this issue:
How Color Television Is Sent and Received

Field Strength Meter for TV Installations

Bi-Phase Z-Axis Scope Amplifier

R-C Circuit Problems

Junior Golden Ear Amplifier

Build A Theremin

Wiring Up a High-Quality Phonograph Kit
(See page 4)
DECIDE ON DU MONT
on the basis of...

Product Superiority

Exclusive construction of the Teletron Heater virtually eliminates heater-cathode shorts resulting from ruptured heater coating as shown above.

By accurately centering the heater helix within the cathode of the Bent-Gun, the Teletron heater-ceramic assembly avoids abrasion of the delicate heater coating against the cathode wall.

Only when you decide on Du Mont for your replacement needs, do you get this extra insurance against costly call-backs due to heater-cathode shorts.

FREE—For your copy of the 8th edition of the Picture Tube Data Chart send a postcard with your address and the name of this publication.

*TRADE MARK

REPLACEMENT SALES, CATHODE-RAY TUBE DIVISION • ALLEN B. DU'MONT LABORATORIES, INC., CLIFTON, N. J.
ADVANCE! Raise your earning power—learn
RADIO-TELEVISION-ELECTRONICS
by SHOP-METHOD
HOME TRAINING

GOOD JOBS AWAIT THE
TRAINED RADIO-TV TECHNICIAN

There is a place for you in the great Radio-Television-
Electronics industry when you are trained as National
Schools will train you at home!

Trained technicians are in growing demand at good pay
—in manufacturing, broadcasting, television, communications,
radar, research laboratories, home Radio-TV service,
and other branches of the field. National Schools Master
Shop-Method Home Training, with newly added lessons and
equipment, trains you in your spare time, right in
your own home, for these fascinating opportunities.
OUR METHOD IS PROVED BY THE SUCCESS OF
NATIONAL SCHOOLS TRAINED MEN, ALL OVER
THE WORLD, SINCE 1905.

EARN WHILE YOU LEARN

Many National students pay for all or part of their training
with spare time earnings. We'll show you how you can
do the same! Early in your training, you receive "Spare-
time Work" Lessons which will enable you to earn extra
money servicing neighbors' and friends' Radio and Tele-
vision receivers, appliances, etc.

National Schools Training is All-Embracing

National Schools prepares you for your choice of many
job opportunities. Thousands of home, portable, and auto
radios are being sold daily—more than ever before. Television
is sweeping the country, too. Co-axial cables are
now bringing television to more cities, towns, and farms
every day! National Schools' complete training program
qualifies you in all fields. Read this partial list of opportu-
nities for trained technicians:

- Business of Your Own • Broadcasting
- Radio Manufacturing, Sales, Service • Telemarking
- Television Manufacturing, Sales, Service
- Laboratories: Installation, Maintenance of Electronic Equipment
- Electrolysis, Coll Systems
- Garages: Auto Radio Sales, Service
- Sound Systems and Telephone Companies, Engineering Firms
- Theatre Sound Systems, Police Radio
- And scores of other good jobs in many related fields.

TELEVISION TRAINING

You get a complete series of up-to-the-
minute lessons cov-
ering all phases of re-
pairing, servicing and
construction. The same
lesson texts used by resi-
dent students in our
modern and complete Television broadcast studios, lab-
oratories and classrooms!

FREE! RADIO-TV BOOK
AND SAMPLE LESSON!

Send today for
National Schools' new,
illustrated Book of Oppor-
tunity in Radio-Television-
Electronics, and an actual
Sample Lesson. No cost—
no obligation. Use the
coupon now—we'll
answer by return
airmail.

LEARN BY DOING

You receive and keep all the
modern equipment shown
above, including tubes and
valuable, professional qual-
ity Multitester. No extra
charges.

APPROVED FOR
VETERANS
AND NON-VETERANS

Check coupon below

Both
Resident and
Home Study
Courses Offered!

NATIONAL SCHOOLS
LOS ANGELES 37, CALIFORNIA • ESTABLISHED 1905
IN CANADA: 193 E. HASTINGS STREET, VANCOUVER, B.C.

GET FACTS FASTEST! MAIL TO OFFICE NEAREST YOU:

NATIONAL SCHOOLS, Dept. RG-113
323 West Polk Street
Chicago 7, Ill.

Send FREE Radio-TV Electronics book and FREE sample
lesson. No obligation, no salesman will call.

NAME: ___________________________ BIRTHDAY: ______
ADDRESS: ________________________
ZONE: ____________ STATE: _________

☐ Check here if interested in Resident School Training at Los Angeles.
☐ VETERANS: Give Date of Discharge
Hugo Gernsback
Editor and Publisher
M. Harvey Gernsback
Editorial Director
Fred Shenaman
Managing Editor
Robert F. Scott
W2PWG, Technical Editor
Jerome Kass
Associate Editor
I. Queen
Editorial Associate
Matthew Mandler
Television Consultant
Charles A. Phelps
Copy Editor
Angie Pascale
Production Manager
Wm. Lyon McLaughlin
Teach. Illustration Director
Sol Ehrlich
Art Director

Lee Robinson
General Manager
John J. Lamson
Sales Manager
G. Allgo
Circulation Manager
Adam J. Smith
Director, Newsstand Sales
Robert Follote
Promotion Manager

Member
Magazine Publishers
Association

ON THE COVER (Story on page 53)
Jerome Kass, Associate Editor of RADIO-ELECTRONICS, in an early stage of wiring up his Heathkit record player kit.
Color original by Avery Slack

CONTENTS

EDITORIAL (Page 29)
Mini- Radios .. Hugo Gernsback 29

TELEVISION (Pages 30-43)
Color TV—The NTSC System by Marvin H. Kronenberg 30
KCB—TV .. John W. Boler 33
Tube Failures in TV Receivers..................... by John L. Bedell 34
Television—It's a Cinch (Seventh conversation, first half: Time Bases with High Vacuum Tubes) by E. Altsberg 36
Measuring Field Strength for TV................... by Engineering Staff, Scala Radio Co. 39
TV Service Clinic Conducted by Matthew Mandler 42

SERVICING—TEST INSTRUMENTS (Pages 44-52)
Z-Axis for your Scope by Ronald L. Ives 44
Analyzing the R-C Circuit by Cyrus Glickstein 47
Radio Dial Mechanism by Herbert Michels 48
Versatile Scope you can Build by Lloyd H. Hust 49

AUDIO—HIGH FIDELITY (Pages 53-91)
High-Quality Record Player in Kit Form (Cover Feature) by Jerome Kass 53
Junior Golden Ear Amplifier by Joseph Marshall 55
High-Quality Audio (Part III, Loudspeaker Systems) by Richard H. Dorn 58
British Audio Circuits by Norman H. Crouthwest 74
Velocity Microphone by Gene Brinzena 78
How to Build a Theremin by Charles L. Hansen 84
Handy Remote Speaker from "Useless" Dynamic by H. J. M. Dunscombe 88

BROADCASTING AND COMMUNICATIONS (Pages 94-102)
Simple Instrument Measures Frequency Deviation by I. Queen 98
Best Wave for Urban Users by I. Queen 98

NEW DESIGN (Pages 105-108)
New Tubes (and Transistors) 105

DEPARTMENTS
Radio Business 125
Technotes .. 125
Miscellany .. 128
Try This One 133
Radio-Electronic Circuits 136
Question Box 139

Radio Business

SUBSCRIPTION RATES: U. S. and Canada, in U. S. possessions, Mexico, South and Central American countries, $3.50 for one year; $6.00 for two years; $8.00 for three years; single copies 30c. All other foreign countries $5.00 for one year; $8.00 for two years; $11.00 for three years.

EXECUTIVE, EDITORIAL, AND ADVERTISING OFFICES: 25 West Broadway, New York 7, N. Y. Telephone REctor 2-8830. Gernsback Publications, Inc., Hugo Gernsback, President; M. Harvey Gernsback, Vice President; O. Allgo, Secretary.

SUBSCRIPTIONS: Address correspondence to Radio-Electronics, Subscription Dept., Erie Avenue, F to G Sts., Philadelphia 32, Pa., or 25 West Broadway, New York 7, N. Y. When ordering a change of name furnish from a recent wrapper, also one month's charge for change of address.

NOW... get EVERYTHING YOU NEED to prepare to earn REAL MONEY in TELEVISION...

...one of America's BRIGHTEST Opportunity Fields

Enjoy highly interesting work... and a wonderfully promising future

America's great billion dollar Television field now offers you a chance of a lifetime to get started toward a good job or your own profitable business. With so many new TV stations coming on the air, Television is expected to grow as never before! Millions of TV sets must be produced, tested, installed and serviced. And Television is only one branch of this vast opportunity field of Electronics—for which D.T.I.'s amazingly effective training prepares you.

Right in your own home you may now get one of today's most interesting... PRACTICAL WAYS to prepare for your start in TELEVISION, including Radio and Electronics. No previous experience or advanced education are needed—because D.T.I. brings you a 3-WAY COMBINATION method that speeds your understanding and progress. You (1) Learn from well illustrated lessons, you (2) Learn by Seeing from D.T.I.'s wonderfully effective home movies and (3) you Learn by Doing from electronic parts that provide the practical experience you need.

You get and KEEP the same type of basic electronic equipment used in our modern Chicago Training Laboratory. You get home training that includes the knowledge and experience gained from training thousands of students first hand. In other words, you get LABORATORY TYPE TRAINING... RIGHT IN YOUR OWN HOME. But why not get the whole exciting story. Mail coupon today.

EMPORTMENT SERVICE
Get an honest-to-goodness EMPLOYMENT SERVICE to help you get a good job after graduating—or assistance in starting your OWN TV-RADIO SALES & SERVICE BUSINESS.

MILITARY SERVICE
If you're subject to military service, the information we have for you should prove very helpful. Mail coupon today.

“One of America’s Foremost Television Training Centers”
Established 1931.

DEFOREST’S TRAINING, INC. AFFILIATED WITH
DEVRY Technical INSTITUTE
CHICAGO 14, ILLINOIS

NOVEMBER, 1953

300 EXPERIMENTS
Build over 300 fascinating experiments from 16 BIG SHIPMENTS of Electronic-Radio parts which you KEEP. You build and operate Television circuits, Radio receiving circuits, a wireless microphone and many other major projects—all designed to provide outstanding practical experience at home.

HOME MOVIES
Thanks to this exclusive D.T.I. home training aid, many important Television-Radio fundamentals quickly become “movie clear.” Now you can actually see electrons on the march and other “hidden actions” — a wonderful advantage that's almost like having a teacher in your home.

BUILD YOUR OWN TEST EQUIPMENT
As part of your home laboratory project you build and keep a quality 5-INCH oscilloscope and a jewel-bearing Multimeter. You will find this equipment ideal for helping you earn in your spare time while a student—and later when working full time in the field.

BUILD AND KEEP A BIG 21” TV SET
For added practical experience, you build and keep this top quality 21 INCH TV Set that provides TV reception at its finest (D.T.I. offers another home training but without the TV set.)

SEND FOR FACTS TODAY!

DeFOREST’s TRAINING, INC., RE-11-J
2533 N. ASHLAND AVENUE,
CHICAGO 14, ILLINOIS

I would like your Opportunity Bulletin showing "89 Ways To Earn Money In Television-Radio-Electronics"; also, complete facts about the training opportunities made possible by your organization.

Name ___________________________ Age ________
Address ___________________________ Apt. ________
City ___________________________ Zone ________ State ________
EDWARD JULIAN NALLY, the first president of the Radio Corporation of America, passed away on September 22 at the age of 94.

Mr. Nally in association with the Marconi Wireless and Telegraph Co. arranged the opening of the first trans-Atlantic wireless telegraph service and established the first commercial wireless circuit between the U.S. and Japan and between the U.S. and Great Britain. Although he retired in 1925, Mr. Nally remained a director of RCA, RCA Communications, and the National Broadcasting Co. until 1960.

SATELLITE SYSTEMS have become a matter of Congressional Record. Representative Bush, Pennsylvania, urged establishment of unattended satellite TV stations in communities too small for regular TV broadcast stations. He stated that Sylvania Electric Products has developed such a system and will propose it for FCC approval soon.

For the past year, Sylvania has been searching for a satisfactory method of making TV available to small, isolated communities, particularly those in hilly or mountainous areas. The unattended satellite stations can be built for a cost of about $15,000, and operated automatically with low power requirements and maintenance costs.

Satellite stations are better than booster stations, Rep. Bush stated, since they are not restricted to rebroadcasting the signals of a single mother station, and being locally controlled, are free to select programs of any station whose signal is available. The satellite stations would not create the interference booster stations cause.

Experimental satellite stations have been successfully operated in the high and low portions of the u.h.f. band—specifically on channels 22 and 82.

WOR-FM New York was surprised to learn that its quiz show, Take a Number, reportedly has been heard by a man in Antwerp, Belgium. The station noted that the Belgian listener even submitted a question to be used on the quiz show. He wrote that he would monitor his FM receiver every Friday night in the hope of hearing his question used.

COMPATIBLE COLOR television has made its debut on a country-wide basis. NBC has announced that the August 31 "Kukla, Fran, and Ollie" show was broadcast across the country in color and was received in black and white on standard receivers.

Sylvester L. Weaver, vice-chairman of the NBC board, said the network has plans for regular commercial color telecasting to be started if the FCC approves. The color system was developed by RCA, of which NBC is a part. The RCA system is generally accepted as being synonymous with color standards filed with the FCC by the NTSC. (See Page 301).

Mr. Weaver emphasized that quantity production of color receivers cannot be achieved for many months after FCC approval. He estimated that color sets, with 14-inch picture screens, would cost between $800 and $1,100.

RADIO KITS constitute radio receiving sets within the meaning of the tax law, even though they are not assembled when sold. The Internal Revenue Service decision, in Revenue Ruling 167, was rendered in answer to a request as to whether the excise tax was applicable to the sale by a manufacturer of radio kits which contain all the necessary components for the assembly of a crystal radio receiving set, except antenna and ground wire, or for the assembly of a 1-tube radio receiver, except A and B batteries and antenna and ground wires.

IRS pointed out, however, that credit against tax due on the sale of such kits may be taken by the manufacturer of the kits for tax paid by the manufacturer of the tubes or other taxable components purchased and used in assembling the kits.

Radar Speed Check is proving effective. Sergeant William Hamil of the Rochester, N. Y. police said that motorists are using various odd devices, including tin foil, steel marbles in their hub caps, and steel chains dragging behind their cars, in an effort to fool up the radar speed-clocking meters which in the last 14 months have obtained about 2,000 speeding convictions.

Sergeant Hamil said that Rochester motorists had not yet discovered anything to jam the device which registers almost instantaneously the speed of a car passing across its microwave beam and also makes a graph of the speed for permanent record.

A representative of the company manufacturing the radar speed timer said that the only way to jam the radar is to install in a car a transmitter using the same frequency (2,455 mc) as the radar apparatus, and then flip the sending switch as you pass the radar station.

Incidentally, the transmitter might cost about $1,000 and would violate regulations of the FCC.
Servicemen! Here's Your Sylvania

T-N-T CHEST
(TUBE AND TOOL)

The Most Valuable Service Aid You've Ever Seen!

Look about a useful servicing aid... this Sylvania T-N-T (Tube and Tool) Chest is really it! Carries more tubes, tools and parts than any chest on the market!

Look at these features:

- Bass and fir plywood case
- Waterproof Du Pont Fabrikoid cover
- Holds 187 receiving tubes
- Lightweight folding aluminum tool and parts tray
- Unbreakable plastic handle
- Brass-plated hardware
- Room for mirror and ohmmeter
- It's a complete, portable service shop!

ACT NOW... Offer Limited!

This chest is now yours for only $5.00 and 30 Sylvania Premium Tokens. Offer good only between August 1st and November 15th. See your Sylvania Distributor who has these kits now.

Remember, you get 1 Sylvania Premium Token with every 25 receiving tubes or with every picture tube you buy.
FACTS YOU SHOULD KNOW ABOUT UHF CONVERTERS

Many converters on the market today are unsatisfactory in fringe and shadow areas where signal strength is low. Before you install a UHF converter in these areas you should know these facts:

1. Signal power loss in the preselector seriously affects picture quality. Most UHF converters use sliding-contact shorted line tuners in the preselector with a fixed power loss of 6 db. The Turner converter uses high Q coaxial cavity tuners with no sliding contacts. Signal power loss is cut to 3 db. The resulting low noise figure keeps picture quality high.

2. Oscillator radiation often causes disturbing interference with neighboring sets. In the Turner converter the oscillator tube socket and all associated circuits are inside the coaxial cavity, self-shielded. Removable covers provide a second shield against radiation.

3. High amplifier noise figure can further damage picture quality. The Turner converter uses a special broadband amplifier with Cascode circuit. It retains the preselector signal savings without appreciably increasing the noise figure. The Turner amplifier noise figure is only 4 db.

Whether you’re selling converters for installations in shadow or fringe areas or putting one in your own home, remember... the Turner converter means the difference between good reception and bad.

EXCLUSIVE TURNER FEATURES

• Higher sensitivity
• Extremely low noise figure
• Exceptional frequency stability
• Double shielding
• Hi-Q silver plated coaxial cavities
• No sliding contacts

OTHER MAJOR TURNER FEATURES

Continuous single-knob tuning. Illuminated slide-rule dial. Smaller size: 8"x6"x6". Use with UHF or combination antennas. Self powered, uses channels 5 or 6. Complete installation instructions. Maximum power 110-120 volts AC. Schematic included.

In VHF fringe and shadow areas, the Turner Booster is a superior performer, too.

THE TURNER COMPANY

933 17th St., N.E., Cedar Rapids, Iowa
Export: Ad Astra, Inc., 89 Broad St., New York 4, N. Y.
Canada: Canadian Marconi Co., Toronto, Ont. & Branches

John Joseph O'Neill, science editor of the New York Herald Tribune, died August 30, at the age of 64.

In 1957 he shared with four others the Pulitzer Prize in journalism for good reporting. An article written by O'Neill in 1940 was one of the first to inform the public of the successful release of atomic energy and its potentialities.
The signs are plain as to the future of the trained men in the electronics industry. It is a tremendous industry, and—at the present time—there are more jobs than there are trained men to fill them. But—when there's a choice between a trained and untrained applicant, the trained man will get the job. Your biggest problem is to decide on—and begin the best possible training program.

CREI Home Study... The Quick Way to Get There.

Since 1927, CREI has given thousands of ambitious young men the technical knowledge that leads to more money and security. The time-tested CREI procedure can help you, too—if you really want to be helped. CREI lessons are prepared by experts in easy-to-understand form. There is a course of instruction geared to the field in which you want to specialize. You study at your convenience, at your rate of speed. Your CREI instructors guide you carefully through the material, and grade your written work personally (not by machine).

Industry Recognizes CREI Training.

CREI courses are prepared, and taught with an eye to the needs and demands of industry, so your CREI diploma can open many doors for you. Countless CREI graduates now enjoy important, good-paying positions with America's most important companies. Many famous organizations have arranged CREI group training for their radio-electronics-television personnel. To name a few: All America Cables and Radio, Inc.; Canadian Aviation Electronics, Ltd.; Canadian Broadcasting Corporation; Columbia Broadcasting System; Canadian Marconi Company; Hoffman Radio Corporation; Machlett Laboratories; Glenn L. Martin Company; Magnavox Company; Pan American Airways, Atlantic Division; Radio Corporation of America, RCA Victor Division; Technical Appliance Corporation; Trans-Canada Air Lines; United Air Lines. Their choice for training of their own personnel is a good cue for your choice of a school.

Benefits Felt Right Away.

Almost immediately, you feel the benefits of CREI training. Your employer, when informed of your step toward advancement (only at your request), is certain to take new interest in you and in your future. What you learn in CREI Home Study can start helping you do a better job immediately.

Get this fact-packed booklet today. It's free.

Called "Your Future in the New World of Electronics," this free illustrated booklet gives you the latest picture of the growth and future of the gigantic electronics world. It includes a complete outline of the courses CREI offers (except Television and FM Servicing) together with all the facts you need to judge and compare. Take 2 minutes to send for this booklet right now. We'll promptly send your copy. The rest—you future—is up to you.
CARDS FOR CONVERSATION

To find out how to route Long Distance calls a dial system needs lots of information—fast. To provide it Bell Laboratories engineers developed a new kind of card file—one that dial systems can read.

Punched holes on metal cards tell how calls should be handled. When a call arrives the dial system “asks” the “card file” how to proceed to a particular area. Instantly the appropriate instruction card is displaced so that its pattern of holes is projected by light beams on a bank of Phototransistors. In a flash the Phototransistors signal switches to set up the best connection. Cards are quickly changed when new instructions are needed.

The “card file” will have its widest use in speeding Long Distance calls that are now dialed by a telephone operator and may one day be dialed by you personally. It is another example of how Bell Telephone Laboratories helps telephony to grow, as costs are kept down.
Six months from today
Which Will You Hold?

Add Technical Training To Your Practical Experience-
GET YOUR FCC LICENSE IN A HURRY!
Then use our Amazingly Effective JOB-FINDING SERVICE

We Guarantee TO TRAIN AND COACH YOU AT HOME IN SPARE TIME UNTIL YOU GET Your FCC License
If you have had any practical experience—Amateur, Army, Navy, radio repair, or experimenting.

Here is Your GUARANTEE
If you fail to pass your Commercial License exam after completing our course, we guarantee to continue your training without additional cost of any kind until you successfully obtain your Commercial license, provided you first sat for this examination within 90 days after completing your course.

Tell This FREE Booklet

Employers make JOB OFFERS Like These to Our Graduates Every Month
Letter from nationally-known airline, "We would also appreciate if you would place the following additional advertisement in your bulletin-Wanted—Superintendent of Communications—Salary $666.66 per month."

Letter from nationally-known airplane manufacturer, "We need men with electronic training or experience in radar maintenance to perform operational check-out of radar and other electronic systems—starting salary amounting to $329.33 per month."

These are just a few samples of the job offers that come to our office periodically. Some licensed radiomans filled each of these jobs... it might have been you!

HERE'S PROOF FCC LICENSES ARE OFTEN SECURED IN A FEW HOURS OF STUDY WITH OUR Coaching AT HOME in Spare Time.

MAIL COUPON NOW
CLEVELAND INSTITUTE OF RADIO ELECTRONICS
Desk RE-56—9000 Euclid Blvd., Cleveland 3, Ohio

(Addressee to Desk No. to avoid delay)

I want to know how I can get my FCC ticket in a minimum of time. Send me your FREE booklet, "How to Pass FCC License Examinations" (does not cover exams for Amateur License), as well as a sample FCC-type exam and the valuable booklet, "Money-Making FCC License Information." Be sure to tell me about your Television Engineering Course.

Imprint:

Cleveland Institute of Radio Electronics

Desk RE-56, 4900 Euclid Blvd., Cleveland 3, Ohio

November, 1953
MATTISON
SILVER ROCKET 630 CHASSIS
• with TUNABLE •
BUILT-IN BOOSTER
for Better DX Reception
Featuring NEW CASCODE TUNER
made for UHF interchangeable
tuning strips and COSINE YOKE

All Channel / Booster
• Broad band single knob control pre-amplifier
 built in to eliminate long lead, which may
 cause regeneration and attenuation of signal.
• ONLY THE MATTISON 630 CHASSIS
 HAS AN ALL CHANNEL TUNABLE
 BUILT-IN BOOSTER THAT INCREASES
 SIGNAL STRENGTH UP TO 10 TIMES.
• THE SILVER ROCKET WILL OUT-PER-
 forming ANY CHASSIS MADE AND IS
 PRICED RIGHT TO SELL FAST WITH AN
 EXTRAORDINARY MARGIN OF PROFIT FOR YOU. ALSO AVAILABLE WITHOUT BOOSTER.
• Available for IMMEDIATE DELIVERY!
Silver Rocket for 21” Operation

ANNOUNCING the
AMBASSADOR
for 1954

The only open face console
made in every expensive
decorator finish... on
guaranteed genuine mahogany, walnut, oak and other
rare woods!

The AMBASSADOR 21” and 27”
Best Looking... Best Value, Too!
Full size console for eye level television. Available in every expensive decorator finish. Featuring
removable safety glasses, ALL CABINETS MADE IN MATTISON’S OWN CABINET FACTORY.

DEALERS! SERVICE DEALERS! Here is your
opportunity to become the “important” TV Dealer in your area for THE FINEST CUS-
TOM-BUILT LINE OF TV RECEIVERS. FREE!

Write for Mattison’s merchandising portfolio
explaining the “UNASSEMBLED PLAN” and
“$1,000,000 FLOOR PLAN.”

When you buy from Mattison you need
only one source of supply. You can buy
a Mattison Chassis, Mattison Cabinet or a
complete Mattison TV Set!

Manufactured with integrity
Mattison Television & Radio Corp.
10 West 181st St., Dept. RE, N.Y. 53, N.Y.

BAROMETER of the PARTS INDUSTRY

During September, 61 of the leading 400 manufacturers of Radio-Electronic-Television parts and equipment made changes in their lines. There was a decrease in “change activity” as compared to August.

In price revisions by the number of manufacturers and products affected, the following summary illustrates the comparative trend for the months of August and September.

<table>
<thead>
<tr>
<th>Product Group</th>
<th>No. of Mfrs. August</th>
<th>No. of Mfrs. September</th>
<th>No. of Products August</th>
<th>No. of Products September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antennas & Access.</td>
<td>5</td>
<td>2</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Capacitors</td>
<td>1</td>
<td>1*</td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td>Controls & Resistors</td>
<td>0</td>
<td>0*</td>
<td>1*</td>
<td>0*</td>
</tr>
<tr>
<td>Sound & Audio</td>
<td>7</td>
<td>2*</td>
<td>16</td>
<td>9*</td>
</tr>
<tr>
<td>Test Equipment</td>
<td>1</td>
<td>0*</td>
<td>5</td>
<td>3*</td>
</tr>
<tr>
<td>Transformer</td>
<td>2</td>
<td>0*</td>
<td>0</td>
<td>0*</td>
</tr>
<tr>
<td>Tubes</td>
<td>5</td>
<td>4*</td>
<td>7</td>
<td>3*</td>
</tr>
<tr>
<td>Wire & Cable</td>
<td>0</td>
<td>1*</td>
<td>0</td>
<td>1*</td>
</tr>
</tbody>
</table>

* Increase over August
** Decrease from August

Comment: For the first time in several months, a marked decrease in the number of manufacturers reporting changes in their line is noted. Activity among Sound & Audio manufacturers has declined since last month, while activity among Tube manufacturers has increased for the same period.

Merchandising and Promotion

Alliance Manufacturing Co., Alliance, Ohio, is under way with what it calls the biggest fall advertising-merchandising program in the history of any television accessory. According to John Bentia, Alliance vice-president, the campaign features the introduction of two new Alliance Terra-Rotors.

I.D.E.A., Inc., Indianapolis, designed a colorful counter display rack for use by distributors of its Regency boosters. The brilliantly striped display asks the question, “How many Regency boosters do you need today?”

Cannon Electric Co., Los Angeles, is featuring a new combination package display for its XL-type straight plug socket contacts.

General Electric Tube Department is pushing a TV picture tube promotion package for service technicians, to tie in with G-E’s national advertising for tubes. Window streamers, a display mirror, direct-mail pieces, and newspaper mats are being used.

Vaco Products Co., Chicago, is offering its personalized X-4 screwdriver set in an effective gift package. Manufacturers, distributors, or others may imprint their names on the handles of the screwdriver and on the plastic case and use the kit as a Christmas gift or premium.

Electronic Instrument Co., Inc., Brooklyn, N.Y., designed a new decal which radio and TV service technicians may attach to windows or vehicles.

Stromberg-Carlson, Rochester, N.Y., is running a series of institutional ads in leading business publications. Each ad will feature one product of the
Quick TV Success can be yours if you act now!

* Prepare now for the new Radio-TV-Electronics boom. Get in on VHF and UHF . . . aviation and mobile radio . . . color TV . . . binaural sound! The International Correspondence Schools can help you!

If you've ever thought about Radio or Television as a career . . . if you have the interest, but not the training . . . if you're waiting for a good time to start . . . NOW'S THE TIME!

No matter what your previous background, I.C.S. can help you. If Radio-TV servicing is your hobby, I.C.S. can make it your own profitable business. If you're interested in the new developments in Electronics, I.C.S. can give you the basic courses of training you need. If you have the job but want faster progress, I.C.S. can qualify you for promotions and pay raises.

I.C.S. training is success-proved training. Hundreds of I.C.S. graduates hold top jobs with top firms like R.C.A., G.E., DUMONT, T.T.T. Hundreds of others have high ratings in military and civil service. Still others have successful businesses of their own.

With I.C.S., you get the rock-bottom basics and theory as well as the all-important bench practice and experimentation. You learn in your spare time—no interference with business or social life. You set your own pace—progress as rapidly as you wish.

Free career guidance: Send today for the two free success books, the 36-page "How to Succeed" and the informative catalog on the course you check below. No obligation. Just mark and mail the coupon. With so much at stake, you owe it to yourself to act—and act fast!

INTERNATIONAL CORRESPONDENCE SCHOOLS

Without cost or obligation, send me "HOW to SUCCEED" and the booklet about the course BEFORE which I have marked X:

If you have the training you need. If you're interested in the new developments in Electronics, I.C.S. can give you the basic courses of training you need. If you have the job but want faster progress, I.C.S. can qualify you for promotions and pay raises.

I.C.S. training is success-proved training. Hundreds of I.C.S. graduates hold top jobs with top firms like R.C.A., G.E., DUMONT, T.T.T. Hundreds of others have high ratings in military and civil service. Still others have successful businesses of their own.

With I.C.S., you get the rock-bottom basics and theory as well as the all-important bench practice and experimentation. You learn in your spare time—no interference with business or social life. You set your own pace—progress as rapidly as you wish.

Free career guidance: Send today for the two free success books, the 36-page "How to Succeed" and the informative catalog on the course you check below. No obligation. Just mark and mail the coupon. With so much at stake, you owe it to yourself to act—and act fast!
How'd you like to know what's wrong with a customer's TV receiver before you make your service call? You do with the new RAYTHEON TV SERVICE SAVER plan.

Here's how this wonderful new Raytheon servicing method works:

Both you and your customer have booklets in which are photographs showing 40 different picture conditions that may occur on the screen of a defective TV receiver. From 90 to 95% of all the troubles that may develop in a TV receiver are covered by these pictures. Illustrations are numbered and when a set falters, the customer simply finds the picture in the booklet that matches the condition on the screen and then calls you and tells you what number it is, and which of 8 sound conditions exist.

Your booklet and a wall chart which you can place near your phone show the same set of numbered picture patterns, and in addition the booklet explains exactly what tubes, components or circuits may be causing the trouble and suggests what and where to test.

This pre-call knowledge of what ails a receiver helps you to greater profit in three ways: (1) You can go on a job with complete technical information about the required repair; (2) You can go on the job with all necessary parts and tubes; (3) You can clean up nuisance calls and avoid many needless call-backs by telephone. Then, too, it means satisfied customers — customers who see you go right to the root of the trouble and make repairs quickly and expertly.

Be sure to ask your Raytheon Tube Distributor how you can get in on this exclusive servicing asset — the RAYTHEON TV SERVICE SAVER plan. Act now, and be the first in your locality.
Pre-sold to Millions!

Custom Music Ensemble

G-E DUAL COAXIAL SPEAKER
Model A1-400
New approach to coaxial speaker design—high sensitivity at low cost. Exceptional balance between speakers with G-E Acoustic Balancer. Newly developed Pressure Equalizer...a wavefront shaping plug...provides smooth tweeter response.

G-E PREAMPLIFIER-CONTROL UNIT
Model A1-200

G-E SPEAKER ENCLOSURE
Model A1-406 (6 cu. ft.)
Attractive corner or wall cabinet in hand-rubbed blond or mahogany veneer. "Distributed port" design provides full low frequency response. Tonal range with G-E Coaxial Speaker—40 to 15,000 cycles.

G-E POWER AMPLIFIER
Model A1-300
A medium power, compact amplifier designed to provide needed speaker power. Essential element in the new General Electric "Custom Music" Ensemble. Delivers high-fidelity performance at very low cost.

G-E DELUXE TONE ARMS
A1-500 (12") A1-501 (16")
For home or broadcast station use. Compatible with the exceptional quality of G-E cartridges. Calibrated stylus pressure adjustment...4 to 14 grams. They were developed to improve record reproduction in every installation.

FOR SUPERIOR PERFORMANCE...
LOW COST...MINIMUM SERVICE...
INSTALLATION ECONOMY!

- Through the pages of nine top consumer magazines...in display rooms...on FM broadcasts...and at shows millions are discovering—indicating a preference for—the unique features of a G-E Custom Music Ensemble. Here is the single package of matched high-fidelity equipment you need to expand your audio business, assure satisfied customers. Get in tune today with the growing popularity of custom audio installations...add to your net profit...with complete General Electric equipment!

Individual components or the complete ensemble now available! Call a local G-E distributor or write for information.

SEND FOR COMPLETE INFORMATION
General Electric Company, Section 45113 Electronics Park, Syracuse, N. Y.
Please send me specifications and other data on the new G-E Custom Music Ensemble.

NAME ..
ADDRESS ..
CITY .. STATE
company's several divisions, explaining how this product contributes to the advancement of communications.

Simpson Electric Co., Chicago, devised a new king-size "doodle pad." Printed in two colors, the pads measure 17 x 22 inches. They are being distributed to Simpson customers by the company's representatives.

Production and Sales

RETMA reported that 269,622,417 receiving tubes and 5,831,271 cathode-ray tubes were sold by manufacturers during the first seven months of 1953. The association also reported the manufacture of 4,150,525 TV sets and 7,941,001 radio sets for the same period.

Business Briefs

... The CA Tube Department, Harrison, N. J., has made two components for use with 90-degree, 27-inch TV picture tubes available to TV service technicians for replacement purposes. They are a deflection yoke (219D1) and a horizontal output and high-voltage transformer 235T1.

... General Electric, Syracuse, N. Y., has begun production on new all-welded metal hermetically sealed junction transistors. The new transistors have essentially infinite life expectancy and power ratings up to three times those of any previously announced transistors. Pilot production is now under way at the General Electric plant at Electronics Park. Engineers there are also engaged in the development of a small transistorized portable radio.

... United Motors Service Division of General Motors, Detroit, is now marketing its u.h.f. and v.h.f. antennas through electronics parts distributors. The line consists of a dual-V antenna, bow tie, bow tie with reflector, conical, two-bay conical, four-bay conical, u.h.f. corner reflector, u.h.f. rhombic and indoor antenna.

The Board of Directors of the Radio Parts & Electronic Equipment Shows, Inc., voted to allocate $15,000 to match a similar amount already provided by NEDA to sponsor a comprehensive educational program for electronic parts distributors through a series of seminars in centrally located cities throughout the country.

... Raytheon Manufacturing Co., Waltham, Mass., won the 1953 engineering award of the Society of Hearing Aid Audiologists for its achievement in transistor design and production.

No dust-catchers in Merit's line but complete coverage where it counts!

Keep inventory at a minimum, profits high with Merit's designed-for-action line. Among the new, quick-turnover items recently added: flybacks for Motorola replacement, a new series of yokes and TV power transformers. Find Merit's complete line listed in John Rider's Tek-File and Howard Sam's Counter Facts and Photo Facts—Tape Marked* to help you.

And! Be sure to get Merit's new, really complete Replacement Guide. Forty pages of replacement data and schematics, including IF-RF coils, an exclusive Merit feature.

*originated by Merit

Merit Coil & Transformer Corp.
4425 North Clark Street,
Chicago 40, Illinois

... Scott Radio Laboratories' president John S. Meek asked the Federal Trade Commission to provide a standard for high-fidelity performance and to take steps to protect the public from pseudo products. He urged that the term "high-fidelity" be used only for bona fide high-fidelity equipment.

... RETMA executive vice-president James D. Secrest, in a talk before the Radio and TV Service Clinic and Electronics Fair in Fort Worth, Texas, said that both TV sets and servicing were much better today than they were a few years ago.

... Pioneer Electronics Corp., Santa Monica, Calif., conducted a survey which indicated that the Western market would have upward of 4,000,000 TV sets and a picture-tube replacement business of about $1,000,000 annually within a few years. The company is preparing for production of 1,000 picture tubes per day.

... Ampex Corp. was selected as the new name of Ampex Electric Corp., Redwood City, Calif.

... Radio City Products, New York City, introduced a plan whereby its distributors would be able to finance carrying a sufficiently large stock of its test equipment.

... Sylvania Electric Products announced the production of its 5,000-000th TV picture tube by its two tube plants in Seneca Falls, N. Y. and Ottawa, Ohio.

... Erie Resistor Corp., Erie, Pa., developed a new method for producing copper-foil printed circuits. It involves embossing copper foil in laminated bakelite sheets.

... Radio Apparatus Corp. states that its Monitoradio two-way communications equipment is being used in the 44-vehicle General Motors "Parade of Progress" caravan touring the nation.

... Transvision, Inc., New Rochelle, N. Y., is now building coin-operated TV sets for hotel use.

New Plants and Expansions

Audio-Master Corp. moved to larger quarters at 17 E. 45th St., New York City.

Berlant Associates, Los Angeles, Calif., manufacturer of tape recorders, completed an extensive expansion and renovation program which more than doubles existing floor space.

Bradford Components, Inc., a new electronic component manufacturing firm, was formed with headquarters in Bradford, Pa. The new company is headed by F. G. Schermerhorn, formerly with Aerovox and Speer Resistor Corp. The company will specialize in wire-wound resistors, precision coils, and subassemblies of all types.

General Electric expects to increase production of its aluminized TV tubes by 50% with a multi-million-dollar tooling project now under way at its Buffalo and Syracuse plants.

Simpson Electric Co., Chicago, has doubled its production facilities within the past year, following the expansion of its Lac du Flambeau, Wis., plant and the opening of a new plant adjacent to the Chicago plant.
WANT MORE PAY? MORE SECURITY? A JOB WITH FUTURE UNLIMITED?

VETERANS! CIVILIANS! NO EXPERIENCE NECESSARY!

Go into TELEVISION

I'll train you at home... in your spare time

for better-pay jobs in TV

EARN MORE
MORE MONEY AND A CAREER ARE WAITING FOR YOU HERE!

Earn while you learn by repairing TV sets for friends and neighbors. Many of my students make up to $25 a week in spare time... pay for their entire training this way... start their own money-making service business. When they complete training and go into TV full time, their earnings zoom into big figures! My graduates are now working at RCA, NBC-TV, CBS-TV, Dumont TV and numerous other TV stations and plants.

LEARN MORE

I give you ALL the practical training you need to qualify for the highest-paid technician jobs in TV.

FM-TV TECHNICIAN TRAINING

No experience necessary! You learn by practicing with equipment I send you. It's easy! I give you the same successful guidance that has helped hundreds of men towards a TV career. Many started with only grammar school training.

FM-TV TECHNICIAN TRAINING

Saves you months if you have previous Armed Forces or civilian radio experience! Train at home. I give you kits, plus equipment to build BIG SCREEN TV RECEIVERS, and FREE FCC COACHING COURSE! Everything AT NO EXTRA COST!

OPTIONAL: TWO WEEKS TRAINING IN NEW YORK CITY AT NO EXTRA COST!

You get two weeks, 50 hours, of intensive Laboratory work on modern electronic equipment at our associated school in New York City - Pierce School of Radio and Television. And I give you all this AT NO EXTRA COST whatsoever, after you finish your home study training in the Radio-FM-TV Technician course and FM-TV Technician Course.

FREE FCC COACHING COURSE!

Important for BETTER PAY JOBS requiring FCC License. You get this training AT HOME AND AT NO EXTRA COST! Top TV jobs go to FCC licensed technicians.

NEW! PRACTICAL TV CAMERAMAN & STUDIO COURSE!

(For men with previous radio and TV training)

I train you at home for an exciting high pay job as the man behind the TV camera. Work with TV stars in TV studios or "on location" at remote pick-ups! A special one-week course of practical work on TV studio equipment at Pierce School of Radio & TV, our associate resident school in New York City, is offered upon your graduation.

VETERANS!

MY SCHOOLS FULLY APPROVED TO TRAIN VETERANS UNDER NEW G.I. BILL! If discharged after June 27, 1950 - CHECK COUPON! Also approved for RESIDENT TRAINING in New York City at Pierce School of Radio and Television... qualifies you for full subsistence allowance up to $160 per month. Write for details.

MAIL THIS COUPON NOW! No Salesman Will Call!

Mr. Leonard C. Lane, President
RADIO-TELEVISION TRAINING ASSOCIATION
52 East 19th Street, New York 3, N. Y. Dept. R-11A
Dear Mr. Lane: Mail me your NEW FREE BOOK. FREE SAMPLE LESSON, and FREE identification card... show me how I can make BIG MONEY IN TELEVISION. I understand I am under no obligation and no salesman will call.

PLEASE PRINTPlainly)

NAME_________________________AGE______________

ADDRESS___________________________

CITY_________________ZONE______STATE__________

I AM INTERESTED IN

[] Radio-FM-TV Technician Course
[] FM-TV Technician Course
[] TV Cameraman & Studio Course

[] VETERANS!

Approved by the State of New York • Approved by the VA

17
2 NEW SERVICE AIDS...

DESIGNED BY AND FOR YOU!

New CBS-Hytron Tube-and-Tool Caddy

Another Tube Caddy? Yes, but your service-dealers helped us design this one. Helped us throw out a dozen almost-right designs. Stayed with us until the CBS-Hytron Tube-and-Tool Caddy became your Caddy. Built the way you want it.

Your new Caddy has literally dozens of features... many unique. Here are only a few: Roomy... holds 218 tubes! Also all your necessary tools, small parts, volt-ohmmeter, flashlight, and reference data. Compact... functional design wastes not one inch of space. Accessible... everything in sight and reach. Rugged... strong, tip-proof — used safely as seat. Test Mirror... reversible for protection — mounted in cover supported by adjustable friction hinge.

Sorry, there's just not enough space to tell all. But see your new Caddy yourself at your CBS-Hytron distributor's. He has a red-hot deal for you. He'll show you how amazingly easy it is for you to own this unique CBS-Hytron Tube-and-Tool Caddy. See him today.

Cutting Your Call-Backs With CBS-Hytron CTS-Rated 5AW4 and 6CU6?

They're the most talked-about tubes in TV today. CBS-Hytron CTS-Rated 5AW4 and 6CU6 are both rated for dependable Continuous Television Service. Heavy-duty work horses, they replace the 5U4G and 6BQ6GT respectively.

Brand new designs, not just improved tubes, the 5AW4 and 6CU6 have big safety factors. Give you long... long trouble-free life. Load in those hard-working, heavily loaded rectifier and horizontal amplifier sockets... even in 21-inch jobs.

Start slashing your call-backs with these tubes right now. 5AW4 and 6CU6 are available only from your CBS-Hytron distributor. See him today. Ask for complete 5AW4 and 6CU6 data. Or write direct. Above all, don't let another day slip by without trying these wonderful, new CBS-Hytron CTS-Rated tubes.

P.S. Yes, more CBS-Hytron CTS-Rated tubes are coming. Watch for them.
I Will Train You at Home for Good Pay Jobs, Success in RADIO-TELEVISION

Practice Broadcasting with Equipment I Send

As part of my Communications Course, I send you kits of parts to build the low-power Broadcasting Transmitter shown at the left. You use it to get practical experience putting a station "on the air," performing procedures demanded of Broadcasting Station Operators. An FCC Commercial Operator's License can be your ticket to a better job and a bright future; my Communications Course gives you the training you need to get your license. Mail card below and see in my book other valuable equipment you build.

Practice Servicing with Equipment I Send

Nothing takes the place of PRACTICAL EXPERIENCE. That's why NRI training is based on LEARNING BY DOING. You use parts I furnish to build many circuits common to Radio and Television. With my Servicing Course you build a modern Radio (shown at right). You build a Multimeter which you use to help fix sets while training. Many students make $10, $15 a week extra fixing sets in spare time starting a few months after enrolling. All equipment is yours to keep. Card below will bring book showing other equipment you build.

Television is Growing Fast
Making New Jobs, Prosperity

More than 25 million homes now have Television sets and thousands more are being sold every week. Well trained men are needed to make, install, service TV sets. About 200 television stations on the air with hundreds more being built. Think of the good job opportunities here for qualified technicians, operators, etc. If you're looking for opportunity get started now learning Radio-Television at home in spare time. Cut out and mail postage free card. J. E. Smith, President, National Radio Institute, Washington, D. C. OUR 40TH YEAR.

Available to Veterans Under G.I. Bill

Good Jobs, Good Pay, Success in Radio-TV! See Other Side

Cut Out and Mail This Card Now
Sample Lesson & 64-Page Book Both FREE

This card entitles you to Actual Lesson on Servicing, shows how you learn Radio-Television at home. You'll also receive my 64-Page Book, "How to Be a Success in Radio-Television." Mail card now!

No Stamp Needed! We Pay Postage

Mr. J. E. Smith, President, National Radio Institute, Washington 9, D.C.
Mail me Lesson and Book, "How to Be a Success in Radio-Television." (No Salesman will call. Please write plainly)

NAME
AGE
ADDRESS
CITY
ZONE
STATE
VETS Write in date of discharge
BCDEFG
Train at Home to Jump Your Pay as a RADIO-TV Technician

Get a Better Job—Be Ready for a Brighter Future in America's Fast Growing Industry

Training PLUS opportunity is the PERFECT COMBINATION for job security, good pay, advancement. When jobs are scarce, the trained man enjoys GREATER SECURITY. NRI training can help assure you and your family more of the better things of life.

Radio-Television is today's opportunity field. Even without Television, Radio is bigger and more than ever before. Over 3,000 Radio Broadcasting Stations on the air, more than 115 million home and Automobile Radios are in use. Then add Television. Television Broadcasting Stations extend from coast to coast now with over 25 million Television sets already in use. There are channels for 1,800 more Television Stations. Use of Aviation and Police Radio, Micro-Wave Relay, Two-way Radio communication for buses, trucks, etc. is expanding. New uses for Radio-Television principles coming in Industry, Government, Communications and Homes.

My Training is Up-to-Date You Learn by Practicing

Get the benefit of my 40 years experience training men. My well-illustrated lessons give you the basic principles you must have to assure continued success. Skillfully developed kits of parts I furnish "bring to life" the principles you learn from my lessons. Read more about equipment you get on other side of this page.

Naturally, my training includes Television. I have, over the years, added more and more Television information to my courses. The equipment I furnish students gives experience on circuits common to BOTH Radio and Television.

Find Out About the Tested Way to Better Pay

Read at the right how just a few of my students made out who acted to get the better things of life. Read how NRI students earn $10, $15 a week extra fixing Radios in spare time starting soon after enrolling. Read how my graduates start their own businesses. Then take the next step—mail card below.

You take absolutely no risk. I even pay postage. I want to put an Actual Lesson in your hands to prove NRI home training is practical, thorough. I want you to see my 64-page book, "How to Be a Success in Radio-Television" the principles you learn from my lessons. Read more about equipment you get on other side of this page.

Mail card below now. Call me at 64th and U Sts., N.W. J. E. Smith, President, National Radio Institute, Washington 9, D. C. OUR 40TH YEAR.
FREE!

get your
value-packed

1954
ALLIED
268-PAGE CATALOG

The World's Largest Stocks
- TV and Radio Parts
- Test Instruments
- High-Fidelity Equipment
- Custom TV Chassis
- AM, FM Tuners and Radios
- Recorders and Supplies
- P. A. Systems, Accessories
- Amateur Station Gear
- Builders' Kits, Supplies
- Equipment for Industry

Fastest Service in Electronic Supply

SEND FOR THE LEADING ELECTRONIC BUYING GUIDE free

EASY-PAY TERMS
Use ALLIED'S liberal Easy Payment Plan—only 10% down, 12 months to pay—no carrying charge if you pay in 60 days. Available on Hi-Fi and P. A. units, recorders, TV chassis, test instruments, Amateur gear, etc.

