Mallory Plascap*

...Made with Amazing Mallocene*!

World’s First Completely Engineered Plastic Tubular Capacitor

Here's the plastic tubular that's years ahead of its time... made possible now by Mallocene, amazing Mallory plastic development that gives you four exclusive performance firsts, leaves ordinary plastic tubulars far behind!

Gone is the old bugaboo of "call-backs" due to construction weaknesses beyond your control. For the Mallory Plascap is dependable. No oil leakage, no unsoldered leads, no off-center or deformed cartridges, no messy outside wax coating, no insulation problems. The Mallory Plascap makes your service job easier! See your Mallory Distributor.

The Secret of Mallocene...

There is only one logical way to build a molded type plastic tubular capacitor... with a plastic that sticks to the metal leads! But with ordinary construction methods, this has been impossible, for such a plastic would stick to the metal mold!

Here's the secret of the Mallory Plascap. First, an extremely tough plastic shell is molded. The cartridge is carefully centered within this shell. Then, the cartridge is surrounded with Mallocene. When Mallocene hardens, it actually becomes part of the outer plastic shell, and sticks to the metal leads!

Thus, Mallocene provides a solid plastic tubular capacitor with the first moisture-proof construction!

TRISEAL CONSTRUCTION—Sealed three ways—with moisture-free Mallotrol*... tough outer plastic shell... exclusive Mallocene!

FASTITE LEADS—Permanently fastened... sealed with Mallocene... unaffected by soldering-iron heat!

DISTORTION-FREE WINDING — No flattened cartridges due to molding pressures... no failures due to "shorts"!

TRU-CENTER CARTRIDGE—Cartridge centered every time... uniform insulation guaranteed at all points!

Plus these Top Features: Operates at 85°C... No messy outside wax coating required... Great mechanical strength... Small in size... Light in weight... High dielectric strength... Lead to outside foil clearly identified... Handsome yellow case... Legible part-numbers and ratings.

www.americanradiohistory.com
LEARN
RADIO-TELEVISION

BY PRACTICING AT HOME
IN SPARE TIME WITH
THESE AND OTHER KITS
I SEND YOU

I WILL TRAIN YOU AT HOME FOR
GOOD PAY—SUCCESS
A BRIGHT FUTURE
in America's Fastest-Growing Industry

VETERANS GET THIS TRAINING
UNDER G I BILL

Want a good-pay job in the fast growing RADIO-TELEVISION industry? Want a money-making Radio-Television shop of your own? Here's your opportunity. I've trained hundreds of men to be successful technicians.

MAIL COUPON FOR BOOKS FREE

Act now! Send for my FREE DOUBLE OFFER. Coupon entitles you to actual lesson, "GETTING ACQUAINTED WITH RECEIVER SERVICING." It shows you that learning at home is easy, practical. You also get my 64-page book, "HOW TO BE A SUCCESS IN RADIO-TELEVISION." It tells what my graduates are doing and earning, how quickly you can be on your way to good pay, success, a bright future. Send coupon in envelope or paste on penny postal.

J. E. SMITH, President,
Dept. OEX
National Radio Institute, Pioneer
Home Study Radio School, Washington 9, D. C.

MAIL COUPON FOR BOOKS FREE

Good for Both—FREE

How to Be a Success in RADIO-TELEVISION

MR. J. E. SMITH, President, Dept. OEX
National Radio Institute, Washington 9, D. C.

Mail me Sample Lesson and 64-page book about How to Win Success in Radio-Television—both FREE. (No Salesman will call. Please write plainly.)

Name: ____________________________ Age: ________________________________

Address: __________________________ Zone: __________________________ State: __________________________

☐ Check if Veteran Approved under G. I. Bill

Get this Training by Practicing at Home in your Spare Time.
CONTENTS

MAY, 1950

Editorial (Page 25)
The Future of the Electronicse...by Hugo Gernsback 25

Television (Page 26-39)
Review of TV Boosters 26
Spot-Wobble Improves Television... 29
Anything Can Happen in Television... 30
Master Television Antenna Systems...... 32
A De Luxe Television 34
Voltage Multipliers in Television... 36
Television Dictionary 39
KPEL Tests Site 40

Electronics (Page 40-41)
IRE "Accents the New"............ 40

Servicing—Test Instruments (Page 42-52)
Vacuum-Tube Grid Bias........... 42
A Signal Tracer and V.T.V.M. Combined.... 44
Fundamentals of Radio Servicing. Part XV—Sound and Loudspeakers... 46
Compact Unit Tests Everything...... 48
Capacitance Measurement with Signal Generator.... 49
Servicing Vibration Power Supplies..... 50
Curing Modulation Hum........... 52

Audio (Page 54-69)
Intermodulation Distortion 54
Unusual Techniques in Sound Recording (Cover Story) 60
Recording for Profit 64

Construction (Page 72-77)
A High Performance Short-Wave Midget... 72
Tuned Tone Control............. 75

Amateur (Pages 78-83)
A Beam Antenna to Match 52-ohm Cook by Louis H. Hippe, W6APQ 78

Broadcasting and Communications (Pages 84-88)
Frequency Control Unit for Citizen Band Tests........ 84

New Design (Pages 98-99)
Hi-Volt Electrostatic Generators... 98
Ultrasonic Soldering 99

Departments
The Radio Month 8
Radio Business 10
Try This One 89
New Devices 91
New Patents 94

Book Reviews 108

ON THE COVER: The new Fairchild Tape recorder beside one of the standard record cutters in the master recording room of Reeves Sound Laboratories. Posed by Bobbie Shaw for a Kodachrome by Avery Slack.

You will find all lessons easy to understand because they are illustrated throughout with clear diagrams and step-by-step examples that you work out yourself. Every piece of the equipment and complete lesson material we send you is yours to keep and enjoy, including the multitester, experimental equipment, all parts of the Superheterodyne, tube manual, radio dictionary, and complete, modern Television texts. All parts are standard equipment.

Shop Method Home Training... Earn While You Learn

With our practical resident Shop Method Home Training, you study in your spare time. You receive Spare Time Work Lessons, which show you how to earn while you learn. Service neighbors’ radios and TV receivers, appliances, etc., for extra money and experience. Many National students pay all or part of their training with spare time earnings!

DON’T DELAY! The Radio-Television Industry needs trained men NOW!

APPROVED FOR VETERANS! Check coupon below if you are a veteran.

Free!

NEW, ILLUSTRATED OPPORTUNITY BOOK AND SAMPLE LESSON SHOW YOU HOW WE TRAIN YOU... SEND FOR THEM TODAY! NO COST. NO OBLIGATION.

NATIONAL SCHOOLS

LOSA ELAGES, CALIF. • EST.1905

FIND OUT NOW... MAIL COUPON TODAY

Mail in envelope or paste on penny postal.

<table>
<thead>
<tr>
<th>National Schools, Dept. RE-5</th>
<th>4000 South Figueroa Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles 37, California</td>
<td></td>
</tr>
</tbody>
</table>

Send me your FREE book “Your Future in Radio” and the sample lesson of your course. I understand no salesman will call on me.

NAME ________________________ AGE ______

ADDRESS __________________________

CITY__________________________ ZONE STATE

☐ Check here if Veteran of World War II

You will receive special laboratory experiment lessons to show you how to build with your own hands various experimental units such as those shown at left, and how to conduct many tests.

You Learn By Doing

You receive a special series of Modern Lessons in TELEVISION, all a part of your course; you master all phases.

YOU LEARN BY DOING

Complete Training by Practical Resident Trade School, Est. 1905

The same highly trained faculty, instruction materials and methods used here in our large, modern resident school, are adapted to your training in your own home. Shop Method Home Training has been proved by hundreds of successful graduates.

Both Resident and Home Study Courses Offered

GOOD PAY

and Unlimited Opportunities in JOBS LIKE THESE:

Business of Your Own
Radio Manufacturing, Sales, Service
Broadcasting, Telecasting
Television Manufacturing, Sales, Service
Laboratories: Installation, Maintenance of Electronic Equipment, Electrolysis, Call Systems, Garages; Auto Radio Sales, Service Sound Systems and Telephone Companies; Oil Well and Drilling Companies; Engineering Firms, Theatre Sound Systems, Police Radio

And scores of other good jobs in many related fields

YOU CONDUCT MANY EXPERIMENTS LIKE THESE!

Checking action of condensers
Experiments with AF and RF amplifiers
Experiments with resonance
Producing beat frequencies
Calibrating oscillators
Experiments with diode, grid-bias, gridleak and infinite impedance detectors
Practical experience in receiver troubleshoot
Application of visual tester in checking parts and circuits
Experiments with audio oscillators
Advanced troubleshoot

You will receive this Professional Multitester
You build all these and many other units with parts we send you!

YOU RECEIVE THIS PROFESSIONAL MULTITESTER
YOU BUILD ALL THESE AND MANY OTHER UNITS WITH PARTS WE SEND YOU!

You Build This Superheterodyne

Audio Oscillator
T.R.F. Receiver

You will receive a Special Series of Modern Lessons in TELEVISION, all a part of your course; you master all phases.
NEW RCA High-Voltage Probes—
WG-289, WG-290
Extend dc voltage range of your instrument to
50 kv.

Get more from your test equipment with
RCA ACCESSORIES

NOW... the RCA TV Isotap WP-25A—
A combination Isolation-Autotransformer for
Television Servicing
Only $16.50

Available from your RCA Test Equipment Distributor

RCA CORPORATION of AMERICA
TEST EQUIPMENT
HARRISON, N.J.

RCA WG-263 CRYSTAL PROBE
Converses Voltohmyst* Meters 163, 165,
165-A, 195, 195-A, WV-75A, WV-75A,
and WV-95A into VHF voltmeters for use up to 100 Mc. Also used with Chanaly's
Analyzers Types 162, 162-A, 162-B,
162-C and 170-A. Can be used for relative readings to 175 Mc. Price: $8.95.

RCA WG-275 DIODES PROBE
Designed to operate with RCA Voltohmyst* Electronic Meters WV-75A or
WV-95A, for reading rms or peak-to-peak voltages at
frequencies from 30 cycles to 250 Mc. The probe fits coaxial "T" connectors, and permits direct measurement of voltages in coaxial lines. Price: $30.00.

RCA WG-265 MINIATURE TESTPOINT ADAPTER
Makes your trouble-shooting faster, easier, safer by making tube-base connections accessible on the tube side of the chassis. Pins on one end of the adapter fit a 7-pin miniature socket, and socket facilities on the opposite end accommodate all types of 7-pin miniature tubes. Tabs project for easy probe contact. Price $1.50.

RCA ISOTAP WP-24A FOR RADIO SERVICING
Eliminates shock hazard between ac/dc chassis and ground, speeds detection of receiver faults with high-low line tests, and facilitates testing at 117 volt design-center value. Has six-position primary switch and three secondary receptacles. Price: $8.95.

RCA WS-18A RACK-ADAPTER PANEL
For mounting any of the matched RCA Test Instruments in standard 19-inch relay racks. Dimensions, 10 1/2" high, 19" wide, 3/4" thick. Price: $9.50.

RADIO CORPORATION of AMERICA
TEST EQUIPMENT
HARRISON, N.J.

Trouble-shooting faster, easier, safer by making tube-base connections accessible on the tube side of the chassis. Pins on one end of the adapter fit a 7-pin miniature socket, and socket facilities on the opposite end accommodate all types of 7-pin miniature tubes. Tabs project for easy probe contact. Price $1.50.

Trade Mark, Reg. U. S. Pat. Off.
TV Exec Cites Need for More Skill in TV Servicemen

Service Manager for Chicago Firm Warns "Old-Timers" that Youngsters are Better Prepared

A recent meeting of the Philadelphia Radio Servicemen's Association, Tim Alexander, service manager of Motorola, Inc., Chicago, and chairman of the Radio Manufacturers' Association Service Committee, as quoted in Radio & Television Weekly, warned the old-timers among the radio servicemen that the "youngsters" coming into the business need training. Fresh out of colleges and technical schools, they would be taking their jobs away from them unless they take the necessary steps to make themselves "competent as their new competition.

He pointed out that the "screw-driver and plier" serviceman has no permanent place in television, and that adequate test equipment and knowledge of its use are as important to the television technician as the X-ray machine is to the surgeon.

Mr. Alexander said, "If you are a mediocre television man who cannot repair a set only by slow, plodding, tenacious work—watch out. Pretty soon one of those 'youngsters' will open a store across the street from you. By virtue of his better training and greater skill, he will be able to do the job in one-quarter of the time. He will be paid twice as much per hour as you get, but the customer will still get off at half-price." He advised the men to go to school again for latest methods and servicing information.

CREI offers just the specialized training you need. It's a streamlined course—fast, accurate, and complete—for men in the top third of the field. It gives practical answers to the technical problems you run into while servicing today's intricate TV and FM equipment. It is kept up-to-date through constant checking with CREI's affiliate, one of Washington's largest retailers of TV sets and home appliances.

Maintenance problems encountered by this retailer's TV technicians are used as a practical lab to test the precision of CREI training. CREI, an accredited technical institute founded in 1927, invites your investigation. CREI graduates today fill important radio-TV posts throughout the industry. During the war CREI trained thousands of technicians for the Army, Navy and Coast Guard. Special CREI technical texts were used in the Navy's own training program. Leading industrial firms—RCA Victor, United Air Lines, TWA, Pan American Airways—to name only a few—have CREI group training programs now in operation.

Start your training now and apply your knowledge immediately. If you are in an area where TV stations are already in operation, you know of the great amount of profitable work that exists. If your area does not yet have TV, remember this: By 1954, according to most conservative estimates, every important community in the country will have TV. Write today for complete FREE information; the cost of the course is popular, the terms easy.

Adequate test equipment and knowledge of its use are as important to TV technicians as X-ray machines are to surgeons.

The Three Basic CREI Courses:
- Television and FM Servicing (streamlined course for men in "top third" of field)
- Practical Radio Engineering (fundamental course in all phases of radio-electronics)
- Practical Television Engineering (specialized training for professional radio-men)

Also available as Residence School Courses.

Veterans: CREI Training Available Under G.I. Bill. For most veterans July 25, 1951, is the deadline. Act now!

Free Sample Lesson. See for yourself how CREI training can help you. "Television & FM Trouble Shooting" is yours upon request. Mail the coupon below and receive this interesting lesson devoted to live, "dollar-and-cents" practical practice based on day-to-day servicing problems.

CAPITOL RADIO ENGINEERING INSTITUTE
Dept. 1458, 16th & Park Rd., N.W., Washington 10, D. C.

Gentlemen: Send me FREE SAMPLE LESSON and complete details of the TV and FM Servicing home study course. Also send brochure that explains the CREI self-improvement program and gives complete details and outline of course. I am attaching a brief resume of my experience, education and present position.

Check the Field of Greatest Interest:
- TV, FM & Advanced AM Servicing
- Aeronautical Radio Engineering
- Practical Television Engineering
- Broadcast Radio Engineering (AM, FM, TV)
- Practical Radio Engineering
- Radio-Electronics in Industry
- I AM ENTITLED TO TRAINING UNDER G.I. BILL

NAME ________________________________ AGE ____________
ADDRESS ______________________________
CITY _______ STATE _______ ZONE _______

☐ SEND DETAILS ON RESIDENCE SCHOOL.
ELECTRONIC HOTFOOT is given to pigeons who come to roost in the columns of the State Education Building in Albany, New York. The entrance to the building was once a favorite bombing range until the electronic eliminator was installed. The eliminator consists of a series of porcelain terminals strung on wires and placed on ledges and overhanging cornices. An r.f. pulse is sent through the wires which sets up a magnetic field around the terminals. When a bird enters the field, he gets a jolt which is harmless but nevertheless very uncomfortable.

SIGNAL CORPS achievements will be displayed on May 13 at Ft. Monmouth, N. J., in an all-day program for delegates to the national convention of the Armed Forces Communications Association to be held at N. Y. C. on May 12. Leaders in the communications and electronics fields and high-ranking officers from all branches of the armed services will be present.

The program will feature elaborate displays from the Signal Corps Engineering Laboratories, the Armed Services Electro-Standards Agency, and the Signal School of Ft. Monmouth; parachute drops by the 82nd Airborne Division; wire laying demonstrations by helicopter and bateau; and a combat communication problem in which the airborne troops will figure if the weather is good.

CONDUCTIVE GLASS is a recent development of the Corning Glass Works. The glass has a transparent skin of a metallic oxide about 16 millionths of an inch thick which conducts electricity but has enough resistance to heat the glass up to 660° F.

In the first field tests, heaters made of flat panels of the new glass were used to keep baby chicks warm in brooders, to dry textile yarns, and to dry lacquer on plastic playing cards. A coffee percolator of electric glass is being developed. The coffee maker will rest on a plastic foot and electrodes will carry current to the electric skin on the bottom of the pot.

The new material might also be used as wall panels in a bath room or to keep ice from forming on windshields. The glass can produce a wide range of temperatures, depending on the resistance of the film and the voltage used.

SOLAR ENERGY may be the answer to the coal crises which come dangerously close to upsetting our economy. Dr. Dean Burk of the National Institute of Health told the finalists of the ninth annual Science Talent Search at a meeting in Washington, D. C., that vast quantities of hydrogen, a highly useful fuel, could be made available if man could master photosynthesis, the process by which plants use solar energy. If this could be done, man could merely direct the sun to decompose water to oxygen and hydrogen.

INCOME TAX returns are being checked by electronic devices this year in New York and four other cities. The Bureau of Internal Revenue has installed fifteen electronic brains, each of which can check all of the involved computations of a 1040 tax return at the rate of 800 returns an hour.

When a tax return is processed, all of the pertinent data is abstracted on an electric card punching machine. The cards are then fed to the robot which traces all of the taxpayers calculations in a series of day and night runs. It finds each mistake and shows where it is. If a refund is due, it is noted; and if an assessment is needed, the machine takes care of that, too. If the taxpayer comes within a dollar of being balanced with the government, the machine calls it quits.

These machines and other work-speeding devices are being used by the bureau to get refunds back to the taxpayer before the interest accumulates.

ALUMINUM MIRROR is used to reflect TV signals in a studio-transmitter link of WNBF-TV in Binghamton, N. Y. Such links are usually provided by special land lines or by a line-of-sight microwave beam. In this case, the transmitter building was on the far slope of a wooded hill about 3½ miles from the studio and a land line up the hill would have been very expensive.

Although the transmitter building has no line-of-sight path to any of the tall buildings in the city, it did have a 384-ft. antenna tower which rose well above the crest of the hill. Engineers placed a 7-foot square sheet of aluminum about halfway up the tower to reflect a microwave beam from the top of the local telephone building to a dish antenna on the roof of the transmitter building.

This is believed to be the first case in which a reflector such as this is used in a television studio-transmitter link, and it required careful planning. Weather men were consulted to find out how much the tower could be expected to sway in the wind. With the mirror halfway up the tower, transmission is not disturbed by any windstorm. A swath had to be cleared through the woods on the hill to get a line-of-sight path from the equipment in the city to the mirror on the antenna tower.

GUIDED MISSILES may be guided to their targets by robots "saboteurs" planted in enemy cities. This was hinted in a Glossary of Guided Missile Terms published last month by the Defense Department's Research and Development Board. The reference was to a proposed "active homing guidance" by which the guided bomb homes on a target "illuminated from a source other than the missile."

In practice the missile would follow a radio beam either located in the enemy city, smuggled there by secret agents, or by a beam pointed at the city from outside it and reflected from it on an angle.
FIELD STATION to make continuous measurements of radio waves reflected from the upper atmosphere has been established at Fort Belvoir, Virginia, by the National Bureau of Standards. The Belvoir Field Station is one of a system of fourteen stations operating under the supervision of the Bureau's Central Radio Propagation Laboratory and is part of a world-wide network of over 50 radio observatories.

DEATH RAYS that will kill fruit flies and other insects which contaminate food are being used in experiments by the U. S. Bureau of Entomology and Plant Quarantine. The rays are produced by a 214-million-volt machine which shoots electrons at the insects in blasta that last for 1 microsecond. At a range of 12 inches, the electrons kill insects over a 14-inch square.

The machine is called a capacitor and was first used for sterilizing and preserving foods. The experiments in killing insects were begun at the request of agricultural experts in Hawaii who were worried about fruit flies in food exported from the islands. So far, the rays have killed mosquitoes, fruit flies, carpet beetles, flour beetles, and other kinds of insects. They also work on insects in the egg or larva stage.

AIR SAFETY equipment is being purchased by the Civil Aeronautics Administration in a 4-million dollar order, the largest ever made by the CAA.

The order calls for 450 "distance measuring equipment" ground stations for use with a nation-wide network of omni-directional radio ranges. The new D.M.E. transmitters, as the units are called, are part of an air navigation system developed by the Radio Technical Commission for Aeronautics and approved by Congress for installation. It will require about 15 years to complete the system.

Aircraft can follow direct courses between the CAA's omni-ranges, or they can follow courses parallel to the airways by taking periodic cross-bearings on more than one such station. The D.M.E. units will be installed on top of existing omni-range stations and will give the airmen an exact mileage "fix" on the course they are following. This will eliminate the need for estimating how far they have travelled between ranges.

FRINGE COMMUNITIES in Wisconsin are investigating the dangers of large private television antenna towers in order to enact control ordinances. Residents in cities as far as 100 miles from Milwaukee have erected towers upwards of 60 feet high in an effort to receive programs from Milwaukee and even Chicago.

TEN DEVELOPMENTS in radio which were the most outstanding during the first half of the twentieth century were listed last month by Dr. C. B. Jolliffe, executive vice-president in charge of RCA Laboratories. They are:

1. Wireless communications;
2. The electron tube;
3. Radiotelephone communication;
4. Radio broadcasting;
5. All-electronic television;
6. Passband-type transmission;
7. Radio navigation aids;
8. Radar;
9. Remote radio control;
10. Microwave relays.

Some of the equipment at Fort Belvoir.

The station has four separate buildings designed for ionospheric and geo-physical measurements. Equipment includes the latest in field intensity recorders, ionospheric recorders, and visually-recording magnetographs. Data gathered at the new station will be used to make predictions three months in advance of the best frequencies for short wave radio communication as well as warnings of sudden radio disturbances.

The Belvoir Field Station serves as a training center in the techniques of ionospheric and field intensity measurements. It is also a testing ground for new measuring equipment and procedures that are proposed for use at all of the Bureau's field stations.

INTERFERENCE from local oscillators in television receivers is a very serious problem according to Chairman Wayne Coy of the Federal Communications Commission. (See January, 1950 issue, page 36.) The FCC hopes to get away from this problem by opening up the u.h.f. range to television broadcasting.

Mr. Coy told a House subcommittee that the oscillators of some television receivers put out enough power to put out of commission all the receivers within a 1-mile radius. He said that the Boston-Providence area is bothered with this trouble and that there are 32,000 receivers in this area which cannot get either channel 11 broadcasts from Providence or channel 7 broadcasts from Boston because of it.
The annual Parts Distributors Conference and Show will be held this year at the Stevens Hotel, Chicago from May 22-25. Approximately 175 manufacturers, merchandising their products through parts distributors, either in both booths and display rooms in the Exhibition Hall or will show their products in display rooms throughout the hotel. Many of the manufacturers will have both booths and display rooms. The Show committee is sponsoring many innovations in this year’s program, and attendance in the Exhibition Hall will be restricted exclusively to distributors. All other members of the manufacturing industry will have access to display rooms in the hotel. From all indications, there is every reason to believe that the 1950 Conference and Show will be the most successful and best attended in history. Following is a list of exhibitors who have reserved space in either the Exhibition Hall or in display rooms at the Stevens for their displays.

List of Exhibitors in the 1950 Parts Distributors Conference & Show

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>EXHIBITION ROOM</th>
<th>DISPLAY ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aedes Corporation</td>
<td>401</td>
<td>610</td>
</tr>
<tr>
<td>Aircraft Marine Products, Inc.</td>
<td>124</td>
<td>602</td>
</tr>
<tr>
<td>Alliance Manufacturing Corp.</td>
<td>222</td>
<td>517</td>
</tr>
<tr>
<td>Alpha Wire Corp.</td>
<td>516</td>
<td>601A</td>
</tr>
<tr>
<td>Altec Lansing Corp.</td>
<td>302</td>
<td>501</td>
</tr>
<tr>
<td>Amperite</td>
<td>303</td>
<td>502</td>
</tr>
<tr>
<td>American Phenolic Corp.</td>
<td>614</td>
<td>555A-552A</td>
</tr>
<tr>
<td>American Radio Hardware Co., Inc.</td>
<td>109</td>
<td>610</td>
</tr>
<tr>
<td>American Television & Radio Corp.</td>
<td>120</td>
<td>611</td>
</tr>
<tr>
<td>Anchor Radio Corp.</td>
<td>2</td>
<td>612</td>
</tr>
<tr>
<td>Approved Electronic Instrument Corp.</td>
<td>10</td>
<td>613</td>
</tr>
<tr>
<td>Atlantic Corp.</td>
<td>317</td>
<td>614</td>
</tr>
<tr>
<td>Atlantic Sound Recording Co.</td>
<td>521A</td>
<td>504-526A</td>
</tr>
<tr>
<td>Audio Devices, Inc.</td>
<td>610A</td>
<td>604-659A</td>
</tr>
<tr>
<td>Barker & Williamson, Inc.</td>
<td>522A</td>
<td>605A-509A</td>
</tr>
<tr>
<td>Behlen Manufacturing Co.</td>
<td>655</td>
<td>510A</td>
</tr>
<tr>
<td>Bell Sound Systems</td>
<td>514</td>
<td>656-659</td>
</tr>
<tr>
<td>David Bogen Co.</td>
<td>607</td>
<td>658A-657A</td>
</tr>
<tr>
<td>British Industries</td>
<td>591</td>
<td>658A</td>
</tr>
<tr>
<td>Brush Development Co.</td>
<td>106</td>
<td>659</td>
</tr>
<tr>
<td>Bud Radio, Inc.</td>
<td>206</td>
<td>658A-657A</td>
</tr>
<tr>
<td>Burgess Battery Co.</td>
<td>221</td>
<td>659A</td>
</tr>
<tr>
<td>Camburn, Inc.</td>
<td>129</td>
<td>660A</td>
</tr>
<tr>
<td>Carpenter Manufacturing Co.</td>
<td>101</td>
<td>661A</td>
</tr>
<tr>
<td>Centralab Co.</td>
<td>509</td>
<td>662A</td>
</tr>
<tr>
<td>Chicago Transformer Division</td>
<td>508</td>
<td>663A</td>
</tr>
<tr>
<td>Cinch Manufacturing Co.</td>
<td>613</td>
<td>664A</td>
</tr>
<tr>
<td>Clarostat Manufacturing Co.</td>
<td>220</td>
<td>665A</td>
</tr>
<tr>
<td>Cleveland Cables, Inc.</td>
<td>204</td>
<td>666A</td>
</tr>
<tr>
<td>Colby Wire & Supply Co., Inc.</td>
<td>614</td>
<td>667A</td>
</tr>
<tr>
<td>Condenser Products</td>
<td>418</td>
<td>668A</td>
</tr>
<tr>
<td>Consolidated Wire & Assoc.</td>
<td></td>
<td>669A</td>
</tr>
<tr>
<td>Companies</td>
<td></td>
<td>670A</td>
</tr>
<tr>
<td>Continental Carbon, Inc.</td>
<td>108</td>
<td>671A</td>
</tr>
<tr>
<td>Cornish Wire Co.</td>
<td>833</td>
<td>672A</td>
</tr>
<tr>
<td>Crescent Industries, Inc.</td>
<td>115</td>
<td>673A</td>
</tr>
<tr>
<td>Crest Transformer Co.</td>
<td>607</td>
<td>674A</td>
</tr>
<tr>
<td>J. W. Davis & Co.</td>
<td>103</td>
<td>675A</td>
</tr>
<tr>
<td>Drake Electric Works</td>
<td>581</td>
<td>676A</td>
</tr>
<tr>
<td>Dumont Electric Co.</td>
<td>101</td>
<td>677A</td>
</tr>
<tr>
<td>Ducommune Co.</td>
<td>521</td>
<td>678A</td>
</tr>
<tr>
<td>Eckstein Radio & TV Co.</td>
<td>310</td>
<td>679A</td>
</tr>
<tr>
<td>Electric Power Iron Co.</td>
<td>610</td>
<td>680A</td>
</tr>
<tr>
<td>Electronic Instrument Co.</td>
<td>202</td>
<td>681A</td>
</tr>
<tr>
<td>Electronic Measurements Corp.</td>
<td>5</td>
<td>682A</td>
</tr>
<tr>
<td>Electric Products Labs.</td>
<td>219</td>
<td>683A</td>
</tr>
<tr>
<td>Electric-Voice, Inc.</td>
<td>127</td>
<td>684A-505A</td>
</tr>
<tr>
<td>Electrotek</td>
<td>510</td>
<td>685A</td>
</tr>
<tr>
<td>Ellar Woodcraft Corp.</td>
<td>122</td>
<td>686A</td>
</tr>
<tr>
<td>Eric Resizer Corp.</td>
<td>455</td>
<td>506A</td>
</tr>
<tr>
<td>Espey Manufacturing Co.</td>
<td>601</td>
<td>507A</td>
</tr>
<tr>
<td>Fried Transistor Co.</td>
<td>118</td>
<td>508A</td>
</tr>
<tr>
<td>Gearmor & Associates</td>
<td>557</td>
<td>509B</td>
</tr>
<tr>
<td>General Cement Mfg. Co.</td>
<td>114</td>
<td>510A</td>
</tr>
<tr>
<td>General Electric Co.</td>
<td>688</td>
<td>510A-517A</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>517</td>
<td>512A-513A</td>
</tr>
<tr>
<td>General Electric Transformer Co.</td>
<td>501</td>
<td>514A</td>
</tr>
<tr>
<td>Girard-Hopkins</td>
<td>518</td>
<td>515A</td>
</tr>
<tr>
<td>Guardian Electrical Mfg. Co.</td>
<td>411</td>
<td>516A</td>
</tr>
<tr>
<td>Hallboers . Co.</td>
<td>414</td>
<td>517A</td>
</tr>
<tr>
<td>Hallicrafters Co.</td>
<td>405</td>
<td>518A-532A</td>
</tr>
</tbody>
</table>

The Association of Electronic Parts and Equipment Manufacturers, Chicago, in their February meeting, authorized its publicity committee, to prepare a program on brand names. The publicity committee consists of Helen Staniland Quam, of QuamNichols Co., Chicago, chairman; Jerome J. Kahn, Standard Transformer, Chicago; and Ralph brengle, Potter & Brumfield Co., Princeton, Indiana.

"The parts industry is spending millions of dollars on advertising schedules to acquaint the distributor and the consumer with its products and the only way it can protect that investment is to take effective steps against the substitution of unbranded, surplus, dumped, and displaced merchandise," Mrs. Quam told the members.

"The eclipse of individual trade names would invite regimentation of the parts industry and ultimately reduce the manufacturer to the status of an anonymous supplier," she added.

PUBLICATIONS

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>DISPLAY ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIO-ELECTRONICS</td>
<td>600</td>
</tr>
<tr>
<td>Boland & Boyce, Inc., Div.</td>
<td>609A</td>
</tr>
<tr>
<td>Bryan-Davis Publishing Co.</td>
<td>561A</td>
</tr>
<tr>
<td>Caldwell-Clements, Inc.</td>
<td>562A</td>
</tr>
<tr>
<td>Canonic Publishing Corp.</td>
<td>618A-619A</td>
</tr>
<tr>
<td>Electronic Publishing Corp.</td>
<td>620A</td>
</tr>
<tr>
<td>FM-TV Magazine</td>
<td>621A</td>
</tr>
<tr>
<td>Jordan News Co.</td>
<td>537</td>
</tr>
<tr>
<td>Parts Jobber</td>
<td>630A</td>
</tr>
<tr>
<td>Radio & TV Journal</td>
<td>629</td>
</tr>
<tr>
<td>Radio & TV News</td>
<td>626</td>
</tr>
<tr>
<td>Radio & TV Weekly</td>
<td>61A</td>
</tr>
<tr>
<td>United Catalog Publishers</td>
<td>605-669</td>
</tr>
</tbody>
</table>

www.americanradiohistory.com
Only D.T.I. offers you the "BIG 5"

TELEVISION
RADIO-ELECTRONICS

Laboratory Type

HOME TRAINING

Build and Keep 10, 12½ or 16 inch Picture Tube Quality TELEVISION RECEIVER as you prepare for a Profitable Future

Here is everything you need to prepare you at home for FASCINATING WORK, GOOD MONEY and a THRILLING FUTURE in one of America's most promising fields.

This includes the opportunity to build and keep the top quality Television Receiver shown above—with choice of a 10, 12½ or 16 inch picture tube that gives big, bright, sharp, steady pictures. Get the complete facts. This is an optional feature — available when you complete your training described below. See how D.T.I.'s wonderfully practical "BIG 5" method meets industry's needs. No previous experience needed. Mail coupon today!

16 Big Shipments of Parts — Plus Lessons

Work over 300 electronic experiments and projects from 16 big shipments of parts. This includes building and keeping all test equipment and radio set shown at left side of page. Modern easy-to-read lessons with handy fold-out diagrams simplifies your entire training.

You Also Use Home Movies

D.T.I., alone, includes the modern, visual training aid—MOVIES to help you learn faster, easier at home. See electrons on the march and other fascinating "hidden action"—a remarkable home training advantage that speeds your progress.

EMPLOYMENT SERVICE

When you complete your training, our effective Employment Service helps you get started toward a real future in Television-Radio-Electronics.

Modern Laboratories

If you prefer, you can get ALL your preparation in our new, Chicago training laboratories... one of the finest of its kind. Ample instructors... modern equipment. Write for details!

MAIL THIS COUPON TODAY!

DeFOREST'S TRAINING, INC.
2533 North Ashland Avenue, Dept. LC-G-5
Chicago 14, Illinois.

Without obligation, give me complete facts showing how I may make my start in Television-Radio-Electronics.

Name__________________ Age__________________

Street__________________ APT__________________

City__________________ Zone________ State________

DeFOREST'S TRAINING, INC.
Chicago 14, Illinois
A DeVry Institution

MAY, 1950
SYLVANIA ANNOUNCES...

"Leave it to Sylvania!"

"Another Sylvania advance!"

Two Outstanding New

"That's great news for TV Service men!"

TV Test Instruments!

Sylvania's early pioneering in radio testing devices naturally places this company in a position to step ahead in the field of television testing equipment.

So again Sylvania comes through! This time for service dealers everywhere, with a splendid new line of TV Test Equipment. Here are the first two instruments in this line. A new TV Marker Generator will be announced soon. Mail coupon for prices and latest specification sheets.

Sylvania's early pioneering in radio testing devices naturally places this company in a position to step ahead in the field of television testing equipment.

So again Sylvania comes through! This time for service dealers everywhere, with a splendid new line of TV Test Equipment. Here are the first two instruments in this line. A new TV Marker Generator will be announced soon. Mail coupon for prices and latest specification sheets.

Sylvania TV Oscilloscope
Here's an entirely new high gain, wide band oscilloscope especially designed for television. Accurately displays any TV pulse, wave-shape or signal on a large 7-inch screen. Has excellent tilt, rise-time, and overshoot characteristics. Features include: 3-position frequency-compensated attenuator; vernier gain control; low internal hum level. Mail coupon for full details.

Type 400

Sylvania TV Sweep Signal Generator
This compact instrument is equipped with electronically controlled sweep circuits to eliminate the complexities inherent in mechanical type sweeps.

The smooth attenuator gives continuous control of the output from 300 microvolts to the maximum of .1 volt. Voltage-regulated power supply insures good frequency stability. Double shielded to prevent unwanted signal leakage.

Type 500

SYLVANIA ELECTRIC

Sylvania Electric Products Inc.
Advertising Dept. R-1003
Emporium, Pa.
Please send me full details about Sylvania's new TV Test Equipment.
Name_________________________
Street_________________________
City___________________________
Zone__________________________
State__________________________

RADIO-ELECTRONICS for

www.americanradiohistory.com
The Super-Fan series are the most sensitive broad band antennas, stack for stack, commercially available. Their 150 ohm impedance permits efficient low loss tie-in to all standard transmission lines. Safety engineered with solid aluminum inserts, and howl proof sealed ends, these antennas withstand ice loads and high winds silently and without breakage.

These models also feature Swing-Lock-Action, the patented preassembled feature of all Channel Master antennas. Just swing out elements and lock them in place — as easy as that.

A TELEVISION SET IS NO BETTER THAN ITS ANTENNA
THERE IS NO BETTER ANTENNA THAN THE SUPER-FAN

GAIN OF THE SUPER-FAN SERIES

HORIZONTAL POLAR DIAGRAMS
The new 1950 Push-Pull 5" Oscilloscope Kit has features that seem impossible in a $39.50 oscilloscope. Think of it—push-pull vertical and horizontal amplifiers with tremendous sensitivity only six one-hundredths of a volt required for full inch of deflection. The weak impulses of television can be boosted to full size on the five-inch screen. Traces you couldn't see before. Amazing frequency range clear useful response at 21/2 Megacycles made possible by improved push-pull amplifiers. Only Heathkit Oscilloscopes have the frequency range required for television. New type-multi-vibrator sweep generator with more than twice the frequency range. 15 cycles to 70,000 cycles will actually synchronize with 250,000 cycle signal. Dual positioning controls will move trace over any section of the screen for observation of any part. New magnetic alloy C.R. tube shield protects the instrument from outside fields. All the same high quality parts, coated electrostatically shielded power transformers, aluminum cabinet, all tubes and parts. New instruction manual now has complete step by step pictorials for easiest assembly. Shipping Weight 36 lbs. Order now for this winter's use.

CONVERSION FOR OTHER MODEL HEATHKIT OSCILLOSCOPES
A conversion for all 63 and 94 scopes is available changing them to the new push-pull amplifiers (does not change the sweep generator). Complete kit includes new chassis, tubes and all parts. For a small investment, add the latest improvements to your present oscilloscope (except C.R. Tube Shield). Shipping weight 10 lbs. Order 65 Conversion Kit No. 315 $12.50

THE NEW Heathkit HANDITESTER KIT
MORE FEATURES THAN EVER BEFORE

- BOUQUET streamliner Bakelite case.
- AC and DC ranges to 5,000 Volts.
- 1% Precision ceramic trimmers.
- Convenient thumb type adjust control.
- 400 microampere meter movement.
- Quality Bradley AC rectifier.
- Multiplying type ohms ranges.
- All the convenient ranges 10-30-300-1,000-5,000 Volts.
- Large quality 3" built-in meter.

The instrument for all— the range you need— beauty you'll enjoy for years and you can assemble it in a matter of minutes—an instrument for everyone. The handiest quality voltohmeter of all. Small enough to put in your pocket yet a full 3" meter. Easy pictorial wiring diagrams eliminate all assembly problems. Uses only 1½ precision ceramic divider resistors and wire wound shunts. Twelve different ranges: AC and DC ranges of 10-30-300-1,000-5,000 Volts. Ohms ranges of 0-300,000 ohms. Milliamperes ranges of 10MA and 100MA. Heating and type ohms adjust control fits conveniently under thumb for one hand adjustment. Banana type jacks for positive low resistance connections. Quality test leads included. The high quality Bradley instrument rectifier was especially chosen for linear scales on AC. The modern case was styled by Harrah Engineering for this instrument. The 400 microampere meter movement comes already mounted in the case protected from dust during assembly. An ideal classroom assembly instrument useful for a lifetime. Perfect for radio service calls, electricians, garage mechanics, students, amateurs and beginners in radio. The only quality voltohmeter under $20.00. An hour of assembly saves you one half the cost and quality parts give you a better instrument. Order today. Shipping weight 2 lbs.

Note
HANDY OHMS ADJUST.

The Heath Company
BENTON HARBOR 20, MICHIGAN

RADIO-ELECTRONICS for
The NEW V-4 Heathkit

VACUUM TUBE VOLTMETER KIT

- Meter scale 17% larger than average 4½" meter.
- Modern streamline 200 microamp meter.
- New modern streamline styling.
- Burn-out proof meter circuit.
- 24 Complete ranges.
- Isolated probes for dynamic testing.
- Most beautiful VTVM in America.

The new Heathkit Model V-4 Vacuum Tube Voltmeter has dozens of improvements. A new modern streamlined 200 microamp meter has Alnico V magnet for fast, accurate readings. The new electronic AC voltmeter circuit incorporates an entire new balance control which eliminates contact potential and provides greater accuracy. New snap-in battery mounting is on the chassis for easy replacement. The Heathkit VTVM is the only kit giving all the ranges. Check them — DC and AC full scale linear ranges of 0-1V, 0-10V, 0-50V, 0-100V, 0-500V, 0-1000V and can be extended to 0-5000V and 0-10,000V DC with accessory probe at slight extra cost. Electronic voltmeter has six ranges measuring resistance accurately from 1 ohm to one billion ohms. Meter pointer can be offset to zero center for FM alignment.

The DC probe is isolated for dynamic measurements. Has dB scale for making gain and other audio measurements.

Order now and enjoy it this entire season. Shipping weight 8 lbs., Model V-4

Accessory: 10,000V high voltage probe, No. 310, $4.50.
Accessory: RF crystal diode probe kit extends RF range to 100 Mc., No. 309, $6.50.

New 1950 VERNIER TUNING R.F. Heathkit

SIGNAL GENERATOR KIT

- New 5 to 1 ratio vernier tuning for ease and accuracy.
- New external modulation switch — use it for fidelity testing.
- New precision coils for greater output.
- Cathode follower output for greatest stability.
- 400 cycle audio available for audio testing.
- Most modern type R.F. oscillator.
- Covers 150Kc. to 35Mc. on fundamentals and calibrated strong harmonics to 102 Mc.

The most popular signal generator kit has been vastly improved — the experience of thousands combined to give you the best. Check the features in this fine generator and consider the low price $19.50. A best buy for any shop, yet inexpensive enough for hobbyists. Everyone can have an accurate controlled source of R.F. signal voltage.

The new features double the value — think of being able to make fidelity checks on receivers by using a variable audio signal. Internal 400 cycle saw-tooth audio oscillator modulates R.F. signal and is available externally for audio testing. The new 5 to 1 ratio vernier drive gives flawless tuning for maximum accuracy in scale settings. The coils are already precision wound and calibrated. Uses turret type coil and switch assembly for ease of construction. The generator is 110 V. 60 cycle transformer operated and comes complete in every detail — cabinet — tubes — coils — beautiful two color calibrated panel and all small parts — new step-by-step pictorial diagrams and complete instruction manual make assembly a cinch even for novices. Why try to get along without a signal generator when you can have the best for less than a twenty dollar bill. Better order it now. Shipping weight 7 lbs. $19.50

CONVERSION KIT FOR G-1 GENERATORS

Conversion kit for G-1 generators for vernier tuning and external modulation includes new high band coil for greater output. Gives all the features of new G-5 listed above. Order G-5 Conversion Kit No. 316 $4.50

www.americanradiohistory.com
New Heathkit

IMPEDEANCE BRIDGE KIT

A LABORATORY INSTRUMENT NOW WITHIN
THE PRICE RANGE OF ALL

Measures Inductance from 10 microhens to 100 henries capac-
ance from .0001 MFD to 1000 MFD. Resistance from .01 ohms to 10
megohms. Dissipation factor from .001 to 1. "Q" from 1 to 1000.
Ideal for schools, laboratories, service shops, serious experimentors.

An impedance bridge for everyone — the most useful instrument of all,
which heretofore has been out of the price range of serious experi-
mentors and service shops. Now at the lowest price possible. All highest
quality parts. General Radio main calibrated control. General Radio
1000 cycle hummer. Mallory ceramic switches with 60 degree indexing
— 200 micro-amp zero center galvanometers — 1/2 of 1% ceramic non-
inductive decade resistors. Professional type binding posts with standard
Ready calibrated capacity and inductance standards of Silver Mica, accurate to 1/2 of 1%
and with dissipation factors of less than 30 parts in one million. Provisions on panel for
external generator and detector. Measure all your unknowns the way laboratories do —
with a bridge for accuracy and speed.

