Here — at prices you can afford — are five Laboratory Caliber Electronic Test Instruments that you need to insure efficient and profitable AM - FM - TV servicing.

Model 900-A "VOMAX"

The new "VOMAX" is the truly universal v.t.v.m. — makes TV, FM and AM measurements accurately — at highest meter resistance. Giant meter, non-breakable glass; 45 ranges; new single probe for a.c., d.c., a.f., r.f., volts, ohms, db. and current measurements. "VOMAX" can be used for measuring TV power supply potentials up to 30 Kilovolts when used with our new High Voltage Adaptor Probe. Advancing far beyond its predecessor, choice of experts. "VOMAX" equips you with the world's newest and finest meter for only $68.50 net.
I Will Train You at Home for Good Jobs in Radio & Television

I Send You Many KITS OF PARTS for practical experience

You build this complete, powerful Radio Receiver that brings in local and distant stations. NRI gives you ALL the Radio parts... speaker, tubes, chassis, transformer, sockets, loop antenna, etc.

YOU PRACTICE WITH SIGNAL GENERATOR
You build this Signal Generator for more valuable experience. It provides amplitude-modulated signals for many tests and experiments.

YOU USE TESTER TO EARN EXTRA MONEY
You build this Tester which NRI sends early in course. Soon help you fix neighbors' Radios and EARN EXTRA MONEY in spare time.

YOU BUILD MANY OTHER CIRCUITS
Practice FM experiments with Superheterodyne Receiver Circuit... build Vacuum Tube Power Pack... practice locating defects and repairing of still other circuits you build with MANY KITS OF PARTS I send.

VETERANS

Get This Training Under G. I. BILL

Want a good-pay job in the fast-growing RADIO-TELEVISION Industry? Want a money-making Radio-Television shop of your own? Here's your opportunity. I've trained hundreds of men to Radio-Technicians... MEN WITH NO PREVIOUS EXPERIENCE. My tested and proved training-at-home method makes learning easy. You learn Radio-Television principles from illustrated lessons. You get practical experience building, testing, experimenting with MANY KITS OF PARTS I send. All equipment yours to keep.

Make EXTRA MONEY In Spare Time

The day you enroll, I start sending SPECIAL BOOKLETS that show you how to make EXTRA MONEY fixing neighbors' Radios in spare time. From here it's a short step to your own shop, or a good-pay Radio-Television servicing job. Or get into Police, Aviation, Marine Radio, Broadcasting, Radio Manufacturing or Public Address work. And think of getting in on the ground floor of the booming Television Industry. Trained men are already in demand... new stations are going on the air, manufacturers are building over 100,000 sets a month, more and more homes are getting sets. The man who prepares now will reap rich rewards.

FREE ACTUAL LESSON

Act now! Send for my DOUBLE FREE OFFER. Coupon entitles you to actual lesson, "GETTING ACQUAINTED WITH RECEIVER SERVICING," absolutely free. Over 80 pictures and diagrams. You also get my 64-page book, "HOW TO BE A SUCCESS IN RADIO AND TELEVISION-ELECTRONICS." Tells more about YOUR opportunities, details of my course, how quickly easily you can get started. Send coupon in envelope or paste on postcard.

E. E. SMITH, President, Dept. 9AX, National Radio Institute, Pioneer Home Study Radio School, Washington 9, D. C.

Good for Both - FREE

I TRAINED THESE MEN

Extra Cash In Spare Time

"Earnings enough spare time cash to pay for my course by time I graduated. NRI training is tops!" - ALEXANDER SMITH, Carteret, New Jersey.

I know about Radio to NRI - CLYDE J. BURDETT, Spartanburg, South Carolina.

MR. J. E. SMITH, President, Dept. 9AX
National Radio Institute, Washington 9, D. C.
Mail me FREE Sample Lesson and 64-page book about how to win success in Radio and Television-Electronics. (No salesman will call. Please write plainly.)
Editorial (Page 21)
Future Transistor Uses by Hugo Gernsback 21
Construction (Pages 22-24)
Radio-Controlled Bus .. by M. Gordon Moses 22
Broadcasting and Communications (Page 25)
Rural FM Radio Network 25

Television (Pages 26-30)
Antennas for Television, Part 1 by Edward M. Nall and Matt Mandal 26
How to Get Television DX by Lymax E. Greanlee 28
Custom-Built Reception Testers (Cover Feature) 30

Theory and Design (Pages 31-33, 85-87)
Pocket Micro-Receiver by Richard Henry 31
Designing L-C Audio Filters by Richard H. Dolf 32
U.H.F. Noise Diode .. 85
Multimeter Shows only Desired Scale 86
Problems of Electronic Baking 86

FM (Pages 34-37)
Visual FM Alignment ... by John B. Ledbetter 34
Realistic and Receiver Review (The Emerson Conqueror) 36

Amateur (Pages 38-40)
V.F.O. From Surplus ... by George F. Morts, WØDTH 38
Wired Wireless Control Unit 40

Test Instruments (Pages 41-46)
Radio-Frequency Ammeter by Rufus P. Turner, K&A 41
'Scope Aid Helps Audio Men by Alfred Haas 42
Tube Tester and Analyzer by Harold Hallen 44

Audio (Pages 47-48)
What is Supersonic Bias? by Dr. Angelo Montani 47

Foreign News (Page 49)
European Report ... by Major Ralph W. Halls 49

Servicing (Pages 50-59)
Improving Supply to Test Car Sets by Harry S. Leeper 50
New York Serviceman Form State Federation 51
Using Volts and Ohms by Herbert S. Bier, W2EWA 52
The Impeded Double Cross by Guy Slaughter 54

Electronics
Midget Atom Smasher 71

Departments
The Radio Month ... 12
Radio Business .. 18
New Devices .. 60
Technotes .. 64
World-Wide Station List by Elmer R. Fuller 68
Try This One .. 76

ON THE COVER: Assembly of a projection-type television kit. See page 30, Kodachrome by Avery Slack

Hugo Gernsback, Editor-in-Chief
Fred Shuman, Managing Editor
M. Harvey Gernsback, Consulting Editor
Robert F. Scott, W2PGQ, Technical Editor
R. H. Draf, W2OM, Associate Editor
I. Queen, W2OUX, Editorial Associate
Angie Pascale, Production Manager
Elmer Fuller, Shortwave Editor
Wm. Lyon McLaughlin, Tech, Illustration Director
G. Allegra, Circulation Manager
John J. Lamson, Advertising Director
Alfred Stern, Promotion Manager

January, 1949

Contents

IRC Power Wire Wounds are better built every step of the way

Starting right from the winding form IRC Power Wire Wounds combine the best of materials, workmanship and resistor "know-how".

Highest grade alloy wire uniformly wound on sturdy ceramic tubes. Terminals spot welded for security; heavily tin dipped for easy soldering.

Climate-proof cement coating provides a tough, course surface—best for rapid heat dissipation, moisture protection, and ability to withstand reasonable overloads.

Resistors cured at 1200° F. LOW temperature prevents damage to resistance windings, and loss of temperament in terminals. Bands for adjustable types feature stainless steel springs and silver contacts. Cannot corrode to cause high resistance.

For exacting, heavy-duty requirements you can rely on IRC Power Wire Wounds for balanced performance in every characteristic. Being full-sized, they can operate continuously at full range. Derating in high ranges is unnecessary.

IRC Power Wire Wounds are available in a full range of ratings, sizes and terminal types. 91 new ranges have just been added. Next time you step up to your distributor's counter—stock up on IRC Power Wire Wounds.

INTERNATIONAL RESISTANCE CO.

401 N. Broad Street, Phila. 8, Pa.
In Canada: International Resistance Co., Ltd.,
Toronto, Licensee

YES! We're listed in the RED BOOK
Looking for the correct IRC replacement component for your receiver manufactured from 1938 to 1965, just refer to the Radio Industry RED BOOK!

RADIO-ELECTRONICS for

EDITORIAL AND EXECUTIVE OFFICES:
25 West Broadway, New York 7, N. Y.
Learn

RADIO

TELEVISION, ELECTRONICS

by

SHOP METHOD HOME TRAINING

Let NATIONAL SCHOOLS, of Los Angeles, a practical Technical Resident Trade School for almost 50 years, train you for today's unlimited opportunities in Radio.

Good Jobs Await the Trained Radio Technician

You are needed in the great, modern Radio, Television and Electronics industry! Trained Radio technicians are in constant and growing demand at excellent pay—in Broadcasting, Communications, Television, Radar, Research Laboratories, Home Radio Service, etc. National Schools Master Shop Method Home Study course, with newly added lessons and equipment, can train you in your spare time, right in your own home, for these exciting opportunities. Our method has been proved by the remarkable success of National Schools-trained men all over the world.

You Learn by Building Equipment with Standard Radio Parts We Send You

Your National Schools Course includes not only basic theory, but practical training as well—you learn by doing. We send you complete standard equipment of professional quality for building various experimental and test units. You advance step by step until you are able to build the modern superhetrodyne receiver shown above, which is yours to keep and enjoy. You perform more than 100 experiments—build many types of circuits, send signals, use power radio transmitter, audio oscillator, and other units. The free books shown above tell you more about it—send them today!

Now! NEW PROFESSIONAL MULTITESTER INCLUDED:

This versatile testing instrument is portable and complete with test leads and batteries. Simple to operate, accurate and dependable. You will be able to quickly locate trouble and adjust the most delicate circuits. You can use the Multitester at home or on service calls. It is designed to measure AC and DC volts, current, resistance and decibels. You will be proud to own and use this valuable professional instrument.

Lessons and Instruction Material Are Up-to-date, Practical, Interesting

National Schools Master Shop Method Home Training gives you basic and advanced instruction in all phases of Radio, Television and Electronics. Each lesson is made easy to understand by numerous illustrations and diagrams. All instruction material has been developed and tested in our own shops and laboratories, under the supervision of our own engineers and instructors. A free sample lesson is yours upon request—use the coupon below.

You Get This and Other Valuable Information in the Free Sample Lesson:

1. Basic Receiver Circuits and How They are Used.
2. Construction of the Antenna Circuit.
3. How Energy is Picked Up by the Aerial.
4. How Signal Currents are Converted Into Sound.
5. How the Tuning Condenser Operates.
6. How the R-F Transformer Handles the Signal, and other data, with diagrams and illustrations.

Both Home Study and Resident Training Offered

APPROVED FOR VETERANS

Check Coupon Below

MAIL OPPORTUNITY COUPON FOR QUICK ACTION

NATIONAL SCHOOLS
LOS ANGELES 37, CALIFORNIA

MAIL OPPORTUNITY COUPON FOR QUICK ACTION

NATIONAL SCHOOLS, Dept. RC-1
4000 S. Figueroa, Los Angeles 37, Calif.
Mail me FREE: the books mentioned in your ad including a valuable lesson of your choice. I understand an salesman will call on me.

NAME

AGE

ADDRESS

CITY...

STATE...

[] Check here if Veteran of World War II

JANUARY, 1949
Opportunity Ahead—but, for TRAINED MEN Only!

Now-Plan for a Good Paying

Career Job in TELEVISION

CREI Practical Home Study Courses in PRACTICAL TELEVISION Can Help You Advance in this Expanding Field!

You can make your own opportunity in Television, if you start preparing now. No need to tell you how fast this great new field is expanding—or, of the great number of jobs that are being created. If you are in Television now, expect to be, or wish to get in, CREI offers the very training you need to help accomplish your aims.

CREI can show you the way with convenient spare-time study at home that gives you the up-to-date technical background you must have for Television. CREI courses are designed to give you a thorough grounding in basic principles and take you step-by-step through the more advanced subjects of Television and its related fields. It must be remembered that all new electronic developments have their roots in past techniques. CREI training is basic and helpful in your daily work right from the start. You will learn about and understand such subjects as: Optics; Pulse Techniques; Deflection Circuits; RF, IF, AF and Video Amplifiers; FM; Receiving Antennas; Power Supplies; Cathode Ray, Iconoscope, Orthicon and Projection Tubes; UHF Techniques, Television Test Equipment, etc.

No matter how complete, or how limited your radio experience, CREI has a practical course of training for you based on twenty years experience in training professional radio men. The facts about CREI, our courses, and what we can do for you, are described in our 32-page booklet. It is well worth reading. Send for it now.

VETERANS! CREI TRAINING AVAILABLE UNDER THE "G. I." BILL!

Capitol Radio Engineering Institute
An Accredited Technical Institute

DEPT. 141-A 16TH AND PARK ROAD, N. W., WASHINGTON 10, D. C.

1,000,000 Persons in TV Predicted Within 4 Years
—by one of industry's leaders

By 1953: 12,000,000 TV sets
By 1953: 50,000,000 Audience
By 1958: 40,000,000 TV sets
By 1958: 100,000,000 Audience

CAPITOL RADIO ENGINEERING INSTITUTE
16th & Park Rd., N.W. Dept. 141-A,
Washington, D. C.

Mail me ONE FREE sample lesson and your 32-page booklet, "Your Future in the New World of Electronics". I am attaching a brief resume of my radio experience, education and present position.

Check One □ PRACTICAL TELEVISION
Course: □ PRACTICAL RADIO-ELECTRONICS

NAME ...

STREET ...

CITY .. ZONE STATE

□ I am entitled to training under the "G. I." Bill.
IF YOU WANT TO LEARN RADIO!

I TRAIN YOU RIGHT BY SENDING YOU 8 BIG KITS OF RADIO EQUIPMENT INCLUDING A POWERFUL 6 TUBE SUPERHET RECEIVER AND 16 RANGE TEST METER!

Find out NOW how Sprayberry Training prepares you for a Radio Service Business of your own — or a good pay Radio job. Just mail the coupon for a FREE Sample Lesson and my big FREE book, "How To Make Money In Radio, Electronics, Television." It tells how I train you at home during spare hours by putting you to work building, testing, repairing Radio equipment.
The Sprayberry Course teaches you Radio by working with 8 big kits of Radio parts I supply. You build a powerful 6 tube superhet Radio, a 16-range test meter, perform over 175 interesting, PRACTICAL experiments. My lessons are easy and interesting — you need no previous experience in Radio. I start you at the beginning... and give you valuable "bench" experience that sticks with you.

LEARN HOW TO BUILD-TEST-REPAIR RADIOS

By Working with YOUR HANDS!

LOW COST RADIO TRAINING

STUDY AT HOME IN SPARE HOURS

RUSH COUPON TODAY!

SPRAYBERRY ACADEMY OF RADIO, Dept. 20-N
SPRAYBERRY BUILDING, PUEBLO, COLORADO
or 20 NORTH WACKER DRIVE, CHICAGO 6, ILLINOIS

Please rush my FREE copies of "How To Make Money In Radio, Electronics and Television" and "How To Read Radio Diagrams and Symbols." No salesman will call.

Name
Age
Address

City and Zone State

CHECK HERE IF A VETERAN
(Mail in an Envelope or Paste on Penny Postcard)

Sprayberry Academy of Radio, Dept. 20-N
Sprayberry Building or 20 North Wacker Drive
Pueblo, Colorado Chicago 6, Illinois

JANUARY, 1949

You really learn Radio the PRACTICAL way... when you build this big, powerful Superhet Radio from parts I send you.

I give you a fine, moving coil type Meter— with parts for a complete analyzer and Circuit Continuity Tester. Trouble-shoot with professional accuracy.

You don't have to buy expensive ready-made equipment. You get valuable experience building this Signal Generator and Multi-purpose Tester.

You construct this rectifier and filter, resistor and condenser tester, and really get on the Practical end of Radio. You can't buy the equipment... you have to build it. No salesman will call.

I TRAIN YOU RIGHT BY SENDING YOU 8 BIG KITS OF RADIO EQUIPMENT INCLUDING A POWERFUL 6 TUBE SUPERHET RECEIVER AND 16 RANGE TEST METER!

Soon after you start I send you my famous BUSINESS BUILDERS that help you earn EXTRA CASH getting and doing neighborhood Radio Service jobs while learning. You couldn't pick a better time to get into Radio. The Radio Repair Business is booming! Good Radio Service and Repair Shops are needed everywhere as millions of new sets are in use. Trained men are wanted for opportunities in Police, Aviation and Marine Radio, F. M. and Standard Broadcasting and Television. Manufacturers are looking for men who know Radio as production reaches new peaks. GET THE FACTS ABOUT YOUR FUTURE IN RADIO mail the coupon TODAY for my FREE BOOKS. GET THE FACTS ABOUT YOUR FUTURE IN RADIO mail the coupon TODAY for my FREE BOOKS.
"Television and FM Servicing"

Practical On-the-Job Training Program for the Better Serviceman Who Wants Greater Earnings and Security In This Expanding Field

This basic CREI Servicing Course paves the way to greater earnings for you. Since 1927 thousands of professional radiomen have enrolled for our home study courses in Practical Radio Engineering. Now, CREI supplies the answer to the need for a Practical Servicing Course. You do not have to be, or want to be, an engineer to benefit from this course. It is written for you—the average good serviceman! It's not too elementary for the experienced. It's not "over the head" of those who have limited experience—if they have real ambition and natural ability.

CREI developed this course at the request of several large industrial organizations. The urgent need of capable, trained servicemen is one of the big problems of the industry. Hundreds of thousands of Television Receivers will be marketed in 1949. By 1951 two million TV units are expected to be flowing into American homes. With Television comes FM receivers and circuits. This new field demands a tremendous increase in the number of properly trained television and FM technicians to install and service this equipment.

CREI EQUIPS YOU TO INSTALL AND SERVICE ALL TYPES OF TELEVISION AND FM RECEIVERS

Now...with the help of this new CREI streamlined Service course you can move ahead to unlimited opportunities in your chosen field. CREI has again taken the lead by offering a course so entirely new that for the first time in our twenty-one year history we can offer a down-to-earth course of training for servicemen. In offering this course at a popular price, CREI is enabling thousands of the "top third" now engaged in service work to enter the ultimate profitable field of television and FM installation and service.

This can be your big year! Don't waste another day. CREI has the answer to your future security in this new servicing course. Write today for complete information. The cost is popular. The terms are easy. The information is free. Write today.

Radio Service Division of
CAPITOL RADIO ENGINEERING INSTITUTE
An Accredited Technical Institute
Dept.151-A, 16th & Park Rd., N. W., Wash. 10, D. C.
Branch Offices: New York (2) 170 Broadway, San Francisco (2) 760 Market St.

MAIL TODAY

CAPITOL RADIO ENGINEERING INSTITUTE
16th & Park Rd., N. W., Dept.151-A, Washington 10, D. C.

Gentlemen:
Please send me complete details of your new home study course in Television and FM Servicing. I am attaching a brief resume of my experience, education and present position.

NAME _______________________

STREET ______________________

CITY ______________________ ZONE STATE

☐ I AM ENTITLED TO TRAINING UNDER G. I. BILL
VIDEO HAMS! SERVICE MEN! ALL TELEVISION ENTHUSIASTS!

Here's Television's Greatest Thrill!

PILOT CANDID T-V 99 50
PORTABLE TELEVISION

Imagine! Television at its very finest—for less than $100! That's the PILOT CANDID T-V . . . the newest national sensation! And—WHAT television!

So clear, so bright—you couldn't buy a finer, sharper image if you paid TEN TIMES AS MUCH! So light, compact and handy (only 15 lbs!) you can easily carry it ANYWHERE . . . to living room, radio shack, playroom, den, office. Perfect for testing TV patterns on your regular service and installation calls. See and hear this sensational all-purpose television set at your nearest Pilot Radio dealer.

WRITE TO PILOT RADIO, Dept. RE, for name of nearest dealer. We will also send exciting details about new Pilot "Big Theatre" television console, featuring 16” x 12” viewing screen with famed Norelco "Protelgram" projection system.

PILOT RADIO CORPORATION, 37-06 36th St., LONG ISLAND CITY, N. Y.

JANUARY, 1949
SYLVANIA ADVERTISING HELPS SERVICE DEALERS INCREASE THEIR SERVICE BUSINESS!

Read what these 3 dealers say about Sylvania's Dealer Campaign for Summer and Fall

SYLVANIA'S FEBRUARY, MARCH AND APRIL CAMPAIGN IS NOW READY
Here's what it contains:
- 3 Postal Card Mailings—one for each month.
- 3 Window Displays—one for each month.
- 3 Window Streamers—one for each month.
- 6 Newspaper Ad Mats—two sizes for each month.
- Radio Spot Announcements—several for each month.

SEND FOR FULL INFORMATION NOW!
Remember, this campaign designed for your use ties up directly with Sylvania's ad campaigns on a national scale. You pay only the postage on the government postal cards you mail. Sylvania supplies everything else free! Mail coupon today!

SYLVANIA ELECTRIC

RADIO TUBES; CATHODE RAY TUBES; ELECTRONIC DEVICES; FLUORESCENT LAMPS, FIXTURES, WIRING DEVICES; LIGHT BULBS; PHOTOLAMPS

Sylvania Electric Products Inc.
Advertising Department
Room R-1701
Emporium, Pa.

Gentlemen: Please send me full details on your February, March and April Service Dealer Campaigns.

Name: ____________________________
Company: ____________________________
Address: ____________________________
City: ____________________________ Zone: ________
State: ____________________________

"Newspaper ads brought in over 100 radio sets for repair during July!"

"Gross business increased from $90.00 to $135.00 per week."

Sylvania Electric Products Inc.
Advertising Department
Room R-1701
Emporium, Pa.
Amazing New **EQUIPMENT** Helps
Prepare You FASTER, EASIER for...

TELEVISION...Electronics

Here's good news...big news...our BIGGEST NEWS in 17 years. The equipment pictured at left gives a partial idea of D.T.I.'s remarkable, new combination of shop-method training aids...to prepare you AT HOME for your start in Television-Radio-Electronics.

Get 48-Page Book FREE

Mail coupon today for D.T.I.'s big new 48-page OPPORTUNITY GUIDE BOOK. See how this amazing newer method helps you get started toward a GOOD JOB or your OWN BUSINESS in one of America's most promising, thrilling fields...that includes Television...F.M., Train...2-Way Taxi...Aviation...and Broadcast Radio...Industrial Electronics...and other fast-developing branches.

In addition to well-illustrated lessons, you work over 300 instructive experiments from 16 shipments of Radio-Electronic parts. Among these projects you build and keep a commercial-type CATHODE RAY OSCILLOSCOPE...that helps you get practical Television circuit training. You also build and keep a double-range R.F. SIGNAL GENERATOR, a jewel-bearing MULTI-METER and a quality 6-tube SUPERHET RADIO.

MAIL TODAY!

DeFOREST'S TRAINING, INC.
CHICAGO, ILLINOIS
Affiliated with the De Vry Corporation
Builders of Electronic and Movie Equipment
"SUICIDE ON WHEELS" was the description given to TV receivers in autos by the National Safety Council last month. "Keeping one's eye on the road ahead and on traffic behind and on both sides is the first essential of safe driving," a council statement said. The council said its staff would make a further study of TV installations visible to passengers only.

The Radio Month

PREVENTIVE MAINTENANCE was the theme of a campaign carried out by radio repairmen of the Harrisburg, Pennsylvania, area during the month of November last. Sponsored by the Federation of Pennsylvania Radio Servicemen's Associations and put into action by the local Mid-State Radio Technicians Association, it stressed the advantages to the radio owner of having his set repaired before it breaks down, instead of after. The returns to the radio user, both in uninterrupted radio entertainment and lower repair bills, were emphasized in a month-long advertising campaign. Residents of the area were urged through the newspapers and over the air to bring their sets to their radio repairmen for preventive maintenance during the month of November; a special check-over rate and guarantee was offered for that month only.

National and local radio concerns both cooperated with the Harrisburg servicemen in the campaign. Large numbers of leaflets and display pieces stressing preventive maintenance were supplied by tube and set manufacturers. Several local distributors, including York Radio & Refrigeration Parts, the D & H Distributing Co., the Radio Distributing Co., and John Blessing & Co., alternated in running weekly ads featuring preventive maintenance in both morning and evening papers. These, with the Mid-State Association's weekly ad, brought the campaign to public attention several days each week. All ads featured the Code of Ethics of the Association (Radio-Craft, March, 1948).

