ELECTRONIC CALIBRATORS
SPEED WATCH REGULATION
See page 4

In this issue: Scintillation Counter
Loudness Control
Watches may look alike in shape and size
The big difference in time-keeping performance depends on the "works" inside the watch.

It's what's inside that counts...

—in Radio Batteries too

It's what's inside a radio battery that makes the big difference in long-lasting performance, too. Take RCA's new Alkaline "B" Battery (VS216) for instance.

The Alkaline principle of operation makes possible more efficient utilization of the cell's active materials. Result: it is practical to reduce the size of both cell and battery.

The "crown-type" cell of RCA's new Radio "B" Battery is a compact, self-contained unit which delivers more useful energy per unit of volume than do conventional types of cells. Result: the RCA VS216 is 22 per cent smaller than conventional "B" Batteries formerly used in personal portables—yet it plays a new-design personal portable Twice as Long as conventional 67½-volt types.

It's smart to sell RCA Radio Batteries—they're radio engineered for extra listening hours. RCA Radio Batteries are sold principally through Radio Dealers and Service Men.

Call your RCA Radio Battery Distributor and cash in on the big radio battery replacement market.

RADIO CORPORATION of AMERICA
RADIO BATTERIES
HARRISON, N. J.
I WILL TRAIN YOU AT HOME FOR GOOD PAY JOBS IN RADIO-TELEVISION

J. E. SMITH has trained more men for Radio-Television than any other man.

- America's Fast Growing Industry Offers You
- I TRAINED THESE MEN
- LOST JOB, NOW HAS OWN SHOP
- "Got laid off my machine shop job which I believe was best thing ever happened as I opened a full time Radio Shop. Business is picking up every week." — E. T. Cate, Carolina, Texas.
- GOOD JOB WITH STATION
- "I am Broadcast-Engineer at WLPZ, Another technician and I have opened a Radio-TV service shop in our spare time. Big TV sales here — more work than we can handle." — H. Bangley, Buffalo, Va.
- AVAILABLE TO VETERANS UNDER G.I. BILLS
- WANT YOUR OWN BUSINESS?
- Let me show you how you can get one. Many NRI trained men start their own business with capital earned in spare time. Robert Donnes, New Prague, Minn., whose store is shown at left, says, "Men now tied in with two Television outfits and do warranty work for dealers. Often fall back to NRI textbooks for information."

Television Is Today's Good Job Maker

TV now reaches from coast-to-coast. Quality for a good job as a service technician or operator. At your leisure, you may learn by mail and practice with kits. Many students make $5, $10 a week and more EXTRA fixing neighbors' Radios in spare time while learning. The day you enroll I start sending you SPECIAL BOOKLETS that show you how. Tester you build with kits I send helps you make extra money servicing sets, gives practical experience on circuits common to Radio and Television. All equipment is yours to keep.

1. EXTRA MONEY IN SPARE TIME

Many students make $5, $10 a week and more EXTRA fixing neighbors' Radios in spare time while learning. The day you enroll I start sending you SPECIAL BOOKLETS that show you how. Tester you build with kits I send helps you make extra money servicing sets, gives practical experience on circuits common to Radio and Television. All equipment is yours to keep.

2. GOOD PAY JOB

NRI Courses lead to these and many other jobs: Radio and TV service, P.A., Auto Radio, Lab, Factory, and Electronic Controls Technicians, Radio and TV Broadcasting, Police, Ship and Airways Operators and Technicians. Opportunities are increasing. The United States has over 105 million Radios—over 2,900 Broadcasting Stations—more expansion is on the way.

3. BRIGHT FUTURE

Think of the opportunities in Television. Over 15,000,000 TV sets are now in use; 108 TV stations are operating and 1800 new TV stations have been authorized — many of them expected to be in operation in 1953. This means more jobs—good pay jobs with bright futures. More operators, installation service technicians will be needed. Now is the time to get ready for a successful future in TV! Find out what Radio and TV offer you.

You Learn Servicing or Communications by Practicing With Kits I Send

Keep your job while training at home. Hundreds I've trained are successful RADIO-TELEVISION Technicians. Most had no previous experience; many no more than grammar school education. Learn Radio-Television principles from illustrated lessons. You also get PRACTICAL EXPERIENCE. Pictured at left are just a few of the pieces of equipment you build with kits of parts I send. You experiment with, learn circuits common to Radio and Television.

Mail Coupon—Find out what RADIO-TELEVISION Can Do for You

Act Now! Send for my FREE DOUBLE OFFER. Coupon entitles you to actual Servicing Lesson; shows how you learn at home. You'll also receive my 64-page book, "How to Be a Success in Radio-Television." Send coupon in envelope or postcard on.

J. E. SMITH, Pres., Dept. 3HF, National Radio Institute, Washington 9, D. C. Our 39th Year.
RADIO - ELECTRONICS

Hugo Gernsback
Editor and Publisher
M. Harvey Gernsback
Editorial Director
Fred Shenaman
Managing Editor
Robert R. Scott
W2FWG, Technical Editor
Mortimer Bernstein
Associate Editor
I. Queen
Editorial Associate
Matthew Mandl
Television Consultant
Angie Pascale
Production Manager
Wm. Lyon McLoughlin
Tech. Illustration Director
Sol Ehrlich
Art Director

Lee Robinson
General Manager
John J. Lamson
Sales Manager
G. Alqui
Circulation Manager
Adam J. Smith
Director, Newsstand Sales
Robert Fallach
Promotion Manager

ON THE COVER (See page 26)
Technician. Ralph Steen of
American Time Products, Inc.,
makes some adjustments on a
Watch-Master,
Color original by Avery Stack

CONTENTS

August, 1953

Editorial (Page 25)
Radar Hazards .. 25
by Hugo Gernsback

Servicing—Test Instruments (Pages 26-36)
Modern Watch-Rate Recorders (Cover Feature) ... by Henry O. Maxwell
Automatic Contrast Ratio Control 29
by T. S. Dix, Jr.
Low-Range Ohmmeter ... 30
by A. Stratemeyer
U.H.F. Channel Frequencies Made Easy 31
by A. G. Hatfield
Circuit Shorts—Signal Seeking Tuner 32
by Robert F. Scott
Servicing Record Changers—Part I 34
by John B. Laddetter

Television (Pages 37-47)

Television Construction Permits 37
by David T. Armstrong
Cascade Type Front Ends 38
Community TV Systems, Part II 40
by E. D. Lucas, Jr.
Television?—It's a Cinch! 44
by E. Asberg
Television Service Clinic 46
Conducted by Matthew Mandl

Audio (Pages 48-53)

Loudness Controls ... 48
by M. G. O'Leary
Magnetic Film Recording 52
by I. Queen

Electronics (Pages 54-56)

Scintillation Counter .. 54
by Ed Bukstein

Construction (Pages 58-66)

Laboratory-Type 12-Volt Battery Eliminator 58
by Basil C. Barbee
Transistor Oscillator Is Powered by Light 66
by Rufus P. Turner

New Design (Pages 71-74)

New Tubes (and Transistors) 71

Departments

The Radio Month 8
Radio Business ... 12
Try This One 69
With the Technician 77
New Patents 80
Radio-Electronic 87
Circuits .. 90
New Devices 90
Miscellany 96
Question Box 99
Technocharts 103

MEMBER Audit Bureau of Circulations
Vol. XXIV, No. 8

SUBSCRIPTION RATES: U. S. and Canada, $3.00 per year. Single copies 50c. All other foreign countries, $6.00 per year: $6.00 for two years; $8.00 for three years; single copies 50c. All other foreign countries, $6.00 for one year: $8.00 for two years: $12.00 for three years.
EXECUTIVE, EDITORIAL, AND ADVERTISING OFFICES: 50 West Broadway, New York 7, N. Y. Telephone Eliotone 2-5650. Gernsback Publications, Inc. Hugo Gernsback, President; M. Harvey Gernsback, Vice-President; O. Allison, Secretary.
SUBSCRIPTIONS: Address correspondence to Radio-Electronics, Subscription Dept., 50 West Broadway, New York 7, N. Y.
When ordering a change please furnish an address change impression from a recent wrapper. Allow one month for change of address.
ANOTHER D.T.I. EXCLUSIVE!

Easy-to-learn-from home MOVIES help speed you toward a PROFITABLE, BRIGHT FUTURE IN TELEVISION RADIO • ELECTRONICS

You use this 16 mm. Movie Projector and Films at HOME

Thanks to this exclusive D.T.I. home training aid, many important Television-Radio fundamentals quickly become "movie clear." Now you can actually see electrons on the screen and other "hidden actions"—a wonderful advantage that's almost like having a teacher in your home.

RIGHT: At Home
You Build and
Keep this 5-INCH Oscilloscope
... one of the most useful test units in the TV-electronic field, and almost a "must" for servicing TV sets. No need to buy a costly "scope" when you graduate. Quality, commercial-type units will save you for years to come.

This great, billion dollar opportunity field now offers you a chance of a lifetime to get started toward a real job or your own profitable business. With the TV station limit now raised from over 100 to 2053, Television in the next several years will be headed for almost every community. Mail coupon today. See how you may prepare to cash in on one of the most active fields of our time.

GET STARTED this Wonderfully Practical Way

You don't have to know the first thing about Television-Radio-Electronics at present. D.T.I. supplies you at home with (a) the knowledge, (b) practical experience and (c) employment service—EVERYTHING YOU NEED to help you get started in Television-Radio-Electronics.

FIRST: You receive well-illustrated lessons.
SECOND: You use visual training movies—a great aid to helping you understand important basic points FASTER . . . EASIER . . . BETTER. D.T.I., alone, brings you this wonderful visual training method at home—the same type the armed forces, colleges and industrial organizations are using with such remarkable results.
THIRD: You get many shipments of parts for setting up your own Home Laboratory—working over 300 construction and test procedures for the practical experience you need. This includes building and keeping a 5-inch commercial-type Oscilloscope, a jewel-bearing Multi-Meter, and a big 21-INCH TV Set. D.T.I. also offers another home training, but without the TV Set.
FOURTH: Upon completing your training, you can then get the fine help of D.T.I.'s effective Employment Service—which has nationwide contacts with many employers of trained Television-Radio-Electronic men.

If preferred, you can get all your training in D.T.I.'s thoroughly equipped electronic training laboratories in Chicago. Get the complete story. We believe what we have for you will really surprise you. MAIL THE COUPON TODAY.

21 INCH

MAIL THIS COUPON TODAY.
GET THIS EXCITING PUBLICATION.

DeFOREST'S TRAINING, INC., 2533 N. ASHKLAND AVENUE, CHICAGO 14, ILLINOIS

I would like your Opportunity Bulletin showing "89 Ways To Earn Money in Television-Radio-Electronics," also, complete facts about the training opportunities made possible by your organization.

Name___Age____________

Address__

Cty.__________________________Zone__________State_____________________

MAIL TO DeFOREST'S TRAINING, INC., 2533 N. ASHKLAND AVENUE, CHICAGO 14, ILLINOIS

DEFOREST'S TRAINING, INC.
AFFILIATED WITH DEVRY Technical INSTITUTE
CHICAGO 14, ILLINOIS
The most Powerful TV ROTOR on the market

TR-2

Power When and Where You Need It... To Turn ANY TV Antenna Array Under All Weather Conditions—

Complete rotor with "COMPASS CONTROL" cabinet having illuminated "perfect pattern" dial (uses B wire cable)...

$49.95

THE RADIART CORPORATION
CLEVELAND 13, OHIO

CORNELL-DUBILIER
SOUTH PLAINFIELD, NEW JERSEY

RADIO-ELECTRONICS
NEW JFD "GOLD SHIELD" UHF ANTENNAS ARE GUARANTEED AGAINST RUST FOR ONE FULL YEAR

Don’t let antenna rust “eat away” your UHF profits with costly call backs. Only the spectacular new JFD "Gold Shield" UHF antennas are protected against rust and the serious damage rust causes to UHF pictures. JFD Bronzidite... the miracle anti-rust Army-Navy-Aeronautical “spec” plating... safeguards your antenna installation and your reputation. Every nut, screw, bolt, washer and bracket is "Bronzidite" plated. Depend on the new JFD "Gold Shield" UHF antennas... your guaranteed line to surer profits. See them at your Jobber or write for brochure #218.

JFD MFG. CO., INC.
BROOKLYN 4, N.Y.

WORLD’S LARGEST MANUFACTURER OF TV ANTENNAS AND ACCESSORIES
NEW PRINTED-CIRCUIT manufacturing techniques, each with special features for simplifying mass production of precision components, have been announced by both RCA and Sylvania. The RCA process, now used in producing the company’s new 44-mc i.f. transformers and traps, starts with a huge glass negative for photo-printing several hundred circuits simultaneously on a sensitized copper plate with a low-loss plastic back. After printing, an etching process removes the unexposed areas of the copper, leaving a sharply defined reproduction of the desired circuit. Flat coils and leads with line widths as small as .01 inch can be reproduced accurately.

RCA printed-circuit glass negative

The Sylvania process makes it possible to apply printed circuits of extremely thin copper to flexible cloth surfaces, allowing considerable latitude in connecting the printed circuits to terminals of various sizes. A lacquer negative of the desired circuit is first pressed through a fine-mesh silk screen onto a stainless-steel plate. Then a plating process deposits copper only on the unaliquored areas of the steel. The copper plating is then stripped off the steel by pressing a large adhesive-coated cloth over the entire surface and giving it a quick, uniform, pull. Heat treatment or normal aging of the adhesive bonds the copper permanently to the cloth backing.

Any irregularities in the stainless-steel mother plate will be reproduced in the copper. This makes it possible to put permanent identifying marks and symbols on the printed circuit by etching or engraving them in the steel.

PURE "METALLIC" SILICON for use in transistors and other electronic devices will be produced by the Du Pont Company in a special new plant. Silicon has many of the semiconductor characteristics of germanium, and is one of the most plentiful of all elements—it is the basic element in sand and in many common rocks. However, the "metallic" form is extremely rare and difficult to produce in commercial quantities. It will be sold at $4.30 per pound.

A PRELIMINARY PILOT signal to help service technicians line up u.h.f. tuners and antennas several months before a new TV station goes on the air will be sent out for the first time in this country by WACH-TV in Newport News, Va. The FCC has authorized the new channel-33 u.h.f. station to transmit a 60-watt tone-modulated signal on its sound carrier frequency. This can be heard on split-sound receivers, and should produce sound bars on the picture-tube screen with only a slight adjustment of the fine-tuning control. An auxiliary signal generator will probably be needed to produce the 4.5-mc sound beat for intercarrier sets.

The chief advantage of the pilot signal will probably be in showing whether or not any reception at all is possible at a specific location, since it cannot predict the eventual strength of the actual picture signal, or possible ghosts from multipath transmission.

Sylvania flexible printed circuit forms basic wiring of this a.c.-d.c. radio.
ADVANCE! Raise your earning power—learn RADIO-TELEVISION-ELECTRONICS by SHOP-METHOD HOME TRAINING

GOOD JOBS AWAIT THE TRAINED RADIO-TV TECHNICIAN

There is a place for you in the great Radio-Television-Electronics industry when you are trained as National Schools will train you at home!

Trained technicians are in growing demand at good pay—in manufacturing, broadcasting, television, communications, radar, research laboratories, home Radio-TV service, and other branches of the field. National Schools Master Shop-Method Home Training, with newly added lessons and equipment, trains you in your spare time, right in your own home, for these fascinating opportunities.

OUR METHOD IS PROVED BY THE SUCCESS OF NATIONAL SCHOOLS TRAINED MEN, ALL OVER THE WORLD, SINCE 1905.

EARN WHILE YOU LEARN

Many National students pay for all or part of their training with spare time earnings. We'll show you how you can do the same! Early in your training, you receive "Spare-time Work" Lessons which will enable you to earn extra money servicing neighbors' and friends' Radio and Television receivers, appliances, etc.

National Schools Training is All-Embracing

National Schools prepares you for your choice of many job opportunities. Thousands of home, portable, and auto radios are being sold daily—more than ever before. Television is sweeping the country, too. Co-axial cables are now bringing Television to more cities, towns, and farms every day! National Schools' complete training program qualifies you in all fields. Read this partial list of opportunities for trained technicians:

Business of Your Own • Broadcasting
Radio Manufacturing, Sales, Service • Telecasting
Television Manufacturing, Sales, Service
Laboratories: Installation, Maintenance of Electronic Equipment
Electrolysis, Cell Systems
Garages: Auto Radio Sales, Service
Sound Systems and Telephone Companies, Engineering Firms
Theatre Sound Systems, Police Radio
And scores of other good jobs in many related fields.

TELEVISION TRAINING

You get a complete series of up-to-the-minute lessons covering all phases of repairing, servicing and construction. The same lesson texts used by resident students in our modern and complete Television broadcast studios, laboratories and classrooms.

Send today for National Schools' new, illustrated Book of Opportunity in Radio-Television-Electronics, and an actual Sample Lesson. No cost—no obligation. Use the coupon now—we'll answer by return airmail.

APPROVED FOR VETERANS AND NON-VETERANS
Check coupon below

LEARN BY DOING

You receive and keep all the modern equipment shown above, including tubes and valuable, professional quality Multitester. No extra charges.

FREE! RADIO-TV BOOK AND SAMPLE LESSON!
Send today for National Schools' new, illustrated Book of Opportunity in Radio-Television-Electronics, and an actual Sample Lesson. No cost—no obligation. Use the coupon now—we'll answer by return airmail.

Both Resident and Home Study Courses Offered!

NATIONAL SCHOOLS
Los Angeles 37, California • Established 1905
In Canada: 193 E. Hastings Street, Vancouver, B.C.

FIND OUT NOW—MAIL COUPON TODAY!

NATIONAL SCHOOLS, Dept. RG-83
4000 South Figueroa Street
Los Angeles 37, California

Send FREE Radio-TV Electronics book and FREE sample lesson. I understand no salesman will call on me.

NAME ____________________________ AGE ___
ADDRESS __________________________
CITY ___________________________ ZONE STATE __________
☐ Check here if released from service less than 4 years ago.
☐ Check here if interested in Resident Training at Los Angeles.
THE RADIO MONTH

NEW TV STATIONS on the air for the first time since the full listing on page 44 of last month's RADIO-ELECTRONICS include KCTY, Kansas City, Mo. (channel 25); WGBI-TV, Scranton, Pa. (22); WTFA, Harrisburg, Pa. (71); WCSC-TV, Charleston, S. C. (5); KWSN-TV, Roswell, N. M. (8); WROM-TV, Rome, Ga. (9).

In Canada, station CBOT, Ottawa (4), went on the air June 2, just in time to link Montreal and Toronto for the telecast of the Coronation. A typographical error in last month's complete station list gave the call letters of WHIZ-TV, Zanesville, Ohio, as WH-12-TV.

A NEW V.H.F. TV CHANNEL in the 72-76-mc "blind-spot" has been proposed to the FCC by a Washington law firm representing unidentified broadcaster clients. The new plan would create "channel 4½" by moving the present special-service occupants out of the 4-mc gap between channels 4 and 5, and shifting channels 5 and 6 upward by 2 mc to 78-90 mc. This would displace a number of low-power non-commercial stations at the low end of the FM band, and, of course, would call for some modification to TV tuners.

Proponents of the "channel 4½" plan claim it would provide at least 24 major and medium-sized cities with needed additional v.h.f. outlets.

A CLOSED-CIRCUIT MEDICAL TV service in full color is planned by Smith, Kline & French Laboratories, subject to FCC approval. The service will run on a subscription basis and will pipe programs from hospital operating rooms, schools, and clinics direct to doctors' offices or homes. The possibilities of the SK&F system were demonstrated recently in New York, when a 6-foot picture of a delicate eye operation was produced with a CBS color projection unit.

EDDYING PUDDLES in the atmosphere are blamed by three Government scientists for poor fringe-area reception. Changes in the dielectric constant of the air produced by these eddies affect the transmission of the short wavelengths used for television, but have no apparent effect on longer waves.

COMMUNITY-TV SYSTEM operators and manufacturers held their second annual convention and technical meeting in New York City on June 8. The growing importance of this branch of the television industry was indicated by the large number of equipment exhibits, and by the fact that almost as much time was devoted to discussions of the legal and financial aspects of community TV as to electronics.

Milton J. Shapp, president of Jerrold Electronics Corporation, predicted that by 1960 between 10 and 15 million TV receivers in the U. S. alone will get their programs through community systems. The introduction of color TV will increase this number considerably, since even the slightest ghost can ruin color reception completely.

CANNON ELECTRIC
Since 1915

CANNON PLUGS

XL Connectors are available in 14 shell designs shown here. Watch for this Cannon XL counter display carton.
Here comes opportunity
...ready or not!

- Prepare now for the new Radio-TV-Electronics boom. Get in on VHF and UHF... aviation and mobile radio... color TV... binaural sound! The International Correspondence Schools can help you!

If you've ever thought about Radio or Television as a career... or if you have the interest, but not the training... if you're waiting for a good time to start... NOW'S THE TIME!

No matter what your previous background, I.C.S. can help you. If Radio-TV servicing is your hobby, I.C.S. can make it your own profitable business. If you're interested in the new developments in Electronics, I.C.S. can give you the basic courses of training you need. If you have the job but want faster progress, I.C.S. can qualify you for promotions and pay raises.

I.C.S. training is success-proved training. Hundreds of I.C.S. graduates hold top jobs with top firms like R.C.A., G.E., DUMONT, I.T.S.T. Hundreds of others have high ratings in military and civil service. Still others have successful businesses of their own.

With I.C.S., you get the rock-bottom basics and theory as well as the all-important bench practice and experimentation. You learn in your spare time—no interference with business or social life. You set your own pace—progress as rapidly as you wish.

Free career guidance: Send today for the two free success books, the 36-page “How to Succeed” and the informative catalog on the course you check below, No obligation. Just mark and mail the coupon. With so much at stake, you owe it to yourself to act—and act fast!

INTERNATIONAL CORRESPONDENCE SCHOOLS

BOX 287-J, SCRANTON 9, PENNA.

Without cost or obligation, send me "HOW to SUCCEED" and the booklet about the course BEFORE which I have marked X.

Name: ___________________________ Age: ___________ Home Address: ___________________________

City: ___________________________ State: ________

Occupation: ___________________________

AUGUST, 1953
RADIO BUSINESS

BAROMETER of the PARTS INDUSTRY

During June, 84 of the leading 400 manufacturers of Radio-Television-Electronic parts and equipment made changes in their lines. There was an increase in "change activity" as compared to May.

In price revisions by the number of manufacturers and products affected, the following summary illustrates the comparative trend for the months of May and June.

<table>
<thead>
<tr>
<th>Product Group</th>
<th>Increased Prices</th>
<th>Decreased Prices</th>
<th>New Products</th>
<th>Discontinued Products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Mfrs.</td>
<td>No. of Products</td>
<td>No. of Mfrs.</td>
<td>No. of Products</td>
</tr>
<tr>
<td>Antennas & Access.</td>
<td>4</td>
<td>8**</td>
<td>3</td>
<td>8**</td>
</tr>
<tr>
<td>Capacitors</td>
<td>0</td>
<td>0**</td>
<td>0</td>
<td>4**</td>
</tr>
<tr>
<td>Controls & Resistors</td>
<td>1</td>
<td>18*</td>
<td>0</td>
<td>0**</td>
</tr>
<tr>
<td>Sound & Audio</td>
<td>13</td>
<td>261*</td>
<td>8</td>
<td>33*</td>
</tr>
<tr>
<td>Test Equipment</td>
<td>8</td>
<td>99*</td>
<td>6</td>
<td>13*</td>
</tr>
<tr>
<td>Transformers</td>
<td>1</td>
<td>518*</td>
<td>1</td>
<td>2*</td>
</tr>
<tr>
<td>Tubes</td>
<td>8</td>
<td>205*</td>
<td>4</td>
<td>40*</td>
</tr>
<tr>
<td>Wire & Cable</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0**</td>
</tr>
<tr>
<td></td>
<td>* Increase over May</td>
<td>** Decrease from May</td>
<td>* Increase over May</td>
<td>** Decrease from May</td>
</tr>
</tbody>
</table>

Comment: This month has seen the largest number of manufacturers reporting product changes in their lines since the introduction of the Barometer. Over the last few months, as previously noted, Antennas, Sound and Audio, Test Equipment and Tube manufacturers have been the most active product groups.

This data is prepared by the staff of United Catalog Publishers, Inc., 110 Lafayette Street, New York, publishers of Radio's Master, the Official Buying Guide of the Parts Industry.

Merchandising and Promotion

RCA Tube Department, Harrison, N. J., is offering service technicians a chance to obtain a Servi-chest, a compact carrying case for parts, tools, and test equipment, complete with a large-size mirror. The offer is being made in connection with a sales promotion program on RCA tubes, from June 1 to August 31. The chest will be given to service technicians who buy 30 picture tubes or 750 receiving tubes during that period.

Littelfuse, Inc., Des Plaines, Ill., has revised and modernized its popular One-Call Kit. The new kit contains a compact selection of fuses which the company states will meet 95% of the service technician's fuse requirements. The company also released a revised edition of its TV Fuse Guide.

Raytheon Manufacturing Co., Receiving Tube Division, Newton, Mass., is sponsoring a $10,000 Transistor Application Contest, to be handled through its Special-Purpose Tube Distributors. The contest, directed to experimenters, engineers, and "gadgeteers," is designed to encourage development and experimentation in the field of transistor application. The contest runs from June 1 to August 31, 1955. First prize is $5,000.

Brach Manufacturing Co., Newark, N. J., a division of General Bronze Corp., introduced a new two- and four-set coupler display card as a point-of-sale display for distributors and service technicians.
Both New—Both Needed

Littelfuse 1953 TV Fuse Guide enlarged to include latest models

Littelfuse new One Call Kit adapted to include fuses being used in latest models—94 out of 100 times one call is all. Littelfuse Inc., Des Plaines, Ill.
RADIO BUSINESS

Sprague Products Co., North Adams, Mass., is offering service technicians a large, colorful thermometer, through its distributors or directly from the company. The weather-sealed, aluminum-cased thermometer makes an effective display.

Simpson Electric Co., Chicago, released a flyer for distributor counter display and a direct-mail promotion on the Simpson model 262 volt-ohm-milliammeter, model 269 volt-ohm-microammeter, and model 1000 plate-conduction tube tester.

Westinghouse Electric Corp. will sponsor regular national telecasts of the National Professional Football League games next fall.

Channel Master Corp., Ellenville, N. Y., launched what it calls the largest, most comprehensive, local co-operative, advertising program in the TV-antenna industry. Spearheading the campaign is a series of filmed TV spot commercials, each 90 seconds long.

The company believes this is the first time this medium has been used in TV-antenna advertising. Decals, window streamers, and counter displays round out the campaign.

All materials have been combined into a binder with a designation kit available through distributors.

John F. Rider Publisher, Inc., New York City, has made available to its distributors a steel cabinet for its Tel-File Packs. The company is also dis-

tributing a new collapsible steelwire book rack for its paper-bound books. The rack is designed to fit on top of the new Tel-File cabinet. Both are available to distributors on a special purchase offer.

New Plants and Expansions

Essex Wire of Detroit announced the consolidation of its Chicago Transformer Division in Chicago with Standard Transformer Corp., also in Chicago. The combined operations will be known as Chicago Standard Transformer Corp. (See People page 105 for executive appointments.) No changes in plant operations, personnel, or locations are contemplated.

Sylvania Electric Products announced plans for a new 416,000-square-foot TV set manufacturing plant in Batavia, N. Y., and a new TV picture-tube plant in Fullerton, Calif., to take care of the original and replacement requirements for TV picture tubes on the West Coast.

Raytheon Manufacturing Co., Waltham, Mass., is undertaking a $1,750,000 modernization program on its South Lowell, Mass., plant. Electronic equipment for guided missiles is among the products which will be made there.

General Electric recently completed a three-story addition to its plants in Buffalo, N. Y. The $100,000 addition will permit increased production of aluminized TV picture tubes.

CBS-Hytron, Danvers, Mass., purchased a new plant in Lowell, Mass., the first constructed under the city's industrial rehabilitation program. The new plant will be devoted to the manufacture of transistors and germanium diodes.

International Resistance Co., Philadelphia, opened a new sales office in Syracuse, N. Y., under the direction of James G. Perkins, Jr., general manager, Richard Johnson, assistant manager, and Anne Florek, customer service correspondent. All three have been with IRC for a number of years.

Allen B. Du Mont Technical Advertising Department moved to expanded quarters at 760 Bloomfield Ave., Clifton, N. J.

Walter L. Schott Co., Los Angeles, Calif., moved its Chicago warehouse facilities to larger quarters at 315 West Walton Place. Jack O'Donnell, present Chicago manager, is in charge of the new larger quarters and increased personnel.

ELECTRONIC Coil Co., Burbank, Calif., for the manufacture of r.f. coils. Henry J. Davis, president of Davis Electronics, which operates under the name of Standard Coil Products, is vice-president.

Radion Corp., Chicago antenna manufacturer, has branched out into the test equipment field with a new battery-operated u.h.f.-v.h.f. field strength meter. Several other new test equipment items are in the planning stage, according to Daniel T. O'Connell, vice-president and sales manager.

Hoffman Radio Corp., Los Angeles, expects to begin operations this month in a new $1,000,000 factory in Kansas City, Mo. The new plant will manufacture TV sets for the Eastern and Midwestern markets.

Pentron Corp., Chicago, leased quarters at 664 North Michigan Ave., to house its sales and display facilities. Manufacturing, engineering, and general offices remain at 221 East Cullerton St.

International Rectifier Corp. moved its New York offices to 501 Madison Ave.
Presenting ... at most moderate cost ...

ESPEY

25th Anniversary "Trophy" Models

AM-FM CHASSIS • TUNERS • AMPLIFIERS

In commemoration of twenty-five years’ experience in the manufacture and development of high-fidelity audio equipment, Espey is proud to present its distinguished "Trophy" models. Renowned for beauty of styling and excellence of performance, the new Espey models are so reasonably priced that for the first time magnificent listening pleasure is within the means of all lovers of fine audio reproduction.

Descriptive literature on the new Espey AM-FM chassis, tuners and amplifiers now available ... your inquiry is invited.

ESPEY

SYLVAN A. WOLIN & ASSOCIATES SALES CORP., 409 GRAND AVENUE, ENGLEWOOD, N. J.
START ON THE ROAD TO SUCCESS
Study the RCA TV Servicing Course in your spare time

Are you satisfied with the position you now hold? Do you feel you're worth more money? Are you pleased with yourself, your work, your associates ... and your future? What does the next year hold for you ... and the year after that?

Are you content merely to plod along through the best years of your life ... or do you want to get into more pleasant work ... hold a well-paid job ... perhaps establish your own business?

If you are looking for a REAL opportunity ... if you want to Grow with a GROWING INDUSTRY ... if you want to grasp the success that should be yours, then we say to you, study TV Servicing.

Everyone knows that Television is the fastest growing industry today. Opportunities are going begging for men who have the training and ability to grasp them. Now is the time to start on the road to success in TV Servicing.

Study at Home in your spare time
The RCA Institutes Home Study Course in TV Servicing is easy to learn. You progress rapidly, step by step, as you learn the procedure of servicing and trouble-shooting TV receivers and installing TV antennas. Hundreds of pictures and diagrams help you understand the how-it-works information and the how-to-do-it techniques.

A Service of Radio Corporation of America
The RCA Institutes TV Servicing course was written and planned by instructors with years of specialized experience in training men. You get up-to-the-minute information, too, because you study right at the source of the latest developments in Television. Your lessons are carefully examined and accurately graded by competent teachers who are interested in helping YOU to succeed.

RCA Institutes is licensed by the University of the State of New York ... an affiliate member of the American Society for Engineering Education ... approved by leading Radio-Television Service Organizations.

It costs so little to gain so much
RCA Institutes makes it easy for you to take advantage of the big opportunities in TV Servicing. The cost of the TV Servicing Home Study Course has been cut to a minimum. You pay for the course on a pay-as-you-learn unit lesson basis. No other home study course in TV Servicing offers so much for so little cost to you.

SEND FOR FREE BOOKLET—Mail the coupon—
today. Get complete information on the RCA INSTITUTES
Home Study Course in Television Servicing. Booklet gives
you a general outline of the course by units. See how this
practical home study course trains you quickly, easily.
Mail coupon in envelope or paste on postal card.

MAIL COUPON NOW!

RCA INSTITUTES, INC., Home Study Dept. RE-853
350 West Fourth Street, New York 14, N. Y.
Without obligation on my part, please send me copy of booklet "RCA INSTITUTES Home Study Course in TELEVISION SERVICING." (No salesman will call.)

Name_________________________ (please print)
Address_______________________
City_________________ Zone_______ State______
At Last! a YAGI for the ENTIRE LOW BAND!

CHANNEL MASTER'S Newest futuramic

Completely covers every low band channel—2 through 6

Now the extraordinary high gain of a Yagi... the razor-sharp directivity of a Yagi...

Not on just one channel — but clear across the entire Low Band!

Designed for service TODAY and TOMORROW in these 3 booming VHF markets:

Areas in which present VHF stations are changing channels (on the Low Band).

The Futuramic Yagi provides better reception than conventional Yagis on the present channels — and when the shift occurs this superior reception will continue on the new channel WITHOUT INTERRUPTION. And you can make your change-over installations NOW.

Areas in which a new VHF station is being added to the present one (on the Low Band).

The great number of single channel Yagis now in use will not bring in the new channel. If an additional Yagi is installed it will have to be tied into the present installation with separate leads and a switching system. However, one Futuramic will do the job of BOTH antennas — at lower cost — with better results on BOTH channels.

Areas served at present by two or more VHF stations on the Low Band.

You no longer have to compromise between conventional broad band antennas, and separate Yagis for each channel. The Futuramic gives you the full advantages of both. It combines highest gain and sharpest directivity with simple, economical installation.

Now — 6 great Futuramic models, designed for every reception area:

<table>
<thead>
<tr>
<th>model no.</th>
<th>channels covered</th>
<th>list price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1173</td>
<td>7 – 13</td>
<td>$2043</td>
</tr>
<tr>
<td>1124</td>
<td>2, 3, and 4</td>
<td>$4077</td>
</tr>
<tr>
<td>1125</td>
<td>2, 3, 4, and 5</td>
<td></td>
</tr>
<tr>
<td>1136</td>
<td>3, 4, 5, and 6</td>
<td></td>
</tr>
<tr>
<td>1146</td>
<td>4, 5, and 6</td>
<td></td>
</tr>
<tr>
<td>1126</td>
<td>2, 3, 4, 5, and 6</td>
<td></td>
</tr>
</tbody>
</table>
Only ROHN TOWERS
ARE PROVED IN CONSTRUCTION,
DESIGN, USE & SALES

standard self-supporting ROHN steel towers
for your every need!

NO. 6—A 6-ft. triangular designed tower especially designed for TV needs. Can be used up to 400 ft. high, guyed or guyed to steel. An economical, yet sturdy, permanent tower. Can be climbed as can all ROHN Towers.

NO. 10—The standard 12-in. design — heavy duty tubular steel, electric welded and heavily cross-braced through out. Used by thousands coast to coast. Up to 50-ft. non-guyed — guyed to 125-ft.

NO. 20—Does a 14-in. triangular design — heavy duty tubular steel, ideal for communications and where great height is required.

All ROHN towers in 14-ft. sections for easy erection and transportation.

Come in 20, 30, 49 and 50 ft. sizes. Easily erected, heavy-duty rectangular tubing throughout.

NO. 40 — A 40-in. tower especially designed for TV needs. Used for permanent tower, permanent tower, especially designed for TV needs. Can be climbed as can all ROHN Towers.

NO. 60 — A 60-in. tower especially designed for TV needs. Can be climbed as can all ROHN Towers.

Famous ROHN FOLD-OVER
TOWER
(Pat. Pending)

Fold-Over Tower uses standard tower sections plus an inexpensive ‘fold-over’ kit. The perfect answer to the type tower requirement.

ROHN TELESCOPING
MASTS

PLUS A COMPLETE LINE
OF ACCESSORIES:

UHF Antenna Mounts
For Masts
Wall Mounts

Contact your ROHN distributor for FREE catalog and Prices or write:

ROHN MANUFACTURING
COMPANY

DEPT. RE
116 LIMESTONE
BELLEVUE,
PEORIA, ILLINOIS.

OVER 50,000
TECHNICIANS
HAVE LEARNED

HOW TO GET
THE MOST OUT
OF BASIC TEST
EQUIPMENT

for A.M. - F.M. - TV

★ Nothing complicated to learn
★ No extra equipment to purchase
★ Universal . . . non-obsolescent
★ Employs only Basic Test Instruments

Ask for "S-55" or "S-70" at your local Radio Parts Jobber or remit 40¢ in small stamps or coin directly to factory.

PRECISION APPARATUS COMPANY, INC.
92-77 HORACE HARDING BLVD., EMPLUSH 4, N. Y.

RADIO BUSINESS

Webster-Chicago opened an Eastern Division office in Mount Vernon, N. Y., under the direction of C. S. Castle, a Webcor sales executive in Chicago for the past five years. Vitasite Co., New York City, has formed to handle the sale of all radio hardware, r.f. probes, alignment tools, etc., made by Keystone Electronics, to the distributor trade.

Howard H. Smith, Inc., manufacturer of electronic components, is building a new plant in Brooklyn, N. Y.

E. F. Johnson Co., Waseca, Minn., purchased the inventory, tools, dies, and rights to manufacture the Signal line of telegaph instruments and keys made by the Signal Electric Manufacturing Co., Menominee, Mich.

Amplitronix, New York City, was organized as a new company for the development and manufacture of electronic equipment. Products include multivaveform generators, projection oscilloscopes, electronic timers, and oscilloscope calibrators.

Business Briefs

... Allen B. Du Mont Laboratories, Teleset Service Department, Clifton, N. J., has instituted an accelerated service technician's training program in new TV areas with a follow-up in older markets to increase technical proficiency. Service clinics are being held in more than 40 new areas.

... The Magnetic Recording Industry Association was recently organized in Chicago by a group of executives of leading tape-recording manufacturers. Joseph F. Hard, vice-president of A-V Tape Libraries, was elected president pro tem. An organizing committee was formed including R. J. Tinkham, Ampex Electric Corp.; R. S. Shoemaker, Du- tane Corp.; Paul W. Samuels, Minnesota Mining and Manufacturing Co.; and J. L. Samuels of Webster Electric.

... RCA Service Co., Camden, N. J., capped an intensive three-month campaign to achieve maximum efficiency and customer satisfaction in TV servicing, with the presentation of "President's Cup" awards to four of its TV service branches.

... Radio-Electronics will exhibit in Booth 965A at the 1953 Western Electronic Show and Convention in the San Francisco Civic Auditorium, August 19-21.

... Sprague Products, North Adams, Mass., was presented with a plaque by NATESA at its national convention in Kansas City, Mo., for outstanding business and service standards.

... The Record Industry Association of America presented Frank M. Folsom, president of RCA, with a gold record to commemorate the 50th Anniversary of RCA Victor's Red Seal classical recordings. Presentation was made by Milton R. Rackmil, president of the association and of Decca Records.

... NBC Research and Planning Department reported 23,256,000 TV sets installed in the United States as of April 1. This was the last of these reports to be published monthly. Future reports will be placed on a quarterly basis.
Model 630: 33 Ranges
Completely enclosed single selector switch; 6½" meter with 4½" scale. Uses 1½% resistors. Provides direct connections without cable. Ranges: DC and AC volts, 0-15, 30, 60-150, 120-600, DC at 20,000 ohms, AC at 5000 ohms. DC current 0-50 microamps, 1-2-12-120 microamps, 0-12 amp, +1000-10,000. Free -to-peak voltage, 0-1-5-50-500-5000. AC -RF, v., 0-1.5-10-50-100-1000. AC currents: 0-0.1-1-5-10-20-50-100-500-1000-1 meg. -to-peak, 0-1000-10,000. Test leads, 1000 ohms, 0-5.1-10-50-100-500. AC -RF volts, complete with power cord, AC voltage, leads, AC -RF voltmeter probe. Shpg. wt., 6 lbs.

$38.71

Model 650: Single Switch
Single selector switch for all ranges. Complete frequency coverage from 15 cps to over 110 mc with one probe. Ranges: DC v., 0-1.5-10-50-100-1000-10,000; AC -RF, v., 0-1-5-10-50-100-1000-1 meg. -to-peak; AC -RF voltage, 0-1-5-10-20-50-100-200-800; voltage, 0-1-5-10-100-1000, 1 meg. -1000 meg. Large 5½" meter with 4½" scale. 2½ x 5¼ x 7¼", complete with power cord, AC voltage, and leads. AC -RF voltage probe, shipped wt., 6 lbs.

$68.11

Model 666R: 1000 ohms/volt
Economical pocket-size VOM with handy single selector switch. Only 2 controls—the range switch and the probe adjust control. 1000 ohms/volt sensitivity on AC and DC volt ranges. Red Dot 3"-0-200 microameter movement with 250 millivolt sensitivity. Ranges: DC and AC volts, 0-15, 30, 60-150, 120-600. AC -RF voltage, 0-1-5-10-50-100-500-1000-1 meg. -to-peak, 0-1000-10,000. DC current, 0-50 microamps, 1-2-12-120 milliamperes, 0-12 amp, resistance, 0-1000 ohms, 0-100-1 meg. ohms; db +30 to -70 in 6 ranges output voltage. 0-15-30-60-150-200-600. Single knob selects both circuit and range. 6½" meter with 4½" scale. 7½ x 5¼ x 3½". With batteries and 50" test leads. Shpg. wt., 6 lbs. Here's the compactly built one-construction VOM—true 0-1-2-0-1. 0-120-0 ohms. Requires no accuracy testing. A must in any toolbox. It's a must for every amateur. 84-574. Only

$49.51

Model 630A: 5½% Resistors
Overall accuracy: 1½% on ohms and 0-120 ohms; 5½% on 6000 DC volts and all AC ranges. Features mirror scale to eliminate errors in reading due to parallax; uses 1½% resistors. Ranges: DC and AC volts, 0-3-12-60-300-1200-6000 (DC at 20,000 volts per volt, AC at 5000 volts per volt), AC current, 0-50 microamps, 1-2-12-120 milliamperes, 0-12 amp, resistance, 0-1000 ohms, 0-100-1 meg. ohms; db +30 to -70 in 6 ranges output voltage. 0-15-30-60-150-200-600. Single knob selects both circuit and range. 6½" meter with 4½" scale. 7½ x 5¼ x 3½". With batteries and 50" test leads. Shpg. wt., 6 lbs. Here's the compactly built one-construction VOM—true 0-1-2-0-1. 0-120-0 ohms. Requires no accuracy testing. A must in any toolbox. It's a must for every amateur. 84-574. Only

$77.91

Type BV ADAPTOR: T2247-BV. Checks TV picture tubes with Model 630A. Shpg. wt., 1 lb.

$7.74

3413A Tube Tester
Top of the line at a remarkable price. Tests all modern tubes (including 9-pin mini plug) lamp, tube, resistor, etc. 6" Red Dot lifetime guaranteed meter gives quick, accurate B-A-D—GOOD tests. Comes with instruction chart. Counter portable case. 15½ x 11¼ x 6¼". Shpg. wt., 28 lbs.