Internal 6 volt battery for resistance and hummer operation. Circuit utilizes Wheatstone,
Hay and Maxwell circuits for different measurements. Supplied complete with every quality
part — all calibrations completed and instruction manual for assembly and use. Deliveries
are limited. Shipping weight, approximately 15 lbs.

Heathkit

CONDENSER
CHECKER KIT

$19.50

Features
- Power factor scale
- Measures resistance
- Measures leakage
- Checks paper-mica-electrolytic

Checks all types of condensers, paper-mica-electrolytic-ceramic over a range of .0001 MFD. to
1000 MFD. All on readable scales that are read direct from the panel. NO CHARTS OR MUL-
TIPLIERS NECESSARY. A condenser checker anyone can read without a college education. A
leakage test and polarizing voltage for 20 to 500
volts provided. Measures power factor of elect-
rolytics between 0% and 50%. 110V. 60 cycle transformer operated complete with rectifier and
magic eye tubes. cabinet, calibrated panel, test leads and all other parts. Clear detailed instruc-
tion for assembly and use. Why guess at the quality and capacity of a condenser when you can
know for less than a twenty dollar bill. Shipping
weight, 7 lbs. Model C-2.

New Heathkit

TELEVISION
ALIGNMENT
GENERATOR
KIT

$39.50

Everything you want in a television alignment generator. A
wide band sweep generator covering all TV frequencies 0 - 46
54 to 100 - 174 to 220 Megacycles, a marker indicator covering
19 to 42 Megacycles, AM modulation for RF alignment — va-
able calibrated sweep width 0 - 30 Mc. — mechanical driven
inductive sweep. Husky 110V. 60 cycle power transformer operated — step type output
attenuator with 10,000 to 1 range — band switching for each
range — vernier driven main calibrated dial with over 43 inches of calibration — vernier
driven calibrated marker tuning. Large grey crackle cabinet 16 1/4" x 10 1/4" x
7 1/2/16". Phase control for each trace adjustment. Uses three high frequency triodes plus
5Y3 rectifier — split statoc tuning condensers for greater efficiency and accuracy at high
frequencies — this Heathkit is complete and adequate for every alignment need and is
supplied with every part — cabinet — calibrated panel — all coils and condensers wound.
calibrated and adjusted. Tubes, transformer, test leads — every part with instruction
manual for assembly and use. Actually three instruments in one — TV sweep generator —
TV AM generator and TV marker indicator.

THE HEATH COMPANY

...BENTON HARBOR 20, MICHIGAN

RADIO-ELECTRONICS FOR
Heathkit TUBE CHECKER KIT

Features

1. Measures each element individually
2. Has gear driven roller chart
3. Has lever switching for speed
4. Complete range of filament voltages
5. Checks every tube element
6. Uses latest type lever switches
7. Uses beautiful shutterproof full view meter
8. Large size 11" x 14" x 4" complete
9. Checks new 9 pin pinpulges

Check the features and you will realize that this Heathkit has all the features you want. Speed — simplicity — beauty — protection against obsolescence. The most modern type of tester — measures each element — beautiful red-glow scale, high quality meter — the best of parts — rugged oversized 110V. 60 cycle power transformer — finest of Mallory switches — Centralab controls — quality wood cabinet — complete set of sockets for all type tubes including blank spare for future types — fast action gear driven roller chart uses brass gears to quickly locate and set up any tube type. Simplified switching cuts necessary time to minimum and saves valuable service time. Short and open element check. No matter what arrangement of tube elements, the Heathkit flexible switching arrangement easily handles it. Order your Heathkit Tube Checker today.

See for yourself that Heath again saves you $5 and yet retains all the quality — this tube checker will pay for itself in a few weeks — better build it now.

Complete with detail instructions — all parts — cabinet — roller chart — ready to wire up and operate. Shipping Wt., 15 lbs.

Heathkit SINE AND SQUARE WAVE AUDIO GENERATOR KIT

Nothing ELSE TO BUY

$34.50

Experimenters and servicemen working with a square wave for the first time invariably wonder why it was not introduced before. The characteristics of an amplifier can be determined in seconds compared to several hours of tedious plotting using older methods. Stage by stage, amplifier testing is as easy as signal tracing. The low distortion (less than 1%) and linear output (+/- one db.) make this Heathkit equal or superior to factory built equipment selling for three or four times its price. The circuit is the popular RC input circuit using a four gang variable condenser. Three ranges 20-200, 200-2,000, 2,000-20,000 cycles are provided by the switch. Each sine or square waves instantly available at slide switch. All components are of highest quality, canned 110V. 60 cycle power transformer. Mallory F.P. filter condensers, 5 tubes, calibrated 2 color panel, grey crackle aluminum cabinet. The detailed instructions make assembly an interesting and instructive few hours. Shipping Wt., 13 lbs.

New Heathkit BATTERY ELIMINATOR KIT

Nothing ELSE TO BUY

$22.50

Now a bench 6 Volt power supply kit for all auto radio testing. Supplies 5-7½ Volts at 10 Amperes continuous or 15 Amperes intermittent. A well filtered rugged power supply uses heavy duty selenium rectifier, choke input filter with 4,000 MFD of electrolytic filter. 0 - 15 Volt meter indicates output. Output variable in eight steps. Excellent for demonstrating auto radio. Ideal for servicing — can be lowered to find stuck vibrators or stepped up to eliminate of generator overload — easily constructed in less than two hours. Complete in every respect. Shipping Wt., 18 lbs.

New Heathkit SIGNAL TRACER AND UNIVERSAL TEST SPEAKER KIT

Nothing ELSE TO BUY

$19.50

The popular Heathkit signal tracer has now been combined with a universal test speaker at no increase in price. The same high quality tracer follows signal from antenna to speaker — locates interments — defective parts quicker — saves valuable service time — gives greater income per service hour. Works equally well on broadcast — FM or TV receivers. The test speaker has assembly of switching ranges to match push pull or single output impedance. Also test microphones, pickups — PA systems — comes complete — cabinet — 110V. 60 cycle power transformer — tubes, test probe, all parts and detailed instructions for assembly and use. Shipping Wt., 8 lbs.
Heathkits PROVIDE PROFESSIONAL LABORATORY APPEARANCE

New Heathkit BROADCAST AND 3 BAND SUPERHETERODYNE RECEIVER KIT

BROADCAST MODEL BR-1
550 to 1600 Kc.

$19.50

Two new Heathkit Superheterodynes featuring the best of design and material. Beautiful six inch slide rule dials—110 V. 60 cy. AC power transformer operated—metal cased filters—quality output transformers. Dual iron core metal can IF transformers—two gang tuning condenser. The chassis is provided with phone-radio switch—110 V. outlet for changer motor and phone pickup jack. Each kit is complete with all parts and detailed instruction booklet. Pictorial diagrams and step-by-step instructions make assembly quick and easy.

Ideal AC operated superheterodyne receiver for home use or replacement in console cabinet. Comes complete with attractive metal panel for cabinet mounting. Modern circuit uses 12AS converter, 12SH7 input IF stage, 12AS output IF stage and first audio 12A6 beam power output stage, 5V3 rectifier. Excellent sensitivity for distant reception with selectivity which effectively separates adjacent stations.

The illuminated six inch slide rule dial is accurately calibrated for DX reception. Enjoy the pleasure of assembling your own fine home receiver. Has tone, volume, tuning and phone-radio controls. Chassis size 23/4" x 7" x 12 1/2". Comes complete with all parts including quality output transformer to 3.4 ohm voice coil, tube, instruction manual, etc. (less speaker). Shipping Wt., 10 lbs. No. BR-1 Receiver $19.50.

No. 335 Communications Type Table Model Metal Cabinet $4.50
No. 320 High Quality 5" PM Speaker for above 2.75

ORDER BLANK

HEATH CO.
BENTON HARBOR
MICHIGAN

<table>
<thead>
<tr>
<th>QUAN.</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUAN.</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING Wt., 10 lbs. No. AR-1 Receiver $23.50.
No. 335 Communications Type Table Model Metal Cabinet $4.50
No. 320 High Quality 5" PM Speaker for above 2.75

Build this high fidelity push-pull amplifier and save two-thirds the cost—has two pre-amplifier stages, phase inverter stage and push pull beam power output stage. Comes complete with six tubes—quality output transformer to 3.4 ohm voice coil) tone and volume controls—varnish impregnated 110V. power transformer and detailed instruction manual and all small parts. Six watt output with output flat within 1/2 db between 50 and 15000 cycles.

Build this amplifier now and enjoy it for years. Shipping Wt. 7 lbs. Model A-4
12" PM Speaker for above $6.95

ENCLOSED FIND □ CHECK □ MONEY ORDER FOR □ SHIP VIA
□ Parcel Post □ Express □ Freight □ Best Way

THE HEATH COMPANY
BENTON HARBOR 20, MICHIGAN

RADIO-ELECTRONICS for

www.americanradiohistory.com
Note rugged welded-steel box frame, mounting riveted elements rigidly and permanently in place. Only non-varying mica insulation used. No run-in required. Structurally stable—not unusual for 500-hour reading to duplicate initial values. Minimum contact impact and low contact-point erosion. Almost impossible for unit to close or stick. Heat generation low enough to sustain operation at 185\degree F.

AEROVOX

VIBRATORS

- So very quiet! You'll doubt the Aerovox Vibrator* is running until you've turned up the volume control.

Here's the first postwar vibrator. Radically new design—outcome of systematic engineering effort to eliminate annoyances experienced with vibrators. Provides brand new performance thrill with any auto-radio or other vibrator-powered equipment. Definitely another milestone in vibrators.

Just compare!

Yes sir, comparative tests are invited. Literature on request. Let us collaborate on your vibrator problems and needs.

Standard and special types. Also Universal Replacements serving greatest number of auto-radio models with minimum inventory. For the best in replacements, insist on the "Quiet Mouse" yellow-and-black carton vibrator stocked by Aerovox distributors!

*U.S. Patents Pending

AEROVOX CORPORATION

NEW BEDFORD • MASSACHUSETTS
A SENSATIONAL NEW BOOSTER FEATURING A TURRET TUNER

The turret tuner is recognized as the most efficient television input tuning device yet designed because of (1) its exceptionally high gain and (2) its uniform bandwidth on all channels. It is used in today's finest television receivers. Now, for the first time, National makes available all the advantages of a turret tuner in a truly sensational-performing new television booster.

COMPARE THESE FEATURES:
(1) Turret tuner with an individually tuned set of coils for each channel. (2) Removable polystyrene coil-mounting contact panels. (3) A single 6AK5 for maximum usable gain. (4) A built-in power transformer (not AC-DC—no "hot" chassis). (5) Selenium rectifier for long life. (6) Channel selector and fine tuning in a single, easy-to-operate, dual-purpose control. (7) Pilot light illuminates selected channel.

The new National Booster is housed as beautifully as it performs in a smart, modern, metal cabinet finished in special wear-resistant mahogany enamel, with a handsome brass and plastic tuning knob.

$39.95 list price

P.S. No other booster has a turret tuner!
THESE LEADING SET MAKERS

Emerson
Admiral
Bendix Radio
Westinghouse
halcrafters
Motorola
Sparton
Philco
Stromberg-Carlson
Majestic
airking
Sentinel
TRAV-LER
Garod
Sethcell-Carlson, Inc.
Crosley

Seen these Hytron firsts in popular new TV sets? The prominent TV set makers shown are using them. And the list is growing.

choose one or more of THESE HYTRON TV FIRSTS

DuMont, for example, now uses the 1X2 and 6BQ6GT. You'll see many more of these famous tubes. And many more new Hytron types designed for low-cost TV for the mass market. When you buy these Hytron firsts, follow the leading set manufacturers. Buy the original. Buy Hytron!

NEW 4th EDITION

Miniature types are multiplying fast. You need this Hytron Reference Guide. Originated by Hytron, it is unique. Lists all miniatures to date, regardless of make. Six pages of pertinent data. 132 miniatures — 41 of them new. 70 biasing diagrams. Lists similar larger prototypes. Free from your Hytron jobber. Get your copy of this old friend brought up to date — today.

HYTRON
Radio and Electronics Corp.

Main Office: Salem, Massachusetts

May, 1950

OLDEST MANUFACTURER OF RECEIVING TUBES

HYTRON
NOW! Convert 10"-12½"
Quickly, Profitably, Easily with

NEW! NORELCO DUO-VUE
world's first dual-purpose TV offers
3' x 4' picture—$199.50 list*

NEW! PROTELGRAM “CONVERSION PACKAGE”
makes possible huge 234 sq. in.
picture for trade-in buyers

North American Philips has really
BIG PROFIT NEWS for you—and
bigger, better PROTELGRAM
TV pictures for your customers,
up to 3' x 4' in the sensational
NORELCO DUO-VUE now making
its world premiere at $199.50—
more television picture for less
money than ever before offered!
What is there in it for you? PROFITS
from PROTELGRAM’s Four-Way Plan
described on the right.
Philips makes it easy and profitable
for you to—
1. Sell PROTELGRAM to set builders
interested in bigger pictures—13½"
x 18".
2. Sell PROTELGRAM for cus-
tom-built, large-screen in-
stallation, up to 3’ x 4’ for
homes, clubs, bars, hotels, etc.
3. Sell NORELCO DUO-VUE, television’s
newest, finest and biggest picture used
with the customer’s direct-view table
set to produce 3’ x 4’ pictures on a
home-movie screen. A flip of a switch
selects either picture, and you can con-
nect DUO-VUE to almost any table-
model receiver in less than an hour.
4. Sell PROTELGRAM in a conversion
cabinet to customers wanting to con-
vert their 10 or 12½” direct-view re-
ceivers to a picture larger than a 20”
tube gives. And you can make the con-
version in less than one hour following
the simple, straightforward instruc-
tions provided.
Right NOW is the time to make extra
profits with PROTELGRAM. Read every
word of this ad. Then get in touch
with your distributor or send the cou-
pon now for all the facts.

*Prices slightly higher west of Rockies. Connection charges extra.

NORTH AMERICAN PHILIPS COMPANY, INC.
100 E. 42nd Street, New York 17, N. Y.
16" Sets to BIG PICTURE TV
PROTELGRAM

PROTELGRAM UNIT
Projection box measures only 8½" x 9" x 13", contains optical system and alignment assembly, is designed for quick easy service and adjustment. The 25½" 3NP4 projection tube is long-lived, extremely low in cost. Compact 25KV high-voltage unit is only 8½" x 4½" x 7½".

AUXILIARY CHASSIS
New auxiliary chassis fills additional electrical requirements essential to adaptation of TV chassis to PROTELGRAM; makes change-over quick and easy. Measures only 8" x 12½" x 4½".

CONVERSION CABINET
Console cabinet measuring 22" x 27½" x 46½" provides space for installation of customer's 630 Type TV chassis, comes equipped with complete PROTELGRAM system, auxiliary chassis, cabinet mirror and viewing screen.

FOUR-WAY Profit Plan
Sell PROTELGRAM to the man who builds his own!
Thousands of TV kits have been sold to the man who likes to build his own equipment. These handymen are ripe for PROTELGRAM, because they can combine it with a TV chassis, get lifetime TV at a reasonable cost.

Sell PROTELGRAM to custom set buyers
Clients who want built-in installations in walls or cabinets are perfect prospects for PROTELGRAM. Huge picture size, plus compactness and flexibility, makes it the answer for this type of user.

Sell PROTELGRAM to trade-in customers
PROTELGRAM sells itself to customers who want bigger pictures, but are reluctant to take a trade-in loss. You can now use their present TV chassis, connect it with PROTELGRAM in a cabinet such as shown at (3) left. They get a 234 square-inch picture, 13½" x 18½".

Sell NORELCO DUO-VUE for largest home-TV pictures
Only with NORELCO DUO-VUE can you offer both direct-view and 3' x 4' movie-size TV... and at a reasonable price. This is the newest thing in television for your customers who want the best. Lots of sales opportunities in bars, clubs, institutions and hospitals, too.

CONTACT YOUR DISTRIBUTOR OR SEND COUPON TODAY

NORRELCO DUO-VUE
Beautiful cabinet contains PROTELGRAM unit. Only 23½" high, 20" x 26" top holds most any 10" or larger direct-view table model. Concealed ball-bearing casters make it easy to pull out from wall for 3' x 4' viewing on external screen. Offers customers choice of two picture sizes for small and large group viewing.

NORTH AMERICAN PHILIPS COMPANY, INC.
Dept. PI-S, 100 East 42nd Street, New York 17, N. Y.

Gentlemen: Please send full information as checked

☐ PROTELGRAM SYSTEM ☐ NORELCO DUO-VUE unit
☐ PROTELGRAM SYSTEM ☐ PROTELGRAM SYSTEM
with auxiliary chassis for conversion cabinet

NAME .. POSITION ..
FIRM NAME .. ADDRESS
CITY .. STATE

Check here for Dealer Information on
☐ Norelco Electric Shaver ☐ Lady Norelco Electric Razor

MAY, 1950
I can train you to pass your FCC License Exams in a few short weeks if you've had any practical radio experience—whatever, Army, Navy, radio servicing, or other. My time-proven plan can help put you, too, on the road to success.

Let me send you FREE the entire story.

Just fill out the coupon and mail it. I will send you, free of charge, a copy of "How to Pass FCC License Exams," plus a sample FCC-type Exam, and the amazing new booklet, "Money-Making FCC License Information."

FREE

Tells where to apply for and take FCC examinations, location of examining offices, scope of knowledge required, approved way to prepare for FCC examinations, positive method of checking your knowledge before taking the examinations.

Get your FCC ticket in a FEW SHORT WEEKS

IT'S EASY IF YOU USE CIRE SIMPLIFIED TRAINING AND COACHING METHODS AT HOME IN YOUR SPARE TIME

Get your license easily and quickly and be ready for the jobs open to ticket holders which lead to $2,000 to $7,500 (average pay reported by FCC nation-wide survey). Employers often give preference to license holders, even though a license is not required for the job. Hold an FCC "ticket" and the job is yours!

CIRE Job-Finding Service Brings Amazing Offers of Jobs!

"I am working at WJRM as transmitter engineer. Received this position in response to one of the employment applications submitted in the scope of my Diploma. I received my FCC License on March 2, 1936, George Hugo, New Haven, Conn.

"Thanks for the Application for Employment you recently prepared for me. I Britt satisfied with my employment. I received an extra $10 a week, including my application was filed for future reference. Telephone call, and get better请你 request personal interviews."

"As a result, I am employed in a design engineering capacity..."—Kenneth Forsberg, Cambridge, Mass.

Ours is the Only Home Study Course of Coaching and Training Primarily Planned to Lead Directly to an FCC Commercial License.

Don't Waste Valuable Time

MAIL COUPON TODAY!

Don't put off getting this valuable information. Good jobs in radio need men like you. You can earn higher income, have a bank account, enjoy vacations, and have easier and better living. But you must have your FCC License. Hurry! Fill out the coupon right now and mail it. There is no obligation. You owe it to yourself to get the full story NOW.

CLEVELAND INSTITUTE OF RADIO ELECTRONICS

Desk RE-17
4900 Eucclid Blvd., Cleveland 3, Ohio
Approved for Veteran Training under the "G.I. Bill of Rights"
The Future of Electronics

... The greatest art in History is still in its infancy ...

By HUGO GERNSBACK

MOST of our human activities during the next half century will be affected in increasingly greater impact by electronics than by the peace-time uses of atomic and atomic energy, according to William C. White, scientist of General Electric Research Laboratories.

In a paper delivered recently at Rochester, N. Y., before the Institute of Radio Engineers, Mr. White declared that the world is embarking on a technological revolution which will be equivalent in its impact to the Industrial Revolution of the past century.

Here are a few highlights of Mr. White's address:

"The industrial revolution made muscle power obsolete while the technological revolution now, under way, wherein routine work is being taken over by electronic machines, will make unnecessary jobs where a person performs repetitious operations as a mere reflex, without thought.

"Electronic-science now has at its disposal all elements needed to make machines capable of doing non-thinking jobs.

"As a prime example of such a job, take mail-sorting. If a system of addressing letters with certain code markings were adopted, an electric eye could scan mail. Then signal sorting machinery would route pieces of mail to their proper slots—even into the mailbox of the proper mailman.

"Routine jobs now done by human beings couple one or more of the senses with muscular reflexes. Electronics provides quick and accurate responses, controlling machinery with precision. Moreover, every day brings news of new instruments which can duplicate, and usually excel, human senses.

"The social implications of this trend are, of course, tremendous. It is something humanity will have to adapt itself to, for it cannot easily be stopped.

"Ultimately, it will mean more freedom for mankind, just as the industrial revolution made men more free. Unquestionably, this revolution, well on its way, will have a much greater effect on our ways of life than peace-time uses of atomic energy."

Mr. White's thought-provoking observations of course only scratch the surface of the future of electronics. There is no visible end to the magic of the young art—the more electronics expands the greater the vistas it reveals.

For those who have not followed closely the intricate and complex mazes of electronic developments—even now on the engineering and designing boards—we may add the following:

Manless robot factories. Certain factories where work has been standardized will in the near future be run practically without human workers. There will be only a few technical supervisors to check the output of the machines and see that the quality is up to par. The raw material comes in at one end of the plant, the finished product—packed in boxes, barrels, or other suitable containers—leaves at the other side of the factory. No human hands touch the product. The machines, controlled by electronics, do all the intricate work, better, faster and more efficiently than humans.

There are indeed such plants in existence even today, but they are specialized ones. New and more complex robot factories are coming into use continually. It is even possible today to run huge printing plants, that print magazines such as the one you are reading now, in manless robot printing establishments. While the money invested in such a plant is formidable, the cost per finished magazine would be almost halved. The reason: cost of labor today is over half the total cost of a magazine.

Electronicked Automobiles. The human can no longer cope adequately with his high-speed car. His reactions are now far too slow to hold such a plant in safety. By the time he has perceived the danger and decided to circumvent it, 1/2 second has elapsed. During that time the car has traveled over 75 feet, (at 68 mph) and the usual crash has occurred.* Electronics, it is believed, could do away with over 75% of all accidents. A combination of radar, capacity between cars, plus photo-electric cells could automatically steer cars to prevent most collisions. Electronic "perception" has practically no time lag—in moments of danger an electronic robot would take over the steering and brakes, thus preventing most collisions. Obviously all cars would have to be electronicked to make autoing reasonably safe.

Electronic Fishery. The world's population now increases faster than at anytime in history, yet our greatest source of food—the ocean—is hardly touched. Fish is still expensive albeit our most abundant and healthful food. The reason is we still are catching fish as they were caught by the Phoenicians 5,000 years ago—with prehistoric nets (one of the oldest of man's inventions). Recently—using sonar and other electronic means—we have learned how to catch fish efficiently—not by waiting for the fish to come to the fishing vessels, but by going to where the fish congregate in schools by the thousands, often by the millions. But we catch only a puny few with our small nets—our effort compared to catching with a butterfly net the billions of locusts that swoop down on us during a plague. Clearly, specially engineered ships of a fairly large size—over 15,000 tons—that use no nets are needed. Instead such a ship would have heroic sized extensible telescopic tubular scoops which could reach down over one hundred feet below the ocean's surface. Huge powerful pumps would then suck up water and fish into the ship's hold where electronic instruments would automatically assort and classify the various types and sizes of fish, then store them in large tanks. On a single trip such a fish-factory could catch from 5,000 to 7,500 tons of fish—against the few tons of the present-day fishing vessels. This would bring down the cost of fish to a fraction of what it is at present, yet leave the operators a high profit.

*The average reaction time for a healthy driver is about 1/2 second. A few drivers show a reaction time down to 1/2 second, but if the traffic problem ahead becomes complicated, his reaction will take longer.
Review of TV Boosters

Preamplifier units often improve weak stations and reduce much interference

Many TV set owners within the service areas of TV stations fail to receive acceptable pictures because of inadequate antennas or poor receiving locations. Others live in fringe areas where signals are too weak to produce good pictures. Under such adverse receiving conditions, a booster or preamplifier used in conjunction with the best possible antenna increases the possibilities of reliable reception.

In addition to improving the signal-to-noise ratio, a good booster will minimize or eliminate adjacent-channel interference; fundamentals, images and harmonics from amateur, commercial, FM, and public service transmitters; and spurious radiations from nearby TV and FM receivers. Regardless of the design of the TV receiver, its performance depends largely on its proximity to TV broadcast stations and on the efficiency of its antenna system. Because the booster is connected between the antenna and the set, it can be considered as part of a good antenna system.

A number of boosters are available to the consumer. Nine of these have been reviewed and are discussed in this article. A number of features are common to most of them. All have filament or power transformers which must be operated from 117-volt, 60-cycle lines. The booster which does not have a selenium rectifier and a 6AK5 amplifier tube is a rare one. Unless noted, the boosters do not have direct connection to the a.c. line.

Anchor ARC-101-50

The circuit of this preamplifier (Fig. 1), is similar to that used in several boosters to be described. It covers the TV spectrum in two bands. Permeability-tuned input and output circuits are changed by a bandswitch.

The input and output circuits have 300-ohm impedances. A novel impedance-matching device is supplied with the unit. It consists of a 21-inch length of 300-ohm ribbon split 12 inches down the center. The unsplit end is connected to the antenna posts on the receiver. The split ends are wrapped around each other for one or two turns, then connected to the output posts on the booster.

The number of turns to be used is determined by tuning the set and booster to channel 7 or 8 and adjusting the matching line for the best picture. Tune the booster and set to channel 19. If dark bars appear, the booster is oscillating and turns must be taken off.

Fig. 1—The Anchor ARC-101-50 is permeability tuned on high and low bands.
the line until oscillations cease. When the booster is matched to the receiver, it will not oscillate on channel 13. There will be a noticeable gain when both units are returned to channel 7 or 8. The matching line is shown below the schematic in Fig. 1.

The ARC-101-50 has a brown, leatherette-covered, metal cabinet 8½ inches wide, 4 inches high, and 4½ inches deep. A single tuning control is ganged to separate slide-rule dials for each band. The dial in use is illuminated by a pilot light.

Astatic AT-1

Called Channel Chief, the Astatic AT-1 booster has more tubes than any of the others. This unit, shown in Fig. 2, uses two cascade-connected 6AK5's for each band. Separate ganged controls are used in the grid circuits of the first and second amplifiers. The pilot light is not to be used as a broad-band. Band-switch and power switch are combined. The unused amplifiers are turned off by removing voltage from their screen grids. Gain is controlled by varying the screen voltage on the tubes in use. The chassis is connected to one side of the a.c. line so it may be hot under some conditions. However, it is almost impossible to touch the chassis while it is enclosed in its cabinet.

The Channel Chief is built into a mahogany-finished, slope-front, wooden cabinet 8½ inches wide, 6½ inches high, and 7½ inches deep at the bottom. The neon-type pilot lamp is visible through a small aperture in the front panel.

Jerrod Model TV-FM (Series B)

The series B TV-FM booster is similar to an earlier model described in the article "Television Accessories for Improved Reception" in the March, 1949, issue. The principal difference between the models is that the later one has a built-in impedance-matching device called the Match-A-Tvans which matches the output impedance of the booster to the input impedance of the set. The plate circuit of the series B is peaked by varying the position of a slug inside one of the coils instead of using a trimmer capacitor as in the earlier model.

The series B is a single-ended 6AK5 amplifier having switch-tuning in the input and output circuits. A trimmer-type tuning capacitor is in the grid circuit for fine tuning. The tuning switch has one position for each low-band channel, one for FM, one for channel 7, and three positions for channels 8-9, 10-11, and 12-13, respectively. It has no pilot light, so the user may forget to turn it off when it is not in use.

This booster is in a brown, plastic case, 7 inches wide, 4½ inches high, and 6½ inches deep overall.

Masco MTB-13X

This booster has separate 6AK5 amplifiers for high and low bands. Both tubes are used in circuits which are neither triode or pentode connections. See Fig. 3. Note that the screen voltage is taken from the plates through 4,700-ohm resistors. Inductive coupling is used between the antenna and grid coil on the low band and capacitive coupling is used on the high band. A high-band fine-tuning control peaks the permeability-tuned plate circuit. The low band does not have a fine-tuning control.

The input and output impedances are not given. The manufacturer states that if the booster does not improve performance of the set on the low band, it may be necessary to reverse the leads at the output terminal of the booster. To improve reception on the weakest high-band channel, instructions are to grasp the antenna lead-in close to the booster. Observe the picture as you slide your hand along the line. There will be two points at which there is no change in the picture. Measure the distance between these points and shorten the lead-in by this much. Use the same procedure on the line between the booster and set.

Although one side of the a.c. line is connected to the chassis, there is little danger of shock so long as the unit is in its cabinet. Two metal screws recessed into the back cover are hot and should be avoided. It is reported that these are insulated in later models.

The MTB-13X is in a walnut-finished wooden cabinet 5½ inches wide, 5½ inches high, and 5 inches deep. A neon-type pilot lamp is used.

Regency DB-213

The Regency DB-213 (Fig. 4), is the only booster reviewed which uses triode amplifiers. A 6J6 is used as a neutralized, push-pull, r.f. amplifier on each band. Capacitive coupling is used between the antenna and grid circuits of each amplifier. The input and output

Fig. 2—The Astatic AT-1 has two separately tuned 6AK5's for each band.

Fig. 3—High-band fine-tuning control peaks the permeability-tuned plate circuit.
circuits of each amplifier are tuned by varying the position of a slug inside the coil forms. Tuning slugs for each band are ganged and brought out to a separate control on the panel. Provisions are made at the input and output for balanced 300-ohm lines or 72-ohm coaxial cables.

The DB-213 is housed in a gray, hammer-tone-finished, metal cabinet 5½ inches wide, 4 inches high, and 3½ inches deep. There is no pilot light so it may be left on by mistake.

RMS SP-4

This is a single-tube, bandswitching, permeability-tuned booster having a circuit and physical construction similar in many respects to the Anchor ARC-101-50 shown in Fig. 1. The input and output impedances are 300 ohms. The manufacturer supplies a strip of metal foil which is to be wrapped around the lead-in and line between booster and set at points where the best picture is obtained on the weakest channel.

The SP-4 has an illuminated slide-rule dial on the front of an oak-finished wooden cabinet, 8 inches wide, 6½ inches high, and 4 inches deep.

Standard B-50

The model B-50 is one of the more unusual of the boosters examined. It tunes from channel 2 through channel 13 without manual switching. The plate and grid circuits are tuned by a wiper which contacts printed-circuit inductors in the input and output circuits. A metal vane, ganged to the wiper, acts as a variable capacitor between sections of the inductor, thus providing a fine-tuning action. The circuit of the model B-50 is shown in Fig. 5 and the printed-circuit tuning elements are shown in Fig. 6.

A novel feature of this booster is that it has a receptacle on the rear for plugging in the TV line cord. The control switch is marked OFF—SET—ON. When the switch is off, the set and booster are disconnected from the power line. When it is turned to SET, the booster filament is lighted and the antenna connects to the televisor.

Turning the control to ON puts the booster in operation by applying plate voltage, and connects the amplifier between the antenna and receiver.

Input and output connections shown in the diagram are for 300-ohm lines. For 72-ohm output or input impedances, cut the jumper between the eyelets. Connect jumpers between the eyelets.

Telekit

This booster, like most of the others, uses a 6AK5 pentode. It has a switch-type tuner with a capacitor-type fine-tuning control. This is the only onetube model which has an r.f. gain control. Sensitivity is controlled by varying the screen voltage.

No provisions are made for bypassing the booster when it is not being used. It must be used at all times that the set is in operation or the antenna will have to be connected directly to the set.

The input and output circuits are loaded with 300-ohm resistors to provide a match for 300-ohm lines. One side of the a.c. line is tied directly to the chassis. Two large holes in the base of the 8½ x 6½ x 4½-inch wooden cabinet present a shock hazard whenever the unit is moved while it is plugged in.

Facts about boosters

Some boosters may have lots of gain and comparatively narrow bandwidth while others may have wide bandwidth and not so much gain. The booster to be selected will depend on the receiving location. If usable signals are obtained without a booster, a wide-band, low-gain unit will probably give the best results because it will amplify the signal enough to produce an acceptable picture without loss of definition. In locations where the signal is so weak that the sound is received without the picture, or the picture is full of snow and so weak that almost any interference will show in the picture, a high-gain, narrow-band booster may be the best bet. The narrow bandwidth will aid in attenuating interference while bringing the signal up to an acceptable level.
level. The loss in definition due to side-band clipping will not be too objectionable in instances where the picture is not acceptable without a booster.

One manufacturer pointed out that most boosters have switches which bypass the load-in around the booster when it is off. These switches result in a mismatch which may result in con-

Fig. 7—Spiral-inductance tuned booster.

siderable insertion loss when the booster is off. Therefore, in comparing boosters, the operation should be carried out by comparing the picture with the antenna connected directly to the TV receiver with that obtained with the booster operating between the antenna and set.

In the instruction sheets, manufacturers almost universally recommend the following steps in obtaining optimum performance from a booster:

1. The length of line between the set and booster—including the line from the antenna terminals to the tuner in the set—is critical. In most instances, the over-all length of the line should be a multiple of 2 feet. Try different lengths of line for the best picture on the weakest high-band station.
2. The input and output leads should not cross nor should they be closer than 6 inches apart.
3. Try reversing the leads to the output posts on the booster.
4. Tune the set for the best sound.

RECENTLY I enjoyed two hours of the most pleasing television that I have yet seen. The set was one of those giant affairs with a 20-inch picture tube. With some friends who had come with me, I sat about 7 feet from the screen.

"Far too close," say the experts. "The proper viewing distance for a screen that size is about 12 feet. You don't give the set a chance when you sit so close. The quality of the image is ruined by the horizontal lines."

The facts are that we did sit at about half the "proper" distance, and there was not the faintest trace of lines in the image.

The reception was so pleasing because we could view such a large screen at close quarters. If you obey the experts and watch a screen of a standard television set from what they say is the correct distance, two things happen: the first is that you are no longer actively conscious of the lines; the second is that in losing the lines by increasing the viewing distance, you also lose some of the detail of the image. If the screen can be made free from these lines, a short-range view of the image is very pleasing.

The process of freeing the set from lines is so simple that I have been taking running kicks at myself for not having thought of it first. Called spot-wobble, the name describes what it does. Instead of moving in straight lines from side to side of the screen, the scanning spot is given an up-and-down movement of very small amplitude but of very high frequency.

As we took our places, I was given a small box connected to the television by a length of cable. An ordinary toggle switch was mounted on the box. In the "on" position, the line removal circuit was in action; turning the switch to "off" cut it out. At 7 feet, the lines are usually very marked on a 20-inch screen, especially in the near-white parts of the image. With the switch at "off," they certainly were, but the lines disappeared completely when the switch was turned to "on.

It was particularly interesting to throw the spot-wobbler in and out of action when the image had such things as clouds in the sky, light-colored backgrounds, or open books, letters, and so on in which the lines are usually most evident. The familiar dark lines show up most when the viewing distance is short and the wobbler is out of action, but they disappear completely the instant it is thrown on.

To add spot-wobble to a receiver, nothing is needed but the simple arrangement shown in the diagram. I don't give circuit constants—or even circuits in detail—first because I had no opportunity to dig into the bowels of spot-wobble and note the values of the parts; and second, because the setup is so simple that nearly every reader of RADIO-ELECTRONICS can work out the details himself. I can guarantee the correctness of the general layout shown. The circuit requires no sync, but oscillates independently and requires only one additional tube.

In the British system, there are 405 scanning lines and 25 frames a second. A 10-mc signal was superimposed on the vertical deflection field to give the line about 1,000 wobbles per line. In the American system with 525 lines and 30 frames per second, the oscillator frequency would have to be about 15 mc to give a similar number of spot-wobbles per line.

Two points are very important. First, it is necessary to have a switch to cut the wobbler in and out of action. This is required because the set should be focused with the wobbler off. Second, it is most important to be able to control the amplitude of the wobble. If it is too great, there is distortion and a loss of vertical definition. If it is too small, it will not eliminate the lines.

This system is especially noteworthy because it is applied to the output stages of the receiver. If it were applied at the transmitter, it would require a considerable increase in the modulation frequencies. If it were applied to the r.f. or i.f. circuits of the receiver, it would require much greater passbands. As it is, it can be applied to any receiver.

The British patent covering this remarkable improvement in TV reception dates back to 1935. It is the property of Cintel Ltd., the J. Arthur Rank subsidiary which is concerned with the development of large-screen television for use in movie theaters. For the demonstration described I am indebted to the research department of the BBC, which is now exploring the possibilities of spot-wobble in black-and-white, color and stereoscopic television.
W AY back, somewhere around 1923, when the public mind seemed with the mystery and wonder of radio broadcasting, there were some amazingly weird tales about the new entertainment miracle. For example, there was the chap who claimed he could hear broadcast music with his teeth. Seems that he had a silver inlay in one of his bicuspids adjacent to a gold crown protecting the remnants of a molar. These two dis-similar metals in a slightly acid solution, the saliva, generated a small voltage. With the aid of this "cell" he was able to "hear" stations. It never was made clear how he managed to get the sound—probably a loose filling vibrating at an audio rate. There was also the story of the woman who lived practically next door to a broadcast station. Nothing wrong with that except that her stove gave out with music and commercials. She didn't mind since it didn't interfere with her cooking. The only thing she couldn't figure out was how to tune the darn thing.

We don't make any claim whatsoever that these two stories are true. They might have been, for all we know, but you'll have to do what most everybody did . . . believe them or leave them. However, now that television has become everybody's fancy, some very unusual tales have started cropping up. Like the story of channel 2 and the vase.

The story begins over at Pilot Radio Corporation where our good friend Ed Wollman, service manager, had just received an unusual complaint. Some woman, resident in the lush Park Avenue section of Manhattan, was annoyed that her receiver could get all channels—all, that is, except channel 2. Ed rushed over with the woman's plaint, "I wuz robbed," ringing in his ears.

By MARTIN CLIFFORD*

When he arrived, he found the woman watching . . . you guessed it . . . channel 2. Ed could have gone back to the factory and grabbed himself some credit for quickly fixing a toughie, but not Ed. He's intellectually honest, and what's more important, curious. He questioned the customer. All he could find out was that channel 2 had come on by itself. Ed decided to investigate. He turned the receiver catty-corner so that he could peek in at the inside works, being very careful in the meantime to remove a very heavy, decorative vase from the top of the receiver. As he did so, he noticed that channel 2 had disappeared. Just like that. He put the vase back on the receiver, and channel 2 came right back. On again, off again. It happened every time. Ed took the flowers out of the vase. They made absolutely no difference. All that set wanted was to have the vase sitting topside in order to get channel 2. The other channels came in the way they were supposed to, vase or no vase. Ed was a wee bit perturbed. How would you like to go back to your boss and tell him that, in the future, a flower vase would have to become part of a TV front end, and should be shipped with all new receivers?

Ed did the only thing he could do. He examined the vase. Maybe there was a concealed front end in it? At the bottom of the vase he found a big lead ring used as a support and weight to keep the top-heavy vase from killing itself. Ed had found the answer. The metal ring was picking up channel 2 and re-radiating it.

You have every right to ask "why", and here's the best answer we've been able to think of, to date. Sometime ago we were measuring the Q of various broadcast coils on a Boonton Q-Meter. By using polycrystal slugs and polycrystal shells and Litz wire on a low-loss form, we were able to get a Q of about 200. We happened to have a metal ring from an old cable, and just out of wild impulsiveness decided to check the ring for its Q. It was fantastic. That old metal ring had a self-resonant frequency at umteen-umteen megacycles and its Q was so great that the meter needle tried to climb out of the case.

Now think of that ring in the bottom of the vase. It was probably self-resonant to channel 2, and with a very high Q (hence high gain) it was re-radiating channel 2 with a vast amount of enthusiasm. We don't say this is the correct solution, but if you've got a better one, we'd certainly like to hear it.

The next case we ran into was the story of the disappearing channel 4. This story comes from Al Friedman, television instructor at the Pierce School of Radio & Television, New York City. Al has a hobby. No, not television. He gets enough of that all day long. Al is wild about antennas, especially TV antennas. Don't ask us why. It's one of those queer foibles that any of us can have.

One of Al's customers, a woman for whom he had done some very fancy indoor antenna work, called him on the phone with a very curious complaint. She wasn't angry, just sort of wondering. Was it customary, she wanted to know, for channel 4 to go off the air every day, promptly at four o'clock. Right in the middle of a program, too! And didn't Al think it was sort of strange, especially when no other receiver in the building did just that?

Al went over that set with a fine-tooth comb. He also used test instruments. There was nothing wrong. The receiver was perfect and so was the...
special fixed indoor antenna he had installed. He uprooted the antenna and it went into every conceivable location and into every possible position in that apartment. It worked best where he had placed it originally, with this one very sad exception. Promptly at 4 P.M., channel 4 took off like a frightened rabbit. Disappeared. Vanished.

The mystery began to dissolve when Al happened to look out of the window. It seems that the occupant of the apartment immediately across the court had raised her venetian blinds. This fact, although it seemed to have no connection with the case, stuck in Al's mind, and what is better, bothered him. Was it a coincidence that the blinds were raised at the same time that channel 4 had disappeared? He decided to investigate. Sure enough, next day, at exactly the same time the large structures to remain the way they are, and not to change their shape. And what has all this philosophical meandering got to do with television? Let's investigate the mystery of the increasing and decreasing television signal, told by a chap who prefers to remain anonymous.

The trouble was very simple. The owner of the receiver was very irritated. "I wish," he told the servicer, "I wish that the operators of channel 11 would make up their minds. Sometimes I get them well and sometimes they don't come in at all. What've they got? Women engineers, huh." As events proved, this last remark showed a definite phobia about women and should be disregarded.

It was just as the customer had said. Sometimes channel 11 came in so strongly that the contrast control had to be backed way down. And at other times? Well, channel 11 was there if you had a good imagination and 20-20 vision. And the question -- why? Why should channel 11, normally well-behaved and self-respecting, behave in such a flippant, giggly fashion? Especially when the receiver was in top-notch operating condition and the antenna installation could be used as a model for all technicians. Nevertheless, the technician in this case gave the roof antenna a thorough checking over. Nothing wrong there, he decided, and raising one foot on a roof ledge and gazing moodily out into space in the general direction of the TV station. He noticed a gas tank somewhat in his line of vision, but since the tank was too small to obstruct the signal, paid little attention to it.

Our hero didn't get the set fixed that day. Nor the next. Nor the next. Finally, in desperation he decided to go in for a completely new type of antenna. He had to do something. During this means-measuring the roof, he noted that the gas tank had apparently doubled its size! This was too much! Now he was seeing things. Perhaps it would be better to admit defeat, give the customer back his money and go into a nice safe business, like plumbing. Anything, anything would be better than this. Imagine a gas tank increasing in size! Perhaps the best thing to do would be to sit down and wait patiently for the little man with the white jacket.

It was somewhat in the "I know I'm crazy for doing this, but can't help it" spirit that he invested a nickel and called the gas company. "I know this may sound silly to you, but your gas tank has changed size." The gas company wasn't surprised. Seems they had been doing it for a long time. The manager of the gas company thought it was funny. It was a change order and the gas company gave it to the customer. The set worked fine on the roof. If it would only last! But it didn't. The set sunk, and snow or just a plain rafter takes over where good pix are supposed to be. Very discouraging. What would you do, if every check and test of which you know proves conclusively that the set is working right and that the antenna installation is a dream. Go into some other business, maybe, or sniff around to see if something unusual is in the wind. The text book don't give all the answers, you know.