TV and HI-FI SPECIALISTS
To keep up with developments in High-Fidelity and TV, look to ALLIED. Count on us for all the latest releases and largest stocks of equipment in these important fields. If it's anything in High-Fidelity or Television—we have it in stock!

SAVE ON EVERYTHING IN ELECTRONICS

ALLIED RADIO
World's Largest Electronic Supply House

ALLIED RADIO CORP., Dept. 2-L-3
100 N. Western Ave., Chicago 80, Illinois

☐ Send FREE 268-Page 1954 ALLIED Catalog.

Name ____________________________
Address ____________________________
City ____________________________ Zone ______ State ______

NOVEMBER, 1953
CHANNEL MASTER introduces a basically **new type** of VHF antenna **CHAMPION**

the highest gain all-channel VHF antenna ever developed!

*Featuring the unique new "Tri-Pole"

TRIPLE-POWERED DIPOLE

The "Tri-Pole" is a new antenna system in which the Low Band folded dipole also functions as three folded dipoles tied together in phase on the High Band. This is the heart of the Champion, the secret of its phenomenal performance on all 12 VHF channels.
the CHAMPION is
the most sensitive all-channel
VHF antenna ever designed!

Stacked CHAMPION provides:
11-13 DB High Band gain
6½-7½ DB Low Band gain

Here is a totally NEW kind of antenna, completely different — in principal and performance — from any VHF antenna you’ve ever seen! Since the lifting of the TV freeze means a gradual disappearance of the single-channel VHF area, the VHF antenna of the future will be a multi-channel antenna. Prepare now for outstanding reception on all VHF channels — present and future — with Channel Master’s super-sensitive CHAMPION! Outperforms every all-channel VHF antenna made today — and many Yagis, too!

COMPARE these features with the antenna you are now using:

- Folded dipoles throughout — give close to 300 ohms impedance across the entire band.
- Screen-type reflector provides high uniform gain on every channel, 2 through 13. Not frequency sensitive — this reflector provides more than twice as much extra gain as straight bar reflectors.
- Phase-correcting harness is built-in and fully assembled; the only wiring you do is to attach the lead-in.
- All-aluminum construction . . . lightweight, durable, non-corrosive.

MARVEL OF PRE-ASSEMBLY
assembles faster than a 5-element yagi!

Collapsed “Pop-Up” screen opens instantly — no loose rods, elements or hardware. “Tri-Pole” assembly features automatic Spring Lock Action — all dipoles snap permanently into place without wing nuts or any other hardware.

It’s a CHAMPION in any area!
1-bay—local areas
2-bay—secondary and fringe areas
4-bay—super-fringe areas

OUT-PERFORMS:

The 2-Bay CHAMPION actually gives you the performance of:
- Separate 5-element Yagis for every Low Band channel!
- Separate 10-element Yagis for every High Band channel!

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Single Bay</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>325-1</td>
<td>$20.83</td>
<td></td>
</tr>
<tr>
<td>325-2</td>
<td>$42.36</td>
<td></td>
</tr>
<tr>
<td>325-3</td>
<td>$88.89</td>
<td></td>
</tr>
<tr>
<td>325-4</td>
<td>$2.08</td>
<td></td>
</tr>
<tr>
<td>325-5</td>
<td>$4.15</td>
<td></td>
</tr>
</tbody>
</table>

Separate Stacking Harness

Send for complete technical literature.

CHANNEL MASTER CORP.
ELIZABETHTOWN, PA.
what
Aluminizing means

Aluminizing means the efficient use of light.
Energy—energy is the pay-off.
Aluminizing means a brighter TV picture,
greater contrast, lower beam current, smaller
spot size, sharper focus, reduced screen
scorch—all from the efficient use of light.
On the inside of any TV tube face is a coating
of phosphor crystals—the picture screen. As
the electron beam—tracing the picture—strikes
these crystals, they glow, giving off light in
all directions. And there's the problem!
Half the light thus generated is inside the tube,
either lost to usefulness or lighting areas that
should be dark. Both brightness and
contrast suffer.
But—put a mirror behind the phosphor and
"wandering" light is reflected back through the
tube face. Aluminizing creates this
desired mirror!

To aluminize a picture tube, deposit a
nitrocellulose film evenly over the phosphor.
Over that, deposit a film of aluminum only
millionths of an inch thick—just thick enough
to reflect the light and just thin enough to
let the electrons pass through. Under heat,
evaporate the nitrocellulose film to leave a thin,
smooth coating of aluminum. Result—an
efficient light reflecting mirror to
specifications.

Simple as it sounds, Rauland research
engineers worked for three years to solve the
problem and were among the first to do so.
For opportunities within your reach

See what the RCA TV Servicing Course offers you

Good-pay jobs. A business of your own.

Opportunities for good-pay jobs
In Television are within your reach when you study TV Servicing by the RCA Institutes Home Study Method. Or perhaps you would like to start a TV Service business of your own.

If you are not satisfied with the way your future now stacks up, see how easily you can change the course of your career. RCA Institutes Home Study Course in TV Servicing is helping thousands of other people to better jobs. It can help you. Right now thousands of opportunities are going begging. There is a critical shortage of trained TV servicemen. This is your big opportunity.

Easy-to-understand, illustrated lessons

The entire course is divided into ten units of several individual lessons. You study them at home in your spare time. Lesson-by-lesson you learn the theory and step-by-step procedures of installing TV antennas, of servicing and trouble-shooting TV receivers. Hundreds of pictures and diagrams help you understand the how-it-works information and the how-to-do-it techniques. You will be amazed how easily you absorb the knowledge of each lesson, how quickly you train yourself to become an experienced technician.

Experienced engineers and faculty prepared the course, grade your lessons

The RCA Institutes course was written and planned by instructors with years of specialized experience in training men by home-study and resident-school methods. The course embodies RCA's background of television experience plus knowledge gained in training several thousand technicians. A study of the course parallels an apprentice's training. Your lessons are carefully examined and accurately graded by friendly teachers who are interested in helping you to succeed.

One of the leading and oldest Radio-Television training schools

Founded in 1909, RCA Institutes, Inc. has been in continuous operation for the past 44 years. Its wide experience and extensive educational facilities give students, just like you, unsurpassed technical training in the highly specialized field of radio-television-electronics.

RCA Institutes is licensed by the University of the State of New York ... an affiliate member of the American Society for Engineering Education ... approved by the Veterans Administration ... approved by leading Radio-Television Service Organizations.

It costs so little to gain so much

RCA Institutes makes it easy for you to take advantage of the big opportunities in TV Servicing. The cost of the TV Servicing Home Study Course has been cut to a minimum. You pay for the course on a pay-as-you-learn unit lesson basis. No other home study course in TV Servicing offers so much for so little cost to you.

SEND FOR FREE BOOKLET—Mail the coupon today. Get complete information on the RCA INSTITUTES Home Study Course in Television Servicing. Booklet gives you a general outline of the course by units. See how this practical home study course trains you quickly, easily. Mail coupon in envelope or paste on postal card.

MAIL COUPON NOW!

RCA INSTITUTES, INC., Home Study Dept. RE 1155
350 West Fourth Street, New York 14, N.Y.

Without obligation on my part, please send me copy of booklet "RCA INSTITUTES Home Study Course in TELEVISION SERVICING." (No salesman will call.)

Name __________________________ (please print)
Address __________________________
City _________ Zone _________ State _________
"OUR CUSTOMERS TELL US THAT THE PICTURES ARE BETTER THAN WHEN THEIR SETS WERE BRAND-NEW."

Says W. T. Gerlach
Roselle Radio and TV Service
1027 Chestnut St., Roselle, N. J.

"Since the first TV sets were delivered in this area, we've installed almost every type and brand of picture tube, but we've yet to find any that gives a picture like the G-E Aluminized Tube. "Our tube customers are not only satisfied—they are downright pleased! As a result, more than two out of every three tubes we are installing are G-E Aluminized Picture Tubes."

"2 OUT OF EVERY 3 TUBES ARE G-E ALUMINIZED"

Give your customers TV's finest picture—and make more money!

"65% OF OUR PICTURE TUBES SOLD ARE G-E ALUMINIZED. ONE OWNER TELLS ANOTHER."

Says Kenneth L. Middleton... HILLENS
740 N. Garey Ave., Pomona, Cal.

"GENERAL ELECTRIC ALUMINIZED PICTURE TUBES ARE ONE OF MY REAL BIG MONEY-MAKERS!"

Says Norman Foster... Foster Television
2922 Milwaukee Ave., Chicago, Ill.
WE INSTALL
PICTURE TUBES!

Ask for new 6-piece promotion kit!

All these helps are waiting for you
at your G-E tube distributor!

Get the full kit of G-E Aluminized Tube sales aids! Use them to sell better-than-new TV! It's a sure-fire way to lick competition from inferior picture tubes offered to your customers.

This mirror, booklet, and other helps will work hard for you, developing profitable tube sales. General Electric further supports your efforts by a strong coast-to-coast advertising campaign to TV owners. Ads in LIFE, COLLIER'S, and TV GUIDE, reaching some 40,000,000 readers, tell why the G-E Aluminized Tube is brighter, better, the finest tube any set can have!

Today many leading TV builders are featuring new-model receivers with General Electric Aluminized Tubes. Demand for replacement tubes will skyrocket as the finer performance of the aluminized tube is made known by enthusiastic set owners.

Take a tip from successful service dealers everywhere! Sell TV's finest picture profitably! Tube Department, General Electric Co., Schenectady 5, New York.

GENERAL ELECTRIC
V & H TRACE EXPANSION & CENTERING:
INT. VOLTAGE CALIBRATOR RETURN TRACE BLANKING
AT FRONT PANEL: intensity mod. Input; 60 cps, sawtooth outputs.
PHASING CONTROL of Internal 60 cps sine wave sweep.
DIRECT CONNECTION to vert. CRT plates. KIT $79.95.
WIRED $129.50
PUSH-PULL outputs in both amplifiers CATHODE FOLLOWER inputs to
3-STEP FREQ.-COMPENSATED SWEEP RANGE: 15 cps - 100 kc
N.O.R. SENS.: .01 volts
N.O.R. FREQ. RESP.: flat ±2σ 10 cps - 1 mc
VERTICAL SENS.: .01 volts
Only 1.5X full screen without distortion.
Both amplifiers flat ±2σ 10 cps - 1 mc
10 cps - 200 kc, -4db at 500 kc to
FAMOUS EICO AMAZING FEATURE - PACKED ECONOMY - PRICED
LIFETIME SERVICE & CALIBRATION GUARANTEE*
the largest manufacturer of its kind in the world - gives you
AV 12V BATTERY ELIMINATOR KIT
1050 Kit $29.95. WIRED $38.95.
Continuous current rating: 200,000 Cps In 4 ranges.
Ohms: 0-2K, 200K, 20 K, 100, 500 ma; 10 A.
DC/AC volts: Zero to 20,000, 10 steps.
7 calibrated scales: accuracy better than 1%.
Bandspread vernier tuning.
Af 6-step RF shielded output multiplier, con-
stant output Z.
355K MULTIMETER KIT $24.95.
WIRED $29.95.
Write NOW for FREE Latest Catalog C-11
You build EICO Kits in one evening, but ... they last a lifetime!
And you SAVE OVER 50%! See the famous
EICO line TODAY, in stock at your local jobber.
ELECTRONIC INSTRUMENT CO., Inc., 84 Withers Street, Brooklyn 11, N. Y.
WHEN TELEVISION started its triumphal conquest, the prophets of doom foresaw a quick end for the radio receiver. We thought such reasoning was senseless and said so emphatically on this page at the time. ("Whither Radio?", June 1949 issue.)

In 1949 there were in use in the U.S. 81,000,000 receivers. Now there are over 120 million radios and the end is nowhere in sight. In the first seven months of 1953, we manufactured nearly eight million receivers, against nearly eleven million radios for the entire twelve months of 1952. We are certain to produce over fourteen million receivers during 1953.

Yet this figure is bound to look modest during the years to come. This reasoning is based upon the coming inevitable boom of the Minireceiver.

We were probably the first to publicize the idea of the personalized receiver in our September 1944 issue, in an editorial entitled "Miniature Receivers." Here are a few excerpts from that article:

"... These new Pocket Radios will be much smaller than anything that has appeared on the market heretofore. Private constructors have built excellent pocket radios for a number of years—this magazine having described quite an array of them in its pages—but it is one thing for an individual to construct such a set, and quite a different problem to build it commercially by the million.

... The pocket and vest pocket type of radio, fill a real demand. Yes, even an acute demand. We predict that before long many millions will be built annually. An entirely new art will be reared upon them. They will be built mostly by factory workers who are more nimble in assembling the exceedingly small parts than men. In a way it will bring clock or watchmaker procedure into radio set manufacturing practice.

... We will have thin types of radios for breast-pockets, thicker types for vest pockets and extra small ones for side pockets. The latter type—about the size of a cigarette pack—will probably be of the "strictly personal" variety.

What we said then holds true today, only more so, for the following obvious reasons. In 1944 we did not have the transistor, which will soon make the minireceiver not only a practical, but also an economic certainty. During the next few years, the cost of transistors is bound to go far below our present miniature tubes. With the battery drain at an astonishing low, minireceivers can be played daily for many hours, without the annoyance of constant battery replacements. Indeed it appears that the batteries will wear out not because of current drain, but by drying out, internal chemical activity, etc.

A number of radio set manufacturers are already deep in the projection stage of minireceivers. It now appears that several such pocket sets will make their appearance in 1954. Recently, the Radio Corporation of America gave several demonstrations of all-transistor miniature receivers with superheterodyne circuits. These extremely well performing sets were free of body capacitance, had internal antennas and played well inside a large steel-construction building. Rather large pocket size, they could have been made to fit into a vest pocket, were it not that the makers desired good quality sound reception. Hence a comparatively bulky loudspeaker was used.

As the art of minireceivers progresses, let no one presume that in the future good audio quality could not be achieved with a loudspeaker with a total diameter less than that of a 25¢ piece.

NOVEMBER, 1953
During the past few years a number of methods of TV color transmission and reception have been developed. One of these, the field-sequential method promoted by the Columbia Broadcasting System, was sufficiently good to win FCC approval. But electronic engineers felt that the final solution to many color TV problems had not been discovered and a group of TV manufacturers formed the National Television Standards Committee to pool their ideas and work toward a more advanced system of color TV.

The NTSC system now has the backing of all or probably all the industry and is favorably considered by the FCC. Many of the details of this system are somewhat complicated, but the basic concepts are easy to understand. The NTSC color system is very similar to the “dot-sequential” method developed by RCA some years ago. It is a compatible system (that is, it uses black-and-white scanning standards) and a simultaneous system (as opposed to the obsolete field-sequential system).

To transmit TV in black-and-white the transmitter must be able to send electrical information which is related only to brightness and detail of the televised scene. The color transmitter must also describe the color components of the picture. To do this within the existing 6-mc channels allocated for TV broadcasting, and without materially degrading the pictures, it is necessary to use either a sequential-type system or a simultaneous system in which a subcarrier is used to convey the color information. This latter technique forms the basis of the current NTSC system.

Before discussing the color TV transmitter, let us consider certain fundamentals about color. Three things determine what our eye perceives when it sees a color. They are hue, brightness, and saturation. Hue is the shade by which we identify the color; brightness is the intensity; and saturation is the dilution of the color with white. A pastel or washed-out color is said to be desaturated, and conversely a rich tone is saturated. Another important concept is that what we see is white is really a mixture of colors in just the proper proportions. In order to make white, three primary colors are necessary. Although many combinations of hues may be mixed to make white, it is standard practice in color TV to use red, green, and blue.

The problem of transmitting a color picture is similar to black-and-white TV, except that a “third dimension” must also be included to carry the information which relates only to the color of the object. In the NTSC system, the transmitter sends out the same video signal as in black-and-white TV, plus the color subcarrier. This carrier is located approximately 3.58 mc higher in frequency than the picture carrier, and, unlike the sound carrier (4.5 mc), does not result from a separate transmission but is manufactured in the transmitter video system.

This color subcarrier conveys the color information of the televised scene. The color information appears on the color carrier in the form of phase (hue) and amplitude (saturation) modulation. Thus, during color transmission, the video contains in addition to the regular black-and-white signal, a color carrier which is rapidly varying in both phase and amplitude as the various picture elements are scanned by the camera.

To illustrate the way a simultaneous color-video signal is made, a simplified color transmitter is shown in Fig. 1. The color-TV transmitter starts with three cameras instead of the one used in black-and-white TV. Each camera is conventional except for the red, green and blue filters placed in front of the lenses. Due to these filters, the video output of each camera will be a function only of that color component in the scene which can pass through the color filter. The red camera sees only the red parts of the scene, and so on for the green and the blue cameras.

The outputs of the cameras are fed to adder 1 which combines their outputs and supplies the resultant electrical equivalent of white (brightness and fine detail of the scene) to adder 2. The outputs of the cameras are also connected to the transmitter samplers, and at this point the color information is translated onto the color carrier.

The adder which is commonly used in TV transmitter and receiver circuitry does exactly what its name implies. In its simplest form an adder may consist of a dual triode with its plates tied together, and the information to be added is fed separately to each grid.

The color carrier is manufactured in the transmitter sampler. The term sampler, as applied to this part of the circuit was undoubtedly coined years ago when the color information was actually selected by an electronic means which was the equivalent of a switch. The commutator of the switch rotated rapidly at a rate which was equal to the color subcarrier frequency and selected or sampled the color information at the output of the color cameras. The NTSC transmitter sampler is somewhat analogous to this basic sampler. However, the action of NTSC sampler on all three color channels is simultaneous rather than sequential.

The transmitter sampler shown in Fig. 2 consists essentially of a local oscillator supplying the color carrier (approximately 3.58 mc), a delay line, and three color modulators which in effect operate as gates for the subcarrier oscillator. The color carrier is actuated by the video signal. For example, if a pulse of red video, corresponding to a red sector in the televised scene, is applied to the red sampler, a pulse of 3.58 mc will appear in the output of the sampler. The phase of the sampler output will be determined by the delay line which affects the phase of the 3.58 mc input to the sampler.

The output of the transmitter samplers consists of the color subcarrier modulated both in phase and amplitude. The phase of the color subcarrier is a function of the hue of the scene, and its amplitude (in relation to the white video amplitude) is determined by the degree of color saturation.

The outputs of the transmitter samplers which identify hue and saturation are then connected to adder 2, as is the white video, and are combined to form a simultaneous color TV signal at the output of adder 2.

To visualize the content of the transmitter output, the frequency spectrum of such a transmission is shown in Fig. 3. From it we can see that the simultaneous color transmission consists of two basic components in monochrome and color. The monochrome video is equivalent to that in present-day black-and-white broadcasts and results from scanning, brightness, and picture detail information modulated upon the video carrier. The color component consists of a color carrier (approximately 3.58 mc) and sidebands as shown in Fig. 3. These result from phase (hue) and amplitude (saturation) modulation on the color carrier which is determined by the color content of the televised scene.

A part of the spectrum, the white video, and the color video components appear to interfere. In early systems of this type they actually did interfere, with resultant degrading effects in the received picture. By choosing the color subcarrier frequency in correct relation to the horizontal...
scanning frequency—approximately 15,750 cycles—it is possible to cause the color and white sidebands to be interleaved, resulting in a minimum amount of interference. This is known as dot-interlace.

An important feature of the NTSC color system is known as constant-luminance sampling, which results in reduction of the effects of interference to the color subcarrier. This and other features of the system are extremely important in the reception of satisfactory color pictures. However, we are treating only the basic ideas of the system, and a detailed discussion of constant luminance will be left to future articles.

The NTSC color receiver

Up to the point of the video detector, the circuit of the color receiver is very much the same as the present-day black-and-white TV set. Scanning frequencies are approximately 30 frames per second and 525 lines per frame as in existing black-and-white standards.

The signal at the output of the video detector contains the frequency components shown in Fig. 3, that is, the video black-and-white information 0-4 mc and the modulated color subcarrier (3.58 mc and sidebands). The process of using this information to make a color picture which is an accurate reproduction of the televised scene is substantially the inverse of what is done at the transmitter. In a typical NTSC system color receiver (shown in block diagram form in Fig. 4) the second detector video signal is amplified and fed to the kinescope as in the present day black-and-white receiver. This is known as the brightness channel. This portion of the signal contains all the electrical information necessary to describe the brightness or black-and-white components of the picture, including the fine picture detail. In order to extract the color information that is contained in the composite video signal at the video detector, the detector output is also fed through a 2-4 mc band-pass filter to the receiver sampler. At the input of the receiver sampler are frequency components associated with the color subcarrier. Since the phase of the color carrier is determined by the hue of the televised picture, in converting these phase changes back to useful video information the receiver sampler is actually a phase detector. A local oscillator in the receiver which is synchronized to the transmitter is used in conjunction with the receiver sampler to supply the comparison signal for the phase detectors. The delay line shown in Fig. 4 provides phase shifts for the color subcarrier frequency which corresponds to the delay line in the transmitter.

So that the receiver sampler may interpret the phase of the color subcarrier correctly it is necessary that the color subcarrier oscillator in the receiver be precisely in phase with the transmitter. This is done by transmitting a burst at the start of each line-scanning interval. This consists of a sample 3.58-mc color subcarrier generated in the transmitter. A comparison of the standard black-and-white video signal with the NTSC color signal viewed on an oscilloscope, at a line-frequency sweep rate is shown in Fig. 5 to illustrate the nature of these color-synchronizing bursts. This burst is in phase (0°) with the transmitter subcarrier oscillator (approximately 3.58 mc), and is separated from the composite video signal in the receiver. The burst, separated from the composite video signal, is used in establishing two continuous wave signals of color subcarrier frequency, having a 90° phase displacement from each other. These two signals are generated by a quartz crystal oscillator whose exact frequency is controlled by a retrace tube. The retrace tube derives its control information from an error signal proportional to the difference in phase between the transmitted burst and the local crystal oscillator output. This latter circuit is a conventional a.f.c. system.

The outputs of the receiver samplers consist of video information which is a function only of the hue and saturation of the televised image. These signals are applied to the tricolor kinescope as shown (Fig. 4), and combined with the black-and-white information to produce a color picture which theoretically contains substantially the quality of detail and tonal gradation of black-and-white TV pictures received on present home receivers, but with the additional color information.
One type of the RCA tricolor kinescope, used in conjunction with the development of NTSC type color receivers, contains three separate electron guns (Fig. 6). The individual structure of these electron guns is similar to that in the conventional black-and-white kinescope. The electron beam formed by each gun is focused and caused to converge so that the three beams pass through holes in an aperture plate placed in front of the specially deposited fluorescent screen. Three primary color phosphors are deposited on the screen in the manner shown in Fig. 7. The converging electron beams pass through a hole in the aperture plate and each beam strikes and lights up only one phosphor dot. The holes in the aperture plate correspond to picture elements, and each group of three phosphor dots is arranged so that it is directly in front of a hole in the aperture plate. Thus the three converging electron beams will light up their correct phosphor at any point on the screen. Tricolor tubes currently use aperture plates with approximately 800,000 holes. These microscopic holes are made by a photographic etching process.

The convergent electron beams are deflected in much the same manner as the single beams of a conventional kinescope. Special techniques are required to maintain accurate convergence of the three electron beams (red, green, and blue) at every point on the raster so that the red gun will always light only red phosphor, the green gun the green phosphor, and the blue gun blue. The video signals are applied to the tricolor kinescope in the receiver of Fig. 4, by paralleling the control grids and applying the black-and-white information. The output of the samplers is connected to the appropriate kinescope cathodes so that the output of the red sampler will actuate only the red gun, which in turn lights only the red phosphor, and so on for the other colors.

The complete system

In order to illustrate how color-TV pictures are transmitted and received via the NTSC system, let us trace the path of an elementary color pattern through the transmitter, receiver, and ultimately to its destination, the eye of the observer.

Let us consider what would occur at successive points in the system if a single narrow vertical pure red strip against a black background were presented to the tricolor camera. Fig. 8 shows waveforms that would occur. These are the waveforms that would be seen if an oscilloscope, swept at a horizontal line frequency of 15,750 cycles, were connected to those points. In Fig. 8D, the composite signal which appears at the output of adder 2 contains the scanning and color sync information plus the color brightness component. The signal is amplified and fed to the transmitter modulator and then applied to the r.f. carrier for transmission over the air.

In the receiver the second detector signal is similar to the adder 2 output in the transmitter. The brightness and color information are separated. The color carrier is fed to the receiver samplers, and the red sampler of the receiver in this case will supply maximum output during the red color interval since its phase is 0°. The blue and green samplers output zero volts during this interval, and thereby cancel the brightness signal at the blue and green grids so that only signals on the red gun grid and cathode add to produce a red bar on the screen. The action of the system for the other primary colors, green and blue, is the same. When a secondary color such as yellow is to be televised then both the red and the green cameras and subsequently the red and the green guns of the tricolor kinescope operate simultaneously. The red and the green phosphors therefore light simultaneously and the eye interprets the color correctly as yellow. When the picture element to be televised is white, the three cameras are picking up the red, the green, and the blue components and the transmitter samplers act to cancel each other out so that only information is left in the brightness channel. In other words, when white is televised the color subcarrier becomes zero. The white video is transmitted to the receiver, and since there is no color signal in the video detector output only the brightness channel of the receiver is active and each gun is lit with equal signals appearing at the control grids. The three phosphors light simultaneously, producing what the eye interprets as a white picture on the screen.

Compatibility

Color-TV transmissions of the type described in this article may be received on a standard black-and-white receiver as a black-and-white picture with excellent detail and monochromatic rendition. Since the scanning frequency standards are the same, no modification of the receiver circuitry is required.

Another feature of compatibility is that considerable attenuation to the color subcarrier frequency exists in most present-day receivers. The pattern that results from the existence of the 3.58-mc color carrier in the video output is usually greatly reduced due to the fact that the over-all bandpass of most current receivers is down to equal signals at this frequency. The color carrier will hardly be apparent on a standard black-and-white television receiver.

The present system of the National Television System Committee, which has been tentatively approved by the FCC, is currently being field-tested by members of the committee, with a view toward improving this system as the soundest scientific and economic approach to color TV. With the success of the present nation-wide tests, its final approval for national use is virtually a certainty.
To learn about television the hard, but least expensive way, we established a closed-circuit TV system in the city of Minot, North Dakota, on July 26, 1952. To the best of our knowledge, the system was original and the first to be established in the United States. The operation differed from the conventional community antenna system in that all programs were originated locally. We are 510 miles from the closest TV stations (Minneapolis-St. Paul).

An average of nine hours per day of program service was offered to subscribers daily except Sunday. It was originally established to supply receiving sets located in stores throughout the business district. Later the system was expanded to the residential area. The area served was limited to the route of the cable extending to the baseball park, college football field, and school and college basketball gymnasiums.

We originally established the closed-circuit system to give our staff experience in local program production. Our staff of engineers and program personnel were totally inexperienced in television, and everyone had to learn from scratch. John Martin, prominent New York TV director-producer was hired, and the first five weeks of operation was under his supervision.

The $12,000 we invested in our closed-circuit operation already has paid dividends. When we went on the air with KCJB-TV April 4, a great number of people told us that our production was excellent. Our technical and program staff operated like veterans. Our transmitter has not been off the air for more than 60 seconds since our initial telecasts. We are doing an unusual amount of local programming for a new station. We are 510 miles from the closest TV stations (Minneapolis-St. Paul).

An average of nine hours per day of program service was offered to subscribers daily except Sunday. It was originally established to supply receiving sets located in stores throughout the business district. Later the system was expanded to the residential area. The area served was limited to the route of the cable extending to the baseball park, college football field, and school and college basketball gymnasiums.

We originally established the closed-circuit system to give our staff experience in local program production. Our staff of engineers and program personnel were totally inexperienced in television, and everyone had to learn from scratch. John Martin, prominent New York TV director-producer was hired, and the first five weeks of operation was under his supervision.

The $12,000 we invested in our closed-circuit operation already has paid dividends. When we went on the air with KCJB-TV April 4, a great number of people told us that our production was excellent. Our technical and program staff operated like veterans. Our transmitter has not been off the air for more than 60 seconds since our initial telecasts. We are doing an unusual amount of local programming for a new station. We are operating 7 1/4 hours daily, from 3:45 p.m. until 11:00 p.m. seven days weekly, and approximately half of this time is filled with local programming and live talent.

We are now using our RG-11/U coaxial cable, from our old community antenna system, in certain areas as a remote broadcast loop. For example, we are televising the local baseball games. Instead of following the usual procedure of microwave operation, we hook our camera chain on the end of this line and get excellent quality to the transmitter. We use one camera to cover the baseball games and are doing it successfully. All games are sponsored at double the price of our AM games and the sponsors are very happy.

The only portion of our community antenna system which continues in operation is the portion of the cable used for remote pickups. We no longer charge the original subscribers for the service, since they can get the same broadcasts on the air.

We feel that we will have recovered our entire investment in the closed circuit just from our sports events this year. If we had not had the experience and the facilities installed, we would not have been able to televise the baseball games or basketball games this past spring and summer.

There were numerous program ideas which after having been tested on closed circuit were abandoned because they proved to be impractical either from a standpoint of production cost or lack of interest by advertisers.

We were able to use our closed circuit to interest civic officials and college and high school administrators. As a result, the schools now use five half-hours each week on KCJB-TV and are doing an excellent job of producing programs for themselves.

We are giving consideration to establishing community antenna systems in one or two cities in our fringe area at some later date. Now that we know what and what not to do, we believe that, through the use of closed circuits, we can increase our circulation—which is badly needed in this area due to the sparse population. We are also considering a plan whereby sports events, after this season, may be confined to paying customers on a closed-circuit system. The determining factor will be the attendance figures at baseball games this past summer and basketball games fall. Schools would be paid on a royalty basis, based on the number of television receivers connected to the system.

Prior to opening KCJB-TV, we had a total staff of nineteen persons operating KCJB Radio. The staff has been increased to the extent of only four persons—three of the four are technicians. A staff of three covers the sports events: one engineer, one cameraman, and one announcer. These games are simulcasts on radio and TV. Commercials are inserted at the studio, using a second camera chain.

We believe that this market will support one television station, but we do not see how a market much smaller than Minot, North Dakota, could support a television station. Minot has two radio stations operating on regional channels and one excellent daily newspaper with a circulation of 24,000, plus a weekly newspaper.

Our TV operating cost will average approximately $10,000 per month. Our total installation costs will be a little less than $200,000. We have erected a 600-foot tower on Signal Hill, approximately 15 miles south of Minot. The point of radiation is approximately 900 feet above average terrain. We have a 5-kw transmitter on channel 13 with an effective radiated power of approximately 28.9 kw. We estimate that there are approximately 15,000 television sets in use at this date. We believe our market potential will be 40,000 sets and this fall is expected to be accomplished within two years. We have great expectations for our station. Our experience with closed-circuit TV paid dividends.
TUBE FAILURES in TV RECEIVERS

JOHN B. LEDBETTER*

A list of expected tube failures can save time in servicing and reduce inventory requirements. Whether you are an old-timer in television receiver servicing or have just entered the field, you have noticed the tendency of certain types of tubes to become weak or burn out more rapidly than others. Other types may become gassy, leaky, microphonic or intermittently shorted, but seldom burn out. Have you ever thought of the time which could be saved if each tube type could be "catalogued" with its most likely and expected tube failures? If such traits can be considered as average or typical, such a list not only would save servicing time but would be a valuable aid in rearranging or modernizing your tube stock.

The following list of tube failures has been compiled with this thought in mind.

1. Tubes most likely to burn out: The low-voltage rectifiers (5AX4-GT, 5U4-G, 6V5-GT, 5Z4, etc.). These tubes supply high current and run very hot. They also may weaken fast, especially when the load current approaches the rectifier's maximum rating. Check for a weak low-voltage rectifier as well as a weak r.f. oscillator if the latter becomes sluggish or drops out of oscillation on the higher channels.

 The horizontal damping tube (5V4-G, 6A7, 6B5-G, 6W4-GT, etc.) also is high on the list. In series-filament receivers, tubes like the 25L6-GT, 35L6-GT, 25Z6-GT, 50L5, and 50L6-GT have a tendency to burn out before other types.

2. Tubes most likely to become weak: Tubes in the sweep circuits (horizontal oscillator, horizontal output, vertical oscillator, and vertical output; types 6SN7-GT, 12SN7-GT, 6K6-GT, 6J5, 6BG6-G, 6DC6-G, 6DQ6-GT, etc.) Next in line are the high-voltage rectifiers like the 1B3-GT, 1X2-A, and 2X2-A.

3. The most critical tubes: The r.f. oscillator. Tubes like the 6J6, 6FS, and 7FS are notorious for going bad or becoming unstable on the higher channels. Other types to watch are the 6AB4, 6X8, 12AT7, and 12AV7. (The usual result is drifting, or mushy sound, or complete loss of sound on one or more high-frequency channels. The picture may or may not be affected.)

 Oscillator control or automatic-frequen-
 cy control tubes (6AL5, 6AC7, 6SH7, etc.) can be very critical (especially the 6AL5). These tubes may check good but still fail to function in the receiver.

4. Tubes most likely to become gassy: The horizontal output (6BG6-G, 6CD6, 6BQ6-GT, etc.); the a.g.c. amplifier (6AL5, 6AH6, 6AT6); and the sound discriminator (6AL5). Replace these for a check even though they test good.

5. Tubes which often short or become leaky: The video i.f. amplifiers (6AC7, 6AG5, 6AU6, 6BC5, 6CB6); the video amplifiers (6AG7, 6AU6, 6CL6, 6K6-GT, 7C5, 12AU7, 25L6-GT); the r.f. amplifier (1AV6, 6AG6, 6AK5, 6AB4, 6BC5, 6BK7, 6BQ7, 6BZ7, 6J6). Test on a good mutual-conductance tester while tapping gently with a pencil eraser or the fingers.

6. Tubes most likely to become micro-
 phonie: The r.f. oscillator or video i.f.
 amplifiers. The 6J6 is especially critical in this respect. Noise and vibration usually develops an internal mechanical oscillation which results in a high-pitched squeal or sustained howl. The 12AT7 is next in line, with the 6AC7 a close second. (A lead weight on the tube will provide mechanical damping in all but the most serious cases). Occasionally, a microphonic 6A6U, 6AG5, or similar type will show up in the video i.f., sound i.f., or audio section.

Other tube failure causes

1. Ceramic capacitors. When a TV set is less than a year old, many of its tube failures can be traced to a defective ceramic-type capacitor. A weak, gassy tube or a burned-out resistor often is the result of a temporary breakdown in one of these capacitors. In many sets, they will become leaky or break down only when the set is on. When it is off, they may pass all tests. A faulty capacitor also may cause intermittent operation of picture or sound, or both.

 Suggestions: One method of locating a defective capacitor is to apply heat (i.e., with a floodlamp, sunlamp, etc.) to the suspected unit. Use extreme care and definitely do not use this method if any of the leads near the capacitor are made of plastic. Heat will melt or break down the insulation and cause more troubles. Replacing the suspected capacitor is the most logical and time-saving method.

2. Insulation breakdown. Many of the later-model sets use plastic insulation on transformers, wiring, terminal connections, and other parts. Under certain conditions, breakdown or arcing will occur.

3. Terminals. Poorly soldered or badly spaced terminal lugs sometimes short to ground and burn out a resistor, peaking coil, or other component, or weaken it so that later circuit defects will cause a complete breakdown. More often than not, such a condition, even temporary, will cause permanent damage to a tube.

4. Tube sockets. Arcing from tube socket pins to ground (or from pin to pin) is more likely to occur in the sweep or high-voltage circuits. Replacement with high-quality, low-loss sockets and high-voltage terminal boards will correct this trouble. In every case where arcing or breakdown has occurred in the plate circuit (especially in the sweep tubes), replace the plate-damping resistor and give the tube a thorough test for intermittent or direct shorts before operating the receiver. An intermittent tube could cause the original trouble to recur.

While the above list represents the most common tube weaknesses, it is only a basic presentation. You can keep it up-to-date by including newer tubes as they appear. (Generally tubes which perform the same circuit functions will be subject to similar weaknesses.) As your experience with special circuits widens, you can expand the list to include practically every tube in current use. This list will prove to be a valuable tool.

END

Figures 2, 3, and 6 appear through the courtesy of RCA. Figures 1, 4, 5, 7, 8, 9, and 10 first were published in G-E's service publication "Technical Talk." They appear by courtesy of G-E.
PULS_et Generator

CHARGE CIRCUIT

Old idea in a new role
WILL—In other words, you want to introduce scientific organization by separating the functions. The resistance-capacitance charge circuit does its part of the work. The tube acts as the discharge circuit. Some mysterious device puts voltages on the grid to trigger the pulses. And finally, the sync pulses from the transmitter regulate the frequency of the pulses produced by the mysterious device.
KEN—Everything really is just about the way you put it.
And this device (you can call it a “pulse generator”) has its own natural frequency, so that even if we lose several sync pulses due to fading, the sweep frequency won’t get too far out of the way. And it works whether or not a station is sending sync pulses.

WILL—But how do you make these periodic pulses?
KEN—With the help of a blocking oscillator—or a squeg- ger, as some of our would-be-learned friends would call it. Here’s the hookup.

WILL—And this is television? Why, Ken, this is one of my oldest friends! I built one of these in the Boy Scouts, when I was learning the code. If it isn’t the oldest oscillator in the world, it’s not far from it. The grid leak and capacitor are on the wrong side of the grid coil, but that doesn’t really change anything. But I do happen to know that this produces sine waves, not the pulses we’ve been talking about!

KEN—That depends on the circuit constants. To make pulses, capacitor C₃ and resistor R₃ must have a considerably higher value than for a sine-wave oscillator. And the coupling between the grid and plate coils must be very close.

WILL—I still can’t see why—even under those conditions—you get anything but good sine waves. When current starts in the plate circuit, the coupling between L₂ and L₁ makes the grid more positive. That can’t help but still further increase the plate current...

KEN—Wait a minute! Stop right there! Your reasoning has been O.K. so far, but it won’t be if you go on much longer. Don’t forget that the coupling between L₁ and L₂ is very tight. So the grid goes positive very rapidly. Because of that, it begins to attract electrons from the cathode.

WILL—Does it think it’s an anode of some kind or another?
KEN—You could look at it that way. In any case, those electrons rush into C₃ and charge it.

WILL—Don’t they flow rapidly off toward the cathode? Isn’t that what “grid current” is?
KEN—They do, but slowly, because of the high resistance of R₃. So you can see that the grid voltage, after a rapid rise (from a to b in the curve) not only ceases to be positive, but becomes negative (as at c); this grid-leak-bias brings the tube down toward the cutoff point and we say the tube is blocked. There is no noticeable plate current (or grid current either) for the moment.

WILL—But if there’s no grid current, how can we have grid-leak bias?
KEN—Actually, this grid-leak bias comes in two parts. We get it at first because of current flowing from the cathode to the control grid inside the tube. This current flows through the grid-leak resistor, making the grid end more negative than the cathode end.

WILL—That I understand. But when the grid stops attracting electrons from the cathode, and there is no more flow, then where do we get our bias from?
KEN—See that capacitor C₃? What is its relationship to R₃?
WILL—I don’t quite get what you mean?
KEN—Is it in series or parallel with it?
WILL—In parallel, of course, but...
KEN—That means, then, that the voltage developed across R₃ will also be across C₃.

WILL—Check.
KEN—Then C₃ will charge. Now, when will it discharge?
WILL—I understand it now. We get the first part of the bias when the control grid attracts electrons and returns them home through R₃. And the second part comes when C₃ discharges through R₃, which it does just as soon as the voltage across it is greater than the voltage across R₃.

So these two currents, one direct from the grid and the other from electrons stored up in C₃, keep the tube cut off till C₃ is discharged.

KEN—Correct. And is that all?
WILL—No, that’s not all. Everything starts all over again as soon as the grid voltage reaches a point where plate current can flow (d on the curve). We have another rapid positive thrust of the grid voltage, which makes another pulse, and a much longer negative period.

KEN—That’s just about what I was trying to get across.

NOVEMBER, 1953
WILL—Simple! It's what I'd call a "police interrogation" circuit.
KEN—Do you mean to say you've found something in your favorite True Detective stories that you can use in your scientific life?
WILL—It's obvious. Standard third degree! A gangster is being questioned. He gets a heavy rap on the head, passes out; and as soon as he comes to, lets out a yelp. To keep him quiet, they give him another tap on the head. He comes to again, lets out another pulse—I mean another yell—gets another wallop, and so on.
KEN—I only hope, Will, that we will be able to make you as great an authority on television as you seem to think you are on criminology!

Simplifying Simplification
WILL—And how do you synchronize this blocked oscillator?
KEN—Simply by applying positive pulses to the grid, which trigger—at the right instant—the impulses which are being produced in the same direction.
WILL—Third-degree methods again. When the gangster shows signs of coming to, it's correct to pour cold water on his face to speed up his return to consciousness.
KEN—You'll excuse me if I think we can get along without gangster analogies! Now, we can use various methods of applying these synchronizing pulses to the grid of the blocked oscillator. You can use a third winding, L3, on your blocking transformer or you can bring them in through a capacitor C4 which is connected at the hot side of a resistor R4 inserted into the grid circuit.
WILL—If we adopt that system, won't the combination of blocking oscillator and discharge tube look very much like the schematic I designed?
KEN—That's right.
WILL—Only, it's no longer very simple.
KEN—That it isn't! In practical circuits, though, you can replace the two tubes with one; or at least use a double triode.
WILL—That doesn't simplify the hookup much.
KEN—Well, let's use a single pentode then. The blocking oscillator uses its screen as an anode. The cathode-anode space still serves as the discharge path for capacitor C. And this discharge is controlled by the rapid positive surges of voltage impressed on the grid at the sweep frequency.
WILL—Couldn't we replace our pentode with an ordinary triode by connecting L2 to the plate and putting the charging circuit in series with it?
KEN—It has been done. But let's stop simplifying—before we wind up with a perfect sawtooth generator made out of a pilot lamp and a flashlight battery!

(TO BE CONTINUED)
MEASURING FIELD-STRENGTH FOR TV

Antenna installation is simplified with TV meter.

By Engineering Staff, Scala Radio Co.

To get the complete information on field strength needed for fringe-area and master-antenna installations, you need an instrument that displays picture quality and indicates field strength in microvolts. This is because there may be ghosts which can be eliminated by using the right kind of antenna. If the field-strength meter does not show picture quality, two strong ghosts may add in phase or out of phase, causing the field-strength indication to be entirely misleading. With the picture visible, the operator sees what he is measuring, and is not easily misled.

Noise (snow) can also lead to incorrect conclusions, unless the picture quality is determined at the time of the field-strength measurement. Although some noise information can be obtained from headphones energized from a narrow-band circuit, satisfactory data can be obtained only by quantitative measurements in wide-band circuits tuned to the desired channel. The reason for this limitation is that noise is not always uniformly distributed with respect to frequency. In many cases noise which interferes with television reception is resonant at a certain frequency, or over a limited band of frequencies.

An instrument designed to present the required information and to provide operating features for convenient application and accurate indication is illustrated in Fig. 1. Technical details which might be overlooked by the beginner, but which are required to obtain complete information, are developed later in this article.

The field-strength meter is constructed from a small TV chassis and a conventional field-strength meter providing relative field-strength readings. A Simpson TV antenna compass was used in this case. The TV receiver chassis is removed from its cabinet and mounted in a carrying case with a recessed panel, which protects the controls from damage under practical field conditions. For purposes of toughness and utility the carrying case is constructed of plywood.

Quarter-inch transparent plastic sheet is mounted over the face of the 7-inch picture tube, as seen in Fig. 1. This transparent protective sheet is superior to glass for knock-about use in the field. The speaker is mounted on the side of the carrying case and holes are drilled in the side of the case to provide egress for sound, as shown in Fig. 2. The constructor will find it necessary to mount the speaker at a reasonable distance from the picture tube to avoid raster distortion due to the speaker field. It may be necessary to put a ferrous shield over the neck and flare of the tube, as seen in Fig. 3. This shield must be grounded to the chassis, to avoid shock.

Circuit considerations

The front-panel facilities seen in Fig. 1 provide for viewing the quality of the picture, measuring the relative field strength of the video signal, indirect measuring of the absolute field strength, monitoring the audio signal, viewing the waveshape of the video signal with an auxiliary oscilloscope, and for measuring the a.g.c. voltage with an auxiliary v.t.v.m.

The circuit diagram shown in Fig. 4 provides for both 75-ohm unbalanced and 300-ohm balanced input. This feature is very desirable for absolute measurement of field strength, since standard signal generators with calibrated attenuators and an output meter work into 75-ohm unbalanced loads. Although the technician can use a balun between the output of the signal generator and the antenna input terminals of the field-strength meter, it is difficult in practical work to avoid appreciable standing waves in the conversion arrangement. This leads to inaccuracy in the microvolt measurement. When field-strength measurements are read on the meter from a 300-ohm balanced antenna system, and this relative field strength is measured by applying a signal from a standard signal generator, a correction factor must be applied to the calibrated attenuator indication of the generator because of the differing impedances. This correction factor is easily derived, as explained later.

The audio signal must be monitored at the time of the relative field-strength measurement, because—due to changes in propagation, or defects in the distribution system—the video voltage may be much larger than the audio voltage, or vice versa. When such situations are encountered, the technician must take steps to correct the defect, either by relocating the antenna, or by using a more suitable type of antenna (such as one with a narrower lobe), or by correct alignment of tuned circuits which may be discriminating against the sound or picture signal.

It is desirable to be able to view the composite video signal on an auxiliary oscilloscope, because the amplifiers used in distribution systems may be improperly adjusted, with the result that the sync tips are limited or the camera signal is limited, or both. In such case, the technician knows the cause of the trouble and does not waste time looking for trouble in the wrong places. The experienced technician can view the composite video signal on a d.e. scope and tell immediately whether the system amplifiers are performing correctly or not. A pair of binding posts are provided at the bottom of the panel for connection of the oscilloscope.

The technique of checking the video signal for compression or clipping, which leads to sync buzz in the sound,
black or white saturation of the picture, and unstable sync action, is illustrated in Fig. 5. As transmitted from the TV station, the picture signal has a maximum modulation of 85%, which leaves 15% of unmodulated carrier at all times for intercarrier heterodyning of the sound signal. If this margin of carrier is reduced by compression of the signal, or if from the same cause the sync tips are limited, cross-modulation of sound and picture occurs in the signal circuits of the receiver. This intensifies the sync-buzz component in the sound signal beyond the ability of the receiver to separate the AM and FM disturbance from the FM sound component.

A d.c. scope is required to make a complete check of the signal, because the 15% margin of picture carrier cannot be observed on an a.c. scope, as illustrated in Fig. 5. Although a v.t.v.m. can be used in combination with an a.c. scope to check the percentage of modulation of the signal from the distribution amplifier, the determination can be made more directly and accurately with a d.c. scope which indicates the a.c. and d.c. components of the signal simultaneously.

As seen from the circuit diagram (Fig. 6), the relative field strength meter is energized from the output of the video amplifier. This field-strength indication will rise or fall somewhat in accordance with line-voltage variations—hence the need for measuring the line-voltage value at the time of the field-strength measurement.

The switches provide front-panel control for disabling the a.g.c. circuit of the receiver, for switching in a meter multiplier to extend the range of the relative field-strength readings; and for removing the meter completely from the video circuit when oscilloscope tests are desired.

The a.g.c. system of the instrument must be disabled during the measurement of field strength, since the meter is energized from the video amplifier, and the normal a.g.c. action of the receiver largely swamps out the meter indication. Accordingly, the switch is thrown to A.G.C. OFF for relative field-strength readings. A meter multiplier (present in the original meter assembly) is used to accommodate wide ranges of field-strength variation. Since the meter loads the video circuit somewhat, it is desirable to be able to switch the meter out of the circuit for inspecting the video-signal waveform with an auxiliary oscilloscope. It is useful to be able to measure the value of the a.g.c. voltage in the receiver with a v.t.v.m., because this reading can be compared with the value developed when the receiver is energized from the distribution system; abnormal operation is sometimes encountered due to the inability of the receiver a.g.c. circuits to accommodate the high signal level from the distribution amplifiers. Receiver readjustment is facilitated by the measurement of both video voltage and a.g.c. voltage. Relative field-strength readings can be obtained from the a.g.c. voltage indication.