No More Guesswork

with OHMITE Little Devil
COMPOSITION RESISTORS

You never have to guess about the resistance and wattage of any Little Devil resistor. Every unit is not only color-coded but individually marked for quick, positive identification. Millions used in critical war equipment. Standard RMA values from 10 ohms to 22 megohms, in 1/4, 1, and 2-watt sizes. Tol. ± 10%. Also ± 5% in 1/2 and 1-watt sizes.

Available Only Through OHMITE Distributors

OHMITE Manufacturing Co.
4894 Flournoy St., Chicago, Ill.

This device actually reads, pronouncing each letter as the phototube scanner moves over it.

RADIO-ELECTRONICS For
ULTRAFAX, a new method for high-speed transmission of pictorial or printed material, was demonstrated to the public for the first time last month by RCA. Feature of the demonstration was the sending in just two minutes and 21 seconds of the complete text of "Gone With the Wind," the famous 1,047-page novel.

A picture of each page is transmitted via television to a TV receiver and is copied on microfilm. Thirty of these pictures per second are sent. A war-developed system of high-speed photography delivers film ready for printing or projecting in 45 seconds.

A TALKING STOVE is the property of Mrs. Walter Sechrist, of York, Pa. Mrs. Sechrist's gas range picks up the voice of a neighbor who is a ham. An engineer told her that two unlike metals in the stove are probably acting as an imperfect-contact detector.

TELEVISION ANTENNAS within the sets are a major goal for research engineers, said Dr. W. R. G. Baker last month. The General Electric vice-president pointed out that many people do not want to disfigure their homes with large antennas and that installation costs are high. Eventually, he said, the engineers want to get the antennas right inside the sets, just as was done with standard radios.

COLOR TELEVISION is the subject of a patent granted last month to Dr. Lee de Forest, pioneer radio inventor. The system uses a pair of cathode-ray tubes and a multi-color filter. Dr. de Forest claims that the system eliminates all color flicker.

METAL-CERAMIC SEALING is made possible by a new method developed by General Electric, according to an announcement last month by the company's Dr. C. G. Suits. The seal is made by an alloy of silver and titanium. The process will be especially valuable in making microwave vacuum tubes. The sealing of glass and metal is now commonplace, but glass presents difficulties due to heat in the uh.f. regions. Ceramic materials may now be used to replace the glass.

THREE TV ANTENNAS and an FM radiator may be placed atop the tower being constructed for Stromberg-Carlson's Rochester television station, WITM. The new tower will reach 1,005 feet above sea level and will be sturdy enough to support the additional antennas. One will be used for FM station WHFM. Stromberg has offered to share the tower with one other FM and two more television broadcasters, since the location of the tower is the best available patch in the Rochester area. If the offer is accepted, the novel arrangement will be the first in TV history. Viewers will be able to beam their antennas to one spot and receive three stations free of ghosts.

PRESIDENT-ELECT of the Institute of Radio Engineers is Stuart L. Bailey, the IRE announced last month. Mr. Bailey is a partner in the firm of Janskys and Bailey, consulting engineers, as well as a Fellow of the Institute.

Stuart L. Bailey, new president of the IRE.

Arthur S. McDonald, chief engineer of the Overseas Telecommunication Commission, Sydney, Australia, was elected vice-president for 1949.

NEW CO-AXIAL CABLE linking the East with the Midwest will be ready for television use on January 12, the A. T. and T. Company announced last month. The eastern networks now link New York, Boston, Philadelphia, Baltimore, Washington, and Richmond, with Pittsburgh to be added shortly. The mid-western cities joined by cable are Chicago, Cleveland, Toledo, Detroit, St. Louis, Buffalo, and Milwaukee. Two other cities are connected to networks by privately owned relays, Schenectady and New Haven. All together, over 12.5 million families will be served by TV networks after January 12.

FM PERMITTEES who surrender their construction permits would not be allowed to re-file for FM facilities within two years after the surrender, according to a regulation proposed to the FCC last month by the FM Association. Many CP holders have "sat on" their grants and then surrendered them "without prejudice," waiting for other operators to make FM a successful operation before spending money themselves. This, according to Leonard H. Marks, FM Association's general counsel, penalizes the conscientious broadcaster who constructs his station and serves the public, even though he makes no profit and may even sustain a loss.

TOWN MEETINGS of radio technicians will be held soon in Atlanta, Georgia, and in Los Angeles, the Coordinating Committee announces. The Atlanta meeting is being held in the Municipal Auditorium January 31 and February 1 and 2. The Los Angeles gathering will be at the Roger Young Auditorium on February 28 and March 1 and 2.
HEATHKITS

HEATHKIT FM and TELEVISION SWEEP GENERATOR KIT

A necessity for television and FM. This Heathkit completely covers the entire FM and TV bands from 2 megacycles to 230 megacycles. The unit has 110V 60 cy power transformer operated. Uses two 6L6 tubes, two 6G6 tubes and a 6AX rectifier. An electronic sweep circuit is incorporated allowing a range of 0 to 10 MC. A sawtooth horizontal sweeping voltage and phase control are provided for the oscilloscope.

The kit has every part necessary and detailed blueprints and instructions enable the builder to assemble it in a few hours. Large easy to read calibration. Convenient size 9" x 6" x 3½". Truck weight 4½ lbs.

Heathkit SIGNAL GENERATOR KIT...

$19.50

Nothing ELSE TO BUY

Every shop needs a good signal generator. The Heathkit fills every servicing need, fundamentals from 150 Kc to 30 megacycles with strong harmonics over 100 megacycles covering the new television and FM bands. 110V 60 cycle transformer operated power supply.

400 cycle audio available for modulation or audio testing. Uses 6SN7 as RF oscillator and audio amplifier. Complete kit has every part necessary and detailed blueprints and instructions enable the builder to assemble it in a few hours. Large easy to read calibration. Convenient size 9" x 6" x 3½". Truck weight 4½ lbs.

HEATHKIT HIGH FIDELITY AMPLIFIER KIT

Build this high fidelity amplifier and save two-thirds of the cost. 110V 60 cy transformer operated. Push pull output using 1619 tubes (military type 66B), two amplifier stages using a dual triode (6SL7), as a phase inverter give this amplifier a linear reproduction equal to amplifiers selling for ten times this price. Every part supplied; punched and formed chassis, transformers (including quality output to 3ohm voice coil), tubes, controls, and complete instructions. Add postage for 20 lbs.

12" PM Speakers for above... 6.95
Mahogany Speaker Cabinet 14½" x 14½" x 8" 6.75

$14.95

HEATHKIT 110V A.C. MILITARY RECEIVER POWER SUPPLY KIT

Ideal way to convert military sets, 110V 60 cy transformer operated. Supplies 24 Volts for filament—no wiring changes inside radio. Also supplies 250V D.C. plate voltage at 50-60 MA. Connections direct to dynamotor input. Complete with all parts and detailed instructions. Shipping wt. 6 lbs.

$5.95

110 V. A.C. TRANSMITTER POWER SUPPLY KIT

For BC-645, 223, 522, 274N, etc. Ideal for powering military transmitters. Supplies 500 to 600 Volts at 150 to 200 MA plate, 6.3 C.T. or 4 Amps, 6.3 at 4 Amps, and 12V at 4 Amps. Can be combined to supply 3.9-9.12 or 24 Volts at 4 Amps. Kit supplied complete with husky 110V 60 cycle power transformer, two 512 rectifiers, all filled condensers, cutout choke, punched chassis, nuts, bolts and other parts, including detailed instructions. Complete—nothing else to buy. Shipping wt. 8 lbs.

$14.50

HEATHKIT CONDENSER CHECKER KIT

Checks all types of condensers, paper mica—electrolytic—ceramic over a range of .00001 MFD to 1000 MFD. All on readable scales that are read direct from the panel. NO CIRCUITS OR MULTI-PLIERS NECESSARY. A condenser checker anyone can read without a college education. Leakage test and polarizing voltage of 20 to 500 volts provided. Measures power factor of electrolytics between 0% and 50%. 110V 60 cycle transformer operated complete with rectifier and magic eye tube, cabinet, calibrated panel, test leads and all other parts. Clear detailed instructions for assembly and use. Why guess at the quality and capacity of a condenser when you can know for less than a twenty dollar bill. Shipping wt. 7 lbs.

$19.50

Nothing ELSE TO BUY

The HEATH COMPANY

... BENTON HARBOR 20, MICHIGAN

RADIO-ELECTRONICS
IDEAL TEST INSTRUMENTS

HEATHKIT VACUUM TUBE VOLTMETER

Everything you want in a VTVM. Shatterproof solid plastic meter face, automatic meter protection in burn-out proof circuit, push pull electronic voltmeter circuit assuring maxi-
mum stability. Linear DC and AC scales. Complete selection of voltage ranges starting
with 3 Volts full scale up to 1,000 Volts. Isolated DC test prod for signal testing and
measurements of voltage while instrument is in operation. An ammeter section accu-
rate measuring resistance of 1/10 ohm to one billion ohms with internal battery.
Extremely high input resistance 11 megohms on all ranges DC and 6.3 megohms on AC.

All these features and many more are the reasons hundreds of radio and television
students you and Heathkit VTVM's and recommending them to all students. Like all
Heathkits, the VTVM kit is complete, 110V 60 cy power transformer, 500 microamp
tubes, tubes, grey crackle cabinets, panel, test leads, 1% ceramic precision divider resis-
tors and all other parts. Complete Instruction manual. Better start your laboratory now,
and enjoy all winter. Shipping Wt. 8 lbs.

HEATHKIT SIGNAL TRACER KIT

Reduces service time and greatly increases profits of any service shop. Uses crystal diode to
distinguish signal from antenna to speaker. Locates faults instantly. Internal amplifier
available for speaker testing and internal speaker available for amplifier testing. Con-
nection for VTVM on panel allows visual tracing of amplifier. All parts are standard
and simple to assemble. 110V 60 cycle transformer supplied. Supplied with 3 tubes, one
probe, 2 color panel, all other parts. Easy to assemble, detailed blueprints and instructions.
Small portable 9" x 6" x 4½" Wt. 6 pounds. Ideal for taking on service calls. Complete
your service shop with this instrument.

HEATHKIT 3-TUBE ALL-WAVE RADIO

$8.75

An ideal way to learn radio. This kit is complete ready to assemble, with tubes and
tubes and other parts. Operates from AC or DC. Complete selection of frequencies 110V 60 cy
Or operation. Coves regular broadcasts and short wave bands. Plug-in coils. Regenerative
circuits. Operates loud speaker. Add postage for 2 lbs. $8.75

HS 30 Headphones per set $1.00
1½ Permanent Magnet Loudspeakers 1.95

INTERPHONE 2-WAY CALL SYSTEM KIT

$14.50

Ideal call and communication system for homes, offices, factories, stores, etc. Makes excel-
zent electronic baby watch easy to assemble with every part supplied including simple instructions. Distance up to 1/2 mile. Operates from 110V A.C. 2 tubes, one master and one remote speaker. Shipping Wt. 5 lbs.

HEATHKIT ELECTRONIC SWITCH KIT

DOUBLES THE UTILITY OF ANY SCOPE

An electronic switch used with any oscilloscope provides two separately controll-
able traces on the screen. Each trace is controlled independently and the
position of the traces may be varied. The input and output traces of an
amplifier may be observed one beside the other or one directly over
the other illustrating perfectly any change occurring in the ampli-
der. Distortion—phase shift and other defects show up im-
mediately. 110 Volt 60 cycle transformer operated. Uses 5
tubes (1—6F5, 2—6L7's, 2—6S27's). Has indi-
idual gain controls, positioning control, and
coarse and fine sweeping mechanisms.

The cabinet and panel match all
other Heathkits. Every part sup-
plied including detailed in-
structions for assembly and
use. Shipping weight 11 lbs.

New 1948

HEATHKIT 5″ OSCILLOSCOPE KIT

A necessity for the newer servicing technique in FM and television at a price you can afford. The
Heathkit is complete, beautiful two color panel, all metal parts punched, formed and plated and every
part supplied. A pleasant evening's work end you
have the most interesting piece of laboratory equipment
available.

Check the features—large 5″ SRP1 tube, tem-
pered vertical and horizontal amplifiers using 6L7's.
11.5 cycle to 30 M cycle sweep generator using 884 gas
triode. 110V 60 cycle power transformer gives 1100
volts negative and 350 volts positive.

Convenient size 8½" x 13" high, 17" deep, weight
only 26 pounds.

All controls on front panel with test voltage and
set, v.o.m. Complete with all tubes and detailed
instructions. Shipping weight 35 pounds. Order today
while surplus tubes make the price possible.

Nothing ELSE TO BUY

$34.50

ORDER DIRECT FROM THIS AD.
WE WILL SHIP C.O.D.
Add Postage For Weight Shown

Nothing ELSE TO BUY

$39.50

JANUARY, 1949

The Heath Company
...Benton Harbor 20, Michigan

www.americanradiohistory.com
APN/1 RADIO ALTIMETERS

NO. 200. The last chance to get a complete new 14 tube transmitter set. Contains 412 Mc. transmitter, control panel, parts, band switch, range switches, tuning dials, meter indicator, plug-in and instruction manual. This unit makes everything you need for an amateur station as it is right in the band. Shipped in original export crate. Weight 87 lbs.

$34.50

G.E. BC 375 TUNING UNIT

NO. 203. Model T100 covers 12 to 15 Mc. New complete with aluminum cabinet. The best buy of surplus. Over $30.00 worth of new variable condensers, coils, diode switches, etc. Add postage...

$2.49

Bendix MR9C COMPASS CONTROL UNIT

NO. 207. Tuning and control unit for Bendix MR 20 compass. Compasses contains tuning dial, band switch, crystal switch, AVC switch, volume control, fuses, harness, etc. Shipping Weight 5 lbs.

$9.50

BC 371 CONTROL BOX

$7.95

G.E. BC 375 TUNING UNIT

NO. 204. New General Electric 50 Amp 220 Volt AC circuit breaker. Fits 100 Amp when used on 110V. Add postage for 4 lbs.

$2.95

BC 347 AIRCRAFT INTERPHONE AMPLIFIER

NO. 205. Interphone amplifier contains 648 tube, decoder transmitter, diagrams, etc. in aluminum cabinet. Add postage for 4 lbs....

$2.95

274N COMMAND SET ACCESSORIES

NO. 238. 5" R. Speaker with out put transformer matching head phone. Shipping Weight 1.80 lbs. NO. 239. Dual receiver rack FT777A with tuning post. $6.00. NO. 240. Single receiver rack FT2A. $1.00 NO. 241. Spline shaft for tuning command receivers. Allows use of... regular tuning knob on BC 45A-4 receiver. $1.95

G.E. BC 375 TUNING UNIT

NO. 242. Control box for 274N transmitters. Contains proper RF voice switch, 4 channel switch, power switch, mike jack and tele graph key. Add postage for 2 lbs.1...

$2.95

METER SPECIAL

NO. 237. Brand new DeJur Model 317-4 100,000° F. M. basic meter with built in shunt. Probably the best buy ever offered in a surplus meter. Shipping Weight 1 lb.

$2.95

A-62 ARMY PHANTOM ANTENNA

NO. 206. Contains tuning condenser, tuning wire, tuning dial, tuning indicator, binding posts, steel case, useful for building amateur transmitter. Add postage for 8 lbs.

$1.95

BENDIX MR9C COMPASS CONTROL UNIT

NO. 207. Tuning and control unit for Bendix MR 20 compass. Compasses contains tuning dial, band switch, crystal switch, AVC switch, volume control, fuses, harness, etc. Shipping Weight 5 lbs.

$9.50

RCB NAVY COMMUNICATION RECEIVER

NO. 202. The last of these RCNAV sets. Covers 300 Kc to 9.1 Mc. Continuously. Supplied with tuning control box, tuning unit, 24 Volts or DC battery, motor, relay, relays, switches, plugs and circuit diagram. Superheterodyne circuit covers audio, broadcast, marine, foreign broadcast, etc. Excellent buy for a high voltage receiver. Add postage...

$29.50

PE 115 TRANSMITTER POWER SUPPLY

NO. 233. Operates from 12 to 20 Volts and supplies 500 Volts at 150 Ma. Extremely rugged construction used in Army tanks. Complete with fuse and relays, etc. Ideal for boats.

$12.95

FM PUSH BUTTON TUNER

NO. 224. Brand new ten push button tuning assembly from Army FM receiver. Contains 4 gang 100 MMFB silver plated tuning condenser. Add postage for 1 lbs.

$2.50 EACH

RCA 11acu! COAXIAL CABLE

NO. 225. Standard television lead in 500 ft. Add for postage.

POWER TRANSFORMER Specials

NO. 226. Primary .1776. 60 cycle. Secondaries supply 746.6 V at 250 MA, 6.3 V, and 5A. Will handle 12 tube radio receivers. Covers all types. Shipping Weight 11 lbs. each.

$3.95... 3 for $9.95

OUTPUT TRANSFORMER

$3 for $1.95

TRANSMITTER TRANSFORMER

NO. 228. The transformer for Transmitter Power Supply. Will handle 200 Volts at 200 MA and 5 Amp. Filtering. Add postage for 1 lbs.

MILITARY POWER TRANSFORMERS

NO. 229. Convert your military receiver without rewiring. "A" type supplies 255 V at 50 MA, 3V at 2A, and 34A. "B" type supplies 500 V at 50 MA, 5V at 2A, and 12V at 1 Amp. State which one you want. Shipping Weight 12 lbs.

$9.50

HOME WORKSHOP GRINDER KIT

NO. 230. Easily assembled 110V. DC bull head grinding machine from Army surplus dynamotor. Purchaser supplies simple changes and shaft extensions, detailed instructions and all parts supplied. Motor approximately 5,000 B.P.M. Ideal for outlet grinder, field grinding, lathe tool, drill press, saw, etc. Shipping Weight 4 lbs.

$2.95

HEARING AID HEADPHONES

NO. 216. The Army's best - eliminate flat ears and outside noise. Complete with transmitter to pick up sounds over 9 feet. To high impedance. With cord and plug complete. Add postage for 1 lbs.

$1.00

TELEVISION CONDENSERS

NO. 221. Tuba triple. 2 PADS used on Army radar. Fits all models for H.V. and low voltage television set. Add postage for 1 lbs.

$3.95

HOW TO ORDER

GIVE PART NUMBER AND DESCRIPTION

ADD POSTAGE FOR

WEIGHT SHOWN

NO ORDERS UNDER $2.00

WE WILL SHIP COD

RADIO-ELECTRONICS

BENTON HARBOR 20, MICHIGAN

www.americanradiohistory.com
WHY BUY OVERHEAT?

START 1949 THE "SENCO WAY"
For low prices . . . for high quality . . . for im-
mediate service . . . NOW IS THE TIME! This is your
opportunity to eliminate all unnecessary expenses and to
assure your equipment 100% serviceable.

THOUSANDS OF TUBES!
ALL BRAND NEW! R.M.A. GUARANTEED!
Immediate Delivery! Individually Cored!

<table>
<thead>
<tr>
<th>Type</th>
<th>Each</th>
<th>Each</th>
<th>Type</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>6AQ5</td>
<td>54v</td>
<td>54v</td>
<td>6AY7</td>
<td>54v</td>
</tr>
<tr>
<td>6AS7</td>
<td>54v</td>
<td>54v</td>
<td>6BL8</td>
<td>54v</td>
</tr>
<tr>
<td>6BQ5</td>
<td>54v</td>
<td>54v</td>
<td>6C6GT</td>
<td>54v</td>
</tr>
<tr>
<td>6C6G</td>
<td>54v</td>
<td>54v</td>
<td>6CG8T</td>
<td>54v</td>
</tr>
<tr>
<td>6CG7</td>
<td>54v</td>
<td>54v</td>
<td>6CH7</td>
<td>54v</td>
</tr>
<tr>
<td>6CH6</td>
<td>54v</td>
<td>54v</td>
<td>6CL8</td>
<td>54v</td>
</tr>
<tr>
<td>6CL7</td>
<td>54v</td>
<td>54v</td>
<td>6CS7</td>
<td>54v</td>
</tr>
<tr>
<td>6CS6</td>
<td>54v</td>
<td>54v</td>
<td>6CS5</td>
<td>54v</td>
</tr>
<tr>
<td>6CS4</td>
<td>54v</td>
<td>54v</td>
<td>6CS3</td>
<td>54v</td>
</tr>
<tr>
<td>6CS2</td>
<td>54v</td>
<td>54v</td>
<td>6CP5</td>
<td>54v</td>
</tr>
<tr>
<td>6CP4</td>
<td>54v</td>
<td>54v</td>
<td>6CP3</td>
<td>54v</td>
</tr>
<tr>
<td>6CP2</td>
<td>54v</td>
<td>54v</td>
<td>6CP1</td>
<td>54v</td>
</tr>
<tr>
<td>6CQ5</td>
<td>54v</td>
<td>54v</td>
<td>6CQ4</td>
<td>54v</td>
</tr>
<tr>
<td>6CQ3</td>
<td>54v</td>
<td>54v</td>
<td>6CQ2</td>
<td>54v</td>
</tr>
<tr>
<td>6CQ1</td>
<td>54v</td>
<td>54v</td>
<td>6CQ0</td>
<td>54v</td>
</tr>
<tr>
<td>6CQN</td>
<td>54v</td>
<td>54v</td>
<td>6CQ1</td>
<td>54v</td>
</tr>
<tr>
<td>6CQ2</td>
<td>54v</td>
<td>54v</td>
<td>6CQ3</td>
<td>54v</td>
</tr>
<tr>
<td>6CQ4</td>
<td>54v</td>
<td>54v</td>
<td>6CQ5</td>
<td>54v</td>
</tr>
<tr>
<td>6CQ6</td>
<td>54v</td>
<td>54v</td>
<td>6CQ7</td>
<td>54v</td>
</tr>
<tr>
<td>6CQ8</td>
<td>54v</td>
<td>54v</td>
<td>6CQ9</td>
<td>54v</td>
</tr>
</tbody>
</table>

WHEN ORDERING, SPECIFY: All C.O.D. orders subject to full collect. Allstalk - W.C. New York City.

Radio Business

Stewart-Warner Corporation reports net earnings of $2,609,725, or $0.02 per share of capital stock, for the first nine months of 1948. The statement was un-
audited and subject to year-end adjust-
ments. In the first quarter, earnings were $1,456,851, or $0.49 a share, for the first three quarters.

Sales for the first nine months of 1948 were $56,993,599, down 1.6% when compared to sales of $56,926,546 for the same period of last year. Sales for the third quarter of 1948 were $18,124,114, up 8.2% over 1947 third-quarter sales of $16,748,250.

Haller&Craft,R,ion of Chicago an-
ounces that it will place on the market an automobile television set. The set will have a tamper-proof device which automatically cuts off the power when the car is in motion so that the driver will not be distracted from his job; however, a second unit not affected by the shut-off device can be installed in the back seat.

Sentinel Radio Corporation of Evans-
town, Ill., has announced the manufac-
ture of a portable television set which can be carried from one room to another, to be plugged in wherever an a.c. outlet is available.

The Radio Parts and Electronic Equip-
ment Conference and Show of 1949 will be held at the Stevens Hotel, Chicago, from May 17 to 20. The Show is spon-
sored by the Association of Electronic Parts & Equipment Manufacturers, the Sales Managers Club (Eastern Divi-
sion), the Radio Manufacturers Asso-
ciation, the West Coast Electronic Manu-
facturers Association and The National
Electronic Distributors Association.

RCA Communications, Inc., New York, announces that a new radiophoto cir-
cuit has been opened between Portugal and the United States. All types of pic-
torial matter will be transmitted over this circuit, linking New York and Lisbon.

Howard W. Sams & Company, Inc., in-
dianapolis, Ind., publisher of Photo-
fact folders, reports that the first series of ten meetings on the West Coast, consisting of lectures on television installation and circuitry, has been held under the co-sponsorship of local distributors of Photofact publications.

Over 4,000 radio technicians regis-
tered for these meetings to hear Mr. A. C. W. Saunders of the staff of Howard W. Sams & Company. A series of lec-
tures on television receivers will be held in all major centers of the country dur-
ing the fall and winter.