The technician in this case found the answer. Not too quickly, mind you, but he found it. Seems that the set owner lived near a large pier. Once a week a big ship would come in and tie up at said pier. That big mass of iron and steel soaked up TV signals like a sponge that hasn't had a drink for a month. If you want to go "engineering" on us, you can say that the ship disturbed the normal field-strength intensity pattern, that it radiated a signal whose angle was out of phase with the original signal, thus causing cancellation at the antenna. We like our own answer because every time that ship took off for parts unknown, that little receiver worked right.

No venetian blinds, no channel 4 pix.

blinds were raised, channel 4 disappeared.

Al made an arrangement with the owner of the receiver. "I want you to stand by the window," he told her, "and raise your hand every time channel 4 vanishes." Then he trotted over to the apartment across the way, and got permission from the astounded housewife to raise and lower one of her venetian blinds. That was it, sure enough. His customed waved her hand every time he re-adjusted the blinds. The blind was down all day to keep the sun off the furniture and rug. It was raised at 4 P.M. every day by a very methodical housewife, in order to get more light and air into the apartment.

And now, what is the solution to all this? Simply that the venetian blinds were made of aluminum and were reflecting channel 4 with sufficient gusto to enable it to be picked up. This explanation may be too simple for complicated minds, but there it is.

There are quite a number of things which we must take for granted, otherwise life would become much too complicated. For example, we confidently expect the sun to rise every morning. When we walk down a street, we certainly expect buildings or other

Dotted line shows minimum tank height.

owner went up on the roof to watch a tank that couldn't make its mind up as to what size to be. Oh, yes. The reason why channel 11 did or did not come in? Simple! When the tank was big enough, it blocked the signal. When the tank was small, the unobstructed signal sped through the air with the greatest of ease. What is that textbooks say about high-frequency r.f.? Quasi-optical? Maybe those books could stand a re-reading.

If you've stayed with us this far, you're in a good position to solve the problem in this last story. Complaint? Set works fine for three, maybe four, days, and then about half of the channels become so weak and emanated that it's nothing short of pitiful. And then, apparently shaking itself out of the doldrums, the set decides to work swell for several days. This would be fine, if it would only last! But it doesn't. The set sinks, and snow or just a plain rafter takes over where good pix are supposed to be. Very discouraging. What would you do, if every check and test of which you know proves conclusively that the set is working right and that the antenna installation is a dream. Go into some other business, maybe, or sniff around to see if something unusual is in the wind. The text book don't give all the answers, you know.

The technician in this case found the answer. Not too quickly, mind you, but he found it. Seems that the set owner lived near a large pier. Once a week a big ship would come in and tie up at said pier. That big mass of iron and steel soaked up TV signals like a sponge that hasn't had a drink for a month. If you want to go "engineering" on us, you can say that the ship disturbed the normal field-strength intensity pattern, that it radiated a signal whose angle was out of phase with the original signal, thus causing cancellation at the antenna. We like our own answer because every time that ship took off for parts unknown, that little receiver worked right.

MAY, 1950
Master Television Antenna Systems

Final answer to multidwelling antenna problems

By IRA KAMEN*

Television signals are quasi-optical (having qualities similar to light) and cannot be made to pass through steel structures in spite of the best engineering skills of the greatest sales and advertising managers in the field. For this reason, master television antenna systems in fireproof (steel-wall) buildings are necessary when a large number of TV sets are to be installed. A master antenna system must solve five problems in urban installations. To demonstrate these problems, the author will review a specific installation of the RCA Antenaplex master antenna system at the Hotel Commodore in New York City.

The Hotel Commodore is at 42nd Street and Lexington Avenue, and six New York TV stations are received from six different directions. Therefore, the first problem is to receive ghost-free signals from each of the stations. Tests were made on the roof of the Commodore with an individual directional array for each television channel. The six locations were found, and three-, four-, or six-element Yagis installed. The locations were found by two men and a good 400-line-definition television receiver. Tests began in the most practical locations for a television antenna, but sometimes the best picture can be found only in less desirable parts of the roof. The search for pictures does not stop until a good signal free from ghosts and interference is found. Reflected signals from solid steel buildings are dependable, but reflected signals from palisades, cliffs, and hills cannot be considered a stable source of signal. The presence of ice and snow on these earth-type structures may completely change the character of the reflected signals.

The second problem is to get strong signals of not less than 3,000 microvolts for each television receiver in the system to overcome or swamp any signals from external sources.

An amplifier shown in Fig. 1 with a pretuned booster for each television channel is installed. Antennas for each channel feed their signals to the amplifier unit, and the individual pretuned boosters increase the signal level to approximately 1 volt for each channel. A mixer network in the amplifier combines the outputs of the six boosters so they can be distributed over a single cable.

Fig. 1—In this installation an amplifier is used for each channel.

Fig. 2—A typical distribution system.

*Manager, Television Dept., Commercial Radio Sound Corp., N.Y.C.
Distribution of the television signals to feed many outlets is the third problem. In the Hotel Commodore installation, facilities were desired for television in both public places as well as in private rooms.

The amplifier output is fed through a 72-ohm coaxial cable to an r.f. (50-220 mc) distribution transformer which provides four 72-ohm outputs from its one 72-ohm input. The four outputs of the first distribution transformer can then be fed to four other transformers which in turn can feed a total of 16 outlets. This method can be expanded to many more outlets.

When all the outlets can be one next to the other, the best method of distribution is to tap the coaxial lines from the first distribution transformer. It is also possible to combine the two methods of distribution when the layout of the building is suitable. Fig. 2 shows how this is done. Notice that the longest runs of cable go directly from the first distribution transformer, while shorter runs can be distributed further.

Radiation from the local oscillator of the front end of the television receiver is the fourth problem. Television receivers in New York are tuned to channels 2, 4, 5, 7, 9, 11, and 13 and their local oscillators radiate to some extent on channels 5, 11, and 13.

The outlets on either the transformer or tap distribution system are isolated from each other partly by resistive networks within the outlet and partly by attenuation in the coaxial cable between the outlets. The coaxial cable losses may be appreciable in the transformer distribution method. In the Hotel Commodore installation there is more than 500 feet between some of the outlets, adding 20 db to the loss in the system.

Connecting all types of television receivers to the outlets without altering the outlet or the television receiver is the last problem.

A coaxial fitting on the front plate of the outlet (Fig. 3) offers the television signal at an impedance of approximately 72 ohms, which can be connected directly to the input of nearly all the television receivers which use Inductors, elevator transformers, or other input coil arrangements which allow direct connection to coaxial cable. For early model television receivers which require a balanced input, there is a special transformer which converts the unbalanced coaxial signals to signals balanced to ground which match a 300-ohm input.

In either system, it is important that the coaxial cable be terminated with the proper impedance. Fig. 4 shows the receiver outlet circuit for both types. In the transformer system, each outlet provides the proper 50- or 72-ohm impedance to the line; but in the tap system, only the last outlet on the line has the required terminal impedance, and all other outlets present a high impedance to the line. Both outlets have a high-pass filter (40-mc cutoff). AM and shortwave signals are taken directly from the coaxial cable through a 1,000-ohm series resistance which prevents the AM receiver from loading the cable.

FM may be added to the master antenna system, and an additional channel 13 from Newark may also be added if it can be received with adequate signal strength. All Antenaplex amplifiers are designed for continuous operation of the tubes.

Large dealer establishments and department stores can use similar systems to solve their demonstration problems, enabling all receivers to operate under common conditions. The customer can make a fair analysis of all the television receivers and pick the one which performs to his liking. At present, many customers make unfair comparisons between receivers operating from separate and often quite different antennas.

While new construction jobs are confined to the electrical contractors in most areas, the servicing dealer and television installation companies can install master systems in existing buildings.

In some localities the dealer will aid in financing antenna system installations to open new markets for television receivers.

Business organizations who finance installations of master antenna systems in buildings operate like telephone companies and make an initial connection charge and a monthly service charge to the tenants in the building. Systems for this type of financing are usually installed so that the antenna service can be disconnected without entering the tenant's apartment.

The cost of installing a system depends on the quality of local reception, the number of outlets and their location, and the accessibility of conduits and shaftways in the building.

Fig. 3—Appearance of receiver outlet, which provides four 72-ohm outputs from its one 72-ohm input. The four outputs of the first distribution transformer can then be fed to four other transformers which in turn can feed a total of 16 outlets. This method can be expanded to many more outlets.

One Hotel Commodore antenna location.

MAY, 1950

Fig. 4—Networks at receiver outlets, which are designed for continuous operation of the tubes.

Large dealer establishments and department stores can use similar systems to solve their demonstration problems, enabling all receivers to operate under common conditions. The customer can make a fair analysis of all the television receivers and pick the one which performs to his liking. At present, many customers make unfair comparisons between receivers operating from separate and often quite different antennas.

While new construction jobs are confined to the electrical contractors in most areas, the servicing dealer and television installation companies can install master systems in existing buildings.

In some localities the dealer will aid in financing antenna system installations to open new markets for television receivers.

Business organizations who finance installations of master antenna systems in buildings operate like telephone companies and make an initial connection charge and a monthly service charge to the tenants in the building. Systems for this type of financing are usually installed so that the antenna service can be disconnected without entering the tenant's apartment.

The cost of installing a system depends on the quality of local reception, the number of outlets and their location, and the accessibility of conduits and shaftways in the building.

Left to right—Amplifier for channels 2-6, FM amplifier, unit for channels 7-13.
Part V—Alignment and adjustments
of the video and the sound i.f.’s

If you yield to the temptation of seeing a station come in, turn the channel selector switch to the blank position between channels 9 and 7.

This cuts off the oscillator and prevents r.f. from coming through the front end.

Turn the adjusting screws approximately three-fourths of the way into the 19.75- and 21.25-mc traps and the screws on the other coils all the way out. The video i.f. adjustments are on the bottom and the trap adjustments on the top of the strip. Now connect an oscilloscope, output meter, or a l.p.v.m. between the junction of the 6AC7 video peaking coils and ground. Connect a .05-µf capacitor and 10,000-ohm resistor in series with the inner conductor of a low-capacitance shielded cable if the indicator does not already incorporate a capacitor.

Connect the signal generator to the grid of the mixer and to chassis ground using approximately 200 µf in series with the hot r.f. lead.

Turn on the internal modulation. If it is adjustable, turn it up to about 50%. Set the dial to 25.0 mc and increase the output until a slight increase is noted on the output indicator. If there is no increase turn up the contrast control until wide black and white bars appear across the raster. Screw in the core of the last i.f. coil, turning for a maximum indication. Note occasionally if the black and white bars are getting too black. When the entire raster is black, it indicates the video amplifier tubes are being overloaded and the signal generator output and the contrast control, or both, should be reduced. Adjust the signal generator output and the contrast control when necessary so the black bars appear slightly gray or about the same width as the white bars.

After adjusting the 26.0-mc coil, set the signal generator at 25.3 mc and adjust the core of the next coil forward to give a maximum output indication. Repeat with the next stages working toward the mixer, retuning the signal generator and tuning the coils to maximum output at the frequencies indicated on the schematic.

Now set the generator to 21.25 mc and advance its output control and the contrast control of the receiver until a good deflection is noted on the indicator. Adjust the top core on the first i.f. coil to obtain a minimum deflection. Still at this setting, adjust the core in the cathode trap to a further minimum. It may be necessary to move the signal generator to the grid of the first or second i.f. amplifier to see a good indication of a minimum response from the cathode trap.

Set the generator to 19.75 mc and move it to the grid of the mixer if it was changed in the last step. Adjust the core of the 19.75-mc trap to minimum and repeat the procedure for the 27.25-mc trap. There being some interaction between cores on the same form, check back the adjustments of the video i.f. coils by repeating the alignment and making sure that each is tuned for maximum output at its proper frequency. Make sure that this section of the alignment is followed closely, as a poor job done at this stage will impair the quality of the final picture. The alignment can be checked by rotating the generator dial slowly from 18 to 26 mc and comparing the

By CHARLES A. VACCARO
output indications with the response curve in Fig. 20.

The output should show an increase following the upward slope of the curve and remain fairly flat across the top and decrease as the slope decreases at the right side. A closed comparison can be had by plotting the output indications versus the frequency at several settings of the frequency dial. If a large difference is noted in the curves, check the values of the grid and plate resistors and change any that are off more than 5%. If any of the cores on the i.f. strip do not have enough range to tune to both sides of the maximum point, remove them and check them against the dimensions given in Fig. 4.

Aligning the sound i.f.

Set the signal generator frequency to 21.25 mc and check that the minimum response of the video i.f. amplifiers at 21.25 mc agrees with the theory. Now, without touching the signal generator, adjust the audio i.f. transformer cores to obtain maximum output from the speaker. This can be done by ear, using a low level of audio or connecting the indicator previously used across the 6V6 audio amplifier. Now adjust the bottom (primary) core of the discriminator transformer for maximum output. The peak will be broad. Next adjust the middle (secondary) core of the transformer to obtain a null. When the null is found, the amplitude modulation can be cancelled out completely with further careful adjustment. Detune this core about one-quarter turn or until sound is heard again and readjust the other cores again for maximum sound from the speaker. Then turn the top core of the discriminator transformer to the null position or minimum sound. Now tune the generator first to approximately 21.35 mc and then to 21.15 mc, noting the audio output. The output should be as nearly equal as possible at these two points. (See Fig. 21.) Touching up of the audio i.f. transformer and discriminator primary adjustments will help to make these equal.

Additional adjustments

Remove the output indicator and the signal generator and we will proceed to bring in a picture. The antenna should be temporarily placed so that it is about broadside to the direction of the transmitters and should be connected to the receiver with 300-ohm line.

Turn the intensity control to obtain a good visible raster and turn the contrast control halfway. Now switch the station selector switch to a channel where the station is known to be on the air. If the coils were spread to the dimensions indicated in Fig. 14 and the wiring of the front end was followed exactly, some sort of signal or picture should be seen on the screen.

If nothing is seen, turn the contrast control up higher and repeat the switching. If the raster goes black, it is an indication of excessive signal and the contrast control setting should be reduced.

If the preliminary adjustments were made as outlined earlier, you probably have a pattern on the picture tube screen with black and white diagonal or nearly horizontal bars or lines. Adjust the primary core of the sync discriminator transformer that protrudes from the rear of the chassis. As the adjustment is brought closer to resonance, the diagonal lines will become more and more vertical until the picture becomes synchronized. Adjust the vertical hold control on the front panel if the picture is slipping up or down. At this point don’t worry if the sound cannot be found or the picture quality is poor. Turn the contrast control down until retrace lines are visible and then adjust them just beyond that at which the white retrace lines disappear.

If a test pattern is being received well enough, the linearity adjustments of the receiver can be made at this time. Return to this after the r.f. alignment if the test pattern cannot be received well enough.

Assuming that the controls were preset as outlined in the table, very little additional adjustment will be required. The vertical linearity control No. 1 expands the upper and contracts the lower section of the test pattern when turned in one direction and vice versa in the other direction. Vertical linearity control No. 2 mainly affects the top edge of the picture. Moving past the correct setting in one direction will result in squeezing of the top few lines and in the opposite direction of the control they will be spread apart. The height control and the vertical linearity control affect each other slightly, so it may be necessary to readjust the vertical linearity No. 1 and then the vertical linearity No. 2 control if the height control is changed. Adjust these so the top and bottom sections of the test pattern are equal in size. The horizontal linearity and width controls affect the picture in the horizontal direction and are a little more critical than the vertical controls. Adjust the horizontal linearity control No. 1 until the picture is as wide as possible without squeezed or expanded sections (vertical bars lighter or darker than the rest of the raster), and until the test-pattern wedge on both sides of the raster size. Repeat with control No. 2 which keeps the lighter or darker bars out of the left side of the raster. Adjust the width control by screwing in the core to increase the width of the raster.

The direct sync control (d.s.c.) system should be adjusted before the r.f. alignment is started. Temporarily short out the tuned circuit in the cathode of the horizontal multivibrator with a jumper across the coil. Swivel the D.S.C. sync control switch to d.s.c. position and, if necessary, readjust the d.s.c. horizontal hold control (on the back panel) to bring the picture back into horizontal synchronization. (Note that when the switch is thrown, it will be necessary to readjust the focus and contrast controls slightly as the plate supply currents from the powersupply have been decreased) adjust this horizontal hold control accurately and make sure the picture stays synchronized in this position.

Lack of low-frequency response may make it unstable because the front end is not yet aligned. It can be made more stable by trying a different position of the fine-tuning control. When you are sure that no better adjustment of the hold control can be made, remove the jumper from across the tuned circuit and adjust the core of the coil until the picture is again synchronized and the test pattern is fully on the screen. Do not touch the horizontal hold control while making the core adjustment. Once this core is set it usually requires no further adjustment during the alignment procedure. Proper alignment of the video i.f. stages is extremely important for good pictures. The details of the picture are contained in the higher frequencies of the picture signal, and if there is any attenuation of these frequencies, the picture will have poor horizontal detail, as can be seen on a test pattern.

If the sound trap is not adjusted correctly, the sound signals can mar the picture. The sound signal will beat with the picture signal, and if the beat frequency is less than 1 mc, horizontal bars may appear in the picture. Another type of sound interference is caused by the FM signal being converted to an AM signal by the sloping response of the video i.f. If this occurs, the sound signal is coupled to the video amplifier and will also appear as bars in the picture.

Preliminary Adjustments for Aligning.

<table>
<thead>
<tr>
<th>Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>100,000 ohms to No. 1</td>
</tr>
<tr>
<td>Contrast</td>
<td>400,000 ohms to ground</td>
</tr>
<tr>
<td>Volume</td>
<td>One half rotation</td>
</tr>
<tr>
<td>Vert. hold</td>
<td>140,000 ohms to No. 1</td>
</tr>
<tr>
<td>Tone</td>
<td>One half rotation</td>
</tr>
<tr>
<td>Horiz. Lin. No. 1</td>
<td>60,000 ohms to pin No. 3 or 6</td>
</tr>
<tr>
<td>Horiz. Lin. No. 2</td>
<td>60,000 ohms to pin No. 1</td>
</tr>
<tr>
<td>Horiz. centering</td>
<td>6 ohms to ground</td>
</tr>
<tr>
<td>Focus</td>
<td>200 ohms to No. 3</td>
</tr>
<tr>
<td>D.S.C. Horiz. hold</td>
<td>85,000 ohms to No. 3</td>
</tr>
<tr>
<td>A.S.C. Horiz. hold</td>
<td>38,000 ohms to pin No. 1</td>
</tr>
<tr>
<td>Vert. Lin. No. 1</td>
<td>7,000 ohms to pin No. 8 of 6V6 vert. output</td>
</tr>
<tr>
<td>Vert. Lin. No. 2</td>
<td>5,300 ohms to pin No. 8 of 6V6 vert. output</td>
</tr>
<tr>
<td>Height</td>
<td>950,000 ohms to No. 3</td>
</tr>
</tbody>
</table>
Known for many years, voltage multiplying circuits have been used in a variety of ways to step up and rectify line voltages without using power transformers. The first radio receiver brought voltage doublers into wide use. The voltage doubler, tripler, and quadrupler have now found new utility in television receivers where space and weight are important considerations. Voltage multipliers are employed in both low- and high-voltage supplies in some of the latest TV sets. Because of this trend, it will be of value to the radio and television technician to review the basic principles of these multipliers and to look at a few of the current TV receiver circuits in which they are used.

The simplest form of voltage doubler and the one most widely used consists of two diodes and two capacitors C1 and C2 as shown in Fig. 1. In this circuit, when the voltage from the a.c. line is of such polarity that the rectifier D1 plate is positive, current passes through this rectifier and capacitor C1 is charged to a voltage equal to the peak voltage of the a.c. line (1.4 times the r.m.s. voltage) minus the voltage drop through the tube D1. During this time, rectifier D2 is not functioning, as its plate is negative.

When the polarity of the a.c. line reverses at the end of the half cycle, the voltage on C1 is added to the line voltage and the total is applied to rectifier D2, thus charging capacitor C2. This capacitor, being connected to the load, immediately starts discharging through the load, so that its charge never quite reaches the peak voltage of the line plus capacitor C1 voltage. For this reason, the voltage impressed on the load is not quite twice the peak a.c. line voltage.

The larger the capacitance of C1 and C2, the nearer this voltage approaches twice the peak line voltage. On 60-cycle lines, the capacitors should be not less than 16 μf.

This circuit has all the characteristics of a half-wave rectifier of standard design except that the regulation (the change in output voltage with a change in load) is not as good. This poor regulation is characteristic of voltage multipliers and is one of the limiting factors of simple type of circuit or circuits that are sensitive to voltage change, some form of voltage regulation must be added to compensate for the poor regulation.

A voltage doubler popular in midget radio sets is the full-wave doubler shown in Fig. 2. Here diode D1 charges capacitor C1 when the plate of D1 is positive. On the other half cycle, capacitor C2 is charged by diode D2. Since the load is across the two capacitors in series, the voltage applied to the load is the sum of the charges on the two capacitors and is nearly twice the peak line voltage. It does not quite reach twice the peak line voltage, because one of the capacitors starts to discharge into the load through the other as the line polarity changes. To say this another way, the two capacitors are charged separately to the same d.c. voltage and are discharged in series to the load. Here again, the size of C1 and C2 determines the output voltage and the regulation.

As in standard half-wave and full-wave rectifiers, the ripple frequency of the full-wave doubler rectifier is twice the line frequency, while that for the half-wave doubler rectifier is equal to the line frequency. For this reason the full-wave type is much easier to filter, requiring smaller values of inductance and capacitance than the half-wave type.

The voltage multiplying action explained above can be carried beyond that of doubling. Practical power supplies have been made using up to 12 doubler stages in cascade. This is an extreme case, and in most TV sets the multiplying action is not carried beyond the quadrupler stage.

A voltage tripler is shown in Fig. 3. Three diodes in a half-wave rectifier combination are used. Diodes D1 and D2 with capacitors C1 and C2 are a half-wave doubler applying twice the line voltage across C2. This is added in series with the voltage across C3 which
is charged by diode D3. The result is a voltage across the load resistance almost three times the applied voltage. D3 carries twice the current of D1 and D2.

The ripple frequency of the voltage tripler is the same as that of a half-wave rectifier because of the unbalanced arrangement. Capacitors C1, C2, and C3 should be at least 16 μF as in the previous doublers. The voltage regulation of the tripler is better than that of the doublers described above because, while the voltage has been tripled, only one multiplying action is present so that the “straight-through” rectifier D3 adds a stabilizing action to the complete circuit.

Fig. 4 shows a voltage quadrupler consisting of two half-wave doublers connected in cascade. The action here is the same as in the half-wave doubler, and the sum of the two doublers is discharged through the load in series. This same action can be cascaded by adding as many doublers as needed.

The regulation with varying loads of typical doublers, triplers, and quadruplers is shown in Fig. 5. A single 25Z6 connected as a half-wave rectifier is used as a comparison with the voltage multipliers. The 25Z6 dual-diode is used in all the circuits, the individual diodes being combined to keep the number of tubes at a minimum. The regulation of the voltage tripler is better than that of either the doubler or quadrupler and is almost as good as a single half-wave rectifier of like size.

The Emerson model 571 TV receiver uses a voltage quadrupler in the low-voltage power supply composed of five 25Z5 tubes arranged as shown in Fig. 6. A filament transformer for certain tubes in the set has an autotransformer primary supplying 125 volts to the voltage multiplier and to the five 25Z5 filaments in series. Tubes V23 and V24 make a half-wave doubler with two pairs of diodes paralleled to increase the power output of the rectifier. The positive terminal of this rectifier is grounded to the chassis.

Tubes V20, V21, and V22 form another half-wave doubler with three pairs of diodes in parallel. The negative terminal of this rectifier is grounded.

By connecting terminals 1 and 3 to an ungrounded load (with 1 as the negative and 3 as the positive terminal) a voltage quadrupling action for the sweep circuits is achieved.

The Motorola model VT-71 receiver uses two selenium rectifiers in a half-wave doubler circuit. Some of the tubes of the receiver are connected in series across the power supply to act as the voltage divider for the power supply. The circuit of the doubler for this set is shown in Fig. 7.

A voltage doubler and tripler are used in the low-voltage supply of the Hallicrafter model T54. As shown in Fig. 8, the selenium rectifier with one half of the 25Z6 tube forms a half-wave doubler, supplying a voltage at 1 equal to the line voltage minus the rectifier and filter drop and at 3, a voltage equal to almost twice the line voltage. The output of this doubler is fed to a half-wave tripler consisting of a 6X5 tube and condenser C57B, giving over 300 volts at 5.

The circuit is slightly different than the one in Fig. 3. When the top line of the a.c. input is positive, the selenium rectifier conducts and C60A is charged to almost line voltage. When the line polarity reverses, this voltage, in series with the line voltage, is applied to C58B through the 25Z6, charging it up to twice line voltage. At the next alternation, the line voltage is applied to the 6X5 in series with the voltage across C58B, tripling the original voltage.

The second side of the 25Z6 V15 is a straight half-wave rectifier with positive ground which added to the tripler provides a total voltage step-up equal to almost four times line voltage.

These circuits are representative of the multiplier circuits used in the low-voltage B-supplies of some of the modern TV sets. Variations of these circuits are found in many other makes and models, but all are based on the fundamental circuits shown in Figs. 1 to 4. A study of these basic circuits will be valuable to the technician in isolating power supply failures.

Several manufacturers have used voltage multiplication in the high-voltage power supplies. The Philco model 48-2500 TV receiver is an example, applying some 20,000 volts on the TP400 projection type tube with a voltage tripler.

The horizontal sweep output of the set is applied to an autotransformer which steps up the positive pulse developed by the horizontal retrace to about 7,000 volts. This is applied to a tripler consisting of three diodes as shown in Fig. 9. The output is the sum of the voltages developed across C100, C101, and C102, each of which is approximately 7,000 volts.

The action is as follows: The positive going pulse from the horizontal sweep circuit is applied to the autotransformer and is stepped up to approximately 7,000 volts. This causes diode V1 to conduct and charge capacitor C100 to 7,000 volts. At the same time, the plates of V2 and V3 are also made positive to approximately 7,000 volts through condensers C103 and C104 because of the positive pulse applied to these circuits. This charges condensers C101 and C102, which are in series with the cathodes of V2 and V3, to approximately 7,000 volts. C100, C101, and C102 being in series, they discharge in series through the load. The action repeats on each positive retrace pulse, thus maintaining the voltage on the TP400 tube at some 20,000 volts.
Television Dictionary

(Continued from page 33 of the April issue)

By ED BUKSTEIN

Monochrome
A tube used to generate a fixed television image, usually a resolution pattern. It is used primarily for test and adjustment purposes.

Mosaic
A photosensitive surface consisting of a large number of individual cadmium-silver globules. (See Iconoscope.)

Multiple scanning
The process of scanning an image in two or more individual fields, each containing a fraction of the total picture information. It is also referred to as interlaced scanning or multiple interface.

Multiplier
A device for converting variations of light intensity or color into equivalent electrical variations.

Photosensitive
A reversed television image in which the dark portions of the televised scene appear bright, and the bright portions appear dark.

Negative image
A reversed television image in which the dark portions of the televised scene appear bright, and the bright portions appear dark.

Negative transmission
Modulation of the picture carrier in such a manner that the dark portions of the image cause an increase in radiated power, and the bright portions cause a decrease.

Nipkow disk
A rotating disk containing a series of openings or windows and used for mechanical scanning.

Odd-line interface
A scanning system in which each field contains an extra half line. In the standard 525-line picture, each field contains 262.5 lines.

Obliteration
A type of television pickup tube using a low-velocity scanning beam to reduce secondary emission from the cadmium-silver globules. (See Shading.)

Panning
Scanning a field of view by moving the camera in a horizontal plane.

Pedestal
A pulse, such as the blanking pulse, used in television systems. (See Blanking pedestal.)

Persistence
The afterglow of the screen chemical of a cathode-ray tube. (See Afterglow.)

Persistance of vision
The ability of the eye to retain the impression of an image for a length of time after the image has disappeared from view. It is this property of the eye which enables it to fill in the dark intervals between successive images and to produce the illusion of motion.

Phosphor
The name applied to a substance which changes its electrical conductivity under varying degrees of illumination. Selenium, for instance, has, approximately eight times as much resistance in the dark as in the light.

Photosensitive
A reversed television image in which each frame consists of four fields, and in which the fields do not follow in a progressive order. In this system, line one is the first line of the first field, line three is the first line of the second field, line two is the first line of the third field, and line four is the first line of the fourth field.

Projection-type receiver
A television receiver in which the image is optically projected from the cathode-ray tube to a special viewing screen.

Progressive interlace
A system of interlaced scanning in which the first line of the picture is scanned as the first line of the first field, the second line is scanned as the first line of the second field, the third line is scanned as the first line of the third field, etc. (See Sequential Interface.)

Quadrate staggered interlace
A system of interlace in which each field consists of four fields, and in which the fields do not follow in a progressive order. In this system, line one is the first line of the first field, line three is the first line of the second field, line two is the first line of the third field, and line four is the first line of the fourth field.

Rearter
The rectangular area scanned by the electron beam in the picture tube.

Reflection
The throwing back of images or waves by an object; for instance, the light returned from a mirror. The law of reflection states that the angle at which a ray of light is reflected from a mirror is equal to the angle at which it strikes the mirror. In other words, the angle of reflection is equal to the angle of incidence.

Refraction
The bending of a ray of light as it passes from one medium to another of different density. Because of such refraction, an underwater object appears to occupy a position other than that which it really occupies. In passing from a more dense to a less dense medium, the light is bent away from the perpendicular. (An object at a appears to be, at a.) In passing from a less dense to a more dense medium, the light is bent toward the perpendicular.

Reinserter
A circuit for establishing the d.c. level of a waveform. (See Clamping.)

Resolution
That quality of a television image which enables an observer to distinguish fine detail.

Repetition chart
A test pattern containing a number of converging lines. The point on the screen where these lines seem to merge into one, determines the maximum resolution of the image. Resolution is normally indicated as the number of lines which can be distinguished as individual.

Resolution chart
Same as resolution chart.

Retentivity of vision
The ability of the eye to retain the impression of an image after the image has disappeared from view. (See Persistence of vision.)

Retrace
The return trace of the spot after it sweeps across the fluorescent screen. Also called flyback.

Retrace shot
An image produced during the retrace period. It may be due to improper blanking of the iconoscope at the transmitter.

Return period
The time required for the spot to return after each sweep. It is also referred to as return time.

R.F. power supply
A type of high-voltage power supply sometimes used in television receivers. It consists of an r.f. oscillator whose output is fed through a step-up transformer to a rectifier. The output of the r.f. power supply can be filtered with relatively small values of filter components. This ease of filtering results from the low current drain and the high frequency of the ripple. Oscillator frequencies generally used are from 30 to 500 kc. Voltages as high as 20 to 160 kv are obtained directly with this type of supply.

Sawtooth
A voltage or current waveform which rises linearly to its peak value and then drops rapidly back to its starting level. The sawtooth waveform is used extensively for sweep or scanning in oscilloscopes and television equipment. If the sawtooth is not linear, the spot will move across the fluorescent screen at a varying rate and the pattern will appear to be crowded towards one side. (See Linearity control.)
KFEL, DENVER, faced the problem of selecting the best possible site for its proposed new television station. Height especially was necessary for a large service area—long line-of-sight path. Freedom from surrounding buildings was also a major goal, to help reduce possibilities of ghost reception. The final selection was Lookout Mountain, 7,000 feet above sea level and about 2,000 feet above Denver.

The height of the site has another advantage in that a high tower is not necessary. Aside from the economy in cost, that means a long transmitter-to-antenna transmission line, with its losses, will be avoided.

To survey all the possible sites, KFEL used a mobile "test set" mounted in a motor truck. This mobile test station (Photo 1) includes, among other components, a surplus SCR-553 500-watt radar transmitter (capable of generating up to 200 kw on peaks).

Photo 2 is a closeup of the antenna. It has 48 elements and is mounted on a rotating support.

Photo 3 was taken from the doorway of the radio trailer and shows the components of the SCR-553. The transmitter is at the left, the monitor scope and antenna controls in the center, and the power supply and monitor receiver at the right (partially hidden by the doorpost).

If and when the FCC authorizes the use of directional antennas, KFEL will be ready, for they already have such an antenna plotted. It will beam the signal north, south, and east, and will prevent wasteful scattering of power into the un receptive Rocky Mountains.
IRE “Accents The New”

New principles, new equipment and new methods revealed at meeting of the Institute of Radio Engineers

NEW super-low-loss waveguides that look like—and are—ordinary pieces of enameled magnet wire, a new portable-radio speaker eight times as efficient as present types, practical magnetic amplifiers, a miniature magnetron to work on voltages between 80 and 120, and a new crystal triode called a fieldistor, which uses a genuine grid surrounding the emitter electrode with a concentric ring of points but not touching the collector—these were the highlights of the IRE convention and exposition at New York the first week of March.

Other developments were almost as exciting, and some may have been even more important. The world’s most powerful radio tube—a 500-kw “beam triode”—was on display. Two industrial television systems were demonstrated—both alike in that they operate on closed circuits, but otherwise vastly different. Du Mont’s industrial color television system is designed to a specification of 18 mc bandwidth, 625 lines, at 180 fields per second, producing a color picture with nearly four times the definition of standard black-and-white. RCA’s Vidicon system produces black and white pictures comparable in definition to those obtained on standard television receivers. Its features are miniaturization of the equipment and the Vidicon tube which makes it possible. The Vidicon is like an iconoscope in that it uses a mosaic coated on one side of a nonconducting layer, the other side of which is maintained at a steady positive voltage. This layer in the Vidicon is nonconducting only in darkness, and if an image is focused on it, the light portions become “leaky” and permit part of the positive charge to be placed on the particles of mosaic opposite the light portions of the image. The mosaic is scanned in standard fashion. The sensitivity of the tube makes multipliers unnecessary and permits great simplification of equipment.

The Army Signal Corps’ surface-wave transmission line is, as the photograph shows, simply a piece of wire. It is coupled to a source of ultra-high frequency with a small horn, and carries it with approximately 10% of the losses of similar lengths of coaxial cable. The action, so strangely different from that of an ordinary conductor carrying current, is due to the dielectric (enamel) on the wire’s surface, which reduces the velocity of the waves and tends to “bind” them to the wire. With ordinary sizes of wire and reasonable dimensions of matching equipment at the ends, the system is practical for frequencies from 300 mc upward.

Another approach to practically the same result was made by Bell Telephone Laboratory scientists in a paper which described artificial dielectrics in waveguide-like structures. In its fundamental form a row of metal discs strung on a rod or wire, this wave-guiding device may become a longitudinal row of short transverse dipoles. Corrugated or threaded rods used for the same purpose were described by the Air Force Research Laboratories. Although the exact type or mode of wave transmission may not be identical for each of these structures, the underlying principles appear to be the same, and they all represent a hitherto unknown way of carrying electricity on a wire, with possibly startling possibilities in future communications, television and other applications.

The portable-set speaker was described by Dr. Harry F. Olson of RCA. Intended to compensate for the low power output of the battery portable, the horn principle was used for its greater efficiency. But a horn of the reduced dimensions necessary in this case would have a higher cutoff fre-
The super-powerful 500-kw beam triode.

The output, the unit resembling these points acts crystal surface approach rounding the catwhisker. Their points consists Force. is 6 20 The between two each Thoriated effect a circle powers low side of and air response. In ple on a -volt filament shaped cutouts act. At the Thoriated field-5831) -gap -note was used to Olson in another 500 these output. A crystal crystal triode, its grid transistor, a triode radio cylinder. It is a crystal like the transistor, but the control signal is applied in a manner more reminiscent of the action of a triode vacuum tube.

To obtain the extremely small spacing required, the wires are placed in small glass capillary tubes. The tubes are then heated and drawn, reducing the spacing between the wires while retaining the same proportional thickness of wire and insulation. Spacings of almost microscopic dimensions have been achieved by this method.

The magnetic amplifiers exhibited by the Navy received a tremendous amount of attention. Plastic boxes smaller than most midget radios, they have extremely high gain and require no attention nor maintenance throughout their life. While applicable chiefly to such circuits as servos, gun directors and other control devices, it was stated that a magnetic amplifier, powered with a 50-kc a.c. supply, has been used to amplify music, with results which might be described as encouraging, though hardly satisfactory from the standpoint of the high-fidelity enthusiast.

A new miniature transmitter-receiver for air-sea rescues has been developed by the Air Materiel Command's laboratories at Wright Field, Ohio.

Known as the URC-4, the midget set is not much larger than a ration kit and can be held in one hand. It operates with a range of up to 80 miles on a v.h.f. and a u.h.f. channel and can be switched from one to the other instantaneously. Power is supplied by a mercury-type battery in a separate unit. A rubberized cable attaches the battery to the transmitter-receiver section, and the cable is long enough so the battery can be kept in a pocket when the set is in use.

The entire unit is impervious to salt water and it will stand temperature extremes from -50 to +169°F. The set is designed for ruggedness, and its engineers claim that nothing short of a drop from an aircraft at 10,000 feet is likely to damage it.

These were the highlights of the show as seen by one observer. Another might consider the transistor transmitter more interesting than any of the items mentioned above. In the more than $7 million worth of equipment exhibited, there was meat for all types of technical minds, and at least one reporter came back with a story of little else but new television test equipment, oscilloscopes, and interference-chasing apparatus.

The Olson speaker on an RCA portable. V-shaped cutouts act as reflex ports. MAY, 1950

Dr. George Goubau (center) explains his novel surface-wave transmission system.

The URC-4 midget rescue transceiver.
Vacuum-tube Grid Bias

Variety of grid bias circuits that will improve vacuum-tube operation

By H. B. DAVIS

A vacuum tube can operate properly only when the relation between the element voltages is correct. Frequently the only difference between two circuits performing unlike functions is the values of the bias voltages on the grids. The importance of the correct bias voltage is not always appreciated. Effects of wrong bias voltage may appear as distortion, low power output, low voltage gain, overheating, and inefficient detection, to list but a few.

Choice of a bias method may be controlled by the circuit for which it is designed. For example, if plate-supply voltages are low, cathode bias is undesirable, because it lowers the plate voltage still further. The bias methods described here are useful in a variety of circuits. Extremely simple in themselves, they may suggest new answers to otherwise difficult problems.

In Fig. 1 is a family of curves of the plate characteristics of the 6J5. These curves show the plate current that will flow for different plate and grid voltages. The point often overlooked is that the plate voltage is the voltage between the plate and the cathode of the tube and that the grid voltage is the voltage between the grid and the cathode. The cathode-to-ground voltage may or may not be the grid bias, depending upon the point to which the grid is returned. For example, in Fig. 1, the voltage between the grid and the plate may be the correct bias voltage, making the cathode positive with respect to ground as in Fig. 2-a. This is not always appreciated. Effects of wrong bias voltage may appear as distortion, low power output, low voltage gain, overheating, and inefficient detection.

There are two general methods for obtaining bias voltage: using a separate voltage source or applying to the grid voltage of the power supply is shown in Fig. 4. With this circuit the negative voltage is determined by the voltage of half the transformer secondary wind.

Fig. 1—Curves show relationship between tube's grid voltage and plate current at various plate voltages.

Fig. 2—Bias depends on grid-return point and not grid-to-ground voltage.

Fig. 3—Elementary type of battery bias.

Fig. 4—Separate rectifier supplies bias.

Fig. 5—Shunt diode reduces heat losses.

Fig. 6—Filament supply furnishes bias.

Fig. 7—Voltage-doubler bias arrangement that provides up to 18 volts.

Separate Bias Sources

In the early days of radios a common system of bias was that shown in Fig. 3. The cathode or filament was returned to ground, and a battery was connected to make the grid negative with respect to the cathode. This bias method is still used in some circuits today, usually with miniature bias cells in circuits in which no grid current is expected. The same bias would be obtained by putting the bias battery in the cathode circuit.

www.americanradiohistory.com
filter, and the heater may be supplied from the winding serving the other tubes. The shunt-diode system may also be used as shown in Fig. 6 to provide up to 9 volts bias from the 6.3-volt heater supply. A voltage-doubling arrangement such as that shown in Fig. 7 may be used for voltages up to 18 volts from the 6.3-volt supply.

A clever circuit for developing a fixed bias voltage, patented in 1945, is shown in Fig. 8. The bias is developed by rectifying the heater voltage with the diodes in the tube itself. The bias voltage appears across R and is filtered by C. This circuit has the advantages of providing a bias voltage independent of the signal level or tube current and of requiring no more parts than are required for conventional cathode-bias systems. No part of the filament-transformer winding should be grounded.

Self-bias systems

One of the most popular circuits utilizing the second general method of developing a bias voltage is that of Fig. 9. In this circuit the bias voltage is developed by the plate current of the cathode resistor R. The current flow is in such a direction as to make the cathode positive with respect to ground. The tube is then biased in the same manner as was shown in Fig. 2-a. The capacitor from cathode to ground is necessary to prevent the cathode resistor from introducing degeneration. The bias voltage E is E = I R, where I is the total cathode current. Bias derived from the cathode current is satisfactory only when the average cathode current is constant, as in class-A amplifiers. In push-pull class-A circuits it must be remembered that the I, of the equation becomes the total quiescent current of two tubes, since both tubes operate simultaneously.

In class-C amplifiers or grid-leak detectors (Figs. 10-a and 10-b) there is initially no bias. The tube draws grid current on the positive half-cycle of the input signal. The positive grid swing causes current to flow in the grid-cathode circuit, through the grid resistor in such a direction as to develop a negative voltage at the grid and charge the grid capacitor sufficiently to maintain the bias during the negative half-cycle of signal swing. This circuit was very popular years ago when grid-leak detection was used almost exclusively. A system, sometimes known as the back-bias method, for developing bias voltage for the output stage of battery amplifiers is shown in Fig. 11. Bias for the grid of the tube is provided by the voltage drop across R. Bias for preceding stages may be taken from appropriate points along R.

In some circuits the bias voltage is developed by floating the negative power supply lead below ground and grounding the bleeder resistor at the point necessary to give the proper bias voltage. A circuit of this type is shown in Fig. 12. The plate voltage of the tube is reduced by the amount of the bias voltage whenever self-bias is used. That is why separate bias supplies are often used where large bias voltages are required. A system which does not reduce the plate voltage is shown in Fig. 13. The bias is obtained by placing the filter choke in the negative d.c. lead and utilizing the voltage drop across the filter choke. The voltage developed is equal to the product of the choke’s resistance and the total load current. R and C form a hum filter, necessary because the grid is returned to an unfiltered point in the power supply. Frequently the grid of a tube must be operated at a relatively high d.c. voltage with respect to ground. A commonly used method of obtaining the proper bias is shown in Fig. 14. If 5 volts bias is required for a tube operating with its grid at 20 volts above ground, a bleeder network R1-R2 may be used to bring the cathode to 25 volts above ground. The grid is then 5 volts negative with respect to the cathode. Capacitor C is the usual cathode bypass.

Although the circuits shown have assumed tubes using cathodes, the same circuits may be used on filament tubes operating from filament transformers by assuming the centertap of the transformer to be the cathode. For example, the circuit of Fig. 9 would become that of Fig. 15. The two capacitors across the filament bypass the signal currents across the inductance of the transformer winding. Some battery portables have the filaments connected in series across a 6-volt battery; by connecting the grids at desired points along the filament line, from zero to nearly 6 volts may be applied to such grids as require bias. A variation of this system is occasionally found in some three-way sets. The plate current through the output tube used for a.c. operation is used to supply filament current for the other tubes. Thus their filaments become the cathode resistor (or part of the cathode resistor) of the output tube. A few battery portables have used bias from the oscillator tube for the output tube. The oscillator of a superheterodyne uses a circuit like that of Fig. 10, and a small current flows through R. By making part of R the grid leak (or part of the grid leak) of the output tube, bias may be obtained without robbing the B-battery as would be necessary if the circuits of Figs. 11 or 14 were to be used.

References

1 "Use of Shunt Diode for Supplying Bias Voltage," Electronics, September, 1945.
2 Patent No. 2,756,877 issued to Orville I. Thompson, assigned to DeForest Training, Inc.
A Signal Tracer and V.T.V.M. Combined

By HARRY HATFIELD

This combination unit provides versatility at low cost.