Signal-to-noise ratio

By detuning the field-strength meter to one side of the picture, the relative field strength of the noise can be measured. With the picture tuned in, the relative field strength of noise plus video signal can be measured. From these two measurements, the signal-to-noise ratio is easily determined. However, the operator must be careful not to be misled by resonant noise. Resonant noise can be detected in most cases by watching the screen of the picture tube and listening to the sound as the tuning adjustments are made. A comparative check for resonant noise can also be obtained by making an independent measurement on another channel which develops approximately the same relative field strength of video plus noise voltage. If the technician finds that he is concerned with resonant noise, the determination of signal-to-noise ratio cannot be carried out as described above; instead, a qualitative judgment must be made by merely viewing the picture and listening to the sound.

The operator will often find that maximum signal strength does not always correspond to the best picture, because two in-phase ghosts will develop an abnormally large but unusable video signal. In the same manner, standing waves on the antenna input signal can develop abnormally large video voltages having poor quality. When installing an antenna under dif-

Fig. 2 (Above)—Side view of carrying case.

Fig. 3 (Right) Underside view. Shield over neck of C-R tube prevents distortion.

Fig. 4—Antenna input has provision for proper match to 75-ohm unbalanced and 300-ohm balanced line and antenna.

Fig. 5—Characteristics of a video signal, which can be checked with a scope.

Fig. 6—Diagram of field-strength meter.
fault conditions of reception, it is good practice to first try the best possible antenna; then, if the picture quality and field strength are entirely satisfactory, a less expensive and elaborate one can be tried. This procedure is preferred to starting with a poor antenna and working up, as it usually saves time.

The operator should also measure the field strength and view the picture obtained from the lead-in system alone, with the antenna completely disconnected, since line pickup can cause leading ghosts and poor picture quality which may, in error, be blamed upon other parts of the system. By keeping such landmarks clearly in mind, much lost time can be avoided.

Having determined that the lead-in system is operating satisfactorily, the relative field-strength readings of signal and noise combined with observation of picture and sound quality will usually indicate to the experienced technician the approximate type of antenna required for factory reception. Such knowledge is gained from experience, and avoids the necessity for methodically trying out a series of antennas.

Absolute field strength

Measurement of the field strength in microvolts is accomplished (when considered desirable) by energizing the field-strength meter from a standard signal generator having an output meter and a calibrated attenuator. Having made the substitution, the technique will permit the relative reading into an absolute measurement in microvolts, if required.

If a receiver having both 75-ohm and 300-ohm input terminals is connected in the field-strength meter, the measurement of field strength in microvolts is facilitated, since an impedance-matching device is not required between the output of the signal generator and the input terminals of the receiver. However, there are several pitfalls which may lie in wait for the unwary. For example, it must be remembered that the receiver circuits are voltage-operated, and if the coupling circuits used in the input system of the receiver cause a different voltage to be applied to the grid of the r.f. amplifier tube when the 75-ohm input terminals are used, a suitable correction factor must be applied. For practical work, the service man should accept the advice of the receiver manufacturer in this regard.

The percentage modulation of the signal and recognition of the difference between r.m.s. and peak-to-peak voltages are fundamental requirements of the field-strength meter. Hence, the r.m.s. voltage output from the generator must be multiplied by 2.35 to correct for r.m.s. vs. peak-to-peak voltage. The output from a standard signal generator, on the other hand, is conventionally rated in r.m.s. voltage. The reader should carefully note that the reader should carefully note that the ratio of maximum to minimum; otherwise, the technician may be in considerable doubt concerning whether the mismatch is large or small.

The reader should carefully note that a generator without a zero-volt reference-line function can be used as well, provided an extra test is made. This test consists of shorting the load end of the line which causes an extreme standing-wave pattern. The peaks and valleys of this extreme pattern exhibit the correct possible situations, the technician can then devise his own testing procedures to meet the requirements of individual jobs.

Some sweep generators provide a zero-volt reference-line function, as indicated in the sketches of traces shown in Fig. 6. The zero-volt reference-line function is quite useful in checking impedance matches, because this zero-volt line makes it possible to determine the ratio of maximum to minimum; otherwise, the technician may be in considerable doubt concerning whether the mismatch is large or small.

The reader should carefully note that a generator having both 75-ohm and 300-ohm output terminals is satisfactory, or a single 50-ohm output generator may be used. Hence, the r.m.s. voltage output from the generator must be multiplied by 2.35 to correct for r.m.s. vs. peak-to-peak voltages. For other percentages of modulation the correction factor will be some figure other than 1.

Impedance matching

Impedance mismatches are a source of difficulty in several ways. First, the rated input impedances of various receivers are subject to manufacturing tolerances and to disturbance during service procedures. In a long line used in a master distribution system, poor matches lead to poor picture quality because of modulation and time-lag and multiple reflections which may occur. When plugging a line into a field-strength meter, and subsequently into a receiver for test, the operator should use 300-ohm jacks rather than 75-ohm jacks to reduce the impedance. The jack should be mounted as close to the front end of the receiver as practical, to avoid unequal lengths of line in the tests. These are typical refinements which are more important than others, but all of which will be taken into account by the professional service technician of the various mismatch considerations, line mismatch in the master distribution system is usually most serious.

Impedance checking is a complete subject in itself, and cannot be covered in this article. However, the reader may be interested in referring to Fig. 7, which shows how a sweep-frequency generator, a suitable balun, a r.f. amplifier, and a suitable crystal probe may be used to check for an impedance match of a line to a load, such as a length of twin lead connected to the front end of a TV receiver. The chief consideration is for the service technician to recognize the basic factors which are at work. He can then devise his own testing procedures to meet the requirements of individual jobs.

Some sweep generators have a 300-ohm balanced output, while others have a 75-ohm unbalanced output. Since conventional twin lead has a 300-ohm balanced impedance, the operator must use a balun to drive a twin lead from a 300-ohm unbalanced generator. A suitable balun for this purpose is shown in Fig. 8. The principle of the balun is to provide a resistive pad which has approximately 75-ohm impedance looking into each end of the pad generator end, and approximately 300-ohm impedance looking into the pad from the line end. END
A NUMBER of localities are served by only one or two v.h.f. stations. In fringe areas, narrow-band Yagi antennas are often used. During the current reallocation plan of FCC, many such stations are assigned new channels. When the station frequency is changed, the narrow-band Yagi antennas give inferior results and often produce a blurred picture. Several readers have complained of reception which resembles ghosts, and have asked for dimensions so that they can modify the Yagi antennas to restore good reception. Other readers have asked for data on designing Yagis for fringe-area installation, or to replace other types of antennas.

The spacing between the elements is not as critical as the element lengths in Yagi antennas. Thus, complete redesign is not necessary when the new frequency is only one or two channels removed from the old. A change of element lengths will usually restore the antenna to receive clear pictures with almost the same gain as before. Table 1 gives the lengths of the antenna, reflector, and director for the v.h.f. spectrum. A table covering the u.h.f. band may be published in a later issue. Where a station has been changed to a higher channel it may be published.

Table 1—Antenna, reflector, and director lengths for channels 2 to 13.

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Over-all antenna length (in inches)</th>
<th>Reflector (inches)</th>
<th>Director (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Corrected for end effect)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>97.2</td>
<td>102</td>
<td>93.3</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>92.3</td>
<td>84.4</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>84.3</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>73.6</td>
<td>67.3</td>
</tr>
<tr>
<td>6</td>
<td>65.2</td>
<td>68.2</td>
<td>62.5</td>
</tr>
<tr>
<td>7</td>
<td>3.2</td>
<td>32.8</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>30.2</td>
<td>31.8</td>
<td>29.0</td>
</tr>
<tr>
<td>9</td>
<td>29.2</td>
<td>30.8</td>
<td>28.1</td>
</tr>
<tr>
<td>10</td>
<td>28.4</td>
<td>29.8</td>
<td>27.7</td>
</tr>
<tr>
<td>11</td>
<td>27.2</td>
<td>29.9</td>
<td>26.4</td>
</tr>
<tr>
<td>12</td>
<td>26.8</td>
<td>30.2</td>
<td>25.7</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>30.7</td>
<td>24.9</td>
</tr>
</tbody>
</table>

Often the antenna and reflector elements can be used for the directors, thus reducing the antenna new rods which must be purchased. For the busy technician, the quickest solution is the installation of a new antenna for the reallocated station.

Another factor which can affect picture quality is orientation. When Yagi antennas are used for either v.h.f. or u.h.f., the antenna should be oriented carefully for maximum signal strength. Not only will picture quality be impaired when the antenna is not oriented correctly, but also sync stability may be affected. In some instances the effect on sync may be noticeable before picture quality suffers greatly. Fig. 1 shows reception of a strong signal with the antenna misoriented by approximately 90°. Note the beginning of picture pull as evidenced by the bending of the vertical wedges. This is the forerunner of severe horizontal instability and vertical roll.

Even with the broad-pattern characteristics of the biconicals, misorientation is a frequent cause of poor picture quality and poor synchronization. This is usually the case when the antenna is to receive three stations from one general direction. When the signals arrive over an angle of approximately 60° to 90° the antenna will be misoriented for one and perhaps two stations, with resulting pulling, weaving, and poor picture quality. A good clue is sync instability or the tendency toward pulling and weaving by one of several stations which can be received. Orienting the antenna to favor the weaker station usually solves the problem. If the trouble is present for all stations, the receiver itself will have to be checked.

Vertical linearity

In an Admiral 20T1 receiver there is very poor vertical linearity. I have tried adjustments with the controls and also replaced the vertical output tube but this did not help. Brilliance is adequate and horizontal width is all right. I checked all the parts associated with the vertical linearity control but nothing seemed wrong. I used my scope on the grid of the 6S4 tube and the wave-shape seemed good. I tried the scope across the vertical deflection coils but got a wave-shape which looked like the letter S in reverse. Some vertical ringing seems to indicate that the resistors across the deflection coils are missing. Is my diagnosis correct, or what is the trouble? V. Z., Haddon Heights, N. J.

You mentioned trying a new vertical output tube, but often this trouble can be caused by the vertical oscillator tube, so you should try this tube also before making other checks. If the damping resistors across the vertical coils are open or are missing, they should be installed as shown in Fig. 2.

For proper observation of the wave-shape in the vertical deflection coils, a 10-ohm resistor should be placed in series with the coils and a scope reading taken across it. Magnetic deflection is created by a linear current rise, and to produce this, a modified sawtooth voltage is used. The current flow through the 10-ohm resistor will establish the proper wave-shape for viewing purposes.

Power line arcing

In our locality, channels 2, 4, and 5 are persistently interfered with by what I suspect is a corona discharge from a main power transmission line. This runs cross-country, north and south, and is located about two miles west of the receiver. From the size of the insulators, the transmission voltage is certainly in excess of 100 kilovolts. The interference is similar to auto-ignition interference but is grouped into two well-defined bands, separated by approximately one-half the picture height. These bands drift slowly up or down, and, since the stations are all in Los Angeles, it indicates that the interference is related to the local power system which is not interconnected with the Los Angeles system. I surmise that corona discharge takes place on the positive and negative swing of the 60-cycle power frequency, or 120 times a second, resulting in two bands on the raster.

If my diagnosis is correct, I would appreciate your comments regarding what can be done about the interference. There is the possibility that the antenna is coupled to the source of interference by the secondary power distribution.
line which is seldom more than 100 or 200 feet away from the antennas in this area. J. M., San Diego, Calif.

Your diagnosis of the source of interference is correct, for corona discharge at both peaks of an a.c. wave will introduce the two-bar impulse type of noise on the screen. In some investigations into double-bar interference in television receivers I ran across a complaint where two black bars appeared on the screen (Fig. 3). This was later traced to an amateur station where the filter capacitors of a full-wave supply had opened, causing heavy 120-cycle modulation of the carrier (and harmonics). Another instance was a double-bar pattern with ignition type of streaks, similar to what you described. This was traced to a local home where an ultraviolet-ray machine was in use periodically for therapeutical purposes. In one locality (embracing several blocks) the double-bar interference was present most of the time, again of the ignition type. The condition was worse during rain, which led us to suspect corona and arcing in a distribution line carrying several kilovolts. A portable battery-type radio finally seemed to indicate a transformer, because the noise became a roar in the radio near the pole on which the transformer was mounted. The matter was reported to the power company and the condition was corrected by them.

There is little you can do except report the matter to the power company. Line filters may help a little, as would a higher and more powerful antenna. The latter would increase the signal-to-noise ratio for the lower channels—where most impulse-type noise becomes noticeable in TV.

U.h.f. bowtie

Please advise me regarding dimensions of a bowtie u.h.f. antenna suitable to receive channels 51 to 82. What are the stacking dimensions for a pair of these? R. W., Easton, Pa.

The bowtie antenna is a broad-band type and if designed for the lowest channel to be received, will work for the higher channels. (This is not the case with narrow-band Yagi antennas.) You could make the length of the bowtie 12 inches, which would cover channels 14 to 83. If you want it designed for channels 61 to 82, an 8-inch over-all length would be suitable.

The bowtie has low gain as compared with the Yagi types. A screen reflector placed about 6 inches behind the bowtie would increase gain and improve the front-to-back ratio.

For stacking, use the same distances mentioned above for the antenna lengths. Thus, a 12-inch spacing will be approximately one-half wavelength for channel 14 and will favor the lower channels. To favor higher channels, space the stacked antennas one-quarter wavelength (one-half the dimensions given for the over-all antenna length).

Transient trap

In an Admiral 21K46 receiver I am getting vertical white bar interference. I have replaced the horizontal output tube, the damper, and also the high-voltage rectifier. I have checked the capacitors in the damper circuit with no results. I have also replaced leaky capacitors in the horizontal output circuit and still get the vertical bar interference. What could cause this? W. H., Dayton, Ohio

First, adjust the drive control below the point where left-hand stretch or center compression occurs. If the white lines still remain, obtain the following parts:

- Width coil, part No. 94A4
- Capacitor, 01-μF, 600 volts
- Resistor, 470 ohms, 1 watt

Connect these units in parallel and insert this filter in series with the lead from terminal 4 of the horizontal output transformer to the plate of the damper-tube, pin 5, 6W4-GT. Adjust the slug of the coil until the vertical bar interference is reduced to a minimum. In some instances an omission of the 470-ohm resistor may help reduce the bar interference.

Hy arcing

Recently I cleaned the high-voltage compartment of an RCA 9PC51 projection receiver using air pressure. Since then a cracking sound comes from the high-voltage unit for about two minutes after the receiver is turned on. After warming, an intermittent loud crack occurs, putting a flash across the screen. What is the best method for eliminating this arcing? J. O., Newark, N. J.

The fact that the cracking sound stops after the set warms up indicates that during load the peak voltages have decreased to where no arcing or corona occurs. Evidently when you cleaned the unit under air pressure some of the wiring may have been disturbed. You should check the unit by watching the high-voltage compartment in a darkened room to see where the arcing occurs. Space the wires apart from each other and from the chassis, and avoid sharp bends. You also could use a plastic spray or anticorona dope to insulate the sections where arcing occurs.

Poor signal

I have installed a rotator on the antenna for a Philco model 90 receiver. I also had to splice a 5-foot section of twin-lead to the original lead-in. Since then reception has been poor and the picture contains considerable snow. What is the likely cause? J. O., Portland, Ore.

An open circuit probably exists in the newly installed system. It is also possible that the 5-foot section which was added to the existing lead-in may not be making a good connection. A soldered joint should be made where the two wires connect, to insure good contact.

Also make sure the antenna lead-in is not taped to the mast. Insulators should be used and the lead-in spaced off from tin roofs, rain gutters, and other metal objects.

17BP4 to 17HP4

A Mattison Silver Rocket model 630-6AB receiver uses a 17BP4A tube. I would like to use a 17HP4 electrostatic focus. What changes are necessary? B. S., Ontario, Canada.

If the 17BP4A is to be replaced with a 17HP4, the focus unit must be removed from the neck of the tube and a variable resistor installed in the low-voltage power supply which will permit the voltage change from about minus 50 to plus 270 volts. This becomes the focus control.

A much better plan is to use a self-focus tube such as the 17KP4 or the 17SP4. These do not need a variable-focus potentiometer. The focus unit is removed from the neck of the tube, and when the ion trap is adjusted for maximum brilliance, the focus will be properly set.
When serious experimental work is undertaken, the need for one or more additional amplifiers becomes apparent. This need becomes particularly acute if the oscilloscope is not equipped with a Z-axis amplifier, and a timing circuit is desired. The amplifier to be described is designed to insert timing "pips" or "breaks", via the Z-axis, into an oscilloscope display.

Fundamental requirements
For most types of experimental work, a Z-axis amplifier needs a voltage gain of little more than 1,000; an output power of more than 100 milliwatts; a very low hum level; and great electrical stability. For convenience, it should be self-contained and compact. To keep first cost and maintenance at a minimum, components should be standard wherever possible. Some means of reversing the phase of the output is highly desirable; and all exposed components should be "dead" with respect to power supply voltages (both a.c. and d.c.).

The circuit
After considerable experimenting with several types of amplifiers, the circuit in the schematic was arrived at as being the best compromise between technical perfection and operating convenience. It consists of a pentode first stage with high impedance input, a triode phase inverter (phase inversion optional); and a pentode power output. (All operated from a power supply with adequate filtering.)

The input stage is conventional, and uses a 6J7 because of the ease of circuit isolation. This stage has a theoretical voltage gain of almost 200—and an attainable voltage gain of about 150—from 25 cycles to 50,000 cycles. Gain falls off rapidly from 50,000 to 100,000 cycles and becomes erratic at higher frequencies, though some amplification is still noticeable at 1 mc.

Put your oscilloscope to work. Z-axis amplifier gives it new life and versatility.

By RONALD L. IVES
The triode phase inverter, a 6J5, is connected in a somewhat modified “hot cathode” circuit, with “bootstrap” bias. The output capacitors, instead of being connected to the grids of a pair of push-pull output tubes, are connected to a center-tapped potentiometer, permitting the choice of either phase in any desired amplitude. The arm of this phase amplitude control is connected to the final tube input.

The output tube is a 6V6-GT, pentode-connected, with a choke output. The NE-51’s in the grid and plate circuits of this tube are used as “de-peakers,” and are highly desirable to prevent spark-overs when the input amplitude is too high. Because this amplifier is designed to handle pulses as well as sine waves, some sort of spark-over protection is essential.

The power supply is a fairly conventional full-wave arrangement, with a two-section L-C π-type filter. Filter capacitors are considerably larger than optimum, to compensate for gradual loss of capacitance with age. To reduce hum, particularly that due to diode action from cathode to filament of the tubes, the filament center-tap is biased about 45 volts positive with respect to ground.

Construction

As originally breadboarded, and minus the circuit-isolating resistors and capacitors, this amplifier, loosely arranged on an 11 x 17 x 3-inch chassis, performed beautifully, and was very stable. Because bench space is somewhat limited, and all instruments used in a given test should be within reach from one position, some reduction in size was found desirable.

The component parts totaled slightly more than 140 cubic inches. Making due allowance for shape factors, cooling space, and necessary supports, it appeared that this amplifier, with its power supply, could be built in a standard 5 x 6 x 9-inch utility box, using standard parts throughout.

This concentration of parts proved highly unstable on the first attempt. The amplifier functioned as a very powerful a.f. oscillator. After considerable experimenting, during which the shielding and circuit isolations necessary for stable operation were determined, the final model shown in the photographs was designed and constructed. Internal arrangements of components and shields required some careful planning to avoid packing-factor troubles. Use of a mild-steel chassis (not aluminum) was found essential, and the above-chassis shield partition also was made of mild steel, cadmium plated to prevent rusting. The placement of parts is shown in the interior above-chassis view of the amplifier.

The filter capacitor, a triple unit (Malory FP 396), is mounted to the right of the power transformer to isolate it from tube heat. Directly behind it, the second filter choke and the output choke are mounted "piggy-back," to conserve space.
To provide convenient mountings for the smaller components, Vector turret sockets were used throughout, as is apparent in the under-chassis view. Extremes of some terminal leads were found essential; and the entire first stage subchassis assembly was shielded with an aluminum can. Braided tinined copper shielded tubing was adequate for the remaining leads, but short sections of spring curtain rod (iron) were found better for higher-power leads. To prevent damage from vibration, all capacitors are mounted either on turrets, on brackets, or on clips, and all supply leads are braided. The ends of the lacing cord are made safe with cellulose cement (red nail polish works well).

Wiring is fairly straightforward, and only two sets of connections need polarization. The phase attenuator should be so connected that the input and output signals are in phase when the knob is turned to + position (extreme clockwise rotation of the control marked PHASE AMPLITUDE in the photo); and the output chokes should be polarized for the same sign.

Panel terminals (National R-39) were chosen for compatibility with terminals and connectors already in use on other equipment. To eliminate recurrent difficulties with unsoldering cords, which usually get stepped on at inopportune moments, a male a.c. connector, in a sunk mount (Amphenol 61-M10), was installed at center rear of the chassis to standard fuse mount was included in the supply circuit. All front panel controls, terminals, and indicators are labeled with commercial decals (Tekni-cals), as are rear connector and control (see photographs). Strong rubber feet are bolted to the bottom of the case, to eliminate scuffing and skidding; and a strong handle (Stanley No. 3 door pull) was bolted to the top of the case. As the ampere-hour rating of 30 was 2 ounces, it could cause considerable damage if dropped cornerwise onto someone's foot!

Ventilation was provided through two-inch holes in the back of the case. These were covered with wire screen grilles. The grilles consist of rings of soft iron, 3%-inch o.d. and 3-inch i.d., to which the wire screen is soldered, and are held in place by six 6-32 machine screws spaced 60°. For ease of service, and to keep the grip on top of the case, a damper diode is needed across the output to eliminate flyback; and with higher repetition frequencies, pulse stretching causes pickups.

The output is approximately 2.25 watts without visible distortion, at frequencies from 45 to 15,000 cycles. If the neon overload lamp is removed, an output (badly distorted) of up to 6.5 watts is obtainable at voice frequencies.

Materials for Z-axis amplifier

- Resistors: 1-120, 1-220, 1-2200, 1-220,000 ohms; 1-1 megohm, 1/2 watt; 1-10,000, 1-10,000 ohms, 5 volts; 1-20,000 ohms, 1-1 megohm potentiometer.
- Capacitors: (Paper) 2-0.01, 1-0.5, 600 volts. (Electrolytic) 1-8, 20, 1-20,30 uf 450 volts.
- Chokes and transformers: 1-58. henry, 60 ma; 1-12. henry, 60 ma; 1-6 V-20,000 ohms, 1-1 megohm transformer, 700 volts c.t., 100 ma; 5 volts, 2 amp; 3 amp.
- Miscellaneous: Pilot light and socket, 2-amp fuse and holder, sockets, chassis, shield partition, off-on switch, hardware, wiring, etc.

Conclusion

After approximately six months use in varied experimental and test work, it is apparent that this amplifier really meets the need for which it was originally designed—Z-axis input—but is also a very satisfactory general-purpose test amplifier. In addition to its primary function, this amplifier has performed well as a speech amplifier, as a trigger amplifier in strobe work, and as a component in an electrical stethoscope.

The total cost of this amplifier, at 1952 net prices, was just under $30, with top-quality parts used throughout, and ample margins of safety being allowed. Costs might be approximately halved by use of off-brand and surplus parts, although such might reduce the dependability of the instrument.

Construction time of this model was about 20 hours, and downtime for repairs, during six months, was zero. As near as can be determined from experience with this amplifier, and with similarly constructed equipment, the only maintenance work likely is replacement of the pilot lamp after 750 hours, replacement of tubes after 2,500 hours, and replacement of electrolytic capacitors after two years (whether the equipment is used or not).

UNUSUAL INTERMITTENT PICTURE

The "intermittent" in this instance was in a G-E model 830 and the symptoms were baffling. Customer complaint was that the picture would suddenly grow dim and sometimes disappear completely. The sound was unaffected. When I switched the set on I found the picture brilliantly clear. This happened several times, and once, just as I was leaving the shop to have another look at it, I received cancellation. The lady said the picture had returned all by itself when she left the set on for a while.

By this time it became evident that a poor connection, a cold-soldered or corroded joint, or an intermittent component was responsible, but there were hundreds of spots where the trouble might lie. Luckily, I remembered that somewhere, sometime, I had found a loose wire in a tube-base pin which had caused plenty of trouble although the spot of solder at the end of the pin made detection difficult. The wire from one of the tube-base leads was just resting against the spot of solder at the end of the hollow base pin.

Well, a hot iron and a bit of rosin-core solder was the answer here, too. Believe me, I never saw this trick in any TV handbook.

—Albert White

RADIO-ELECTRONICS
Analyzing the R-C Circuit

R-C theory frequently reveals the basic characteristics of a circuit's operation, greatly facilitating its design and repair

By CYRUS GLICKSTEIN

The key to a circuit problem is often tied to one small point that just doesn't fit into place. After the "minor" point is broken down, there is a completely new picture of circuit operation. A simple illustration of this situation is shown in the circuit of Fig. 1, where a sawtooth wave is projected from a square wave.

TV technicians are familiar with the fact that a square wave applied across an R-C circuit as in Fig. 1-a, produces a sawtooth wave (Fig. 1-b) provided the R-C circuit has a long time-constant and the output is taken off the capacitor (integrated).

It seems reasonable that the capacitor charges linearly when the square wave is first applied, giving a rising sawtooth voltage in the first quarter-cycle. But in the next quarter-cycle, when the square wave voltage reverses, why doesn't the capacitor voltage discharge exponentially to zero (as shown in Fig. 2) before the capacitor charges up in the reverse direction? From ordinary R-C circuit theory it seems a capacitor should do just that. Yet from experience (oscilloscope examination, etc.) we know that a linear sawtooth is obtained.

To explain the discharge action, it must be remembered that in any R-C circuit, whether charge or discharge, the current at the instant the switch is closed is determined by the potentials in the circuit. These voltages may be in the battery or across the charged capacitor or both, if the capacitor already has a charge across it. In this case, at the instant the switch is thrown to the No. 2 position, the initial current depends on both the battery voltage (200) and the voltage across the capacitor (50). The two voltages are in series and can be considered one voltage in analyzing the action. An initial current flows which is based on the sum of the two voltages. The discharge circuit therefore acts exactly the same as if the capacitor were charged up to 250 volts, with no battery in the circuit. Current keeps decreasing as the capacitor discharges to zero. At the instant the capacitor voltage is zero, only the battery voltage of 200 is in circuit. The capacitor then charges in the reverse direction. Current continues in the same direction and continues to 200 volts. Current in the circuit then stops. How long does it take the capacitor to discharge down to zero, before it starts charging in the reverse direction? In a simple discharge circuit, Fig. 4, it takes a charged capacitor 5RC to discharge to (approximately) zero. But the answer is definitely not 5RC in the circuit of Fig. 3-b because this is not a simple discharge circuit. It is a modified discharge circuit until the capacitor discharges to 0 volts.

Then, the circuit acts exactly like any normal charge circuit while the capacitor recharges in the opposite direction to the battery voltage of 200.

THE CIRCUIT

Fig. 1—Generation of a sawtooth wave.

Fig. 2—This kind of thing doesn't happen!

Fig. 3—The capacitor is first charged to 50 volts, then is discharged in series with a 200-volt battery, as shown.

Fig. 4—Simple R-C discharge circuit.

Fig. 5—Current flow as capacitor discharges to 0, then recharges to 200 volts.
to decrease, in typical charge circuit action. When the capacitor is fully charged to the battery voltage, no current flows.

It does not take long for the capacitor to discharge to zero, compared to the time needed for recharging. At the instant the switch is thrown to position 2, the current is maximum. There is a voltage drop of 250 across R. When the capacitor voltage is zero, there is a voltage of 200 (battery voltage) across R. Current therefore must drop 20% or more, to cause a voltage across R to go from 250 to 200 volts. According to R-C series circuit theory, a 20% drop in current (or in voltage across R or C) takes place in a time of 0.2 RC. More important, the first 20% of charge or discharge in an R-C circuit is linear. To state this fact somewhat differently: as long as the capacitor voltage is small (½ or less compared to the battery voltage) when the switch is thrown to position 2, the discharge of the capacitor will be linear. After the discharge to zero, the recharge in the opposite direction will also be linear, provided the capacitor is not allowed to charge up to more than 20% of the source voltage.

Actually the initial discharge in such circuits can be considered a linear extension of the standard charge curve for current (Fig. 5).

This principle explains the production of a sawtooth voltage across a capacitor when a square wave is applied to an R-C circuit as shown in Fig. 1-a. Assume the square wave (Fig. 1-b) is positive at A, when the switch is turned on. The capacitor starts to charge. When the square wave goes sharply negative (B-C) there is no exponential decay of voltage to zero before the capacitor recharges. Instead, the negative source (square wave) voltage is in series with the voltage in the capacitor. It discharges linearly to zero on the basis of the total voltage in the circuit. At the instant the capacitor voltage reaches zero, it then starts to recharge in the opposite direction, based only on the source voltage. The recharge is linear also, when the capacitor does not have time enough to charge up to a substantial percentage of the applied voltage. When the source voltage reverses polarity again, the capacitor voltage again is in series with the applied voltage, and the discharge current is based on the combined voltages. There is a linear discharge until the capacitor voltage reaches zero, then it recharges, and so on.

A linear sawtooth is produced when the time-constant of the charging circuit is large compared to the time of the applied voltage. The capacitor then charges to only a small part of the applied voltage. This means it charges only on the initial portion of the charging curve where the voltage rise is linear.

The principles of capacitor action discussed in this article can be applied to clarify the operation, design, and repair of many different kinds of circuits.

END

RADIO DIAL MECHANISM

National Service Manager
Superoptic Radio and TV Corp.
Ninety Six, S. C.

Dear Sirs:

Thank you very kindly for the instruction sheet which you enclosed with the new dial cord and pointer kit for replacement in your model T-175. There is some question, however, as to the completeness of the installation procedure as outlined on the sheet. The following are a few points that might be added:

First, as the cord is grasped firmly in the left hand and the dial spring is held in the right hand (as shown in the instructions), I found no trouble in threading the cord around drum A, through eyelet 3A and under slider X. However, I think it should be noted that in order to cut the cord at W while spring R-1 is stretched to 1.1 inches and the dial pointer is located at 720, it is necessary to transfer the cord (W-1) so that it is held between the teeth, so the left hand is free to cut the cord at H.

Also, since the dial drum tends to move while stretching spring R-1, it is necessary to remove one shoe (preferably the right) and place the big toe through cutout S-1, under plate 7 of variable capacitor C17A, being careful not to bend the plates with the toenail. A note of caution is also necessary in the instructions for stretching tension spring B-7 to point A; since in case the spring is pulled beyond point A, serious injury may result to the right elbow (required to hold drum C from falling off shaft T while set-screw S-19 is loose). In addition it should be advised that a first-aid kit be kept handy while looping cord 2 through hole F and around drum G. It seems that this procedure often causes heavy pressure on springs L-1 through L-7, resulting in their flying in all directions around the room.

My second suggestion is to provide a procedure for setting the dial pointer P1 to indicate 720 on the dial. Since it is required to set the pointer before cutting the dial cord, and since the cord cannot be cut until spring R-1 is stretched to exactly 1.1 inches, some difficulty may be encountered. Remember that the left hand is holding cutting pliers; the right hand is stretching spring R-1; the teeth are holding cord Y; the left knee is preventing the chassis from falling off the table; the right elbow is holding drum C on shaft T; and the right toe is inserted in cutout S-1 under plate 7 of variable capacitor C17A. It is therefore necessary that a board (not supplied with kit) be propped up behind the dial plate between J and D to apply pressure to the slider at Z. This will hold the dial pointer exactly at 720. Extreme care must be taken in placing the board on the slider since the board will tear the speaker cone completely off the speaker frame if it slips.

After cutting the dial cord (at point W as shown on the instructions) it was found that a note of final warning should be included on the instruction sheet. The heavy tension caused by spring R-1, when stretched to 1.1 inches, results in the sudden revolving of dial drum C (despite the pressure of the elbow against it). Dial drum C will then spin off of shaft T and spin across the front of the chassis, breaking tubes V1, V2, and V3, unless these have been removed.

Also, please note my order for another installation kit of the same type—the original was ruined when the cutter slipped. Please send the kit as soon as possible, since my physician advises me that I will be on my feet again in a few weeks.

Very truly yours,

Herbert Michels

RADIO-ELECTRONICS
Versatile Scope you can build

Vertical and horizontal sweep circuits make it useful for television work.

By LLOYD B. HUST

The oscilloscope is a versatile instrument. It is useful in measuring voltages, indicating phase differences, indicating modulation percentages, etc. When sweep circuits and amplifiers are added to it, its versatility is increased many times. Its voltage range can be extended, and it becomes very useful for indicating frequency and waveform.

The oscilloscope described here is more versatile than most models now on the market. Its horizontal sweep frequency extends to 100 kc, which is double or triple that of most oscilloscopes. Its sensitivity is better than that of many others, and it incorporates a vertical sweep circuit, which increases its usefulness in television work. Sixty-cycle a.c. can be switched into either the horizontal or the vertical inputs, and provision has been made to have the 60-cycle input to the horizontal circuit 180° out of phase with that supplied to the vertical, which makes for interesting phase comparisons.

The frequency response of the instrument is relatively flat to 2 mc, somewhat lower than the video amplifier of a good television set, but adequate for most oscilloscope purposes, including television servicing. This response could be made to approach that of a good TV set if video peaking coils were used in the plate circuits of the amplifier stages. Such extended response is seldom necessary in any case. The frequency response permits viewing a fair television picture on the cathode-ray tube of the oscilloscope.

The circuit (Fig. 1) consists of amplifiers for both vertical and horizontal circuits, sweep oscillators for both circuits, internal or external synchronization for the horizontal sweep circuit, and external synchronization for the vertical sweep circuit.

The vertical amplifier consists of a 6J5 cathode follower which feeds a 12AT7. Both sections are connected in cascade. The 12AT7 feeds 6C4 which is used as a phase inverter to supply the signal to the vertical output tube, a 12AT7. This push-pull output tube feeds the vertical plates of the cathode-ray tube, which can be a 5BP1 or 5BP4. The input of the first stage contains a step-attenuating circuit controlled by S3, which allows signals of either high or low intensity to be fed into the vertical amplifier. The switch S1 switches the input of the first stage to the output of the vertical sweep oscillator, or directly to the oscilloscope input terminal, or to a 60-cycle test voltage. S2 (ganged to S1) removes the plate voltage to the vertical oscillator for all positions of S1 except position 1. Thus, the oscillator is disabled when not switched to the input of the amplifier.

The cathode follower input stage allows good high-frequency response because the necessity of the volume control being in the grid circuit of this tube is eliminated, thereby eliminating high-frequency attenuation caused by grid resistance variation. This type of input stage makes it possible to mount the first tube near the front panel, and the following tubes near the base of the C-R tube, the long leads introducing little loss as they would in other types of circuits. Large capacitors and direct coupling from the 12AT7 to the 6C4 insure good low-frequency response.

The horizontal amplifier consists of a 6J5 which acts as a phase inverter feeding a 12AT7 which supplies the signal to the horizontal plates of the C-R tube. The spot is positioned by the potentiometers across the plate load resistors of the output stages. The horizontal amplifier is connected to either the output of the horizontal sawtooth oscillator, the horizontal input binding post, or a 60-cycle test voltage by switch S5. S6 cuts off the plate voltage to the oscillator when S5 is in positions 2 or 3, but connects it when S5 is in position 1, the position in which the output of the sweep oscillator is fed to the input of the amplifier. The 60-cycle test voltages supplied to the vertical and horizontal amplifiers are 180° out of phase as each is taken from an opposite side of the filament supply, the center of which is grounded. Although this gives only 3.15 volts for the a.c. test, it is adequate to give a trace close to 2 inches long on the C-R tube.

Low values of plate resistance are used in both amplifiers, and all cathodes are unbypassed. These two factors limit the gain of the amplifiers, but this

Front view of oscilloscope. Controls are neatly arranged.
Fig. 1—Schematic diagram of versatile oscilloscope. All cathode resistors are un-bypassed to reduce distortion.

Underchassis view of oscilloscope. Angle brackets are mounted on the corner of each transformer, and to the side of the chassis. Primary terminals are up.

Side view. To eliminate stray fields, length of iron pipe is placed over neck of tube. Vertical chassis with components mounted is seen at right.
The power supply is somewhat dif-

pults and, in maintaining high-frequency

The horizontal sweep circuit is com-

miliar to the horizontal, except

The vertical sweep circuit is some-

gers and associated oscil-

The power supply should be wired

The panel is drilled for the various

the C-R tube. Filament power for

to the C-R tube. Filament power for

and the 5-volt filament winding is connected
to the 6X5's, and although the ratings
of the 6X5's, and although the ratings
for the 6X5's, and although the ratings
for filaments, the 5 volts supplied by this
transformer does the job in fine style.
The center-tap of the high-voltage
winding is left floating and the entire
high-voltage winding supplies the volt-
age to the C-R tube. This type of
high-voltage supply has several ad-

The power supply is somewhat dif-

These units.

tion 2, 120 to 1,200; position 3, 1,200 to

C6, C7 and C8

and toward the rear of the unit.

The horizontal sweep circuit is com-

position of a multivibrator built around
a 12AT7 tube. This tube produces a
sawtooth wave at about the mid-

the chassis at the back. The small vertical
oscillator tube and associated
plug at the same place. It is wise to
make the grounds in con-

It was incorporated into the instrument
to make it possible to view a television
picture on the oscilloscope. This

It incorporates, therefore, the
capacitors C4, C5, C6, C7 and C8

The cathode-ray tube mounting should
be mounted near its base. The

grounds should have separate points to
be connected at the same place.

The power supply is somewhat dif-

The 6X5's are highly filament-impedance
transformers, which have the advan-
tages; a standard radio power trans-
former can be used; the voltage rating of
the h.v. capacitors can be just half
that required by conventional half-wave
tube supplies; and special high-voltage
rectifier tubes are not necessary.

The power supply should

The 6X5's are highly filament-impedance
transformers, which have the advan-
tages; a standard radio power trans-
former can be used; the voltage rating of
the h.v. capacitors can be just half
that required by conventional half-wave
tube supplies; and special high-voltage
rectifier tubes are not necessary.

The power supply should

The 6X5's have to be purchased specially designed
and shielded transformers, but did not want
to have to purchase specially designed
and shielded transformers, but did not want

to have to purchase specially designed
and shielded transformers, but did not want

The common disadvantage is offset by the higher
quality of the amplified signal. The
reason for this is that the degeneration
introduced in each stage by the lack of
bypassing reduces distortion, and the lower output
resistance, and in maintaining high-frequency
response. The amplifiers have enough gain
for the purposes of the instrument.

The horizontal sweep circuit is com-

A small round angle-iron is inserted in each
slot of the C-R tube and makes a snug fit.
Panel and chassis sizes can vary to suit

A few precautions should be taken.
First, because many of the leads carry
high voltage, the hookup wire should be

The builder can afterward make a very
accurate measurement of that side of the
C-R tube with a v.t.v.m. showed the voltage
peak rating of the high-voltage wind-

to be mounted underneath the chassis and
well toward the rear. The photograph
of the under side of the chassis will

The panel is drilled for the various
controls and switches, etc., as shown in
the front-view photo. The opening for
the C-R tube is 51/2 inches in diameter
and can be cut with a circle cutter in
a drill press. A slow speed is necessary
for cutting a hole through the panels.
It is lined with a piece of soft felt or
velvet of such thickness that the end of
the C-R tube will make a snug fit.
Panel and chassis sizes can vary to suit

A few precautions should be taken.
First, because many of the leads carry
high voltage, the hookup wire should be

The builder can afterward make a very
accurate measurement of that side of the
C-R tube with a v.t.v.m. showed the voltage
peak rating of the high-voltage wind-

end. The usual reason for producing an elongated spot, or in some cases a small round circle, is electromagnetic interference. This is usually caused by the magnetic fields surrounding the power transformers. Even shielded units will have some magnetic field about them.

In my first attempt, the spot was elongated, and I found that by changing the position of one of the primary leads on the power transformer, two transformers were worked in a hum-bucking arrangement, and the trouble was eliminated. The connections to the primaries of the transformers were made in this way:

- One power line lead went to pin 1 on T1, the other power line lead went to pin 2.
- Then pin 1 on T1 was connected to pin 2 on T2, and pin 2 on T1 was connected to pin 1 on T2.

This may not work in every case, but in this instance it cleared up the trouble.

Shielding the C-R tube will also help, and although a good spot was obtained on the model shown without shielding, I decided to do this shielding for good measure. A piece of 2-inch iron pipe was cut to the length of the narrow neck of the tube, and the neck of the tube was wrapped with sponge rubber held in place by Scotch tape. The iron pipe was then slipped in place. If these measures do not eliminate all trouble from stray fields, the transformers may have to be rotated slightly to remove or cancel out their fields.

As soon as a small round spot can be obtained on the scope, the other parts may be wired. The C-R tube should be returned to the chassis; being done without wiring is completed, the final tests can be made. Remember that a bright stationary spot can burn the fluorescent material on the face of the tube, so keep it moving.

If all wiring is correct, the following results should be obtained:

- With S3 in low position (high input signal needed), and S1 and S5 in position 2, with S2 turned off, a small spot should appear on the screen. This spot should be capable of being centered by the two centering controls. Then with S2 in position 3, and S5 in position 3, a similar line in a horizontal direction should result as the horizontal gain control is advanced. With S1 and S5 in position 3, and S2 turned to position 1, and a sawtooth voltage will be observed. Then by rotating the horizontal frequency control switch to the fourth position, and advancing the fine frequency control slightly, a raster similar to that on a television screen will appear. It will be necessary to increase the intensity control and to readjust the focus control to obtain sufficient brilliance, since this raster will form a rectangle filling the screen of the C-R tube.

When these tests have all been made, the instrument is ready for final adjustment. This consists of adjusting the trimmer C1. A square wave generator is necessary for this. A square wave of about 10 kc is connected to the vertical input binding posts. The attenuator switch S3 should be set to low position, that is, in the position in which the gain of the amplifier is lowest. C1 should then be adjusted for the flattest top of the square wave. The frequency of the generator can now be set at 1,000 cycles and the trimmer readjusted for a flat-topped wave. This makes the frequency response of the amplifier in the low position the same as in the high position. If a square-wave signal is not available, this adjustment can be postponed until one can be borrowed, as the oscilloscope will give good results without this adjustment being made.

This instrument has one use not commonly found in oscilloscopes: you can observe a television signal with it. To do this, such a signal, binding post to the TV picture tube is connected by a short length of wire to the jack J1, which is known as the intensity modulation jack, and is located at the back of the scope. The horizontal sync pulse is applied through a resistor and binding post, the sync selector switch being set for external synch. The vertical sync pulse is taken from the TV set after it has passed through the integrating circuit in the TV set. This pulse is applied to the vertical sync control and binding post. The vertical sync control is advanced, and the vertical frequency control is adjusted for a frequency slightly less than 60 cycles. The horizontal frequency control switch is placed in position 1 and the fine trace will stand still if the TV set is running with the horizontal sync turned off, and then slowly rotated along with the sync control, until the picture locks into place. To lock the signal in, it is necessary that the sync pulses have negative polarity. No attempt has been made to supply the sync pulses with positive polarity. All the vertical and horizontal sync control are advanced, the trace will stay where it is placed.

It is not intended that this scope be used as a TV slave unit, but a sufficient accuracy can be obtained to aid in the servicing of a TV set, particularly when there is some question as to the condition of the TV picture tube.

Miscellaneous: Power supply; 500 volts, c.t. at 55 ma, 6.3 volt of 3 amp, 6 volt of 2 amp (Chilean PSC 5A); 2-1/2-pole 3-position switch (Malory 322S); 2-1/2-pole toggle switch; 1-2-gang, 2 circuits per gang, 5-position switch (Malory 1325 L). 1-4-p.s.t. watch; 1-3-1/2 volt pilot light; 1-insulated phone tip jack; 1-3-amp fuse.
After many years in the complex field of electronics, I have become very suspicious of any attempts to oversimplify, whether in equipment or literature. Experience has shown that the fabulous one-tube this or that, usually falls far short of expectations, and the handydandy fix-it-yourself booklet has left many a TV owner bloody and bowed.

I have watched the growth of the various kit companies with a wary eye. From the very simplest devices, kit manufacturers have expanded their lines to include equipment to outfit the home, workshop, and laboratory. I have seen many assembled kits in action, in homes and in factories, and have been impressed with their performance. However, I took exception to the manufacturers' claims of the ease with which they can be assembled. I could understand a skilled technician undertaking the task, but when the manufacturer claimed that a complete novice could do an artistic job, I had my doubts.

As the years went by, and the kit manufacturers expanded and diversified their lines, my curiosity became overwhelming; I had to see for myself. Having a pretty complete line of test instruments, I decided upon the Heathkit record player. It would satisfy my curiosity and at the same time possibly provide entertainment for all the family.

The package arrived. With tongue slightly in cheek, I examined the contents. There was a 3-speed record changer, two 6-inch speakers, a cabinet, and several bags filled with parts for the assembling of the amplifier. This can be done by a novice? Ridiculous!

I noticed some papers in the box, and I assumed them to be the schematic and parts list. To my amazement, they turned out to be 22 pages of instructions and 4 huge pictorial diagrams. This seemed unbelievable. I've seen broadcast transmitters assembled on less instructions. Well, I thought, I'll have none of it. I spread out the various parts, took the chassis in hand, studied the schematic briefly, and began to mount tube sockets. Since each socket has two positions, 180° displaced, I studied the pin connections to find the most convenient position.

After a few minutes of study, I decided, well, it wouldn't hurt to take a little peek at the pictorial layout. After taking a peek, then followed by a long perusal, a thought began to dawn upon me. Perhaps there was rhyme and reason to these papers. Perhaps they could be the result of careful and scientific research in the layout of this record player. And perhaps what I was starting out to do had been done many times by the manufacturer and these papers might represent the most efficient and simplest method of assembly. But why so many pages for a record player? I turned to the first page and read.

The schematic diagram was drawn in conventional style. It showed the cartridge working into a high-impedance input. The volume control fed a 12AX7 voltage amplifier-phase inverter, which in turn drove 2-35C5's in push-pull. B plus was supplied by a 35W4 half-wave rectifier working with a double-pi R-C filter. The speakers were in parallel, and
The tone control was part of a feedback network from the output transformer to the cathode of the input triode. The sequence of filament wiring with respect to ground also was shown. All this would be quite clear to a technician, but probably hopelessly complicated for a layman. I scanned the next page on soldering and wiring. Pretty good, I thought. This would be clear even to my wife.

I was now up to the mechanical assembly. A glance at the pictorial layout on this page instantly revealed the method to all this madness. The entire layout of parts was resolved into an elementary system of letters and numbers. The four tube sockets would hereafter be known as A, B, C, and D. Every part was identified by a letter, and if that part had more than one possible connection, such as in tube sockets and terminal strips, each connection was numbered. Here indeed was the master plan. Any child who could read and had some manual dexterity could assemble this amplifier.

The next few pages contained deliberate step-by-step instructions for mounting. I followed along, checking off each step, in the space provided, as I went. I saw that by this checking, and watching the pictorial diagram, a mistake was virtually impossible. I ran into a minor difficulty when my capacitor-mounding wafer did not fit the prepared position. With a small reamer and rat-tail file this obstacle was overcome.

With everything mounted, I was now up to the output transformer wiring. Here again, I was immediately confronted with a pictorial diagram showing the exact positioning of every wire in the amplifier. Since the only hookup wire supplied was black, I reached into my private stock and assembled the transformer with the mounting of the capacitors and resistors. Once again a pictorial diagram facilitated the assembly. A few of the pictorials were actually larger than lifesize.