$328.91

3409A Tube Tester
New Proportional Mutual Conductance Type for all TV and Radio tube tests. Gives mutual conductance tests. Also has GOOD—BAD scale. Checks for shorts, leakage, gas, noise. Tests all tube types speedily and accurately. Built-in Speed-Roll Test Case, 14½ x 18½ x 4½". Shpg. wt., 21 lbs. With accessories and instructions. For extremely accurate and completely dependable testing of all tube types—this is the instrument to own.

$195.51

Model 3411 TV-FM
Oscilloscope

$195.51

Model 3433A TV-FM
Sweep Generator
High output on VHF and sufficient harmonics for UHF. Continuous tuning 100,000-300,000. 240 mc covers all TV and FM and IF ranges with no gaps. Sweep center frequency 0-6-60-120 and 120-240 mc. Sweep rate 0-12 mc, continuously variable. Marker frequencies: 3.5-4.9, 19.5-29.3, 29-48 (fundamentals); harmonics to 240 mc. Crystal frequency 20 mc on fundamentals: harmonics to 216 crystals not supplied). Modulation: 800cycles, Output: 1 to 1.5 volts. Two built-in makers: absorption and pip and crystal. Ladder type attenuator. Horizontal bar generator for vertical alignment. Large mirror scale for precise marker adjustment. 3½" x 11¼ x 8½". With 2 coaxial cables, ground straps, test leads and instructions. For 105-115 v., 50-cycle AC. Shpg. wt., 45 lbs.

$195.51

ALLIED STOCKS ALL TRIPLETT TEST INSTRUMENTS
We can supply promptly any test instrument made by Triplett, including the following models:

Model 467, Test-Chek. Only...$28.91

Model 3432 Signal Generator. Only...$77.91

Model 625 NY V.O.M. Only...$48.51

All Triplett test instruments over $45 available on Easy Terms—write for details.
NEW

ATTRACTIVE YELLOW MOLDED PLASTIC SHELL
Non-inflammable. Will not burn or melt under soldering iron or flame.

BONDED SEAL
Positive, heat resistant, non-inflammable bond seals leads and shell, locks out humidity.

FIRMLY SECURED LEAD
Can't be pulled out, even under soldering iron heat.

ASTRON BLUE-POINT
MOLDED PLASTIC PAPER

Yes, the ASTRON BLUE-POINT's tighter seal and tougher shell give you heat and moisture protection to a degree never before possible—providing a longer life and greater dependability than has ever been achieved in a molded plastic capacitor! BLUE-POINT is a capacitor you can rely on completely, under every condition.

BLUE-POINT is suitable for continuous operation at 85°C. The bonded seal uses a special thermo-setting, heat-resistant, non-inflammable bonding agent—positive protection against moisture. Solder leads as close to the capacitor as you like—they won't pull out! Every BLUE-POINT is clearly marked with voltage and capacitance, bears outside foil identification. Every BLUE-POINT is tested and guaranteed. Look for the ASTRON BLUE-POINT when you buy capacitors from your jobber, or if he doesn't carry it, send us his name. Insist on ASTRON BLUE-POINT, the capacitor you know you can depend on. Order a supply today.

For complete performance characteristics, specifications and listings, write for Bulletin AB-20A

DEPENDING ON—INSIST ON

ASTRON CORPORATION
255 Grant Ave., E. Newark, N. J.

Patent Pending

RADIO-ELECTRONICS
To help you boost your sales and make more money

RAYTHEON

makes these
SALES AND SHOP AIDS
available to you

Our TELEVISION
and RADIO
Service is
Guaranteed!

We use RAYTHEON
TELEVISION
and RADIO TUBES

RAYTHEON MANUFACTURING COMPANY
Receiving Tube Division
Newton, Mass., Chicago, Ill., Atlanta, Ga., Los Angeles, Calif.

RAYTHEON makes all these:
RECEIVING AND PICTURE TUBES — RELIABLE SUBMINIATURE AND MINIATURE TUBES — GROUNDING HOSES AND TRANSISTORS — ELECTRONIC TUBES — MICROWAVE TUBES

Write for FREE BOOKLET!
Pictured are only a few of the many useful shop aids and sales promotion items that Raytheon has made available to you. There are many others — job tags and record cards, imprinted stationery, post cards, ad mats, shipping labels, decals, paper bags, giant outdoor thermometers, etc. — all designed with your needs in mind. Many items are free, the rest available at very low cost. Ask your Raytheon Tube Distributor about them or write for free booklet. Address your request to Department F, Raytheon Manufacturing Company, Receiving Tube Division, 55 Chapel Street, Newton 58, Mass.

RAYTHEON MAKES ALL THESE:

TELE JAR-ROTOR
A perfect small parts storage unit. Only 17" x 13" x 13". Has 48 transparent plastic jars.

DEALER NAME HERE
TELEVISION
AND
RADIO SERVICE

TELEVISION TUBES
RAYTHEON
RADIO TUBES

ILLUMINATED OUTDOOR SIGN
Double sided, formed plastic sign. 36" x 24" UL approved.

DISPLAYS
Six color displays that sell your service.

GUARANTEED
TELEVISION
and RADIO
SERVICE

REFLECTORIZED OUTDOOR
METAL SIGN
Two sided metal sign to catch the eye of passers-by.

TRANSPARENT PLASTIC
WINDOW STREAMER

SHOP JACKETS
AND COATS—
Full length or jacket style.

TUBE AND TOOL CARRYING CASE
Holds 137 tubes — plus all regular tools.

THREE DIMENSIONAL PLASTIC
ILLUMINATED SIGN
A colorful "3-D" flasher illuminated formed plastic beauty.

Expert Television
Radio Service
We use RAYTHEON TELEVISION and RADIO TUBES

PLASTIC "WILL RETURN"
DIAL SIGN

ILLUMINATED TEST PATTERN/CLOCK
A Telechron Motorized beauty.

AUGUST, 1953
Belden Aptitude-Tested INTERCOMMUNICATIONS CABLES

Aptitude-tested Belden Intercommunications Cables are available for every type of installation and for every type of equipment. The permanence and trouble-free performance of Belden Inter-Com Cables assure you constant quality in your work. For more profitable installations, specify Belden Inter-Com Cable.

Belden Manufacturing Company
4623 W. Van Buren St.
Chicago 44, Ill.

<table>
<thead>
<tr>
<th>A.W.G. and No. Condrs.</th>
<th>22-2</th>
<th>22-12</th>
<th>22-3</th>
<th>22-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stranding</td>
<td>Solid</td>
<td>Solid</td>
<td>7x30</td>
<td>7x30</td>
</tr>
<tr>
<td>Nom. Diam (inches)</td>
<td>.145</td>
<td>.265</td>
<td>.310</td>
<td>.210</td>
</tr>
<tr>
<td>No. Pairs</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>Not Pared</td>
</tr>
<tr>
<td>Insulation Thickness (inches)</td>
<td>.010</td>
<td>.010</td>
<td>.010</td>
<td>.010</td>
</tr>
<tr>
<td>Tinned Copper Shielding</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Over 1 conductor</td>
</tr>
</tbody>
</table>

GENERAL PURPOSE PLASTIC INSULATED CABLES.
Flexible, lightweight, and small diameter. Applications include control, annunciator, and communication circuits.

<table>
<thead>
<tr>
<th>A.W.G. and No. Condrs.</th>
<th>22-4</th>
<th>22-3</th>
<th>22-5</th>
<th>22-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stranding</td>
<td>7x30</td>
<td>7x30</td>
<td>7x30</td>
<td>7x30</td>
</tr>
<tr>
<td>Nom. Diam (inches)</td>
<td>.158x.276</td>
<td>.140</td>
<td>.170</td>
<td>.245</td>
</tr>
<tr>
<td>No. Pairs</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>16x30</td>
</tr>
<tr>
<td>Insulation Thickness (inches)</td>
<td>.015</td>
<td>.010</td>
<td>.010</td>
<td>.010</td>
</tr>
<tr>
<td>Tinned Copper Shielding</td>
<td>Over 1 pair</td>
<td>Not Pared</td>
<td>Over 3 conductors</td>
<td>Not Pared</td>
</tr>
</tbody>
</table>

Belden Radio WIRE
The Aptitude-Tested LINE
RADIO-ELECTRONICS
THOUSANDS OF NEW JOBS IN

MORE

TELEVISION

MORE VALUE!

YOU GET A ROUND TRIP TO
NEW YORK CITY
AT NO EXTRA COST
FROM ANYWHERE IN THE U.S. OR CANADA
— I pay your way to New York and return,
PLUS 2 FREE weeks, 50 hours of advanced
instruction and shop training at the PIERCE
SCHOOL OF RADIO & TELEVISION.
You use modern electronics equipment, includ-
ing student-operated TV and Radio stations.
You go behind the scenes of New York's
big Radio-TV centers, to study first-hand.
And I give you all this AT NO EXTRA COST!
(Apply to complete Radio-TV course only.)

Only RTTA makes this amazing offer.

MORE TRAINING TO FIT YOU
FOR THE BETTER PAY JOBS
Thousands of new jobs will open up right
in your own state, now that the govern-
ment has lifted restrictions on new TV
stations. My simple, successful method
have helped hundred of men — most of
them with NO PREVIOUS TRAINING —
find places in America’s booming TELE-
VISION and Electronics Industries. You
can get the success and happiness
you always wanted out of life within
months — studying at home — so I
train you to become a full-fledged TV
TECHNICIAN. Many of my students make
as much as $25.00 a week repairing
Radio-TV sets in their spare time while
learning . . . pay their entire training al-
most from the very beginning from spare-
time earnings . . . start their own profit-
able service business.
But I don’t stop after I qualify you as a
TV Technician . . . although right there
you can choose from amazing dozens of
fascinating careers! I continue to train
you — AT NO EXTRA COST — to qualify
for even better pay in the BETTER JOBS
that demand FCC licenses. With my . . .

FREE FCC COACHING COURSE
helps you at home for your FCC LCE.
THE FCC NEEDS TV AND RADIO
REQUIRE AN FCC LICENSE.
Given at NO EXTRA COST after TV
Theory and Practice is completed.

ADVANCED FM-TV TRAINING
If you have previous Armed Forces or
civilian radio experience—by ADVANCED
COURSE can save you months of training.
Full theory and practical training . . .
complete with kits, including BIG SCREEN
TV RECEIVER and FREE FCC License
Coaching Course.

FREE EMPLOYMENT ASSISTANCE
My vocational adviser will help you ob-
tain a good-paying job in the locality of
your choice.

VETERANS!

MY SCHOOLS FULLY APPROVED TO TRAIN VETERANS UNDER NEW
G.I. BILL! If discharged after June 27, 1950 — CHECK COUPON BELOW!
Also approved for RESIDENT TRAINING
in New York City . . . qualifies you for
full subsistence allowance up to $160
per month.

MAIL COUPON TODAY!
BOTH FREE! New
Illustrated Book
and Sample
Lesson. Learn
How My
Simple
Methods Make
Success Easy

LEONARD C. LANE, B.S., M.A.
President of Radio-Television
Training Association, P.O. Box
of Pierce School of Radio and
Television.

I GIVE YOU
MORE EQUIPMENT
TO TRAIN YOU BETTER

Set up your own home laboratory with the
15 BIG TV-Radio kits we send you. You
build AND KEEP your own complete BIG
SCREEN TV RECEIVER, Super-Het Radio
Receiver, R.F. Signal Generator, Combina-
tion Voltmeter—Ammeter—Ohmmeter, C-W
Telephone Receiver, AC-DC Power Supply.
Everything is furnished complete, including
all tubes, plus big TV picture tube.

I GET MY
GRADUATES GOOD PAYING JOBS

"Thanks to your training, I qualified for a posi-
tion as a Rating Receiver Tester at Federal Tele-
drome and Radio.
— Paul Frank Leiser

"I'm making good money in my
own business, repairing and in-
stalling radio and TV sets —
thanks to your training.
— Irwin Polansky

"Your excellent instruction helped
me get my present job as an
airport radio mechanic for Ameri-
can Airlines.
— Eugene E. Busko

"I'll always be grateful to your
training which helped me get my
present line position as Assistant
Parts Manager.
— Norman Weston

Many others working at NBC, RCA, CBS,
DuMont, Philco, Emerson, Admiral and
other leading firms.

NO SALESMAN WILL CALL!

Mr. Leonard C. Lane, President
RADIO-TELEVISION TRAINING ASSOCIATION
125 Broadway, Radio City Station
New York 19, N. Y. Dept. R-8

Dear Mr. Lane: Mail me your NEW FREE BOOK and
SAMPLE LESSON that will show me how I can make BIG
MONEY IN TELEVISION. I understand I am under no
obligation and no salesman will call.

(PLEASE PRINT Plainly)

Name
Address
City Zone State

I am interested in: ☐ Radio-TV ☐ Advanced FM-TV.
VETERANS: If qualified under new G.I. Bill, check your
choice: ☐ Home Study ☐ Resident Study.

AUGUST, 1953
OVER 1/4 MILLION

EICO INSTRUMENTS
in use the world over!

EICO new modern facilities for research,
development and production—your greater
assurance of . . .

LABORATORY PRECISION AT LOWEST COST

NEW 7" Push-Pull OSCILLOSCOPE
- V Amp: Resp. 10 cps - 1 mc — 2 db; Sens. 10 mv rms/in.
- H Amp: Resp. 10 cps - 200 kc flat — 4 db at 500 kc; Sens. 0.3
volts rms/in. - V Input: 3-step freq.-compensated attenuator plus
cathode follower; 3 meg Z. - H Input: Cathode follower; 1 meg Z.
- Both V & H Amps: push-pull output. - Sweep Range: 15 cps -
100 kc. - Sync: + INT., - INT., EX., & 60 cps. - Distortionless
V & H Trace Expansion & Centering to 1.5 X full screen. - Features:
Return trace blanking; int. volt. calibrator; phasing control;
direct connection to V plates of CRT. - At Front Panel:
sawtooth, 60 cps outputs; intensity mod. & ext. sync
inputs. - 10 tubes (6 dual-purpose) & 7 IF? CRT.

You Build EICO Kits in One
Evening, but . . . They last a
Lifetime! and You
SAVE OVER 50%

YOU be the judge. See the famous EICO line
TODAY — in stock at your local jobber —
and SAVE!

Write NOW for FREE newest Catalog 8-C.

America's greatest instrument values bear the name—

EICO

ELECTRONIC INSTRUMENT CO., Inc., 84 Withers Street, Brooklyn 11, N. Y.

© 1963

Prices 5% higher on West Coast. Specifications and prices subject to change without notice.
RADAR HAZARDS

... New Operational Hazard of Microwaves ...

By HUGO GERNSBACK

WHEN high powered radio transmitters became common in the 20s, it was noted that radio engineers and others in the vicinity of powerful, very shortwave transmitters developed artificial fever. This heat effect was not considered dangerous then, and indeed, the medical profession soon learned to use these waves under the name of shortwave diathermy. It is still being used today by the medical profession.

The postwar development of microwaves, particularly for radar, has brought about entirely new problems.

It appears that with greater powers soon to be in use, operational risks to personnel in the vicinity of microwave transmitters may become a cause for concern.

Recently, Sidney I. Brody, Commander (MC) U.S. Navy, gave a talk on the subject before the Aero Medical Association, in Los Angeles, California. Commander Brody stated that in the past, power output of airborne radar equipment has been moderate. It did not present any particular hazard to those exposed to the radiations. Guinea pigs exposed for eight weeks to a daily three-hour radiation of a radar set with a peak pulsed power output of 45,000 watts did not show any biological effects, even though such power was then considered very high.

The average power of a 45-kw radar transmitter used in the above experiments was in the order of 80-120 watts. Present day radar beams represent peak pulsed power of a million watts or over, as compared to the 45,000 watts of a decade ago.

Commander Brody observed that the two frequency spectra, the “S” or 10-centimeter and the “X” or 3-centimeter bands, are now in current use. He stated that the effect on living organisms of the various frequencies of electromagnetic waves in these bands are thought to be essentially the same, since the wavelengths are about the same. It is not known so far whether there might be other than heat effects when living organisms are exposed to these radiations.

It has been noted that the 3-centimeter radiations used today in radar equipment can produce high thermal effects. The energy seems to be absorbed near the surface of the skin. When the power output becomes sufficiently high or if there has been long exposure to the radiation, the subject receives ample warning due to the high heat generated on the body. It is therefore thought that the 3-centimeter radiations do not seem to constitute a hazard for the exposed personnel. However, on frequencies in the vicinity of 10-centimeters, the conditions change because the high temperatures in this case occur about 1 centimeter below the surface in organs not cooled by the blood stream. Since the skin is not stimulated by this heat the subject does not perceive heat nor pain— he no longer has any warning. Therefore, the 10-centimeter radiations become dangerous.

Commander Brody observed that areas of the body possessing a poor blood supply have no effective temperature regulating mechanisms, as in the lens of the eye, the hollow organs, the gall bladder, the urinary bladder and parts of the gastrointestinal tract. These are potential danger points for the 10-centimeter radiations.

Rabbits exposed to constant power in a 3,000-watt field for 75 seconds were killed, while a 30-second exposure produced death in 2 minutes. Instant death to a rat resulted after only 22 seconds irradiation at that power, and 10 seconds of a 4,000-watt constant power output killed a hamster soon after exposure. In these animal experiments, high increases in body temperature produced heat paralysis of the respiratory centers.

One of the most important hazards, particularly for humans, is the production of cataracts following exposure to high power microwave radiations. This has been confirmed in many animal experiments with rabbits.

A spectacular illustration of the power output of radar equipment was conducted by Lockheed Aircraft Corporation. Dry steel wool in the radar beam was ignited at a distance of 100 feet. At 70 feet an explosion was produced by aluminum chips in a gasoline vapor-air mixture. Photoflash bulbs were fired at a distance of 323 feet. At 330 feet audible and visible sparking was apparent when metallic chips were shaken in a paper bag. With high power radar, these and other spectacular effects can be duplicated at even greater distances.

Commander Brody warned that individuals who have metal bone implants or metal plates covering a cranial defect may suffer dangerous burns when under high power radiations. Excessive heat may possibly be produced in metals carried by the individual working near these rays.

A very ingenious and simple safeguard has been proposed recently for radar maintenance personnel. Because neon gas tubes light up brilliantly in the presence of microwave radiations, they can be readily placed on the under surface of the men’s cap visors. Now when the small neon tube flashes on an immediate and effective warning of dangerous exposure is given.

AUGUST, 1953
The Time-O-Graf and the Watch Master aid the modern watchmaker

The modern watchmaker checks the accuracy of a watch with an electronic gadget called a watch-rate recorder. This not only tells exactly how accurate the watch is, but also provides a printed record which enables the operator to determine the cause of any inaccuracy without even taking the back off the watch. There are two popular types of watch-rate recorders. One is the Paulson Time-O-Graf and the other is the Watch Master made by American Time Products, Inc.

A watch-rate recorder compares the tick rate of the watch with a highly constant frequency over a short time interval. To present the accuracy in the form of a printed record, the frequency standard also drives a precision synchronous motor which moves a record chart at constant speed. With each tick of the watch a printer makes a corresponding mark on the chart.

Although the frequency of commercial 60-cycle lines averaged over a 24-hour period is held stable enough to operate ordinary electric clocks with an accuracy of a few seconds per day, the instantaneous line frequency may vary enough to cause a rate error of as much as ±6 minutes per day. This represents an error of 300 seconds out of 86,400, or 1 part in 288. To check a watch that is normally accurate to one second per day, the standard of comparison must be accurate to at least one part in 86,400.

Since there is a vast difference between the instantaneous accuracy of commercial power-line frequencies and the accuracy required for the standard, watch-rate recorders use precision temperature-compensated oscillators as standards. Frequency dividers reduce the signal from the standard-frequency oscillator to 90 cycles for the Time-O-Graf and to 60 cycles in the Watch Master.

Above-left—American Time Products' Watch Master watch rate recorder. The accuracy of the watch is indicated by a row of dots which are printed on the graph on the drum and show how many seconds it gains or loses in 24 hours.

Above—The Watch Master with cover removed. The microphone that picks up the watch ticks is built into a watch holder which can be tilted to check and record the performance of the watch in all possible positions.

The Time-O-Graf with cover removed. Paper tape comes off roll between spiraled drum and printer ribbon. Bar presses against ribbon to make dashed trace.
The Time-O-Graf

The block diagram of the Time-O-Graf is shown in Fig. 1. The watch-rate unit contains a microphone to pick up the ticks of the watch, amplifier, and a trigger tube. Each time the trigger tube fires, it energizes the solenoid in the comparison unit. The solenoid pulls the printer bar down against an inked ribbon and paper tape which rests lightly on the raised spiral surface of the drum. (See Fig. 2-a.) Since the printer bar can strike the raised spiral at only one point, each stroke prints a short dash-like line on the paper tape. The position of the line depends on the part of the spiral that is under the bar at the instant of contact.

The motor turns the drum at 2,700 r.p.m. (45 revolutions per second) and the tape advances at a speed of exactly 6 inches per minute. The drum is 2 inches long, so its length is scanned once each revolution at a scanning rate of 90 inches per second. The synchronization between the ticks of the watch and the speed of the motor can be compared to the synchronization between the horizontal sweep oscillator in a TV receiver and the horizontal sweep frequency at the transmitter. The constant-speed motor is equivalent to the precision sweep oscillator and the watch tick-rate is equivalent to the sweep oscillator in the TV receiver. If the oscillators are in sync, the picture elements lock in place. If they are not, each line of picture elements is displaced to the right or left.

It is much the same with the trace produced by the watch-rate recorder. If the watch is not losing or gaining time it is in sync with the drum. The spiral will be in exactly the same place each time the watch ticks, and the printer bar will produce a series of dashes in a straight row that runs parallel to the length of the tape and at right angles to the axis of the drum. If the watch is gaining time, it will be slightly ahead of the drum and the trace will slope up to the right. A watch that is losing time causes the trace to slope up to the left.

A calibrated rotating dial with seven parallel lines on a transparent plate is positioned directly over the tape as it emerges from the machine. When the dial is rotated so the parallel rules are parallel to the line of dots which the machine records on the tape, the gain or loss in seconds per day can be read from a calibrated scale. The drawing in Fig. 2-b shows how the error is read from the calibrated scale when the ruled lines are lined up with the trace on the tape. In this case the pointer at the bottom of the dial shows that the error is 45 seconds per day, and the pointer on the right shows that the error is fast.

The circuit of the Time-O-Graf is shown in Fig. 3. The frequency standard is an 81-kc oscillator using a 6S7 (V1) and a precision quartz crystal cut to maintain its frequency with high accuracy regardless of normal variations in temperature. The 81-kc signal from the oscillator is stepped down to 90 cycles by a chain of blocking oscillators operating as frequency dividers. V2-a, V2-b, V3-a, and V3-b divide successively by 5, 6, 6, and 5. The 90-cycle signal is taken from the plate of V3-b and is fed to the grid of V7 where it is amplified and develops 140 volts at 90 cycles to drive the motor.

The ticks of the watch are picked up by a microphone and amplified by V4 and V5. The amplified ticks are fed to a headphone jack for aural checks and to the grid of the 2050 thyatron V6. Each tick produces a positive pulse at the grid of V6. The grid of V6 is normally biased for plate-current cutoff. The positive pulses from the output of V5 overcome the bias and fire the tube. The plate current flows through the solenoid which operates the printer bar. Thus, we have one dash on the tape for each tick of the watch.

Note that unlike most thyatron circuits, this one operates with d.c. on the plate. We know that the grid of a
The Watch Master

Fundamentally, the Watch Master is very similar to the Time-O-Graf. The principal differences are in the frequency standard and in the system of recording. The Watch Master has a precision tuning-fork oscillator, and records on a paper graph attached to a drum which revolves at 300 r.p.m. (5 revolutions per second). The stylus is attached to a lead screw which drives it across the drum at the rate of one scan every 20 seconds. If the watch ticks in exact synchronism with the drum, the stylus prints a series of dots parallel to the axis of the drum. A fast watch causes the line of dots to slope up and a slow one causes the line to slope down. See Fig. 5. The graph is calibrated with a series of equidistant lines parallel to its width. The distance between two consecutive lines represents a gain or loss of 5 seconds in 24 hours. Every sixth line is ruled double width and the distance between the double-width lines indicate 30 seconds error per day.

Fig. 5 shows samples of typical Watch-Master recordings. Record A was made by a watch in exact agreement with the standard. Record B shows that the watch gains 20 seconds in 24 hours, Record C represents a watch which loses 30 seconds in 24 hours. To assist the operator in reading large errors, the chart is ruled lengthwise into two equal parts. This divides the observation time by two. Any errors observed on either half are 12-hour errors and must be doubled to get the 24-hour error rate. Record D shows where the vertical rule is used. The left-hand half shows the recorded trace...
which covers three 5-second spaces—an error of 15 seconds in 12 hours—but this error must be doubled, making it 30 seconds for 24 hours. The dashed lines on the right-hand half show that when the original recording is extended, the error is the same as that recorded at C.

Recordings are taken in several positions: pendant up, pendant down, on the face, back, and in the three and nine o'clock positions. The readings may be very different in different positions. For example, the watch may run faster in any edge position when face up or down, or it may be faster with the dial up than down. These differences indicate specific faults to the trained technician. For the watchmaker who may not be trained in the use of a recorder, they are listed in detail in a handbook supplied with the equipment, so that he can locate trouble in a short time.

Regulating the regulator

The circuit of the standard-frequency section of the Watch Master is shown in Fig. 6. The heart of the circuit is the temperature-compensated 240-cycle tuning fork. This maintains its accuracy to 1 part in 100,000—considerably greater accuracy than required for checking watches to 1 second per 24 hours. (A 10-volt meter with the same accuracy would read 10 volts ± 0.001 volt at full scale.) The 6SN7-GT (V4) is the oscillation-amplifier. V4-a amplifies the 240-cycle signal from the fork and feeds it into amplifier V4-b. A part of the output of V4-b is fed back to the driving coil on the fork to maintain oscillation.

The output of the amplifier circuit is maintained at constant amplitude by the varistor in the negative-feedback loop. The resistance of the varistor varies in inverse proportion to the voltage applied to it. When the fork is vibrating weakly, a comparatively low voltage is induced in its output coil. The feedback voltage is small, and the gain of the amplifier (V4) is high. This increases the voltage in the driving coil. The feedback voltage through the loop increases with the voltage in the driving coil. The higher feedback voltage decreases the resistance of the varistor so a greater amount of feedback voltage is applied to the cathode of V4-a to stabilize the voltage gain of the circuit.

The 240-cycle output of V4-b is fed into multivibrator V5 which divides by 4 to reduce the frequency to 60 cycles. The 60-cycle signal output of V5 is amplified in the 6L6 and operates the 60-cycle synchronous motor which drives the recording drum and lead screw.

The watch-rate section of the Watch Master consists of a crystal microphone, cascaded 6SN7 pentode voltage amplifiers, and a d.c.-operated 2050 thyatron in a circuit similar to Fig. 4. A solenoid in the plate circuit operates the printing mechanism.

AUTOMATIC CONTRAST-RATIO CONTROL

By T. S. DIX, JR.*

One of the petty annoyances in watching television is the need for resetting the contrast control whenever the room lighting changes substantially. If you adjust the contrast for the best picture in a bright room, the screen glares badly when the room is darkened. If you adjust the control for comfortable viewing in subdued light, the picture looks washed out when the room lighting is increased. To maintain an enjoyable contrast ratio at all times, the contrast control must be readjusted whenever the room illumination changes.

Part of any external light that falls on the face of the picture tube is reflected; the rest is transmitted through the glass face to the fluorescent screen. The transmitted light is added to both the light and dark elements of the image and decreases the contrast ratio. High room illumination may reduce the contrast enough to wash out the picture.

In order to eliminate washout and glare, we need something to supplement the contrast by an amount proportional to the intensity change in room lighting. Although neutral-density picture-tube filters are effective in increasing the amount of contrast, the change in contrast ratio produced by a change in room illumination is about the same with or without a filter; consequently, these are not the solution.

The solution lies in properly proportioning or balancing the room illumination and screen brightness. The circuit shown in the figure maintains automatically the desired contrast ratio if the room illumination changes, by increasing or decreasing the gain of the video amplifier. The 1P41 phototube is mounted behind a translucent window on the control panel where it will receive light directed toward the picture-tube screen. The 12A7 d.c. amplifier varies the video-amplifier screen voltage according to the amount of light. The circuit is used in the Westinghouse 21-inch console model 846K21.

Circuit Operation

The amount of light striking the light-sensitive cathode determines the amount of current through the phototube. An increase in light intensity causes a corresponding increase in phototube current. The 1P41 cathode is connected to a negative potential of about 75 volts. Its plate is returned to the junction of R2 and R3 through R1, a 10-megohm load resistor. This resistor must have a very high value, due to the small magnitude of phototube current. For the specified values of resistance, the grid of the cathode follower, V1-a, varies from approximately −10 volts in bright light to +5 volts in total darkness. Since it is desirable to operate the cathode follower with a very high grid-circuit resistance, its plate voltage must be kept low to reduce gas current and prevent damage to the tube. For this reason, the plate of V1-a has an operating potential of only about 75 volts taken from the voltage divider E4, R5, and R6. R2 provides a small amount of cathode bias.

*Engineering Section Manager, Television-Radio Division, Westinghouse Electric Corporation, Sunbury, Pa.
THE most popular service instruments for measuring voltage, current, and resistance are vacuum-tube voltmeters and 20,000-ohm-per-volt multimeters. While these instruments are ideal for measuring high values of resistance with low battery voltage, they have definite disadvantages in measuring low resistances—especially values smaller than 1 ohm. For example, one well-known 20,000-ohm-per-volt instrument reads 25 ohms at half scale on the lowest resistance range and requires a maximum current of 50 ma. This means that fractional resistance values are compressed into a very narrow region at one end of the scale.

The meter movements used in most of these instruments have a high internal voltage drop, generally about 250 mv.

Circuit of the combination low-range ohmmeter-multirange ammeter. Instructions for winding and adjusting the current-range shunts are given in the text.

This high value changes conditions in the low-voltage high-current circuits required for measuring very low resistances. An instrument designed to overcome the disadvantages of high-resistance types for reading current and low resistances is a handy supplement to the multimeter. Besides, it is convenient to have an extra meter for reading current and still have the regular one free for other uses.

The meter shown in the photographs reads less than 0.25 ohm half-scale, and has five current ranges. It is easy to construct and operate and is very stable. It has no tap switches to introduce contact-resistance errors or possibly damage the meter through poor contact. Because there is only one resistance range, the zero adjuster seldom needs resetting. The design can be changed easily to cover other ranges of current or resistance. The movement used is from a 2-inch GE KK DW-52 0-1 thermocouple ammeter, but almost any instrument with a basic range of from 1 to 5 ma can be used. The important thing is that the meter movement must have a low voltage drop. In other words, the product of its resistance and full-scale current should be as small as possible.

The movements used in thermocouple ammeters are very efficient and are well adapted to this use. This one has a resistance of 5.6 ohms and a full-scale current of 2.15 ma, which means a 12-mv drop. This is only 1/20 of the 250 mv usually required.

When this meter is shunted to read 50 ma full scale (see the schematic) the combined meter and shunt resistance is only 0.24 ohm. Any external resistance connected in shunt with the meter and battery will decrease the total resistance and reduce the current in the meter arm. For example, 0.24 ohm across the COM-R terminals halves the circuit resistance and cuts the meter current in half. Thus the midpoint on the scale is 0.24 ohm, the value of the external resistance, and other calibration points can be computed or found by connecting various standard resistors to the test leads.

The actual calibration points on this meter cover 0.01 ohm to 5 ohms. Note that values under 1 ohm are spread out over more than three-quarters of the scale. This makes the meter very useful for measuring the resistances of small coils, battery leads, and filament circuits. It can even check contact resistance on switches, vibrators, and relays. The meter can be shunted to read even lower resistance values, but special low-resistance leads and contacts would be needed to make this lower range reliable. Even on the .01-5-ohm range the leads should be as short and heavy as possible, with good alligator clips—not prods—at the test ends.

The case is from a BC-1366 jack box and the jack strip is from a BC-345 control box. These jacks fit banana plugs or the test leads while the solder lugs on the strip are used to mount the shunts. The panel was made of two sheets of Plexiglas with a sheet of heavy paper between them. The labels for the controls and terminals were typed on the paper before the panel "sandwich" was put together. The meter is insulated from the metal case for safety in reading circuit in circuits above or below ground potential.

The following formulas are used to find the shunt resistance required for each current range, starting with the highest range:

\[R_s = \frac{E_s}{I_s - I_m} \]

where \(R_s \) is the required shunt resistance, \(E_s \) is the voltage drop across the meter movement, \(I_s \) is the full-scale current range desired, and \(I_m \) is the basic current range of the meter.

For example, the shunt for the 10-amp range (on this meter) is

\[R_s = \frac{0.012}{10 - 0.00215} = 0.0012 \text{ ohm.} \]

The shunts for the lower ranges are...
made up by simply adding resistance to the shunt for the highest range (R1) to make up the total value required for R. Thus for 1 amp,
\[R_2 = R - R_1 = 0.12 - 0.012 = 0.108 \]

These formulas neglect the fact that the shunts not in use are in series with the meter, but the error is small except in the case of R4, which should be about 3% higher than the value obtained from the formula.

Enamed copper wire is used for the shunts. Suitable sizes for the current to be carried and the lengths for resistances required can be found in any wire table. For this meter or any other type of equal sensitivity and internal resistance: R1 is 3.5 inches of No. 16 wire; R2 and R3 are wound with No. 20 wires 12.7 and 14.2 inches long, respectively; R4 and R5 are No. 30 wire wound over 1/2-watt high-ohm age resistors (R4 consists of 11.8 inches of wire and R5 has 14.6 inches). The resistance of a linear inch of some of the more common sizes of copper wire is shown in the table. You can use it to determine the length of a given size of copper wire needed to make a resistor of a given value. Cut the wire about 50% longer than required to allow for trimming to exact length.

The three largest shunts in this meter are self-supporting, and the others are wound on 1/2-watt high-value resistors. Solder them all on the jack strip before making final adjustments.

For trimming the shunts to the exact lengths required you will need an accurate multirange ammeter as a standard and a controllable source of current.

Start with the 10-amp range and cut R1 until the meter reads about 9 amps full scale. Then go on to the next range and trim R2 until the full-scale current is 0.9 amp. Continue with the rest of the ranges until each reads about 10% less than the actual full-scale reading you want.

Now go over the whole procedure a second time, trimming each shunt closer to the final value. For maximum accuracy you may even have to give them a third trimming.

Some movements from thermocouple meters are not strictly linear, so it may be a good idea to make up a linear test scale first, and check the movement against a standard to see how far off linearity it is. Then you can make up a second current scale—one that reads correctly. Good cardboard for meter scales can be bought at most photo-supply stores.

Resistance calibration
After the shunts are correct, the resistance circuit may be connected up and calibrated. The first step here is to find the exact resistance of the meter shunted for 50 ma. Connect a heavy-duty variable resistor (about 1 ohm or less) across the test leads, and adjust it until the meter reads exactly half scale. Then find the value of the external resistor at this setting by passing a known current of 1 amp or more through it and measuring the voltage drop across the resistor as accurately as possible. This value can be marked on the resistance scale at the midpoint.

WIRE TABLE

<table>
<thead>
<tr>
<th>Wire size (R & S No.)</th>
<th>Resistance (ohms) per inch</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>.000214</td>
</tr>
<tr>
<td>16</td>
<td>.000341</td>
</tr>
<tr>
<td>20</td>
<td>.000682</td>
</tr>
<tr>
<td>24</td>
<td>.002180</td>
</tr>
<tr>
<td>30</td>
<td>.008756</td>
</tr>
</tbody>
</table>

The corresponding current readings for other values of external resistance can be found from the formulas given below. These can be used either for marking resistance values directly on the meter scale or for an auxiliary chart. These formulas assume that the battery current remains constant. While this is not always true, it is not likely to cause any very serious error.

\[I = \frac{1}{I_n} \frac{R_n}{R + R_n} \]

Where \(I_n \) is the actual meter current, \(R_n \) is the full-scale meter current, \(R \) is the external resistance, and \(R_n \) is the combined resistance of the meter and its normal shunting circuit. As an example, the meter current in this case for an external resistance of 1 ohm would be

\[I = 0.9 \times \frac{1}{0.24 + 1} = 0.124 \]

\[= 0.0403 \text{ amp}, \text{ or } 40.3 \text{ ma.} \]

At first glance this may seem like a laborious method of finding many calibration points on the meter scale, but for any given meter \(I_n \) and \(R_n \) are constants, and only \(R \) varies. Of course, if you have a number of accurate 1-ohm resistors, you can find any number of important calibration points by simply connecting them in parallel across the test leads and dividing by the number of resistors.

U.H.F. CHANNEL FREQUENCIES MADE EASY

A complete list of the channel limits and carrier frequencies for the 70 u.h.f. TV channels isn’t necessary for reference if you will master this simple procedure. All you have to remember is that channel 69 starts at 800 mc. (Of course, it actually covers 800 to 806 mc.) On all TV channels the picture carrier is 1.25 mc above the low end and the sound carrier is 0.25 mc below the high end.

For example, let’s find the frequencies for channel 22. First we subtract 22 from 69. This gives us 47. Then we multiply 47 by 6 (the width of each channel in mc) and we get 282. Thus we know that channel 22 begins 282 mc below channel 69, and another simple subtraction (800 - 282) gives us 518 mc, the low-end frequency of channel 22. The upper end of the channel is 6 mc higher, or 524 mc. The picture carrier is 518 + 1.25, or 519.25 mc, and the sound carrier is 524 - 0.25, or 523.75 mc.

Expressing this method as a formula, we get

\[F = 800 - 6(N - 1) \]

where \(N \) is the number of the channel you are interested in, and \(F \) is its low-end frequency.

If you want to find a channel above 69—say channel 72—here is how it would be worked out: 82 - 69 = 13; 13 x 6 = 78; 800 + 78 = 878 mc, which is the lower end of channel 82. The formula for channels above 69 then becomes:

\[F = 800 + 6(N - 69) \]

After making a few tests you will find this method very easy, and you will not have to worry about keeping a table on hand.
Circuit Shorts

SIGNAL-SEEKING TUNER

It promotes safe driving by automatically scanning the band and centering on the first signal picked up

By ROBERT F. SCOTT

PUSH-BUTTON tuning in modern car radios is primarily a safety feature—so that the driver can select a station without taking one hand off the wheel for more than a second or two and without taking his eyes off the road at all. There are other advantages, of course. With stable circuits and accurate prealignment, the stations set up on the push-buttons always come in right on the nose, with minimum noise and best AGC action to meet the wide variations in signal strength on the road.

About the only disadvantages of ordinary push-button tuning are the limited number of stations available and the need to realign the individual station selectors to new frequencies when the car moves out of a given service area.

The Signal-Seeking Tuner in some of the more expensive recent Delco auto radios enables the operator to select any station on the dial simply by pressing a station-selector switch or an auxiliary foot switch. Momentary pressure on either one automatically sweeps the tuner slowly across the broadcast band starting at the low end. It stops automatically at each station in turn. When it reaches the high end of the dial it reverses and returns to the low end almost instantaneously.

 Receivers equipped with the signal-seeking tuner are permeability-tuned, with the cores of the antenna, r.f., and oscillator coils linked mechanically by a guide bar. This bar is driven by a spring motor through a gear train. The tuning motor is stopped at each station in turn by a trigger pulse derived from the incoming signal. This pulse de-energizes a relay so that its armature engages a paddle wheel on the gear train. A simplified circuit of the signal-seeking tuner is shown in Fig. 1.

Operation

Momentary pressure on the STATIONSELECTOR switch bar starts the tuner operating. Contact 2 of the switch opens first to break the voice-coil circuit and mute the receiver. When contact 1 closes, it completes the circuit from B plus to ground through KY1, R9, R1, and R2. The current through

Fig. 1—Simplified schematic showing the principal elements of the Delco Signal-Seeking Tuner. The operation of the tuner is explained in the text. Minor circuit variations and different tube types are used in some models of Delco receivers.
this circuit energizes the relay winding, which pulls down the relay arm. This releases the paddle wheel, and transfers the paddle-wheel contacts from relay contacts 2 and 4 to contacts 1 and 3.

When the paddle wheel is free, the spring motor pulls the ganged tuning slugs out of the coil to sweep the receiver's frequency toward ground, the high-frequency end of the band until a station is tuned in.

When relay contact 1 closes, R5 is shunted across resistor R7 in the cathode circuit of trigger tube V5. This brings the cathode closer to ground (B-), increasing the plate-cathode voltage. The increased current through V5 keeps the relay closed so the tuner will continue to sweep after the station-selector switch is released.

The cathodes of the r.f. and i.f. amplifiers are returned to ground by the relay arm through the SENSITIVITY CONTROL, contact 1 of the tuner-return switch, and relay contact 3. The sensitivity control operates only during the sweeping operation. When the full resistance of the control is in the circuit, the gain is reduced and the tuner will stop only on a strong station. Decreasing the resistance allows the tuner to stop at weak stations as well.

Stopping the tuner
When a station is tuned in, if. voltages are developed across the primary and secondary windings of the i.f. transformer. Detector V3 rectifies the signal and develops a voltage E1 across the diode-load resistor. This voltage is positive at the cathode and negative at the lower end of the secondary winding. Bucking-dioide V2 rectifies the signal in the primary of T1 and produces voltage E2 across R3. E1 and E2 have opposite polarity and their algebraic sum is applied to the grid of d.c. amplifier V4. The resultant voltage becomes positive, V4 conducts.

The V4 plate current causes a voltage drop across R6 which biases V5 so the relay releases. At this point, the relay armature stops the paddle wheel and motor and transfers the ground from contacts 1 and 3 back to 2 and 4. Opening the relay contact 3 and the grounding of contact 4 removes the sensitivity control and grounds the r.f. and i.f. amplifiers cathodes through a 100-ohm resistor, so the set operates with full sensitivity. Note that the output of the i.f. amplifier so both voltage and current proportionally with the strength of the incoming signal. Therefore, trigger voltage E, tends to remain constant regardless of signal strength.

When the tuner reaches the high-frequency end of the band, a trigger voltage E, drops the voltage at V5, and the circuit is returned to a position so the relay releases.

Muting the receiver
The methods of muting the receiver while tuning vary slightly in different receiver models. When the STATION-SELECTOR bar is used, contact 2 opens the voice-coil circuit after contact 6 is made. When S2 is used, the hot side of the voice coil is grounded before the relay circuit is completed through R9 and the second contact on S2.

The set is silenced during the tuning sweep by using the negative oscillator-bias voltage to cut off the first audio and output tubes. When the set is on station, relay contact 1 is open and enough positive voltage is applied to the audio grids (through R8) to overcome the cutoff bias. A clamp diode in V1 prevents the audio grids from becoming excessively positive.

When S1 is tripped by the solenoid for the automatic return sweep it disables and mutes the receiver by grounding the arm of the sensitivity control, which is the cathode return of the r.f. and i.f. stages during the tuning process.

Late Delco and auto radios have an added feature which is called Favorite Station Tuning. This is a combination of signal-seeking tuning and push-button operation. In this case, there are five push-buttons which the driver may quickly set to five stations.
Basic operating mechanisms—and how to keep them operating

By JOHN B. LEDBETTER*

PART I

DO YOU want a sure-fire way of increasing your shop income? Many service technicians have found the answer by selling, installing, and servicing record changers. The sale of even an inexpensive record changer opens the door to future sales of records and accessories, and puts you on more intimate terms with your customer. Quite often this leads to the sale and installation of phono-combinations, automatic changers, tape recorders, or custom high-fidelity equipment.

