.D. Orders

Model DX-100 $189.50
Shop. Wr. 120 lbs.

2 Heathkit VFO KIT

The Model VF-1 covers 160-80-40-20-15-11 and 10 meters with three basic oscillator frequencies. Better than 10-volt average RF output on fundamentals. Features illuminated and pre-calibrated dial scale. Cable and plug provided to fit crystal socket of any modern transmitter.

Enjoy the convenience and flexibility of VFO operation at no more than the price of crystals. May be powered from plug on the Heathkit Model AT-1 transmitter, or supplied with power from most transmitters. Measures: 7" H. x 6½" W. x 7" D.

Model VF-1 $195.00
Shop. Wr. 7 lbs.

3 Heathkit CW AMATEUR TRANSMITTER KIT

The Model AT-1 is an ideal novice transmitter, and may be used to excite a higher power rig later on. This CW transmitter is complete with its own power supply, and covers 80, 40, 20, 15, 11, and 10 meters. Features single-knob bandswitching, and panel meter indicates grid or plate current for the final amplifier. Designed for crystal operation or external VFO. Crystal not included in kit. Incorporates such features as key click filter, line filter, copper-plated chassis, pre-wound coils, 52 ohm coaxial output, and high quality components throughout. Instruction book simplifies assembly. Employs a 6AG7 oscillator, 6L6 final amplifier. Operates up to 35 watts plate power input.

Model AT-1 $295.00
Shop. Wr. 15 lbs.

4 Heathkit ANTENNA COUPLER KIT

The Model AC-1 will properly match your low power transmitter to an end-fed long wire antenna. Also attenuates signals above 25 Mc., reducing TVI. 52 ohm coax input—power up to 75 watts—10 through 80 meters—tap-inductor and variable condenser—neon RF indicator—copper plated chassis and high quality components. Ideal for use with Heathkit AT-1 Transmitter.

Model AC-1 $145.00
Shop. Wr. 4 lbs.

HEATH COMPANY
A Subsidiary
of Daystron, Inc.
BENTON HARBOR 20, MICHIGAN

© RADIO-ELECTRONICS

72

www.americanradiohistory.com
MODERN DESIGN: You can be sure of getting all the latest and most desirable design features when you buy Heathkits. Advanced-design is a minimum standard for new Heathkit models.

1. **Heathkit COMMUNICATIONS-TYPE ALL BAND RECEIVER KIT**

 The new Model AR-3 features improved IF and RF performance, along with better image rejection on all bands. Completely new chassis layout for easier assembly, even for the beginner.

 Covers 550 Kc to 30 Mc in four bands. Provides sharp tuning and good sensitivity over the entire range. Features a transformer-type power supply—electrical bandspread—separate RF and AF gain controls—antenna trimmer—noise limiter—AGC—BFO—headphone jack—5½' PM speaker and illuminated tuning dial.

 CABINET: Fabric covered cabinet with aluminum panel as shown. Part No. 91-15, shipping weight 5 lbs. $4.50.

 MODEL AR-3
 - **$27.95**
 - Shpg. Wt. 12 Lbs.
 - (Less Cabinet)

2. **Heathkit "Q" MULTIPLIER KIT**

 Here is the Heathkit Q Multiplier you hams have been asking for. A tremendous help on the phone and CW bands when the QRM is heavy. Provides an effective Q of approximately 4,000 for extremely sharp "peak" or "null." Use it to "peak" the desired signal or to "null" an undesired signal, or heterodyne. Tunes to any signal within the IF band-pass of your receiver. Also provides "broad peak" for conditions where extreme selectivity is not required.

 Operates with any receiver having an IF frequency between 450 and 460 Kc. Will not function with AC-DC type receivers. Requires 6.3 volts AC at 300 ma. and 150 to 250 VDC at 2 ma. Derives operating power from your receiver. Uses a 12AX7 tube, and special High-Q shielded coils. Simple to connect with the cable and plugs supplied. Measures only 4½"H x 3½"W x 1½"D. A really valuable addition to the receiving equipment in your ham shack.

 MODEL OF-1
 - **$9.95**
 - Shpg. Wt. 3 Lbs.

3. **Heathkit VARIABLE VOLTAGE REGULATED POWER SUPPLY KIT**

 Provides well filtered DC output, variable from zero to 500 volts at no load and regulated for stability. Will supply up to 10 ma. at 450 VDC, and up to 130 ma. at 200 VDC. Voltage current monitored on front panel meter. Also provides 6.3 VAC at 4A. for filament. Filament voltage isolated from B+, and both isolated from ground. Invaluable around the ham shack for supplying operating potentials to experimental circuits. Use in all types of research and development laboratories as a temporary power supply, and to determine design requirements for ultimate power supply.

 MODEL PS-3
 - **$35.95**
 - Shpg. Wt. 17 lbs.

4. **Heathkit ANTENNA METER KIT**

 Use in conjunction with a signal source for measuring antenna impedance, line matching, adjustment of beam and mobile antennas, etc. Will double as a phone monitor or relative field strength indicator. 100 µA meter employed. Covers the range from 0-600 ohms. An instrument of many uses for the amateur.

 MODEL AM-1
 - **$14.95**
 - Shpg. Wt. 2 lbs.

5. **Heathkit GRID DIP METER KIT**

 This is an extremely valuable tool for accomplishing literally hundreds of jobs on all types of equipment. Covering from 2 Mc to 250 Mc, the GD-1B is compact and can be operated with one hand. Uses a 500 µA meter for indication, with a sensitivity control and headphone jack. Includes prewound coils and rack. Indispensable instrument for hams, engineers, or servicemen.

 MODEL GD-1B
 - **$19.50**
 - Shpg. Wt. 4 lbs.
Heathkit provide the "Constructive" approach to high-fidelity

1. Heathkit Advanced-Design High Fidelity Amplifier Kit

The 22 Watt Model W-5 is one of the most outstanding high fidelity amplifiers available today—at any price. Incorporates the very latest design features to achieve true "presence" for the super-critical listener.

Features a new-design Peerless output transformer, and KT66 output tubes handle power peaks up to 42 watts. The unique "tweeter-saver" suppresses high frequency oscillation. A new type balancing circuit results in closer "dynamic" balance between output tubes. Features improved phase shift characteristics and frequency response, with reduced IM and harmonic distortion. Color styling harmonizes with the Heathkit WA-P2 Preamplifier and the FM-3 Tuner.

Frequency response—within ± 1 dB from 5 cps to 180 Kc at 1 watt. Harmonic distortion only 1% at 21 watts, 20-20,000 cps. Output transformer, 1% at 20 watts, using 60 and 3,000 cps. Output impedance 4, 8, or 16 ohms. Hum and noise—99 db below rated output. Uses two 12AU7's, two KT66's and a 5R4GY.

Kit Combinations:

W-5M Amplifier Kit: Consists of main amplifier and power supply, all on one chassis. Complete with all necessary parts, tubes, and comprehensive manual. Shpg. Wt. 31 lbs. Express only.

$59.75

W-5 Combination Amplifier Kit: Consists of W-5M Amplifier Kit listed above plus Heathkit Model WA-P2 Preamplifier Kit. Complete with all necessary parts, tubes, and construction manuals. Shpg. Wt. 38 lbs. Express only.

$79.50

2. Heathkit Dual-Chassis Williamson Type High Fidelity Amplifier Kit

This is a very popular high fidelity amplifier kit that features dual-chassis type construction. The resulting physical dimensions offer an additional margin of flexibility in installation. It features the famous Acrogee-312™ "ultra-linear" output transformer, and has a frequency response within ± 1 db from 6 cps to 150 Kc at 1 watt. Harmonic distortion only 1% at 21 watts. IM distortion at 20 watts only 1.5% at 60 and 3,000 cps. Rated power output is 20 watts. Output impedance 4, 8, or 16 ohms. Hum and noise—88 db below 20 watts. Uses two 6SN7's, two 5817's, and a 5V4G.

Kit Combinations:

W-3M: Consists of main amplifier and power supply for separate chassis construction. Includes all tubes and components necessary for assembly. Shpg. Wt. 29 lbs., Express only.

$49.75

W-3: Consists of W-3M Kit listed above plus Heathkit Model WA-P2 Preamplifier described on opposite page. Shpg. Wt. 37 lbs., Express only.

$69.50

3. Heathkit Single-Chassis Williamson Type High Fidelity Amplifier Kit

This is the lowest priced Williamson type amplifier ever offered in kit form, and yet it retains all the usual features of the Williamson type circuit. Main amplifier and power supply combined on one chassis, and uses a new-design Chicago output transformer. Frequency response—within ± 1 db from 10 cps to 100 Kc at 1 watt. Harmonic distortion only 1.5% at 20 watts. IM distortion at rated output, 2.7% at 60 and 3,000 cps. Rated power output is 20 watts. Output impedance 4, 8, or 16 ohms. Hum and noise—95 db below 20 watts. Uses two 6SN7's, two 5817's, and one 5V4G.

Instructions are so complete that the kit may be assembled successfully even by a beginner in electronics.

Kit Combinations:

W-4AM: Consists of main amplifier and power supply for single chassis construction. Includes all tubes and components necessary for assembly. Shpg. Wt. 28 lbs. Express only.

$39.75

W-4A: Consists of W-4AM Kit listed above plus Heathkit Model WA-P2 Preamplifier described on opposite page. Shpg. Wt. 35 lbs. Express only.

$59.50

Benton Harbor 20, Michigan

Radio-Electronics
ATTRACTIONSTYLED: Heathkit high fidelity instruments are not only functional, but are most attractive in physical design. Such units as the preamplifier and the W-5 main amplifier are designed for beauty as well as performance. They blend with any room decor and are the kind of instruments you will be proud to own.

1 Heathkit HIGH FIDELITY PREAMPLIFIER KIT

This outstanding preamplifier is designed specifically for use with the Heathkit Williamson type amplifiers. It completely fulfills the requirements for remote control, compensation and preamplification, and exceeds even the most rigorous specifications for high fidelity performance.

Features five separate switch-selected input channels (2 low level and 3 high level), each with its own input control. Full record equalization with four-position turnover control and four-position rolloff control.

Output jack for tape recorder — separate bass control with 18 db boost and 12 db cut at 50 cps. — treble control offering 15 db boost and 20 db cut at 15,000 cps — special hum control to insure minimum hum level, — and many other desirable features. Overall frequency response (with controls set to "flat" position) is within 1 db from 25 cps to 30,000 cps. Will do justice to the finest available program sources. Beautiful satin-gold finish.

Power requirements from the Heathkit Williamson type high fidelity amplifier — 6.3 VAC at 1 amp., and 300 VDC at 10 Ma. Uses two 12AX7's and one 12AU7.

2 Heathkit 20-WATT HIGH FIDELITY AMPLIFIER KIT

This Heathkit Model offers you the least expensive route to high fidelity performance. Frequency response is ± 1 db from 20-20,000 cps. Features full 20 watt output using push-pull 6L6's, and incorporates separate bass and treble tone controls. Preamplifier and main amplifier are built on the same chassis. Four switch-selected compensated inputs and separate bass and treble tone controls provide all necessary functions at minimum investment. Features miniature tube types for low hum and noise.

Uses 12AX7, two 12AU7's, two 6L6G's and a 5V4G. A most interesting "build-it-yourself" project, and an excellent hi-fi amplifier for home use as well suited, also, for public address applications because of its high power output and high quality audio reproduction. Another Heathkit "best-buy" for you!

3 Heathkit 7-WATT AMPLIFIER KIT

The redesigned Model A-7D features a new type output transformer for tapped screen operation, and provides improved sensitivity, reduced distortion, and increased power output.

The full 7-watt output of the Model A-7D is more than adequate for normal home installations. Frequency characteristics are ± 1½ db from 20 to 20,000 cps. Potted output and power transformers employed. Push-pull output — detailed construction manual — top quality parts — high quality audio without great expense. Output transformer tapped at 4, 8, and 16 ohms. Bass and treble tone controls provided on the front chassis apron.

Model A-7E: Provides a preamplifier stage with two switch-selected inputs and RIAA compensation for variable reluctance or low level cartridges. Preamplifier built on same chassis as main amplifier. Model A-7E. Shipping weight 10 lbs. $18.50.

BENTON HARBOR 20, MICHIGAN

FEBRUARY, 1956

www.americanradiohistory.com
The new Heathkit Model FM-3 features tremendous circuit improvements and brand new physical design. Sensitivity is better than 10 uv, for 20 db of quieting, and it employs a completely modern tube line-up for high gain and stable operation. Incorporates its own power supply, and has provision for low-level or high-level output at low impedance.

The attractive Model FM-3 matches the WA-P2 Pre-amplifier in color, styling, and physical size. Incorporates automatic gain control, a highly stabilized oscillator, and illuminated tuning dial. Educational treatment of construction manual simplifies assembly for the newcomer to electronics. IF and ratio transformers are pre-aligned, and the front-end tuning unit is pre-assembled and aligned. Uses 6BQ7A as a cascode type RF stage, 6J7 oscillator-mixer, two 6CB6's as IF amplifiers, a 6AL5 ratio detector, a 6C4 audio amplifier, and 6X4 rectifier.
Not all inductors are COILED

How the size and shape of wiring affects inductance

By H. P. MANLY

To tune to 260 mc with an inductance of .02 µh, in the TV tuner, takes only about 16 µµf of capacitance. When you recall that input or output capacitance of a tube plus capacitance in socket and essential circuit elements seldom total much less than 15 µµf, it is apparent that the inductance of an extra inch of wire might mean the difference between good performance and none at all.

Supposing you were designing a high-frequency circuit and found it necessary to reduce lead inductance to the very minimum. Naturally, your first step would be to place parts in such positions as to be able to connect them with very short leads or none at all. Were inductances still too great, what could you do next? Well, you might use bigger wire for connections. If that didn’t do the trick, you could use two or more paralleled wires for each connection.

It is easy to prove that two or more paralleled leads have less inductance than one and that leads of large diameter have less inductance than smaller ones. All you need is a grid dip meter or any other resonance indicator, some pieces of wire and a fixed capacitor.

When the meter is used as in Fig. 1, it will dip when tuned to the resonant frequency of the circuit containing the wires. Frequency variations will show whether changes in the number and diameter of wires raise or lower the inductance because more inductance will drop the resonant frequency and less inductance will raise it.

To see things happen, select a capacitor with long pigtails and solder it between two pieces of heavy wire (Fig. 2). Between these heavy wires solder three smaller ones. Solid bare hookup wire is just right. If the cross wires are about 4 inches long and the capacitor is 200 µµf, the arrangement will resonate around 30 to 40 mc.

When the coil of the grid dipper is brought near any part of the wire circuit, there will be a dip when you tune to the resonant frequency. Make note of this frequency. Then remove one cross-wire and check the frequency—it will be slightly lower than before. Remove another wire and check frequency again—it will be much lower than with only one wire removed.

Changes in frequency mean that removing wires has altered inductance, capacitance or both. Because our fixed capacitance is so large, 200 µµf, any change in circuit capacitance due to removing wires must be such a small percentage of the total that it cannot account for appreciable changes in frequency. Therefore, the principal effect of removing cross-wires must be to change the inductance. Since frequency drops, inductance must have in-

Fig. 1—The grid dip meter checks inductance by measuring frequency.

Fig. 2—A circuit for observing effects of inductance in straight wires.
YOU NEED THESE FEATURES:

Meter Movement Protection up to 500 times overload is provided by a rectifier network.

The 555A Measures: AC Current, DC Current, AC Voltage, DC Voltage, Output, Resistance

43 Unduplicated Ranges
Separate Range and Function Switches
Double Magnetic Shielding
3% DC, 4% AC Permanent Accuracy
Easy to Read, Four Color Scales 4 3/8" long
Metal Case with Die Cast Bezel 6 3/4" x 4 3/4" x 2 3/8"
Sensitivity: 20,000 Ohms/Volt DC, 2000 Ohms/Volt AC

Complete with Probes and Batteries at your Parts Distributor $4450

RADIO

creased. Thus we prove that fewer wires have more inductance and more wires have less inductance.

For the next experiment take off the remaining cross-wire and substitute two wires of the largest diameter on hand. Fig. 3 shows two pieces of No. 8 copper ground wire. Check the resonant frequency with the grid dip meter. Then remove one of the large wires and measure frequency once more.

Compare all the measured frequencies. The highest frequency and least inductance occur with two wires of large diameter; lowest frequency and most inductance with one wire of small diameter. In one series of tests the frequencies checked like this:

<table>
<thead>
<tr>
<th>Wire Gauge</th>
<th>No. 8</th>
<th>No. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 20</td>
<td>38.0 mc</td>
<td>38.2 mc</td>
</tr>
<tr>
<td>No. 2</td>
<td>38.1 mc</td>
<td>38.3 mc</td>
</tr>
<tr>
<td>No. 8</td>
<td>37.9 mc</td>
<td>37.8 mc</td>
</tr>
</tbody>
</table>

Unfortunately, we cannot compute the true inductance of a single wire from the known capacitance and measured frequencies. This is because changing the number of wires changes the enclosed area, because wires so close together have mutual inductances and because of many stray capacitive and inductive factors in the setup.

However, the experiments do prove three things: First, short straight wires have considerable inductance; second, one conductor has more inductance than any greater number of the same kind paralleled; third, small-diameter conductors have more inductance than those of larger diameter.

Other small inductances

All conductors of any kind whatever have enough inductance to be important at high frequencies. This means that fixed capacitors have inductance because they have metal plates and pigtails. It means that all composition resistors have inductance, in the element as well as in the pigtails.

Conductors made of iron or iron alloys have much more inductance than copper at low frequencies, but the difference drops to only about 15% at 500 kc and to practically nothing above 10 mc. It is true also that frequency has almost no effect on the inductance of copper wire, the change between zero and infinite frequency being only 3-4%.

When insulated live conductors are run close to chassis metal which acts as the circuit return, the effective inductance of the conductors increases with length. The increase is greater for short lengths than for longer ones. For instance, increasing the length from 1

Fig. 3—Large-diameter wires have less inductance than smaller ones.
Don't Be Vague...Insist on SPRAGUE

Accept no substitutes. There is a Sprague Distributor in every sales area in the United States. Write for the name of your nearest source of supply today.

*Trademark

Insist on Sprague TWIST-LOK* 'LYTICS
Sprague TVL's fill the top performance bill in the toughest TV circuits. High temperatures, surge voltages, ripple currents won't faze them. Like all Sprague capacitors, Twist-Lok 'Lytics are your first line of defense against expensive call-backs.

Insist on Sprague CERAMICS
Tiny, tough, dependable... in every application... whether discs, plates, buttons, or door knobs. And there's a Sprague ceramic capacitor to meet every service need. You give your customers dependable service, guard yourself against costly call-backs, when you use only Sprague Ceramic capacitors.

Insist on Sprague ATOMS®
The smallest TV 'lytics made—and the only small ones for 85°C (185°F) up to 450 volts d-c. Guaranteed for low leakage and long shelf life, they withstand high temperatures, high ripple currents, high surge voltages. From crowded TV chassis to jam-packed portables, Sprague Atoms fit 'em all.

* Distributors' Division of Sprague Electric Company

SPRAGUE
WORLD'S LARGEST CAPACITOR MANUFACTURER

FEBRUARY, 1956
Among important activities at Hughes is a program involving comprehensive testing and evaluation in connection with Hughes-developed radar fire control and navigation systems for latest type military all-weather interceptors.

System Test Engineers

There is need on our staff for qualified engineers who thoroughly understand this field of operation, and who have sufficient analytical and theoretical ability to define needed tests; outline test specifications; assess data derived from such tests, and present an evaluation of performance in report form.

Engineers who qualify in this area should have 1 a basic interest in the system concept and over-all operation of test procedures; 2 experience in operation, maintenance, "debugging," development, and evaluation testing of electronic systems, and knowledge of laboratory and flight test procedures and equipment; 3 understanding of basic circuit applications at all frequencies; 4 initiative to secure supporting information from obscure sources.

Research and Development Laboratories

Culver City, Los Angeles County, California

Radio
to 2 inches may increase inductance nearly 6 times, an increase from 2 to 4 inches may increase the inductance about only 2½ times.

The inductance of a wire increases as it is brought closer to chassis metal that forms the return circuit. A wire

Fig. 4—Various hairpin inductors.
Your shop's one of the best equipped for trouble-shooting and servicing both black-and-white and color TV when it's equipped with RCA Test Instruments...add these three RCA units to your black-and-white setup and you are ready to service all makes of color TV sets.

WR-61A Color-Bar Generator generates signals for producing 10 different color bars simultaneously—including bars corresponding to the R-Y, B-Y, G-Y, I, and Q signals for checking and adjusting phasing and matrixing in all makes of color sets. Crystal-controlled oscillators insure accuracy and stability. Luminance signals at bar edges facilitate checking color “fit” or registration. Adjustable subcarrier amplitude permits checking color-sync action. The WR-61A is accepted as the standard for color-phasing accuracy in many TV stations and network operations.

WR-36A Dot-Bar Generator provides a pattern of small-size dots, horizontal and vertical bars and fine-line cross-hatch patterns for precise adjustment of convergence and linearity. RF output available on channels 2-6. High-impedance video output circuit with the new WG-305A Video Test Adapter (included) contributes to sharp, steady patterns. Choice of internal 60-cps vertical sync or external sync. The crosshatch pattern and the number of vertical and horizontal dots and bars is adjustable. Weighs only 13 lbs.

WO-91A 5” Oscilloscope incorporates features usually found only in much more expensive instruments. It has all the 'scope functions you need to do both black-and-white and color TV service work...speedily and with top-grade results! Some of the outstanding features are: front-panel switching of “V”-amplifier bandwidth; response flat to 4.5 Mc in wide-band position; voltage-calibrated frequency-compensated “V” amplifier step-attenuator. Simultaneous waveshape display and voltage measurement on direct-reading graph scales enable you to read peak-to-peak voltages directly. Sturdy single-unit probe with built-in switch permits instant selection of direct/or low capacitance operation.

RCA TEST INSTRUMENTS FOR COLOR TV

SEE YOUR RCA DISTRIBUTOR FOR DETAILS ON THESE OUTSTANDING RCA TEST INSTRUMENTS FOR COLOR TV!
HAVE YOU HEARD that our distributors will allow you 10c credit for each replaced selenium rectifier returned — regardless of make?

The selenium situation is critical, and reclamation is necessary to meet civilian, as well as military requirements. You can help by returning every replaced selenium rectifier to your distributor for credit.

Sarkes Tarzian, Inc., RECTIFIER DIVISION 415 N. COLLEGE AVE. BLOOMINGTON, INDIANA

In Canada: 700 Weston Rd., Toronto 9, Tel. Murray 7535
Export: Ad Auriema, Inc., New York City

RADIO

If we assume that the total capacitance in the hairpin circuits is 25 µµf, the inductances may be computed from measured frequencies. On this basis we have, from left to right, .068 µh, .092 µh and .040 µh.

Capacitances

The story of what happens with short wires should include something about their capacitances. Two of the 4-inch crosswires from Fig. 2, spaced as there shown but not connected, would have a capacitance around 0.9 µµf. Two of the bigger wires from Fig. 3 would have a capacitance of nearly 1.7 µµf.

Were you to move two 4-inch lengths of No. 20 or No. 8 wire closer and closer together their capacitance would increase as shown by the curves in Fig. 5.

The curves end where the wires are as close together as possible, allowing for a little insulation. Plainly, to avoid excessive capacitance, thin wires should be at least ½ inch apart and fat ones twice as far apart. And, as always, keep the wires as short as possible. Capacitance increases in almost exact proportion to length.

Capacitance exists between any two conductors separated by any kind of insulation. This is true when the separation is resistance. Between the ends of a composition resistor there is an effective capacitance approaching 1 µµf at low radio frequencies. At high frequencies the capacitance appears distributed along the resistance element. Then a resistor, acting like a capacitor, may short circuit or bypass high-frequency signal currents which it is supposed to oppose.
ALLIED knight-kits
give you MORE precision quality...save you MOST
FINEST ELECTRONIC EQUIPMENT IN KIT FORM—FAMOUS FOR:

LOW COST—huge buying power and DIRECT SALE pass
biggest savings on to you. You do the easy assembly
and your built-up instrument is equivalent in appearance and
performance to equipment selling for several times the
KNIGHT-KIT price.

ADVANCED DESIGN—months of research, development
and field testing go into each KNIGHT-KIT to assure
top performance.

EASY ASSEMBLY—all chassis and panels are punched for
accurate assembly; all parts are fully identified. Instruction
manuals are a marvel of simplicity and clarity.

ALLIED—the reliable name in Electronics—gives you the
greatest value in KNIGHT-KITS through DIRECT SELLING

NEWEST PRINTED CIRCUITS

knight-kit PRINTED CIRCUIT

5" OSCILLOSCOPE KIT

Model F-144

$69.00

$6.90 down, 12 months to pay balance

New wide-band, full-size 5" Oscilloscope; equals or bet-
ters the performance of commercially-wired scopes
costing several times the price. Two printed circuit
boards and laced wiring harness help reduce assembly
boulne to minimum. Ideal for the professional lab-
atory, for color TV servicing and high frequency
applications. Has unusually wide sweep range—from
0 to 500,000 cpus. Tracks in frequencies as high as 10
megs; vertical response from 0 cycles to 5 meg. Response: —1 db at 2.58 me;— 3 db at 15 me;— 10 db at 50 me;— 19 db at 150 me. High vertical sensitivity of 25 mmv millivolts/in. Input capacitance 28 mmf. Outstanding features: cathode follower vertical and horizontal inputs; 2nd anode provides 1400 volts for high-intensity trace; push-pull vertical and horizontal amplifiers, positive and negative lock-
ing; faithful square wave response; frequency-compensated input at-
tenator; Z-axis input for intensity modulation; one volt peak-to-peak calibrating voltage; internal astigmatism control; blanking circuit
to eliminate retrace lines; DC positioning control. Complete with all tubes
and parts, ready for easy assembly. Handsome professional case finished
in blue, with gray control panel. Shpp. wt., 40 lbs.

Model F-144. Printed Circuit 5" Oscilloscope Kit. Net only
$69.00

Model F-148. Demodulator Probe. Net
$3.45

Model F-147. Low Capacity Probe. 12 mmf. Net
$3.45

knight-kit PRINTED CIRCUIT

VTVM KIT

Model F-125

$24.95

New, extremely stable, highly accurate VTVM. Greatly sim-
plicated wiring—entire chassis is a printed circuit board. Fea-
tures maximum convenience in arrangement of scales and con-
trols. With peak-to-peak scale for F2 and TV work. Ranges: AC peak-to-peak
volt or: 0-1-4-14-140-1400-14000-48000; AC rms volts: 0-15-0.5-0.5-0.5-0.5-0.5-
6000. Frequency response: 0-1900. 10K 100K. 1-10-100-1000 megs; db scale,
0 to 90. Uses low-leakage switches and 1/2 precision resistors. Balanced-bridge, push-pull
circuit permits switching to any range without adjusting zero set. 10/" meter, 500 microamp
movement. Polarity reversing switch. Input resistance, 11 megs. Com-
plete kit, ready to assemble. Shpp. wt., 5 lbs.

Model F-125. Printed Circuit VTVM Kit. Net only
$24.95

Model F-126. Hi-Voltage Probe; extends DC range to 50,000 Volts. Net
$4.50

Model F-127. Hi-Frequency Probe; extends AC range to 200 me. Net
$3.45

EASY PAYMENT TERMS

If your total Knight-Kit order is over $45, take advantage of our liberal Time Payment Plan—only 10% down, 12
full months to pay. Write for application form.
ALLIED knight-kits

EASY-TO-BUILD TUBE TESTER KIT—OUTSTANDING VALUE

Expertly designed, up-to-date, ideal for the laboratory or service shop. Remarkably low priced, yet it offers high accuracy, top versatility and convenience. Features provision for testing 600-ma tubes; roll-chart data for all popular series-string types. Tests 4, 5, 6 and 7-pin large, regular and miniature types, octal, lecnel, 3-pin miniatures and pilot lamps. Tests for open, short, leakage, heater continuity and quality (by amount of cathode emission). 4½ square meter with clear “GOOD-7-REPLACE” scale. With line-voltage indicator and line-adjust control. Choice of 14 filament voltages from 63 to 117 volts. Blank socket for future type tubes. Universal-type selector switches for any combination of pin connections. Single-unit, 10-lever function switch simplifies assembly. Illuminated roll chart lists over 700 tube types. Complete kit, ready for easy assembly. Shpg. wt., 14 lbs.