With the completion of the amplifier, the final assembly began. The two speakers and the amplifier were mounted in the cabinet. This required some fine carpentry. The instructions were clear, but the fittings were close. Breaking through the proxylin covering of the cabinet required utmost care. Finally, after a mild application of blood, sweat, and tears, everything was properly mounted. In the course of final assembly, I ran out of some hardware, and had an excess of others. This I suppose is inevitable. The hardware, being standard (6/32-screws), was easily located. Wiring of the speaker plug required some patience. As many radio technicians have learned, soldering phone tips can be tedious.

The preliminary testing began on page 16. The instructing sheet called for a visual inspection followed by a test run. At this point I became unserved. I had learned from many sad experiences the danger of plugging in an electronic device without any preliminary resistance measurements. Yet, I had followed instructions to the letter up to now; I had been impressed with them, and I resolved to continue to the bitter end. With a stiff upper lip, eyes closed, and fingers crossed, I plugged in the record player. Displaying incredible nerve, I placed one of my wife's favorite records on the changer.

When the tone arm made contact with the record, the room was filled with the most beautiful music this side of Ben- ton Harbor. I used a symphonic recording to obtain bass of reasonable duration. I then reversed the speaker leads several times while listening carefully to the music. I retained the position which gave me the more predominant bass response. The tone arm required no adjustment, as the sapphire stylus made a perfect one-point landing. The tone and volume control seemed to have effective range, and with these controls turned up and no signal input, only a slight low-pitched hum was audible.

Flushed with success, I decided to measure the playback response of the amplifier. I had listened to several recordings with such pleasure that I was anxious to know just what the frequency capabilities of this amplifier were. Fortunately, I was able to avail myself of a test record specifically designed for this purpose. I used a v.t.v.m. to avoid any loading effect on the amplifier, connecting it across the secondary of the output transformer. Making allowance for the test record's (a Cook 10LP) response curve, I measured the output from 30 to 20,000 cycles.

From approximately 100 to 20,000 cycles, the output remained within 1 db of the AES playback curve. Below 100 cycles I had a bass boost of a few db. Since I had the volume turned down low, this boost was probably due to the volume control which is compensated for the Fletcher-Munson effect at low levels. This response confirmed my initial opinion: in its price range this was an excellent player.

What intrigued me most was that this was all done without any necessity for the schematic. Anyone who could read and handle a soldering iron could have built this record player. Looking back, the step-by-step organization was something to truly marvel at. As far as my particular record player was concerned, it was completed. It wasn't unique in design, being similar to the Columbia 380 and possibly others, but it was a kit and I had assembled it.

What if something had gone wrong? What if I had obtained smoke instead of music? I read on. In the center of page 18 was a paragraph headed, "In case of difficulty..." A cool, and collected language was troubleshooting procedure. Hints on checking wiring, a voltage chart listing the potential on every pin of every socket, and control settings were clearly listed. The trouble-shooting section ends with a brief discussion on common errors and circuit checking.

And so, 6 hours after I began, the 22 pages came to an end. Only then was I able to fully appreciate what had been accomplished. My cyanicism toward the kit manufacturer has been replaced with a healthy respect.

END
HIGH fidelity today is expensive. Good commercial amplifiers start at around $100 and run to $300. Even the cheapest Williamson kit leaves no change out of a $50 bill, which is still likely to strain the average music lover's pocket book and family relationships. In short, what this country needs is a good $25 high-quality amplifier.

In my last article "Extending Amplifier Bandwidth" (in the September, 1953, issue) I indicated that it is possible to design an inexpensive amplifier with whose performance only the most critical "golden ear" could quibble. This article presents the Junior Golden Ear amplifier which can be reproduced at a total parts cost of around $25, and yet will take very little if any backtalk from $100 amplifiers. The circuit is not critical and is easily constructed by anybody with any construction experience.

The circuit

Those who have read the article mentioned above will recognize the circuit as that of a direct-coupled inverter and voltage driver, capacitance-coupled to a pair of self-bias output tubes, with two feedback loops. The first 12AU7 and the 12AX7 comprise a cross-coupled phase inverter which is direct-coupled to a neutralized 12AU7 driver stage. Presuming that the output capacitor on the tuner or preamp is .05-µf or larger, response of the inverter and driver, without feedback, will be approximately 2 to approximately 50,000 cycles. The input tube is a cathode follower and its input resistance is therefore several times the value of the grid resistor. So, any capacitor of .05-µf or larger will have a time-constant long enough to pass signals below 10 cycles. Since the 12AX7 is driven by the very low impedance of the cathode follower it is not affected by the Miller effect below 100 kc. The neutralization of the 12AU7 driver minimizes the operation of the Miller effect in that stage, and the direct coupling produces no phase shift at any frequency below 50 kc.

The 0.5-µf capacitors which couple this section to the output tubes are the only source of internal phase shift in the amplifier, but much if not all of this phase shift is neutralized by the inner feedback loop from the plates of the output tubes to the cathodes of the driver stage. The 6V6 output tubes are operated in a modified form of the Ultra-Linear circuit by connecting the screens to the 4,000-ohm taps of the UTC S-15 output transformer. This method of operation is intermediate between triode and tetrode and has several virtues. First, it improves the high-frequency response because this connection in effect neutralizes the plate-grid capacitance of the output tubes,
which in triode operation would result in very serious attenuation above 10,000 cycles. Second, it more than doubles the 4 watts output which 6V6's deliver in push-pull. The optimum screen load for true Ultra-Linear operation is 18.5% of the plate load. Special (and expensive) transformers are manufactured for this style of operation. However, a ratio of 40%, as in this case, results in excellent performance and permits a standard medium quality output transformer to be used. The maximum output of the amplifier is more than 8 watts.

Two feedback loops are employed. The inner loop, from plates of 6V6's to cathodes of the drivers, provides a feedback factor of 14 db. The time-constant of the feedback network is the same as the time-constant of the coupling network from drivers to output tubes, but the phase shift in the feedback loop is exactly opposite to that in the coupling. So this feedback loop in effect neutralizes the low-frequency phase shift of the capacitor coupling, and as triodes—it is not entirely direct-coupled—is, for audio purposes, just about as responsive at low frequencies as a direct-coupled amplifier. The inner feedback loop, being balanced, also helps maintain the excellent static balance of the amplifier over the full dynamic range. Since it also includes the two stages responsible for most of the distortion, the output tubes and drivers, it produces about a 10-db reduction in distortion. The over-all feedback loop runs from the output transformer secondary to the cathode of one of the input tubes. The feedback factor in this loop is more than 20 db. This not only further reduces the distortion but it is enough to flatten the response of the output transformer to a level acceptable for high fidelity.

The response of the amplifier from input to output transformer is virtually flat from 2 or 3 to over 100,000 cycles. The response of the output transformer is flat only from 50 to 10,000 cycles. However, the extreme bandwidth of the amplifier itself, plus the more than 20 db of over-all feedback, extend the response on both sides of the slopes of the output transformer, producing an output curve which is essentially flat at levels of 2 watts or less, from 10 to some 60,000 to 70,000 cycles. This is as good or better than that of most Williamson-type amplifiers using much better output transformers, but possessing a very much narrower internal bandwidth because of Miller effect and uncorrected low-frequency phase shift. Therefore, the distortion-producing stages are subjected to a feedback factor of 30 or more, the output distortion is extremely low. At levels below 2 watts, which represent the average power peak in home listening, the distortion is measurable only on laboratory equipment. At maximum output the harmonic distortion is under 1% while the intermodulation is about 1%. This is so slight as to be of no practical consequence, since an output level of 2 watts, given a reasonably efficient speaker system, will not often be exceeded in small home or apartment listening.

Although the photographs of the experimental model show bantam-type tubes, it is better to use the miniature tubes specified in the wiring diagram. If you already have two 6SN7-CT's and a 6SL7-GT and want to use them, there will be only a slight difference in high-frequency response, and that will probably be noticeable only by measurement and not by ear.

The amplifier is push-pull from beginning to end and can be balanced both statically and dynamically. Thus maximum use is made of the distortion-canceling properties of push-pull amplifiers. The series resistors, common to both sides of the plate loads of the voltage-amplifier section, are balancing resistors and should not be left out. The 2,000-ohm balancing control in the cathode circuit of the input stage and the single-pole, double-throw switch provides means for over-all dynamic balancing. They should preferably be mounted on the rear or top of the chassis where they will not be disturbed accidentally.

There is nothing at all critical about the layout, and no special wiring measures have to be taken. If your chassis is already punched, arrange the tubes as conveniently as possible. Vector turret sockets could be used if the most convenient. Vector turret sockets are recommended. Do not substitute lower values or the low-frequency response will suffer. The 0.25-µf capacitors in the feedback loop should also be of equally good quality.

The plate, grid and cathode resistors in the opposite sides of the push-pull stages should be matched. This can be done effectively enough on an ohmmeter. Ordinary carbon resistors will do. Of any five of a given value, two can usually be found which match to 1 or 2%. The exact value is not important, as long as they match. Thus the 220,000-ohm plate loads can be 200,000 or 240,000 ohms, so long as both are as nearly identical as possible. Be careful not to overheat the resistors when soldering them in place, for it might change their value. If you hold the wire leads in a pair of large pliers between the soldering point and the body of the resistor,
most of the heat will be dissipated in the filers before reaching the resistor. If you have a Wheatstone bridge, it would be an excellent idea also to make taps on the input and feedback capacitors to preserve the best possible frequency balance.

The output tubes are balanced through the 50-ohm potentiometer which is adjusted for equal plate current, or for maximum voltage difference as indicated on a high-resistance voltmeter connected from plate to plate. The bias voltage should be about 20 with a plate voltage of around 300.

The cathodes of the 12AU7 driver should be about 10 volts more positive than the grids. This will be achieved with approximately a 2-1 ratio of plate load to cathode resistance. The direct-coupled front section is balanced, as indicated later, at d.c. by the balancing potentiometer in the input tube circuit. The switch is a great convenience in obtaining over-all balance, permitting easy rebalancing from time to time to compensate for tube aging or when changing tubes. It is not essential to the operation of the amplifier.

When connecting the inner feedback loop, be sure that you do not cross it by connecting it to the opposite side instead of the same side. Proper connection is evidenced by reduced output. The diagram shows the over-all feedback loop going to the lower side of the amplifier, but it should be applied to whichever side produces negative instead of positive feedback. Touching the filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a potentiometer of 50 to 100 ohms across the winding, filament winding, insert a poten
The solution is to separate the back and the front of the cone so that the air movements that cause the cone no longer reach the air together and cancel. One way to do this is to mount the speaker in a hole in a large, flat board, so placed that the front of the board faces the listener. Now before reaching the ear, the air waves from the back of the cone must take time to go around the edges of the board, while those from the cone front reach the ear directly. The board is known as a "baffle." If the baffle is large enough, it will permit excellent bass response.

The baffle is not the perfect answer, though it is often used in installations where intelligibility counts more than high sound quality—as in paging and where intelligibility counts more than though it is often used in installations

The "infinite" baffle

After the simple baffle, the next step in improving bass is merely an extension of the baffle toward infinite dimensions. This is done by using the baffle—not as an enclosure for the speaker—since the baffle is usually open. Its only effect toward good bass is to provide some delay before the sound from the back of the speaker cone reaches the front, and not much delay at that. This is the reason why, despite the occasional use of comparatively large speakers—12-inch sometimes—bass is rarely satisfactory on a combination. Some models have labyrinths or other acoustical provisions, and they perform better. But at best the speaker cannot perform at its highest efficiency in the same cabinet with the rest of the components.

The bass-reflex enclosure is a variation of the infinite baffle. It, too, is a box, but it contains a rectangular slot cut in the front wall below the speaker opening. The function of the slot is to deliberately allow certain of the backwaves to come through to the front. Its size and that of the box proper is so designed that the back-wave coming through the slot is in phase with the front-wall. The result is an increase at a frequency slightly below the mechanical resonance frequency of the speaker.

The bass-reflex enclosure is an attempt to extend the bass range of a speaker without making the enclosure as large as infinite baffling would require. For best effect it is designed for a particular speaker, and even then it is doubtful that really high-quality results are possible, for there are interfering effects at other frequencies. If space is limited, bass-reflex may be beneficial. An article on page 84 of the March, 1949, issue of Radio-Electronics gives dimensions for enclosures of various sizes. The right-hand cabinet in Fig. 9 is a typical bass-reflex unit.

The horn

Once we have managed to separate the front and back waves so that the speaker pushes some air at all its operating frequencies, we have another problem. While a good speaker in an infinite baffle has excellent frequency response, it lacks real efficiency at the lowest frequencies because its cone area is limited and it cannot push enough air through the outside of the cone. The solution is that there is poor mechanical coupling between the small speaker cone and the large volume of air in the room.

The solution to this problem, which is actually an acoustic impedance mismatch, is to make the transition between the speaker cone area and the air with an exponential horn—one whose diameter increases as the exponent of the increase in distance from the enclosure outlet. The solution is that there is poor mechanical coupling between the small speaker cone and the large volume of air in the room.

The solution is to separate the back and the front of the cone so that the air movements that cause the cone no longer reach the air together and cancel. One way to do this is to mount the speaker in a hole in a large, flat board, so placed that the front of the board faces the listener. Now before reaching the ear, the air waves from the back of the cone must take time to go around the edges of the board, while those from the cone front reach the ear directly. The board is known as a "baffle." If the baffle is large enough, it will permit excellent bass response.
Train Faster—Train Better—Train Easier
In 10 Months—Or Less—for
Radio-Television

Our 21st Year Training Men for Greater Incomes and Security in Radio-Television

NEW! NO OBLIGATION PLAN
You Have No Monthly Payment Contract to Sign
Pay For Your Training as You Earn and Learn

You can get into Radio-Television, today's fastest growing big money opportunity field, in months instead of years! My completely new “package unit” training plan prepares you in as little as 10 months or even less! No monthly payment contract to sign—thus NO RISK to you! This is America's finest, most complete, practical training—gets you ready to handle any practical job in the booming Radio-Television industry.

Start your own profitable Radio-Television shop... or accept a good paying job. I have trained hundreds of successful Radio-Television technicians during the past 21 years—and stand ready to train you, even if you have no previous experience! Mail coupon and get all the facts—FREE!

You Have No Monthly Payment Contract to Sign
Pay For Your Training as You Earn and Learn

You can get into Radio-Television, today's fastest growing big money opportunity field, in months instead of years! My completely new “package unit” training plan prepares you in as little as 10 months or even less! No monthly payment contract to sign—thus NO RISK to you! This is America's finest, most complete, practical training—gets you ready to handle any practical job in the booming Radio-Television industry.

Start your own profitable Radio-Television shop... or accept a good paying job. I have trained hundreds of successful Radio-Television technicians during the past 21 years—and stand ready to train you, even if you have no previous experience! Mail coupon and get all the facts—FREE!

Valuable Equipment Included
With Training

The new Sprayberry "package" plan includes many big kits of genuine, professional Radio-Television equipment. You perform over 300 demonstrations, experiments and construction projects. You build a powerful 6-tube 2-band radio set, multi-range test meter, signal generator, signal tracer, many other projects. All equipment and lessons are yours to keep... you have practically everything you need to set up your own profitable Radio-Television service shop.

Sprayberry Academy of Radio
111 North Canal St., Dept. 20-C, Chicago 6, Ill.

Mail Coupon Today!
No Obligation

Sprayberry Academy of Radio
111 North Canal St., Dept. 20-C, Chicago 6, Ill.

Please rush to me all information on your 10-Month Radio-Television Training Plan. I understand this does not obligate me and that no salesman will call upon me. Be sure to include 3 books FREE.

Name: ____________________________ Address: ____________________________
City: ____________________________ Zone: ____________________________ State: ____________________________

Mail coupon NOW!

I invite you to get all the facts—FREE 3 BIG RADIO-TELEVISION BOOKS

I want you to have ALL the facts about my new 10-MONTH Radio-Television Training... without cost! Rush coupon for my three big Radio-Television books: "How to Make Money in Radio-Television," PLUS my new Illustrated Television Bulletin, PLUS an actual sample Sprayberry Lesson—ALL FREE. No obligation and no salesman will call. Mail coupon NOW!

Sprayberry Academy of Radio
111 North Canal St., Dept. 20-C, Chicago 6, Ill.
Another new, outstanding instrument design to typically characterize Heathkit operation in producing high quality instrument kits at the lowest possible price. A new, improved model Impedance Bridge Kit featuring modern cabinet styling, with shunted panel for convenience of operation and interpretation of scales at a $10.00 price reduction over the preceding model. Built-in adjustable phase shift oscillator and amplifier with all tubes of the battery operated type completely eliminates warm-up time. The instrument is entirely AC line operated. No bothersome battery replacements.

The Heathkit JB-2 Impedance Bridge Kit actually represents four instruments in one compact unit. The Wheatstone Bridge for resistance measurements, the Capacity Comparison Bridge for capacity measurements, Maxwell Bridge for low Q, and Hay Bridge for high Q inductance measurements. Read Q, D, DQ all on one dial thereby eliminating possible confusion due to the incorrect dial reference or adjustment. Only one set of instrument terminals necessary for any measurement function. Panel provisions provided for external generator use.

A newly designed two section CRL dial provides ten separate "units" switch settings with an accuracy of 5%. Fractions of units are real on a continuously variable calibrated wire-wound control. A special minimum capacity, shielded, balanced impedance matching transformer between the generator and the bridge. The correct impedance match is automatically switch selected to provide constant load operation of the generator circuit. The instrument uses 1/2% precision resistors and condensers in all measurement circuits.

The new Heathkit JB-2 provides outstanding design features not found in any other kit instrument. The single low price includes the power supply, generator, and amplifier stages. No need to purchase separate instrument accessories in order to obtain the type of operation desired.

A new Heathkit design for the audio engineer, serious hi-fi enthusiast, recording studio, or broadcast station; the Heathkit Audio Wattmeter Kit. This specialized instrument instantly indicates the output level of the equipment under test without requiring the use of external load resistors. All readings are taken directly from the calibrated scales of a 41/2" 200 microampere Simpson meter.

The Heathkit Audio Wattmeter features five full scale power measurement ranges from 5 milliwatts up to 50 watts with db ranges of -15 db to +48 db. The instrument has a power measurement rating of 25 watts continuous and 50 watts maximum for intermittent operation. Non-inductive resistance load impedances of 4, 8, 16, and 600 ohms are provided through a panel impedance selector switch. Frequency effect is negligible from 10 cycles to 250 kc. A conventional VTVM circuit utilizes a 12AU7 twin triode tube. The meter bridge circuit uses four germanium diodes for good linearity.

With the Heathkit AW-1 desired information can be obtained instantly and conveniently without bothering with the intricate setups and calculations usually required. Useful for power curve measurements, frequency response checks, monitoring indicator, etc. Convenient calibration directly from 110 volt AC line source. This new instrument will help to supply the answers to your audio operating or power output problems.

HEATH COMPANY • Benton Harbor 20, Mich.

RADIO-ELECTRONICS
Announcing the latest addition to a brilliant series of Heathkit Oscilloscopes, the new Model O-9. This outstanding instrument incorporates all of the features developed and proven in the production of well over 50,000 kits, in addition to a host of many new design features for truly outstanding performance. This new scope features a brand new (no surplus) commercially available 5" cathode ray tube for fine focusing, high intensity, and freedom from halation. The 5" CR tube is the standard size for design and industrial laboratories, development engineers, and service men. The only size CR tube offering a wide range of types, colors, phosphors, and persistence. The answer to good oscilloscope performance lies in improved basic design and operating characteristics, and not in the use of larger CR tubes.

VERTICAL AMPLIFIER — New extended band width vertical amplifier with sensitivity of 0.125 volts per inch, down 3 db at 2 mc. down only not in the use of larger CR tubes.

HORIZONTAL AMPLIFIER — New input system switch provides choice of horizontal input, 60 cycle sweep input, line sync, internal sync, and external sync. Expanded horizontal drive produces sweep width several times the cathode ray tube diameter. New blanking amplifier for complete retrace blanking and new phasing control.

POWER SUPPLY — New high voltage power supply and filtering circuit for really fine line hairline focusing. New heavy duty power transformer with adequate operating reserve. Voltage regulated supply for both vertical and horizontal amplifiers for absolutely rock steady traces and complete freedom from bounce and jitter due to line variations.

The acid test of any oscilloscope operation is the ability to reproduce high frequency square waves and the new Heathkit O-9 will faithfully reproduce square waves up to 500 kcps. This is the ideal all around, general purpose oscilloscope for educational and industrial use, radio and TV servicing, and any other type of work requiring the instantaneous reproduction and observation of actual wave forms and other electrical phenomena.

NEW 5" Heathkit OSCILLOSCOPE KIT

MODEL O-9

$59.50

SHIPPING WT. 28 LBS.

CHECK THESE Features

- New SUPER CR tube
- Retrace blanking
- Voltage regulation
- Extended bandwidth
- Peak-to-peak calibrating provisions
- Good square wave response
- Astigmatism control
- New heavy duty shielded power transformer

HEATH COMPANY • Benton Harbor 20, Mich.

November, 1953
The Heathkit 10,000 Volt DC Probe Kit

For TV service work or any similar application where the measurement of high DC voltage is required, the Heathkit Model 336 High Voltage Probe Kit will prove invaluable. A precision multiplier resistor mounted inside the two-color, sleek, plastic probe body provides a multiplication factor of 100 on the DC ranges of the Heathkit 11 megohm VTVM. The entire kit includes precision resistor, two-color plastic probe, tip connector spring, test lead, phone plug panel connector, and complete assembly instructions.

No. 336
Heathkit PEAK-TO-PEAK PROBE KIT
Now read peak-to-peak voltages on the DC scales of the Heathkit 11 megohm VTVM. Readings can be directly made from the VTVM scale without involved calculations. Measurements over the frequency range of 5 kc to 5 mc. Use this probe to extend the usefulness of your VTVM in radio and TV service work. The Peak-to-Peak Probe Kit features the new polished aluminum housing with two-color polystyrene probe ends. Detailed assembly sheet including instructions for probe operation.

$5.50
SHIP. WT. 2 LBS.

No. 309-B
Heathkit RF PROBE KIT
The Heathkit RF Probe used in conjunction with any 11 megohm VTVM will permit RF measurements to 50 mc ± 10%. A useful, convenient accessory for those occasions when RF measurements are desired. The RF probe body is housed in a polished aluminum probe body featuring two-color polystyrene probe ends and a low capacity flexible shielded test lead. The kit is complete with all necessary material and a detailed assembly sheet as well as instructions for probe operation.

$3.50
SHIP. WT. 2 LBS.

Heathkit AC VACUUM TUBE VOLTMETER KIT

The new Heathkit AC VTVM that makes possible those sensitive AC measurements required by laboratories, audio enthusiasts, and experimenters. Especially useful for hum investigations, sensitive null detection, phono pick-up output measurements, making frequency response runs, gain measurements, ripple voltage checks, etc. Low level measurements are easy to make because of the complete voltage coverage of the instrument and the one knob operation.

No. 336
Heathkit PEAK-TO-PEAK PROBE KIT
Now read peak-to-peak voltages on the DC scales of the Heathkit 11 megohm VTVM. Readings can be directly made from the VTVM scale without involved calculations. Measurements over the frequency range of 5 kc to 5 mc. Use this probe to extend the usefulness of your VTVM in radio and TV service work. The Peak-to-Peak Probe Kit features the new polished aluminum housing with two-color polystyrene probe ends. Detailed assembly sheet including instructions for probe operation.

$5.50
SHIP. WT. 2 LBS.

No. 309-B
Heathkit RF PROBE KIT
The Heathkit RF Probe used in conjunction with any 11 megohm VTVM will permit RF measurements to 50 mc ± 10%. A useful, convenient accessory for those occasions when RF measurements are desired. The RF probe body is housed in a polished aluminum probe body featuring two-color polystyrene probe ends and a low capacity flexible shielded test lead. The kit is complete with all necessary material and a detailed assembly sheet as well as instructions for probe operation.

$3.50
SHIP. WT. 2 LBS.

Features

- New 1/2 volt full scale low range
- 1,500 volt upper limit DC range
- Increased accuracy through 50% greater scale coverage
- High impedance 1 megohm input
- Center scale zero adjust
- Polarity reversal switch
- 1% precision resistors
- Clearly marked dB scales

Heathkit 30,000 Volt DC PROBE KIT

For TV service work or any similar application where the measurement of high DC voltage is required, the Heathkit Model 336 High Voltage Probe Kit will prove invaluable. A precision multiplier resistor mounted inside the two-color, sleek, plastic probe body provides a multiplication factor of 100 on the DC ranges of the Heathkit 11 megohm VTVM. The entire kit includes precision resistor, two-color plastic probe, tip connector spring, test lead, phone plug panel connector, and complete assembly instructions.

No. 336
$4.50
SHIP. WT. 2 LBS.

No. 338-B
Heathkit PEAK-TO-PEAK PROBE KIT
Now read peak-to-peak voltages on the DC scales of the Heathkit 11 megohm VTVM. Readings can be directly made from the VTVM scale without involved calculations. Measurements over the frequency range of 5 kc to 5 mc. Use this probe to extend the usefulness of your VTVM in radio and TV service work. The Peak-to-Peak Probe Kit features the new polished aluminum housing with two-color polystyrene probe ends. Detailed assembly sheet including instructions for probe operation.

$5.50
SHIP. WT. 2 LBS.
NEW Heathkit MULTIMETER KIT

MODEL MM-1

$26.50

SHIPPING WT. 6 LBS.

The most important Heathkit announcement of the year, the new 20,000 ohms per volt Heathkit Multimeter, Model MM-1. The universal service measuring instrument, accurate, sensitive, portable, and completely independent of AC line supply. Particularly designed for service use incorporating many desirable features for the convenience of the service man. Full 20,000 ohms per volt sensitivity on DC ranges — 5,000 ohms per volt sensitivity on AC — polarity reversal switch, no bothersome transferring of test leads — 1% precision multiplier resistors — large 4½" recessed non-glare 50 microampre Simpson meter — conveniently slanted control panel — recessed safety type banana jacks — standard universally available batteries — rugged practical sized cabinet with plastic carrying handle, and a total of 35 calibrated meter ranges.

RANGES
Voltage ranges selected entirely for service convenience. For example 1½ volt full scale low range for measuring portable radio filament voltages, bias voltages, etc., 150 volt full scale range for AC-DC service work, 500 volt full scale range for conventional transformer operated power supply systems. Complete voltage ranges AC and DC, 0-1.5-5-50-150-500-1,500-5,000 volts. DC current ranges, 0-150 microamperes - 15 milliamperes - 150 milliamperes - 500 milliamperes - 15 amperes. Resistance measurements from .2 ohms to 20 meg-ohms x 1 x 1,000 x 10,000. DB coverage from —10 db to +65 db.

CONSTRUCTION
Entirely new design permits assembly, mounting and wiring of precision resistors on a ring-switch assembly unit. The major portion of instrument wiring is completed before mounting the ring-switch assembly to the panel. No calibration procedure is required, all precision resistors readily accessible in event of replacement.

CABINET
Strikingly modern cabinet styling featuring two piece construction, durable black Bakelite cabinet, with easy to read panel designations. Cabinet size 5½" wide x 4" deep x 7½" high. Good cabinet physical stability when operated in vertical position.

The Heathkit MM-1 represents a terrific instrument value for a high quality 20,000 ohms per volt unit using all 1% deposited carbon type precision resistors. Here is quality, performance, functional design, and attractive appearance, all combined in one low priced package.

HEATH COMPANY
Benton Harbor 20, Mich.

NOVEMBER, 1953
Here is the new Heathkit Battery Eliminator necessary for modern, up-to-date operation of your service shop. The Heathkit Model BE-4 furnishes either 6 volts or 12 volts output which can be selected at the flick of a panel switch. Use the BE-4 to service the new 12 volt car radios in addition to the conventional 6 volt radios.

This new Battery Eliminator provides two continuously variable output ranges, 0-8 volts DC at 10 amperes continuously, or 15 amperes maximum intermittent; 0-16 volts DC at 5 amperes continuously or 7.5 amperes maximum intermittent. The output voltage is clean and well filtered as the circuit uses two 10,000 mf condensers. The continuously variable voltage output feature is a definite aid in determining the starting point of vibrators, the voltage operating range of oscillator circuits, etc. Panel mounted meters constantly monitor voltage and current output and will quickly indicate the presence of a major circuit fault in the equipment under test. The power transformer primary winding is fuse protected and for additional safety an automatic relay of the self-resetting type is incorporated in the DC output circuit. The heavy duty rectifier is a split type 18 plate magnesium copper sulfide unit used either as a full wave rectifier or voltage doubler according to the position of the panel range switch.

Here is the ideal battery eliminator for all of your service problems and as an additional feature, it can also be used as a battery charger. Another new application for the Heathkit Battery Eliminator is a variable source of DC filament supply in audio development and research. More than adequate variable voltage and current range for normal applications.

Heathkit VIBRATOR TESTER KIT

Your repair time is valuable, and service use of the Heathkit Vibration Tester will save you many hours of work. This tester will instantly tell you the condition of the vibrator being checked. Checks vibrators for proper starting and the easy to read meter indicates quality of output on a large Wall-Good scale. The Heathkit VT-1 checks both interrupter and self rectifier types of vibrators. Five different sockets for checking hundreds of vibrator types.

The Heathkit Vibration Tester operates from any battery eliminator capable of delivering continuously variable voltage from 4 to 6 volts DC at 4 amperes. The new Heathkit Model BE-4 Battery Eliminator would be an ideal source of supply.

NEW Heathkit VARIABLE VOLTAGE ISOLATION TRANSFORMER KIT

The new Heathkit Isolation Transformer Kit provides line isolation for AC-DC radios (not an auto transformer), thereby eliminating shock hazard, hum problems, alignment difficulties, etc. The output voltage is variable from 90 to 130 volts AC and is constantly monitored by a panel mounted AC volt meter. Use it to increase AC supply voltage in order to induce breakdown of faulty components in circuits thereby saving service time. Use it also to simulate varying line voltage conditions and to determine the line voltage level at which oscillator circuits cease functioning, particularly in three-way portable radios. Rated at 100 watts continuous operation and up to 200 watts maximum intermittent operation. A useful radio and TV service tool.

Heathkit TECHNICAL APPLICATION BULLETINS

An exclusive Heathkit service. Technical application bulletins prepared by recognized instrument authorities outlining various combinations of instrument applications. Available now with all four-page illustrated bulletins and an attractive flexible hard-bound binder. Only $2.00. (No c.o.d. on this item, please.)
Proudly announcing an entirely new, advanced model TV and FM Sweep Generator, the Heathkit Model TS-3. This new design provides features and combinations of functions not found in any other service type instrument. Every design consideration has been given to the requirements of the TV service man to provide a flexible, variable sweep source with more than adequate RF output and complete frequency coverage throughout the TV and FM spectrum.

The frequency range of the TS-3 is from 4 mc to 220 mc in four switch selected ranges. All frequency ranges are overlapping for complete coverage. A particularly important feature of the instrument is that the oscillator operates entirely on fundamentals, thereby providing complete freedom from spurious oscillation and parasites normally encountered in beat frequency type oscillators. This circuitry assures a much higher total RF output level and simplifies attenuation problems.

The new TS-3 features an entirely new principle of sweep operation. Sweep action is entirely electronic with no moving parts or electro-mechanical devices so commonly used. The heart of the sweep system is a newly-developed INCREDUCTOR controllable inductor. With this system, the value of inductance of each oscillator coil is electrically varied with an AC control current, and the inductance variation is achieved by a change in the magnetic state of the core on which the oscillator coils are wound. This system provides a sweep deviation of not less than 12 mc on all TV frequencies, and up to a maximum of 30 mc on TV IF frequencies. The high RF output level throughout the instrument frequency range overcomes the most common complaint of the older type sweep generators. A new, automatic amplitude control circuit maintains the output level flat to + - 2 db throughout the instrument range. For convenience of operation a low impedance 50 ohm output is used.

Operation of the instrument has been simplified through the reduction of panel controls and separate panel terminals provide for external synchronization if desired. The circuit uses a voltage regulator tube to maintain stable instrument operation. A built-in variable oscillator marker further adds to flexibility of instrument operation. Provisions are also made for the use of an external marker, such as your service type signal generator, if desired. Use the Heathkit TS-3 for rapid, accurate TV alignment work, and let it help you solve those time consuming, irksome problems so frequently encountered.

NEW Heathkit SIGNAL GENERATOR KIT
MODEL SG-8
$19.50
SHIPPING WEIGHT 8 POUNDS

Announcing the new Heathkit Model SG-8 service type Signal Generator, incorporating many design features not usually found in an instrument in this price range. The RF output is from 150 kc to 100 mc in five ranges, all on fundamentals, with useful harmonics up to 200 mc. The RF output level is in excess of 100,000 microvolts throughout the frequency range.

The oscillator circuit consists of a 12AT7 twin triode tube. One half is used as a Colpitts oscillator, and the other half as a cathode follower output which acts as a buffer between the oscillator and external load. This circuitry eliminates oscillator frequency shift usually caused by external circuit loading.

All coils are factory wound and adjusted, thereby completely eliminating the need for calibration and the use of additional calibrating equipment. The stable low impedance output features a step and variable attenuator for complete control of RF level. A 6CA triode acts as a 400 cycle sine wave oscillator and a panel switching system permits a choice of either external or internal modulation.

The transformer operated circuit is easy to assemble, requires no calibration, and meets every service requirement for an adjustable level variable frequency signal source, either modulated or un-modulated.

NEW Heathkit BAR GENERATOR KIT
MODEL BG-1
$14.50
SHIPPING WEIGHT 6 POUNDS

The Heathkit BG-1 Bar Generator represents another welcome addition to the fast growing line of popular Heathkits. The transmission test pattern is rapidly disappearing, and the bar generator is the logical answer to the TV service man's problem in obtaining quick, accurate adjustment information without waiting for test patterns.

The Heathkit BG-1 produces a series of horizontal or vertical bars on a TV screen. Since these bars are equally spaced, they will quickly indicate picture linearity of the receiver under test. Panel switch provides "stand-by position" — "horizontal position" — "vertical position." The oscillator unit utilizes a 12AT7 twin triode for the RF oscillator and video carrier frequencies. A neon relaxation oscillator provides low frequency for vertical linearity tests. The instrument will not only produce bar patterns but will also provide an indication of horizontal and vertical sync circuit stability, as well as overall picture size.

Instrument operation is extremely simple, and merely requires connection to the TV receiver antenna terminal. The unit is transformer operated for safety when used in conjunction with universal or transformerless type TV circuits.
The new Model TC-2 Heathkit Tube Checker features many circuit improvements, simplified wiring, new roll chart drive and illumination of roll chart. The instrument is primarily designed for the convenience of the radio and TV service man and will check the operating quality of tubes commonly encountered in this type of work. Test set-up procedure is simplified, rapid, and flexible. Panel sockets accommodate 4, 5, 6, and 7 pin tubes, octal and local, 7 and 9 pin miniatures, 5 pin Hytron and a blank socket for new tubes. Built-in neon short indicator, individual three-position lever switch for each tube element, spring return test switch, 14 filament voltage ranges, and line set control to compensate for supply voltage variations, all represent important design features of the TC-2. Results of tube tests are read directly from a large 4½’ Simpson three-color meter, calibrated in terms of Bad-Good. Information that your customer can readily understand. Checks emission, shorted elements, open elements, and continuity.

The use of closer tolerance resistors in critical circuits assures correct test information and eliminates the possibility of inaccurate test interpretation. Improvement has been made in the mechanical roll chart drive system, completely eliminating diagonal running, erratic operation, and backlash. The thumb wheel gear driven action is smooth, positive, and free running. As an additional feature, the roll chart is illuminated for easier reading, particularly when the tube checker is used on radio or TV home service calls. Wiring procedure has been simplified through the extended use of multi-cable, color coded wires, providing a harness type installation between tube sockets and lever switches. This procedure insures standard assembly and imparts that "factory built" appearance to instrument construction. Completely detailed information is furnished in the new step-by-step construction manual, regarding the set-up procedure for testing of new or unlisted tube types. No delay necessary for release of factory data.

The new Heathkit Tube Checker will prove its value. In building service and maintenance, the instrument is primarily designed for the convenience of the radio and TV service man and will check the operating quality of tubes commonly encountered in this type of work. Test set-up procedure is simplified, rapid, and flexible. Panel sockets accommodate 4, 5, 6, and 7 pin tubes, octal and local, 7 and 9 pin miniatures, 5 pin Hytron and a blank socket for new tubes. Built-in neon short indicator, individual three-position lever switch for each tube element, spring return test switch, 14 filament voltage ranges, and line set control to compensate for supply voltage variations, all represent important design features of the TC-2. Results of tube tests are read directly from a large 4½’ Simpson three-color meter, calibrated in terms of Bad-Good. Information that your customer can readily understand. Checks emission, shorted elements, open elements, and continuity.

The use of closer tolerance resistors in critical circuits assures correct test information and eliminates the possibility of inaccurate test interpretation. Improvement has been made in the mechanical roll chart drive system, completely eliminating diagonal running, erratic operation, and backlash. The thumb wheel gear driven action is smooth, positive, and free running. As an additional feature, the roll chart is illuminated for easier reading, particularly when the tube checker is used on radio or TV home service calls. Wiring procedure has been simplified through the extended use of multi-cable, color coded wires, providing a harness type installation between tube sockets and lever switches. This procedure insures standard assembly and imparts that "factory built" appearance to instrument construction. Completely detailed information is furnished in the new step-by-step construction manual, regarding the set-up procedure for testing of new or unlisted tube types. No delay necessary for release of factory data.

The new Heathkit Tube Checker will prove its value. In building service and maintenance, the instrument is primarily designed for the convenience of the radio and TV service man and will check the operating quality of tubes commonly encountered in this type of work. Test set-up procedure is simplified, rapid, and flexible. Panel sockets accommodate 4, 5, 6, and 7 pin tubes, octal and local, 7 and 9 pin miniatures, 5 pin Hytron and a blank socket for new tubes. Built-in neon short indicator, individual three-position lever switch for each tube element, spring return test switch, 14 filament voltage ranges, and line set control to compensate for supply voltage variations, all represent important design features of the TC-2. Results of tube tests are read directly from a large 4½’ Simpson three-color meter, calibrated in terms of Bad-Good. Information that your customer can readily understand. Checks emission, shorted elements, open elements, and continuity.

The use of closer tolerance resistors in critical circuits assures correct test information and eliminates the possibility of inaccurate test interpretation. Improvement has been made in the mechanical roll chart drive system, completely eliminating diagonal running, erratic operation, and backlash. The thumb wheel gear driven action is smooth, positive, and free running. As an additional feature, the roll chart is illuminated for easier reading, particularly when the tube checker is used on radio or TV home service calls. Wiring procedure has been simplified through the extended use of multi-cable, color coded wires, providing a harness type installation between tube sockets and lever switches. This procedure insures standard assembly and imparts that "factory built" appearance to instrument construction. Completely detailed information is furnished in the new step-by-step construction manual, regarding the set-up procedure for testing of new or unlisted tube types. No delay necessary for release of factory data.

The new Heathkit Tube Checker will prove its value. In building service and maintenance, the instrument is primarily designed for the convenience of the radio and TV service man and will check the operating quality of tubes commonly encountered in this type of work. Test set-up procedure is simplified, rapid, and flexible. Panel sockets accommodate 4, 5, 6, and 7 pin tubes, octal and local, 7 and 9 pin miniatures, 5 pin Hytron and a blank socket for new tubes. Built-in neon short indicator, individual three-position lever switch for each tube element, spring return test switch, 14 filament voltage ranges, and line set control to compensate for supply voltage variations, all represent important design features of the TC-2. Results of tube tests are read directly from a large 4½’ Simpson three-color meter, calibrated in terms of Bad-Good. Information that your customer can readily understand. Checks emission, shorted elements, open elements, and continuity.

The use of closer tolerance resistors in critical circuits assures correct test information and eliminates the possibility of inaccurate test interpretation. Improvement has been made in the mechanical roll chart drive system, completely eliminating diagonal running, erratic operation, and backlash. The thumb wheel gear driven action is smooth, positive, and free running. As an additional feature, the roll chart is illuminated for easier reading, particularly when the tube checker is used on radio or TV home service calls. Wiring procedure has been simplified through the extended use of multi-cable, color coded wires, providing a harness type installation between tube sockets and lever switches. This procedure insures standard assembly and imparts that "factory built" appearance to instrument construction. Completely detailed information is furnished in the new step-by-step construction manual, regarding the set-up procedure for testing of new or unlisted tube types. No delay necessary for release of factory data.

The new Heathkit Tube Checker will prove its value. In building service and maintenance, the instrument is primarily designed for the convenience of the radio and TV service man and will check the operating quality of tubes commonly encountered in this type of work. Test set-up procedure is simplified, rapid, and flexible. Panel sockets accommodate 4, 5, 6, and 7 pin tubes, octal and local, 7 and 9 pin miniatures, 5 pin Hytron and a blank socket for new tubes. Built-in neon short indicator, individual three-position lever switch for each tube element, spring return test switch, 14 filament voltage ranges, and line set control to compensate for supply voltage variations, all represent important design features of the TC-2. Results of tube tests are read directly from a large 4½’ Simpson three-color meter, calibrated in terms of Bad-Good. Information that your customer can readily understand. Checks emission, shorted elements, open elements, and continuity.

The use of closer tolerance resistors in critical circuits assures correct test information and eliminates the possibility of inaccurate test interpretation. Improvement has been made in the mechanical roll chart drive system, completely eliminating diagonal running, erratic operation, and backlash. The thumb wheel gear driven action is smooth, positive, and free running. As an additional feature, the roll chart is illuminated for easier reading, particularly when the tube checker is used on radio or TV home service calls. Wiring procedure has been simplified through the extended use of multi-cable, color coded wires, providing a harness type installation between tube sockets and lever switches. This procedure insures standard assembly and imparts that "factory built" appearance to instrument construction. Completely detailed information is furnished in the new step-by-step construction manual, regarding the set-up procedure for testing of new or unlisted tube types. No delay necessary for release of factory data.

The new Heathkit Tube Checker will prove its value. In building service and maintenance, the instrument is primarily designed for the convenience of the radio and TV service man and will check the operating quality of tubes commonly encountered in this type of work. Test set-up procedure is simplified, rapid, and flexible. Panel sockets accommodate 4, 5, 6, and 7 pin tubes, octal and local, 7 and 9 pin miniatures, 5 pin Hytron and a blank socket for new tubes. Built-in neon short indicator, individual three-position lever switch for each tube element, spring return test switch, 14 filament voltage ranges, and line set control to compensate for supply voltage variations, all represent important design features of the TC-2. Results of tube tests are read directly from a large 4½’ Simpson three-color meter, calibrated in terms of Bad-Good. Information that your customer can readily understand. Checks emission, shorted elements, open elements, and continuity.
CHECK THESE Features

- Visual and aural signal tracing
- Two channel input
- High RF sensitivity
- Unique noise locator circuit
- Calibrated wattmeter
- Substitution test speaker
- Utility amplifier
- RF, audio probes and test leads included

An entirely new type of signal tracer incorporating a combination of features not found in any other instrument. Designed especially for the radio and TV service man, particularly for the servicing of AM, FM and TV circuits. Here in a five tube, transformer operated instrument are all of the useful functions so necessary for speedy, accurate isolation of service difficulties.

This new signal tracer features a special high gain RF input channel, used in conjunction with a newly designed wide frequency range demodulator probe. High RF sensitivity permits signal tracing at the receiver antenna input. A separate low gain channel and probe available for audio circuit exploration. Both input channels are constantly monitored by an electron ray beam indicator, so that visual as well as aural signal indications may be observed. The instrument can also be used for comparative estimation of gain per stage.

A decidedly unusual feature is a noise locator circuit in conjunction with the audio probe. With this system, a DC potential is applied to a suspected circuit component and the action of the voltage in the component can be seen as well as heard. Invulnerable for ferreting out noisy or intermittent condensers, noisy resistors, controls, coils, IF and power transformers, etc. A built-in calibrated wattmeter circuit is very useful for a quick preliminary check of the total wattage consumption of the equipment under test. Separate panel terminals provide external use of the speaker or output transformer for substitution purposes. Saves valuable service time by eliminating the necessity for speaker removal on every service job. The terminals also permit the utilization of other shop equipment, such as your oscilloscope or VTVM. The T-3 Signal Tracer can be used as a high gain amplifier for checking tuners, record changers, microphones, phone crystals, etc.

Don’t overlook the interesting service possibilities provided through the use of this new instrument and let it work for you by saving time and money. The kit is supplied complete with all tubes, circuit components, demodulator probe, audio probe, and additional test leads.
Here is the latest Heathkit addition to the ham radio field, the AT-1 Transmitter Kit. Incorporating many desirable design features at the lowest possible dollar-per-watts price. Panel mounted crystal socket, stand-by switch, key click filter, AC line filtering, 30 vac input, transformer operation—up to 35 watts input. Built-in power supply provides 425 volts at 100 ma. This kit features pre-wound coils, single knob band switching, 52 ohm coaxial output, plug in chassis provisions for VFO or modulator and rugged clean construction. Frequency range 80, 40, 20, 15, 11, and 10 meters. Tube line-up 6A6G7 oscillator-multiplier, 6L6 amplifier-doubler, 5U4G rectifier. Physical dimensions 81/4" high x 131/4" wide x 7" deep. This amazingly low kit price includes all circuit components, tubes, cabinet, punched chassis, and detailed construction manual. The ideal kit for the novice just breaking into ham radio. It can be used later on as a stand-by rig or an all band exciter for higher powered transmitter.

NEW Heathkit ANTENNA COUPLER KIT

New Heathkit Antenna Coupler, specially designed for the Heathkit AT-1 Transmitter. The Antenna Coupler can be used with any 52 ohm coaxial input—up to 75 watt power. Low pass filter with cut-off frequency of approximately 36 mc — L-section tuning network—neon tuning indicator—rugged, compact construction—transmitter type variable condenser, and high Q coil are all outstanding features. The AC-1 has both inductance and capacitance, and high Q coil is all outstanding features. Dimensions 81/4" wide x 41/4" high x 43/4" deep.

Heathkit COMMUNICATIONS RECEIVER KIT

MODEL AR-2

$25.50 SHIP. WT. 12 LBS.

Here is the new receiver kit you have repeatedly asked for, the Heathkit Communications Receiver. The perfect companion piece for the AT-1 Transmitter kit. Many outstandingly desirable features have been incorporated in the design of the AR-2; such as, electrical bandwidth for logging and tuning convenience—high gain miniature tubes — IF transformers for high sensitivity and good signal to noise ratio—separate RF gain control which offers manual automatic volume control, in addition to the conventional audio gain control. Noise limiter—stand-by switch—stable BFO oscillator circuit—buffered output—transformer operation, etc. all contribute to a high performance standard.

Frequency coverage is continuous from 535 kc to 35 mc in four ranges. For added convenience, various ham bands have been separately identified in respect to their relative placement on the slide rule tuning scale. A chrome mounted, 51/2" PM speaker is included with this kit. Tube line up 12BE6 mixer oscillator, 12BA6 IF amplifier, 12AV6 detector AVC audio, 12BAS BFO oscillator, 12AG6 beam power output, 5Y3GT rectifier.

CHECK THESE NEW Features

- Single knob band switching
- Pre-wound coils
- Metered operation
- 52 ohm coaxial output
- Crystal or VFO excitation
- Built-in power supply
- Rugged, clean construction

NEW Heathkit ANTENNA IMPEDANCE METER

MODEL AM-1

$19.50 SHIP. WT. 4 LBS.

IMPROVED Heathkit GRID DIP METER KIT

MODEL GD-1B

$19.50 SHIP. WT. 4 LBS.

The invaluable instrument for service men, hams, and experimenters. Useful in TV service work for alignment of traps, filters, IF stages, peaking compensation networks, etc. Locates spurious oscillation, provides a relative indication of power in transmitter stages, use it for neutralization, locating parasitics, correcting TVI, measuring C, L, and Q of components, and determining RF circuit resonant frequencies. With oscillator energized, useful for finding resonant frequency of tuned circuits. With the oscillator not energized, the instrument acts as an absorption wave meter. Variable meter sensitivity control, head phone jack. 500 microammeter, Simpson meter. Continuous frequency coverage from 2 mc to 250 mc. Pre-wound coil kit and rack, new three prong coil mounting, 6AF4 high frequency triode.