From the service standpoint, record changers have at least two points in their favor. First, they require no expensive test equipment or large stock of spare parts. Second, they are not really complicated or difficult to service, once you have watched several different changers in action and understand their basic operation.

Basic changer operation

One good way to acquaint yourself with changer operation is to study instruction booklets and service manuals for as many types as possible. These manuals can be obtained from your local distributor or directly from the manufacturer. If possible, set up several types of changers and follow the action of each part as it goes through its cycle. (This will be easier if you mount the changer on a tall stand or shelf so you can see each part in its normal position, and then turn the changer through several cycles by hand.)

You will find that all changers follow the same basic sequence:
1. Tone arm rises and moves clear of record stack.
2. Record drops to turntable.
3. Tone arm moves in, sets down on outer groove of record.
4. Cycling mechanism shuts off, allows record to play through.
5. Tone arm moves out, finishes record, trips cycling mechanism into action.
6. The entire sequence is repeated.

These operations are performed by adjustable cams, eccentrics, pusher rods, actuating levers, and springs. These may appear complicated in deluxe or automatic mixed-record changers, but careful study of the cycling mechanism will clarify its operation, and show up any trouble or misadjustments. After all, cams and tripping mechanisms perform the same jobs regardless of their shapes or whether they are mounted on a shaft, lever, cylinder, or flat gear surface.

Record-dropping mechanism

Most changers use either the toggle-post or slicer types of dropping mechanism. In the toggle-post or pusher type (Figs. 1 and 2), the records are stacked on an offset ledge on a bent turntable spindle, with the outer edges of the records resting on one or more supporting shelves. A roller or pusher rod forces the bottom record off the spindle ledge and drops it to the table.

In slicer-type record changers, the outer edges of the records are supported by rotatable knives or separator shelves. These knives release the bottom record while shifting support to the next record in line.

Record-tripping mechanism

Two methods are generally employed to trip the cycling mechanism. These are the ratchet and positive trip, in which the ratchet lever is operated by the tone arm at a certain point in its travel; and the velocity trip, in which the spiral finishing groove of the record swings the tone arm into contact with the tripping mechanism. The only disadvantage of the latter is its inability to play home recordings or old-type records (no inside spiral) except in the manual position.

Servicing precautions

Before actually servicing or adjusting an automatic changer, give the assembly a general visual inspection. See that all gears, cams, springs, levers, rods, connecting links, etc. are in place and in good working order. Observing the following precautions will prevent possible damage to the changer mechanism:

1. Never use force to start or stop the motor or any part of the changer mechanism.
2. If the mechanism stalls, turn off the switch, remove records from the posts (or shelves), and allow the mechanism to complete its cycle.
3. Never leave a stack of records on the record posts or on the turntable. This will cause serious warping, especially in warm climates. Warn your customers against this practice.
4. Clear the shelves of warped or damaged records. These may cause jamming and may bend or warp the spindle in toggle-post changers, or damage the separator knives in slicer changers. Some changers have a safety shelf which prevents damage if the record or mechanism jams, but many do not.
5. Check all records for chipped or cracked surfaces. These defects may damage the pickup stylus—especially sapphire types.

Cleaning and lubrication

No record changer can function properly when it is clogged with dirt or old, gummy grease or oil, so the first objective in servicing should be a complete cleaning (and lubrication, where recommended). First, check the pickup stylus. Remove the guard if necessary, and clean out all dust and foreign matter with a fine brush. Then remove all dirt, dust, old grease, and oil from bearings, bushings, cams, raceways, and other moving parts with a fine brush and carbon tetrachloride (use naphtha if you prefer).

In some types of changers, you may have to remove a few parts from the assembly in order to clean and lubricate them properly. For example, the cam gear and actuator levers in changers like the Philco M-24 (Fig. 3) should be removed to lubricate the actuator stud and the cam-gear spindle. In other changers, lubrication of the motor and certain other parts is not recommended, so be sure to check the service manual or local distributor if you have any doubt as to the proper lubrication points.

You can generally tell which moving
parts are easy to reach or which parts should be removed for lubrication by running the changer through several cycles (by hand if practical) and noting the location and accessibility of the bearings, studs, bushings, and other points where friction occurs.

Parts not to lubricate

These vary with different changers. If in doubt, check with a local distributor or write the manufacturer. Generally, the following parts should not be lubricated at any time:

1. Trip fingers or receivers.
2. Selector assembly, except at specified points shown by the manufacturer.
3. Ratchet portion of the trip plate.
4. Motor drive shaft.
5. Rubber idler tire.
6. Motor drive belt or pulley.
7. Record-separator knives in alike-type changers.
8. Spindle latch or plate. (Use powdered graphite in some cases.)
9. Dog latch, cam gear, or similar tripping mechanism.
10. Lifting lever where dog or tripping mechanism rides.
11. Friction-trip finger or washer.

If there is any grease or oil on these surfaces, remove it thoroughly with carbon tetrachloride. An oil-softerned or slick idler tire or drive belt must be replaced.

Where oil should be used

When applying new grease and oil, use sparingly and only at the points specified in the manufacturer's instructions. Too much oil or grease may cause early failure by collecting dust and dirt, or may cause improper changer action from the start. Besides, oil from an over-lubricated changer can find its way onto the customer's rug, or, in combination models possibly onto the speaker cone.

In changers like the Philco Model in Fig. 3, oil the following moving parts with SAE 20:

1. Tone-arm pivot pin (where it goes through hole in tone-arm bracket). This may be difficult to reach in some models unless the changer is partly disassembled.
2. Tone-arm shaft, where it rotates in the bridge or locotor housing.
3. Trip-plate bushing (inside). This may also be difficult to reach in some models.
5. Turntable bearings (top and bottom).
6. Return-lever roller or return-gear segment.
7. Cam-gear index-lever roller.
8. Reject-lever pivot.

Use SAE 20 oil sparingly on:

1. Idler-support shaft.
2. Idler shaft.
4. Shift roller pins.
5. Pulley shaft.

6. Underside of pivot bushing in the shifter place.

(Many changers will not have all the above parts, or they may be called by different names, but it is well to know the general lubricating points of each type.)

Before lubricating the motor, remove the rubber belt and idler wheel wherever possible. After lubrication, be sure the motor: shaft, pulley, or other parts contacting any part of the turntable drive, are free from oil and grease before replacing the belt (or tire) and idler wheel. Otherwise, slippage may result and these parts will have to be replaced. See that oil and grease are not allowed to soften the a.c. line cord or the shock-mount grommets.

Where to use grease

Use Texaco motor cup grease (unless otherwise specified by the manufacturer) on:

1. Top of push-off plate (or saddle).
2. Switch-lever slot, and point where it slides on motor frame.
3. Control-link slots.
4. Point where record-shelf separator shaft rides (alicer types).
5. Detents for record shelf.
6. Hold-down shaft and assembly.
7. Loops of hold-down springs where they hook on to record shelves, and where the hold-down arm pivots.
8. Set-down cam where the eccentric stud rides.
9. Points where record push-off blades ride on record shelves.
10. Cam gear (all cam surfaces and gear teeth except the dog latch or tripping ear).
11. All ball bearings.
12. Pulley points on changer control button (or selector switch).
13. Tone-arm lifting lever (elevator), where lever contacts main cam gear.
14. Record push-off lever (at end slide on bridge, at point where stud rides on bridge slot, and at the pivot pin).
15. Friction clutch (at stud, and at points where return lever and tone-arm actuator meet).
16. Cam surface of idler-wheel lifter (where used).
17. Dust surfaces.
18. Guide slots of shifter-plate or record-pusher mechanism.
19. Idler-shaft extension (in some changers), where it contacts lower shifter plate.
20. Bridge assembly (at the end and detent points of the control slider, and on the turned ears or dips in the bridge assembly)
21. Cam gear (between the roller and gear surfaces, on all gear teeth and lateral cam surfaces, and on the upper surfaces of the cam where the selector hinge or arm rides).

On some toggle-post models, grease the main changer assembly at the following points:

1. Push-off bar, where it connects to its actuator.
2. Push-off actuator, where its dimples slide on the base plate.
3. The speed-selector cam, where they slide on the base plate.
4. The speed-selector hinge, where it contacts the base plate.
5. The speed-selector cam slot, detent surfaces, and the pivot point.
6. Turntable shaft (upper outside bearing only).
7. Detent assembly (roller stud, ear, and slider guide surfaces).
8. The trip actuator (the guide surfaces and the ear on the trip-lever which operates the reset lever).
10. The outside bushing of the horizontal actuator (this is the tone arm set-in mechanism)
11. The vertical actuator bushing, where the trip reset arm rides.

Grease the tone arm at the point where it rotates in the base support or "stanchion." In some cases, the push-off bar in changers like Figs. 1 and 2 may develop squeaks while cycling. To
Correct, grease the following points sparingly:
1. Both ends of the push-off bar return spring.
2. Fulcrum of push-off rod.
3. Contact point of push-off bar and hanger.
4. Point where hanger pivots in the fulcrum plate.
5. Where push-off rod rides in the push-off bar.

On 2- or 3-speed changers which have a single tone arm and a cartridge selector, apply petroleum jelly or Dow-Corning DC-1 lubricant to the contacts of cartridge-contact plate and to the dimple of the cartridge-retaining spring. In most changers, some powdered graphite should be applied to the ear of the cartridge selector plate.

Adjusting needle pressure
An accurate gram scale (such as the Philco 45-9531) should be used to check needle pressure. Follow the manufacturers' suggestions wherever possible, since the recommended pressures vary, as well as the methods used to adjust the pressure. (Some changers have adjusting screws, while others rely on bending the tone-arm hinge bracket or mounting stud to decrease or increase the tone-arm spring tension. Counter-balances generally are unnecessary unless a different type of tone arm or cartridge must be used, or where an older type changer is being modernized. Generally, needle pressure for 78-r.p.m. records should be from 1 to 1.25 ounces; for 33 1/3- and 45 r.p.m. records, between 7 and 12 grams.

It pays to remember that changer troubles are very rarely caused by actual failure or breakage of parts in the operating mechanism in normal service. Most troubles are due to lack of lubrication; over-lubrication (or using the wrong lubricant at certain points); dirt clogging the mechanism; or improper adjustments. Of course, this doesn't imply that parts can't be broken by mishandling or forcing the changer mechanism out of its normal operating cycle. This happens all too frequently, especially where children have unsupervised access to the changer.

Part II of this series will deal with identifying and correcting specific troubles in several types of single-speed, two-speed, and three-speed changers. (Photos and some of the notes used in this article are reproduced through the courtesy of Garrard, Philco, RCA, and Webster-Chicago.)

(TO BE CONTINUED)

RADIO-ELECTRONICS
TELEVISION CONSTRUCTION PERMITS

(as of June 25, 1953)

ALABAMA
- WMTV Birmingham 48
- WSGN-TV Birmingham 42
- WMSL-TV Decatur 48

ARIZONA
- KOOL Phoenix 10
- KROY Phoenix 10
- KTVX Tucson 14
- KIVA Yuma 11

ARKANSAS
- KFSF-TV Fort Smith 22
- KEYI Little Rock 23

CALIFORNIA
- KAVL-TV Bakersfield 29
- KHELV-TV Colton 10
- KHELV-TV Eureka 3
- KFJL-TV Fresno 9
- KFPG Los Angeles 22
- KJPG-LAS Las Vegas 10
- KJRC-LAS Las Vegas 20
- KXIC San Bernardino 18
- KXIS San Diego 10
- KAYT-San Francisco 20
- KSAI-TV San Francisco 32
- KEET Santa Barbara 48
- KEVI Stockton 36
- KBTU Studen 37
- KZQ-TV Yuba City 52

COLORADO
- KDSO-TV Colorado Springs 13
- KDEN Denver 26
- KFIR-TV Grand Junction 5
- KCTV Las Vegas 55

CONNECTICUT
- WCBB Bridgeport 71
- WIPS Bridgeport 49
- WEDH Hartford 24
- WNLC-TV New London 26
- WNWC Norwich 43
- WATR-TV Waterbury 53

DELAWARE
- WDRW Dover 40

FLORIDA
- WFTV Fort Lauderdale 17
- WVEU-TV Gator 11
- WJXT-Jacksonville 36
- WGNX Largo 7
- WJDI Panama City 7
- WPEA Panama 32
- WABT St. Petersburg 21
- WTVI West Palm Beach 21

GEORGIA
- WDXK Atlanta 28
- WTAV Macon 47
- WOOG-TV Macon 37
- WMAC (Macon) 13

IDAHO
- WJBO Boise 7
- KTVF Bannock 9
- KID-TY Idaho Falls 8
- KFED Meridian 22
- KFAB2 Pocatello 6
- KFJI-Pocatello 6
- KDEC Twin Falls 11

ILLINOIS
- WTIV Belleville (St. Louis) 54
- WELE Chicago 64
- WCIA Chicago 5
- WHMC-TV Chicago 20
- WPMI-TV Decatur 24
- WTVW Rockford 10
- WTVI Springfield 21

INDIANA
- WTRC-TV Elkhart 52
- WKBW-TV Fort Wayne 62
- WREB Indianapolis 46
- WREX Indianapolis 26
- WRTV Indianapolis 26
- WCTV Indianapolis 37
- WLOX Evansville 52
- WVTI Evansville 52
- WDOT Evansville 52
- WAVN Evansville 52
- WAVE Evansville 52
- WATE Evansville 52
- WTVI Evansville 52
- WJTV Evansville 52

IOWA
- KTVI Des Moines 17
- WJTV Des Moines 17
- WTVI Des Moines 17
- KVTV Des Moines 17
- KTVW Sioux City 36

KANSAS
- KVX-JC Hutchinson 12
- KSAI-LTV Manhattan 8
- KSBW-TV Pittsburg 17
- KSY-E Topeka 17
- KCHI Wichita 16

KENTUCKY
- WEHT Henderson 30
- WKBX Louisville 21
- WLOL-LTV Louisville 60

LOUISIANA
- KSOP Alexandria 62
- KBTQ Baton Rouge 9
- KTQX Lake Charles 26
- KMBQ Monroe 9
- KNOU-TV Monroe 9
- KJMS Monroe 9
- WJHR New Orleans 26
- WTVV New Orleans 26
- WTVI New Orleans 26

MAINE
- WMPT Portland 53

MARYLAND
- WITI-Baltimore 60
- WFT-MD Frederick 62
- WBOC-TV Salisbury 16

MASSACHUSETTS
- WSB-Boston 50
- WTAO Cambridge 56
- WSEE-SEA Fall River 31
- WBNH-TV New Bedford 11
- WMGT North Adams 74
- WNOH Northampton 65

MICHIGAN
- WBCK-TV Battle Creek 58
- WBFS Battle Creek 58
- WWJ Cadillac 13
- WFR-L East Lansing 28
- WTVI Flint 28
- WBMD Flint 48
- WIL-TV Lansing 36
- WTVI Muskegon 35

MINNESOTA
- KKM-TMN Minneapolis 11
- KMST-MN Minneapolis 11
- KROC Rochester 10
- WDAY-TV Rochester 10
- WWHO St. Paul 17
- WOSU-TV St. Paul 17
- WSET St. Paul 17
- WMAQ St. Paul 17
- WLCB-Trumpet Sandusky 42
- WTVI Youngstown 21

MISSISSIPPI
- WWA-TV Columbia 11
- WGC-TV Gulfport 54
- WCOC-CC Meridian 11

MISSOURI
- KGM-TV Cape Girardeau 18
- KOMU-Columbia 18
- KFYO-Ft. Smith 36
- KSHK Hannibal 17
- KOCH Kansas 17
- KFEG St. Joseph 36
- KETI St. Louis 36
- KFY-TV Sedalia 36

MONTANA
- KOKK Billings 2
- KPOP-Billings 2
- KXLF Butte 6
- KBFR Butte 6
- KCMO Great Falls 3
- KGMS Great Falls 3
- KQMO Missoula 13

NEVADA
- KTVK Las Vegas 8
- KSVI Reno 8

NEW HAMPSHIRE
- WNE-TV Keene 45

NEW JERSEY
- WTVI Atlantic City 59
- WTVX New Brunswick 19
- WDH New Brunswick 47

NEW MEXICO
- KGGM-ABQ Albuquerque 13
- KQCV Albuquerque 13
- KTVK Santa Fe 2

NEW YORK
- WTVI Albany 41
- WTVY Albany 17
- WRGB Binghamton 46
- WWSB Buffalo 17
- WNY-Buffalo 17
- WECT Elmo 13
- WHEC Rochester 13
- WHEC-i Rochester 13
- WUTQ Jamestown 58
- WTVI New York 25
- WJDB-Poughkeepsie 25
- WNY-W Rochester 27
- WROE Rochester 27
- WROC Rochester 27
- WETC Schenectady 30

NORTH CAROLINA
- WISE-AS Asheville 62
- WAYS-AS Charlotte 36
- WOCQ-Greensboro 41
- WCTV-Greensboro 41
- WPAC-Greensboro 41
- WPAC-Winston-Salem 26

NORTH DAKOTA
- KFYR-Fargo 35
- KSDK Minot 35

OHIO
- WICA-CH Ashland 15
- WGIN-OH Cincinnati 54
- WPMI-OH Cleveland 48
- WOSU-OH Columbus 34
- WTVI-DAY Dayton 15
- WKMV Lima 15
- WMAC-ER Mansfield 42
- WEUC Sandusky 42
- WTV9 Updated 21

OKLAHOMA
- KLRC-OK Oklahoma City 58
- KTVG Oklahoma City 25
- KCEB Tulsa 25

OREGON
- KTVF Eugene 11
- KETO Eugene 11
- KPU Springfield 3
- KBSW-TV Medford 5

PENNSYLVANIA
- WCA-A Philadelphia 45
- WQV-LV Pittsburgh 57
- WARD-LV Scranton 63
- WWR-LV Wilkes-Barre 63
- WITL Pittsburgh 38
- WTVI Philadephia 16
- WOUT Pittsburgh 16
- WJIN Pittsburgh 16
- WTVQ Pittsburgh 47

RHODE ISLAND
- WXXO Providence 16

SOUTHERN RHODE ISLAND
- WCA-TY Providence 14
- WTVI Providence 47
- WQV Providence 47
- WLSY Providence 47
- WQVL Providence 47

RHODE ISLAND
- WAC-RI Providence 14
- WTVI Providence 47
- WQV Providence 47
- WLSY Providence 47
- WQVL Providence 47

SOUTH CAROLINA
- WAC-HA Charleston 49
- WTVI Charleston 49
- WQV Charleston 49
- WLSY Charleston 49
- WQVL Charleston 49

SOUTH DAKOTA
- WAVE-SIO Sioux Falls 21

TEXAS
- KBTX-Arlington 9
- KBMT Beaumont 31
- KDFI Dallas 29
- KLPD-DF Fort Worth 20
- KTVH-Dayton 33
- KXTN-CL Houston 29
- KTEX-CL Houston 29
- KTVH-CL Midland 29
- KTXL-Lubbock 5
- KTXL-Lufkin 5
- KTXL-San Antonio 8

THERESIA
- WALA-CL Alexandria 16
- KAAS-CL Alexandria 16
- KCMC-CL Alexandria 16
- KCCY-CL Alexandria 16
- KPRO-CL Alexandria 16
- KSFJ-CL Alexandria 16
- KARAM-CL Alexandria 16
- KGN-CL Alexandria 16

WASHINGTON
- KIT-Seattle 23

WISCONSIN
- WMTV Madison 15
- WCWC-Milwaukee 15
- WTVI-Milwaukee 15
- WQTV-Milwaukee 15
- WTVI-Milwaukee 15
- WQTV-Milwaukee 15
- WTVI-Milwaukee 15

WYOMING
- KJCT-Casper 22

TERRITORIES
- DWAK-TV San Juan, P.R. 2
Cascode Type Front Ends

Part I—Input-tube noise and its effect on receiver sensitivity—the basic low-noise high-gain all-triode input circuit

By DAVID T. ARMSTRONG

THE maximum sensitivity of any receiver is determined largely by the characteristics of the first stage. The input circuit establishes the signal-to-noise ratio of the receiver and sets the ultimate limit of detectability of weak signals.

For satisfactory reception the signal must be greater in magnitude than the noise at every point in the receiver. The minimum usable signal is determined not by the total amplification but by the noise voltages generated in the input stage. Some of these input-stage noises are contributed by the antenna, the power supply, and the passive circuit components, but these are beyond the set-designer’s control, except for hum due to inadequate filtering. Assuming an ideal antenna, and perfect filtering, we are still faced with the problem of noise that originates in the first tube.

Tube noise

All tubes contribute thermal, contact, and shot-effect noises which are amplified in the tubes themselves and in succeeding stages along with the desired signal. Where the tube noise is of the same magnitude as the signal, or greater, the signal will be blanked out by the overriding noise in the circuit.

The noise generated in any tube increases with the number of grids, since voltages on any elements between the cathode and the plate will affect the electron stream. A pentode, with three grids, has inherently less noise than a triode. With only one grid, has the lowest noise level of all. Besides making their own contributions to the noise level, the extra grids in pentodes and multigrid converters are generally connected to resistors, bypass capacitors, and other circuit elements which add their noise voltages to the tube noise.

Tube noise also increases with the range of frequencies a tube must handle simultaneously. Any tube can deliver only a given amount of power, and a fixed percentage—say 20%—is represented by the inherent noise. If the tube is a straight r.f. amplifier, the remaining 80% is available for the desired signal. But if the same tube is operated as a converter, the available power is divided among the signal frequencies, the oscillator signal, the sum of the oscillator and original-signal frequencies, and the difference between the oscillator and original-signal frequencies. Thus the desired output signal—generally the difference between the oscillator and original signal—represents only a small fraction of the total output power, while the noise is still pretty close to 20%.

The best way to raise the sensitivity of a receiver, then, is to boost the desired signal as much as possible before it goes into the converter stage, without introducing too much additional noise. A 3-db increase in signal-to-noise ratio is equivalent to doubling the transmitter power; it is also equivalent to reducing the distance from the transmitter by about 15%.

One way of improving the signal-to-noise ratio without adding an r.f. amplifier stage is to overcouple the converter input circuit to the driving source. Of course there is some loss in gain as a result of overcoupling, but there is an optimum point at which the improvement in signal-to-noise ratio more than compensates for any loss of gain.

This gives only a limited amount of improvement, of course, and the best solution is still a low-noise r.f. amplifier. There are at least five advantages to be gained:

1. Additional voltage gain to feed a good husky signal to the converter.
3. Additional tuned interstage circuits for improving selectivity and reducing image interference.
4. Isolation of the antenna from the local oscillator to reduce interference to other receivers.
5. The higher input impedance of an amplifier compared to a converter enables us to use a greater step-up ratio in the input transformer. Here we are faced with the problem of deciding what type of tube to use for the r.f. amplifier—triode or pentode? The triode has the lowest noise—but relatively low gain. The pentode has high gain—but high noise as well. Obviously, the ideal solution would be a stage that combines the best features of both—and we have one—the cascode amplifier.

Very few FM or TV receivers have more than one stage of r.f. amplification preceding the mixer, partly because of the complexity of ganging additional tuning circuits, and because this would mean an extra tube.
The cascode circuit is a means of using a single tube ahead of the mixer to provide the approximate gain of a two-stage r.f. amplifier, with the additional virtue of having an extremely low noise figure.

Since there are three basic types of r.f. amplifier—grounded-cathode, grounded-grid, and grounded-plate—there are nine possible combinations for two stages. Each combination has specific inherent characteristics and circuit virtues.

One of the most desirable combinations for low noise and good gain is a grounded-cathode input stage feeding a grounded-grid second stage; this is the basic cascode circuit.

The fundamental low-noise cascode circuit developed at the MIT Radiation Laboratory by Wallman et al., is shown in Fig. 1. A grounded-cathode triode feeds a grounded-grid triode. Two triodes so connected provide an over-all gain which is a shade better than the gain from a single high-frequency pentode in a grounded-cathode-type r.f. amplifier. But the noise figure improvement is considerable.

The stability of a cascode amplifier is achieved by loading down the output of the grounded-cathode input stage with the low input resistance of the grounded-grid stage; this prevents the input triode from oscillating because its full output power is absorbed by the grounded-grid stage. The neutralizing coil L, for which may be omitted, improves the stability and effects some reduction in noise figure. Fig. 2 is a commercial version of the cascode circuit used in some recent TV tuners.

The input resistance of a grounded-grid amplifier is approximately equal to the reciprocal of the gm of the tube. Thus a tube with a transconductance of 3,300 microhms would have an input resistance of approximately 1,000 ohms. Conventional plate-circuit loading in the first (grounded-cathode) stage for a bandwidth of 4 to 6 mc is 4,000 ohms; hence loading the output of the first triode with a low resistance like 300 ohms would broaden the bandwidth to as much as 50 mc. Tuning would be unnecessary, but at the same time there would be practically no discrimination against off-channel, spurious signals, and external noise.

The r.f. choke in series with the cathode resistor of the grounded-grid stage in Fig. 2 raises the coupling-circuit impedance enough to prevent loss of selectivity, but not enough to cause oscillation.

In Fig. 2 R2 is a grid-leak resistor which places the grid at ground potential for d.c. R1 is the bias resistor which makes the cathode positive with respect to ground and thus supplies bias to the tube. C1 is the cathode-bypass capacitor which effectively grounds the cathode for r.f. L1 is a slug-tuned inductor, designed to resonate at the desired frequency with the circuit capacitance. R6 and L6 form the plate-load impedance across which a.c. variations of the plate current develop an amplified output voltage. C6 is a blocking capacitor which isolates the cathode of V2 from the B plus voltage at the V1 plate.

Fig. 2-A modern commercial version of the cascode circuit used as a low-noise r.f. amplifier in a television tuner.

Basically, V1 is a variable-resistance device, in which a large change in resistance is produced by a small change in grid-to-cathode voltage. The grid swings alternately positive and negative with respect to ground with the signal; since the cathode is at r.f. ground through C6, the grid also swings positive and negative with respect to the cathode. This varies the internal resistance of the tube, changing the plate current, and the voltage drop through R6. The change in plate-to-ground voltage constitutes the output and determines the gain over the input voltage.

A cascode amplifier tends to hold the triode plate potential fixed and still permit current to flow in a load resistor. Thus it behaves like a pentode, with the advantage that no screen current is required. It is an ideal circuit for single-frequency applications; at the same time it is better than existing circuits for the front ends in TV and FM receivers; finally, it makes an excellent r.f. preamplifier for a u.h.f. receiver. The circuit has shown a noise figure of only 0.5 db at 6 mc without critical adjustments of any sort. Practically all 1953 TV receivers use this circuit or one of its modifications for improved fringe-area reception.

Another commercial cascode circuit is given in Fig. 3. This is the r.f. amplifier portion of the Standard Coil cascode tuner. This circuit has direct coupling between the first and second triodes. The B plus voltage divides about equally across the two triodes, so that the cathode of V2 is about 120 volts above ground. The grid of V2 is held at approximately the same d.c. voltage as the cathode by the voltage-divider network R1, R2, but is grounded for r.f. by the 800-mH bypass capacitor C1.

Several high-gm twin-triode tubes have been developed specifically for cascode operation. These include the 6BQ7, 6BK7-A, 6BQ7, 6BQ7-A, and 6BZ7. (The "A" types are recent improved versions of the 6BQ7 and 6BQ7, with higher gms, better internal shielding, and higher input impedance.) Actually, special twin-triode types are not essential. Individual triodes can be used, provided the heater-cathode insulation of the second (grounded-grid) triode in direct-coupled circuits like Fig. 3) can withstand the d.c. voltage between cathode and ground.

The special twin-triode types listed above have exceptionally high cascode transconductance, internal shielding between triodes to isolate each section.

(To be continued)

SIMPLE GADGET CUTS TV PRODUCTION HAZARD

Licking "solder smoke" on the CBS-Columbia TV-set production line. A small electric fan, with the blades reversed on the shaft or bent to opposite pitch, pulls the soldering fumes away from the operator's face. Chicken wire screening guards against possible accident.

AUGUST, 1953
COMMUNITY TV SYSTEMS

By E. D. LUCAS, JR.

Further details on circuit arrangements, equipment, and distribution systems used by several leading manufacturers.

CONCLUSION

MANY Jerrold and RCA community-TV installations have crystal-controlled converters to convert any high-band v.h.f. channels down to unused low-band channels; or to convert one low-band channel to another to avoid adjacent-channel cross-modulation. Thus a typical Jerrold system, like RCA's, is designed to distribute channels 2, 4, and 6 (or 2, 4, and 5) no matter what channels are received at the antenna site.

Three-channel operation, entirely in the low band, is utilized by both RCA and Jerrold to avoid the high cable attenuation inherent in distributing high-band channel frequencies. Thus in a typical case where channels 3, 6, and 10 are received, channel 6 is amplified without conversion; channel 10 is converted to channel 4; and channel 3 is converted to channel 2. RCA does this in two stages (3-to-12 and 12-to-2).

Double conversion is desirable from channel 3 to channel 2 because a direct adjacent-channel conversion involves many sideband problems. RCA uses two 3-tube converters, to make the two-stage conversion from channel 3 to channel 2; and one similar converter for the channel 10-to-4 stepdown.

With many new u.h.f. stations now going on the air, manufacturers of community TV equipment will soon be providing converters of similar design to convert any desired u.h.f. channel down to a suitable unused v.h.f. channel.

Automatic gain control

RCA, Philco, and Jerrold all apply a.g.c. to the amplifier unit immediately following the preamplifier. Good a.g.c. is almost invariably required in community-TV installations because the signal level at the antenna site is likely to show wide variations, depending on the weather, the season, and the time of day or night. In its tower system, RCA feeds back part of the signals from the input amplifiers through control circuits to supply a.g.c. voltages to compensate for variations in signal strength and changes in a.e. line voltage. The first part of a typical a.g.c. unit, (Fig. 1), has three high-gain c.f. amplifier stages with narrow bandwidth, tuned to the video carrier of the channel to be controlled. Then follows a detector stage and limiter, and the resultant detected voltage is filtered and applied to the control grids of the associated amplifier strip.

Jerrold provides a similar a.g.c. unit with a single r.f. amplifier stage preceding the detector. This unit will hold the output constant within 2 db under input variations up to 40 db.

Tower output amplifiers

The amplifier units to which a.g.c. action is applied are called various names by different manufacturers, but all provide the added signal level required for a long cable run from the antenna tower to the first line amplifier. In almost every community installation, the antenna tower or towers are on a hilltop—usually relatively inaccessible. In many installations, notably Harrisburg, Lewistown, and Lock Haven, Pa., and Palm Springs, Calif., the hilltop antennas can be reached only on foot after a hard climb. Hence it is important to get as much gain as possible at the antenna site, so that the next amplifier can be located at a comparatively accessible spot.

For example, at Palm Springs the antenna site is on top of a 2,800-foot peak. International Telemeter, using equipment of its own design, achieves an output level of over 1,25 volts per channel at this site. This high output makes possible a cable run of about 6,700 feet to the next amplifier, which is located on flat terrain that can be reached by motor vehicle.

As a common-sense precaution at such inaccessible sites the operators of most systems have installed complete duplicate equipment, including spare antennas, preamplifiers, output amplifiers, and a.g.c. Telemeter controls the changeover to stand-by equipment, when necessary, with coaxial switches operated by relays from the Palm Springs distribution center, 10 miles away. In the system at Harrisburg, Pa., two separate cables bring the signal down from Fort Hunter Ridge where the duplicate equipment is installed; and switching to stand-by equipment is done manually at the end of the Jeep road at the base of the ridge.

Philco uses a mixer-amplifier (Fig. 2) following the preamplifier stage, into which the outputs of the individual channel-preamplifier strips are fed. In exceptional cases, where signal level is high enough (2,000 microvolts or more), the preamplifier may be omitted and this strong signal fed directly into the mixer amplifier. Most important precautions include: (a) Signal inputs from each channel into the mixer amplifier should be of approximately the same value; (b) this level should be at least 1,000 microvolts or higher, in order to maintain a high signal-to-noise ratio; (c) input level should not exceed 5,500 microvolts, or there may be trouble from cross-modulation and sync instability. The first two of these precautions apply to practically all makes of output amplifiers; however, most types can handle a higher input level without overloading.

Gain of these Philco mixer-amplifier strips is peaked at the high end in proportion to the attenuation vs. frequency characteristics of RG-11/U cable, since this system does not use channel converters. Gain ranges from 33 db at channel 2 to 45 db at channel 13, making it possible to run about 1,400 feet of RG-11/U or SP-75 cable from each of the two mixer-amplifier outputs to the first line amplifier.

The Jerrold output amplifier or "re-amplifier" also provides a stagger-tuned strip for each channel as shown in Fig. 3. Gain is about 5 db on the low-band strips, while high-band gain is 9 db or less. The outputs are mixed by connecting the strip outputs in parallel through short sections of RG-59/U cable cut to simulate half-wave resonant lines. Hence at each strip's output, the signal looks forward into a matching 72-ohm terminal and back-

RADIO-ELECTRONICS
ward through a half-wave resonant line at the high impedance of a series-antiresonant circuit.

Telemeter has also developed its own head end equipment, with individual amplifier strips, associated a.g.c., and collector (mixer) amplified outputs. Details on this equipment are not yet available, although it is being used successfully at Palm Springs. However, it is revealed that average gain of over 50 db has been achieved.

A few installations have used equipment made by Lyn Mar Engineers, Philadelphia, Pa., a company which designs custom head ends to meet the specific signal conditions of each antenna site. One successful installation is at Carlisle, Pa., and includes strip-type stagger-tuned preamplifiers, channel converters, and output amplifiers with a.g.c.

In the SKL broad-band system, where individual amplifier strips are not used, sufficient amplification at the antenna site can be achieved only by cascading broad-band amplifiers. Experience indicates that a maximum of three SKL amplifiers can be cascaded without cross-modulation or sync tearing.

Line amplifiers

As shown on the block diagrams in Part I, all commercial community-TV installations have standard line amplifiers at suitable intervals along the cable network. These amplifiers are used to help bring TV signals from the antenna site to the community—unless the head-end equipment has given the signal enough of a boost—and then to maintain a satisfactory level for distributing these signals to subscribers in the areas to be served.

Individual-channel line amplifiers are provided by several manufacturers. The RCA design calls for a two-strip amplifier for each channel, with each of the two strips including three stagger-tuned 6AK5 stages. Over-all two-strip gain ranges from 55 to 60 db; frequency response is flat within 3 db over the 6-mc bandwidth of each channel. Output is about 1.25 volts r.m.s. across 72 ohms, permitting spacing of about 2,300 feet between amplifiers with SP-75 cable. Remember that this is a low-band distribution system only, with any high-band v.h.f. channel converted to an unused low-band channel.

RCA is said to be developing a seven-channel community system for distributing both high- and low-band signals, without conversion, but has not announced it yet.

Philco utilizes a relatively low-gain line amplifier, again with a strip for each channel. Since there is no channel conversion, the high-channel strips are given extra gain to compensate for the increased cable attenuation at these frequencies. Low-band line-amplifier strips have two 6C66 stages feeding a 6A8K output, with gain ranging from 15 db on channel 2 to 19 db on channel 6; high-band strips have five 6AK5 stagger-tuned stages with gain ranging from 29 db on channel 7 to 33 db on channel 13. This design allows for about 1,100 feet of RG-11/U or SP-75 cable between amplifiers.

For low-band community systems, using converters in most cases, Jerrold employs strip-type line amplifiers ("re-amplifiers") like the schematic of Fig. 3. These strips have a maximum output of about 1.5 volts, gain averaging 54 db and flat response within 0.5 db over each channel's bandwidth as typical specifications. Spacing of about 2,000 feet between amplifiers using SP-75 cable is typical. This type of Jerrold equipment, distributing channels 2, 4, and 6 no matter what three channels are received at the antenna site, has been very widely installed.

However, recently in areas where several TV channels can be received, especially in southern California and in the vicinity of New York City where seven channels are available, Jerrold has designed several community-TV systems that have broad-band line amplifiers. The Jerrold broad-band line amplifier has separate strips for the low and high v.h.f. bands, and an ingenious arrangement to compensate for cable attenuation. The first line amplifier contains both high- and low-band strips. The second amplifier has only a high-band strip, while the third has both strips, and the fourth again has the high only. This technique gives the additional gain required on the high band, and amplifiers can be spaced...
about 1,000 feet apart along the main feeder and branch lines.

In the SKL distribution system, using the "distributed" broad-band line amplifier (see Part I), it is necessary to use an equalizer either at the output or input of each line amplifier to compensate for different cable losses at various frequencies. If the system is designed for seven-channel operation, channel 13 represents the limiting frequency (highest attenuation) and only about 650 feet of SP-75 can be used between these broadband amplifiers, which have a gain of only 20 db. This relatively close spacing on the line becomes a serious handicap in designing a large community-TV system, requiring a large number of amplifier stations and hence more power outlets, higher power consumption, and more maintenance locations. One possible solution is to use two SKL amplifiers in each amplifier location and thus achieve about 40 db gain.

Telemeter has designed a "distributed" broad-band line amplifier similar to the SKL. This new model has numerous improvements. Construction is in three units—a power supply and two amplifier strips. The latter each have twelve 6AK5 tubes for a total of four chain-type stages with good stability and reliability and no need for alignment or realignment. Average voltage gain ranges from 10 to 40 dB (200 to 200 times). Electrically, improvements have been made such as reducing all the delay-line inductances on machine-threaded plastic rods, and adding a dependable voltage-regulated power supply. A typical mechanical advance is the placement of units on top of the strip with which they are easily accessible for checking and reparation.

This Telemeter broadband line amplifier has tilted gain vs. frequency from about 40 dB at channel 2 to 46 dB at channel 15. Although channel equalizers are still necessary and have been included in the Palm Springs system, the amplifier tilt helps to compensate for higher cable attenuation on the higher channels.

Distribution systems

From the line amplifiers, the TV signals are distributed to feeder cables and hence to subscribers' homes by a variety of techniques.

For example, RCA utilizes distribution transformers to split the signal from the main cable into feeder cables. Next, "extension units" are inserted into each feeder cable. These are weather-tight, resistive, tap-off fittings. The value of resistance in each fitting depends upon the distance from the amplifier and length of lead-in to the home. The object is to deliver about 1,000 microvolts of signal on each channel distributed, to the TV-receiver terminal. It is also important, obviously, to provide isolation between adjacent sets connected to the system and to prevent local oscillator radiation in a noisy receiver from feeding back into the cable. Thus, the impedance presented by the tap-off unit must be the best compromise, considering all the factors involved.

In the home, a wall-outlet unit with a 72-to-300-ohm matching device (usually a resistive network rather than a matching transformer, for economy) is used to couple the signal from the TV system. The subscriber, or the dealer who sells him a television set, connects the receiver to this outlet with ordinary 300-ohm line.

Philco utilizes a similar technique of distribution. Its pre-amplifier isolation units are inserted in the main trunk lines, instead of the feeder lines. This apparently simplifies the distribution system. Actually, it presents the serious disadvantage that service must be interrupted every time an isolation or tap-off unit is inserted in the line to connect a subscriber's home.

The directional coupler, developed by SKL, is another ingenious means of passive signal distribution. Fig. 4 shows a four-output coupler schematically. This has four quasi-wave transmission-line matching transformers with inputs in parallel and outputs feeding separate lines. The loss of this unit is 6.5 db, while attenuation between outputs is about 16 db.

Telemeter utilizes a two-output directional coupler of its own design for splitting the output from its line amplifiers. Here, insertion loss is about 3 db and attenuation between outputs is 25 db. If more than a two-way split after the amplifier is required, additional couplers are inserted. The tap-off units are specially designed capacitive couplings inserted into SP-75 feeder cable with RG-59/U or SP-76 cable used for the lead-in to the home. The value of capacitance is chosen on the basis of the same factors as RCA utilizes in selecting resistances for taps-off: distance from amplifier and length of lead-in to the home.

The distribution method employed by Jerrold is much more elaborate. An electronic "extension" or WADO unit is used to divide the signals from the main trunk line into feeder lines. The WADO most commonly used has three outlets (see Fig. 5) and features low insertion loss, about 3 db gain, and an attenuation of 60 db and output outlets of more than 54 db. This advantage of this unit is that it requires power, as against passive splitters, and thus results in additional maintenance problems and higher operating expense.

Feeders cables run from the WADO, and into these cables are inserted capacitive tap-off units. Capacitance values range from about 2.2 to 7.0 μf depending on the distance from the WADO and length of lead-in to the home. A typical WADO system utilizes RG-59/U cable both for feeder lines and for lead-ins or "drops" to subscribers' homes. Wall outlet boxes similar to RCA's are used inside the home.

Cables and radiation

In a typical community-TV system, the cost of the coaxial cables, supporting wires, line hardware, and the labor of installing them generally exceeds the total cost of all electronic equipment by a wide margin. Further, the performance and design of amplifiers and associated distribution units depend to some extent on the types and quality of cables specified. Obviously, selecting the right cable for each part of the system is highly important.

One major consideration that was largely overlooked in pioneer community installations is radiation. With amplifiers having outputs of up to 1.25 volts or more, radiation from ordinary coaxial cable, connectors and even power lines near the amplifier has been objectionable for two reasons: (1) radiation often interferes with existing TV antennas and receivers nearby; (2) such radiation also makes it possible to bootleg reception by placing an antenna near the radiating cable.

Of course, radiation from cable is not the sole offender. Amplifiers must be properly shielded; they are usually mounted in weather-tight metal cabinets which are carefully grounded. A low-pass power-line filter should be used inside each amplifier cabinet to prevent the leakage to the power line. All cable connectors and tap-offs used in the system must be approved types and should be wrapped with weatherproof tape and then painted with plastic-base paint to keep out moisture.

Both to prevent radiation leakage and also as a protection against lightning damage, the outer copper-braid shield of the coaxial cable and the steel support strap or "messenger" to which it is bonded, must be grounded at frequent intervals. Telephone company specifications state that the outer conductor of TV cable and its supporting strap shall at all times be electrically continuous throughout the system. TV cable shall be bonded to Telephone Company strap at the first and last poles and at every tenth pole between... (See page 46 in the July RADIO-ELECTRONICS.) Most systems ground every fifth pole.

Different types of coaxial cables are used for the various parts of a community TV system. For long cable runs in unpopulated areas—say from the antenna site to the edge of town—the main requirement is a low-loss cable. Shielding against radiation is not so important because there are no TV
Among cable types preferred for this application are Amphenol 21-125 and Federal K-14 coaxial cables. Both have approximately the same specifications: 0.870" O.D.; weight 40 lb. per 100 ft.; single center conductor of No. 9 copper, polyethylene dielectric, and one copper braid shield covered with grey vinyl jacket; impedance 71 ohms; attenuation ranging from 0.55 db per 100 ft. at channel 2 to 1.40 db at channel 13's frequency. This type of cable has been used by Telemeter for its 9-mile run from antenna site to Palm Springs, and for a shorter run by Jerrold at Williamsport, Pa.