At a and b in Fig. 2 are two variations of a signal-tracer probe. The author has used both arrangements satisfactorily. It is recommended that both arrangements be tried, and the preferred one assembled permanently.

The v.t.v.m.

A 6SN7-GT is used in a bridge-type vacuum-tube voltmeter, ohm-, and capacitance-meter circuit. It measures a.c. and d.c. volts with little or no effect on the circuit under test. It will measure inductance also, if allowances are made for the resistance of the coil.

If the v.t.v.m. is built from standard radio parts, it may be accurate to about 8%; but by using 1% resistors, ceramic switches, etc., the error can be reduced to approximately 4 or 5%.

The nine voltage-divider and ohmmeter-comparison resistors are mounted on the 11-position rotary selector switch. The values are based on a 3-volt grid swing in the first (top) triode of the 6SN7-GT. All the ranges are given in the Range Table.

The 6SN7-GT cathodes are connected together and grounded through an un-bypassed cathode resistor. The change in plate current in one triode produces a potential change across the common cathode resistor which changes the bias on the other 160 degrees out of phase with the grid change in the first. The balanced-bridge output is affected little by B-supply variations, since such changes do not affect the amplification factor of the tube; being in phase and of equal amplitude on each triode, they cancel out. The one-megohm grid resistor is used only to equalize grid input impedance over all ranges, except the 3-volt, 10-megohm range, where some variations will be expected.

The 33,000-ohm resistors are the loads for the 6SN7-GT and the remaining two arms of the bridge (the tubes themselves are the first two arms).

Fig. 1—Complete schematic of the combined signal tracer-v.t.v.m. multimeter.

RADIO-ELECTRONICS for
Fig. 2—Probes for tracer and v.t.v.m.

The bridge equalizing potentiometer (50,000 ohms) is adjusted so that the two plate potentials are equal indicated when the meter is at zero. The meter is connected between the plates of the 6SN7-GT in series with the variable 25,000-ohm meter calibration resistor and a fixed 15,000 ohms.

The AC-DC switch places a bridge-type meter rectifier into the circuit for the a.c. and capacitance ranges. The polarity switch permits the reading of either positive or negative direct voltages. The 8-µf capacitor and 22,000-ohm resistor form a decoupling network to prevent interaction between the v.t.v.m. and other circuits.

To obtain an a.c. voltage for capacitance, and inductance measurements, a 200-ohm potentiometer was connected across the 6.3-volt filament winding, with one side grounded. The arm is connected to the RES-CAP switch, which selects either an a.c. voltage from the filament potentiometer or a d.c. voltage for measuring resistance from the cathode bias resistor of the 6V6. The conventional power supply requires no explanation.

A high-voltage test probe is constructed as shown in Fig. 2-c. The probe is a large, long, high-voltage insulated test prod with 90 megohms resistance enclosed in the form of six 15-megohm, 10-watt resistors in series. A high-voltage-insulated, shielded test lead connects the prod to a phone plug for insertion into the voltmeter jack. A piece of test-lead wire tipped with an alligator clip is connected to the ground terminal of the phone jack to connect to the low voltage side of item being tested. This probe multiplies all voltage ranges given in the Range Table by 10.

The parts are laid out on the chassis so that the sensitive input circuits of the v.t.v.m. and the 6J7 high-gain signal-tracer tube are far removed from the rectifier and power transformer. The 25,000-ohm v.t.v.m. adjustment needs changing only if a tube or meter is changed; therefore, it is mounted on the chassis inside the cabinet. Copy the meter scale of Fig. 3 or paste it on your meter if it will fit.

Calibration

To calibrate the meter, turn the 25,000-ohm v.t.v.m. adjustment to maximum resistance and turn off the power. Set the RES-CAP switch to RES, the AC-DC switch to DC, and the meter polarity switch to +. Set the ohmmeter zero adjust to minimum. Balance the bridge by adjusting the bridge balance control until the meter reads zero. Set the range switch to position 3 and short the ohmmeter terminals.

Connect an accurate multimeter to the RES-CAP jacks and adjust the ohmmeter zero control until the multimeter reads 3 volts. Set the meter adjustment for maximum meter movement (full scale).

Turn the AC-DC switch to AC, RES-CAP switch to CAP, and capacitance zero adjust to minimum. Short the RES-CAP jacks and connect a multimeter as before. Turn the capacitance zero control for full-scale meter deflection. The multimeter reading should be 3 volts. If it is only slightly off, set the meter adjustment for a satisfactory compromise between d.c. and a.c. readings. Seal it with speaker cement.

Remove the test leads from the RES-CAP jacks. Insert the v.t.v.m. probe into the voltmeter jack; set the AC-DC switch to DC, and the RES-CAP switch to RES. Turn the range switch to position 1. Insert the v.t.v.m. probe tip into the jack that connects with the ohmmeter zero adjustment. Place one multimeter test prod on the chassis and the other on the probe tip. When the ohmmeter zero settings are varied, the readings of the two meters should agree on the 2,1/2-volt meter scale.

Turn the range switch to the next position and check the 6-volt range. The lower ranges will read slightly different from the "3" and "10" scales of the higher ranges due to space-charge effects in the 6SN7-GT.

Fig. 3—Cut-out for the meter face.

Under the chassis. Wiring is point-to-point, with low-level a.f. shielded.
Fundamentals of Radio Servicing

Part XV—Sound and Loudspeakers

By JOHN T. FRYE

“The music goes ‘round and ‘round, And it comes out here!”

NEVER do I bear the words of that song of a few years back without grinning and thinking they might well be a beautifully brief description of the whole complicated business of radio. Certainly the music does go ‘round and ‘round from the moment it enters the microphone of the broadcast studio and is transformed into a weak audio-frequency current.

By the time the signal reaches the receiving antenna, it is so enfeebled by its journey that once more it must be nursed back to health before it is ready for the operation of being separated from the carrier. Nurses R.F. Amplification, Conversion, and I.F. Amplification have charge of this building-up process; and Doctor Detection performs the operation. After that, the audio signal must still be passed through the audio amplifier of the receiver before it “comes out here.”

The “here” that actually releases the captive sound from the magic spell of electricity is the loudspeaker. It might be called a microphone in reverse, for just as a microphone is a device for changing sound waves into electrical currents, a speaker is a device for changing electrical currents back into sound waves. The speaker is at the very end of the whole process of radio reception, in which it has the very last word. So it stands to reason that it is a most important piece of apparatus. Unless it does its job well, the good work of all the other units goes for nothing.

Brief review of sound

Since a loudspeaker is a sound device, let’s review briefly some of the properties of sound before examining its operation:

Sound is “the sensation produced by a stimulation of the auditory nerves by vibrational energy.” Suppose we strike the tuning fork of Fig. 1 and start it vibrating. As a prong of the fork moves back and forth, it alternately causes the molecules of air next to it to be pushed together and to be spread apart. These compressions and rarefactions travel through the molecules of air. To understand how, imagine that we have several croquet balls lined up in a shallow trough and separated by equal lengths of large-diameter coil spring. If we strike a ball at one end of the trough, it will compress the spring behind it, and the next ball. That ball will pass this shove along to the next, while the first ball is being thrust backward by the first compressed spring. In this manner the motion originally given to the first ball will travel through the whole string, causing each ball first to move closer to its neighbor and then to spring away from it.

In exactly the same way, the thrusts that the tuning fork gives to the surrounding air is transmitted to the ear, and these tiny variations in pressure cause the eardrum to move back and forth with the tuning fork. In that instant, vibration becomes sound.

A compression and an accompanying rarefaction make up a sound wave. If we could see these waves moving from the fork to the ear, we would notice that, when the fork vibrates slowly, only a few waves pass in front of us in a given space of time; so we might say that the frequency or pitch of the sound is low. Moreover, we would notice that the distance between two adjacent compressions is quite great, or that the sound wave is long.

On the other hand, when the fork vibrates rapidly, the number of waves passing before us is greatly increased. We say that the sound now has a higher frequency or pitch. At the same time, the wavelength would be noticeably shorter.

When the fork vibrates violently, it gives much stronger shoves to the air molecules than it does when moving through a small arc. The varying amount of energy thus imparted to and contained in the sound waves is referred to as the intensity or amplitude of the sound. The ear recognizes this difference in intensity as a variation in the loudness.

The current that is delivered to the speaker is an electrical reproduction of the physical sound that fathers it. This current is alternating in nature, but the frequency is not monotonously fixed as it is in the 60-cycle light mains. Instead, it is free to vary from instant to instant so that the electrical cycles per second are exactly equal to the number of sound waves per second striking the microphone. At the same time the power of the alternating current goes up and down in accordance with the intensity of the sound waves. A weak 1,000-cycle tone will produce a weak 1,000-cycle alternating current at the output of our receiver; but a loud 5,000-cycle sound will produce a powerful 5,000-cycle current at the same place.

The dynamic speaker

Now we are ready to see how a loudspeaker changes this alternating current back into sound. Take a look at Fig. 2, a drawing which illustrates the elements of a loud speaker mechanism.

The field coil consists of thousands of turns of wire wound in many layers in a doughnut form that fits snugly around the cylindrical soft-iron pole piece. This pole piece is firmly fastened to the rear of the heavy, soft-iron frame and projects through the exact center of a hole in the front of this frame, leaving a small space between the pole piece and sides of the hole. A tube of paper with a coil of wire wound in two or four layers around it is slipped over the pole piece and rests in...
this space. This is the voice coil. It must not touch either the pole piece or the frame; therefore, a flexible brace, called the spider, holds the voice coil centered in the narrow space, allowing it to move freely backward and forward on the pole piece. A paper cone is cemented to the voice coil, and the outer edge of this cone is also flexibly supported so that it may move back and forth with the voice coil.

Suppose we pass a direct current through the field coil. From our study of magnetism we know that this will magnetize the pole piece. The lines of force of its field will flow out the front end of the pole piece across the gap between it and the frame and then return to the rear of the pole piece through the soft-iron frame. There will be a very concentrated steady magnetic field in the small air gap in which the voice coil exists.

Suppose we pass another current through the turns of the voice coil. This current will produce a magnetic field of its own, and we shall have two different sets of magnetic lines of force. The interaction between these two magnetic fields will cause the voice coil to move back or forth on the pole piece. The direction of movement will depend upon the direction of current through the voice coil, and the amount of movement will depend upon the strength of the current.

Stopping right here, can’t you guess what will happen when we connect the output of our radio receiver to the voice coil? It is true that this output is an alternating current whose frequency varies with the pitch of the sound producing it and whose power reflects the loudness of the original sound. Since the direction of movement of the voice coil depends upon the direction of current through it, an alternating current will cause the voice coil to move back and forth, exactly in step with the frequency of the reversing current through the coil. If our “vibrating object” can produce sound! A stronger current will cause the coil to have a greater movement than a weak current; thus a violent swing of the tuning fork will produce a loud sound that will result in a strong current that will cause a violent movement of the voice coil and cone and produce a loud sound.

The whole thing sounds rather like a dog chasing his tail, but it establishes the point that the sound from the speaker is almost exactly the same as that in the broadcast studio—and that is our goal.

A comparatively recent tendency in this field-coil dynamic type of speaker has been to get rid of the field coil. This coil was needed only to create a strong magnetic field in the space in which the voice coil works. (However, radio engineers made a virtue of a necessity, and also used the field coil for a filter choke.) In the last few years we have learned how to make powerful, compact, permanent magnets many times stronger than formerly believed possible. When a permanent magnet is used to replace a section of the pole piece, the speaker works just as it did with the field coil; but a great saving has been made in cost and weight, and we no longer need a source of field energy. These new speakers are called “permanent-magnet dynamic speakers” or, less formally, “PM speakers.”

The human ear cannot hear vibrations of all frequencies. Any frequency between 18 and 20,000 cycles is called an audio frequency, but the range of hearing of most people is probably between 30 and 16,000 cycles per second. What is more, the response of the ear is similar to the spelling of Ohio: “round on the ends and high in the middle,” as is shown in Fig. 3. Sounds of equal actual intensity seem much louder in the range between 500 and 5,000 cycles than when pitched either above or below this range.

Low-note difficulties

If the ear is to hear low-pitched tones at all, the speaker must move a considerable mass of air to produce the necessary changes in pressure with this comparatively slow-motion movement of the voice coil. That is why the cone is attached to the coil. It acts like a piston and allows the voice coil to set a large quantity of air into motion. Even this advantage is largely lost at low frequencies without the use of a baffle. As the cone moves forward, it compresses the air in front of it and lessens the pressure behind it. At low frequencies, this cone movement is comparatively slow, and the pressure being built up in front simply slides over the edge of the cone and reduces the partial vacuum we are trying to create behind. It is like trying to use a 3-inch piston in a 4-inch cylinder: most of the pressure simply escapes past the sides of the piston, and the net result is very little change in pressure front or back.

The remedy is to lengthen the path the pressure sound must travel when going from in front of the cone to the back so that by the time it gets there all ready to do its dirty work, the cone has started back and the arriving pressure wave actually contributes to the pressure the backward-moving cone is starting to build up behind the speaker. The name baffle is given to the means used to lengthen this sound path, and the whole baffling subject is discussed at some length in the article by A. G. Sanders on page 31 of the December, 1949, issue of Radio-Electronics.

While a large cone and voice coil help to reproduce the low frequencies, the increased mass of these items seriously interferes with the reproduction of high frequencies. If you have trouble in understanding why, just reflect on how much heavier it is to flutter a handkerchief than a bed quilt! By making the cone out of flexible material we can help the situation, for then the whole cone will move back and forth at the low frequencies while just the inner portion will follow the rapid vibrations necessary for high-frequency reproduction.

The best solution is the use of two speakers: a small “tweeter” especially designed for the highs, and a large “woofer” that is intended to reproduce the low frequencies. Both of these speakers are often contained in a single unit. A device known as a crossover network separates the frequencies between the two cones.
Compact Unit Tests Everything

Signal tracer, capacitor tester, signal generator and tuner on one panel.

By WESLEY NEELANDS

Radio repairing started as a hobby with me. My radio repair equipment consisted of a simple onetube regenerative rig for a signal generator. When radio repairing had become a part-time occupation, it still didn't justify expensive equipment, but something more elaborate obviously was needed to turn out better work in less time. I leafed through the last two years' copies of this magazine and found that most testers were either too complicated or too simple to suit me, but I picked up some good ideas and put them together.

The test panel devised contains four units: a simple tuning unit, a capacitor tester, a signal tracer, and a signal generator. Fig. 1 shows the complete circuit.

The tuning unit is exceedingly simple. It brings in local stations with good volume and is very dependable and useful for providing music in the work shop; for checking the output of the signal generator (with a dead radio on the bench one sometimes wonders if the generator is operating); and for checking distortion.

The tuning unit will pick up the output of the signal generator. The r.f. or i.f. signal is heard in the speaker and can be adjusted for modulation and pitch. Distortion is checked by feeding a good voice or music program to the tuning unit and applying the output of the tuning unit to the first audio stage of the signal tracer. The output of the signal tracer then provides an audio signal to use for distortion checks.

The capacitor tester provides a test for all capacitors commonly used. Insert the capacitor between the neon bulb and B-plus. One flash when contact is made and another (on the opposite neon element) when the capacitor is grounded indicates a good unit. No flash shows an open, and a steady glow a shorted or leaky capacitor. For low voltage capacitors, use a voltage divider inserted between B-plus and ground.

The signal tracer is a simple audio amplifier that needs little explanation. The combination of a 6SQ7 and a 6V6 gives very good sensitivity for a triodepentode combination, having a highmu triode and a beam-power output. Use shielding as indicated, short leads in plate and grid circuits, no crowding, and adequate filtering in the B-supply. The result is a quiet, stable amplifier.

Two probes, shown in Fig. 2, are required. One a simple shielded probe with an alligator clip for picking up audio signals. For example, it can be clipped to one side of the voice coil with the other side grounded. The tracer then acts as an output meter. The other probe contains a 1N34 germanium crystal. With it, signals can be traced from the aerial to the detector stage. No provision is made in this probe for a return r.f. path and the circuit itself must provide a path or a more elaborate probe is required. The speaker can be switched off to avoid confusion between the output of the test speaker and that of the radio under test. A short circuit switch for the output transformer is needed when the speaker is out or enough signal will leak across the switch to be troublesome.

The 6E5 eye is valuable for alignment, output tests, and comparison of gain from stage to stage. For the latter, it is helpful to set up a chart using different types of good radios that come to your shop. The point on the tester volume control at which the eye closes should be noted as the tracer is put on each test point. The simplified diagram shown in Fig. 3 may be used and the test positions, as numbered, incorporated into the chart.

The signal generator has no plug-in coils and no coil switching. The complete audio range, from a few cycles per second to the inaudible frequencies.

Fig. 1—There are three units—tuner-tracer, sig gen and power pack. Pin jacks permit many tests and supply various voltages.

Radio-Electronics for
Capacitance Measurement with Signal Generator

CAPACITANCES below .0005 \(\mu F \) cannot be measured accurately with ordinary bridge circuits. A signal generator in connection with a standard radio solves the problem simply and accurately with no extra drain on the pocket. Nearly every radioman has this instrument and one who has not may construct one.

A problem arose concerning some nonstandard coded micas of low capacitances obtained from surplus stores. With no further waste of time and money, I thought of a way to use my signal generator to solve the difficulty. I connected a .0005-\(\mu F \) linear-type variable capacitor in parallel with a signal generator log-type tuning capacitor with the shortest possible plug-in leads so that the original calibration would not be affected when this extra unit is disconnected. There being 10 divisions on the linear unit dial, the signal generator dial was marked for each degree by spotting the signal on the radio receiver in turn with the calibrating capacitor and the signal generator's own. In this way the signal generator capacitor was calibrated in terms of the linear one.

The capacitance for each division marked will be .0005 \(\mu F \) divided by 100. The calibration, of course, will be checked on the low-frequency end of the dial and may be marked for convenience. With a big dial, the task will be easy and more accurate.

To test a given capacitor, set the signal generator variable capacitor for minimum capacitance and plug in the capacitor under test. Tune in the signal on the radio receiver on the appropriate band. Unplug the capacitor and leave the radio receiver as tuned. Tune the signal generator in to spot the signal on the radio. The pointer on the signal generator will now directly indicate the value of the capacitor under test. Care should be taken to distinguish fundamentals from harmonics when measuring a capacitor by this method.

This method also provides a quality test. If the signal cannot be tuned, it may be due to large leakage stopping the signal generator. Should it be open, stray capacitance will deviate the signal very little. (For low capacitances, the h.f. band will be more accurate and convenient.)

Dial is calibrated in capacitance units.

Interelectrode capacitance of tubes also can be measured by this method, and by comparison with good tubes, an open element can be found easily.

I constructed the signal generator (see photo) from an article, "Better Signal Generator" in the 1946 Radio-Electronics Reference Annual. It was supplemented with a capacitance and resistance checker bridge circuit described in the same Annual. By combining two in one, the power supply cost was cut down. Of course, an additional winding of 60 volts on the power transformer for the bridge circuit was required. The 6E5 tuning eye in the bridge is a null indicator and also has been used as a low-range v.t.v.m. and for a.v.c. checking and alignment work.

The instrument also has been used as a Morse code practice set as well as with a receiver to provide modulated signals. Thus maximum returns have been achieved with minimum of cost. Hope that the setup will encourage readers toward home-made test instruments.

-Raojibhai J. Patel
Servicing Vibrator Power Supplies

Voltage and current waveform analysis simplifies trouble shooting in vibrator-type power supplies

By JOHN LEDBETTER

A full-wave non-synchronous supply.

SERVICING automobile receivers and other equipment with vibrator-type power supplies is no harder than servicing a.c. apparatus; yet many technicians don't like to tackle this type of equipment. They usually feel that extra test equipment and batteries will be required, and that work on vibrator supplies is tedious or tricky.

Neither of these ideas is necessarily true, although a 6-volt storage battery or battery eliminator is desirable if much work is to be done on auto receivers or battery-operated PA systems. Servicing both synchronous and nonsynchronous power supplies is quite simple once the underlying principles are understood.

Basic theory

Three general types of vibrators are in use today: half-wave nonsynchronous, full-wave nonsynchronous, and synchronous. The half-wave type is shown in Fig. 1. Voltage applied to the vibrator's series electromagnetic coil makes and breaks the circuit about 85 times per second. The pulsating current thus produced in the transformer primary induces an a.c. voltage in the secondary, which depends on the turns ratio of the transformer and the vibrator frequency.

When the vibrator contact points are open, the energy stored in the magnetic field of the primary winding tries to keep the current flowing in the coil. Since the resistance of the vibrator contacts has changed from zero when closed to almost infinity when open, the voltage across the winding rises to an extremely high value (1,000 volts or more) in the attempt to keep the current flowing across the contact gap.

Since this inductive surge will damage the transformer or ruin the vibrator points, a buffer capacitor is placed across the transformer secondary to absorb the voltage peaks. When the vibrator contacts are closed, the capacitor charges. The inductive surge is opposite in polarity to the charge on the buffer capacitor so that it must reverse the charge on the capacitor before it can begin charging in the opposite direction. By this time the inductive surge has been used up or reduced to only a few volts.

The half-wave circuit in Fig. 1 has several disadvantages because of the series vibrator coil and single secondary winding. Since the coil is in series, the current through it depends on the current load placed on the secondary winding. If the current falls below a certain value, the efficiency of the vibrator varies and it flutters or vibrates very feebly. The longer contact periods of the vibrator points cause saturation of the transformer and sparking occurs.

If the secondary current drain is excessive, the vibrator current also is excessive and the vibrator is slated for early failure. Although the secondary winding actually contains a form of alternating voltage, the rectifier tube draws current only if this voltage has a certain polarity. This amounts to forcing pulsating d.c. through the secondary, and the inductance of this winding acts like a choke and limits the amount of current which can be drawn through it. The practical limit is about 30 milliamperes at 180 volts.

The action just described can be understood more clearly by referring to the voltage and current waveforms in Fig. 2. When the square-topped portion of the voltage waveform has the correct polarity to be passed by the rectifier tube, the energy transfer is high. If the rectifier draws power from the bottom of the wave, the output is being obtained only from the energy stored in the transformer core. The result is low output and poor vibrator operation. This condition can be corrected by reversing the battery leads.

Full-wave circuits

Full-wave nonsynchronous circuits avoid the above disadvantages (see Fig. 3). Here, the vibrator coil is connected in parallel with the vibrator contacts instead of in series, and draws a constant amount of current regardless of the secondary load. This full-wave circuit is actually two half-wave circuits placed back-to-back so that each alternately supplies half of the output wave. This keeps the output voltage polarity correct, so that each

Fig. 1, left—Half-wave vibrator supply. Fig. 2, center—Voltage and current waveform. Fig. 3, right—Full-wave, non-sync. vibrator.

Fig. 4, left—Full-wave supply increases efficiency. Fig. 5, center—Synchronous supply eliminates rectifier. Fig. 6, right—Reversing plug for vibrator.
of the rectifier conducts, and there is no need for observing battery polarity.

Since one-half of the transformer secondary is always providing d.c. output, the inductive surges in each half balance each other. No d.c. is taken through the secondary, and the voltage output may be increased as much as desired simply by increasing the turns ratio, the only limit being the eventual overloading of the vibrator if this is carried too far. An increase in efficiency is shown in the voltage and current waveforms in Fig. 4.

Oscilloscope connections for observing waveforms are shown in Fig. 7. The voltage wave (7-a) can be checked by connecting the vertical scope leads to any convenient point across the power transformer primary, usually at the vibrator socket. The current waveform (7-b) is obtained by connecting the vertical leads of the scope at any convenient point between the A hot line and ground. (Since the vibrator draws a pulsating current from the battery, the voltage drop in the battery line will have exactly the same waveform as the current.)

Fig. 7, left—Oscilloscope connections for waveform observation. Fig. 8, center—Non-synchronous supply waveforms. Fig. 9, right—Synchronous waveforms.

The synchronous vibrator supply permits a simpler, more compact circuit arrangement since the rectifier tube and socket are eliminated. In Fig. 5-a, the battery voltage is applied across the primary winding of the power transformer. This voltage is positive at the centertap and negative at P1. The transformer produces a high positive voltage at the secondary centertap and the secondary winding is negative at S1. (The negative return is supplied through the vibrator reed.) When the reed is in the position shown in Fig. 5-a, the primary centertap is again positive, and this time P2 is negative. The secondary voltage still is positive at the centertap, but is now negative at S2. Thus the output voltage at the secondary centertap is always positive d.c., regardless of the position of the vibrator reed.

The main disadvantage of this circuit is the necessity of observing battery polarity. The wrong polarity will damage both the vibrator and the filter capacitors if allowed to remain for even a short time. Some manufacturers provide reversing vibrator polarity in different makes of vibrator, and some have a three-wire or center-tap base; polarity is reversed by removing the vibrator from the socket, rotating it 180 degrees, and re-inserting (see Fig. 6). Some of the older receivers did not make such provisions, and polarity had to be reversed by reversing the primary leads of the power transformer.

Servicing methods

Two good methods of checking a vibrator supply are waveform and voltage and current measurements. Both are simple and take up little time. Useful information can be obtained by observing both the voltage and current waveforms with an oscilloscope. The voltage waveform shows the condition of the vibrator itself and whether it is electrically matched to the circuit, and the current waveform indicates the condition of the circuit and whether the vibrator is correctly connected to it. Oscilloscope connections for observing waveforms are shown in Fig. 7. The voltage wave (7-a) can be checked by connecting the vertical scope leads to any convenient point across the power transformer primary, usually at the vibrator socket. The current waveform (7-b) is obtained by connecting the vertical leads of the scope at any convenient point between the A hot line and ground. (Since the vibrator draws a pulsating current from the battery, the voltage drop in the battery line will have exactly the same waveform as the current.)

Current waveform tests

In some tests, the current waveform is more helpful than the voltage waveform. For example, suppose half the transformer primary winding is open (Fig. 11). The output voltage waveform may be almost normal, but the fault will be apparent immediately in the current waveform. Since no current can flow in contact B because of the open winding, there will be a long "off" period between adjacent current pulses (compare A with B in Fig. 11). This will cause short life because one set of points is forced to carry the entire load. This same thing can happen if one of the rectifier plates is weaker than the other. The shape of the current waveform in this case will resemble that in Fig. 12-a. Note the decreased height of current pulse B as compared with the pulse A. The same waveform could be caused by a high-resistance joint in the secondary winding or at the tube socket. If the secondary winding is open at B, the waveform will have the slope as shown in Fig. 12-b.

Note the small peaks which appear at the front edge of each current pulse. These are caused by a charging current for the buffer capacitor and should be no higher than two or three times the height of each current pulse under normal load. It is not necessary that each peak be exactly the same, but a value higher than normal indicates excessive buffer capacitance and will result in short vibrator life. Excessive charging peaks will also cause hum in the speaker by being induced into the voice coil by way of the field coil of the speaker.

Too large a buffer capacitor will give the voltage and current waveforms shown in Fig. 13. The waveforms in Fig. 14 are usually the result of using a vibrator designed for a high-frequency unit at low frequencies. The waveforms show a saturated power transformer as the result of the vibrator contacts being closed for too long a period. This should not occur if the manufacturer's recommendations for vibrator replacement have been followed.

Current drain

The current drain of the set should be checked against the manufacturer's specifications. If these are not available, check the vibrator current by allowing the tubes to warm up and taking a current reading of the battery wire to the vibrator in the circuit, then with it removed. The difference in
readings is the vibrator current.

Roughly, this current should be 2 amperes for each power tube in the receiver, ½ ampere for the converter tube, and ¼ ampere for each of the other tubes. The rectifier is not included, since it draws no current from the vibrator. If the actual vibrator drain is much more than the above approximations, the various components should be checked.

Fig. 13, left—Too large a buffer capacitor peaks the current. Fig. 14, right—High frequency unit used at low frequencies saturates power transformer.

Most likely causes of trouble are:

- high leakage in the filter capacitors, leaky or shorted coupling or bypass capacitors in the output stage, defective output tube, or a faulty resistor or capacitor in the cathode bias circuit. Defective parts in other stages may also contribute to the excessive current drain.

In nonsynchronous circuits, the trouble can be isolated quickly by removing the rectifier tube; in synchronous circuits by disconnecting the centertap of the transformer secondary. The current drain through the vibrator under these no-load conditions should be 1 ampere or less. If more, the trouble is in the vibrator, buffer capacitor, or power transformer. If replacing the first two does not reduce the current drain to normal, the transformer itself is defective and must be replaced.

The input current can be checked without removing the receiver from the car by making up an adapter like the one shown in Fig. 15. This adapter consists of a standard and a clearance type fuse holder and plug, a d.p.d.t. switch (toggle or knife-type) rated at 6 amperes or more, for reversing the meter, and a d.c. ammeter (0-15 or 0-20 amps).

The current can be measured directly by connecting the adapter in series with the hot battery lead. The current reading should be taken with the car motor off and with no other load on the battery. The battery voltage should be as close to 6 volts as possible when the readings are made.

Vibrator life test

The life expectancy of vibrators which have been in the set for a long time but are still in good condition can be predicted by making the following tests: First, replace the 024, if one is used, with a 6X5 for the tests. Then, with the set operating, but with no station tuned in, check the plate voltage. This should be within 10% of the manufacturer’s rating and should vary not more than 4% (this would be ±10 volts at 250 volts plate voltage approximately).

Drop the input to 4 volts by connecting the hot lead across two cells of the battery. Disconnect the set for about 1 second. This allows the vibrator to stop but does not allow the tubes to cool. Then apply battery voltage to the receiver several times in succession. The vibrator should start consistently at 4 volts as long as the

CURING MODULATION HUM

When hum in receivers and amplifiers is not produced by faulty filtering, stray a.c. fields, and other common faults, it may be caused by heater-to-cathode leakage in one or more of the tubes.

The easiest method of locating the bad tube is by substitution. However, this method is not too reliable unless two or more of each type tube are available.

Fig. 1—Series heaters need resistor. Another method is to disconnect the tube heater from its a.c. supply and use a battery to heat it. The battery should deliver the required voltage and current. A rheostat and voltmeter can be used to adjust the voltage to the correct value. Try this on each tube until the hum disappears. This tube should then be replaced by one of the same type hand-picked for hum-free service.

Fig. 1 shows the connections for a.c.-d.c. type sets having series filament strings. In such sets, the heater string must be completed by a resistor equal to the "hot" resistance of the heater it replaces. The resistance is equal to the heater voltage divided by the heater current in amperes. Fig. 2 shows the connections for making the test on a.c. sets. If instability is experienced during—or because of—this test, bypass one side of the heater to chassis or B-minus. Use a 0.001-µf capacitor for r.f. circuits and a 0.01-µf unit for a.f. circuits.

If the hum is strong, start testing tubes at the front end of the set or amplifier. If it is weak, start at the output stage. Do not overlook the rectifier tube. It can cause this trouble just as easily as the others can. Be extremely careful when testing rectifier tubes.

Fig. 2—Rheostat varies the voltage. This method is especially effective in checking high-resistance leaks between cathode and filament of the power tube in series-filament receivers. The leakage may be so slight as to be undetectable on any tube tester but be very noticeable when it has the whole voltage of the filament string across it.

—*Ludwig Farth*
Here's the only complete Buying Guide to everything in TV, Radio and Electronics—packed with the world's largest selections of quality equipment at lowest money-saving prices! See the latest in TV, AM and FM receivers; radio-phonos; new Sound Systems and P.A. equipment; high-fidelity custom sound components; recorders and accessories; full selections of newest Amateur receivers and station gear; test instruments; builders' kits; huge listings of parts, tubes, tools, books, diagrams—all in stock for immediate shipment.

ALLIED gives you every buying advantage: speedy delivery, expert personal help, lowest prices, assured satisfaction—plus the most liberal Time Payment plan in radio. Get the 1950 **ALLIED** Catalog—it will save you time and money. Send today for your FREE copy!

ALLIED IS YOUR TELEVISION HEADQUARTERS

You keep up with TV when you depend on **ALLIED**! Count on us for the latest releases and largest stocks of picture tubes, component parts, antennas and accessories—plus the latest in TV receivers, tuners and kits. If it's anything in TV—we have it in stock! So remember—for TV—it's **ALLIED** First!

ALLIED RADIO

The World's Largest Radio Supply House

Everything in Radio, TV and Electronics

WORLD'S LARGEST STOCKS
Radio Parts Unlimited
Test Instruments—All Makes
Television & Home Radios
P.A. and Hi-Fi Equipment
Amateur Station Gear
Experimenters' Supplies

QUICK, EXPERT SERVICE

ALLIED RADIO CORP.
833 W. Jackson Blvd., Dept. 2-1-E-0
Chicago 7, Illinois

☐ Send FREE 196-page 1950 **ALLIED** Catalog.

Name: ____________________________

Address: ____________________________

City ____________________________ Zone ______ State ____________

MAY, 1950
Intermodulation Distortion Tests

How what is possibly the most serious form of audio-frequency distortion is detected and measured.

By CARL N. SHIPMAN*

There are three ways of measuring the distortion produced in an audio system. Distortion-factor meters and wave analyzers have been used for some time, but intermodulation analyzers are relatively new. Though no objective measurements have yet been devised that can predict accurately whether or not listeners will like the sound of a particular system (the listeners’ ears are, after all, the final criterion), intermodulation tests usually seem to give better clues to hearer acceptance.

Distortion-factor meters are still most common. A single-frequency sine wave is fed into the amplifier and the output is filtered so that the original frequency disappears. The remainder, which consists of any harmonics generated by the amplifier plus whatever noise is present, is measured. The fundamental output is also measured and the harmonics are then figured as a percentage of the fundamental. For good-quality systems 5% is often satisfactory, but nowadays high-precision professional equipment has only 2% or even less.

The wave analyzer works on the same principle; but instead of measuring all harmonics at once, it filters and measures only one at a time, usually by beating an oscillator with the harmonic to be measured and passing the resultant beat frequency through a very selective filter. The advantage here is that the highly selective filter narrows the bandwidth measured so much that most of the noise is excluded. It also tells just which harmonics are most prominent, giving a clue to the fault, if any, in the system.

The trouble with harmonic measurement is that only distortion in the low-frequency half of the spectrum can be measured; if the fundamental is above the mid-frequency point, all the harmonics fall outside the audio band and the equipment covers.

The intermodulation method of measuring distortion is based on the fact that the worst offense to the ears is committed when two or more different frequencies being amplified simultaneously interact due to some non-linearity in the amplifier. While pure harmonic distortion of a single tone merely creates additional frequencies which are exact multiples of the fundamental, interaction between two or more tones produces sum and difference frequencies which may be totally unrelated harmonically to the originals. The effect is a good deal worse than when some members of a musical ensemble play off pitch or wrong notes, destroying the harmonies or chords. Intermodulation measurements, therefore, usually approximate more closely the subjective reactions of a listener and are generally more useful than simple measurements of spurious harmonics.

The intermodulation method employs two tones: one of low frequency—between about 50 and 200 cycles, and one of considerably higher frequency—anywhere from about 1,000 cycles up. Both tones are fed to an amplifier, and an analyzer connected to the output measures the interaction between them.

The signal generator

Fig. 1 is a block diagram of a typical intermodulation signal generator. The two oscillators produce sine waves, 60 and 2,000 cycles in this example. (The 60-cycle signal may be provided by the a.c. power line instead of an oscillator.) The two tones are combined in a network carefully designed for minimum distortion.

The resultant wave is shown in Fig. 1. It is a 2,000-cycle sine wave, with a 60-cycle sine wave as its axis of symmetry. As a more or less standard condition (though no genuine standards have yet been set) the voltage amplitude of the 60-cycle wave is four times that of the 2,000-cycle wave (1 db greater). With this relationship, the intermodulation distortion percentage is usually roughly four times as high as a straight harmonic distortion measurement would be on the same equipment. The exact ratio varies with the cause of distortion.

The output waveform of Fig. 1 illustrates what happens whenever two or more frequencies are combined—the

* University of Hollywood
DC Voltage
Ranges (3, 12, 60, 300, 1200) (30,000 with Accessory High Voltage Probe)
Input Resistance 10 megabohms for all ranges
DC Probe with two megabohm isolating resistor Polarity reversing switch
Ohms Ranges 1000 (10 ohms center) 100,000 (100 ohms center)
1 megabohm (100,000 ohms center)
10 megabohm (100,000 ohms center)
1000 megabohm (10 megabohm center)
AC Voltage
Ranges 12, 60
Frequency Response 60 to 100,000 cycles
AF Voltage
Ranges 12, 60
Frequency Response 60 to 100,000 cycles
Decibels
Ranges -20 to +3, -10 to +23, +4 to +37, +18 to +51, +30 to +63
Zero Power Level 1 M. V., 600 ohms
Galvanometer
Zero center for FM discriminator alignment and other galvanometer applications
R. F. Voltage
(Selected tracing with Accessory High Frequency Crystal Probe)
Range 20 volts maximum Frequency Flat 20 K.C. to 100 M.C.
105 to 125 V. 60 cycles
Size
5½" x 7½" x 3¼" (bakelite case). Weight: 4 lbs. Shipping Wt.: 6½ lbs.
Dealer's Net Price
Model 303, including DCV Probe, ACV—Ohms probe and Ground Lead—$36.75
Accessory High Frequency Probe, $7.50
Accessory High Voltage Probe, $14.85
Also available with roll top case.
Model 303RT—$64.75

Simpson ELECTRIC COMPANY
5200 WEST KINZIE STREET, CHICAGO 44, ILLINOIS • IN CANADA: BACH-SIMPSON, LTD., LONDON, ONTARIO
Phone: Columbus 1-1221

MAY, 1950
lower ones act as axes for the upper ones, a single composite wave being formed. The shape, amplitude, and position of any portion of the wavetrain about the main a.c. axis depend on the original waveforms, the resistor values, and phase relations. To produce undistorted sound output, the composite wavetrain must reach the loudspeaker in exactly the same condition it assumes at the amplifier input. (The exception is that the resistor will tolerate a rather large amount of phase change.)

As the composite generator output goes through the amplifier being tested, the low-frequency signal causes relatively large positive and negative grid voltage excursions at each stage. If every tube operates on a linear portion of its transfer characteristic up to the maximum grid-voltage excursions in each direction, no distortion takes place if it is always the case, since nothing is perfect—a nonlinear region is encountered during the swing in one or both directions, those alternations of the 2,000-cycle superimposed signal which occur while the tube is nonlinear will be either greater or smaller in amplitude than when the tube is operating linearly.

Typical distortion

As an example, suppose one stage in the amplifier is a resistance-coupled first stage, 6J5 with a 50,000-ohm plate load resistor, a 50,000-ohm following grid resistor, and 1,000-ohm cathode-bias resistor. Plate supply voltage is 300. According to the resistance-coupled amplifier charts in the RCA tube manual, voltage gain is 13 and maximum a.c. output voltage should be 41. Dividing 41 by 13, we find that maximum signal voltage at the grid should be 3.15.

Assume that the 3.15-volt input maximum is exceeded slightly. On positive input peaks the grid begins to draw current, flattening off the output wave to some extent. Each time the 60-cycle signal reaches a positive peak, therefore, the amplification of the tube effectively decreases somewhat and the 2,000-cycle alternations superimposed on the 60-degree point of the low-frequency wave have smaller amplitude. It is likely, too, that negative 60-cycle excursions now take the tube into a nonlinear region, especially with such a high plate load resistance. At and about the 270-degree point of the low-frequency wave, therefore, given changes in grid voltage produce smaller changes in plate voltage and again amplification decreases. The result is reduced amplitude of the 2,000-cycle alternations superimposed on the 270-degree region of the 60-cycle wave.

The composite wave now appears like A in Fig. 2. Comparing it with its counterpart in Fig. 1, the distortion is apparent in the reduced amplitude of the 2,000-cycle waves at the 60-cycle peaks.

Fig. 2 is a block diagram of an intermodulation analyzer. The amplifier output wave at A is fed first into a high-pass filter which removes the 60-cycle component from the composite signal. This leaves only the 2,000-cycle signal. Since the amplitude of the 2,000-cycle signal is no longer constant (because of the distortion in the amplifier), it appears at the filter output as a modulated wave (shown at B). Its amplitude is normal or maximum at the points which correspond to the 0, 180, and 300-degree regions of the filtered-out 60-cycle wave, and less than normal at other points, the 90-degree points.

The wave at B is exactly like the familiar r.f. modulated wave (except, of course, for the actual frequency, which is 2,000 cycles) and can be detected and measured in the same way.

Fig. 1—The intermodulation signal generator combines two basic frequencies.

As the example shows, distortion is produced in the second stage, just as it is in the first; and then in the third stage. If the second and third stages are identical, there will be a net output distortion twice the value it was before. If the second and third stages are identical, the net distortion will be greater than the individual distortions.

It is first rectified (detected) to yield the d.c. wave at C. Then it is fed through a low-pass filter to remove the 2,000-cycle pulsations. The low-frequency modulation envelope remains at D.

Note one important point. The remaining modulation envelope is not the original 60-cycle signal. It is the change in amplitude of the 60-cycle signal produced by the 6J5 nonlinearities. Since the amplitude was changed twice during each low-frequency cycle (once by the tube’s drawing grid current and once by the negative excursion into a nonlinear transfer region), the modulation envelope at D is twice the original low-frequency or 120-cycle. If either the negative or positive 6J5 grid excursion along had caused nonlinearity, that is, a change once per low-frequency cycle, the wave at D would be 60 cycles. Its shape is usually not sine, either, depending on how abruptly the 6J5’s characteristic departed from linear.

The wave at D in Fig. 2 is produced solely by amplifier nonlinearity, which affected the relationship between two frequencies. If the amplifier were linear, the 2,000-cycle signal would have remained constant in amplitude as it was originally, and detection of a wave at B would have resulted in pure d.c. Obviously, then, the amplitude of the wave at D is a direct indication of the amount of distortion present. It is measured by an ordinate rectifier-type voltmeter. For one instruments, the circuit is arranged so that the operator can tell whether distortion is greater in the negative or positive direction.

The percentage of intermodulation is equal to the modulation percentage of the "carrier" wave at B. With the analyzer calibrated to present a fixed level to the detector, the meter may be marked directly in percent.

When citing intermodulation figures, the test conditions should be specified. The two frequencies should be given, as well as the amplifier output level. For greatest precision, the amplifier input level and the amplitude relationship of the two frequencies should also be mentioned. Measurements should be made with several sets of frequencies, as the distortion varies somewhat.

An amplifier which has low harmonic distortion ordinarily shows low intermodulation as well. Intermodulation results usually agree more closely with listening tests, however, and give a better indication of performance at high frequencies.

The percentage figure for intermodulation is always higher than that for harmonic distortion. This is why some manufacturers feel it unwise to publish it. A more valid reason is that standards for intermodulation testing have not yet been agreed on, and this may make interpretation difficult.

REFERENCES:

NOVEL SPEAKER CONNECTION

Two (or any multiple of two) speakers may be connected on this circuit to the output of two amplifiers while preventing power from being transferred from one amplifier to the other. The circuit is particularly useful in elaborate public address and paging systems. In such installations, one amplifier may be used for announcements and another for paging. In a typical airport installation the speakers common to both amplifiers would be in the waiting room or at the loading gate. Individual speakers for the paging and announcing amplifiers would be located in restrooms, cafeterias, and on the observation deck.

The secondary impedance of T1 should be twice the impedance of the speaker, and the impedances of T2 one half the impedance of a single speaker.
Wood preservation holds down telephone costs

Poles are a substantial part of the plant that serves your telephone; making them last longer keeps down repairs and renewals that are part of telephone costs. So Bell Laboratories have long been active in the attack on wood-destroying fungi, the worst enemies of telephone poles.

Better, cleaner creosotes and other preservatives have been developed in co-operation with the wood-preserving industry. Research is now being carried out on greensalt—a new, clean, odorless preservative. Even the products of atomic energy research have been pressed into service—radioactive isotopes are used to measure penetration of fluids into wood.