MODEL F-143. Counter type Tube Tester Kit. Net only $29.75

MODEL F-142. As above, but with carrying case. Net only $34.75

MODEL F-141. TV Picture Tube Adapter for above. Net only $2.75

EASY PAYMENT TERMS: If your total kit order comes to over $45, take advantage of our liberal Time Payment Plan—only 10% down, 12 full months to pay. Write for application form.

QUALITY ELECTRONIC TEST EQUIPMENT IN LOW COST KIT FORM

BUY WITH CONFIDENCE

- Advanced Electronic Design
- New Printed Circuits
- Easy-View, Hi-Legibility Panels
- Professional Streamlined Styling
- Matched Instruments
- Premium Quality Components

BUY DIRECT AND SAVE!

100 N. WESTERN AVE., CHICAGO 80, ILL

MODEL F-137. Audio Generator Kit. Net only $31.50

MODEL F-124. Resistor-Capacitor Tester Kit. Net only $18.75

MODEL F-128. Exceptional accuracy and versatility at amazing low cost. Ideal for service shop, lab and Amateur use.

- **4½ meter (400 microamp movement) with separate scales for AC voltage and current, DC voltage and current, deciles and resistance.**
- **38 ranges include:** AC, DC and Output volts, 0-1.5-10-50-100-500-1000; Resistance, 0-2000-200,000 ohms and 0-20 meg.; DC ma, 0-1-10-100; DC amps, 0-1-10; Decibels, -30 to +63 in 6 ranges. Uses precision 1½ multipliers. Complete kit with bakelite case, batteries and test leads. Shpg. wt., 5 lbs.

MODEL F-128. 1,000 ohms/volt VOM Kit. Net only $14.25

MODEL F-140. 20,000 ohms/volt VOM Kit. Net only $26.50

MODEL F-134. Resistor-Capacitor Tester Kit.

This new highly accurate tester meets the critical requirements of lab and service shop. Measures capacitance and resistance; checks for opens and shorts in paper, mica and ceramic capacitors; shows power factor of electrolytics. Large dial shows capacitance and resistance at a glance; balanced-bridge circuit with “magic eye” for correct dial setting. Direct-reading potentiometer and “magic eye” measure power factor from 0-50%. Tests capacitors with rated voltages applied. 5 test voltages: 50, 150, 250, 350, 450. Capacity ranges: 10 mfd to 0.001 mfd, 0.01 to 0.001 mfd, 0.1 to 0.001 mfd, 1 to 0.001 mfd. Resistance ranges: 100 to 50,000 ohms and 10,000 ohms to 5 mgs. Accuracy ± 10%. Automatic discharge feature prevents after-test shock. Complete kit with professional portable case includes tubes, instructions and all required parts. Shpg. wt., 8 lbs.

MODEL F-124. Resistor-Capacitor Tester Kit. Net only $18.75

MODEL F-127. Audio Generator Kit. Net only $31.50
better by far...easiest to build and YOU SAVE MORE*

IDEAL FOR SERVICE TECHNICIANS, INDUSTRIAL LABS, TRAINING SCHOOLS

BUILD WITH CONFIDENCE
- Crystal-Clear Instruction Manuals
- "Step-and-Chek" Building Method
- "King-Size" Diagrams
- "Spotlight" Pictorials

SAVE MONEY! BUY DIRECT—get top quality—get the most for your test instrument dollar.

Model F-135
$23.75

knight-kit

VISUAL-AURAL SIGNAL TRACER KIT
A remarkable value is a kit which permits visual and aural signal tracing of RF, IF, video and audio circuits—
costs no more than an audio signal tracer alone. Traces
the signal from the antenna to the speaker. Reproduces
signal at plate or grid connection of any stage. Identifies
and isolates "dead" stages. Features: high usable gain of
50,000; "magic eye" with calibrated attenuators for signal
presence indication and stage-by-stage gain measurement;
built-in 4" PM speaker; RF probe for checking all
stages; special audio probe tip included; provides noise
test; built-in watt meter calibrated from 25 to 1000 watts;
provision for external scope or VTVM. Complete kit with
portable case. Shpg. wt., 13 lbs.
Model F-135. Visual-Aural Signal Tracer Kit. Net only $23.75

knight-kit

RESISTANCE SUBSTITUTION BOX KIT
Model F-139
$5.95

Supplies 36 standard 1 watt resistance values between 15
ohms and 10 megarhms with an accuracy of 10%. Resis-
tance values are readily substituted into any circuit to
determine proper value of resistor required to do a particu-
lar job. Uses simple, single 18-position switch for resistance
selection, plus a slide switch which multiplies all
values by 1000. In attractive bakelite case, 5 x 3 x 2".
Complete with all parts, including 18" leads with insulated
alligator clips. Full instructions for easy assembly. Shpg.
wt., 2 lbs.
Model F-139. Resistance Substitution Box Kit. Net only $5.95

ALL PRICES NET
F.O.B. CHICAGO

YOU SAVE MORE BECAUSE YOU BUY DIRECT • ORDER TODAY

FEBRUARY, 1956

Model F-145
$19.75

knight-kit LOW-COST RF SIGNAL GENERATOR KIT
An extremely popular kit, noted for its wide range and exceptional sta-
bility—saves you two-thirds the cost of a comparable wired instrument.
Delivers output on fundamentals from 160 kc all the way out to 110 mc;
useful harmonic output to 220 mc. Ideal for aligning RF and IF stages
and for audio equipment troubleshooting. Also serves as TV marker
generator when used with any sweep generator. Features the famous
Colpitts circuit for high accuracy with negligible drift. RF output rated
over 100,000 microvolts. Output can be modulated at 1000 cycles. Has
built-in sine-wave audio oscillator with output jack for 400 cycle output.
Maximum audio output, 10 volts. Jack for external modulation; step
and continuous-type output attenuators. Complete kit with professional
portable case, including punched chassis, tubes, pre-wound coils and all
required parts. Shpg. wt., 10 lbs.
Model F-145. RF Signal Generator Kit. Net only $19.75

Model F-119
$11.65

SAVE UP TO 70%!
SUPER-VALUE knight-kit
CAPACITOR CHECKER KIT
Tests capacitors while they are still wired in the circuit! Saves time and bother in test-
ing the many capacitors in a set; it's an absolutely essen-
tial instrument for the service technician. Just press a button
and the "magic eye" instantly shows opens and shorts.
Checks by-pass, blocking, coupling and filter condensers from 20 mmf to 2000 mfd, even
when the capacitor under test is wired with a resistance as low as 60 ohms. Capacitors between .1 mfd and 2000 mfd may be tested
even when in parallel with resistance as low as 2 ohms. Housed
in the professionally styled Knight-Kit case, sturdy steel in blue
wrinkle finish with gray control panel. Complete kit, ready for
easy assembly. Shpg. wt., 5 lbs.
Model F-119. Capacitor Checker Kit. Net only $11.65

Model F-138
$5.50

knight-kit CAPACITANCE SUBSTITUTION BOX KIT
Provides 18 standard capacitor values from .0001 mfd to
.22 mfd, ± 20%. All values are 600 volt, with the excep-
tion of .15 and .22 which are 400 volt. A simple 18-position
switch selects all values quickly and easily—no need to touch
the test leads. Saves hours of time and effort required to determine proper condenser value required.
In bakelite case with anodized aluminum panel; 5 x 3 x 2".
Complete with all parts, including 18" leads with insulated
alligator clips. Easy to assemble in just minutes. Shpg.
wt., 2 lbs.
Model F-138. Capacitance Substitution Box Kit. Net only $5.50

www.americanradiohistory.com
ALLIED knight-kits...

LOW-COST QUALITY HAM GEAR

50 WATT CW TRANSMITTER KIT

Model SX-255

Built-in Pi-Type Antenna Coupler

Complete with built-in power supply. Careful design and voltage regulation assure high stability. Excellent oscillator keying characteristic for fast break-in without clicks or chirps. Full TVI suppression. Has plenty of bandwidth: separate calibrated scales for 50, 40, 20, 15, 11 and 10 meters; vernier drive mechanism. 2-chassis construction keeps heat from frequency determining circuits. Output cable plugs into crystal socket of zener diode. Output on 50 and 40 meters. With Spot-60-Transmit switch for "no switch" tuning. Extra switch contacts for operating relays and other equipment. Complete for easy assembly.

Shpg. wt., 8 lbs.

Model S-725, Self-Powered VFO Kit. $27.50

Order from **ALLIED RADIO**

100 N. WESTERN AVE., CHICAGO 80, ILL.

FAMOUS knight-kits FOR HOBBYISTS...

EASY-TO-BUILD... FEATURING EXCEPTIONAL PERFORMANCE AT LOW COST

Model S-243 "SPACE SPANNER" BAND SWITCHING RECEIVER SET

DUAL BAND FOR THRILLING SHORT WAVE & BROADCAST

All-new 2-band receiver in easy-to-build kit form at a very low price. Pull-in thrilling short-wave (6 to 17 mc) and standard broadcast, plus amateur, aircraft, police and marine radio. Features special regenerative circuit; highly sensitive on broadcast band. Band-switch selects broadcast or short wave. Has 4" FM speaker and beam-power output tuned for plenty of volume; headphone connectors for weak signal listening; slide switch cuts out speaker. Employs 12AT7 regenerative detector and audio amplifier; 5OC5 power output; 35WT1 rectifier. Six controls; Bandspread; Main Tuning; Antenna Trimmer; Bandwidth; Regeneration; Audio Gain. Panel finished in attractive gray with black knobs. Includes all parts, punched chassis and tubes. 7 x 10 x 6", for 110-120 v. 50-60 cycles AC or DC.

Shpg. wt., 4 5/8 lbs.

Model S-265 10-IN-1 LAB KIT

BUILD ANY OF 10 FASCINATING ELECTRONIC PROJECTS

A wonderfully instructive electronics kit. Ideal for experimenters, beginners—fun to build. Construct a sensitive Broadcast Receiver; Amplifier (for phone or mike); Wireless Phone Oscillator; Home "Broadcast Station"; Code Practice Oscillator; Capacitor-Operated Relay, or any one of four other fascinating projects. Low voltages; safe to build and operate. Only tools needed are soldering iron, screwdriver and pliers. Perfect for self-instruction in circuit fundamentals, and packed with practical applications. Kit includes mounting board, tubes, all parts, hardware, microphone, and instruction manual. For 110-120 v., 50-60 cycle AC.

Shpg. wt., 10 lbs.

Model P-003, Phototube for Photo Relay Project. Net. $2.00

Model H-024, 4-Prong Socket for Phototube. Net. $5

Model S-735 "RANGER II" SUPERHET RADIO KIT

Thousands have built and enjoyed the "Ranger" Broadcast Band Receiver. Carefully engineered for easy construction and powerful, sensitive performance. Latest Superhet circuit: tunes 540 to 1680 kc; covers entire broadcast band and exciting police calls. Features automatic volume control, built-in pre-formed loop antenna, speaker. Supplied with following tubes: 12SK7GT IF amp; 125Q7GT det.; AVC. Radio; 50LGT audio output. 850/670 rect. Complete with handsome brown plastic cabinet, tubes, speaker, all parts, and instruction manual. For 110-120 v., 50-60 cycle AC or DC.

Shpg. wt., 8 lbs.

Model S-735, "Ranger II" Superhet Radio Kit. Net. $14.85
FASCINATING, INSTRUCTIVE
USED BY MANY LEADING TRAINING SCHOOLS

Top Quality Electronic Equipment in Kit Form

BUILD-YOUR-OWN HIGH FIDELITY knight-kits

knight-kit

BASIC 25 WATT ULTRALINEAR HI-FI AMPLIFIER KIT

Model S-755

$41.50

TOP CUSTOM QUALITY—ETCHED CIRCUIT WIRING

This new super-quality hi-fi basic amplifier is designed to satisfy the most critical listener. Intended for use with tuners incorporating built-in preamp or with separate preamp. Uses latest Williamson type ultralinear circuit with potentiometers, matched transformers. Delivers maximum output of 45 watts. Frequency response: + 0.2 db, 10 cps to 120 kc, measured at 20 watts. Harmonic distortion is only 15%. Right up to 30 watts. Maximum distortion is only 27.5% at 10 watts and only 1% at 20 watts, using 8000 cps to 7 kc, 1:4 ratio. Hum level is only 0.5 db below full rated output. Output impedance, 4, 8, 16 ohms. Input voltage for 25 watt output is 1.8 volts. Uses two 12AU7's, two 6881's, and a 5V4. Etched circuit is utilized in amplifier and phase inverter stages. Has output tube balancing control, variable damping control, and on-off switch. Handsome chrome-plated chassis, 14" x 9" x 2". Overall height, 7". A versatile tool for every detail—satisfying to build—equal in performance to amplifiers selling at over twice the price. Complete with all parts, tubes and construction manual. Shpg. wt., 27 lbs.

Model S-755. Basic 25 watt Hi-Fi Ultralinear Amplifier Kit. Net. $41.50

FASCINATING, INSTRUCTIVE

Top February, 1956

Inker speaker on phone reception; can sensitive regenerative-type circuit. Excellent head-

Antenna Tuning, and Pulls with plug-in coil for standard broadcast, covers long

wave and popular short-wave bands with coils below. Pulls in thrilling foreign broadcasts, police, amateurs, and aircraft. Controls: Main Tuning, Bandspread, Antenna Tuning, Off-On-Regeneration. Handsome gray panel, logging type hoke main tuning knob. With all parts, tubes, instructions (less extra coils and headset). AC or DC operation. Shpg. wt., 5 lbs.

Model S-740. "Ocean Hopper" Receiver Kit. Net. $10.75

EXTRA PLUG-IN COILS

S-743. Short Wave, 2.8-7.3 mc. Net.655
S-745. Short Wave, 171.8 mc. each.655
S-744. Short Wave, 10.5-35 mc.5.95

BROADCAST, LONG WAVE & SHORT WAVE RECEPTION

The famous "Ocean Hopper" receiver kit—sensationally low-priced—tops for enjoyable broad-

cast, long wave and short wave reception. Highly sensitive regenerative-type circuit. Excellent head-

phone reception; can be used with a speaker on strong broadcast band stations. Supplied with plug-in coil for standard broadcast, covers long

wave and popular short-wave bands with coils below. Pulls in thrilling foreign broadcasts, police, amateurs, and aircraft. Controls: Main Tuning, Bandspread, Antenna Tuning, Off-On-Regeneration. Handsome gray panel, logging type hoke main tuning knob. With all parts, tubes, instructions (less extra coils and headset). AC or DC operation. Shpg. wt., 5 lbs.

Model S-740. "Ocean Hopper" Receiver Kit. Net. $10.75

RECEIVER KIT ACCESSORIES

Antenna Kit. For use with all Knight-Kit receiver kits. C-100, Net1.05

ALL PRICES NET F.O.B. CHICAGO

SAVE MORE BUY DIRECT

Order today
If there are several TV channels in your area, remote control of your receiver may be a desirable feature. With the prevailing large-screen TV chassis, the ideal viewing position is often far from the average living room. This remote control unit will make it unnecessary for you to leave your favorite chair to change channels; adjust the fine-tuning, contrast, brightness or volume controls or to turn the set on or off. Developed for 630 type chassis, it can be adapted to other types of sets.

The original 630 type receiver often drifts considerably during the warmup period. This affects the sound (in split-carrier sets) and the fine-tuning control must be readjusted several times before the set stabilizes. Retuning is no longer bothersome with this remote control at your fingertips.

Later 630 type sets such as the Airex, Mattison, Philmore, Regal, Tech-Master and Video Products have several circuit modifications that make them superior to the earlier types. Some of these have intercarrier sound to minimize the effects of drift on the sound. Standard Coil tuners are widely used on the later types. If your set is an early type, make the following modifications before converting it to remote control:

1. Replace the original RCA tuner with a Standard Coil cascode type and move the sound take-off point to the plate circuit of the first video i.f. amplifier as shown in Fig. 1. The sound take-off coil is a Standard Coil type XM-752 or equivalent.

2. Disconnect the picture control circuit and the bias line to the first, second and third video i.f. amplifier grids and install a 6A60 keyed a.g.c. circuit as in Fig. 2.

3. Move the picture (contrast) control to the cathode circuit of the 6K6-GT video output stage (Fig. 3).

4. Modify the d.c. restorer circuit and move the sync take-off to the plate circuit of the 6A60 first video amplifier. (See Fig. 3.)

5. Move the brightness control from the grid to cathode of the picture tube and change the polarity of the bias supply voltage as in Fig. 3.

6. Connect a 1N34 diode as a d.c. clamp for the a.f.c. circuit (Fig. 4).

The cascode tuner provides greater gain with less noise than does the original tuner. Taking the sync pulses from the first video amplifier makes their amplitude independent of brightness and contrast settings. The keyed a.g.c. circuit holds the video output and sync-pulse level fairly constant and produces pictures of uniform quality as the set is switched from one channel to another without resetting the brightness and contrast controls. The brightness bias circuit is changed from negative to positive so it can be easily supplied and controlled from the remote-control chassis. With these modifications, the 630 is now an ideal receiver for remote-control operation.

Converting to remote control

The diagram of the remote-control chassis and its connections to the main chassis are shown in Fig. 5 and the layout of major components in Figs. 6 and 7. The remote unit is mounted on a 10 x 17 x 4-inch aluminum chassis. The tuner, audio preamp and brightness controls are supplied from a source delivering around 250 volts at 50 ma or so.

After building the supply and associated circuits on the remote chassis, remove the cascade tuner from the main chassis and install it on the remote unit. The output of the tuner is coupled to
FROM DELCO RADIO...

come the coils with highest performance.

You trust them ... so do your customers!

The core of quality service and really fine radio performance is always in Delco Radio coils. Delco Radio coils are made with powdered-iron cores, specially treated and compressed to exact shape on tolerance-true machines in Delco Radio's own plant. Skilled craftsmen wind and test the entire assembly so that you can depend on Delco Radio coils for *uniform* performance characteristics.

Your UMS-Delco Electronics Parts Distributor carries a complete line of Delco Radio parts, including precision-built Delco Radio coils. See him today! And, keep your eye on the Delco Wonder Bar Radio as advertised in leading consumer publications. It'll be helping you tune in to a greater service market.

DELCO WONDER BAR RADIO

DIVISION OF GENERAL MOTORS, KOKOMO, INDIANA

A complete line of original equipment service parts from the

WORLD LEADER IN AUTO RADIO

FEBRUARY, 1956
Fig. 3—Modifications to brightness, contrast and d.c. restorer circuits.

the grid of the 6AB4 cathode follower that feeds the 6AG5 first video i.f. amplifier through a length of coaxial cable. Contrast is controlled on the remote chassis by varying the bias on the tuner r.f. amplifier. This permits the tuner to be adjusted manually for maximum gain in fringe areas.

After wiring the remote-control unit, cut and mount an adapter plate to cover the hole left by the tuner on the main chassis. (See Fig. 8.) Install the 100-μuf coupling capacitor between the coax connector and the grid of the 6AG5 first i.f. amplifier. You can check your work thus far by connecting the tuner and main chassis through the coax, plugging both units into the power line and tying a good antenna to the tuner. You should now be able to receive normal pictures.

Set the contrast control to the extreme counterclockwise position. Turn the channel selector to the strongest station and adjust the area control so the picture has slightly less than normal contrast. With this preset adjustment, the contrast control will have a uniform range capable of handling signals of the levels usually encountered. Adjust the slug in the 10-20-mc tuner i.f. output coil for the best picture. Check the tuner voltages under load for approximately 130 volts to the mixer and 250 to the r.f. amplifier.

The brightness control is removed from the receiver chassis and installed on the remote unit as shown.

Three possible modifications may be made on the audio circuit. Some later models have a pretty good sound system with a push-pull output circuit. This can be used by mounting a 12AU7 on the adapter plate and using the circuit in Fig. 9 to provide a low-impedance volume control line. In this case, the 12AU7 preamp and tone-control stage on the remote chassis may be omitted.

If you have a separate high-fidelity amplifier, disconnect the discriminator output from the volume control of the receiver and connect it to pin 3 on the connector for the mike cable. The audio signal now passes through the 12AU7 preamp and tone-control stage to the separate amplifier.

Fig. 4—A.f.c. stabilization circuit.

Photo A—A remote control and amplifier cabinet with front panel removed.

Fig. 5—The remote control unit and its connections to the TV chassis. The two chassis are grounded through the braid on the connecting cables. The No. 2 lead in mike cable is used in the circuit variation as indicated in Fig. 9.

90 RADIO-ELECTRONICS
Fig. 6—Top view of control chassis. Angle irons at corners simplify mounting and servicing a.c. receptacles controlled by a 5-ampere switch at the remote location. The main on-off switch and the receptacles should be wired and installed in accordance with the local electrical codes. The control and three-conductor mike cables between the remote and main chassis can be run beneath the floor or through the attic in the same manner as standard electrical wiring.

Custom installations
Each custom installation should be planned carefully, paying particular attention to the type and location of the cabinets for the remote and main chassis. Do not overlook the possibility of installing the remote-control unit in an AM radio console. Prewar models of famous makes may often be purchased for as little as $10. The controls are at the correct height for easy adjusting from an easy chair. Select an a.c. type using a power transformer and examine the chassis, power supply and audio system. The audio system of many sets made in the late Thirties and Forties will prove superior to those in most TV sets. In this case, it pays to use the existing power supply and audio circuits. Space for the TV tuner can be found by removing the AM tuning capacitor and other components not required.

If you make your own cabinets, do not overlook the possibilities of using plastic laminates for finishing. Available in wood-grain as well as modern patterns, they can be used instead of expensive hardwoods.

Precautions
1. Protect the control knobs from damage by recessing the front panel about 2 inches into the cabinet. 2. Provide ample ventilation to dissipate the heat generated in the cabinets. 3. For chair-side tuning, the controls should be about 18 inches above the floor. 4. Conceal all antenna, control, power and interconnecting cables. 5. Observe safety rules and regulations to prevent shock hazards and short circuits. 6. Seal the remote and main chassis so children cannot gain access to the insides. 7. Whenever possible, anchor the enclosures to the floor so the interconnecting cables cannot be damaged through movement. 8. The panels of the cabinets should be easily removable to simplify servicing.

Photo A shows the front view of a remote-control cabinet with the front panel removed. The base of the cabinet is attached securely to the floor by four ½-inch pipe nipples. The 117-volt wiring (No. 12 two-conductor nonmetallic-sheathed cable) is brought in through one of these nipples and run to the main on-off switch on the right side of the cabinet. The remote chassis at the top and Williamson type amplifier are supported on open frames of ½-inch angle iron.

The control unit in use, with the author's mother at the controls.

The third method is to move the 6AT6 a.f. amplifier and 6K6-GT a.f. output stage and all related components over to the remote chassis. On early 630 type sets, the space gained on the main chassis can be used when adding keyed a.g.c.

Remove the on-off switch from the TV receiver and wire the primary of power transformer to the interlock connector on the chassis. Then plug the TV set, amplifier and remote chassis into the chassis, power supply and audio circuits.

The control unit in use, with the author's mother at the controls.

The third method is to move the 6AT6 a.f. amplifier and 6K6-GT a.f. output stage and all related components over to the remote chassis. On early 630 type sets, the space gained on the main chassis can be used when adding keyed a.g.c.

Remove the on-off switch from the TV receiver and wire the primary of power transformer to the interlock connector on the chassis. Then plug the TV set, amplifier and remote chassis into the chassis, power supply and audio circuits.

Parts for remote control
Capacitors: 1—100 2—200 1—270 µuf or ceramic; 0—01 1—0.05 1—0.1 1—0.25 µf; 000; paper; 2—40 µf; 050 vs; 1—80 µf; 50 volts; 1—20 µf; 25 volts electrolytic.

Resistors: 1—100 1—1,000 0—1,000 ohms, 1 watt; 2—2,000 1—10,000 1—20,000 1—47,000 4—100,000 ohms; ½ watt; 1—560 2—1,000 ohms; 50 watts; 1—1,000 ohms; 2 watts; 1—10,000 ohms; 3—1 megohm potentiometers.

Miscellaneous: 1—Power transformer, 500-550 volts c.t. @ 50 ma; 4—3 volts; 2 amps; 5—2 volts; 1—filter choke, 10 henries; 50 ma; 1—octal, 1—7-pin miniature; 1—7-pin miniature socket; 2—coax connector, chassis type (Amphenol 83-18); 2—coax plug (Amphenol 83-159); 2—reducer (Amphenol 83-186); 2—contact chassis type microphone connectors (Amphenol 91FCF); 2—3-contact male microphone plugs (Amphenol 91MC2M); 1—10 x 17 x 4-inch aluminum chassis; 1—cascode type tuner (Standard Coil Products); 1—XM-752 sound take-off coil (Standard Coil Products); 1—144; 1—12AU7; 1—6A84 tube; 1—plug lamp No. 47 and socket; RG-59/U coaxial cable; 3-wire shielded microphone cable (Belden 8423); hook-up wire, terminal strips, knobs, hardware.

Fig. 8—The adapter plate and connections to the 630 type receiver chassis.

Fig. 9—Circuit used for remote volume control of original audio circuit.
To reproduce a transmitted picture with the proper shading and brightness values, the television transmitter and receiver must have a common light level for use as a reference point. This point is total blackness. It is called the pedestal or blanking level and represents 75% of the peak carrier amplitude. The upper 25% region, referred to as the blacker-than-black area, contains the synchronizing pulses. Thus the black level is independent of signal variations and for proper shading it is necessary only that picture-tube cutoff represent the transmitted picture's blanking level.

Picture brightness is determined by the dc grid bias that establishes the tube's operating point. The video signal applied between grid and cathode produces instantaneous variations in brightness corresponding to the shade of picture components. However, the video is an ac signal whose average value is zero. Therefore the average grid voltage is the dc bias. Since this bias, when varied, alters the average illumination of the picture, the potentiometer used to make this change is called the brightness or, more properly, the background control.

The most common method of varying picture-tube bias is with a potentiometer, connected across a dc source, in either the grid or cathode circuit. Fig. 1 shows the simple circuit used in the Admiral 19E1 chassis. The control grid is grounded and the brightness potentiometer connected between ground and 90 volts. Thus the bias can be varied from 0 volt (maximum brightness) to -90 (well beyond cutoff). The signal from the video amplifier is fed to the cathode and will thus produce light variations on either side of the fixed brightness level. The proper setting of the brightness potentiometer is the point where black just equals visual extinction of the electron beam (this is not necessarily picture-tube cutoff).

Capacitor C1 between the arm of the control and ground is used in many receivers to shunt the ac across the brightness control, thus preventing the bias from varying.

Fig. 2 shows a variation in brightness control circuitry. Once again the brightness potentiometer is connected between ground and a positive voltage, approximately 140. However, this time the arm of the control goes to the control grid. To offset the positive grid voltage that can vary from 0 to 140, the cathode of the picture tube is direct-coupled to the plate of the video amplifier. Thus the cathode potential (approximately 135 volts) is equal to the video amplifier plate voltage. This illustrates the basic theory of biasing - bias is the voltage on the control grid relative to the voltage of the cathode. The bias is 50 volts when the control grid is +10 volts and the cathode is +60; when the control grid is -40 volts and the cathode is +10 and when the control grid is -90 volts and the cathode is -40.