For long cable runs where radiation is a problem, one solution is a new coaxial cable with extremely low losses, developed in Germany and produced in the U.S. by Phelps-Dodge. This Styrflex cable has a solid outer conductor or shield of aluminum; then a helical winding of polystyrene in multiple-laminated strips bonded to the aluminum with a thin polystyrene envelope; and a center conductor of solid copper or Copperweld wire inside the helix. Typical attenuation for the ¾-inch cable ranges from 0.46 db per 100 feet at channel 2 to about 0.80 db at channel 13. Telemeter made the first community installation with this cable at Palm Springs and has developed special connectors for use with it.

The cable most widely used originally in community-TV systems is the familiar RG-11/U supplied by several manufacturers. This 75-ohm cable was originally used for all main trunk lines, but now is being replaced in populated areas by a double-shielded version such as Federal SP-75. Specifications include 0.470-inch over-all diameter; weight 12.7 lb. per 100 feet; a center conductor of 7/21 stranded copper, polyethylene dielectric, and two outer copper-braid shields each covered with a black vinyl jacket. Attenuation per 100 feet ranges from 1.40 db at channel 2 to 3.20 db at channel 13.

RG-50/U cable was used originally for lead-ins or “drops” to individual homes—and now occasionally for feeder lines—but it is now being replaced in many instances with double-shielded SP-75. Specifications of the latter are 0.325-inch over-all diameter; weight 7.9 lb. per 100 feet; attenuation per 100 feet from 2.8 db at channel 2 to 6.1 db at channel 13.

Connectors, while small, are highly important and often a source of trouble. It is essential to use cable connectors, chassis connectors and tap-off units which make firm electrical contact at all temperatures, and despite wind, sleet, and snow. Sometimes it is preferable to use a good splice instead of a connector.

Conclusion

Bringing television to a community means adding a new type of public utility to the existing telephone and electric power facilities. Thus a community-TV system should be organized like a telephone company. Even though neither the FCC nor any of the State public utilities commissions have as yet taken jurisdiction over community-TV, these systems require utility-type operation to provide reliable service to subscribers.

Several community-TV companies, including those in Harrisburg, Hazleton, and Pottsville, Pa., now serve more than 1,500 subscribers. At an average installation charge of $135 per home, plus a monthly service and maintenance charge of $3.75, these community operations have become big business.

Technical progress has been rapid in the three years of commercial community-TV’s history. Obviously operators of such systems must expect rapid obsolescence of electronic equipment; but their cable lines, properly installed and maintained, should be good for many years.

In planning a new community installation, it might be well to keep in mind the following suggestions as to electronic equipment:

1. Specify amplifiers and other units that will handle all 12 v.h.f. television channels. Even though your antennas may be able to receive signals from only two or three stations now, you should allow for future stations coming into your area. Remember that if you have unused v.h.f. channels, and u.h.f. stations become available, you can convert them to v.h.f. at the antenna site and distribute the signals on a v.h.f. channel. Also, you may wish to use one channel for a closed-circuit subscription or “pay-as-you-see” TV operation such as Telemeter is now developing.

2. Because not all TV sets have adequate adjacent-channel selectivity, don’t try to distribute adjacent channels via a community system. If you can receive adjacent channels, convert one to an unused channel separated from others by a guard band.

3. To obtain adequate a.g.c. action at the antenna site, use individual-channel preamplifiers and output amplifiers at the “head end.” This will help maintain a balanced signal level on all channels and prevent cross-modulation.

4. If you plan to distribute several channels, it makes sense to use broadband line amplifiers.

5. For branching or splitting equipment, low-loss passive networks are logical because they require no power, they have no tubes, and both maintenance and operating costs are minimized. Further engineering development is needed here—as in other phases of community-TV—to achieve the greatest efficiency.

6. There are many more problems than meet the eye, or can be covered in this article, but don’t be discouraged. The rewards for the operators of a successful community-television system are well worth the effort.

An earlier article describing master TV systems appeared in our January, 1951, issue (“TV Distribution Systems,” by Eric Leslie, page 54). It discussed a number of equipment types, including apparatus by Brok, Industrial Television, Antalite (equipment manufactured by Transvision) Electro-Voice, Blond-Tongue and Taco.

VERTICAL “SELECTIVITY”

Truth can be stranger than fiction but the following account is by all means fiction.

A chronic complaining TV owner called upon her service technician to adjust her ailing TV. The service technician, with due respect, came within a short while and was surprised to find the set in apparently good working order. Questioning of the customer disclosed dissatisfaction with the quality and sharpness of the picture. Eager to please and assure the customer that she was receiving the best service available, the service technician went through the procedure of defocusing and adjusting the set with the customer looking over his shoulder. After a while, tired and very unhappy because of the customer’s discourse on how wonderfully clear the set had been when it was new, the service technician turned the vertical control knob and as the frames slipped slowly over one at a time he ventured, “You pick the clearest picture and I’ll lock it there.”

So she did, and he did, and everybody was happy.

—Al Katz
Fifth conversation, second half:
How and when a capacitor charges and discharges—the exponential curve—and that neon lamp again

Story without an end

WILL—I'm still thinking about that time-constant. If it indicates the time in which the capacitor charges to two-thirds of full capacitance, then it should take half again as long to complete the charge. So our capacitor with the .02-second time-constant would take .03 second to charge completely?

KEN—Mistake! I've news for you, Will, the capacitor will never charge completely!

WILL—But that's nonsense! Why—after a reasonable time—shouldn't the voltage across the capacitor terminals rise to the voltage of the supply?

KEN—Don't you know, that in the Creation of the World of Electronics, first was the electron and the proton. Then after a few other labors, was created Ohm's law. And since then everything has been done according to that law.

WILL—I know that the current that charges a capacitor has to follow Ohm's law. But what's that got to do ...?

KEN—Wait a minute! Is this current you're talking about constant or variable?

WILL—Since the voltage, the resistance and the capacitance are all fixed, there's no reason why the current should vary.

KEN—Yes, there is just one reason. The thing that attracts electrons from the supply terminal to the capacitor plate connected to it is the difference in potential between that plate and the (negative) terminal of the supply source. At the beginning of the charge, that difference is equal to the full voltage. But as the capacitor plate begins filling up with electrons, the difference decreases. And the longer the charge lasts, the smaller that difference becomes. Now what happens to your rate of charge?

WILL—Obviously, the current will drop as the voltage does. The closer the capacitor is to full charge, the slower the charging will be.

KEN—Now suppose our supply source is 100 volts. If the time constant is .02 second, at the end of that period the voltage across the capacitor plates is 65 volts roughly. In another .02 second, the voltage will have increased % the difference between 65 and 100 volts. So we'll find about 89 volts across the plates. Another two-hundredths of a second later, we'll measure 97 volts . . .

WILL—But this is never going to end! If each time you increase the voltage across the capacitor by only a fraction of what is needed to reach the supply voltage, it's mathematically impossible ever to reach it?

KEN—Correct, Will! The capacitor never gets to full charge. Oh, it would get pretty close to it in a few centuries, but . . .

WILL—But, by the same token, it's impossible for the tank of water C we were talking about yesterday to be filled to the level of tank E, because, if water is to flow into it, there must be a difference of level!
KEN—Just to show how the charge drops off, here's the curve showing the law a charging capacitor follows. It's called an exponential curve, by the way. The curve of a discharging capacitor is exponential, too.

WILL—But then you couldn't use capacitors to control the spot deflection. You need a linear voltage variation, represented by a straight line, not this exponential kind of curve.

KEN—Theoretically, you're right. But practically, we can use these curves, as long as we use a very small part of the curve. Such a small section can be treated like a straight line.

WILL—I see. Just the same as a small part of the earth looks flat, even though it's part of a sphere.

KEN—And, if there is a little curvature, we can correct for it by introducing a little distortion which tends to curve it in the opposite direction.

The electronic switch

WILL—I can see that a time-base is a very simple setup. A voltage source, a capacitor, and a resistor, are pretty basic equipment. But what bothers me is the switch. How are you going to get a switch that'll open (for almost no time) 15,750 times a second?

KEN—You're pretty sure it won't be a mechanical device . . . ?

WILL—I'll admit that beforehand. Electronics all the way! But what kind of a tube do you use to do that kind of a job?

KEN—Believe it or not, you can use a gas tube. And you can make a sawtooth oscillator with an ordinary neon tube.

WILL—I know a neon tube can transmit radio signals. Like that one that used to be on the cafe sign . . .

KEN—The tube we'll use belongs to the same family! But we need only a very small one—a little glass bulb, with two electrodes in the form of halves of a disc, or a spiral or cylinder, and filled with neon at low pressure.

WILL—No filament?

KEN—No more than any other neon lamp. You remember we discussed a neon TV lamp used with the Nipkow disc; it was a nonfilament type, too. Our lamp lights when the voltage between the two electrodes rises to more than a certain voltage called the "voltage of ionization." At that voltage the molecules of gas are disassociated or ionized. As the positive ions drift toward the negative plate, and the negative ions and free electrons toward the positive one, a current is set up. The space between the electrodes actually becomes a conductor. To stop the ionization (and the light) all you have to do is drop the voltage below a certain point. For example, some types of neon tube require a voltage of 110 to light, or "strike." To extinguish them, the voltage has to be dropped to about 80.

WILL—And how can you use it as an automatic switch? KEN—Easy—just put it across the capacitor C.

WILL—Why this dot in the symbol for the neon tube?

KEN—That just shows it's a gas tube.

WILL—I think I can see what happens. The voltage of the supply source has to be higher than the ionization voltage of the neon tube. So, as long as the voltage on the capacitor is below that value, it keeps on charging normally. But just as soon as the voltage across the capacitor is higher than the ionization voltage, the tube lights and the capacitor discharges through the gas tube almost as if it were short-circuited. Then, when the voltage drops far enough, the tube goes out, becomes a nonconductor, and the charge starts again.

KEN—Perfect! All you have to add is that—in our example—the voltage varies between the ionization voltage of 110 and the extinction voltage of 80. So we have an amplitude of 30 volts. And the frequency can be selected by choosing the right values for the resistor and capacitor.

WILL—I suppose that every television receiver uses two neon oscillators then—one for the horizontal, and one for the vertical deflection voltages?

KEN—Not at all. Will. Not a TV set being made today uses a neon oscillator.

WILL—That would make things too simple and easy, eh?

(AUGUST 1953)
You can save considerable time on many service calls if you have a field-strength meter. It tells you immediately whether poor picture and sound are caused by a defective antenna system or by receiver troubles. Thus, if the signal strength in microvolts at the receiver end of the transmission line is abnormally low, you avoid many needless tube and voltage checks. Because of this time-saving feature more and more television technicians take a field-strength meter along with their other test equipment on service calls in customers’ homes.

A typical field-strength meter contains a conventional tuner, two video i.f. stages, a crystal detector, a calibrated meter, and a power supply. Since the important characteristic is the strength of the picture carrier, and not the picture detail, wide-band video i.f. amplification is not necessary and only two narrow-band, high-gain stages are used to keep the number of circuits at a minimum.

A stage of audio amplification is usually provided so headphones can be used for checking the presence of the video signal. (This is not the accompanying sound of the station being received, but the characteristic sync buzz and crackle of the picture carrier.) One of the more elaborate meters has a 7-inch picture tube for visual observation. Since this feature involves sweep and high-voltage circuits, the unit is much bulkier than the other types.

Readers have asked if old 7-inch television receivers can be used for field-strength meters. The answer is definitely “yes.” The meter circuit is quite simple, and Fig. 1 shows the arrangement used in several commercial models. An 0-1 d.c. milliammeter is inserted below the video-detector load resistor as shown. The .002-μf capacitor shunts a.c. signal components around the meter. Because of wide variations in antenna characteristics, local receiving conditions, and internal simplicity, a direct-reading microvolt scale is not used. Instead, a chart is furnished with the meter, showing the relative microvolt values for various meter indications throughout the television channels.

The same meter principle can be applied to most 7-inch receivers such as the Motorola VT-71 or the Hallicrafters T-54 and 505, although the last two are much too heavy for convenient portability in their original cabinets. The video-detector circuit of the Hallicrafters T-54 and 505 is shown in Fig. 2. The detector-load resistor (5,680 ohms) is unsoldered from the chassis and the milliammeter and its .002-μf shunting capacitor are inserted at X.

Fig. 2—Video-detector circuit of the Hallicrafters T-54 and T-505 7-inch TV receivers. These can be adapted for relative field-strength measurements by inserting a milliammeter at point X.

The positive side of the meter goes to ground. The peak current flow will depend on the signal strength of the station, the sensitivity of the tuner, and how well the receiver is aligned. Check the current readings with a multirange milliammeter first for the strongest station received. With receivers having a.g.c., simply adjust the fine tuning control for maximum signal. In sets without a.g.c. the contrast control will affect the gain ahead of the meter and this must be adjusted in addition to the fine tuning. From the readings obtained, choose a meter with a range slightly higher than the maximum signal, or change the value of the load resistor to suit the meter on hand. The relative polarity of the rectified signal may necessitate reversing the meter terminals.

The meter scale can be calibrated for high, medium, and low signal levels, or calibrated in microvolts against a standard if desired, although the calibration will be accurate only if the same antenna is used for all measurements and there are absolutely no changes in the receiver characteristics. The former method will suffice, however, for quick checks during servicing calls, once the proper signal-level readings for good reception have been established.

For u.h.f.-antenna readings, a converter is used between the lead-in and the field-strength meter. Many u.h.f. converters have a gain of 1, and thus will not affect calibration of the field-strength meter. For converters with a greater voltage gain, the meter will have to be recalibrated for the u.h.f. channels.

Intermittent splitting

We have seen across a defect in an RCA 9T57 which fooled us up to now. The picture jumps into two pictures almost two inches apart; then just as quickly resolves back into one picture. The condition gets worse after the receiver warms up. Preliminary inspection of the various components and tubes hasn’t been too fruitful up to now.
now. What could cause such a condition? E. A. H., Pecking Hills, Mass.
A rapid picture displacement along the horizontal will impair two pictures on the screen which often resemble ghosts (see photograph). This can be caused by an intermittent or open coupling capacitor in the horizontal a.f.c. circuit. A defective part in the horizontal oscillator control-tube circuit can also cause this condition by creating a rapid phase shift between sync timing and horizontal oscillator frequency. The cause is a rapid change in the idling voltage applied to the horizontal deflection coils.

Try a new 6SN7-GT horizontal oscillator tube first, regardless of whether or not the old one checks good in a tube tester. Also check B voltages in the horizontal system during the time the intermittent occurs. Align the synchronoscope system according to the step-by-step procedures listed in the service notes for this receiver, checking the amplitudes of the broad and narrow waveform peaks with an oscilloscope. Check all resistors and capacitors in the grid and plate circuits of the 6SN7-GT oscillator control tube. An intermittent part here will affect phasing and can cause picture shift at a rapid rate.

Direct-drive conversion
I wish to convert an RCA 6T44 using an output transformer and matching section from a Du Mont RA-165 receiver. I also have the necessary width and linearity coils, but I can find no study of the schematics of the two receivers. I note a considerable difference in the circuits. Can the Du Mont part be used in the RCA-type circuit? J. F. J., Minneapolis, Minn.

These parts are for a direct-drive horizontal output system instead of the conventional flyback system in the RCA. For best results substitute the complete horizontal output circuit of the Du Mont RA-165 for the horizontal system in the RCA receiver. The direct-drive system is critical with respect to distributed capacitance and lead dress. For this reason the 6BG6-G tube in the RCA should also be replaced with a 6H6-G-G tube with circuit changes to conform to the Du Mont. Since the RCA damper filament is fed from a separate winding on the power transformer, it will be suitable for the 6WA-G-G damper of the Du Mont circuit. The new circuit will furnish 11,000 volts for the second anode of the picture tube. (For additional information on this topic, see page 42 in the February, 1953, Radio-Electron-ics.)

Overheating components
A Westminster's H-605-712 came in with a burned-out deflection coil. After replacing this, I found the red choke overheated and the width control burned out. I am using a substitute deflection coil and am wondering if this is contributing to the trouble. The picture is stretched at the left and compressed at the right. I would appreciate your advice. C. M., Detroit, Mich.

The left-hand stretch indicates excessive drive. This is probably causing excessive currents in the three parallel 7A5 horizontal output tubes. In this receiver, an unstable horizontal oscillator will also cause improper drive with resulting burnouts because of excessive current. To begin with, try a new 12AU7 horizontal oscillator tube, and adjust the ringing coil for best stability at the center setting of the hold control. Check all resistors and capacitors between the multivibrator and the grids of the 7A5's for off-values. Replace if incorrect by more than 10 percent. In particular make sure the coupling capacitor to the grids of the 7A5 tubes and the common cathode capacitor are not leaky.

If these procedures do not help, the deflection coil probably does not match the horizontal output transformer and should be replaced.

Earphone circuit
How can I attach a pair of headphones to an RCA 2760 receiver so the speaker can be switched off during use of the phones? R. W., Long Island, N. Y. Fig. 3 shows the circuit for adding headphones to this receiver. Since the volume control is in the grid circuit of the 6AV6 first-audio amplifier, it will regulate the volume to the headphones when the latter are switched into the circuit. A single-pole double-throw switch is necessary, as well as a single-circuit jack for the headphone plug. A closed-circuit jack can be used instead of the s.p.d.t. switch, but this would necessitate removing the phone plug from the jack when speaker output is desired. With the switch, the phones can be left connected and switched in as desired. For much lower volume levels, the switch and phones can be placed in the grid circuit of the 6AV6 first audio amplifier.

Stacking bars
What should be the length of the stacking bars for a conical or double-V type of antenna? The lowest channel to be received is No. 2, E. W., Lexington, N. C.

Most manufacturers space antennas approximately one-quarter wavelength apart for the lowest channel to be received. This favors the higher channels—which are usually weaker. If the antennas are spaced one-half wavelength, the lower channels will be favored. Quarter-wavelength spacing for channel 2 is approximately 50 inches, though 44 inches can be used if channel 2 is fairly strong in the area.

Lead-in mounting
I would like to install television transmission lines inside the walls of a new housing project. The houses have no attics or basements, the floors are concrete and the roofs are flat. What kind of conduit would you recommend for running the line through some sort of conduit so that new line cannot be pulled through if needed? I understand this would create considerable losses, however, and I would appreciate your suggestions regarding the best enclosure for ribbon lead. L. S., Vallejo, Calif.

Ordinary 300-ohm ribbon lead would suffer considerable signal loss if run through any metal pipe, mast, or conduit. However, you could use rubber or plastic garden hose (the latter preferred). This would be rigid enough so that the transmission line could be pulled through easily, or removed and new line installed if the occasion ever arose. The line should be kept clear of parallel house wiring or water pipes.

Picture quality
In a Techmaster 19007-C receiver, the picture quality is poor. Focus is what is most noticeable. Definition is inferior to what it should be. I have checked tubes, voltages, and components without finding anything wrong. The tube is a 21EP4. Do you think it would help to remove the receiver to focus as closely as possible to the original RCA 620 receiver? R. M., New York, N. Y.

While the original RCA 630 receiver circuit was well designed, it was primarily for use with 10-inch tubes, and did not contain keyed a.g.c., a magnetic tuner, or other modern improvements. Modern versions of this circuit contain these improvements, plus changes for increased deflection and high voltage for the larger-screen picture tubes. The ESA in the Techmaster, for instance, has considerably greater vertical deflection efficiency than the original 6K6. The same is true of the 6CD6 horizontal output tube and the 6W4 damper. Thus, a change back to the original 630 circuit would certainly not improve definition and would result in much poorer performance and insufficient second-anode voltage and sweep for the larger-screen picture tubes. The trouble is undoubtedly in tuner tracking and video-i.f. alignment. Use an accurate marker generator, linear sweep generator, and oscilloscope to check over-all alignment and tracking. If incorrect, follow the detailed instruction procedures in the service notes.

Note: Letters sent to the Clinic are answered directly, and only those of general interest are published. Enclose a stamped, self-addressed envelope and give the name, address, and telephone number of the receiver. Detail is not always given carefully and otherwise this procedure or checks undertaken prior to writing. Questions on these pages have been condensed because of space requirements and generally have been more detailed than shown. 4NO
The good and bad features of some popular types—and the way they ought to work to match our hearing by M. G. O'Leary

The year 1947 marked a turning point in the development of sound reproduction. Up to then, amplifier-construction articles in electronic periodicals usually dealt with units having push-pull 6V6 or 6L6 output stages with little or no negative feedback. A few designers—some of them simply old-fashioned, others with valid technical reasoning—recommended triode output stages, but in those days 2A3's, 6A3's, or 6A5-G's were about the best tubes triode enthusiasts could muster, and the problems of biasing and driving them without transformer coupling were perplexing and discouraging. In May, 1947, the Williamson circuit appeared in print for the first time. Concurrently, numerous other audio improvements appeared, and the rate of development has accelerated until today's audio enthusiast does not have to build his own equipment to get all the special gadgets and circuits he wants.

Audio dealers' shelves are loaded with all kinds of variable-equalization pre-amplifiers, dynamic noise suppressors, variable treble cutoffs, variable low-frequency cutoffs, volume expanders, continuously variable bass and treble controls, beam-power-output amplifiers with feedback, triode-output amplifiers with feedback, Williamson amplifiers, ultralinear amplifiers with feedback, single-ended push-pull-output amplifiers, transformerless amplifiers, and, last but not least, loudness controls.

The loudness control is not a new development. Even back in the 1930's some of the better radios were equipped with simple versions—usually a tapped volume control with about 20% of the cold end bypassed to ground with a capacitor. See Fig. 1. This gave a certain amount of bass boost at low volume settings to bring out low notes which otherwise would have dropped below hearing level.

Present-day loudness controls come in several forms. Some are step-type volume controls, which reduce the volume in 2- or 3-db steps while simultaneously boosting the bass proportionally. These generally have a maximum boost of about 20 db at 50 cycles. Others are continuously variable controls which boost both bass and treble as the volume is lowered. The International Resistance Company sells a ready-built control of the latter type, the "LCI Loudness Control." (This control is also available as a kit or can be assembled from standard IRC control sections and commercial resistors and capacitors. See Fig. 2.—Editor.) All these so-called "loudness controls" are more or less complicated versions of the original tapped and bypassed volume controls.

The audio world is not entirely happy over loudness controls. The controversy that rages over them is as big as the one that raged in former years over beam-power versus triode output. Of all the arguments pro and con, some of those against loudness controls are:

1. Low-level playback should sound the same as low-level "live" listening, such as you might expect at the extreme back of a concert hall. Boosting highs and lows by some arbitrary ratio will result in unnatural reproduction at low listening levels.

2. Loudness controls increase high-frequency distortion and make the lows sound muddy.

3. They introduce transient distortion.

4. AM, FM, and phono channels generally supply different input levels to the loudness control. Thus any fixed compensation ratio will be wrong for two of the three sources.

5. Differences in original recording levels and characteristics and different playback conditions will change the

Fig. 1—Compensated volume control. As the slider moves down to reduce volume, capacitor C bypasses high frequencies around the lower resistance element. This introduces an apparent increase in low-frequency response.
amount of compensation required.

In reply to these criticisms, the loudness-control proponents point out that their control makes low-level playbacks sound wonderful (an argument that is difficult to refute); and it allows them to vary the volume with only one knob without the worry that they may miss a single note. They say they prefer to hear the score as it was written, not as it might sound in the lobby of the concert hall. Probably the most significant factor in the controversy is the difference in what different people like to hear; and because of this, the controversy will probably not be settled soon—if ever. Second in importance is that the basic reasons for using loudness controls are often misunderstood by the control designers.

Seeking a solution

After hearing and reading all the arguments pro and con, I finally decided to do a little analytical study of the matter to satisfy my own curiosity. My aim is to reproduce music at home to sound as natural as possible—that is, what I think is most natural. (Others may disagree with my taste in this.) I have no loudness control—but I do have variable bass boost (up to 22 db); a variable turnover control; and continuously variable treble boost and cut—plenty of flexibility.

It has always been obvious to me that the right settings of all these controls for one recording are by no means the correct settings for all recordings—even those produced by the same company. Some recordings have a thin bass no matter how the controls are set, while others are just the reverse. Those who infer that these differences are probably due to shortcomings in my rig should read the very thorough technical reviews of new records in three magazines. I am not the only one who notices these discrepancies.

If a one-knob control of three functions—volume, bass, and treble—will really do the job expected of it and do it correctly, the logical process of progress through simplification demands its adoption. But when some recordings require more or less bass or treble boost (or both) than others, one wonders if any one-knob control can really be an adequate solution.

Fig. 2—Circuit of IRC “Loudness Control,” with typical response curves.

Fig. 3—Fletcher-Munson equal-loudness curves. The curves show the relative intensities needed at various frequencies to produce sounds of the same apparent loudness as a 1,000-cycle reference tone. Note especially the high intensities needed for low frequencies at the lower loudness levels.

Fig. 4—Curves of maximum and probable orchestra volume (A,B), and bass-drum volume (C), superimposed on the low-frequency portions of the Fletcher-Munson equal-loudness contours. Note also hearing-contour and residence noise-level curves. See text for details.
Fletcher-Munson curves

The underlying reasons why bass and treble compensation is required at all low playback levels are best shown by the series of Fletcher-Munson curves in Fig. 3. These are equal-loudness curves which show the intensity levels required at various frequencies to produce a sound judged by the listener to be as loud as the 1,000-cycle reference intensity level. It is important that we understand exactly what these curves represent—else we may fall into the error of interpreting them as bass- and treble-boost curves. To simplify it, let's take a look at a couple of typical examples.

Suppose three tones—100, 1,000, and 10,000 cycles—come through an ideal reproducing system with equal loudness. (Remember, loudness is how they sound to you.) If the 1,000-cycle tone has a measured intensity level of 90 db, the 100-cycle output will also have to be 90 db, but the 10,000-cycle note must have an intensity of 99 db. Now assume that we turn down the volume control to reduce the intensity level by 40 db. The 1,000-cycle note will now sound slightly weaker and the 100-cycle tone still much weaker than the 1,000-cycle tone. The curves explain why this is so: The 1,000-cycle tone at 50-db intensity is on the 50-db equal-loudness curve, but the 50-db intensity level at 100 cycles (the original 90 db minus 40 db attenuation) is on the same equal-loudness curve as a 20-db intensity level at 1,000 cycles; and a 59-db intensity level at 10,000 cycles (99 db minus 40 db) is on the same loudness curve as a 46-db level at 1,000 cycles. Examining the curves, we see that the equal-loudness curve for a 50-db intensity level at 1,000 cycles intersects the 100-cycle ordinate at 67 db, and intersects the 10,000-cycle ordinate at 63 db. Thus, we see that the volume control we can again make these three tones sound equally loud if we turn up the bass control to boost the 100-cycle tone 17 db (67-50 db), and turn up the treble control to boost the 10,000-cycle note 4 db (63-59 db).

Suppose we try one more example. Let's adjust the ideal reproducing system so that 100-, 3,000-, and 10,000-cycle tones come through with equal loudness, at a 1,000-cycle intensity level of 60 db. The curves show that the 100-cycle tone now has a 72-db and the 10,000-cycle note a 73-db intensity. Now suppose we want to attenuate the output by 30 db. The 1,000-cycle note will now be at a 30-db level, while the 100-cycle tone will have an intensity of 42 db (72-30 db), and the 10,000-cycle tone 45 db (73-30 db). The 30 db can be accomplished by 15 db cycles at 57 db. A 15 db boost (57-42 db) at 100 cycles will make the two notes sound equally loud again. The 30 db curve crosses 10,000 cycles at 42 db. At a 1 db boost (42-43 db) will make the two notes sound equally loud.

These examples are designed to emphasize the fact that Fletcher-Munson curves are equal-loudness contours, not bass- and treble-boost curves. Some loudness controls seem to be designed under the misconception that the curves show the amount of boost required. A recent article by John R. Schjelderup clearly brought out the proper interpretation of these curves and suggested a compromise control designed to boost both bass and treble to compensate for the difference between the level of the original performance and the playback level. For example, if the orchestra was performed into a microphone at a level of 90 db and we play the recording at home at a 50-db level, we simply set the proposed control at 40 db (the difference), and both bass and treble automatically get the right amount of compensation.

Fig. 5—Low-frequency compensation required to bring db levels below the original performance level in Fig. 4. Dashed line represents additional boost needed to bring very low frequencies above hearing contour curve. See Figs. 6, 7, and 8 for curves of other levels.

This is a very nice solution to one of our problems, but skeptics will have their field day. For instance: "How many people know the db level at which a performance was recorded? And even if the record label shows it, do we all have to add VU meters to our amplifiers to find out the exact playback level?"

Schjelderup et al seem to have overlooked one important point: When an orchestra is playing at an over-all level of 90 db, the individual instruments are playing at any one of many different levels. Any one instrument may be played at several different levels during the course of a composition. For instance, there are soft, double-bass passages and loud solo passages. If the loudness control compensates properly for the loud passages, does it also compensate properly for the softer ones?

However, Schjelderup brought out a very important point in his article, one which the reader can see if he inspects Fig. 3 again. While loudness compensation might require as much as 29 db boost at 30 cycles, the amount of treble boost never exceed 4 db. Take a look at the curves—above 1,000 cycles none of them are flat, but they are all nearly parallel. No two of them deviate from parallelism by more than 1 db. Thus the bass region is where nonlinear loudness compensation is most important, and it will be simpler, yet sufficient, if this inspection of the technical aspects of the loudness control is confined to the bass regions of the spectrum only.

The Jensen Manufacturing Co. has published a series of technical monographs. Monograph No. 3 ("Frequency Range and Power Considerations in Music Reproduction") contains some interesting curves. One series of curves shows the average distribution of sound-pressure levels for all frequencies over the audible spectrum when a typical orchestra is played. These curves, as well as all of the curves between 20 and 1,000 cycles, are reproduced in Fig. 4 superimposed on the Fletcher-Munson curves of Fig. 2. Curve A represents the maximum r.m.s. values, defined as the intensity level which is exceeded only 5% of the time in the particular frequency band. Curve B represents the "most probable" or average levels, lower than the maximum levels by as much as 14 db at some frequencies. Curve C represents the maximum loudness levels for a solo bass drum.

Two other curves are superimposed on Fig. 4, both from this same technical monograph. The first is the "Hearing Contour Curve for Critical Listeners." The area above and to the left of this curve represents the region in which no sound at all is heard by a critical ear even though sound is present; for instance, a 50-cycle note at 60 db or a 200-cycle note at 30 db. The other curve is the "Quiet Residency Noise-Level Curve"; sounds below this level of course will not be heard at all.

Now we have the frequency-distribution levels of a typical orchestra performing for a typical recording. It seems reasonable to assume that curve B represents what the microphone would hear during the major portion of the performance. However, it would also hear the sound represented by curve A during certain intervals, and that of curve C at less frequent intervals. Let us assume that we are back to hearing the orchestra at home through an ideal reproducing system at various levels below the original performance level. Suppose these lower levels are steps of 10 db attenuation each. From the Fletcher-Munson curves we can predict how much bass compensation will be required at each playback level for each of the curves A, B, and C. This compensation would be made by turning down the bass controls of the curves represented exactly the content of the music, the playback would sound exactly the same, but at a lower level— as it did to those who were present at the original performance. Curves A and B representing the necessary compensation at the various attenuation levels from 10 db to 50 db are shown in Figs. 5, 6, 7, 8, and 9 respectively.

Fig. 6—Compensation for playback 20 db below original performance level.
These curves prove at least one thing: the amount of compensation cannot be fixed even for a specific playback level. It may differ for the different passages in any one musical composition. For example, if we are playing back at a listening level 30 db below performance level, as in Fig. 7, and we compensate for the maximum-level curve (A), the bass of the average-level passages (curve B), will be a bit heavy in the 70-100-cycle region, and a bit thin in the 200-400-cycle range; a loud bass-drum passage would be disproportionately loud.

The dashed lines in Figs. 5 to 9 represent the compensation required if we are not to lose some part of the music completely. For instance, if curve B is attenuated 30 db and equalized as shown in Fig. 7, frequencies from 72 cycles down will be below the "Hearing-Contour Curve" and will not be heard unless boosted as indicated by the dotted line. This much equalization of course, would make a burst on the bass drums sound as though the drummer were right in the room.

It may surprise many of the proponents of loudness controls to learn that their devices do not always let them hear all the music actually being played. A look at Fig. 9. Even with loudness equalization, no average level must be below 90-120 cycles (depending on the compensation curve of the control) is heard when the original performance is played back softly, at an attenuation of 50 db.

I cannot be certain about the conclusions that readers will draw from all this; I can only state my own. To me, the most important conclusion seems to be this: Assuring we have an ideal reproducer, we are not likely to hear the music exactly as it was heard during the performance unless we play it back as loudly as it was.

References:
3 Full Range Loudness Control, J. Winslow, February, 1949, Audio Engineering.
4 A Two-Track Bass and Treble Compensated Volume Control, W. O. Broyles, August, 1961, Audio Engineering.
6 High-Fidelity Magazine.
7 Audio Engineering, Board Review.
8 Saturday Review of Literature.
MAGNETIC FILM RECORDING

provides sound tracks for old or new films—allows instant playback without processing of any kind

By I. QUEEN

MAGNETIC striping is the most significant advance in the movie-sound field since the introduction of talkies. Several manufacturers are now equipped to coat 16-mm films with a magnetic-oxide soundtrack. This magnetic stripe provides all the advantages of modern tape recording. Sound can be recorded and erased as many times as desired. It is ready for playback immediately after recording. Extensive lab processing and special studio facilities are no longer needed. It has been estimated that the cost of materials for a 10-minute sound and color 16-mm film would be about $200 with the new recording method. The same film made professionally with optical sound-on-film would cost $3,500 or more.

In most cases the magnetic stripe is applied to the film after it has been exposed, processed, and edited. Then sound is recorded on the magnetic stripe while the film is shown. Thus the commentator or performer can synchronize the sound and picture. If an error is made or if the track proves unsatisfactory, it is easily wiped off and a new one can be substituted.

If a film already carries an optical track, a half-width magnetic stripe is added. This leaves half of the original track. Thus the user has a choice of the original optical track (which, of course, is a permanent part of the processed film) or the stripe (which can be changed at will). Fig. 1 shows full-stripe and half-stripe tracks. Of course, the film must be single-perforated.

Reeves Soundcraft, Bell & Howell, and Eastman Kodak are among film processors who are now equipped to stripe 16-mm films.

New movie projectors are being manufactured to accommodate the new sound films. Models have already been announced by RCA, Bell & Howell, and Ampro.

These machines can reproduce optical or magnetic tracks, they record magnetically, and serve as public address amplifiers. They give a choice of speed 16 or 24 frames per second. The faster speed is equivalent to 7.2 inches per second, nearly equal to that of most tape recorders.
RCA model 400 projector

This projector features special design to eliminate hum and to provide high-fidelity recording and reproduction. For example, the sound head has four distinct adjustments: azimuth, lateral, pressure, and bearing. The last adjusts with respect to the sound-drum curvature. The magnetic head is mounted on an arm which may be rotated for maximum output from a standard h.f. recording. Special care has been taken to avoid head magnetization which may introduce bias and noise. Bias current is adjustable in steps instead of all at once. The motor may be rotated axially for minimum hum. The positions of the power transformer and input transformer also may be shifted for the same purpose. A hum-bucking coil is connected in series with the magnetic head. This coil is adjustable to the best compromise position between the on and off conditions of the projection lamp. All ground loops have been eliminated.

The frequency response of the RCA projector is 80-7,200 cycles. (Fig. 2). Signal-to-noise ratio is 50 db with tone control in FLAT position. Output is 10 watts.

Filmosound model 202

This Bell & Howell projector has phono and mike inputs usable separately or for mixing speech and music. The sound-drum assembly includes a mirror system for reflecting light for optical reproduction. It also carries the magnetic head. Levers rotate either the magnetic head or mirror into position as required. Accidental erasure is prevented by a special button which must be depressed for recording. This can be done while the motor is running in the forward direction. A pilot lamp indicator shows when the projector is in the recording position. A neon lamp indicates recording level. This projector has an output of 9 watts at 5% distortion.

Ampro Premier 30

This projector features a remote recording control. Sound to be recorded can be picked up and controlled in another room, away from projector noise, if desired. A VU meter measures recording level. A high-fidelity 12-inch baffled speaker is included. Monitoring is done by headphones. Mike and phono inputs may be mixed. Magnetic and optical soundtracks may be played back in any sequence. The amplifier has an output of 15 watts.

Magnetic sound films are finding many applications in education, business, and entertainment. Heretofore, silent films were generally used in these fields because of the high cost of optically recorded sound. Even when suitably titled, these silent films lacked the interest and effect of talkies. Now, through the inexpensive process of stripping, sound is available. Quality is high, so that either music or speech can be recorded satisfactorily.
Detect or measure atomic radiation with this sensitive and accurate

SCINTILLATION COUNTER

By ED BUKSTEIN*

The scintillation counter, like the more publicized Geiger counter, is an instrument used to detect and measure radioactivity. The chief disadvantage of the Geiger counter is its long dead time. This is the interval—usually about 100 to 200 microseconds—which follows the detection of an atomic particle. A Geiger tube is completely ionized during this interval and the instrument is unresponsive to other atomic particles. As a consequence of this long resolving time, the Geiger counter will respond only to the first of several particles entering it in rapid succession.

The scintillation counter has evolved from a device invented in 1903 by Sir William Crookes. The original device, the scintilloscope, is a hollow tube with a screen of zinc sulfide at one end and a magnifying lens at the other. Zinc sulfide produces a brief flash of light each time it is struck by an atomic particle. An observer looking through the magnifying lens can determine the degree of radioactivity of the substance being studied by counting the number of flashes. The accuracy of this counting method is limited by the observer’s vision and reaction time. In the modern scintillation counter, a phototube “observes” the flashes of light. This tube produces a pulse of voltage for each flash and associated circuits measure the frequency of the pulses. The resolving time of a scintillation counter is so short that the limit is usually set by the speed of the associated electronic circuits. Because of its greater accuracy the scintillation counter is rapidly gaining in popularity and has already largely replaced the Geiger counter in many laboratories where radioactivity measurements must be made.

Phosphor characteristics

Zinc sulfide is not the only phosphor used in scintillation counters. Much experimental work has been done, and is still going on, to find a phosphor combining maximum light output and minimum decay time. Decay time is the duration of the flash of light produced by the phosphor under the impact of an atomic particle. Unless this interval is extremely short, it limits the resolving time of the instrument.

Anthracene, naphthalene, thallium-activated sodium iodide, and calcium tungstate are some of the phosphors that have been used.

Naphthalene, of course, is nothing more than the substance used for ordinary moth flakes. Clear pieces of this material may be obtained by slowly heating a quantity of moth flakes until they become molten, and then slowly cooling to solidification. A phosphor in powder form, like calcium tungstate or zinc sulfide, may be mixed with a small amount of clear cement to give it a sticky consistency. This solution is then painted on a portion of the glass envelope of the phototube—the portion facing the cathode. After the phosphor is cemented in place, the phototube should be wrapped with black tape to keep out ambient light. Most of the phosphors mentioned are available from chemical supply houses. In addition, some organizations specialize in this field (National Radiac, Inc., Newark, N. J., for instance).

Photomultipliers

Because the amount of light emitted by the phosphor under bombardment is relatively small the phototube must be extremely sensitive. For this reason, a photomultiplier tube is invariably used in scintillation counters. This tube, like the ordinary phototube, contains a photo-sensitive cathode which emits electrons when illuminated, and an anode to collect these electrons. But in the photomultiplier tube the electrons do not go directly from cathode to anode. Instead, they go in succession to a series of intermediate electrodes known as dynodes. Each successive dynode is operated at a higher positive potential than the preceding one. Each time an electron strikes a dynode, it emits several secondary electrons. These are drawn to the next dynode, and displace an even larger number of secondary electrons there. For each electron that leaves the cathode, a large number ultimately reach the anode. This gives the tube a high current gain.

The 931-A is a photomultiplier tube with nine dynodes. Its gain ranges from about 250,000 to 1,000,000, depending on the voltages applied to its elements. The 1P21 photomultiplier tube may also be used in this application. This tube has twice the gain of the 931-A, and is especially suitable for working at extremely low light levels. The recently developed 5819 and 6199 photomultipliers are designed specifically for scintillation counting.

Counter circuit

The scintillation counter described...
The probe assembly. Voltage-divider resistors for the dynodes of the photomultiplier tube are wired directly to the socket terminals. Light-proof tape covers photomultiplier except for a small opening at cathode end.

The probe, counting circuit, the meter circuit, and a photomultiplier tube. The multivibrator produces uniform output pulses in response to input pulses which may vary considerably in amplitude, duration, and waveform. The one-shot circuit differs from the conventional multivibrator in that one of the tubes (V2) is overbiased to prevent free-running operation. The circuit has one stable state in which V2 is cut off, and V1 conducts heavily through the positive bias applied to its grid from the 500,000-ohm potentiometer.

The circuit will remain in this stable state until a negative input pulse is applied to the grid of V1 through the 250-µf capacitor. This reduces the plate current drawn by V1, and an amplified positive pulse appears at the V1 plate. This pulse overcomes the cutoff bias on the grid of V2, V2 conducts, and the sudden drop in voltage at its plate is fed back through C2 to the grid of V1, where it reinforces the negative input pulse, cutting V1 off completely, and swinging V2 to full conduction. The entire operation of reversing the conditions of the two triodes is practically instantaneous.

The multivibrator will remain in its new (unstable) condition until the charges on C1 and C2 leak off. These capacitors will discharge completely in approximately 50 microseconds through their respective 100,000-ohm grid resistors. The time required to restore the multivibrator to its stable condition is less than this time, however, since C1 and C2 discharge not merely to zero voltage, but to the original positive and negative potentials obtained from the voltage-divider circuits. This steepens the slope of the discharge curve and the multivibrator returns to its stable state almost instantly.

Each time V2 is driven from cutoff to saturation by a negative input pulse applied to V1, a positive pulse appears across the V2 cathode resistor. This is followed by a negative pulse as the circuit swings back to its stable state. The shape and amplitude of an output pulse taken from the V2 cathode are independent of the characteristics of the input pulse.

The initial positive bias for the grid of V1 is obtained from the 500,000-ohm potentiometer. The setting of this control determines the amplitude of the output voltage. This potentiometer controls the output voltage by varying the bias on the grid. The positive side of this high-voltage supply is grounded, so that the anode of the 931-A (from which the output is taken) is at zero d.c. potential. A voltage-divider network in the probe proportions the high voltage uniformly among the elements of the 931-A. The divider resistors are soldered directly to the photomultiplier socket terminals.

A half-inch hole is cut in the probe cabinet directly in front of the photomultiplier cathode to admit atomic particles. A small square of black paper cemented over the hole on the inside prevents outside light from affecting the 931-A.

Each flash of light from the bombarded phosphor produces a negative pulse at the anode of the 931-A. These pulses are coupled to the grid of the 6AG5 through the 002-µf capacitor. The 6AG5 is operated as a cathode follower to match the low impedance of the output cable. There is no voltage gain in this stage, but the output pulses have the same negative polarity as the pulses from the photomultiplier.

Pulses from the cathode of the 6AG5 are fed through the coaxial cable to the grid of V1 in the counter unit. V1 and V2 function as a pulse equalizer. This circuit—also known as a one-shot multivibrator—produces uniform output pulses in response to input pulses which may vary considerably in amplitude, duration, and waveform. The one-shot circuit differs from the conventional multivibrator in that one of the tubes (V2) is overbiased to prevent free-running operation. The circuit has one stable state in which V2 is cut off, and V1 conducts heavily through the positive bias applied to its grid from the 500,000-ohm potentiometer.