Stromberg-Carlson Company of Roches-
ter, N. Y., has announced price raises on its radio and television receivers, to take effect immediately. The increases range from $10 to $55. The company stated that the price adjustments resulted from increases in the cost of ma-
terials and labor.

Westinghouse Home Radio Division of Mansfield, Ohio, announces the produc-
tion of a new dual-speed record changer which will be able to play more than four hours of record music. Either con-
ventional or long-playing Microgroove

Electron & Phonograph Corpo-
ration of New York has just put on the
market the lowest-priced FM set. It will retail at $29.95. (See page 36.)

Tele-Video Corporation, Upper Darby, Pa. announces acquisition of two elec-
tronic products manufacturing com-
panies as subsidiaries. They are Air-
dyne, Inc. of Upper Darby, and Elec-
tronic Controls, Inc., East Orange, N. J.

Radio Corporation of America's consoli-
dated statement of income for the third quarter of 1948 and the first nine
months of the year, and the figures for the corresponding periods of 1947, has been issued by GENERAL
DAVID SARNOFF, President and Chair-
man of the Board of RCA. It included earn-
ings of subsidiaries.

Total gross income from all sources amounted to $256,968,537 in the first nine months of 1948, compared with $224,982,605 in the same period in 1947, and an increase of $31,986,932.

Net income, after all charges and taxes, was $15,123,783 for the first nine
months of 1948, compared with $12,-
233,785 in 1947, an increase of $2,889,-
025. After payment of preferred divi-
dends, net earnings available to com-
mon stock for the first nine months of 1948 were 21 5/8 cents per share, compared with 71.14 cents per share in the first nine months of 1947.

Earnings of Admiral Corporation, Chi-
cago, and its subsidiaries for the third
quarter ended September 30, 1948, hit an all-time high despite vac-
ation periods and steel shortages which were responsible for temporary shut-
downs in several Admiral plants, ac-
cording to Ross D. SIRAGUSA, president.

Sales for the third quarter totaled
$15,128,165, compared with $11,120,436 for the corresponding period last year, an increase of 36%.

Electronic Sound Engineering Company
of Chicago announces under its Polytone
Store Broadcasting System, to be used in large stores, restaurants, indus-
trial plants, bus stations, etc. A timer device automatically turns the set on and off and increases or decreases the volume, adjusting the output to the expected crowd at various hours.

The Solar Manufacturing Company, Paterson, N. J., has filed a petition in the United States District Court, to initiate proceedings under Chapter 11 of the Bankruptcy Act. Reporting a deficit of $670,687 from its 1947 opera-
tions, the company proposes to submit a plan of debt arrangement with its creditors to make payment in full on a deferred basis.

Radio-Electronics for
JANUARY, 1949

NOW! The Famous '500 Photofact TELEVISION COURSE in Book Form!

Previously available only to Photofact subscribers—now published to answer the insistent demand of the entire Radio Industry

NEW! 1948 Automatic Record Changer Manual

New Volume 2 covers 45 models made in 1948, including new LP and dual-speed changers, plus leading Wire and Tape recorders. It's easy to service record changers when you have the PHOTOFACT Record Changer Manual handy. Complete, accurate data—based on analysis of actual equipment. Gives full change cycle data, information on adjustments, hinges and kinks, complete parts lists, exclusive "exploded" diagrams. Have this timesaving, money-making book in your shop. Over 400 pages; de luxe hard cover. Only $5.75

1947 EDITION, Volume 1. Automatic Record Changer Manual. Covers more than 40 different post-war changer models manufactured up to 1948. Includes full hard-to-get data on leading Wire, Ribbon, Tape and Paper Disc Recorders. 400 pages; fully illustrated; 81/2 x 11". Only $4.95

NEW! Specialized Photofact Volumes

POST-WAR AUDIO AMPLIFIERS and Associated Equipment

This is the book that's wanted by custom-builders, audio men, and sound engineers. Covers a wide variety of well-known audio amplifiers and FM and AM tuners, plus data on important wire, hand, and tape recorders. Presents a complete analysis of each unit. A "must" for custom-installers and for service men in every shop. 352 pages; fully illustrated; sturdy binding. Only $3.95

POST-WAR COMMUNICATIONS RECEIVER MANUAL

New! Invaluable to Amateurs and Short Wave Listeners. Complete technical analysis of more than 50 of the most popular communications sets on the market. An invaluable service book, with a full guide for purchasers of communications receivers. All data based on actual examination and study of each unit. 264 pages; profusely illustrated; sturdy binding, 81/4 x 11". Only $3.00

Radio Industry Red Book

The RED BOOK tells you in one volume what you need to know about replacement parts for approximately 17,000 sets made from 1938 to 1948. Includes complete, accurate listings of all major replacement components—not just one. Lists correct replacement parts made by leading manufacturers—not just one. Covers original set numbers, proper replacement numbers and valuable installation notes on: Capacitors, Transformers, Controls, IF'S, Speakers, Vibrators, Phonograph Cartridges, Plots—Tube and Dial Light data, and Battery replacement data. 448 pages, 81/4 x 11". Sewed binding. Only $3.95

TUBE PLACEMENT GUIDE. Shows you exactly where to replace each tube in 5500 radio models, covering 1938 to 1947 receivers. Each tube layout is illustrated by a clear, accurate diagram. Saves time—eliminates risky hit-and-miss methods. 192 pages; handy index. ONLY $1.25

DIAL CORD STRINGING GUIDE. The book that shows you the one right way to string a dial cord. Here, in one handy pocket-sized book, are all available dial cord diagrams covering over 2300 receivers, 1938 through 1946. Makes dial cord restringing jobs quick and simple. ONLY $1.00

Now you can own the book that gives you a complete, clear understanding of modern TV principles, operation and practice. Previously available only in PHOTOFACT Folder Sets, this superb course has been bound in unified book form to meet an overwhelming demand from radio men in every branch of the industry. Written in clear, easy-to-follow language, profusely illustrated, packed with valuable up-to-the-minute data. Covers every phase of television—gives you the ground work you must have to become a successful TV service technician. Bring your television knowledge up-to-date this easy, economical way. The PHOTOFACT Television Course is available at your jobber—order your copy today! Over 200 pages; fully illustrated; sturdy binding, 81/2 x 11". Only $3.00

A "Must" for Everyone in Radio!

NEW! Photofact Volume 5

Latest addition to the famous PHOTOFACT Volume series—brings your file of post-war receiver service data right up to December 1948! Most accurate and complete radio data ever published—preferred and used daily by thousands of Radio Service Technicians. Everything you need for faster, more profitable servicing. Order Volume 5 today—keep ahead with PHOTOFACT—the only Radio Service data that meets all your needs! In deluxe Binder...

Vol. 5. Models from July 1, 1948 to Dec. 1, 1948
Vol. 4. Models from Jan. 1, 1948 to July 1, 1948
Vol. 3. Models from July 1, 1947 to Jan. 1, 1948
Vol. 2. Models from Jan. 1, 1947 to July 1, 1947
Vol. 1. All post-war models up to Jan. 1, 1947

FREE Photofact Cumulative Index

The easiest way to own the world's finest Radio Service Data is to subscribe regularly to PHOTOFACT Folder Sets. Send for the FREE Cumulative Index to PHOTOFACT Folders covering all post-war receivers up to the present. Helps you find the Folders you want in a jiffy. Get this FREE Index at your jobber or write for it now.

ORDER THESE BOOKS FROM YOUR LOCAL JOBBER

HOWARD W. SAMS & CO., INC.
INDIANAPOLIS 7, INDIANA

www.americanradiohistory.com
Which Do You Want?

Add Technical Training to Your Practical Experience and Get Your FCC Ticket

Get your license easily and quickly and be ready for the $3000 to $7500 jobs that are open to ticket holders. CIRE training is the only planned course of coaching and training that leads directly to an FCC license.

YOUR FCC TICKET IS RECOGNIZED IN ALL RADIO FIELDS AS PROOF OF YOUR TECHNICAL ABILITY.

CIRE Graduates Find FCC License Pays Off

"Transmitter engineering is great, especially in the job I am on. Thanks again for all you have done, and you can take credit for the fact that my "ticket" is now posted on the wall of a 1000 watt broadcast station."

Student No. 3678N12

"I now hold ticket P-10-3787, and holding the license has helped me to obtain the type of job I've always dreamed of having. Yes, thanks to CIRE, I am now working for CAA at Radio Maintenance Technician, at a far better salary than I've ever had before. I am deeply grateful."

Student No. 3191N12

"I was issued license P-3-11188 on November 4, The next day I was signed on board a tanker as Radio Operator-Purser. Besides radio operating, I handle the payrolls, etc., which is all overtime and brings my monthly pay up to between $500 and $650."

Student No. 2155N12

CLEVELAND INSTITUTE OF RADIO ELECTRONICS
Desk RE-1, 4900 Euclid Building, Cleveland 3, Ohio
Approved for Training under "G.I. Bill of Rights"

Get Your FCC Commercial Radio License in a Few Short Weeks

It's EASY if you use CIRE Simplified Training and Coaching AT HOME in SPARE TIME

GET THIS AMAZING NEW BOOKLET

1. TELLS OF THOUSANDS OF BRAND-NEW, BETTER-PAYING RADIO JOBS NOW OPEN TO FCC LICENSE HOLDERS.
2. TELLS HOW YOU WILL BENEFIT BY HOLDING AN FCC COMMERCIAL LICENSE.
3. TELLS HOW YOU CAN GET YOUR FCC COMMERCIAL RADIO OPERATOR LICENSE IN A FEW SHORT WEEKS—EASILY AND QUICKLY, BY USING CIRE SIMPLIFIED TRAINING AND COACHING AT HOME IN YOUR SPARE TIME.
4. TELLS OF HUNDREDS OF OUR SUCCESSFUL STUDENTS WHO NOW HAVE LICENSES AND NEW, BETTER-PAYING JOBS.
5. TELLS HOW WE PREPARE YOU TO PASS THE NEW FCC COMMERCIAL LICENSE EXAMINATIONS, WHICH NOW INCLUDE FM AND TELEVISION.
6. TELLS HOW WE GUARANTEE TO TRAIN AND COACH YOU UNTIL YOU GET YOUR LICENSE.
7. TELLS HOW WE HELP YOU TO GET A BETTER-PAYING LICENSED JOB, WITH OUR FREE AND EXCLUSIVE SERVICE, WHICH PREPARES AND MAIL YOUR EMPLOYMENT APPLICATION TO HUNDREDS OF EMPLOYERS, INCLUDING FM, AM AND TELEVISION BROADCAST STATIONS, RADIO MANUFACTURERS, POLICE RADIO STATIONS, AND RADIO-EQUIPPED TAXI, BUS AND PUBLIC UTILITY COMPANIES.

Get All 3 FREE Send Coupon Now!

CLEVELAND INSTITUTE OF RADIO ELECTRONICS
Desk RE-1, 4900 Euclid Bldg., Cleveland 3, Ohio
(Address to Desk No. to avoid delay)

I want to know how I can get my FCC ticket in a few short weeks by training at home in spare time. Send me your FREE booklet "Money Making FCC License Information", as well as a sample FCC-type exam and free booklet, "How to Pass FCC License Examination", (does not cover exams for Amateur License).

Name

Address

City

Zone

State

Veterans check for enrollment information under O. I. Bill.

NO OBLIGATION—NO SALESMEN

RADIO-ELECTRONICS FOR
FUTURE TRANSISTOR USES

Transistors will play an increasingly important role in the future . . .

By HUGO GERNSBACK

WHEN we look back upon the humble crystal detector of the early radio days, long before the vacuum tube was invented, we must marvel at the spectacular comeback which it recently has staged in the form of the new Transistor.*

The crystal always was a fascinating device, the more because clear and strong signals could be obtained without either A or B batteries. This feature not only intrigued the experimenter, but the technician and scientist as well. It is therefore not too surprising that the new Transistor was evolved. A tremendous amount of work by the Bell Laboratory scientists went into its development. While the engineers have formulated a theory how the new device works, it is still too early to say just exactly what happens and why it works as it does. The explanation is a highly technical one and we will not re-view it here—simply for lack of space.

Those of our readers who are acquainted with some of our fanciful predictions—via our annual April Fool joke—will remember the “Crystron Lapel Radio” in the April, 1947, issue, which closely parallels the Transistor in many respects.

Like the Transistor the Crystron had a “grid.” It too used no A-battery, and in one instance a circuit was shown which also disposed of the B-battery entirely—a completely batteryless amplifying crystal device. Another fanciful diagram in the same article, labeled “A capacitive-grid crystal tube” probably came as close to the Transistor as anything published up to that date.

These remarks are not made to detract from the great work of the Bell engineers, but are made simply to show that when many people think along identical lines something is bound to evolve.

Inasmuch as the Transistor is an electronically operated device it would be interesting to know what happens, when and if someone applies a radioactive-tipped cat-whisker to the Transistor, as was suggested in the Crystron article in April 1947.

Will this be the avenue to the abolition of the high-tension B-battery voltage? It seems a foregone conclusion that at some time in the future the Transistor—or a similar allied device—may be evolved in which no outside voltage will be required.

Many questions are asked by our readers about the Transistor—the most common being: Will the Transistor supplant the vacuum tube entirely?

Personally we doubt it. There are too many uses for the present-day vacuum tube and wherever power is required the Transistor may not be able to compete with the vacuum tube. In high-power amplification, transmission, and many other instances the vacuum tube is likely to be dominant for many years to come.

Yet, it seems certain today that the new and revolutionary Transistor will supplant our present vacuum tube in many instances. Its development is so recent that it is difficult to foresee all its many uses. From our present knowledge it should not be too difficult to make certain prognostications based upon our knowledge of the radio art.

The Transistor is a radio and audio-frequency amplifying device paralleling its forerunner, the electronic tube. It differs from the lattef in a most important point in that it does not require the usual A-battery. For this reason many appliances—particularly those where space and weight are at a premium—will be the ones that come under immediate consideration. These are chiefly hearing aids and vest pocket radio sets, both of which can now be made exceedingly small—thanks to the Transistor.

In a humorous-fanciful article in the April 1946 issue of RADIO-CRAFT, we predicted the “Radio Pen”—a radio set so small that it would take the shape of a somewhat large fountain pen. Such a radio set is now no longer so fanciful. Indeed, it would surprise us very much if one is not manufactured during the next few years.

Pocket recording instruments whereby voice or sounds may be recorded in an instrument small enough to slip into your pocket also now become possible.

For military purposes the Transistor will assume new proportions in equipping ground troops with small receiving instruments which weigh only a few ounces and therefore do not encumber the soldier with extra weight.

Proximity fuses already much in evidence in World War II—where small radio sets were embodied in the nose of a shell—can now be still further reduced in size and weight and be made much more efficient. It was the A-battery that was particularly troublesome in World War II proximity fuses.

Every aviation pilot prays for the day when he will be able to get radar into his plane to safeguard him from dreaded collisions with other planes, mountains, and building obstructions. Only the large size and great weight of present radar installations are in the way. The Transistor will certainly help to bring this achievement about in the near future.

One of our pet peeves for a long time has been the cumbersome microphone which actors, singers and speakers use on the stage, in cabarets and halls. Such a microphone which pops from beneath the stage—or the type with the headpiece, that must be hugged around—is totally unnecessary in this electronic age. These microphones constantly get in the actor’s or speaker’s way. If he steps away from the microphone the fading voice effect becomes grotesque.

In the future all this will be done away with. No longer will these unesthetic microphones be allowed on the stage or floor. Instead, half of the entire public address system will be carried by the actor or speaker. A concealed lapel microphone will be used, while a miniature radio transmitter weighing but a few ounces will be in his pocket. Now he will be a walking broadcast station. A pick-up wire underneath the stage or a metal strip underneath the rug or linoleum picks up the radio impulses and leads them to the public address system of the theater or hall. In this way the actor, speaker or singer will have free use of the hands with no cumbersome microphone to hide the face. He can walk anywhere on the stage or podium—he is no longer chained to a fixed mike. He will speak in a normal voice which will be broadcast from his pocket radio transmitter and sent out over the public address system of the auditorium.

These are just a few of the future uses of the Transistor. There are, of course, hundreds of others which will come about not only for personal use but also for the home, in the factory, in the stores, in the car—yes, and in television to reduce the size of our television receivers, too.

*See September, 1948, issue RADIO-CRAFT.

JANUARY, 1949
BUILDING radio-controlled models is perhaps the most fascinating, and certainly the most specialized, of model-making hobbies. Radio control is fairly commonly used by builders of model boats and airplanes, but it is seldom applied in model automobiles and similar vehicles.

This control system was developed for use in a model bus, but can be applied to almost any project where there is sufficient space and where weight is not an important factor. The control system, installed in a model bus 22 inches long and 9 inches high, enables it to perform many of the operations of a full-size bus. The operator can start, stop, reverse, turn the vehicle right or left, open and close the doors, operate the windshield wiper and stop signals, and turn lights on and off—all by radio.

The vehicle was assembled from a kit, such as is available at most hobby shops, for a working-model bus. Seats and other interior fittings were left out to provide space for the control mechanism.

The Control Circuit

The control system consists basically of a 6-meter transmitter and receiver. The transmitter (Fig. 1), using a 3A5 push-pull oscillator, is small enough to be held in the operator's hand. The receiver, a superregenerator using an RK-61 with a 10,000-ohm sensitive relay in its plate circuit, is in the bus. The circuit is illustrated in Fig. 2.

The heart of the control system is a special, motor-driven, 2-circuit, 12-point selector switch. Its contacts are arranged in concentric circles. The movable arms are on a piece of insulated material mounted on the shaft of the motor. Concentric circles and wiping contacts provide a continuous circuit to the arms of the switch. The switch is shown in the photographs and in Fig. 3. The outer ring and the inner circle of contacts control colored indicator lights atop the bus so the operator can tell the position of the switch arm. The inner ring and the outer circle of contacts handle the various controls.

The master control circuit is shown in Fig. 4. When the transmitter key is closed, the plate current of the RK-61 in the receiver decreases and the sensitive relay RY1 closes the circuit to the power relay RY2. This completes the circuit to the selector motor, which continues to turn as long as the transmitting key is pressed. The operator knows the position of the rotating selector switch by watching the lamp indicators atop the bus. If the selector is stopped in the FORWARD position, solenoid SD1 pulls the forward-reverse switch S1 to the forward position, connecting the battery B2 to the driving motor so that it propels the bus for-
ward. The motor is connected to the rear axle with 1 to 1 gears. The bus will continue to run forward until the selector is turned to REVERSE.

Setting the selector at LIGHTS ON causes switch SD2 to pull S2 toward it, closing the circuit between the 3-volt battery, the headlights, and running lights. When the selector is stopped at LIGHTS OFF, SD4 pulls S2 toward itself, opening the light circuit. To perform other operations with the lights on, apply the limit switches. The circuit is closed through the axle and contact A. Switch B closes the circuit to the right-hand indicators. This circuit is completed intermittently by the commutator and contacts E-E'. During a left-hand turn, the motor circuit is completed through the axle and C and the indicator circuit through D. The circuit is opened and closed by the commutator and contacts G-G'. Two operations are required to reverse the bus: Set the selector to REVERSE. This causes SD2 to pull S1 toward it, reversing the connections between the driving motor and B2. In this position the circuit to the motor is completed through the auxiliary reverser.

Fig. 2—The receiver is a superregenerative circuit that enables the bus to pass over LIGHTS OFF without stopping. This is possible because the current to operate the sequels is taken from B1 through the normally closed contacts on RY2.

The doors are opened independently by sequels and closed by return springs when the selector is moved to another position. When either door is opened, the return spring contacts two metal strips and closes the circuit to the stop- and well-light circuits. The lights go out when the doors close. The construction of the door-opening mechanism and lighting circuit is shown in Figs. 5 and 6.

A bell and buzzer simulating the "getting-off" signals that passengers give the driver are powered by a 3-volt battery. The circuit is completed through RY2 when the selector switch comes to rest on BELL or BUZZER.

The windshield wiper uses a sequel SD6, a return spring, and a thermostat switch S3 to provide a slow reciprocating action. Current from B1 heats the bimetallic element, causing it to bend and open the heating circuit and close the circuit between the sequel and the battery. SD6 pulls the windshield wiper in one direction. When the bimetallic element cools, it again closes the circuit to the heating element and the spring returns the wiper to its normal position. The cycle repeats as long as the selector is set on WINDSHIELD WIPER.

Steering is controlled by a 22 1/2-volt motor geared to the front axle as shown in Fig. 7. When the axle is turned approximately 30 degrees to right or left, the steering motor is cut off by limit switches, as shown in Figs. 7 and 4. The wheels can be stopped in any intermediate position by moving the selector to a new position before the circuit is opened by the limit switches. The circuit is wired through RY3 so the motor normally turns to the right. RY3 reverses the circuit for a left turn.

Turn indicators are connected to blink when a turn is being made. Fig. 8 shows the connections to the blinker circuit. When the wheels are turned to the right, the motor circuit is closed through the axle and contact A. Switch B closes the circuit to the right-hand indicators. This circuit is completed intermittently by the commutator and contacts E-E'. During a left-hand turn, the motor circuit is completed through the axle and C and the indicator circuit through D. The circuit is opened and closed by the commutator and contacts G-G'. Two operations are required to reverse the bus: Set the selector to REVERSE. This causes SD2 to pull S1 toward it, reversing the connections between the driving motor and B2. In this position the circuit to the motor is completed through the auxiliary reverser.

Fig. 3—This switch is the heart of the control system. View shows how it is constructed.

Fig. 4—The master control diagram. Other figures show the auxiliary actuating mechanisms.
The steering, driving, and selector motors are 27½-volt d.c. Alnico-field units rated at 250 r.p.m. The Delco type 5068600 driving motor runs at about 80 to 85 r.p.m. when loaded by the bus, which weighs about 9½ pounds. The Alni-co motor is a Delco type 5068751, rated at 27½ volts d.c. and 10,000 r.p.m. This unit turns at about 300 r.p.m. with a 3-volt battery. Both motors are available on the surplus market.

The thermostatic switch is made by the Lionel Train Corp. for use with automatic reversing signals.

Construction projects such as this one can be undertaken by anyone, although no radio-control system should be operated by anyone not holding an amateur radio operator's license.

A similar control system can be worked out by wired remote control, and the operator can control the power relay by inserting long flexible leads running to the operating position. Closing the circuit to RTY2 by wire will give the same results as radio control.

Bill of Materials

Transmitter: 2-3.700-ohm, ½-watt resistors; 2-4,000µf, mica capacitors; 1—3-20-µf trimmer; 1—0.125v, ½-watt aluminum,
THE first cooperatively owned farmers' radio system in the world, the Rural Radio Network, serves 118,000 farms in upper New York State with programs, news, and reports especially designed and timed for farm families.

The network consists of six FM stations, wholly owned by ten farm organizations. Stations are linked only by radio. Sites for the transmitters were so chosen that each station would be able to receive the next one's signals, in addition to providing the desired local coverage. An affiliation with New York City's WGHF adds the facilities of a big-city outlet.

A mobile unit (above) originates programs from rural spots. Main origination point for most programs is Ithaca; a studio is shown below. In the control room is master-control equipment and on the roof is the antenna (in circle) which beams signals from the ST-link transmitter (right photo) to the Ithaca transmitter, 9½ miles away. All transmitters are 250-watt units and resemble the one at bottom right.

A large service area is desired, and to that end the sponsors of the network had a special receiver designed for extra sensitivity. This was engineered by North American Philips and is being distributed to the listeners by the cooperatives whose members own the broadcast stations.

FARMERS of other states are observing methods and results of RRN.

RRN broadcasters originate programs in Ithaca studio (left), through the window of which Ithaca master control room can be seen. Station engineer tunes the ST-link transmitter (upper right). Parabolic microwave antenna (circle) beams programs to the main Ithaca transmitter, thence to listeners in area. All RRN transmitter plants resemble the one shown at lower right. A weather vane is atop the antenna.

JANUARY, 1949
Antennas for Television

TV ELEVISION reception can be improved to a marked degree by correct installation of a well designed antenna. A good antenna system will do much to reduce snow effect, ghosts, poor contrast, and other picture defects which detract from the enjoyment of television programs.