Since the viewer has no way of knowing bias voltages and signal amplitudes, he usually sets the brightness level to suit his taste and is generally not too far off since insufficient bias prevents large signals (approximately 75% of peak amplitude) from driving the picture tube into cutoff, the screen is very bright and without proper black values. Also, the whites will drive the grid positive with respect to cathode, causing poor focus and sometimes blooming. Excessive bias will cause some of the darker values to produce cutoff and therefore shadow detail will be lost.

Brightness control defects

A fairly common complaint is failure of the brightness control to produce variations in brightness. The first check should consist of seeing whether rotating the brightness control varies the picture-tube bias through its normal range. If it does, the trouble lies within the picture tube — a poorly soldered joint in the grid or cathode pin, an open cathode or grid lead. To remove the possibility of confusion due to the above picture-tube defects and others such as internal and high-resistance heater-cathode and cathode-grid shorts, it is best to check bias with the picture-tube socket removed.

If the proper bias swing is not obtained, the individual cathode and grid circuits should then be checked. Check the voltage at the arm of the brightness control to see if it varies over the full range of the voltage across the potentiometer. The other element (grid or cathode) should be checked to see that its voltage is normal and return path to ground or some other point common with the control circuit is complete.

The Fig. 1 circuit is relatively easy to service. With the grid grounded, testing is limited to the cathode circuit. C2 being open will not afect brightness. However, should it short, the cathode voltage would rise to and remain at

Fig. 3 — Horizontal oscillator and control in Admiral 19K1 TV chassis.
Master TV Systems by JERROLD

World's Largest Manufacturer of Amplified Master Television Equipment

1. Antenna-Top UHF CONVERTERS—Convert any UHF channel to any VHF channel right at the antenna ... avoid losses of long UHF lead-ins. Have crystal controlled oscillators with Teflon coils and trimmers for drift-free performance.

2. Lo-Noise PRE-AMPLIFIERS—Mount at the antenna to amplify the signals, not the snow. Models for all-channel (2-131), low-band (2-6), or single-channel operation. Amazingly low noise level and high gain for perfect pictures where conventional "boosters" fail.

3. Hi-Gain DISTRIBUTION AMPLIFIERS—Sensitive. 5-tube cascode circuit distributes snow-free all-channel VHF signals to 3, 10, 20, or more receivers. Noise level approaches theoretical minimum—only 6 db.

5. Line Tap IMPEDANCE MATCHERS—Quick, easy way to connect TV sets to distribution busses. Match 300 ohm receivers to coax line, suppress interaction between sets, compensate for line response tilt.

PLUS Powerful sales aids to help you sell, install, and service any Jerrold system more profitably.

See your nearest Electronic Parts Distributor or write direct to:

JERROLD ELECTRONICS CORP.

2216 Chestnut Street, Philadelphia 3, Pa.

Canada: Jerrold Electronics (Canada) Ltd., 512 Bayview Ave., Toronto 17, Ont.
AMPHENOL TWIN LEAD INSTALLATIONS have proved what dealers and installers have always known—with dependable AMPHENOL Twin Lead they are assured of:

TOP PERFORMANCE
electrically superior, low loss

EXCELLENT SERVICE
virgin brown polyethylene assures longer-lasting, trouble-free installations

CUSTOMER SATISFACTION
no call-backs, more referrals

FAIR PROFITS
good dealer mark-ups to fair list prices

5 POPULAR AMPHENOL TWIN LEADS

<table>
<thead>
<tr>
<th>Lead Name</th>
<th>Resistance</th>
<th>Wire Thickness</th>
<th>Specifications</th>
<th>List per 1000 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-271 AIRCORE*</td>
<td>300 ohm</td>
<td>7/28 mil web</td>
<td>Tubular construction contains and protects field of energy—assures lowest loss under wet or dry conditions. Excellent for fringe area installations. A must for UHF and coastal regions. *U.S. Patent 2,543,696</td>
<td>$57.50</td>
</tr>
<tr>
<td>14-056 STANDARD</td>
<td>300 ohm – 60 mil web</td>
<td></td>
<td>Quality in thousands of installations.</td>
<td>$36.50</td>
</tr>
<tr>
<td>14-559 STEELCORE</td>
<td>300 ohm – 72 mil web</td>
<td></td>
<td>Conductors: Twice as tough and flexible!</td>
<td>$38.50</td>
</tr>
<tr>
<td>14-100 CENTURY</td>
<td>300 ohm – 100 mil web</td>
<td></td>
<td>Thickness for applications where a strong line is needed.</td>
<td>$45.00</td>
</tr>
<tr>
<td>14-298 ROTATOR</td>
<td></td>
<td></td>
<td>Four conductor rotator cable with heavily ribbed virgin brown polyethylene dielectric.</td>
<td>$50.50</td>
</tr>
</tbody>
</table>

SEE YOUR AMPHENOL DISTRIBUTOR FOR QUANTITY PRICES!

AMERICAN PHENOLIC CORPORATION Chicago 30, Illinois
AMPHENOL CANADA LIMITED Toronto 9, Ontario

TELEVISION

approximately the plate voltage of the video amplifier, driving the picture tube into cutoff. If Cl shorts, it places the cathode at ground potential and, despite varying the brightness control, the screen will remain very bright with retrace lines visible.

(In some models, the grid returns to ground through a 56,000-ohm resistor shunted by a .01-µf capacitor. Blanking pulses are fed directly to the grid through a 2,700-ohm resistor and a .015-µf capacitor in series, connected to one end of the vertical deflection coil. If this .015-µf capacitor shorts, a high positive voltage will be applied to the grid, making it impossible to maintain complete brightness control.)

The circuit in Fig. 2 is slightly more involved. The voltage on the cathode of the picture tube is approximately 135. The control grid voltage can be varied from 0 to approximately 140. Should either R2, L2 or L3 open, the picture tube cathode will float. Having no common reference point, bias is lost and brightness cannot be controlled. Should the heater of the 6A16 open, there will be no plate current flow and the plate voltage will rise to B plus. This will raise the picture-tube cathode voltage, increasing the bias and decreasing the brightness range somewhat.

If R3 or R4 increases in value or if L4 opens, the circuit resistance increases dropping the voltage on the video amplifier plate and the cathode of the picture tube. This will upset the brightness and make it difficult or impossible to cut off the beam.

When checking for the cause of fluctuations in brightness, check for fluctuations in picture-tube bias—also for changes in the high voltage often caused by intermittent high-voltage capacitors.

No brightness control

An RCA 9T147 using a 19AP4-A came in with a dark picture and no control of brightness. The contrast control produced variations in the strength of the picture but there appeared a slight smearing in the portions that changed sharply from black to white and vice versa. The high voltage measured 15,000, as it should.

The cathode of the picture tube is connected to the center arm of a potentiometer between ground and 120 volts. Varying the brightness control produced the complete range of voltage on the cathode. The resistance of the grid circuit was as per schematic and except for some slight distortion everything seemed to be in order. I tried soldering the cathode and grid pins. The only other clue is that when I removed the cathode lead from the picture-tube base there did not seem to be any change in the picture. I have not replaced the picture tube but have checked for interelement shorts with a vtvm. What do you suggest I do now?—S. S., Port Washington, N. Y.

Your description of the defects gives...
TELEVISION

every indication of picture-tube trouble—most likely, an open cathode. Make one final check: With the socket removed, measure the bias voltage from pin 2 to pin 11 as you vary the brightness control through its entire range. You should read from a slightly positive grid to a grid negative by about 110 volts. However, most likely, the tipoff is the fact that removing the cathode lead did not affect the picture. That you received some pictures is due to the grounded heater that acts somewhat like a filament.

You may heal the cathode break by using a high voltage to arc across the gap and weld the ends together. Obtain a piece of high-voltage cable (20,000-volt second-anode cable or automobile ignition lead) with an alligator clip on each end. With the set turned off, clip one end to the second anode of the picture tube or to the hot side of the high-voltage filter capacitor. The other end goes to the blade of an insulated screwdriver or other instrument with a small point.

Turn the set on, give the picture-tube heater a minute to warm up and then bring the high-voltage jumper lead close to pin 11, the cathode. As you bring it close corona will appear. Then, while gently tapping the neck of the tube with an insulated tool in one hand, bring the high-voltage lead closer until an arc flashes to the cathode pin. You may have to arc the cathode several times, but with any luck all the repair will be made and control of brightness returns.

Picture tearing

As Admiral 19K1 chassis has a bad case of horizontal instability. The customer reports that picture was tearing, but closer examination showed bending and general instability. Our first check was to replace the 6SN7-GT horizontal oscillator tube. This did not help and, following Admiral’s service notes on horizontal sync adjustment, we carefully double-checked each step.

The various waveforms in this circuit seem stable and, as best we can recall, the set checks out as well as similar chassis of this type. We would appreciate any information that would help us get a clue off the bench without checking and replacing every component in the sync and horizontal sweep circuits.—L. R., Springfield, Ohio.

Unfortunately in a circuit (Fig. 3) such as this there is no way of positively pointing to one component. The quickest way is the following: Try each position of the dx rangefinder and leave it where maximum stability is obtained. Then, repeat the sync adjustment. If there is no improvement, try several different 6SN7’s in the horizontal oscillator tube. Often the slightest change in interelectrode capacitances can completely stabilize the circuit. If the above does not help, carefully check the following components: R20, R21, R422, R423, R424 and R428. Not all these...
Short description of a Small Efficient TV System...

1 antenna . . . IN
8 set lines . . . OUT
10 db signal . . . GAIN

all with the

DISTRIBUTION AMPLIFIER

model DA8-B
approved for Color-TV

$89.50 List

Ideal for garden apartments, motels, TV showrooms, deluxe home installations and other small TV systems. The DA8-B is a broadband, all-channel unit that requires no tuning, impedance matching devices, preamps or other special fittings.

Features and Specifications:
- Low noise all-triode circuit
- More than 10db gain on all VHF Channels
- Inter-set isolation in excess of 22db
- Provision for 75-ohm cable or 300-ohm twin lead
- Prevents overload through 10:1 gain control range
- Built-in power supply
- Designed for continuous duty operation

NOTE: For larger systems, Blonder-Tongue will furnish Free planning service on request.

Sold by Radio-TV Parts Distributors and Jobbers.

Write for Installation Details and FREE Booklet—"TV for 2, or 3, or More!"

Dept. KB-3

BLONDER-TONGUE LABORATORIES, INC.
Westfield, New Jersey

TELEVISION

resistors are 6% units, but they should be. Measure each, and replace any that are out of tolerance. Regardless of how it checks, on general principles alone, replace C418, the capacitor shunting the horizontal lock coil. Use a good-quality 400-volt 10% capacitor.

Capacitor C417 is in an especially critical portion of the circuit—replace it with a 270-pf 10% mica unit. Make a careful check of capacitors C413 and C416. Try tapping the horizontal oscillator transformer T404. If by doing this conditions become considerably worse, the adjustment slug may be cracked and the transformer should be replaced. The above checks should almost surely end the trouble.

As an additional aid, compare the signal amplitudes and general waveform with those shown in Fig. 3. Any sizable deviation could very likely indicate the circuit where the trouble is taking place.

Rf oscillator defect

An RCA model 177T158 came in that takes 15 minutes for a picture to appear. We get only channels 2 and 4 reliably in this area and when the set is first turned on channel 2 comes in perfectly on channel 3. After about 15 to 30 minutes, the picture drifts off channel 3 and can be tuned in properly on channel 4.

I believe that the trouble is a component in the tuner but have hesitated tearing it down due to the double shielding and the precise way in which it is constructed. Once the set is operating properly the trouble will not recur.

I have replaced the rf oscillator and rf amplifier tubes but this did not cure the trouble. I would appreciate any help on this problem.—R. R., Tallahassee, Fla.

The change in tuning during the warmup period indicates very strong trouble in the tuner section; in particular, the rf oscillator-mixer circuits. You have replaced the tubes in the tuner so the trouble narrows down to components in the circuit of the 6X8. There are several components in this circuit in which a change in value would cause the oscillator to operate on a different frequency, the most critical being in the grid circuit. Apparently, one of these components is changing in value during the 15- to 30-minute warmup period.

The tuner is not too easy to disassemble and the parts are a little difficult to get at. However, you have no choice in the matter. Very carefully check all capacitors with a capacitor checker. If none is available, try substitution but be careful to use exact replacements. Some of the capacitors used in this circuit are temperature-compensated—most likely one of these is defective. When moving parts, carefully observe wire dressing as the distributed capacitance of the hookup is generally part of the tuned input circuit.
COLOR DAPTOR

Part II—Color wheel construction and drive mechanism; alignment and adjustment of the complete system

By PERRY H. VARTANIAN and ROBERT W. DeGRASSE

WHEEL SYNC POLE PIECES

DRIVE MOTOR

Color wheel drive mechanism.

The color wheel, as shown in last month's article, consists of six specially curved color filters mounted on a frame of sheet aluminum. It gives two complete color pictures per rotation, operating at a speed of 600 r.p.m. The six filter segments consist of two each of the three primary colors—red, blue and green. The colors and densities of these filters must be carefully selected, so that white light, when viewed through the rotating filter wheel, appears white. Color filter material having these properties is available from Eastman and others, or the Coloraptor Co., 3471 Ramona, Palo Alto, Calif. [A Wratten No. 26 has been recommended for the red; No. 47 for the blue and No. 58 for the green. Approximately equivalent colors can be obtained in Plexiglas or Lucite plastic film.—Editor]

The color wheel layout is obtained by redrawing Fig. 1 to full scale. The wheel radius is equal to the distance from the drive hub (located directly above the left edge of the picture tube) to the lower right-hand corner of the picture tube. After determining the color wheel diameter, a full-size card-board template of the color filter segment can be made and used to cut out the segments and to lay out the supporting web. The web, which has spokes approximately an inch wide, is constructed of sheet aluminum, Masonite or other light material. The segments are attached to the web with transparent tape or cement. It is important that the color filters be arranged so that they pass the picture tube in red-blue-green sequence.

An alternate method is to sandwich the color filter segments between two heavy sheets of transparent celluloid or clear plastic. Acetone or clear airplane cement is applied along the edges of the segments. The assembly is then held under pressure until the cement is dry. This construction method protects the filters and offers less wind resistance.

The color wheel drive mechanism (see photo) has two bearing supports and a shaft which extends from the front to the back of the TV set. The wheel hub fits on the front of this shaft and is held in place by a setscrew tightening into a flat on the drive shaft. Mounted on the rear of the drive shaft is a 7-inch diameter V belt pulley. On the front face of the pulley are two soft-iron pole pieces next to which the synchronizing pickup coil is mounted. The motor drives the color wheel through a ⅞ inch wide V belt and a smaller pulley. The pulley diameter ratio must be selected to give a speed of slightly greater than 600 r.p.m. V belts and pulleys are available from any refrigerator supply store; the shaft and bearings at hardware stores.

Although ball bearings were used in this design, bushing bearings should be satisfactory. The shaft diameter is ¾ inch, which is turned down to ⅛ inch at each bearing surface. The bearings are then mounted to hold the shaft securely and prevent any front-to-back shaft motion. This is necessary to maintain constant spacing between the sync pickup coil and the rotating pole pieces.

The Coloraptor system is also adaptable to a projection type TV receiver. This simple conversion requires a color wheel only large enough to cover the lens of the projection unit. The color wheel should consist of three pie-shaped segments and the wheel should be driven at 1,200 r.p.m.—in which case the synchronizer pickup should give one
pulser per revolution of the color wheel.

The color wheel drive motor should have about 1/100 horsepower for projection and 7-inch TV sets, 1/50 h.p. for 10 to 17 inches, 1/30 h.p. for 19 to 21-inch TV sets. An induction type motor, such as a two-phase capacitor unit, is excellent for this application. A series universal motor may also be used, but the a.c. supply to the motor must be adequately filtered to prevent TVI.

The drive motor speed is controlled by V7 and V8 (see schematic in Part 1) to synchronize the color wheel with the TV picture. The sync pickup coil (see photo) generates a pulsation which is compared with a switching signal from the plate of V4-b in phase detector V7-a. The voltage on the grid of V7-b is about -2 to -5 when the pickup coil and V4-b signals are positive at the same time. This voltage goes to zero when the two signals are out of phase.

The signal is amplified in V7-b and applied to V8 which acts as a grid-controlled rectifier and saturates the servo transformer. This in turn reduces the voltage drop in the transformer secondary winding. The servo transformer is a Stancor A-3852 universal output unit. The two plate leads are connected as a primary and the voice coil winding connected in series with the motor. Standard power transformers may also be used by connecting the B-supply winding across V8 and using the heater windings in series or parallel as a control winding.

The synchronizer pickup coil is constructed from a surplus 24-volt d.c. relay by disassembling the relay and removing the relay contacts. The relay is then modified by bending the relay contact support at a right angle (Fig. 2). An Alnico magnet, such as used in PM speakers, is fastened to the relay with an aluminum or brass clamp. The pickup coil is then mounted so that the rotating iron pole pieces on the color wheel drive pass across the face of the pickup coil, complete the magnetic circuit and induce a signal voltage in the coil. The location of the two rotating pole pieces is shown in the photo and Fig. 2. The sync pickup coil should give a voltage of at least 5 r.m.s. when the color wheel is rotating at 600 r.p.m.

The addition of the sync pickup coil to the color-wheel drive mechanism completes the construction of the Colorerator system. Recheck all wiring connections against the schematic.

Alignment and adjustment

Check the B-plus voltage from the power supply after the Colorerator has been on for about 3 minutes. This voltage is set to between 200 to 225 by adjusting the 1,000-ohm 10-watt power supply series resistance.

The next adjustment, alignment of the chroma amplifiers, requires a signal generator calibrated to cover the range 2.5 to 5 mc and a detector. The detector may be a high-frequency probe on a vacuum-tube voltmeter or simply a crystal diode and a multimeter connected as in Fig. 3.

Attach the signal generator output to the grid of VI-a and the detector across L4. Set the signal generator to 3.5 mc. Adjust TC6 and then TC5 for maximum response. Set the signal generator to 4.5 mc and tune sound trap TC4 for minimum response. As the signal generator frequency is varied, a response such as shown in Fig. 4 should result. Some retuning of TC5 and TC6 may be necessary to obtain this response. If sharp peaks are obtained reduce the value of R1 or R21 to flatten the response.

Leaving the detector across L4, attach the signal generator input to the TV video detector so that the signal goes through preamplifier V9. Set TC1 at about half capacitance. The longer the twisted-pair length the lower will be the final value of TC1. Set the signal generator at 4.5 mc and tune sound trap TC2 for minimum response. Set the signal generator at 4 mc and adjust TC3 and the preamp trimmer for maximum response. Tune the signal generator to 3 mc and adjust TC1 for maximum response. Repeat these adjustments until the response curve of Fig. 5 is obtained. This curve has sharply peaked gain at 4 mc and is designed to compensate for the reduced i.f. and video bandwidth of many sets.

For TV sets having wide-band i.f. strips, reduce the value of the resistor across L2 and shunt preamp coil L16 with a suitable resistance to obtain flat response from 3 to 4.1 mc. At a final check readjust sound traps TC2 and TC4 for minimum response at 4.5 mc.

Fig. 2—Synchronizer coil construction.

Fig. 3—Simple form of r.f. detector.

Fig. 4—Response of chroma amplifier.

R- WHEEL RADIUS ACCORDING TO PIX TUBE SIZE

Fig. 1—Layout of the color wheel.

RADIO-ELECTRONICS
This completes the alignment of the chroma amplifier circuits.

To adjust the reference channel connect the signal generator to the grid of V6-b and a voltmeter to the test point. Tune the signal generator to 3.58 mc and adjust TC11 for maximum response, keeping the test point voltage below 2 by reducing the signal generator output. Move the signal generator to the grid of V6-a and, with the signal generator at 3.58 mc, repeat the above procedure, adjusting TC12.

The reference-channel phase tritch is now checked for proper operation. Connect an oscilloscope, synchronized by the TV set vertical sync pulse, to each of the tritch plates. With proper operation the waveforms of Fig. 6 are obtained. If an oscilloscope is not available, connect a multimeter between B plus and each of the tritch plates in turn. All plates should indicate a voltage of about 20 with respect to B plus.

If the tritch is not functioning as above, disconnect the vertical sync pulse from the TV set. Cycle the tritch by momentarily shorting to ground each of the grids (V4-a, V4-b and V5-a) in sequence. Then momentarily short the V4-a grid to ground. Now the V4-b plate should be 60 volts less than B plus and the other two plates should be near B plus. Similarly shorting the V4-b grid should lower the V5-a plate voltage and raise the other two plates to B plus.

The cycle is finished by shorting the V5-a grid to ground which restores the original condition of the V4-a plate 60 volts less than B plus and the other two plates at B plus. If shorting a grid does not cause the next tube in sequence to conduct, increase the grid resistor (R7, R8 or R15) of the next tube slightly and repeat the sequence test.

The Colordaptor unit is now ready for alignment with a standard color transmission. Attach a voltmeter to the test point and adjust TC7 and crystal tuning TC9 for maximum output. Neutralizing capacitor TC8 is adjusted by observing the test-point voltage with an oscilloscope synchronized to the horizontal sweep frequency. The output

Fig. 5—Diagram shows response of the preamplifier and chroma amplifier.

Fig. 6—Waveforms on tritch plates.

COMPLETELY REVISED AND UP-TO-DATE, THIS HANDY 28 PAGES GUIDE GIVES THE RADIO RECEPTOR RECTIFIER REPLACEMENTS FOR EVERY RADIO AND TV MANUFACTURER, INCLUDING ALL THE LATEST MODELS.

CONVENIENT IN SIZE, TOO—JUST RIGHT TO SLIP INTO YOUR POCKET OR TOOL KIT, ALWAYS AVAILABLE WHEN YOU NEED IT!

In Radio and Electronics Since 1922

When the job calls for rectifier replacements, install RRco. "Safe Center" units. You'll find the guide lists a complete range of standard sizes and types for every need—in stock at your local distributor. For your free copy fill out the coupon below and mail it to us today.

Semiconductor Division
RADIO RECEPTOR COMPANY, INC.
251 West 19th St., New York 11, N. Y.

Please send me a copy of the new RRco. Selenium Rectifier Replacement Guide

Name

Position

Company

Address

City

Zone

State

99
TELEVISION

should be reduced by detuning (varying
the fine-tuning control on the TV set)
no to about 1 volt, as indicated
on a d.c. meter, at the test point.
Capacitor TC8 is now adjusted to get
the oscilloscope pattern shown in Fig.
This waveshape indicates that the crys-
tal is properly neutralized. If an oscil-
loke is not available, a fixed capaci-
tor of 10 μF may be substituted for
TC8 since this adjustment is not too
critical.

Now switch the TV set to a channel
to broadcasting color and, with TC10
at minimum capacitance, increase it
until less than 0.5 volt is measured at
the test point. This adjustment pre-
vents oscillation in the reference chan-
nel when no color signal is present.

The color wheel may now be started
and adjusted for synchronization. Turn
the R22 slider to the B plus side and
adjust R23 until the color wheel goes
slightly too slow—when the bars ap-
ppear to go in the same direction as
the wheel rotation. When the color
wheel speed is correct, a white picture
is seen with a clear gray bar occasion-
ally crossing the picture. Now turn the
R22 slider to the ground end. The gray
bar should now go through the picture
in the opposite direction to the wheel’s
rotation. The color wheel can now be
synchronized by adjusting R22.

Fig. 7—Waveform shown indicates the
correct neutralization of crystal.

To obtain proper phasing of the color
wheel, the synchronizer pole pieces
should be moved relative to the color
wheel so that as the blue filter starts
across the TV screen the pole pieces are
just passing the pickup coil.

If proper speed cannot be obtained as
above, check pulley ratios. If the wheel
is too fast, additional series resistance
can be added in the motor circuit.

With the color wheel properly syn-
crhonized a full color picture should
now be obtainable. The color gain
is controlled by R20 and will also be
strongly affected by the TV set fine
tuning. In an intercarrier set adjust the
fine tuning until the sound interference
just disappears from the picture. At-
tach a voltmeter to the Coloradaptor test
point and adjust the horizontal locking
control of the TV set for maximum
reference voltage. Also, return TC9
and the reference channel, tuning trim-
mers TC11, TC12 and TC7 for maximum
response.

The final adjustment is the color
phase. With the color wheel properly
synchronized and a color signal present, re-
fERENCE phase TC12 can be adjusted to
obtain pleasing flesh tones and lipstick
color. Capacitor TC12 gives the greatest
color phase range, but TC7 and TC11
also affect color. If proper color phase
is unobtainable, reverse the leads to
either L3 or L4 but not both and again
adjust the phase controls.

END
"Silver Screen 85's" new barium "picture-guard" process deposits a lining of barium over the tube's inside walls. Increased "getter" action keeps the vacuum pure, protecting the screen and electron gun from contamination. The result: Silver Screen 85 gives a brighter picture for a longer time.

"Silver Screen 85's" new high-energy electron gun delivers 10% more light-producing electron energy to the screen. Brightness is increased an equal amount. Precision-focus keeps the picture in perfect sharpness.

"Silver Screen 85's" new barium "picture-guard" process deposits a lining of barium over the tube's inside walls. Increased "getter" action keeps the vacuum pure, protecting the screen and electron gun from contamination. The result: Silver Screen 85 gives a brighter picture for a longer time.

"Silver Screen 85's" new high-energy electron gun delivers 10% more light-producing electron energy to the screen. Brightness is increased an equal amount. Precision-focus keeps the picture in perfect sharpness.

In addition to "Beat the Clock" Sylvania will use Sunday Supplements to promote the "Silver Screen 85" in your own locality. Full schedules will be run in This Week and American Weekly, plus a score of independent Sunday Supplements.

A better tube, better promotion, with more tie-in material made available for your use. That means this can be your biggest picture tube year if you make it a "Silver Screen 85" year.

Sylvania's "Silver Screen 85" is now improved four ways to give brighter pictures for a longer time. New "Picture Guard" and high-energy electron gun headline these improvements. In addition, refinements have been made in the silver activated screen and super-aluminized reflector to make television's brightest picture tube even brighter. And to make this your biggest year with "Silver Screen 85" Sylvania will be telling more consumers than ever about the improved "Silver Screen 85."

In addition to "Beat the Clock" Sylvania will use Sunday Supplements to promote the "Silver Screen 85" in your own locality. Full schedules will be run in This Week and American Weekly, plus a score of independent Sunday Supplements.

A better tube, better promotion, with more tie-in material made available for your use. That means this can be your biggest picture tube year if you make it a "Silver Screen 85" year.

Sylvania's "Silver Screen 85" is now improved four ways to give brighter pictures for a longer time. New "Picture Guard" and high-energy electron gun headline these improvements. In addition, refinements have been made in the silver activated screen and super-aluminized reflector to make television's brightest picture tube even brighter. And to make this your biggest year with "Silver Screen 85" Sylvania will be telling more consumers than ever about the improved "Silver Screen 85."
Stereophonic Tapes

The number of stereophonic tapes is still small. Livingston offers the largest library; Webcor-Concertapes are also available in stereo versions; RCA has a small handful. But the introduction of the Ampex system (see "For Golden Ears Only") will no doubt encourage the issuance of more stereo tapes: in fact, announcements of coming issues have already been made by Omega-tape and others.

Most present stereo tapes were made at the same time as normal tapes for disc versions and pretty much as an accessory. Very few have been recorded solely to achieve the best possible stereo effect by experimenting with mix and placing, and conducting the music with that in mind. Moreover, stereo recording is very new and still highly experimental; nobody knows much about it and techniques are still to be developed. Therefore, do not judge the eventual possibility of stereo sound entirely by the quality of those presently available tapes; it is safe to say that the tapes will improve tremendously.