Treated poles last from three to five times as long as untreated poles. This has saved enough timber during the last quarter century to equal a forest of 25,000,000 trees. More than that, wood preservation has enabled the use of cheaper, quickly growing timber instead of the scarcer varieties.

This and other savings in pole-line costs, such as stronger wires which need fewer poles, are some of the reasons why America's high-quality telephone service can be given at so reasonable a cost. It is one of today's best bargains.

BELL TELEPHONE LABORATORIES

Exploring and Invent ing, Devising and Perfecting, for Continued Improvements and Economies in Telephone Service.
MONEY BACK? Every unit we advertise is offered on a strict "money-back-if-not-satisfied-basis". No ifs—no buts—no maybe's. If you are not completely satisfied after a 10 day trial—return for complete refund. No explanation—you are the sole judge. Plain enough? GUARANTEE? Every unit sold by us is covered by a one year guarantee. kits at home without the expensive calibration standards and other equipment available when instruments are factory produced.

SUPERIOR'S NEW MODEL 247

THE NEW MODEL 247

Check octals, locals, bantam ir., & tubes. Television miniatures, magic eye, hearing aids, therma-trons, etc.

Features:

★ A newly designed element selector switch reduces the possibility of obedience to an absolute minimum.
★ When checking Diode, Triode and Pentode sections of multi-purpose tubes, sections can be tested individually. A special isolating circuit allows each section to be tested as if it were in a separate envelope.
★ The Model 247 provides a supersensitive method of checking for shorts and leakages up to 5 Megahms between any and all of the terminals.

Model 247 comes complete with new speed-read chart. Comes housed in handsome hand-rubbed oak cabinet slotted for bench use. A slip-on portable hinged cover is indicated for outside use. Size: 10 1/2"x8 1/4"x5 1/2". ONLY $29.90 NET

SUPERIOR'S NEW MODEL TV-10

SUPERIOR'S NEW MODEL TV-10

Specifications:

★ Tests all tubes including 4, 5, 6, 7, Octal, Lock-in, Peanut, Bantam, Hearing-aid, Theratron, Miniatures, Sub - Miniatures, Novol, etc. Will also test Pilot Lights.
★ Tests by the well-established emission method for tube quality, directly read on the scale of the meter.
★ Tests for "shorts" and "leaks" up to 5 Megahms.
★ Uses the new self-cleaning Lever Action Switches for individual element testing. Because all elements are numbered according to pin-number in the RMA base numbering system, the user can instantly identify which element is under test. Tubes having tapped filaments and tubes with filaments terminating in more than one pin are truly tested with the Model TV-10.
★ The Model TV-10 does not use any combination type sockets. Instead individual sockets are used for each type of tube. Thus it is impossible to damage a tube by inserting it in the wrong socket.
★ Free-moving built-in roll chart provides complete data for all tubes.
★ Newly designed Line Voltage Control compensates for variation of any line voltage between 105 Volts and 130 Volts. The Model TV-10 operates on 105-130 Volt 60 Cycles A.C. Comes housed in a beautiful hand-rubbed oak cabinet complete with portable cover.

Model TV-10 at any of the pins may be placed in the neutral position when necessary.

★ The Model TV-10 does not use any combination type sockets. Instead individual sockets are used for each type of tube.

SUPERIOR'S NEW MODEL TV-10 comes complete with shielded coaxial leads and all operating instructions. Measures 6" x 7" x 9". Shipping Weight 10 lbs. $39.50 NET

SUPERIOR'S NEW MODEL TV-30

TELEVISION SIGNAL GENERATOR

ENABLES ALIGNMENT OF TELEVISION I. F. AND FRONT ENDS WITHOUT THE USE OF AN OSCILLOSCOPE!

Features:

Double shielding of oscillator circuit assures stability and reduces radiation to absolute minimum. Provision made for external modulation by R. F. or B. F. source to provide frequency modulation. All I. F. frequencies and 2 to 13 channel frequencies are calibrated direct in Megacycles on the Vernier Dial. Markers for the Video and Audio carriers within their respective channels are also calibrated on front panel. Linear calibrations throughout are achieved by the use of a Straight Line Frequency Variable Condenser together with a permeability trimmed coil. Stability assured by cathode follower buffer tube and double shielding of component parts.

Specifications:

Audio Modulating Frequency: 400 cycles (Sine Wave). Attenuator: 4 position, slider type with calibrated impedance control for fine adjustment. Tubes Supplied: 6C4 as Cathode Follower and Modulating Buffer. 6A6 as H.F. Oscillator. 6SN7 as Audio Oscillator and Amplifier. Model TV-30 comes complete with shielded coaxial leads and all operating instructions. Measures 6" x 7" x 9". Shipping Weight 10 lbs. $29.95 NET

GENERAL ELECTRONIC DISTRIBUTING CO.

98 PARK PLACE DEPT. RC-5
NEW YORK 7, N.Y.
Superior's new model 770

AN ACCURATE POCKET-SIZE VOLT-OHM MILLIAMMETER

(SENSITIVITY: 1000 OHMS PER VOLT)

FEATURES:
- Compact—measures 3½" x 5½" x 2½".
- Uses latest design 2% accurate 1 MΩ D'Arsonval type meter.
- Same zero adjustment holds for both resistance ranges. It is not necessary to readjust when switching from one resistance range to another. This is an important time-saving feature never before included in a V.O.M. in this price range.
- Housed in round-cornered, molded case.
- Beautiful block etched panel. Depressed letters filled with permanent white, insures long-life even with constant use.

SPECIFICATIONS:
- **D.C. VOLTAGE RANGES:**
 - 0–15/30/150/300/1500/3000 Volts
- **A.C. VOLTAGE RANGES:**
 - 0–75/150/750/1500/3000 Volts
- **D.C. CURRENT RANGES:**
 - 0–0.5/1.5/15/150/1500/3000 MA
- **A.C. CURRENT RANGES:**
 - 0–1.5/15/150/1500/3000 MA
- **CAPACITANCE RANGES:**
 - 0–0.001/0.01/0.1/1 Mfd.
- **INDUCTANCE RANGES:**
 - 0–7.5/15/75/150/750/1500/3000 Volts
- **OHMS:** 0–500
- **MEGOMHS:** 0–1

Price: $13.90 NET

Superior's new model 670

SUPER-METER

A COMBINATION VOLT- OHM MILLIAMMETER PLUS CAPACITY REACTANCE AND DECIBEL MEASUREMENTS

SPECIFICATIONS:
- **D.C. VOLTS:**
 - 0 to 7.5/15/75/150/750/1500/7,500 Volts
- **A.C. VOLTS:**
 - 0 to 15/30/150/300/1,500/3,000 Volts
- **OUTPUT VOLTS:**
 - 0 to 15/30/150/300/1,500/3,000 Volts
- **D.C. CURRENT:**
 - 0 to 1.5/150 MA. 0 to 1.5 Amperes
- **RESISTANCE:**
 - 0 to 500/100,000 Ohms 0 to 10 Megohms
- **CAPACITY:**
 - .001 to .2 Mfd. .1 to 4 Mfd.
- **REACTANCE:**
 - 700 to 27,000 Ohms 13,000 Ohms to 3 Megohms

Inductance:
- 1.75 to 70 Henries

Decibels:
- −10 to +18 +10 to +38 +30 to +58

Add Feature:
- The Model 670 includes a special GOOD-BAD scale for checking the quality of electrolytic capacitors at a test potential of 150 Volts.

Price: $28.40 NET

GENERAL ELECTRONIC DISTRIBUTING CO. DEPT. RC-5, 98 PARK PLACE, NEW YORK 7, N. Y. RC-5

GENTLEMEN: PLEASE RUSH THE MATERIAL LISTED BELOW:

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>MODEL</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

MAY, 1950

www.americanradiohistory.com
UNUSUAL TECHNIQUES IN SOUND RECORDING

By
RICHARD H. DORF

Recording room is in two parts separated by glass so that at least two operations can be carried on at once without having conflicting speakers going. All amplifying equipment is in 6-foot racks for maximum flexibility. Any of the dubbing tables or studios can be connected to any tape or disc machine.

LIKE many RADIO-ELECTRONICS readers, I have been greatly interested in amateur sound recording for a long time. When I had an opportunity recently to spend the best part of a day at Reeves Sound Studios in New York, I expected to feel very much like a spectator on an NBC studio tour who appreciates the intricate and efficient setup but finds nothing that is likely to have any real relation to his own work.

That isn't what happened. I saw practices, tricks, and techniques, many of which you or I can duplicate. I then realized that recording can be combined with imagination and ingenuity to produce highly distinctive work, and save time and labor.

As a very simple example, the playback tables used for dubbing are started by a switch on the recorder console permitting one man to do a dub job without having to run back and forth and make long run-in grooves. And even while I was sitting there, one engineer thought of an improvement on that—a spring and solenoid arrangement that eliminates even the second or so delay while the table gets up speed!

Reeves is the largest independent sound recording installation on the Eastern seaboard. Occupying a five-story building, it not only does straight sound recording, but has a big hand in producing sound tracks for motion pictures—television commercials and shorts, government training and information films, almost every conceivable type of movie except regular Hollywood features.

Today over half of the studio's activity is film work, but making discs of all kinds is a very important part of each day's work. The disc recording room (see photos) is a separate entity to which programs are fed from any of the five separate studios in the building. Here are located two tape recorders, four disc recorders, four playback tables, three 6-foot racks full of amplifying, switching, and control equipment, and miscellaneous other devices.

Why tape?
This month's cover is filled mainly with a tape recorder (we'll consider the young lady operator merely as a control device, if you don't mind) and you may wonder what a tape recorder has to do with a disc story. The answer is one reason for the musical perfection of many long-playing records.

No orchestra, quartet, or pianist ever had the good luck to turn in a full 40- or 50-minute performance with every note just the way it ought to be. The first ten minutes may be perfect, but one player may "hit a clinker" in the middle of the 33 1/3rd bar and the tempo may be off just a shade at the start of the second movement. During a concert-hall performance, these things are quickly forgotten if the work as a whole is good. But a recording will be played back time and time again—and the "clinker" gets worse every time! In the "old days" a bad note during the recording meant doing over again at least one side of a disc, and the work had to be done in segments of no less than about 3 or 4 minutes—the time recorded on one side of a disc.

Then the tape recorder bowed in. The performance is recorded on tape, not on discs. If the conductor doesn't like the way things are going, he stops the orchestra and starts again a couple of bars before the unsatisfactory point. If he isn't sure, he stops and listens to the tape, then makes up his mind. (You can't listen to a disc, then use it as a master for pressing.) Or he may repeat a portion of the music at slightly different tempo, then decide later which is preferable.

The whole performance may be recorded in bits and pieces and not necessarily in the correct sequence. Just as long as all the music gets on the tape somehow and as long as each part has been given a good performance at least once, the job is done. (Con't on p. 62)
Order your EICO Test Instrument Kits NOW from ALLIED

SAVE UP TO 50% by building your own precision laboratory test instruments!
Easiest to build in one evening—They last a lifetime

SIGNAL GENERATOR
Model No. 320-K. An invaluable test unit for service, laboratory and school use. Highly stable Hartley oscillator has range of 150 kc or 102 mc with fundamentals to 34 mc. Ideal for quick alignment of FM-AM receivers; provides TV marker frequencies. Also supplies 400-cycle audio output from a Colpitts oscillator. Audio oscillator voltage can be used for testing distortion in audio equipment. Bridge measurements, etc. Complete with tubes, portable case, etched panel, all parts, knobs, wire, shielded cable, instructions, diagrams, and operating manual. Size: 10 x 8 x 4 3/4". For 110-120 volts, 60 cycle AC. Shpg. wt., 10 lbs.
83-154. Only $19.95

VACUUM TUBE VOLTMETER
Model No. 251-K. An easy-to-build, sensitive VTVM for making measurements in high-resistance circuits. 15 different ranges, with DC input resistance of 25 megohms. 4 1/2" meter in protected against burnout. Includes zero center for alignment of FM and TV discriminators. Double-triode balanced bridge circuit assures top stability. Ranges: AC-DC volts, 0.5-1-10-100-500-1000; resistance, 0-1000 ohms and 0-1-10-100-1000 megohms. With tubes, all parts, portable case, etched panel, wire, instructions, diagrams and operating manual. Size: 6 x 9 1/2 x 5 1/2". For 110-120 volts, 60 cycle AC. Shpg. wt., 10 lbs.
83-152. Only $23.95

NEW 5-INCH OSCILLOSCOPE
Model No. 451-K. A sensational scope with all new features at amazing low price! With Push-Pull deflection! A precision instrument for TV, FM and AM alignment. Extra sensitive: 0.5 to 10 volts per inch. Wide range, flat from 5 cps to 1000 kc, useful to 20 mc. Wide range sweep circuit from 15 cps to 75,000 cps. Direct connection to plates of CI tube available at rear of cabinet. Complete with tubes (3-6SN7, 2-6J5, 5H11, 2-5Y3 rect.), portable case, etched panel, all parts and knobs, wire, instructions, diagrams and operating manual. Size: 6 1/4" x 13 1/2" x 17" deep. For 110-120 volts, 60 cycle AC, Shpg. wt., 30 lbs.
83-155. Only $39.95

VOLT-OMH-MILLIAMMETER
Model No. 313-K. A pocket-size reliable VTVM, 15 meter, Germanium crystal for AC. Ranges: DC v., 0.5-5-50-500-2500; AC and output v., 0-1-10-100-500-1000; DC current, 0-1-10-100 ma, 0.1-10 amps; res., 0-500-100,000 ohms, 1-10,000. Complete kit, ready to assemble. Shpg. wt., 33 lbs.
83-153. Only $14.95

SWEET SIGNAL GENERATOR
Model No. 360-K. For visual alignment of TV and FM frequencies between 500 kc and 228 mc. For use with any scope. Sweep width variable from 0.33 to 900 kc. Crystal marker with variable amplitude, Provision for injection of external marker. Phasing control. Vernier dial calibrated in frequencies. Complete with tubes (2-6C4, 1-12A7, 6X4, 6K6, 6SN7), all parts, shielded cable, portable case, panel, wire, instructions and operating manual. Crystal size: 9 x 8 x 3/8". For 110-120 volts, 60 cycle AC, Shpg. wt., 12 lbs.
83-159. Only $29.95

FREE SEND FOR YOUR 196-PAGE 1950 ALLIED CATALOG
Radio's Leading Buying Guide

Get the only complete Radio Buying Guide in the field—the one book that fills all of your Radio, Television and Electronic supply needs at lowest money-saving prices—speedy, easy shipment, personal attention, complete satisfaction on every order. Get your FREE ALLIED Catalog today!

ALLIED RADIO EQUIPMENT CORP., Dept. 2-EE-6
833 W. Jackson Blvd., Chicago 7, Illinois

ALLIED RADIO
Shipping rate

Enclosed $...

• Full Payment

• Part Payment (Balance C.O.D.)

• Send FREE 196-Page ALLIED Catalog

Name...

Address...

City...

Zone...

State...
The Fairchild tape recorder produces higher-quality sound than most of the best disc recorders. Amplifiers and relays are housed in the console cabinet. The recorder plays for one hour. Reeves engineers use plastic tape because its thickness is more uniform than that of paper tape. Speed is 30 inches a second.

Then the conductor gets together with the engineers. They listen to the tape with a score in one hand and a pair of scissors in the other. They clip out the best performances of each part of the music—a few bars here, perhaps a single high trumpet note there. Then they splice it all together and throw away the second-rate bits. The result is a complete performance, each note of which is played at its best. The last step is to dub the tape to an LP master. Mercury records are made this way at Reeves and you can hear the result yourself if you happen to own a Mercury LP—one that was made here, not dubbed from European masters. RCA (and probably others) uses tape for its classical master records.

One disadvantage is inherent in LP records—the sound level fed to the cutter must be lower than with standard records to avoid overcutting (having the stylus cut through into adjacent grooves during loud passages). Another disadvantage common to all discs is reduced range between the loudest and softest sounds that can be recorded—for the same reason, even with standard groove spacings.

Bob Fine's invention of the margin control technique has almost completely cured these troubles. It's very close to one of those why-didn't-I-think-of-it-myself ideas. The only time overcutting is a danger is during loud passages, and then only because the adjacent groove is so close.

The answer is to make the next groove not so close! So the control engineer varies the pitch—the number of grooves per inch—during the recording, rather than the sound level. In soft passages, the grooves are made very close together to get the maximum playing time. Just before a loud passage, the distance is increased to allow for greater stylus pressure. The total pitch range is from about 150 to 200 grooves per inch for very soft music to approximately 160 lines for the loudest parts of the music.

The depth of the cut also must be varied so that on the loud passages, when the groove swings are wider, the playback stylus will not jump out. The engineer does this with a knob, not by manually adjusting the cutter. The depth control device is still in the developmental stage and details are not available.

The drawings show in a simple way how the pitch of the Fairchild recorder, which Reeves uses, can be varied continuously without changing the lead screw or any pulleys. A flat disc is driven by the motor. Between it and the sleeves fastened rigidly to the right end of the feed screw is a ball bearing which contacts both disc and sleeve. When the disc rotates, the motion is transmitted through the ball to the sleeve, which then rotates axially, carrying the feed screw, which is fixed to the sleeve, with it.

By simple mechanical law, the speed of the feed screw depends on the position of the ball. The direction in which the feed screw rotates depends on whether the ball is to right or left of the center of the disc.

The top-view drawing shows how the position of the ball is controlled. The ball is enclosed in a metal frame (without top or bottom, of course). The frame is moved right and left by a knob, taking the ball with it. A vertical metal plate under the knob is calibrated in lines per inch with separate
scales at right and left for outside-in and inside-out.

Interestingly, this scheme was devised long before microgroove records were on the market. It just happened to be adaptable to making LP’s, the only change necessary being the addition of calibration marks on the metal plate. The possible pitch variation is from 80 to a theoretical infinity. Actual records have been made at pitches as high as 500 lines.

The volume of work at the studios surprised me. The recording room is in business approximately 90 hours a week making discs for Mercury and other independent companies; radio commercials (including jingles, of course); sound effects for radio programs; frequency test records; and programs for the Department of State and other independent producers.

One of the most interesting and unusual discs was made on special order for an ingenious householder who wanted a burglar alarm. The burglar’s entrance turns on a record player which sends the sound of a barking dog to a loudspeaker, then generates a subaudible tone which operates a relay to turn on the lights.

Many recorded slide lectures are made, with an 8-ke tone on the disc to trigger the slide projector automatically at the proper places.

A three-speed dub

Children like stories with elves or fairies, and Golden records try to satisfy them. But the tiny elfin voice is too high for any human to produce. Here’s how Reeves did it.

The orchestra was recorded at 78 r.p.m. It was played back at 33 1/3 r.p.m. and the voice sang with the playback. This combination was fed to a recorder at 33 1/3 r.p.m. When the result was played back at 78 onto the final master, the orchestra was returned to its original pitch, but the voice pitch was made much higher—and sounded just like the elf the children want. In another, similar record, two elfin voices were wanted, and their pitches had to be different so they couldn’t be told apart. That was done by using 33 1/3 for one voice and 45 r.p.m. for the other.

At the moment, Reeves is the only studio other than RCA making 45-r.p.m. masters. To get the new speed, they change the power-supply frequency from 60 to 81,008 cycles and of the piece on each instrument. Then the four strips of tape were spliced together and played back. The change of instruments took place, not in musical pauses, but right in the middle of the selection—when the music was going fast. But so perfect was the cutting and splicing job that there was not the slightest falter in tempo when the instruments changed. If Bob Fine, Reeves’ chief engineer and inventor of most of the special techniques and gadgets, had not given me his word that it was a splice job, I would have absolutely sure that four different players had made the recording at the same time.

The Fairchild disc recorders have a frequency response of ±2 db to 8 kc, but they are cut off at around 6 kc when making LP’s. Fine says the usual playback stylus simply will not track anything higher than that, especially toward the inner diameter of a fine-groove disc, and he can see no reason why higher frequencies should be put on the record at all. According to him, “psychological” wide range is much more important than that which the meter says. If the recording is made in a suitably reverberant studio or hall, if the microphone placements are correct, if there is little harmonic or inter-modulation distortion and record noise, the ear thinks the recording is beautiful.

How pitch is varied continuously in the Fairchild disc recorder. Precision ball couples rotary disc driven by motor to feed screw sleeve. Position of ball determines pitch and direction. The knob and cage move ball to the right or left.

Please send me further information about your TV antennas and accessories.

Audio

Instant change-over

TO EACH ANTENNA

Vee-D-X

ANTENNA SWITCH

$4.95 list

Separate lead-ins on multiple antennas are no problem with the new Vee-D-X antenna switch. Just turn the knob, and you can change over instantaneously from one antenna to another. Eliminates the fuss and bother of changing transmission lines every time a different antenna is used. Very useful for TV Dealers when demonstrating more than one receiver from a single antenna.

Here are the features that make the Vee-D-X Antenna Switch the finest available:

• Specially designed switch prevents leakage.
• Furnished in attractive ivory plastic case with satin finished aluminum face.
• Terminal strip accommodates three separate lead-ins as well as output line to receiver.
• Easy to install.
• Lead-ins attach to rear and are hidden from view.

Vee-D-X means video distance

LA POINTE-PLASCOMOLD CORP., 1 Unionville, Conn.

MAY, 1950

www.americanradiohistory.com
Jobbers: Write for Confidential Price Information

NEW
TELEKITS

NOW $49.95

Sparkling new Telekit 12-B has 90-inch screen. Brand new compact layout has video tube mounted on chassis. Big illustrated easy-to-follow instruction book guides you step by step through easy assembly. No special knowledge of television is required. All you need is a soldering iron, pliers, and screwdriver. 12-B kit can be used with 16 inch tubes. Telekit cabinets $24.50 to $35.00. Satisfactory Telekit performance guaranteed by Factory Service Plan. 12-B Telekit (90 inch screen) $79.50, 16-B Telekit (16 inch screen) $69.95. 8-B Telekit (18 inch screen) $54.95, 7-B Telekit (25 inch screen) $49.95. Write for catalog listing Telekits and TV accessories.

Even outside the studio, with portable equipment, standards must be kept high.

Recording For Profit

by FRANK E. FLEMING

RECORDING studios today are in the position photographic studios found themselves when the camera first became practical in the hands of the layman. With the advent of successful home recorders, recording studios are competing with amateurs. Does that mean recording will be confined to a half-hearted sideline in the hands of radio stores? We think not. It does mean that recording studios, like photographic studios, must be able to turn out a better job than the amateur. Some recording studios are doing a professional job; many more could, following certain principles of operation.

As we see it, three requisites are demanded: service, a good-looking product, and a good-sounding product. The word “service” covers the entire job. It refers to the friendly approach, the effort to put the client at ease, care in musical balance, care in adjustment of the recorder, care in making the record, and a frank warning of the limitations of acetate recordings. These are important ingredients of a successful recording business.

We make a practice, when arranging recording appointments, to advise the client that the job will take considerably longer than actual cutting time of the record; we ask him to time his material carefully. If, as sometimes happens, the recording runs overtime and must be stopped before completion, the onus is on the customer.

We also find out what type of machine the record will be played on. If it is to be used on an old-fashioned acoustic machine with heavy tone arm (there are still considerable numbers in use),
we frankly advise against making a record. Only dissatisfaction will result from playing an acetate disc on such a machine, and the customer will feel cheated. Oddly enough, most such people if forewarned, will find a friend with a modern record player, and will make the record anyway. Whatever the outcome, we have kept our reputation intact.

We have already warned our client that the job will take more time than the actual cutting; so we do not have to worry about taking up his time. On the contrary, he is usually pleased at the importance we place on making his record. The extra time is consumed mainly in achieving a correct microphone placement. In speech recording the matter is comparatively simple; in vocal or instrumental work the job can become complicated.

Microphone placement

Even the balance between a single voice and piano requires care, and experimenting with microphone position will pay off. To some extent, balance is a matter of personal preference, but it depends also on the type of voice. Fairly heavy accompaniment can often cover vocal flaws without actually obscuring the voice. It is not advisable to ask either vocalist or pianist to perform more loudly or more softly than they do normally. The more comfortably the artists can perform, the better the results.

This rule does not necessarily apply to piano solos, where the damper ("loud") pedal should be used more sparingly than in ordinary circumstances. If the player finds the "pedal habit" hard to break, however, it is not wise to press the point. In a piano solo, microphone placement can make a tremendous difference to the results. We have found that, in many rooms improperly treated acoustically, a microphone on a desk stand, placed on the floor as in Fig. 1, gives best results. In any case, only experimentation will determine best placement.

Vocal quartets can be exasperating. If voices blend and balance properly to begin with, a microphone placed a few feet in front of them will usually do the job. If some voices predominate, special mike positioning will be necessary. Having achieved correct balance, you may find it disappears in the next line of the song. Nothing can be done, because the singers themselves cannot keep their voices balanced. If critical remarks are passed when the record is played back, it is well to point out the spots where balance is off, and indicate diplomatically that the fault lies, not in the recording, but in the quartet.

Obtaining correct balance on an orchestra is often more difficult, but worth the taking of infinitely greater pains. If each member of the orchestra can hear his own instrument on the finished record, chances are he will have a duplicate made for himself. If recording from a band-shell, with little opportunity for rearranging instruments, a great deal of ingenuity may be
PREMIUM QUALITY at NO EXTRA COST

Sprague Telecap* Tubulars are superior to every other molded paper capacitor because they are made by the same dry assembly process as large metal-encased oil capacitors. They cannot be contaminated by dust or moisture during manufacture.

Every Sprague Telecap, from 600 to 12,500 volts, is molded dry...then mineral-oil impregnated under high vacuum through a small opening...and the terminal solder-sealed after the lead is inserted.

Result? Top resistance to heat and moisture...extra high insulation resistance...superior capacitance stability...and a capacitor that is preferred by the nation's leading television manufacturers.

Ask for Telecaps at your jobber's. Or write for bulletin covering details and specifications.

TELECAP* TUBULARS

Hollow eyelet terminal for oil impregnation after molding

Non-flammable, dense bakelite phenolic-molded housing

Uniform windings of high purity paper and aluminum foil

Solder seal as in large metal-encased oil capacitors

required to effect a good balance. A highly directional microphone will help. Most dance bands may be divided into three sections: rhythm, brass, and woodwinds. In the rhythm section the average band will have piano, drums, and string bass; in the brass section, several trumpets and a trombone; in the woodwind section, perhaps three saxophones, some players doubling on clarinet. The usual arrangement finds the brass at the back of the stand, with wood winds in the front line. The rhythm section is often subject to wide variations in position, and usually presents the greatest pickup problem. One reason is that the instruments differ widely in the amount of sound each produces: piano, medium to loud volume; string bass, low volume; and drums, high volume.

As a start, the microphone may be placed in front of the band, probably toward the end where the piano is located, and facing more or less laterally across the front of the orchestra as in Fig. 2-a. The string bass may be required to move closer to the mike; but if the bass player is moved too far from the piano, you are looking for trouble, because he depends on the piano, which sets and sustains tempo for the entire band.

No hard or fast rules on the subject can be laid down; each band and each hall presents its own peculiar problems. But do not let the band leader dictate the microphone placement. One once gave us a very questioning look when we placed a cardioid mike right between two men in the front line and faced it to the ceiling as in Fig. 2-b. The pickup must have been satisfactory, because everybody in the band bought a copy of the completed record!

We are assuming a one-mike pickup in the foregoing discussions; we are not in favor of multimike pickups. They tend to destroy the illusion of perspective or depth, besides presenting

(Continued on page 68)

SPRAGUE PRODUCTS COMPANY

RADIO-ELECTRONICS for
SENSATIONAL NEW

EICO Model 360-K TV-FM SWEEP SIGNAL GENERATOR

- Crystal marker oscillator with variable amplitude.
- Covers all TV and FM alignment frequencies between 500 kc. and 228 m.c. at switchable audio frequency.
- Extremely wide sweepwidth allows quick comparison of adjacent TV channels.
- Provides for injection of external signal generator marker.
- Phasing control included.
- Large, easy-to-read dial is directly calibrated in frequencies. Vernier Tuning variable from 0-30 kHz.
- Complete silkscreened calibration panel. A circuit diagram for your EICO Kit will be included.

FACTORY WOUND AND TESTED

Model 360. Ready to use. Screenshot calculator. See it at your local jobber! $39.95

NEW PUSH-PULL 5" TV OSCILLOSCOPE

Model 425-K Kit

All-new, fully wired oscilloscope makes Push-Pull definition and .05 to 1.0 volt per inch sensitivity. Wide-range, flat from 0 to 100 mc. with full gain setting, useful to 35 mc.

Wide-range, wide-sweep, high-sensitivity, sweep circuit from 10 mc. to 15,000 cps. Direct connection to source of CRT available at rear of cabinet. 2 zone versatility.

FACTORY-BUILT OSCILLOSCOPE

Model 425. Fully wired and tested $69.95

DELUXE SIGNAL GENERATOR

MODEL 315

Completely wired, ready-to-use signal generator with 1% accuracy. A wonderful instrument for dozens of expensive frequency ranges: 75 kc to 150 mc., plus monopole hand-held probe for FM, AM, and TV. Volume regulation. Write for full details.

$59.95

NEW! MODEL 320-K SIGNAL GENERATOR

For FM, AM alignment and to now TV marker frequencies. Has 18 sets to 500 mc. with full gain setting, useful to 205 mc.

Highly sensitive, wide-range, multi-oscillator, sweep circuit from 10 mc. to 15,000 cps. Direct connection to source of CRT available at rear of cabinet.

MODEL 320. Ready to use... $29.95

HIGH FREQUENCY RF PROBE

Model HVP-1

Complete high-voltage probe. Measures up to 40,000 Volts. Excellent, high-bandwidth eventueal 1000 volts per volt meter with 1000 or 3000 volt scales. Mounted head, pushable knob, handle, large flashlight (for additional safety). Specifity instrument, complete, ready to use...

$6.95

VERSATILE MULTI-SIGNAL TRACER

Model 145-K. High gain—low frequency. Self-contained test tube remote control. Includes signal tracing of IF, HF, FM, audio and video circuits. Provision for visual testing with VTVs. Complete with 2 top-shelf 1.910 mc. color hammerhead panel. 110-125 volts, A.C. Size: 15"x8"x4.5". Comes complete with tube and probe in kit form...

FACTORY-WOUND AND TESTED

Model 145. Ready to operate... $28.95

HIGH VOLTAGE PROBE

Complete high-voltage probe. Measures up to 40,000 Volts. Excellent, high-bandwidth eventueal 1000 volts per volt meter with 1000 or 3000 volt scales. Mounted head, pushable knob, handle, large flashlight (for additional safety). Specifity instrument, complete, ready to use...

$6.95

EASY-TO-FOLLOW SCHEMATIC & PICTORIAL DIAGRAMS

Come complete with every EICO item purchased. A complete, easy-to-follow schematic and diagram. It is operated, perfectly includes all essential information on your circuit.

EXCLUSIVE LIFETIME REPAIR SERVICE

For 360 days, if defective, we will repair and return your EICO instrument, regardless of its age.

Ask your local Jobber

About EICO's New Tube Tester Kit Model 425-K..."the most versatile tube tester ever designed.

Prices Higer on West Coast

TEICO INSTRUMENT CO., INC.

276 Newport Street, Brooklyn 12, N.Y.
Fig. 3—Reducing amplifier gain before peaks instead of on them preserves the difference between maximum and minimum levels and the original dynamic range.

In the coating can ruin a sapphire stylus. Moreover, the type of coating determines whether the record will have a long or a short life. Our own sad experiences with various brands makes us shy away from those which produce a "gooey" thread—the kind that rolls up into a soggy mass. The playing life of such discs is short; they lack brilliance, may produce "echo", and become noisy rapidly.

Having made the test cut, we play it back to our clients. If the balance suits them, we go ahead; if not, we change the microphone placement, and make a further test cut to check the new balance.

In the actual making of the record, control of volume is more important than is sometimes realized. Wide dynamic range (variation in loudness which contributes to musical expression) is desirable from a standpoint of realism, but must be sacrificed to some extent so quiet passages are not lost in a little scratch. A properly cut acetate recording is practically noiseless when new, but successive playings usually add more surface noise than to a commercial pressing. By compressing the dynamic range—increasing volume of soft passages and decreasing volume of loud passages—you can add many playings to the useful life of the record. But it requires considerable skill in handling the volume control. The main trick to be acquired is anticipating volume peaks, and reducing gain just after the peaks occur. This not only makes for unnoticeable volume changes, but also preserves the illusion of greater dynamic range. The method is illustrated in Fig. 3.

We make a standard practice of cutting "flat" and playing back the same way. Then we play the record (or part of it) back again with tone compensation set to bass (really attenuating the treble), explaining that is the quality most record players deliver. Many people prefer it to the "harsh" reality of flat reproduction. We tone-control the first playback on a certain type of singer whose voice has a natural "harmonic distortion" in it. This distortion, coupled with even a slight amount of harmonic distortion in the recorder, is not pleasing—though quite realistic. In this case, a reduction in the treble response will make the client much more pleased with the results.

After the playback is the time to ask if your client wishes duplicates. Explain that duplicates are best made before the record has had many playings. Be prepared to cut the duplicates then and there, if at all possible. We have found and duplicated "shadowgraphed" playback needle. If you have a top-quality playback unit, you can make duplicates that cannot be told from the original by the average listener.

The final step is an important one: neatly typing the title onto your own printed label, and affixing it on with rubber cement. It's your advertising—so don't use the standard label supplied on the record blank. Our own label appears on all our records.

When we had our labels made up, we purposely omitted any dotted lines such as "Title......", "Date......" etc., which gives the label a "filled-in" appearance. The top half is devoted to the printed name of the studio; the bottom half is left blank, for typing in the details—title of selection, artist, and so on. As we cut all personal recordings outside-in, no special instructions are necessary. (Outside-in cutting gives the record a more professional quality, as it duplicates standard pressings.)

Finally we provide with each record a mimeographed sheet of suggestions outlining proper care and handling. At one corner we affix a "shadowgraphed" playback needle. The instruction sheet proves valuable in forestalling trouble: if a record is damaged by a customer, he can't say he hasn't been warned!

If our repeat recording business is any criterion, striving for perfection pays off!
HUM REDUCTION

Hum can be reduced at the output of R-C filters simply by connecting a resistor R between the rectifier cathode and the output of the filter, as shown in the diagrams. R should equal approximately 10 times the total resistance in the filter.

![Diagram of R-C filter with resistor R](image)

When R-C filters are used in B-supplies, the ripple voltage across the output capacitor is out of phase with the ripple voltage at the cathode of the rectifier. Resistor R delivers to the output capacitor ripple voltage which bucks out some of the ripple which passes through the filter. The combination of ripple voltages being less than the ripple voltage without R, the hum level is reduced.

A variable resistor may be used to find the best value for R. Adjust it to the point of least hum, measure it with an ohmmeter and replace with a fixed resistor.—Leon Medlen

$1,200.00 PRIZE CONTEST
RADIO-ELECTRONICS IN THE HOME

Midnight of June 1, Eastern Standard Time marks the closing of the third month's Radio-Electronics in the Home contest. Entries for the June contest must be postmarked before this date. The closing date for the May contest is midnight, May 1.

FIRST PRIZE \$50
SECOND PRIZE \$25
THIRD PRIZE \$15
FOURTH PRIZE \$10

Monthly prizes totaling \$100 are given for the best ideas on applications of radio-electronics in the home.

Prizes will be awarded in accordance with novelty, general importance of the application or device, smallness of cost involved in building it, and practicability.

Any ideas may be submitted. Highest prizes will be awarded to contestants who have actually built the device and submitted photographs to prove it. Lesser prizes will be given for "ideas" and entries not accompanied by photographs.

For complete details and rules of the contest see page 35 of Radio-Electronics for March.

New SUPREME 1950 TV Manual

DATA ON ALL POPULAR TV SETS

In this new giant volume of 1950 television factory data, you have everything you need to repair every present-day television set. You receive easy-to-understand explanations of circuits, 144 pages of alignment procedure, test patterns, response curves, waveforms, voltage charts, adjustment hints, and diagrams on mammoth 11 x 15-inch blueprints. This newly published 1950 TV manual is a virtual treatise on practical television repairs. By normal standards, such a large manual packed as it is with practical facts, hundreds of illustrations, diagrams, charts, photographs, and expensive extra-large blueprints, should sell for $10—but as another SUPREME special value, it is priced to servicemen at only $3, postpaid. Only a publisher who sold over one million TV and radio manuals can offer such bargain prices based on tremendous volume-sales.

Compiled by M. S. Beiman, radio engineer, teacher, author, and servicer.

Amazing Bargain in TV Manuals

For 17 years, radio servicemen received remarkable values in SUPREME PUBLICATIONS service manuals. The television series is the most amazing bargain and defies competition. There is nothing else like it. The new 1950 TV manual is described at left. Above are illustrated the earlier volumes covering 1945, 1946, and 1947 TV and F.M. In 1948, those manuals were simply job manuals to repair any television set. Yes, these manuals will tell you where to look and what to do. Stop guessing. Cut hour-wasting jobs to pleasant moments. Use any of these manuals without risk for 10 days. Just send coupon below.

Supreme Publications

Sold by all Leading Radio Jobbers

MAY, 1950

www.americanradiohistory.com
Amazing new IRC Concentrikit is the practical answer to your concentric dual replacement problems. With this set of specially designed parts you can assemble over 90% of all concentric dual types... no more long searches and waits for exact duplicates. You save time, worry and inventory investment.

YOU'LL BUILD CONCENTRIC DUALS QUICKLY AND EASILY WITH CONCENTRIKIT. Assembly is simple, and can be completed in a few minutes. Step-by-step instructions are furnished with every kit.

REPLACEMENT MANUAL AVAILABLE
Full replacement data on concentrics for all applications, from the earliest home and auto radios to television, are contained in a new IRC CONCENTRIC DUAL REPLACEMENT MANUAL. Be sure to get a copy from your IRC Distributor.
Here's what you get

In Concentrikit Stock Assortment #13

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete Concentrikits</td>
</tr>
<tr>
<td></td>
<td>Base Elements</td>
</tr>
<tr>
<td></td>
<td>B11-108</td>
</tr>
<tr>
<td></td>
<td>B11-114</td>
</tr>
<tr>
<td></td>
<td>B11-115</td>
</tr>
<tr>
<td></td>
<td>B11-116</td>
</tr>
<tr>
<td></td>
<td>B11-119</td>
</tr>
<tr>
<td></td>
<td>B11-120</td>
</tr>
<tr>
<td></td>
<td>B11-121</td>
</tr>
<tr>
<td></td>
<td>B11-123</td>
</tr>
<tr>
<td></td>
<td>B11-128</td>
</tr>
<tr>
<td></td>
<td>B11-130</td>
</tr>
<tr>
<td></td>
<td>B13-130</td>
</tr>
<tr>
<td></td>
<td>B13-130X</td>
</tr>
<tr>
<td></td>
<td>B18-130X</td>
</tr>
<tr>
<td></td>
<td>B13-137</td>
</tr>
<tr>
<td></td>
<td>B13-137X</td>
</tr>
<tr>
<td></td>
<td>B19-137X</td>
</tr>
<tr>
<td></td>
<td>B11-139</td>
</tr>
<tr>
<td></td>
<td>Inner Shaft Ends</td>
</tr>
<tr>
<td></td>
<td>E-187</td>
</tr>
<tr>
<td></td>
<td>E-190</td>
</tr>
<tr>
<td></td>
<td>E-202</td>
</tr>
<tr>
<td></td>
<td>Sleeve Bushings</td>
</tr>
<tr>
<td></td>
<td>S-4</td>
</tr>
<tr>
<td></td>
<td>S-5</td>
</tr>
<tr>
<td></td>
<td>Resilient Retainer</td>
</tr>
<tr>
<td></td>
<td>Switches</td>
</tr>
<tr>
<td></td>
<td>76-1</td>
</tr>
</tbody>
</table>

Television has greatly increased your concentric dual requirements... be ready with this CONCENTRIKIT Stock Assortment on your bench. Handsome metal cabinet contains all you need to assemble quickly any of 144 different concentric duals. It covers over 500 models... RCA, Admiral, Air King, Belmont, Emerson, General Electric, Motorola, Philco, Westinghouse, Zenith and many others. Order from your IRC Distributor now, or send coupon for more information. International Resistance Company, 401 N. Broad St., Philadelphia 8, Pa.
This 4-tube receiver has high performance. Note feedback loop around i.f. can.

A High Performance Short-wave Midget

By HOMER L. DAVIDSON

This little 4-tube shortwave receiver has the performance of a six-tube superhet. The mixer and oscillator tube is a high-frequency 12AT7 duo-triode. Half of the triode is used as a mixer connecting through a mica trimmer capacitor to the antenna, and is cathode-biased. The other half is an oscillator tube with a cathode-tapped oscillator coil. This tube is mounted on top of the chassis, between panel and i.f. can, with its tip pointing outward) to make connections to the coil short.

The coils are wound with No. 28 enameled wire, as shown in the table, on 1-inch bakelite or fiber tubing 4

Schematic. Note that C2 and C3 are connected to negative bus, not to chassis.
DETROLA TABLE MODEL RADIO KIT FORM:
BEAUTIFUL BROWN AND CREAM PLASTIC CABINET
COMPLETE WITH 5 TUBES AND ALL PARTS, INCLUDING DIAGRAMS

ALL-PURPOSE CHASSIS
Contains 3 plugs, 2 vol. controls, 1 25 wt. resistor 2600 ohms, 250,000 ohms 10 wt. resistors, 12,500 ohms, 10 wt. resistors, 3 1/2 mfd, 5 bathtub condensers 600V, 3 sockets, 4 shock mounts and many other parts in a blank top chassis.

Selsyn Motors
TWO FOR $3.95
The ideal way of indicating the position of Rotary beams, wind indicator, etc. Line cord and instructions for 110 AC operation furnished on request.

STANDARD BRAND CONDENSER
.1 MFD 7000 VOLTS
$1.95

INDUSTRIAL PAPER OIL CAPACITORS
1. MFD 5000 V. $2.95
2. MFD 6000 V. $4.95
3. MFD 6000 V. $8.95

BANK-CLIMB GYRO CONTROL
For Mark 4 automatic pilot
$4.95

DIRECTIONAL GYRO
M-1
A-8 Automatic pilot Mfd. by A. C. Spark Plug under license of Sperry Gyroscope Co., Inc.
$9.95

HERSHEL RADIO CO
DEPT. RE. 4
5249 GRAND RIVER
DETROIT 8, MICHIGAN

Write for Free Catalogue
All orders F.O.S. Detroit—Minimum order $2.00—Michigan customers 300 3% L.I.E.R. 33—20% payment must accompany all orders.

MAY, 1950
A HIGH PERFORMANCE SHORT WAVE MIDGET

(Continued from page 72)

inches long. The three oscillator coils are wound on one tube. The r.f.
coils are wound on the other. These
tapped coils are soldered directly to the
three-pole, three-position switch before
mounting. The coils are wound to
1/4-inch, except the 80-meter r.f. coil
which extends to 1 inch.

To get the coils to cover the bands completely, it may be necessary to add
a few turns or to spread or close the
turns of wire on the oscillator coils.
These coils are vertically mounted be-
 tween the horizontal 12AT7 and first
i.f. can.

The 455-ke intermediate-frequency
stage uses a 12BA6 amplifier tube with
cathode bias. In this circuit, feedback
is used to increase sensitivity. Sur-
prising results are obtained by con-
necting a wire to the grid of the 12BA6
and wrapping it around the first i.f.
can. There are many ways of getting
feedback, but this method seemed to
fit this receiver best. On 20 meters, the
gain is most notable—twice that of the
signal without feedback. Only two
turns of insulated wire are needed
around the first i.f. can to increase the
gain tremendously. The 20-meter hams
burst through from Maine, California,
and the Florida coast at loud speaker
volume.