The circuit will remain in this stable state until a negative input pulse is applied to the grid of V1 through the 250-µf capacitor. This reduces the plate current drawn by V1, and an amplified positive pulse appears at the V1 plate. This pulse overcomes the cutoff bias on the grid of V2, V2 conducts, and the sudden drop in voltage at its plate is fed back through C2 to the grid of V1, where it reinforces the negative input pulse, cutting V1 off completely, and swinging V2 to full conduction. The entire operation of reversing the conditions of the two triodes is practically instantaneous.

The multivibrator will remain in its new (unstable) condition until the charges on C1 and C2 leak off. These capacitors will discharge completely in approximately 50 microseconds through their respective 100,000-ohm grid resistors. The time required to restore the multivibrator to its stable condition is less than this time, however, since C1 and C2 discharge not merely to zero voltage, but to the original positive and negative potentials obtained from the voltage-divider circuits. This steepens the slope of the discharge curve and the multivibrator returns to its stable state almost instantly.

Each time V2 is driven from cutoff to saturation by a negative input pulse applied to V1, a positive pulse appears across the V2 cathode resistor. This is followed by a negative pulse as the circuit swings back to its stable state. The shape and amplitude of an output pulse taken from the V2 cathode are independent of the characteristics of the input pulse.

The initial positive bias for the grid of V1 is obtained from the 500,000-ohm potentiometer. The setting of this control determines the amplitude of the
negative input pulse required to trigger the circuit. This control, called the amplitude discriminator, is mounted on the rear apron of the chassis, and is adjusted to permit triggering by signal pulses but not by noise.

Count Indicator

The pulse waveform from the V2 cathode is fed to the double-diode circuit V3-a and V3-b. V3-b conducts on each positive pulse and charges capacitors C3 and C4. Between pulses C4 discharges (but not completely) through the 5-megohm resistor. If the pulse frequency is low, C4 will lose most of its charge between pulses. If the pulse frequency is high, C4 retains most of its charge. Consequently, the average charge on C4 is a measure of the pulse frequency. The vacuum-tube voltmeter (V4) shows the average charge on C4 in pulses per minute.

Diode V3-a conducts during the negative alternations of the pulse waveform developed at the cathode of V2. In conducting, it discharges C3 which was charged when V3-b was conductive. This arrangement prevents a charge from accumulating on C3.

A variable voltage applied to the grid of one of the triodes of V4 serves as a zero control. This control is on the front panel and is used to zero the meter with no signal applied to V1. The meter has three ranges: 2,000, 10,000, and 50,000 counts per minute. Ranges are switched by connecting a different resistor in series with the meter. This instrument has a 400-microampere movement, but meters of other sensitivities may be substituted. The low-frequency accuracy of the instrument may be reduced if the meter requires more than 1 ma.

The high-voltage-control potentiometer is mounted on the rear apron of the chassis. This control is adjusted for highest signal-to-noise ratio from the photomultiplier. The best way to use this adjustment is to connect an oscilloscope to the coaxial output jack on the probe unit, and place a radioactive specimen in front of the probe. A combination of signal and noise pulses will appear on the screen of the oscilloscope, and they may be distinguished by removing the radioactive source and noting the effect on the pattern. Adjust the high-voltage control for the highest ratio of signal to noise. Since both signal and noise pulses are randomly distributed in time, they cannot be synchronized on the screen of an ordinary scope. This, however, is no hindrance.

The other power supply in the counter unit is a conventional full-wave circuit which provides positive and negative operating potentials for all the tubes except the 931-A. An OD3/VR-150 in the output of this supply provides a regulated potential of 150 volts.

The toggle switch used to apply power to the unit is a d.p.d.t. type. One section is connected in series with the line cord, and the opposing section is connected across the meter. With this arrangement, the switch in parallel with the meter is closed when the line switch is open. This protects the meter from the transients which occur when the power is turned off.

Calibration

The meter may be calibrated by connecting the output of a square-wave generator to the coaxial connector of the counting-rate meter. To calibrate the 2,000-counts-per-minute scale, set the generator frequency to 33.3 cycles per second. Now adjust the calibrating resistor (in series with the meter) to produce a full-scale reading. Mark this point on the scale as "1,000." The original scale can be replaced by a piece of white cardboard or heavy paper cut to the same dimensions. The frequency of the generator may now be reduced in steps, with corresponding numbers and markers drawn at the appropriate points on the scale. Calibration of the other two ranges is accomplished by repeating the above procedure. On the 10,000-counts-per-minute range, full-scale deflection should occur with the generator set at 167 c.p.s. On the high range (50,000 counts per minute), full-scale deflection should correspond to a generator frequency of 835 c.p.s.

The output from the cathode of V2 is also fed to a coaxial connector on the front panel of the instrument. Bringing the pulse waveform to the front panel increases the versatility of the instrument and makes it suitable for use with auxiliary devices such as a scaler-register circuit.
I SEND YOU
18 BIG KITS
of Radio-Television parts and equipment. Much of your training will be actual construction and experimentation—the kind of truly practical instruction that prepares you for your Radio-Television career.

NEW! NO OBLIGATION PLAN
You Have No Monthly Payment Contract to Sign
Pay For Your Training as You Earn and Learn

You can get into Radio-Television, today's fastest growing big money opportunity field, in months instead of years! My completely new "package unit" training plan prepares you in as little as 10 months, or even less! No monthly payment contract to sign—thus NO RISK to you! This is America's finest, most complete, practical training—gives you ready to handle any practical job in the booming Radio-Television industry. Start your own profitable Radio-Television shop...or accept a good paying job. I have trained hundreds of successful Radio-Television technicians during the past 21 years—and stand ready to train you, even if you have no previous experience! Mail coupon and get all the facts—FREE!

EARN EXTRA MONEY WHILE YOU LEARN!
All your 10 months of training is IN YOUR HOME in spare hours. Keep on with your present job and income while learning. With each training "package" unit, you receive extra plans and "Business Builder" ideas for spare time Radio-Television jobs. New television stations everywhere, open vast new opportunities for trained Radio-Television Technicians—and those in training. If you expect to be in the armed forces later, there is no better preparation than practical Sprayberry Radio-Television training.

SPRAYBERRY ACADEMY OF RADIO
111 NORTH CANAL ST.
Dept. 20-Z, Chicago 6, Ill.

Mail Coupon Today!
No Obligation

I invite you to get all the facts—FREE!
YOU 3 BIG RADIO-TELEVISION BOOKS
My new 10-MONTH Radio-Television Training—without cost! Rush coupon for my three big Radio-Television books: "How to Make Money in Radio-Television" PLUS my new Illustrated Television Book PLUS an actual sample Sprayberry Lesson—ALL FREE. No obligation and no salesman will call upon you. Be sure to include 3 books FREE.

Name..Age...
Address..
City..Zone.....................State..........

SPRAYBERRY ACADEMY OF RADIO, Dept. 20-Z
111 North Canal St., Chicago 6, Ill.

Please rush to me all information on your 10-MONTH Radio-Television Training Plan. I understand this does not obligate me and that no salesman will call upon me. Be sure to include 3 books FREE.
LABORATORY-TYPE

12-VOLT BATTERY ELIMINATOR

A de luxe unit
for servicing
the newest types
of car radios

By BASIL C. BARBEE

With the introduction of 12-volt electrical systems in several 1953-model automobiles, all of us who intend to service the radios or other electrical devices used on these cars will have to provide ourselves with 12-volt d.c. power sources. Many technicians will complain at the additional trouble and expense, but the change was really long overdue. The 6-volt systems had been overloaded for years by the large number of accessories found on the modern car.

A check on availability and prices of 12-volt battery eliminators showed that a new 12-volt unit sells for about 50% more than a new 6-volt type. I found it cheaper and more versatile to buy another 6-volt unit identical to the one I was using already, and connect them in series for 12-volt output, or in parallel for 6-volt output. The parallel hook-up gives twice the current and much better voltage regulation than a single dual-voltage unit.

There are some inconveniences, though, in using two separate 6-volt packs. The series-to-parallel change-over and polarity reversal have to be made by disconnecting and reconnecting a couple of pieces of wire. If each pack is equipped with a voltmeter, it will be necessary to add the two readings to find the output voltage with the units in series; if each has an ammeter, you will have to add their readings to find the output current with the units in parallel. Besides, with the parallel connection the units must be adjusted to give equal output voltages.

I decided to combine the two 6-volt supplies into a single unit, with suitable switching arrangements to provide either 6- or 12-volt output, as well as instant reversal of polarity. In addition, I wanted to eliminate a few of the shortcomings of many commercial low-voltage supplies by providing higher metering accuracy, and continuous control of the output voltage from zero to (CONTINUED ON PAGE 63)
The regulated power supply system.

1. Save by ordering direct from manufacturer.
2. All high quality standard band components.
3. Increased knowledge through actual construction.
5. Kit construction is fascinating and enjoyable.

Heathkit MODEL O-8

OSCILLOSCOPE KIT

The outstanding new 1953 model O-8 Heathkit Oscilloscope features the finest performance ever offered in this extremely popular kit instrument. Primarily intended as a general purpose oscilloscope for the faithful reproduction of actual wave forms and other electrical phenomena. It's vastly improved bandwidth, good 100 kc square wave reproduction, three step vertical input attenuator, .025 volts per inch vertical sensitivity, etc., admirably qualify this instrument for TV and radio servicing, laboratory use, ham application and all general electronic development work. Improved vertical bandwidth is obtained through the use of slant peaking chokes with proper cathode compensation in the push-pull output stage. For additional flexibility of operation, provisions have been made for direct connections to the deflection plates, a horizontal input and a spot shape control for very fine focusing.

This beautiful kit is complete with all 10 tubes, including a 5 volt cathode ray tube, calibrated graph screen and flexible test leads. All necessary construction components, such as hardware, chassis, transformer, etc., are well detailed step by step construction manual, greatly simplify the assembly of this instrument.

Heathkit VACUUM TUBE VOLTMETER KIT

The beautiful new 1953 Heathkit Model V-6 VTVM, the world's most popular kit instrument, now offers many outstanding new features in addition to retaining all of the refinements developed and proven through the production of over 70,000 VTVM kits. The Heathkit VTVM now features extended voltage ranges with 50% greater coverage on the DC range. Now 11/2 volt low scale provides well over 23 inches of scale length per volt permitting faster measurements with greater accuracy. AC and DC ranges are 0-1.5-5-15-50-150-500-1500 volts (1,000 volts maximum on AC). Ohmmeter ranges are X1, X10, X100, X1,000, X10K, X100K X1 meg. Measures 1 ohm to 1,000 megohms. Other features are db scale, center scale zero adjust and polarity reversal switch. High 11 megohm input resistance virtually eliminates circuit loading.

The few anti-inflation price of this tremendously popular kit includes all tubes, necessary construction material, test leads and the construction manual.

Heathkit AC VACUUM TUBE VOLTMETER KIT

A new amplifier type AC VTVM that makes possible those sensitive measurements so essential in laboratory or audio work. Ten voltage ranges covering 01 RMS full scale to 200 volts RMS full scale. Input impedance 1 megohm with frequency response 20-60,000 cycles. Ten DB ranges from -52 to +53 DB. Four diodes in meter bridge circuit for maximum linearity.

Heathkit HANDITESTER KIT

The ever popular Handitester is now supplied with a Simpson 400 microampere meter movement. Provides AC and DC voltage ranges 0-10-30-300-1,000-5,000 volts. Ohmmeter ranges 0-3,000 and 0-300,000 ohms. DC current measurements 0-10 and 0-100 milliamperes. A completely self contained portable instrument.
HEATHKITS for the ENGINEER

Heathkit VISUAL AURAL SIGNAL TRACER KIT

Model T-3

$22.50

Shipping

Wt. 10 lbs.

Heathkit CONDENSER CHECKER KIT

Model C-3

$19.50

Shipping

Wt. 8 lbs.

Heathkit SIGNAL GENERATOR KIT

Model SG-7

$19.50

Shipping

Wt. 8 lbs.

A service "must" have is a reliable source of modulated cycles or unmodulated RF output. Frequency range 150 KC to 150 MC. Step attenuated and variable output—internal or external modulation. High output level and performance with low cost.

Heathkit GRID DIP METER KIT

Model GD-1A

$39.50

Shipping

Wt. 4 lbs.

World's largest selling Grid Dip Meter. Five pre-wound coils—frequency coverage 2-250 mc. Simplified construction and operation.

Heathkit RESISTANCE SUBSTITUTION BOX KIT

Model RS-1

$5.50

Shipping Wt. 2 lbs.

Choice of 36 switches selected resistance values include 15 ohms to 10 megohms. All standard RTMA 1 watt 10% resistors. Buy several for those lab and service applications.

Heathkit AMATEUR TRANSMITTER KIT

Model AT-1

$29.50

Shipping Wt. 15 lbs.

Here is the long awaited Heathkit entry into the amateur radio field. The Heathkit AT-1 Transmitter kit is a well designed basic transmitter incorporating many desirable features and providing maximum overall performance.

Convenient band switching eliminates the bother and annoyance of plug in coils. It is merely necessary to switch to the desired frequency and plug in your favorite crystal or VFO. This transmitter features a self-contained power supply mounted on the same chassis and cabinet enclosed to minimize TVI. AC line by-passed to reduce radiation.

The coils supplied with the Heathkit AT-1 are pre-wound and adjusted for the necessary frequency coverage of 30-40-50-10 meters. The entire kit is supplied complete with all tubes, coils, punched and formed chassis and cabinet, as well as all constructional material required. A detailed assembly and operation manual is also furnished.

Heathkit POWER SUPPLY KIT

Model PS-2

$29.50

Shipping

Wt. 17 lbs.

A regulated variable 160-450 volt DC output power supply for the lab or service shop. Suitable for all undergraduate courses. AC line by-passed to reduce radiation.

Heathkit LABORATORY REGULATED POWER SUPPLY KIT

Model PS-2

$29.50

Shipping

Wt. 17 lbs.

A regulated variable 160-450 volt DC output power supply for the lab or service shop. Suitable for all undergraduate courses. AC line by-passed to reduce radiation.

Heathkit VIBRATOR TESTER KIT

Model VT-1

$14.50

Shipping Wt. 6 lbs.

Checks for starting and quality of interrupter and self rectifier type vibrators. Five sockets—checks hundreds of types. Operates from continuously variable battery eliminator.

Heathkit SQUARE WAVE GENERATOR KIT

Model SQ-1

$29.50

Shipping

Wt. 12 lbs.

True square wave output with frequency range 10 cycles to 150 KC. High variable output voltage level 0-20 volts at 600 ohms output impedance. Practical for external synchronization. The ideal instrument for TV service work and wide band amplifier circuit development.

Heathkit TUBE CHECKER KIT

Model TC-1

$29.50

Shipping Wt. 12 lbs.

Revised Roll Chart .50

Make those all important tube tests quickly and accurately. Checks all tube types encountered in radio and TV work. Simplified setup and switching system provides fast checks for shorts, opens, individual elements and overall quality. Portable cabinet available at slight additional cost. TV picture tube adapter also available. See order blank.

The Heath Company

BENTON HARBOR 20, MICHIGAN
SERVICEMAN • AMATEUR • STUDENT

HEATHKIT

INTERMODULATION ANALYZER KIT

Model IM-1

Intermodulation distortion analysis is one of the most satisfactory methods of checking audio equipment. The IM-1 features two self contained high frequency generators, 300 and 7000 cycles) and 60 cycle low frequency source, intermodulation section, AC VTVM, and power supply all in one complete unit. Direct reading IM percentages on 3 calibrated scales 20% - 10% - 3%.

Shipping Wt. 17 lbs.

$39.50

BAR GENERATOR KIT

Model BG-1

The Heathkit BG-1 Bar Generator produces a series of horizontal or vertical bars on the TV screen. These bars are equally spaced and will quickly indicate picture linearity of the receiver under test. Since picture linearity is independent of transmitting frequency, it is unnecessary to provide coverage throughout the VHF range, thereby holding down instrument cost.

The Heathkit Bar generator is simple to use and is extremely portable, providing a quick means of checking the television receiver either in your workshop or in the customer's home.

Shipping Wt. 6 lbs.

$14.50

AUDIO OSCILLATOR KIT

Model AO-1

Features sine or square wave coverage from 20-20,000 cycles in 3 ranges. Variable 10 volt output level at 600 ohms impedance. Thermistor controlled linearity—precision multimeter—distortion less than .6%. An outstanding instrument value at this amazing low price.

Ship. Wt. 11 lbs.

$24.50

Audio Frequency Meter Kit

Model AF-1

Indicates audio frequency on large 4/7 Simpson meter. Ranges 10 cycles to 100 kc at input voltage level of 3-300 volts RMS. The input wave shape is not critical. Useful in production line testing—indicating square wave frequency—determining generator output. Operation entirely electronic, no vibrating reeds.

Shipping Wt. 12 lbs.

$34.50

AMPLIFIER KIT

Model DR-1

$19.50

Shipping Wt. 4 lbs.

MODEL OM-1

Q METER KIT

$39.50

A typical Heathkit invasion of the laboratory instrument field. Here is the first successful low priced Q meter ever offered in kit form. Oscillator supplies RF in the range of 500 KC to 18 mc, loads Q directly on calibrated meter scales. Measures Q of condensers, HP resistance and distributed capacity of coils. Calibrate capacitor with range of 40 mmf to 450 mmf with vernier .3 mmf. All measurements made at the operating frequency.

Ship. Wt. 14 lbs.

$39.50

BAR GENERATOR KIT

Model BG-1

$14.50

Shipping Wt. 6 lbs.

The Heathkit BG-1 Bar Generator represents another welcome addition to the fast growing line of popular Heathkits. The station transmitted test patterns is rapidly disappearing and the Bar Generator is the logical answer to the TV serviceman's problem in obtaining quick accurate adjustment information.

The Bar Generator produces a series of horizontal or vertical bars on the TV screen. These bars are equally spaced and will quickly indicate picture linearity of the receiver under test. Since picture linearity is independent of transmitting frequency, it is unnecessary to provide coverage throughout the VHF range, thereby holding down instrument cost.

The Heathkit Bar generator is simple to use and is extremely portable, providing a quick means of checking the television receiver either in your workshop or in the customer's home.

Shipping Wt. 6 lbs.

$14.50

BATTERY ELIMINATOR KIT

Model BE-3

A variable 6-8 volt DC supply source rated at 10 amperes continuously and up to 15 amperes intermittently. Voltmeter, ammeter, automatic overload relay, fuse protection—heavy duty Mallory 17 disc rectifier.

Shipping Wt. 17 lbs.

$24.50

The Heath Company

61 BENTON HARBOR 20, MICHIGAN
Heathkit SUPERHETERODYNE RECEIVER KITS

NEW HEATHKIT WILLIAMSON TYPE AMPLIFIER KIT

The ideal amplifier for custom high fidelity audio installations. Tops in performance, value, and flexibility of operation. Either Alec Lunsing Preselector or Acoustic output transformers available. First Williamson type amplifier supplied with a matching preamplifier.

PRICES OF VARIOUS COMBINATIONS

<table>
<thead>
<tr>
<th>Kit Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-3 Amplifier Kit (incl. Main Amplifier with Preselector Output Transformer, Decade Calibrator Kit, Shipping Weight 29 lbs.) Shipped express only</td>
<td>$69.50</td>
</tr>
<tr>
<td>J-2 Amplifier Kit (incl. Main Amplifier with Preselector Output Transformer, Decade Calibrator Kit, Shipping Weight 29 lbs.) Shipping Weight 22 lbs.</td>
<td>$49.75</td>
</tr>
<tr>
<td>J-1 Amplifier Kit (incl. Main Amplifier with Preselector Output Transformer, Decade Calibrator Kit, Shipping Weight 29 lbs.) Shipping express only</td>
<td>$69.50</td>
</tr>
<tr>
<td>WA-1 Preamplifier Kit only, Shipping Weight 6 lbs. Shipped express or parcel post</td>
<td>$19.75</td>
</tr>
</tbody>
</table>

Heathkit FM TUNER KIT

MODEL FM-2

- Sensitive transformer operated 8 tube circuit. Frequency coverage 85-108 mc. Pre-selected and tuned "front end." Versatile tuning with slide rule type dial.
- **Shipping Weight 6 lbs.**
- **Price:** $22.50

Heathkit ECONOMY 6 WATT AMPLIFIER KIT

MODEL A-7

- **Price:** $14.50
- Dual inputs—separate bass and treble, output impedance 1-8-16 ohms.
- **Shipping Weight 10 lbs.**
- Amplifier with pre-amplifier stage for low level inputs...
- **Price:** $16.00

Heathkit HIGH FIDELITY 20 WATT AMPLIFIER KIT

MODEL A-8

- **Price:** $33.50
- Shipping Weight 16 lbs.
- A high fidelity full 20 watt general purpose amplifier. Dual inputs and separate tone controls for maximum flexibility. Preamplifier and power output transformer included.
- **Price:** $49.50
- A-RA with additional preamplifier stage for low level cartridge, microphone, etc. $35.50

HEATH COMPANY • Benton Harbor 20, Mich.

ORDER BLANK

MAIL YOUR ORDER TODAY TO THE

HEATH COMPANY

BENTON HARBOR 20, MICHIGAN

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>ITEM</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heathkit Oscilloscope Kit—Model O-8 (26 lbs.)</td>
<td>$43.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Amateur Transmitter Kit—Model AT-1 (15 lbs.)</td>
<td>$29.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Bar Generator Kit—Model BG-1 (6 lbs.)</td>
<td>$14.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Voltage Calibrator Kit Model VC-2 (4 lbs.)</td>
<td>$11.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Electronic Switch Kit—Model 5-2 (11 lbs.)</td>
<td>$19.00</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit TV Alignment Generator Kit—Model TS-2 (20 lbs.)</td>
<td>$39.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Q Meter Kit—Model QM-1 (14 lbs.)</td>
<td>$39.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Grid Dip Meter Kit—Model GD-1A (4 lbs.)</td>
<td>$19.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit VTVM Kit—Model V-V-5 (6 lbs.)</td>
<td>$24.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Visual-Aural Signal Tracer Kit—Model T-3 (10 lbs.)</td>
<td>$22.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Condenser Checker Kit—Model C-3 (8 lbs.)</td>
<td>$19.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit RF Signal Generator Kit—Model SG-7 (8 lbs.)</td>
<td>$19.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Tube Checker Kit—Model TC-1 (12 lbs.)</td>
<td>$29.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Portable Tube Checker Kit—Model TC-1 (12 lbs.)</td>
<td>$29.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Portable Tube Checker Cab. only No. 355 (1 lb.)</td>
<td>$19.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit TV Tube Adapter No. 355 (1 lb.)</td>
<td>$4.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Battery Eliminator Kit—Model BE-3 (17 lbs.)</td>
<td>$24.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Vibrator Tester Kit—Model VT-1 (6 lbs.)</td>
<td>$14.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Audio Generator Kit—Model AG-6 (11 lbs.)</td>
<td>$29.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Audio Oscillator Kit—Model AO-1 (11 lbs.)</td>
<td>$24.50</td>
</tr>
<tr>
<td>1</td>
<td>Heathkit Audio Frequency Meter Kit—Model AF-1 (12 lbs.)</td>
<td>$34.50</td>
</tr>
</tbody>
</table>

SHIP VIA

- [] Parcel Post
- [] Express
- [] Freight
- [] Best Way

(PLEASE PRINT)

HEATHKIT SQUARE WAVE GENERATOR—MODEL SQ-1 (12 lbs.)

- **Price:** $29.50

HEATHKIT AC VTVM KIT—MODEL AV-2 (5 lbs.)

- **Price:** $29.50

HEATHKIT INTERMODULATION ANALYZER KIT—MODEL IF-1 (17 lbs.)

- **Price:** $39.50

HEATHKIT REGULATED POWER SUPPLY KIT—MODEL PS-2 (17 lbs.)

- **Price:** $29.50

HEATHKIT HANDLETERR KIT—MODEL 1-1 (1 lbs.)

- **Price:** $19.50

HEATHKIT DUMP GENERATOR KIT—MODEL DC-1 (6 lbs.)

- **Price:** $16.50

HEATHKIT IMPEDEANCE BRIDGE KIT—MODEL IB-8 (15 lbs.)

- **Price:** $49.50

HEATHKIT RESISTANCE SUBSTITUTION BOX KIT—MODEL RS-1 (2 lbs.)

- **Price:** $5.50

HEATHKIT F.M. TUNER KIT—MODEL FM-2 (9 lbs.)

- **Price:** $22.50

HEATHKIT BROADCAST RECEIVER KIT—MODEL BR-1 (11 lbs.)

- **Price:** $19.50

HEATHKIT THREE BAND RECEIVER KIT—MODEL AK-3 (11 lbs.)

- **Price:** $29.50

HEATHKIT AMPLIFIER KIT—MODEL A-7 (10 lbs.)

- **Price:** $16.50

HEATHKIT AMPLIFIER KIT—MODEL A-6 (18 lbs.)

- **Price:** $33.50

HEATHKIT AMPLIFIER KIT—MODEL A-8A (16 lbs.)

- **Price:** $35.50

WILLIAMSON TYPE AMPLIFIER KIT (Type: Shipped express only)

- **Price:** $49.50

WA-1 PREAMPLIFIER KIT (6 lbs.) (Shipped exp. or p.p.)

- **Price:** $19.50

AMPLIFIER KIT (Incl. Transformer, Power Supply—Shipping Weight 69 lbs.)

- **Price:** $14.50

AMPLIFIER KIT (Incl. Transformer, Power Supply—Shipping Weight 29 lbs.)

- **Price:** $12.50

AMPLIFIER KIT (Incl. Transformer, Power Supply—Shipping Weight 29 lbs.)

- **Price:** $12.50

On Express orders do not include transportation charges—they will be collected by the express agency at time of delivery.

ON PARCEL POST ORDERS include postage for weight shown.

ORDERS FROM CANADA must include full remittance for merchandise.

Enclosed find () check () money order for Please ship C.O.D. () postage enclosed for pounds.

RADIO-ELECTRONICS
maximum. The resulting low-voltage supply cost me only about $10 more than a new 12-volt manufactured supply and provides a far more useful piece of test equipment. At 6 volts output, the regulation is more than twice as good as that of a conventional 12-volt supply operating at 6 volts, a highly advantageous feature when operating heavy or fluctuating loads such as receivers with automatic tuning devices, communications receivers, low-power transmitters, and small motors. Having a continuously variable output from zero to maximum is of great value in testing vibrators, electroplating, charging 2-volt storage cells, and miscellaneous testing.

The unit is shown in the photographs. It was built from two Stancor 752 Master-Packs, one of which was already on hand. The Stancor 752 seems to be typical of most manufactured and kit-form packs available, so most of the remarks herein should apply to other makes also. The heat-baffle (subpanel), on which the transformer, choke, and rectifier are mounted, was removed from each original pack, along with the filter capacitor, and transferred to an 8 x 17 x 2-inch steel chassis base. The capacitor mounting clamps were also transferred from the original cabinets to the new chassis to preserve the original parts layout, which seems to have been the most compact one possible. The assembly at the left end of the chassis was transferred with wiring intact, while the one at the right was torn down and reassembled in mirror-image fashion for symmetry and short leads. One-half inch of metal was removed from the top edge of each baffle to reduce the height of the front panel. This made it necessary to move each cabinet's knobs 1/4 inch. When tearing down and reassembling the rectifier stack of the right-hand assembly, take care not to scratch the surfaces of the plates, and reassemble them with the control knobs in the same positions on the plates as before. The front-mounting hole of the right-hand baffle must be moved about 1/4 inch to avoid conflict with the mounting of the transformer.

A variable line-input autotransformer, a 0-35 d.c. voltmeter, and a 0-25 d.c. ammeter were mounted on a 10 1/2 x 19-inch steel relay-panel, which in turn was fastened to the chassis by a pair of chassis-mounting brackets and by the controls extending through both chassis and panel. These controls, which are shown in the front-panel view, are from left to right: power switch, fuse, series-parallel switch, polarity-reversing switch, output terminals, and pilot light. A number of 1/8-inch holes were drilled in the chassis under the rectifiers to provide ventilation and to permit bringing leads through rubber grommets to the under side of the chassis.

The schematic is given in Fig. 1. The primaries of the two step-down transformers are connected permanently in parallel. Only one tap on each primary is used, since the variable input transformer provides all the voltage control.

AUGUST, 1953

CONSTRUCTION

AT NEW LOW COST

$25.55 And Up Retail Price

INVERTERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Input DC Volts</th>
<th>A.C. Output 60 Cycles</th>
<th>Output Int.</th>
<th>Wattage Cont.</th>
<th>Consumer Net Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-LIP</td>
<td>12 110 volts</td>
<td>40</td>
<td>35</td>
<td>25.55</td>
<td></td>
</tr>
<tr>
<td>12-RSD</td>
<td>12 110 volts</td>
<td>50</td>
<td>35</td>
<td>25.55</td>
<td></td>
</tr>
<tr>
<td>*6-RSD</td>
<td>6 110 volts</td>
<td>85</td>
<td>75</td>
<td>39.25</td>
<td></td>
</tr>
<tr>
<td>*12-RSD</td>
<td>12 110 volts</td>
<td>125</td>
<td>100</td>
<td>39.25</td>
<td></td>
</tr>
<tr>
<td>32-RSD</td>
<td>32 110 volts</td>
<td>150</td>
<td>100</td>
<td>39.25</td>
<td></td>
</tr>
<tr>
<td>110-RSD</td>
<td>110 110 volts</td>
<td>250</td>
<td>200</td>
<td>46.45</td>
<td></td>
</tr>
<tr>
<td>*12T-HSG</td>
<td>12 110 volts</td>
<td>250</td>
<td>200</td>
<td>46.45</td>
<td></td>
</tr>
<tr>
<td>110T-RHE</td>
<td>110 110 volts</td>
<td>325</td>
<td>250</td>
<td>56.95</td>
<td></td>
</tr>
</tbody>
</table>

There is an ATR model for most any application. * Available with leather carrying handle at $1.00 additional—optional.

NEW MODELS
NEW DESIGNS
NEW LITERATURE

See your jobber or write factory

"A" Battery Eliminators, DC-AC Inverters, Auto Radio Vibrators

AMERICAN TELEVISION & RADIO CO.
Quality Products Since 1931
SAINT PAUL 1, MINNESOTA—U. S. A.
necessary. Be sure to use the same tap on each transformer and pick one that will give an output (under load) of about 9 volts on the 6-volt range and 18 volts on the 12-volt range with the line-input control set at maximum.

The outputs of both rectifier-filter units go to the series-parallel switch. Following this switch are the voltmeter and ammeter, followed by the polarity-reversing switch, and finally the bind-

Materials for battery eliminator
2-4-volt 12.5-amp battery eliminators (Stancor type 752 “Master Pack” or equivalent); 1-100-volt-amp variable line-voltage autotransformer (Superior Electric type 20 or equivalent); 1-0-25-volt d.c. meter; 1-25-amp d.c. meter; 2-amp pilot lamp and socket; 1-2-prong male power connector (chassis-mounting); 1-2 d.p.t. d.c.; 25-amp d.c.; toggle switches; 1 s.p.s. toggle switch; 1-8 x 17 x 2-inch steel chassis; 1-105 x 17-in. inch steel relay-rack panel; 1 pair-6-inch chassis-mounting brackets; hardware; wire; solder.

ing-post output terminals from one of the original packs. The left-hand binding post is grounded to the chassis. One side of the line is bypassed to chassis to eliminate the tunable hum sometimes experienced when operating mobile equipment without a ground. The two bleeder resistors are mounted between the rectifiers at the rear center of the chassis for ventilation, and to keep them away from the electrolytic filter capacitors as their heat might be injurious. (This is the reason for the baffle between the rectifier and filter capacitor in the original pack.)

All connections carrying low-voltage d.c. should be made with No. 10 automotive wire. Other connections may be No. 18 pushback wire.

While the performance of this bench supply cannot equal some of the really fancy regulated types selling for $500 or more, it is so far superior to the everyday sort of pack that anyone using this supply in his daily work will find that the small additional cost was money well spent.
CREI prepares you quickly for success in

The handwriting is on the wall.

The signs are plain as to the future of the trained men in the electronics industry. It is a tremendous industry, and—at the present time there are more jobs than there are trained men to fill them. But—when there’s a choice between a trained and untrained applicant, the trained man will get the job. Your biggest problem is to decide on—and begin the best possible training program.

CREI Home Study . . .

The Quick Way to Get There.

Since 1927, CREI has given thousands of ambitious young men the technical knowledge that leads to more money and security. The time-tested CREI procedure can help *you*, too—if you really want to be helped. CREI lessons are prepared by experts in easy-to-understand form. There is a course of instruction geared to the field in which you want to specialize. You study at your convenience, at your own pace. Your CREI instructors guide you carefully through the material, and grade your written work personally (not by machine).

Industry Recognizes CREI Training.

CREI courses are prepared, and taught with an eye to the needs and demands of industry, so your CREI diploma can open many doors for you. Countless CREI graduates now enjoy important, good-paying positions with America’s most important companies. Many famous organizations have arranged CREI group training for their radio-electronics-television personnel. To name a few: All America Cables and Radio, Inc.; Canadian Aviation Electronics, Ltd.; Canadian Broadcasting Corporation; Columbia Broadcasting System; Canadian Marconi Company; Hoffman Radio Corporation; Machlett Laboratories; Glenn L. Martin Company; Magnavox Company; Pan American Airways, Atlantic Division; Radio Corporation of America, RCA Victor Division; Technical Appliance Corporation; Trans-Canada Air Lines; United Air Lines. Their choice for training of their own personnel is a good cue for your choice of a school.

Benefits Felt Right Away.

Almost immediately, you feel the benefits of CREI training. Your employer, when informed of your step toward advancement (only at your request), is certain to take new interest in you and in your future. What you learn in CREI Home Study can start helping you do a better job immediately.

CREI also offers Resident Instruction

at the same high technical level—day or night, in Washington, D.C. New classes start once a month. If this instruction meets your requirements, check the coupon for Residence School catalog.

INFORMATION FOR VETERANS

If you were discharged after June 27, 1950—let the new G.I. Bill of Rights help you obtain resident instruction. Check the coupon for full information.

Get this fact-packed booklet today. It’s free.

Called “Your Future in the New World of Electronics,” this free illustrated booklet gives you the latest picture of the growth and future of the gigantic electronics world. It includes a complete outline of the courses CREI offers (except Television and FM Servicing) together with all the facts you need to judge and compare. Take 2 minutes to send for this booklet right now. We’ll promptly send your copy. The rest—your future—is up to you.

MAIL COUPON TODAY

CAPITOL RADIO ENGINEERING INSTITUTE

Dept. 148, 3224 16th St., N.W., Washington 10, D. C.

Send booklet “Your Future in the New World of Electronics” and course outline.

CHECK □ TV, FM & Advanced AM Servicing □ Aeronautical Radio Engineering □ Practical Radio Engineering □ Broadcast Radio Engineering (AM, FM, TV)

GREATEST □

INTEREST □

Name:

Street:

City:

Zone:

State:

Check - □ Residence School □ Veterans

CAPITOL Radio Engineering Institute

An Accredited Technical Institute • Founded in 1927

3224 16th Street, N.W. Washington 10, D.C.
Latest Books for TV "KNOW-HOW!"

TV MANUFACTURERS' RECEIVER TROUBLE CURES

Vol. 1, Vol. 2, Vol. 3 and Vol. 4

Positive cues for TV troubles! Gives you exact directions for correcting TV receiver performance "bugs." Each cure is official, factory-authorized, direct from the receiver's manufacturer. Listings by manufacturer and model or chassis number, lists correct the most difficult faults—picture jitter, hum, instability, buzz, tearing, etc.

Vol. 1, 115 pages (5½ x 8¼") $1.80

Vol. 2, 117 pages (5½ x 8¼") $1.80

Vol. 3, 119 pages (5½ x 8¼") $1.80

Vol. 4, over 115 pages (5½ x 8¼") $1.80

OBTAINING AND INTERPRETING TEST SCARE TRACES

By F. J. Rider

Over 500 actual photographs of test scan traces. Shows how to interpret and what traces mean. Valuable for servicing TV receivers, FM and AM radio receiving equipment, audio systems and test equipment. Specific test equipment set-ups shown with each application of a test. No other book like it! Over 140 pages. Only $2.40

HOW TO USE METERS

By F. J. Rider

Panel type, volt-ohm-milliammeters, vacuum tube voltmeters for servicing radio and TV receivers, audio amplifiers, power supplies, for use and repair of radar transmitters. Written for the service technician, the TV and radio student and hobbyist. Over 140 pages. Only $2.40

TV SWEEP ALIGNMENT TECHNIQUES

By Art Liebshere, Test Equipment Specialist

Never before has there been a book such as this on TV sweep alignment! An expert gives you accurate time-saving methods—and tells you how they work. Includes beam sweep, spotter method. Show-off sweep curve pictures. Valuable for servicing in UHF signal areas. 125 (5½ x 8¼") pp., illus. $2.10

GUIDE TO AUDIO REPRODUCTION

By David Friedman

A to Z explanation of reproduction of sound. Design, construction, assembly and testing of sound systems and their components. Valuable for service technicians, engineers, amateurs. Over 250 (5½ x 8¼") pp., illus. $2.10

RADIO TROUBLESHOOTING GUIDEBOOK

By F. J. Rider and J. B. Johnson

Here is a troubleshooting guidebook that covers the more than 100 million radio receivers now in use! Explicit information about troubles and possible causes. Completely practical for the radio service technician and student. Over 140 (5½ x 8¼") pages.

Write for information on all RIDER books.

Buy these books now from your jobber... bookstores... if not available from these sources, write to:

CONSTRUCTION

By Rufus P. Turner

THE high efficiency of the junction transistor and its ability to operate on extremely low d.c. voltages make possible many interesting low-powered devices hitherto unattainable in the electronic field. A typical example is the miniature audio oscillator shown in the accompanying illustrations. It receives all its d.c. operating voltage from a self-generating photocell. An interesting fact to note is that both the active units in this circuit are semiconductor devices—the transistor is a germanium transistor (CK722) and the power supply is a selenium photocell (International Rectifier Corporation Type DP-5 or equivalent).

In subdued room light, 0.02 millivolt r.m.s. is developed across a 2,000-ohm magnetic headset. A 100-watt lamp, 1 foot from the cell, gives a signal of 0.5 millivolt. From 1 to 2 millivolts can be obtained when the cell is illuminated by direct sunlight. All these signals can be heard easily in the headphones. With the UTC type SO-3 1/2-ohm transformer, shown, the signal frequency is approximately 900 cycles and the waveform good. The frequency can be lowered by means of suitable capacitance values in parallel with the high-impedance winding of the transformer.

The oscillator has very little circuitry. If the reader does not have a subminiature transistor available, any microphone transformer or line transformer (200 or 500 ohms to single or push-pull grids) will do the job. Connect the high- and low-impedance windings as shown in the figure. Polarity of the windings is important, since the phasing must be correct for oscillation. If the device does not oscillate readily when the photocell is illuminated, reverse the connections of one of the transformer windings.

While this oscillator is a novel gadget, it is not as much of a toy as it might appear first-hand. For example, in one very practical application, the output signal (which is proportional to the amount of light falling upon the photocell) may be amplified directly with a conventional amplifier, and the amplified output may be rectified and caused to operate a d.c. relay or high-current meter. For this purpose, the headphones may be replaced with a 2,000-ohm resistor across which the input terminals of the amplifier are connected.

In this way, one of the knottiest problems connected with self-generating photocells is solved—that of amplifying the low d.c. output of these devices. Stable d.c. amplifiers which might be used for the purpose are complicated, bulky, and expensive. The only previous alternative has been to chop the light beam to obtain from the photocell an "a.c." output which might be handled by a conventional amplifier, or to feed the d.c. from the cell into some sort of modulator whose a.c. output would be proportional to the applied d.c. This transistor oscillator converts the direct current from the photocell immediately into a.c. without light-chopping or modulation in bulky preamplifier equipment. It has no standby power requirements, no batteries to replace, no connections to the power line, and its active components have almost unlimited life.
Employing the newly developed B-T Ultratuner, the B-T Ultravertor, Model BTU-2 provides for reception of all UHF channels on any TV set with quality unmatched by any converter, regardless of price. "On/off" operation is automatically controlled by the power switch on the TV receiver. Terminals are provided for both VHF and UHF antennas.

Advanced circuit design assures high gain, high stability, and lowest noise performance. A high ratio vernier knob permits easy, accurate tuning on UHF channels from 14 through 69. Tube complement includes 6T4/6AF4, 6AB4, and Germanium Diode, 1N72.

$39.95 LIST PRICE

BLOUNDER-TONGUE LABORATORIES WESTFIELD, N. J.
Manufacturers of TELEVISION AMPLIFIERS, UHF CONVERTERS, MIXERS, DISTRIBUTION UNITS and TV ACCESSORIES
WITH TACO FIELD TESTED MULTI-CHANNEL YAGIS

YOUR TACO DISTRIBUTOR HAS COMPLETE DETAILS

TECHNICAL APPLIANCE CORPORATION • SHERBURNES., NEW YORK
In Canada: Hackbusch Electronics, Ltd., Toronto 4, Ontario

assemble your own...

Select "Pick-A-Shaft" Select "Ad-A-Switch" Select Control

CONTROL: Select the correct carbon control—15/16" or 1-1/8" dia.—to meet requirements.

SWITCH: When required, choose switch in either the SWB or SWA series to meet specifications and attach to the control.

SHAFT: Finally, select any one of 12 different "Pick-A-Shaft" shafts and insert into the control. Note that Clarostat also offers "Pick-A-Shaft" 2, 3, and 4 watt wire-wound controls.

ASK YOUR JOBBER about these money, time, trouble-saving Clarostat "Pick-A-Shaft"* and "Ad-A-Switch"* controls for replacement or for initial-equipment needs. Ask for latest catalog.

*Trade-Mark

CONTROLS AND RESISTORS

CLAROSTAT MFG. CO., INC. DOVER, NEW HAMPSHIRE

In Canada: Canadian Marconi Co., Ltd., Toronto, Ont.

BE WISE... YAGI-IZE YOUR INSTALLATIONS

WITH TACO FIELD TESTED MULTI-CHANNEL YAGIS

CAT. 1840
Triple-Driven
Seven-Element Yagi.
Five Channels—2 thru 6

CAT. 1836
Triple-Driven
Six-Element Yagi.
Four Channels—3 thru 6

CAT. 1824
Triple-Driven
Five-Element Yagi.
Three Channels—2 thru 4

CAT. 1860
Bazooka-Tuned
Eleven-Element Yagi.
Seven Channels—7 thru 13

BLAK-RAY SELF-FILTERING ULTRA-VIOLET LAMP

BLAK-RAY 4-watt lamp, model X-4, complete with U-V tube. This lamp gives long-wavelength radiation, having a wave-length of 365-3700 angstrom units. Some of the substances make to fluoresce visibly when illuminated by U-V light are certain woods, oil, minerals, milkstone, cloth, paints, plastic, yarn, drugs, crayons, etc. This lamp is self-filtering and the invisible U-V rays are harmless to the eyes and skin. Equipped with spectral-finish aluminum reflector. Consumes only 4 watts and can be plugged into any 110 volt 60 cycle A.C. outlet. Will give 2000 to 3000 hours of service. Weights but 1/2 l.b. Approved by the Underwriters Laboratories and has a built-in transformer so that it may be safely used for long periods when necessary. Extra U-V tubes are available.