Two additional plug-in coils are available and provide continuous extension of low frequency coverage down to 355 kc. Dial correlation curves included. Shipping weight 1 lb., kit 3 lb., $3.00.

HEATH COMPANY · Benton Harbor 20, Mich.
CHECK THESE Features

- First popular priced Q Meter
- Reads Q directly on calibrated scale
- Oscillator supplies RF frequencies of 150 kc to 18 mc
- Calibrate capacitor with range of 40 mmf to 450 mmf with vernier of ± 3 mmf
- Measures Q of condensers, RF resistance, and distributed capacity of coils
- Many applications in design and development work
- Useful in TV service work for checking deflection yokes, coils, chokes, etc.

Another outstanding example of successful Heathkit engineering effort in producing a Q Meter Kit within the price range of TV service men, schools, laboratories, and experimenters. This Q Meter meets RF design requirements for rapid, accurate measurement of capacity, inductance, and Q at the operating frequency and all indications of value can be read directly on the meter calibrated scales. Oscillator section supplies RF frequencies of 150 kc to 18 mc. Calibrate capacitor with range of 40 mmf to 450 mmf, with vernier of ± 3 mmf.

Particularly useful in TV service work for checking peaking coils, wave traps, chokes, deflection coils, width and linearity coils, etc. At this low kit price research laboratory facilities are within the range of service shops, schools, and experimenters.

Heathkit INTERMODULATION ANALYZER KIT

The Heathkit IM-1 is an extremely versatile instrument specifically designed for measuring the degree of interaction between two signals in any portion of an audio chain. It is primarily intended for making tests of audio amplifiers, but may be used in other applications, such as checking microphones, records, recording equipment, phonograph pick-ups, and loudspeakers. High and low test frequency source, intermodulation unit, power supply, and AC vacuum tube voltmeter all in one complete instrument. Per cent intermodulation is directly read on the calibrated scales, 30%, 10%, and 3% full scale. Both 4:1 and 1:1 ratios of low to high frequency easily set up. With this instrument the performance level of present equipment, or newly developed equipment can be easily and accurately checked. At this low price, you can now enjoy the benefits of intermodulation analysis for accurate audio interpretation.

Heathkit AUDIO GENERATOR KIT

MODEL AG-8

A Heathkit Audio Generator with frequency coverage from 20 cycles to 1 mc. Response flat ± 1 db from 20 cycles to 400 kc, down 3 db at 600 kc, and down only 8 db at 1 mc. Calibrated, continuously variable, and step attenuator output controls provide convenient reference output level. Distortion is less than 0.1% from 100 cps through the audible range. The ideal controllable extended frequency sine wave source for audio circuit investigation and development.

$39.50
SHIPPING W.T. 17 POUNDS

Heathkit SQUARE WAVE GENERATOR KIT

MODEL SQ-1

The Heathkit Square Wave Generator provides an excellent square wave frequency source with completely variable coverage from 10 cycles to 100 kc. This generator features low output impedance of 600 ohms and the output voltage is continuously variable between 0 and 25 volts, thereby providing the necessary degree of operating flexibility. An invaluable instrument for those specialized circuit investigations requiring a good, stable, variable square wave source.

$29.50
SHIPPING W.T. 12 LBS.
When selecting an amplifier for the heart of your high fidelity audio system, investigate the outstanding advantages offered by the Heathkit Williamson Type Amplifier. It meets every high fidelity audio requirement that makes listening to recorded music a thrilling new experience.

Williamson Type Amplifier. Meets every high fidelity audio requirement system, investigate the outstanding advantages offered by the Heathkit amplifier and phase splitter, two 6L6 push pull pentode power output, 5U4G rectifier. Truly outstanding amplifier performance coupled with low cost.

PRICES OF COMBINATIONS

W - 2 Amplifier Kit including main amplifier, power supply, and WA - P1 Preamplifier Kit. $69.50

W - 2M Amplifier Kit includes main amplifier and power supply, Shipping Weight 29 lbs. Shipped Express only. $49.75

WA - P1 Preamplifier Kit only. Shipping Weight 6 lbs. Shipped Express or Parcel Post. $19.75

High Fidelity AMPLIFIER KIT

MODEL W - 2

Particularly designed for custom installations, featuring separate cable connected units for simplicity of installation. Sheath metal work finished in attractive gray hammer tone for smart appearance. All control shafts of the adjustable length break-off type.

$69.50

SHIP. WT. 48 LBS.

FM TUNER KIT

The Heathkit FM-2 Tuner was specifically designed for simplified kit construction. Can be operated through the "phono" portion of your radio or with a separate amplifier. The kit features a pre-assembled and adjusted tuning unit, three double tuned IF transformers, and a discriminator transformer in an 8 tube AC operated circuit. Frequency coverage 88 to 108 mc. Experience the thrill of building your own FM tuner and at the same time enjoy all of the advantages of true FM reception.

MODEL FM-2

$22.50

SHIP. WT. 9 LBS.

FM TUNER KIT

The Heathkit FM-2 Tuner was specifically designed for simplified kit construction. Can be operated through the "phono" portion of your radio or with a separate amplifier. The kit features a pre-assembled and adjusted tuning unit, three double tuned IF transformers, and a discriminator transformer in an 8 tube AC operated circuit. Frequency coverage 88 to 108 mc. Experience the thrill of building your own FM tuner and at the same time enjoy all of the advantages of true FM reception.

MODEL FM-2

$22.50

SHIP. WT. 9 LBS.

FM TUNER KIT

Free CATALOG

Write for free catalog containing latest price information, schematics, specifications, and descriptions of all Heathkits.

HEATH COMPANY • Benton Harbor 20, Mich.

CHECK THESE NEW FEATURES

- Plays all record sizes, all speeds
- Newly developed ceramic cartridge
- Automatic shut-off for both changer and amplifier
- Acoustically correct cabinet enclosure
- Modern attractive styling
- Two 6" PM matched speakers
- Compensated volume control
- Easy to assemble

An entirely new introduction to quality record reproduction, a simple to operate, compact, table top model with none of the specialized custom installation problems usually associated with high fidelity systems. Two matched, synchronized speakers mounted in an acoustically correct enclosure reproduce all of the music on the record. Musical reproduction with the unique sensation of being surrounded by a halo of glorious sound. This spectacular characteristic is possible only because of the diffused non-directional properties of the matched dual speakers. The Heathkit Dual makes listening to fine recorded music a thrilling new experience through naturally clear, life-like reproduction of sound at all levels throughout the tonal system. The performance level is vastly superior to that of the ordinary phonograph or console selling for many, many times the price of the Dual.

Record Changer plays all sizes—all speeds—automatic shut-off for changer and amplifier after the last record is played. A wide tonal range ceramic cartridge features an ingenious turn-under twin sapphire stylus for LP or 78 records without turning the cartridge. Simplified, easy to assemble, four tube amplifier features compensated volume control and separate tone control. Proxylin impregnated fabric covered cabinet supplied completely assembled. You build only the amplifier from step-by-step construction. No specialized tools or knowledge required, as full recognition has been given to the fact that many purchasers of this kit enjoy good musical reproduction on a purely non-technical basis, and the construction manual has been simplified to the point where even the complete novice can successfully construct the Heathkit Dual. The price of the Heathkit Dual includes cabinet, Record Changer, two 6" PM speakers, tubes, and all circuit components required for amplifier construction.

ORDER BLANK

MAIL YOUR ORDER TODAY TO THE HEATH COMPANY

BENTON HARBOR 20, MICHIGAN

FROM

SHIP VIA

- [] Parcel Post
- [] Express
- [] Freight
- [] Best Way

PLEASE PRINT

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>MODEL NO.</th>
<th>DESCRIPTION</th>
<th>WEIGHT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS

Enclosed find () check () money order for

Please ship C.O.D. () postage enclosed for ____ pounds.

TOTAL WEIGHT AND AMOUNT...

On Express orders do not include transportation charges—they will be collected by the express agency at time of delivery.

NOVEMBER, 1953
It has been said, on both sides of the Atlantic, that the British appear to lead the audio field. When asked to gather material on British audio circuit features, I naturally asked myself the questions: Why do the British lead in this field? In what does this leadership consist? Is it more advanced know-how, or is it just doing an ordinary job a little better?

The consensus is that there is nothing particularly clever about our circuitry in most instances. Rather, it is that more time and effort is put into getting the best out of well-tried circuits or their variations. Until recently, there was very little interest in audio. American production-minded concerns did not find it attractively profitable to invest in research for such small volume. However, some British outfits, working on a smaller scale, found the outlay worth while.

The market is growing with the widening interest, and it may be that the concerns who manufacture in large quantities will soon take the lead from our small-timers. But it is probable that we shall hold our own, for, even with the market bigger, it will remain essentially an individualist one. Audio enthusiasts are connoisseurs, and ears, like palates, vary. So there should continue to be room for everybody who is prepared to do a really good job.

Probably the connoisseur aspect of the audio fan (or should it be audiophile?) is best evidenced in the variety of circuits for quality control, tone compensation, or whatever name you like to give it. The author recently questioned a statement to the effect that bass boost and treble cut have the same effect, and vice versa. He was immediately shown higher authority for this opinion. The truth would appear to be that the difference is indistinguishable to some, while to the more discriminating ear the finer details of frequency response require some control to obtain a satisfying effect.

Most modern audio equipment incorporates the control features in a preamplifier remote from the main amplifier. An exception to this is an equipment made by Telrad Electronics, where to produce many of the advantages of more expensive contemporaries the whole amplifier is carried on one chassis. The controls are remote and are connected to the main chassis by a relatively short length of multi-conductor cable, terminated in an octal plug. Fig. 1 shows the remote panel.
roof top magic
from your TV set
and it's magic
in sales too

There's real MAGIC to the CDR ROTOR!
The way it IMPROVES any TV picture is magic
... the way it sells ... is magic! BUT ... the real
answer is quality manufacture of a proven design!
That adds up to continued dependable
performance ... CDR ROTORS ARE BUILT TO
LAST ... built to perform under any conditions!

NOW ... MORE IN DEMAND THAN EVER
BEFORE with the BIG consumer advertising
campaign in full swing ... if you don't
have your BIG CDR PROMOTION KIT with
selling and advertising aids ... write us
for your kit ... to help you sell EVEN MORE!

TR-12 ... a special com-
bination value consisting of
complete rotor including thrust
bearing ... handsome modern
design cabinet with meter
control dial $47.95
TR-11 ... same as TR-12
without thrust bearing $44.95

TR-2 ... the HEAVY DUTY
rotor especially suited for spe-
cial TV antenna installations.
Complete rotor with "Compass
Control" cabinet having illumi-
nated "perfect pattern" dial.
$49.95

THE RADIART CORPORATION
CLEVELAND 13, OHIO

THE CORNELL-DUBILIER ELECTRIC CORP.
SOUTH PLAINFIELD, N.J.

NOVEMBER, 1953
circuit for this equipment. The tone correction circuit is between the first and second stages, and the volume control between the second and third. The circuit consists of a basic voltage divider, R1 and R2, which provides an attenuation of about 26 db. Both bass and treble controls provide a level position (as shown), three lifts and two cuts. The boost gives an ultimate lift at either end of about 26 db. The position of the lift is varied by altering the capacitor values. Similar change of values alters the two possible cutoffs provided for each end. The combined range of control provided is shown at Fig. 4. The makers say this arrangement provides sufficient variation to satisfy all practical quality compensation required, and they claim an advantage in that the difference between steps is perceptible.

Preamplifiers of more conventional type generally provide somewhat wider facilities. The Leak Vari-slope separates the function of compensating for recording characteristic, etc., from the compensation for studio or room acoustics and noise content, by adjustment of bass and treble controls. The input selector switch has five positions, marked RADIO, 78A, 78B, L.P., and MIC. This compensation is achieved by a feedback arrangement over the first stage of the preamplifier, as shown in Fig. 3. Over the second stage, the bass-boost positions are achieved by different values of series capacitor in the feedback. The cut positions insert different values of series capacitor in the lead to the output volume control. (The combined bass control is shown at Fig. 4.)

The treble lift is conventional, but the cut positions employ the Vari-slope technique from which the unit gets its name. Three turnover frequencies are provided by the switch. At each, a conventional two-stage roll-off response is provided between the first and second stage. At zero, the two stages combined with this is a further correction introduced into the feedback over the second stage, using a form of adjustable twin-T network. Capacitor values are selected by switch to suit the turnover frequency chosen. Variation of the slope control shunts the T to varying degree, thereby changing the shape of correction applied at the roll-off frequency. Thus turnover frequencies are selected in steps, but the rate of cutoff can be adjusted continuously. Fig. 6 shows a range of possible slopes for the lowest cutoff, 5 kc. Fig. 5 shows the basic circuit for treble control, leaving out the components that affect only bass response and the muting arrangements. Muting consists, quite simply, of shunting the switch contacts with suitable high-value resistors to prevent residual charges being left on capacitors not in use, so that switching them into use would produce a click.

The final circuit this trip will be the Q.U.A.D. quality control unit. A very nice feature of this unit is the mechanical arrangement of the panel, facilitating quick touch control. The volume control employs negative feedback over the second stage, using the circuit shown in Fig. 7. At minimum volume, the second stage operates at unity gain with 100% feedback, or nearly so, while at maximum volume the feedback is considerably reduced.

Tone compensation is again divided into two parts, but the functions are not separated in quite the same way as in the Leak unit. Two different input sockets arrange for flat response or correction for velocity type pickups. The main compensation is in the output circuit. This consists first of a filter with variable slope characteristics, but using a conventional filter circuit modified for this purpose, as shown in Fig. 8. Two turnover frequencies are available by switching capacitor values, at each of which the slope can be varied to much like the "cut" part of the Leak treble control. Following the filter in the circuit arrangement are the treble and bass controls, which are fairly conventional, as in Fig. 9, giving the response variation of Fig. 10. In the panel arrangement the physical position of the controls is reversed, as this is considered more logical from the psychological viewpoint.

The filter switch has four positions: 1. Flat, cutting out filter and top and bass circuits, so that a check can quickly be made against level response at any time; 2. Bringing in treble and bass controls only; 3-4. Different filter turnovers.

Well there you are. Three completely different ways of doing virtually the same thing. Each does its job well because of the work that has gone into getting the right circuit values for the purpose, rather than because its circuit is so much better than its fellows. I dare not express my opinion as to which I think serves the purpose best—it doesn't do to get partial with noiseurs! But I do feel that each achieves the ideal of providing its own degree of quality control facility with the minimum of knobs.

END
NO OTHER UHF ANTENNA combiNES ALL

1. Extra high gain
2. All channel reception
3. Sharp vertical and horizontal directivity

Walsco Corner Reflector

Not 1...Not 2...but all 3 combined for amazing picture clarity

NOTHING...absolutely nothing compares with Walsco's Corner Reflector. It's the only UHF antenna that offers a 3-way combination that produces sharper, clearer TV pictures. Truly a masterpiece in precision electronic engineering.

Walsco A Model to Fit Every Installation

Walter L. Schott Co.
3225 Exposition Place
Los Angeles 18, California

Overseas Representative: Ad Auriema, Inc., 69 Broad St., New York 4, New York
Velocity Microphone

This little job will sound good if well made

By GENE BRIZENDINE*

ALTHOUGH the velocity microphone was developed quite a number of years ago, it is still used more than any other type for high-quality sound pickup in broadcasting and recording. The velocity unit built by the writer provides faithful reproduction and high output, and may be duplicated by anyone with only simple hand tools. Actually, the unit shown in Fig. 1 may be assembled by drilling only four holes!

Basically, the velocity or ribbon microphone is simply a thin strip of metal suspended in a strong magnetic field. Any motion of the ribbon at right angles to the lines of force induces a voltage across the ends of the ribbon, which is an electrical reproduction of the original sound. The ribbon is corrugated and hangs rather loosely, so that its mechanical resonant frequency is below audibility. This arrangement prevents peaks from appearing in the usable audio spectrum. The corrugations also increase the output, since they cut more magnetic lines of force than would be the case with a flat, shorter ribbon.

The microphone shown in Fig. 1 was assembled by drilling only four holes.
FOR SALE!

These and 100,001 other Centralab quality electronic components

Here's a perfect check list to determine your electronic needs. And there are hundreds of variations available to you. Whether you need a few items or dozens — no other single manufacturer can offer you such a wide choice of standard fastest-for-servicing parts. That's why Centralab is the industry's No. 1 electronic component source... and keeps your distributor supplied with the latest developments in the fast-changing electronics field.

You know CRL parts are your best value because each is backed by a written guarantee. That means they're safest for servicing. And you'll agree that's mighty important for building consistent customer satisfaction.

So when you need parts, look for the familiar blue and white CRL package — the product inside is the result of more than 30 years of electronic experience. This experience has pioneered many profit-building "firsts" for you! For complete performance data and engineering specifications mail coupon.

Trademark P.E.C.—Printed Electronic Circuits

Centralab

A Division of Globe-Union Inc.
922K E. Keefe Ave., Milwaukee 1, Wis.
804 Mt. Pleasant Rd., Toronto 12, Ontario

Please send me Catalog 28 with information on Centralab products.

Name ___________________________
Title __________________________
Company _________________________
Address __________________________
City _______________________________
Zone ______ State __________
A set is no better than its Tuning Mechanism! ... and, there's no better tuner than the TARZIAN TUNER

It's no happen-so that so many of the nation's leading set manufacturers—the makers of the best-known receivers—use the TARZIAN TUNER in their products.

No other commercial unit possesses so many desirable features found in the TARZIAN TUNER. It's a small, precision-built instrument, expertly designed to provide unsurpassed selectivity and improved reception in ALL areas.

And, the practical, full band—all-channel approach to UHF (another first for Tarzian) is making the TARZIAN TUNER more popular than ever. It's popular with the manufacturer as well as the ultimate consumer who wants "everything" on the television set he buys.

SARKES TARZIAN, Inc. Tuner Division Bloomington, Indiana

PHOTOGRAPHS

RADIO-ELECTRONICS can use good photographs of service benches, service shops, high-fidelity audio layouts, and any other interesting and original radio-electronic devices.

We will pay $6.00 each for good professional photos or equivalent, suitable for reproduction.

Full information on subject photographed will increase their acceptability.

The Editor, RADIO-ELECTRONICS
25 West Broadway, New York 7, N. Y.

Fig. 3—The finished microphone housed in an air-freshener can. All-around perforations are essential to allow free passage of air through the microphone.

built with magnets from a war-surplus type E6-S-A field tele-phone. Magnets from small gasoline engines or other telephone ringers would contain magnets equally suitable. Before dismantling the original magnet assembly, mark the poles so that like poles may be placed adjacent in the microphone.

The concaved pole pieces are soft iron and should be handled with care. The magnets, one pole piece, and the end plates are the only items needed from the surplus unit.

After the parts are separated, saw one pole piece lengthwise, through its thinnest section. The two parts thus obtained will eventually form the microphone pole pieces. These can be seen on either side of the ribbon in Fig. 2, with their concave faces forward.

The two flat magnet clamps next to the pole pieces may be made from brass, aluminum, or any nonmagnetic metal. These should be at least 1/4-inch thick. The holes are spaced to match the tapped holes already in the sides of the pole pieces. The four large-headed screws are used to clamp the magnets to the pole pieces, and are the type used to hold panels to standard equipment racks.

Immediately below the pole pieces, one ribbon clamp is seen. This is made by simply sawing two strips from the original magneto end plates, or from nonmagnetic metals, so that the holes accept screws which thread into the pole-piece ends. The same screws also clamp one end of the ribbon. This end of the ribbon is thus grounded. At the top end of the pole pieces in Fig. 2, is an insulating ribbon clamp. This is a simple assembly, and may be made from bakelite, polystyrene, or any other suitable insulating material.
The small brass clamping strip immediately above forms the other ribbon terminal. It is necessary only that the ribbon clamps hold the ribbon between and parallel with the pole pieces. Actual mounting of the ribbon should be the last step of assembly.

Assemble the pole pieces first by running screws through the end plates into the tapped pole-piece ends, leaving the screws rather loose. Next, align the magnet and pole pieces, and clamp the assembly into final position with the large-headed screws so that the inner faces of each magnet are pressed flat against the pole pieces. Interchanging magnets may be necessary to obtain best alignment.

With the unit thus assembled, dress the sawed edges of the pole pieces, filing lengthwise and keeping the filed faces as nearly parallel as possible. The tang of the file may be used to gauge the width of the gap during this process. The final width of the gap will of course depend upon the width of ribbon used. These dimensions do not appear too critical, and a spacing of about $\frac{1}{16}$ inch on each side of the ribbon proved satisfactory in this unit.

A replacement-type ribbon may be purchased reasonably, or you can make your own easily from aluminum foil. The ribbon used in this model was made by cutting a foil strip about $\frac{3}{8}$" inch wide from a Nestle’s chocolate-bar wrapper, using a straightedge and razor blade. The corrugations were formed by rolling the strip between two small gears held in the hands. Tooth spacing was about $\frac{1}{32}$ inch. This dimension is not critical either, but the foil should be at least as thin as that mentioned above.

The matching transformer may be any ribbon-to-line or ribbon-to-grid type and should be mounted near the ribbon terminals. Be sure the transformer core is not positioned so that it forms a magnetic path across the magnet poles. This would bypass a large part of the flux around the ribbon gap. Ground one secondary terminal of the transformer to the magnet assembly, using a lug under any convenient screw.

At this point the ribbon may be mounted, and stretched just enough to prevent it from rubbing against the pole pieces when the unit is in its normal upright position.

The outside case may be of any material, the major requirement being that it permits free passage of sound past the ribbon. The writer’s microphone is mounted in a salvaged air-freshener co-container which was given a coat of brown wrinkle varnish. See Fig. 3.

The magnet-ribbon assembly is simply “floated” inside the case on strips of sponge rubber, preventing disturbances to the phase or stand from reaching the ribbon.

If hum pickup is encountered, it may be minimized by orienting the microphone while watching the volume level indicator, or listening to the hum level in the output. For most natural reproduction, the source of sound should be at least 12 to 18 inches from the ribbon.

Approved by service managers of:

Admiral
Zenith
Motorola
Emerson
Hoffman
Hallicrafters

All the necessary signal sources for alignment of FM and TV receivers • Includes the Simpson High Sensitivity Oscilloscope and high frequency crystal probe for signal tracing • Independent, continuously variable attenuators and step attenuators for both AM and FM units • Complete control of output at all times • 0.15 megacycle sweep is provided by a noiseless specially designed sweep motor based on the Arsenal meter movement principle • The exclusive Simpson output cable (illustrated) includes a variable termination network, quickly adapted to provide open, 75 or 300 ohm terminations • The addition of a pad provides attenuation and isolation. Use of appropriate resistors across certain terminals will provide any other termination required. A 0.02 MFD blocking condenser can be added on any termination for use on circuits containing a DC component • The FM generator output voltage is constant within 0.2 DB per MC of sweep.

Dealer’s net $475.00

SIMPSON MODELS 480 GENESECOPE FOR ACCURATE ESTING

SIMPSON ELECTRIC COMPANY
2520 W. Kinzie St., Chicago 44, Illinois • Phone: EStebrook 8-1232 • In Canada: Bach-Sirson Ltd., London, Ont.

25-5229

TRAIN AT HOME FOR UHF-TV AND TELEVISION SERVICING

Learn practical, professional type TV Service training without leaving your present job. Included are money-making extras such as set conversion, master antenna installation, UHF-TV, UHF short sets. You can start earning Television income after first few lessons. You learn to test, trouble shoot and repair all sets.

HERE’S HOW YOU GET EXPERIENCE!

You train on a large screen, modern TV receiver furnished with the course. Hands on experience. TV course includes the following:

1. TV COMMUNICATIONS INST.
205 W. Wacker Dr., Dept. RE-23, Chicago 6, Ill.

Rush FREE Catalog and Sample Lesson Today!

MAIL NOW FOR FREE BOOKLET

MILTON E. RIVER, President
TELEVISION COMMUNICATIONS INST.
205 W. Wacker Dr., Dept. RE-23, Chicago 6, Ill.

Rush FREE Catalog and Sample Lesson.

I am not obligated. Salesman will not call.

Name ____________________________

Address __________________________

VETERANS: Training Under Public Law 863. Check here.

Veterans: ______________

BEGINNERS check here for Free TV Course.
FALCON introduces...

Channels 2-13, peaked for low channels (2 thru 6)
Channels 2-13, normal position, peaked for all VHF channels (2 thru 13)
Channels 2-13, peaked for high channels (7 thru 13)
Falcon "VARI-CON" folded for packing

Model VC-1
Model VC-2
Model VC-3

FALCON easiest of all antennas to assemble merely open like an umbrella and tighten wing nuts

There is NO ASSEMBLY problem with a FALCON "VARI-CON". It takes longer to explain the operation than to accomplish it! Your FALCON "VARI-CON" comes folded into one compact unit. You need only swing the reflector into position and tighten the wing nuts. Move the sliding sleeve to the calibrated channel setting you desire and tighten. The butterfly springs snap the elements into position and lock them securely. The FALCON "VARI-CON" is ready to install, ready to provide peak performance. Changing the channel peaking of the "VARI-CON" is just as simple and easy as making the original setting. No tools are needed for either operation.

THE HEART OF THE "VARI-CON"

Above is a view of the new mechanism which enables anyone to adjust the peaking of the FALCON "VARI-CON" to any range of channels desired. The sliding sleeve, on the calibrated boom, automatically fans out the elements to their correct position.

A simple, trouble-proof snap-action spring in the butterfly keeps the elements solidly in place. The insulated hinge assembly is extremely strong, durable and weather-resistant and has an extra long leakage path. Weight has been kept to a minimum, strength at a maximum in order to assure long life and freedom from wind and weather damage. A heavily plated mast clamp is supplied.

RADIO-ELECTRONICS
Accurate
CAPACITANCE METER
Combined With a True VTVM

Measures Capacitance directly on a large 9 inch meter...
As low as 0.5 mmf... As high as 1000 mf... In 7 ranges...

In addition to being an accurate capacitance meter, the 209A furnishes the following readings on a large, 9-inch colored scale:

- DC Volts, 0-1200 in 6 ranges
- AC, RMS Volts, 0-1200 in 6 ranges.
- AC, Peak to Peak Volts, 0-1200 in 6 ranges.
- AF, IF and RF voltages from 10 cycles to 300 megacycles.
- 0.1 ohm to 10,000 megohms in 7 ranges.
- 50 mh to 100 henries.
- DC Mils, 0-1200 in 6 ranges.
- DC Zero-center scales, 0 to ±1200 volts.
- Decibels -20 to -1 in 3 ranges.
- AC input impedance: 3 mmf, shunted by 12 megohms.
- DC input impedance: Approximately 12 megohms.
- Built-in power supply permits high accuracy even with wide line-voltage fluctuation.

This HICKOK Model 209A is years-proven in the most demanding field and laboratory use. It is, without a doubt, the most dependable and accurate instrument of its kind. These 209A's seem never to fail in service, cause trouble, or wear out... And don't forget, the high frequency probe and leads are included. Also a high voltage probe is available to extend DC range to 30,000 volts.
Handy remote speaker from "useless" dynamic

By H. J. M. Duncombe

Here's a use for that perfectly good field-coil dynamic speaker that's lying in the junk box. All you need to turn it into a handy remote speaker is the simple a.c.-d.c. field supply shown in the diagram, and a pair of terminals connected to the voice-coil leads on your radio.

If the resistance of the field coil is 2,500 ohms or more, simply connect a selenium or copper-oxide rectifier that will handle 50 to 70 ma in series between the power line and the field. Then connect a 150-volt electrolytic capacitor.

If you're moving, please don't forget to send us your address as it appears on the copy of the magazine, including the numbers shown beside your name, as well as your new address.

If we receive this information before the 20th of the month, you will continue getting the magazine without interruption.

Your cooperation will be most helpful and greatly appreciated.
The "BIG JACK", recognized even by competitive manufacturers as the best performing VHF antenna design ever developed HAS BEEN ON THE MARKET FOR MORE THAN 11/2 YEARS!

We challenge any other manufacturer who claims this design as his original idea!

This gain chart proves the superiority of the K-T "BIG JACK" VHF antenna.

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>BJ-1</th>
<th>BJ-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NO OTHER VHF ANTENNA CAN HONESTLY CLAIM THESE "BIG JACK" RATINGS AS A RESULT OF THEIR OWN ORIGINAL ENGINEERING AND DEVELOPMENT.

KAY-TOWNES ANTENNA CO. ROME, GEORGIA

Recognized leaders in the field of fringe area antenna design

NOVEMBER, 1953
a sure prescription for

Better TV Picture Quality

AMPHENOL UHF/VHF ANTENNAS

The finest picture a set is capable of delivering—this is the advantage that AMPHENOL UHF and VHF antennas give every discriminating TV set owner. And this extra dividend in better TV picture quality is unique with AMPHENOL—the result of AMPHENOL engineering and craftsmanship construction.

Because of AMPHENOL engineering, each antenna is characterized by superb electrical performance—backed up by published gain charts and radiation patterns made in accordance with proposed RETMA standards and, therefore, a reliable index to antenna performance.

Because of AMPHENOL construction, fine materials assembled into rugged examples of craftsmanship and quality checked throughout every phase of manufacture, each antenna will give long years of trouble-free service.

For every installation, new or replacement, the surest prescription for better TV picture quality is the specification of an AMPHENOL quality antenna.

read the story of television

the "TV Antenna Folio"

A new and instructive AMPHENOL guide to the problems of television is the "TV Antenna Folio." Printed in full color with Kodachrome illustrations from the AMPHENOL film "The UHF-VHF Television Antenna Story," it stories and compares UHF and VHF television waves from the transmitting antenna to the antenna on the rooftop. Write today for your free copy.

mail coupon now

AMERICAN PHENOLIC CORPORATION
1830 South 54th Ave., Chicago 58, Illinois

Please send me the "TV Antenna Folio."

Name__________________________
Company_______________________
Street_________________________
City___________________________ Zone________ State__________
of good quality, and will provide many ers that can be found lying around are attic. Most of the field-energized speak
need for it anywhere from basement to
the frequency response.

Field-coil dynamics with lower field resistances can be used in the same way, provided you insert enough series re
stance between the rectifier and the filter capacitor to limit the current to a safe value. A good general rule is that the d.c. input to the field coil should be at least equal to the audio power fed to the voice coil, but there's no need to overexcite the field, especially where the speaker is merely an extension on the average home radio.

To find the proper d.c. voltage for the field use the following formula:

$$E = \sqrt{WR}$$

Where W is the maximum audio power in watts, and R is the field-coil resistance. Then adjust the series resist ance to keep the d.c. voltage as far under this value as possible without affecting the sound quality.

If the resistance of the field coil is extremely low (say 10 ohms or less) the speaker was probably part of an auto radio originally, and you will have to excite it with a 6-volt storage battery or an equivalent eliminator. This would likely be impractical for home use, but it might make a fine rear-seat speaker for a car. (Some television speakers have field-coil resistances of around 60 to 75 ohms. These require about 200 ma at about 12 to 15 volts for full excitation. Unless you have the parts lying around, a power supply for this type would probably cost more than a new PM speaker.)

Don't worry too much about a possible impedance mismatch between the voice coil of the extra speaker and the output transformer in your radio or amplifier. In most cases—especially with the average small radio—even a three-to-one mismatch won't make much difference in the sound quality. But if you want to know the nominal impedance of the voice coil, there's an old rule-of-thumb that works out pretty well: Multiply the voice-coil resistance by 1.25.

The rectifier-filter assembly for this speaker was mounted on an aluminum bracket bent to fit over the magnet yoke, as shown in the photograph. The extension speaker was then installed in a simple, sloping-front wooden baffle fitted with a small plate at the top for hanging on the wall. Note that the speaker is mounted off-center vertically and horizontally. This helps smooth out the frequency response.

The uses for a remote speaker are too numerous to mention. There is usually a need for it anywhere from basement to attic. Most of the field-energized speakers that can be found lying around are of good quality, and will provide many hours of "found" entertainment.
Sylvan A. Wolin & Associates Sales Corp., 409 Grand Avenue, Englewood, N. J.

Presenting... at most moderate cost...

ESPEY
25th Anniversary "Trophy" Models
AM-FM CHASSIS • TUNERS • AMPLIFIERS

In commemoration of twenty-five years' experience in the manufacture and development of high-fidelity audio equipment, Espey is proud to present its distinguished "Trophy" models. Renowned for beauty of styling and excellence of performance, the new Espey models are so reasonably priced that for the first time magnificent listening pleasure is within the means of all lovers of fine audio reproduction.

Descriptive literature on the new Espey AM-FM chassis, tuners and amplifiers is now available... your inquiry is invited.

"See, I told you a JENSEN NEEDLE would guarantee results."

National Electronics GREATEST Special Purchase BARGAIN Tremendous Savings While They Last

2 BAY 16 ELEMENT CONICAL ARRAY INCLUDING HIGH BAND ADAPTERS $4.45 Each IN LOTS OF THREE Single Lots $4.95

Never before has National Electronics had a special purchase in order to net these sensational prices. This unique Espey UHF antenna, 16 elements, conical array, provides the ultimate in UHF reception. Includes sixteen 6' high elements, matching base, fully shielded, etc., and metal mounting channel. Whether you purchase your new Espey "Trophy" model or another make, this particular array is perfectly designed for maximum performance. In short, it's a tremendous value.

FAMOUS ROCKET ZOOM-UP TOWERS

Sutco "Metropolitan" UHF CONVERTER

National Electronics of Cleveland

THE HOUSE OF TV VALUES

211 Dolce Building Cleveland 3, Ohio

RADIO-ELECTRONICS
MIDWEST Presents

For 1954 a Completely NEW LINE of 21" and 27" TELEVISION CONSOLES TABLE MODELS and COMPLETE CHASSIS at LOW FACTORY PRICES

YOUR CHOICE OF EITHER 12 CHANNEL VHF or All-Channel VHF-UHF Models

Buy your Television or Radio Direct from the Midwest Factory... on 30 DAYS TRIAL... Easy Terms... and at LOW FACTORY PRICES.

To You, radio and television manufacturer, has served hundreds of thousands of satisfied customers all over the world.

EASY TERMS
30 DAYS TRIAL

FACTORY-TO-YOU

Also—Powerful New 1954 World-Ranging MIDWEST Series 16 RADIOS in Beautiful Consoles and Complete Chassis

Once again Midwest offers its famous series 16 five band AM-FM radio chassis and the magnificent new Symphony Grand Radio-Phonograph with 3-Speed Automatic Intermix Record Player. Also, a complete line of clock radios, table radios, and portables.

WRITE IN NAME AND ADDRESS (PLEASE PRINT) ON COUPON OR 2c POSTCARD

MIDWEST RADIO & TELEVISION CORP.

DEPT. C-38 909 BROADWAY, CINCINNATI 2, OHIO
NEW SMALL VERSATILE

P.A. Lavaliere

DYNAMIC MICROPHONE

For Chest, Desk or Hand Use

FIRST EVER IN SUCH SMALL SIZE FOR PUBLIC ADDRESS

Unlike any lapel microphone, the "647" offers full-range E-V dynamic microphone quality, ruggedness and performance characteristics for indoor and outdoor use. Response 60-13,000 cps, specially compensated for chest resonance. Output — 57 db.

Only 4" x 1", the "647" can be worn around the neck, or used in the hand, on a desk or on a boom. When suspended from the neck, a unique clip provides secure support—frees the user's hands for gestures and demonstrations, permits him to move around.

Exclusive E-V Acoustalloy diaphragm is virtually indestructible. Acoustically-treated grille minimizes effects of wind and breath blasts. Supplied complete with combination neck cord and tie clip for microphone, belt clip for cable, rubber desk stand and 18 ft. cable. Available in Low or Hi-Z.

Model 647, List Price, $80.00
Net, $48.00

See your E-V Distributor or Send for Bulletin 201

Simpie Instrument Measures Frequency Deviation

To provide more reliable and sensitive receiving and recording instruments for communications signals, Norris Hekimian of the National Bureau of Standards Central Radio Propagation Laboratory has developed this comparatively simple frequency deviation meter. The instrument indicates the deviations of a signal from a reference frequency to better than 0.5%. It performs the same function as the tuning eye on regular broadcast receivers but with sufficient precision to be used in the laboratory or as part of the production inspection procedure in a manufacturing operation.

The circuit consists of a limiter-discriminator arrangement and a means of driving an indicator from the discriminator output. The 6BN6 gated-beam tubes are used to simplify the circuit and to hold the tube complement to two in number. The second 6BN6 stage provides additional limiting and with quadrature-grid discrimination. The indicating device—a 150-0-150 microammeter—is driven through a d.c. bridge circuit by the current resulting from unbalance in the plate circuit of the discriminator. The circuit unbalance arises when the input signal differs from the zero-set or reference signal.

To avoid plate-current cutoff by self-bias, 60-millihenry chokes are used instead of resistors in the signal grid returns of the 6BN6 tubes. The 330-ohm resistors in the plate leads dampen the plate surges and aid in obtaining a flat limiter characteristic. The unit draws 10 ma at 150 volts d.c. from a well-regulated supply. For more stable operation, the heater supply is also regulated. Circuit components are not critical, but stable elements reduce maintenance problems. The d.c. bridge resistors in the indicator circuit are well ventilated to avoid changes in resistance from overheating. The tank coil (L1) in the plate circuit of the first stage is set to resonate at the center or reference frequency (450 kc in this instance) and has a Q of about 60 when adjusted on a meter external to the circuit. The quadrature-grid tank coil L2 also resonates near the center frequency and has a Q of 100 when measured out of the circuit. The quadrature tank determines the reference frequency of the deviation meter, so it is enclosed to protect it from harsh handling and from being overheated by neighboring power resistors.

The NBS circuit has two inherent disadvantages: (1) Because the current flow in the grid of the first 6BN6 is limited, the input impedance of the meter varies with the level of the input signal and has a minimum value of about 10,000 ohms. This relatively large minimum is generally acceptable, but a low-output impedance driver—such as a cathode follower—may be used when necessary as a buffer between the signal source and the deviation meter. (2) This unit shows considerable interaction between discriminator adjustments, so the initial aligning procedure is tedious.

The alignment procedure is as follows: (1) Replace the indicating meter with a high-impedance voltmeter, and then note the direction of the needle swing for increasing input signal from 0 to 1 volt. Tune the plate coil of the first stage for maximum voltmeter reading in the noted direction. During this period, keep the input potential at the lowest value that will allow readable output changes. (2) Adjust the zero control of the d.c. bridge and the tank capacitor in the quadrature grid simultaneously for approximately a normal discriminator curve as the signal generator frequency is slowly varied about 10 kc on either side of the desired mean frequency. (3) With the input signal set at the desired mean frequency, slowly vary the input level from about 0.2 to 2.0 volts, and adjust the cathode resistor in the output stage for the flattest limiter characteristic obtainable. Monitor the signal generator frequency continuously with a stable receiver and beat oscillator to insure that the frequency does not vary when the output is changed. (4) Replace the indicating meter and repeat steps (2) and (3) to obtain the desired symmetrical discriminator characteristic and good limiting.

For further technical details, see “Frequency-Deviation Meter Plots Drift,” Electronics, June 1952.
$100,000. STOCK

of Nationally Advertised Radio & Television Testing Equipment, Parts, and Electrical Appliances.

Complete Stock of Radio and Television Testing Instruments and Parts to be sold regardless of cost.

This is the opportunity of a lifetime!

PRICES REDUCED UP TO 80%

Below mentioned units are not kits, but all factory wired and brand new. Some models have been discontinued by the manufacturer, but every one is factory sealed and carries a one year, factory guarantee.

WRITE, PHONE OR WIRE YOUR ORDER FOR IMMEDIATE DELIVERY, QUANTITIES ARE LIMITED.

SUPERIOR

- Model 1553 Multitester
- PB-100 Multitester
- 680-5000 Ohms per volt Multitester
- 670 Supermeter
- TV-10 Tube Tester
- 640 Signal Generator
- TV-20, 20,000 ohms per volt Multimeter

TEST RITE

- B-45, A.M., F.M. and Television Signal Generator, battery operated
- 111, A.C.-D.C. Multitester
- 999, A.M.-F.M. & Television Signal Generator and Signal Tracer, battery operated
- TC-10, A.C.-D.C. Multitester
- TC-50, Combin. Tube and Set Tester
- TC-75, Combin. Test Speaker and Signal Tracer
- 543-S, Multitester
- 322, Tube Tester
- 668, Electronic Multitester
- 665, A.C.-D.C., V.T. Volt-Ohm Capacity
- 200, Crystal operated Signal Generator
- 689-F, Multitester, incl. case
- 630, Wheatstone Resistance Bridge
- 637, Kelvin Wheatstone Res. Bridge
- 333, D.C. Volt-Ohm Milliammeter

TEST CRAFT

- Model 1553 Multitester
- 102, Vometer
- 205, Tube Tester
- 206, Mutual Conductance Tube Tester
- 600, Oscilloscope
- 2 1/2" D.C., D'Arsonval Type, 1 Milliammeter, Meter
- Model 606, 1 Milliam. Meter
- Model 507, F.S.-1.2 Milliam. Meter
- Model 331-JP 30 Amperes, Meter
- 3" D'Arsonval Type, 1 Milliam. with calibrated Volt-Ohm Current Scale, Meter
- Radio & Phonograph Chassis Cradles
- 61/2" Paper Recording Discs, sold only in cartons of 100
- 8" Glass Recording Discs, sold only in cartons of 24
- 10" Glass Recording Discs, sold only in cartons of 24
- 61/2" Metal Recording Discs, sold only in cartons of 100
- 12" Metal Recording Discs, sold only in cartons of 10
- 180 ohm resistance line cords, 6 feet with plug
- 3 speed recordplayers, with life-time needle, portable case, speaker & amplifier
- Recordchanger
- Model 950, 3 speed Recordchanger, Tri-O-Matic, intermixed
- 3 speed Recordchanger, automatic, with life-time needle, portable case, speaker and amplifier
- Automatic Pop Up Toaster, fully guaranteed
- Model 441, double, twin-sized electric Waffle Maker
- Genuine, imported Black Forest, hand-carved, cuckoos every 15 minutes
- Electronic, oscillating massager with infrared heat combined
- Fully Automatic Rotisserie and Broiler Combination

METROPOLITAN

- Model "RIVIERA"
- Electronic, oscillating massager with infrared heat combined
- 8.95 each 3.95
- Fully Automatic Rotisserie and Broiler Combination, 7 way, with time clock, 3 heat element, double powered
- 69.50 37.95

ACRO

- Radio & Phonograph Chassis Cradles
- 61/2" Paper Recording Discs, sold only in cartons of 100
- 8" Glass Recording Discs, sold only in cartons of 24
- 10" Glass Recording Discs, sold only in cartons of 24
- 61/2" Metal Recording Discs, sold only in cartons of 100
- 12" Metal Recording Discs, sold only in cartons of 10
- 180 ohm resistance line cords, 6 feet with plug
- 3 speed recordplayers, with life-time needle, portable case, speaker & amplifier
- Recordchanger
- Model 950, 3 speed Recordchanger, Tri-O-Matic, intermixed
- 3 speed Recordchanger, automatic, with life-time needle, portable case, speaker and amplifier
- Automatic Pop Up Toaster, fully guaranteed
- Model 441, double, twin-sized electric Waffle Maker
- Genuine, imported Black Forest, hand-carved, cuckoos every 15 minutes
- Electronic, oscillating massager with infrared heat combined
- Fully Automatic Rotisserie and Broiler Combination

ALL PRICES ARE F.O.B. NEW YORK, 20% DEPOSIT WITH ORDER, BALANCE C.O.D., OR FULL REMITTANCE WITH ORDER

WRITE, PHONE OR WIRE YOUR ORDER FOR IMMEDIATE DELIVERY, QUANTITIES ARE LIMITED.
craftsmen national advertising is Taylor made to bring you new high fidelity customers!

Deems Taylor ... known to millions of Americans as the world's greatest authority on music ... once again spearheads Radio Craftsmen national advertising with the High Fidelity Story. Through Craftsmen full page advertisements in scores of the nation's leading magazines Mr. Taylor, in interesting and informative columns, will be telling more than 2,500,000 readers—key prospects for you—the distinct advantages of unit High Fidelity. Plan now to squeeze every ounce of value out of this great promotion by featuring the complete Craftsmen line. Write today for details.

Month After Month in popular magazines, carefully selected to reach your customers and prospects, smashing full page advertisements like these will be pounding home the Taylor story ... the High Fidelity Story ... the Craftsmen Story!
Cash in on craftsmen advertising—
order these sales helps today!

Deems Taylor Booklet
Revised edition including new installation photos and complete Craftsmen line. Lithographed in color, 24 pages of information on High Fidelity so basic, so clear you'll want to use it as a selling tool!

Color Displays
Outstanding new window and counter display materials for the complete Craftsmen "Assembly," individual units, Deems Taylor booklet. Die-cut, attention getting cards that stop them in their tracks—and sell!

Consumer Literature
Attractive, hard-selling folders promoting the Craftsmen "Assembly" and the complete Craftsmen line. Useable as envelope stuffers, imprint space provided. Complete technical literature available in quantity.

The craftsmen line is the shortest distance between sales

high fidelity by craftsmen means distinctly better listening

the radio CRAFTSMEN, inc., Dept. L-10, 4401 N. Ravenswood Ave., Chicago 40, Ill.

NOVEMBER, 1953
There's REAL Money in TV Signal Distribution

with the

Add-A-Unit

MASTER TV SYSTEM

for UHF and VHF

The B-T Add-A-Unit System is a new tool. It is your 'open sesame' to the biggest boom that has ever hit the TV servicing industry.

Hotels, motels, schools, apartment houses, community developments, hospitals, and hundreds of others with multi-receiver problems are clamoring for low cost, easy-maintenance, efficient TV distribution systems.

This is YOUR BIG MARKET... your real money market

The B-T Add-A-Unit System offers you these advantages:

1. It is the lowest cost amplified distribution system ever designed.
2. It is the easiest system to install under all conditions... requires no special tools and no outside engineering assistance.
3. Its flexibility is practically unlimited and it can serve 2000 TV receivers as effectively as it can serve 2.
4. It has no 'bugs' and requires little or no maintenance.
5. It permits complete control of signal strength: amplification or attenuation, as may be required, assuring high quality reception at all TV outlets from all available channels.
6. Every B-T Master System installed by you is a sure fire 'clincher' for additional business.

Let the B-T System Work for You.

The B-T Add-A-Unit Master TV System consists of the following B-T units:

- MIXER AMPLIFIER
- DISTRIBUTION AMPLIFIERS
- COMMERCIAL AMPLIFIERS
- RESISTOR OUTLET BOX
- TV SYSTEM ACCESSORIES
- Attenuator
- Matching Transformer
- Remote Control
- Line Splitters
- Line Loss Equalizer
- Weather-Proof Housing

Write to Dept. NL-3 for Free Installation Manual and Complete Specification Data.

BLONDER-TONGUE LABORATORIES, INC.
Westfield, New Jersey

BROADCASTING AND COMMUNICATIONS

BEST WAVE FOR URBAN USE

What is the best frequency for communication in urban areas? This important question is of interest to radiotelephone, TV, ham, and other services often concentrated in and around cities. The Bell Telephone System has the answer, at least for mobile radiotelephone using FM. After extensive tests and comparisons over a frequency range from 150 to 3,700 mc, Bell scientists conclude that 500 mc is optimum. Furthermore, they find that 900 mc is better than 150 mc. These and other facts are presented in the Bell System Technical Journal for November, 1952.

\[\text{Fig. 1} \]

It is a basic truth that transmission efficiency drops as frequency rises. For example, 450 mc is less effective than 150 mc by 7 db. At 900 mc, reception would be off by 11 db, and at 3,700 mc the loss is 31 db. There are other factors, however. At higher frequencies there is less noise. In this respect, 900 mc is better than 150 mc by 13 db. Also, directional antennas benefit the upper bands. The higher the frequency, the more practical it is to build directional radiators.