Most present TV aerials fail to take advantage of the high gain which can be achieved by utilizing fully the properties of transmission lines and orientation and propagation characteristics. This can be traced directly to the misinformation and contradictory theories which daily confront the television repairman. To add to his confusion, his own experience with antennas seems to indicate that almost all he has been told is unreliable and cannot be depended upon to give predictable performance. Too often he runs across instances where the same antennas and receivers in adjacent homes give far different results—yet one installation seems a duplicate of the other.

Eventually the television technician comes to the conclusion that time consumed in trying to sort out all the conflicting ideas on television antennas is just wasted energy. In consequence he is firmly convinced that results are hazardous and uncontrollable. He chooses an antenna which seems to give fairly good results in most places, and makes that model his standard installation. If results are below what they should be, he feels that it is a matter of locality and nothing can be done about it.

To clarify this situation, the authors undertook an exhaustive investigation of every typical television antenna in common use. Experimental antennas, arrays, and transmission lines were set up to confirm or disapprove existing theories and ideas. Duplicate tests were made in different localities, at both low and high signal levels. Propagation and terrain characteristics were checked to verify all findings fully.

 Receivers with different input systems were also employed to get complete data concerning their effects on transmission lines and antenna sensitivity. Comparisons were made with dipoles, folded dipoles, stacked arrays, and reflectors, to note what difference each made in the received signal.

Originally it was intended merely to give practical proof of accepted theory by considering all the factors which might change reception under certain conditions. The results and observations, however, brought to light a number of startling factors completely unknown or ignored to date. Unorthodox methods for greatly increasing the received signal were evolved, and many pet theories long taken for granted were disproved.

Applied to typical installations, these procedures improved reception to a remarkable degree—contrast increased, interference and snow decreased, and fringe area performance was brought to a level often comparable with that of better reception regions. In many instances improvement was over 10 db greater than that obtained with typical boosters.

To secure such results, changes must be made which differ radically from what is normally encountered in typical home installations. Full benefits are obtained only when consideration is given to each item along the line—receiver, transmission line, antenna, orientation, and propagation characteristics.

For instance, the accepted theory with regard to the popular twin-lead so much in use today is that this line represents an untuned or nonresonant transmission characteristic. As will be seen, this concept must be modified. Such a line has a characteristic impedance \(Z_c \) which results from the size of the two conductors, the spacing between them, and the dielectric constant of the insulating material. Most twin-leads have a characteristic impedance of 300 ohms.

A transmission line will transfer a maximum amount of energy if it is terminated at each end in an impedance equal to \(Z_c \). A 300-ohm line, for instance, should be attached to a receiver whose impedance is 300 ohms. This line should also be attached to a 300-ohm antenna. This condition is approached with a folded dipole, which has a radiation resistance of about 292 ohms. (See diagram.)

Theoretically, a maximum of energy will be transmitted to the receiver and the transmission line can be of any length—though line loss does increase with length (300-ohm twin-lead has a loss of about 0.75 db per 100 feet).

In actual practice, however, this ideal condition is rarely achieved, and cutting the twin-lead to a random length may result in a considerable decrease in signal strength. In order to understand how this comes about and how to correct for it, a brief comparison between the twin-lead (untuned) and a resonant line is necessary.

A resonant (tuned) line should be some multiple of a quarter-wavelength long. Such a line, when open-circuited at one end, will not transmit or receive any energy. Radio waves sent along it will be reflected back to create standing waves.

Standing waves on a transmission line mean that there are voltage and current peaks standing along it, with a half-wavelength separation between each peak. The ratio of these voltage peaks to voltage nodes (low-voltage points) is the standing-wave ratio. When such a line is a multiple of a
quarter-wavelength and is terminated in its characteristic impedance, all of the energy sent through it is utilized. Under such an ideal condition there would be no reflection of waves, and no standing waves. However, the farther the termination from the correct value, the greater the standing-wave ratio. The same holds true if the line is shorter or longer than a multiple of a quarter-wavelength, since this will add capacitance or inductance to a line which is supposed to be purely resistive.

In television receiver installations the preference is for untuned (non-resonant) transmission lines because of their simplicity. In such a line we shouldn’t have to worry about length and its characteristic impedance would be a proper match at each end. If, however, a mismatch occurs due to line characteristics or incorrect termination, standing waves develop. In such cases our twin-lead acts like a resonant line which is either improperly matched or not cut to the right length. When this happens, signal intensity is decreased enormously because much of the energy is reflected instead of being absorbed by the input system of the receiver.

Thus, it can readily be seen how important it is that the nonresonant twin-lead act in the manner it should—that is, like an untuned line having no standing waves. Actually, however, this is never achieved when using any of the standard techniques available at the present time. Of the numerous installations checked by the authors, it was found that in every instance there definitely were standing waves on the line.

If the line happened to be cut near a multiple of a quarter-wavelength long for a certain channel, reception was fairly good and the standing-wave ratio low; but it still acted very much like a resonant line.

A simple and quick method for checking the presence of standing waves is to grasp the transmission line firmly at intervals of every 6 inches, with the receiver tuned to some channel between 7 and 13. If the line has a high unbalance, the picture will get dimmer when the hand is in some places and brighter when our only grip on the line happens to be close to a multiple of a quarter-wavelength, the results will not be so pronounced but will still be evident.

If the contrast is decreased until the picture is barely visible and the line is held with the hand at a place where it results in signal increase, the difference will be more noticeable, because on highly unbalanced lines it will bring the picture up to almost normal contrast.

This can be rechecked at high signal level. Advance the contrast control until the picture is just on the verge of tearing. Now grasp the twin-lead at a place previously determined for signal increase; the picture will tear, showing much greater signal input to the receiver. (Excessive signal will tear the picture if the gain of the i.f. stages has been increased to a high level by adjustment of the contrast control.)

On the lower channels the spacing between high and low points along the lines will be correspondingly greater, due to the longer wavelength. However, since some channels are harmonically related, an adjustment of this standing-wave condition often results in improvement for several channels.

Several methods of minimizing standing waves result in a much better signal and a reduction of the snow effect on weak stations. Because the maximum results are realized when adjusting for a certain channel, it is best to correct for the weakest station. Thus, if channel 10 is not receiving well, the twin-lead can be adjusted to favor this station and bring its level up.

The procedures used to aid reception are based on the fact that the line is actually resonant. When there are standing waves on a transmission line, reflections along the line begin at the termination (television receiver input) because the antenna acts as the generator of the signal and the receiver as the energy-consuming device. If all the energy is not utilized by the receiver, some is sent back along the line to the generator (antenna) with resultant standing waves. If the line is not a multiple of a quarter-wavelength, not all the energy will be utilized. Remem-

ber that we are dealing with a resonant line, despite the fact that it was originally designed to be nonresonant.

The nonresonant twin-lead line is to make it a multiple of a quarter-wavelength—despite the apparent 300-ohm match at receiver and antenna.

Any one of several methods can be utilized to tune the line for maximum reception. A small variable capacitor can be placed across the twin-lead at the antenna posts of the receiver, and the capacitance adjusted for maximum picture signal. Another method is to keep cutting small sections from the lead-in until the signal is at a maximum. The third, perhaps the most economical and convenient method, consists of adding a section of twin-lead to the line. This is attached right to the antenna posts of the receiver (see photo).

It is preferable to start with about 40 inches of line and cut off an inch or two at a time. Close the end of the line by twisting together a small section of the stranded conductors at the free end. This shortened stub will nullify the effects of either inductance or capacitance present in the line and will aid in bringing it back to a pure resistance. As this condition is approached, there will be a decided change in the picture on the viewing tube.

Not only does the procedure materially aid picture signal, but it results in a decrease of noise because an approach to a perfect balance will eliminate the possibility of stray pickup in either conductor.

The inability of twin-lead to act as a truly nonresonant line is also caused by the composition of the dielectric used. Under tests in good signal areas, it was found that the line would pick up a station even when disconnected from an antenna and terminated in a 300-ohm resistor. With such a termination, no pickup should have been possible. When, however, it is properly cut and matched, it still remains the most simple and economical low-loss line for television and FM reception.

In the next article co-axial cable will be discussed and comparison will be made with twin-lead. Gain considerations will be analyzed and methods for improving signal strength given.

(Amateurs and others who deal with transmitters are familiar with the power-wasting effects of standing waves. However, most servicemen have never met them before, professionally. In view of the fact that twin-lead is never non-resonant, the importance of the material in this article cannot be over-emphasized.

The Editors, for example, were most interested to note that a very snowy picture on channel 13 could be greatly improved merely by aldging the hand down a portion of the transmission line until best picture point was found.

Television installation and service men might do well to carry with them several sections of line, each of a different length, shorted at one end and terminated in alligator clips at the other. Clipping these, one at a time, to the receiver would soon indicate what stub length is optimum. A permanent stub could then be cut.—Editor).
Experimenterers in fringe areas are picking up satisfactory television programs with the help of multiple boosters, very high antennas, and careful adjustment.

By LYMAN E. GREENLEE

AROUND Indianapolis, Indiana, set owners are picking up TV programs from Chicago, about 190 airline miles away. Reception is, at times, equal to that from Cincinnati's WLWT, approximately 80 miles distant. Both pictures and sound are being received; although frequently the picture comes in without the audio, while at other times the video is lacking but sound is perfect. Inability to receive both sight and sound simultaneously is usually due to the narrow band width resulting from the use of preselectors or boosters in series. Most marginal installations are using two or three boosters in cascade to build up the gain sufficiently to swing the video end of the receiver. Consequently, the band width is often narrowed to the point where either the picture or the sound may be lost. Considerable care in peaking the boosters is necessary to avoid this difficulty, but it cannot be altogether avoided in marginal installations. One very good solution for the trouble is to use a separate receiver for the audio.

How good is reception?

TV set owners in the Indianapolis area are also reporting reception of signals from Milwaukee, St. Louis, Cleveland, and Detroit. There is often a lot of interference between stations on the same channel. Such interference is particularly bad between WLWT at Cincinnati and WBKB at Chicago, both stations being on channel 4. There are times when you get the picture from one transmitter and the audio from the other. At other times both pictures mix together to form a garbled mess; and, as reception conditions vary, the stronger signal is the one that predominates. Frequently we have seen a program suddenly shift from one station to the other with no adjustment of the controls on the TV receiver. Reflections from shifting cloud banks are particularly annoying and are probably responsible for such freak effects. They vary in direction and intensity from day to day and hour to hour. It is virtually impossible to eliminate entirely this type of interference. Rotation of the antenna is probably the best and most effective remedy. Often a stronger signal can be picked up by tuning to a reflection, but it is likely to be very erratic and difficult to hold.

All kinds of freak results can be expected in marginal areas—including some good reception that would almost lead you to believe the transmitter was about two blocks down the street. We have seen good, clear test patterns from WLWT (Cincinnati) when the weather was very hot and there was not a cloud in the sky—airline distance to the transmitter about 90 miles! Usually, however, results are better on a cloudy day with relatively high humidity such as occurs either before or after a thunder shower.

Most marginal installations are made in homes of people who know quite a lot about radio or electronics—amateurs, servicemen, engineers, and so on—but a surprising number of sets are being installed for professional people, such as doctors and lawyers. A few taverns have installed projection TV, even though the nearest transmitter is beyond the normal range of satisfactory reception. Since it has been the policy of set manufacturers in general to discourage marginal TV installations, most of the sets have been privately installed by their owners. Maintenance has been left entirely to the owners, and the manufacturer or distributor assumes no responsibility whatever for the results.

Are owners satisfied with their sets and with the reception they have been getting? The answer, surprisingly, is a very definite "yes." A few owners did not know what to expect, and they have been very much disappointed. They are the ones who were expecting to get pictures like home movies, something that just can't be done yet, at least not in marginal areas. Not all locations will give satisfactory reception, and an owner who installs a TV set in a particularly bad location may never be able to pick up a recognizable test pattern. Would-be televiewers must be warned of possible complete failure, or unsuccessful installations will create bad will toward the installer.

Which is the best set?

The question is often asked: "What type or brand of television receiver should I purchase to get reasonably good reception in areas like this one, far from television broadcast stations?" Any of the standard receivers now on the market will work in marginal areas if properly installed. Several kit...
receivers have been as successful as standard makes. There is some difference in stability and performance between various sets; but, generally speaking, no special set is required for a marginal installation. Regardless of the type of set or make selected, it is very important to check it carefully (or to have it checked) to be sure it is properly aligned and in tip-top shape to deliver its maximum performance. Usually, the cheaper sets employing a minimum of tubes will require a larger input signal to drive the video channel successfully. If the location is in a low-noise area, the signal can be built up to the level required by any set on the market; but if there is noise and interference, that will also be amplified by the boosters and results will be unsatisfactory.

All marginal installations require the use of one to three preamplifiers or booster stages. You can buy several good ones on the market, or one can be built. (See Radio-Electronics, October, 1948, page 60, and November, 1948, page 48.) It is generally necessary to use two or three stages of preamplification. To avoid oscillation due to coupling, many users prefer to employ factory-made boosters in cascade. If trouble is encountered because of oscillation, instability, or failure to secure a tunable peak, it can often be corrected by making changes in the input or output lines. Of course, some boosters may be inherently unstable; in many cases it will be simpler to try another one when tracing down the source of trouble. Usually two different makes work better than two of the same make when connected in series because there is less chance for interaction between the two units.

Get a good antenna

To get any reception in a marginal area, you must bring the maximum signal into the set, so the antenna installation is the most important thing to consider. Several antenna systems now on the market give good results in marginal areas, so the set owner must be prepared to buy a ready-cut antenna system. Decide what station you want to receive and then either get an antenna cut for that particular channel, or get one you can definitely tune to the desired channel. Properly spaced directors and reflectors are a necessity. Remember that straight dipoles have better directional characteristics than the folded types. Usually, a multiple array is the only answer to the problem of getting a signal into the set, and the only type of antenna that will give any usable results. The so-called "broadband" types that cover all channels are good for use outside the line of sight of the transmitting station, but will be troublesome if away from the transmitter, where there will be trouble from all kinds of interference and stray noise pickup—automobile and airplane ignition systems, cloud reflections, static, random noise, television fields, etc. A good array will be tunable and highly directional to minimize unwanted pickup and at the same time put the maximum signal into the TV receiver.

Get the antenna up as high as possible, preferably on a utility pole that is climbable or on a good pipe or fabricated mast that can be lowered for repairs and adjustments. The antenna must be rotatable, either by hand (turning the pipe column with a wrench) or with a motor. Keep the over-all height under 100 feet to avoid having to install a flasher beacon on top of the mast in compliance with CAA regulations.

Most marginal antenna installations run from 50 to 95 feet over-all height. It is important to get above trees and surrounding objects, but excessive height means increased length of transmission line, with increased losses. Use a minimum length of co-axial cable or transmission line to make the installation. Use co-ax for noisy locations and twin line for residential or country jobs. If a purchased antenna system is installed, directions for installation and matching to the set will be furnished. It is a good idea to do some experimenting when it comes to matching inputs; there is often a very great mismatch which results in a very poor transfer of signal. A little patient trial-and-error may make a big difference in the input signal. Keep the lead-in away from metal objects. Support it on a minimum of stand-off insulators and avoid sharp bends or turns.

Where to get a mast

For lightning protection, it is advisable either to ground the pipe mast or to run a separate ground wire to the top, as is done to protect utility poles. Follow the National Electric Code. Frequently your local power and light company will set a pole at a very reasonable price, as they have all the necessary equipment and can do the work in a minimum of time. You can mount your antenna on this pole, which is climbable and requires no guy wires for its support. Several marginal installations we visited had used this service with considerable satisfaction. Over a period of several years, such a pole should be a very good investment.

It takes a lot of work and patience to get a marginal installation to function properly. Do not expect consistently good pictures or uniform results.

Television is here to stay, and it now appears that good reception may be possible at distances far beyond those at first established by the engineers as the maximum at which a satisfactory picture could be received.

After becoming thoroughly familiar with a particular setup, the operator can anticipate the times of best reception. Marginal TV is just beginning to open up on a national basis, and there are plenty of problems yet unsolved. Those who are now out on the fringe are having an unusual opportunity to assist in solving those problems by actually trying for reception under the varying atmospheric and climatic conditions encountered from day to day.
CUSTOM-BUILT Projection Televisers

TELEVISION kits are becoming a new and important factor in the radio technician's life. Hampered in many cases by franchising systems, the kit is in many cases the wedge with which he can pry open the rich television field. The would-be televiewer buys his kit from the serviceman, who assembles and installs it for a fixed fee.

Advantages of the system are threefold. The kit manufacturer knows that his equipment will perform better if assembled and installed by a skilled technician than by even the cleverest amateur constructor. The customer has a wide range of choice in cabinet selection—or may even have his set built into a wall-space or an existing piece of furniture. And the servicing problem—doubly troublesome in kit-built receivers—is solved to the satisfaction of manufacturer, televiewer and serviceman.

Manufacturers are orienting themselves more and more toward the serviceman as television kits become more complex. Projection-type televisions, whose extra-high-voltage power supplies and optical systems add to the difficulties of the inexperienced constructor, are a natural for the skilled technician, and their manufacturers are not slow to realize it. Television Assembly Co., whose new projection job is the subject of this month's cover, is aiming its sales efforts on the new model exclusively at radio servicemen. Other companies have been following a parallel course. This is a sharp break with former practices in television kit distribution.

The technician finds kits reasonably available, the public clamoring more and more for televisions, and the assembly work not too difficult. There are new problems, but they tend to follow definite patterns, and once licked in one receiver, are easily recognized and overcome in the next. If the radioman charges an assembly fee sufficient to meet these unexpected difficulties, he will find himself in a profitable as well as interesting field of radio work.

Among the alert radio technicians who have taken advantage of the opportunities in custom television assembly and installation are Irving Glassman and Leonard Mendelsohn, proprietors of Hi-Q Radio of Brooklyn, N. Y. The two partners appear in the photos at the bottom of the page, Glassman in the striped sweater and Mendelsohn in the white shirt. Organized a little less than two years ago, Hi-Q has assembled and installed more than 200 television sets, as well as numbers of special sound jobs. Specializing in custom-work, they welcome jobs out of the ordinary line, such as closet, wall, and fireplace television installations or special radio-recording—television combinations to harmonize with fine furniture. Their slogan is: "Any cabinet or any installation."

Wiring up an ordinary kit, they find, takes a little more than a day, unless both are partners. For this a fee of $50 is charged the owner of the televiser. This rate seems moderate, and is partly explained by the skill of the technicians, who are at home with practically any type of kit, and thus run into fewer difficulties than might be expected. It is certainly far less than the factor which must be charged to wiring in the price of a commercial televiser.

The projection jobs were a trifle new at the time our photos were taken, but Glassman and Mendelsohn find that in spite of their greater size and complexity, they can be assembled in about 50% more time than the older direct-viewing kits. In the Television Assembly receiver, this is partly explained by the semi-ready condition of the kit, which has the front end (a Du Mont Inputuner), the i.f. strip, and the high-voltage power supply already wired. Fees for assembling projection receivers have not been fixed, but would probably run a little more than 50% higher than those charged for the small kits.

Assembly naturally leads to installation and servicing. The man who has put the set together is the logical one to repair it. Hi-Q makes a contract for installation and a year's servicing. The yearly contract rate of $65—which includes installation and high- and low-frequency antennas with separate leads—represents a cut-to-the-bone figure due to the competitive situation in New York. The partners justify it on the basis that they can make money at that figure if they have more than 200 contracts, and that renewal service contracts will represent a greater margin of profit than original installations.

The partners have a strict cost-accounting system, and know that at present they have eight service calls per year per set, and that each call costs $4.11, including all overhead. It is on this that they base their figure of a minimum of 200 contracts for a profitable business.

The example of Glassman and Mendelsohn is being followed—and is worth following—by radio technicians in all television areas. To repeat and emphasize what has previously been said: if the radioman charges enough to meet unexpected difficulties and reverses—as well as his straight labor—he will find an excellent new field in projection television kit assembly and installation.
Pocket Micro-Receiver

By RICHARD HENRY

A new receiver put on the market by Micro-Electric Products, Inc., appears to be very near the smallest size possible for a three-tube set. Mounted in a brown plastic case approximately one-third larger than a standard package of cigarettes, the Micro receiver is even smaller than many hearing aids. Placed in a shirt pocket, it slips down out of sight, the only evidence of its existence being a slight bulge and the flesh-colored antenna and earphone wires.

Despite its miniature dimensions, the receiver contains three Raytheon subminiature tubes. CK512AX’s are used as detector and first audio amplifier, and a CK522AX is in the output stage. The resistors and capacitors, as well as the output transformer, are miniature components, such as those used in hearing aids. As the photograph indicates, all the parts are mounted on a fiber chassis.

The circuit is a fairly standard regenerator. A departure from usual practice, however, is the tuning arrangement. The antenna, grid, and tickler coils are all wound on a single form. A powder-iron core running through the form is terminated on a threaded rod bent at a right angle. This projects through a slot on the front of the case and a very small knob is screwed onto it. Sliding the knob up and down tunes the receiver.

There are calibration marks on the case but no numbers, presumably because, like all regenerators, the oscillator changes frequency so readily due to changes in the setting of the regeneration control and band capacity that numbered marks would not be very helpful.

The tickler coil is not wound directly over one end of the tuning inductance in the usual manner. Part of it is spread out along the tuning coil to keep regeneration as even as possible over the whole tuning range.

The regeneration control is a miniature hearing-aid potentiometer. The knob projects slightly from the side of the case. The earphone, a crystal unit, is fitted with a clear plastic ear plug designed to fit the ear comfortably.

Considering the fact that the circuit is a simple regenerator, results are adequate, certainly unusual for the physical size. Distant (suburban) reception was very poor, but in downtown New York City there was satisfactory reception from several local stations with no antenna other than the 2½-foot clip lead attached to the set. Clipping the lead to a metal filing cabinet or typewriter brought in additional signals, although too good an antenna damaged reception because of the set’s lack of selectivity.

One point concerning the receiver’s mechanical arrangement is of interest. The tuning knob, as mentioned, slides up and down in a slot. The tension of the small spring placed under the panel is not sufficient to hold the tuner’s setting at all times. When placed in a shirt pocket, for instance, the cloth rubs against the knob, detuning the set. Though it was not tried, replacing the spring with a slightly longer one may cure this condition.

Anyone who is not used to a regenerative radio may have some trouble with this set. Critical regeneration control and body capacity both affect the receiver. These points will be quite familiar to the ham or shortwave experimenter, who will find operation quite simple.

The set is an interesting experiment in adapting old principles in new design. It remains to be seen whether the listener will accept a regenerative portable radio.
Designing L-C Audio Filters

By RICHARD H. DORF

With the two nomograms on page 33 you can design your own audio filters without tedious mathematical calculations. The nomograms are for the constant-k filter, a simple but effective type of L-C circuit. The cutoff slopes you will get with them will be almost as sharp as the ideals shown in Fig. 1, depending on the d.c. resistance of the coils you use. For sharpest cutoff use low-resistance coils.

To use the nomograms, first decide what kind of a filter you need. For a phonograph scratch filter, for instance, you might want a low-pass filter which would cut off at 5,000 cycles, leaving all lower frequencies practically untouched. Having decided on a fairly sharp cutoff, choose one of the full-section filters shown in Fig. 2. For a cutoff only half as steep as Fig. 1 indicates, you would choose a half-section, as in Fig. 3.

Either of the low-pass filters shown in Fig. 2-a, the T or pi, could be used, so you can decide on the basis of economy. A filter with only one choke being cheaper than one with two chokes, the pi filter would be selected.

First determine where the filter is to be placed. It could be in a low-impedance line if one is used, but suppose in this case you decide to place it in the amplifier between two tubes. The only important thing to know here is the resistance load the filter will face.

A filter will work with any load resistance as long as the resistance across the filter's input is equal to or greater than the output load. But it will work best when inserted in a line of uniform impedance—one terminated in the same resistance at both ends.

The resistance-coupled amplifier chart shows that a 6SJ7 (the tube you are using at the input to the filter) will work with a 100,000-ohm plate load resistor and a 100,000-ohm following grid resistor. Because the plate resistance of the pentode is high, its shunting effect on the plate load resistor is negligible and the line between the 6SJ7 plate and the following grid is, in effect, a 100,000-ohm line. If a triode, such as the 6C5, were used with the same resistors, the low plate resistance shunting the plate resistor would bring the net resistance at the input of the filter down far below 100,000 ohms. The circuit is shown in Fig. 4.