This wt. 4 lbs.
ITEM NO. 125 UNUSUAL BUY $14.75

POWERFUL ALL PURPOSE MOTOR

Sturdy shaded pole A.C. induction motor. 18 watts, 3000 rpm. 7"x7"x7"; 4 mounting studs; 1/2" shaft; 1/16" diameter; 110-120 volts, 50-60 cycles A.C. only. When geared down, this unit can operate on 18" handle with a 200 l.b. dead weight. Use it for fans, displays, timers and other purposes. Ship wt. 2 lbs.
ITEM NO. 147 UNUSUAL BUY $2.45

WATTHOUR METER

Loading meters—reconditioned. Ideal for trailer parks. 120-110 volts, 60 cycles, 2-wire A.C. 5 amp. Heavy metal case 9/16" x 1/2" x 5". Easy to install. Ship wt. 14 l.b.
ITEM NO. 32 NOW ONLY $4.50

AMAZING BLACK LIGHT

ITEM NO. 87 A SAVING AT $2.45

250 POWER TELESCOPE LENS KIT

Make your own high powered 6 ft. telescope. Kit contains 2" diam., 75" focal length, ground and polished objective lens, and necessary eye pieces. Magnifies 50x to 250x. Full instructions. Ship wt. 1 lb.
ITEM NO. 123 YOU SAVE AT $2.95

Hudson Specialties Co.
25 West Broadway, Dept. RE-B-53
New York 7, N. Y.

C.O.D. ORDERS ACCEPTED ONLY WITH 20% DEPOSIT

C.O.D. ORDERS MUST BE SHIPPED TO ADDRESS ON ORDER OR ADD $1.00 TO SHIPPING CHARGES

C.O.D. ORDERS MUST BE SHIPPED TO ADDRESS ON ORDER OR ADD $1.00 TO SHIPPING CHARGES

I am enclosing full remittance for items circled below, or remittance is enclosed, shipping charges.

Name

Address

City State Zip.

Price

Doca.

Price

Doca.
LOW COST TV TROUBLE LIGHT

A flashlight today is a definite necessity to a television service technician. However, he is confronted with a problem. If he buys a small, lightweight flashlight, it uses miniature batteries which don't last long and require frequent replacement. His alternative is to use large type of flashlight which runs on size D cells.

Circuit of the handy trouble light.

These batteries last reasonably long but the light is clumsy and heavy and can cause considerable damage, should it be dropped into the set.

This light combines light weight with low operating cost and convenience. The construction is simple. The line voltage is dropped down to 2 or 3 volts with a midget output transformer of the same type as that used in most a-c-d-c radios to match the 50L6-GT or similar output tube to the voice coil. Some transformers may be necessary to place a 8-10-ohm resistor in series with the bulb in order not to burn it out. The line voltage is put through the high resistance winding of the transformer, and a cable, connected in series with a switch, is attached to the voice coil winding. This cable runs through a hole drilled in the rear of a small penlight-type flashlight and is soldered directly to the bulb in the tip. The transformer and switch fit perfectly into a large size metal Band-Aid box. It is advisable to purchase the box last, as the size of the transformer may vary. The switch is a rotary, s.p.s.t. type and is mounted in a ¾-inch hole in the lid of the can. The drawings show the construction of the light.—William H. Scott

A QUICK HIGH-VOLTAGE CHECK

There are times when we wish to check for high voltage on the second anode of a television picture tube. A quick and easy way is to hold a small neon lamp against the mask on the set. A glow indicates the presence of high voltage. The lamp glows brightly when checking metal tubes and is a little harder to detect when the picture tube is one of the glass types.—Joseph Silver

METER ECONOMY

When building a field-strength meter, grid-dip oscillator, or similar device, the usual practice is to buy a sensitive microammeter for use as the indicating meter. There is no need to purchase a meter if your volt-ohm-milliammeter can be used for full-scale readings of less than 1 ma.

Instead of installing a meter on the instrument that you are constructing, connect the meter leads to a pair of phone-tip jacks which fit the tips of the test prods used with your v.o.m. For field-strength metering, you can use a long cord with phone tips on each end. This will make it possible to watch the meter while you are some distance away from the reference antenna or field-strength tuner.—Arthur Trauffer

TAPE SHIELDS TUBE NUMBERS

After a radio tube has been handled a few times, the type numbers often become worn off and illegible. To eliminate this difficulty, I place a strip of clear cellulose tape over the numbers. This protects the numbers from wear and thus prevents the tube from becoming unidentifiable. This kind is particularly useful on tubes which are used for experimental work.—John A. Constock

GROUNDING TV SETS

In trying to get a clear picture it is not uncommon for service technicians to go to great pains to orient the antenna properly and completely forget grounding the set. I have found cases where a ground made the difference between a fair picture and a good picture. In one instance I operated a set with only a ground and got excellent pictures on two out of three available channels. Remember to use the ground only on the ground terminal. It may be dangerous to use it on the chassis—B. W. Welz
Here's how to increase your Auto Radio Repair Business!

There's one sure way to get ahead in the car radio repair business, and that's to be in a position to tap the vast market of Delco Radio-equipped cars and trucks that daily pass your door! To do this you need only sign up with Delco Radio, through your United Motors Electronics Distributor. Then, automatically, you have a reliable source for Delco Radio original equipment replacement parts, and for universal replacement parts. You will receive a complete and comprehensive Delco Radio Service Manual. You will regularly receive monthly issues of "Testing Tips," a bulletin giving the very latest factory information on testing and repairing Delco car radios. So if you want to increase your business—permanently—get on the Delco Radio team. Don't delay . . . contact your United Motors Electronics Distributor right away!

Distributed by Electronics Wholesalers Everywhere

DELCO RADIO
DIVISION OF GENERAL MOTORS CORPORATION, KOKOMO, INDIANA
A General Motors Product A United Motors Line

RADIO-ELECTRONICS
ONCE again manufacturers’ announcements feature more transistors than tubes. We do have a new picture tube, though—the CBS-Hytron 24TP4. This is an all-glass rectangular type, with a 24-inch screen diagonal and an effective picture area slightly over 370 square inches. The 24TP4 is a magnetic-deflection and focus type, and has a spherical Filterglas face plate with aluminum backing. The bulb has an external conductive coating with a capacitance between 250 and 400 µuf for added high-voltage filtering.

Normal operation in TV receivers is at an ultraviolet of 14,000; grid 2 voltage, 300; and grid 1 voltage, –33 to –77. Under these conditions the recommended focus-coil current is 110 ma ±10%. Maximum ultraviolet is 20,000 volts.

The 24TP4 has a diagonal deflection angle of 90°, and requires a yoke with a ½-inch flare radius. (Most standard 90° deflection yokes meet this requirement.) The new tube takes a single-magnet ion trap and has standard 6-pin duodecal basing.

Transistors

Westinghouse has announced two new transistor types—the WX-3347 and the WX-4813. Both types are designed for developmental work and are equipped with leads for direct wiring into circuit setups.

A new-size picture-tube—plus a whole flock of improved transistors

Under small-signal conditions it has a power gain of 18 db at a collector current of 2 to 3 ma. Cutoff frequency is 2 mc. The WX-4813 is a P-N-P junction transistor. As a grounded-emitter base-input amplifier it has a power gain of 30 db at a collector current of 1 to 2 ma.

The dispute over the merits of transistors in hearing aids (see “The Radio Month” in the June RADIO-ELECTRONICS) has prompted at least two manufacturers to bring out hermetically sealed models that they claim are impervious to the effects of body heat and moisture.

CBS-Hytron has brought out three moisture-proof P-N-P junction transistors hermetically sealed in metal-glass containers. The new transistors—2N36, 2N37, and 2N38—are especially suitable for hearing aids and other personalized equipment, and differ only in base current and current gain. Recommended operating conditions for all three types are as follows: Collector voltage, –6; emitter current, 1 ma; input resistance, 1,000 ohms; load resistance, 30,000 ohms. Under these conditions the 2N36, 2N37, and 2N38 have current gains of 45, 50, and 15 respectively.

All three have the same in-line 3-pin baying as the RCA 2N32 shown in last month’s “New Tubes” column.

(As a further step in improving the stability and life expectancy of its hermetically-sealed transistors, CBS-Hytron announced later that all junction transistors are now completely evacuated before sealing. The exhaust process removes polar molecules that might eventually deposit themselves on the junction boundaries and cause leakage and a gradual breakdown in the transistor’s characteristics.—Editor)

Radio Receptor Company has also announced that it is producing three hermetically-sealed types in a case adapted from one designed for military equipment. These are P-N-P junction transistors, useful from d.c. to low radio frequencies in high-gain amplifiers, oscillators, and shaping circuits.

These tiny units are sealed in a thin .120 x .343 x .375-inch plastic shell. Leads may be soldered in, or clipped to plug into a standard 3-pin socket.
EASIEST USING, EASIEST READING
VACUUM TUBE VOLT-OHM METER

New TELE-VOLTER by Jackson
The BIGGEST little instrument of its kind

The 7"-square meter, with hair-line pointer, provides all the voltage (AC-DC) and ohm ranges you could possibly want or need. Meter is electronically protected against overload.

Controls consist of on-off circuit switch, zero adjust, ohms adjust, besides switches built into probes for changing from DC to AC or ohms.

High voltage accessory probe gives readings to 30,000 volts DC.

Dealer net price ... $95.00

Ask your electronics distributor for information, or write us.

NEW DESIGN

Radio receptor sealed transistors.

Lead spacing insures proper polarity and fits the standard subminiature socket (proposed JETEC standard).

Excellent performance can be obtained with as little as .5 ma at 1.5 volts on the collector. Under these conditions the high-gain type RR 20 has a current amplification of 40 and a power gain of 36 db. The general-purpose type RR 14 and the economy type RR 21 have current amplification of 25. The RR 14 and RR 20 have a cutoff current of only 10 µa and a noise figure of 22 db at 1,000 cycles.

While on the subject of transistors, on June 1, Raytheon reduced the net user price of its CK722 junction transistor to $4.50.

Special tubes
An unusual decade-counter tube—the Videcount-E1T—was announced by Amperex Electronics Corporation. The E1T is a special form of cathode-ray tube that gives a direct visual count from 1 to 10, and combines the functions of several other tubes and components normally used in computer circuits. The cathode of the E1T generates a ribbon-shaped electron beam which passes in succession through 10 apertures in a cylindrical anode according to the number of counting pulses applied. The beam strikes a fluorescent screen lining the tube envelope, and produces a rectangular luminescent spot opposite the appropriate printed figure (from 0 to 9). The tenth pulse automatically resets the beam to its zero position and simultaneously applies a counting pulse to the following tube. Any number can thus be read directly with sufficient E1T tubes in cascade.

Crystal-diode chart
National Union Radio Corporation has compiled an interchangeability chart of crystal diodes.
TAKE YOUR PICK

EITHER OF THESE VALUABLE SERVICING ITEMS...YOURS AT NO EXTRA COST...with purchases of Federal Picture Tubes!

1. THIS TOOL and TUBE CADDY or...

CADDY FACTS: An attractive convenience—for tools and tubes—you'll be proud to carry on all service calls.
- Sturdy wood construction
- Covered with simulated alligator leather (blue). Over-all size: 18¾ inches long, 13¼ inches high, 9 inches wide.
- Brass-finished lock, hinges, catches and corner guards. Compartments hold approximately 75 receiving tubes of various sizes. Opens into three separate, easily-accessible sections. $9.50 value! (A $14.95 list value).

2. THIS 135-WATT WELLER SOLDERING GUN

How to get your choice—

With every purchase of a Federal "Best-in-Sight" Picture Tube, your participating Federal Distributor gives you one Federal Certificate. There are no restrictions on type of tube. You may buy one tube at a time, or as many as you need.

As soon as you have accumulated 10 certificates, deliver them to the distributor from whom you purchased your Federal Picture Tubes and he will exchange them for the Combination Tool and Tube Servicing Caddy OR the Weller Soldering Gun. (If you wish, both Caddy and Soldering Gun will be given in exchange for 20 Federal Certificates.)

See your Federal DISTRIBUTOR For Federal Tubes and Certificates!

This offer is void wherever prohibited or whenever any tax, license or other restriction is imposed.

(This offer expires August 31, 1953)

Start Ordering Federal Picture Tubes—Start Saving Federal Certificates!

Federal Telephone and Radio Corporation

VACUUM TUBE DIVISION • 100 KINGSLAND ROAD, CLIFTON, N. J.

In Canada: Federal Electric Manufacturing Company Ltd., Montreal, P. Q.
Export Distributors: International Standard Electric Corp., 67 Broad St., N. Y.

AUGUST, 1953
'I have a Channel 13 Yagi mounted and have made a comparison. On Channel 13 your antenna definitely outperformed the Yagi. The picture quality is better, as well as picture strength, indicating a broader response curve.'

'In addition, I find that your antenna provides maximum sound interference rejection at the same point as it provides maximum picture interference rejection. Consequently, it is my opinion that, over all, your antenna is superior to the general run of commercial products at eliminating cochannel interference.'

'My equipment consists of a booster and rotor. My receiver has a 20 inch screen and I customarily watch it from a distance of between 12 and 17 feet. I might add that I have a very critical eye for picture quality and that I like your antenna's performance very much in this respect.'

'You quite frankly told me over the telephone that the performance of the antenna was better on Channels 4 and up. Nevertheless for the past two nights I have received a most enjoyable picture from WSB-TV (Channel 2) which as I stated above is 200 miles away. Both yesterday morning and this morning I had beautiful pictures from this station and today at noon I had a snow free picture. I have fallen in love with the performance of your antenna, not only on Channel 2 but on other channels tested.'

J. FOY GUIN, JR.

P. S.—Channel 2 was very hot last night. WSM-TV was received with clear sound.'
Between Aug. 1st and Nov. 15th

You get both chest and parts tray

$24.95 VALUE
for only $5.00
and 30 Sylvania Premium Tokens...

Servicemen! Here's Your Sylvania

T-N-T CHEST
(TUBE AND TOOL)

The Most Valuable Service Aid You've Ever Seen!

LOOK WHAT IT HOLDS!
Tubes, Tools, Test Equipment and all the small parts needed on any home radio or TV service job.

Talk about a useful servicing aid... this Sylvania T-N-T (Tube and Tool) Chest is really it! Carries more tubes, tools and parts than any chest on the market!

LOOK AT THESE FEATURES:
• Bass and fir plywood case
• Waterproof Du Pont Fabrikoid cover
• Holds 187 receiving tubes
• Lightweight folding aluminum tool and parts tray
• Unbreakable plastic handle
• Brass-plated hardware
• Room for mirror and ohmmeter
• It's a complete, portable service shop!

ACT NOW... Offer Limited!
This chest is now yours for only $5.00 and 30 Sylvania Premium Tokens. Offer good only between August 1st and November 15th. See your Sylvania Distributor who has these kits now.

Remember, you get 1 Sylvania Premium Token with every 25 receiving tubes or with every picture tube you buy.
This man can save you service-time, work and money

Your Centralab Distributor has Custom Controls for 277 major manufacturer's listing in his Centralab Control Guide. Each is cataloged for quick reference so he can fill your orders accurately and systematically.

These controls are factory-specified type equipment on practically all major radio and TV sets on the market today. They're exact duplicates of the original part — some even closer tolerance than specified by the original set manufacturer — produced with the same modern, precision equipment and carrying the same Centralab guarantee.

To give you an idea of the wide usage, these 277 major manufacturers use these same controls in 50,552 different applications. That's a mighty strong tribute to the performance of Centralab controls!

Remember, when you use genuine Centralab replacements, you have assurance of a lasting repair job. Because they are custom-designed, you work faster . . . make a cleaner installation . . . insure greater customer satisfaction. That's why it's a good idea to see your Centralab Distributor first for genuine control replacements.

Centralab

A Division of Globe-Union Inc. 922H E. Keefe Ave., Milwaukee 1, Wisconsin In Canada, 625 Queen Street East, Toronto, Ontario

Here are just 4 examples of the wide usage of Centralab controls

SVS-926 — Focus Control — used as original equipment by 6 manufacturers in 120 applications.

S-119 — Volume Control — installed as original equipment on sets of 5 manufacturers in 12 applications.

SBB-305 — Vertical and Horizontal Hold Control — included as original equipment in 38 applications by 4 manufacturers.

F-122 — Volume Control — 6 manufacturers use this control as original equipment in 9 applications.
WITH THE TECHNICIAN

TV "TOWN MEETING"

Several hundred TV service technicians from Ontario, Quebec, and even Manitoba attended the "Town Meeting of Television Technicians" held in Toronto May 11-14. This was the seventh in a series of "Town Meetings" inaugurated in 1949, and which appear to have been more successful in Canada than in the United States.

The program was conducted by A. C. W. Saunders and Aaron Dornbusch, of Boston Mass., both veterans in radio and television servicing and instruction. The attendance at all sessions of the four-day trouble-shooting course was excellent.

NEWS FROM B. C.

Dave Banfield was elected president and Harold George, secretary-treasurer of the Radio Electronic Technicians of British Columbia at the annual meeting of the Association held at Chilliwack, B.C., on May 24.

The meeting occupied the entire day, from 11 am to 9 pm. Norm Tovey gave a report on proposed provincial legislation, and stated that it was highly possible that legislation desired by the service technician might be brought before the B.C. legislative assembly. A new proposed TV price schedule was approved for distribution to the membership.

It was decided to send two delegates from R.E.T.A. of British Columbia to the R.E.T.A. of Canada convention which is scheduled to be held in one of the midwest provinces in midsummer.

NEW JERSEY ELECTS

Harold B. ("Dusty") Rhodes, Paterson, was re-elected president of the Radio and Television Servicemen of New Jersey, Inc., at the fourth annual meeting of the association, held June 8. Other officers elected were: Fred E. Berdy, vice-president; J. Palmer Murphy, executive secretary-treasurer, and Jerome J. Gelram, counsel. All are of Paterson. Harry Weinberg and Norman Goodman of Paterson, A. Auerbach of Rochelle Park, and H. A. Shelladay, of West Milford, were elected to two-year terms on the eight-man Board of Trustees.

In his annual report, President Rhodes laid down three major fields in which a serviceman's association must be constantly active if it is to be successful and worth-while. The categories are: Services to members; public relations and advertising; and meeting industry wide problems. For the coming year he named Felix Brey chairman of the Committee on Industry Relations, and James Bland chairman of the Committee on Public Education.

NETSDA MEETS

The National Electronic Technicians and Service Dealers Associations met Sunday, June 7, at the ARTSNOY Headquarters, 165 East Broadway, New York City.

Final details in the work of obtaining

AUGUST, 1953

here's a versatile NEW

WEBSTER ELECTRIC

Featheride

2-needle Replacement Cartridge

Model FX > for twist mechanisms high or low output

The new Model FX Featheride is a lightweight, two-needle crystal cartridge especially designed for replacement installation in WEBSTER ELECTRIC and other twist mechanisms. Although furnished as a high-output cartridge, each Model FX is provided with a shunting capacitor for adaptation to low-output applications. Model FX—a complete with needles, capacitor, spacers and installation instructions—comes packed in a handsome, useful clear-plastic box for protection during shipping and handling.

specifications and data

<table>
<thead>
<tr>
<th>application:</th>
<th>a two-needle model for 33⅓, 45 and 78 RPM records.</th>
</tr>
</thead>
<tbody>
<tr>
<td>output (1000 CPS):</td>
<td>without capacitor, 4.4 volts at 78 RPM, 2.6 volts at 33⅓ RPM; with capacitor, 1.2 volts at 78 RPM, 0.6 volt at 33⅓ RPM.</td>
</tr>
<tr>
<td>tracking pressure:</td>
<td>12 grams.</td>
</tr>
<tr>
<td>cut-off frequency:</td>
<td>3500 CPS.</td>
</tr>
<tr>
<td>needles:</td>
<td>one 1-mil osmium, one 3-mil osmium, furnished. Push-in needles are held in friction-type chucks.</td>
</tr>
</tbody>
</table>

SEND FOR NEW REPLACEMENT CHART

Our new Featheride Replacement Chart YF-2 gives full information on how just five Featheride models fill virtually every cartridge-replacement need. Mail coupon for your copy.

WEBSTER ELECTRIC

"Where Quality is a Responsibility and Fair Dealing an Obligation"

WEBSTER ELECTRIC COMPANY, RACINE, WISCONSIN • EST. 1909
a charter of incorporation for the organization were completed at this meeting. A resolution offering assistance to any associations who request aid in license problems was also passed.

The RTMA booklet “How to Get Good Television Service without Destroying Free Enterprise” was studied and discussed.

The next meeting was announced for July 26, at Lily Lake, Luzerne County, Pa., and will take place in connection with the annual clambake and picnic which has been an annual feature with the Luzerne County Association for some years. The meeting will be a joint one with the Pennsylvania State Federation.

PRSM REJOINS STATE GROUP

Highlight of the May meeting of the Federation of Radio Servicemen’s Associations of Pennsylvania was the reinstatement of the Philadelphia Radio Service Men’s Association to full membership in the Federation. The delegarees from PRSMA at the meeting were Samuel Brenner, president of the association, and Al Haas and Stan Meyers.

The Federation adopted the resolutions drawn at the recent Paterson Eastern Conference (Radio-Electronics, June, page 84). Plans for promoting local TV broadcasts of an educational nature, aimed at creating better understanding between the set owner and the organized TV service technician, were also discussed.

All affiliated chapters were advised to forward any local advertising of a questionable nature to the Federation secretary.

A Committee for Jobber Relations was named, consisting of Austin Renville of Wilkes-Barre, Bert Bregemzer of Pittsburgh, Henry Gowan of Scranton, and William Dearoff of Chambersburg.

The meeting was held in Maurice’s Restaurant, Philadelphia, May 17, with Federation president Milan Krupa in the chair.

Suggested by Chase Haas, Colonial Heights, Va.

“We’re moving to a small apartment. Could you convert it to ten inches?”

WITH THE TECHNICIAN
Bring back that **New-Set Sparkle**

with **Performance-Tested Tubes**

Meet John Cunningham, a CBS-Hytron Commercial Engineer. John is beginning at the beginning for you. Socket by socket, he is analyzing the tube requirements of a brand-new TV set design.

John knows the superior performance demanded. He concentrates his know-how on insuring top tube operation within standard specification limits. He tests sample tubes... checks analysis data. Working hand-in-glove with the set designer... and with CBS-Hytron engineers... he assures control of the characteristics of all tubes for this new chassis. Finally he achieves... from rectifiers to picture tube... the perfect performance all of this engineering team (and you) need.

Constantly CBS-Hytron carries on teamwork like this. Socket by socket analysis. Day in, day out — with 9 out of 10 leading TV set makers. Both tube and set engineers pool their specialized skills. Scores of the nation's foremost TV set engineers help make endless CBS-Hytron improvements. Help assure you of unsurpassed performance in virtually all leading TV sets.

Small wonder that your CBS-Hytron replacement tubes recapture that new-set sparkle. Please your customers. Cut your call-backs. Profit more. Take advantage of CBS-Hytron engineering. Demand CBS-Hytron... your logical replacement tube, because it is performance-tested all, the way...from original to replacement.

Now **CBS-HYTRON**

ALUMINIZED PICTURE TUBES

27EP4 and 24TP4... both mirror-backed, spherical, electromagnetic types.

INTELLIGENT EXPANDING MOBILE TV RENTALS
80 Employers AND RADIO BPI,id#eW.

SERVICING Guarantee
COMMERCIAL.

Every

Month

Our

If you complete

you

HERE IS YOUR GUARANTEE
If you fail to pass your Commercial License exam after completing our course, we guarantee to continue your training without additional cost of any kind until you successfully obtain your Commercial license, provided you first sit for this examination within 90 days after completing your course.

We Guarantee to TRAIN and COACH YOU at home IN SPARE TIME UNTIL YOU GET YOUR FCC LICENSE

TELLS HOW
Employers Make Job Offers To Our Graduates Every Month In Practically Every Field Of Radio!

Get Both Booklets Free MAIL COUPON NOW

Get This Amazing Booklet FREE
WE ENGINEERING included in our training and coaching.

Fig. 1—Circuit of sync-control unit.

Synchronization Control
Patent No. 2,628,279
John H. Roe, Collingswood, N. J.
(Assigned to Radio Corp. of America)

In televising movie films, it is important to maintain exact sync between the projector and the vertical sync pulses. Each movie frame must be projected between scanning periods to avoid distortion. This new method maintains that synchronism. It is also suitable wherever motor-driven equipment needs to be synchronized with a series of pulses.

In Fig. 1, motor M drives a movie projector P and a pulse generator G. This generator charges capacitor C through a rectifier bridge, provided

Fig. 2—Time relationships between pulses from G and B. T2 shows the condition where the speed of M is correct. During the

short pulse interval of bridge conduction, G delivers a charge to C. T1 shows an S pulse arriving too early. The capacitor charge is smaller than before because (at this instant) the output from G is low. At T3, S arrives too late. This time a relatively larger charge build-up takes place on C. As shown previously, this will slow down M and thus restore synchronism between projector P and the pulses.

A.F. OSCILLATOR CONTROL
Patent No. 2,630,482
Lee G. Bostwick, Chatham, N. J.
(Assigned to Bell Telephone Laboratories, Inc.)

Audio tones are frequently used for remote control of various types of electronic and mechanical apparatus and for selective calling in communication circuits. When the apparatus requires a large number of signaling frequencies, the tones must be comparatively close together in the spectrum and the receiver must have very selective filters to separate them. The Q of the filters must be considerably higher than can be readily obtained with conventional filter constants.

This patent describes a frequency-selective bridge which uses a high-Q mechanically resonant device as one of its arms. The resonant device may consist of a tuning fork with one of its prongs placed in a driving coil connected in one arm of the bridge as in Fig. 1. The electrical impedance of the driving coil consists of a
FAR BETTER RECEPTION
IN EVERY LOCATION
with Sensational New
TRIO ZIG-ZAG
TV ANTENNAS

SUBURBAN MODELS
Models ZZ4A and ZZ6A give you all-channel (2 thru 13) reception in ONE SINGLE BAY ANTENNA. The Model ZZ4A has excellent gain and is designed for suburban areas. Model ZZ6A has even greater gain and provides excellent all-channel reception in near fringe areas.

NEAR FRINGE MODELS
For near fringe area reception, the Models ZZ6L and ZZ6H are recommended. Model ZZ6L covers Channels 2 thru 6, Model ZZ6H is to Channels 7 thru 13. Both antennas offer high gain with patterns and front-to-back ratios similar to cut-to-channel yagi.

FRINGE MODELS
Models ZZ8L and ZZ8H were designed for normal fringe area reception and provide clear, snow-free pictures. Forward lobe patterns and front-to-back ratios are similar to a good single channel, multi-element yagi.

ULTRA FRINGE MODELS
The extremely high gains of the ZZ12L and the ZZ16H models provide unequalled reception in ultra-fringe areas. Model ZZ12L covers Channels 2 thru 6 and Model ZZ16H, Channels 7 thru 13. These two models when stacked, are fed with only one 300 ohm line and provide ALL VHF CHANNEL RECEPTION. Line match is excellent and front-to-back ratios are unusually high.

TRIO ROTATOR AND DIRECTION INDICATOR
The TRIO Rotator is America's most dependable — has two powerful 54 volt motors — one for each direction of rotation. Absolutely weather-proof, permanently lubricated. All motors, shafts and gears mounted on a rugged, one-piece casting for true alignment, strength and longevity. Every TRIO Rotator is fully guaranteed for two years. Beautiful Direction Indicator has "fingertip" control — no need to hold knob for rotation. A touch of the finger starts it — a touch stops it.

From ultra-ultra fringe to metropolitan areas, the sensational new TRIO ZIG-ZAG TV Antennas are providing clear, enjoyable TV pictures.

Enthusiastic reports are pouring in from across the nation, testifying to the high efficiency of the new, exclusive TRIO ZIG-ZAG TV Antenna design.

Yes, results — not mere claims — have made the TRIO ZIG-ZAG America's most wanted TV antenna!
12,080 HOURS OF ENGINEERING TO BRING YOU THE PRECISE OSCILLOSCOPE
(IN KIT AND WIRE FORM)
THE FASTEST-GROWING KIT MANUFACTURER IN THE WORLD

The Oscilloscope you've been seeking . . . No other oscilloscope at any price — high or low — with these desirable features — in both Kit and Wired Form:

Specifications
- Kit Model 310 Oscilloscope
- **HORIZONTAL** — Variable 50 vacant; 10 microsec per division
- **VERTICAL** — 2 microamps of sensitivity at 10 microsec per division
- **OUTPUTS** — 50 cycle or 3 db.
- **CALIBRATION**
 - Using oscilloscope
 - Magnifier
 - Blanking
 - Scale
 - Magnifying
 - Blanking
 - Calibration
 - Internal (return trace blanked), 60 cycle or external (return trace blanked)
 - Push-pull horizontal input immediately converted to 10 microsec per division
 - Magnifier positioner allows ideal push-pull input immediately converted to 10 microsec per division
 - 120 cycle blanking through Blanking

Construction
- Separate switches, for
 - Internal (return trace blanked)
 - External (return trace blanked)
- Vertical or Horizontal construction.
- Push-pull Horizontal
- Decade Box
- Ideal for
 - 300 M.H.
 - 330 M.H.
 - 3200
- Large magnetized core
- All the unusual values of the output signal are fed back through the bridge to the input circuit. The gain of the oscilloscope tube is adjusted to be slightly larger than the loss through the bridge at the resonant frequency where the loss is at minimum. The thermistor is shunted across the output to limit the output voltage.

Measurement of Inductance and Self-Capacitance
- Patent No. 2,626,791
- Edward M. Shepe, Brooklyn, N. Y.
- Every coil or inductor has stray capacitance between its turns. This capacitance must be known before we can design a circuit to use the coil. Here is a new method for measuring both the inductance and self-capacitance of a coil.
- Let us assume that we have a perfect coil L, one with no self-capacitance. When a capacitor C is connected across L, the combination will resonate at a frequency

\[F = \frac{1}{2\pi\sqrt{LC}} \]

C may then be calibrated in terms of the inductance required to tune it to F. If we wish to use different frequencies, we must have a separate scale for each. With any perfect coil L across C, I will indicate the same value no matter which frequency is used, provided the correct scale is observed.

Unfortunately, there is no such thing as a perfect coil. L will not contribute any capacitance to its own. Therefore, even when resonating at different frequencies, each calibration reading will be different. To measure the self-capacitance, in an auxiliary capacitor CT is connected across L. If we use some other value of L, it will be the same frequency and in the same circuit, the maximum capacitance to minimum C is calibrated as before, but with CT at its maximum setting.

Therefore if we measure capacitances at 2 or more harmonics of C, the readings will be the same as on each of the corresponding calibrated scales if we reduce C1 from its maximum value, by the same maximum capacitance to minimum C is calibrated as before, but with CT at its maximum setting.
Now a new synthetic helps dial telephone service

Among the elements that guard your dial telephone service are electrical capacitors. They help prevent the formation of arcs that pit and may eventually destroy relay contacts. But millions more of these capacitors are needed each year. How could they be made less costly?

Bell Laboratories engineers, on the lookout for new materials, became alert to the possibilities of the new “Mylar” polyester film. A product of the Du Pont Company, “Mylar” is chemically the same as Du Pont’s “Dacron” polyester fiber used to make fabrics. Bell engineers discovered that it also had remarkable dielectric properties—of just the right kind to help their capacitor problem.

The film takes the place of impregnated paper formerly used to separate the metal foil electrodes. It is tougher, stands more voltage and needs no impregnation. The new capacitors require no protective housing and are much smaller and less costly.

Here is another example of the way America’s technology advances through the sharing of knowledge. Just as Bell Telephone Laboratories makes many of its discoveries—the Transistor, for example—available to other companies, so does it adapt the inventiveness of others when it can help your telephone service.
Specifically DESIGNED FOR

PHILCO Test Equipment

UHF Auto-Level Sweep Generator

Model G-8002. The newest, most modern, most inexpensive UHF sweep generator on the market. Checks sweep alignment with any test oscilloscope. Its output is controllable . . . makes possible overall trouble shooting and testing of low level units such as UHF tuners, boosters, converters, etc.

Field Strength Meter

Model M-8104. More features than any other unit at this popular price. Reads signal strength directly from the dial from 10 to 100,000 microvolts. A serviceman’s time saver to measure actual TV picture signal strength.

3-inch TV Oscilloscope

Model S-8200. The most practical portable unit available for bench or field servicing. Preset horizontal and vertical sweep rates take the guesswork out of trouble shooting. Ideal for television because of its high sensitivity and wide response.

Cathode Ray Tube Checker

Model 7053. Tests all picture tubes used in home TV receivers. Special cathode-ray tubes are easily checked by using plug-in adapters. Eliminates trouble shooting guesswork. Neon lamp indicates shorts and open elements in the electrodes of the gun.

Dynamic Signal Tracer

Model 7031. An extremely versatile instrument . . . this unit is designed for fast diagnosis of radio trouble by audibly monitoring RF and AF circuits. Can be used to accurately check P.A. systems, microphones and phonograph pick-up circuits.

NOW YOURS ON NEW EASY PAYMENT PLAN

RADIO-ELECTRONICS
THE SERVICEMAN

The Philco test equipment line is new! New circuits, new styling, new ruggedness, new versatility, new accuracy! Each piece of equipment is precision-built and now brings new features specifically designed with your needs and your problems in mind! Look over the individual instruments shown on these pages, and then mail the coupon below or get in touch with your Philco distributor to find out how easy it is to own a complete Philco Test Equipment Service Laboratory.

Mutual Conductance Tube Checker
Model 7052. Tests more different type tubes than any unit on the market, from subminiature to acorn low power transmitting tubes... Forecasts tube life... employs roll chart instead of cards... for use as a portable or counter top unit.

Model M-8100. The rugged PHILCO CIRCUIT MASTER is one of the finest vacuum tube voltmeters ever designed. With its companion unit the famous...

Model M-8102. PHILCO CIRCUIT TESTER you have a combination engineered to meet the most rigid specifications for reliability, durability and accuracy of design.

VHF to UHF Signal Generator Adapter
Model G-8000. The most economical system yet designed to produce UHF signals for TV receiver tests. Through a conversion process this unit produces from an input VHF signal, UHF signals having the same characteristics as the VHF signal.

For new FREE BOOKLET fill out and mail this coupon
OR SEE YOUR PHILCO DISTRIBUTOR

PHILCO CORPORATION
Accessory Division
Allegheny Ave. & "A" St.
Philadelphia 34, Pa.

1 I am interested in the Philco Test Equipment shown here. Please send me details of your SPECIAL PURCHASE PLAN for obtaining these units.

2 Please send FREE copy of your new booklet on Philco Test Equipment.

NAME

ADDRESS

CITY..........................STATE

AUGUST, 1953
NEW PATENTS

gives the identical reading at 2 or more frequencies, it shows the correct inductive-ness of the coil, and CI shows the self-capacitance.

To simplify frequency requirements, this invention uses a crystal-controlled oscillator. The fundamental and its first four harmonics are available so measuring frequencies. A relay system automatically indicates which harmonic (or fundamental) is tuned. C is equipped with five corresponding scales. A v.t.v.m. indicates when resonance is reached.

4-TERMINAL TRANSISTOR

Patent No. 2,624,016
Charles de Boismaison White, London, England
(Assigned to International Standard Electric Corp., New York, N.Y.)

This patent describes a special 4-terminal transistor suitable for trigger service. Three metal electrodes are plated on the crystal. There is a control element besides the usual emitter, collector, and base. No cathodes are used. Such a crystal exhibits a collector characteristic like that due to hysteresis. See Fig. 1.

![Image of transistor](image)

Fig. 1—Tetrode transistor response.

Normally the operating point is set at the center of the collector current curve. If the collector current rises abruptly to D, then increases gradually to G as emitter current continues to increase. When the pulse dies out, the current will ease off to point E. On arrival of a negative pulse, collector current follows the path EF, then drops abruptly to A. The operating point returns to B at the end of the pulse.

![Image of transistor circuit](image)

Fig. 2—Trigger circuit using the new type-plated-electrode tetrode transistor.

END

EASY TO LEARN CODE

It is easy to learn or increase speed with an Instructograph Code Teacher. Aids the beginner and does not require a special method but is adapted to all communities. The Code Teacher teaches the principle of code, and makes learning easy. See Fig. 1.

NEW PATENTS

Patent No. 2,624,016
Charles de Boismaison White, London, England
(Assigned to International Standard Electric Corp., New York, N.Y.)

This patent describes a special 4-terminal transistor suitable for trigger service. Three metal electrodes are plated on the crystal. There is a control element besides the usual emitter, collector, and base. No cathodes are used. Such a crystal exhibits a collector characteristic like that due to hysteresis. See Fig. 1.

![Image of transistor](image)

Fig. 1—Tetrode transistor response. Normally the operating point is set at the center of the collector current curve. If the collector current rises abruptly to D, then increases gradually to G as emitter current continues to increase. When the pulse dies out, the current will ease off to point E. On arrival of a negative pulse, collector current follows the path EF, then drops abruptly to A. The operating point returns to B at the end of the pulse.

![Image of transistor circuit](image)

Fig. 2—Trigger circuit using the new type-plated-electrode tetrode transistor. The operating point is set at the center of the collector current curve. If the collector current rises abruptly to D, then increases gradually to G as emitter current continues to increase. When the pulse dies out, the current will ease off to point E. On arrival of a negative pulse, collector current follows the path EF, then drops abruptly to A. The operating point returns to B at the end of the pulse.

EASY TO LEARN CODE

It is easy to learn or increase speed with an Instructograph Code Teacher. Aids the beginner and does not require a special method but is adapted to all communities. The Code Teacher teaches the principle of code, and makes learning easy. See Fig. 1.

NEW PATENTS

Patent No. 2,624,016
Charles de Boismaison White, London, England
(Assigned to International Standard Electric Corp., New York, N.Y.)

This patent describes a special 4-terminal transistor suitable for trigger service. Three metal electrodes are plated on the crystal. There is a control element besides the usual emitter, collector, and base. No cathodes are used. Such a crystal exhibits a collector characteristic like that due to hysteresis. See Fig. 1.

![Image of transistor](image)

Fig. 1—Tetrode transistor response. Normally the operating point is set at the center of the collector current curve. If the collector current rises abruptly to D, then increases gradually to G as emitter current continues to increase. When the pulse dies out, the current will ease off to point E. On arrival of a negative pulse, collector current follows the path EF, then drops abruptly to A. The operating point returns to B at the end of the pulse.

![Image of transistor circuit](image)

Fig. 2—Trigger circuit using the new type-plated-electrode tetrode transistor. The operating point is set at the center of the collector current curve. If the collector current rises abruptly to D, then increases gradually to G as emitter current continues to increase. When the pulse dies out, the current will ease off to point E. On arrival of a negative pulse, collector current follows the path EF, then drops abruptly to A. The operating point returns to B at the end of the pulse.

EASY TO LEARN CODE

It is easy to learn or increase speed with an Instructograph Code Teacher. Aids the beginner and does not require a special method but is adapted to all communities. The Code Teacher teaches the principle of code, and makes learning easy. See Fig. 1.

NEW PATENTS

Patent No. 2,624,016
Charles de Boismaison White, London, England
(Assigned to International Standard Electric Corp., New York, N.Y.)

This patent describes a special 4-terminal transistor suitable for trigger service. Three metal electrodes are plated on the crystal. There is a control element besides the usual emitter, collector, and base. No cathodes are used. Such a crystal exhibits a collector characteristic like that due to hysteresis. See Fig. 1.

![Image of transistor](image)

Fig. 1—Tetrode transistor response. Normally the operating point is set at the center of the collector current curve. If the collector current rises abruptly to D, then increases gradually to G as emitter current continues to increase. When the pulse dies out, the current will ease off to point E. On arrival of a negative pulse, collector current follows the path EF, then drops abruptly to A. The operating point returns to B at the end of the pulse.

![Image of transistor circuit](image)

Fig. 2—Trigger circuit using the new type-plated-electrode tetrode transistor. The operating point is set at the center of the collector current curve. If the collector current rises abruptly to D, then increases gradually to G as emitter current continues to increase. When the pulse dies out, the current will ease off to point E. On arrival of a negative pulse, collector current follows the path EF, then drops abruptly to A. The operating point returns to B at the end of the pulse.
INTERMITTENT ALARM

Servicing an intermittent receiver is often a very annoying and unprofitable job because the technician usually has to stand by the set while waiting for it to cut out. If he attempts to do another job in the meantime, the intermittent set usually must be operated at an annoying volume level.

This intermittent audio set audio connects across the output of the receiver and operates an audible alarm when the set cuts out. The triode is a grid-leak detector with a relay in its plate circuit. When an audio signal is applied to the input of the alarm, the grid develops a negative bias which decreases the plate current flowing through the relay. When the audio signal drops or cuts out, the plate current rises and closes the relay circuit to the alarm.

TI is a standard single-ended output transformer. Terminals 1 and 2 may be connected across the secondary of the set's output transformer and to silence the set disconnect the speaker voice-coil leads. Terminals 3 and 4 are used when connecting the intermittent alarm to a point in the set's audio circuit ahead of the output transformer. Terminal 3 is the hot lead and terminal 4 connects to the receiver chassis. In this case, replace the speaker voice coil with a resistor equal to its impedance.

THE CASE WITH A
1,000 APPLICATIONS

This all-purpose case is ideal for housing meters, controls and switches of all types. Made of heavy molded black plastic with matching phenolic panel.

Easy to drill and saw. Available in two sizes: 5-1/4" x 6-7/8" x 25/16" 3-3/4" x 6-1/4" x 2" Ask your Distributor for Waldom's Plastic Case.

AMPLIFIER METERING SET

The frequency response of an audio amplifier or system is usually measured by feeding in a number of known frequencies at a constant voltage while measuring the output voltage with an audio v.t.v.m. Since most audio signal generators do not have a metered output, it is usually necessary to use separate meters in the output and input of the amplifier or use a single meter and switch it between the input and output circuits. In many instances, this makes it necessary to change the meter range each time you switch from one

WALDOM ELECTRONICS INC.
911 N. Larrabee St., Chicago 10, Ill.

AUGUST, 1953
NOW... a three-speed phonomotor designed for HIGH-FIDELITY REPRODUCTION...

Moving shift lever to "OFF" position automatically disengages idler wheel from motor shaft and cuts off current to motor... eliminates possibility of idler wheel developing "hit" spots.

General Industries

MODEL DSS (4-pole) PHONOMOTOR

Here's a three-speed phonomotor that was designed expressly to meet the requirements of high-fidelity reproduction. From its dependable, heavy-duty 4-pole motor to its unique step-speed change mechanism, this new G1 Model DSS Phonomotor represents the ultimate in phonomotor engineering, design and construction.

Specifications, quantity price quotations on this or its companion, the new Model SS, with 2-pole motor, will be furnished promptly upon request.

THE GENERAL INDUSTRIES CO.
DEPARTMENT ME • ELYRIA, OHIO

WANTED

WE NEED YOUR SURPLUS ELECTRONIC EQUIPMENT WE PAY TOP SSS FOR:

- RADIO RECEIVERS
- TRANSMITTERS
- AR-1
- AR-3
- ARC-13
- CONTROL BOXES
- INDICATORS
- CLAMPS
- ANYTHING!