Fig. 1 shows power required for reliable communication in urban and suburban districts. A quarter-wave whip antenna is used at the receiver. The upper curve is for a dipole radiator. It shows that 150 watts at 450 mc is equivalent to 250 watts at 150 mc and to 270 watts at 900 mc. The frequency difference is more marked when a "gain" antenna is used. This concentrates power in the horizontal plane. Note the optimum near 500 mc.

An important factor in evaluating mobile radio transmission is the strength of the r.f. path. The mobile units of a mobile system are either moving around or, if stationary, are located at random. Since the effects of the many geographical features, buildings, and the like, which influence propagation can combine differently for different locations of a car, even where the locations are only a fraction of a wavelength apart, the only meaningful measure of signal strength is a statistical one.

The Bell experiments were carried on in New York City. The radiator was 450 feet high, atop the Long Lines Building in Manhattan. A station wagon carried the receiving and measuring equipment.—I. Queen

RADIO-ELECTRONICS
MONEY BACK GUARANTEED TO RECEIVE All UHF and All VHF STATIONS IN All DIRECTIONS FOR 60 MILES WITHOUT A ROTOR MOTOR OF ANY KIND!!

WORLD'S MOST POWERFUL UHF—VHF TELEVISION ANTENNA

While antenna reception is guaranteed for 60 miles, perfect pictures have been consistently received as far as 160 miles from stations.

NEW DESIGN FOR '54

- LOW-LOSS SWITCH
- LOW-LOSS PHENOLIC INSULATORS
- USES NEW 4-CONDUCTOR MATCHED IMPEDANCE LINE
- ONLY 10 INCH SPACING BETWEEN ANTENNA BAYS

LIST PRICE

$36.75

SEE YOUR LOCAL JOBBER

The 9 position selector switch electronically rotates the antenna in a stationary position.

PRICE INCLUDES

Complete 4 stacked array + 4 stacking bases + 9 position switch + Switch-to-set coupler + 2 - 7 1/2" stands + Individually boxed in mailable cartons

ALL CHANNEL ANTENNA CORP.

70-07 Queens Blvd., Woodside 77, N.Y.

Hickory 6-2304

NOVEMBER, 1953
Better Pictures...Better Sound
Peak Performance All Around!

The NEW
SKYLINE UHF-VHF

- One Lead-In
- All Channels
- All Frequencies
- Parts and Performance Warranty!
- Pre-Assembled
- Quick Rig
- Now 32 Elements
- Separate UHF-VHF Circuits
- Amazing Reception to 150 Miles and More!

It's Tomorrow's Antenna TODAY!

Skyline Mfg. Co., 1458 E. 17th Street, Cleveland 14, Ohio

To the
E.E. or
Physics Graduate
with an interest
or experience in
Radar or
Electronics

Hughes Research and
Development Laboratories, one
of the nation's large electronic
organizations, are now creating a
number of new openings in an
important phase of operations.

Here is
what one of
these
positions offers
you

Our Company
located in Southern California, is presently
engaged in the development of advanced
radar devices, electronic computers and
guided missiles.

These New Positions
are for men who will serve as technical ad-
visors to the companies and government
agencies purchasing Hughes equipment.

You Will Be Trained
(at full pay) in our Laboratories for several
months until you are thoroughly familiar
with the equipment that you will later help
the Services to understand and properly
employ.

After Training
you may (1) remain with the Laboratories
in Southern California in an instruction or
administrative capacity, (2) become the
Hughes representative at a company where
our equipment is being installed, or (3) be
the Hughes representative at a military base
in this country—or overseas (single men
only). Adequate traveling allowances are
given, and married men keep their families
with them at all times.

Your Future
in the expanding electronics field will be
enhanced by the all-around experience
gained. As the employment of commercial
electronic systems increases, you will find
this training in the most advanced tech-
niques extremely valuable.

How to Apply
If you are under 35 years of age
and have an E.E. or Physics
degree and an interest or
experience in radar or electronics,

Write to
Hughes
Research and Development
Laboratories
Scientific and Engineering Staff
Culver City,
Los Angeles County, California

Assurance is required that the relocation of the
applicant will not cause the disruption of an
urgent military project.
AGAIN PHILCO LEADS THE INDUSTRY

Serviceman's needs seen as Philco's Engineering Goal

This new Philco VHF to UHF adapter pioneers a whole new approach to service problems and at the same time is the most economical and practical unit ever offered. Servicemen are taking full advantage of the introductory demonstrations of this amazing piece of equipment now offered by Philco distributors coast to coast.

The First and Only VHF to UHF Signal Generator Adapter

Continuing its engineering program designed to provide the serviceman with the best possible test equipment Philco Corporation now offers at a fraction of the usual cost an exclusive highly specialized adapter unit for converting the output of VHF TV servicing test equipment to UHF.

One of the Finest Vacuum Tube Voltmeters ever Designed

Facing up to the task of measuring high impedance circuits where loading effect must be kept to a minimum Philco has again designed a unit which meets the most rigid engineering specifications. All reports indicate this unit is unexcelled for complete and accurate measurements.

Practical Portable 3-inch Television Oscilloscope

The tremendous growth of television requires the most practical and versatile types of equipment to answer service needs. Philco has such equipment, particularly in its 3" scope which is 2½ times smaller than other 3" units, making it adaptable to either bench use or field servicing. High sensitivity and wide response make it ideal for TV work.

"Philco Test Equipment Specifically designed for the serviceman!" That's the theme of Philco's engineering program. A program which you, the serviceman, can depend upon to supply the very finest in service test equipment. Discover how easy it is to own a complete Philco Test Equipment Laboratory. Your Philco Distributor is eager to serve you by offering his new special payment plan to best accommodate your needs. Fill out the attached coupon as shown and mail to Philco Accessory Div.

PHILCO CORPORATION
Accessory Division
Allegheny Ave. & "A" St., Phila. 34, Pa.
□ I am interested in the Philco Test Equipment shown here. Please send me details of your SPECIAL PURCHASE PLAN for obtaining these units.
□ Please send FREE copy of your new booklet on Philco Test Equipment.

NAME..
ADDRESS.....................................
CITY.................................STATE.....

NOVEMBER, 1953
over 99%* hit the bull's-eye for quality!

that's why we call Federal PICTURE TUBES "BEST-IN-SIGHT"

Thousands of famous-name picture tubes were quality-tested by a famous-name TV set manufacturer. When the scoring was over, Federal led all the brands tested ... with an "OK" on over 99% of its tubes!

Here's proof, Mr. Serviceman, that it pays to replace with Federal ... here's assurance of top performance ... of less time wasted on call-backs ... of more profit per tube replaced!

Federal quality brings to servicemen a tremendous opportunity to create customer-goodwill ... to build steady replacement business.

Federal quality stands by servicemen, because it stands up in service ... backs up their years of experience and know-how ... their trained judgment. That's one of many big reasons why more and more servicemen are specifying Federal "Best-in-Sight" picture tubes.

Join the trend today ... ask your Federal Distributor about the popular-size line that takes care of over 90% of all TV replacements ... ! For information, write to Dept. N-363.

"Federal always has made better tubes"

Federal Telephone and Radio Company

100 KINGSLAND ROAD, CLIFTON, N. J.

Export Distributors: International Standard Electric Corp., 67 Broad St., N. Y.

Get Your Copy of Federal's TV Picture Tube DATA BOOK

12-page booklet with information on interchangeability, basing diagrams, bulb outlines, dimensions, characteristics. Address your inquiry to Dept. listed above.
NEW DESIGN

(new tubes)

(and Transistors)

As might be expected of a relatively new product, transistors continue to undergo rapid and basic development. General Electric has announced new all-welded junction transistors with essentially infinite life expectancies. The new units, type 2N43 for high-gain, 2N44 for intermediate-gain, and 2N45 for medium-gain, are evacuated, hermetically sealed, and of all-welded metal construction. This eliminates the aging effects of moisture and trapped solder-flux fumes. The new construction also allows power ratings up to three times those of any previously announced transistors (almost 1 watt, with two units in a class-B push-pull circuit).

In a novel exhibit at the West Coast Electronics Show in San Francisco, the transistor was operated as the heart of a miniature radio transmitter while frozen in a cake of ice which was then melted and turned into boiling water. This demonstrated the transistor’s ability to perform efficiently under extreme variations in temperature and humidity.

The germanium fused junction transistors are triode P-N-P units. The absolute maximum ratings are: collector voltage (referred to base) — 45; collector current — 10 ma; emitter current — 10 ma.

Transistor Products, Inc., has announced the development of a type X-25 germanium N-P-N junction photo transistor said to be the first commercially available amplifying photo transistor.

November, 1953
106

NEW DESIGN

of television signal generators

- more sweep
- greater RF output
- better stability
- increased accuracy
- unlimited flexibility
- lower cost

model TVG-2

X-25 amplifying photo transistor.

ever made. Its immediate applications will include use in automatic equipment such as punch-card accounting machines, dimmers for automobiles, and brilliance controls on television receivers.

The X-25 photosensitive transistor has sufficient power output to operate a relay. Maximum operating power is 60 mw and maximum nondestructive power is 400 mw. The X-25 may be considered as a light-sensitive device with an incorporated amplifier.

RCA has announced production of three premium-type tubes. The 5719 is a high-mu triode of the subminiature type for use primarily as an audio amplifier in mobile and aircraft receivers where dependable performance under shock and vibration is a prime consideration. In audio use as a resistance-coupled amplifier, the 5719 is capable of providing high voltage gain. A pure tungsten heater is used to give long life under conditions of frequent on-off switching.

The 5814 is a medium-mu twin triode of the 9-pin miniature type for use in many diversified applications including mixers, oscillators, multivibrators, synchronizing amplifiers, and industrial control devices where performance under shock is important. The 5814 has electrical characteristics similar to those of the 12AU7, but differs in that it has higher heater current and a lower heater-cathode voltage rating. The 5814 also has a pure tungsten heater for frequent on-off switching, a mid-tapped heater to permit operation from either a 6.3-volt or a 12.6-volt supply, and separate terminals for each cathode for flexible circuit arrangement.

The 5840 is a sharp-cutoff pentode of the subminiature type for use as a broad-band r.f. or i.f. amplifier in mobile and aircraft receivers. Like the 5719 and the 5814, the 5840 has a pure tungsten heater. The 5840 has three leads to the cathode to permit isolation of the input and output circuit returns and to reduce the cathode lead inductance.

Another RCA release is the 12AQ5, a beam power amplifier of the 7-pin miniature type intended primarily for use in the output amplifier of automobile radio receivers operating from a 12-volt storage battery. The 12AQ5 is identical in characteristics with the 6AQ5 with the exception of its filament voltage of 12.6, and filament current of 225 amperes.

Five new tubes have been added to...
GUARANTEED PERFORMANCE

SO NEW! SO DIFFERENT!
IT'S PATENTED!

POLYMICALENE
4 CONDUCTOR
TRANSMISSION LINE

- Low Loss External - Air Dielectric
- Matched Impedance
- Eliminates End Sealing
- Eliminates Condensation
- Up to 50% Less Loss Than Tubular When Wet
- Easily Spiraled
- No Breaking or Shorting
- Patents Pending - T. M. Reg.

100 Ft. $8.90 Minimum quantity

Mfg. solely by
ALL CHANNEL ANTENNA CORP.
Woodside 77, N. Y.

GREYLOCK ELECTRONIC SUPPLY CO., Inc.
115 Liberty Street, N.Y.C. 6, N.Y.

Please send me.................. amount at $36.75 list price.

Please send me.................. amount at $22.05 dealer net.

Please send me.................. feet of Polymicalene 4 Conductor.

Name............................

Address..........................

City..............................State..........................

[] Check Enclosed [] Money Order Enclosed

[] C.O.D. enclosed please find 25% of total purchase price...

[] Check [] Money Order. Please send new 8 page catalog supplement.

[] Please put my name on your mailing list.

GREYLOCK ELECTRONICS
SUPPLY COMPANY
• NEW YORK 6, N. Y. • Beeckman 3-0224

NOVEMBER, 1953

MONEY BACK GUARANTEED
TO RECEIVE All UHF and
All VHF STATIONS IN All
DIRECTIONS FOR 60 MILES
WITHOUT A ROTORMOTOR OF ANY KIND!!

WORLD'S MOST POWERFUL UHF—VHF
TELEVISION ANTENNA

While antenna reception is guaranteed
for 60 miles, perfect pictures have been con-
sistently received as far as 160 miles from
stations.

All NEW DESIGN FOR '54

- LOW-LOSS SWITCH
- LOW-LOSS PHENOLIC INSULATORS
- USES NEW 4-CONDUCTOR
 MATCHED IMPEDANCE LINE
- ONLY 10 INCH SPACING
 BETWEEN ANTENNA BAYS

The 9 position selector switch electron-
ically rotates the antenna in a sta-
tionary position.

PRICE INCLUDES
Complete stacked array • 4 stacking bars • 9 position switch •
Switch-to-set coupler • 2 • 7½" stand off • Individually boxed in
mailable carton
NOW TWO GREAT PRECISE OSCILLOSCOPES
(IN KIT OR WIRED FORM)

THE NEWEST, THE ONLY ONE OF ITS KIND!

8½" OSCILLOSCOPE: PRECISE MODEL #308

Now another great Precise Oscilloscope!
The only 8½" Oscilloscope on the Commercial Market...in Kit or Wired Form...at an unbelievably low price.
Designed to bring you true TV picture clarity and laboratory tested accuracy.

ALL THE OUTSTANDING FEATURES OF THE MODEL 300 as shown below, PLUS:

★ INTENSIFIER ANODE
★ HI-LOW-NORMAL SYNCH. (A Precise First)
★ 8½ INCH TUBE (A Precise First)
★ VOLTAGE REGULATION (A Precise First)

"Seeing is Believing"—Go and See!
your nearest jobber

308K-kit form $129.50

NEW DESIGN

General Electric's "Five-Star" line to bring the total of available types to 31, capable of performing all typical electronic functions in receiving-tube applications. Specifically designed for use in equipment in which extreme electrical and physical dependability is essential, the newest group of "Five-Star" tubes includes a twin diode, two twin triodes, and two pentodes.

The GL-5899 is a subminiature, semi-remote-cutoff pentode for use as a wide-band, high-frequency amplifier. Its semi-remote-cutoff characteristic makes it suitable for use in automatic-gain-control circuits. The tube is especially suited for compact military applications because of its dependable performance, stable operating characteristics, and small size.

The GL-6021 is a subminiature medium-mu twin triode suitable for use in general-purpose amplifier applications. Each section has an individual cathode and is electrically independent. The tube is designed for service under severe conditions of mechanical shock and vibration, high ambient temperatures, and is especially suited for compact military applications.

The GL-6134 is a sharp-cutoff pentode intended for service as a wide-band radio-frequency or intermediate-frequency amplifier, or as a video amplifier. Features include a high degree of mechanical strength and a heater-cathode construction designed to withstand many thousand cycles of intermittent operation. Electrically and physically, the GL-6134 is a replacement for the 6AC7.

The GL-6202 is a miniature full-wave high-vacuum rectifier for use in power supplies in which the d.c. current requirements do not exceed 50 milliamperes. Within the limits of its maximum ratings, it is a replacement for the 6X4. The GL-6202 may be used at altitudes as high as 60,000 feet, and will withstand a peak impact acceleration of 700 g.

The GL-6203 is a miniature full-wave high-vacuum rectifier intended for use in power supplies of a.c. and storage battery operated equipment. Like the GL-6202, the tube may be used in applications which are subject to altitudes as high as 60,000 feet, and will withstand a peak impact acceleration of 700 g.
Double Lock Stop Prevents Drift & Coast

Built-in Chimney Mount Design

Steel Reinforced Construction

"TERRIFIC!" say TV servicemen — and you’ll echo their words when you see the amazing new Superotor. Imagine — a drive unit as easy to replace as a light bulb! Strictly a one-man job! No fussin', no cussin', — no need to dismount the antenna — no need to interrupt TV viewing while the drive unit is being serviced. Great? Yes! — and this is just one of FIVE major advances that put Superotor years ahead of anything on the market. No wonder the big switch is to Superotor!

2925 EAST 55th ST., CLEVELAND 27, OHIO

... LEADING THE WAY TO BETTER PRODUCTS
CREDIT FOR REPAIRS

A plan for providing credit for radio and TV repairs as well as purchases has been worked out by the Radio-Television Association of Kalamazoo, Michigan, in cooperation with a local finance company. Under the plan, approved customers will receive loans to pay their repair bills. Service organizations will receive cash, thus saving the expense of mailing statements, keeping charge accounts on their books, and making collections.

The Kalamazoo RTA has just finished a newspaper advertising campaign which explained to the TV-owning public the many problems facing the TV repairman, the service performed by ethical service firms, and the reasons why TV repairs sometimes can be expensive.

SELF-SERVICE TV

A Brooklyn components store is catering to the trade created by the "fix-it-yourself" propaganda widely distributed by publishers of so-called "TV guidebooks." Calling itself Self-Service TV, the firm has distributed leaflets like the one illustrated, urging TV owners to bring their troubles to the store. The customer, according to Charles Schlosser one of the proprietors, describes his symptoms, and in cases where tubes appear to be at fault, is given tubes covering the suspected portion of the receiver. Nine times out of ten, says Schlosser, the trouble is cured. Customers can also make a few other minor repairs, he says, but where major service work is required, they are referred to service shops in their neighborhoods. Self-Service does no repair work on its own.

SELF SERVICE TV

2300 86th Street

Fix It Yourself

- It's Easy -

Radio and Television Parts

At WHOLESALE Prices!

- Antennas
- Brackets
- Masts
- Antenna Lines
- Needles
- Radios
- Phonos
- Tubes 40% off
- Batteries 20% off

TUBES TESTED FREE!

Complete Line of Antenna Equipment

RADIO PORTABLES At Large Discounts!

PHONES

Visit our Gift Dept. - All Gifts 25% off

Music Boxes - Musical Lipsticks - Import Clocks

SELF SERVICE TV 2300 86th St.

Seniors to All!!

OPPOSE ANTENNA LAWS

Proposed regulations governing installation of TV antennas are opposed by technicians of Kansas City, Mo. The Television and Radio Technicians section of the Electric Association of Kansas City pointed out several reasons...
easy...split second installation!

TELCO

corner reflector

Golden Grid

uhf antenna

Identified by its golden screen

FACTORY-ASSEMBLED

- vibration-proof
- ready to install
- reduces installation cost
- sturdily constructed
- only 1 mast to attach
- anti-corrosion plating meets government specifications

Exclusive

UHF "WISHBONE" INSULATOR

Only Telco gives you this remarkable "plus" feature

1-2-3 Ready To Go!

1 OPEN CARTON...REMOVE FACTORY-ASSEMBLED UNIT
2 OPEN LIKE A BOOK...FASTEN STRUT WIRES
3 MOUNT ON MAST...JOB COMPLETE

WRITE FOR FREE TELCO CATALOG

television hardware mfg. co.

DIVISION OF GENERAL CEMENT MFG. CO.
910 TAYLOR STREET, ROCKFORD, ILL.

NOVEMBER, 1953
Installing Speakers?

INSIST ON UTAH

Your one complete SPEAKER SOURCE

Whether you are making a sound installation in a church, school, tavern, factory or office—or a replacement in an automobile, radio or television set—insist on the tops in the speaker field—insist on Utah Pre-tested speakers.

A Utah speaker is as close to you as your telephone—all leading jobbers handle Utah—because Utah has the widest line of speakers available to the trade—is your one complete speaker source.

The name Utah on a speaker signifies the finest quality in design, engineering, production and performance. Repeat sales—customer satisfaction—is assured when you insist on and install a Utah Pre-tested speaker.

Radio Products Co., Inc.

Export Dept. Rocke International Corporation—N.Y.C.

A WHOLLY OWNED SUBSIDIARY OF NEWPORT STEEL CORPORATION

EASY TO LEARN CODE

It is easy to learn or increase speed with an Instructograph Code Teacher. Affords the quickest and most practical method yet developed. For beginners or advanced students. Available tape for beginner's alphabet to typical messages on all subjects. Speed ranges 5 to 65 W.P.M. Always ready—no power.

ENDORSED BY THOUSANDS!

The Instructograph Code Teacher literally takes the place of an operator. Suits all operators and teaches beyond their resistance. Thousands of successful operators have "acquired this code" with the Instructograph System. Write today for convenient rental and purchase plans.

INSTRUCTOGRAPH COMPANY

4701 Sheridan Rd., Dept. RC, Chicago 66, Ill.

WITH THE TECHNICIAN

for their stand to the City Plan Commission:

Kansas City has had less TV service trouble than any city of similar size in the country, according to the technicians—and qualified technicians in the city are vitally interested in safety. As proof, they cite the convincing argument that no complaints, damage suits, or reports of injuries related to TV antennas have been registered in Kansas City.

As minor arguments, the technicians point out that with power increases for transmitters coming in the near future, the problem of the large outside antenna will become less and less important. Improvement in television receivers and tuners—especially u.h.f. receivers and tuners—will still further decrease the need for outdoor antennas.

BUFFALO ACTIVE

The Radio Television Service Association of Buffalo, N.Y., is meeting regularly every month at the Hotel Lafayette, according to a communication recently received from that organization. The present officers are: Ferdinand J. Lynn, president; Clarence Thielle, vice-president; John G. Wick, secretary: William Harrington, treasurer; William Wagner, sergeant-at-arms.

TWO NEW CODES

Two codes of ethics, one used by the Radio-Television Service Association of western New York, the other by the Albany, N.Y., Television Service Association, have been published recently. The western New York group (centering on Buffalo) are pledged to perform as follows:

1. Guarantee radio and television repair work for 90 days and replacement parts for 60 days.
2. Use only parts of recognized quality in repair work.
3. Charge no more than list price for parts installed.
4. Test customers' tubes as accurately and reliably as possible.
5. Keep charge for labor in such repair work at a fair and reasonable level.
6. Perform only such repair work as is necessary or authorized.
7. Maintain and use service equipment essential to good repair work and reliable tube testing.
8. Subscribe to the principles of the Buffalo Better Business Bureau in the public interest.

The Albany group, made up of 11 retailers and service agencies, adopted a code which differs in some respects:

1. We will maintain proper test equipment and service information libraries to keep abreast of the rapid electronic advances.
2. We will not advertise or offer service or sell materials that are questionable or unfair to customers or ourselves.
3. We will provide some service insurance coverage to cover possible damage.
4. We will not offer to sell materials that are questionable or unfair to customers or ourselves.
5. We will advertise and offer service or sell materials that are questionable or unfair to customers or ourselves.
6. We will perform only such repair work as is necessary or authorized.
7. We will keep charge for labor in such repair work at a fair and reasonable level.
8. We will not charge fair prices for our services.
9. We will charge fair prices for our services and answer to our association regarding any complaints brought to its attention.
10. We will employ qualified personnel and be responsible for proper training in service methods, courtesy and honesty.

The group has set up a schedule of service prices and formed a complaint committee to work with the Albany Chamber of Commerce on customers' service complaints.
THIS LITTLE JEWEL IS A DIRECT COPY OF A PIECE IN THE LOUVRE. EXCEPTION? BROKER, YOU NEVER SAW TV LIKE BLAH BLAH BLAH.

THE URGE TO KILL!

...THAT ALL SERVICEMEN FEEL TOWARD THE GIMMICK SALESMAN WHO "HIGH-PRESSURES" ART LOVERS (?) INTO THE "LITTLE WIZARD." AN INDOOR ANTENNA THAT WOULDN'T GET A PICTURE 2 FEET FROM THE TRANSMITTER.

I TOSSED OUT THAT OLD ROOF ANTENNA YOU PUT UP LAST YEAR! ISN'T THIS NEW CNE A BEAUTY? THE SALESMAN SAID THE SET HAS DRIFTED OUT OF ALIGNMENT A LITTLE AND YOU COULD SHARPEN IT UP IN A JIFFY!

NEW DRESS for an OLD FAVORITE!

THE LITTLE RED ROVER

THE SALESMAN SAID THE SET IS A LITTLE OUT OF ALIGNMENT AND YOU COULD SHARPEN IT UP IN A JIFFY.

Cera-Mite*

Capacitors are now packaged in the clear, molded Plasti-Pak* for your greater convenience.

Look To SPRAGUE For LEADERSHIP IN EVERY Type of CAPACITOR!

Do you have the complete Sprague Catalog C-609?

NOW the complete Sprague ceramic line for virtually every replacement need comes to you in the crystal-clear molded Plasti-Pak* box. This rigid, reusable container lets you see contents and capacitor ratings at a glance. There's a positive snap lock on this slim new space-saving polished styrene package with the hinged lid to eliminate spilling.

The Plasti-Pak is another of the service tested, forward-looking features for which you can depend on Sprague.

Remember, there's a Sprague ceramic capacitor or printed circuit for every replacement requirement.

And there are Sprague distributors in every major trading area. For the name and address of your nearest genuine Sprague parts depot, write to Sprague Products Company, 81 Marshall Street, North Adams, Mass.

*Trademark
NEW ANTENNAS
LaPointe Electronics, Inc., Rockville, Conn., has added new items to its Vee-D-X line. Among these are the Special, an all-channel Yagi antenna with five elements for high-channel reception and four elements for low-band Yagis in 10 and 5-element models; isolation filters; and a lightning arrestor.

ANTENNA ROTOR
Jeb Sales Corp., 41 Wycoll Ave., New York 37, N.Y., has introduced a new antenna rotor. The unit develops 40 foot-pounds torque at the antenna mast. The model's electrical braking system results in instant stopping of the rotor, without drift. The motor makes 1 r.p.m. through an arc of 365° and is stopped at the end of travel by an electrical actuated switches.

REMOTE CONTROL
Ganset Co., 101 S. Main St., Burbank, Calif., is producing a universal TV remote-control unit which may be attached to any conventional TV receiver. Featuring a Standard Coil cascade tuner ahead of a booster amplifier, the unit not only permits channel selection from the viewing position (including volume, contrast, and fine-tuning adjustments), but also provides improved reception in weak-signal areas particularly on older sets. The unit thus takes the place of both a booster and a u.h.f. converter, as the turret.

ANTENNA MAST
Channel Master Corp., Ellenville, N.Y., is producing an antenna mast, the Strato-Matic, featuring a safety device called the "Third Hand," which permits one-hand extension.

As automatic, removable locking device holds mast sections up when you let go. Both hands can be removed from the mast at any time during elevation, and sections cannot slide down.

UHF-VHF ANTENNA
Neal Electronic Co., P.O. Box 378, Huntsville, Ala., has announced the Parabolav, for channels 2-83. The antenna is based on the radar parabolic type and is designed for high average gain, with only one transmission line for both v.h.f. and u.h.f.

TUBE TESTER
Triplet Electronics Instrument Co., Buffalo, N.Y., has released a proportional mutual-conductance tube tester, Model 3423. Tubes are tested by applying a high-frequency signal to the grid and measuring the signal component in the output by a special instrument circuit. It provides results only to 4 kc is used to extract the amplified signal. Tubes with widely varying characteristics can be checked without overloading or other damage to the tube because of a wide selection of tube parameters.

VOLTAGE BOOSTER
Service Instruments Co., 422 S. Dearborn St., Chicago, Ill., has announced the Up-Ten voltage booster, which is designed to add 10 volts to the existing line voltage when used with any television set or appliance, up to 300 watts.

FINEST STANDARD GUARANTEED PICTURE TUBES
Most desirable 5 sizes—ALL RECTANGULAR • • • BRAND NEW in Factory Sealed Cartons—with a Full Year Guarantee

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>17"</td>
<td>$29.63</td>
</tr>
<tr>
<td>20"</td>
<td>$39.74</td>
</tr>
<tr>
<td>21"</td>
<td>$44.68</td>
</tr>
<tr>
<td>24"</td>
<td>$58.26</td>
</tr>
<tr>
<td>27"</td>
<td>$82.57</td>
</tr>
</tbody>
</table>

BROOKS RADIO & TV CORP.
RADIO-ELECTRONICS
Hi-Fi Components

Espay Manufacturing Co., Inc., 526 E. 72nd St., New York 21, N. Y., is producing a new line of AM-FM high-fidelity components. The units, known as the Trophy models, consist of model 101 AM-FM automatic, and supplies rotation to any preselected stop position. Model 102 (control unit shown) is manually operated.

Indoor Bowtie

Radio Merchandise Sales, Inc., 2016 Broadale Ave., New York 62, N. Y., has developed an indoor bowtie, model 181-500. The NeatShop is designed for use with any antenna 1/2 inch high in a heavy metal base.

Antenna Rotators

Alliance Manufacturing Co., Alliance, Ohio, has added two new radio rotators to its present line. The U-83 is fully adjustable and supplies rotation to any preselected stop position. Model 102 (control unit shown) is manually operated.

Parts

#630 PARTS & COMPLETE SETS

Custom-Built Cabinets

$630 and all others

TV Sets — From Factory To You

5 Leading Styles in genuine mahogany or walnut (blond 10% extra).

The Vogue

Most Popular Table Model

$62.54

The Manhattan

Style, Quality, Price

$98.56

The Mayfair

Exquisitely modern, with an elegance of simplicity in styling

$98.56

The Plymouth

Choice of interior Decorations, truly superb in every detail

$105.48

NEW DEVICES

115

Pulse Keyed Agc Kit

Video and I.F. Kit

19 Vacuum tubes, filters, transistors, etc.

$1.49

Video and I.F. Kit

19 Vacuum tubes, filters, transistors, etc.

$1.49

Universal Crt Mounting Brackets

$4.79

Variable Control Kit

5 controls

$8.83

Carbon Resistor Kit

100 resistors

$6.98

Wirewound Resistor Kit

4 resistors

$2.31

Bracket and Shield Kit

18 parts

$0.43

Electrolytic Condenser Kit

6 condensers

$7.37

Tubular Condenser Kit

38 condensers

$4.28

Ceramic Condenser Kit

28 condensers

$3.37

Mica Condenser Kit

11 condensers

$1.38

Modemize a #630 or any TV Set with a Standard Cascode Tuner

For better all around performance

$22.49

Pulse Keyed Agc Kit

HINTS FOR BETTER PERFORMANCE

For all #630 TV Receivers.

$1.00

84 VESEY ST., Dept. A, NEW YORK 7, N. Y.

NOVEMBER 1953
NEW DEVICES

OHMMETER: 0-1000, step-by-step instructions supplied. Finished precision record. $559.00

CHANGER covered new flipover crystal cartridge, quality dual.

5-TUBE VACUUM TUBE RADIO KIT
Model P5
5-Tube radio with 2" Alnico V speaker. Highly sensitive receiver including short wave bands. Frequencies: 550-1440KC, 3.7MC, 1.5MC. Only finest components used with specially designed pre-amp circuits. Tubes: 12AT, 12SK7, 125Q7, 506L and 325. Handsome mottle brown bakelite plastic cabinet.

$14.95

PORTABLE RADIO KIT
AC/DC BATTERIES
Model SW10D
5-Way portable for simple construction; including 4" Alnico V permanent speaker, built-in line antenna, hi-gain radio tubes throughout. Unusual, attractive leatherette cabinet with a semi-airplane dial covering half the cabinet.

$19.55 Not

$25.75

3 BAND AC/DC RADIO KIT
Model T-5X
5-Tube superhet circuit that includes all new design details. Antenna build-in kit. AC/DC. Fine circuits. Sensitive Model P.

$19.55

5-TUBE AC/DC RADIO KIT
Model T5
5-Tube radio with 5" Alnico V speaker, precision engineered. 550 kc to 1700 kc. Smart, conservative cabinet design in glinting mottle brown bakelite. Features new, magicglow lucite design. Sensitive. Pictorial and schematic diagrams with scale makes readings easier and more accurate. Ponder over the very best yet in science-fiction. Now on sale!

For the very best yet in

- science fiction stories
- articles
- features
- illustrations

READ SCIENCE-FICTION PLUS
December issue Now on sale!

Read the exciting and stimulating stories of science-fiction masters like Harry Bates, Murray Leinster, Eric Frank Russell and many, many others. Ponder over the challenging article "Extra-Terrestrial Communication" by Leslie R. Shepherd. See the finest science illustrations published anywhere, by such top flight artists as Frank R. Paul, Virgil Finlay and Lawrence.

On sale at all better newsstands, 35c.
Now... another JAN TYPE

1N34A

GERMANIUM DIODE FOR

 MILITARY USE

with the PLUS factor of

 polarity at a glance or touch

To the list of Radio Receptor diodes that can be
designated JAN type comes another important model—1N34A. Built to the high standards of this
designation, 1N34A as well as all Radio Receptor
diodes gives you simplified polarity identification.
The tapered case speeds up assembly, reduces pos-
sibility of error in connecting the diodes into the
circuit, which all adds up to lowered production
costs.

These JAN type diodes

now available for

prompt delivery

and now 1N34A

Many other types of diodes are available too, in-
cluding a range of computer diodes made to meet
special requirements. Radio Receptor also makes
Germanium Transistors and Selenium
Rectifiers. Our engineers will gladly solve your
problems without obligation and submit their
recommendations.

Build 15 Radios

AT HOME

Only $19.95

With the New Improved 1954

Progressive Radio "EDU-KIT"

Now Includes

Signal Tracer

and

Code Oscillator

- FREE TOOLS WITH KIT
- ABSOLUTELY NO KNOWL-

EDGE OF RADIO NECESSARY
- NO ADDITIONAL PARTS NEEDED
- EXCELLENT BACKGROUND FOR TV
- 10 DAY MONEY-BACK GUARANTEE

WHAT THE PROGRESSIVE RADIO

"EDU-KIT" OFFERS YOU

The Progressive Radio "EDU-KIT" offers you a home study course at a rock bottom price. Our Kit is designed to train Radio Professionals in the basic laws of Radio Theory and Construction Prin-
ciples expressed simply and clearly. You will
dust knowledge on some Radio Principles involved in these fundamentals.

You will learn how to identify Radio Symbols and Diagrams; how to build radios and receivers using regular radio circuit schematics; how to interpret various radio parts
catalog numbers; how to identify various Radio Receivers, Transmitters, and Audio Amplifiers; how to learn to service and recondition radios. You will learn the theory of and practice in building F.O.C. licensed short wave radios. In brief, you will receive a basic education in Radio exactly like the kind you would expect to receive in a course costing several hundreds of dollars.

THE KIT FOR EVERYONE

The Progressive Radio "EDU-KIT" was specifically prepared for any person who has a desire to learn Radio; for the person who has been used successfully by parents and aid in all arts of the world. It is not necessary that you have even the simplest background in scientific or electrical.

Radio Receivers and Circuits are in this bulky and abroad. It is used by the Veterans Administration for Vocat-

ional Guidance and Training.

The Progressive Radio "EDU-KIT" requires no instructor. All instructions are included in the Kit and in the "Help You with Any Technical Problems Which You May Have" service. You can produce perfect results in building sets that are technically correct. You cannot make a mistake.

PROGRESSIVE TEACHING METHOD

The Progressive Radio "EDU-KIT" comes complete with instructions. These instructions are arranged in a year, simple and progressive manner. The theory of Radio Transmission, Radio Reception, Audio Amplification and servicing of
circuits is explained simply and clearly so that

you can understand it.

Therefore you will build radios to illustrate the principles which you learn.

In the beginning we suggest that you build a simple radio set, the Edge of Radio Necessary Kit. This is a complete radio that you will build. As you build the next set that you build is slightly more advanced. Gradually, in a progressive manner, you will find yourself building more advanced radio, and the theory which you have been learning becomes more

advanced. Always you will be working with the latest technique, the most effective methods, and the most advanced equipment.

TROUBLE-SHOOTING LESSONS

Trouble-shooting and servicing are included. You will be taught to recognize and repair trouble, and how to service and repair radio equipment. You will be able to do this as you proceed through the course, without help. While you are learning in this practical way, you will be able to do any repair job for your neighbors and friends, and check that which they have done for you in the same reliable manner.

FREE EXTRAS

- ELECTRICAL AND RADIO TROUBLE-SHOOTING GUIDE
- MEMBERSHIP IN RADIO-TELEVISION CLUB
- CONSULTATION SERVICE
- QUIZZES
- TRAINING FOR F.C.C.
- CODE OSCILLATOR
- SOLDERING IRON
- BOOK ON TELEVISION, RADIO TROUBLE-SHOOTING
- LICENSE

Send the "Edo-Kit" with 10 Day Money-Back Guarantee—include All FREE extras.

[] Send further information.
[] Check or M.O. enclosed—postage prepaid
[] O.D. (U. S. Only)—I will pay postage

[] Checkmark to indicate: [] FREE EXTRAS

NAME:

ADDRESS:

Progressive Radio "EDU-KIT"

Progressive Electronics Co.

497 Union Ave., Dept. Re-77, Brooklyn 11, N. Y.
NOW! RAD-TEL PARTS AT BIG SAVINGS!

Here's your big opportunity to save as never before on parts you need now. Look at the savings.

NATIONAL TURRET
Brand New Factory Boxed
Model TVB-20
$995

12" Magnavox P.M. SPEAKER
Heavy Magnet
List $11.50
$595

RAD-TEL
SUPER BUY! 200 TO PKG.

70" YOKE (Mfg. by Todd)
List $7.50
$195

FILTER CONDENSERS
100 V (10 to a pkg., minimum)
20-20 $2.95
40-40 $3.25
50-30 $3.25

100 INSULATED RESISTORS
Box of 100
50 Watts, 25 1 Watt, 25 2 Watt
$265

50 ASSORTED MICAS
Box of 50
Regular & Silver Type
$195

ANODE CAP
List $7.5
19c each

PHOTOTRANSISTOR CONTROL UNIT
Patent No. 2,641,712
Reymond J. Kircher, Summit, N. J.

(Assigned to Bell Telephone Laboratories, Inc.)

When light falls on a junction-type germanium transistor, a voltage is generated between the ends of that crystal. Current will flow through a load without the need of a power supply. Output varies with the intensity of the light. It also depends upon the spot on which the light falls. Output is maximum if light is focused on the junction between N-type and P-type germanium. Fig. 1 shows how output varies with distance from a junction.

Fig. 2 shows one application of this invention. Beams from lamps LM1, LM2 are focused on the crystal. LM1 may be a standard lamp with fixed intensity; the intensity of LM2 is variable. The lamps illuminate points A and B, which are equidistant from the junctions Fig. 1. No current flows through the load. If LM2 grows dimmer, the net output from the crystal will be positive; more light from LM2 will cause a net voltage that is negative.

Part of the output voltage is fed to a control unit, which increases the illumination from LM2 when the load voltage is positive. When the output is negative, LM2 is decreased. Thus the circuit tends to maintain the lamps equally brilliant.

The combination used in Fig. 2 may be used in photographic exposure control processes, in stage light intensity control systems and in infra-red baking processes. It may be used also in transmitting or transcription systems for coding, decoding, and information decoding systems.

One general object of this invention is to improve the performance characteristics of semiconductor photosensitive devices, and to expedite the realization of relatively large responses from photosensitive semiconductor devices.

TRANSLATOR MODULATOR
Patent No. 2,644,925
Leslie L. Koros, Camden, N. J.

(Assigned to Radio Corp. of America)

Transistors can replace vacuum tubes in many types of circuits. Generally, the circuit needs some sort of modification because transistors need different supply voltages, impedance matching, and circuitry. This modulator uses a transistor instead of a tube, but must be redesigned to take into account leakage from emitter and collector. There is no corresponding leakage between elements of a tube.

The modulator is shown in the figure. A high-frequency carrier is impressed between emitter and ground. Rectified current through this circuit flows through B to generate bias for the emitter. A 1.5 volt signal feeds the collector and modulates the carrier. Ohmic leakage causes a carrier component to
NOVEMBER, 1953

Buy on our radically new

Time Payment Plan

NO CARRYING

CHARGES!!

Superior's new

Model 670-A

SUPER METER

A COMBINATION VOLT-OHM MILLIAMMETER PLUS CAPACITY REACTANCE INDUCTANCE AND DECIBEL MEASUREMENTS

SPECIFICATIONS:
D.C. VOLTS: 0 to 7.5/15/25/30/50/100/250/500/750 Volts
A.C. VOLTS: 0 to 15/30/50/100/250/500/1000 Volts
OUTPUT VOLTS: 0 to 15/30/50/100/250/500/1000 Volts
D.C. CURRENT: 0 to 1.5/2.5/5/10/15 Ma. 0 to 1.5/2.5 Amperes
RESISTANCE: 0 to 10 MegaOhms
INDUCTANCE: .15 to 7 Henries
REACTANCE: 50 to 2,500 Ohms
CAPACITY: .001 to 1 Mfd. 1 to 50 Mfd.

ADDED FEATURE: The Model 670-A includes a special GOOD-BAD scale for checking the quality of electrolytic condensers at a test potential of 150 Volts.

The Model 670-A comes housed in a rugged cradle-finished steel cabinet complete with test leads and operating instructions.

$28.40

SUPER METER

NO CARRYING CHARGES!!

Superior's new Model TV-11

TUBE TESTER

SPECIFICATIONS:
* Tests all tubes including 4, 5, 6, 7, Octal, Lock-in, Farnet, Banham, Hearing Aid, Thyatron, Miniatures, Sub-miniatures, Nowalt, Sub-miniars,
Proximity fuse types, etc.
* Uses the new self-cleaning Lever Action Switches for individual element testing. Because all elements are numbered according to pin-number in the RMA base numbering system, the user can instantly identify which element is under test. Tubing having tagged elements and tubes with filaments terminating in more than one pin are truly tested with the Model TV-11 as any of the pins may be placed in the neutral position when necessary.
* The Model TV-11 does not use any combination type sockets. Instead individual sockets are used for each type of tube. Thus it is impossible to damage a tube by inserting it in the wrong socket.
* Freemoving built-in roll chart provides complete data for all tubes.
* Newly designed Line Voltage Control compensates for variation of any Line Voltage between 105 Volts and 130 Volts.
* NOISE TEST: Plug-jack on front panel for plugging in an extra microphone. Microphone amplifier will detect microphonic tubes or noise due to faulty elements and loose internal connections.

EXTRA SERVICE — The Model TV-11 may be used as an extremely sensitive Condenser Leakage Checker. A relaxation type oscillator incorporated in this model will detect leakages even when the frequency is one per minute

$47.50

Superior's New Model 660-A

TUBE TESTER

SIGNAL GENERATOR

Provides complete coverage for AM-FM & TV Alignment

The Model 660-A comes complete with coaxial cable test lead and instructions.

MOSS ELECTRONIC DISTRIBUTING CO., INC.
Dept. B-83, 38 Murray Street, New York 7, N. Y.

Please send me the units checked. I am enclosing the down payment with order and agree to pay the monthly monthly balance as shown. It is understood there will be no carrying, interest of any other charges, provided I send my monthly payments when due. It is further understood that should I fail to make payment when due, the full unpaid balance shall become immediately due and payable.

Name.__________________________
Address.________________________
City.__________________________ Zone.________________________ State.________________________

MODEL 670-A - Total Price $40.00
Down payment. Balance $30.00 monthly for 6 months.

MODEL 670-A - Total Price $45.00
Down payment. Balance $30.00 monthly for 6 months.

MODEL 670-A - Total Price $45.00
Down payment. Balance $30.00 monthly for 6 months.

MODEL 670-A - Total Price $45.00
Down payment. Balance $30.00 monthly for 6 months.

I enclose $_____________ as down payment.
In Shl, C.O.D. for the down payment.

NOVEMBER, 1953
Eliminate major mechanical changes

with TRIAD TRANSFORMERS

Triad doesn't expect a serviceman to reconstruct or re-engineer a television chassis to accomplish a replacement part. For that reason every Triad television component is circuit tested. As an example, Triad's R-BS Series Power Transformers, listed below, are tube socket types for use where rectifier tube is mounted directly on the transformer. They are made for under-chassis or top-chassis mounting and are exact replacements for many popular chassis.

<table>
<thead>
<tr>
<th>Type No.</th>
<th>AC Volts</th>
<th>DC Volts</th>
<th>Filaments-Volts and Amperes</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-4785</td>
<td>725 V C.T.</td>
<td>590</td>
<td>3V - 1/2 A</td>
</tr>
<tr>
<td>M-4892</td>
<td>725 V C.T.</td>
<td>590</td>
<td>3V - 1/2 A</td>
</tr>
<tr>
<td>M-4995</td>
<td>650 V C.T.</td>
<td>435</td>
<td>3V - 1/2 A</td>
</tr>
</tbody>
</table>

Triad Television Components will simplify and speed your service work. See your jobber for Triad Television Components, catalogs and replacements guides, or write for Catalogs TR-53B and TV-53B.

NEW PATENTS

arrive at the collector out of phase with the desired amplified signal. To cancel this phase distortion, part of the carrier input is fed directly through network L1-C1 to the L-C tank L2-C2. Complete cancellation is effected by tuning L1-C1 and choosing the correct tap-point on L2.

SEMICONDUCTOR PHOTOCELL

Patent No. 2,641,713

John N. Shive, Plainfield, N. J.

When light strikes germanium, charges are liberated within the crystal. Normally a single electron and one positive charge are released for each photon absorbed. Due to current multiplication, a transistor greatly increases this effect. This invention discloses methods of obtaining maximum efficiency from a phototransistor. A junction-type crystal of this type can release as many as 100 electrons for each photon absorbed.

NEW FEATURES MAKE PHOTOFACT more useful than ever

for faster, more profitable servicing

Eliminate changes

Alignment Frequencies right on photos adjacent to adjustment points-to speed up adjustment.

Voltages on Schematics to help speed voltage analysis for quick location of trouble.

Waveforms on Schematics reproduced right on the diagram at vital points for rapid analysis by 'scope.

Series Filament Schematic for quick reference when receiver employs series or series-parallel combination filament string.

Blank Pin or Locating Key shown on each tube in placement chart (top view) to aid in substituting and replacing tubes without chassis removal.

NEW "EXTRAS"

• Tube types on chassis top photo views
• Tube failure check chart in TV Folders
• Fuse location on tube placement chart
• TV Trouble-Shooting Aids Chart
• Tips on TV servicing in the field
• Color code on transformer lead

NOW! GET THE PROOF FOR YOURSELF!

We'll send you a Free Photofact Folder on any receiver covered in Sets No. 101 and following

Learn for yourself—at our expense—how PHOTOFACT pays for itself by earning bigger profits for you! Select any Folder appearing in PHOTOFACT Sets No. 101 and following, from the PF Index. (If you haven't a copy, see your distributor.) When you write for your Free Folder, be sure to state Photofact Set and Folder Number as shown in the Index (offer limited to Folders in sets subsequent to No. 101). Get your Free Folder now. Examine, use, compare—see why PHOTOFACT belongs in your shop!

HOWARD W. SAMS & CO., INC.
2205 E. 46th St., Indianapolis 5, Ind.

PHOTOFACT

Tube types on chassis top photo views
Tube failure check chart in TV Folders
Fuse location on tube placement chart
TV Trouble-Shooting Aids Chart
Tips on TV servicing in the field
Color code on transformer lead

Waveforms on Schematics reproduced right on the diagram at vital points for rapid analysis by 'scope.

Alignment Frequencies right on photos adjacent to adjustment points—to speed up adjustment.

Voltages on Schematics to help speed voltage analysis for quick location of trouble.

Series Filament Schematic for quick reference when receiver employs series or series-parallel combination filament string.

Blank Pin or Locating Key shown on each tube in placement chart (top view) to aid in substituting and replacing tubes without chassis removal.

NEW "EXTRAS"

• Tube types on chassis top photo views
• Tube failure check chart in TV Folders
• Fuse location on tube placement chart
• TV Trouble-Shooting Aids Chart
• Tips on TV servicing in the field
• Color code on transformer lead

NOW! GET THE PROOF FOR YOURSELF!

We'll send you a Free Photofact Folder on any receiver covered in Sets No. 101 and following

Learn for yourself—at our expense—how PHOTOFACT pays for itself by earning bigger profits for you! Select any Folder appearing in PHOTOFACT Sets No. 101 and following, from the PF Index. (If you haven't a copy, see your distributor.) When you write for your Free Folder, be sure to state Photofact Set and Folder Number as shown in the Index (offer limited to Folders in sets subsequent to No. 101). Get your Free Folder now. Examine, use, compare—see why PHOTOFACT belongs in your shop!