Stereo reproduction can produce some highly special effects completely foreign to single-channel projection. In reviewing the following tapes I have stressed these effects and coined a few phrases to describe them. "Directionality" is extremely important, at least for demonstrating the stereo effect. "Walking" describes the effect of an instrument or whole choir seeming to walk across the listening position. A trumpet in a Dixieland band, for example, can seem to walk from right to left or vice versa if the trumpet player swings the trumpet from one ear to the other. "Crossing over" is more violent: the instrument or voice or choir seems to change position in an instant. "Stretching" is the effect of stretching the band or orchestra (or even a single instrument) in a single row at the front of the stage. "Thinning" is a mild version of the same effect where the depth of sound is diminished or of stretching out. "Gapping" is an effect where part of the instruments are in left field, part in right, field and none in the infield. This occurs particularly during very pianissimo or soft passages involving the instruments at the extreme ends of an orchestra.

Ampex demonstration tape

So far as I know this tape is not for sale but since it will be heard frequently a few comments may be pertinent. The general plot and plan are excellent and the tape does get across the improvement possible with stereo reproduction. However, the two selections are rather unfortunate to my mind. For one thing the 802 amplifier-loudspeakers, good as they are, are incapable of reproducing anything but the harmonics and distortion of the pedal organ bass underlying the opening of Tchaikovsky's Nutcracker. Furthermore, that is an organ pedal bass - there are no pedal basses on any of the very few deficiencies of the system. Neither this nor the final selection are strong in stereo effects and moreover possess very few first-class demonstration values of any kind. So do not base your opinion of stereo or the Ampex system solely on this tape alone.

Josh White Comes A-Visiting

Livingston T-1085BN

(Specify stacked or staggered head.)

I thought this the best showoff and demonstration tape of the dozen or so I have reviewed. Presence is very complete and not unnatural either; since the small group can easily be imagined to be in a big living room. Directionality is very fine throughout with no aberrations that I noticed. Josh is always changing the basses of the horn, moving the basses on the left and others fill in the middle. The mixture of solo and chorus voices with small band music is essentially effective and impressive. The hi-fi quality is first rate; there is a fine gutty double bass, excellent guitar transients and some good dull drums. This is one of the exceptions which was missed for stereo effect primarily. It is especially suitable for stereo systems using a big single-channel system for the left and the Ampex for the right channels; in fact, it produces the most overwhelming effect with this combination.

Barbara Carrol Trio

Livingston T-1081BN

(Specify stacked or staggered head.)

This too is excellent because, again, it is easy to imagine a trio in a living room and the close-up perspective is natural. The polarity of this tape is reversed; the right channel has the heavier bass and, if you use the big speaker plus one Ampex combination, you should reverse the plugs. The recording separates the piano from the bass and drums but the effect is impressive rather than distracting.

Lennie Herman and Mightiest Little Band in the Land

Livingston 1083BN

(Specify stacked or staggered head.)

Another top-notch demonstration tape. Traps and accordion right; sax, piano and bass left. The directionality is perhaps the least subject to changes in listening position of all the tapes tried. Even at extreme distances it is the same. But when you play the other, both speakers are heard. Rather thin in the middle but the grunting is mild and the stereo effect heightened. Realism and presence very complete. Excellent with dissimilar systems, bass and organ bass on the left. No aberrations noted. Hi-fi quality is first rate, good traps and good bass.

Red Onion Jazz Band

Empirical EM7-5BN

(Specify stacked or staggered head.)

Right in there with the above. Polarity normal; directionally effects not so marked but excellent. Hi-fi quality is excellent, too, the big dull, damped (probably padded) bass drum does not come through on the Ampex but will come through on a mixed system with good low-frequency response.

John Halloran Choir

Now Let Every Tongue Adore Thee, Little Boy Blue, Cindy, Alleluia, Skip to Mah Lou, etc., etc.

Webcor-Concertapes 2992-1

Good presence (although the Capitol disc of Folk Songs of the New World has at least as good presence on a good single-channel system). Directionality good with the basses on the left, the supranas on the right; some tendency for the alto, tenors and baritones in the middle to creep or walk. Depth pretty good. The music will please and the overall effect is favorable to stereo.

Disc Records

Note: Records below are 12-inch LP and play back with RIAA curve unless otherwise indicated.

Musical Organ Clock

Vanguard VRS-7020 (10-inch MG)

It seems the jockey goes even farther back than we thought. This is an extremely faithful reproduction of the elaborate musical clock organs of the 18th century. The aural intermodulation of wind and pipes is plainly audible in many spots.

Restful Good Music

Stokowski and His Symphony

RCA Victor LM-1875

The title is one of the silliest in the catalogs but the record is just what the doctor ordered to soothe the nerves of wives and children. On a fine system it can sound impressive, too. And the very lezato and slow music provides a pretty
NOW! PHOTOFACT BRINGS YOU EXTRA SCHEMATIC COVERAGE

you get immediate coverage on leading receivers just as soon as they hit the market!

IT’S AN "EXTRA" SERVICE—
IN ADDITION TO REGULAR COVERAGE—
AT NO EXTRA COST TO YOU

Sams' PHOTOFACT now includes EXTRA schematic diagram coverage of the top manufacturers' new model releases. You get this up-to-the-minute EXTRA coverage at no extra cost in all current PHOTOFACT Sets. Look for them at your Parts Distributor today! See for yourself how PHOTOFACT keeps you current with the present output of new TV and Radio Models. Be sure to enter your "standing order" for each new monthly release of Sams' PHOTOFACT Sets—they'll put you out ahead in service work.

remember—you get the world's finest service data —
you get it fastest in PHOTOFACT

HOWARD W. SAMS & CO., INC., 2205 E. 46th St., Indianapolis 5, Indiana
INDEPENDENT SCIENTIFIC SURVEY

AND LAB TESTS PROVE

PRECISE MODEL #111—"BEST COMMERCIAL TUBE TESTER AT ANY PRICE"

Now You Can Check Tubes

The Manufacturer's Way

• Checks both emission and mutual conductance
• Checks all tubes including hearing aid, miniatures
• Six different plate voltages
• Different grid signals
• Simplified Short check
• Gap-adj. controls
• New type switches
• Deeply etched aluminum panel
• Three different screen voltages
• Latest roll chart
• Measures filament current
• Measures grid bias

precise

Model #111

Mutual Conductance and Emission TUBE TESTER

An independent scientific survey conducted by an impartial testing laboratory confirms what purchasers already know: "The most advanced, the most complete tube tester and the best priced is made by PRECISE DEVELOPMENT CORP., Oceanside, N. Y."

CHECK THESE ADDITIONAL 'specs'... TALK TO YOUR JOBBER

AND TO ANYONE WHO HAS THIS OUTSTANDING TUBE TESTER...

The Model 111 is the only complete commercial tube tester that checks all tubes for both EMISSION and MUTUAL CONDUCTANCE. Individual filament current is measured directly on a meter when checking a VOLTAGE AMPERES. NEW, MODERN DESIGNED ROTARY SWITCHES allow you to check each tube element individually. NEW TYPE Single rotary switch for complete short checks. The 111 makes all tests. For information on where to purchase this and other Precise "Bets", see your local jobber or write...

precise

DEVELOPMENT CORP., OCEANSIDE, NEW YORK

Send For Our Latest Catalogue

Illustrating 39 Professionally Designed and Engineered Kits

• AM/FM Tuner
• FM Tuner
• Television
• Hi-Fi Amplifier
• Geiger Counter
• Test Equipment
• Long and Shortwave Radio Kits
• Experimenter's Construction
• Phonographs and Record Changer

ARKAY KITS

WORLD'S FINEST

RADIO PHONOGRAPH TV
TEST EQUIPMENT HI-FI

Write for FREE Brochure

RADIO KITS, INC. • 120 Cedar St., N. Y. 8

NEW RECORDS

(Continued)

severe test for wow in spots. Very pleasant and soporific music, some of it seldom heard.

The Music of Purcell, Jenkins and Locke

Alfred Deller, counter-tenor

Leonhardt Baroque Ensemble and Consort of Viols

Vanguard BG-457

Ancient instruments including a "consort of viols" and the very rare counter-tenor (male alto) voice in beautifully performed examples of 17th-century English music. Good test for noise, wow and rumble, naturalness and a fine separation for too loud and too much hi fi.

Names and addresses of manufacturers of any items mentioned in this column may be obtained by writing Monitor, RADIO-ELECTRONICS, 25 West Broadway, New York 7, N. Y.

CORRECTION

Several readers have inquired about the discrepancy in dimensions of the port pieces in Figs. 1 and 3 of Mr. Drenner's articles on the Karlson enclosure (pages 51-56 October, 1955, issue).

The author states that the dimension given is 11% inches on Fig. 3 should be 10% inches, and the 11%-inch dimension in Fig. 1 is correct. Inaccuracies in sawing will vary the point where the port pieces meet the top angle and stiffeners. The port pieces can be as short as 10% or as long as 11% inches without affecting the fit with the top angle.

If cut to 11% inches (the preferred dimension) as in Fig. 1, they butt flush with the top surface of the top-angle stiffeners. Cut them longer and they extend above the stiffeners. When cut to only 10% inches, the stiffeners lap over the port pieces as shown in the rear-view photo in the article.

The important port-piece dimensions are the width (8 1/2 inches) and the point at which the top angles contact them above the shelf (8 1/18 inches). This dimension will be automatic if the 45° miters on the top angle are correct.

Radio Thirty-Five Years Ago

In Gernsback Publications

HUGO GERNBACH, Founder

Modern Electricity 1908

Wireless Association of America 1908

Electrical Experimenter 1913

Radio News 1914

Science & Invention 1920

Television 1927

Radio-Craft 1929

Short Wave Craft 1930

Television News 1931

Same large libraries still have copies of ELECTRICAL EXPERIMENTER on file for interested readers.

In February, 1922, Science and Invention (formerly Electrical Experimenter) ran the following announcement:

10,000 Years Hence. By H. Gernsback.

If President Harding Spoke to 100,000,000 People.

An Interview with Nikola Tesla, by H. Winfield Sear.

Collapsible Aerial for Submarine Radio.

Radio Cheers Arctic Explorers.

Receiving the Radiophone Concerts, by Robert G. Lecoultre.

Radio Set in a Watch Case, by Bernard Tucker.

A New 150 to 3,000-Meter Receiver, by Arthur H. Lynch.

RADIO-ELECTRONICS
you can't argue with acceptance

proven quality
100% inspected
accurate replacement
prompt delivery

the most complete line
of twist mount
dry electrolytic capacitors

Better than any claims we could make is the unqualified and enthusiastic acceptance by engineers and servicemen alike. These are some of the features on which this acceptance is based:

- Aluminum containers provide maximum protection against moisture.
- Low leakage, long shelf life.
- Designed for 85° C. operation.
- Complete with metal and bakelite mounting plates.
- Easy to mount.
- Extremely compact—yet highly dependable.

Pyramid capacitors are listed in Sams’ Photofacts

DISTRIBUTOR DIVISION
PYRAMID
ELECTRIC COMPANY
1445 Hudson Blvd., North Bergen, N. J.

FEBRUARY, 1956
LOOK FOR THIS LABEL

TO BE SURE OF THIS SOLDERING PERFORMANCE

5 SECOND HEAT
Weller was first to design and patent a fast-heating soldering gun. All Weller models heat in 5 seconds.

TRIGGER CONTROL
Fingertip control brings heat instantly on—instantly off. There’s no need to unplug...no wasted time or current.

PERFECT BALANCE
The exclusive streamlined design of Weller Guns permits easy access to tight places, comfortable handling and precision soldering.

EXCLUSIVE TIP-GRIFF
Wiping action of tip-fastening nuts eliminates contact resistance and oxidation. Full, constant heat is assured.

2 SPOTLIGHTS
Pre-focused dual spotlights eliminate shadows and illuminate the work. Lights and heat come on simultaneously.

LONG-LIFE TIPS
Low cost Weller tips give long service, are designed for maximum heat transfer and can be changed in seconds.

ask your distributor for a demonstration

Electric Corp.
822 Packer Street, Easton, Pa.

Watch for March RADIO-ELECTRONICS ON SALE FEBRUARY 23

NOW IN STOCK at NIDISCO

EICO
COLOR & MONOCHROME
LABORATORY & TV SERVICE S-MC SCOPE

KIT $79.95
Factory Wired $129.50

NATESA PROTESTS

The following press release was released from the National Alliance of Television & Electronic Service Associations. None of the editors of RADIO-ELECTRONICS were personally present at the Indianapolis meeting, our story having been obtained by an outside reporter. Neither have we received any of the press releases mentioned, our sole information on reactions, other than a number of releases from NATESA, being one “letter to the editor” (page 16) and one item in a trade paper. Therefore we are printing the release without comment:

“Numerous press releases have been issued by a few delegates to the service unity meeting at Indianapolis who participated in the unanimous vote to accept NATESA as the national association, but who now are going back on their word. The phraseology of these releases bears remarkable similarity to those of a publisher of a so-called service management magazine who has long had ambitions to control the service industry through a captive association and the use of his magazine as the voice of the group.

“...To recognize the insincerity of the charges being made it should be recognized that NATESA had less than one-third of the total vote at the meeting. The president of NATESA is being falsely charged with dictatorship simply because he has been doing, and we are quoting one of their releases, ‘three jobs’ without compensation and ‘there are too few persons with the initiative, time and ability to carry out the duties of one of these jobs, much less all three’; and for that reason was re-elected in open elections five times. Would a dictator publicly offer to resign and disavow any office as did the NATESA president at Indianapolis, and in print?

“The second false charge is that made against the organizational setup of NATESA which has been in effect since the first days of NATESA. Originally, three divisions were created. These have been expanded as NATESA grew. Full recognition is given state groups. The opponents of NATESA give credit for origination of this setup to a Texas group which has such plans for the future. The ‘State Supremacy’ group would deprive three-fourths of all local groups of a voice since very few state groups exist. Is this an example of their lack of knowledge of the independent service industry, or are their plans insidious?”

“NATESA has offered to waive its
right to challenge applications of qualified groups if they are submitted by a specified date; the NATESA president has offered to resign; NATESA, at its cost, distributed copies of the Indianapolis meeting minutes, its constitution, organizational system and other materials, to the nonaffiliates who attended the meeting; NATESA has for 5 years mailed large numbers of informational bulletins, and for 3 years each copy of Scope, free to over 200 nonaffiliated groups; it has, at no cost, mailed copies of its Here's How brochure to help new groups organize; NATESA personnel have made personal visits to many cities at their own expense to help many new associations. Can any of the NATESA opponents make these statements truthfully? Why have these groups repeatedly refused to cooperate and reciprocate?

TEXAS MOVE FOR UNITY

The Texas Electronic Association has resolved to contact other state service groups with a view to forming a national federation outside the National Alliance of Television & Electronic Service Associations, according to a recent report in Retailing Daily.

This decision was reached at the organization's quarterly meeting after a proposal that TEA join NATESA was defeated.

THE OKLAHOMA PLAN

The recently organized Television Service Association of Oklahoma has developed an organizational form that somewhat resembles a cooperative, as well as undertaking activities to raise the prestige of the service technician in the eyes of the public.

The association plans to educate the public through newspaper advertising, to raise service standards, to maintain fair prices and to guarantee work done. To put the first of these principles into effect, full-page ads in the Sunday Oklahoman have been taken. The ads include the TSA code of ethics.

Members of the association on joining buy one share of stock in the corporation at $50. They also agree to pay membership dues of $100 a year which are amortized in an interesting manner. Members agree to buy from the association supplier, an Oklahoma City distributor, at least 75% of parts and tube requirements, credits accrued being applied to dues.

II. O. Eales, owner and operator of Eales TV-Radio Service Co., Oklahoma City, is president of the new group. Vice presidents are F. E. Banks, Sapulpa; Ed Cones, Oklahoma City; Raymond Selby, Kingfisher. William Jones, Oklahoma City, is secretary-treasurer and Bob Armstrong, also of Oklahoma City, is full-time executive secretary.

ATLANTA ASKS POWERS

As a step toward stamping out fraud in television repairs, the city of Atlanta has authorized its attorney to draft a resolution asking for power to revoke business licenses and to present it to the 1956 Georgia Legislature.

The resolution will ask for authority to revoke the city license of any radio or television service technician found guilty of fraud. At present business licenses are considered a right, not a privilege, and the city has no power to revoke them.

The action was taken after the conviction of a repairman who confessed that he had taken pay from a customer for parts that were not installed in the set. The repairman was given an 18-month suspended sentence and fined $150.

NEW SERVICE TOOL?

A camera can be a valuable instrument in the repair of TV receivers, especially those that screwdriver technicians or do-it-yourself owners have been operating on. This discovery was made by the Havill TV Service of Chicago. Whenever a messed-up set comes into the shop, "before" and "after" photos are taken of it. The negatives are developed and prints presented to the owner only if he complains about the cost of the job.

Get This Valuable Book

Yes, you get this big, brand new book, "150 Radio-Television Picture Patterns and Diagrams Explained", absolutely FREE! Just off the press! Gives complete 11x17" Schematic Diagrams on leading models Radio and Television Sets. Easy-to-read, large 8½x11" pages, with full instructions on how to read and use the diagrams. A "must" in every Radio and Television service-man's repair kit. You get this valuable book as a FREE Gift for asking to see Coyne's great new 6-book set, "Applied Practical Radio-Television!!

At Last! Money-Making "Know-How" on Transistors, Color TV and Servicing

Coyne's great new 6-volume set gives you all the answers to servicing problems—quickly! For basic "know-how" that is easy to understand, you'll find everything you want in volumes 1 to 5 which contain over 5,000 practical facts and data. They cover every step from principles to installing, servicing, trouble-shooting and aligning. Minutes to pages. So up-to-date it includes COLOR TV and UHF adaptors, converters. Also covers latest data on TRANSISTORS.

And then, for speedy on-the-job use, you get volume 6—the famous Coyne TELEVISION CYCLOPEDIA. It answers today's television problems on servicing, alignment, installation and others. In easy-to-find ABC order, cross indexed. Use this 6-volume TV-RADIO LIBRARY free for 7 days; get the valuable Servicing Book ABSOLUTELY FREE!

FREE BOOK—FREE TRIAL COUPON!

Educational Book Publishing Division

COYNE ELECTRICAL SCHOOL
500 S. Paulina St., Dept. 26-11
Chicago 12, III.

YES! Send 6-volume "Applied Practical Radio-Television" for 7 days FREE TRIAL per your offer. Include TV-Radio Patterns & Diagram Book FREE.

Name ___________________________ Age ________

Address ____________________________
City ___________________ Zone State ____________________________

Where Employed ____________________________

() Check here if you want library sent COD. You pay postman $2.00 plus COD postage on delivery. 7-day money-back guarantee.
CABLE TAP, for permanent, weatherproof connections without severing cable or stripping leads. Developed to connect service drops to main feeder cables in community TV antenna systems. Coax or single-conductor, solid or stranded cables may be used. With coax, connection automatically made to center and outer conductors. Shunt capacitance less than 1.5 µuf.—Jerrold Electronics Corp., 23rd & Chestnut Sts., Philadelphia 3, Pa.

TOWERS, models 200, 210, 200, streamlined design, attractive taper and top section. Use 1½-inch electrically welded steel tubular uprights.—Jontz Mfg. Co., 1101 E. McKinley, Missoula, Ind.

FRINGE-AREA ANTENNA, Power-Helix, all-channel type. Helical design with flatplane dipole system. Long element measures 1/2-wavelength on channel 2, receiving channels 2, 3. Next element 1/2-wavelength on channel 5, receiving channels 4, 5. Good gain, directivity on channel 6 by combining antenna back section with special hardware to form closed loop. Good high-band reception from helical section.—JFD Mfg. Co., Inc., 6101 16 Ave., Brooklyn 4, N. Y.

ANTISTIC CARTRIDGES, Fono-Tone BICO-350-A, and P-12 A+. Incorporate foil lamellate containing minute quantity of radium that wipes static charges off records. Contact points between jewel and record irradiated by alpha rays which ionize air around needle (makes air electrically conductive), dissipating static charges. BICO-350-A+ is professional high-fidelity magnetic cartridge. P-12 A+ for extended range where 300-500-mv high-impedance input is required.—Fenton Co., 15 Moore St., New York, N. Y.

PHONO CARTRIDGE, Fono-Slim Jim, model TQ-400, is small and light. Surpasses other Ronette models in com-

pliance, low IM distortion, frequency response, tracking, non-interaction of stylus (in turn-over models), constant-velocity response. Brackets and mountings to fit most record changers and arms.—Ronette Acous-
tical Corp., 155 Front St., New York 5, N. Y.

CONVERSION KIT, Stereo-o-
matic, converts V-M Tape-o-
tatic tape recorder for binaural use. Includes stacked head, 1-
hour average voltage output of 12; cells can be recharged as many as 200 times, depending on amount of load and depth of cycle. Useful with portable and transistorized equipment where required power is small.—Gould-National Batteries, E1201 First National Bank Bldg., St. Paul 1, Minn.

SELENIUM SUN BATTERY CELLS, have high self-gener-
ated output, ideal for transistor power supplies, control applications, photographic equipment and experiment. 6B4-10.5 square inches in photosensitive area, 0.1-15-mw output in direct sunlight. Connected in series-parallel, covering area of 8 square inches, enough power generated in direct sun-
light to drive typical 5-stage transistorized radio. Short-cir-
cuit current to 40 ma, open-
circuit voltages to 0.5 per cell, generated in direct sunlight. Available on straight-or angle-

RADIO-ELECTRONICS

108
The First MULTI-CHANNEL YAGI... PRE-TUNED TO CHANNELS OF YOUR CHOICE

New! WINEGARD

... Gives You More Gain on Channels in Your Area
... Because it's Peaked to Channels in Your Area

There has never been an antenna like the COMBO — the first MULTI-CHANNEL TV ANTENNA that is actually PRE-TUNED TO YOUR AREA. The Combo is factory peaked in 16 different channel combinations — one of which will give you the ultimate in performance on the specific channels you want.

This is the first logical, practical TV antenna development in years. The Winegard COMBO is guaranteed to give better performance on all channels in your area, regardless of size or number of bays of the antenna you are now using.

Another original by WINEGARD!

Available in 16 Factory Pre-Tuned Combinations

<table>
<thead>
<tr>
<th>Custom-Combo Model No.</th>
<th>Channels Peaked for</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC3-A</td>
<td>2 3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>TC3-B</td>
<td>2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>TC3-C</td>
<td>2 3 4 5 6 8 9 10 11</td>
</tr>
<tr>
<td>TC3-D</td>
<td>2 3 4 5 6 10 11 12 13</td>
</tr>
<tr>
<td>TC3-E</td>
<td>2 3 4 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>TC3-F</td>
<td>2 3 4 7 8 9 10</td>
</tr>
<tr>
<td>TC3-G</td>
<td>2 3 4 8 9 10 11</td>
</tr>
<tr>
<td>TC3-H</td>
<td>2 3 4 10 11 12 13</td>
</tr>
<tr>
<td>TC3-I</td>
<td>3 4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>TC3-J</td>
<td>3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>TC3-K</td>
<td>3 4 5 6 8 9 10 11</td>
</tr>
<tr>
<td>TC3-L</td>
<td>3 4 5 6 10 11 12 13</td>
</tr>
<tr>
<td>TC3-M</td>
<td>4 5 6 7 8 9 10 11 12 13</td>
</tr>
<tr>
<td>TC3-N</td>
<td>4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>TC3-O</td>
<td>4 5 6 8 9 10 11</td>
</tr>
<tr>
<td>TC3-P</td>
<td>4 5 6 10 11 12 13</td>
</tr>
</tbody>
</table>

Single bay Combo — $29.95 Double bay Combo — $59.95

5 GOOD REASONS TO INSTALL THE COMBO:
1. Pre-Peaked to Your Channels
2. Electro-Lens* Director System
3. Completely Pre-Assembled
4. Automatic Twin-Lock Hardware
5. All Aluminum and Stainless Steel Construction

MAIL TODAY

WINEGARD COMPANY
3000 Scothen Boulevard
Burlington, Iowa

Please RUSH [] COMBO Bulletin No. WL1135
[] Address of nearest distributor

NAME OF FIRM:
ADDRESS:
CITY: ZONE: STATE:

SIGNATURE:

© 1955 Winegard Co. Patent No. 2700105

www.americanradiohistory.com
HIGH-TEMP RECTIFIERS, single- and 2-phase full-wave bridge selenium types delivering 20 and 100, 32 and 160 volts 60 cycles respectively. Operates at maximum voltage-current ratings as high as 150°C without derating. Current range of 60-volt units (250 ma to 14 amps) closely approximated in others.

526-36 North Ave., Westfield, N. J.

TUBE NECK REST, Nel-Rest, eliminates fumbling for right-size prop to hold neck of TV picture tube. Easily adjusted to hold tube neck securely and is self-adjusting to all standard panel thicknesses. Adaptable to rectifiers rated from 25-195 volts a.c. and 65-750 ma. Federal Telephone & Radio Co., 100 Kingsland Rd., Clifton, N. J.

6 SET TV COUPLER, No. 901. Up to 4 TV sets can be coupled to 1 antenna with minimum interaction and radiation between sets. Losses through coupler very low due to good impedance match. Satisfactory even in weak signal areas.

 TELEVISION KIT, Arby-14721. 21-inch, vertical chassis 12-channel turret tuner has 3BC RF amplifier S4 triode-pentode mixer-oscillator. Separate oscillator frequency adjustment for each channel. Tuner may be adapted for mhf strips. Series-string heater type tubes, vertical retrace blanking.

BEAT 16 PRINTED CIRCUIT AND METAL CHASSIS RADIO CIRCUITS for only 19.95 complete!

With the New Deluxe 1956 PROGRESSIVE RADIO "EDU-KIT"

Build 16 Receiver, Transmitter, Code Oscillator, Signal Source, Signal Injector Circuits

- No Knowledge of Radio Necessary
- No Additional Parts Needed
- No Essential Background for TV
- Learn High Fidelity
- Used in 79 Countries
- School Inquiries Invited

FREE RADIO and TELEVISION SERVICING LITERATURE ON REQUEST (See Coupon Below)

What the "EDU-KIT" offers you

Our Kit is designed to provide a fundamental background in radio, with the basic facts of Radio Theory and Construction Practice expressed simply and clearly. It is not a "Recipe Book" but a "Learning Tool" for the as yet uninitiated in the world of electronics. It is used by Armed Forces Personnel and Veterans throughout the world. It is written in the clear, simple language understood by all, and the circuits illustrated are such as one would find in a professional Signal Tracer, the best principles of present-day educational equipment. Therefore you will build radio circuits, perform jobs, and conduct experiments which illustrate the principles of which you read. Each time you use the EDU-KIT, you will build another circuit, do another job, thereby learning how to use the circuit, and increasing your knowledge of radio circuits.

FREE EXTRAS

- RADIO & ELECTRICAL TESTER
- ELECTRIC SOLDERING IRON
- TESTER INSTRUCTION MANUAL
- CONSULTATION SERVICE
- HIGH FIDELITY GUILD "QUIZZES"
- TELEVISION BOOK

20-DAY UNCONDITIONAL MONEY-BACK GUARANTEE

MAIL TODAY—ORDER SHIPPED SAME DAY RECEIVED

Send "EDU-KIT" Postpaid. I enclose full payment of $19.95.

Prepaid by check, money order, or U.S. money order

Send us free additional information describing "EDU-KIT" included.

FREE Boke Available on Request

Outside U.S.A. No COD's. Send check on U.S. bank or International Money Order No. $19.95.

Progressive "EDU-KIT" Inc.

567 Union Ave., Room 113-G, Progressive Radio, Brooklyn 11, N. Y.
NEW DEVICES

ing, reflex sound if amplifier. Brings in fringe-area signals.
—Radio Kits Inc., 120 Cedar St., New York, N. Y.