To find the values for the coils and capacitors, find a straightedge (transparent plastic rulers with a black line down the center work best) and turn to Nomogram A. The frequency you have decided on is 6,000 cycles, and the terminating resistance R (or the nominal impedance of the line) is 100,000 ohms. Place the straightedge, as shown by the dashed line, so that it touches 6,000 cycles in the f column and 100,000 ohms in the R column. Then read the value of L from the center scale. Since this is to be a low-pass filter, the calibrations at the right of the center column are used. The value found is 5 henries. Referring back to the original filter diagram in Fig. 2-a, note that the choke to be used is marked "L." Therefore, you assign 5 henries to L in Fig. 4.

To find the capacitances, use the same method with Nomogram 2. C, read again from the right center column, is approximately .0055 µf or 550 µµf.

However, the capacitors in the filter you are using (Fig. 2-a) are marked "C/2." Therefore you divide 500 by 2 and assign the value of 275 µf to C1 and C2 in Fig. 4.

And there's your filter!

Constructing coils

The only real problem in making up filters is the inductors. Coils made for filter purposes can be obtained from transformer manufacturers; some even have an inductance which can be varied over a limited range. But these run to anywhere between $5 and $20 or more. A simpler and much less expensive solution is to dig into the junk-box for old audio transformers and chokes.

To find a coil of a certain value, consult a resonance chart and choose a capacitor which will resonate with the desired coil at some audio frequency. For example, the 5-henry choke of Fig. 4 would resonate with a .005-µf capacitor at 1,000 cycles. Try placing various

Fig. 1—Dotted lines show how response peaks if terminating resistance is high or absent.

Fig. 2—These are basic constant-k filters.

Fig. 3—Half-sections give less sharp cutoff.

Fig. 4—Sample filter is shown in dashed box.

RADIO-ELECTRONICS for
These nomograms make it possible for you to design audio filters without making calculations. Nomograms were derived from formulas shown.

JANUARY, 1949
Visual FM Alignment

How to use an oscilloscope and FM signal generator to best advantage for rapid and accurate alignment

By JOHN B. LEDBETTER*

METHODS of aligning FM receivers accurately without the aid of an FM signal generator and oscilloscope have been described (Radio-Electronics, November, 1948). While these methods do allow accurate adjustments to be made, it is always desirable to check the linearity of the FM detector visually. It is also very helpful to determine the alignment and response curve of i.f. and i.f. stages by eye. These checks of course can be made only with the aid of the above instruments and it is recommended that they be employed wherever possible.

Instrument requirements

Although the only instruments necessary for visual alignment are an oscilloscope and FM signal generator, a d.c. vacuum-tube voltmeter is helpful to determine the exact frequency at which the d.c. output of the discriminator is balanced to zero. (For this adjustment, the vacuum-tube voltmeter is connected in parallel with the vertical input terminals of the scope and the lowest possible meter range employed to indicate zero.)

The oscilloscope can be of almost any type so long as provisions for connecting to an external source of sync voltage are included. This voltage in most cases is furnished by the signal generator. Although a scope with a 3- or 5-inch tube is more accurate and easily adjusted, satisfactory results may be obtained with a less expensive scope such as the Philco Model 7019 shown in the photograph. This particular model incorporates all of the necessary features for visual analysis.

The FM signal generator should cover the 88-108-Mc band and have an i.f. range of about 4 to 11 Mc. Modulation capabilities of the generator should allow deviations of 75 to 100 kc on each side of center frequency, with the deviation rate adjustable from 30 to 15,000 cycles per second (sine wave). A built-in sweep is also desirable. Most modern FM generators use reactance-tube modulators to provide an adjustable sweep width up to 200 or 250 kc. This sweep is synchronized with the oscillator time-base sweep to obtain an indication of the frequency response or overall characteristics of the circuit under test.

Aligning the i.f.

Generally speaking, i.f. alignment of FM receivers closely follows the procedure used in alignment of TV sound channels. (See “Video Alignment” by Robert N. Vendeland in the September, 1948, issue.) There are certain differences, however, especially in the various types of FM discriminator circuits. These must be taken into consideration when aligning a straight FM receiver.

As stressed by professor Vendeland, the manufacturer’s alignment notes should be closely followed wherever possible. If no instruction manual or alignment data is available, the general alignment procedure as outlined herein is to be recommended.

First, frequency response of the i.f. system may be checked by setting the generator to the correct center fre-

frequency and connecting its output leads through a 0.1 µf condenser to the grid of the converter tube. In receivers employing a Foster-Seeley detector, the vertical plates of the scope should be connected across the discriminator load resistor. In sets with a ratio or Philco detector, it will be impossible to obtain visual indication of the i.f. response curve unless an AM detector is used in conjunction with the scope.

If the receiver has a limiter stage, the vertical input circuit of the scope should be connected across the limiter load resistor as shown in Fig. 1. If it has two limiters, the signal voltage for the vertical input of the scope should be taken from the load resistor of the first limiter stage as outlined above. The second limiter can be aligned after the i.f. stages have been adjusted.

With the scope function control set for external sync, connect the sync-input terminals of the scope to the sync terminals of the generator and adjust the horizontal sweep frequency of the scope until it is synchronized with the modulating frequency of the generator. The deviation is then increased until the response curve is spread across the desired portion of the scope screen. The signal voltage from the generator should be fairly low to prevent overloading and distortion in the i.f. stages; for this adjustment, the generator output should only be high enough to give good limiter action.

If the i.f. stages are properly aligned, a response curve similar to that in Fig. 2 should be seen. The pass-band should be 200 to 250 kc wide if the circuits are in proper alignment. The double-peak curve shown in Fig. 2 is that normally obtained with i.f. transformers of the overcoupled type; single-peak transformers approach more closely the response curve in Fig. 3.

I.f. stages out of alignment may assume various forms of distorted response curves, usually similar to those shown in Fig. 4. Sometimes it is difficult to ascertain whether these distorted waveforms should be double-peaked (for overcoupled transformers) or single-peaked. Before attempting to align an i.f. stage, it is advisable to try to find out whether the transformers are of the overcoupled or single-peak type. Valuable time can be lost trying to “flat-top” a single-peak circuit which was not designed for it.

If the manufacturer’s service notes are not available, the type of circuit may be determined quickly by connecting a loading network consisting of a 0.1-µf condenser in series with a 5,000-ohm resistor from plate to ground or

*Engineer, WKRC, WCTS-FM, WKRC-TV
Cincinnati, Ohio
from grid to ground of the last i.f. stage. If the transformer is over-coupled, the response curve will change considerably, usually straightening out on one side. If the transformer is single-peaked, little change will be noted.

Each i.f. stage must be able to pass the total bandwidth of 200 kc without introducing distortion into the system. To check this possibility, each stage must be aligned separately, beginning with the secondary of the last i.f. stage and working back progressively toward the converter. Each stage is "flat-topped" to give the symmetrical response curve of Fig. 2 or Fig. 3, depending on the circuit. For each stage, adjustments are made with the signal generator connected to the grid of the preceding i.f. stage. If any stage fails to peak properly there is trouble in that stage which must be corrected before going on with the alignment.

The deviation has already been set (as mentioned previously) so that the desired curve spread is obtained on the scope. As each successive stage is aligned, it may be necessary to decrease the signal generator output to maintain the desired height or size of the scope pattern and to prevent overloading. On the other hand, a comparative check on the gain of each stage may be made by leaving the generator output constant and noting the increase in image amplitude as each stage is aligned.

The second limiter may be aligned by increasing the output from the signal generator slightly and adjusting the limiter for minimum output. In some cases the d.c. vacuum-tube voltmeter may not read high enough to indicate the proper setting satisfactorily. This adjustment may be made quite satisfactorily by ear. The signal generator output may be reduced for the adjustment if necessary.

As mentioned before, a normal i.f. response curve cannot be obtained in receivers which have ratio or Philco-type FM detectors unless an AM detector is used with the scope. These cases can be aligned accurately, however, by observing the overall effect of the i.f. signal on the response curve of the FM detector, since the detector is extremely sensitive to any change in the i.f. response characteristics.

Detector alignment

First, connect the vertical input of the scope to the output of the discriminator and connect the scope sync input terminals to the sync terminals of the generator. Then connect an output meter across the output of the audio amplifier or across the speaker voice coil. The response pattern of Fig. 5 should appear. (The slope may face either way, depending on the phase relationship between the vertical input voltage and sync voltage).

Align in the same order as usual (first the secondary, then the primary of the discriminator transformer). Proper alignment is indicated by a maximum reading on the output meter and maximum linearity of the response curve, especially along the center portion. These two points of maximum indication should coincide.

An S-shaped discriminator response curve (Fig. 6) may be obtained by synchronizing the scope horizontal amplifier with the signal generator sweep voltage. Although this type of curve usually allows sufficiently accurate discriminator alignment, an X-type curve (Fig. 7) may be used for greater accuracy. With this type of response pattern, it is possible to double-check the entire curve for linearity.

The X curve may be obtained by using the same set-up as that employed for the S curve. The scope horizontal amplifier is then set to internal sweep and the sweep frequency adjusted for 120 cycles. The scope sync selector is then switched to external sync and the external sync voltage picked up from any source which supplies 120 cycles. (This frequency can be easily obtained by connecting the external sync lead across the input filter condenser of the receiver's power supply.)

Audio response

Hum, distortion, and frequency response characteristics in the audio system may be checked by connecting the vertical input of the scope across the output transformer and feeding a signal from an audio oscillator into the grid of the first audio tube. Sync voltage for the scope is taken in the usual manner from the generator. As the frequency is varied over the audible range, the waveform of each frequency should assume the shape of a sine wave (Fig. 8). Any distortion or hum pickup will be noted in the departure of the waveform from its sine value. The flat-topped peaks in Fig. 9, for example, indicate overloading in a resistance-coupled amplifier or inability to handle normal signal voltage. The distorted curve in Fig. 10 indicates overload trouble in the output stage. For extreme accuracy in checking audio-frequency response, the voice coil should be disconnected and a resistor of the same value substituted, since reflected impedances from the voice coil will affect readings. Frequency response can be checked by noting the amplitude of each audio frequency on the scope. Waveforms should be essentially the same height for good response. For this test some sort of output meter must be connected across the output of the signal generator so that its output voltage can be kept the same for all frequencies.

Audio response can also be checked by using an output meter instead of a scope for response readings. A substantially flat response from 50 to 15,000 cycles should be present in the better audio systems. A drop in response at the higher frequencies is to be expected, but should not exceed 2 or 3 db in hi-fi systems.

While an inexpensive scope such as the one mentioned earlier in this discussion does necessarily have its limitations, it is quite satisfactory until a larger, more flexible scope can be purchased. To the serviceman just beginning or otherwise limited financially, these more inexpensive instruments will be welcomed as a means of doing the job right, while representing a minimum practical investment.
Radio Set and Service Review

The Emerson Conqueror is lowest-priced a.c.-d.c. receiver for FM reception only

There was a time not so long ago when radio's wise men predicted that FM receivers could never be built to compete with AM table tube antennas. But that prediction is not always accurate. Emerson engineers report that the new tubes are solid and the rubber grommets are no longer necessary. The Emerson Conqueror, Model 602, an a.c.-d.c. receiver which works on FM only. A standard circuit with a ratio detector is used.

The Emerson Conqueror, Model 602, an a.c.-d.c. receiver which works on FM only. A standard circuit with a ratio detector is used.

Radio and Television

Conqueror, Model 602, an a.c.-d.c. receiver which works on FM only. A standard circuit with a ratio detector is used.

Emerson

Conqueror, Model 602, an a.c.-d.c. receiver which works on FM only. A standard circuit with a ratio detector is used.

Emerson's new a.c.-d.c. FM receiver sells for less than $30, and is no bigger than an ordinary AM bedside set. It receives most local stations without an external antenna and has more pleasing tone quality than its typical AM counterpart. Designated Model 602, it is quiet when a station is tuned in—very little tube or r.f. noise is heard and hum is far enough down to be negligible. The prophets, in a word, have lost whatever honor they possessed in their own country or any other.

Just six tubes are used in the circuit—a converter, two i.f.'s, a combination discriminator and first audio, and the power rectifier. All, with the exception of the 128S-GT discriminator-audio, are minatures. One, the 12BA7 converter, is being mass-produced for the first time especially for use in this receiver. Products of the first runs occasionally had loose elements, so rubber grommets had to be used on either side of the tube to keep down microphonic noise. Now that the tube maker has hit its stride, Emerson engineers report that the new tubes are solid and the rubber grommets are no longer necessary.

The circuit, as the diagram shows, is extremely simple. The first three stages are completely conventional and the ratio detector, also standard, converts the r.f. to a.f. The 12S8 used for the purpose doesn’t appear in most tube manuals. It is made, according to Emerson, by Tung-Sol. This information may prevent a harassed service-man from thumbing through his books and concluding that “there ain’t no such animal.” There is. It may be a good idea to make a note of the pin numbers shown in our diagram and file it away.

Loop antennas don’t seem to be practical for v.h.f.—at least as yet (why go out on a limb?)—so Emerson has provided a three-wire line cord. The third (center) wire is normally connected at one end to an antenna post on the rear of the receiver and is open at the other. Because it runs along the power cord for about 70 inches it is apparently capacitively coupled to the line, and, as a piece of wire, it has a certain amount of direct pickup. In downtown New York it did just as well as a half-wave dipole of twin-lead hanging on the wall, picking up most of the local stations well enough for all practical purposes. If it is used in a poor-signal-strength area you can connect a standard antenna to the two terminals provided. Despite the lack of an r.f. stage, results ought to be satisfactory in most localities.

Though this is a small set and there is a reasonable number of parts, a look at the under-chassis photo ought to be heartening to servicemen. There has long been an impression in the service trade that a radio production line consists of a number of workers, each of whom solders in one component as the set goes down the moving belt. At the end of the line, the resistor and capacitor hookup rises up about a foot above the overturned chassis. The last man to work on the set, according to the theory, is a specialist, chosen for the large size of his feet. It is his sole duty to place the wired chassis, bottom upward, or the floor, and tread the parts and wiring into place.

You won't find much of that in the 602. Wiring is pretty well in the open

The Emerson Conqueror, Model 602, an a.c.-d.c. receiver which works on FM only. A standard circuit with a ratio detector is used.
and almost any component can be removed without an anesthetic and major surgery. All the capacitors except the electrolytics and a couple of micas are miniatures, so they take up very little room.

From the user's standpoint, this receiver is easy to operate and gives good results, though there are a few points that need comment. It wouldn't be realistic to expect concert-hall quality from the 4-inch speaker, but listening quality is judged to be more pleasing than that of a comparable AM model. That is due to two factors—the absence of noise under almost any conditions, and the peculiar characteristics of FM. Turning up the volume to maximum won't produce great waves of sound, but it won't make you cover your ears either. The distortion is much less than on similar AM sets (there wasn't any to speak of when a station was tuned in correctly) and the tonal range appears to be well-balanced.

The model examined showed frequency drift for some time after it was turned on. However, it was an advance model and didn't have the temperature-compensating capacitor across the oscillator coil which was added to all except the very first receivers off the production line. According to Emerson, the capacitor reduces drift to a slight change during the first few minutes of operation. The drift, even on the uncompensated set, isn't particularly annoying, especially as one can't expect a five-year lease on WWV for the price of a small FM receiver.

The dial scale is a semicylindrical strip of metal, in one end of which is set the volume control and in the other the tuning shaft. Two clear plastic knobs project slightly from each end. A dial cord turns the capacitor shaft and moves the frequency pointer. The stringing seems remarkably uncomplicated, but the pulleys are non-rotating, a factor that may possibly cause wear on the cord. The volume control mounting—on an angle bracket out in front of the chassis—makes replacing it easier instead of more complicated, as so many of the modern non-standard schemes do.

There are two points to which some objection may be legitimate. First, there is no pilot light. Though this means there is one less gadget to go bad, it also means that there is one more way to run up a light bill. (The between-station noise from the set is very low, especially when the volume is turned down, so it's easy not to realize the receiver is on.)

Second, one side of the power line is grounded right to the chassis. There are three exposed chassis screws underneath and two in the rear, so there is a direct electrical path. The 602 has just come out and alignment instructions are not available at this writing. The circuit, however, is so straightforward that it should be possible to follow any good set of general FM alignment instructions without trouble.

Emerson Model 602 from the rear. Attachment of the linecord antenna is shown.

Under chassis, showing dial-cord assembly and control shafts, r. f. wiring at right.

Serviceman's Resistor Quiz

Here are five questions which will show you whether you know as much about dealing with resistors as you thought you did. Write down your answers, then turn to page 90 and check your score.

1. Checking a dead receiver, you find that every circuit except the audio volume control is in perfect condition. Rotating the control has no effect whatever. Using nothing but an uninsulated screwdriver, how would you diagnose the trouble?
2. A circuit contains a 1-watt resistor and a 2-watt resistor in series. The resistance values are unknown. How many watts can the circuit dissipate? Don't decide this one too quickly.

3. Now the 1- and 2-watt resistors are placed in parallel. How many watts can the combination dissipate?
4. You have a volume control which is damaged beyond repair, but you can't find a replacement. How can you make a temporary repair with fixed resistors?
5. On your bench is a receiver in good condition. You want to find out whether the volume control is in the audio section or the r.f. section of the set. There are no stations on the air and your signal generator is out of order. How do you find out which stage the volume control is in without removing the set from its cabinet?
T0 keep up with postwar competition in the congested amateur bands, some sort of variable frequency control is necessary. The WØTDD transmitter had a good crystal-controlled exciter using a harmonic-type 6V6-GT oscillator stage driving an 807 doubler-amplifier. This supplied enough drive for the medium-power final amplifier, making an elaborate v.f.o. exciter unnecessary. We decided on an external v.f.o. crystal substitute whose output could be plugged or switched into the crystal oscillator stage. It had to be inexpensive, compact, and self-powered, with good frequency stability.

One of the Army SCR-274-N (or its Navy twin, the ARC-5) aircraft transmitters makes an ideal foundation. The master-oscillator section is an excellent v.f.o., and there is ample space for a power supply after removal of the final amplifier components.

Each SCR-274-N transmitter consists of a master oscillator using a 1626 triode, (a 12J5 can be used) exciting two parallel 1626's (12-volt 807's) in the final amplifier. The oscillator and final tuning capacitors are ganged, and the dial system has an excellent worm-gear drive for vernier tuning. There is also a crystal and a 1629 (12-volt 6E5) electron-ray tube for frequency calibration.

Four transmitters in this series are available, each with a different tuning range. Either of two of them can be made to cover the 80-meter band, and either of the other two the 40-meter band. We chose the BC-458-A, which has a range of 5.3 to 7 mc, because it can be made to cover the 40-meter band by returning the slug and padding condenser in the oscillator-coil assembly. The BC-459-A, which covers 7 to 9 mc, could have been used without recalibrating, but because of a difference in price the BC-458-A was chosen. Those favoring an 80-meter crystal substitute should choose one of the units that cover that band.

The modified circuit uses a 6J5 as the oscillator, exciting a 6AG7, which drives a 6F6. The 6J5 plugs into the original 1626 socket without any changes in the original wiring. All original wiring is removed from the crystal and 1629 tuning-eye sockets to accommodate the isolation stages. R.f. chokes are used instead of tuned tank circuits in the buffers, so that only one tuning control is necessary. Making the inductance of the r.f. choke in the 6AG7 plate circuit different from the other two r.f. chokes prevents coupling between grid and plate circuits. One added stage would have provided the necessary isolation, but the second tube was put in to increase the power output.

The first step is to remove everything that will not be needed. All the final amplifier parts are removed, as well as the antenna components and relays and associated wiring. To retain the gear-drive dial system it was found necessary to use part of the framework of the p.a. tuning capacitor. The dial gear mechanism is fastened to the stator frame, which is needed to hold the gears properly for smooth dial movement.

Remove the rotor and stator plate assemblies and saw the stator frame in three places: saw off the two bottom strips, leaving the parts with the tapped screw holes, which are used to
refasten it to the chassis, saw the left side of the frame close to the front frame, and remove the sawed off portion by bending it backward and forward, forcing the right rear joint loose and leaving an L-shaped frame. Remount this in its original position. The gears can be easily refastened to the side of the frame, and the shaft coupling between the two worm gear shafts reconnected. The dial mechanism should operate as smoothly as before.

The p.a. (1625) tube sockets can be removed by inserting a knife or screw-driver edge under the lips of the aluminum shields and prying upward all along the edge. Push the sockets through the openings. We covered the openings with a piece of aluminum, using the same piece of rubber placed on the opening in the cover to make future replacement easy. Remove the filament resistor from across the 1629 socket. Remove, too, the chassis connector beside it and cover the opening with a piece of aluminum to complete the shielding.

From the front panel of the unit, remove the antenna coupling control, with its locking knob and the antenna inductance locking device. Enlarge the opening left by removal of the antenna coupling control to receive the shank of a s.p.d.t. toggle switch for the a.e. line. Mount a similar high-voltage off-on toggle switch symmetrically on the right side of the panel above the dial. Any remaining holes in the panel can be filled with suitable machine screws to improve appearance. The closed-circuit keying jack J is placed on the lower left, and the opening left by the antenna insulator is used for a pilot-lamp assembly.

In the oscillator section, leave the two mica condensers mounted on the side of the chassis behind the oscillator tuning condenser in their original positions. Remove the can containing the three 06-µf condensers (C58A, C58B, and C58C) from the rear of the chassis and place it on the side to allow more freedom for soldering and mounting other parts. Leave the three octal sockets on the chassis rear in their original positions. Retain the connections on the oscillator tube socket except pin number 3 (plate), as shown in the diagram. The dashed box in the diagram encloses the remaining original components. The connections on the other two sockets must be removed to allow for wiring of the 6AG7 and 6FP buffer stages.

In the original circuit the grids of the final amplifier tubes were excited through section C of the oscillator coil assembly. Heavy grid drive is unnecessary in the new circuit. To minimize frequency variations caused by loading of the frequency-control inductance, the grid of the 6AG7 was capacitance-coupled to the plate of the oscillator, leaving coil section C unused. The bottom view of the coil connections shows which connections to retain. Also, the crystal calibration feed tap on coil A is not used.

The power supply is conventional, with a voltage-regulator tube connected across the output to provide a constant 150 volts. All circuits are operated at 150 volts, except the 6P6 which has the full supply voltage on its plate. No particular care need be taken in layout. The filter choke and filter condensers are underneath the chassis, with R mounted on top to allow its heat to be dissipated in the open.

Wiring problems

The wiring of the r.f. section may look difficult because of the small space available for mounting and soldering the parts, but it is really quite easy. Much time and work is saved because the oscillator coil is already mounted and wired. The filament wiring should be hooped up first. Note in the circuit diagram that the oscillator filament voltage is fed through the A and B sections of the oscillator coil T53. One side of the filament is grounded through the A section, and this connection should remain unchanged. The hot filament connection should be made from the ungrounded end of C61 since heater pin 2 is connected through coil B from that point.

Wire the midget 100-µf coupling capacitors and the grid resistors next, using a small porcelain stand-off insulator as an anchor point for the last capacitor where it connects to the coaxial cable.

It is advisable to mount the r.f. chokes at different angles to keep their fields from coupling. A two-terminal strip was mounted on the side of the chassis nearest the power transformer to provide connections for an external send-receive relay. Four rubber feet were mounted on the bottom chassis cover to absorb shocks and vibration. As an added precaution the whole unit rests on a sponge-rubber kneeling pad when placed on the operating table.

A 3-foot length of 52-ohm RG-58/U coaxial cable terminated with a singlesocket, pressure-type microphone connector is used to couple the v.f.o. output to the oscillator stage of the transmitter. Approximately ½ watt of power is obtained, enough to drive the transmitter's oscillator tube.