HOWARD W. SAMS & CO., INC.
2205 E. 46th St., Indianapolis 5, Ind.
FREE!

BIG Certified QUALITY SERVICE CONTEST!

FIRST PRIZE

FORD PANEL TRUCK

(painted with your name and address and delivered to your door)

9 Other BIG Prizes!

<table>
<thead>
<tr>
<th>Prize</th>
<th>Prize Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Prize</td>
<td>$1000 in Savings Bonds</td>
</tr>
<tr>
<td>Third Prize</td>
<td>600 in Savings Bonds</td>
</tr>
<tr>
<td>Fourth Prize</td>
<td>500 in Savings Bonds</td>
</tr>
<tr>
<td>Fifth Prize</td>
<td>400 in Savings Bonds</td>
</tr>
<tr>
<td>Sixth Prize</td>
<td>300 in Savings Bonds</td>
</tr>
<tr>
<td>Seventh Prize</td>
<td>200 in Savings Bonds</td>
</tr>
<tr>
<td>Eighth Prize</td>
<td>100 in Savings Bonds</td>
</tr>
<tr>
<td>Ninth Prize</td>
<td>50 in Savings Bonds</td>
</tr>
<tr>
<td>Tenth Prize</td>
<td>25 in Savings Bonds</td>
</tr>
</tbody>
</table>

Get an ENTRY BLANK with the EASY CONTEST RULES from your CBS-HYTRON DISTRIBUTOR

FACTS ABOUT YOUR Certified QUALITY SERVICE Plan

If you could advertise nationally, chances are you'd do just what CBS-Hytron is doing for you. You'd tell the world in LIFE and the POST that you promise quality TV and Radio service, parts, and tubes...and at fair charges. And that's just what CBS-Hytron is doing for you with advertisements that sell you as a Certified Quality Service dealer...a dealer in whom the public can have confidence.

You'd identify your service repair shop as the one people are reading about in the magazines.

You'd use a Certified Quality Service decalcomania on your door. You'd use a Certified Quality Service window streamer and the big LIFE and POST easel display blow-up. Above all you'd use Certified Quality Service tags that tell your customer he is getting more for his money when he calls your service repair shop...because you certify the quality of service, parts, and tubes...and at fair charges.

Yes, by using all this material, and more to come, you cash in on your big Certified Quality Service advertising campaign. Get your kit. It contains all the material you need to identify you as a Certified Quality Service dealer. Ask your CBS-Hytron distributor for special deal.

To be eligible for Contest prizes, you must be actively participating as a Certified Quality Service dealer by using the CBS-Hytron Certified Quality Service Promotion Kit; including tags, decalcomania, window streamer, and easel display blow-up. Awards will not be made to any dealer or serviceman not participating by December 15, 1953.

Get YOUR KIT AND CONTEST ENTRY BLANK TODAY! ASK YOUR DISTRIBUTOR...

OR MAIL COUPON,

BUT DO IT NOW!

CBS-HYTRON, Danvers, Massachusetts

A Division of Columbia Broadcasting System, Inc.

A member of the CBS family...CBS Radio...CBS Television...Columbia Records, Inc.

CBS Laboratories...CBS-Columbia, Inc. and CBS-Hytron

CBS-HYTRON, Danvers, Mass.

Please rush me the Certified Quality Service promotion kit, containing:

1. 18- by 28-inch LIFE and POST easel display...
2. New Certified Quality Service decal...
3. 8- by 3-1/2-inch window streamer...
4. 250 Certified Quality Service tags imprinted with MY name and address.

HERE IS MY 3-LINE IMPRINT:

Name (please print)

Street

City **State**

I enclose $2.00 to cover the cost of imprinting.

Signed: __________

P.S. Please send me also entry blank with easy Contest rules.
negative pulse. Under these conditions, V1 has low plate resistance and the resistance of V2 becomes very high, practically isolating the lead L from B minus. Therefore L transmits a large positive pulse to a transmitter T.

When the signal pulse goes off, V2 passes considerable current since it is unbiased. The large current through R biases V1 at or near cutoff. L is nearly isolated from the B plus terminal, while its resistance to B minus is low. Thus a large negative pulse feeds T to block the transmitter.

The output lead L may be connected to the transmitter screen grids. When it is positive, full power is radiated from T. When L goes sufficiently negative, it blocks the transmitter.

POCKET RADIATION METER

Patent No. 2,634,374
Francis R. Shonko, Riverside, Ill.
(Assigned to United States of America as represented by the U.S. Atomic Energy Commission)

Handling and working near radioactive material can be very dangerous. The radiation passes through the human body, destroying living tissue in its path. Ill effects may not be noticed until long after the damage is done. Therefore radiation must be measured at frequent intervals to determine whether an individual is in danger. For protection, the technician may carry a dosimeter to indicate total exposure during a given period. This patent discloses a dosimeter that is convenient to carry, easy to calibrate, and inexpensive to make.

Fig. 1-a shows the instrument, which is a combined microscope and electrometer. It is housed within a metal cylinder with a removable cap at the bottom. An optical system with four lenses is focused on E, a quartz fiber. The position of E is observed on a calibrated scale through the lenses. The quartz fiber and metal housing constitute an electrometer for measuring electric charge. The fiber, insulated within an ionization chamber, terminates in a contact. Below it is a second contact, normally in the position shown. The lower
FOR BETTER WIRE—
SPECIFY SYNKOTE

No matter what your needs... from 50 ohm Flatline to heavy, rough-tough Jumbo Ovaltube... it's made by Synkote... and it's made better!

From precisely constructed air-dielectric TV wires... from the inside to the outside... physically or electrically—Synkote wire is superior. Get the best—at no added cost.

Discover how you can benefit by giving and getting better service... make more profits... if you use Synkote TV wires. Call your Plastoid representative or write us—Now!

“Manufactured by the mile... tested by the inch

SYNKOTE DEPENDABLE TV WIRE
for every purse... for every purpose

SYNKOTE FLATLINE
(100 to 100 mil web)
SYNKOTE OVALTUBE
SYNKOTE ULTRATUBE
SYNKOTE ULTRATUBE
SYNKOTE JUMBO
(180 mil web)
SYNKOTE SHIELDED
(300 OHM)
SYNKOTE ROTOR CABLE
(4, 5, 6 conductor)
SYNKOTE COAXIAL
(172 ohm Jr. Class)
SYNKOTE COAXIAL
(RG 11/U and 59/U)

SYNKOTE PERFORATED
(60 mil web)
SYNKOTE ULTRATUBE
SYNKOTE JUMBO
(180 mil web)
SYNKOTE SHIELDED
(300 OHM)
SYNKOTE ROTOR CABLE
(4, 5, 6 conductor)
SYNKOTE COAXIAL
(172 ohm Jr. Class)
SYNKOTE COAXIAL
(RG 11/U and 59/U)

SYNKOTE DEPENDABLE
Wire and Cable

PLASTOID CORPORATION
43-61 34th St., Long Island City, N.Y.
GUARANTEED!
to outperform all others

LONG RANGE
Broad Band

Tel-a-Ray UHF 800 D-A
Super Fringe Master ANTENNA

A Broad Band cut to channel, Collinear Antenna - covers 10 and more channels on each side of cut channel

Testimonials have been received to verify perfect reception up to 60 miles and more from station.

PROVEN UNSURPASSED - in Little Rock, Ft. Smith, West Palm Beach, Muncie, Dayton, Henderson, Hot Springs, Cal. and all other new UHF areas.

ELIMINATES...the most difficult fringe problems - brings in PERFECT reception where picture is snowy with other antennas...eliminates ghosts...has high front to back ratio, very sharp directivity and very low noise level

COMPLETELY ASSEMBLED...READY TO MOUNT ON MAST.

Take this coupon to your Tel-A-Ray Distributor and get your Sample Super Fringe Master on this money back guarantee today!

If you do not have a Tel-A-Ray Distributor in your area, mail the coupon direct to Tel-A-Ray Enterprises, Box 332, Henderson, Ky.

Please rush me one (1) Stacked Array UHF Super Fringe Master cut to channel Via Railway Express Prepaid today. I understand that if this antenna does not out perform all other UHF antennas I may return it within 15 days Freight Collect and my money will be refunded or bill cancelled.

Name__________________________Firm__________________________
Street Address__________________City_______________State_____
I am a________________Distributor____________Dealer______________Consumer

☐ Bill me. ☐ Ship C.O.D. ☐ I am enclosing check.

END
PHILCO 48-1270 RADIO

A few of these sets have been brought in with complaints that the power switch doesn't work, thus making it impossible to turn the set on or off. In most cases, this trouble is caused by an error in assembling the push-button assembly and not by a defective switch as might be suspected.

Two rivets were supposed to be used to fasten the trigger to the push-button arm, but in some receivers only one was used. When the second rivet is left out, the trigger eventually loosens up so it will not operate the switch. One way to correct the trouble is to remove the entire push-button assembly and install a second rivet. This is a difficult, time-consuming job.

It is much easier to make the repair by soldering the trigger to the arm. Insert a piece of wire of the correct size into the holes provided for the second rivet and then solder the trigger to the arm. You must use a small soldering iron for the job because working space is limited. Do a good soldering job and the switch will work perfectly.

If you should find it necessary to remove the push-button assembly, realign the set when the assembly is reinstalled. Realignment is not required if the repair is made by soldering the arm to the trigger.—Ross Harris

INTERMITTENT HUM

Recently, I came across a regulated power supply that had a bad case of intermittent 60-cycle hum. Checking the tubes showed the 5V4-G rectifier to have intermittent emission from one plate. A further check showed that one section of the heater was intermittent. The trouble was eliminated by replacing the tube.—Charles Erwin Cohn

G-E 16C113

The symptoms were unstable vertical sync, horizontal pulling, and failure of the constrast control to operate properly.

The trouble, which may also occur in G-E models 16T3, 16T4, and 16C116, was traced to a high-resistance short in the .01-µf coupling capacitor between the sync amplifier and clipper sections of the 6SL7-GT. This capacitor is shown as C554 in the manufacturer's diagram. Replace the defective component with a 600-volt molded capacitor.—Edgar B. Kastelberg

CAPEHART 320, 322 & 324

In some areas, the vertical hold adjustment is critical. To improve vertical stability, try replacing the 6CR6 first sync amplifier with a 6AU6. After inserting the 6AU6, note the broadening of the vertical lock-in range by slowly rocking the vertical hold control.—Donald A. Weiler

NOVEMBER, 1953
Train IN Great COYNE shops for big pay jobs

TECHNOTES

TRUTONE A.C.-D.C. SETS

Unusually short tube life in some TRUTONE a.c.-d.c. sets using a 35W4 or 35Z5-C rectifier may be caused by an error in wiring the rectifier heater circuit. I've found several cases where the hot side of the line connects to the pilot lamp tap instead of to one side of the filament. This applies excessive voltage to the heater string and shortens tube life.

This condition can be cleared up by changing the line cord connection from the pilot lamp tap to the high side of the rectifier filament—usually pin 2 on the 3525-GT and pin 4 on the 35W4.—J. E. Ryan

MORE WIDTH FOR GE801

You can increase the width of the picture about 1 inch by replacing the 5Y3-GT rectifier with a 5V4-GT and connecting a 30-µf electrolytic capacitor in parallel with the 30-µf input filter capacitor C63. (Better install a 20-ohm, 2-watt resistor in series with each plate lead to bring the plate-supply impedance up to the minimum value specified for the 5V4-GT.—Editor)

Lyle Briggs

ZENITH H401 PORTABLE

The complaint was hum with slight distortion all over the band when the set was plugged into a 117-volt a.c. outlet.

After the usual tests and substitutions failed to clear up the trouble, I tried shielding the 1S5 detector. This didn't help, so I rewired the socket and substituted a 1U5 in place of the 1S5. This eliminated the hum and distortion. The 1U5 is an improved electrical equivalent of the 1S5. The new internal structure and pin connections reduces any tendency towards microphonics and hum and matches play-through from the diode detector to the control grid.—Albert L. Sohl

HUM IN MOTOROLA 52R

Modulation hum when a station is tuned in may be caused by insufficient bypassing action of the .047-µf capacitor between the 35W4 plate and the B minus bus. It can be eliminated by removing the capacitor from the plate and connecting it to pin 6 on the 35W4. This circuit change was made in the HS-289 plated chassis using the same circuit. (See "Plated Chassis" in the December, 1952, issue.)

The complaint can be cleared up, without removing the chassis from the cabinet, by simply connecting a .05-µf, 400-volt molded-paper capacitor across the male part of the line interlock connector.—G. P. Oberto

WHINE IN AUTO RADIOS

A high-pitched whine heard over an auto radio is not always an indication that the auto's generator or noise-free filters may be at fault. This has also been traced to a leaky oscillator-mixer or i.f. amplifier tube in the receiver. Replacement of the leaky tube will eliminate the trouble. Also check the r.f. amplifier.—John A. Comstock
TRIPLETT 630 Volt-Ohm-Mil-Ammeter "speaks" for itself in any company

TRIPLETT 630 Volt-Ohm-Mil-Ammeter has many significant advantages and features that make it stand distinctly apart from similar instruments in its price class. Actually in components, in engineering, in minutely accurate performance, Triplett 630 closely approaches laboratory standards.

Since the scales of any VOM comprise the means by which it makes its multiple services most valuable, the legibility and easy-read-ability are of prime importance. Triplett engineers have created in Triplett 630 the longest scales available in this size tester. (The upper arc by actual measurement is four and three-eighth inches.)

This long-scale factor accounts for the ease with which precise readings are easily made. Further legibility is gained by use of black and red scale markings. D.C. and D.B. are black and white. A.C. and Ohm markings are red on white. Ohms from one hundred million to one-tenth ohm mark the range of this amazing scale. On low ohms, center scale reading is 4.5 ohms.

The Single Switch
Further indication of the practical skill and engineering "know-how" behind Triplett 630 is the Single Switch. Its simplicity of operation assures no burn-outs thru momentary memory lapses. There is instant switch-
November will be a generally quiet month for u.h.f. dx enthusiasts. There will be slightly more sporadic-E dx than in the past two months, but, in nearly every instance, the periods of dx reception will be shorter and the reception inferior to the summer season.

Receiving conditions will be tapering off toward the winter minimum, and fringe-area reception can be expected to deteriorate in average quality as the colder weather approaches. The more northerly parts of the country will be feeling this more than in the South, whereas tropospheric reception can be expected to hold up well for at least another month.

The newcomer to TV dx may get the idea that only the summer months provide anything of interest. Nothing could be farther from the truth. TV dx can occur at any time or season; it just shows up less often in the next few months. Tropospheric propagation can be very good in November, too, though there may be only one or two periods in the month when the weatherman will be working for us. Watch for the mild, calm, "Indian summer" days, with high barometer and a gradually thickening haze in an otherwise clear sky. The evening and early-morning hours are almost certain to provide above-average signals over distances up to about 300 miles during such typical fall weather.

High-band propagation will fall off considerably with the coming of cold weather, and it is likely that u.h.f. reception will not be as good as during the summer. However, our experience to date with u.h.f. has been so limited, that we don't really know much of what to expect from winter weather. Observations on the comparison between low-band, high-band, and u.h.f. reception at various distances are welcomed. With the opening of so many new u.h.f. stations, large viewing audiences will be developed. This will probably lead to a great deal of information on TV dx in the u.h.f. band. We'll pass it on as we get it. It should prove very interesting.

November should see some aurora borealis displays. Here is another opportunity for the dx observer. We need more detailed reports on any unusual phenomena experienced while aurora lights the northern skies. Turn those arrays toward the flickering lights, and try all the v.h.f. channels. What you pick up may be hard to identify, because of the diffused nature of the aurora reflection, but don't let that keep you from trying!

END
11 CPS to 30 Mc

... covered by two new RCA Companion Signal Generators for testing and trouble-shooting audio, AM, FM and TV equipment

RCA WA-44A
Audio Signal Generator
Continuous sine-wave coverage from 11 cps to 100 kc
ONLY $8750 Suggested User Price

Features new RCA-type oscillator having wide frequency range, and frequency stability of $\pm 3\%$ or better. Regulated power supply. Amplified agc circuit insures an output uniform within ± 1 db over entire frequency range. Total harmonic distortion, 3% or less. Has direct-reading scales. Can be used with high-or low-impedance circuits. Useful for all response measurements. Has separate line-frequency output for inter-modulation distortion measurements. Compact, weighs only 10 lbs. Ac-operated.

RCA WR-49A
RF Signal Generator
Continuous coverage on fundamentals from 85 Kc to 30 Mc
ONLY $5950 Suggested User Price

Features built-in dc blocking capacitors. Places no dc load on circuit under test ... protects instruments when connected to B-plus circuits. Cathode-follower output stage isolates oscillator from effects of load reactance and resistance, thereby maintaining good output waveform, voltage regulation, and frequency stability of the oscillator. Bult-in 400-cycle oscillator for internal modulation. Modulation percentage continuously variable. Dial calibrations accurate to $\pm 1\%$ on all six bands. Complete shielding of copper-plated cabinet and of cables for minimum leakage. Compact, weighs only 8 lbs. Ac-operated.

RADIO CORPORATION of AMERICA
TEST EQUIPMENT
HARRISON, N. J.

NOVEMBER, 1953
Wen SANDER-POLISHER

Here is the unit you have been waiting for. Since everything from sanding your car to polishing your shoes. Eight models to choose from. Light-weight, easy to maneuver. Special discounts selling Davis Service Organizers. Dealers and TV Antennas.

R.M.S. TELEVISION BOOSTERS

Models SP-4, SP-5, EP-6J. STEVE-EL brings you the biggest buy of the year. The best buy there. Sensibly priced. Most of the manufacturers' tubes are brand new faster, better, and stronger. Aligned in sealed cartons. Completely with circuit diagrams and operating instructions. Fully guaranteed. All-FL. approved. 110-120 volts. All models. Model SP-5: 5-Valve Type for extreme fringe $8.40. Model SP-6: 6-Pentode Type for extreme fringe $7.95. Model EP-6J: 6-Pentode Type for semi-fringe $6.50 Minimum Order $5.00

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Net Price</th>
<th>Special Discounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-5</td>
<td>$8.40</td>
<td>$7.95</td>
<td>10%</td>
</tr>
<tr>
<td>SP-6</td>
<td>$7.95</td>
<td>$7.26</td>
<td>10%</td>
</tr>
<tr>
<td>EP-6J</td>
<td>$6.50</td>
<td>$5.85</td>
<td>10%</td>
</tr>
</tbody>
</table>

STEVE-EL ELECTRONICS CORP.

Dept. RE-11 61 Reade St., New York 7, N.Y. Cortland 7-0086

Why Count Profits in Small Change?

WHEN YOU CAN STACK IT IN $$$

Dealers and TV service organizations selling Davis Super-Vision all-channel television antennas do count their profits in dollars.

SOLD TO YOU WITH A MONEY-BACK GUARANTEE

DON'T WASTE...GET THE "BIG DOLLAR PROFIT FACT"! from our jobber's salesman in your area. We will get him in touch with you. USE COUPON.

Davis Super-Vision Trade Mark Reg.

$34.95 BUILT BY AMERICA'S FASTEST GROWING ANTENNA MANUFACTURER

Copyright 1953

FAMILY CIRCLE CONTRIBUTIONS

Balance as of August 18, 1953: $602.50

RADIO-ELECTRONICS CONTRIBUTIONS

Balance as of August 18, 1953: $10,221.09

FAMILY CIRCLE CONTRIBUTIONS

Balance as of September 18, 1953: $602.50

RADIO-ELECTRONICS CONTRIBUTIONS

Balance as of September 18, 1953: $10,823.59

As most of our readers know, Freddie Thomason, the five-year-old son of Herschel Thomason, radio technician of Magnolia, Arkansas, was born without arms and legs. Through the generosity of many hundreds of wonderful people, the Help-Freddie-Walk Fund has been able to send over $18,000 to Freddie and his parents during the past three years. However, we have been dismayed to note that during the past several months the number of donations received has constantly dwindled, until now what was once a flood has become merely a trickle.

We are well aware of the fact that money today is "tight," and that each of us has something of a struggle to make ends meet. But we would like to impress on you all the fact that rehabilitation of Freddie is a longtime project. Throughout his life, he will be dependent upon mechanical appliances in order to perform simple acts, like walking and eating, that we all take for granted. During the years of his growth, these appliances must be changed regularly to keep up with him. All of this costs money—thousands and thousands of dollars.

May we ask each and every one of our readers to make a special effort to send in a contribution this month, and to send them in as regularly as possible thereafter. No amount is too small to warrant our sincere thanks and appreciation, as well as the thanks and appreciation of the Thomasones, and receipt of every contribution is acknowledged by us. Make all money orders, checks, etc., payable to Herschel Thomason. Address all contributions to Help-Freddie-Walk Fund.

RADIO-ELECTRONICS MAGAZINE

25 West Broadway

New York 7, New York

TOTAL Contributions as of September 18, 1953: $10,823.59
A Full Size LIGHTNING ARRESTER at the Price of a Midget

Tech-Master High Fidelity Amplifier and Preamplifier KITS

Tech Master audio amplifier kits are made with the same "custom-quality" attention that has made Tech-Master the first name in TV chassis. They are built to a standard, not to the price. There have been no compromises... every component is the finest obtainable... workmanship is meticulous.

UL* WILLIAMSON TYPE AMPLIFIER KIT: (with power supply) Famous Williamson circuit with modifications for increased, undistorted power output. Uses specially wound quality output transformer.
Model TM-15A, Kit of Parts. Net Price . . . $49.95
Model TMD-15A, DELUXE KIT: Factory assembled, all major components mounted, ready to wire. Net Price . . . $59.95

*Ultra linear operation through use of screen-tapped primary output transformer

4 CHANNEL PREAMPLIFIER-EQUALIZER KIT: Provides complete equalization for virtually all recording characteristics now employed. Extra flexibility provided by independent bass and treble boost and attenuation controls.
Model TMD-15P, DELUXE KIT: Factory assembled, all major components mounted, ready to wire. Net Price . . . $29.65

AT ALL LEADING RADIO PARTS DISTRIBUTORS

ID443-445 BROADWAY, NEW YORK 13, N. Y.

TECH-MASTER PRODUCTS CO.
TECH-MASTER, MAKERS OF CUSTOM-BUILT TV CHASSIS, QUALITY TV KITS & HIGH FIDELITY AUDIO EQUIPMENT.

Get This Valuable Book FREE

Here’s “Know-How” That Makes You Worth More! Coyne's great new 6-volume set gives you all the answers to servicing problems—quickly! For basic "know-how" that is easy to understand, you'll find everything you want in volumes 1 to 5 which contain over 5000 practical facts and data. They cover every step from principles to installing, servicing, trouble-shooting and aligning all types of radio and TV sets. So up-to-date it includes COLOR TV and UHF, adapters and converters. Also covers very latest information on TRANSISTORS.

602-Page Television Cyclopedia Included

And then, for speedy on-the-job use, you get volume 6—the famous Coyne TELEVISION Cyclopedia. It answers today's television problems on servicing, alignment, installation and others. In easy-to-find ABC order, cross indexed. Use this 6 volume TV-RADIO LIBRARY free for 7 days; get the valuable Servicing Book ABSOLUTELY FREE!

COYNE ELECTRICAL & TELEVISION-RADIO SCHOOL
500 S. Paulina St., Dept. B3-T1 Chicago 12, Ill.

NOVEMBER, 1953
A New Champion!
tops in the
field of
molded tubular capacitors

* Outperforms all other molded tubulars in humidity tests!
* Stands up under temperatures up to 100°C.
* You get more for your dollar with this premium tubular designed and built especially for replacement needs, with "better-than-the-original" performance!

C-D's Cub

Ask your C-D jobber about the special "Cub-Kit"!

For the name of your C-D distributor, see the yellow pages of your classified phone book. Write for Catalog to: Dept. RC-113, Cornell-Dubilier Electric Corp., South Plainfield, N. J.

CONSISTENTLY DEPENDABLE
CORNELL-DUBILIER
There are more C-D capacitors in use today than any other make.

PLANTS IN SOUTH PLAINFIELD, NEW JERSEY; NEW BEDFORD, WORCESTER AND CAMBRIDGE, MASSACHUSETTS; PROVIDENCE AND NASHUA, RHODE ISLAND; INDIANAPOLIS, INDIANA; RICHMOND AND FAYETTE SPRINGS, NORTH CAROLINA. SUBSIDIARY RADAR CORPORATION, CLEVELAND, OHIO

Meanwhile Electronic Corp. that the IN tube recommended for the simple Geiger counter described on page 119 of our October issue is no longer obtainable. A tube with closely parallel characteristics is the 75N. It is slightly larger than the IN, and is rated at 700 volts instead of the IN's 600.

The 75NB3 is electrically identical with the 75N, but uses a wee-pee 3-pin base. If construction details are slightly modified, this might be a more convenient tube.

Radio Thirty-Five Years Ago
In Gernsback Publications

HUGO GERNBSBACK
Founder

Wireless Association of America...1908
Electrical Experimenter...1913
Radio News...1913
Science & Invention...1920
Television...1922
Radio-Craft...1929
Short-Wave Craft...1930
Television News...1931

Some of the larger libraries still have copies of ELECTRICAL EXPERIMENTER on file for interested readers.

November 1919
ELECTRICAL EXPERIMENTER

Interplanetary Communication, by Dr. C. S. Brainin, Ph.D., of the Columbia University Observatory

Submarine's Under-Water Radio

Nauen Radio Opened Again

New Kolster Decremeter and Wave Meter

Improving the Amateur Receiving Set, by Edward T. Jones

High Tension Condenser Switch

Code Teacher Made of Knotted String, by Alton D. Spencer

END

RADIO-ELECTRONICS
TV SERVICE MIRROR

On most TV service calls, it is customary to touch-up the rear-panel controls to assure that the set is working at its best. Since these adjustments must be made while watching the screen, it is important to have a suitable mirror.

It is inconvenient to carry a large mirror on every service call. Too, the mirror is always subject to breakage. It is sometimes embarrassing to ask the set owner for a mirror as he may not have one or the one he has is so small that it is practically useless for the purpose. Also, it is important to maintain a professional appearance. A service technician doesn't add to his prestige by coming improperly equipped.

I always carry a 10 x 14-inch photofinisher's ferrotype plate in my tube kit. These highly polished plates make good mirrors and do not break. You can purchase ferrotype plates from a photographic supply store. They come in various sizes which will fit conveniently into almost any TV tube and service kit.—Orville Hellman

CLAPBOARD DIALS

Experimenters who need a good flat white material for dials, meter scales, and small panels which require accurate marking will find the popular white aluminum siding an ideal material. The metal is light, thin, and stiff, and works well. Its flat panel coating takes both pencil and India ink readily, and is washable for correction and reuse. A scale made of this material is far superior in appearance to the usual paper or cardboard makeshifts.

Having such a good material handy encourages construction of many small units with other inexpensive materials and components. For example, with a small piece of siding, a fixed scale may be fastened directly to the hub of the drive mechanism, replacing the small scale originally provided. A flexible scale may be fastened to the panel by the same screws that attach the drive unit, and a sweeping pointer of transparent plastic attached to the hub. On one receiver we built, we extended the horizontal drive shaft to permit use of a 6-inch rotary dial for a v.f.o., mobile converter, signal generator, or communications receiver.

A round, rotating dial can be fastened to the hub of the drive mechanism, replacing the small scale originally provided. A fixed scale may be fastened directly to the hub of the drive mechanism, replacing the small scale originally provided. A flexible scale may be fastened to the panel by the same screws that attach the drive unit, and a sweeping pointer of transparent plastic attached to the hub. On one receiver we built, we extended the horizontal drive shaft to permit use of a 6-inch rotary dial scale with excellent results.—Wm. W. Cameron, W8IVJ

WEAK U.H.F. TV SIGNALS

Recently a new u.h.f. TV station began operating in our area. Signal strength was generally satisfactory, but in my location, it was too weak and the pictures were snowy with little or no contrast. I installed an all-channel v.h.f. booster in the transmission line between the mobile converter output and the antenna terminals of the set. Now the picture is remarkably clear when the booster is tuned to the converter l.f.—Max P. Vinckel

November, 1953
... to servicemen who really want to learn to use the OSCILLOSCOPE fully and accurately!

A complete guide to using the handiest service instrument of all... On all kinds of jobs! Written so you can really understand it.

MODERN OSCILLOSCOPES AND THEIR USES

By JACOB H. RUITER, Jr.
Allen B. DuMont Laboratories, Inc.

The use and earning power. Use coupon today!

MODERN OSCILLOSCOPES AND THEIR USES

Get right to work of the oscilloscope in AM-FM radio sweep circuit, gain of the picture IF stage by stage; troubleshooting the service possibilities in oscilloscope.

HOW TO HANDLE TOUGH JOBS EASIER AND FASTER

From routine troubleshooting to handling the toughest realigning and adjusting, each operation is carefully explained. These lessons demonstrate where and how to use the oscilloscope; how to make connections; how to adjust circuit component; how to set the controls. AND, ABOVE ALL, HOW TO ANALYZE PATTERNS. From dozens of pattern photos you see and learn to recognize patterns that are wrong, nearly right and exactly right!

SAVE HUNDREDS OF DOLLARS IN AM-FM-TV SERVICE TIME!

Buy servicemen have told us that the use of MODERN OSCILLOSCOPES alone is worth the entire price of the book. Here's how you can get full advantage of them:

1. Determine where and how to use the oscilloscope.- Aligning the IF stage: Allowing the V-F tuned circuits in the IF stage; checking gain of the picture IF stage by stages; troubleshooting the sweep circuits... and dozens of other jobs. Simulate big sections entire use of the oscilloscope in AM-FM radio realigning and other service.

No other type of specific service training can mean so much to you in terms of increasing your efficiency and earning power. Use coupon today!

TRY THIS ONE

PICTURE-TUBE CHECKERS

I use two simple adapters to make preliminary checks on brightness and contrast controls and to check for video signal and grid-2 voltage at the base of the picture tube. If the circuits check O.K., then the fault is very likely to be in the picture tube.

The adapters consist of electron-ray indicator tubes which plug into the picture-tube socket and indicate circuit performance by changes in shadow area and brightness of the fluorescent glow.

Fig. 1—Adapter using 6AL7 indicator.

The circuit in Fig. 1 uses a 6AL7 and Fig. 2 uses a 6E5. The tubes plug into Eby sockets mounted in base removed from old picture tubes. The socket fits loosely in the tube base, so four segments were cut from the base of an old 5U4-G and placed around the inside wall of the picture-tube base to make a snug fit for it. The sockets can also be mounted on long extension cables for use on test benches.

When the set is turned on and the tester is plugged into the picture-tube socket a bright glow indicates B plus voltage on grid (pin 10). The intensity

Fig. 2—Adapter using 6E5 indicator.

... of the glow and the shadow area should change with the settings of the contrast and brightness controls. The edges of the shadow area will appear blurred if video signal reaches the picture-tube socket. This will change with the setting of the fine-tuning control when the set is tuned to a telecasting channel. -Hynne Herman

(All modern TV picture tubes use 6.3-volt, 600-ma heaters, so it is advisable to connect a 20-ohm, 5-watt resistor across the heater pins inside the adapter. This protects the indicator tube when the adapter is plugged into a set using a series heater string.

—Editor)

AMPLIFIERS FOR TV SETS

Quality-conscious music fans often feed the audio output of their TV sets into wide-range amplifiers and speaker systems. Before undertaking a job of this type, check the TV set carefully for the slightest trace of intercarrier buzz, because the increased bass response will greatly accentuate it. Since it is prac-
tically impossible to eliminate residual traces of buzz from intercarrier sets, it is wise to restrict your conversion jobs to split-sound sets or intercarrier sets which do not have a perceptible trace of buzz. The only other alternative, is to use an amplifier with a bass response attenuator. —Charles Erwin Cohn

HOOKLESS ALLIGATOR CLIPS

Test leads, cables, antenna lead-ins, and test instrument wires equipped with insulated alligator clips often become an entangled mess on the bench because the built-in "hook" on the backside of the alligator clip snags the other wires on the bench. It is aggravating to attempt to unsnarl a mass of leads by pulling, twisting, and looping the various leads in and out and through one another.

MIKE ADAPTER FOR PHOTOLAMP STAND

The simple adapter shown in the photo will permit almost any photolamp or music stand to be used as a stand for your microphones. The stand, need not be altered and the adapter allows it to be used interchangeably for a photolamp or a microphone.

The drawing shows how a small piece of Scotch electrical tape may be placed across the open hook portion of the clip to keep this from happening. When cleanup time comes, the various leads and test wires untangle with ease. —Geo. D. Philpott

PLASTIC ELECTRICAL TAPE

Remove the cable-protecting spring from an Amphenol type 75-MC1M male microphone cable connector, insert a 3-inch length of 1/4-inch diameter brass rod, and tighten the set-screw. Screw the cable connector into the socket of the mike and insert the rod into the top draw-tube of the stand. In some cases it may be necessary to reduce the diameter of the rod slightly with a file, so that the rod will slip into the draw-tube easily but snugly. —Arthur Trauf

END

NOVEMBER, 1953

WHY PAY MORE?

WHY PAY MORE?

Custom Built TV CABINETS

Don't be misled! Other cabinets may look the same, but they are NOT similar in QUALITY. Our cabinets are massively constructed, fully reinforced, smartly styled in the modern manner, and offered to you at today's LOWEST PRICES. Buy with confidence. All cabinets illustrated available in Mahogany. Add 10% for Blonde Korina and Limed Oak. Complete catalog on request.

TV CHASSIS SPECIAL VALUES

all less picture tube

VIDEO 630 DX Chassis $129.00 • TECHMASTER C-630 TV Chassis $149.50

VIDEO 630 Super-Deluxe 149.50 • TECHMASTER 1930 TV Chassis 179.50

VIDEO 630-DX Chassis 199.50 • TECHMASTER 242-P TV Chassis 199.50

Please for 25% deposit with orders, balance COD. All shipments F.O. New York. Prices subject to change without notice.

Save Money with TELE SOUND "Package Deals!":

Order the TELE SOUND cabinet you want combined with Video 530 DX chassis, 12" speaker and picture tube, at these terrific low prices:

<table>
<thead>
<tr>
<th>Model 250</th>
<th>Model 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 40" W 25"</td>
<td>H 25" D 211/2"</td>
</tr>
<tr>
<td>$57.50</td>
<td>$42.00</td>
</tr>
</tbody>
</table>

TV CHASSIS SPECIAL VALUES

Save Money with TELE SOUND "Package Deals!":

<table>
<thead>
<tr>
<th>Style</th>
<th>17" CRT</th>
<th>20" CRT</th>
<th>21" CRT</th>
<th>24" CRT</th>
<th>27" CRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>$218.81</td>
<td>$227.73</td>
<td>$229.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>$204.09</td>
<td>$213.01</td>
<td>$216.87</td>
<td>$246.63</td>
<td>$299.03</td>
</tr>
<tr>
<td>1200</td>
<td>$287.69</td>
<td>$296.61</td>
<td>$308.87</td>
<td>$333.61</td>
<td>$396.01</td>
</tr>
</tbody>
</table>

* For other TV chassis add:

- Video 630, $5.00
- Video 630-DX, $9.50
- TECHMASTER C-20, $2.00
- TECHMASTER C-19, $3.00
- TECHMASTER C-20, $4.50

TV CHASSIS SPECIAL VALUES

For TV chassis add:

- Video 690, $5.00
- Video 635, $10.00
- TECHMASTER C-30, $5.00
- 1950, $30.00
- 1950-P, $50.00

TELEVISION

Big demand for graduates

B.S. DEGREE IN 27 MONTHS in radio including TV engineering—VHF, UHF, AM and FM. Students use over $100,000 worth of equipment including 2 large commercial type transmitters in new TV lab. Intensive specialized course includes strong emphasis in mathematics, science and advanced design in radio and TV. Hundreds of young men each year are earning engineering degrees in this recognized institution. Start any quarter. Many earn a major part of expenses in this industrial center. Low tuition. Competent instruction. Thorough, intensive practical program. Also B.S. DEGREE in 27 MO. in Aeronautical, Chemical, Civil, Electrical and Mechanical Engineering. G.I. Gov't approved. Enter Dec., March, June, Sept. Free catalog. ENROLL NOW.

INDIANA TECHNICAL COLLEGE
17113 E. Washington Blvd., Fort Wayne 2, Indiana

NOVEMBER, 1953

TRY THIS ONE

TELEVISION

Big demand for graduates

B.S. DEGREE IN 27 MONTHS in radio including TV engineering—VHF, UHF, AM and FM. Students use over $100,000 worth of equipment including 2 large commercial type transmitters in new TV lab. Intensive specialized course includes strong emphasis in mathematics, science and advanced design in radio and TV. Hundreds of young men each year are earning engineering degrees in this recognized institution. Start any quarter. Many earn a major part of expenses in this industrial center. Low tuition. Competent instruction. Thorough, intensive practical program. Also B.S. DEGREE in 27 MO. in Aeronautical, Chemical, Civil, Electrical and Mechanical Engineering. G.I. Gov't approved. Enter Dec., March, June, Sept. Free catalog. ENROLL NOW.
Fringle Beam

Presents the sensational NEW
VHF-UHF
PARABORAY

- High average gain across entire TV spectrum.
- Based on the radar parabolic-type antenna.
- Dipole of entirely new design produces sharp pattern.

CHECK THESE OUTSTANDING SELLING FEATURES

1. No other antenna is necessary with the Paraboray; and only one transmission line is needed for VHF and UHF.
2. Lightweight, but ruggedly constructed to withstand the most adverse weather conditions.
3. Will give more performance per dollar than any other antenna on the market.
4. Clear picture in the 100-200 mile range.

An outstanding line for outstanding representatives. Some territories still open. Write today!

NEAL ELECTRONIC CO.
P. O. Box 376
Huntsville, Ala.

Now the most complete Sweep Replacement Line.
Simplify your replacement problems with the RAM combination of vertical components, horizontal output transformers, deflection yokes, width and linearity coils. RAM, as original manufacturers, assures you the highest quality and performance standards.

RAM ELECTRONICS SALES CO. IRVINGTON, N. Y.

RADIO-ELECTRONICS CIRCUITS

REVISED HIGH-VOLTAGE SUPPLY

I constructed the high-voltage generator described on page 62 of the December, 1951, issue and found it necessary to add additional capacitors between terminal 4 of the transformer and the plate circuit to make it operate. The capacitance value was critical and it took quite a bit of experimenting to get it to work properly. I made a number of experimental changes in the circuit and finally developed a circuit which uses fewer components than the original and works every time. I have used it with several flyback transformers with good results. The modified circuit is shown in the diagram.—F. D. Whitten

ANTENNA FOR U.H.F. TV

In many u.h.f. TV installations, a high-gain antenna must be used to compensate for losses in the transmission line and to assure an adequate signal at the receiver in fringe areas. Since a full wavelength in the u.h.f. TV band varies from about 25 inches on channel 14 to about 13 inches on channel 83, a high-gain array for u.h.f. TV is inexpensive and is not cumbersome to construct. The 4-bay array shown in the diagram was described in Sylvania News. It has a forward gain of nearly 12 db over a single folded dipole cut for the same frequency. Response is broad enough to cover several channels on each side of the center frequency.

The antenna is designed to feed a 450-ohm transmission line. If the receiver or converter has a 300-ohm input, use a 368-ohm quarter-wavelength matching stub between the lead-in and the receiver or use a tapered matching section. The latter consists of a section of transmission line which is spaced to have a characteristic impedance of 450 ohms at one end and 300 ohms at the other. This section should be at least two wavelengths long.

The antenna may be made from aluminum, brass, or copper tubing or...
to the required impedance, but you can use any size wire as long as the ratio of wire diameter to center-to-center spacing is held at about 5.3. No. 8 aluminum wire spaced 0.65 inch may be used.

On u.h.f. TV channels, one wavelength (in inches) at the center of the channel can be derived from the formula:

\[\lambda (\text{inches}) = \left(\frac{6 \times \text{u.h.f. channel No.}}{11,800} \right) + 389 \]

CONSTANT-OUTPUT OSCILLATOR

The output level of variable-frequency oscillators in transmitter exciters, signal generators, and high-quality communications receivers should be stabilized against changes caused by variations in operating voltages and circuit constants. Various types of automatic voltage control have proved unsatisfactory for class-C oscillators because of their self-biasing feature. Clippers can be used to limit the amplitude but

November, 1953
this distorts the waveform and produces undesirable harmonics.

A constant-amplitude oscillator, developed by N. C. Hekimian of the National Bureau of Standards, and described in *Summary Technical Report 1710*, provides an r.f. voltage that remains reasonably stable regardless of changes in tube parameters, operating voltages, or load impedance. The device shown in the diagram consists of a conventional oscillator with a diode connected across its output terminals. Output stability is provided by a biased clamer tube sharing the same plate-dropping resistor (R1) with the oscillator.

The oscillator was originally designed as a fixed-frequency local oscillator in a gain-stable receiver. It utilizes a 12AT7 as the oscillator and clamer tube and a 6AL5 diode detector. The grid tank circuit is composed of a fifth overtone crystal (30 mc), a frequency-shifting trimmer, and a crystal-peaking coil. A coil in the plate circuit of the oscillator section resonates at the crystal frequency.

The clamer tube is initially biased in the region of cut-off. The oscillator output—after rectification by the diode—is applied as a positive voltage to the grid of the clamer tube. When the oscillator output voltage reaches a sufficiently high level, the clamer begins to draw plate current and causes a reduction of plate voltage. Because the oscillator is connected to plate-dropping resistor R1, its plate voltage drops too. Thus, as the oscillator output voltage increases, the clamer tends to maintain the final output voltage at a relatively fixed level.

An experimental investigation of the effect of different values of R1 on the oscillator output voltage shows that a resistance of 10,000 ohms permits a 12-volt variation for a change in plate supply from 200 to 350 volts. A plate-load resistance of 40,000 ohms, however, restricts the output variation to 1.5 volts with the same change in plate supply. In both of these instances the bias supply voltage was held at 18 volts. The bias for the clamer tube is usually obtained from a low-impedance constant-voltage source. In the test model the bias voltage was obtained from batteries with internal resistances of about 5 ohms. A bias of 25 volts permits the output to vary between 12 and 17 volts for a change in supply from 200 to 350 volts; whereas a bias voltage of 18 volts results in a change of only 1 volt in the output for the same change in supply.

Improved clamping may be obtained by employing a voltage-multiplier type of rectifier to drive the clamer tube. Thus a greater ratio of d.c. control bias to r.f. output is obtained and results in better regulation. Also, if a power amplifier replaced the clamer portion of the 12AT7, its greater plate-current capabilities would result in more positive control action. END
The load into several branches which exceed 40 mA, you may be able to split the total drain on the regulated source except if the current does not exceed 40 mA. If the total drain on the regulated source exceeds 40 mA, you may be able to split the load into several branches which tapped off to the negative terminal of the electrolytic capacitor which is a part of the ratio detector circuit. The 220,000-ohm resistor may be added to improve the performance of the circuit.

For AM tuning, the grid of the tuning indicator can be connected directly to the a.v.c. line or it may be connected to a point on the detector load resistor. The switch may be separate or it may be added as a part of the AM-FM switch.

POWER SUPPLY

How do I go about designing a power supply delivering 150 volts regulated B plus, 20 volts bias for grids, and 2 volts d.c. at 1 ampere for the filaments of the English battery set which I am converting—I. I., Montreal, Canada

A. The first step in designing any power supply is to set down the voltage and current requirements of each circuit to be supplied. You did not specify the current drain on the 150-volt line.

The basic diagram of a simple power supply of the type that you want is shown in the diagram. The values of R1 and R2 are not given because these depend on the current through the 150-volt circuit. A single OD3 can be used to stabilize the voltage at 150 if the current does not exceed 40 mA. If the total drain on the regulated source exceeds 40 mA, you may be able to split the load into several branches which

Standardize on

Featheride REPLACEMENT CARTRIDGES

When you stock these five models of Featheride Replacement Cartridges, you can handle virtually all replacement needs—regardless of make of record player or changer—quickly, easily, profitably and with a minimum inventory investment.

Mail the coupon for free copy of our handy new Replacement Chart YF-2, showing how you can most profitably fill your replacement needs.

these 5 models are all you need!

- Model WS - A versatile unit capable of replacing the majority of 78 RPM Cartridges in the field.
- Model AX - A complete unit for three-speed application, furnished with a removable twist mechanism.
- Model BX - Designed primarily for RCA Automatic record changers and Columbia players. Unusually high fidelity.
- Model CX - May be used with a three-mill needle for 78 rpm or two-mill needle for three-speed application.
- Model FX - A two-needle twist cartridge, delivering high or low output.

THIS NEW DISPENSER WILL INCREASE YOUR SALES

1. This attractive Featheride Replacement Cartridge Dispenser on your counter or wall will boost your sales and profits. It comes with a basic stock of 10 each of the 5 models shown above—each cartridge packaged with all needed fittings, instructions and data, all in individual transparent plastic box. Replacement chart included in back of dispenser.

Send coupon for details of our Special Dispenser Offer, whereby you save $10 if you order promptly.
SAVE ON INSTRUMENTS!

- do better testing with fewer instruments
- avoid buying costly equipment you don't really need
- discover new uses for old instruments
- learn all about ALL instrument types; how to use them more efficiently; how to interpret their readings

INSTRUMENTS!

Ohmmeters
“low-down” on L instrument types!
other standard -- R-F and A-F

Signal generators
Square-wave
TV linearity pat-

Distortion meters
TV sweep and

Tube testers
Capacitor checkers
Impedance meters
Special-purpose

VOM's

Power meters

Sensitivity meters

Oscilloscopes
Grid-dip oscillators

Current and voltage
R-F signal tracers

Milliammeters

Voltage -- DMMs

V -T voltmeters

Ammeters

Oscilloscopes

R -F signal tracers

Get the real "low-down" on
Current and voltage
TV pattern generators
Grid-dip oscillators
Oscilloscopes

Ohmmeters

Volt -Ohm -- Milliammeters
Y -T voltmeters

Power meters

Capacitor checkers
Impedance meters
Special-purpose

Tube testers
TV sweep and

VOM's

Distortion meters
TV linearity pat-

feters

Square-wave
R -F signal tracers

Signal generators

R -F test voltmeters

Inductance checkers
R -F and A -F

measuring devices
and over 30

other standard

instruments types!

10 DAY FREE TRIAL

Send Turner's BASIC ELECTRONIC TEST INSTRUMENTS for 10-day FREE examination. If I decide to keep book, I will then remit $4.50 plus postage. Otherwise I will return book post paid promptly and owe you nothing.

Name, _________________________________

City, Zone, State ________________________

OUTSIDE U. S. A. -- Price $4.50 cash only. Money back if book is returned in 10-days.

This book can save you hundreds of dollars by avoiding unnecessary instrument purchases. And it can help you handle all kinds of testing faster and more accurately in the bargain by putting your present instruments to better use!

Actually, BASIC ELECTRONIC TEST INSTRUMENTS is a complete training course covering over 60 instrument types for TV and radio service, ham and experimental use. The author's whole object is to help you do better work; choose instruments intelligently and use them fully. Dozens of working short-cuts are outlined. New uses for old instruments are clearly explained.

Practically all present day instruments—including the latest television types—are impartially discussed. You learn exactly how to use each type and to know exactly what it can and cannot do.

MONEY-SAVING “TRICKS”

You discover new uses for VOM's, oscilloscopes, signal generators, etc. You see how to extend the range of many old instruments; how to use power drain measurements for fast TV troubleshooting; how a bridge can be built from old instruments; how to measure r-f impedance the easy way; how to measure inductance and capacitance with a grid-dip oscillator and dozen of other money-saving “tricks.”