VARIABLE CAPACITOR, subminiature 2-section type, 1 x 1 x 8 \(\frac{3}{4} \) inch for miniature superhetodyne circuits. RF section 9-290 µf; oscillator section 7-129 µf. Sealed in plastic case.

27 SCREWDRIVERS, the Proto Ruby Line, ruby-red handles of fire-resistant plastic. 16 key-size bits, with blade widths of \(\frac{3}{4}-\frac{9}{16} \) inch, blade lengths \(1\frac{1}{4}-\frac{9}{8} \) inches; nineteen cabinet type with blade widths of \(\frac{3}{4}-\frac{9}{4} \) inch and blade lengths \(1\frac{1}{4}-\frac{9}{4} \) inches; 2 Phillips type with No. 1 and No. 2 bits and blade lengths of \(2\frac{3}{8} \) and 4 inches. Conform to military specification GG-8-121-C.—Proto Tool Co., Los Angeles, Calif.

SERIES CHOPPERS, 1200 series, for use in analogue computers, continuous recorders, test amplifiers, servo systems. Chopper component has extremely low residual noise in switching circuit. Lift-off contact mechanism reduces contact bounce and chatter and extends closure stability. High degree of precision when subjected to temperature extremes, vibration and shock.—James Vibrapeer Co., 4050 N. Rockwell St., Chicago 18, Ill.

TV U.H.F. CONVERTER, model 210, has 6A4-A tube and 1N71 germanium crystal, 110-volt outlet for television set. Con-
tinuous tuning, housed in wood cabinet. —Elgin Electronic Corp., P. O. Box 13, Bluffton, Ind.

ROTARY CABLE STRIPPER, model S-1, for coax and other nonmetalllic tubing up to \(\frac{3}{16} \) inch diameter. Standard single-

volts ac or 32 volts dc non-inductive load. Wide range of coil operating voltages for ac or dc.—Ohmite Mfg. Co., 3681 Howard St., Skokie, Ill.

Just Out

AMAZING BARGAIN

The new 1956 TV manual is the superior book of its kind. Covers all im-
portant sets of every make in one giant volume. Your price for this magnificent manual is only $3. This super-value defies all competition.

Other volumes at only $3 and $2 each. Each manual has a whole year of service material. Includes all data needed for quicker TV serv-
icing. Practically tells you how to find each fault and make the repair.

Many pages, more diagrams, more service data per dollar of cost. Get the best for less. Get SUPREME.

TELEVISION SERVICING COURSE

Let this new course help you in TV servicing. Amazing bargain, complete, only $3, full price for all lessons. Giant in size, mammoth in scope, topics just like a $200.00 correspondence course. Lessons on picture faults, circuits, adjustments, short-cuts, UHF, alignment facts, hints, test equipment, picture analysis, special, only

RADIO DIAGRAMS

Here is your complete source of all needed RADIO diagrams and service data. Covers everything from most recent 1957 radio to pre-war old-timers: house radios, auto sets, communications, Ham, and all other types. Special edition...$2 for most volumes. Every manual has extra large illustrations, all needed alignment facts, parts lists, voltage ratings, trimmers, dial strings, and helpful hints. Volumes are large in size. 8\(\frac{1}{4} \) x 11. inches, about 100 pages. Free coupon at back for a complete list of these radio manuals.

(Continued)
Mallory Selenium Rectifiers

make every replacement sure

Made by Mallory-developed techniques unique in the industry, this new line of selenium rectifiers gives you an unequalled combination of performance and dependability.

SERVICE LIFE IS LONG—far exceeds original equipment specifications.

EFFICIENCY IS HIGH due to low forward voltage drop. Efficiency stays high throughout service life.

COUNT ON EVERY STACK for the same high quality. The new rectifiers are manufactured to standards of uniformity never before possible.

RATINGS ARE CONSERVATIVE—no need to use over-size stacks to "play safe". Order your stock today from your Mallory distributor.

3DT6, 6DT6

Seven-pin miniature types 3DT6 and 6DT6 announced by RCA are sharp-cutoff pentodes intended for use as FM detectors in television receivers. Designed so that grids 1 and 3 can each be used as independent sharp-cutoff control electrodes, these tubes may also be used in delay, gain-controlled amplifier and mixer circuits.

The 3DT6 and 6DT6 are especially suitable for use in locked-oscillator, quadrature-grid FM circuits where they can perform the combined functions of detector and limiter and are capable of providing a high audio output voltage adequate to drive a medium-power output tube such as the 6AQ5. In such a circuit (see diagram) the tubes can provide a sensitivity of 5 mv with ±7.6-kc deviation and 15 mv with 25-kc deviation.

The 3DT6 heater draws 600 ma at 3.15 volts, the 6DT6 300 ma at 6.3 volts.

970 silicon transistor

Announced by Texas Instruments, this power unit measures approximately ½ inch in diameter and ¾ inch high. The mounting plate heat sink (see photo) extends outward from the transistor, covering an area 1 by ¾ inch.

Power dissipation of the n-p-n unit is 8.75 watts maximum at 25°C, with 3.5 watts maximum at 100°C. Power gain at 100°C ranges from 28 db at 1 watt output, class-A operation, to 18 db at 2.5 watts output, class-B operation.

GT 34-100

A new diffused p-n-p junction transistor capable of operating at a collector voltage of 100 has been announced by General Transistor Corp., Jamaica, N. Y. Known as the GT 34-100, it is recommended for use in switching neon lights in computer circuits.
SNOW IN PHILCO 22B4110

This chassis came in with snow in the picture; the sound was O.K. The picture could be cleared by switching the channel selector on and off several times. Snow would then reappear at irregular intervals. I went over the switch contacts, coils and tubes with everything checking properly. Voltage and resistance checks revealed nothing.

Installing a 2-inch long spring on the rear end of the tuner switch shaft solved the problem. The spring is looped around the shaft at one end (see diagram) and is hooked in the slot at the top of the tuner. The upward tension on the tuner switch shaft eliminated the poor, snow-producing contact.

Eino A. Hokkanen

VERTICAL ROLL

The complaint on a Motorola set was vertical roll. The picture could be held steady for 2 or 3 minutes with the vertical hold control but would then start to roll again. Horizontal sync was steady.

Routine checking of the vertical section failed to disclose the trouble. I then noticed that just as vertical sync was lost, a faint trace of snow appeared in the picture. Replacing the 6827 cascode amplifier in the tuner stopped all vertical roll and restored normal operation.

Stanley Silvin

RCA KC547A CHASSIS

Frequent blowing of the fuse in the high-voltage cage may be caused by an intermittent short in the damper-tube heater circuit. This can often be cleared up by replacing the leads from the power transformer to the damper tube heater with heavily insulated moisture-proof wire. This same measure may be tried when symptoms indicate shorts in the damper circuit of other makes and models.

Harry C. Keller

Worried about ripple? ... Use FP CAPACITORS

High ripple currents in TV sets, especially in color, make ripple rating a major factor in choosing electrolytic capacitors. For these applications, you can be sure of getting the performance you need in Mallory FP capacitors.

Extensive life tests at ambient temperatures of 85° C prove that FP's can withstand 50 to 100% more ripple current than usual industry expectation for a given capacity and voltage rating. This extra performance comes from superior heat dissipating ability, made possible by the fabricated plate (FP) construction that puts more anode area and more electrolyte into a smaller can.

For the best in electrolytics, always insist on Mallory FP ... the original fabricated plate, 85° C capacitor. Don't settle for substitutes!
The new Model TC-55

New!

FOR

Streamlined TUBE TESTERS

The new Model TV-11

C. R. T. TUBE TESTER

The new Model TV-40

TRANS-CONDUCTANCE TUBE TESTER

The new Model TV-12

EXAMINE BEFORE YOU BUY!

USE APPROVAL FORM ON NEXT PAGE

 радио - Электроника
SHIPPED ON APPROVAL
NO MONEY
WITH ORDER
NO C.O.D.

FM RADIO
AM RADIO
ANTENNAS
A.M. and F.M. Servicing:
The Genometer provides a variety of useful functions:
- R.F. SIGNAL TRACING: Enables tracing down the R.F. signal from the antenna to speaker, or from the receiver to speaker, as the signal is traced through any circuit.
- VARIABLE AUDIO FREQUENCY GENERATOR: Provides complete coverage of all audio frequencies from 100 Hz to 20,000 Hz.
- CROSS HATCH GENERATOR: Provides a stable cross-hatch pattern for easy alignment.
- BAR GENERATOR: Consists of a series of horizontal bars, each adjustable for width and height.
- DOT PATTERN GENERATOR (FOR COLOR TV): Consists of non-shifting dot pattern which projects on the TV screen.

Try any of the instruments on this or the facing page, for 10 days before you buy. If completely satisfied, send down payment and pay balance as indicated on coupon. No Interest or Finance Charges Added!

If not completely satisfied return unit to us, no explanation necessary.

MOSS ELECTRONIC DISTRIBUTING CO., INC.
Dept. D-202, 3849 Tenth Ave.
New York 34, N.Y.

Please send me the units checked. I agree to pay down payment within 10 days and to pay the monthly balance as shown. If it is understood there will be no finance, interest or any other charges, provided I send my monthly payments when due. It is further understood that should I fail to make payment when due, the full unpaid balance shall become immediately due and payable.

Name__________________________
Address________________________
City__________________________State________________________

MOSS ELECTRONIC DISTRIBUTING CO., INC.
Dept. D-202, 3849 Tenth Ave.
New York 34, N.Y.

Please send me the units checked. I agree to pay down payment within 10 days and to pay the monthly balance as shown. If it is understood there will be no finance, interest or any other charges, provided I send my monthly payments when due. It is further understood that should I fail to make payment when due, the full unpaid balance shall become immediately due and payable.

Name__________________________
Address________________________
City__________________________State________________________

MOSS ELECTRONIC DISTRIBUTING CO., INC.
Dept. D-202, 3849 Tenth Ave.
New York 34, N.Y.

Please send me the units checked. I agree to pay down payment within 10 days and to pay the monthly balance as shown. If it is understood there will be no finance, interest or any other charges, provided I send my monthly payments when due. It is further understood that should I fail to make payment when due, the full unpaid balance shall become immediately due and payable.

Name__________________________
Address________________________
City__________________________State________________________

MOSS ELECTRONIC DISTRIBUTING CO., INC.
Dept. D-202, 3849 Tenth Ave.
New York 34, N.Y.

Please send me the units checked. I agree to pay down payment within 10 days and to pay the monthly balance as shown. If it is understood there will be no finance, interest or any other charges, provided I send my monthly payments when due. It is further understood that should I fail to make payment when due, the full unpaid balance shall become immediately due and payable.

Name__________________________
Address________________________
City__________________________State________________________
Better
Restore the Original Sound

with Better Replacement Speakers

OXFORD SPEAKERS are Better

Because:

Oxford specializes in the designing and manufacturing of a complete line of speakers and has been doing so for many years.

Since speakers is our business . . . since we supply more of the BEST manufacturers of original equipment . . . since we have quality replacement speakers for any and every application . . . you will actually better the original sound with OXFORD SPEAKERS.

Why wait . . . find out TODAY why more and more servicemen are switching to OXFORD SPEAKERS . . . truly the BETTER SPEAKERS in every way!

OXFORD ELECTRIC CORPORATION
DISTRIBUTOR SALES DIVISION
556 WEST MONROE ST., CHICAGO 6, ILL.

TECHNOTES
AM-FM MONITOR M3070
This set came in with the FM section inoperative. A check showed that the 6C4 oscillator was not working so I replaced it and the 6EG6 mixer without success. Voltages checked O.K. so I traced the oscillator circuit and found

that feedback was augmented by a 5-µf capacitor between plate and cathode as shown in the diagram. The capacitor checker showed that this unit was leaky. Replacing it with a high-quality capacitor restored performance to normal.—W. S. Ross

SYLVANIA 1-366 CHASSIS
A continuous rumble from the speaker with the picture flashing or distorting may be caused by an intermittent condition in the mixer plate coil. The low range of the ohmmeter will show up the defect when connected across the coil.—K. C. Henry

REGENCY RC-600 CONVERTER
The Regency type RC-600 was an early example of a tuned-line type u.h.f. converter. One of the greatest troubles in this unit is dirty lines. If you get any of these converters in for repair, try turning the tuning knob back and forth—sometimes the wipers will clean the lines and restore normal operation. If this does not work, pull the chassis and remove the round tuner unit from it. Unsolder both pieces of lead-in, the red B plus wire and yellow heater wire. Remove the dial string and pulley carefully, noting how it was strung up. Now take out the three 6-32 mounting screws which hold the tuner to the chassis. Carefully pull the tuner out of the chassis and place it on the bench.

You will notice a draw band around the tuner. Remove the two screws that pull the draw band together. Next, take off the 6A4F tube cover and the screws securing the other end of the draw band. Then carefully remove the top and bottom covers. This exposes the lines and other working parts.

To clean the lines, use carbon tet or preferably a cleaning fluid suitable for cleaning silver-plated contacts. Take a soft cloth, dip it into the cleaning fluid and rub briskly back and forth on the lines where the slider rubs. These are the edges closest together. Rub for at least a minute with a wet cloth, then with a dry cloth for a few seconds. This cleaning operation will generally restore
Specially packaged capacitors speed automated chassis assembly

New methods of packaging capacitors for automatic machine assembly of printed electronic circuits have been developed by the Sangamo Electric Company. With this special packaging, there's no need for time-consuming straightening of wire leads or checking if close tolerances between leads have been maintained throughout shipping and handling. This special packing makes it easy to remove Sangamo Capacitors from their containers in uniform rows, with wire leads always straight.

Here are a few examples of Sangamo packaging. Sangamo will be glad to discuss special packaging to fit your particular requirements. Write to the factory today.

SANGAMO ELECTRIC COMPANY • Marion, Illinois

Compressed Glass Sealed Types—Packed in light-as-air Styrofoam which holds axial type leads straight... keeps shipping costs down. Capacitors are easily removed from packing to be fed to automatic fabricating machines.

Wire Lead Mica Capacitors—Packaged to keep pre-trimmed leads straight in transit. Taped for ease of handling and feeding through magazine of automatic machines.

Silvered Mica Button Capacitors—Fixed in cardboard squares and boxed. Users like them because they may be easily stored and they provide quick identification of inventory. Color code does not chip off and terminals are kept from bending by this special packaging.

Plug-in Paper Tubulars—Attached to glass filament tape, uniform rows of these Type 36 paper tubulars can be lifted from the card and fed to assembly machines. Close tolerances between leads are maintained throughout shipping in spite of rough handling. Similarly-packaged standard paper tubulars, shown in the foreground, are also available.
ALL RECORDING TAPE is coated with magnetic oxide. On ordinary tapes this coating rubs off in use and forms a harmful deposit of abrasive dust on the recording head. Unless the head is constantly cleaned, the collection of abrasive dust eventually wears it out. A further disadvantage of oxide-shedding, common to ordinary tapes, is that after a few playings, the tape loses enough coating to alter its original frequency response characteristic.

Ferro-Sheen process anchors the oxide coating to the base permanently, inseparably and much more smoothly. The obvious advantage of this homogeneous bond is that the entire vicious cycle of shedding and abrasion of recording head and tape is eliminated, resulting in longer life for the tape, longer life for the head and flat frequency response over a wider range.

Ferro-Sheen is now available in these three quality Irish tapes:

SHAMROCK 2300: The ultimate in premium, professional tape for broadcast and studio use. Comes with 5' Mylar leader in dust-proof polyethylene bag.

LONG-PLAYING 2600: Extends playing time 50% over conventional tapes on same size reel. New DuPont 1 mil Mylar base.

SOUND PLATE 2220: The super-tough tape, pioneered by ORadio, now on 1.5 mil Mylar. Used for tape-recorders and permanent program storage.

Write for name of local dealer:

ORadio Industries, Inc.
World's Largest Exclusive Magnetic Tape Manufacturer
Opelika, Alabama

DEPARTMENT DIVISION:

Mahan Exporting Corp., N.Y.C.
IN CANADA:
Atlas Radio Corp., Ltd., Toronto

ATTENTION SCHOOLS, HOBBYISTS, RADIO TECHNICIANS!

Cathode Ray Scope Tube 3API, made famous tube maker - Jan tube! Electrostatic focus and deflection. Medium 7 pin base individually cartoned. Packed for shock.

Regular net $15.75 ea. Lots of 4 79¢ Individual packed 4 to a carton (7 lbs., to cart. of 4) SINGLE 99¢ EA.

SEND FOR FREE TUBE CATALOG NOW!
Over 400 Tube Types and Many Parts Specials. Write RE-2.

115 Coit St., Irvington, N.J.

SPECIAL FORFeb. ONLY
WOOD UTILITY CHEST

tool kit
hole saws
key chest
platformable equipment
cabinet box
hobby material

$1.95

RT-24/AXP-2 IFF Equipment
41 tube transceiver with suitable parts, tube sockets, relay, coax fittings, condensors, resistors, etc. 21 volt battery, 20v pair throat motor. Power transformer 400 to 600 cycles. Original cost at $750.00. Less tubes (610, wt. 45 lbs.) Complete with tubes just $17.95.

$5.95

Technotes (Continued)
a tuner to proper operation again.

James Fred

Fuse Trouble

Not long after we'd installed a television set in an ancient farmhouse that had been wired before they passed Ohm's law that we had to run out several times because "the television set made the fuse blow." Not the branch fuse, mind you, but the main 30-amp fuse.

We finally routed the trouble with a little theory and an ammeter. Seems like three circuits fed from the main 30-amp fuse, two of them protected by 20-amp branch fuses, the third by a 15-amp unit.

Our test showed 15 amperes flowing through one 20-amp fuse, 14 amps through the other. Thus, a total of 29 amps ran through the main 30-amp fuse.

When the video set was turned on, fed by the 15-amp branch, the 2.8 amps required passed through the protecting 15-amp fuse OK.

But since this brought the total load on the 30-amp main fuse up to around 31.5 amps, it cooked out and plunged the entire farm in darkness. Ergo - 'twas the TV set doing the dirty work!

While we regretted the needless mileage piled up on these futile trips, we kept our temper, eventually landing a rewiring job on the old homestead and sold the customer several appliances.

Weak Sound - RCA KC583

The audio was very weak in this set. After some circuit tracing and comparing with the schematic, I found that the schematic called for a screen grid resistor of 1,000 ohms in the second sound i.f. amplifier stage. The unit in the set was marked for 1,500 ohms and measured approximately 2,000. Replacing this resistor with one of 1,000 ohms brought back the sound to normal volume.

1954 21-Inch Motorola

Complaints of poor horizontal hold and a small raster can be cleared by connecting a 27,000-ohm resistor in series with the grounded side of the horizontal hold control. This control has a 40,000-ohm stop but this is not enough resistance to prevent squiggling when the control is turned too far. The 24-inch models do not show these symptoms because they have a 100,000-ohm resistor between the control and ground.

- Wilbur Hantz
OUTSTANDING FEATURES:

G_m MEASUREMENTS—G_m measurements are made more accurately by using filtered d-c plate, screen grid and control grid potentials. A precision voltage divider network and selector switch allows a proportionate value of signal voltage to be chosen for testing tubes having transconductances up to 30,000 micromhos. Signal voltages of 5.2, 2.6, 1.3, and 0.65 volts peak-to-peak having a frequency of 5000 cycles are provided.

GRID BIAS, SCREEN GRID AND PLATE VOLTAGE: Filtered d-c potentials of 90, 130, and 220 volts are available for plate and screen potentials. A variable filtered d-c voltage in two ranges of 0-5 and 0-20 volts are used to obtain better resolution of Grid Bias settings. *Far greater accuracy is obtainable with filtered d-c potentials than previously possible in portable tubecheckers.*

METER MEASUREMENT OF HIGH LEAKAGE RESISTANCE—Since tube leakage as high as several megohms can cause poor performance in TV Receivers, this tubechecker is designed to provide an accurate meter measurement of leakage resistance as high as 5 megohms between tube elements, thus being particularly useful for TV servicing and TV line production assembly.

TWIN SECTION TUBES—Three toggle switches make it possible to rapidly check and compare the respective sections of twin section tubes at only one setting of the selector switches.

WESTON 980 LINE TEST EQUIPMENT
DIRECT-COUPLED AMPLIFIER

Except for the occasional two-tube single-ended audio circuit in a TV receiver, we rarely find a direct-coupled audio amplifier in modern audio equipment. Experimenters interested in a push-pull circuit of this type can experiment with the three-tube a.f. amplifier used in the Ferguson model 300RG, a British radio-phonograph.

This amplifier (see diagram) delivers 6 watts output with total harmonic distortion below 1%. The a.f. input signal is applied to the grid of V1 through a two-section high-pass filter that attenuates the very low frequencies and minimizes acoustic feedback and motor rumble. The amplified output of V1 is direct-coupled to V2 and fed to V3 through a 1-megohm resistor. The grid bias on V2 and V3 is the difference between the e.c. plate voltage of V1 and the voltage at the cathodes of V2 and V3.

The screen voltage for V1 is tapped off a variable resistor (bias control) in the cathode return for V2 and V3. Adjusting the screen voltage with the bias control varies V1's plate current and voltage. Since V1's plate is connected to the grids of V2 and V3 the bias on the output stage is easily adjusted to the optimum value by varying the screen voltage on V1. If V1's plate current drops, its plate voltage rises and lowers the bias on the output stage. The increased cathode current passed by V2 and V3 increases the drop across the cathode circuit and raises V1's screen voltage sufficiently to restore its plate current to the original value.

For phase-inverting action, the grid of V3 is grounded for a.c. through the 0.1-µf capacitor. When the grid of V2 is fed a positive half-cycle of the signal voltage, the increase in cathode current causes the cathodes to go more positive. This is equivalent to applying a negative half-cycle of the signal voltage to V3's grid. Thus, the grids of V2 and V3 are effectively 180° out of phase.

Negative feedback is applied to the cathode of V1 through parallel paths consisting of the bass and treble controls. When the arm of the bass control is set to the maximum bass position, the 0.5-µf capacitor is shorted out and the 0.2-µf unit shunts the body of the control. We now have a voltage divider consisting of the potentiometer and the 2,200-ohm resistor. The upper portion of this divider is an impedance whose value varies inversely as the frequency. Thus, the feedback is reduced and gain increases as the frequency is lowered. Turning the control to the other end short's the 0.2-µf capacitor and places the 0.5-µf unit across the potentiometer. Feedback now increases and gain decreases at low frequencies.

The treble control is a simple potentiometer across the feedback network with a variable voltage being applied to V1's cathode through a 330-ohm limiting resistor and 0.5-µf capacitor. When the control is set for minimum highs, full feedback voltage is applied to the cathode at high frequencies and response droops. The circuit is not effective at middle and low frequencies because the reactance of the 0.5-µf capacitor is equal to or much greater than the 1,000-ohm cathode resistor so the feedback voltage is greatly attenuated.

Setting the control for maximum treble connects the .05-µf capacitor and 330-ohm resistor across the cathode resistor of V1. These components act as a partial short circuit for the high-frequency negative feedback voltage reaching the cathode through the bass path. Connecting this R-C network across the cathode resistor also reduces degeneration and causes a rise in the response at high frequencies.

www.americanradiohistory.com
Selling Out!

Prices Reduced Up to 80%

Complete Stock of Nationally Advertised
Radio & Television Testing Instruments,
Parts and Electrical Appliances To Be Sold

This is the opportunity of a lifetime!

Below mentioned units are not kits, but all factory wired and brand new. Some models have been discontinued by the manufacturer, but every one is factory sealed and carries a one year factory guarantee. Satisfaction or money refunded within 10 days.

SUPERIOR
Model 533-5 Multimeter
1% Wire Wound Precision Resistor
D.C. Voltages: 0-150 - 300 - 750 - 3000 Vols. DC
Ranges: 0-150 - 200 - 400 - 500 - 600 - 1000 Ohms
Complete with full instructions and test leads.
Reg. $29.50 now only $9.95

SUPERIOR
Model 1555 Volt-Ohm-Milliammeter
Measures DC Voltages up to 150 Volts. Resistances to 5,000 Ohms. Complete with test leads and instructions.
Reg. $29.25 now only $14.95

SUPERIOR
Model PB-140 Volt-Ohm-Milliammeter
Reg. $150 now only $15.00

SUPERIOR
Model 5000 ohms per Volt Volt-Ohm-Milliammeter
Voltages to 1500 Volts. Resistance to 2 Megohms. Output Volts to 1500 Volts. D.C. Current to 150 Ma. Decibels to plus 50 D.B. Complete with instructions and test leads. Reg. $27.65 now only $1.45

SUPERIOR
Model TC-50 Tube and Set Tester
Test all tubes up to date, including 6, 7L, octal, 6AC7, television, mag eye, cathode ray tube, and other tubes. Complete with test leads and instructions.
Reg. $29.50 now only $29.50

FAMOUS-MAKE
OHMMETER
Has a double-range of 0-10 and 0-1000 ohms for accurate measurement of low resistance. Widely used for production testing, maintenance and field resistance of small motors and relay testing to transformer winding tests, etc.
Complete with test leads, instructions, leather case.
Reg. $36.50 now only $14.95

SUPREME
Model 560 A Signal Generator
A.C. operated, generates R.F. frequencies from 150 kc. to 50 mc. Positive polarity alternator provides effective output control at all times. R.F. is obtainable separately or modulated by the Audio Frequency. Complete with test leads and instructions. Reg. $39.50; now only $19.50

MODEL 6615 SIGNAL GENERATOR
A.C. operated, generates R.F. frequencies from 150 kc. to 50 mc. Positive polarity alternator provides effective output control at all times. R.F. is obtainable separately or modulated by the Audio Frequency. Complete with test leads and instructions. Reg. $39.50; now only $19.50

完全的国家广告的无线电和电视测试仪器，零件和电器设备将被销售

这是一生的机会！

以下列出的单位不是套件，而是全厂组装并带品牌的新品。有些型号已被制造商停售，但每个都是出厂密封的，并附有一年的厂家保证。满意保证，否则在10天内退款。

SUPERIOR
型号533-5多用表
1%线绕电阻精密
直流电压：0-150 - 300 - 750 - 3000伏
范围：0-150 - 200 - 400 - 500 - 600 - 1000欧姆
带全说明书和测线。
原价 $29.50 现价 $9.95

SUPERIOR
型号1555伏-欧姆-毫安表
测量直流电压：0-150伏。电阻：0-5000欧姆。带全说明书。
原价 $29.25 现价 $14.95

SUPERIOR
型号PB-140伏-欧姆-毫安表
测量直流电压：0-150伏，300伏，750伏，1500伏，3000伏。电阻：0.5 - 5 - 15 - 30 - 50 - 100 - 200 - 300 - 500 - 1000 - 2000 - 3000伏。电阻范围：0-150 - 3000欧姆。带全说明书。
原价 $150 现价 $15.00

SUPERIOR
型号5000欧姆每伏伏-欧姆-毫安表
电压到1500伏。电阻到2兆欧姆。输出电压到1500伏。直流电流到150毫安。分贝到+50分贝。带全说明书和测线。
原价 $27.65 现价 $1.45

SUPERIOR
型号TC-50真空管和电路测试仪
测试所有型号的真空管，包括6, 7L, 十字管，电视，磁眼，CRT和其他真空管。带全说明书。
原价 $29.50 现价 $29.50

FAMOUS-MAKE
欧姆表
具有双范围：0-10和0-1000欧姆，用于低电阻的准确测量。广泛用于生产测试，维护和现场电阻的测试，特别是压变压器绕组测试。带全说明书。
带防尘袋，说明书，皮包。
原价 $36.50 现价 $14.95

SUPREME
型号560 A信号发生器
A.C.操作，产生R.F.频率从150kc.到50mc。正极极性变换器提供有效的输出控制。R.F.可以分别获得或通过音频频率进行调制。带全说明书和测线。
原价 $39.50 现价 $19.50

完全的国家广告的无线电和电视测试仪器，零件和电器设备将被销售

这是一生的机会！

以下列出的单位不是套件，而是全厂组装并带品牌的新品。有些型号已被制造商停售，但每个都是出厂密封的，并附有一年的厂家保证。满意保证，否则在10天内退款。
you can hear the quality of a QUAM®

When you install a Quam speaker, listen to it carefully. Your ears will tell you why Quam Speakers have earned the reputation of “the Quality Line.”