Write, Wire today! Tell us what you have. TALLEN CO., Inc., Dept. RE 159 Carlton Ave., Brooklyn 5, N. Y.

OPEN WIRE

T-V LINE 4.0¢ Per Foot

Ideal for VHF—A Must for UHF in 250 ft. rolls boxed in free-flow dispensing boxes. 4.5¢ per ft. in any desired shorter length. #19 solid copper Formvar wire. Pure Polystyrene spacers. Very low loss. Send post card for sample section. Order from SEYMOUR ELECTRONICS SEYMOUR, MISSOURI

You can't keep up with u.h.f. TV without reading the articles in future issues of RADIO-ELECTRONICS

RADIO-ELECTRONICS CIRCUITS

The circuit to the other. This simple transmission measuring set eliminates the need for switching meter ranges.

The unit consists of an input attenuator (necessary only if very low input is desired or if the generator does not have a good built-in attenuator), a switch to connect the v.t.v.m. to the input or output of the amplifier, and an output attenuator to cut down the amplifier output voltage so it can be read on the same scale as the input voltage. The attenuator values are selected so the input and output voltages can be read conveniently on the 3-volt scale of an a.c. v.t.v.m.

S1 and S2 may be wafer switches with high-grade insulation. S2 may be a toggle or push-button switch with the v.t.v.m. wired to the amplifier input through the normally closed contacts. Noninductive resistors are used for the attenuators. The hot lead to the amplifier input should be shielded and as short as possible.

CITIZENS-BAND TRANSMITTER

Many of the radio-controlled models described in this and other publications can be modified for use in the 27,255-mc citizens band. The extent of the modification depends on the design and operating frequency of the original equipment. Equipment designed for the 10- and 11-meter amateur bands is the simplest to modify. The receivers can be tuned to 27,255-mc by making slight adjustments in the constants of the tuning circuits. If the equipment does not hit 27,255, try varying the spacing between the turns on the tuned coils. The L-C constants must be changed when modifying 2- or 6-meter receivers.

Most of the radio-control equipment described in this issue has been designed for amateur operators. Many of the trans-
matters either use self-excited oscillators or run power inputs far in excess of the 5-watt maximum allowed on the citizens band. The diagram shows the circuit of a simple citizens-band radio-control transmitter which is described in National Radio-TV News, published by the National Radio Institute. The 1-tube transmitter operates from a 13.0275-mc crystal and delivers output on 27.255 mc. S1 is the filament switch and S2 is the pulsing switch. S2 may be a push-button, telegraph key, or a more complex keyer such as a telephone dial mechanism. The antenna is a base-loaded whip made from two sections of a replacement-type automobile radio antenna.

Figure:

- L1 and L2 are wound on National XR-50 slug-tuned forms. L1 consists of 34 turns of No. 28 d.c. wire, tapped at the 17th turn. L2 has 12 closewound turns of No. 24 d.c. wire. L3 is a 3-turn coil, wound close around the cold (B plus) end of L2. L4 is a 13-turn section of B & W Type 3014 Miniductor.
- The antenna is made from the top half of a 3-section telescopic auto radio antenna. Extend the whip to full length and then cut it in two pieces so that about 10 inches of the center section remains connected to the tip. The top section is used as the transmitting antenna. L4 mounts at the base and connects in series between it and L2.
- Tuning the rig is simple. Screw the oscillator slug about halfway out and adjust the oscillator trimmer for minimum plate current. Switch the meter to the amplifier plate circuit and adjust the output trimmer capacitor for minimum current with the slug turned almost all the way into the coil.

Parts for 27-mc transmitter

- Capacitors: 2—30-mu-hf mica or ceramic trimmers; 1—40, 2—680-mu-hf Ceramic.
- Resistors: 2—6, 100 ohms, 1/2 watt.
- Miscellaneous: 1—30-mu-hf r.f. choke (Miller 34300 or equivalent); 2—National XR-50 coil forms; 1—13.0275-mc crystal; 1—crystal holder; 1—3AS tube; 1—Miniature 3-pin socket; 1—B & W Miniductor; 1—spool No. 28 d.c. wire; 1—spool No. 24 d.c. wire; batteries, hookup wire, chassis, cabinet, switches, hardware.

Harry M. Neben, chief of Amphenol's Electrical Testing Laboratory, recommends

Simpson

Model 303 Vacuum Tube Volt-Ohmmeter

FREE! U.H.F. and "THE VERSATILE CRYSTAL PROBE"

Solve your U. H. F. ANTEenna PLACEMENT and ORIENTATION problems the easy way!

Get maximum picture strength - eliminate ghosts - no more roof-top shouting - no expensive field strength meters needed: ONE MAN CAN DO IT!

Write for FREE bulletin today and other information about KLIPZON products.

UNITED TECHNICAL LABORATORIES
204 LITTLETON RD. MORRISTOWN, N. J.

U.S. PATENT OFFICE

[Image of Simpson model 303 Vacuum Tube Volt-Ohmmeter]

68.75 DEALER'S NET
SIMPSON ELECTRIC COMPANY
5200 W. KINZIE ST.
CHICAGO 44
COLUMBUS 1-1221

RUTON BROWN ADVERTISING
AMPHENOL VHF ANTENNAS

dependable performers
PROVEN BY EXPERIENCE

AMPHENOL's complete line of VHF antennas includes three top performers: the famous INLINE®, the INLINE Stacked Array and the Piggy-Back. Whatever the particular reception problems in any area, city, suburban or fringe, from among these three quality antennas can be found the exact antenna answer.

AMPHENOL INLINE® Broadbanded to cover all VHF channels, the INLINE is the finest VHF antenna now being made—a front position that it has held since first introduced four years ago. The INLINE's radiation patterns show a single forward lobe on all channels with no side lobes and negligible back lobes. Excellent front-to-back and front-to-side ratios plus high gain on both the low and high frequencies make the INLINE a perfect choice for major signal areas. In addition to its superb electrical characteristics, the INLINE is mechanically very strong.

AMPHENOL STACKED ARRAY Added gain for suburban and fringe areas is achieved in this stacking of two INLINEs. Each bay of the Stacked Array embodies the same superior construction and performance features of the INLINE. Radiation patterns have excellent uniformity of lobes for both high and low frequencies while the gain curves show approximately 2 db gain over that of the single INLINE. For extended distance reception, even greater gain may be had by the harnessing of two Stacked Arrays.

AMPHENOL PIGGY-BACK An antenna designed with separate dipoles and reflectors for the low and high band, which can be oriented independently. The Piggy-Back assures good reception in areas where the TV stations are in different locations. The harness connecting the two dipoles permits proper phasing for minimum interference. Easy to install, the Piggy-Back is another sturdy AMPHENOL constructed antenna.

NEW DEVICES

SPEED CONTROLS
The Servo speed Division of Electro Devices, Inc., 46 Godwin Ave., Paterson, N. J., has introduced a line of electronic Servo speed systems for the speed control of series or universal motors. A speed range of as much as 100 to 1 is achieved with motors having a base speed of 5,000 r.p.m. or higher. Three-wire motors may be controlled for one direction of rotation and four-wire motors may be operated in either direction by use of a reverse switch. Models are available to manufacturers in basic chassis form and in cabinet-type models for buyers who wish to bench or wall-mount the equipment.

NEW FLYBACKS
Holden Transformer Co., 4502 Fountain Ave., Chicago 40, Ill., has announced specific replacements for Philco flybacks.

AMPHENOL PORTABLE METER
The Radiant Corp., 1130 W. Wisconsin Ave., Chicago 14, Ill., has announced a battery-operated, portable field-strength meter, the FSM-5000. The unit features continuous one-knob tuning for channels 2-43, microvolt readings of audio and video and sensitivity ranging from 5-50,000 mv at v.h.f. to 50-100,000 mv at u.h.f. The meter is powered by standard A and B dry cell batteries, and battery condition is shown at all times on the dial. The FSM-5000 has separate input terminals for u.h.f. and v.h.f. antennas and a phone plug for audio monitoring of TV and FM signals.

NEW CAPACITORS
Astron Corp., 25S Grant Ave., E. Newark, N. J., has introduced a new, molded paper capacitor, the Bluepoint. The housing is yellow, nonflammable molded plastic, sealed against heat and moisture by a thermostating band that becomes a part of the case. The bond also locks in the leads so they cannot be pulled out.

NEW ANTENNAS
Finney Co., 4612 St. Clair Ave., Cleveland 3, Ohio, has announced an all-channel double collaroidal antenna designed for fringe area reception. The antenna, the Finco 400-A, has 32 driven elements and weighs 8 pounds.

NEW SPEEDS
Oxford Electric Corp., 391 S. Michigan Ave., Chicago 18, Ill., has announced a 12½-inch permanent-magnet speaker, the model 5ECMS. The unit is a 1½-pound magnet and is an excellent replacement for certain auto sets and other applications.

*Reissue patent 23,273.
NEW DEVICES

TV OUTLET
Blonder-Tongue Laboratories, 526-536 North Ave., Westfield, N. J., has developed a resistor outlet box for providing isolated TV outlets in all types of master-TV systems. The unit, model B0U, will tap off from RG-11U or STR

is designed to conform with the moisture resistance requirements of MIL-C-916.

TAPE RECORDER
RCA Victor Division, Camden, N. J., has announced a portable tape recorder weighing 25 pounds, and measuring 14 x 12 x 9 inches. The recorder operates at 3.5 and 3.75 inches per second and records up to 2 hours of program material. It requires 105-125 volts, 60 cycles a.c. External speaker impedance is 3.5 ohms.

FILAMENT TRANSFORMERS
Merit Coil and Transformer Corp., 6427 N. Clark St., Chicago 31, Ill., has introduced 10 filament transformers for use with selenium rectifier applications.

TV CHASSIS
Tech-Master Products Co., 443 Broadway, New York 3, N. Y., has announced a 600-type television chassis designed for 27- and 30-inch picture tubes, as well as for the new 24-inch rectangular tube. Among the features of the model 2430-9 are 22-kv second-anode voltage, polychrome enclosed a.v. socket, quick-detach flyback autotransformer, full horizontal and vertical sweep, edge-to-edge focus, and the latest 90° far-rite-core cosine yoke.

The self-powered converter covers the 470-805 mc range and features a printed-circuit oscillator, one-knob tuning, and miniature size.

ALL-CHANNEL ANTENNA
Davis Electronics, F.O. Box 1347, Burbank, Calif., announces the new improved Super-Fusion all-channel TV antenna. The new unit is of the same basic design as the previous model, but has increased mechanical strength and bracing to withstand severe wind and weather conditions.

PAPER CAPACITOR
Sangamo Electric Co., Marion, Ill., has developed a new molded paper tubular capacitor—the Telechief—for TV applications. The capacitor uses Humidiflex, a molding compound with high moisture-resistance characteristics, It

AMPHENOL UHF ANTENNAS
a complete line...

Rivaling the quality of the famous VHF INLINE are the new AMPHENOL UHF antennas. These are engineered to meet the many new requirements of UHF reception: high gain, rejection of unwanted signals off the back, broadbanding ability, and specific designs for major signal areas and fringe areas.

AMPHENOL CORNER REFLECTOR
The high ascending gain of the CORNER REFLECTOR and its single forward lobe radiation patterns give assurance of excellent UHF reception, channels 14 to 83, in fringe areas. Precise spacing between the bow tie and the reflector screens contributes to the high gain. The CORNER REFLECTOR, from its V bracing, also has a unique self-locking feature for added strength.

AMPHENOL BO-TY with Reflector
This new antenna has excellent front-to-back ratio, high signal gains and rejects reflected signals off the back and sides. Broadbanded for all-channel UHF reception, the BO-TY has a single forward lobe and has proved itself as an ideal antenna for major signal areas.

AMPHENOL RHOMBIC Because its narrow forward lobe, the RHOMBIC is particularly recommended for areas troubled by reflections. The RHOMBIC has a rapidly rising gain across the entire UHF band, making it another good antenna for fringe areas. It also has a strong braced construction.

AMPHENOL STACKED-V
The STACKED-V is an all-channel VHF-UHF antenna designed primarily for strong signal areas. With excellent gain on UHF and good gain on VHF, it can be set to three different angles between the V's: 90° for UHF only, 90° for VHF only and 75° for both UHF and VHF.

AMPHENOL YAGI
The YAGI is available in 11 custom models for peak performance in specified channels groups. A high-gain antenna, ideal for fringe areas, the YAGI's narrow forward lobe gives excellent directional response.

better TV picture quality
BUILD 15 RADIOS ONLY AT HOME $19.95

With the New Improved 1953 Progressive Radio “EDU-KIT”

NOW INCLUDES SIGNAL TRACER and CODE OSCILLATOR

- FREE TOOLS WITH KIT
- ABSOLUTELY NO KNOWLEDGE OF RADIO NECESSARY
- NO ADDITIONAL PARTS NEEDED
- EXCELLENT BACKGROUND FOR TV
- 10 DAY MONEY-BACK GUARANTEE

WHAT THE PROGRESSIVE RADIO "EDU-KIT" OFFERS YOU

You can learn about almost every phase of Radio by building and studying the new 1953 Progressive Radio "EDU-KIT." The kit is an extremely simple, inexpensive way to get off the ground floor in the field of Radio. Progressive Radio "EDU-KIT" offers you a home study course at a rock bottom rate. It can be used successfully by young and old in any part of the world. It is not necessary that you have any previous knowledge of radio. All parts are identified by name, photograph and diagram. Every step involved in building these sets is carefully explained. You cannot make a mistake.

THE KIT FOR EVERYONE

The Progressive Radio "EDU-KIT" was especially prepared for anyone who has a desire to learn Radio. The Kit has been used successfully by young and old in all parts of the world. It is not necessary that you have ever touched a radio. The Progressive Radio "EDU-KIT" is used by many Radio Schools and Clubs in the country and abroad. It is used by the Veterans Administration for Vocational Training. The Progressive Radio "EDU-KIT" requires no instructor. All instructions are in the kit. It is an individualized course, identified by name, photograph and diagram. Every step involved in building these sets is carefully explained. You cannot make a mistake.

PROGRESSIVE TEACHING METHOD

The Progressive Radio "EDU-KIT" course is complete with instructions. These instructions are fully illustrated, identified by name, photograph and diagram. Every step involved in building these sets is carefully explained. You cannot make a mistake. The Progressive Radio "EDU-KIT" is used by many Radio Schools and Clubs in the country and abroad. It is used by the Veterans Administration for Vocational Training. The Progressive Radio "EDU-KIT" requires no instructor. All instructions are in the kit. It is an individualized course, identified by name, photograph and diagram. Every step involved in building these sets is carefully explained. You cannot make a mistake.

THE PROGRESSIVE RADIO "EDU-KIT" IS COMPLETE

You will receive every part necessary to build 15 different radio sets. Our kits contain tubes, tube sockets, chassis, variable condensers, electrolytic condensers, semiconductor rectifiers, for shock, quit, hardware, sub-assembly. 75% of the parts are individually packaged so that you can easily identify every item. Tools are included, as well as an Electrical and Radio Tester. Complete easy-to-follow instructions are provided. You will receive a signal tracer, a high fidelity oscilloscope, a signal tracer by Dalman, and a signal tracer by Dalman.

TROUBLE-SHOOTING LESSONS

Troubleshooting is included. It will take you to recognize and repair tubes, transistors, tubes, filters, transformers, and other components of the set. Our course in this field is unique. The troubleshooting lessons are written by our own engineers. You will receive a complete manual on how to repair radios.

FREE EXTRAS IN 1953

- ELECTRICAL AND RADIO TESTER - ELECTRIC Soldering IRON - BOOK ON TELEVISION - RADIO TROUBLE-SHOOTING GUIDE - MEMBERSHIP IN RADIO-TELEVISION CLUB - CONSULTATION SERVICE - QUIZZES - TRAINING FOR F.C.C. LICENSE

The Progressive Radio "EDU-KIT" is sold with a 10-day money-back guarantee. Order your Progressive Radio "EDU-KIT" Today, or send for further information.

Progressive Electronics Co.
497 Union Ave., Dept. RE-74, Brooklyn 11, N.Y.

NEW DEVICES

TEST ADAPTERS

CBS-Hytron, Danvers, Mass., is producing twin and 39 pin miniature and 8-pin octal test adapters. All sockets test topside without disturbing wires or parts.

EYE-OPENERS

General Cement Mfg. Co., 916 Taylor Ave., Rockford, Ill., has introduced its Eye-Opener tool which opens the metal box on a TV stand to accommodate larger lead-in lines, and then squares it to its original position to hold the line tight.

WAVE-TRAP METER

Vidaire Electronics Mfg. Co., Lynbrook, N. Y., has developed a wave-trap meter covering the entire 11 and 12 range. An interfering signal reaching the set through either the a.c. or d.c. supply line or the antenna may be trapped by switching in the correct filter number on the Filter Test. Both line and antenna filters may be switched into their respective circuits simultaneously. The indicator then shows the particular filter or wave trap to install. The measure's 5½ x 1½ x 1½ inch and is well shielded to eliminate any interaction between the line and antenna filters and wave traps.

NEW TRANSFORMER

Rom Electronic Sales Co., Irvington-on-Hudson, N. Y., has announced the model X074 horizontal deflection and high voltage output transformer. The unit was designed as an exact duplicate for transformers used in the latest sets manufactured by Arvin, Mallinckrodt, Rayo-Halbert, Packard-Bell RCA, Silverstone, Technofax, and others. The model X074 features rugged, anticorrosion construction, edge-to-edge 70° deflection compactness, and high-efficiency design.

CORNER ENCLOSURE

University Loudspeakers, Inc., 80 S. Kenwood Ave., White Plains, N. Y., has introduced a line of high-fidelity corner enclosures. The speaker is mounted on a baffle board behind a decorative front panel. High power-handling ability and low distortion are achieved by an internal horn arrangement which forms an extended horn with the floor and walls of the room, thereby loading the rear wave. High efficiency is maintained by funneling the horn-loaded rear wave energy through a port which further serves to operate the enclosure as a bass-reflex baffle, boosting the response in the low-frequency spectrum. The enclosure is available in modern, traditional, or provincial styles in a wide variety of wood finishes. It is 37 inches high, 28 inches wide, and 15 inches deep.

UHF CONVERTER

Alliance Mfg. Co., Lake Park Blvd., Alliance, Ohio, has announced a new filterotron system for the X77 converter. It is designed for high gain and low noise, and operates at all standard 60-cycle line voltages. The Convertor has a single tuning control.

ANTENNA INSULATOR

Walter L. Schott Co., 3225 Exposition Place, Los Angeles, Calif., has announced the X-77 insulator for the Waltco corner reflector and Reflecta- tion r.f. antennas. The insulator is hollow and allows the lead-in wire to pass through the center. The manufacturer claims tests show the X-77 is 5 dB efficient.
Superior's Model 600-A NEW A.C. OPERATED SIGNAL GENERATOR

$28.40 NET

A versatile, powerful generator with a frequency range of 10-100 kHz, ideal for radio and television applications. Available in 3, 6, or 12 volt versions. The 12 volt model includes a built-in stabilizer for use in power-supplemented installations. A must for every hobbyist and amateur radio operator. Specifications: 1,500,000 cycles, 300,000 volts, 15,000,000 volts.

Superior's Model 670-A SUPER-METER MILLIAMMETER

$14.90 NET

A combination voltmeter, milliammeter, and milli-ohmmeter, this instrument measures from 0 to 150 volts, 0 to 150 millivolts, and 0 to 100 milli-ohms. It features an adjustable scale for accurate readings and is perfect for laboratory and home use. Specifications: 0-150 volts, 0-150 millivolts, 0-100 milli-ohms.

Superior's Model 770 MILLI-Ohm MILLIAMMETER

$47.90 NET

A precision milli-ohmmeter with a wide range of sensitivity, this instrument is ideal for testing high resistances. It measures from 0 to 9,000,000 ohms and is perfect for electronic and electrical applications. Specifications: 0-9,000,000 ohms.

NO INTEREST!!

Buy on our radically new Time Payment Plan

No Interest!! No Carrying!!

With our new Time Payment Plan, there's no extra interest and no carrying charges. You can purchase your new electronic equipment and pay for it over a period of time without any extra costs. Just complete the attached order blank and return it to us. We'll take care of the rest.

Superior Electronic Company, Inc.

Order Blank

Name:
Address:
City:
State:
Zip:

[space for order details]

Features:
- No extra interest
- No carrying charges
- Easy monthly payments

P.S. - All merchandise is offered on "try before you buy." All merchandise is offered on easy terms at the bank. If the item you order does not meet with your approval, you may return it, no explanation necessary.
Compare... prove EMC superiority

model 102

- **(10,000 ohms per volt meter)**
- *SQUARE METER • 3 AC CURRENT RANGE: 0-30/150/600 mA*
- Same zero adjustment for both resistance ranges (0-1000 ohms, 0.1 megs)
- Voltage ranges to 3,000 volts
- Also 4 DC Current Ranges

$14.90

model 103

- **(10,000 ohms per volt meter)**
- *SQUARE METER • 3 AC CURRENT RANGE: 0-30/150/600 mA*
- Same zero adjustment for both resistance ranges (0-1000 ohms, 0.1 megs)
- Same ranges as Model 102
- Also 3 DB Ranges
- Model 103-S with plastic carrying strap

$18.75

$19.25

model 104

- **(20,000 ohms per volt meter)**
- *4 1/2" SQUARE METER (50 microamperes-Amico magnet)*
- Includes carrying strap
- 5 DC Voltage Ranges at 20,000 ohms volt to 3,000 V, 5 AC Voltage Ranges to 3,000 V
- 2 Resistance Ranges to 20 megs
- Also 3 AC & DC Current Ranges

$26.95

HVT 30,000 Volt Probe for Model 104

$7.95

— See them at your Jobbers —

EMC

ELECTRONIC MEASUREMENTS CORPORATION
280 LAFAYETTE STREET • NEW YORK 12, N.Y.

EXPORT DEPARTMENT 126 LIBERTY STREET, N.Y.C. 5, N.Y.

NEW DEVICES

25-WATT AMPLIFIER

Bell Sound Systems, Inc., 555 Marion Road, Columbus, Ohio, has announced an 8-tube P.A. amplifier with a power output of 25 watts at less than 5 percent distortion. It has a peak power output of 33 watts. The unit’s frequency response is 30 to 18,000 cycles ± 2 db. The model 3725-B has provision for 3 microphone inputs and 3 phonograph input. The input impedance for the microphone channels is 3 megs, for the phone channel 50,000 ohms. Output impedances are 2 5, 6, 8, 16, 750 and 600 ohms and there is also a 70-volt tap for constant-voltage systems. Power consumption is 152 watts on operation from a 117-volt, 50–60-cycle line. The amplifier measures 11 1/2 x 8 x 16 3/4 inches and has a shipping weight of 34 pounds.

NUT STARTER

Aviation Service Supply Co., Denver, Colo., has introduced a tool to start small nuts and screws in hard-to-reach places. It has a special lever mechanism in the handle which controls the moveable blades and adjusts them for gripping all standard nut sizes. The tool has a lightweight aluminum handle and body and blades of drill rod steel. It accommodates nuts from No. 6 to 1/4-inch and screws from No. 4 to No. 10.

UHF ANTENNA

Intex Corp., 3802 35th Ave., Long Island City, N.Y., has introduced a bow-tie antenna for channels 14 to 83 the Tri-Fon. The antenna, which uses a rectangular reflector screen, is bakelite-insulated. It measures 17 1/2 inches and the reflector is 20 x 11 inches.

All specifications given on these pages are from manufacturers’ data.

A new high in science fiction!

October Issue

SCIENCE-FICTION PLUS

On sale August 12

See the first astronautically accurate color close-up of the sun! Read what happened when the earth stopped! You’ll find these and many other challenging stories and articles in the October issue of SCIENCE-FICTION PLUS. Reserve a copy at your newsstand now.

Remember—don’t say science fiction

SAY SCIENCE-FICTION PLUS!

RADIO-ELECTRONICS
THE RESISTANCE ELEMENTS in RCA Lightning Arresters are made of a remarkable, new conductive rubber that is noncorrosive and impervious to moisture...to provide lasting protection to TV and FM installations. Cap covers contacts. Losses are negligible even under extremely tough weather conditions.

Just mount, unscrew cap, insert transmission line in slit, and replace cap. It's as easy as that. Type 214X1 for indoors, type 215X1 for outdoors. Both are listed by Underwriter Laboratories, Inc.

See Your RCA Parts Distributor for "the best lightning arrester to come down the line."
Last month (July), the Help-Freddie-Walk Fund started on its fourth year of service to little Freddie Thomason. Organized in July, 1950, to help Freddie, the five-year-old son of Herschel Thomason, radio technician of Magnolia, Arkansas, the Fund has forwarded over $10,700 to the Thomasons during the three years of its existence. Freddie, as most of our readers know, was born without arms or legs, and it is mainly through the contributions of hundreds of interested and encouraging people that he has been able to make the progress he has.

As his father recently wrote us: "The RADIO-ELECTRONICS Fund is continuing to grow. In fact, it is the biggest source of income for the Trust Fund, and we are very thankful for every penny of it. "Freddie and his mother returned from the Institute (Kessler Institute for Rehabilitation, West Orange, New Jersey) a few days ago and she reports his progress was very good while they were there. They made some adjustments on his legs, and Dr. Kessler said they would probably start working on his arms next Spring. He will also have to have new legs again this Fall."

"As you can see, the expense never stops, and that is why we are so very thankful for your efforts in raising money for him. Without it we could do nothing, for the expense would be far beyond our means."

In these days of high prices and rising costs, we here working closely with Freddie and his family realize only too well how difficult it is to spare funds for contribution purposes. That's why we like to emphasize the fact that NO donation, no matter how small it may seem to the donor, is too small. Every penny helps, for pennies add up to dollars and dollars add up to Freddie's chance for a normal and constructive life.

Won't you send in your contribution as soon and as often as possible? No amount is too small to receive our sincere thanks and acknowledgment, as well as the grateful appreciation of all the Thomasons. Make all checks, money orders, etc., payable to Herschel Thomason. Address all letters to:

HELP-FREDDIE WALK FUND

25 West Broadway
New York 7, New York

FAMILY CIRCLE CONTRIBUTIONS
Balance as of May 19, 1953 $ 602.50
FAMILY CIRCLE Contributions as of June 18, 1953 $ 602.50

RADIO-ELECTRONICS CONTRIBUTIONS
Balance as of May 19, 1953 $10,100.09
A Friend, Gahanna, Ohio 1.00
Jerry M. Pelton, Rock Falls, Illinois 10.00
IRON-COATED SOLDER TIPS

Soldering coppers dug up from the ruins of ancient Roman cities show that the technique of soldering—and even the shapes of the tools themselves—have changed very little in more than 2,000 years. Even though we now have an infinite variety of sizes and tips to do all the special jobs that modern industry has created, and heat our irons with electricity instead of in crude charcoal burners, we still use the same basic elements—tin, lead, and copper.

And, although we now have all kinds of special fluxes, and know exactly the right temperature to use for each type of soldering job, we haven't been able to change the basic law of physics that makes tin and copper unite in a soft, spongy mass (amalgamate) under the combined forces of heat and pressure.

But we do know at least one way to prevent amalgamation: Coat the soldering surface of the copper tip with pure iron. This plating process has been used for a number of years on tips for high-temperature, continuous-duty irons. Recently, the American Electrical Heater Company of Detroit, which makes "American Beauty" irons, announced an improved method of applying the iron coating that extends the life of tips in production-line service by as much as 100 hours.

This process deposits a coating of commercially pure electrolytic iron over a 2-inch length of the copper tip. The tip is then given special treatment to prevent oxidation and corrosion. END

Radio Thirty-Five Years Ago
In Gernsback Publications

Hugo Gernsback
Founder

Modern Electrics—1908
Wireless Association of America—1908
Electrical Experimenter—1913
Radio News—1913
Radio Invention—1920
Television—1927
Radio Craft—1929
Short-Wave Craft—1929
Television News—1953

Some of the larger libraries still have copies of ELECTRICAL EXPERIMENTER on file for interested readers.

AUGUST 1919

ELECTRICAL EXPERIMENTER

How I Invented the Crystal Detector, by Greenleaf Whittier Pickard
Radio-Planes Watch Forests and Ranches
Radio Shell Locator for French Farmers
Airplane Antenna Reels, by Lester F. Ryan
A Review of Radio-Telephony
American Radio-Telephone Apparatus Concentrated or Loop Aerials, by Prof. Lloyd M. Knoll, A.M.

AUGUST, 1953
A change of dx seasons is due in August. Sporadic-E skip, already beginning to dwindle in the latter part of July, will disappear almost completely for several months, after about the first week in August. This does not mean, however, that there will be no more of interest for the TV dx-er.

As has been the case all through the summer, fringe-area reception will continue generally good, and in the latter part of August there will be periods when signal levels from stations 100 miles or more away will reach phenomenal levels. Such reception will be steady, too, with little of the rapid in-and-out fading that characterizes the sporadic-E dx.

Reception on the high channels will show more improvement than on the lower ones during such periods of good tropospheric propagation, and even the v.h.f. channels will bear watching. Peak signal levels should occur in the early morning hours, the period around sunrise, and in the late evening. Reception of low-band stations by tropospheric propagation is not likely to be possible over distances in excess of 250 to 300 miles, but the same weather conditions may bring in high-band signals from 700 miles or more on rare occasions. Increases in signal level may be noted on stations as near as 25 miles, in the v.h.f. range, and u.h.f. stations just a few miles away may show signal strength variations because of purely local changes in the weather conditions.

For some months now we've been asking for u.h.f. dx reports, and this month we have several. They are not "dx" as we think of it on the v.h.f. channels, but they do represent unusual reception for u.h.f., and consequently are of interest at this time. Observer Peters of South Orange, N. J., received WICC, Bridgeport, Conn. (43), and WFPQ, Atlantic City (46), about 65 and 95 miles away respectively. These signals were received at levels from very weak to fair, on a night when v.h.f. reception was not up to normal. He uses a Mallory 101 converter and a corner-reflector array.

From Holland, Mich., observer Wies- kamp reports reception of WSBT, South Bend, Ind. (34), over a distance of 85 miles, on a Regency converter and an All-Channel antenna. The signal was weak, but he regards it as a tip-off that some fun is to be expected from TV dx-ing on the ultra-highs as well as in the v.h.f. range.

A v.h.f. dx-er from way back, Lou Matullo, Washington, Pa., is receiving two Youngstown stations, WKN (27) and WFMJ (75), and WKST, New Castle, Pa. (45), at 77 and 74 miles, respectively. Lou observes that strong u.h.f. signals often appear when v.h.f. conditions are poor. We'll have more to say about this another time.

The prize u.h.f. dx so far reported comes from Burlington, N. C., where Nelson Teal has logged WROV, Roanoke, Va., 120 miles, on channel 27. Sound quality was good and picture fair, though WROV is operating on temporary low power.
HIGH-GAIN VERTICAL ANTENNA

I have been using a quarter-wave vertical whip for receiving signals in the 150-170 mc band. Since this type does not supply enough gain, I switched to a Yagi with the elements oriented vertically for vertical polarization. This works out only when I rotate it so that it points directly at the fixed stations in the net. Is there any type of omnidirectional antenna that will supply more signal than a quarter-wave whip?—E. S. T., Bronx, N.Y.

A. Probably the most practical antenna for your purpose is a vertical collinear array with three or more elements. The diagram shows a 3-element collinear array. The half-wave elements are separated by quarter-wavelength shorted stubs. The middle half-wave element is fed in the center with a transmission line having an impedance of 300 to 450 ohms. The gain of the 3-element array is approximately 3 db.

Gain of the array can be increased by adding half-wavelength elements. The increase is about 1 db for each element added. The array should be fed at the center. The impedance at the feed point is approximately 100 times the number of half-wavelength elements.

The physical length of the end half-wave elements may be found by dividing 5,016 by the frequency. The length of the inside elements is found by dividing 5,760 by the frequency and the length of the quarter-wavelength phasing sections (shorted stubs) is found by dividing 2,676 by the frequency. The frequency is in megacycles and the length is in inches.

If the antenna elements and phasing sections are made from rigid rods or tubing, the array can be supported by fastening the cold (shorted) ends of the phasing stubs to the mast. The antenna may be mounted on a metal mast which may be grounded for protection against lightning.

When using the antenna for transmitting, use a standing-wave ratio bridge or an AntennaScope, and tune the transmission line or vary its impedance for a minimum standing-wave ratio on the transmission line.

CRYSTAL PICKUP EQUALIZER

I have a phono amplifier designed for a crystal pickup. I've tried several different types of cartridges and none of them sound just right. The amplifier has a tone control but does not provide pickup equalization. I connect the...
This TECHNICAL INDEX is one reason you need this 28-page volume!

IT'S THE University TECHNILOG

The new 1959 compilation of valuable information that explains and simplifies the application of loudspeakers. A real time and money saver for dealers, contractors, service men and installation designers. The most authoritative, single piece of literature ever published on loudspeakers. It's yours FREE.

TECHNICAL INDEX

SELECTING THE PROPER LOUDSPEAKER SYSTEM

METHODS OF CONNECTING SPEAKERS TO THE AMPLIFIER

IMPEEDANCE MATCHING

CONSTANT VOLTAGE DISTRIBUTION SYSTEM

IMPEEDANCE MATCHING TRANSFORMERS

EFFECTS OF MISMATCH UPON POWER TRANSFER

CONTROLLING LOUDSPEAKER VOLUME

OVERLOAD PROTECTION OF LOUDSPEAKERS

PHASING LOUDSPEAKERS

REVERBERATION

BAFFLING A CONE SPEAKER

ADDRESS REQUESTS TO YOUR DISTRIBUTOR

UNIVERSITY LOUDSPEAKERS, INC.
80 SO. KENSICO AVE., WHITE PLAINS, NEW YORK

MONEY MAKERS

FOR MOBILE-RADIO SERVICE ENGINEERS!

In this profitable, rapidly expanding field, be sure your frequency- and modulation-test equipment is LAMPKIN, with continuous coverage! Don't be limited to just a few frequency channels!

The Type 105-B MFM. For Any Number of Frequencies, AM or FM

The Type 105-B Micrometer Frequency Meter, or MFM, measures center-frequency on any number of nearby transmitters, AM or FM, 0.1 MC. to 175 MC. Performs as signal generator for mobile receivers, 20 MC. up. Meets FCC requirements for mobile services, with accuracy guaranteed better than 0.0025%. Can be checked against WWV. Price $220.00 net.

The Type 205 FM Modulation Meter For Multiple Mobile Frequencies.

Instantly tunable anywhere, 25 MC. to 200 MC., the Type 205 measures maximum FM deviation due to modulation, as required by the FCC. Indicates 0-25 KC. deviation. Simple to use, easy to carry. No charts or tables. Price $240.00 net.

Send name and address for literature.

LAMPKIN LABORATORIES, INC.
METER DIVISION
BRADENTON, FLORIDA

QUESTION BOX

The equalizer should be connected between the output of the crystal and the input to the amplifier. The correct values may be determined by trial-and-error. When the correct values have been determined, the components can be mounted on lugs under the turntable or on a terminal strip and connected at some point in series with the pickup lead to the amplifier. The network should be shielded to prevent hum pickup.

BOOSTER FOR POLICE RADIO?

I have a 6-tube a.c.-d.c. 152-173-mc receiver for police and emergency services. I have to run the volume wide open to get a readable signal. I've tried resonant whips and vertical dipoles without any improvement in reception. Will a booster improve the signal? If so, please print a diagram of a booster that I can build.—H. G. S., Detroit, Mich.

A. The diagram shows a neutralized push-pull r.f. amplifier similar to the circuit used in many TV boosters. Tuning capacitors C1 and C2 use butterfly-type variables having a maximum capacitance of about 8 µµf and the lowest possible minimum capacitance. E. F. Johnson type SMBI1 capacitors or equivalents may be used. The neutralizing capacitors C, are 0.5-3-µµf tubular ceramic trimmers.

Tuned windings of L1 and L2 consist of 8 turns of No. 18 enameled wire, wound in two sections of 3½ turns each. The coil sections are ¾ inch in diameter and spaced ½ inch apart with a tap in the center. The antenna-input and output link windings are 3 turns of
Holds the Screw!
Drives it too!
Unconditionally Guaranteed
Quick-Wedge
SCREW-HOLDING SCREWDRIVER
Ask for it at your Dealer
Kedman Co., 233 S. 5 W., Salt Lake City, Utah

TELEVISION
Big demand for graduates
B.S. DEGREE IN 27 MONTHS in radio including TV engineering—VHF, UHF, AM and FM. Students use over $100,000 worth of equipment including 2 large commercial type transmitters in new TV lab. Intensive specialized course includes strong basis in mathematics, science and advanced design in radio and TV.
Hundreds of young men each year are earning engineering degrees in this recognized institution. Start any quarter. Many earn a major part of expenses in this industrial center. Low tuition. Competent instruction. Through, intense, practical program. Also B.S. DEGREE IN 27 MO. in Aeronautical, Chemical, Civil, Electrical and Mechanical Engineering. G.I. Gov't approved. Enter Sept., Dec., March, June. Free catalog. ENROLL NOW.

INDIANA TECHNICAL COLLEGE
1703 E. Washington Blvd., Fort Wayne 2, Indiana

ENJOY 3 COLOR TELEVISION
FILTER SCREEN NOW
Changes dull eye-straining black-white pictures into beautiful color tones. Second to attack. Send $1.50 for 16" or under, $2 sizes 17", $2.50 size 20", $3 size 21". 54.00 size 24". Many back orders if not delighted.
Zingo Products, Johnstown 13, New York

TOP TUBE BUYS
70% to 90% off list!

The Secret is in the Lips!
the only lightning arresters with the strain relief lips are made by JFD. A patent is its proof!

JFD MANUFACTURING CO., INC. BROOKLYN 4, N. Y.

“Little Giant” LIGHTNING ARRESTER
for flat and oval jumbo twin lead
No. AT105(with hardware for wall or window sill mounting) $1.25 list
No. AT105S(with stainless steel strap for universal mounting) $1.50 list

Another RAD-TEL Extra!
ASSORTED RESISTORS $1.39
Carbon, Wire Wound, Carbon Film, Standard EMA Color Code or Value
Printed, Uninsulated Type. 1/2 Watt, 1 Watt, 2 Watt and Some 10 Watt, Very Few Duplications, or Odd Values.

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6AG5</td>
<td>.43</td>
<td>6AG6</td>
<td>.45</td>
<td>6AG7</td>
<td>.47</td>
</tr>
<tr>
<td>6AG8</td>
<td>.49</td>
<td>6AG9</td>
<td>.51</td>
<td>6AG10</td>
<td>.53</td>
</tr>
<tr>
<td>6AG11</td>
<td>.55</td>
<td>6AG12</td>
<td>.57</td>
<td>6AG13</td>
<td>.59</td>
</tr>
<tr>
<td>6AG14</td>
<td>.61</td>
<td>6AG15</td>
<td>.63</td>
<td>6AG16</td>
<td>.65</td>
</tr>
<tr>
<td>6AG17</td>
<td>.67</td>
<td>6AG18</td>
<td>.69</td>
<td>6AG19</td>
<td>.71</td>
</tr>
<tr>
<td>6AG20</td>
<td>.73</td>
<td>6AG21</td>
<td>.75</td>
<td>6AG22</td>
<td>.77</td>
</tr>
<tr>
<td>6AG23</td>
<td>.79</td>
<td>6AG24</td>
<td>.81</td>
<td>6AG25</td>
<td>.83</td>
</tr>
<tr>
<td>6AG26</td>
<td>.85</td>
<td>6AG27</td>
<td>.87</td>
<td>6AG28</td>
<td>.89</td>
</tr>
<tr>
<td>6AG29</td>
<td>.91</td>
<td>6AG30</td>
<td>.93</td>
<td>6AG31</td>
<td>.95</td>
</tr>
<tr>
<td>6AG32</td>
<td>.97</td>
<td>6AG33</td>
<td>.99</td>
<td>6AG34</td>
<td>1.01</td>
</tr>
<tr>
<td>6AG35</td>
<td>1.03</td>
<td>6AG36</td>
<td>1.05</td>
<td>6AG37</td>
<td>1.07</td>
</tr>
<tr>
<td>6AG38</td>
<td>1.09</td>
<td>6AG39</td>
<td>1.11</td>
<td>6AG40</td>
<td>1.13</td>
</tr>
<tr>
<td>6AG41</td>
<td>1.15</td>
<td>6AG42</td>
<td>1.17</td>
<td>6AG43</td>
<td>1.19</td>
</tr>
<tr>
<td>6AG44</td>
<td>1.21</td>
<td>6AG45</td>
<td>1.23</td>
<td>6AG46</td>
<td>1.25</td>
</tr>
<tr>
<td>6AG47</td>
<td>1.27</td>
<td>6AG48</td>
<td>1.29</td>
<td>6AG49</td>
<td>1.31</td>
</tr>
<tr>
<td>6AG50</td>
<td>1.33</td>
<td>6AG51</td>
<td>1.35</td>
<td>6AG52</td>
<td>1.37</td>
</tr>
<tr>
<td>6AG53</td>
<td>1.39</td>
<td>6AG54</td>
<td>1.41</td>
<td>6AG55</td>
<td>1.43</td>
</tr>
<tr>
<td>6AG56</td>
<td>1.45</td>
<td>6AG57</td>
<td>1.47</td>
<td>6AG58</td>
<td>1.49</td>
</tr>
<tr>
<td>6AG59</td>
<td>1.51</td>
<td>6AG60</td>
<td>1.53</td>
<td>6AG61</td>
<td>1.55</td>
</tr>
<tr>
<td>6AG62</td>
<td>1.57</td>
<td>6AG63</td>
<td>1.59</td>
<td>6AG64</td>
<td>1.61</td>
</tr>
<tr>
<td>6AG65</td>
<td>1.63</td>
<td>6AG66</td>
<td>1.65</td>
<td>6AG67</td>
<td>1.67</td>
</tr>
<tr>
<td>6AG68</td>
<td>1.69</td>
<td>6AG69</td>
<td>1.71</td>
<td>6AG70</td>
<td>1.73</td>
</tr>
<tr>
<td>6AG71</td>
<td>1.75</td>
<td>6AG72</td>
<td>1.77</td>
<td>6AG73</td>
<td>1.79</td>
</tr>
<tr>
<td>6AG74</td>
<td>1.81</td>
<td>6AG75</td>
<td>1.83</td>
<td>6AG76</td>
<td>1.85</td>
</tr>
<tr>
<td>6AG77</td>
<td>1.87</td>
<td>6AG78</td>
<td>1.89</td>
<td>6AG79</td>
<td>1.91</td>
</tr>
<tr>
<td>6AG80</td>
<td>1.93</td>
<td>6AG81</td>
<td>1.95</td>
<td>6AG82</td>
<td>1.97</td>
</tr>
<tr>
<td>6AG83</td>
<td>1.99</td>
<td>6AG84</td>
<td>2.01</td>
<td>6AG85</td>
<td>2.03</td>
</tr>
<tr>
<td>6AG86</td>
<td>2.05</td>
<td>6AG87</td>
<td>2.07</td>
<td>6AG88</td>
<td>2.09</td>
</tr>
<tr>
<td>6AG89</td>
<td>2.11</td>
<td>6AG90</td>
<td>2.13</td>
<td>6AG91</td>
<td>2.15</td>
</tr>
<tr>
<td>6AG92</td>
<td>2.17</td>
<td>6AG93</td>
<td>2.19</td>
<td>6AG94</td>
<td>2.21</td>
</tr>
<tr>
<td>6AG95</td>
<td>2.23</td>
<td>6AG96</td>
<td>2.25</td>
<td>6AG97</td>
<td>2.27</td>
</tr>
<tr>
<td>6AG98</td>
<td>2.29</td>
<td>6AG99</td>
<td>2.31</td>
<td>6AG100</td>
<td>2.33</td>
</tr>
</tbody>
</table>

Terms: A 25% deposit must accompany all orders—balance C.O.D. All shipments, F.O.B. Irvington warehouse. Orders under $10—$100 Handling Charge Subject to prior sale. Don't Delay . . . Order Today!