Final adjustments

Little adjustment is required before putting the v.f.o. in operation. The slider of the current-limiting resistor should be adjusted with the key closed until the tube ignites with the familiar bluish glow. Since the top frequency of the BC-459-A just hits the lower end of the 40-meter band, it is necessary to shift the entire band lower on the dial by screwing the slug adjustment of the oscillator coil counterclockwise and making fine adjustments with the padding condenser C60. Of course, the direct reading of the dial was thrown off; but the dial can be used as a logging scale, or the correct frequency readings may be painted over the original readings. Building this v.f.o. with a BC-459-A, whose frequency range includes the 40-meter band, will enable you to retain the direct-reading calibration. Any frequency error due to changes in wiring can be compensated with the padding condenser, which can be reached with the chassis cover replaced, through an opening provided for it.

The v.f.o. was coupled to the regular crystal harmonic-type oscillator stage through a grounded-grid arrangement. The inner conductor of the co-axial cable is connected directly to the cathode of the tube, while the grid is grounded. Selection of crystal or v.f.o. operation can be simplified by the use of a switch in the transmitter.

This little unit will be found to facilitate quick, convenient frequency shift while maintaining excellent quality of the transmitter's emitted note.

The filter choke is mounted on the side apron of the chassis. Main tuning capacitor at left.
Wired-Wireless Control Unit

This novel wired-wireless control unit makes possible remote operation of many types of equipment.

Frequently amateurs and experimenters have need for a means of controlling a transmitter, audio amplifier, door opener, or other device located at some remote point. If the device to be controlled and the control point are supplied from the same power line, the carrier-current, remote-control system described in a recent G-E Ham News will do the job nicely.

The system consists of a transmitter and a receiver, both operating on 455 kc. This combination permits remote switching and the transmission of a.f. signals. The transmitter and receiver circuits are shown in Figs. 1 and 2, respectively.

The transmitter uses a 6BE6 and 12AT7 with B-voltages supplied by a selenium rectifier. (The 6BE6 may be replaced, without circuit changes, by a 6SA7 and the 12AT7 by a 12AX7 or 6L6.) The oscillator section of the 6BE6 is connected as a 455-kc oscillator, and the mixer section as a modulated amplifier. The oscillator coil L1 is a 2.5-mh r.f. choke tapped at the first pie from ground. The amplifier tank coil L2 is a modified 455-kc i.f. transformer. One winding is removed and replaced with L3, 10 turns of No. 20 wire wound close to the B-plus end of L2. L3 is tuned to 455 kc by C10, the trimmer of the i.f. transformer. The 12AT7 is a speech amplifier and modulator. The first section provides sufficient gain to work from a high-gain microphone or pickup, and the second section modulates the suppressor grid of the 6BE6. Modulation level is controlled by R4. This control should be set to give maximum a.f. signal without distortion.

The receiver is a t.f. unit consisting of a 6BA6 r.f. amplifier, and a 6BF6 a.v.c. and relay-control tube. A 6SK7 or 6SG7 and a 6SR7 may be substituted for the 6BA6 and 6BF6, respectively. The input transformer of the receiver is the same as the output transformer of the transmitter. The link winding L1 should be close to the ground end of L2. L2 is tuned by a trimmer condenser from the i.f. transformer.

To adjust the receiver and transmitter, plug both units in at the same point and let them warm up. Closing S2 puts the transmitter in operation and should close the relay Ry on the receiver at the same time. If it does not, adjust R9 so the relay opens and closes as the transmitter is turned on and off. Connect a v.t.v.m. (or a 100-volt, 10,000-ohm-per-volt meter) between the chassis and the junction of R3 and R4. The voltage (a.v.c.) at this point should be several volts.

With transmitter and receiver operating, adjust the transmitter frequency control C5 for maximum deflection. Adjust, in turn, the trimmers on the secondary and primary of T2 for maximum voltage. Touch up the tuning by adjusting C8 on the receiver and C10 on the transmitter.

C.w. men can control their transmitters by connecting an open-circuit jack across S2 on the receiver and plugging in a key. The relay terminals are then connected to the keying terminals on the rig. It may be necessary to select a fast keying relay for this application.

Photos courtesy of General Electric Company

The receiver is located at the remote point, and the transmitter is located at the rig. It may be necessary to select a fast keying relay for this application.

RADIO-ELECTRONICS for
Radio-Frequency Ammeter

An instrument occasionally needed but rarely available can be built with a 1-ma meter and 1N34 crystal

By RUFUS P. TURNER, KGAI

Radio-frequency ammeter suitable for use over a wide frequency range is frequently needed in ham shacks and experimental laboratories. It is usually needed most when unavailable. Thermocouple-type instruments are rather costly and sometimes are limited in frequency range.

A very satisfactory ammeter, usable at both audio and radio frequencies (including ultra-high frequencies), may be built with a regular 0-1 d.c. milliammeter, a 1N34 crystal diode, and a few other components from the spare-parts box. It can be calibrated very easily with an audio oscillator or filament transformer. It will indicate accurately 0-1 amperes, a.f. or r.f., so the regular 0-1-ma meter scale may be employed if the builder is unable to prepare a special one.

The milliammeter, crystal diode, rheostat, and bypass capacitor shown in the diagram comprise a simple wide-frequency a.c. voltmeter. When the calibration control is set to the proper value for a given crystal, 1 volt r.m.s. input will give full-scale deflection of the meter.

This rectifier-type voltmeter is connected, in the complete circuit, across a 1-ohm noninductive resistor, through which the unknown current flows. By keeping this resistance low, the drop in the circuit under test will be held to 1 volt.

From Ohm's law, the unknown current (I) flowing through the 1-ohm resistor, is equal to E/R, where E is the voltage reading of the rectifier voltmeter and R is 1 ohm. Thus the full-scale current value is 1 ampere. It is necessary only to calibrate the voltmeter for direct indications from 0 to 1 volt to have it indicate 0 to 1 ampere. The unknown current flowing through the shunt resistor may be either a.f. or r.f., since the frequency range of the 1N34 diode is 0 cycles to 100 mc.

Easy to construct

Construction of the instrument is entirely straightforward. The author's ammeter (see photo) is built around a 2-inch milliammeter mounted in a small sloping-front metal meter case 3 inches high and 3½ inches deep.

The input terminals are insulated pin jacks mounted in the top edge of the case. To insure short leads the shunt resistor is connected directly between these terminals inside the case, and the positive (anode) pigtail of the crystal diode is soldered directly to one input terminal. The negative pigtail is run directly to the positive terminal of the milliammeter. The calibration rheostat is mounted in a hole in the back of the case. The shaft of this rheostat is cut down and provided with a sawed slot for screwdriver adjustment.

The builder must observe carefully the proper polarities of both the crystal and milliammeter, as shown in the diagram.

Calibration

1. Temporarily disconnect one end of the 1-ohm resistor from the rest of the circuit.
2. Connect a variable a.c. voltage, adjustable from 0 to 1 volt, to the input terminals. A satisfactory source is an audio oscillator (with output control) set at any frequency between 100 and 1,000 cycles. Another convenient source is the 2½-volt winding of a filament transformer, with a potentiometer across it.
3. Connect a dependable a.c. voltmeter to the input terminals of the instrument.
4. Set the input signal to exactly 1 volt and adjust the 300-ohm rheostat for full-scale milliammeter reading. The rheostat ordinarily need not be touched after this adjustment unless the crystal diode or meter is replaced or calibration rechecked.
5. Reduce the input voltage in 0.1-volt steps from 1 volt to zero, noting the corresponding milliammeter readings. Make a calibration curve like the one shown. It is advisable to plot a complete curve, because individual crystal characteristics vary. However the graph given here may be employed as is, with tolerable error.

It will be easier to use the ammeter if a special direct-reading meter scale is prepared like the one in the photo. An examination of this photograph will show that currents as low as 0.1 ampere (100 ma) can be read easily.

Materials for R.F. Ammeter

1-1-ohm, 2-watt, noninductive resistor; 1—300-ohm, wire-wound rheostat; 1—0-1-ma d.c. meter; 1—1N34 crystal diode; 1—0.06-mf, mica capacitor; 2— terminals; 1—meter case.

Calibration is roughly linear after 0.1 volt.
Test Instruments

'Scope Aid Helps Audio Men

This electronic switch places
two patterns on the 'scope at
the same time for comparison

By ALFRED HAAS

The cathode-ray oscilloscope, most
interesting of all investigation
instruments in the electronic field, is
becoming more and more popular.
Its cost is no longer a bar to its use for
very good 'scopes are now available at
reasonable prices. However, many ex-
perimenters ignore most of its possible
uses. Some rather simple auxiliary
equipment, for instance, the electronic
switch, permits varied applications.

Fig. 1 shows the basic block diagram
of an electronic switch. There are two
input amplifiers, one for each wave.
The switching device is a multivibrator
that produces a square wave which cuts
off the two amplifiers alternately. In
this way, one wave at a time is trans-
mited to the 'scope.

Difficulties may arise in synchroniz-
ing the 'scope's time-base oscillator. It
is essential to hold this in step with the
wave to be observed and not with the
square wave of the switching device.
For this reason, a synchronizing ampli-
der is provided. Its output is applied to
the external sync terminals of the
'scope.

Fig. 2 shows the circuit of the elec-
tronic switch. No power supply has
been provided, as the unit is to be pow-
ered by the oscilloscope it works with.
(Unless the builder is sure his 'scope's
filament and medium-voltage supplies
will handle the extra load, it might be
better to use a separate power supply.
—Editor) Five tubes are used. V2 is a
6N7 in a cathode-coupled multivibrator
circuit. The frequency-determining ele-
ments are the grid condenser and resis-
tor. The switching frequency has to

Fig. 3—Rear view of switch shows small size.
be variable; this is done by a potenti-
ometer R8 and a rotary switch SW
which selects C3, C4, or C5.

As the resultant wave is not suffi-
ciently squared, another 6N7 (V3) is
used as a squaring amplifier. The two
triodes are cascaded without any bias,
the plate resistors being of relatively
high value. The well squared output of
V3 is fed into the No. 3 grids of the two
6L7 input amplifiers V1 and V4. The

Fig. 4—Superimposed waves of some frequency,
control grids are coupled to the input
potentiometers. The strong squared
pulses on the No. 3 grids drive the
tubes alternately to cutoff. As the plate
resistor is common to both of them, the
plate current of one tube at a time flows
in it and the output voltage feeds the
vertical plates (or amplifier) of the
'scope.

If V1 and V4 operate symmetrically,
the outputs of both will appear at the
same place on the screen, that is, the
two waves will be superimposed. Some-

RADIO-ELECTRONICS FOR
times—especially if they are almost identical—it is difficult to distinguish one from the other, so they must be separated. R18 is the separation control. When the arm is at the center, both 6L7 screens receive the same voltage and both tubes operate at the same point on their E_{m} curves. When the slider is moved to one side of center, the operating points of the tubes change so that one becomes higher as the other becomes lower. This causes the traces to appear one above the other on the C-R-tube screen. There is also, of course, some effect on the heights of the waves, but this can be corrected by resetting the input potentiometers R1 and R16.

The cathode-follower synchronizing amplifier V5 is a 6Q7 with the diode plates unused. Its grid is tied to that of V1 so that the time base is kept in step with signal E1. The cathode of V5 is tied to be coupled to the synchronizing input of the oscilloscope.

Fig. 3 shows the rear of the unit. The placement of parts is not critical. This little unit is easily constructed, and should work immediately. However, there is some advice on getting best results. Suppose the switching frequency is exactly twice the signal frequency. The output of V1 will be coupled to the C-R tube for half a cycle, and to V4 for the other half. As the time base is kept in step with the signal and therefore with the switch, only half a wave of each will be seen. Therefore it is necessary to vary the switching frequency, and to avoid its being an exact multiple or submultiple of the signal frequency.

Low frequencies are best examined at a rather high switching frequency, say 5,000 to 10,000 cycles; for high frequencies, a low switching rate is best. That is why three frequency-determining condensers are provided in the circuit of V3. The 1-megohm potentiometer is for continuous tuning.

Figs. 4 and 5 show how the electronic switch permits comparison of two wave forms. Note how the traces are separated in Fig. 5. In Figs. 6 and 7 two waves of the same frequency but of different phase are compared. The phase difference is about 90 degrees. This time (Fig. 7) it may be more interesting to operate on a common base and to compare the superimposed traces.

Figs. 8 and 9 show how the electronic switch measures frequency. The wave composed of three cycles comes from the 60-cycle line. As there are three cycles, the time base is running at 60/3 = 20 cycles. The other wave is composed of eight cycles; its frequency is 8 times 20, or 160 cycles.

The repairman or research worker will find this switch increasingly valuable as he becomes accustomed to it.

MECHANICAL COUNTERS

Electronic circuits are not always better than equivalent mechanical devices. For example, mechanical relays are perfectly satisfactory for counting pulses and are much simpler than equivalent electron-tube circuits, if the pulse frequency is low enough to be followed mechanically and the pulses are strong enough to operate a relay without amplification.

Counting relays have been used for many years in telephone and signal work. The very simple and effective Molina counter is used in telephone communication. It was invented in 1911 by E. C. Molina of the Bell Telephone Laboratories and has been in use ever since. It is shown in the schematic.

This is how the Molina counter operates: The pulsing key is alternately closed and opened (as in telephone dialing) to provide pulses. When it is closed, the M relay is grounded at one end. Since the battery is already connected to the other end, its contact is closed. The N relay remains as shown because it now is grounded at each end. When the key is released, however, this relay does operate, as it is across the battery in series with M. The net result of a complete on-off pulse is the transfer of the F contact from one relay pair to the next.

Ordinarily there must be as many relay pairs as pulses to be counted. With a slightly more complicated system, the same relays may be used more than once, however. In telephone crossbar circuits, for example, five relay pairs are used to count a maximum of ten pulses. At the sixth pulse, the first relay pair operates just as it did at the first pulse, etc.

At the end of the counting sequence, all the locked relays may be released by opening a switch in the battery circuit. Amateurs and experimenters can use this system for control-function selectors, instead of expensive rotary steppers.
Test Instruments

Tube Tester and Analyzer

By HAROLD PALLATZ

Fig. 1—Front of the complete tester and set analyzer. Standard analyzer adapters are used. A special adapter tests acorn tubes.

![Image of a tube tester](image)

THE lack of a simple, fool-proof calibrating method has prevented many servicemen and experimenters from building their own tube testers. This set analyzer (Fig. 1), designed for use with a standard multitester, includes both a good, easy-to-calibrate tube tester and a point-to-point tester. The multitester shown in Fig. 1 is similar to the "Wide-Range Pocket Tester" described by the author in the August, 1946, issue. Tubes are tested under normal operating voltages and judged by comparing the meter readings with performance curves in a tube manual.

Adapter plugs and cables permit making voltage and current measurements on a receiver or amplifier without removing it from its cabinet. Another feature of the analyzer is that the multitester can be removed for use when the tube tester or analyzer is not needed.

The unit can also be used to isolate a.c.-d.c. sets from the line. Its power supply delivers 50, 100, 200, 300, and 400 volts d.c. at 90 ma as well as 15 standard a.c. filament voltages to terminals, where they are available for test purposes.

The basic circuit of the tube tester is shown in Fig. 2. Normal operating potentials are applied to the elements of the tube. The current through the plate circuit depends on the voltages and the setting of the load resistor. Measurements are made first with 3 volts bias on the control grid. The plate current rises when the switch is pressed to short the grid to cathode.

Calibrating tube testers presents problems that frequently prevent constructors from building their own. This tube checker is easy to calibrate because tube performance figures are compared with those given in tube manuals. It uses a standard multimeter removable for outside radio service calls.

RADIO-ELECTRONICS for
The two plate-current readings are then compared to the plate-current characteristic in the tube manual.

The circuit of the analyzer (Fig. 3) is simplified by omitting the wiring of all but one of the tube tester sockets. The unit includes all standard tube sockets. All socket pins having the same RMA pin number are tied together and connected to corresponding contacts on S16, S17, S18, S19, S20, one deck of S22, and the fixed contacts on S1 through S10. The nine-prong analyzer socket connects through the remaining deck of S22 and to the arms of S1 through S10. This system of switching provides for testing newly developed tubes, regardless of their pin connections.

A standard tube-tester transformer supplies plate or heater voltages for the tubes under test. Plate and screen-grid voltages are supplied by a 400-volt, 90-ma supply with a voltage divider. (The large tapped resistor, Fig. 4, has since been replaced with a network of series resistors R1 through R5 as shown on the diagram.) The primary of the filament transformer (T2) is tapped for 105, 115, and 120 volts. Separate switches are used for each tap. The power transformer primary is across the 115-volt tap on the filament transformer. Transformer keeps input to the plate transformer constant. The 50,000-ohm load resistor R10 is a compromise value, suitable for most tubes. To test a tube with a load resistance higher than 50,000 ohms, insert additional resistance in series with the positive side of the meter.

Construction

The analyzer is built in three sections: the switches, sockets, pin jacks, and indicators are on the panel; the power supply on a subdeck (Fig. 5); and the multitester fits in a hole cut in the panel. Wire all components on the panel before wiring the power-supply chassis. The miniature sockets are connected with fine wire, about No. 22 enamelled, and the other connections are made with push-back wire.

Use a minimum of flux on the connections because insulating surfaces are likely to break down when contaminated with flux. (Carbon tetrachloride and a small brush are handy for removing excess flux from soldered joints.—Editor)

Operating the tester

1. Plug the leads of the multitester into the a.c. volts terminals and set the meter to the a.c. volts range corresponding to the filament voltage of the tube being tested.

2. Make sure that the d.c. volts switch is in an off position and the ANALYZE—TUBE TEST switch is in the ANALYZE position. Refer to a tube manual and adjust the plate, cathode, screen-grid, control-grid, and filament switches to positions corresponding to the pin numbers of the elements. Be sure that both filament switches are not turned to the same number.

3. Plug in the tube and set the A.C. VOLS switch for its correct filament voltage. (Continued on next page)

Test Instruments

| JANUARY, 1949 |

Fig. 3—Circuit of the tester and set analyzer sections. The meter circuit is not shown.

- **L.P.A.T. Slide or toggle switch**
 - S16—24-point rotary top switch, nonshorting
 - S15—11-point rotary top switch, nonshorting, with stop
 - S14, S17, S18, S19, S20—12-point rotary switches, nonshorting type
 - S21—L.P.A.T. toggle switch
 - S22—2-pole, 11-point rotary switch, nonshorting type
 - S23—d.p.d.t. toggle switch

- **R.P.B.S.**—p.p.s.t. push-button switch

- **T1—power transformer, 760 volts c.f., 90 ma, 5 volts, 1 amp, 6.3 volts, 3 amps**

- **T2—filament transformer, 105—115, 120-volt primary; secondary tapped at 1.4, 2.3, 3.3, 4.3, 5.5, 6.3, 7.5, 8.6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120 volts**

- **C1—0.1-mfd, 400-volt electrolytic**

- **C2—1.5-mfd, 400-volt electrolytic**

- **R1—2,500 ohms, 10 watts**

- **R2—3, R3, R4, R5—1,300 ohms, 5 watts**

- **R7—2,200 ohms, 1/2 watt**

- **R8—4,700,000 ohms, 1/2 watt**

- **R9—100,000 ohms, 1/2 watt**

- **R10—50,000-ohm, 4-watt, wire-wound potentiometer**

- **S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13—**

www.americanradiohistory.com
4. Turn on the power, using the switch corresponding to prevailing line voltage. If the filament voltage is too low, open the switch and close one marked for lower voltage. If too high, use a high-voltage switch. Do not close more than one power switch at the same time.

Fig. 4—The bleeder and acorn-tube adapter.

5. Remove meter leads from A.C. VOLTS terminals and insert them in the METER terminals on the left side of the panel. From the tube manual, determine the zero-bias plate current for a given plate voltage and load. Set the meter to a direct-current range that will pass this current safely.

6. Adjust the D.C. VOLTS switch and LOAD control to the desired voltage and load resistance. (Reading of the LOAD dial multiplied by 500 gives the value of the load resistance.) Note the plate current on the meter, then turn the CONTROL GRID switch to the off (No. 12) position. The new current reading is for zero bias.

7. Compare the two current readings with those listed on the characteristic curve in the tube manual. If the measured currents correspond to those in the manual, the tube is assumed to be good. The permissible deviation from normal values depends on the type of tube and its application. Plate current of rectifiers and diode detectors can vary as much as 40% without making replacement necessary. Oscillator and converter tubes should be replaced when the current drops 10% or more. Discard amplifier tubes when the indication is 20% below normal.

Experience testing a few tubes with this unit will show when a tube has reached the end of its useful life.

Short tests are made by substituting the neon indicator lamp for the plate-current meter. Set the D.C. VOLTS control to 100 volts and turn the PLATE switch to the number corresponding to the cathode pin. Rotate the CATHODE switch to all positions. The indicator glows when there is a short between the cathode and one of the elements.

To check shorts between other elements, set the PLATE and CATHODE switches to pin numbers corresponding to the questionable elements. The PLATE switch is set to the element operating nearest cathode potential.

Transconductance tests can be made by dividing by 3 the change in current produced by removing grid bias and multiplying the resultant by 1,000,000. The product is the transconductance of the tube in micromhos.

Using the analyzer

Point-to-point voltage and current measurements can be made on a radio or amplifier without removing the chassis from the cabinet. Connections are made to the meter through the analyzer cable and the adapters. These measurements are confined to low-frequency radio circuits and audio and power circuits since the capacitance of the cable affects high-frequency circuits. To measure current:

1. Turn off the power and rotate all switches to the off position. Throw the ANALYZER TEST switch to the right-hand position.

2. Remove the tube from the stage in the amplifier or radio where measurements are to be made, and insert it in the proper socket in the tester.

3. Plug one end of the adapter cable into the vacant tube socket and the other end into the nine-prong analyzer socket on the panel.

4. Set the multitester to the 300-ma range and plug the meter leads in the METER terminals in the center of the panel.

5. Open the toggle switch corresponding to the pin number of the circuit. Turn the left-hand FILAMENT switch S22 to the number of the circuit being metered.

6. Turn on the power in the set. Press any push-button meter switch to obtain a current reading. If the meter reads backward, throw the polarity switch in the opposite direction. If necessary, set the meter to a lower range so the current falls about mid-scale.

To measure voltage, use the CATHODE switch and the right-hand FILAMENT switch S20.

1. Turn all rotary switches to the off position.

2. Connect a jumper between the chassis or B-minus, of the set and the ground terminal on the panel.

3. Set the right-hand filament switch to the number of the circuit being metered.

4. If the voltage measurement is made with reference to the cathode; set the CATHODE switch to the number of the cathode pin. If the voltage is made between an element and ground, set the CATHODE switch to 10.

5. Press the METER switch to read voltage.

(Note that no provisions are made for tubes with the suppressor brought out to a separate pin. With prevailing tube types the suppressor can be left floating. If it is desirable to connect the suppressor to the cathode or other elements, plug a jumper into the cathode and suppressor pins on an unused socket.)

Other applications

Filament voltages are available for test purposes by plugging leads into the A.C. VOLTS terminals and setting the A.C. VOLTS switch to the required voltage. D.C. voltages are available at the D.C. VOLTS terminals. The voltage is determined by setting the D.C. VOLTS switch.

A special adapter is used for isolating a.c.-d.c. equipment from the line. The adapter is a female plug mounted inside a five-prong tube base. Terminals of the plug are wired to pins 1 and 5 on the tube base. Plug the adapter into the five-prong socket, set the filament switches to 1 and 5, and turn the A.C. VOLTS switch to 115 volts. Intermittent and faulty oscillators can be located by lowering or raising the voltage with the A.C. VOLTS switch.

Fig. 5—Behind-the-panel wiring is shown. The power supply is on the sub-deck.
What is Supersonic Bias?

This clearly written article takes the mystery out of a common, but not well-understood term.

by DR. ANGELO MONTANI*

ALTHOUGH development of magnetic recording was started many decades ago, only recently is it proving to be a real threat to disc recording. Wire and tape recording are increasing in popularity so fast that every radioman—and especially every radio serviceman—should learn the fundamentals of the process as soon and as thoroughly as he can.

Supersonic bias is a familiar term today in the sound field because all magnetic recorders use it. But do you know what it is, why it is used, and how it works?

Every radioman knows that a steel needle, for example, can be magnetized permanently if it is touched to an ordinary bar or horseshoe magnet. It will also be magnetized if it is placed inside a coil energized by d.c.