No other replacement speaker offers you all these important quality features: patented Adjust-a-Cone® suspension, U-shaped pot, heavier magnetic structures, 4 threaded holes in coil pot, transformer brackets, universal mounting brackets, factory packaging, listing in Howard Sams’ Photofacts.

For happier customers, ask for QUAM—the Quality Line for all your speaker needs.

OVER 97,000 TECHNICIANS HAVE LEARNED HOW TO GET THE MOST OUT OF for AM FM-TV

'Servicing by Signal Substitution'

A BEST SELLER FOR OVER 13 YEARS!

The Modern, Simplified, Dynamic Approach to all Receiver Adjustment & Alignment Problems

Nothing complicated to learn
No extra equipment to purchase
Universal... non-obsolescent
Employes only Basic Test Instruments

Ask for "B.S.S." at your local Radio Parts jobber or remit $0.45 in small stamps or coin directly to factory.

Radio-Electronic Circuits (Continued)

The bias on the output circuit is adjusted by disconnecting the 220-ohm resistor from ground and inserting a 100-ma d.c. meter between the free end of the resistor and ground and adjusting the bias control for proper cathode current—80 ma for EL41's.

These and other European tube types are now generally available through dealers handling foreign receivers and audio equipment.

Crystal Calibrator

The crystal calibrator is a useful and often indispensable instrument for the experimenter, service technician or ham. However, conventional crystal calibrators all require time to warm up.

This transistorized calibrator circuit was designed to overcome this disadvantage. The transistor requires no warmup time and does not heat up in operation, so the calibrator can be used as a standard from the moment it is turned on.

A fairly high-gain transistor such as a 2N76 should be used for operation on low voltages. This transistor and its greater power capabilities offer an advantage if greater power output is ever desired. Two loopsticks (L1 and L2) and two small trimmers form the tuned circuits. The feedback path is through the crystal, which offers maximum feedback at its resonant frequency. The necessary phase reversal and impedance matching for the base are obtained through a seven-turn winding added to L1. Some control of the power input can be obtained by adjusting the base resistor.

Construction of the unit is well suited to miniaturization, but take a few precautions! Mount L1 and L2 at right angles or in such a way that there is no coupling between them. If very small batteries are used, the base resistor should be adjusted for minimum drain while still providing adequate output. To adjust the completed apparatus, connect a 10-ma meter in series with the battery. With the trimmers screwed about halfway down move the slugs of L1 and L2 in and out and set them to the point causing the greatest dip in input current. Adjust the trimmers for a still greater dip in current. When proper adjustment is reached, the input current will be from one-half to one-third the current that flowed when the device was not oscillating. The input with a 20,000-ohm base resistor at 3 volts was 2–3 ma. The usual final adjustment of frequency can be made by zero-beating the oscillator with WWV—Kai M. Klemm
FEBRUARY, 1956

Concord

WESTERN ELECTRIC EXTENSION TELEPHONE

Reg. $48.00
NOW ONLY $6.95

Ideal for dispatch or switchboard use. Leaves hands free. Standard type F-1 carbon button Transmitter. Regulation Western Electric type HA-I magnetic earphone reproducer. Transmitter arm has earpiece holder equipped with transmitter cutoff switch. Accordion-type extension holder transports phone a full 14½". Works into any standard telephone equipment. Shpg. wt. 18 lbs.

CARTER HEAVY-DUTY SUPER ROTARY CONVERTER

Model DS1025C

Reg. $86.50
NOW ONLY $14.50

Input 115 VDC @ 3.5 amps. Output 115 VAC @ 250 watts, 60fps, enough to handle most TV sets, tape recorders, phonos, fluorescent lights, etc. With shock-resistant cabinet, stainless steel battery container. French any gravity case 2½% ± 1½%. Shpg. wt. 1/4 lb. Set of batteries for above...

Standard Western Electric Switchboard Head & Chest Set

Orig. $27.50
YOUR COST $4.95

Standard equipment for any telephone switchboard. Complete with cable and dual telephone plug. Western Electric type 396A. Shpg. wt. 5 lbs.

RED HOT SPECIALS!

TRANSMITTING AND SPECIAL PURPOSE TUBES NEW—GUARANTEED

837 $.69 Limit One Dozen
100TH $4.95 866A $1.25
304TL $7.95 805 $3.50
304TH $4.95 814 $3.50
807 $.99 815 $3.50
826 $.49 872 $2.00

No mechanical or electrical rejects; tubes are not washed and/or re-branded.

Concord Radio

45 WARREN STREET New York 7, N. Y.
Telephone: Digby 9-1132

YOUR NUMBER 1 SOURCE FOR ELECTRONIC VALUES

Reg. Famous Name $29.95 High Fidelity FM Jr. BATTERY PORTABLE NOW ONLY $18.95 each-in lots of 3 Singly $19.95

Smaller than a pack of cigarettes. Faithful reception within usual 25 mile primary FM station area. Linear circuit allows standard batteries to last many weeks in normal use. Handy, shock-resistant earphones and stainless steel battery container. French any gravity case 2½% ± 1½%. Shpg. wt. 1/4 lb.

THERMADOR KILOWATT MODULATION TRANSFORMER

Reg. $85.00
YOUR NET $24.50

Ideal for 304TL or 304TH. Thermador #3928186. Primary: Impedance 6400 ohms center-tapped at 500 ma. Two secondaries, rated at 8000 ohms @ 400 ma and 2500 ohms @ 800 ma respectively. Size 8" x 8" x 8 ½" and weighs 55 lbs. Mounts upright with 4 screws. Complete with bracket and schematic.

R.C.A. **SOUND POWER PHONES**

Navy Types M & N

Worth NOW $45.00
YOUR COST $49.50 (Used)

Two-way conversations over wired circuits up to 10 miles. Any number operate in parallel utilizing line of power. 25 ft. rubber cord, push-in-talk switch. Navy waterproof plug. Ideal for TV antenna installation, field tests, military, etc. Shpg. wt. 7 lbs.

AC SYNCHRONOUS SELSYN MOTOR

(Bendix #4460A-4)

Worth NOW $12.95
YOUR COST $7.50 ONLY $3.95 ea.

115 Volt, 250 ma. Recommended for house antenna rotation or other applications where high torque is required. Shpg. wt. 13 lbs.

5 WATT MIKE-PHONO AC AMPLIFIER

Reg. $26.50
NOW ONLY $14.95

Separate phase and phone inputs and volume controls. Separate bass and treble controls. Finest quality components operating at well below ratings. 8½" x 5" x 4½" small. Shpg. wt. 6 lbs. Complete with tubes.

250 WATT MOBILE DYNAMOTOR

Worth $89.50
YOUR COST $12.95

Great for powering your mobile rig. Output below 1 watt per microphone. Horsepower is 100 lbs. 7000 rpm. 2 VDC, and 8 VDC. Input is 14 V @ 46 amps. Only 6½" x 8½" x 11½" overall. Blower assembly and rack mount may be removed to reduce dimensions to 8" x 5". Slightly used, in excellent condition. Shpg. wt. 38 lbs.

80 METER VFO TRANSMITTER (NAVY BC-696)

Like New! Reg. $24.95
NOW ONLY $9.95

Converts easily to a beat VFO or 50 watt CW transmitter. Tuning range 350 to 2000 K in 1000 lines. 15" x 7" x 3½" wide. Complete with tubes, crystal, flying diodes, and ceramic microcircuits. Less power supply. Shpg. wt. 12 lbs.

MARKER BEACON RECEIVER BC-357 Worth $25.00

(Slightly used)

YOUR COST $4.95

For remote control applications, such as opening garage doors. 75 MC carrier with 2700 cycle audio tone. With 12VDC lamp and 160-resistor. Easily changed to FCC approved 27.5 KC. No licenses needed to operate XMTR on this frequency. Shpg. wt. 5 lbs.

Shure Controlled-Reluctance MICROPHONE

Model CR80H Worth $15.00
NOW ONLY $9.95

Hand held low-inductance magnetic type. Output 40 db above 1 volt per micro-ampere. Response is 300 to 15,000 c/s. [signal-to-noise ratio] 80 db. [signal-to-noise ratio] 80 db. [signal-to-noise ratio] 80 db. [signal-to-noise ratio] 80 db. All merchandise brand new unless stated otherwise. Money-back guarantee. $6.00 minimum order. For N. Y. C. 2% deposit for COD's. Prices subject to change without notice. We reserve the right to limit quantities on all orders.

SEND FOR FREE CATALOG

CONCORD RADIO
45 Warren Street, N. Y. 7, N. Y.

I am not on your mailing list. Please send me your Special Barque Catalog free of charge.

Name

Address

City State
HINTS FOR BETTER PERFORMANCE on your #630 TV receiver... $0.50
70" TV CONVERSION MANUAL, how to convert any TV set to 17", 21", etc... $0.50
Brooks CASCADE MANUAL, how to install Cascade Tuner in any make TV Set... $0.25
A.G.C. STEP-BY-STEP INSTRUCTIONS, how to add A.G.C. to any make TV Receiver... $0.25

CUSTOM-BUILT CABINETS at FACTORY & YOU

TUBULAR CONDENSER KIT, #630
price...
3 LEADING 1956 STYLES in genuine tubular condensers-

MANHATTAN $53.43

DUMONT OR THOMAS PICTURE TUBES BRAND NEW in Factory Sealed Cartons—With a Full Year Guarantee

21" TV CONVERSION KIT Positively the HOTTEST item in CONVERSIONS. Converts any TV cruiser to 21" or over to 21". Customers tell us they even use it to bring a 21" set up-to-date for greater power, brilliance, and clarity.

CONVERT ANY MAKE TV RECEIVER including #630 to operate the 21" or any 70" PICTURE TUBE COMPLETE SET OF ESSENTIAL PARTS includes matched set of Todd 70" COSINE DEFLECTION YOKE and Todd HV FLYBACK TRANSFORMER

SELENIUM RECTIFIERS
65 ma...$0.46 250 ma...$1.08
75 ma...$0.49 300 ma...$1.19
100 ma...$0.62 350 ma...$1.26
150 ma...$0.74 450 ma...$1.42

PM SPEAKERS (ALNICO #5)
Brand New Factory Guaranteed Stock 1 oz. mag. on 3" to 6", heavier mag. on 8" & 12"

TUBULAR CONDENSERS—85° C

CARBON RESISTORS

#630 Parts in COMPLETE SETS

Brooks LIFE-SIZE TV INSTRUCTIONS for building any #630 TV Receiver from the original 10" to the latest 27"...

#630 SUPER TV CHASSIS DE LUXE LICENSED UNDER RCA PATENTS COMPLETE READY TO PLUG IN AND PLAY Similar in features to the 16" to 21" TV kit above.

#630 & TECHMASTER COMPLETE LINE AT SPECIAL PRICES Catalog mailed on request

STANDARD CASCADE TUNER
For better all-around performance Comes w/ tubes and basic Cascades. CASCADE MANUAL w/ step-by-step instructions and all parts needed.

PULSE KEYED AGC KIT
Finest, most popular and the easiest Kit to install in any TV receiver including the No. 630. Improves performance and insures a steady picture on all materials.

FLYBACK TRANSFORMER
This is the model electric repair men use to repair Flyback Transformers in most TV's. It is identical to the popular No. 630 and comes up to TV Standards and specifications. This TRANSFORMER is for all TV's and comes w/ easy-to-follow building instructions and diagrams.

#630 BASIC PAKS KIT

#630 TELEPHONE
Brooks RADIO & TV CORP., 84 Vesey St., Dept. A, New York 7, N.Y.
FM TUNING INDICATOR

I have seen FM tuners that use neon lamps instead of a meter or electron-ray tube as a tuning indicator. Please show a circuit of this type that I can add to my FM tuner.—J. R., New York, N. Y.

The circuit in Fig. 1 is used in the Sonocraft FM tuner. The 6J6 is a bridge type vtmv with a NE51 neon lamp connected between the plates. The input grid of the 6J6 is direct-coupled to the dc output of the FM discriminator. The voltage applied to the 6J6 grid is zero when the set is tuned exactly to the incoming carrier and is either negative or positive when the set is detuned.

The voltage applied to the 6J6 grid unbalances the plate currents and one plate swings negative while the other goes positive with respect to the balanced no-signal condition. The more negative plate of the neon lamp glows when a dc voltage is applied to it. Thus, one plate glows when the receiver is tuned above the carrier frequency and the other when it is below the carrier. Neither plate glows when the set is tuned exactly to the carrier frequency.

The circuit in Fig. 2 is used in a British FM set and was described in Wireless World. This circuit is similar to that in Fig. 1 but it has a lamp in series with each plate. Tuning is adjusted for equal brilliance in the lamps.

If the discriminator output voltage is positive, V1-a's plate current increases and its lamp glows brighter. At the same time, the increased drop across the common cathode resistor decreases the bias on V1-b and its plate current drops and dims the lamp in its plate circuit. V1-a's lamp is dim and V1-b's lamp is bright when the discriminator output is negative.

The neon lamps are mounted about ½ inch apart and are covered at the sides by a light-colored opaque sleeve (white or yellow cambric spaghetti will do). The lamps are viewed from the ends through a frosted plastic diffusing screen.

Circuit performance is determined by the type of tube, the plate supply and bias voltages. The biasing resistor should be adjusted so the current through the neon lamps is limited to about 0.7 ma when the circuit is unbalanced.

The audio signal is filtered out by R and C. Their time constant should equal one cycle of the lowest audio signal received. Using 1 megohm and 0.1 mfd, as in Fig. 1, will prevent signals as low as 10 cycles from actuating the indicators. Both indicators glow when the set is not tuned to a carrier; one of the lamps will be momentarily extinguished as a carrier is being tuned in. This circuit can be added to a set with a balanced ratio detector but the indication will not be as sharp.

HIGH-VOLTAGE SUPPLY

Please recommend a circuit to supply approximately 1,000 volts d.c. to the cathode-ray tube in an oscilloscope. I have considered using an r.f type supply to reduce weight and size. If this is recommended, please give winding data for the transformer.—T. L., Terrace, B.C., Canada

Transformers for r.f power supplies are very difficult to construct at home without special coil-winding equipment. If you want to use this type of circuit, you must consider the following points:

1. The transformer must be capable of handling the required power at the output voltage.
2. The transformer must be capable of withstanding the high voltage without sparkover.
3. The transformer must be capable of withstanding the high current without winding failure.

For further information, you may wish to consult a specialist in high-voltage transformers.
FEN-TONE IMPORTS

MANY SURPRISES

HIGHEST FI

LOWEST PRICES

Fenton Company

15 Moore Street, New York 4, N.Y.

Sold through better Audio Distributors. See yours today!

West of Rockies, Prices slightly higher.

See us at the Los Angeles Hi-Fi Music Show, Room 456

QUESTION BOX (Continued)

We recommend that you purchase a transformer and use the circuit rece-ommended by the manufacturer.

We suggest using a 60-cycle supply designed around a small replacement type power transformer. If you can find one delivering 360 to 400 volts center-tapped, you can use it in this circuit to deliver approximately 1,000 volts d.c. By using the 480-volt center-tapped transformer specified in the diagram, you can obtain outputs up to 1,300 volts.

If the output is excessive under load, you can reduce it by using smaller capacitors or by inserting a suitable resistor in series with one side of the high-voltage winding. Ground is the positive side of the supply.

Caution: Be especially careful to avoid a shock from this supply. Short-circuit the capacitors through a resistor of about 1 megohm before working on the scope.

PHOTOFIASH SLAVE UNIT

Please print the circuit of a photoflash slave unit fired by the flash of light from the main gun on the camera. I want to include an adjustment to compensate for ambient light.—H. A. T., St. Louis, Mo.

This photoflash slave unit can be constructed very compactly in a small metal utility box or similar cabinet. Batteries may be the type used in hearing-aids and miniature portable receivers.

The sensitivity control should be initially set for minimum resistance and S2 should be turned to TEST. When S1 is closed, the relay operates and lights the pilot lamp when the tube heats up. Slowly advance the sensitivity control just to the point where the relay opens and the pilot lamp goes out. Now, throw S2 to FLASH, plug in

FREE! 1956 FEN-TONE Catalog

The above are only samples of the many terrific values in the new 1956 Fenton Tone Hi-Fi catalog including tubes, tape decks, cartridges, record changers, silent listening devices, etc.

Fenton Company

15 Moore Street, New York 4, N.Y.

Radio converts in two volumes

Volume 1 Practical conversions. See it at your dealer or send stamp for list of contents.

Volume 2, Companion to Volume 1.

RADIO HANDBOOK Giant 14th Edition

A one-volume library of radio information with extensive, simplified instruction of how to build a radio. DETAILED SEE ISSUE:...

WORLD'S RADIOTELEPHONE LICENSE MANUAL

Typical study questions with concise answers for any commercial U.S.A. radiotelephone operator's license.

ANTENNA MANUAL

A practical comprehensive book on antennas, for those interested in transmission and reception. Over 150 pages.

BUY FROM YOUR DISTRIBUTOR

Add 10% on direct mail orders to EDITORS AND ENGINEERS, Ltd. Summerland 3, California.

ELECTRIC BRAIN KIT

Can you think faster than this Machine?

Control Panel of GENIAC set up to do a problem in symbolic logic research.

Be careful before you answer. GENIAC's first electrical brain construction kit is equipped with plug-in circuit cards and numerals, circuits and encipher codes, convert binary to decimal, reason in probabilities, as well as add, subtract, multiply and divide with the symptoms of symbolic logic. As a complete, self-contained machine, it offers many problems to be solved by the GENIAC operator's license. Studies and shows how new ones can be

MAIL THIS COUPON

SCIENCE KITS, Dept. RE-24, Oliver Garfield Co.

128 Lexington Ave., N.Y. 16, N.Y.

Please send me:

1. GENIAC Electric Brain Construction Kit and Manual $19.95

2. GENIAC Electric Brain Construction Kit and Manual $29.95

3. GENIAC Electric Brain Construction Kit and Manual $39.95

Returnable in seven days for full refund if not satisfied. I enclose $...

www.americanradiohistory.com
GANGED POTENTIOMETERS

I am building the scope described in the November, 1955, issue and cannot complete it until I can find the dual potentiometers needed for the horizontal gain and sweep frequency controls. I need one ganged control with 5,000-ohm resistances in each section and another with 1- and 10-megohm sections. Please specify make and type number of suitable controls.

For another project, I need a pair of low-impedance headphones that will provide a good match to the secondary of a standard audio output transformer in a radio or TV set. Please list a source of surplus or commercial equivalents.

Assembled dual and ganged potentiometers are not generally available in the values you want but you can assemble your own from components made by several manufacturers. The do-it-yourself multiple assemblies consist of a standard front section with a shaft and a rear section that fastens onto it in much the same manner as switches that are often ganged to volume and tone controls.

For the 5,000-ohm dual control, you can use IRC PQ11-114 (front) and MI1-114 (rear) sections or P. R. Mallory UFS5L (front) and UFS5L (rear) sections. For the sweep frequency control, you can use an IRC type PQ11-137 and MI1-143 front and rear sections with resistances of 1 and 10 megohms, respectively. Equivalent types of other makes may be substituted.

Low-impedance phones are available in several makes. Permoflux high-fidelity 8-ohm dynamic headphones are available at around $30.00; Telex has three types of 6-ohm dynamic phones in the $7-10 range. C. F. Cannon Company can supply single or double headsets with 11 ohms d.c. resistance on direct order or through distributors at the same cost as their equivalent 1,000- and 2,000-ohm models. Prices start at around $1.00 for single and $2.00 for double headsets.
MAGNETOSTRICTIVE GENERATOR

Patent No. 2,714,186

William H. Heinrich, E. Norwalk, Conn.
(Assigned to Sorensen & Co., Inc.)

Ultrasonic energy is used to mix, agitate or emulsify liquid solutions. Previous ultrasonic generators were limited to a fixed frequency so that nodes or dead spots occurred in the solution. This is undesirable, because solid particles tend to accumulate at spots where there are no vibrations. This transducer has a variable-frequency output which eliminates dead spots.

In Fig. 1, R1 passes current from B to charge C. When the potential is high enough, the capacitor voltage breaks down the gas in the thyratron. Then C discharges through the tube and the coil L. An impulsive magnetic core. This pulse sets the core into mechanical vibration at its resonant frequency. The flat end of M is inserted into the solution.

Without a.c. across the thyratron cathode, the tube would oscillate at a constant frequency, as determined by R1 and R2. The a.c. varies the pulse rate and tends to reduce dead spots in the solution. Further reduction in dead spots is effected by the special construction of the magnetostriuctive core as shown in Fig. 2.

The core is hollow with a flat face A supported by a flanged screw which may be inserted into a pipe or opening. Inside the core, a weight is geared to move slowly back and forth. It is driven by a motor through a gear box. Every change in the position of the weight affects the resonant frequency. The result is varying ultrasonic waves which eliminate dead spots or nodes in the medium being agitated or emulsified.

MAGNETIC SCALE-OF-TWO

Patent No. 2,710,928

Gordon Earl Whitney, Poughkeepsie, N. Y. (Assigned to International Business Machines Corp.)

A relay or other mechanical device cannot count rapid pulses—the pulse rate must be slowed.

THE TURNER COMPANY

New high fidelity dynamic miniature

VERSATILE MODEL 58, a superior lavalier microphone, meets TV, broadcasting, recording, PA requirements for performance, durability, compactness and adaptability. High fidelity Model 58 has the sensitive-but-rugged performance, durability, compactness and adaptability. High fidelity Model 58 has the sensitive-but-rugged New Aurtempo, Canadian Marconi TUR-4 ft. cord, Desk model, superior lavalier microphone, dynamic fidelity Model 58, now $5.75.

Impedance) $3.57

MODEL 58

(List Price)

50 or 200 ohms impedance) $57.00

Support clip, neck cord, 26-ft. cable

MODEL 6-4

Swivel Desk Stand $5.75

THE TURNER COMPANY

933 17th Street N.E.
Cedar Rapids, Iowa

IN CANADA:
Canadian Marconi Co., Toronto, Ont. & Branches.

Export:
Ad. Aurelema, Inc., 89 Broad St., New York 4, N.Y.
How Much Do You Think This Speaker Is Worth?

Not an 8" or 12" but a 15" Triaxial—University's New, Amazing 6303!

Do you dream of owning a triaxial?... Are they too expensive for you? Your dream can come true... at a price you can afford. University has perfected a triaxial masterpiece at a price that will save your budget away.

Here's the story behind the 6303: University's first Triaxial (the Super 315) was an immediate sensation. It was (and is) the finest of its kind, though beyond the reach of many. Thanks to the skill gained in perfecting triaxials, we've designed a new speaker having many of the outstanding engineering features of our original triaxial, but—priced so low that NO ONE can afford one. SUCF a speaker is the 6303.

Here's the proposition: Ask to hear it at your favorite dealer. Listen to its magnificent concert-hall realism... to the rich, sonorous base, augmented with full-bodied, mid-range and brilliant upper highs. Admirable its superb construction. NOW... in your mind, think of a price you feel this wonderful speaker is worth. THEN... when you hear the actual price...you will be delightfully surprised.

The speaker of your dreams—see and hear the 6303 NO. 6.

University LOUDSPEAKERS, INC., 80 So. Kensico Ave., White Plains, N. Y.

High Fidelity Magic... from EICO®

NEW! 20-Watt HIGH FIDELITY AMPLIFIER #HF20

Due to its Ultra-Linear output stage with its conservatively-rated Ultra-Linear output transformer, the #220 features negligible distortion & increased power-handling capacity at both extremes of the audio spectrum. Coupled, complete equalization facilities—plus low-distortion, wide-range tone controls & Centripetal Centripetal loudness control—create a preamplifier and control section unsurpassed even in units ticketed at much higher prices.

- Power Response (20W): ±0.5 dB 20-20,000 cps; ±1.5 dB 10-60,000 cps.
- Frequency Response (1%): ±0.5 dB 13-35,000 cps; ±1.5 dB 7-35,000 cps.
- Rated Power Output: 20 w (34 w peak).
- IM Distortion: (600 c/d) at rated power: 0.3%.
- Mid-Band Harmonic Distortion at rated power: 0.3%.
- Maximum Harmonic Distortion (between 20 & 20,000 cps at 1 db under rated power) approx. 1%.
- Speaker Connection Taps: 4, 8 & 16 ohms.
- High quality preamp-equalizer & control section plus complete 20-watt Ultra-Linear Williamson-type power amplifier.

See and hear it at your neighborhood distributor. Write for FREE Catalog CA-2.

Prices 5% higher on West coast.

FEBRUARY, 1956

This one is really a 'dog'.
E-Z WAY TOWERS ONE-SHOT ERECTION IS SAFE AND EASY

With the new E-Z Way portable gin pole it's easy to erect a 120 ft. tower in one piece that will withstand a wind load of 40 pounds. All work is done on the ground—saves time, money and ends dangerous climbing.

SERVICE INSTRUMENTS COMPANY

ADDISON, ILL. (Chicago Industrial Suburb)

In Canada: Emerald Television Corp., Montreal
Hi-Fi record reproduction requires a Precision turntable...

The New Presto Pirouette T-18

Made by the world's largest maker of precision recording equipment
- Improves record performance tremendously... delivers professional broadcast quality.
- Single operation—a sideway flick of the control lever selects 3 speeds—33 1/3, 45, 78 rpm.
- Quiet insured! Precision deep-dwell turntable bearing.
- Quality plus! Extra heavy weight, cast aluminum 12-inch turntable covered with non-slip cork.
- Beautiful design-smart telephone black and brushed chrome finish.
- Easy to install... only rectangular cut-out needed. Easy to buy at only $33.50.

Presto Pirouette T-18 Turntable
The history-making T-18 with hysteresis motor...a magnificent hi-fi instrument. $108.

Presto Pirouette T-68 Turntable
The 16" version of Presto's
- This size for homes with fine hi-fi collections. $79.50.

Presto Pirouette T-68H Turntable
A 16" flick-shift turntable with hysteresis motor...a new pinnace in hi-fi.

Revolutionary 3-Speed Mechanism
The Pirouette embodies the exclusive Presto "flick-shift" speed mechanism, with 3 idler wheels mounted on a single movable plate. Insures professional speed accuracy and trouble-free performance.

Send this coupon for more information →

WRITE FOR THIS FREE LIFETIME HI-FIDELITY SALES KIT

DEALER SALES KIT MAKE BIG HI-FI PROFITS

Sell the finest Hi-Fi Units for custom building or in BEAUTIFUL CABINETS... Sell BELOW REGULAR WHOLESALE PRICES with full dealer mark-up and with price protection.

TRANVISION Hi-Fi Equipment is SOLD THRU SELECTED DISTRIBUTORS

TRANVISION, INC., NEW ROCHELLE, N.Y.
In Canada: 1328 Queen St. W., Toronto 3, Ont.

Rush FREE Dealer Sales KIT on Hi-Fi and name of nearest distributor.

Name ____________________________
Address __________________________
City ____________________________ State __________________________

FEBRUARY, 1956

Hi-Fi - Hi-Fi - Hi-Fi

TV TELLS HOW TO ANSWER RADIO T.V. QUESTIONS

Here is Latest Information in a Handy Form for Television and Radio Repairmen, Servicemen and Students

AUDIEL T.V. RADIO SERVICE LIBRARY
Hundreds of Volumes

Includes Transistors & Transistor Circuits, Record Changers, Rectifiers, P.A. Systems, Tape Recorders, Phonograph Pick-ups, F.M., Auto Radio, Radio Compass, Short Wave, Radar, etc.