RAD-TEL TUBE CO.
Phone: Essex 5-2947
Dept. RE-9

115 Colt Street
IRVINGTON 11, N. J.
WEATHERIZED...STURDY and Available from your local jobber!

STRENGTH WIND LIGHTNING

IT'S HERE! The NEW IMPROVED

DAVIS SUPER-VISION

ALL-CHANNEL TELEVISION ANTENNA For FRINGE AREA and DX

Brings in the Signals STRONG and CLEAR up to 125 Miles and More Away from the Station

The NEW DAVIS SUPER-VISION has been WIND-TESTED and WEATHERIZED...STURDY BUILT and STRENGTH-INCREASED so it will stand the gaff in any part of the country

RMS

LIGHTNING ARRESTORS

ALL Completely UNIVERSAL! for twin, tubular lead and open line
ALL UL APPROVED! for indoor and outdoor ALL QUICK-MOUNTING!

Available from your local jobber!

RMS

2016 BRONXDALE AVENUE
NEW YORK 60, N. Y.

For UHF model LA-U83
$1.48 list

for VHF and UHF JUMBO model LA-4
Porcelain body with ground lug, pipe strap...plus 4 ft. ground wire.
$1.65 list

RMS ELECTRONICS

TRADE MARK REG.

AT YOUR JOBBERS, or MAIL COUPON TO:

DAVIS ELECTRONICS 1-38
BOX 1247, Burbank, California

SHRIST: Rush information to me as checked:
☐ Send Complete Information and Technical Data on New SUPER-VISION ANTENNA.
☐ Send Name and Address of NEAREST JOBBER.

Name:
Street:
City State

QUESTION BOX

No. 18 wire, wound to a diameter of 7/8 inch and spaced to 7/4 inch. These links are inserted between the halves of the tuned windings.

To adjust the booster, connect it to a resonant antenna and the receiver with 300-ohm ribbon. Tune in a signal near the center of the band. (Squeeze or spread the turns on L1 and L2 so the signal comes in with C1 and C2 about half open.) Insert an iron tuning slug into the core of the tuned grid winding. If the signal increases, the inductance of the coil is too low. Decrease the spacing between the individual turns and between the halves of the coil. If still more inductance is needed, add about one turn to each half of the coil.

A decrease in signal strength when the powdered-iron slug is inserted indicates too much inductance in the coil. Spread the turns apart. Repeat the operation on the plate coil.

To neutralize the booster, disconnect the antenna and substitute a 300-ohm resistor across the booster input terminals. Turn up the volume on the receiver and adjust the neutralizing capacitors for minimum noise.

AMPLIFIER OUTPUT FOR TV SET

I have an RCA 6771 TV receiver which I want to feed into a Williamson amplifier. I planned to disconnect the first a.f. amplifier but am afraid to do so because this tube is also used as the a.g.c. clamp. Is there any simple way of quickly connecting and disconnecting the external amplifier without making extensive alterations in the set or amplifier?—W. W., Middleboro, Mass.

A. If you don't plan to play records through the TV set, you can rewire the TV-PHONO switch so that the output of the discriminator may be connected to the phone input jack on the back of the TV chassis.

Fig. 1—Original phono-switch wiring.

Fig. 1 shows the original wiring of the TV-PHONO switch and Fig. 2 shows how the wiring may be modified. When the switch is rewired as in Fig. 2, the TV set plays through its own amplifier when the switch is in the TV position and plays through the external amplifier when the switch is turned to PHONO. The TV set can be connected to the amplifier input with a shielded lead fitted with a pin-tip phono plug. Keep this lead as short as possible to prevent high-frequency losses.

END
POLARITY OF YOKE LEADS

When the colors of the leads on a replacement yoke do not match the old ones, the odds are 3 to 1 that you'll make a wrong connection and get a reversed picture. But if the old windings are not entirely open, there's a simple way to match polarities and get the picture right on the first try.

Place the two yokes side by side, winding top in the same angular position. Lay a narrow strip of cardboard across the coils and on top of this place a small compass—the cheapest kind will do. Now apply a low d.c. voltage to the old horizontal coils. Use one or two flashlight cells or the leads of your ohmmeter on a low range. The compass needle will align itself across the horizontal coils. The N-pole will point to one coil or the other. Note which one. Note polarity of battery leads as related to color of yoke leads, such as "positive on red lead."

Then test the new yoke the same way. Proper lead polarity is indicated when the same direction of applied d.c. gives the same relative deflection of the compass needle.

Check the vertical coils in the same manner.

It is wise to tabulate the results, somewhat as follows:

HORIZONTAL
- Old
- New
- Red Blue
- Red-Black Red

VERTICAL
- Old
- New
- Green Brown
- Yellow Green

Then put back the marked new leads where the old ones came from, and there's your picture, right side up and reading left to right.—Nicholas B. Cook

PHILCO 46-1201

Intermittent loss of sensitivity so only local stations are received after a few hours of operation is a fairly common complaint on early production runs of this receiver.

The most common cause of this trouble is a defective second i.f. transformer. Check to see if it is marked with a blue dot. If not, it is one that was manufactured improperly.

Replace it with the manufacturer's replacement or one of equivalent quality.—John Flint

RCA MODEL 45E3 AMPLIFIER

Hum or noisy operation may be a complaint in the 45E3 amplifier. This may be caused by electrolyte leaking out of the filter capacitor and flowing between the contacts on the socket of the output tube, a 50C5, 50LG6-GT, or 25LG6-GT. Spillage from the capacitor will develop a leakage path between the contacts and cause hum in the output. It also corrodes the contacts and produces noise.

If there is evidence of electrolyte leakage on the socket, replace it and then reposition the capacitor to prevent a recurrence of the trouble. The capacitor is repositioned by sliding it through...
to

ELECTRO-MECHANICAL

ENGINEERS

and

DESIGNERS

with experience in

SMALL

PRECISION

DEVICES

Hughes Research and Development Laboratories

One of the nation's leading electronics organizations, are now creating a number of new openings for qualified electro-mechanical engineers and designers in important phases of its operations.

Hughes

Research

and Development Laboratories

The Company

The Hughes Laboratories, located in Southern California, are presently engaged in the development and production of advanced radar devices, electronic computers and guided missiles.

The Opportunities

Opportunities are offered for men who will perform interesting work on development of intricate new devices in close association with outstanding scientists. Activities embrace a variety of challenging problems which require originality and afford unusual possibilities of progress in learning.

Fields of Work

The work includes such fields as those involving Servo Mechanisms, Computers, Microwave Tubes, Pulse Circuity, Solid-State Physics, Miniaturization, Antennas—Waveguides, Heat Transfer, Hydraulics—Gyros, Test Equipment, Subminiaturization, Stress Analysis, Instrumentation, Structures, and Precision Production Mechanisms.

Your Future

Working experience in advanced techniques employing the above fields will increase your value to the Company as it further expands in development of electronic mechanical devices. Large-scale use of electronically controlled systems in business and industry is a certainty within the next few years.

Hughes

Research

and Development Laboratories

Scientific and Engineering Staff

.Write today to address at left, giving details of qualifications and experience. Assurance is required that any relocation of an applicant will not cause disruption of an urgent military project.

train at home for UHF-TV and

Television

Servicing

Learn practical, professional type TV Servicing without leaving your present job. Included are money-making sections such as set conversion, master antenna installation, UHF-TV, and servicing short cuts. You can start earning thousands more money after first few lessons. You learn to test, trouble shoot and repair all types of TV sets.

Here's how you get experience!

You train on a large screen, modern TV receiver furnished with the course and yours to keep! As an optional feature you can get two weeks actual experience with Chicago's largest independent servicing organization. You learn by doing! And no experience necessary! Many students are over 18! ACT NOW! Send for FREE Catalog and SAMPLE LESSON today!

TV Communications Inst.

205 W. Wacker Dr., Dept. RE-20

Chicago 6, Ill.

Rush FREE Catalog and Sample Lesson, I am not obligated. Salesman will not call.

NAME ___________________________

Address ___________________________

CITY __________________ STATE ______

Check here for Pre-TV Radio Course.

Radio-Electronics

RCA

Radio Phono Television Service Tips

SCOTT MODEL 16A-C TV SET

Corona and arcing are fairly common complaints on this model. Arcing between the tube pins and the corona ring on the 1B3-GT can be prevented by wrapping the corona ring with Scotch No. 33 tape at the points where arcs burns are observed.

Airing at the point where leads to the high-voltage transformer come through the chassis can be prevented by taping the lead where the arc occurs and then placing a folded ring of tape in the hole to serve as a grommet.

Arcing between the 1B3-GT plate and the top of the high-voltage cage can be eliminated by bulging out the metal cage to provide more clearance between it and the plate cap of the tube.

Corona discharge may occur from any sharp point on a soldered connection or from a sharp bend in a high-voltage lead. This can be eliminated by rounding off all sharp points on soldered joints with a soldering iron and applying anticonora dope. Dress high-voltage leads to avoid sharp bends and to increase spacing between the lead and grounded components.—R. P. Balin

Admiral TV Tube Replacements

Tung-Sol or Admiral 6U8 tubes are recommended for vertical oscillator and third i.f. amplifier replacements in the Admiral series 19 chassis. The vertical oscillator circuit is critical and some 6U8's may not work satisfactorily in this application. A weak 6U8 may cause insufficient height. Admiral-branded 6AX4's made by Hytron and Sylvania (identified by RTMA numbers 210 and 312, respectively) have shown a high rate of failure and are no longer being used in production. Hytron 6AX4's coded 243 or later are improved types which may be used.—Admiral Radio & Television Service Bulletin

Check the Meters, Too!

When servicing electronic equipment it is easy to fall into the habit of taking readings of built-in meters at their face values. This can waste a lot of time in unnecessary trouble-shooting.

If the equipment has seen hard service, the meters may be open or inaccurate because of corrosion or misuse. They will then indicate trouble where none exists or else reading that you by failing to indicate the correct symptoms which would give you a clue to the basic fault.

It's best to substitute temporarily your own multimeter. Be certain that you are obtaining the correct readings. This, of course, assumes that your own instrument is in good shape. Is it?—Y. O. Johnson

RADIO-ELECTRONICS
Raymond C. Cosgrove succeeded William A. Ready who retired, as chairman of the Board of Directors of the NATIONAL Co., Malden, Mass. Mr. Cosgrove was formerly executive vice-president of Avo Manufacturing Co. and president of the RTMA.

Addison Holton, president of Essex Wire Corp., was elected president of the newly formed CHICAGO STANDARD TRANSFORMER CORP. (see "Radio Business"). Other officers include: Arnie Helgason, vice-president; J. J. Kahn, vice-president; L. S. Racine, vice-president; W. F. Probst, treasurer; and M. A. Roesler, treasurer.

W. Walter Watts was elected vice-president in charge of the Technical Products Department of the RCA Victor Division. He assumes the position formerly held by L. W. Teegarden who was elected executive vice-president of the RADIO CORPORATION OF AMERICA last February. Theodore A. Smith, previously assistant manager of the Engineering Products Department, succeeds Mr. Watts as vice-president in charge of the Engineering Products Department.

Dr. Constantin S. Szegho was appointed vice-president in charge of research of the RAULAND CORP., Chicago. He had been serving as director of research.

Webster E. Barth joined LaPointe ELECTRONICS INC., Rockville, Conn., as general sales manager. He will coordinate the sales efforts of all the company's divisions, including Vee-D-X TV antennas and accessories, Press Wireless electronic devices and equipment, and the newly created Fiberglas operation. Mr. Barth was formerly a sales executive with Reynolds Metals Co.

H. H. Seay, Jr., vice-president and general sales manager of BELL SOUND SYSTEMS, Columbus, Ohio, was elected to the Board of Directors. R. E. Grace, assistant secretary, also was elected a director. Re-elected directors include: F. W. Bell, chairman; E. W. Hosler and Tom L. Wheeler, Jr. All corporate officers were re-elected, including F. W. Bell, president; H. H. Seay, Jr., vice-president, George H. Chamblin, secretary, and R. E. Grace, assistant secretary.

Model US-201

List $3.95

IT'S A REAL BO-NANZA!

New RADELCO UHF "BO-NANZA" Antenna Offers You a Bonanza in UHF Profits!

The new Radelco Bo-nanza US-201 UHF Antenna is of aluminum, all metallic construction with no plastic insulators to absorb moisture and weaken the signal. Works equally well in both wet and dry weather. It is shipped pre-assembled and is very light in weight. Performance characteristics are equal to or better than those of any other bow-tie reflector type antenna. Its compact size and high gain make it ideal for locations which have UHF service only. Attractively priced!

Model US-201
- Single stack, less mast
- List $3.95

Model US-202
- Double stack with Q-bars
- List $8.25

PAY LESS FOR TUBES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>12AT7</td>
<td>.80</td>
<td>6AK5</td>
<td>.50</td>
<td>6545</td>
<td>.50</td>
</tr>
<tr>
<td>12AT8</td>
<td>.80</td>
<td>6A88</td>
<td>.50</td>
<td>6546</td>
<td>.50</td>
</tr>
<tr>
<td>12AV7</td>
<td>.80</td>
<td>6A89</td>
<td>.50</td>
<td>6547</td>
<td>.50</td>
</tr>
<tr>
<td>12AX7</td>
<td>.80</td>
<td>6A90</td>
<td>.50</td>
<td>6548</td>
<td>.50</td>
</tr>
<tr>
<td>12AX8</td>
<td>.80</td>
<td>6A91</td>
<td>.50</td>
<td>6549</td>
<td>.50</td>
</tr>
<tr>
<td>12AX9</td>
<td>.80</td>
<td>6A92</td>
<td>.50</td>
<td>6550</td>
<td>.50</td>
</tr>
<tr>
<td>12AX6</td>
<td>.80</td>
<td>6A93</td>
<td>.50</td>
<td>6551</td>
<td>.50</td>
</tr>
<tr>
<td>12AX5</td>
<td>.80</td>
<td>6A94</td>
<td>.50</td>
<td>6552</td>
<td>.50</td>
</tr>
<tr>
<td>12AX4</td>
<td>.80</td>
<td>6A95</td>
<td>.50</td>
<td>6553</td>
<td>.50</td>
</tr>
<tr>
<td>12AX3</td>
<td>.80</td>
<td>6A96</td>
<td>.50</td>
<td>6554</td>
<td>.50</td>
</tr>
<tr>
<td>12AX2</td>
<td>.80</td>
<td>6A97</td>
<td>.50</td>
<td>6555</td>
<td>.50</td>
</tr>
<tr>
<td>12AX1</td>
<td>.80</td>
<td>6A98</td>
<td>.50</td>
<td>6575</td>
<td>.50</td>
</tr>
</tbody>
</table>

Each tube is performance-proven in all UHF receivers. Any accompanying all items. Balance C.O.D. All for orders under $10.00. Subject to prior sale. Include in all orders the handling charge.

PHILLIPS TUBE COMPANY

336 E. Nortland Ave.
Brooklyn 10, N. Y.
Cleveland 2-0010-1-2
Pay as You Wire $39
IT WILL HELP YOU TO START LEARNING TV THE PRACTICAL WAY—by assembling a TRANSMITTER TV KIT. For only $39 you get PACKAGE #1 (standard first pkg. for all of our kits). This package gives you the basic chassis and over 450 TV components with complete instructions, drawings, Photos, Service Booklet, and a year's subscription to My TV and Electronics Notes*. When ready, you order the next stage (pkg. #2), etc. Low prices make your complete kit a terrific buy!

FREE CATALOG
Shows 6 Great TV Kits: Each Kit is adaptable to UHF, Ideal for TV-AIR-ATV. To Present Technical Knowledge required. Write now!

FREEVIEWER* attached.

Mr. D. Gesenius, Educational Director
TRANSMISION, INC., NEW ROCHELLE, N.Y., Dept. RES

NAME ___________________________ ADDRESS ___________________________
CITY ___________________________ STATE ___________________________

MAIL THIS COUPON TODAY—

Ralph R. Shields was appointed to the newly created post of product sales manager of television picture tubes for SYLVANIA ELECTRIC PRODUCTS, INC. He was formerly merchandising supervisor, television picture tubes, with headquarters in Seneca Falls, N. Y.

Charles E. Torsh joined ROLA Co., Cleveland, a division of the Muter Co., as chief television engineer. Prior to joining Rola, he was with General Electric.

Edward L. Nung was named manager of the Tuner Division of P. R. MALLORY & C0., INC., Indianapolis, Ind. He was formerly with SYLVANIA.

Personnel Notes

Dr. W. R. G. Baker, vice-president and general manager of GENERAL ELECTRIC'S Electronics Division, received the Medal of Freedom Award from Under-Secretary of the Army Earl D. Johnson for the application of electronics to the solution of Army research and development problems.

Don G. Mitchell, chairman of the Board of Directors of SYLVANIA ELECTRIC PRODUCTS, was the principal speaker at the commencement exercises of Stevens Institute of Technology, Hoboken, N. J., at which he received the honorary degree of Doctor of Engineering.

Donald H. Kunen was elected vice-president of the RCA SERVICE Co., Camden, N. J. Gerald W. Pfister succeeds him as treasurer and controller. Pfister was formerly manager of field administration in the Consumer Products Service Division.

Jacob Ruiter, Jr., Technical Advertising Manager of Allen B. Du Mont Laboratories, was elected president of INDUSTRIAL MARKETERS of New Jersey, a chapter of the National Industrial Advertisers Association.

Michael Boris joined SIMPSON ELECTRIC Co., Chicago, as assistant factory manager. He was formerly with Cline Electric Co.

W. Jace E. (Barney) St. Vrain joined MOSLEY ELECTRONICS, Inc., St. Louis, Mo., as chief engineer. He was previously with Radio KXLW.
ONE SCIENTIST TO ANOTHER

Dear Prof. Glockenspiel,

Transistors are here! Thanks to inventive genius such as yours, the imaginations of lesser scientists like de Forest, Brattain, and Bardeen, will never be permitted to seriously damage the electronics industry with absurdities like the fantastic transistor folly. With a few refinements which are bound to come in time, a three-year-old child can, with your kit, produce any type of vacuum tube at a pathetically small cost.

Although it may take a few years, your vacuum tube kit can, and I believe will, revolutionize the industry! The elimination of a getter alone will save tons of alloy over a period of time. Not only could anyone duplicate known tube types, but now the common (all too common!) radio-TV service technician can add his own improvements, such as using resistance wire to form the grid element and eliminate the need for an extra return, or mounting each element on a socket so that parasitic oscillations could be tuned out by tilting the tube and varying the interelectrode spacing and capacitance.

I have been doing some work myself that will be of great benefit to mankind. By means of bone conduction and the inductive and capacitive reactions of nerve membranes I hope to eliminate all forms of transducers, including loudspeakers and cathode-ray tubes. The signal in the final stages of a radio or TV set will be transferred directly to the human mind by an electrohomogenic process. This will completely eliminate the high losses in power and fidelity inherent in the process of changing TV signals back to light for viewing by the inefficient human eye, and to sound for hearing by the poorly functioning ear. I believe the greatest advantage will be to enable totally blind and totally deaf people to see and hear television with greater clarity than it actually produced in the studio.

Naturally there is a mountain of detailed research required, so my new electrohomicogenic process will not be made available to the public as quickly as your tube kit. However I do hope to have my work completed by April next year.

PROF. ASKY LARKER

Lakehurst, N. J.

(Lakehurst, N. J.)

(Please add sufficient postage—excess refunded.)

(Adding the article "Electropsychometer"

EGYPT)

(REVIEWED IN THE "T.V. TIMES"

3rd Edition $1.49

NOW IN PRINT.

RADIO HARDWARE TREASURE

3 lbs.

$19.95

4 lbs.

$49.95

5 lbs.

$69.95

6 lbs.

$89.95

7 lbs.

$119.95

8 lbs.

$149.95

9 lbs.

$179.95

10 lbs.

$239.95

12 lbs.

$299.95

15 lbs.

$449.95

20 lbs.

$699.95

25 lbs.

$949.95

30 lbs.

$1,199.95

40 lbs.

$1,999.95

50 lbs.

$2,999.95

75 lbs.

$4,499.95

100 lbs.

$6,999.95

150 lbs.

$12,999.95

Radio Engineers' and Gauging Equipment.

All Prices Incl. Postage.

Order Direct from Factory.

TRANSPORT INC., NEW ROCHELLE, N. Y.

FREE! Sample copy of "TV and Electrononics Notes". Or send 50c for year's subscription.

10 Day Trial - Buy and try this fine instrument for 10 DAYS. Then, you must return same. Your deposit will be refunded. No more handling and repackaging will be promptly refunded.

DEPT RE-88

NEW ROCHELLE, N. Y.

() Send Bo.

() Enclosed $...

() Enclosed $...

I accept your 10 Day Trial terms...
BARGAINS
BARGAINS
BARGAINS

Famous

STEVE - EL

BRANDED

TUBES

All Brand New
Individually Boxed
FAR BELOW WHOLESALE COST!

INTERCOM SPECIAL

630 CHASSIS

G. I. RECORD CHANGERS

SAVE MONEY ON INSTRUMENTS!

COMMUNICATIONS

far between in most magazines available to the electronic experimenter.

To anyone constructing the instrument described by Mr. Gish a word of caution seems advisable. If resistor R5 should by any chance open up, and resisters are notorious for doing just that, Ohio's law shows that about 120 volts d.c. would be applied to a person connected to the electrodes. The failure of R13 would lead to the same results.

Safety modifications suggested for one side of the Psychometer input circuit.

Such a calamity, if not fatal, would certainly not be conducive to peace and harmony—especially if the subject is one of the family.

The circuits in the figures eliminate this hazard by replacing the source of voltage applied to the patient with two 3-volt batteries, which would not be sufficient to injure the patient in any way.

The other side of the Psychometer input circuit modified for added safety.

Resistors R3, R4, and R13 in the original circuit are deleted. The negative end of the power supply is connected directly to ground (chassis) and S2 is inserted in the arm of R1 to prevent drain on the battery when the instrument is not in use.

Elliott A. McCready
Roseville, Michigan.

POWER-LINE TROUBLES

Dear Editor:

On page 147 of your May 1959 issue Mr. J.T.K. states that he has power-line fluctuations of 90 to 150 volts. I have had line-voltage troubles too, but never anything as high as 150 volts. I believe if Mr. J.T.K. checks his line at the meter box he will find that it is not grounded properly to a cold-water pipe or a regular grounding stake. One side of the house wiring or the center leg of a 220-volt feeder must always have a good ground connection.

He may also have a poor power transformer on his feeder line, or one with an ungrounded center tap.

We were troubled with low line voltage when we first moved into our new home. We checked everything, but found the only solution was to balance our feeder with another feeder line. This trouble had been prevalent in this neighborhood for 15 years before we came here, but no one ever did anything about it.

C. L. Lessig
Milford, N. J.

RADIO-ELECTRONICS
How to build your own test instruments

RADIO & TV TEST INSTRUMENTS—NO. 49

A real find for those who want to build their own test equipment. Covers practically every instrument used in modern servicing, plus chapters on the construction of servicing bench and a carrying case. Each instrument was built, tested and used by the technician-writers who described them! A typical Gernsback book volume—top technical information at low cost.

How many of the Instruments this book covers

TV Grid Dip & Absorber Controls; Oscilloscope; Tube Tester; TV Service Aid; Oscillographs; TVV
designated Regulators.

New 3-way approach to audio!

HIGH-FIDELITY—Design, Construction, Measurements—No. 48

An audio man's audio book! For those well grounded in fundamentals, it points the way to top performance from a high-fidelity system. Twenty-one top audio writers contribute their own experience. Offers an astounding amount of audio information at this low price.

High-fidelity

128 Pages
Over 100 Illus.
$1.50

Some of the Highlights

DESIGN—Audio Feedback and Equalizer Design; Intermodulation Measurements; Volt-

der Regulators.

MEASUREMENTS—Speaker Impedance and Amplifier Impedance Measurements; Amplifier Techniques; Intermodulation.

HIGH-FIDELITY TECHNIQUES—No. 42

is an excellent companion volume to this new book. By James R. Langham
$1.00

From the publishers of
RADIO-ELECTRONICS

See your distributor—or mail this coupon
Gernsback Publications, Inc. Dept. 83
25 West Broadway
New York, N. Y.
Enclosed is my remittance of $. . .
Please send the book checked, postpaid.

44 Radio & TV Test Instruments
48 High-Fidelity—Design, Construction, Measurements
42 High-Fidelity Techniques
Name
Street
City Zone State

Any or all of these catalogs, bulletins, or periodicals are available to you on request to the manufacturers, whose addresses are given at the end of each.

WALCO CATALOG

Waldo's 40-page, illustrated Catalog No. 53 is an attractive booklet which lists its complete line of electronic hardware, tools, chemicals, and TV antennas and installation equipment.

Radio-test Index

Supreme has issued the 1952 index to its publications, Radio Diagrams and Television Service Information. The radio manuals cover sets from 1926 to 1952, listed in alphabetical order by manufacturer. The television manuals cover sets from 1947 to 1952.

The company has also issued a 4-page leaflet listing all its publications.

Available on request from Supreme Publications, 3727 W. 13th St., Chicago 23, Ill. Enclose 3¢ stamp for postage.

VARIAC CATALOG

General Radio has issued a 12-page catalog describing the new Duratrack-

DIODE BULLETINS

International Rectifier's Bulletin GD-1 describes the characteristics of 11 germanium diodes. It is illustrated with photos and cross-section drawings.

The same company's Bulletin SD-1 describes 6 subminiature selenium diodes. Also listed are high-voltage, hermetically sealed, and power rectifiers, and photoelectric cells.

Available on letterhead request from International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif.

PAPER CAPACITORS

Astron's Bulletin AB-18 is a four-page leaflet giving performance characteristics and test specifications of their Meteor subminiature paper capacitors for operation to 125° C without derating.

Copies free on request to Astron Corp., 255 Grant Ave., East Newark, N. J.

ANTENNA HANDBOOK

Channel Master's 12-page TV Antenna Handbook for VHF and UHF describes more than 60 v.h.f. and u.h.f. antennas the company is now producing, and gives full technical data, including gain curves and directivity patterns on most models.

Copies free on request from Channel Master distributors.

AUGUST, 1953
"Save with confidence"

The Lowest Priced Kits on the Market

5 TUBE AC-DC SUPERHET KIT
Kit 11—Five tube superheterodyne kit, AC-DC. contains all components required to construct the latest design, highly sensitive superheterodyne broadcast receiver. Complete with black bakelite cabinet (excludes wires and cabling). Complete kit. $7.95

6 TUBE RADIO KIT
Kit 21—A low-priced 6 TUBE KIT designed for high sensitivity, excellent selectivity and good tone quality. Uses 2SK6, 2SK7, 657, 657T, 657T in an easily constructed circuit. The 6 Tube Kit is shipped with all parts, including punched chassis, resistors, condensers, coils, sockets, PM speaker, hardware, etc. And at a closeout price of only $1.90 each. Complete kit. $7.95

PHONO OSCILLATOR
Not a Kit
Wireless phone oscillator transmits recording for crystal pickups or voice from carbon mic through radio without wire. Can also be used as an intercomm by using P.M. speaker or mike. (excluding tubes) With Complete Set of Tubes. $2.95

3 TUBE PHONO AMPLIFIER
Not a Kit
An assembled unit ready for installation on tone and volume control and six feet of rubber cord. Complete kit with Complete Set of Tubes. $3.95

5 TUBE DC-AC SUPERHET KIT
Kit 41—Five tube superheterodyne kit, DC-AC. contains all components required to construct this latest design, highly sensitive superheterodyne broadcast receiver. Complete with black bakelite cabinet (excludes wires and cabling). Complete kit. $7.95

Build Your Own Interior—Stylish Cabinets

BASS REFLEX AND EQUIPMENT CABINETS

Corner Folded Horn Enclosures
Recovers a quality of bass heretofore only possible through the aid of far more expensive designs.}

G & H WOOD PRODUCTS COMPANY • 75 NORTH 11th STREET • BROOKLYN 11, N. Y.
Pioneers in radio furniture for high fidelity equipment.

ELECTRONIC LITERATURE

TRANSFORMER CATALOG
Triad’s 1958 catalog TR-33 features an expanded line of TV components and industrial transformers. Included are toroids, inductors and pulse and transistor transformers and additional miniatures for special applications. The booklet also has a geophysical section.

U.H.F. BOOKLET
Tuco Presents "U.H.F." is a 10-page illustrated brochure pointing out "do's" and "don'ts" for technicians in u.h.f. areas. Among the subjects treated are the requirements of a good installation, theory of u.h.f. signal capture, ghost problems and directivity, cancellation of u.h.f. signals, signal probing, transmission of signal from antenna to receiver, transmission line, and receiver connections.

ANTENNA HANDBOOK
TV antennas and accessories are listed in a 36-page catalog issued by RMS. The booklet describes various types of u.h.f. and v.h.f. antennas, including Yagis, corner arrays, indoor u.h.f. and v.h.f. antennas, transmission lines, lightning arresters, mast mounting accessories and u.h.f.-v.h.f. antenna couplers.

SPEAKER CATALOG
Quam’s 1963 catalog lists five types of intercom speakers and three types of outdoor theater speakers, in addition to their regular line of electrodynamic and PM units.

CAPACITORS
Pyramid’s new 20-page Catalog PG-3 contains complete engineering data, performance curves, electrostatics, sizes, and capacitance and voltage listing for the subminiature units in their Glassed line.

SPEAKER BALLEFS
Four models of speaker baffle are described in an illustrated brochure issued by Lowell. Flip and surface-mounting ceiling types, a high-ceiling chandelier type, and a recessed baffle are shown.

RELAY BULLETIN
A bulletin describing the Husky line of relays has been issued by Price. It gives specifications for subminiatures, highbloc: relays, high-current rotaries, and other types.

Copies free on request from Price Electric Corp., Frederick, Md.

The magnetron, a war baby, has little competition when it comes to generating high power on the micro-waves. It is now widely used in radar. This book describes its theory, characteristics, and applications. Many notes and diagrams illustrate the text. Most of the material is nonmathematical and can be understood by any radio technician.

The monograph begins with a discussion of radar requirements. The reader is introduced to klystrons and other microwave generators. Chapters on the magnetron follow. The anode block, output coupling methods, and cathodes are discussed. Mathematical calculations of magnetron Q, electron path, and efficiency are provided. The last chapters describe construction, testing, and applications of the magnetron.

A number of references are cited. Many appeared during wartime. These may be as difficult to obtain now as they were during the war years.

Just think—without math or heavy circuit theory, you can start doing actual repair work even before you finish the book! No trick methods—only sound, correct, safe way to do it. Read it and—so quickly you will surprise your friends and even your own money-making business. Here's the reason you'll learn so quickly. You deal only with the things that won't go in sets—the parts—instead of spending long weeks studying circuits and doing lab work.

TELEVISION AND RADIO REPAIRING

Gives all these helps:
How to run your own business
How to test and replace tubes
How to test tubes without equipment
How to eliminate receiver noises
How to improve distant pictures
How to solder
How to repair, replace and adjust:
—Power supplies
—Audio and wire-wound receivers
—Controls and switches
—Condensers, rolls, and transformers
—Tuning devices
—How to fix phone pickups
—How to repair wood and plastic cabinets
—How to install, adjust, and repair different types of antennas
—Many others

by John Markus
Assoc. Editor, Electronics
556 pp., 225 illus. $7.95

Simplic! Easy-to-read! On every television and radio part, no matter what make the set is, Markus shows you how to recognize symptoms of trouble—how to test for trouble and start making good repairs—how to install, and how to install it. He speaks in a down-to-earth, plain language and uses pictures throughout so you actually see what he's talking about.

This is the kind of book every well-equipped and well-paid repairman
—Even start your own business

Here's your chance to share the big money going to servicemen today—without investing a good deal of cash and by starting right in your own home or working for the service outfit.

The book tells you what few tools to buy, how to make a service call, how to collect the bills. It shows you how to test television and radio parts with a multi-meter.

Just one repair job pays for the book!
STANDARD BRAND SPECIALS

Stock up on these excellent values in Standard-Brand, Dated G.E., Sylvania, RCA, T.S., N.U., etc., TV Tubes. Prices are below wholesale quantities available from stock. Fully guaranteed on a 100% replacement-money-back guarantee.

<table>
<thead>
<tr>
<th>Tube Orders Over $5.00 with full remittance Paid To You in USA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B67T</td>
</tr>
<tr>
<td>6A6H</td>
</tr>
<tr>
<td>5AQ7</td>
</tr>
<tr>
<td>5AQ5</td>
</tr>
<tr>
<td>5AQ4</td>
</tr>
<tr>
<td>6AQ6</td>
</tr>
<tr>
<td>6AV6</td>
</tr>
<tr>
<td>6BC5</td>
</tr>
<tr>
<td>6BK5</td>
</tr>
</tbody>
</table>

For your minimum money's worth, buy in bulk quantities from TUBE-SPECIALISTS. Here is a partial listing of our available stock quantities and savings. Phone Rector 2-2562 for fast delivery.

REX TUBE Co. - Standard RCA Vacuum tubes are all famous brands and are individually checked.

24 HOUR DELIVERY FROM STOCK!

Our stock of more than a million relays — in over a thousand different types — is the world's largest. Don't delay your production for want of large or small quantities of relays of any type.

Telephone, wire or write for quotations.

RADIO SCHOOL DIRECTORY

Page 113

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candy System Co.</td>
<td>101 West Main St., Elgin, Ill.</td>
</tr>
<tr>
<td>Indiana Technical College</td>
<td>111 S. Michigan Ave., Chicago, Ill.</td>
</tr>
<tr>
<td>Indianapolis Technical Institute</td>
<td>111 S. Michigan Ave., Chicago, Ill.</td>
</tr>
<tr>
<td>Western Television Institute</td>
<td>111 S. Michigan Ave., Chicago, Ill.</td>
</tr>
</tbody>
</table>

Radio-Television Training Assn.
Raytheon Manufacturing Co.
Raytheon Div. (I.O.E. A., Inc.)
Rexall Sales
Rider, Inc.
Rinkhart Books, Inc.
Rohn Manufacturing Co.
Rose Co.
Sams and Co., Inc., Howard W.
Science Fiction Book Co.
Simpson Electric Co.
Sylvania Manufacturing Co.
Sprayberry Academy of Radio
Stromberg-Carlson Telephone Co.
Stephan Sales Co.
Stock-Electric Control Co.
Sylvania Electric Products
Tab
Tally Co.
Technical Apparatus Co.
Ted Francis, Inc.
Television Communications Institute
Transistor Manufacturing Co.
Triad Transformer Manufacturing Co.
Tung-Sol Electric Co.
University Ledicators
United Tube Co.
Vescom Electronics Co.
Wester Electric Co.
Western Electronic Parts Co., Inc.
Whitney Corp.
Winchester Mfg. Corp.
Zingo Products

NEW AND MORE COMPREHENSIVE
1953 RELAY SALES CATALOG
NOW READY

Be sure to send for your copy

Radio-Electronics does not assume responsibility for any errors appearing in above index.
BOOK REVIEWS

TV TEST INSTRUMENTS, by Milton S. River. Published by Howard W. Sams & Co., Indianapolis 5, Ind. 8½ x 11 inches, 147 pages. Price $3.00. Every technician, even if he runs a one-man shop, needs the help of good test instruments. Considerable time and effort are saved when these are used correctly and intelligently. This book describes the more important equipment needed in modern servicing. Separate chapters deal with the v.t.v.m. (and various probes), signal and sweep generators, oscilloscopes, and specialized TV instruments. The last chapters discuss TV and FM alignment, and how to use various types of test instruments in TV servicing.

The information is practical and complete. It will aid beginner and advanced worker.

U.F. CONVERTERS, Their Design and How They Work. Published by Howard W. Sams & Co., Indianapolis 5, Ind. 8½ x 11 inches, 41 pages. Price $1.00.

TV tuners and converters for u.f. have only recently emerged from the laboratory. At this stage of the game there are few experts in this field and only meager information is available. The book can help the technician. It compares various models on the market, and describes the function of circuits, switches, and components. There are schematics, block diagrams, and photos of products made by 14 manufacturers.

This publication does not include data on trouble-shooting, alignment, or testing. —IQ

TV MANUFACTURERS' RECEIVER TROUBLE CURES, edited by Milton S. Snitzer. John F. Rider Publisher, Inc., 480 Canal St., New York 13, N. Y. 8½ x 11 inches. Price $1.80. Vol. 1 covers Admiral to Du Mont, 115 pages. Vol. 2 covers Emerson-Jackson, 117 pages. These volumes contain hundreds of useful hints for improving the operation of TV sets. The cures come from the manufacturer, who, after all, knows his own product a lot better than anybody else. Sets are listed by manufacturer and model. They advise how to cure manufacturing defects that sometimes crop up after sets leave the factory.

The cures are explicit and clear. They indicate just what resistor to replace, what control to turn. A wide variety of troubles are covered: buzz in sound, smear, wiggle, drift, foldover, tube failure, etc.—IQ

END

LEARN WITH "AMECO" COURSES

Simple, Low Cost, Home-Study Courses prepare you to pass F.C.C. Code and Theory license examinations. Write for details and receive free sample F.C.C. type questions and answers for all four examinations.

AMERICAN ELECTRONICS CO.
1203 Bryant Ave. (Dept. BR-8), New York 59, N. Y.

RADIO-TV ELECTRONICS

CAPITOL RADIO ENGINEERING INSTITUTE
Dept. RE, 3204—150th St., N. W., Washington 18, D. C.

GET INTO ELECTRONICS

If you enjoy working with electronic devices, would you like to be your own boss? Learn to be a successful, independent sales and service representative. How to get started for as little as $1.00. Prices from $1.00. Write for details.

RCA INSTITUTES, INC.
A service of Radio Corporation of America
115 East 42nd St., New York 17, N. Y.

OFFERS COURSES IN ALL TECHNICAL PHASES OF RADIO, TELEVISION, ELECTRONICS
Approved for Veterans
Write Dept. RC-53 for Catalog

TRI-STATE COLLEGE
2463 College Ave., ANGOLA, IND.

GET INTO TV SERVICING

Send for free 2-page illustrated illuminated booklet which tells you how you can become a successful TV technician. American's largest training program. The school offers you a TV training program that gets you into TV service work and pays for itself. No experience required. A TV serviceman only. You get practical training in TV servicing. Write Dept. E-83.

WESTERN TELEVISION INSTITUTE
344 W. 18th St., Los Angeles 15, Calif.

RADIO ENGINEERING 27 MONTHS

Intensive, specialized courses including strong basis in mathematics and electrical engineering, advanced radio theory and design, television, transistors, and digital computers. Excellent job opportunities. Also B.S. degree in 27 months. First time coursers' 10-day intensive class begins on September 3. All three classes meet 3 days each month, one week each month, and one week during the month of December. All three classes meet on the same campus.

INDIANA TECHNICAL COLLEGE
156 E. Washington Blvd., Fort Wayne 2, Indiana

TV REPAIRMEN MAKE TOP MONEY!

In just 39 weeks, you can complete TV service training. Our complete course gives you all the essentials for a good job as service technician. Products in this field are constantly changing and plentiful. You can be a part of this exciting field. Other courses in electronics, radio operation, and maintenance. TV, FM, AM Servicing. For more details write today.

INDIANAPOLIS ELECTRONIC SCHOOL
312 E. Washington, Indianapolis 4, Ind.

BECOME AN ELECTRICAL ENGINEER IN 36 MONTHS

Major in Electronics or Power. Now, prepare for a career in these rapidly expanding fields. The school will prepare you to become an engineer, technician or service man. Previous training, practical or practical training may be evaluated for advanced credit.

Enter Both Radio and Television

In 12 months you can attain the Radio-Technician's certificate. An added 6 months course qualifies you for the Radio-TV Technician's certificate and the Degree of "Associate in Applied Science." The Technician's course is the first third of the program leading to a Bachelor of Science Degree in Electrical Engineering with a major in Electronics. Also offered: 12-month Radio-TV service course; 12-month Electronics or Electro Technician Courses; 6-month Electrical Service Course and 3-month refreshers and general preparatory classes.

Terms Open April, July, Oct., Jan.

Famous for its Concentric Curriculum. Faculty of specialists. 50,000 former students. Annual enrollment from 48 states and 23 overseas countries. Non-profit, 50th year. Courses approved for Veterans.

MILWAUKEE SCHOOL OF ENGINEERING

MILWAUKEE SCHOOL OF ENGINEERING
Dept. RE-553, 1205 N. Milwaukee
Milwaukee 1, Wisconsin

School: □ Free Hi-Bee Catalog describing Electronic Engineering Courses; □ Bulletin on Careers Radio-TV.

I am interested in □ Engineering Courses

Name __________________________
Address ________________________
City ____________________ State ______

If veteran, indicate date of discharge.
There’ll Be No Call-Back On This Job!

You can be sure there will be no time-wasting call-backs to cut down your profits when you use Mallory Capacitors. Mallory Capacitors are engineered to meet the electrical requirements of any TV or radio set. You can depend on them to give long-lasting performance that’s equal to... and often better than... any original equipment component.

Rating-for-rating, Mallory FP Capacitors give longer life at higher temperatures and greater ripple currents. They’ll give trouble-free performance at 185°F (85°C). They are the only fabricated plate capacitors on the replacement market.

For all plastic tubular replacements you can count on Mallory Plascaps® the same way you do on FP’s. They eliminate problems of shorting, leakage, unsoldered leads and off-center cartridges.

Nothing will lose a customer faster than a set that won’t stay repaired. That’s why it is always good business to specify brand as well as rating when you order parts. And if you depend on Mallory you can put an end to call-backs, get precision quality, yet pay no more.
A serviceman's "best friend" is an RCA Tube

An RCA Tube starts working for you from the instant the customer first sees the familiar red, black, and white carton. You have her confidence from the start, because she knows and respects the RCA trademark.

But the big payoff to you begins when the tube goes to work. For, experience has proven that the superior quality of RCA Receiving Tubes and Kinescopes is your best measure of protection against premature tube failures. With RCA Tubes, you can be sure the job is well done.

Helping you to safeguard your reputation is a vital, everyday service of RCA Tubes. And that protection is yours at no extra cost.

UNLOCK THE DOOR TO BIGGER PROFITS

Here’s your key to better business… RCA’s dynamic Dealer Identification Program. Ask your RCA Tube Distributor for your copy of the colorful, 16-page booklet “A Magic Pass-Key to Customer Confidence.” It tells you how you can become a Registered Dealer… and get extra sales benefits.