An r.f. gain control is placed in the
screen circuit of the 12BA6 i.f. stage.
This control is a 100,000-ohm carbon
potentiometer to vary the screen vol-
tage on the 12BA6. The gain control
works best in this receiver at about
three-quarters maximum setting.

The second detector is a cathode-
biased 12AT6 miniature audio tube. This
tube seems to function best with a
5,700-ohm cathode resistor and a
50-µf, 50-volt electrolytic capacitor in
the cathode circuit. Higher values may
be tried. The two i.f.’s are identical
input type 455 kc i.f. transformers.

A 500,000-ohm volume control varies
the audio signal to the 50L6-GT
power amplifier tube. It also can be
switched to a pair of headphones
as well. A d.p.d.t. switch is mounted
on the front panel for this purpose.
Believe it or not, but the volume must
be lowered on all three bands when
using the FM speaker. The volume con-
trol is almost in the off position when
using headphones.

A 75-ma selenium rectifier is em-
ployed, with a standard filter system.

With speaker operation, the 60-cycle
a.c. hum is nil and on headphone opera-
tion can be heard only on the 20-meter
band.

All the miniature tubes are wired in
an a.c.-d.c. circuit and are in series.
The 50L6-GT filament is at ground po-
tential. It has been noted that the
12AT7 lights up brightly at first, but
no ill effects have resulted as yet.

The chassis layout is shown in the
photographs. Both chassis and panel
are aluminum. The front panel was
painted with two coats of crackle-finish
paint, gray and green. You will notice

The set has adequate power to drive the 5-inch speaker shown on the left.

www.americanradiohistory.com
RC-213 ANTENNA EQUIPMENT

This equipment operates in the spectrum of 100-156 Mc, by use of three sets of dipole antennas. You can operate with either one. The antenna is continuously rotatable with 18' mast, mounted on ball bearing hub with set screw. Each antenna, tuning unit for matching, handwheel for rotating, and coaxial connection to connect to your BC-146 or BC-156 line. All rustproof brass and aluminum components except cones and bearings. This unit originally packed in 3 boxes. Shipping weight approx. 600 lbs. Close out price $89.50

BC-406 RECEIVER, New, with tubes...$17.50 ea.

CR TUBES, NEW, GUARANTEED

S-50...$3.50
S-75...$3.25
S-95...$3.75

STANDARD MAKE MODEL H 25 watt RHEOSTAT, 150 ohm, 35¢ each

$1.75 MARKER BEACON

We have a pile of these to move and need your help to move them. They are made for the 12 volt battery, use the 25 volt supply to provide indicator and alarm functions, and approach markers at 75 Mc, modulated at 3000. 1300-1800 volts. Reception of any of these modulated frequencies to operate at 1 of 3 voltages depends on the output of the receiver. We have seen some interesting things done with these such as opening and closing garage doors from the car, controlled leakproof, etc. These are sold in 3's removed surplus aircraft. Size overall 3½" x 5½" x 2½". Price per set...$1.75

HC-1033 Same as above but more sensitive type. Has more tubes...

HI-VOLTAGE INDUSTRIAL CONDENSERS

25 mfd. 20,000 V. Each, by G. E. Pyromet. Standard Make, Cornell-Dubilier of Sibley. Size effect Cornell-Dubilier B wire x 1" thick x 17" overall height. Indicator with switch. These are ideal for P.F. correction of capacitive loads or as static stores in industry. All brand new work. Condition good to excellent quality. Assorted sizes. All and except original cost...$7.45 ea.

$1.75 TU-10 B TUNING UNIT

Here's the world's smallest fixed-tuned unit with 50 separate reception bands. It is to be used with tubes. Stan said to move them, we need your help. They are made for L/C/G. Condensers as follows: 1-27 plate 20-125 mfd., 1-18 plate 15-60 mfd., 1-18 plate 3-30 mfd., 1-27 plate 100 Volt, 1000 mfd. mica, 3-RC choke; 1-9 turn inductors. The two 10 turns each...$1.75 ea. Condenser and screws per inch. Verna-tuner knobs, chart frame, etc. Can you just it...$1.75 ea.

AUCTION SALE!

The TIME: Saturday, May 13, 1950, starting at 10 AM 'til everything is sold if it takes until midnight.

WHERE: East Radio Company, 42 West South Street, Indianapolis, Indiana.

East Radio Company will sell, at public auction, new and used tubes and currently manufactured radio electronic gear at your options. This is a gigantic undertaking. Thousands and thousands of dollars worth of merchandise will be sold. We invite you to come to this sale and purchase it. The amount of merchandise is very large, and it is necessary to advertise it. The sale will be a complete sale, and we think we can sell the lot for a considerable sum. It is necessary to advertise it. The sale will be held May 13. We will have the largest auction sale that we have ever held.

Consignment of surplus gear to East Radio Company for this sale. East will sell your equipment for a 5% commission. If you have anything that is connected with radio such as transmitter, receivers, tubes, test equipment, new or used parts, condensers, speakers, amplifiers, modulators, etc., the amount of material is fixed and will not be reduced. The highest bidder will be the buyer. We will sell all that we have in stock. The sale will be held May 13 at 10 AM.

AUCTION SALE!

The TIME: Saturday, May 13, 1950, starting at 10 AM 'til everything is sold if it takes until midnight.

WHERE: East Radio Company, 42 West South Street, Indianapolis, Indiana.

East Radio Company will sell, at public auction, new and used tubes and currently manufactured radio electronic gear at your options. This is a gigantic undertaking. Thousands and thousands of dollars worth of merchandise will be sold. We invite you to come to this sale and purchase it. The amount of merchandise is very large, and it is necessary to advertise it. The sale will be a complete sale, and we think we can sell the lot for a considerable sum. It is necessary to advertise it. The sale will be held May 13. We will have the largest auction sale that we have ever held.

Consignment of surplus gear to East Radio Company for this sale. East will sell your equipment for a 5% commission. If you have anything that is connected with radio such as transmitter, receivers, tubes, test equipment, new or used parts, condensers, speakers, amplifiers, modulators, etc., the amount of material is fixed and will not be reduced. The highest bidder will be the buyer. We will sell all that we have in stock. The sale will be held May 13 at 10 AM.

AUCTION SALE!

The TIME: Saturday, May 13, 1950, starting at 10 AM 'til everything is sold if it takes until midnight.

WHERE: East Radio Company, 42 West South Street, Indianapolis, Indiana.

East Radio Company will sell, at public auction, new and used tubes and currently manufactured radio electronic gear at your options. This is a gigantic undertaking. Thousands and thousands of dollars worth of merchandise will be sold. We invite you to come to this sale and purchase it. The amount of merchandise is very large, and it is necessary to advertise it. The sale will be a complete sale, and we think we can sell the lot for a considerable sum. It is necessary to advertise it. The sale will be held May 13. We will have the largest auction sale that we have ever held.

Consignment of surplus gear to East Radio Company for this sale. East will sell your equipment for a 5% commission. If you have anything that is connected with radio such as transmitter, receivers, tubes, test equipment, new or used parts, condensers, speakers, amplifiers, modulators, etc., the amount of material is fixed and will not be reduced. The highest bidder will be the buyer. We will sell all that we have in stock. The sale will be held May 13 at 10 AM.

AUCTION SALE!

The TIME: Saturday, May 13, 1950, starting at 10 AM 'til everything is sold if it takes until midnight.

WHERE: East Radio Company, 42 West South Street, Indianapolis, Indiana.

East Radio Company will sell, at public auction, new and used tubes and currently manufactured radio electronic gear at your options. This is a gigantic undertaking. Thousands and thousands of dollars worth of merchandise will be sold. We invite you to come to this sale and purchase it. The amount of merchandise is very large, and it is necessary to advertise it. The sale will be a complete sale, and we think we can sell the lot for a considerable sum. It is necessary to advertise it. The sale will be held May 13. We will have the largest auction sale that we have ever held.

Consignment of surplus gear to East Radio Company for this sale. East will sell your equipment for a 5% commission. If you have anything that is connected with radio such as transmitter, receivers, tubes, test equipment, new or used parts, condensers, speakers, amplifiers, modulators, etc., the amount of material is fixed and will not be reduced. The highest bidder will be the buyer. We will sell all that we have in stock. The sale will be held May 13 at 10 AM.

AUCTION SALE!

The TIME: Saturday, May 13, 1950, starting at 10 AM 'til everything is sold if it takes until midnight.

WHERE: East Radio Company, 42 West South Street, Indianapolis, Indiana.

East Radio Company will sell, at public auction, new and used tubes and currently manufactured radio electronic gear at your options. This is a gigantic undertaking. Thousands and thousands of dollars worth of merchandise will be sold. We invite you to come to this sale and purchase it. The amount of merchandise is very large, and it is necessary to advertise it. The sale will be a complete sale, and we think we can sell the lot for a considerable sum. It is necessary to advertise it. The sale will be held May 13. We will have the largest auction sale that we have ever held.

Consignment of surplus gear to East Radio Company for this sale. East will sell your equipment for a 5% commission. If you have anything that is connected with radio such as transmitter, receivers, tubes, test equipment, new or used parts, condensers, speakers, amplifiers, modulators, etc., the amount of material is fixed and will not be reduced. The highest bidder will be the buyer. We will sell all that we have in stock. The sale will be held May 13 at 10 AM.
Quality Parts...

for jobs that WON'T BOUNCE BACK!

A TV customer can get mighty angry when your repair job doesn't hold up. The trouble might be a defective part—not your fault at all—but you can't explain that to him. He pays good money to have it set put into shape.

As far as he is concerned, if it breaks down again you are to blame. A satisfied customer is your most valuable business asset. Don't take a chance on losing it by using second-grade, "just-as-good" replacement parts. Use OHMITE parts—known the world over as the standard for dependability—and be sure!

Take a tip from thousands of radio servicemen and electronic engineers, who have found through experience that OHMITE can be depended upon for years of trouble-free service.

OHMITE MANUFACTURING CO.
4894 flournoy St., Chicago 44, Illinois

WRITE FOR CATALOG 21
Lists rheostats, resistors, chokes, etc.

that the front panel is 1/2-inch longer than the subchassis so the flange will cover the metal mounting cabinet. The 5-inch pin-cushion speaker is mounted separately. Also note in the rear-view photo that the band switch protrudes through the top panel of the metal cabinet. A large slow-motion dial is placed on the oscillator tuning capacitor shaft and small knobs are used on other controls. The phone jack is mounted at the bottom right-hand corner.

In wiring the receiver, all wires should be short as possible. At first, the chassis was used as common ground but results were not too good. It is better to use a common bus bar or wire running from socket to socket. This reduces distributed capacitance as well as hum in the audio sections. Be sure to twist all wires around the prongs tightly and solder them securely with rosin-core solder.

After all parts are mounted and wired, the first thing to do is to peak the i.f. cans. If you have a signal generator, set it to 455 k.c. and use a 0.05-µf paper condenser to couple the signal to grid prong No. 2 of the 12AT7. Re- mount the r.f. coil and insert a 100,000-ohm resistor in its place and then align both i.f. units. These coils are set at the factory so very little alignment is usually required. Be sure to go over both i.f. units, peaking them several times so that the first adjustment does not throw the next one off. The r.f. coil is then soldered back into place.

Turn the r.f. gain control full on and do the same with the volume control. After first testing the receiver, it is best to use the 80-meter coil. All the bands should be checked with various stations for correct frequency.

The oscillator tuning capacitor is tuned to a station and the r.f. tuning capacitor C2 is varied until the signal rolls in. On weak signals, C1 is very useful in tuning. C1 should be set so that the r.f. tuning capacitor C2 has a definite effect on signal strength. If C1 is set too tight, C2 has little influence on the tuning of the r.f. circuit. A happy medium should be sought for all three bands. In hunting for stations, tune slowly with the oscillator capacitor C3, and follow with C2. Background noise will tell you when the two circuits are tracking.

In a small set like this with no r.f. stage, it is no trouble to tune the oscillator and mixer capacitors separately, and eliminating the ganged capacitor also eliminates the tracking problem on the three bands.

Materials for Receiver

Capacitors: 1-50, 1-100 µf ceramic; 1-0.02 µf; 1-200 µf; 1-400 µf; 1-1000 µf; 1-50 pf, 50 volts, electrolytic; 1-40, 2-25, 5-150, 150, 50 volts, electrolytic, core type; 1-3 to 50 µf trimmer; 1-2-10 µf midget variable.

Transformers: 1-455 k.c. i.f.; 1-output, 2000 ohm primary, multiltp secondary.

Miscellaneous: 1-selenium rectifier, 75 ma; 1-75 ma choke; chassis, sockets, speaker, headphones, non-sloping phone jack, hookup wire.

RADIO ELECTRONICS for
A TUNED TONE CONTROL

The tone controls on most radio receivers are insufficient; they merely permit suppression of the high notes, thus relatively favoring the bass. More effective "compensation circuits" become very complex, sometimes comprising adjustable resistors, capacitors, and inductors all in the same circuit.

Here is a variant that is very simple, yet gives excellent results. It is composed of two fixed-tuned, parallel-resonant circuits, with a variable resistor of 500,000 ohms shunted across each. (See Fig. 1.)

With these constants, the resistance in the grid circuit of the output tube appears to rise considerably near 80 and 6,000 cycles, and the signal applied to its grid increases accordingly. Thus these frequencies are amplified more, as indicated in Fig. 2. The frequencies

![Diagram of tuned circuits]

Fig. 2—Dotted curves show boosting. f1 and f2 can be adjusted to compensate for the deficiencies of any given amplifier by choosing values of inductance and capacitance that resonate in the regions where reinforcement is needed.

The action is, of course, greater as the variable resistors are adjusted to increase the resistance across the tuned circuits, and can be cancelled altogether by reducing the shunting resistance to zero and thus shorting them. The output tube's grid resistor should be kept relatively low—100,000 ohms will probably be found suitable in most cases. If a much smaller value of grid resistance is used, the tone control adjustments may have an undesirable effect on the overall volume of the amplifier.—P. Hemmendinger

Clearer, Brighter Pictures

when these transformers match antenna impedance to line, or line to TV receiver. Signal input may be improved as much as four times! Designed to couple low-impedance antenna to standard 300-ohm line; or 300-ohm antenna to 72-ohm twin-lead or low-loss 52-ohm coaxial cable. At receiver, low-impedance line matched to standard 300-ohm input. Housed in impregnated, weather-tight aluminum shield.

Dimension: 3/4" by 3/4" by 1-3/4"

Cat. No. Impedance Ratio List Price
6161 52/300 or 300/52 $2.50
5162 72/300 or 300/72 2.50

See your Wholesale or write us for literature

J. W. MILLER COMPANY
5917 S. Main St., Los Angeles, Calif.

*BUILDERS OF QUALITY RADIO INDUCTANCES SINCE 1926

BIG MONEY IN RADIO and TELEVISION NOW!

See COYNE'S Brand New 7 Volume Set
APPLIED PRACTICAL RADIO-TELEVISION

A BRAND NEW Set of books written for men who want to "go places" in TELEVISION and RADIO . . . men who know how a PRACTICAL working knowledge helps to get the BIG MONEY. 2,000 pages of the latest Radio and Television "how to"; easy to understand with hundreds of crystal-clear illustrations. It's ALL here! EVEN COLOR TELEVISION AND UHF. How to install, service, align, balance ALL radio and TV sets . . . how to use new and old testing instruments for TV service . . . latest data on adapters, converters and MORE. Complete volume on Electronics and handy Radiomen's Handbook included. You name it and COYNE'S GOT IT, in this amazing new money-making 7-Volume Radio-Television Library.

Color Television Is Here!

Set contains most complete section ever published on Color Television and UHF, adapters and converters, FULLY ILLUSTRATED AND PRINTED IN 4 COLORS.

Act Now and Get Free Book

Now you can see these new Coyne books for 7 days without cost and get Coyne's book of 150 Radio and Television Diagrams FREE. It's free just for examining the new 7-Volume Set. Full details of this sensational Coyne "prove it" offer are given below. Mail the coupon at once.

Mail This Coupon NOW

Eduational Book Publishing Division
COYNE ELECTRICAL & RADIO-TELEVISION SCHOOL
500 S. Paulina St., Dept. 70-F, Chicago 12, Ill.

G.K. Send me postpaid, your new 7-volume set, "Applied Practical Radio-Television", on 7 days Free Trial per your offer. Be sure to include as a gift the book of 150 Radio-Television Diagrams absolutely FREE.

NAME: ____________________________
ADDRESS: __________________________
TOWN: __________________________ ZONE: ________ STATE: ________

WHERE EMPLOYED: __________________________

May, 1950

You must see these new books to know how easy it is to prepare for the big jobs in radio and television. Here's our special offer: we'll send the complete 7-volume set for your 7-Day FREE Examination. And with it, we'll include our valuable, new guide for all radiomen, "150 New Radio-Television Diagrams Explained," absolutely FREE! If you keep the 7-volume Set you pay $3.00 within 7 days after the books arrive and $3.00 per month until $23.50 is paid—or you can pay $22.00 cash price. If you don't want the set, return it and you OWE NOTHING. But either way you keep "The Radio-Television Diagrams Book" as a gift. That book is ABSOLUTELY FREE.

SEND NO MONEY

COYNE Electrical and Radio-Television School
500 S. Paulina St., Dept. 70-F, Chicago 12, Ill.
A Beam Antenna to Match 52-Ohm Coax

By LOUIS H. HIPPE, W6APQ

The greatest possible transfer of energy from transmitter to antenna depends largely upon correct impedance match between the transmission line and antenna. Coaxial transmission line being available as surplus at reasonable prices has created among amateurs a great deal of interest in its possibilities for feeding beam antennas. The most popular of the coaxial cables is that bearing the Army-Navy type number RG-8/U.

RG-8/U coaxial is a medium-size, flexible cable for general-purpose use. The inner conductor consists of several (7/21 AWG) copper wires twisted together and buried in stabilized polyethylene dielectric material having a nominal diameter of 0.285 inch. The dielectric is shielded with copper braid, and the whole is covered with a tough coating of vinylite. The over-all nominal diameter of the finished cable is 0.405 inch. The cable has a nominal capacitance of 29.5 μF per foot and a maximum operating voltage of 4,000 r.m.s. The rated surge impedance is 52 ohms.

The fact that this particular type of cable is abundant and cheap (about 4 cents a foot), is easily handled, will withstand weather, is flexible (it will wrap around a mast without shorting or breaking), and can be buried is responsible for its popularity. Many people, however, have had difficulty in matching the impedance of the line to the center impedance of beam antennas.

The "delta" has been used, but its adjustment is critical. It is intended more for matching 300- to 600-ohm open-wire transmission lines to the antenna, and considerable time and temper can be consumed in adjustments. If the adjustment is not right on the button, the delta will radiate from the delta yoke.

The "T" match formula is $T = \frac{\lambda^2}{4 \pi}$. The result gives the dimensions of one section of the "T" match, from center to one end only. It is based on approximately 6 inches spacing between elements. The "T" is efficient and not too hard to adjust by comparison with the delta. However, inquiries as to dimensions of the "Ts" in use have brought a variety of answers.

The arguments pro and con regarding the use of coax aroused our curiosity about an easy method of impedance match plus a beam antenna designed so that it could be adapted to the impedance of any transmission line desired, as well as RG-8/U. Research revealed a wealth of helpful and interesting information.

A view of the completed beam. Note the three conductors in the driven element.
For instance, a four-element, close-spaced beam one full wave above ground with a simple dipole for a driven element has a radiation resistance at its center of approximately 6 ohms. A three-element, close-spaced beam under the same conditions has a radiation resistance of approximately 9 ohms. If we add another conductor to our simple dipole, making it a folded dipole, the approximate radiation resistance at center becomes 24 ohms for each full-wave element and 36 ohms for the three-element array.

There is a formula for this change of impedance. Impedance of a dipole driven element $N = \text{total number of conductors in the driven element.}

Thus, if we add two new conductors to the dipole of a four-element beam we get 9 times the original radiation resistance, 54 ohms.

The formula shows that by adding conductors the radiation resistance can be changed to almost any desired usable value. Adjustments are almost unnecessary. This is the easy method of

Building the beam

When purchasing the beam materials, be sure all parts are of the hard (24ST) aluminum stock to prevent the elements from sagging and blowing about in a high wind or bending under the weight of ice and snow.

The boom was made of 2x3-inch aluminum tubing. The elements are 1 inch outside diameter. The sections which slide onto the driven elements are 1 inch inside diameter. The tubing for the reflector and two directors should be not less than 16½ feet long. The central sections for the driven element are 12-foot lengths, and the end tuning sections are 6-foot lengths.

Some of the sections had to be made by cutting with a band saw. The reflector and two directors were made by cutting off the ends of the tubing. They were then cut to size with a miter saw.

The stock for the beam was to have four elements close-spaced (0.1 and 0.15 wave length) and to operate on a frequency of 28.55 mc, the following dimensions were used in spacing the elements: reflector to driven element, 62 inches; driven element to first director, 41¾ inches; first director to second director, 41¾ inches.

The stock for the boom was laid out and drilled to take the 1-inch elements as in Fig. 1. The reflector and two directors were centered in these holes. A hole for a 10-32 screw was drilled through the top of the boom, through each element, and through the bot-
CIRCLE X ANTENNA

ENGINERED TO PROVIDE CLEAR SHARP PICTURES ON ALL CHANNELS

COMPARE CIRCLE-X TO ANY OTHER TV ANTENNA

No other antenna combines all the mechanical and electrical features engineered into the Circle-X. The high gain of the Circle-X is equal to stacked arrays. It is made of light weight corrosion resistant aluminum alloy that stand up in all atmospheric conditions. When you use Circle-X you stock only one type of antenna for all jobs. It has one wire lead-in and weights only 2 1/2 lbs. We urge you to try Circle-X TV Antennas to any other TV antenna on the market.

Use Circle-X on your next tough TV installation. It may save you a lot of "ne profit" call backs.

CIRCLE X ANTENNA CORPORATION

BUILD 15 RADIOS... Only $14.75

- ABSOLUTELY NO KNOWLEDGE OF RADIO NECESSARY
- NO ADDITIONAL PARTS NEEDED
- EXCELLENT BACKGROUND FOR TELEVISION

The PROGRESSIVE RADIO EDU-KIT will help you, if you want an educational and interesting hobby, or if you want to get into a well-paying business, or if you want to increase your knowledge of radio. Absolutely no knowledge of radio is necessary. The PROGRESSIVE RADIO EDU-KIT is the product of many years of teaching and engineering experience. The detailed instructions and quizzes are clearly written and illustrated so that it can be understood by anyone between the ages of 12 and 80.

The PROGRESSIVE RADIO EDU-KIT is not merely a collection of radio parts accompanied by a radio diagram. IT IS PRACTICALLY A RADIO COURSE, offered at a mere fraction of its real value. You will be taught to build radios in a progressive manner. First, you will build a very simple 1-tube receiver. The next set is a little more advanced. Gradually you will find yourself constructing elaborate radio sets, and doing work like a professional radio technician. Every part is illustrated. EVERY STEP INVOLVED IN BUILDING THESE SETS HAS BEEN CAREFULLY PLANNED. YOU CANNOT MAKE A MISTAKE.

Each of the 15 radios you will build operates on 110-120 volts, AC or DC. These sets have been designed to teach you the PRINCIPLES OF RADIO. Therefore, you will build a variety of circuits. The PROGRESSIVE RADIO EDU-KIT IS EXCELLENT FOR LEARNING THE PRINCIPLES OF RECEIVER TRANS-MITTER, AND AMPLIFIER DESIGN. It is used in many Radio Schools and Colleges in U.S.A. and abroad. It is used by the Veterans Administration for veteran training.

Quizzes are provided as part of the PROGRESSIVE RADIO EDU-KIT. They will be corrected by our staff of no extra cost.

FREE 1950 EXTRAS:

- ELECTRICAL AND RADIO TESTER SCREWDRIVER
- SCREWDRIVER BAR ON TELEVISION GENEROUS HANK OF WIRE
- ORDER YOUR PROGRESSIVE RADIO EDU-KIT TODAY, OR SEND FOR FREE "KIT-KATALOG" POSTAGE PREPAID ON CASH ORDERS; C.O.D. ORDERS ACCEPTED IN U.S.A.

PROGRESSIVE ELECTRONICS CO.
497 Union Ave., Dept. RE-35
Brooklyn 11, New York

Italian interest in television is attested by Televisione Italiana, a new magazine published in Turin and devoted entirely to technical television subjects. The first issue carries a story, signed by the editors, discussing the television demonstrations carried on in Turin last October. Two complete transmission systems were set up: one furnished by the French and conforming to the new French 819-line standard; the other installed by General Electric, using a 625-line standard, with typical American circuits. Receivers were scattered about Turin.

Italian interest in television is attested by Televisione Italiana, a new magazine published in Turin and devoted entirely to technical television subjects. The first issue carries a story, signed by the editors, discussing the television demonstrations carried on in Turin last October. Two complete transmission systems were set up: one furnished by the French and conforming to the new French 819-line standard; the other installed by General Electric, using a 625-line standard, with typical American circuits. Receivers were scattered about Turin.

Tom of the boom. A hole slightly larger than the head of the 10-32 brass screw was redrilled in the top of the boom to allow the bolt head to rest firmly against the top of the element tube. This will prevent the wind from causing excessive vibration of the elements and also prevents sag when the screw is drawn up tight.

Fifty-two ohm coaxial cable for the transmission line necessitated the use of a three-conductor folded dipole in order to obtain an impedance match. Therefore two pieces of Plexiglas 12 x 2 1/2 x 3/4 inches and two pieces of Bakelite of the same dimensions were drilled as shown in Fig. 2. The Bakelite, being heavier, was used as the spacing medium at the boom and was securely bolted in place with 10-32 brass screws. The center hole in the Bakelite was carefully aligned with the 1-inch hole drilled in the boom to take the driven element (see photo). Next, the three conductors of the driven element were passed through the holes provided for them and secured with 6-32 set screws.

It is important to note here that the conductor that is to be driven is not split at this time, but is left intact. This is to expedite alignment of the three elements so the matching sections on the ends of the triconductor driven section will slide easily without binding.

The Plexiglas spacers are next placed on the three conductors of the driven section. The sliding sections can now be slid over the outer ends of the central triple section. Slide them on at least halfway to give firm support for the end shorting bars (see photo), which
CORROSION... the iron curtain of TV reception

One of the major reasons for poor television reception is a corroded antenna... and in most cases you won’t know when your antenna is corroded.

Corrosion changes the electrical characteristics of the antenna... results in imperfect... even poor reception.

Only with antennas that do not corrode can you be sure of good reception.

Tel-a-Ray antennas can’t corrode! They are constructed of Dural, with stainless steel fittings... all elements sealed by the exclusive Roll process.

You get perfect television reception all the time. Whether you are replacing a worn antenna or installing a new one — buy Tel-a-Ray.

Tel-a-Ray Antennas

"FIRST—BECAUSE THEY LAST"

TEL-A-RAY ENTERPRISES, INC.

P. O. BOX 322, DEPT. C, HENDERSON, KY.

Car Shaver Motor

Use your electric shaver in your car. Tel-a-Ray will supply 110-220 Volt, DC, supplied 3 Watts input 6 Volt 100.00 each battery and will supply all types of DC shavers. Order No. RE-5250. Price—only $2.00

Sewing Machine Conversion Kit

It’s easy to convert your household type home sewing machine into a pull-to-see-electric type. This big value kit comes complete with motor, stainless steel, hundreds adapters, brackets and instructions. Brand New. Order Book No. RE-399. Price—only $12.95

GEAR TRAIN MOTOR—Low inertia, reversible type. Can be used to operate small displays, models, etc. Output: 6 Volt 220 RPM. Input: 110 Vac. 1 1/2" shaft. Complete motor, gear train, condenser & instructions.

MODEL MOTOR— 12 Volt AC-DC, 1/32 double end shaft. Motor size: 1/16 x 1/16 x 1/16. H. Price—$1.30

HAND TOOL MOTOR— 12 Volt AC-DC 5000 RPM. N.p: 11/2 x 1/4 x 1/4 D with optional shafts 1/4 x 1/4 L. Price—$2.95

6 VOLT AC OR DC MOTOR—Ideal for auto heaters, defrosters, fans, models, etc. Used by Geat in aircraft. Shaft size: 1/16 x 1/16. Price—$1.50

DYNAMOTORS AND INVERTERS

Write us and tell your requirements. We will quote prices on anything from simple to complex. They are on order from our large stock.

TRANSFORMERS— 110 Volt 60 cycle Primaries: Sec. 22 V., 1 amp.; Sec. 22 V., 2 amps.; Sec. 28 V., 1 amp.; Sec. 24 V., 3 amp.; Sec. 12 V., 10 amp.; Sec. 115 V., 1 amp.; Sec. 48 V., 1 amp.; Sec. 115 V., 15 amp.; Sec. 115 V., 40 amp.

SELTZYN TRANSMITTER & INDICATOR

Syste: Complete with antenna direction indicator, a remote position. Complete with Antenov Trans. 3" x 1" 1/2 Transformer, and Instructions. Price $6.75. Antenov Trans. only: $2.95. Plug: #1-81: $1.00

MARKER BEACON TRANSMITTER & RECEIVER

15 TUNES—2 4 MC, 6 MC, 8 MC, 10 MC, 12 MC, 15 MC, 16 MC, 18 MC, 20 MC, 22 MC, 23 MC and INTERCOM. For MoBILE or STATIONARY USE!

**Address Dept. RE—Prices F.O.B., Lima, Ohio **

Rain—Snow—Wind—Sea Air

FAIR RADIO SALES

123 South Main St., Lima, Ohio

25% Discount on C.O.D.

MAY, 1950

Note:

- The text contains various technical descriptions and instructions for assembling and using electronic equipment.
- It discusses the importance of using corrosion-resistant materials and the benefits of Tel-a-Ray antennas.
- There are also instructions for repairing and upgrading sewing machines and car shaver motors.
- The text includes a section on TV tower locations and the importance of maintaining them to ensure perfect reception.

Figure 3—Dimensions for coax fitting

- The text provides dimensions and diagrams for coaxial fittings and connectors.
- It offers guidance on how to properly fit and secure coaxial cables.

Car Shaver Motor

- The text describes a car shaver motor that can be used in vehicles for personal grooming.
- It includes specifications and instructions for its installation.

Sewing Machine Conversion Kit

- The text provides detailed information on how to convert a sewing machine to an electric type.
- It lists the components required and offers instructions for assembly.

Gear Train Motor

- The text offers information on a low inertia, reversible type motor suitable for various applications.
- It includes specifications and instructions for its use.

Model Motor

- The text describes a model motor designed for 12 Volt AC or DC operation.
- It includes specifications and instructions for its use.

Hand Tool Motor

- The text provides information on a hand tool motor for 12 Volt AC or DC operation.
- It includes specifications and instructions for its use.

Dynamotors and Inverters

- The text offers a comprehensive guide on dynamotors and inverters, including their specifications and instructions.
- It provides pricing information for various components and kits.

Transformers

- The text lists various transformers for 110 Volt 60 cycle operation.
- It includes specifications and instructions for each transformer.

Seltzyn Transmitter and Indicator

- The text describes a complete system for indicating the direction of an antenna.
- It includes specifications and instructions for installation.

Mark-It 619 Transmitter and Receiver

- The text provides information on a 15-tune transmitter and receiver suitable for mobile or stationary use.
- It includes specifications and instructions for its use.

Fair Radio Sales

- The text promotes Fair Radio Sales, located at 123 South Main St., Lima, Ohio.
- It offers discounts for cash on delivery orders.

Additional Information

- The text includes numerous diagrams and illustrations to aid in understanding the technical descriptions.
- It offers a comprehensive guide on the use and installation of various electronic components and systems.
to operate. Using the formulas given in handbooks, the element lengths of our own antenna were calculated for a frequency of 28.55 mc. The lengths of the various elements (tip to tip) are as follows: reflector, 17 feet 2½ inches; driven element, 14 ½ inches; first director, 15 feet 9 inches; second director, 15 feet 1½ inches.

Once the elements have been fastened to the boom and adjusted for length, we can locate the point on the boom at which the antenna will balance perfectly. Mark this point. It is the place to which we will bolt the plate to seat the pipe flange into which the supporting mast will thread.

Measure the diameter of the pipe flange and, adding at least 1 inch on either side, cut a square piece of ¾-inch 24ST flat stock. Place the center of the flat stock over the balance mark on the boom; drill and bolt the flat piece to the underside of the boom, with 10-32 brass or galvanized screws. This will provide a strong, flat base to which the pipe flange can be bolted.

Once the pipe flange has been secured, the boom elements should again be measured and checked. If everything checks perfectly, the sliding section of each of the elements is drilled to take galvanized, self-threading screws. The holes should be slightly smaller than the screws to provide a sharp bite as they cut their own threads. This will insure perfect electrical connections as well as prevent the tuning sections from becoming loose once the beam has been installed where it might be inaccessible. These screws should pass through the circular clamps as well as the elements. If there is any play where the elements pass through the boom, cut small wedges from scrap tubing and carefully tap them firmly into any spaces. It is absolutely imperative there be no scraping parts in the antenna.

Metal scraping against metal in any part of the array will cause noisy reception.

Before the antenna is raised to its final position, it should be given an undercoat and a coat of high-grade lacquer. When the lacquer is thoroughly dried, the antenna may be raised and installed. While it is in position, four holes should be drilled through the skirt of the pipe flange and through the pipe which screws into it. These holes should be tapped to take brass machine screws. The mast and flange are firmly held together and yet easily disassembled if necessary.

The antenna is now ready for the transmission line to be connected and tests made, as described in any handbook for standing-wave ratio (see "The Coax Twin Lamp," QST, November, 1948). Trim the coaxial line carefully if tests indicate that it is necessary.

For optimum efficiency the lowest permissible height above ground for the antenna is one full wavelength. (See handbooks for the curves on the effect of height.) To tune a beam 6 or 8 feet above ground and then raise it to a height of 92 feet cancels all effort at raising it with a pointside of forward gain or front-to-back ratio. If it is possible to tune the beam in its working position, the story can be different. However, it should be kept in mind that much time was spent in experiments and tests by engineers with considerably more experience and background on the antenna subject than we are apt to have. The practical formulas were arrived at from observations made for optimum performance at the most efficient height above ground.

These observations conclude that if the antenna can be placed one full wave above ground and fully in the clear away from buildings and trees it is best to build the antenna, calculate the element lengths as per formula, and install the antenna where it will eventually work without further adjustment except on the transmission line.

It is interesting to note that according to the available information, a four-element beam one full wave above ground has a radiation angle of approximately 15 degrees. By raising the antenna to a height of two full waves the radiation angle can be lowered to approximately 8 degrees. For most efficient operation in the 10-meter band the angle of radiation should be from 4 to 15 degrees. Approximately 10
degrees is considered best for dx work.

A beam with a multielement driven section\(^1\) is a broadband antenna by comparison with the conventional dipole-driven beam.

C coax line connection to driven element.

In tentative tests with W6MIM and W6HLK, the front-to-back ratio was about 21.6 db.

The Beam Tuning Table gives a list of working frequencies with calculated spacings and element lengths for both 10 and 20 meters. For calculating the length of director No. 2 for a four-element beam, shorten the length given for director No. 1 by 4%. The spacing between the two directors will be the same as that indicated for the space between the driven element and director No. 1.

(The constructor may find it to his advantage to use zinc-, cadmium-, or nickel-plated steel screws rather than the brass ones used by the author. Strong galvanic corrosion takes place between brass and aluminum when exposed to atmospheric moisture. The result is that the aluminum is eaten away at the junction of the two metals. The beam will become noisy and is likely to fail in a strong wind.

For additional information on the subject, see "Your Beam—Will It Stay Up?," in the October, 1949, issue of QST.—Editor)

SIMPLE KEYING MONITOR

If you use low-impedance phones on your receiver, a low-cost keying monitor can be made by connecting a germanium diode across the phone leads at the receiver. R.f. picked up by the phone leads and circuit wiring in the receiver is rectified and will appear in the phones as hum which is easy to copy.

Connecting the diode across the phones does not affect the volume of received signals.—Fred Lingel, W2ZGY

MAY, 1950

Here's Our Investment In Your Future...

THE RAYTHEON BONDED ELECTRONIC TECHNICIAN PROGRAM

Raytheon considers the tremendous amount of money invested in the Raytheon Bonded Electronic Technician Program exceedingly well spent because it is an investment in your future. And your success is tightly tied up with ours.

RAYTHEON Bonded Electronic Technicians can offer their customers a cash protected guarantee on all radio and television repair work and parts for 90 days. Think what this guarantee, backed by almost $100,000,000,000 resources of American Mutual Liability Insurance Company, can do to create customer confidence and good will and to stimulate sales. And yet this big business builder costs you not one cent.

Even before it covered Television, the Raytheon Bonded hundreds of Service Dealers heads and shoulders above the crowd. Now that it covers Television, too, it's the most covered key to better business in the industry.

You'll be building a better foundation for your business when you ask your Raytheon Tube Distributor to help you become a Raytheon Bonded Electronic Technician.

RIGHT... For Sound and Sight
RAYTHEON RADIO and TELEVISION TUBES

RAYTHEON MANUFACTURING COMPANY

EXCELLENCE IN ELECTRONICS

SUCCESS AT RAYTHEON IS BUILT... ON SKILL... SKILL IS TAUGHT... AT RAYTHEON...

SEND YOUR RADIO CARTOON IDEAS TO RADIO ELECTRONICS.

$3.00 PAID ON PUBLICATION FOR EACH ONE ACCEPTED.

WHERE RADIOMEN MEET, EAT and SLEEP

Hotel Strand

Atlantic City’s Hotel of Distinction
The Ideal Hotel for Fun and Relaxation • Beautiful Rooms • Salt Water Baths • Glass-inclined Sun Porches • Open Sun Decks atop • Delightful Cuisine • Garage on premises • Moderate Rate Schedule

Exclusive Pennsylvania Ave. and Boardwalk

MAY, 1950

www.americanradiohistory.com
Frequency Control Unit
For Citizens Band Tests

"Gold-Plated Special" is a signal source and frequency meter

By I. Queen

The double-check frequency control unit.

T
HE citizens' band is attracting a tremendous amount of attention because it is the only band on which the untrained individual will be permitted to operate without code test, radiophone license, or other test except a probable short examination in traffic rules and the regulations covering his equipment. Thus it will be open to large numbers of persons who would otherwise be unable to use two-way radio.

Designing receivers and transmitters for this u.h.f. band is by no means easy. Many technicians and amateurs are attempting to modify Army-Navy surplus units to operate in the 460-470-mc band, so far with little success. The FCC has—correctly—set stiff frequency and stability tolerances for citizens' band operation, and the designer is finding it difficult to stay within the specifications.

The indispensable first step is successful construction or conversion of u.h.f. equipment is a reliable signal source and an accurate method for measuring frequency. Use of very high harmonics of crystals and V.F.O. units is not practical at such high frequencies. Besides, a crystal is limited to a very narrow range and dozens would be needed fully to cover the band.

This article will be divided into two parts: one will describe the signal source, and the other a method for measuring its frequency.

Signal source

Most readers are aware of the tremendous difficulties awaiting the designer of u.h.f. signal generators. The problem is eased somewhat by using the second (or even third) harmonic of an oscillator. Many technicians now use equipment of this type in television servicing, for example. Such operation is entirely satisfactory and is well justified for work in the citizens' band. Of course building a generator even for 234-255 mc is a difficult project for the home or small lab.

Fortunately an excellent one is now available for a few dollars on the surplus market—the so-called "gold-plated special," a Navy signal generator putting out a signal in the range 234-255 mc. This is being sold with two type 955 acorn tubes but without batteries. It is housed in a metal box with handle. Its rear compartment has plenty of room for an a.c. power supply.

This portable test set was used by the Navy to align homing adapters and command receivers used aboard Navy planes for picking up homing signals to enable the planes to find their "home" carrier after completing a mission. The homing signal was transmitted in the range between 234-255 mc with amplitude modulation at 710 kc. The homing
adapter picked up the v.h.f., demodulated it and passed the 710-ko signal to the main command set where it was reproduced. The "gold-plated special" is a test oscillator which simulates the actual transmitter and was used to align a group of receivers and their adapters. Obviously the signal is stable, and reliable and has little drift, since the Navy sought and obtained the best instrument possible that could be manufactured. The safety of men, planes, and missions required it.

Possible adjustments

The portable test set has two acorn tubes. (Fig. 1.) One is used in the tuned-grid, tuned-plate v.h.f. circuit. A gold-plated coaxial resonator tunes the grid circuit. The plate is resonated by a small coil without tank capacitor. Because of its very high Q, the resonator largely determines frequency. The plate coil does, however, affect the v.h.f. By compressing it slightly, the lower limit may be reduced so that the second harmonic covers the entire citizens' band. The modulator tube (at the right) may be removed, thus eliminating the modulation. As already mentioned, an a.c. power supply may be built into the rear compartment. No other changes are required or recommended.

High-frequency section, internal view. The gold-plated coaxial resonator is at left and the 710-co transformer near the center of the case. Below are the two 955 r.f. and a.f. oscillator tubes.

The v.h.f. is adjusted by rotating the screw at the top of the coax resonator. This can be done with a special wrench supplied with the instrument. This screw controls a variable capacitance on the side of the resonator. The tuning is fixed by tightening the locknut.

After the oscillator is tuned and locked in place, we have the equivalent of a "crystal" at v.h.f. The second harmonic signal is stable and can be maintained for long periods with low drift. If an a.c. power supply is to be used, it should be regulated for best results. Of course batteries add greatly to

MAY, 1950

WANTED TO BUY

Large and small quantities of new or used electronic government or manufacturers' surplus tubes and equipment. Highest prices paid. State quantity, condition and best price in first letter.

Box No. F-2 c/o Radio-Electronics
25 West Broadway
New York 7, N. Y.

EASY TO LEARN CODE

It is easy to learn or improve upon with an Instructograph Code Teacher. Affords the quickest and most practical method yet developed. For beginners or advanced students. Available tape from instructor's audible to printed messages on all subjects. Speed range 5 to 60 W.P.M. Arranged by code-your own QRS. ENDORESED BY THOUSANDS!

The Instructograph Code Teacher instantly takes the place of an open. "G" operators and supplies answer to every question in the Miller and commutator methods. It is the study method and allows operators to "acquire the code" with the Instructograph System. Write today for convenient rental and purchase plans.
Demonstrate and Test from AC Lines...

Auto Radios • Relays • Telephone Circuits • Instruments • Other Low Voltage Devices

New Electro Model "BJ" Junior filtered power supply utilizes the same exclusive application of selenium rectifiers being used in the famous Model "B." This application, using conduction cooling, doubles the rectifier power rating, dissipates over 3 times the heat and provides lower cost per ampere output over other types. Provides ample power, with a peak instantaneous current rating of 25 amperes (from standard 50/60 cycle 115 volt source.) Heavy duty components withstand high overloads. AC ripple less than 0.4 volts at 6 volts DC 8 amperes.

VISIT OUR BOOTH No. 219 AT THE RADIO PARTS SHOW
UNMATCHED PRICE • PERFORMANCE • QUALITY

SEND FOR FACTS TODAY!

Electro Products Laboratories
4507 N. Ravenswood Ave.,
Chicago 40, Ill.

Send me specifications, prices and name of my nearest distributor.

Name_________________________Address_________________________
City__State_____________________

Electro
Electronic Equipment

3 to 9 Volts at Other Ratings

the stability and eliminate radiation through the line.

Frequency measurement

Every signal generator should be checked at intervals by comparing it with a standard, especially at these frequencies. Even if its frequency is known accurately at a given time, possibly a few minutes later the frequency may change for some reason. It is not convenient to compare this oscillator directly with WWV because of its high frequency, but a good frequency meter may be designed for it. Such an instrument may be fixed permanently in the same box as the oscillator and be available at all times for measurements.