$6 COMPLETE 2 VOLUMES

Get this Information for Yourself.

7 DAY TEST—PAY ONLY $1 A Month

MAIL ORDER

AUDIEL Publishers, 49 W. 23 St., N.Y. 10, N.Y. Send AUDIEL T.V. RADIO SERVICE LIBRARY, Volumes 1 & 2 for 10 days trial. If satisfied send $6.00. In 10 days if not satisfied return全套 and your $1 will be refunded. Otherwise we will remit.

Name ____________________________
Address __________________________
City ____________________________ State __________________________

Empolyed by __________________________
TRY THIS ONE

or any other nonrusting metal. I used two aluminum plates 3 inches square. Each plate has a ½ x ½-inch lip with a Fahnstock clip riveted to each. If you use copper (see diagram) or brass plates, you can solder the lead wires directly to them and omit the lips and clips. I used Duco cement to bond the plates to the window pane, but any all-purpose household cement or gasket cement will do as well.

To reduce the capacitance of the pair of plates, simply offset one of the plates, as shown in the drawing.—Arthur Trauffer

(Continued)

UNIVERSAL TEST LEAD

One of the most annoying problems in radio work is to find immediately the proper test lead or probe for the instrument in question and the job at hand. With only a few instruments, the number of various direct, resistive, capacitive and rectifying leads, probes and clips, with invariably mismatched panel connections, forms a bewildering and expensive collection.

The answer is simple and involves two steps. The first is to standardize on a single type panel connector and modify your instruments accordingly. A single-conductor shielded cable seems best suited for most test applications.

RG-58A/U coaxial cable, with stranded center conductor, meets this requirement admirably. Panel connectors and lead terminations can best be made using a standard phone jack and plug or standard microphone connector such as Amphenol 75-PC1M and the mating plug 75-MC1F.

Now for the second step. Fabricate as many basic test leads of desired length as are required by terminating one end with a plug to fit the standardized instrument panel connectors. Terminate the other end with a JK-26 jack. This is the popular phone cord extension jack still readily available as surplus. A length of test lead terminated in a test clip should be soldered to the cable braid and brought out the shell of the JK-26 as shown in the photograph.

The interchangeable probes then can...
TRY THIS ONE (Continued)

be made of surplus PL-54 plugs. Remove the plug shell and saw off the plug body flush with the center insulator. Using the PL-54 shell, lead terminations and single component probes can be fabricated.

If more space is required for mounting probe components, the PL-54 shell may be replaced by a JK-26 shell with no modifications. The photograph shows the various probes that can be made and also shows the method of attaching the standard solderless test-lead tip plug to the plug body. Simply slip the component lead through the tip and slide on the plug shell. Screw on the tip locking collar and this clamps the tip in place and establishes electrical contact.

In case surplus jacks and plugs are not available or if complete shielding is desired, the Mallory 100A extension jack and matching 75A phone plug may be used.

Another important advantage of this type construction is the ruggedness of the finished product — no more test leads pulling off of fragile isolating components. Outside of deliberate effort your probes become virtually indestructible. — Roy E. Pfenenberg

VOLUME-CONTROL SWITCHES

When selecting switches to be mounted on volume controls, it is better to order double-pole, instead of the single-pole, units. The double-pole switches cost no more and are more versatile. They can be used to replace single-pole, double-pole or single-pole types with dummy lug. — Charles Erwin Cohn

DIODE-TRIODE TUBES

Do not discard a defective duo-diode triode tube while the triode section is still O.K. Instead, mark the tube to indicate its condition (diode weak, triode O.K.) and save it for use in one of the many amplifiers or FM and TV receivers that use only the triode section. — J. Sareda

EASY TO LEARN CODE

It is easy to learn or improve speed with an Instructograph Code Teacher. Allows the methodical and musical practical method yet developed. For beginners or advanced students. Available from dealers or direct. Speed range 0 to 60 W.P.M. Always ready — no QRM.

ENDORSED BY THOUSANDS!

The Instructograph Code Teacher literally takes the place of an instructor and enables anyone to learn and master code without further assistance. Thousands of successful operators have completed the course. Write today for convenient rental and purchase plans.

INSTRUCTOGRAPH COMPANY

4701 Sheridan Rd., Dept. RC, Chicago 40, Ill.

FEBRUARY, 1956

END

brings to HIGH FIDELITY the 'All-On-One' HF-56

FM-AM TUNER
PHONO PREAMP
TONE CONTROLS
35-WATT AMPLIFIER

All components on One chassis for easy Hi-Fi Installation

HF-56 $209.50

CABINET OPTIONAL
Mahogany $18.95
Blond 19.95

prices slightly higher west of Rockies

At PILOT dealers, or send for complete details:

PILOT RADIO CORP. Dept. LB-6
37-06 36th St., LI. C. 1, New York

Please send complete description of the new HF-56. I am also interested in the following literature.

☐ Pilot AM-FM Tuners
☐ Pilot Amplifiers
☐ Pilot Component-Console Systems

Name
Address
City Zone State

133
FIELD TECHNICIANS

Broaden the scope of your career with Bendix Radio!

Get these BIG ADVANTAGES!

- Professional status
- The prestige of representing the leader in its field.
- Top salaries
- Liberal field allowances

If you have 5 or more years of electronics experience, you benefit many ways as a Bendix Radio Field Engineer. You will receive full pay while you go to our company-sponsored school in Baltimore. Then, you will be given a key assignment in the United States or overseas with responsibility of maintaining search and surveillance radar equipment made by Bendix Radio.

Write, call or wire
EMPLOYMENT SUPERVISOR Dept. B

Bendix Radio
DIVISION OF BENDIX AVIATION CORP
Towson 4, Maryland
(Phone Valley 3 2200)

SERVICEMEN! TECHNICIANS!
at last!

a professional instrument designed for testing T.V., ABOVE and BELOW chassis!

THE VIDEO PROBE METER!
Saves TWO HOURS PER DAY when used in shop for under chassis work.

With the attachable pick-up loop, (where sufficient signal is available) the Probe Meter can detect radiation of signal thru I.F. and video amp tubes. (Simply slide loop over tube being tested.) Where internally shielded tubes are encountered, remove tube and insert probe tip into grid pin of socket.

Dealers Net Price
$31.50

Can accurately trace and indicate gain per stage in the following T.V. circuits—Gain losses in composite R.F., I.F., Det. Video, Sync., sound, etc. Also, drive and video output gain. Excellent for tracing and comparing color T.V. CIRCUITS.

ADDITIONAL FEATURES
Voltmeter, 0-500V. D.C., 20,000 ohms/volt. Fully Guaranteed.

If your dealer cannot supply, you order direct. Full purchase price refunded if not satisfied.

Merchandising and Promotion

International Rectifier Corp., El Segundo, Calif., awarded a 1956 Ford to Harry J. Kayner of North American Aviation as first-prize winner in the company’s recent Selenium Diode Contest for developing new applications for selenium diodes. Photo shows Dr. Lee de Forest, chief judge of the contest, presenting keys to the car to Kayner. Judges J. T. Cataldo, extreme right, and F. W. Parrish, International executives, look on.

Thompson Products Electronics Division, Cleveland, Ohio, designed a new shipping and display carton for its Supervisor antenna rotators.

Littelfuse Inc., Des Plaines, Ill., reports that Premier TV Radio Supply, Chicago, one of the first jobbers to utilize its combination display and stocking rack has doubled its fuse sales.

Finney Co., Cleveland, reports orders from 267 jobbers out of the 423 who received the personalized pouch promoting its new Geomatic TV antennas.
Radiant Corp., Cleveland, Ohio, designed a new two-color metal display rack for its expanded line of Vipower vibrator-powered converters.

Klipach & Associates, Hope, Ark., has been promoting its Klipachorn corner horn loudspeaker system through demonstrations in Midwestern cities by Paul W. Klipsch, in which he invited the audience to distinguish between live and recorded music. In most cases, only a fraction of the audience could do so.

JFD Manufacturing Co., Brooklyn, N. Y., designed two new product portfolios covering its line of indoor antennas and lightning arresters. Counter displays for both lines are provided.

National Co., Malden, Mass., is offering its dealers a new hi-fi promotion package—a loose leaf binder containing complete promotional material which includes reprints from trade magazines, decals, a satin banner and a catalog of all equipment.

Electrovox Co., East Orange, N. J., is featuring a new display card for its Walco phonograph needles.

Walco is all decals, a complete line of live demonstrations for just 4.5 mc, useful at 1000-10000 Mc, and High V sensitivity: 25 mv/in.

Choice of direct coupling (DC) or capacitive coupling (AC).

#460 Factory Wired $129.50

* V amplifier direct-coupled and push-pull thruout; gradual roll-off beyond 4.5 mc; useful at 10000 Mc.

Automatically synch anything visible on the screen.

Pre-set TV V & H sweep positions (30 cps & 7855 cps).

Edge-lit lucite engraved graph screen with dimmer control; filter; standard bezel fits standard photographic equipment.

5UP4 CRT

EICO®

Write for FREE New 1956 Catalog CS-2 and Name of Distributor

NOW IN STOCK AT YOUR NEIGHBORHOOD DISTRIBUTOR . . . ORDER NOW!

TO INTRODUCE YOU TO THE MIRACLE OF TRUE HIGH FIDELITY RECORDINGS

BACH

Complete to the Last Note! $1

All works of a Long Playing discs.

CHOPIN

Take them FREE

Table of works available.

BEETHOVEN

Try them FREE

Perform a series of famous symphonies and concertos.

MUSSORGSKY

Now available: 18, 1

VIOLADI

1842-1386,

VIVALDI

First annual premium

MOZART

In a year from now, 225, 2

BRAHMS

In two years from now, 225, 2

BERLIOZ

In a year from now, 225, 2

WAGNER

In a year from now, 225, 2

DUKAS

In a year from now, 225, 2

WRITE FOR COMPLETE CATALOG

ATLAS SOUO CORP.

1443-39 St, Bklyn, N. Y.

IN CANADA:

Atlas Record Co., Ltd., Toronto, Ont.

FEBRUARY, 1956
opportunities AT
BELL TELEPHONE LABORATORIES

A career for you with one of the nation's leaders in research and development in communications and military electronics.

ELECTRONIC TECHNICIANS DRAFTSMEN ELECTROMECHANICAL TECHNICIANS

Openings require previous training at high school, armed service school, or technical institute level and in general 2 or more years of applicable industrial or military experience.

Send your name and address for application, telephone collect within 100 miles for information, or visit us Monday through Friday. Evening interviews arranged.

BELL TELEPHONE LABORATORIES
WHIPPANY N. J. (Near Morristown)
WHIPPANY B-1002 EXTS. 2786, 300
MURRAY HILL N. J. (Near Summit)
CRESTVIEW 3-6000 EXTS. 3078, 3204
463 WEST STREET, NEW YORK CITY
CHELSEA 3-1000 EXTS. 2871, 2873

EASE TURNS • FREE TRIAL

To help you

MOVE AHEAD in INDUSTRIAL ELECTRONICS

This Library makes plain methods used by today's electronics engineers

HERE'S a Library to help you prepare for a top job in the booming industrial-electronics field. It will help you save time and work in your present job. Experts give you concise theory, practices, and methods. They explain electronic circuits and devices, vacuum tubes, the analysis and use of electron-tube circuits, and provide a vast amount of other data on electronic equipment!

INDUSTRIAL ELECTRONICS ENGINEERING LIBRARY

4 volumes, 1998 pages, 1637 charts, diagrams, and illustrations

$24.95—payable on EASY TERMS

In this Library are the sort of practical facts that can help you step up in front of the "average" electronics man—they give the kind of knowledge that can well mean a top-paying job in electronics work. You get practical data on electronic instrumentation, a wealth of facts on vacuum tubes, useful information on electron-tube circuits, and the latest trends in electronic both in theory and practice. Moreover, anyone who can earn his living in this field can afford to own a copy of the INDUSTRIAL ELECTRONICS ENGINEERING LIBRARY.

EASY TERMS • 10-DAY FREE TRIAL

send for
NORTH'S 1956 CATALOG

See the latest end finest equipment ever offered in First-Fidelity, Radio, TV, Amateur and Electronic. Select the fastest, dependable way, from this new 260-page catalog.

Newark ELECTRIC COMPANY
Dept. RE-2, 223 W. Madison, Chicago 6, III.

WEST COAST BRANCH
4736 W. Century Blvd., Inglewood, Calif.

BUSINESS

(Continued)

Teletronics Corp., Long Island City, N. Y., launched a national sales campaign on its new portable tape recorder which includes ads in Life magazine.

New Plants and Expansions

Daystrom Inc., Elizabeth, N. J., parent company of Heath Co. and Weston Electrical Instrument Co., has completed the sale of its former subsidiary, American Type Founders, Inc. in order to permit further expansion in the electronics field which now accounts for 85% of its sales.

General Electric Tube Department established an electronic tube warehouse and commercial sales office in Seattle, Wash.

RCA is constructing a new $7,700,000 addition to its plant in Cambridge, Ohio, for the production of tape recorders and high-fidelity instruments.

P. R. Mallory Inc., affiliate of P. R. Mallory Co., Indianapolis, opened a new plant for the manufacture of electrolytic capacitors in Huntsville, Ala.

Oxford Electric Corp., Chicago, moved its distributor sales office and warehouse to 556 W. Monroe St.

Sylvania Electric Products is building a new 76,000-square-foot warehouse and sales office in Atlanta, Ga.

JFD Manufacturing Co., Brooklyn, N. Y., recently opened a Canadian manufacturing and sales division in Toronto.

Cornell-Dubilier moved its Midwest sales office to 8247 W. Diversey Ave., Chicago.

Business Briefs

RCA president Frank M. Folsom told a luncheon meeting of more than 500 suppliers of RCA and NBC that the electronics industry is expected to grow by 66% during the next 10 years to reach an annual volume of over $17 billion by 1964.

RETMA president, H. Leslie Hoffman, has asked Secretary of Commerce Sinclair Weeks to take steps to relieve the critical shortage of nickel which is threatening to curtail tube production.

Astron Corp., East Newark, N. J., was recently granted a patent for its process of manufacturing molded plastic capacitors. The company also recently initiated a Planning Conference at plants in Newark, N. J., to acquaint leading manufacturers from diversified industries with capacitor design and packaging for automation.

END
WHICH OF THESE WELL-PAID JOBS DO YOU WANT

1. RADIO and VHF TECHNICIANS (Job #1160)
 An oil development company has openings for Radio and VHF Technicians. Minimum of five years experience maintaining and installing standard commercial radio and VHF equipment. Salary is $570.00 per month plus a service allowance amounting to $224 per month.

2. AIRLINE RADIO (Job #1128)
 Nationally known airlines, New York, Chicago and Cleveland and other cities, has openings for Radio Operators and Radio Mechanics. Second class license or better. Periodic increases with opportunity for advancement. Many company benefits—paid vacations, free flight mileage allowance, group insurance, etc.

3. ELECTRONIC TECHNICIANS (Job #1192)
 Leading manufacturer of electronic equipment has many ground floor opportunities for technicians. Work involves design, construction and maintenance of the world’s largest electronic digital computer.

4. GUIDED MISSILE TECHNICIANS (Job #1183)
 Large West Coast manufacturer has openings for Electronic Technicians for work in research and development, maintenance and calibration for electronic instrumentation. A wide variety of interesting design and development positions for technically trained men in assignments which range from initial design studies through development.

HERE’S PROOF CIRE TRAINEES GET WELL-PAID JOBS LIKE THESE...

AIRLINES
"I replied to the Job Opportunities you sent me and I am now a radio operator with American Airlines. You have my hearty recommendation for your training and your Job-Finding Service."
James A. Wright, Beltsville, Md.

INDUSTRIAL ELECTRONICS
"Upon my discharge from the Navy I used your Job-Finding Service and as a result I was employed by North American Aviation in electronic assembly (final checkout)."
Glen A. Furlong, Fresno, Calif.

*WE CERTIFY THAT THESE JOBS ARE CURRENTLY AVAILABLE. FULL DETAILS ON THESE AND HUNDREDS MORE WILL BE SENT ON REQUEST.

YOUR FCC LICENSE AND CIRE DIPLOMA QUALIFY YOU FOR THE GOOD JOBS IN ELECTRONICS AND RADIO

WRITE NOW FOR COMPLETE INFORMATION

FIND OUT How to get your FCC commercial License. Fill Out The Coupon Below and Mail It. Today!

CLEVELAND INSTITUTE OF RADIO ELECTRONICS
Desk RE-88, 4900 Euclid Bldg., Cleveland 3, Ohio
(Address to Desk No. to avoid delay)
I want to know how I can get my FCC ticket in a minimum of time. Send me your FREE booklet, "How To Pass FCC License Examinations" (does not cover exams for Amateur License), as well as a Sample FCC-type lesson and the amazing new booklet "Money-Making FCC License Information." Be sure to tell me about your Television Engineering Course.
PLEAS PRINT CAREFULLY

NAME

ADDRESS

CITY

ZONE

STATE

Special tuition rates to members of the U. S. Armed Forces Electronic Training Available To Canadian Residents.
OHMITE

Be Right with
OHMITE
DEPENDABLE RESISTANCE UNITS

Little Devil

1 WATT

COMPOSITION RESISTORS
Meet all MIL-R-11A requirements. Rated at 70 C rather than 40 C. Available in 1/2, 1, and 2-watt sizes in all standard RETMA values.

BROWN DEVIL® RESISTORS
Vitreous enameled. Available in 5, 10, and 20-watt sizes.

TYPE A B POTENTIOMETERS
Resistance material is solid-molded. Noise-free. Rated at 2 watts.

FR-7.5 FUSE RESISTOR
For easy replacement in all television receivers. 1/2" Timed wire leads.

WRITE FOR STOCK CATALOG

OHMITE MANUFACTURING COMPANY
3646 Howard St., Skokie, Ill. (Suburb of Chicago)

138

RADIO-ELECTRONICS

In a Stew over
CALL-BACKS?

Be Right with
OHMITE
DEPENDABLE RESISTANCE UNITS

Little Devil

1 WATT

COMPOSITION RESISTORS
Meet all MIL-R-11A requirements. Rated at 70 C rather than 40 C. Available in 1/2, 1, and 2-watt sizes in all standard RETMA values.

BROWN DEVIL® RESISTORS
Vitreous enameled. Available in 5, 10, and 20-watt sizes.

TYPE A B POTENTIOMETERS
Resistance material is solid-molded. Noise-free. Rated at 2 watts.

FR-7.5 FUSE RESISTOR
For easy replacement in all television receivers. 1/2" Timed wire leads.

WRITE FOR STOCK CATALOG

OHMITE MANUFACTURING COMPANY
3646 Howard St., Skokie, Ill. (Suburb of Chicago)

138

RADIO-ELECTRONICS

In a Stew over
CALL-BACKS?

Be Right with
OHMITE
DEPENDABLE RESISTANCE UNITS

Little Devil

1 WATT

COMPOSITION RESISTORS
Meet all MIL-R-11A requirements. Rated at 70 C rather than 40 C. Available in 1/2, 1, and 2-watt sizes in all standard RETMA values.

BROWN DEVIL® RESISTORS
Vitreous enameled. Available in 5, 10, and 20-watt sizes.

TYPE A B POTENTIOMETERS
Resistance material is solid-molded. Noise-free. Rated at 2 watts.

FR-7.5 FUSE RESISTOR
For easy replacement in all television receivers. 1/2" Timed wire leads.

WRITE FOR STOCK CATALOG

OHMITE MANUFACTURING COMPANY
3646 Howard St., Skokie, Ill. (Suburb of Chicago)

138

RADIO-ELECTRONICS

In a Stew over
CALL-BACKS?

Be Right with
OHMITE
DEPENDABLE RESISTANCE UNITS

Little Devil

1 WATT

COMPOSITION RESISTORS
Meet all MIL-R-11A requirements. Rated at 70 C rather than 40 C. Available in 1/2, 1, and 2-watt sizes in all standard RETMA values.

BROWN DEVIL® RESISTORS
Vitreous enameled. Available in 5, 10, and 20-watt sizes.

TYPE A B POTENTIOMETERS
Resistance material is solid-molded. Noise-free. Rated at 2 watts.

FR-7.5 FUSE RESISTOR
For easy replacement in all television receivers. 1/2" Timed wire leads.

WRITE FOR STOCK CATALOG

OHMITE MANUFACTURING COMPANY
3646 Howard St., Skokie, Ill. (Suburb of Chicago)

138

RADIO-ELECTRONICS

In a Stew over
CALL-BACKS?

Be Right with
OHMITE
DEPENDABLE RESISTANCE UNITS

Little Devil

1 WATT

COMPOSITION RESISTORS
Meet all MIL-R-11A requirements. Rated at 70 C rather than 40 C. Available in 1/2, 1, and 2-watt sizes in all standard RETMA values.

BROWN DEVIL® RESISTORS
Vitreous enameled. Available in 5, 10, and 20-watt sizes.

TYPE A B POTENTIOMETERS
Resistance material is solid-molded. Noise-free. Rated at 2 watts.

FR-7.5 FUSE RESISTOR
For easy replacement in all television receivers. 1/2" Timed wire leads.

WRITE FOR STOCK CATALOG

OHMITE MANUFACTURING COMPANY
3646 Howard St., Skokie, Ill. (Suburb of Chicago)

138

RADIO-ELECTRONICS

In a Stew over
CALL-BACKS?

Be Right with
OHMITE
DEPENDABLE RESISTANCE UNITS

Little Devil

1 WATT

COMPOSITION RESISTORS
Meet all MIL-R-11A requirements. Rated at 70 C rather than 40 C. Available in 1/2, 1, and 2-watt sizes in all standard RETMA values.

BROWN DEVIL® RESISTORS
Vitreous enameled. Available in 5, 10, and 20-watt sizes.

TYPE A B POTENTIOMETERS
Resistance material is solid-molded. Noise-free. Rated at 2 watts.

FR-7.5 FUSE RESISTOR
For easy replacement in all television receivers. 1/2" Timed wire leads.

WRITE FOR STOCK CATALOG

OHMITE MANUFACTURING COMPANY
3646 Howard St., Skokie, Ill. (Suburb of Chicago)

138

RADIO-ELECTRONICS

In a Stew over
CALL-BACKS?

Be Right with
OHMITE
DEPENDABLE RESISTANCE UNITS

Little Devil

1 WATT

COMPOSITION RESISTORS
Meet all MIL-R-11A requirements. Rated at 70 C rather than 40 C. Available in 1/2, 1, and 2-watt sizes in all standard RETMA values.

BROWN DEVIL® RESISTORS
Vitreous enameled. Available in 5, 10, and 20-watt sizes.

TYPE A B POTENTIOMETERS
Resistance material is solid-molded. Noise-free. Rated at 2 watts.

FR-7.5 FUSE RESISTOR
For easy replacement in all television receivers. 1/2" Timed wire leads.

WRITE FOR STOCK CATALOG

OHMITE MANUFACTURING COMPANY
3646 Howard St., Skokie, Ill. (Suburb of Chicago)

138

RADIO-ELECTRONICS

In a Stew over
CALL-BACKS?

Be Right with
OHMITE
DEPENDABLE RESISTANCE UNITS

Little Devil

1 WATT

COMPOSITION RESISTORS
Meet all MIL-R-11A requirements. Rated at 70 C rather than 40 C. Available in 1/2, 1, and 2-watt sizes in all standard RETMA values.

BROWN DEVIL® RESISTORS
Vitreous enameled. Available in 5, 10, and 20-watt sizes.

TYPE A B POTENTIOMETERS
Resistance material is solid-molded. Noise-free. Rated at 2 watts.

FR-7.5 FUSE RESISTOR
For easy replacement in all television receivers. 1/2" Timed wire leads.

WRITE FOR STOCK CATALOG

OHMITE MANUFACTURING COMPANY
3646 Howard St., Skokie, Ill. (Suburb of Chicago)

138

RADIO-ELECTRONICS

In a Stew over
CALL-BACKS?
Get more out of your job—or hobby with Gernsback Library Books

Now—a complete library of low-cost books to help you get ahead in your job or get more from your hobby. These books will give you new ideas, show you short cuts, and save costly mistakes which may be worth hundreds of dollars to you. Pick out the books you need—if your distributor doesn’t have them, use the coupon below.

SERVICING AND TEST INSTRUMENTS

NEW! The V.T.V.M.—No. 57. How to use the V.T.V.M. to best advantage. 124 Pages. Paper cover $2.50, Hard cover edition $4.00

Sweep and Markov Generators—No. 55. 224 Pages. Paper cover $2.50, Hard cover $4.00

Probes—No. 54. 224 Pages. Paper cover $2.50

NEW! Basic Audio Course—No. 60. Audio fundamentals from the theory of sound to advanced techniques. 224 Pages. $3.75

FUNDAMENTALS

Basic Radio Course—No. 44. Easy-to-read but thorough book on fundamentals of Ohm’s Law to circuit analysis. Hard cover. 172 Pages. $2.25

Radio Tube Fundamentals—No. 45. How and why tubes work as they do. 96 Pages. $1.00

MISCELLANEOUS

Radio & TV Hints—No. 47. 300 hints, kinks and short cuts. 112 Pages. $1.00

Proactical Disc Recording—No. 39. How to make disc recordings. 96 Pages. 75c

QUIT KIDDING YOURSELF—YOU'RE NOT GOING TO BE SATISFIED 'TIL YOU START SELLING WALCO NEEDLES!

LEARN ELECTRONICS & COLOR TV IN K.C.

UNIVERSAL TV . . . Famous for 25 Years

Learn electronics in your own home in 12 weeks. Get a job with $150-$200 week in 6 weeks.

23 Years Exclusively in Electronics:
For a quarter of a century UNIVERSAL TV has been training and placing grad technicians in fascinating big-pay jobs from coast to coast. You can start earning as much as $150 per week, so limit as time goes on, or you can open your own business.

UNIVERSAL not a Johnny-come-lately school:
Not a home study or correspondence training, but a "genuine" old-established institution staffed by expert instructors and headed by America’s first broadcasters. Costs so little to prepare yourself for life. Many middle age trainees attend; go into successful business. No previous experience needed. Approved for vets and non-vets.

— FILL OUT COUPON —

UNIVERSAL TV SCHOOL

1128 Admiral Boulevard, Kansas City, Missouri

PLEASE SEND ME INFORMATION FREE.Age:

Name:

Address:

City State

Check here if Korean Veteran

www.americanradiohistory.com
How BIG must the show be?

When a facetious critic asked, "How long should a man's legs be?" Abraham Lincoln replied, "Long enough to reach the ground!"

The 1956 Radio Engineering Show is big only because it must be big to be truly representative of a gigantic industry. 704 exhibitors, 1 out of every 5 firms manufacturing for the industry, will be present.

But these 704 firms represent over 80% of the industry's production. A smaller Show would give only an inadequate picture of the year's progress and new developments.

Being BIG pays off! This truly great event brings out the best...in people, effort and products!

Registration - IRE Members $1.00
Non-members $3.00

What you get out of it!
- You see what is new in radio-electronic products and engineering!
- You meet the men who make these products!
- You save time...seeing in days a whole year's productive effort!
- You hear the best technical papers in subjects of your own specialty!
- You meet old friends and make new ones, enjoy association and social events!

The IRE National Convention
Waldorf Astoria Hotel, New York City
and RADIO ENGINEERING SHOW
Kingsbridge Armory & Palace, New York City

TAPE RECORDERS

Tapes—Accessories
Nationally Advertised Brands
UNUSUAL VALUES
Send for Free Catalog

DRUM

MERITAPE
Low Cost, High Quality, Perforated Tape—15
cents or less

www.americanradiohistory.com
Hi-Fi Catalog

This High Fidelity combines an illustrated information section explaining high fidelity with listings of hi-fi music systems and separate components in a 100-page booklet. Written in nontechnical language, it explains the functions of basic units used in home hi-fi music systems and shows many practical installations. What percentage of the hi-fi dollar to appropriate to each component suggested, plus tips for the budget-conscious on the selection and installation of components.

Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.

Any or all of these catalogs, bulletin, or periodicals are available to you on request direct to the manufacturer, whose addresses are listed at the end of each item. Use your letterhead do not use postcards. To facilitate identification, mention the issue and page of RADIO- ELECTRONICS on which the item appears.

UNLESS OTHERWISE STATED ALL ITEMS ARE GRATIS; ALL LITERATURE OFFERS ARE VALID AFTER SIX MONTHS.

Enclosures

Bulletin No. 211 illustrates and describes do-it-yourself high-fidelity speaker enclosure kits. Model 1B2 Centurion, 1B4 Regency, 1B5 Empire, 1B6 Aristocrat are described in separate construction books for $1 each; model 1B1 Patrician and 1B2 Georgian, for $1.50 each; model 1B7 Baronet, for 75 cents.

Written in an entertaining as well as instructive way and illustrated with dozens of good photos and drawings, these brochures set a new level in do-it-yourself books.

The Tape Recorder

207 Ways to Use a Tape Recorder outlines uses for a tape recorder at home or away, work or play. It segregates uses into classifications such as professional, educational, church, business, recreational, and shows how to record and play back, in addition to giving ways to splice in, preserve and use a tape recorder.

Magnecord, Inc., 1101 S. Kilbourn Ave., Chicago 24, Ill.

Test Equipment

A 16-page Catalog No. 120 Form 9115-T95 contains detailed information and photographs of test equipment for radio and black-and-white and color TV. Contains data on models 310, 630, 620-A, 620-T, 630-NA, 665-R and 68HH volt-ohm-milliammeters, 3412-B tube tester, 3423 mutual conductance tube tester.
Pricing Digest answers a need long felt by Service- men—List or resale prices for every component part or component at your fingertips.

Over 200 pages, cover more than 60,000 items

Compiled like a telephone book (1) alphabetical by Manufacturer (2) alphabetical by Product Category (3) Numerical by Part Number. Price and identify any replacement item in seconds—as easy as 1-2-3.

9 1/2 long by 3 3/4 wide... convenient for counter, pocket, tool box or tube caddy.

This in savings

Time and money savings—no wasted effort—no calls to your distributor to check prices. No undercharges—no overcharges when you price your tubes and parts from the Official Pricing Digest. PRICE $2.50 PER COPY—will pay for itself many times over by giving you CORRECT PRICES where and when you need them. Publication dates are October, January, April and July. Completely revised prices will be current on each publication date. Available exclusively thru your distributor.

Now Rice's OFFICIAL TV-RADIO SERVICE ORDER BOOK

Best Service Order Book because it's the only form providing for all types of service on TV-Radio, Phonos or Hi-Fi equipment. Best service order book because it's the only form providing service listings to your specifications, plus space for letter and serial number.

Sold by parts distributors at 75¢ per book or $6.50 per box of 10.

Electronic Publishing Co., Inc. 180 North Wacker Drive Chicago 6, Illinois

TECHNICAL LITERATURE (Continued)

$499 color bar generator, $495 dot generator, $495-A sweep signal generator and $495-A signal generator.

Triplet Electrical Instrument Co., Bluefountain, Ohio.

MODULIZED CIRCUITS

Aerovox's bulletin Modulized Standard Circuits explains what a module is and gives information on modulized standard circuits, module nomenclature and accessories. Video limiters, cathode followers, video amplifiers and PRF multivibrators are among the circuits described.

Aerovox Module Div., Aerovox Corp., 1200 Jefferson Davis Highway, Arling- ton, Va. (Write on business stationery.)

TRANSFORMERS

Catalog G-85 lists in 16 pages audio transformers, autoformers, chokes, deflection yokes, filament transformers, flybacks, reactors, input and output transformers, TV components, etc.

Grummer - Halliburton Transformer Corp., 3744 N. Pulaski Rd., Chicago 8, Ill.

SELENIUM RECTIFIER DATA

A 12-page booklet Federal Selenium Rectifier Design Data Guide gives engineers factors to consider in the design of industrial and military rectifiers and tells why these factors are important.

Components Div., Federal Telephone & Radio Co., 100 Kingsland Rd., Clifton, N. J.

HIGH FIDELITY

Chicago Standard Transformer Corp., 3827 Elston Ave., Chicago 18, Ill.

TEST EQUIPMENT

Catalog No. 139 contains eight pages of data on test equipment. Among the equipment described are the models 287 tube tester, 480 ac-dc multimeter, 780 sweep generator, 655 Do-All tvom, AE 100 Geiger counter, 453 master multimeter, 55 wide-band 5-inch oscilloscope.

Radio City Products Inc., Centre & Glenclaire Sts., Easton, Pa.

RADIO AND TV CIRCUIT INDEX

Supreme's Master Index to Most-Often Needed Television and Radio Servicing Information presents complete information for quickly finding needed diagrams and service data in all 15 Most-Often-Needed Radio Diagram manuals, covering radio receivers from 1926 to 1955 sets, as well as the 9 Television Servicing Information volumes.

Available to Radio-Electronics' readers. 5 cents from Supreme Publications, 1760 Balsem Rd., Highland Park, Ill.

NEW FOR '56

"Credit Bonus Plan!" EVERY PURCHASE GIVES YOU CREDITS TOWARD YOUR FREE BONUS KIT!

Here's how it works: With your first order, you are issued a Credit Card, showing 1 credit for each dollar of your purchase, and each credit card with each order and credits are earned. When your card shows 10 credits, you get the kit you choose, free!

OTHER SPECIALS FOR FEBRUARY

POWER SUPPLY KIT...300 VDC @ 70 MA, 6.3 Volt Regulated, 6, 8, 12 Volt, $3.38

A-C/DC RECTIFIER 6C 9C, A-C/DC RECTIFIER 12C 15C, $10.60

2-TUBE AMPLIFIER. Complete wired! Five transistors, one electron, one diode. 275-555 Volts. 6.3 Volt Reg. $7.80

TUTORIAL KIT...A-C/DC, Hi-Fi, TV, 500 Values, $19.95

12-HOUR CIRCLE TIMER. Tuner Radio, $12.60

WIRE FOR OUR NEW 1956 BARGAIN BULLETIN! Enter above order

Name

Street

City

Zone State

Enrolled $..for kits, $..for postals.

LEKTRON SPECIALTIES

28 Gardner Street Chelsea 50, Mass.
Visit Our New Showroom at 131 Everett Ave., Chelsea.

www.americanradiohistory.com
LARGE-SCREEN COLOR RECEIVER. RCA Service Co., Inc., Camden, N.J. 31 pages. 8½ x 11 inches. 75c.

Issued as a supplement to RCA's popular Practical Color Television for the Service Industry, this book concerns itself with a comprehensive discussion of the 21-inch RCA model 21CT602 color receiver. It is intended not as an instruction manual for the beginning technician, but for those familiar with the fundamentals of color TV.

Divided into four sections, the text opens with a description of the 21AXP22 and related accessories and gives a thorough adjustment procedure. Section II discusses the entire receiver briefly, showing a block diagram and highlighting the more interesting circuit details.

Section III explains the basic theory of high-level demodulation and covers in great detail demodulation in the 21CT602. Section IV covers the installation and servicing of the color receiver, with several service hints and a step-by-step setup procedure.

At the back of the book is a complete schematic diagram of the set supplemented with a block diagram showing many waveforms.—J.K.

Much of the valuable information in this advanced text can help technicians. It represents the combined efforts of five specialists, some of their results appearing for the first time. Many practical schematics and diagrams are given, and much of the math is at a high engineering level.

The first chapter is an excellent introduction to the subject. Transistor action is described as clearly as some books describe tubes. Physical concepts of semiconductors, junctions, holes, processing of germanium, etc. are discussed. The next two chapters analyze transistors from the viewpoint of equivalent circuits. A complete list of formulas aids the calculation of various parameters.

The following chapters stress the more practical aspects. They include bias circuits, l.f. and h.f. amplifiers, oscillators. Many schematics appear, and the text is divided into short, snappy paragraphs with subheadings. One chapter—"Physical interpretation of parameters"—describes topics not often understood clearly although frequently mentioned: transition region, diffusion, feedback, etc.

For over 10 years, RAM has specialized and pioneered in sweeps exclusively. RAM designs them, makes them, counsels TV set manufacturers on them, field-services them, educates Servicemen on them—leads the industry.

No one but RAM can bring you such proven data—as shown here and in the RAM Manual. In manufacturing know-how and field experience, you can depend on RAM for...

THE VOICE OF AUTHORITY IN SWEEPS
Send coupon today—get the BEST information from the FOREMOST manufacturer now!

RAM ELECTRONICS SALES CO., Irvington, N. Y.

Canadian Sales Division: Telequipment Mfg. Co., Ltd., Ontario Export Dept: Dage Corp., 219 E. 44 St., New York, N.Y.

NEW! FUTURAMIC

World's most progressive probe manufacturer opens up new fields of application for your volt-ohm-milliammeter never before considered possible.

Type 261 High-Ohms Probe gives you an additional (Rx100K) ohms range on your V.O.M.

Type 263 Signal Tracing Probe converts your V.O.M. into a signal tracer.

Type 261 is used with most popular types of 20,000 ohms-per-volt V.O.M.'s.

Type 263 is used with any 20,000 ohms-per-volt V.O.M.

No risk, 10-day money-back guarantee. Full instructions with each probe.
If not available from your jobber, use coupon and order direct. Please send name of your jobber.

FUTURAMIC
1708 West Armitage Ave.
Melrose Park, Ill.

Please send me the following V.O.M. probes:
☐ Type 261 High-Ohms Probe, $9.75
☐ Type 263 Signal Tracing Probe, $8.95

I am enclosing $____ down for each probe ordered. Upon delivery, I will pay postman balance, plus postage.

Name ____________________________
Address __________________________
City ___________________ Zone State

Send FREE High Fidelity Catalog
Allied Radio Corp., Dept. C-26
100 N. Western Ave., Chicago 10, Ill.

This leading 100-page book shows you how to select a Hi-Fi musical system at lowest cost. Tells you what to look for in each unit, shows many handsome, practical installation ideas. Offers you the world's largest selection of complete systems and individual units from which to make your money-saving choice. To understand Hi-Fi, to own the best for less, you'll want this invaluable catalog. It's FREE—write for your copy today.

ALLIED RADIO
America's Hi-Fi Center

Send FREE Allied Hi-Fi Catalog

FROM THE VOICE OF AUTHORITY IN SWEEPS...

SPOT and FIX TV FAULTS FAST!
FREE RAM BOOK SHOWS HOW!

Typical latest field-proven servicing data you'll find in your RAM book:

Ram Electronics Sales Co., Dept. C-2
Irvington, New York

Send me FREE 1956 RAM "FIX-A-FAULTS" BOOK.

Name ____________________________
Firm ____________________________
Street __________________________
City ___________________ Zone State

www.americanradiohistory.com

Students often think of lab procedure as a dull routine. This manual shows that it can be made interesting as well as instructive if the technician or student follows a plan. The book combines theory and lab and describes a variety of experiments.

The first chapters show how to plan a test or measurement, lists safety precautions and explains how to protect instruments. There are instructions for preparing a lab report. Then equipment is clearly described and explained. They include rheostats, meters, motors and generators. The text shows how to use them and how to take care of them.

SHOOT TV AND RADIO TROUBLE FAST, by Harry G. Cisin. Harry G. Cisin, Publisher, Amagasett, N.Y. 8½ x 11 inches, 40 pages. $1.50.

This is written to assist the professional repairman, who may not have too much theory, to speed the process of servicing radio as well as TV receivers. The most common service problems are listed with possible causes. Lettered keys then refer to various numbered checks that can be used to identify the defect and eliminate the trouble.

Part I consists of 11 pages devoted to troubleshooting tv ac-dc radios. Part II, 27 pages, to rapid TV troubleshooting. Part III gives two pages of tips on servicing printed circuits.

This publication is for music lovers rather than technicians. For these home listeners there is no need to go to technical depths. On the other hand, merely recommending specific units is not enough. The basic principles of hi-fi units and systems are here described so that the reader can choose his own to fit particular needs.

This booklet has two parts: understanding hi-fi and a guide to selecting and installing equipment. The first part tells what sound is, comparing distortion to that which may occur in a photograph. It illustrates typical sound systems and goes into detail regarding choppers, tubes, transformers, speakers, enclosures, etc. The second covers such topics as how to determine required power output, select an amplifier, conduct a listening test. Several photos show recommended placement of speakers, typical "built-in" home sound systems and custom installations.
LEARN TV

‘At the most practical school in the west’

Work on late model sets—using modern equipment and service techniques. Under qualified technician instructors. Shortest resident and correspondence courses—an unnecessary math or theory—also UHF and Color TV.

Write for free literature, Dept. 1A for residence—Dept. 1AC for correspondence.

V.S.I. TELEVISION SCHOOL
4570 Firestone Blvd. South Gate, California

TV REPAIRMEN
EARN TOP MONEY!

IN JUST 12 MONTHS, COMPLETE TV SERVICE TRAINING, INCLUDING COLOR TV. Streamlined course gives you all essentials for a good job as service technician. Graduates in high demand, jobs are plentiful in this growing field. Other electronic courses in radio operation and maintenance. Day or evening classes. Opportunity for employment in local industry. Approved for Korean veterans, W-11 Today.

INDIANAPOLIS ELECTRONIC SCHOOL
312 E. Washington, Indianapolis 4, Ind.

TELEVISION
PREPARE FOR A GOOD JOB!

BROADCAST ENGINEER ELECTRONICS RADIO SERVICING

Television Servicing

(Approved for Veterans)

SEND FOR FREE LITERATURE
BALTIMORE TECHNICAL INSTITUTE
1425 FAYETTE PLACE, BALTIMORE 17, MD.

GET INTO ELECTRONICS

You can enter this interesting, interesting field. Doctor expansion, new developments, trained specialists. Study all phases radio, electronics theory and practice. TV, FM, broadcasting, servicing, aviation. Field service. High school course. Graduates in demand by major companies. B.B. or equivalent required. Begin January, March, June, September. Examine for. Write for catalogs. VALPARAISO TECHNICAL INSTITUTE Dept. C.

—wanted career men

BACH, SCI. DEGREE IN 27 MONTHS

TRI-STATE COLLEGE
2426 College Avenue, Angola, Indiana

FEBRUARY, 1956

INDUSTRIAL ELECTRONICS

RADIO

TELEVISION

Become an ELECTRICAL ENGINEER or an ENGINEERING TECHNICIAN at

MSOE in Milwaukee

Choose from courses in:

ELECTRICAL ENGINEERING Bachelor of Science degree in 36 to 42 months with a major in electronics or electrical power.

ELECTRICAL TECHNOLOGY Engineering Technician certificate in 12 months in electronics, radio, or electrical power.

Associate in Applied Science degree in 18 months in radio and television.

TECHNICAL SERVICE
Service certificate in 6 months in electricity; in 12 months in radio and television.

MSOE — located in Milwaukee, one of America’s largest industrial centers — is a national leader in electronics education — with complete facilities, including the latest laboratory equipment, visual aid theater, amateur radio transmitter — offers 93 subjects in electrical engineering, electronics, radio, television, electrical power, and electricity.

Advisory committee of leading industrialists. Courses approved by the American Institute of Electronics. Excellent placement record.

TERMS OPEN APRIL, JULY, SEPTEMBER, JANUARY

Choose wisely — your future depends on it. Write for more information today!

MILWAUKEE SCHOOL OF ENGINEERING
Dept. RE-256, 1025 N. Milwaukee St.
Milwaukee 1, Wisconsin

Send FREE career booklets on:

[] Electrical Engineering [] Radio-Television

I am interested in

(Print of course)

Name

Address

City Zone State

If veteran, give discharge date

MS-31
BARRY ELECTRONICS CORP. Dept. RE
512 Broadway
New York 12, N.Y.

SPECIAL-PURPOSE TUBES

Write for our complete line of Special-Purpose Tubes, Industrial Special-Purpose Tubes, and Crystal Diodes. Write for our complete list of special priced items. Read the reviews of our customers. Our list is always up-to-date with the latest and greatest.

Equipment Specials!

New & used at bargain prices. Subject to prior sale. All items guaranteed to be as advertised. Write for our current list. We also offer a variety of other items at attractive prices. Please visit us today! We are located at 512 Broadway, New York 12, N.Y.

SELECTION GUIDE

- SPECIAL-PURPOSE TUBES
- INDUSTRIAL SPECIAL-PURPOSE TUBES
- CRYSTAL DIODES
- complete list of special priced items
- read the reviews of our customers
- our list is always up-to-date with the latest and greatest

SEND FOR OUR FREE COPY TODAY!

- available in a variety of colors
- contact us for further details
- please visit us today!

Write for our complete line of Special-Purpose Tubes, Industrial Special-Purpose Tubes, and Crystal Diodes. Write for our complete list of special priced items. Read the reviews of our customers. Our list is always up-to-date with the latest and greatest.

Equipment Specials!

New & used at bargain prices. Subject to prior sale. All items guaranteed to be as advertised. Write for our current list. We also offer a variety of other items at attractive prices. Please visit us today! We are located at 512 Broadway, New York 12, N.Y.

SELECTION GUIDE

- SPECIAL-PURPOSE TUBES
- INDUSTRIAL SPECIAL-PURPOSE TUBES
- CRYSTAL DIODES
- complete list of special priced items
- read the reviews of our customers
- our list is always up-to-date with the latest and greatest

SEND FOR OUR FREE COPY TODAY!

- available in a variety of colors
- contact us for further details
- please visit us today!

Write for our complete line of Special-Purpose Tubes, Industrial Special-Purpose Tubes, and Crystal Diodes. Write for our complete list of special priced items. Read the reviews of our customers. Our list is always up-to-date with the latest and greatest.

Equipment Specials!

New & used at bargain prices. Subject to prior sale. All items guaranteed to be as advertised. Write for our current list. We also offer a variety of other items at attractive prices. Please visit us today! We are located at 512 Broadway, New York 12, N.Y.

SELECTION GUIDE

- SPECIAL-PURPOSE TUBES
- INDUSTRIAL SPECIAL-PURPOSE TUBES
- CRYSTAL DIODES
- complete list of special priced items
- read the reviews of our customers
- our list is always up-to-date with the latest and greatest

SEND FOR OUR FREE COPY TODAY!

- available in a variety of colors
- contact us for further details
- please visit us today!
FREE!

LAFAYETTE CATALOG

Just a few of Lafayette's Values

2 TRANSISTOR POCKET RADIO KIT

Packed into a 2 1/2" x 1 1/2" x 1/2" plastic case. Transistorized, not transistored, this is a high fidelity, self-contained, all-transistor radio, complete with earphone plugs, keying set, and solderless connections. Requires no skilled test equipment or soldering skill. Sensitive, clear, built-in receiving, complete with Built-in Tuner; Two Transistor Crystal, Double, Arm. Complete Kit less earphones.

HIGH-QUALITY TUNER CARRIER CARTRIDGE

PK-79, S. Single, Each 2.75

SLIM HIGH OUTPUT DYNAMIC MICROPHONE

Reg. Price 3.95 Net 9.95

New! Ultra-slim design, high output PA Dynamic Microphone of exceptional quality, at a price that is hard to beat. Fully adjustable for maximum performance

2.75 Rep. Price B.90

TRANSISTOR CHECKER KIT

Checks Shorts, Leaks, and Gain A "must" for servicemen, experimenters and engineers. Tests both PNP and NPN transistors. Gives 3 separate checks: first, checks for shorts, second for gain, gray hammercase case 5½ x 1½ x 3½ inches. Kit includes; full-size instruction book, spare parts with full assembly and operating instructions. Makes a simple to build, fast, accurate, Blye wt. 3 lbs.

0.003, Each .25

NEW POCKET AC-DC VOM MULTITESTER

2,000 ohm per Volt on AC & DC

- Completely wired - Not a kit Accurate VOM with a sensitivity of 200 ohms per volt on both AC and DC. Single element switch covers 500 ohm, milli-Ohm, micro-Ohm, meter. Scale: AC Volts: 0-10-500-1000 AC Volts: 0-0.5-1.0-2.5-5.0-10.0 Ohms: 0-10-0.1-1.0 Meg. DC Current: 500 ma and 500 ma Decibel: 0 to +25 with 0-25 mm. Capacity: 150 mm. to 2.5 mm and 0.005 to 1 mm. Heavy plastic cover, metal bottom. 4½ x 2½ x 1½ inches. With batteries and test leads. Ship wt. 4 lbs.

9.75 KT-MA, Pocket AC-DC VOM Multitester

CRYSTAL MICROPHONE

Compare it with any mike at 2 to 3 TIMES THE PRICE A quality crystal Microphone for Phillips, Bing recorders, etc.

Frequency response 20 to 10,000 cycles. Response level varies from 200 to 10,000 cycles. May be used with any mike amplifier. Complete with 6′ cord and switch. Price: PA-24 - in lots of 2, each .95

CRystal Microphone PA-24 - in lots of 2, each .95

REMOTE CONTROL FOR SILENT TV VIEWING

- For Hard-of-Listening - For Late Listening

One or two people can both see or hear the program with the loud speaker cut-off. Switches hand to hand without disturbing others. Helpful for many who want to watch TV in the evening. Small unit, complete with microphone and 20 ft. lead. Ship wt. 1 lb.

MS-125 - in lots of 2, each .75

TRANSPORTER 415 KI LS

Transistorized, designed for turntable operation by 3/4 inch. MS-1224, Single, Each .95

7.95 Fixed Inductance tapped to 600 and 300 ohms.

MS-186 - Net 1.25

HIGH SENSITIVITY 20,000 OHM PER VOLT DC 10,000 OHM PER VOLT AC MULTITESTER

LOST AT THESE FULL SCALE RANGES!

D.C. Volts 0.6 - 0.30; 0.60; 1.20; 6.00; 1.200; 6.000 Volts - Resistance 0.10K; 0.100K; 0.1M; 0.1 Meg.; 0-10 Megohms - D.C. CURRENT: 0.60 Microamps; 0.6-0.60; 0.60; 0.60 Microamps - D.C. MILLIAMPS: 0-30-60-120-600-1200 Volts - Resistance: 0.10K; 0.100K; 0.1M; 0.1 Meg.; 0-10 Megohms - D.C. CURRENT: 0.60 Microamps; 0.6-0.60; 0.60; 0.60 Microamps - D.C. MILLIAMPS: 0-30-60-120-600-1200 Volts

This new Lafayette high sensitivity Multitester is complete instrument (not a kit), in addition to its unusual sensitivity of 20,000 ohms per volt on D.C. and 10,000 ohms per volt on A.C., and the extraordinary frequency range of its meters, it is equipped with new＼l＼n
10,000 ohms per volt, A.C. Current and voltage ranges. Complete with batteries and leads. Shipp weight 4b lbs.

MS-407, Price, each 19.95

The Hi-Fi Phono System Buy of The Year

8 WATT PUSHL-PULL AMPLIFIER WITH PREAMP FOR G.E. RELUCTANCE CARTRIDGE

This Hi-Fi push-pull amplifier with preamp system is simply unbelievable for the price. The push-pull output is 8 watts. Sensitivity at 2.83 volts is 1150 microvolts. Power output on 1/4 watt input is 800 milliwatts. Noise level 75 db. Below rated output. Separate base and treble controls. Low noise, low distortion, excellent transduction. Designed to operate with complete system. Price 45.00

LA-11, 4 1/2 x 2 1/2" x 7/8". For 110 125 Volt 60 cycle A.C. operation.

LA-11, Price

BUILD YOUR OWN TRANSISTOR RADIO SYSTEM COMPARE THE PRICE BROCHURE

Send Free 132-Page Lafayette Catalog

www.americanradiohistory.com
DO TECHNICIANS GET JOBS TOO EASILY?

Never before has it been so easy for a technician to get a job. Just because jobs are so abundant—it's harder than ever to choose the right one.

At IBM, a leader in the rapidly expanding electronic computer field, you can actually assume engineering responsibility working on the world's largest computer!

After advanced computer training (up to 9 months with pay) at IBM's Kingston, N. Y. school, you'll take an active part in the fastest-growing program in the electronics industry. You'll learn the latest computing techniques, use the finest test equipment, and work with the largest computer in the world. The future never looked better at IBM, long a leader in its field.

If you possess at least a 2-year technical school background emphasizing electronics, you're eligible for experience money can't buy. Write now to N. O. Heyer, Room 3102, International Business Machines, Kingston, N. Y. We can arrange a personal interview to discuss your career objectives.

Customer Engineers: opportunities are also available, locally, for technicians to service IBM machines, after training with pay. Contact your nearest IBM office.
...the long awaited companion
to the famous Rondine TURNTABLES

the New

REK-O-KUT TURNTABLE ARM

Among users of fine audio equipment, the name Rek-O-Kut is synonymous with the finest ... and the simple announcement of a new Rek-O-Kut development carries the assurance of a superior product.

A reputation such as this is not easily come by. It remains a constant challenge — and must be closely guarded. No Rek-O-Kut product is therefore committed to market unless and until it has first been exhaustively tested and re-tested in the lab and in the field.

The new Rek-O-Kut Turntable Arm is presented with just that confidence — that by its inherent design and demonstrated performance, it will contribute immeasurably to the quality of record reproduction.

The Model 120 is designed for all records up to 12 inches in diameter, and the 160 for records up to 16 inches. Interchangeable plug-in heads accommodate standard cartridges and both arms provide means for precise adjustment of stylus pressure.

Regardless of the turntable you own, the addition of a Rek-O-Kut arm will bring a welcome improvement in performance — this because of better tracking, superior damping and resultant lower distortion and record wear. For those who seek the very ultimate, we earnestly recommend that they consider both — a Rondine Turntable and a companion Rek-O-Kut Arm. We will gladly provide descriptive literature to aid in the making of a selection.

model 120 - $2695 • model 160 - $2995

See your hi-fi dealer or write to Dept. QB-13

REK-O-KUT COMPANY 38-01 Queens Blvd., L.I.C. 1, N.Y.
Makers of Fine Recording and Playback Equipment • Engineered for the Studio • Designed for the Home

IN CANADA: Atlas Radio Corp., 90 Wright Avenue, Toronto 12, Ontario • EXPORT: Mornes Exporting Corp., 450 Broadway, New York 13, N.Y.
Your Pledge to Mr. and Mrs. America

...TO GAIN CONSUMER CONFIDENCE
...TO BUILD BETTER BUSINESS

We are pledged to:
- Use top quality products
- Provide prompt service
- Charge fair prices
- Perform only authorized work
- Employ only qualified technicians
- Use reliable test equipment
- Honor parts warranties
- Advertise truthfully
- Itemize all bills
- Protect customers' property

2nd Annual National Television Servicemen's Week

MARCH 5th — MARCH 10th, 1956

You, and thousands of your fellow TV Service Technicians, can proudly display this handsome "Code of Ethics" plaque in your store window, on your shop wall or counter...wherever you have the opportunity to make a consumer impression.

Designed and created by RCA on behalf of the 2nd Annual National Television Servicemen's Week, this striking symbol will help you foster lasting respect, enduring prestige, and continuing good will. And what a celebration this year's "week" will be!

Color pages in LIFE and TV GUIDE, network radio and TV spectacles, newspaper ads, national publicity coverage, and a host of promotional material...all to help you tell the "story of your industry" to Mr. and Mrs. America.

Plan now to have a "chalk" session with your RCA Tube Distributor. He will tell you how to obtain your personal "Code of Ethics" plaque and how to plan a bang-up, sales-up store promotion for the 1956 National Television Servicemen's Week.