Such a coil is shown in Fig. 1. The coil is 1 inch long and wound with 10,000 turns of thin copper wire. When a battery is connected to the coil, a magnetomotive force appears along its length. This force, measured in amperes-turns, is referred to as m.m.f. It is the product of the current through the coil (in amperes) times the number of turns.

In measuring and evaluating the magnetic characteristics of specific materials, a more convenient way to refer to magnetic field intensity is in amperes-turns per inch, represented by the letter H. This is the product of the coil current (still in amperes) and the number of turns per inch.

If 0.1 ampere flows through the coil of Fig. 1, the value of H would be $0.1 \times 10,000 = 1,000$. (H is often referred to in textbooks as the magnetomotive force gradient.)

Suppose we take ten cylindrical steel-alloy slugs, each 1 inch long and of the correct diameter to fit inside the coil. We place one in the core and apply the battery voltage necessary to produce a current of 0.1 ampere. We remove the first slug and substitute the second. This time we energize the coil with 0.02 ampere. We continue the procedure with the remaining eight slugs, increasing the current each time by 0.01 ampere. At the end of the process we have ten permanent magnets.

Next we measure the residual magnetization, that is, the amount of permanent magnetism, left in each slug as the result of its exposure to the electromagnetic coil. We find that this flux density (represented as B_r) is not proportional to the current which caused it. To determine the relationship between the first slug and compare all the rest to that. We find that the second slug, magnetized under a current of 0.02 ampere (when H was 200), has a B_r value of, not 200, but 300. Table 1 (next page) shows B_r vs coil current for all ten bars.

From Table 1 we make the upper right or positive portion of the graph of Fig. 2. The horizontal (X) axis is marked off in H units rather than current. The vertical (Y) axis shows the same B_r figures as the table.

If the current in the coil had been made to flow in the opposite direction, the slugs would have been magnetized to the same extent, though their polarities would be reversed—the north and south poles would have changed places.

Because of this, we can reproduce the original positive curve in the negative direction, using the same figures, but preceded by minus signs. The symmetrical result, shown in Fig. 2, is known as the complete retentivity curve. It gives us sufficient data for an understanding of magnetic recording and supersonic bias (sometimes called radio bias).

In magnetic recording, H on the graph represents the instantaneous values of audio current flowing through the recording-head coil. The H signal is analogous to the grid signal of a vacuum tube. The corresponding B_r values represent the output—what is placed on the tape—and is analogous to a vacuum tube's plate current. This analogy between the magnetic B_r-H curve and the E_r-I curve of a vacuum-tube amplifier is very helpful in understanding supersonic bias.

Fig. 3 shows a magnetic recording...
head schematically. The particular one pictured is the split-ring type, the most common. The gaps between the two half-rings are about .001 inch, and each half-ring is made of stacked laminations of high-permeability alloy. The magnetic medium (wire or tape) passes the upper gap at a constant speed. At each instant a .001-inch section of the tape or wire is across the gap and a tiny magnet is formed. The recorded sound consists of these minute longitudinal magnets, the flux and polarity of each depending on the current in the coil at the instant the magnet was made.

Fig. 4—View of a magnetic recording head.

The arrangement of Fig. 3 can be used for making recordings, but the distortion would be very pronounced. Fig. 5 (the B-H curve is a copy of that in Fig. 2) helps to show the reason. This is where the analogy with the vacuum-tube E-I curve is useful. Employing vacuum-tube graphical technique, we draw a sinusoidal input signal S_{in}, and then construct a corresponding output signal S_{out}. S_{out} is obviously badly distorted, due to the curvature of the B-H characteristic in the vicinity of the zero point.

Early experimenters realized that the input signal should be centered, not at the zero point, as in Fig. 5, but somewhere on the straightest portion of the magnetic curve. A steady magnetic bias analogous to the d.c. grid bias of a vacuum tube had to be superimposed on the a.f. signal so as to shift its axis to one of the points indicated by the dashed lines in Fig. 5.

Magnetic bias has disadvantages, and is now of purely historical interest. Any mechanical vibration is recorded as noise. And the linear portion of the curve is so limited that the dynamic range is insufficient for music.

Supersonic bias was first introduced about a quarter of a century ago. It consists of a current of supa-audible frequency which is fed to the recording head along with the audio. The usual frequency is approximately 50 kc. Fig. 6 shows the audio, the supersonic, and the combined waves.

Note well that the audio does not modulate the supersonic signal, but combines with it, the resultant combined wave being a vectorial addition of the two. For this reason, two in-phase audio profiles are formed, one on either side of the supersonic frequency, rather than the familiar out-of-phase modulation envelope. We might say that the audio signal is split into two identical, in-phase audio signals. Actually, the original audio frequency is shifted back and forth with twice the amplitude of the supersonic frequency at the supersonic rate; but this is, of course, inaudible.

The composite wave is now applied to the magnetic retentivity curve previously described. The result is shown in Fig. 7. One audio profile is applied to the negative portion of the curve and the other to the positive portion. Each profile results in a distorted output. The two distorted output signals, however, are of opposite polarity and subtract from each other. The distortion components at any instant and therefore cannot cancel completely.

What remains on the wire or tape (the difference between the two distorted signals) is an undistorted signal of the same form and frequency as the original audio before the supersonic bias was added.

This last statement may sound as though it were "dragged in by the horns," but it can be proved by going back to simple mathematics. We stated that the algebraic difference between the two distorted recorded signals at any instant yields an undistorted wave. The statement is correct as long as the portion of the opposite branches of the magnetic curve to which we apply the two simultaneous a.f. profiles is either straight or parabolic. That is because the difference between the corresponding points of any symmetrically opposite parabolas (or straight lines) is a straight line.

This law is commonly used in class-B amplifiers, as shown in Fig. 8. The audio is applied to both tubes at the same time, producing two distorted outputs. Because the E_{1}-I curves of the two tubes are equally and oppositely non-linear near the zero point, the resultant output is undistorted.

TABLE 1

<table>
<thead>
<tr>
<th>Slugs</th>
<th>Coil Current (amps.)</th>
<th>Retained Flux (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.01</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>.02</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>.03</td>
<td>550</td>
</tr>
<tr>
<td>4</td>
<td>.04</td>
<td>700</td>
</tr>
<tr>
<td>5</td>
<td>.05</td>
<td>900</td>
</tr>
<tr>
<td>6</td>
<td>.06</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>.07</td>
<td>1050</td>
</tr>
<tr>
<td>8</td>
<td>.08</td>
<td>1090</td>
</tr>
<tr>
<td>9</td>
<td>.09</td>
<td>1110</td>
</tr>
<tr>
<td>10</td>
<td>.1</td>
<td>1120</td>
</tr>
</tbody>
</table>

In the class-B amplifier the over-all curve is already split at the zero point, since two tubes are used. In magnetic recording, the retentivity curve cannot, of course, be split, so supersonic bias is used to produce two audio signals. By controlling the amplitude of the super-sonic bias, the two a.f. waves can be centered on the most parabolic sections of the curve.

We believe that the reader is now in the position of appreciating fully the neat trick performed with supersonic bias. It is without doubt a genial and elegant solution of the problem of obtaining a virtual or phantom transfer line which is straight, out of the crooked retentivity curve.

Fig. 7—Resultant output wave is undistorted.

Fig. 8—Class-B amplifier distortion cancels.
Automobile Ignition Interference

Though all of us heartily curse the effects of auto ignition interference on our reception of television and other v.h.f. transmissions, the amount of data obtained either in the U. S. and in Britain on the exact nature of this interference seems surprisingly small. We know by experience that it is usually imperceptible on the broadcast band, becomes a nuisance at frequencies above about 3 mc, and is something more than a nuisance above 30 mc. Has it a peak frequency? Is there a frequency above which, like natural static, it has negligible effects? Are its effects worse on horizontally or vertically polarized transmissions? These are questions to which answers are needed and can't be found in the text books.

Two good bits of work have been done here by the BBC and the British Electrical and Allied Industries Research Association—let's shorten that one to BEAIRA. Well, BEAIRA conducted two sets of tests on a range of frequencies between 40 and 100 mc, using a vertical dipole antenna for reception. The antenna was sited a few yards from a road along which vehicles of different kinds were driven. The results show that the interference has a sharp peak a little below 50 mc and that in the region of 90-100 mc it may be down by nearly 20 db. The latest BBC field tests largely confirm these findings and add other interesting details. It is found, for instance, that horizontally polarized v.h.f. transmissions are much less affected by ignition interference than those vertically polarized; that much smaller signal field strengths are needed at 90 than at 45 mc to override such interference; and that hardly any interference is caused by vehicles whose ignition systems have been suppressed with a resistor in the main distributor lead.

Another finding of interest to folk on both sides of the Atlantic is that interference with television signals on the 45-mc-band (whereas on the 90-mc-band are not available) is considerably more severe with horizontal polarization than with vertical. This surprised me a lot, for I know that many, if not all, American television transmissions have radial polarization, whereas ours have vertical. Yet I've seen very few references to this nuisance in U. S. journals, though it crops up constantly in British ones.

Listener-Interest Meter

The magazine published by the International Broadcasting Association reports the development in Denmark of an ingenious method of making direct measurements of listener response to broadcasts. The essence of the invention (which, whatever might be thought at first sight, does not belong to Mr. Gernsback's April First class) is this: when a receiving set is switched into an a.c. supply circuit, there is a slight distortion of the supply wave form, owing to the action of the rectifier of the radio. The distortion is small, but it is cumulative and the resulting harmonics introduced can be made to take the form of a voltage proportional to the number of radios in use at any time. By using a calibrated cathode-ray oscillograph, the number of receiving sets in action can be measured directly. The system isn't just a matter of theory; it has been in use for some months in Denmark. Photographic records of the cathode-ray tube screens are made at regular intervals, and listener-response curves are easily prepared from these.

The scheme has, of course, several limitations. A separate recorder is required for the circuits served by each supply transformer; that, though, is not altogether a disadvantage, for it enables the response of particular districts to be metered. The recorder can't discriminate between the stations to which radios are tuned; all it can indicate is that so many are in use.

Wanted, an ECC

Would that we had in Europe a body as effective for the whole continent as your FCC is for the United States! The channels allotted to our stations are mainly a matter of international negotiation and agreement. There is nothing to compel all countries to come into line and even if all sign the terms of an agreement, such as that on which the new Copenhagen Plan (due to come into force March 15th, 1950) is based, no means exists of enforcing strict compliance in countries where broadcasting regulations are father vague. The report on frequency measurements during a recent month, for instance, shows that though 181 European stations deviated by less than 5 cycles from their allotted frequencies, there were 84 whose frequency wanderings exceeded 25 kilocycles! In the first class there were 17 French stations and in the second 11. Realizing the chaos which such errings and strayings can and do cause, you'll see why I wish so fervently that there could be a European counterpart of the FCC armed with equal powers.
Improving Supply To Test Car Sets

By HARRY S. LEEPER

ANY battery eliminators used in service shops to furnish 6 volts d.c. for testing car and some farm radios have no means of regulating the output voltage or checking the voltage applied to the set or the current it draws.

An eliminator with a copper-oxide rectifier is shown, as originally purchased, in photos 1 and 2. The original wiring of the eliminator is shown in the schematic.

This eliminator is rated at 6 volts output with a 15-ampere load. With the original arrangement the voltage would be too high with the light load of most radios.

After experimenting with various lamp bulbs in series with the primary of the eliminator transformer, a variable rheostat was installed in the primary circuit to control the output voltage. A voltmeter across the output was necessary. Since an ammeter in the d.c. circuit often gives clues to radio defects, one was added.

A wire-wound, 150-ohm, 150-watt rheostat was used in the eliminator primary circuit. A lower-wattage rheostat could probably have been used, but the ratings of all rheostats decrease when enclosed in a case. A lower resistance could have been used to drop the output to 6 volts with most radios, but the 150-ohm rheostat makes it possible to drop to 4 volts.

A 0-15-volt meter was used across the output and a 0-25-ampere meter was selected because the output circuit is fused at 25 amperes. (Fuse is not shown in diagrams.)

A 117-volt pilot-lamp mounting was also obtained, as well as a spare switch for the input circuit. All this equipment was made ready for mounting on the top panel cover, or lid, of the eliminator case.

The parts are shown in photo 3, together with the top panel, which has been drilled and in which the required circular openings have been cut.

Photo 4 shows the panel with the parts assembled, while photo 5 is a rear view.

The wiring shown in the second diagram was then completed. Photo 6 shows the flexible wire used, making it easy partially to remove the top panel in case the fuse blows.

The spare toggle switch installed was not wired, but can be connected in place of the original switch if desired, as the latter's location on one end of the case interferes with standing the case on end.

Photo 7 shows the revamped elimina-

Eliminator, when purchased, has this circuit.
Radio and television service technicians of New York State met October 31 at Binghamton to establish the state federation of radio servicemen, which was formed temporarily at Rochester on October 10. The meeting was attended by about 35 persons, including representatives from Binghamton, Ithaca, New York City, Poughkeepsie, and Rochester. It was arranged by the Radio Servicemen’s Association of Binghamton, which acted as host to the delegates from the various local groups.

A statement of aims and objectives was made and rules which will serve as the basis of a future constitution were laid down. The objectives of the new Empire State Federation of Electronic Technicians Associations are to promote fellowship and cooperation among servicing groups and better cooperation between the repair industry and the general public. Delegates pointed out that their associations could, through a federation, act more effectively to raise the technical level of their membership by sponsoring lecture tours, and could act in matters concerning state legislation better than could any of the local associations acting alone. A state federation would also have advantages in carrying on educational campaigns among the public and is in a better position to encourage formation of new associations.

Each association will send two delegates to Federation meetings. At present, one of the two delegates also serves on the board of directors. Meetings will be held several times a year. Dues at $20 a year for each association was set, and it was decided that meetings should be rotated among the various cities which have member associations.

Officers and a board of directors were elected. They will serve until the first annual meeting, which is to be held in April, 1949. The first permanent officers are: Lawrence Raymo (president, Radio Technicians Guild, Rochester), president; Max Leibowitz (president, Associated Radio-Television Servicemen of New York City), vice-president; Wayne Shaw (president, Radio Service-men’s Association of Binghamton), secretary; Ben De Young (president, Central New York Radio Technicians Guild), treasurer; and Evert M. Holland (president, Hudson Valley Radio Servicemen’s Association), Sergeant-at-Arms.

Federation headquarters was established at the address of the secretary, Wayne Shaw, 392 Chenango St., Binghamton, N. Y. The first efforts of the Federation will be to assist technicians or groups of technicians who wish to form their own local associations in any part of New York State.

JANUARY, 1949
Using Your Ohmmeter

How to use a volt-ohmmeter, a tube handbook, and intelligence to service a set

By HERBERT S. BRIER, W9EGQ

Radio experimenters are frequently asked to repair broadcast receivers for the neighbors. Often, for diplomatic reasons, it is unwise to refuse (for example, when your antenna is tied to the asker's chimney). And servicing broadcast receivers can help make one's hobby self-supporting. Most experimenters say, "I'd like to, but I have neither test equipment nor service manuals."

Have you ever watched a skilled serviceman at work? You may have noticed that he used his volt-ohmmeter more than all the rest of his equipment combined. This meter makes an excellent substitute for more elaborate test equipment.

Finding a substitute for service manuals seems a difficult task; but is it? The aim of a serviceman is to detect and replace defective parts, not to rewire the receiver. A complete diagram is seldom required to service it. The vacuum tube is the heart of any piece of radio equipment, so let us examine a good tube manual.

There is page after page of tube characteristics, with application notes and voltage ratings interest us most.

The end pages of the manual list typical circuit diagrams with suggested parts values. Examine these circuits and those appearing on the circuit pages of each issue of Radio-Electronics. A significant fact emerges: no matter what the circuit, the components associated with a given type of tube are startlingly similar. Recalling that the serviceman's job is to detect and replace defective parts, the worth of a tube manual as a service tool begins to appear. With it, a volt-ohmmeter, and a small stock of parts, all a-c-d-c receivers and over 90% of all others can be speedily serviced.

Finding the trouble

Now the set is on the bench and if you have asked a few questions, you have a fair idea of what is wrong with it before you touch it.

Did it suddenly stop working? Probably a blown filament, shorted condenser, or open resistor.

Did the volume get weaker and weaker, the receiver finally failing completely? Probably weak tubes.

Does it play normally for a time, then cut out? Could be almost anything.

Does it have excessive hum or squeals? Probably the electrolytic filter condensers have dried out.

Has anyone else worked on the receiver? More than one baffling bug has been caused by someone's having removed several tubes and replaced them in the wrong sockets.

Plug the set into the power line to see if it is actually defective and (assuming it is transformerless) if the tubes are right. If not, remove the power plug and, using the tube manual to identify the correct terminals, test each filament in turn for continuity. Replace burned-out tubes and pilot bulbs. If all filaments show continuity, test the a-c switch and cord. If they are good, plug in the set again and, using the 150-volt a-c scale, put the meter across each filament. The meter will indicate when it is across a filament that may not open until power is applied to it.

Caution: When working on a transformerless set which is connected to the power line, always put it on a piece of insulating material and be very careful about what you touch, because it is very possible to get a shock, even with the switch off.

In most a-c-d-c sets, the total of the filament voltages in series equals the line voltage, but in some a resistor, often in the form of a resistance cord, or resistance tube, distains the difference between the two voltages. An open line cord can sometimes be repaired, but it is usually more satisfactory to replace it with a new one. The correct resistance is calculated by means of Ohm's Law: E = IR. The difference between the line voltage and the combined filament voltages equals resistors required voltage drop and the current in that of single tube. Assume the line voltage 120, the filament voltages constant 75, and the current 0.15 ampere; 120 minus 75 equals 45 volts drop, and 45/0.15 equals 300 ohms, the required resistance.

If the tubes light, measure the d-c voltage, and the resistance between rectifier cathode and circuit ground. The voltage should be approximately 100 and the resistance several thousand ohms minimum. Low voltage and normal resistance indicate a defective rectifier. Low voltage and low resistance point to a short circuit. Use the ohmmeter to look for blown filter and bypass condensers. It may be necessary to unsolder one lead of a suspected one before a definite decision about its condition can be made. When the short has been eliminated, measure the d-c voltage again. Even a momentary short circuit often damages the rectifier permanently.
Proper voltage at the rectifier and none at a tube element which the tube manual shows should have voltage indicates an open resistor or coil or a short-circuit, usually in the form of a blown bypass condenser. An open circuit reduces the voltage at the point it should feed to zero, with little effect on other points. Zero voltage at the plate of the output tube, for instance, and normal voltages at other points, would make the serviceman suspect the primary of the output transformer. In a.c.
move and tap components while the receiver is playing until a suspicious part is discovered. Then the only sure test is to replace it and play the receiver for several hours. Loose elements in tubes are often the cause of intermittents; in fact, every part in the receiver is suspect and great patience may be re-
quired to locate the guilty one.

Do not use a screwdriver or other metal instrument for moving or tapping parts. There is too much chance for it to slip and short two circuits.

When replacing defective parts try to duplicate the electrical characteristics of the original, but, with the exception of tuned-circuit components, a large variation may have little effect on performance. Space permitting, voltage and wattage ratings may always be increased. The capacity of bypass and filter condensers can usually be made larger, often with beneficial results. Resistance values are sometimes more critical, but often may be increased as much as 50% without much effect on performance. A study of the circuits and application notes in the tube manual will quickly acquaint you with the very few components whose values are critical.

Larger receivers

From the serviceman’s viewpoint, the big differences between a.c.-d.c. midgets and more elaborate receivers are more tubes and higher voltages. Both mean additional points of possible trouble. More tubes mean more circuits, and higher voltages more dropping and de-
coupling resistors, with their bypass condensers. A systematic approach will locate the troubles in these receivers quickly. With the filaments in parallel, one tube’s burning out does not affect the others. The bad one is easily de-
tected because it is cold. Open resistors, which are relatively common, are quick-
ly located with the ohmmeter (power off), or with the voltmeter (power on).

Personal three-way portables yield to the same treatment as the others. If the receiver works on commercial power, but not on the batteries, the batteries are probably dead. (Batteries should be replaced when their voltage has dropped one-third, measured under load.) If the receiver works on batteries and not on commercial power, the trouble is in the rectifier circuits. And if it works on neither, the trouble is one of those previously discussed.

Alignment methods

Aligning a receiver without a test oscilloscope seems a hopeless task; never-
theless, it can be done more quickly than a neutralizing tool and your ear.

If the high-frequency oscillator is not disturbed the job is especially simple. To align the i.f. amplifier tune in a weak signal, and, starting at the sec-
ond detector circuit, adjust each i.f. transformer for maximum de-

tection of the tuning indicator. If the receiver does not have a tuning in-
dicator, simply adjust the trimmers for maximum audio output on a weak sig-
nal or noise. (This will work only on a receiver which has not been tampered with, and which brings in the stations on their correct dial markings. Even then, there is danger of misaligning instead of aligning.—EDITOR)

The mixer and r.f. stage (if any) trimmers are similarly adjusted, al-
though it is doubtless that one setting will give maximum response over the entire band; so a compromise setting must be chosen to give best results over the most-used part of it. As a general rule these trimmers should be adjusted near the high-frequency end of the dial.

Earlier we put a “hands off” sign on the oscillator trimmers because they de-
termine the accuracy of the dial calibration. However, if the calibration is incorrect it may be corrected if a little care is taken. If the receiver uses spe-
cially shaped oscillator condenser plates for tracking, tune in a station near 1450 kc and adjust the oscillator trimmer until the station comes in at the correct point on the dial.

In receivers using both series and parallel trimmers, the parallel trimmer (mounted on the variable condenser) is adjusted near 1450 kc and the series trimmer (padder) near 600 kc. The adjustments interact somewhat so they should be repeated for maximum ac-

Be sure set is off when measuring resistance.

curity. After the oscillator is adjusted readjust the r.f. stage and mixer trim-

ers.

Receivers using permeability tuning are set on frequency by adjusting the oscillator paddler near 1450 kc and the position of the slug in the oscillator coil near 600 kc. The r.f. and mixer stages are similarly adjusted for maximum output.

This method of correcting frequency calibration assumes that the i.f. is rea-
sonably close to its original frequency, and that the calibration was correct when the set was new, both reasonable assumptions.

The aim of this article is not to be-
little adequate test equipment, but to point out that successful radio service work can be done with a minimum of it. Un-
doubtedly, a receiver can be serviced more rapidly with additional equipment, which should be acquired by anyone who intends to service receivers regularly.

Servicing
The Impeded Double-Cross

Every radio serviceman will enjoy this piece of fiction, which contains more truth than many a scientific article

By GUY SLAUGHTER

He's a big, flabby geezer in a natty overcoat and precisely creased felt hat, and I instinctively dislike him when he walks in the door and produces a claim check.

"My radio done yet?" he whines, his voice high and wheezy.

I glance at the stub and note the number.

"Sure is," I say, reaching the little three-way portable off the rack and laying it on the counter. "Good as new again.

I write him out an itemized ticket, he peels the six-buck charge off a thick roll, screws his fat face up into a leer- ing grin, tucks the radio under his arm, and starts out the door.

"I'll be seeing you," he says. "Soon."

The way he says it it sounds like a threat, but I just nod, ring up the money on the register, and go back to the bench.

Pretty soon Pedro, the little Mexican kid who works for me, comes in, school being over for the afternoon.

"Hi, Herk," he says, walking back to the bench. "What's 'Z' mean?"

"'Z'? I say absentely, squirting carbon tect into a noisy volume control. "What're you talking about?"

"Physics," Pedro says, leaning his elbows on the bench and staring into the chassis I'm working on. "The prof says we got to remember 'I equals E over Z', but he don't say what 'Z' is."

"Impedance," I say shortly. "That's Ohm's law for a.c., and 'Z' is the impedance."

"What's impedance?" asks Pedro, poking a finger into the winding and flippin' a blob of dirded solder off a terminal lug.

So I grab a scratch pad and explain, in words of one syllable, the difference between resistance and impedance. Finally I run out of breath and break my pencil point, simultaneously.

"Thanks, Herk," Pedro says. He points to a resistor in the up-ended chassis. "That's a resistor," he indicates a condenser, "and that's an impeder, huh?"