![Diagram of frequency meter](image)

Fig. 2.—Frequency meter for the unit.

The standard must be mechanically strong and electrically stable. All parts of the wiring should be rigid to avoid the effects of vibration. High-Q circuits and narrow tuning range are essential.

The calibration unit shown in Fig. 2 uses a single 955 in a Hartley oscillator circuit. The high-C stabilizes the oscillator and temperature compensation cuts drift. Tuning range is about 36.7 to 39.2 mc, equivalent to tuning from 440 to 470 mc on the twelfth harmonic. This frequency meter is a combination oscillator-detector. Its fundamental or one of its harmonics may heterodyne a nearby v.h.f. signal (such as from the 230-mc oscillator) and create a beat in the phones. Also, the fundamental may heterodyne a harmonic of some nearby signal (such as from an 80-meter crystal or v.f.o.) to make the audio beat. In any case a beat indicates that a nearby signal has a frequency nearly equal to that of the calibrator, or a multiple of it.

If the frequency of the external signal is known approximately, it can be measured exactly. For example, if the signal is near 230 mc, it is evidently heterodyning against the 8th harmonic of the calibrator. Since the calibrator operates near 40 mc, the external signal must be known to less than 20 mc. Unless a major change has been made in the Navy test oscillator its range is about 230–250 mc and no doubt should exist as to the calibrator harmonic which creates the beat. Note that the frequency of the v.h.f. oscillator increases as the coax resonator screw is turned counterclockwise (looking down on it). Frequencies near 230 mc are generated when the screw is down toward the resonator.

The signal calibrator

The calibrator is housed in a 3 x 4 x 5-inch metal box fixed to the rear of the instrument.
cover of the test oscillator with metal spacers. When the cover is closed, the box is screwed down to the base of the portable case. It is necessary to space the rear cover from the calibrator box panel because a velvet vernier dial is used and this cannot be mounted in the usual way.

Essential parts of the calibrator are an acorn tube and socket, a slug-tuned coil, straight-line frequency capacitor, and temperature-compensating capacitors. A type AR-5 (National) coil permits adjusting the frequency range as required. The SLF capacitor was chosen because it has a 270-degree rotation. Actually, a linear frequency variation may be obtained by using semicircular plates but these have only 180-degree rotation. Furthermore it is difficult to obtain a rugged, noiseless unit in the required capacitance range (about 12 µf minimum to maximum).

The SLF capacitor permits allocating nearly 180 degrees of rotation to the citizens’ band measurements and leaves room for measuring frequencies down to 440 mc (on the twelfth harmonic, of course). The calibrator frequency chart is shown in Fig. 2. Frequencies between 468-470 mc may be measured to within .01% because of the very wide bandspread. This is the region reserved for class-A stations.

If the v.h.f. oscillator uses the same power supply as the calibrator, no other coupling is required. The beat note will sound rather rough, a con-

The low-frequency unit, internal view. venience because no modulation is required. This is not necessarily a mark of instability. A change of 2 kc out of 230,000 is less than .001%. For the same reason drift will sound very noticeable. However, total drift over a period of 5 hours (but not counting the first 5 minutes) is less than 0.22 mc, or about 0.1%. Most of the drift takes place in the first 15 minutes or so. In any case the drift is not a serious problem. The v.h.f. oscillator is merely a signal source, and we can measure its frequency as often as we wish to determine its exact value.

May, 1950
Calibration methods

Calibrating the frequency meter may present a problem. Usually its approximate frequency will be known from the size of the tank circuit. For example, an AR-5 coil tunes to about 38 mc when shunted by about 100 µf. Compare the approximate frequency, therefore, to nearby calibrated v.f.o. Tune the v.f.o. for two adjacent beats in the phones of the calibrator (disregard any very weak beats which may be heard). Assume readings of 3.5 and 3.85 mc. Subtract; divide the difference (0.35) into the smaller of the two (3.5). The answer is 10, which gives the harmonic order of the larger number (3.85). The calibrator is tuned to 38.5 mc which, of course, is the eleventh harmonic of the smaller number (3.5). Knowing the order of harmonic, a number of check points may then be obtained for the calibrator dial. Crystals may be used for highest precision.

The error due to the calibrator itself may be completely eliminated if desired. To do this, tune it to the rough for most measurements. It can be led to a banana jack on the panel and thus be available for experimental measurements, as has been done here. A toggle switch in the filament circuit controls the modulator tube. The tube is switched on only when the low-frequency signal is needed.

With this unit, the experimenter should be able to make excellent frequency measurements on the 400-470 mc band whereas constructing a reliable oscillator for those frequencies might be well-nigh impossible.

Fig. 5—Frequency chart showing coverage of the instrument. Accuracy at the edges of the band should be good enough to cover class A as well as class B stations.
Try This One

SIMPLE FILING SYSTEM
Now that Radio-Electronics has departments in its new format, it is easy to take out the articles you want to save and file them for future reference. Remove the staples from each issue so it will be easy to take out the pages. Staple each complete article together and file in an indexed folder. This arrangement saves space and makes it easy to find the information you are looking for.—N. Scheedman—
(Why not just file the whole issue, use a card index, and save work? The articles we want to refer to are always the ones we weren't interested in when they appeared, anyway.—Editor)

POWERING SURPLUS RELAYS
Surplus high-resistance relays have become fairly common as antenna-changeover relays, and in other low-power applications. However, it is difficult to obtain a suitable d.c. voltage to operate them.

One common type of relay suitable for low-power antenna switching has a resistance of 8,000 to 10,000 ohms and requires a "make" current of about 10 ma. The voltage may be obtained from a simple selenium rectifier circuit. Two advantages of this circuit are that the relay operation is independent of transmitter-receiver voltages, and that no warm-up time is required.

The hook-up is a half-wave rectifier having a single-section capacitor input filter. The relay windings act as both filter choke and load. The voltage developed across the relays is high enough to give good, positive action. No ground troubles are involved since the relay winding and terminals are isolated from each other. Five or six relays may be operated in parallel with a rectifier of suitable current rating before the voltage becomes too low for dependable action. A capacitor of the size shown or larger should be used to avoid any possibilities of chatter.—Claire E. Shelden, Jr., W9HYN

THE TURNER GANG
WILL BE LOOKING FOR YOU
ROOM 509A STEVENS HOTEL, MAY 22-25

The Turner Company
933 17th Street, N.E., Cedar Rapids, Iowa

Microphones BY TURNER

2 FAMOUS ALMO T-V ANTENNAS
- Two of the most amazing performers yet to be used for television reception on the market. Maximum pickup, plus int. coupling gain characteristics. Order yours today.
RESULTS GUARANTEED
10-CASH WITH ORDERS

ALEXANDER M. WOLFF, INC.
509 Arch Street, Philadelphia
6205 Market Street, West Phila.
6th & Orange Streets, Wilmington
4401 Ventnor Ave., Atlantic City

DUAL FOLDED DIPOLE
Folded dipole with reflector and matched Hi-band adapter.

MAY, 1950
Polarizing Line Cords

Many a.c.-d.c. receivers and phono amplifiers are wired with one side of the line connected to the chassis. This presents a serious shock hazard when the user touches the chassis or other metal part if the ungrounded side of the line is connected to the chassis. Because most line plugs are not polarized, the user is never certain that the line cord will be plugged in correctly once it has been removed from its receptacle.

To avoid this trouble, plug in the set and turn it on. Take a small 117-volt lamp and connect one side to a radiator, cold water pipe, or outside ground wire; then touch the other lead to the chassis. If the lamp lights, the chassis is hot and the line plug must be reversed. When the correct polarity is found, apply a coat of paint to one half of the plug and to the corresponding half of the receptacle. The set will always be polarized correctly when the plug is inserted so its painted side faces the painted surface on the receptacle.—Robert P. Balin

Improving Tuning Eyes

To increase the sensitivity of 6ES’s and similar electron-ray tuning indicators, insert a resistor R in the cathode circuit of the tube. When a negative voltage is applied to the grid, the triode plate current drops while the target current increases. The increase in target current is much greater than the decrease in plate current so the total cathode current increases. The increase in cathode current through R biases the grid more negative, thus increasing the sensitivity of the tube and making the shadow angle smaller for a given grid voltage.

The value of R will probably be between 5,000 and 10,000 ohms, depending on the type of tube. The exact value should be determined by experiment. If R is too large, the tube may oscillate and limit its usefulness as an indicator.—D. Bosman

Equalizer for V-R Pickups

It is not necessary to use the 6SC7 preamplifier-equalizer with variable-reductions pickups when connecting them to conventional public-address amplifiers if you use the simple equalizer circuit shown.

The response with the equalizer is substantially flat. A slight bass boost can be had by replacing the .03 uf capacitor with a .02 uf unit. A slight high-frequency roll-off can be obtained by shunting the pickup with a resistance of 5,000 to 10,000 ohms. The equalizer components should be placed in a shield can and connected to the amplifier and pickup through low-capacitance, shielded cable.—T. A. Hildebrand

Replacing Rubber Washers

Many of the older receivers use rubber washers in friction-type dial mechanisms. When the rubber rotors age or deteriorate because of oil spilt on it, replacement washers are seldom available. Being unable to obtain replacement washers for a dial drive, I made them by cutting circles (see drawing) from the bulb of a medicine dropper of the type which is built into the top of eye-wash and nose-drop bottles. The rubber used in these droppers is of good quality, has fine grain and is of a convenient size.

If the washers do not fit snugly on the dial shaft, build up the shaft with layers of friction tape before slipping the washer on it. Clean the mechanism with carbon tet to make sure that there is no oily residue to contaminate the rubber.—J. A. Sabourin

Inductance Measurements

Multimeters having capacitance scales can be used to measure the inductance of small, low-resistance inductors. Adjust the meter to read capacitance in microfarads, place the inductor between the test leads, then record the meter reading. Measure the d.c. resistance of the inductor. The inductance in henries is found by solving the equation

\[L = \frac{X^2 - R^2}{277} \]

where X is the 60-cycle reactance of the capacitance indicated on the meter, and R is the d.c. resistance of the inductor. The number 277 is 2π times the frequency of 60 cycles.

For example, assume that a choke has a d.c. resistance of 50 ohms and the meter reads 8 uf. Referring to a capacitive reactance chart, we find that the 60-cycle reactance of an 8 uf capacitor is 340 ohms. Substituting in the equation,

\[L = \frac{X^2 - 50^2}{277} = \frac{335}{277} = 0.83 \text{ henry.} \]

These calculations were carried out to slide-rule accuracy.—George McCutlough
NEGLIGENCE TO BE PROVIDED FOR THE FOLLOWING TYPES OF EQUIPMENT:

- Receiver
- Transmitter
- Modulator
- Hi-Kap COB Speakers
- Modulator
- Hi-Kap COB Speakers
New Devices

TWIN-DRIVEN YAGI

Technical Appliance Corp.
Sherburne, N. Y.

A new twin-driven Yagi, No. 985—4/5, has performance peaks at both channel 4 and channel 5.

With this new design it will now be possible to achieve the gain in the antenna heretofore possible on only one channel. In fringe areas or weak signal locations it will bring in signals and at the same time not require the most height required for comparable signals by other antenna types.

TWO TUBE TESTERS

Sylvania Electric Co.
New York, N. Y.

Features of Sylvania's new testers for portable and bench use include an ammeter—type plugs and leakage test, which indicates "Replace" or "Good" directly on the instrument's illuminated meter; direct meter indication for all other tests, as easy-to-operate gas test; and a combined emission and transit conductance test under dynamic operating conditions, which takes relative tube life into account. Twelve sockets provide for testing tubes: five, six, seven, eight, and nine-pin tubes; octal and lock-in miniature; subminiature, acorn, and hearing-aid types; mobile and ruggedized tubes; and pilot lamps.

Facilities for unannounced types are included. Control settings are shown on a roller chart which is easily removable from the front panel for adding new tube settings.

RADIO KITS

Meissner Mfg. Division
Maguire Industries Ltd.
Mt. Carmel, Ill.

Meissner announces the addition of five new radio kits to their line (which includes the Signal Shifter Kit, broadcast and shortwave kit, and others).

Typical of the kits in this new group is the TECK, the Meissner FM receiver in easy-to-build kit form. The TEAK is a 20-watt power amplifier kit that can be quickly assembled into a professional-looking piece of equipment. The TBK, 3-tube battery trainer kit and the 138K a.c.-d.c. training kit furnish beginners with instruction and low-cost radio sets. The T168K a.c.-d.c. superhet kit affords instruction in more advanced receiver design.

IMPROVED PICKUPS

The Astatic Corporation
Covington, Ohio

The new units of the AC series have housings of molded Bakelite and metal mounting brackets (which fit standard 1/2-inch mounting centers) and needle guards. The cartidges use Astatic's special type C Taper-Lock need, which features ease of changeability without tools.

There are four models in the AC series. Model AC-78 has a 3-milliradiation stylus tip, either precious metal or sapphire, for standard 7, 8, and 10 rpm records; model AC-9, a 1-millisecond stylus for narrow-groove, slow-speed records, model AC-AG has Astatic's new all- groove records on one side and 78 r.p.m. on the other. The frequency range of all models is from 50 to 12,000 cycles. Needle pressure of the AC model is 1 gram, while that of the others is 6 grams. Output of all at approximately 1,000 cycles is 1 volt, using the Audionize 78, and RCA 10-W-21 Yagi tools.

LOUD SPEAKERS

University Loudspeakers Inc.
White Plains, N. Y.

Two complete reflex trumpet speakers with an integral 30-watt driver unit and built-in multiflap line matching transformers are announced. Model T6BK is UL approved for class I, groups C and D, which include locations in which flammable and ignitable liquids or highly flammable gases, mixtures or other flammable substances are manufactured, used, handled, or stored. Model T2BK is approved for both class I as well as class II, groups E, F, and G, which include those locations in which combustible dust is thrown or suspended in air, producing explosive mixtures, and in places such dust may collect or settle on motors, lamps, or other electrical devices.

Specifications for both models are as follows: maximum permissible input, 30 watts; frequency response, 200-10,000 cycles; impedances, 4, 500; 1, 500; 2, 000 ohms. The dimensions are: length—19 inches; height—16 inches; and the weight 20 lbs.
It has an electronic automatic voltage regulator to keep the high voltage constant.

The specifications are: Size: approximately 3½ x 4 x 8½ inches. Weight: approximately 3½ lbs. Ranges: 20, 2, and 0.2 millimicroamperes per hour. Sensitivity: beta and gamma.

8-WATT AMPLIFIER
Minnesota Electronics Corp.

This amplifier is an 8-watt unit designed for the inexpensive home installation in which an amplifier is needed for radio, phonograph, and television. Specifications are:

Input impedance: 100 ohms, variable. Variation available ± 16 decibels at 90% power, with normal boost at no very low frequencies.

Tone control: Continuously variable. Variation available ± 16 decibels at 10,000 cycles.

Hy-Son Tweeter
Stephens Manufacturing Corp.

The Hy-Son tweeter is a high-frequency reproducer designed for the 3,500-20,000 cycle range. Specifications are:

TWIN-TRAX* TAPE RECORDERS

- WIDER FREQUENCY RESPONSE
- GREATER DYNAMIC RANGE
- LONGER PLAYING TIME
- --- and lower price!

Professional-type specifications that mean professional quality, operating ease, and trouble-free construction that you would normally associate with recorders selling at $100 and more. Yet the Twin-Trax Recorder series is available to you direct from the factory at low factory prices, starting at $285 for complete high-fidelity recorders, and $89.50 for precision-built basic tape transport mechanisms.

If you are thinking of buying a tape recorder, or if you use recorded sound for any purpose—personal enjoyment or in your business, there is a Twin-Trax Instrument for you, equipped with more than 30 standard and special Twin-Trax models available, including continuing-playing instruments, two-speed models, 24-hour recorder, etc.

Learn why Twin-Trax is the only professional recorder in the popular-price field. Save many dollars by dealing direct with the factory. Write today for our illustrated 16-page catalog, including complete technical data.

AMPLIFIER CORP. OF AMERICA

SAVE
THAT GOOD LOOKING OLD CONSOLE
WITH THE OBsolete RADIO!
install a modern
ESPEY AM/FM CHASSIS
and your favorite console is "right-up-to-date"

Rated on an excellent instrument by America's foremost electronic engineers. Fully licensed under RCA patents. The photo shows the Espey Model 511, supplied ready to play. Equipped with tubes, antenna, speaker and all necessary hardware for mounting.

ATTENTION SERVICEMEN—Did you know there are over 17 million consoles waiting to have a modern AM/FM chassis installed? Here is a gigantic sales market just waiting for you to develop. In fact there are thousands of out-moded radios in your "backyard" just waiting to be replaced.

Visit our Booth 406 at the Parts Show

Write for literature RC 155, complete specifications on Model 511 and others.

Makers of fine radios since 1928.

ESPEY MANUFACTURING COMPANY, INC.
528 EAST 71ST STREET, NEW YORK 3, N. Y.
NOW you can get in KIT FORM the best professional test equipment made by RCP—one of the outstanding manufacturers of test instruments for 18 years. Thousands and thousands of RCP testers are in use—giving satisfaction for years.

EASY TO BUILD!
Each Kit contains simple step by step illustrated instructions—clear wiring diagrams—assembly diagrams—multi-colored stranded wires for easy checking and trouble shooting—easiest to follow.

MERTIAL MODEL 345K
SUPER VOLTAGE TYPE VOMETER
Features long scale 4.5" meter in horn cut proof meter circuit—electronic balanced bridge type pots pull circuit—negligible current drawn due to high input impedance of 25 megoms—Isolation Probe—center of scale 10 volt microammeter ranges reading from 2 close to 1 billion ohms (1000 megomms). 20 volt ranges 0-1000 volts including 100 and 150—Complete B.B. meter. Discriminator alignment scale with zero center permitting operation in both directions. Operates on 105-130 volts, 50-60 cycles—Extra large panel, case and chassis. Size 16" x 6 1/2 x 5". Weight 81/2 lb. Shipping weight 11 lb.

MODEL 345K COMPLETE
Complete factory built and wired. $23.95

Super High Voltage Model HVHF345K includes high voltage multiplier probe and has extra 100 volt ranges—0-6,5-100-500-1000-1500-20,000-50,000 volts with certified ultra scale probe.

Complete Kit $27.95
Factory built and wired $57.95

MODEL 777A
DYNATRACER
New Model Dual Trace—Ultra Modern Circuit design provides extremely high amplification so that actual print measurements may be made. Accurate meter gives calibrated indications. Provides field trimming of trouble shooting tool with accurate any type of circuits. Provides audio trace or positive indication of waveform via oscillograph. Designed noise pickup at the signal to-be-audio—AFC, line and fifty circuits. You get results of actual test and actually hear the signal and frequency variation or distortion at eye point in the circuit. Permits you to follow through from the antenna through each stage of the receiver step by step without opening any switches. Negligible outside pickup of radio and hum—negligible distortion to circuit under test as the input capacity is only 3 microfarads/each. Attenuation is 16,000 to 1 by means of a ladder attenuator with ten range of ten. Slightness of 10,000 output for full scale deflection of meter or 200 mV per division. Frequency range approximately 100,000 megacycles. Jock provided for testing microphones and pickup circuits. Automatic control switch permits either speaker or oscillator to be used above or together or standby. Uses 6A3 input, 6AQ5 output, 6SJ7 exciter, 6C34 rectifier and 7020 tube. Complete Kit $31.25

Complete Kit HVHF345K
Complete factory built and wired $64.95

HIGH VOLTAGE MULTIPLIER KIT
MODEL HVMP-1K
Permits multiplying all ranges X100 of Model 345 or any other similar impedance V.T. voltmeters—special ceramic insulated high voltage resistor certified safe for all ranges up to 25,000 volts.

Complete Kit $5.95

HVM-1—Complete factory built $7.95

Buy them from your jobber, or, if he cannot supply you, write factory direct. Accept no substitute.

See these units on display at the Radio Parts & Electronic Equipment Show Chicago—May 22-25—Stevens Hotel—Booth 416 or Display Room 556A

Write for Catalog 5 RE

RADIO CITY PRODUCTS CO., INC.
152 WEST 25th ST. NEW YORK 1, N. Y.

New Patents

VOLUME COMPRESSOR
Patent No. 2,492,707

This communication system has facilities for 2 microphone inputs. One is volume-controlled for use by trainmen in noisy locations. Different speed levels give practically constant output. Loud speech reduces the background noise because of the volume limiter. The second microphone input is not controlled.

AUTOMATIC RAILWAY SIGNALING
Patent No. 2,492,388
Paul N. Martin, Penn Township, Pa. (Assigned to Union Switch & Signal Co.)

This circuit has special importance in detecting the presence of railway cars on a stretch of track. Other methods often depend upon current flow through rails, but when rails are seldom used, their resistance is apt to become very high. In this case the capacitance of a car operates the circuit.

Car capacitance operates the circuit.

V1 is a low-frequency Hartley oscillator with tank circuit Ll, L2. and C1. The upper end of L1 is connected to the grid of a high - frequency tube C2. The full range of lines 1 and 2 may be suspended alongside the rails as in (a) or they may be in the form of additional rails as in (b). In either case the capacitance between line 1 and ground is normally small. Note that condenser 2 acts as a shield for 1 over the distance between the tank circuit and the section of track. C2 is adjusted to prevent oscillations. When a car is moved onto the tracks adjacent to the lines 1 and 2 (dotted figure), appreciable capacitance is shunted across C2 and oscillations start. These are transferred to L1 and amplified by V2. The a.e. is rectified for energizing relay R. The relay contacts may be used to throw a rail switch, turn on a danger signal, etc., to prevent the movement of another car onto the same siding.

Alternate ways of running the lines.

RADIO-ELECTRONICS for
Now Tel-O-Tube 16XP4 16" Rectangular

Take a tip from the quality-conscious receiver manufacturers—specify Tel-O-Tube. We have a "honey" of a sales story for every TV serviceman interested in profits in picture tubes. For full details, write NOW to Dept. E-1.

MAY, 1950

New Tel-O-Tube 16XP4 16” Rectangular

For manufacturers, Tel-O-Tube has long meant higher picture tube quality at lower cost. The list of famous TV manufacturers who have specified Tel-O-Tubes for their production is a virtual who's who of the industry—Admiral, Amstel, Crosley, Emerson, Garrod, Olympic, Starrett, Tele-King, Telen-Tone, Sylvania, Video Corporation of America, etc. Again and again, Tel-O-Tubes meet the critical approval of these receiver manufacturers.

Here is indisputable proof of Tel-O-Tube superiority! Now Tel-O-Tube means more replacement sales at lower cost for more profits for you. We have stepped up our production to a new high of 1800 a day, and are pushing higher every week— to fill your replacement needs for the finest picture tubes of every type—with immediate delivery!

Tel-O-Tubes are made in our 3 new modern plants under the most stringent quality controls and test tolerances. And this is backed by the latest engineering "know-how". That's why you get more dependable performance and longer life— for more sales and more profits—with Tel-O-Tubes.

Oscilloscope Sweep

Patent No. 2,489,312
Humbert P. Pacini, Utica, N. Y.
(Assigned to the United States of America as representative by the Sec'y of War)

For precise oscilloscope measurements an accurate sawtooth sweep must be used. The rising portion must be linear and the retrace must be rapid. Both requirements are met with this Tel-O-Tube circuit. A square wave generator controls the charge and discharge of a capacitor.

The pentode is biased below cutoff to conduct only when the square wave input exceeds its base. The plate current of a pentode remains constant regardless of plate voltage. The screen voltage exercising considerable control over Ip, a VR tube is used to keep this voltage fixed.

When the square wave is positive, the pentode conducts and the constant Ip flows through R. A voltage drop then exists across the resistor and this biases the triode to cutoff. C charges at a linear rate. When the square wave polarity changes, pentode current stops and the bias across R disappears. The triode conducts and discharges C quickly. The next sawtooth wave begins when the square wave swings positive again. The sweep voltage appears across C.

The potentiometer P controls the bias on the pentode and therefore determines the height of the sawtooth (sweep amplitude). Less bias means more plate current and therefore a greater sawtooth voltage. The width and frequency of the sawtooth wave equal that of the square wave generator.

A lead from the square wave generator may be connected to the oscilloscope to blank the pattern during retrace.

MERCURY-CONTROLLED OSCILLATOR

Patent No. 2,491,486
Harold L. Ewen, U.S. Navy
(May be used by the U.S. Government without payment of royalties)

McGurky is a conductor of electricity and therefore affects the magnetic field of a coil. If a mercury thermometer is placed within an oscillator tank coil, the frequency depends upon the height of the mercury column.

As a typical application of this invention, small changes of temperature may be indicated by noting the frequency of an oscillator (which has been previously calibrated in terms of degrees).

MAGNETIC DETECTOR

Patent No. 2,477,337
William E. Kobi, West New York, N. J.
(Assigned to Bell Tel. Labs, Inc.)

This invention relates to magnetic detectors such as the one illustrated here. The a.c. source is filtered to supply a pure sine current to the magnetometer coil L. Because of saturation, the flux around L and the induced voltage across it becomes distorted. Although the induced voltage is distorted, it remains symmetrical because the exciting current is symmetrical. A symmetrical voltage wave has no even harmonics.

In the presence of an external, unidirectional, flux, the field near L is no longer symmetrical. The external flux adds to the flux, during one half cycle and subtracts from it during the other half. Therefore, the induced voltage across L is asymmetrical and contains even harmonics. The strength of the external field is indicated by the magnitude of the even harmonics, preferably the second. The output filter passes only second harmonies to be measured or recorded.

This invention has discovered that, when L is tuned to series resonance (by capacitor C), the magnetometer is less critical to changes in exciting current or distributed capacitance Cs between leads. A resistor R also improves the performance.

MINE COMMUNICATIONS

Patent No. 2,499,195
James A. McNiven, New York, N. Y.

In mine emergencies, such as cave-ins, explosions or fires, miners may be imprisoned in isolated tunnels. Rescue operations could be carried on more efficiently and with a greater chance of success if the miners below could communicate with the rescuers and direct their operations.

This invention describes a frequency-modulation communications system operating on frequencies between 80 and 150 kc. The antenna system consists of probes driven into the roof or sides of the tunnel, as far apart as may be feasible. The equipment is so designed that it may be operated with power obtained from miners’ lamp batteries or a hand-cranked generator.

www.americanradiohistory.com
Radio-Electronic Circuits

COMPACT SHORT-RANGE TRANSMITTER

"Radio Mike," a compact, portable, transmitter described in RCA Review, was designed for short-range communication in the range between 23 and 30 mc. It is useful for broadcast and telecast relays, emergency services, and portable amateur operation.

The r.f. section consists of a 3A5 Pierce oscillator and regenerative—overneutralized—tripler driving a 3A4 power amplifier. The antenna is a 20-inch length of thin aluminum tubing coupled to the transmitter through a spring-type loading coil. Measured output is 250 milliwatts.

A neon-lamp tuning indicator and pilot lamp is connected between the plate and screen of the power amplifier. When the switch is off, plate and screen voltages are equal and the lamp does not glow. To tune the transmitter, adjust the tripler tuning capacitor for minimum brilliance, then tune the power amplifier for maximum brilliance.

The audio circuit consists of a 1L4 speech amplifier and a 3A4 modulator. Three crystal microphone cartridges are connected in series so their additive outputs will be sufficient to drive the modulator from the 1L4. An additional speech amplifier is required if a single microphone unit is used.

This circuit incorporates an automatic modulation control. A portion of the output of the modulator is rectified by a 1N34 and applied to the control grid of the 1L4. When the sound input exceeds a preset level, the 1N34 develops a negative voltage high enough to lower the gain of the 1L4.

The power switch has three positions. In the low position, a 1.5-ohm resistor is inserted in series with the A-minus line to reduce the plate and filament power drains. This resistor drops the filament voltage to 1.1 volts with a new 1.5-volt battery. When the battery begins to drop off, the switch is thrown to high. Battery drain will be reduced if reliable contacts can be had with the switch in the low position.

The transmitter and batteries are in an aluminum case 4 1/2 x 3 3/4 x 10 inches. Entire unit weighs six pounds.

Suggested coil data for 10- and 11-meter operation as follows:
22 turns of No. 20 d.c.c. tapped at the center for the 3A5 tripler, and 13 turns of No. 20 d.c.c. for the 3A4 final amplifier. Both coils may be wound on 3/8-inch forms.

OSCILLATOR CIRCUITS

The circuit of an audio oscillator (Fig. 1) is a diagram of a transistor-type crystal-controlled r.f. oscillator demonstrated by the Signal Corps at

USING TRANSISTORS

Fig. 2 is a diagram of a transistor-type crystal-controlled r.f. oscillator demonstrated by the Signal Corps at

Radio-Electronics
the recent Radio Engineering Show in New York. Power input to the collector is approximately 60 milliwatts, and the 6S8-GT. The a.f. amplifier socket can be rewired for an additional i.f. stage, b.f.o., or secondary frequency standard. A 6S7 or similar 150-ma tube will effect a saving in heater current. A 12S8-GT can be used in a.c.-d.c. equipment.—L. H Trent

CRYSTAL ABSORPTION METER

Because of its high Q, a crystal makes a very selective absorption meter. The crystal can absorb a considerable amount of r.f. energy from a nearby tank coil. One terminal of the crystal may be grounded and the other left free. Alternatively, the crystal may be coupled to the circuit through a small capacitor. In either case, the r.f. energy dips sharply as the circuit is tuned to the frequency of the crystal.

The figure shows how a crystal is used to check the calibration of a v.f.o. As the tank is tuned through crystal resonance, there is an abrupt loss of excitation to the following stages. A grid or plate meter in the final will indicate when this occurs. If two or three crystals are available, it is easy to calibrate the v.f.o. at several points without using a crystal standard and a receiver or more elaborate calibrating equipment.—W6GUX

SOURCE OF A.V.C.

Voltage in amateur, portable, and mobile 6-volt receivers. The triode section is—for all practical purposes—equivalent to that of a 6Q7 or 6S8G. A 6H6 will work as the noise limiter but it requires an extra socket and draws an additional 300 ma from the heater supply. A 1N34 could be used in the noise limiter circuit, but we have found that it will not work well on strong noise pulses and its bias voltage is critical. The a.n.l. components have been selected to have the circuits work at levels above 95% modulation.

This circuit can be added to many existing receivers. If the set has a 6H6 detector, its socket can be rewired for

6S8-GT IN AMATEUR RECEIVERS

The diagram shows how a 6S8-GT can be used as second detector, a.f. amplifier, or series noise limiter and

CRITICAL APPROXIMATELY 60 MILLIWATTS

The output is 10 milliwatts. The circuit oscillates on a frequency close to the series-resonant frequency of the crystal. The coil and capacitor are selected to tune to the crystal frequency.
Hi-Volt Electrostatic Generators

Two new electrostatic generators, developing 20,000 and 6,000 volts, respectively, and weighing only about 10 pounds each, were disclosed by the Army Engineer Research and Development Laboratories at Ft. Belvoir, Va.

Designed for use as a high-potential power supply for electron image tubes, the generators are driven by a spring motor with a manually operated governor. The 14-1 gear ratio between the generator and the driving motor makes possible continuous operation for 19 minutes on a single winding.

The generators consist of a spring motor driving a rotor made up of plastic laminated with metal foil. As the rotor turns between stator plates (already given an initial charge), a voltage is built up by induction on the metallic foil. At the proper moment, the voltage is picked off the foil by means of brushes and is transported to the stator plates.

The figure shows how the generators work. The two insulated metallic stator plates are designated 1 and 2. Metallic segments 3 and 4 are mounted diametrically on a Lucite rotor blade. If stator plate 1 is given an initial positive charge and rotor segment 3 is caused to approach stator plate 1, the electrons in this rotor segment are attracted to the side of the segment facing the stator plate 1 and leave the other side of the same segment positively charged.

Simultaneously, the charges on rotor segment 4 are segregated in the same way by the influence of stator 2. If at this instant the rotor segments come in contact with electrically interconnected brushes 5, electrons will flow from segment 4 to segment 3, thus leaving segment 3 negatively charged and segment 4 charged positively.

When the rotor is caused to rotate 150 degrees, negatively charged segment 3 moves toward negative stator plate 2, while positively charged segment 4 moves toward positive stator plate 1. As the segments approach this position, they are respectively discharged by brushes 6 and 7 which transfer the charges to the stator plates.

By continuously turning the rotor, this cycle is repeated and stator plate 1 becomes increasingly positively charged while stator plate 2 becomes increasingly negatively charged. If several pairs of rotor segments are put on the rotor, the rate of building up the charge on the stator plates is increased for a given speed of the rotor.

The initial charge is placed on the plates by a manually operated friction-type electrostatic generator which appears as a small knob on the side of the generator housing. After the initial charge, the process of building up the voltage and transporting it to the plates is continuous as long as the rotor turns.

How the static charges are built up.

These portable generators supply high voltages for low-current applications.
The TRIO "CONTROLLED PATTERN"

PATENT APPLIED FOR

TV ANTENNA SYSTEM MODEL 604

Eliminates Venetian Blind Effect!

USES NEW "PHASITRON" and DOUBLE DIPOLE YAGI

ELIMINATES CO-CHANNEL INTERFERENCE

With 17 db Gain in Forward Direction!

TRIO MFG. COMPANY takes pride in announcing the greatest advance in TV antennas for fringe areas - the new TRIO "Controlled Pattern" Antenna System, the culmination of extensive research by G. N. Carmichael, TRIO'S Chief Engineer, and one of the nation's foremost antenna authorities.

The new lightweight, yet rugged antenna not only provides terrific gain in the forward direction, but overcomes that ever increasing problem in fringe areas - co-channel interference. This is how the unique system works: High voltage from two double dipole Yagis is phased by the use of the new tunable "PHASITRON" to provide addition of voltages from the desired direction and cancellation of undesired voltages.

FOR FULL DETAILS WRITE FOR ILLUSTRATED FOLDER

TRIO MANUFACTURING COMPANY
GRIGGSVILLE, ILLINOIS

ULTRASONIC SOLDERING

A N ULTRASONIC soldering gun has been developed that will successfully solder aluminum and other metals and alloys which form oxide films under normal atmospheric conditions and will not respond to ordinary soldering methods.

The new soldering gun has the normal type of copper tip heated in the usual manner by a resistance winding. The copper tip is secured to a brass block which in turn is held in firm contact with the nickel core of a magnetostriction transducer. A winding around the transducer provides the excitation.

In application, the tip of the gun is allowed to heat to the operating temperature. The transducer is then energized and the tip is tinned by applying a soft solder. The tip is applied to the work and solder is fed in the usual way. It is essential to keep a good liquid contact between the tip and the work for maximum acoustical efficiency.

The effect of the ultrasonic vibration is to destroy the oxide surface temporarily and leave a clean surface for the solder.

The power needed to supply the magnetostriiction unit is supplied by an electronic amplifier that operates directly from the a.c. lines. The output frequency is obtained by feeding back the resonant frequency of the vibrating element to the amplifier input by means of a coil on the element. The operating frequency is chosen well above the normal audible range so that no discomfort is experienced by the operator.

The ultrasonic soldering gun was developed in the Mullard Research Laboratories in London.

NEW!

PHASITRON

MAY, 1950
THE FINEST 16" TELEVISION SET EVER DESIGNED!

With Automatic Gain Control (AGC)

Now you can have the finest 1950 model VHF/Channel 2 television model ever designed. Custom-built and improved with unusually high performance, this set gives you thousands of hours of fine entertainment during day or nighttime viewing. This outstanding new television is designed and produced by the famous television set manufacturers who have used by many Radio & TV engineers than any other set ever manufactured.

The 36 tube circuit is more sensitive than any of the cheaper sets having less tubes and the long, fine-tuned, 15-volt AGC circuit which acts as a high-gain built-in Television Blank Screen. Also featured is an automatic frequency control system that prevents the picture from steady and makes tuning easier.

Factory wired and tested, ready to operate. Shipped complete with tubes, 16" picture tube, Eureka Consolette, Mahogany or Walnut, and special vacuum tubes. Guaranteed for one year.

SPECIAL!
Super-Giant 19" Television Set, 630 type similar to above, but modified to provide a whopper-sized picture. Factory-wired and tested, ready to operate. Shipped complete with 16" picture tube, full set of tubes, $195.00. Extra-Clear 19" glass picture tube, guaranteed for one year.

DE LUXE TELEVISION CABINETS
Beautifully designed to match the 630 chassis without distracting. Solidly constructed like the finest furniture with a satin finish. Each ship with complete with mask and protective glass window.

16" Table Model—Mahogany or Walnut $39.95
19" Table Model—Mahogany or Walnut...$44.95
16" Console—with drop panel to conceal knobs—Mahogany or Walnut...$69.50
Blonde...$79.50
19" Console—with drop panel as above—Mahogany or Walnut...$89.50
Blonde...$89.50

CUSTOM AUTOMOBILE RADIOS
To Match Popular Cars
RadioMEN! Here's your chance to make large extra profits. Selling your own name without a display. All that you have to do is get in touch with the local Ford, Plymouth, or Chrysler dealer, tell him that you can supply custom-built radios to perfection. You have the technical information (RF-1950 models of these cars for about 1/3 the price that is usually charged. Very simple installation...no holes to drill. SPECIFICATIONS—Powerful 4 tube super heterodyne; 3 gang condenser with extra stage of Q'ty.; latest miniature tubes; oversize loud speaker. When ordering specify Ford, Dodge, Plymouth or Chevrolet. List Price $45.50. YOUR COST $34.97.

TWO STATION INTER-COMMUNICATION SYSTEM
Radiomen—provide yourself with an additional source of income by selling and installing these fine 150-Watt Intercoms. Fully warranted. Selling Features: For the nursery (baby sitting) home, in private homes, hotels, etc., in private homes, hotels, etc. For home entertainment, for family entertainment, or for all communication purposes. Also for use on all commercial establishments, even the smallest. Price $30.00. Extra for 50 feet twin lead cable...$1.00.

For complete list of special buys for experimenters, tube collectors, schools and engineers. Write for catalog T-5.

RADIO DEALERS SUPPLY CO.
154 GREENWICH ST. NEW YORK 6, N. Y.

ELECTRONIC LITERATURE

Any or all of these catalogs, bulletins, and periodicals are available to you if you write to us on your letterhead (do not use postcards) and request them by number.

Send coin or stamps where cash is required. We will forward the request to the manufacturer. The Radio Turn will send the literature directly to you. This offer valid after six months.

MY-1—GASOLINE GENERATOR BOOKLET

An eight-page booklet has been issued by Walter Onian & Sons, London, describing their complete line of gasoline-driven electric plants ranging from 260 to 35,000 watts, in all standard voltages, frequencies, and phases. Special accessories, including automatic controls, fuel tanks, remote stations and wires, and two-wheeled dollies and trailers, are also listed. A model guide has been included which points out the different types of models and gives instructions for connecting up the proper type, size, and starting method. An additional four-page booklet gives information on diesel electric plants.

—Gratis

MY-2—STANDARD TUNER DATA

Standard Coil Products Company, Inc., has issued a four-page bulletin giving schematic diagrams, mounting dimensions, and alignment procedures for the Standard TV tuners TV-101 and 201. A supplementary sheet gives data on tuner TV-250—Gratis

MY-3—TV VIEWING TUBE BOOKLET

This 20-page booklet details television picture tube and general-purpose cathode-ray tube characteristics, replacement tube data, base diagrams, suggestions for tube handling, and a concise description of cathode-ray oscilloscopes used in TV servicing. Published by R. C. B. Division, Sylvania Electric Products Inc.

A new viewing tube replacement chart lists 120 tube types and shows interchangeable types, changes required for tubes of different face size and over-all tube sizes. The chart is for TV sets designed for obsolete tube types, and data for kit builders wishing to increase picture tube size. A total of 165 tube types ranging from 2 to 20 inches in size and using both electrostatic and magnetic deflection systems are covered by the booklet.

MY-4—TEST EQUIPMENT

A 12-page catalog issued by the Precision Apparatus Company describes their line of test equipment including signal generators, oscilloscopes, tube testers, vacuum-tube voltmeters, and volt-ohmmeters.

MY-5—SYNCHRONOUS GENERATORS

Bulletin GE-5415 of the General Electric Company describes high-speed synchronous generators for standby, portable, and prime power source. The 8-page booklet gives construction features and performance data of the generators which have ratings from 12½ kva to 1250 kva and speeds from 1800 r.p.m. to 514 r.p.m.—Gratis

Technical Bulletins

EACH $1.00 Postpaid Foreign $1.25

Electrical Design and Construction

These bulletins give you easy, accurate, dependable methods of designing and building electrical equipment. You just follow simple charts, tables and step-by-step instructions that tell you how to figure correct size units to meet specific requirements.

106 Rewinding Electric Motors—Enables anyone without electrical training to locate trouble, repair and rewound a.c. or d.c. motors and generators of all kinds. Shows where to figure wire and wind coils.

111 Transformers—How to design and build all types and sizes of transformers including specials for Neon tubes and ultraviolet lamps. Easy methods of determining core dimensions and wire sizes. Shows many different circuits. Explains how to use latest type of materials including fittings, fixtures. Also gives estimating methods.

101 Resistance Wire—How to use Nichrome and similar wire in heating devices. Shows all resistance coils. Figuring wire size and length; how to wind elements and test. Also supply directory.

113 Solenoids & Plunger Magnets—How to make them a.c. and d.c. magnets having no trouble in plugging plunger to control other equipment. How to figure dimensions, plunger stroke, wire size, etc.

112 Electromagnets—How to design and build all types and sizes for a.c. and d.c. How to figure lifting power, wire size.

149 Relays—Designing and building a.c. and d.c. relays of any size for various purposes where small currents and voltages must control heavy circuits. Includes control systems for motors and machines.

127 Meters—Designing and building ammeters, voltmeters, wattmeters, for a.c. and d.c. Includes complete information on calibrating.

127 Small Electric Light Plants—Easy-to-build, low-cost installations for cottages, camps, etc. Includes a 110-volt, seven 25-watt lamp system; also a 6-volt system using auto generator.

151 Electric Power from Streams—How to survey streams, estimate requirements and available power, design and build dams, select and install the control system and electrical equipment.

161 Burglar Alarms & Time Switches—Dependable types for major purposes and requirements. Also for alarm clocks and arranged to control lights, sprinkler systems, motors and other devices.

144 Check Cables—How to design and build for many different purposes. How to use these instead of rheostates for voltage control, safely and with much less loss of electricity.

131 Remote Control of Electrical Devices—Circuits and applications. How to use telephone line and Stroger switch. For experimenters and model-railroading switchers.

TECHNIFAX,
110 N. Franklin St.
Chicago 6, Ill.

Enclosed find $ for which send the following Technical Bulletins at $1.00 each (Foreign $1.25) as indicated by numbers:

Name ____________________________
Address __________________________

* 100 RADIO-ELECTRONICS
My.6—TV AND FM COILS
An eight-page catalog issued by the Sylvania Winding Co. describes their TV and FM coils. The catalog contains replacement data as well as circuit diagrams in which the coils are used. —Gratis

My.7—RUGGED INSTRUMENTS
A 12-page booklet put out by the Marion Electrical Instrument Co. describes their "ruggedized" electrical instruments. The booklet gives in detail the construction features which make the instruments rugged and describes performance tests which the instruments must undergo.—Gratis

My.8—GE HAM NEWS
Ham News, bimonthly publication of the General Electric Company, is now available on a yearly subscription basis for those who find it difficult to obtain each issue. Subscription blanks are obtainable at any G-E tube distributor. Ham News will still be available on a free basis if picked up at a distributor’s headquarters. Rate $1.00 per year.