FREE trial

High-voltage loss

If in a Philco receiver having an RCA 620-type chassis, I have intermittent loss of high voltage. Replacement of the 1B3-GT and 6BG6-G cured the trouble for about two months but it has developed again. During the absence of the high-voltage I measured the plate voltage of the 6BG6-G and the 1B3-GT and have obtained two different readings. At one time the voltage measured 160 volts negative and at another time, 220 volts positive. The flyback transformer has been checked for continuity and the resistance conforms to that in the schematic. Capacitors C188 and C186 have been checked and found normal. E. F. A., Santa Ana, Calif.

A. The fact that you get a variation in readings at the plate of the 6BG6-G indicates that an intermittent condition in this circuit is causing your trouble. The reading of minus 100 volts at one time, and the high positive voltage at another would give intermittent high voltage because loss of B-plus on the 6BG6-G would also remove the flyback pulse.

Your trouble might be in the damper circuit, which generates the voltage boost for the 6BG6-G. Try a new damper tube and also check all parts in that circuit. You should secure a steady 430 volts at C188 feeding the bottom of the horizontal output transformer.

Using an oscilloscope at the plate of the 6BG6-G is dangerous, for the v.t.v.m. can be damaged. When high voltage is present pulses in excess of 6,000 volts are present here besides the regular low-voltage B-plus. Better examine your voltage checks to the voltage boost system, screen of 6BG6-G, etc., and use continuity checks (with receiver off) for the coil sections.

Stereo-Magnemite*

New Portable Battery Operated STEREOPHONIC Tape Recorder

Stereophonic field recordings can now be made with ease and assured professional results using a choice of three models operating at tape speeds of 15, 7½ and 3½ ips. to provide frequency responses up to 15,000, 7,500, and 5,000 cycles respectively. 15 and 7½ ips. models meet primary and secondary NARTB standards for flutter, frequency response and dynamic range.

Enables stereo-enthusiasts, sound engineers, researchers, broadcasters and motion-picture producers to economically experiment and efficiently produce ideal recordings with optimum stereophonic effect.

All models measure 8½ x 11 x 10 in. and weigh 17 lbs. Employ two completely isolated channels for recording and playback. Utilize 60 kc ultrasonic bias oscillator. Provide 50 hours of operation from one economical set of standard dry cell batteries. Incorporates governor-controlled constant speed spring-motor. Stereo-headphone monitoring while recording and playback. Overall dynamic range 50 db. Flutter less than ± 0.1%.

Stereo-earphone crystal or dynamic microphone available to produce distortion and acoustic pickup pattern simulating human stereophonic hearing.

Completely battery-operated stereophonic recording-playback system easily carried and operated anywhere. Uses standard ¼ in. tape on 5 in. reels.

Write for complete technical literature and direct factory prices to Dept. RE

AMPLIFIER CORP. of AMERICA
398 Broadway, N. Y. 13, N. Y.

RADIO-ELECTRONICS
S-38-C NOISE LIMITER

An early version of the S-38 receiver included an automatic noise limiter. My S-38-C does not have this feature. How can I add one to my set?

J. O., Olive View, Calif.

A. A set such as this may not have enough gain for proper operation of an automatic noise limiter but we are showing two circuits you can try. Fig. 1-a is the original circuit of the detector and first a.f. amplifier. Fig. 1-b shows how a diode noise limiter may be added to the circuit. You can substitute a 12S8-GT triple-diode-triode for the 12SQ7 or you can try a germanium diode. The diode noise limiter circuit is extremely sensitive, and great care should be exercised in the mounting of the switch. Because it readily picks up hum and introduces feedback, it should be mounted close to the tube.

TRANSMITTER CONVERSION

I am planning to build the low-power transmitter described in the December, 1952, issue. However, I am a novice and cannot use a v.f.o., so I will need details on adding crystal

Question Box

S-38-C Noise Limiter

A. An early version of the S-38 receiver included an automatic noise limiter. My S-38-C does not have this feature. How can I add one to my set?

J. O., Olive View, Calif.

A. A set such as this may not have enough gain for proper operation of an automatic noise limiter but we are showing two circuits you can try. Fig. 1-a is the original circuit of the detector and first a.f. amplifier. Fig. 1-b shows how a diode noise limiter may be added to the circuit. You can substitute a 12S8-GT triple-diode-triode for the 12SQ7 or you can try a germanium diode. The diode noise limiter circuit is extremely sensitive, and great care should be exercised in the mounting of the switch. Because it readily picks up hum and introduces feedback, it should be mounted close to the tube.

Transmitter Conversion

I am planning to build the low-power transmitter described in the December, 1952, issue. However, I am a novice and cannot use a v.f.o., so I will need details on adding crystal.
ATTENTION!! EXECUTIVES
SALESMEN
PUBLIC OFFICIALS
Policemen
Firemen
Outdoor Men
Reporters
Field Inspectors
Doctors
Lawyers, etc.

DICTATE IN YOUR CAR
with
AIR INVERTERS
for changing your battery current to
A.C. Household CURRENT
Anywhere
in your own car!!

There is an ATR INVERTER for most applications for inverting D.C. Voltages ranging from 6 volts B.C. to 220 volts D.C. to 110 volts A.C. (A.C. Tape Recorders, Wire Recorders, Dictating Machines and Electric Routers IN YOUR CAR). There are many other applications for ATR inverters. Look them over thoroughly. They will cost you nothing but time and money. We will be happy to make recommendations, as soon as we receive your inquiry.

A VALUABLE TIME SAVER FOR:

TRAVELING SALESMEN, drivers reporting in your own car. Send
specifications.
FIELD INSPECTORS & INVESTIGATORS—Write your field reports
on ATR inverters and dictate them.
DOCTORS—Dictate and record your house calls on the
supply.
LABORER—Field work not too neat? Use ATR inverters.
ADVERTISERS—A simple way to dictate your clients' reports.
SPEAKERS—Improve your voice. Dictate your talks.

FREE!!! ATR INVERTER!!
given away every 30 days to
lucky registrant of preceding month. Mail a postcard as your registration request today!

<table>
<thead>
<tr>
<th>Type</th>
<th>Input</th>
<th>AC Voltage</th>
<th>Output</th>
<th>DC Voltage</th>
<th>Cost of Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-LF</td>
<td>6</td>
<td>110 volts</td>
<td>40</td>
<td>35.50</td>
<td></td>
</tr>
<tr>
<td>12-LF</td>
<td>6</td>
<td>110 volts</td>
<td>50</td>
<td>35.50</td>
<td></td>
</tr>
<tr>
<td>6-RSD</td>
<td>6</td>
<td>110 volts</td>
<td>85</td>
<td>75</td>
<td>39.25</td>
</tr>
<tr>
<td>12-RSD</td>
<td>6</td>
<td>110 volts</td>
<td>125</td>
<td>100</td>
<td>39.25</td>
</tr>
<tr>
<td>6-ISO-F</td>
<td>6</td>
<td>110 volts</td>
<td>85</td>
<td>75</td>
<td>49.95</td>
</tr>
<tr>
<td>12-ISO-F</td>
<td>6</td>
<td>110 volts</td>
<td>125</td>
<td>100</td>
<td>49.95</td>
</tr>
<tr>
<td>6-AT-HSD</td>
<td>6</td>
<td>110 volts</td>
<td>175</td>
<td>150</td>
<td>96.45</td>
</tr>
<tr>
<td>12-AT-HSD</td>
<td>6</td>
<td>110 volts</td>
<td>250</td>
<td>200</td>
<td>96.45</td>
</tr>
</tbody>
</table>

RECOMMENDED APPLICATIONS

- For operating small high-power AC motors, air compressors, small radios, and small portable
- Electric Railway Equipment.
- Electric Railway Equipment having output voltages less than 220 volts.

- Recommended for operating small AC motors, radio sets, PA systems, magnifiers, and
- Radio Test Equipment.
- Electric Railway Equipment having output voltages less than 220 volts.

- Recommended for operating dictating machines, wire recorders, tape recorders, and
- Small AC motors, and electronic and electrical apparatus having input voltages less than
- Continuous output voltages indicated.

- For operating large tape recorders, wire
- Recorders, PA systems, amplifiers, and
- Electric Railway Equipment having input voltages less than 220 volts, and continuous output voltages indicated.

BLAK-RAY SELF-FILTERING ULTRA-VIOLET LAMP

BLAK-RAY 4-watt lamp, model X4, complete with U-V tube. This lamp gives long-wave ultra-violet radiation having a wave-length of 3654 to 4000 angstrom units. Some of the substances made to fluoresce visibly when illuminated by U-V light are certain woods, oils, minerals, milkstone, cloth, paints, plastics, yarn, drugs, crayons, etc. This lamp is self-filtering and the invisible U-V rays are harmless to the eyes and skin. Equipped with spectral-finish aluminum reflector. Consumes only 4 watts and can be plugged into any 110 volt 50-60 cycle A.C. outlet. Will operate for 1000 to 2000 hours of service. It weighs but 1/2 lb. Approved by the Underwriters Laboratories and has a built-in transformer so that it may be safely used for long periods when necessary. Extra U-V tubes are available. Ship wt. 1 lb.

ITEM NO. 125
UNUSUAL BUY $14.75

POWERFUL ALL PURPOSE MODIFIER

Sturdy molded case A.C. induction motor, 15 watts, 1100 rpm, 8 turns, 1/4" shaft, 1/4" diameter; 100-200 volts, 50-60 cycles. A.C. only. When geared down, this unit can operate an 18" turntable with a 20 lb. dead weight. Use it for fans, distributors, timers and other purposes. Ship wt. 2 lbs.

ITEM NO. 147
UNUSUAL BUY $2.45

WATTHOUR METER

Leads for mounting, adjustable 2-way models. Cards or printed ones. Ship wt. 3 lbs. wt. 1 lb.

ITEM NO. 132
NEW LOW PRICE $4.50

AMAZING BLACK LIGHT

250-watt ultra-violet light source. Makes fluorescent articles glow in the dark. Fits any lamp socket. For experimenting, entertainment, unusual lighting effects, etc.

ITEM NO. 67
SAVING AT $2.45

250 POWER TELESCOPE LENS KIT

Makes your own high powered 6 ft. telescope. Kit contains 7" diam., 75" focal length, ground and polished objective lens and necessary eye pieces. Magnifies 50x to 250x. Full instructions. Ship wt. 1 lb.

ITEM NO. 125
SAVING AT $2.95

Hudson Specialties Co.
25 West Broadway, Dept. REA 1153
New York 7, N. Y.

For your catalog and literature on items circled below, write to: Hudson Specialties Co.

AG-Inverteco, A-C, D-C inverters, Auto Radio Vibrators

AMERICAN TELEVISION & RADIO CO.

Quality Products Since 1931

SAINT PAUL 1, MINNESOTA—U.S.A.
control. Will this rig work on 11 and 15 meters with crystal control? Please show me how to add crystal control to this rig.—H. M., Lake Worth, Fla.

A. The diagram shows how the 6V6 doubler can be converted to a crystal oscillator for use on the novice bands. A 2.5-mh r.f. choke, a 100-µf capacitor, and a key jack are added to the 6V6 cathode circuit and a crystal socket across the grid leak as shown. You can construct the rig as a 3-tube crystal-controlled circuit or you can add the buffer and v.f.o. as described in the original article and use a switch in the 6V6 grid circuit to change over from crystal to v.f.o. control.

The 6V6 can be operated as a fundamental oscillator or as a frequency multiplier. The 807 can be used straight-through or as a doubler. You can operate on 15 meters by tripling in the oscillator from a 7-mc crystal or by using a 10.5-mc crystal and doubling in the oscillator on final. To reach 11 meters, you can use a 6.75-mc crystal and quadruple in the oscillator, or double in the oscillator and in the final, or you can use a suitable 14-mc crystal and double in the oscillator or in the final.

Try to avoid using harmonic and overtone type crystals because these often require special oscillator circuits for best performance. If the keying is sluggish, try connecting a 2.5-mh r.f. choke in series with the oscillator grid leak at point A.

You can use commercial plug-in coils in the oscillator and 807 plate circuits or you can wind your own from data which you will find in the various amateur radio handbooks. If care is taken, there is little to choose between commercial and home made coils.

HEATHKIT PREAMP MODIFICATION

I plan to use a G.E. record compensator ahead of the Heathkit WA-P1 preamplifier so I would like to modify the latter to provide flat response. How can I do this?—E. E. S., Bronx, N. Y.

A. According to information supplied by the Heath Company, all you have to do is to remove the turnover switch, the 100,000-ohm resistor, and the two 0.022-µf capacitors in the feedback network between the triode halves of the 12A7 or 12AX7. Leave the 220-ohm cathode resistor intact. The response of the preamplifier-equalizer will now be flat when the tone controls are in the nine o'clock position.
Jack Hughes, former vice-president in charge of sales for Littelfuse, Inc., Des Plaines, Ill., was named vice-president and operations general manager of the company. In his new position, Mr. Hughes will continue to handle sales, with additional responsibilities in purchasing, production, production control, and time control.

Harry H. Kline was named to the newly created position of general sales and merchandise manager of Ward Products, Division of Gabriel Co., Cleveland. He had been sales engineer, and more recently supervisor of inventory control for Ward.

W. Ward Willett joined LaPointe Electronics, Rockville, Conn., as advertising manager. He was formerly with the Plax Corporation. Lincoln N. Kinnicutt, who was the former director of advertising and public relations of LaPointe Electronics, has now been promoted to assistant to Webster E. Barth, the general sales manager of the company.

A. L. Champigny was promoted to advertising and sales promotion manager for the General Electric Tube Department, Schenectady, N. Y. He was previously manager of replacement sales promotion for the Tube Department. In his new position, he succeeds G. A. Bradford who was recently appointed manager of advertising and sales promotion for the General Electric Radio and Television Department in Syracuse, N. Y.

G. Milton Ehlers has recently joined Aerovox Corp., New Bedford, Massachusetts, as chief research engineer. He was formerly president of the Heltec Corp., a subsidiary of Sprague Electric.

Paul G. Mathes joined the staff of Trio Manufacturing Co., Griggsville, Ill., as advertising manager. He was formerly with International Harvester.

Obituary
Julius G. Aceves, a pioneer inventor in the field of radio, died in New York City at the age of 65. He was a partner...
in the electronics engineering firm of Amy, Aveces, and King, Inc.

Personnel Notes

... Dr. Ivan Getting, vice-president and director of engineering of Raytheon Manufacturing Co., Newton, Mass.; Harold Bugbee, president of Walter B. Snow, Boston advertising agency; and Dr. Jerome B. Wiesner, director of research of electronics at Massachusetts Institute of Technology, were chosen as judges for the $10,000 Transistor Contest sponsored by the Raytheon Receiving Tube Division.

... Alfred E. Bourassa joined CBS-Hytron, Danvers, Mass., as assistant to the advertising manager. He was formerly with Carter's Ink Co.

... Harold Blumenthal was named sales manager of Manufacturers Division of Shure Brothers, Chicago. He was formerly a sales engineer with the company.

... Sheldon Rutter, one of the country's top designers, was retained by Channel Master Corp., Ellenville, N. Y., to do all product design and to be packaging and art consultant.

... Stanley Niejezwiecki, former distributor sales manager of Sarkes Tarzian Rectifier Division, Bloomington, Ind., was promoted to sales manager, according to an announcement by George Eannarino, director of the Rectifier Division. Alfred D'Urso, former sales engineer, was promoted to assistant sales manager on distributor sales, and Fred Lucas, previously with Federal Telephone and Radio, joined the Sarkes Tarzian Rectifier Division as assistant sales manager of industrial sales.

... Robert C. Sprague, Chairman of the Board of Sprague Electric Co., North Adams, Mass., was selected as a member of the Business and Industry Advisory Committee of the New England Colleges Fund.

... Donald S. Burge joined Jensen Manufacturing Co., Chicago, to handle production control. He was formerly with Milled Screw Products.

... Dr. William L. Everitt, radio authority and dean of the College of Engineering of the University of Illinois, will receive the IRE Medal of Honor for 1954. The award will be made during the association's annual banquet in New York next March.

... Clarence Rohwedder joined Littelfuse, Inc., Des Plaines, Ill., as a process engineer. He held a similar position with A. O. Smith Corp. prior to his appointment. David H. Shean joined Littelfuse as purchasing agent. He was formerly with Redmond Co.

... Clarence M. Clark, former manager of Accounting at the Westinghouse Electronic Tube Division plant at Elmira, N. Y., was appointed manager of...
PEOPLE

the company's Tube plant in Bath, N. Y.

... Christian J. Reimuller joined Javex, Redlands, Calif., as head of the newly created Publicity and Public Relations Department. He previously was co-owner of a hydraulic machine-tool manufacturing concern.

... Harry A. Ehle, International Resistance Co., was elected president of the Radio Parts and Electronic Equipment Shows, Inc., sponsors of the Electronic Parts Show. Others elected were: H. M. Carpenter, Throw Distributors, vice-president; Francis F. Florsheim, Columbia Wire & Supply, secretary; Bernard L. Cahn, Insuline Corp. of America, treasurer.

... W. O. Spink was appointed assistant equipment sales manager of the Sylvania Electronics Product Sales Department, with headquarters in New York City. He has been a member of the Sylvania sales staff since 1947.

... J. C. Van Arsdell, former manager of Sales Engineering for the Electronics Division of Erie Resistor Corp., Erie, Pa., was promoted to assistant general manager of the division. William Klevans, former field sales engineer, was advanced to Van Arsdell's previous position.

... Joseph H. Morin joined Howard W. Sams & Co., Indianapolis, as sales promotion manager. He had been distributor sales manager of Shure Brothers.

... Martin W. Krenske was named assistant sales manager of Edwin I. Guthman Co., Chicago. He was previously with Standard Transformer Corp.

... Dr. W. R. G. Baker, General Electric, was reappointed chairman of the RETMA Television Committee. Max F. Balcom, Sylvania, was reappointed chairman of the Educational Television Committee, and Glenn McDaniel, general counsel of the RETMA, was reappointed chairman of the Legal Committee. Paul V. Galvin, Motorola, and H. A. Pope, National Union, were reappointed chairman of the Committee to Survey Subscription Television and of the Credit Committee, respectively. William L. Dunn, Raytheon, was appointed chairman of the Sales Managers Committee of the Set Division of RETMA.

... Bruce R. Carlson, an investment analyst, joined Sprague Electric, North Adams, Mass., as statistical assistant to the president.

... Joseph F. Whitaker, formerly with International Resistance Co., joined Weller Electric Corp., Easton, Pa., as sales manager.

... Nat Welch joined Orradio, Opelika, Ala., as sales manager. He was formerly a manufacturers' representative in the electrical industry.

CANNON ELECTRIC

Since 1915

CANNON Plugs

Send for Cannon Bulletin RJG 6... a special condensed catalog Covers the Radio, Sound and Miniature Connectors that are available to you through Franchised Distributors, Electrical Wholesalers and Radio Parts Distributors.

TYPE XL FITTINGS: For audio, instrument and related uses. 3 contacts, 15a max., 14 basic shapes. Latchlock coupling. Available as your Radio Parts Distributor.

TYPE P FITTINGS: For audio, TV and instrument uses. 2 to 8 contacts, 30a max., 16 basic shapes. Universally used in sound and allied applications.

TYPE O FITTINGS: 3-contact oval-shaped plugs and receptacles, equipped with latchlock device. For microphones and related uses. 6 basic shapes. 30a max.

TYPE 45-E TEST POINT JAKS: High quality phone tip jacks to accommodate ATMA phone tip for laboratory uses. Rugged construction, nylon insulation precision made for long life.

TV CONNECTORS:

Specialized "LK" and "LK" plugs used on television cameras and related equipment.

TYPE U SUB-MINIATURE SERIES: Hermetic sealed, vibration-proof insulated receptacles and SIlk insulated plugs for instruments, relays, transformers and other sealed components.

Additional related audio and power Cannon connectors include Types X, XX, M1, GB and BP, all available through selected Cannon Franchised Distributors. See your classified telephone directory.

ELECTRONIC INSTRUMENT CO., INC. 54 W. 44TH STREET, NEW YORK 19, N. Y.

Let me show you how Easy it is to LEARN the practical way--

ASSEMBLE A TV KIT

Assemble a TRANSVISION TV KIT

Pay as You Wire $39 Down Payment

I will help you to start learning TV the practical way -- by assembling a TRANSVISION TV KIT in easy stages. For only $39 you get the complete TRANSVISION TV KIT (standard configuration). Your TV KIT comes with the practical way--

FREE Catalog

FREE Catalog
OSCILLOSCOPE
TIME MARKER
Obtain laboratory quality from kit type oscilloscope with this time base marker. Easily installed in 15 minutes. Provides 10 micro second markers on any oscilloscope.

Complete with tube
$6.95 P.P.

ROBERT H. ARNOLD
6 S. ANNISTON
SYLACAUGA, ALA.

ELECTRONIC HOBBYISTS
Build and play my latest polyphonic organ without a knowledge of music. Or get blueprints for a miniature electronic brain, and other projects. Send 34 stamps for air mail reply.

JIM KIRK, W6JKX
1552 Church St., San Francisco 14, Calif.

CONVERT YOUR PICK-UP TO A MODERN
SERVICE TRUCK!
It's easy; it's quick. Low Cost Craftsman Side Boxes mount on any pick-up truck, have recessed locking door handles, keyed alike. Here is safe, dry, convenient storage for tools, parts and equipment. Write today for prices and full information.

IT'S READY NOW!

SEND FOR YOUR GIANT NEW
Concord Catalog
1954 EDITION

FAMOUS BRAND!
Model 360

IT'S GOT EVERYTHING!
- Standard Lines
- Special Buys

SWEEP GENERATOR

Normally $49.95
OUR PRICE
ONLY $29.50

Here's your chance to get a top-quality sweep generator at a saving of almost 50%! This famous make laboratory precision instrument fills every alignment need in TV-FM servicing.
- 50 KC thru 228 Mc continuous sweep
- RF Shered continuous type attenuator
- Vernier dial calibrated in TV channel numbers
- Crystal marker oscillator with variable amplitude control
- 110-120 V AC. 60 cyc. Wt. 10 lbs.

Concord Radio
55 Vesey Street, New York 1, N.Y.
Phone DIGby 9-1132

IT'S FREE!

MAIL ORDER———

Concord Radio 33 Vesey St., New York 1, N.Y. Dept. C-17
Send Giant New 1954 Concord Catalog at once.

Address
City Zone State
COMMUNICATIONS

LOUDNESS CONTROLS

Dear Editor:

The article entitled " Loudness Controls" by M. G. O'Leary, published in the August, 1953, issue of Radio-Electronics seemed to me a well thought out analysis of the subject. However, O'Leary posed the question, "If the loudness control compensation properly for the loud passages, does it also compensate properly for the softer ones?"

Also, the closing paragraph of the article said, "Perhaps some genius will design a dynamic loudness control which will automatically vary the loudness compensation according to the type of musical passage being played."

The answer to the question quoted above appears to be yes. Therefore a special dynamic loudness control is not needed.

The basic premise in Fletcher-Munson compensation is that the relative loudness of a group of tones shall remain the same regardless of the playback level. Thus, a 100-cycle bass tone of 80 db loudness and a 1,000-cycle middle tone also of 80 db loudness heard at the orchestra conductor's ear must both sound like 50 db when either is reproduced at only a 50 db loudness level. Similarly, if the 100-cycle bass tone is later played by the orchestra at 60 db but the 1,000-cycle tone remains at 80 db, then when the 1,000-cycle tone is reproduced at a 50-db level the 100-cycle tone must be reproduced at a 30-db level. These two instances are the cornerstones of O'Leary's question. It can be demonstrated that the compensation is substantially the same for the 100-cycle tone in each instance, then the yes answer is proved. Calculation of the compensation is outlined below:

Original 100 cps tone
Sensation level
Acoustic level
80 db 83 db 72 db
60 db 56 db 45 db
50 db 47 db 38 db
40 db 37 db 28 db
30 db 27 db 18 db
20 db 17 db 9 db

If the bass tone had been 50 cycles but all other conditions remained the same, the compensations would work out to 10 and 20 db.

JOHN R. SCHIEFFELN
Washington, D. C.

COMMUNITY ANTENNA SYSTEMS

Dear Editor:

I refer to the points raised in Mr. Shipman's letter (Radio-Electronics, October, 1953), I believe that the fundamental consideration is simple. Where a community TV system is designed for distribution of not more than three channels, there are probably some advantages to be cost in the use of strip-type amplifiers, which
amplify each channel individually. Where more than three channels are to be distributed, now or in the future, I feel there are definite advantages in both cost and flexibility in specifying broadband amplifiers.

All the more recent community TV installations with which I am familiar are using strip-type amplifiers or pre-amplifiers with associated a.g.c. at the antenna site, and then broadband amplifiers for most of the remaining system. This has been done either because the operators are now distributing four or more channels, or because they plan ultimately to distribute several channels to their subscribers as new TV stations go on the air. Many are considering the addition of a channel for subscription TV, in addition to programs taken off the air; and in at least one case, it is planned to distribute FM radio programs as well as several TV channels.

The use of strip-type amplifiers at the headend or antenna site and broadband amplifiers in the remainder of the system is now in operation with equipment manufactured by Jerrold as well as by Entron, SKL, and Telemeter.

Manufacturers of broadband amplifiers have definitely considered the problem of matching amplifier gain to cable attenuation characteristics. Both SKL and Telemeter do this successfully, with equalizers designed to compensate for variations in cable attenuation with frequency. Entron accomplishes the same thing by "tilting" its broad-band amplifiers—that is, providing less gain at channel 2 than at channel 6 to match the cable attenuation curve.

Since manufacturers of broadband amplifiers are making available designs with a gain of about 40 db, as well as models with lower gain for shorter cable runs, it is possible to use approximately the same number of broadband amplifiers in a typical community installation as would be required if strip-type amplifiers were specified. This is particularly true because none of the strip-type amplifiers can be operated to full rated output if more than one channel is to be distributed, because of troublesome cross-modulation. If four or more channels are to be distributed, it is less expensive to use broadband amplifiers.

In regard to maintenance, the failure of a tube in a chain-type amplifier reduces gain about 1.5 db and does not result in snow or cross-modulation. The difference with one tube out can't be detected by looking at the picture. Contrary to Mr. Shapp's belief, less than 1% TV amplifier tube failures have been intermittent shorts, according to the records of broadband amplifier manufacturers and the operators of community TV systems. Where the number of channels exceeds three, more tubes are required in a strip-amplifier system than in a broadband system, hence it is likely that maintenance costs would be higher in the former.

—E. D. Lucas, Jr.

Los Angeles, Calif.
Windsor TUBES

TO MERIT YOUR CONFIDENCE—to insure your satisfaction—Every tube we ship has been tested in a radio or TV set for PEAK PERFORMANCE. Each tube is attractively packaged in individual cartons—and, EACH WINDSOR Tube you buy carries the full WINDSOR GUARANTEE. Write for additional tube types and prices. We also send special price lists for government, educational institutions, and entertainment organizations.

Cut out the TV NOISE...Get more TV sales!

Vidaire FIL TRAN

Don't let noisy interfering signals tear the TV (sales) picture. VIDAIRE'S Fil-TRAN, carefully designed and field tested on all TV sets, proves most interference can be eliminated.

Removes most hash in picture and sound caused by amateur radio, ship-to-shore transmissions, foreign broadcasts, dia- thermy, etc. Printed circuit high Q coils used for higher efficiency.

Sold only through authorized VIDAIRE distributors—send for catalog B.

VIDAIRE ELECTRONICS MFG. CO.

Phone No.: LE 2-7372

Factory: LYNBROOK, N. Y., NarT Sales Office: 6 E. 39th St., N. Y. 16, N. Y.

Radio-Electronics is paying good rates on acceptance for original and unusual articles on audio, television, FM and AM servicing, as well as articles on industrial electronic equipment and applications. Send for a copy of our Author's Guide, Address THE EDITOR RADIO-ELECTRONICS 25 West Broadway, New York 7, N. Y.

ELECTRONIC LITERATURE

Any or all of these catalogs, bulletins, or periodicals are available to you on request direct to the manufacturer, whose addresses are listed at the end of each item. Use your letterhead—do not use postcards. To facilitate identification, mention the issue and page of Radio-Electronics on which the item appears. All literature offers void after six months.

RECEIVING TUBE DATA

G-E's new 134-page electronic tube handbook, "Essential Characteristics—Receiving Types (ETR-15E)" gives the characteristics, ratings, and basing diagrams of tubes of all manufacturers.

Included in this edition are metal, glass, miniature, subminiature, and television picture tubes, and germanium diodes. To aid in evaluating the information presented, there is a section entitled "Interpretation of Ratings and Technical Data." In addition, there are 10 pages of schematics of typical receivers, amplifiers, a preamplifier, a cascaded television booster, and a regulated power supply. All schematics contain component values.

Available for 50c from General Electric Tube Dept., Schenectady, N. Y., or from G-E distributors.

NEW TRANSFORMERS

Stancor's Bulletin 467 describes 6 new transformers recently added to the company's line. Complete electrical and physical specifications are listed for three power transformers, P-6348, PC-6844, PM-6842; two audio output transformers, A-6327 and A-6328; and a heavy-duty plate transformer, P-6904, for ham use.

Available without charge from the Chicago Standard Transformer Corp., Standard Division, Addison and Elston, Chicago 18, Ill.

REPLACEMENT MANUAL

Ram's 1954 replacement manual is a 34-page booklet listing components for service replacement. Among the new products are 12 types of vertical scanning output transformers and five vertical blocking oscillator transformers. Seven pages are devoted to typical circuit applications. Copies cost 5c and may be had from Ram Electronic Sales Co., Irvington-on-Hudson, N. Y., or from local distributors.

ALLIED CATALOG

Allied Radio has released its 265-page 1954 catalog, listing over 20,000 items. Included are hi-fi systems; TV chassis; boosters, rotators, and u.h.f. converters; tunable and plug-in; professional and home-recording equipment; P.A. amplifiers and systems; amateur receivers and transmitters; industrial v.h.f. radio and radio-telephone equipment. The back cover describes RCA's new TV Eye. Request Catalog No. 135, available free, from Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.
TUBE CATALOG

Amperex has issued a new 20-page catalog which lists data and characteristics on their electronic tubes for commu

ication, industrial, rectification, radi

diation detection, electro-medical, amate

ur, and special purposes.

Griega from Amperex Electronic Corp., 230 Duffy Ave., Hicksville, L. I., N. Y.

COAXIAL CABLES

Federal's Coaxial Cables and TV Lead-

Ins is a 24-page well-illustrated booklet which features some excellent tables. Among these are selection charts for choosing cables, copper wire specifications, temperature conversion charts, and coaxial cable impedance nomographs.

Available on request from the Selenium-Intelin Department, Federal Telephone and Radio Co., 100 Kingsland Rd., Clifton, N. J.

RADIANT AND C-D BOOKLETS

Recently issued by Radiant are a brochure on the TR-2, TR-11, and TR-12 antenna rotors, and TV accessory items including boosters and automatic clocks; a catalog on u.h.f. and v.h.f. indoor and outdoor antennas; and the 1953 supplement to the company's Vibrator Replacement Guide.

Griega on request from the Radiant Corp., 3455 Vega Ave., Cleveland 13, Ohio and Cornell-Dublier Electric Corp., 333 Hamilton Blvd., South Plainfield, N. J.

REPLACEMENT CATALOG

Sprague's 20-page booklet, C-609, lists capacitors, resistors, interference filters, and test equipment for TV and radio. Paper, ceramic, electrolytic, mica, and Bulplate printed-circuit capacitors are listed. Various ceramic capacitors are included, covering more than 375 ratings in voltages from 300 to 20,000 d.c.

VIBRATOR GUIDE

Mallory's 36-page 1955 Vibrator Guide shows specifications and base diagrams; installation notes and circuit diagrams; buffer capacitor reference circuits, auto battery ground chart, and auto radio service notes. The booklet has reference section prepared according to the Mallory replacement number, original equipment number, vibrator type, application, and manufacturer's replacement number. Available for $5e from F. R. Mallory & Co., Inc., 929 E. Washington St., Indianapolis 6, Ind.

TV HARDWARE

Telco's new 32-page well-illustrated catalog lists standoffs, mounts of all types, turnbuckles, antennas, tuner deto

nors and numerous other accessories.

Ask for Catalog T-54 from Television Hardware Mfg. Co. (Division of General Cement Mfg. Co.), 919 Taylor Ave., Rockford, Ill.

NOVEMBER, 1953

This volume deals with TV fundamentals but assumes a previous knowledge of radio principles. It is outstanding for its exceptionally detailed explanations and numerous diagrams and picture patterns. The book is intended to train service technicians by showing them the how and why of TV circuits.

Separate chapters treat the basic circuits of a receiver. Considerable space is devoted to important topics like deflection, synchronization, sweep generators and a.f. antennas and their installation also receive much attention. Chapters on test equipment and servicing contain much practical information on alignment, trouble-shooting, and measurements. The last chapter illustrates various defective patterns and specifies their causes.

Mobile ham stations are no longer a novelty. Many hams have found that the joys of radio operating are greatly enhanced by working from an automobile. This book is devoted solely to them.

A mobile ham shack has problems that differ from those of a home station. Power supply, antenna, and noise limiter are some of the subjects that need such specialized treatment as is given in this handbook. The first chapters cover ignition systems, battery care, and mobile power supplies. Then how-to-build-and-operate data is provided on modern single-tube and more elaborate converters and receivers, crystal and v.h.f. rigs, multiband transmitters, and modulators. All bands from 80 meters down to 10 are included. Photos of actual tried-and-tested equipment are a great help here. In mobile work, compactness is an important item and it is a good idea to study the original assembly before proceeding.

BOOK REVIEWS
BOOK REVIEWS

The New volume—the fourth in the Photofact Audio Library—in addition to covering the latest PA amplifiers, presents detailed descriptions of a number of the newer high-fidelity amplifiers and tuners and should be particularly useful to audio fans and experimenters who wish to compare circuits of competitive equipment. For example, there are the Radio Craftsmen model 500 and the Leak (British) RC/PA/U versions of the Williamson amplifiers. For other all-trades fans there are the Bogen H10 and the Bell 2145. Those interested in such features as automatic volume expansion and noise suppression will find them in the Amplifier Corporation of America's model ACA-100DC and the Scott 210-B. There are preamplifiers using almost every imaginable type of equalization and tone-correction circuit.

The material on each piece of equipment includes large easy-to-read schematics, photographs, with all labeled, voltage and resistance tables for trouble-shooting, and complete parts lists. In all, there are approximately 44 different preamplifiers and amplifiers and about 20 AM, FM, and AM-FM tuners made by leading audio equipment manufacturers. Also included is a 3-page index listing all the the amplifiers and tuners covered in the four volumes of the book.

As this writer sees it, there is but one thing that needs to be done to make the book even more valuable to the reader. That is to present response curves and distortion figures on equipment in the high-fidelity class. Such information would be of value to both the potential manufacturer. Also included is the high-fidelity class. Such information would be of value to both the potential manufacturer and technicians.

In Canada: Hockbusch Electronics, Ltd., Toronto 4, Ontario.

FREE GIFT to Rose Co. Customers!

Get a new, Hi-Voltage TV Probe FREE. Trace cause of trouble instantly at these low-low prices. Guaranteed—all highest quality. May be asst. for trouble-shooting, and complete parts lists.

Power Transformers

- With 24 V. Secondary
- Without 24 V. Secondary

PLS PLUGS

- Bakelite or Aluminum shells
- Molded or screw type

DEFLECTION YOKES

- Rectangular yoke shells
- RCA 2000's and similar

Termination of 12 & 14 tubes. New records broken. TOSHIBA.$7.50.

The new model, the most popular type for present day facilities.

Brand New at Close Out Prices

ELECTROLYTIC CONDENSERS

Dependable, with highest quality. May be asst. for parts and service.

Full Details at your TACO DISTRIBUTOR

Like other books in this series, this one is authentic and comprehensive. It is written especially to instruct the BBC staff, and will be found of particular interest by TV camera engineers and technicians.

The first part deals with fundamental topics: interlacing, scanning, blanking and sync pulses. Part 2 compares and describes various types of camera tubes, and discusses construction and applications. Part 3 deals with optics and the basic principles of light, mirrors, lenses and view finders. The last chapter covers electron optics, including electrostatic and magnetic lenses.

Several appendices treat more advanced and specialized subjects relating to electronics and light. Algebraic equations appear when helpful in both text and appendix.
RETAIL TUBES \WHOLESALE PRICES!

Stack up now on these amazing tube values! All tubes are of popular brands and fully guaranteed.

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>H040</td>
<td>500</td>
<td>$10</td>
</tr>
<tr>
<td>H050</td>
<td>100</td>
<td>$1.50</td>
</tr>
<tr>
<td>H100</td>
<td>50</td>
<td>$2.00</td>
</tr>
<tr>
<td>H101</td>
<td>200</td>
<td>$1.75</td>
</tr>
<tr>
<td>H102</td>
<td>100</td>
<td>$1.50</td>
</tr>
<tr>
<td>H103</td>
<td>500</td>
<td>$1.25</td>
</tr>
<tr>
<td>H104</td>
<td>100</td>
<td>$1.00</td>
</tr>
<tr>
<td>H105</td>
<td>500</td>
<td>$0.75</td>
</tr>
<tr>
<td>H106</td>
<td>100</td>
<td>$0.50</td>
</tr>
<tr>
<td>H107</td>
<td>500</td>
<td>$0.25</td>
</tr>
<tr>
<td>H108</td>
<td>100</td>
<td>$0.10</td>
</tr>
<tr>
<td>H109</td>
<td>50</td>
<td>$0.05</td>
</tr>
</tbody>
</table>

Also available in various sizes of one large stock. You may order tubes not listed at prices the same savings. Many new special-purpose types in stock.

ADVERTISING INDEX

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adolphine</td>
<td>129</td>
</tr>
<tr>
<td>Application Corp.</td>
<td>130</td>
</tr>
<tr>
<td>All-Electronic Corp.</td>
<td>131</td>
</tr>
<tr>
<td>American Radio Co.</td>
<td>132</td>
</tr>
<tr>
<td>Amplifier Corporation of America</td>
<td>133</td>
</tr>
<tr>
<td>Ampex Corp.</td>
<td>134</td>
</tr>
<tr>
<td>Atlas Sound Corp.</td>
<td>135</td>
</tr>
<tr>
<td>Audio Publishers</td>
<td>136</td>
</tr>
<tr>
<td>Audio Players</td>
<td>137</td>
</tr>
<tr>
<td>Broadcasting Systems</td>
<td>138</td>
</tr>
<tr>
<td>Broadcast Sound</td>
<td>139</td>
</tr>
<tr>
<td>Broadcast Corporation of America</td>
<td>140</td>
</tr>
<tr>
<td>Broadcast Equipment</td>
<td>141</td>
</tr>
<tr>
<td>Broadcast Electronics</td>
<td>142</td>
</tr>
<tr>
<td>Broadcast Engineering</td>
<td>143</td>
</tr>
<tr>
<td>Broadcast Engineering Co.</td>
<td>144</td>
</tr>
<tr>
<td>Broadcast Engineering & Manufacturing Co.</td>
<td>145</td>
</tr>
<tr>
<td>Broadcast Engineering & Manufacturing Co.</td>
<td>146</td>
</tr>
<tr>
<td>Broadcast Engineering & Manufacturing Co.</td>
<td>147</td>
</tr>
<tr>
<td>Broadcast Engineering & Manufacturing Co.</td>
<td>148</td>
</tr>
<tr>
<td>Broadcast Engineering & Manufacturing Co.</td>
<td>149</td>
</tr>
</tbody>
</table>

THE NEW TV DYNATRACER

TRACES TV SIGNALS AND VOLTAGES

LOCATES MALFUNCTIONING COMPONENTS INSTANTLY

REQUIRES NO ADDITIONAL EQUIPMENT

Makes Television Servicing Easier. Faster and More Accurate AT LOW COST

Ideal for trouble-shooting television in the field or on the bench. Used under actual operating conditions, will not interfere with normal TV operation.

A MUST FOR EVERY ALERT TV TECHNICIAN!

SPECIFICATIONS: The "DYNATRACER" is a galvanometer-amplifier capable of taking TV signals through any video amplifier, sync, AFC, or vertical and horizontal sweep circuits. It can detect troubles in any stage of a circuit.

ADDED FEATURE: The "DYNATRACER" will also trace voltages and instantly locate open, shorted or intermittent condensers, resistors, cables, transformers, etc.

COMPLETE INSTRUCTION BOOK ENCLOSED IN DAY MONEY BACK GUARANTEE.

Clip Adv. Write Name and Address in Margin, Attach $5.00 Bill, Check or M.O. and Mail to

Century Electronics Co.
6500-1st Ave., Dept. 107, Brooklyn 1, N. Y.

RECORDING TAPE (plastic base) 40% off

WHERE ELSE WOULD THERE BE MORE RUL A Tape?

Merit Coil & Transformer Co.

Crescent School

141

RCA Victor Division (Radio Corporation of America)

RCA Institutes, Inc.

United Technical Service

Webster Electric Corp.

Commissions.

RCA Victor Division (Radio Corporation of America)

RCA Institutes, Inc.

United Technical Service

Webster Electric Corp.

COMMISSIONED ELECTRONICS CO.

2501 Chautauqua St. N.W., Washington 5, D. C.

COMPONENTS

REQUIRES NO INSTALLATION!

INSTANTLY FASTER AND MORE EFFECTIVE SERVICING EASIER.

NO MORE ROOF-TOP SHOUTING-NOR PHONES-NOR ERRORS!

Ask for KLIP ZON Type C at your local distributor.

KLIP ZON is the most complete, most effective, and most compact of all the repair aids available.

KLIP ZON Type C solves your problems... ALL PROBES IN ONE!

UHF and VHF ANTENNA PLACEMENT and ORIENTATION problems.

No more bad antennas.
No more expensive field strength measuring equipment.

Use a KLIP ZON Type C PROBE to find the right positioning of your antenna.

We show you how. Maximum picture guaranteed in 30 minutes or your money back. We cover your money back guarantee in 30 minutes or your money back. We cover your money back guarantee in 30 minutes or your money back. We cover your money back guarantee in 30 minutes or your money back.

4-page illustrated bulletin.

Ask for KLIP ZON and compare. For free: spec sheets, illustrated bulletins. If not satisfied, return within 15 days for full money back.

ORDER DIRECT FROM MANUFACTURER.

United Technical Laboratories
BOX 425 F
MORRISTOWN, N. J.

RADIO ELECTRONICS
GET INTO ELECTRONICS

You can enter this uncrowded, interesting field. Defense industry, new developments demand trained specialists. Study all phases radio & electronic theory and practice: TV, FM, broadcasting, servicing, radar, marine, police radio, 16-mch. course. Graduates in demand by major companies. H.S. or equivalents required. Write for catalog.

WALPARIS TECHNICAL INSTITUTE
Dept. C
Valparaiso, Ind.

TV REPAIRMEN MAKE TOP MONEY!

In just 39 weeks, you can get your license in the rapidly expanding field of TV repair! Streamlined course gives you all essentials for a good job as service technician. Graduates in great demand. Write for catalog today.

GREAT OPPORTUNITIES

Electronics has opened up a world of opportunities for service men. Careers are available in every phase of radio & TV servicing. Learn to send & receive secret messages. Write for your catalog today.

STEP INTO THE TOP PAY

$5,000-$100,000 A YEAR

EARN MORE MONEY AS A PROFESSIONAL TELEVISION SERVICE TECHNICIAN

STEP INTO THE TOP PAY

FCC LICENSE REQUIRED

Service 2-way mobile radio systems. Our free booklet tells of high pay and opportunities. Write for free booklet. RCA INSTITUTES, INC. A service of RCA Corporation of America 35 West 45 St., New York 18, N.Y.

MAKE $600 EXTRA EACH MONTH!

F.C.C. LICENSE REQUIRED

Service 2-way mobile radio systems. Our free booklet tells of high pay and opportunities. Write for free booklet.

GRANTHAM SCHOOL OF ELECTRONICS, DEPT. 101

CORRECTION

The 500-ma meter in the diagram of the "Tube-Filament Checker" which appeared in the July, 1953 issue is correct, rather than the 5-ma meter as specified in text. The article appeared on page 51, and not page 90 as stated last month.

NOVEMBER, 1953

UNLIMITED OPPORTUNITIES IN ELECTRICAL ENGINEERING

DEGREE IN 27 MONTHS

GRANTHAM SCHOOL OF ELECTRONICS, DEPT. C
351 West 18th St., Los Angeles 15, Calif.

BACHELOR OF SCIENCE DEGREE IN 36 MONTHS.

Major in Electronics or Power. Now, prepare for a career in these rapidly expanding fields.

This school will prepare you to become an engineer, technician or service man. Previous military, academic or practical training may be evaluated for advanced credit.

Enter Both Radio and Television

In 12 months you can attain the Radio-Technician's certificate. An added 6 months course qualifies you for the Radio-TV Technician's certificate and the Degree of "Associate in Applied Science." The Technician's course is the first third of the program leading to a Bachelor of Science Degree in Electrical Engineering with a major in Electronics.

Also offered: 12-month Radio-TV service course; 12-month Electronics or Electric Technician Courses; 6-month Electrical Service Course and 3-month refresher and general preparatory courses.

Terms Open January, March, June, October

Famous for its Concentric Curriculum. Faculty of specialists. 50,000 former students. Annual enrollment from 48 states and 23 overseas countries. Nonprofit, 50th year. Courses approved for Veterans' residence courses only.

WESTERN TELEVISION INSTITUTE

America's Leading Television Servicing School

1411 W. 18th St., Los Angeles 15, Calif.

Send: Dept. RE-1153, 1025 N. Milwaukee, Milwaukee 1, Wisconsin

I am interested in
name of course

Name ____________________________
Address ____________________________
City ____________________________ State ____________________________

If veteran, indicate date of discharge.

MILWAUKEE SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

100 N. EMERSON STREET, MILWAUKEE, WISCONSIN

Send for FREE 45-page "Your Career" booklet describing Electrical Engineering Courses; send for free booklet on Careers in Radio-TV.

Name ____________________________
Address ____________________________
City ____________________________ State ____________________________
"WE'LL HAVE IT
BACK TOMORROW"

Fast turnover... more jobs done per day... that's the answer to greater profits for any service shop. Every minute saved is time available for turning out more work.

That's why Mallory Midgetrols® were designed for fast, easy installation in any set... TV or radio.

Round tubular shafts can be cut accurately and quickly... fit split-knurl or flatted-type knobs.

AC switches can be attached instantly without disassembling the control.

Unique design simplifies inventory problems... makes them quickly available from your distributor.

Midgetrols are engineered to match the electrical characteristics of the original equipment of any TV or radio set. They will give equal, and often better, performance and life than the original control.

For all your service work, use Mallory Midgetrols. They are the answer to fast installation... precision quality on every job.

This will save you time, too. Ask your Mallory Distributor for a copy of the Mallory Control Guide. It is a complete cross reference between set manufacturers' part numbers and the equivalent Mallory control.

Mallory Dual Control Kits

Three kits of controls and switches, selected to meet varying requirements in different parts of the country, will serve 50 different models of radio and television sets. You pay only for the controls and switches; attractive 3-drawer metal cabinet is free of extra cost. Get details from your Mallory Distributor.
A serviceman's "best friend" is an RCA Tube

An RCA Tube starts working for you from the instant the customer first sees the familiar red, black, and white carton. You have her confidence from the start, because she knows and respects the RCA trademark.

But the big payoff to you begins when the tube goes to work. For, experience has proven that the superior quality of RCA Receiving Tubes and Kinescopes is your best measure of protection against premature tube failures. With RCA Tubes, you can be sure the job is well done.

Helping you to safeguard your reputation is a vital, everyday service of RCA Tubes. And that protection is yours at no extra cost.

UNLOCK THE DOOR TO BIGGER PROFITS

Here's your key to better business... RCA's dynamic Dealer Identification Program. Ask your RCA Tube Distributor for your copy of the colorful, 16-page booklet "A Magic Pass-Key to Customer Confidence." It tells you how you can become a Registered Dealer... and get extra sales benefits.

RADIO CORPORATION of AMERICA
ELECTRON TUBES
HARRISON, N.J.