My.9—PRECISION RESISTOR CATALOG
A catalog of 36 pages with information on their line of precision wire-wound resistors and resistive devices for sound equipment has been issued by the Cinema Engineering Co. An interesting feature is a kit for making wire-wound resistors up to 5% tolerance without the use of instruments. —Gratis

My.10—TV TUBE GUIDE
A 56-page television receiver tube complement book, listing by make and model the number and type of receiving and picture tubes used in more than 620 sets, has been issued by Sylvania Electric Products, Inc. The book contains a chart showing the percentage of each of 136 receiving tube types used in TV sets distributed by 85 manufacturers and also a list with names and addresses of 80 TV set manufacturers. Replacement data is given for 120 TV picture tube types. —Price 75c.

My.11—TRANSMISSION LINE
Bulletin No. 5 of the Andrew Corporation describes their Type 450 rigid transmission line and accessories for AM and FM. An accompanying bulletin, No. 49, is a price list for the equipment.—Gratis

My.12—TV INSTRUMENTS
Signal generators, field strength meters and FM test sets, a custom-built TV receiver, and other equipment is described in a 12-page catalog issued by the Approved Electronic Instrument Corp. Included are a signal generator and an FM and TV sweep generator kit.—Gratis

My.13—TEMPERATURE REGULATOR
An electronic temperature regulator for aircraft cabins and other uses in high-speed aircraft is described in a bulletin of the AiResearch Manufacturing Co. The device anticipates the rate of change of temperature.—Gratis

My.14—CONNECTOR CHART
The 1949 Cannon desk chart gives the layout and all type K connectors. Measuring 19 x 24 inches it contains 211 layouts with wire, contact, and clearance data. Major shell types and styles are shown with exploded views.—Gratis

My.15—DUAL CONTROL DATA
A 20-page manual containing replacement data for concentric dual controls has been put out by the International Resistance Co. The manual covers only those dual controls on which rear and panel sections are operated independently by concentric shafts. The listings are comprehensive, covering early prewar concentrics for home and auto radios and continuing up to television receivers appearing in the fall of 1949.—Price 25c

MAY, 1950

www.americanradiohistory.com
WHERE TO BUY IT . . . WHOLESALE RADIO of Baltimore

FLASH! Just Received
The Sensational New ANCHOR 2 STAGE BOOSTER

Operates in fringe areas formerly unreachable. Will outperform any other booster. **$26.97**

Lowest Price Anywhere! Compare!
HI-BAND ADAPTER

Excellent dipole and reflector. All durable mounting bracket for indoor or outdoor use. Requires no more than a 1/2" hole. **$1.49**

Sensational Antenna Buy!
SYNDER HI-LO ARRAY

Complete With Mast Sections

Model TV 21-300 Complete

$59.50

T.V. ANTENNA ACCESSORIES

High in Quality! Low in Price!

STEEL EXTENSION POLES
No. 10 B. B. L. Long. 91"th. **$1.49**

PLATE VOLTAGE INDUCTORS
15, 25, 30, and 40 ohm. **$1.99**

ANTENNA SWIVEL BASE
Aluminum. **$1.99**

PLATE VOLTAGE COILS
8000-50,000 K. **$1.99**

LOW CORRUGATED CABLE
300 ft. 1/2" wide. **$6.00**

DI AMOND CO FINGER BRACKETS
300 Double Lead. $1.45 per 100 ft. 1,000 lbs. **$1.75**

CHIMNEY MOUNT BRACKETS
Complete with strap. $1.99

Satin Chrome 1/4" Stand-off Insulators
100. **$2.75**

WIRE LIFTERS
500 ft. from wall to window. **$3.75**

SATELLITE ANTENNA WIND PROOFERS
5 ft. & 6 ft. **$1.75**

FLOATING CINCH RING
Fine 1/4" metal. **$0.95**

MAST COUPLINGS
Carpeted swivel in box. Will couple made of 1/4" or 5/16" in. **$0.35**

For Complete TV Servicing

9 TOOL TV SERVICE KIT

In Leatherette Case

Here's the low-priced service kit you've been waiting for. Included is the latest TV servicing book and the nine tools necessary to make fast, easy TV repairs. **$3.95**

Build Your Own Booster

And Save Over 50%

Technmaster TV, Booster Kit

Complete with tubes, prescribed coils, pre-tapped chassis and handsome cabinet. **$9.95**

Improve TV reception in low-cost, low terrain and fringe areas. The booster tubes just boost the incoming signal from a 1 to 5 db. Get brighter, sharper pictures today by connecting in parallel with your radio. **$9.95**

WRITE FOR FREE MONTHLY "T.V. DIRECTORY" BULLETIN. ADDRESS ORDERS TO DEPT. OR PHONE MULBERRY 2134.

ANIMATED WINDOW DISPLAY

The photograph shows a novel attention-getter installed in the window of my radio shop in Brussels. The mounting for all the components is a piece of wood cut in the shape of a man's head. Over the parts is a second head silhouette made of Lucite. The device is capacitance-operated. When a passerby approaches the window, a light goes on, illuminating the advertising text ("Put all the trumps in your game by buying here"); a toy motor turns on a train of four gears, each of which is a dial of a playing-card symbol; and a movable piece of wood uncovers the head's eye, giving the effect of a wink.

The diagram shows how it is done. The triode section of the 12SR7 is an oscillator, the coil of which was made from an old 55-kc i.f. transformer. Almost any other frequency can be used, but steer clear of those in the broadcast band. A 7-inch square of tinfoil glued to the window makes the tube stop oscillating when a person approaches.

The plate current of the 12SR7 is rectified by the two diode plates in parallel and driven up to the grid of the 50L6 relay-control tube. When the 12SR7 stops oscillating, the 50L6 grid voltage becomes more positive, increasing the 50L6 plate current and closing the relay. The relay contacts light the 117-volt incandescent lamp which illuminates the sign and starts the motor which whirls the playing-card symbols. A piece of wood, shaped as in the photo, is attached to the relay armature. When the relay closes, this piece of wood is turned on the motor, and then the wood is forced to stop. The leads will be eliminated. Resistor R, in addition to dropping the line voltage for the series filaments, is tapped for 50L6 screen voltage. The tap is adjusted so that the relay opens and the oscillator is running and closes when it is not.

CORRECTIONS

The power transformer for the audio amplifier at the bottom of page 37 of the March issue is listed as 660 volts at 60 ma in the parts list. It should be 700 volts at 120 ma.

We thank Mr. James McDaniel, of Rosell, N. J., for this correction.

Substitute the letter I for the numeral 1 in the equation for finding the capacitance of an input capacitor in "Power Pack Design" in the February issue. This equation is in the fourth line, third column, of page 44 of that issue.

Our thanks to Mr. Perry Booker, of Lyons, Kansas, for calling this printer's error to our attention.

RADIO-ELECTRONICS
Radio Thirty-Five Years Ago

In Gernsback Publications

HUGO GERNSBACH
Founder

Modern Concepts of TRICAL EXPERIMENTER

and set, working conditions
radio and television service
radio

Electronic Technicians

have

An

Designing Spiral Aerial,

Magnetic Wireless Detector,

Wireless

Latest

Locating

the country.

association

extended

tried

cratic.

so

Master

(former) Philadelphia

Telephone

Cusack

Sound

The new

Green

Francis

Samuel Cohen

Novel

Radio Service

Radio

Electrical Experimenter

Modern

technical lectures (or

Association informs

organization for

other member groups

in

step,

Losses

Pray

at

Vessels

Miscellany

and

sales personnel.

required,

Transmission

Interference

at

dual coupling

one

permits

Permits
direct ear

ten.

in

3.5 ohms.

loss.

a

lot's

ohm

3.93 ohms.

cost

or

$1.75

in lots of 3, $1.65 each.

total value

$9.55.

20% discount with order. Balance C.O.D.

Tribune Theater, Roanoke

170-KK Nassau Street :: New York 7, N. Y.

Worth 2-6141 :: Open daily 9 to 6, Saturday 9-5

5th at Commerce

Fort Worth, Tex.

Bill Sutton's

Wholesale Electronics

Six Tube Super

Three Gang Condenser

$33.30 Net

Crowe Panel

Kit Included

Panel kit to fit most all makes (Please specify make of car and year model). New up-to-date latest priced Catalog available to dealers.

Downtown N. Y. Headquarters

T. V. ACCESSORIES

RADIONIC EQUIPMENT CORPORATION

Radio Parts—Tubes

A RADIONIC SPECIAL! Stacked, All Band Conical TV array...at Lowest Cost

153 best performance designed and precision made, all-hand tuned TV array—giving tremendous gain and absolute minimum interference at a cost so reasonable, equal or better than the usual dipole. Permits direct ear, 75 or 100 ohm line with minimum loss. All dual construction. 10 feet max included. Don't let price prove the low price of any.

In lots of 3, $1.15 each.

Best quality, 550 ohm balanced, 100 feet long. $1.40 each, $36.30 dozen with case. Balance C.O.D.
Battery-Powered Public Address System

I would like to have a circuit of a battery-powered public address system which will deliver at least 1.5 watts. Please design the circuit to use a 1J6-G, IH4-G, and a 1S8.—Wm. H. W., Maplewood, N. J.

A. The amplifier shown in the diagram will deliver 2 watts. The 1J6-G operates class B and is transformer-coupled to the 1H4-G driver stage. The ratio of the primary to half the secondary of the driver transformer should be approximately 2.4 to 1. The filament drain being heavy, a small 2-volt storage battery is recommended for the filament supply to save on battery expenses.

Portable Amplifier for Dictaphone

Please print a circuit of a portable battery-powered amplifier which I can use as a dictaphone. The amplifier should be designed for use with crystal or carbon microphones. I plan to use crystal headphones with the unit.—T. C. B., Coronado, Calif.

A. The amplifier shown in the diagram should do the job for you. The grid of the first 1U5 speech amplifier can be switched to the crystal or carbon mike at will. If you are planning to run the microphone cables more than 50 or 60 feet, replace the microphone transformer with a line-to-grid transformer in the grid circuit of the 1U5. Install a mike-to-line transformer at each microphone. Select transformers made to match each microphone. Mount the batteries for the carbon microphone close to it. Adjust the pre-set control for the carbon microphone to avoid overloading the amplifier on loud signals. A separate switch cuts out the carbon mike.

Radio-Phono-TV Switching Circuit

I have a 500-ohm, 15-inch coaxial speaker, Admiral 30A16 TV receiver, a record changer with variable-reluc-
tance cartridge, S-56 Halloweavers AM-FM receiver, and an ACA 100GE amplifier with a built-in equalizer and preamplifier for variable-reluctance pickups. Please show how these units can be interconnected by switches so the speaker—and amplifier, if neces-
sary—can be used with all units.—P. L. P.—Philadelphia, Penna.

A. One switching circuit is shown. Separate switches are used in the input and output circuits. A single multi-
circuit switch could have been used; however, feedback is likely because of coupling through the switch.

The a.f. signal from the TV receiver...
is tapped off the top of the volume control and fed to the radio input jack on the amplifier through an R-C network and one side of the TV-PHONO switch. The TV volume control can be turned down or plug M201 removed from its jack while the amplifier is in use. The variable-reluctance pickup is connected to the phono input jack on the amplifier through the second pole on the TV-PHONO switch. The S-56 has a high-fidelity amplifier with 500-ohm output terminals which can be used to feed the speaker without further amplification.

POWER SUPPLY FOR BC-696

? Please print a diagram of a power supply for a BC-696 transmitter. I have a power transformer which has a 1,200-volt center-tapped, 250-ma, high-voltage winding; two 12.6-volt filament windings; and a 5-volt, 2-ampere filament winding. I also have an 8.5-henry, 200-ma choke which I want to use. —T.F.M., Sybil, W. Va.

A. The components which you should make an efficient power supply for the BC-696 or any of the other receivers in the SCR-274-N and ARC-5 command sets. The diagram is shown. The oscillator voltage may be reduced to 150. Leads from the power supply connect to the numbered pins on receptacle J64 on the transmitter.

C-R TUBE BASE CONNECTIONS

? I have surplus 12DP7 and 12GP7 C-R tubes which I want to use in remote viewers as described in your January issue. Please print base connections for these tubes. —A. A., P., Brooklyn, N. Y.

A. Base connections for these tubes are shown.
MINERVA TROPIC MASTER

A Tropic Master model W-117 was dead with only 25 volts being delivered by the B-supply. All filters and bypass capacitors checked perfect. A check showed no electrical contact between a .01µf coupling capacitor and a grid of one of the 50L6 output tubes. The soldered joints looked perfect; but, when a hot iron was applied, we found that the joint had crystallized and was insulated from the socket pin by a wax-like substance. All other joints were checked and also found to be crystalized—a condition probably caused by the use of wartime solder of low tin content.

The entire underside of the chassis had been sprayed with a wax-like substance in the tropicalization process. Evidently, when the set warmed up, the wax melted and seeped into the pores of the soldered joint and completely isolated some components from the electrical circuit. All joints were cleaned and resoldered to restore the set to normal operation.

PHILCO LP PICKUPS

Low output from Philco LP pickups can be caused by the cartridge's not being properly seated in its holder. Make sure that the old cartridge is firmly held before replacing with a new one.—C. R. Lutz

DIFFICULT I.F. ALIGNMENT

If you cannot peak the i.f.'s in some of the new i.f. cartridge models, look for wax around the trimmers on the i.f. transformers. This trouble usually occurs in small, poorly ventilated sets. The wax melts and runs down into the trimmers, making it impossible to align the set. Replace the transformers with wax-free units to avoid a repeat of this difficulty.—Alan McFarlane

ZENITH 12-A-58

This model motorized loudly when operating on the high end of the broadcast band or on shortwave. Comparing its circuit with those of later models, we found that the oscillator anode (pin No. 6 of the 6AS) was fed through an 11,000-ohm resistor in the set we had while 20,000 ohms was used in later models. Replacing the anode load resistor with 20,000 ohms cleared up the trouble.

When the volume was advanced above a certain level, the power amplifier tubes drew more current and lowered operating voltages throughout the set. This slight drop in voltage was sufficient to detune the oscillator and tune out high-frequency stations. With the oscillator detuned, the signal to the power amplifiers dropped off, they drew less current, voltages returned to normal, and the cycle began anew.—Baron von Huen

PHILCO 48-250

Oscillation in the i.f. amplifier of this and similar models can often be cured by placing a 0.02µf capacitor between R-plus and the chassis to decouple the i.f. stage from the power supply.—E. R. Crowder
Technotes

ADimiral Record Changers
Distorted reproduction from crystal cartridges can often be traced to one of two sources. Crystal deterioration is usually recognized by a reduction in output accompanied by distortion. It can be corrected by replacing the cartridge with a fresh one.

Motor noise is a common type of distortion produced when motor vibrations are transferred to the crystal. This is most noticeable on 33 1/3-r.p.m. records. It can sometimes be cured by tightening the motor mounting. If this does not help, replace the motor.

Service Division of Admiral Corp.

Adimiral 191A TV Chassis
If the picture and sound cut out intermittently, the trouble may be caused by a bad 6J6 oscillator-mixer tube, dirty turret contacts, or cold-soldered joints in the tuner. Any or all of these troubles may occur simultaneously, so check all of them and avoid another service call for the same complaint.—William Porter

Tunable Hum in A.C.-D.C. Sets
The G-E model GD-62 and most other A.C.-D.C. sets have .01-mfd molded paper capacitors across the a.c. line to bypass noise and line modulation. A .01-mfd capacitor is not large enough to stop strong line modulation which produces tunable hum on some stations. Replace this capacitor with a high-grade, 600-volt capacitor of at least .05 mfd.

As a preventive measure, use the .01-mfd molded capacitor to replace the coupling capacitor between the plate of the a.f. amplifier and the grid of the power amplifier. The original coupling capacitor is a potential source of trouble in the form of low-resistance leakage through open circuits, and intermittenents. A molded capacitor is less likely to fail in this circuit than the original capacitor.—John T. Bailey

Tracking Superhets
Some inexpensive sets do not have low-frequency paddles or adjustable slugs on the oscillator coil. To improve tracking, construct a wire loop slightly larger than the circumference of the oscillator coil. Place the loop over the coil and ground one side to the chassis. For tracking, vary the inductance of the coil over narrow limits by adjusting the coupling between loop and coil.—Charles Buscombe

Motorola VT-105, VT-107, VK106
Greater i.f. sensitivity for improved fringe-area reception can be had by replacing the 6BA6 third video i.f. amplifier with a 6AG5. Remove all connections from pin No. 2 of the 6BA6 socket and move the i.f. transformer ground to the ground point on the socket of the second i.f. amplifier. Bypass the cathode resistor with a .001-mfd ceramic capacitor. Install a 6AG5 and realign T7 and T8 to complete the job.—Edward G. Tenrath

May 1950

SWedGal Radio, Inc.
96 Warren St., Dept. 8-3
New York 7, N. Y.

www.americanradiohistory.com
DE FOREST GETS CREDIT

Dear Editor:

In Part X of "Fundamentals of Radio Servicing" (page 50 of the December, 1949, issue) the author talks about "the early engineers" inserting a grid in the diode and inventing the triode. As was pointed out in the January, 1947, de Forest anniversary number of your own magazine, the inventor of the three-element tube was Dr. Lee de Forest. Dr. de Forest was by no means an ordinary "engineer," and he certainly was not plural. I would like to be sure that the newcomers Mr. Frye's articles are designed to reach do not go away with the idea that a basic, world-changing invention like the triode just "grew." It was the product of Lee de Forest, the father of modern radio.

T. Jon Gibbs

Long View, Wash.

(After the editors and Mr. Frye are equally red is the face, all the more so as we published the article referred to by our correspondent, in which the development of the triode audion was traced step by step. We of all people should know that the triode is not a diode with an extra element inserted in it, as was commonly claimed during the days of the Fleming-de Forest patent suits. Strange as it may now seem, the triode is more closely related to the coherer than to the Fleming valve, as was proved by the January, 1947, article.—Editor)

A CONSTRUCTOR REPORTS

Dear Editor:

About four years ago I built the Omnichecker described in your July, 1945, issue, and a year later I constructed the Transigenerator detailed in the July, 1946, issue. I tested the resistors for the checker in a radio-school bridge and redesigned the generator somewhat to include a cathode-follower stage.

Mr. Altomare, author of both the articles, might be interested to know that both instruments are still in daily use.

Wilfred J. Lennox

Wairton, Ont.

RADIO-COOLED HOUSE?

Dear Editor:

Here is the queerest service problem I have had in my whole career. A customer called me with the complaint that every time he used his radio, the house would get cold within an hour. (He didn't heat the house with electricity, but steam!)

What he didn't tell me was that the receiver was a "tube type" oil burner. I found the thermostat right behind the radio, which was placed in a corner. Moving the radio cooled the thermostat down and permitted the house to heat up.

Fernand LePage

Montreal, Canada

OPPORTUNITY AD-LETS

Advertisements in this section must fit 2x2 a word for each insertion. Name, address and initials must be included in the above rate. Each insertion must be accompanied by all classified ads. All announcements are placed by an accredited advertising agency. Advertisements for less than $10 are accepted without previous arrangement or commitment or refunding of money. Advertisements are accepted until 2 P.M. (PST) and are run in the next issue.

Clear Vinyl Turning. Clear plastic tubing for insulating and protecting wiring in the finished article also be used for decorative purposes and as a base time. Write for envelope list of prices and sample box. Hot Water, etc.

R. L. K., 1 East 42nd St., New York, N.Y.

T. Jon Gibbs

Long View, Wash.

(The editors and Mr. Frye are equally red is the face, all the more so as we published the article referred to by our correspondent, in which the development of the triode audion was traced step by step. We of all people should know that the triode is not a diode with an extra element inserted in it, as was commonly claimed during the days of the Fleming-de Forest patent suits. Strange as it may now seem, the triode is more closely related to the coherer than to the Fleming valve, as was proved by the January, 1947, article.—Editor)
Dear Editor:
I am a technician's wife, not a radio technician. After 12 years of listening to nothing but ham talk and radio and having nothing but radio magazines around, I find your articles on TV most interesting.

In fact, when I have time to read, I find them every bit as interesting as fiction stories because TV is new, growing, and surely here to stay.

My husband thinks about the future just as any service technician should in an area where there is still no TV shown, and now he is one of the best TV service technicians in the city.

Mrs. Geneva B. Minder
Akron, Ohio

LIKES NEW INFORMATION

Dear Editor:
I think you are doing a fine job in giving us the round-robin system of up-to-date technical information. Most of us who are serious about electronics like a "lift" to clear up foggy points, and I have often benefited by your techniques while at my job.

I don't think you are wasting space at all by printing experimental circuits of Geiger counters, medical tips, etc. It is a good thing to know what's going on in the electronic world, and it's usually the below-average person who refuses to see future possibilities any further ahead than his own not-too-long nose.

Charles W. Bates
Washington, D. C.

HAS COLOR TELEVISION

Dear Editor:
On Tuesday morning, February 14, we watched the CBS color transmission from 11:15 a.m. to 11:35 a.m. The program consisted of a couple doing the rhumba and models demonstrating color fabrics, flags, and maps in diverse colors.

To watch the transmission in color, we used a 3-inch color disc attached to the end of a 10c miniature egg-beater which was turned by hand at a slow speed. The horizontal hold control was set for black-and-white reception which, of course, produced four images on the screen. The vertical hold was adjusted until the pictures stopped rolling vertically. With this arrangement, the color pictures were similar to 16 mm Kodachrome projected on a home screen.

It's surprising how easily color pictures remain in synchronization when using hand power at a slow speed.

Michael L. Tortariello
Newark, N. J.

(While the above device is very interesting and shows what a little ingenuity can do, readers are advised not to bother constructing similar devices, as CBS has discontinued its color transmissions for an indefinite period.—Editor)

May, 1950
RADIO SCHOOL DIRECTORY

HAVE YOU A JOB FOR A TRAINED TECHNICIAN?

We have a number of alert young men who have completed intensive training in Radio and Television Repairing. They learned their trades thoroughly by working on actual equipment under personal, expert supervision. If you need a trained man, we invite you to write for an outline of our courses and for a prospectus of the graduate. No fees, of course. Address:

Placement Manager, Dept. P108-S

COMMERCIAL TRADES INSTITUTE

1400 Greenleaf
Chicago 26

RADIO COURSES

Classes now forming for the Summer term June 1st

VETERANS, LITERATURE.

COMMERCIAL RADIO INSTITUTE

Established 1926

30 West Biddle Street, Baltimore 1, Md.

TV ELECTROMAGNETIC SERVICING COURSE

Practical Shop and Laboratory Training at Largest Resident TV School in the East!

Also RADIO SERVICE & REPAIR, F-M & TELEVISION Preparation for F.C. LICENSE EXAMS

* Approved for Veterans

DELEHANTY SCHOOL OF TELEVISION

105A East 13th Street • NEW YORK 3, N. Y.

Make Your Career

RADIO and TV

In no other industry does the future hold brighter financial promise and security than in AM and FM Radio. Television. These fields need and want men trained as announcers, script writers, disc jockeys, and radio technicians. It will pay you to investigate these

Don Martin School of Radio Arts

1655 N. Cherokee, Hollywood, Calif. • HUdiom 22501

TELEVISION

PREPARE FOR A GOOD JOB!

COMMERCIAL OPERATOR (CODE) RADIO TELEVISION

TELEVISION SERVICING

BROADCAST ENGINEER

V. A. Furnishes Books and Tools

SEND FOR FREE LITERATURE

Baltimore Technical Institute

1425 Eutaw Place, Dept. C, Baltimore 17, Md.

TELEVISION

LABORATORY and theoretical instruction under the guidance of experts, covering all technical phases of Radio. Frequency Modulation and Television. Prepare for opportunities in Broadcasting, Industry or Own Business.

MORNING, AFTERNOON OR EVENING SESSIONS. Licensed by N. Y. State. Free Placement Service. APPROVED FOR VETERANS.

ENROLL NOW FOR NEW CLASSES at 9-10 Sat. Write or Phone

RADIO-TELEVISION INSTITUTE

Pioneers in Television Training Since 1928

405 Lexington Ave., N. Y. 17 (N. Y. S.)

Phone 6-5661. 3 blocks from Grand Central

TV ENGINEERING

RADIO ENGINEERING

FM—Television—Broadcast

Public Radio, Motion Picture, Radio Revisited, Artistic Radio and Ultra Short Wave Mobile Applications. Through intensive and practical training in Radio and Electronics, Modern Laboratories and equipment, Old established and new radio facilities, Small classes, enrollments limited. Our graduates are in demand. Write for catalog.

Approved for Veterans

VALPARAISO TECHNICAL INSTITUTE

Dept. C

Valparaiso, Indiana

TV TV TV

Careers Training in a Minimum of Time

TV ENGINEERING

Graduates of CRIE residence school are preferred by industry because of their training and ability. 21 years practical experience. CRIE offers an outstanding faculty, modern laboratories, shop and equipment. New students accepted twice monthly and each may advance as rapidly as he is capable.

Approved for Veterans’ Training.

Write for Details and Free Catalog.

T V TV

16th & Perk Road, N.W., Washington 10, D. C.

Please send me your residence school catalogue and details.

Name

Street

City

Age

State

Zone

I am interested in:

□ AM

□ FM

□ TV

□ Marine

□ Programming

□ Electronics

□ Television

□ Communications

□ Electronics

□ Telecom
BOOK REVIEWS

It's AUTO RADIO PROFIT Time

Custom Auto Radios for Popular Cars

Radios! Here's your chance to make large extra profits with practically no work! Get is touch with the local Ford, Plymouth, Dodge and Chevrolet automobile dealers; tell them that you can supply Custom Built radios to fit and match perfectly the 1949 and 1950 models of these cars for about half the price that is usually charged! Simple installation—no holes to drill. Specifications: Powerful 6 & tube superheterodyne. Has 3 gang condenser with extra stage of RF for out-of-tune reception. When ordering specify Ford, Plymouth, Dodge or Chevrolet. List Price $42.50.

Your cost $34.97

6 TUBE AUTO SET

Auto radio works well in any car. Designed to fit under the dash, mounts with only three bolts to dashboard and bulkhead. Uses built-in 220 volt AC transformer. Can be used in car, boat or home. Tube complement includes 6R6, one 6AL5, one 5AR4, 2x4 (rectifier). Cabinet dimensions: 10x5x5 & 1/2". Complete with 5 tubes only. $23.36 Similar to above, but in substantial size with 6 tubes—high sensitivity—price $25.87

NEW YORK'S RADIO TUBE EXCHANGE

We buy, we sell, we exchange. Write for lists.

FREE BOOKS

NEW YORK'S RADIO TUBE EXCHANGE

214 GREENWICH ST.

NEW YORK, N. Y.

FREE BOOKS

IT'S NEW YORK'S RADIO TUBE EXCHANGE, INC.

FREE BOOKS

NEW YORK'S RADIO TUBE EXCHANGE

214 GREENWICH ST.

NEW YORK, N. Y.

FREE BOOKS

IT'S NEW YORK'S RADIO TUBE EXCHANGE, INC.

FREE BOOKS

NEW YORK'S RADIO TUBE EXCHANGE

214 GREENWICH ST.

NEW YORK, N. Y.

FREE BOOKS

IT'S NEW YORK'S RADIO TUBE EXCHANGE, INC.

FREE BOOKS

NEW YORK'S RADIO TUBE EXCHANGE

214 GREENWICH ST.

NEW YORK, N. Y.

FREE BOOKS

IT'S NEW YORK'S RADIO TUBE EXCHANGE, INC.

FREE BOOKS

NEW YORK'S RADIO TUBE EXCHANGE

214 GREENWICH ST.

NEW YORK, N. Y.

FREE BOOKS

IT'S NEW YORK'S RADIO TUBE EXCHANGE, INC.

FREE BOOKS

NEW YORK'S RADIO TUBE EXCHANGE

214 GREENWICH ST.

NEW YORK, N. Y.

FREE BOOKS

IT'S NEW YORK'S RADIO TUBE EXCHANGE, INC.

FREE BOOKS

NEW YORK'S RADIO TUBE EXCHANGE

214 GREENWICH ST.

NEW YORK, N. Y.

FREE BOOKS

IT'S NEW YORK'S RADIO TUBE EXCHANGE, INC.

FREE BOOKS

NEW YORK'S RADIO TUBE EXCHANGE

214 GREENWICH ST.

NEW YORK, N. Y.

FREE BOOKS

IT'S NEW YORK'S RADIO TUBE EXCHANGE, INC.

FREE BOOKS

NEW YORK'S RADIO TUBE EXCHANGE

214 GREENWICH ST.

NEW YORK, N. Y.
Approved ELECTRONIC INST. CORP.
142 Liberty St. N.Y.C.

Approved TELEVISION FIELD STRENGTH METER

MODEL A-469

$79.50 ONLY

Field Strength Meter: television 12-channel tester; video 1-Channel output 6" directly calibrated for jam; family finished panels; ideal for locating an antenna or phase; testing transmission lines; testing efficiency of its door antennas; checking booster efficiency, etc.

Models
RLBG—200 ohms
RHG—Hi-imp.
List $42.00

Write for 12-page catalogue.

NEW! AMAZING! FULLY AUTOMATIC METRO ADDING MACHINE...$19.95

Add, subtract, multiplies—works on any machine. Over 35,000 in use. Guaranteed for 1 year. WRITE TODAY FOR FREE CIRCULAR METROGRAPH CORP. 1390, Chicago 10, Ill.

AMPERITE Studio Microphones at P.A. Prices

Ideal for recording, broadcasting...public address...

"The ultimate in microphone quality," says R. W. F. Noah, chief engineer of the Hotel New Yorker...

Shout right into the new Amperee Microphone—and stand 2 feet away—reproduction is always perfect...

Not affected by any climatic conditions...

Guaranteed to withstand severe "kocking around..."

Kontak" Mikes
Model SH, list $12.00
Model KH, list $18.00

Special Write for Special Introductory Offer...Offer: 4-page illustrated folder.

AMPERITE COMPANY, INC.
391 BROADWAY NEW YORK 11, N. Y.

Odegaard ORIGINAL PANELS

For Ribbons or Conical Cable

SAVE!!

From Factory

New Improved RCA
Licensed "6-630"

Total Price

Plus $1.00 Fed...

Check this box if you wish to receive the illustrated folder.

WRITE TODAY FOR FREE CIRCULAR METROGRAPH CORP...1390, Chicago 10, Ill.

BUY DIRECT

IMMEDIATE DELIVERY

Vist our showrooms

AD-RITZ MFG. CORP.
158 Grand Street
New York 3, N. Y.

Phone 4-6763

521 Broadway
New York 11, N. Y.

Phone 2-5962

COLOR ON YOUR TELEVISION NOW

TELECOLOR FILTER is a wonderful gift to friends and relatives who own sets.

10 inch tube...$3.00
12½ inch tube...$4.00

Write for Illustrated Folder

HARVARD LABORATORY
659 Fulton St., Brooklyn 1, N. Y.

Teleoption

A new way to watch television...

Visit the Teleoption Booth at the 1011 Exhibit

M. W. HAMMOND

1011 Exhibit Booth

237 Central Avenue

Bloomfield, N. J.

www.americanradiohistory.com

This book is not only a text, but a valuable reference for the student and operator. Questions and answers to pass FCC exams are listed in order, and many of the answers are supplemented with a follow-through discussion to present a clear understanding of difficult technical questions.

The first six chapters cover the six elements of the FCC Commercial Radio Operator Examinations. The material is based on the latest study guide and other recent FCC releases and includes such topics as frequency-shift keying, marine radar, and loran.

A complete section of the book is devoted to the Amateur Radio License questions and answers, and rules and regulations. Cross references are made to answers and discussions in the Commercial license section.

This book compiles the results of studies and developments in high-vacuum equipment and practice as made by the personnel of the University of California Radiation Laboratory. The opening chapter covers the fundamentals of vacuum practices and the rest of the book is a practical discussion of vacuum systems, gauges, leak detection equipment, and techniques, with many diagrams and circuits. This work will be a useful reference to anyone working with high-vacuum equipment.

As a new addition to the McGraw-Hill Electrical and Electronic Engineering Series, about half of this volume is of a radio engineering character, and the rest covers circuits used extensively in radar, television, pulse communication, and general electronic control.

The author presents the various classes of circuits with no attempt to cover all the aspects of any one class, but rather to present an analytical approach to the study of vacuum-tube circuits. A knowledge of calculus is assumed by the author, although much of the book will be of interest to non-engineering readers.

Of particular interest is a chapter on computing circuits which describes methods for electronically performing such mathematical operations as addition, subtraction, multiplication, squaring, etc.

This book contains much valuable information on the home reproduction of sound. Nearly half is devoted to loudspeakers with much concise data on size and shape of cabinets, materials for making baffles and cabinets, frequency ranges, and speaker locations.

The rest of the book is a discussion of recording systems, records, pickups, and other material of interest to audio enthusiasts and technicians.

This is a book study guide for prospective FCC licensees based on the July, 1948, revision of FCC study material and on mimeographed Supplement No. 4. It includes Element 1, questions 233 through 296 of Element 5, and questions 226 through 295 of Element 6.—R. H. D.

ELECTRONIC DISTRIBUTORS FROM COAST TO COAST

We can now serve you with J.S.C. 300 ohm T.V. twin lead transmission wire, like we have been serving about 50% of television wire requirements in the metropolitan areas during the past year.

Remember — our prices are right, our quality the highest, our deliveries the fastest.

Write for quantity quotations. Sold to wholesale distributors only.

JERSEY SPECIALTY CO.
Manufacturers of Wire Products
Little Falls, New Jersey
Phone—Little Falls 4-0784-1404-1405

TELEVISION RECEIVER—$1.00

Complete instructions for building your own television receiver. 18 pages—15"x11" of pictures, pictorial diagrams, classified schematics, 17"x23" complete schematic diagram & chassis diagram. Also booklets of alignment instructions, checks & persistence tests and useful electrical data.—All for $1.00.

CERTIFIED TELEVISION LABORATORIES
Dept. C, 559-51st Ave., Brooklyn 19, N. Y.

SAVE MONEY—BUILD YOUR OWN

SPEED LIGHT EQUIPMENT

FOR PROFESSIONAL AND AMATEUR

Easy to follow . . . step-by-step instructions

Write for FREE list of complete Kits and Components

CINEX, INC.
Dept. RE-5 165 W. 46th St., N. Y. 19, N. Y.

EVERY RADIOMAN Can Use These

VALUABLE MANUALS—FREE!

Every page of "How to Simp-lify Radio Repair" is packed with up-to-the-minute practical ideas. Contains complete, step-by-step details for working on all kinds of radio receivers. In simple easy-to-understand language it gives you priceless suggestions for saving time and effort in the repair of radios. Heavily illustrated! How to Test the Diodes in Any Receiver. Test Audio Circuits; How to Test Speakers, How to Test Radio Receiver—And 16 extra pages—FREE! No obliga-

Feiler

SEND COUPON OR PENNY POSTAGE FOR FREE COPY TODAY!

FEILER ELECTRICAL ENGINEERING CO. Dept. SBC
601 S. Federal St., Chicago 16, Illinois
Please Rush FREE copy of "How to Simplify Radio Repair".

Name
Address
City , Zone State

MAY, 1950

"I'm installing television, mind?"
How electronic “paintbrushes” create pictures in our newest art form

There’s not a single moving part in a Kinescope—but it gives you pictures in motion

No. 4 in a series outlining high points in television history

Photos from the historical collection of RCA

Ever watch an artist at work—seen how his brush moves over the canvas to place a dot here, a shadow, a line, a mass, or highlight there, until a picture is formed?

Next time you’re asked how television pictures are made, remember the paintbrush comparison. But the “brush” is a stationary electron gun, and the “paint” is a highly refined coating of fluorescent material made light or dark in orderly pattern by electrons.

Developed by Dr. V. K. Zworykin, now of RCA Laboratories, the kinescope picture tube is one of the scientific advances which gave us all-electronic television... instead of the crude, and now outmoded, mechanical techniques.

New 16-inch RCA glass-and-metal kinescope picture tube, almost 5 inches shorter than previous types, incorporates a new type of glare-free glass in its faceplate—Filterglass.

An experimental model of the kinescope—developed by Dr. V. K. Zworykin of RCA Laboratories—is seen undergoing laboratory tests.

Today, through research at RCA Laboratories, these complex kinescope picture tubes are mass-produced at RCA’s tube plants in Lancaster, Pa., and Marion, Indiana. Industrial authorities call this operation one of the most breath-taking applications of mass production methods to the job of making a precision instrument.

Thousands of kinescope faceplates must be precisely and evenly coated with a film of absolutely pure fluorescent material... the electron gun is perfectly synchronized with the electron beam in the image orthicon tube of RCA television cameras... the vacuum produced in each tube must be 10 times more perfect than that in a standard radio tube—or in an electric light bulb!

Once it has been completely assembled, your RCA kinescope picture tube is ready to operate in a home television receiver. In action, an electrically heated surface emits a stream of electrons, and the stream is compressed by finely machined cylinders and pin-holed disks into a pencil-thin beam. Moving back and forth in obedience to a radio signal—faster than the eye can perceive—the beam paints a picture on the face of the kinescope. For each picture, the electron beam must race across the “screen” 525 times. To create the illusion of motion, 30 such pictures are “painted” in every single second.

Yet despite these terrific speeds, there are no moving mechanical parts in an RCA kinescope. You enjoy the newest of our arts because electrons can be made to be obedient.
Low Cost—Monthly Payments. Everything You Need to Learn...

TELEVISION

I Send You NOT JUST an Ordinary TV Kit—But a Complete Training System Including TV Test Equipment

Here is the NEW Combination Sprayberry Television Training System

Out of my laboratory has come an entirely new Television Training...cutting months off the time required in old methods. I give all the knowledge and experience you need in weeks instead of months. I start where your present radio experience ends. Thus the day you enroll with me, I rush the first of many big Television kits that I will send during your training. From the first hour you are experimenting and testing practical TV circuits...and you keep right on from one fascinating experiment to another. You build the remarkable new Television Receiver-Tester illustrated at the left and useful TV Test Equipment. I give you theory, too, but it's 100% practical stuff that will make money for you in Television.

YOUR CHOICE OF 7, 8½ OR 10 INCH TELEVISION PICTURE SIZE

Exclusive THREE-UNIT Construction

You build my Television Receiver-Tester in three separate units—one unit at a time...each complete and self contained within itself. With each unit you perform dozens of important experiments—and each unit may be used in actual Television receiver servicing. In this way my training may save you many dollars by eliminating the need for costly TV Test Equipment. With these three units you can locate most TV Receiver troubles quickly and easily.

TV Tuner—L.F. Unit
Contains the RF amplified local oscillator, mixer and three stages of broad band IF amplification and the video second detector. The output constitutes the video signal and audio IF signal. For training, it is used to build and test video second detector, and stagger tuned IF amplifier obtaining 4.5 mc band pass. For TV servicing, it becomes a TV calibrator for IF alignment, substitute tuner, IF signal injector and second detector.

Video-Audio Amplifier Unit
Provides 4.5 mc IF radio detector, low voltage power supply. For TV, it becomes the audio output, including speaker, video output and low voltage power supply for RF and IF stages. For training, it is used to build and test transformer type power supplies, audio, video, IF amplification and FM detection. For TV servicing, it is an audio signal tracer, IF signal tracer, video signal tracer and low voltage power supply.

Video Tube "Scope" Unit
Scope unit contains low and high voltage (6000 V) power supply for independent operation. For television, it becomes the sync, vertical and horizontal sweep circuits and their power supplies. For training, it is used to build and test power supply, deflection, sweep, oscillator, and sync circuits. For TV servicing, it is a video signal tracer and sweep signal analyzer as well as substitute high and low voltage power supplies.

BE READY FOR TOP PAYING TELEVISION JOBS

If you are a radio-service man, experimenter, amateur or advanced student...YOUR FUTURE IS IN TELEVISION. Depending upon where you live, Television is either in your town now...or will be there shortly. This is a vast new industry that needs qualified trained men by the thousand to install and service TV sets. There's really big money in Television, but you MUST know what you are doing to "cash-in" on it. I will train you in a few short weeks if you have had previous radio training or experience.

IMPORTANT—FOR MEN JUST STARTING OUT IN RADIO-TELEVISION

If you have no previous experience in Radio work, be sure to mark that fact on the coupon below. I will send you complete information about my Radio-Television training that starts with basic fundamentals and carries you right through my new Radio and Television Training. I will send you my two big Radio-Television books, including an actual lesson selected from my course. I want you to know exactly what this great industry has in store for you. There is no obligation, of course, and NO SALESMAN WILL CALL.

FILL OUT AND MAIL COUPON

Get these Valuable Books FREE!

Sprayberry Academy of Radio, 111 N. Canal St., Dept. 204, Chicago 6, Ill.

sprayberry academy of radio, 111 n. canal st., dept. 204, chicago 6, ill.

VETERANS—Radio portion of training available under G. I. Bill

Every Radio Serviceman today realizes his future is in Television. He knows he MUST have training—the right kind of practical training such as I am now offering—to protect his job, his business for the future. This is equally important for the man just starting out. And so I urge you to get the facts I offer you FREE and without obligation. Learn how quickly and easily you can get into Television. Fill out and mail the coupon TODAY.

sprayberry academy of radio, 111 n. canal st., dept. 204, chicago 6, ill.
$10,000 IN PRIZES
FOR RADIO BATTERY RETAILERS and RCA BATTERY DISTRIBUTOR SALESMEN

IN THE RCA BATTERY "GET THE FACTS" CONTEST

YOU CAN WIN A '50 FORD ... OR OTHER VALUABLE PRIZES

LOOK AT THESE DEALER AWARDS!

FIRST PRIZE — 1950 FORD SEDAN
Factory equipped 8-cyl. Tudor Custom Sedan
2nd Prize $700 Drexel Bedroom Suite
3rd Prize $619 Drexel Dining Rm. Suite
4th Prize $450 Deep Freeze Unit, 12 Cu. Ft.
5th Prize $350 Rogers Sterling (Service for 12)
6th Prize $260 Kaufmann Travel Luggage (4 matched pcs.)
7th Prize $233 Kroydon Golf Clubs & Bag
8th Prize $145 Kaufmann Travel Luggage (2 matched pcs.)
9th to 15th Prizes—$100 Longines Wrist Watches
16th to 25th Prizes—$25 U. S. Savings Bonds

Duplicate Prizes for RCA Battery Distributor Salesmen

Purpose of this contest is to encourage Battery Retailers to Get The Facts on why it’s best to stock and sell . . .

RCA THE BATTERY FOR THE RADIO TRADE!

Mail coupon today if you DO NOT know the name of your local RCA Battery Distributor.

RCA Battery Sales
Radio Corporation of America, Harrison, N. J.
Sirs: I am a Radio Battery Retailer, but DO NOT know the name of my local RCA Battery Distributor.

Please forward this request to him for my FREE copy of the RCA Battery "Get The Facts" Official Contest Booklet containing the FREE Entry Coupon.

Signed
Co. Name
Street & No.
City & State

No purchases required—no sentences to complete! Simply get your FREE copy of the Official RCA "Get The Facts" Contest Booklet . . . from your nearest RCA Battery Distributor. Then, fill out and mail the Free Entry Coupon in the Contest Booklet to the address printed thereon. Contest closes June 30, 1950. All entries must be postmarked on or before that time.

This contest is open to all radio battery retailers within the continental U. S. A. and to full-time personnel whose duties include the selling of radio batteries.

Here’s how prizes will be awarded

1. All entry coupons received will be assembled at Contest Headquarters for an impartial drawing to be held July 10, 1950.
2. The retailer whose name appears on the first coupon drawn will be contacted by telephone, person-to-person. He will be asked one of the easy questions about RCA Batteries appearing in the "Get The Facts" Contest Booklet. If this contestant gives the correct answer immediately, he will be awarded first prize.
3. If the contestant fails to give the correct answer immediately, another drawing is held.
4. The above procedure will be followed in awarding all prizes.

DON'T DELAY. Get your Contest Booklet from your nearest RCA Battery Distributor. A magnificent prize can be your reward!

Complete Entry and Prize Award Rules can be found in the Official Contest Booklet.

RADIO BATTERIES

RADIO CORPORATION OF AMERICA
HARRISON, N. J.