I pack up some tools, disgustedly, collect a bunch of repaired chasses, and start out to the truck to make my rounds. It's late when I get back, and I find that Pedro has locked up and gone home.

Next afternoon Pedro comes in after school wearing a look of smug satisfaction. I can see he's got something on his mind, so I set down my soldering iron, and give him my full attention.

"Okay," I say. "Let's have it."

"You're wrong," he says gleefully, consulting a piece of paper which he has apparently taken notes. "The prof says 'Z' is the algebraic sum of the inductive and capacitive reactances tending to resist the flow of current in an a.c. circuit." He grins at me triumphantly, and looks at his paper again. "And a device possessing capacitive reactance is known either as a condenser or a capacitor, never as an impeder."

I open my mouth to give him the business, but just then the door slams, and I see through my peephole that the fat boy with the overcoat is back, complete with reinforcements, so I thumb Pedro out front to take care of him.

"I wish to see the proprietor," the high voice wheeses. "In person."

I figure the portable has popped a tube, and I walk out resignedly. But he hasn't got a radio with him. His hands are flat on the counter, and a nasy smile is on his flabby face. Behind him, staring at the floor, is a short, thin guy in greasy coveralls.

"I'm afraid you're in trouble," Fatty starts off, still leering at me. "Remember the radio you fixed for me?" He accent the "fixed" heavily.

"Yes," I say. "I do."

"Allow me to introduce myself," he says, hands still flat on the counter. "I'm T. William Pearson." He pauses reverently, as though waiting for me to salam, but the name doesn't mean a thing to me.

"So?" I say.

His red face turns a trife redder, but he continues.

"I own and operate Pearson Motor Sales and Service, of which you have no doubt heard." He pauses again. I nod, and repeat my question.

"So?"

By now his moon face is crimson.

"I also happen to be the newly-elected president of the MFBEA, and as such I am onling a newspaper campaign against sharp dealers like you."

"What's the MFBEA?" I break in. "And whatya mean sharp dealers?"

"I pause, do one hand, and waves it like a ham actor.

"Merchant's Fair Business Enforce- ment Association," he squeaks. His hand stops waving and moves toward me. He waggles a fat finger in my face, his voice rises to a shrill scream. "We're pledged to expose you sharp dealers who prey upon the public and suck the blood of unfair profits from the economic veins of our fair city...."

RADIO-ELECTRONICS for
Get Your ALLIED Catalog Now
180 Value-Packed Pages Featuring Everything New in Radio!

NEW! Projection Television
by Hallicrafters—16" x12" Screen
Amazing 192 Sq. Inch Picture!

Develops a brilliant, steady, optically correct picture; glare-free for comfortable viewing both at close range or distance, day or night. Optical system stays in perfect, stable adjustment. Includes following features: 2½" magnetic projection triode, sealed optical unit, 25 kv high voltage unit, 12 channel push-button selector, RF amplifier, 3 IF amplifiers, 2 video amplifiers, special synchronizing circuits, AGC and black level control, single picture control, inter-carrier FM system. Complete with 20 tubes, plus projection triode and 5 rectifiers. In handsome classic Chippendale mahogany cabinet. For 105-125 volts, 50-60 cycles AC.

97-805. Hallicrafters T-68 Projection TV in console. NET, f.o.b. Chicago

$695

97-801. Hallicrafters T-60 Projection TV in rack (less cabinet) for custom installation. NET, f.o.b. Chicago

$595

Hallicrafters 10" Direct View!
Here's an unbelievably sharp picture, with excellent stability and truly photographic contrast. Priced amazingly low for the quality. Features include: 12 channel push-button tuning, RF amplifier, 3 IF amplifiers, 2 video amplifiers, improved sync circuits, AGC, static-free FM. Complete with 19 tubes, plus 10" picture tube and 3 rectifiers. In rich mahogany table cabinet. For 105-125 volts, 50-60 cycles AC.

97-804. Hallicrafters T-67, 10" TV wood table model. NET, f.o.b. Chicago

$995

97-802. Hallicrafters T-63, As above, in black plastic cabinet. NET, f.o.b. Chicago

$289.95

Famous Hallicrafters 7" TV Receiver
An immensely popular TV receiver at low cost! Provides a brilliant 23 square-inch picture. Easy to operate; excellent sound; install it yourself.

97-803. Hallicrafters 50S in mahogany cabinet. NET, f.o.b. Chicago

$199.50

97-800. Hallicrafters T-54, as above, but in gray furniture-steel cabinet. NET, f.o.b. Chicago

$189.50

Send for the ONE COMPLETE Radio Buying Guide!

Get the Radio Buying Guide that's used by thousands of expert servicemen, engineers, auteurs, soundmen, builders and experimenters. Get every buying advantage at ALLIED—widest selection of equipment at money-saving low prices—speedy, expert shipment—personal attention—complete satisfaction on every order. Get your ALLIED Catalog today!

Short Wave Listeners!
DX Fans!

SX-62

HALLICRAFTERS' special SWL Receiver!
Tuning range: 540 kc to 110 mc, continuous—world-wide Short Wave and special services; broadcast and all FM channels between 27 mc and 110 mc. Features: professional slide-rule dial; 500 kc crystal calibrator; single knob tuning, 60 to 1 ratio; bands illuminated separately; series switch ANL; 4-position tone control; high-fidelity audio; 5-step filter, dual IF channels; crystal filter; 8 watts output, etc. In handsome steel cabinet. With tubes.

97-540. SX-62 NET, f.o.b. Chicago

$269.50

97-780. R-42 Speaker to match. NET

$34.50

97-568. B-42 Tilt-Base. NET

$17.50

Radio's Leading Buying Guide...

ALLIED RADIO CORP., Dept. 2-A-9
935 W. Jackson Blvd., Chicage 7, Illinois

[Blank]

[1] Full Payment

[2] Partial Payment (Balance Due)

[3] Send FREE 180-PAGE ALLIED Catalog

[4] Order for Hallicrafters Model

[5] Enclosed S

Name

Address

City

State

Zip

[Note: The page contains a large advertisement for Hallicrafters television and radio products.]
"Wait a minute, Buster," I interrupt him, my plate current rising to saturation. "You come in here calling people names and making false accusations, and you're going to lose a couple of those chins!"

He draws back a step, some of the color seeping out of his face, and throws a glance at his companion.

"False accusations, huh?" he beats. "Well, what about that. He turns to the little guy, and waves a hand at him. "This is my chief mechanic, and he knows about radios, too."

The little guy looks up, catches my eye, and drops his head again, his pasty face turning a pale pink. Out of the corner of my eye I see Pedro looking from one to the other of us, obviously as mystified as I am. T. William continues his tirade.

"Jonas here cut a wire in my radio, one little wire mind you, and I brought it here to test your honesty. You charged me six dollars to fix it. Obviously you are a cheat and a fraud, and I intend to see to it that you are run out of business. The MFBEA shall state the facts in the paper for all to see, in a half-page paid advertisement." He pauses for emphasis, breathing heavily, one hand aloft.

I stand there with my mouth open, wondering what a lawyer can do for me. The words "libel" and defamation of character flash through the space between my ears, followed by "attorney fees" and "supreme court." After a minute I come to. The fat guy is still posing like the avenging angel, the pasty-faced mechanic is still looking floorward, and Pedro is regarding me, wide-eyed, somewhat as he would a cat whose disguise has just slipped, revealing instead a skunk.

I grab the card-index off the desk, and thumb through it until I find the job ticket labelled "Pearson, T. W." I lay the card on the counter, and read it to myself, and then aloud.

"Olympiad three-way portable," I read, my voice sounding strange. "Open second i.f. transformer replaced, set tracked and aligned. Total, six dollars." I look up, feeling kind of empty inside. "Look, Buster," I manage weakly. "That's a perfectly legitimate charge. The i.f. transformer was opened, so I installed a new one, realigned the set, and you paid for time and materials used on the job."

T. William clears his throat triumphantly.

"There was just a cut wire," he wheezes. "That's all."

I turn to the mechanic, who is still looking at the floor.

"A cut wire? I manage to ask him."

The little guy takes a deep breath, raises his eyes until they are fixed determinedly on my necktie, and reeks it. "I see," is all through it in memorized.

"I removed the chassis from the cabinet, peeled the insulation off a red wire, cut the wire, and replaced the insulation to cover the place where the wire was cut. Before I performed this operation the radio played normally." He licks his lips, casts a sidelong glance at T. William, and drops his eyes back to the floor.

"Okay," I holler. "That wire must've been the hot lead to the i.f. transformer. The winding showed no continuity, so I replaced the whole transformer." Fatty is leering at me, all of his chins bobbing, and Pedro is squinting from one to the other of us, trying to decide which one to vote for. "Any radioman would have done the same thing," I argue. "It's a perfectly routine procedure."

T. William raises one hand to his mouth, blows idly at his fingertips, yawns, and leans at me again. "I dare say," he says. "All that for one cut wire. It will make interesting reading in the paper, I'm sure."

"Look," I blur, trying to keep my voice calm. "Mr. Pearson, you're making a mistake! A gimmicked radio is no test of a radioman's honesty or ability. In the routine of radio repair you just don't look for rigged-up defects.

Pedro has apparently made up his mind, and he slips quietly out the front door. I feel like a ship being deserted by her crew when it is needed most.

"A cut wire," the flabby one wheezes, "should be a cinch. Either you are incompetent to be trusted with people's radios, or you are downright dishonest." He smiles his nasty smile again. "Either way, you shouldn't be in business and the MFBEA will see to it that this fair community's citizens are made aware of that fact." He tips his natty hat at me disdainfully, and heads for the door, the pasty-faced grease-monger dutifully at his heels. I stand there for a minute and watch them climb into a shiny black sedan out front; then I head for the bench and sit down dazedly to think it over. In a few minutes the door opens, and Pedro strolls back and greets me with a big smile.

"Wanta see the fun?" he asks hopefully.

But I just wave my hand at him, and dig deeper into my gaze, so he wanders out front and leaves me alone.

After a while I rouse myself and go to the telephone. The lawyer on the other end of the line listens to my story in silence, and asks me whether T. William's radio did have just a cut wire wrong with it. I tell him yes, I guess so, he clucks his tongue disapprovingly, and hangs up.

"Should have seen it, Herk," Pedro says, coming away from the show window where he's been peering into the street. "He was so mad I thought he was going to kick the poor little mechanic." He chuckles appreciatively. "They finally towed it away."

"They did?" I say absently. "What?"

"T. William Pearson's car," Pedro says, eying me a bit apprehensively. "It wouldn't start."

"Good," I say, wondering how many people will see that half-page ad. "I hope somebody stole the engine."

"Nope," says Pedro thoughtfully. "Too much impedance."

"Yeah," I echo, wondering where I can find a nice town full of defective radios to open a shop in. "Too much impedance."

Pedro looks kind of disappointed, at
New 1948 TELEVISION Manual

Includes Every Popular Television Receiver

In this giant volume of television factory data, you have everything you need to repair every modern television set. For only $3, total price, you get complete service and alignment manual on all popular T-V models. You receive easy-to-understand explanations of circuits, 144 pages of test patterns, T-V and accessories alignments, factory data, voltage charts, adjustment hints, and everything to get you up to date and make you an expert in television repairs.

Find-Fix All Television Faults

Use this new practical "encyclopedia" of television servicing as your guide to quick fault finding and repair of any modern television set. Eliminates guess-work — tells you just where to look and what to do. Cuts hours-wasting jobs to pleasant moments. Use test patterns for quick adjustment, or look for probable cause of trouble in the pages of hints after simply observing fault of picture on screen. No equipment needed with these tests. Or use your voltmeter and compare values with many voltage charts included. Observe waveforms similar to hundreds illustrated using test points suggested and in a flash locate what is wrong. You will save time and have a hard-to-find fault. This manual will give you the know-how of a television expert and will repay for itself many times over.

Radio Diagrams and F.M. Service Manuals

You can speed-up and simplify radio repairs with Supreme Publications manuals. Service radios faster, better, easier, save time and money, use these most-often needed diagram manuals to get ahead, earn more per hour. For the remarkable bargain price (only $2 for most volumes) you are assured of having in your shop and on the job, needed diagrams and other essential repair data on 4 out of 5 sets you will ever service. Every popular radio of all makes from old-timers to new 1948 sets, including F.M. and Television, is covered. Clearly printed circuits, parts lists, alignment data, and helpful service hints are the facts you need to improve your servicing ability. Let these manuals furnish you with diagrams for 80% of all sets. There is no need to spend larger sums for bulky, space-wasting manuals, or too-difficult drawings, that brings you every few weeks; be wise, use SUPREME Manuals to get the most in diagrams and service data for the smallest cost. Select manuals at left and below. Check titles you want to examine and rush "no-risk" coupon today.

Supreme Publications

Sold by all Leading Radio Jobbers

JANUARY, 1949
that, but I'm too busy thinking black through to pay much attention. And after a little while, I feel his force of habit, I collect some tools and start off in the truck to make my rounds.

I struggle through my bench work the next day, wiring filters up backwards and in general doing everything wrong, so I'm still hours behind schedule when, about the middle of the afternoon, Fatty shows up again. He's alone this time, and I can tell he's hopping mad even before I leave the bench and get out front to face him.

"If you're going to be clenching and unclenching, his face is gassy-rectifier purple, and all the time gaspy, popping sounds are being beamed from him to me.

I stand there a minute, just watching him burn, and then I find my voice.

"Now what?" I say wearily.

He slams something down on the counter with a vicious thud, and I see it's a filter condenser, a cardboard-encased dual job, its pigtailsvaving. "What's that?" he gurgles, exuding a purple mist.

"Could be. I use that brand. Why?" "I'll sue," T. William screeches, waving his arms about. "I'll sue you for everything you've got. You can't get away with this."

"Huh?" I say, staring at him.

His squeaky voice oozeus upward to the high-frequency limit of my hearing, and I think he's going to blow a fuse.

"It's sabotage," he wails. "I'll sue for every cent you've got."

Just then Pedro walks in, takes in the situation at a glance, stays for a minute at the filter condenser on the counter, and makes for the back room.

T. William spots him as he goes by, and points a shaking finger at his re-treating back.

"He's your agent, the little monster," he wheezes. "You put him up to it. Contributing to the delinquency of a minor. You'll never get out of jail!" By now he's spitting all over me as he moults the words.

"What the devil are you shouting about?" I manage, grabbing his fat-stuffed hand as it waggles in front of my face. "Shut off that howling and tell me what goes on."

Fatty stands there breathing hard for a minute, not quite sure whether he's in bodily peril or not, and I take a vague interest in the fact.

"Speak up," I urge him, "while you're still in one piece."

He backs up a step, looks wildly about for a means of escape, and sees the door behind him. He retreats toward it, reaches it, and stops with his hand on the knob as if he was going to throw it open.

"You had that little beast sabotage my car yesterday," he says, a little calmer now, beginning to get hold of himself. "My mechanics worked all night and most of today trying to get him connected."

"You had that little beast sabotage my car yesterday," he says, a little calmer now, beginning to get hold of himself. "My mechanics worked all night and most of today trying to get him connected."

"You had that little beast sabotage my car yesterday," he says, a little calmer now, beginning to get hold of himself. "My mechanics worked all night and most of today trying to get him connected."
HEAT GUN
Streamlined paddle grip heat gun in vivid red housing. That delivers a powerful 150 Cubic ft. per minute blast of hot air at 110 Fahrenheit. Ordinary blowers have small fan motors, but this has a lifetime-lubricated AC-DC motor of the rugged vacuum cleaner type, that produces a hurricane of either hot or cool air. Perfect for blowing out dust or dirt from radio chassis, clearing out signal systems, warm ing cold air conditioned rooms, clearing the condenser and coil windings. Can be used to blow in air to dry her hair because it is to dry heat.

GENERAL ELECTRIC 150 WATT TRANSFORMER
Cost the Government $1800.00 Cost to You—BRAND NEW—$100.00
This is the famous transformer used in U.S. Army bombers and ground stations, during the war. Its design and construction have been proved in service, under all kinds of conditions, all over the world. The entire frequency range is covered by means of 380-turns coils which are wound on a high frequency coil core, has its own water jacket and power amplifier null condenser, and antenna tuning circuits—all designed to operate at top efficiency within its particular frequency range. Transformer and accessories are finished in black chrome. Milliameter, voltmeter, and RF meter are mounted on the front panel. Here are the specifications: FREQUENCY RANGE: 200 to 560 Kc. and 1350 to 12,500 Kc. (Will operate on 16 and 26 meter band with slight modification if desired.) Power output: 195 watts. Transmitter: Class "B" three tubes. POWER SUPPLY: Rectified class "C" stage, using 211 tube and equipped with antenna coupling circuit which matches transmitting unit to the antenna.

COMPRESSED AIR INSTANTLY, ANYWHERE!!
Portable Air Compressor and storage tank. Buffeted built of best materials using lubricated ball-bearing on compressor and all lubricated main bearings. Oil filling reservoir is in constant sight, and will not overheat, on the opposite side, is the safety valve which will automatically shut off the air compressor motor if the air pressure gets to high.

TERRIFIC VALUE—PORTABLE ELECTRIC DRILL
Only $25.05 equipped with 1/4" Jacobs Geared Chuck and Key.
Not an intermittently driven drill, but a full size geared tool.
Most convenient type switch, natural grip handle, and balance like a six-shooter.
Precision cut gears—turbine type cutter—brake—extra long brushes.
No stall under heavy pressure because of powerful 110 Volt AC-DC motor and multiple ball thrust bearing.
Other bearings self-aligning lubricated ball-bearing Chrysler type.
Made for industrial use in service in Plants or on construction jobs.
Americal portable factory guarantee assures you of a lifetime of trouble-free use, 25% deposit on O.P.D.'s. Full refund if returned prepaid within five days.

General Electric RT-1248 15-TUBE TRANSFORMER-RECEIVER
Terrific power—15 watt on every civil service test—suitable for use from 247 to 500 MC. Transmitter uses 5 tubes including Vaneform Electret 319-A. A final. Receiver, uses 10 tubes including 247-A, 247-B, 247-A, 247-C, and includes a large 15-kilowatt output transformer.

Sensational Value in AC-DC Pocket Tester
This model, featuring a sensitive induction type tube housed in a cabinet case, represents the culmination of 15 years achievement in the instrument field by a large company specializing in electronic test equipment.

SELENIUM RECTIFIERS
(Buyable at any voltage lower than rating)
1/2 ampere 30 volts $.90 (above can be paralleled for battery charging)
1/2 ampere 120 volts $ 1.00
2 ampere 50 volts $.95
2 ampere 100 volts $ 1.00
2 ampere 150 volts $ 1.00
2 ampere 200 volts $ 1.50
2 ampere 250 volts $ 2.00
2 ampere 300 volts $ 2.50
2 ampere 350 volts $ 3.00
2 ampere 400 volts $ 3.50
2 ampere 450 volts $ 4.00
2 ampere 500 volts $ 4.50
2 ampere 750 volts $ 6.00
2 ampere 1,000 volts $ 7.50
2 ampere 1,500 volts $ 10.00
2 ampere 2,000 volts $ 12.50
3 ampere 250 volts $ 3.50
3 ampere 400 volts $ 5.00
3 ampere 500 volts $ 6.50
3 ampere 600 volts $ 8.00
3 ampere 750 volts $ 9.50
3 ampere 1,000 volts $ 11.00
3 ampere 1,500 volts $ 13.50
3 ampere 2,000 volts $ 16.00
3 ampere 2,500 volts $ 18.50
3 ampere 3,000 volts $ 21.00
3 ampere 3,500 volts $ 23.50
3 ampere 4,000 volts $ 26.00
3 ampere 4,500 volts $ 28.50
3 ampere 5,000 volts $ 31.00
3 ampere 6,000 volts $ 34.50
3 ampere 7,000 volts $ 38.00
3 ampere 8,000 volts $ 41.50
3 ampere 10,000 volts $ 47.00
3 ampere 12,000 volts $ 53.00
3 ampere 15,000 volts $ 63.00
3 ampere 20,000 volts $ 83.00
3 ampere 25,000 volts $ 103.00
3 ampere 30,000 volts $ 123.00
3 ampere 40,000 volts $ 160.00

SCR-274N COMMAND SET
The greatest radio equipment in history
A mountain of valuable equipment that includes 8 receivers covering 190 to 580 KC, 8 to 6 MC, and 6 to 9.1 MC. These receivers use plug-in coils, and can be changed by user without service. Complete system is designed for the complete beginner. Also included are two Tun- ing Power Amplifiers: 1 Double 171, 1.4 k. 160 V. 28 Volt D. C. Dynamotors (easily converted to 110 V. operation with SCR-274N 220 Volt Transformer), and Preselector and Modulator. 24 tubes supplied in all. Comes in a limited quantity and in order in fast. Removed from used and in guaranteed electrical condition. A super value at $145.00 unloading crank type, but without knobs for re- ceivers. Without these knobs the receivers can't be tuned, and are only useful for parts. Don't buy without knobs!
AUTO ANTENNA LEAD-IN
Federal Telephone and Radio Corp., East Newark, N.J.

A principal difficulty with automobile antenna lead-in wire has been the high capacitance, due to the shielding.

The new K-129 cable reduces capacitance to 8 psf per foot by surrounding the center conductor with air. This conductor is supported in a tube of polyethylene by being cramped into a saw-tooth form and placing the points of the saw-tooth against the inside of the tubing. The shield and outside insulation surround the polyethylene tube.

RADIO TIMER
International Register Co.,
Chicago, Ill.

The RC-101 timer is an electric clock which operates a switch. One operation at a setting is possible; if the radio is on, the clock will turn it off, and if it is off, the clock will turn it on.

LIGHT A. C. GENERATOR
D. W. Onan & Sons, Inc.,
Minneapolis 5, Minn.

Series AA, gasoline-driven power plants furnish 350 watts a.c. and weigh only 27 pounds. They are small enough to fit into the trunk compartment of an automobile.

TUBE SOCKETS
Yates Engineering Services,
Cranford, N. J.

A combination tube socket and mounting strip is made of steel or plastic. The socket is supplied mounted to the terminal board.

RESISTORS
The centers of resistors associated with the stage can be soldered to the socket and strip before the unit is mounted in the chassis.

Breakdown of mass production into simple subassembly operations is made possible, and—especially in military equipment—rapid servicing can be done merely by removing the entire stage and replacing it with a new one.

SMALL STORAGE DRAWERS
Cincinnati Ventilating Co., Inc.,
Covington, Ky.

Every ham, serviceman, experimenter, and constructor early in his career runs into the problem of storing resistors, capacitors, screws and nuts, and a thousand other small parts. The new interlocking small parts drawers are made of steel. Each drawer and its housing is 5/16 x 3/4 x 5 inches. The housings are tongued and notched so that they can be put together to form a rigid and durable cabinet of drawers of any size or shape. Staged with just a few, the buyer can obtain more drawers in any quantities at any time and add them to the old ones to form a larger cabinet. Each stage has a small handle and a holder for an identification card.

SMALL SOLDERING IRON
Transion, Inc.,
Metuchen, N.J.

The Solderion weighs only 3 ounces and has interchangeable heads. Push-button-controlled, it heats in 20 seconds from a cold start. It is operated from a 11 7/16-volt a.c. line through a transformer, or from a 4 7/16-volt battery.

HIGH-FIDELITY TRANSFORMERS
Standard Transformer Corp.,
Chicago, Ill.

The new Stancor HF and WF series high-fidelity audio transformers include a complete range of units for amplifiers, speakers, microphones, and pickups.

Special coil and core construction results in the reduction of hum pick-up and leakage reactance as well as of harmonic and intermodulation distortion.

The HF series, except for the HF-45 output transformer, has a frequency response of +1 db from 20-200,000 cycles. The HF-45 has a response of +1 db from 20-30,000 cycles. The WF Series, except for the WF-21, has a frequency characteristic of +12 db from 30-30,000 cycles. The WF-21 input transformer has a response of +23 db from 50-10,000 cycles.

AUTO ANTENNA LEAD-IN
Federal Telephone and Radio Corp., East Newark, N.J.

A principal difficulty with automobile antenna lead-in wire has been the high capacitance, due to the shielding.

The new K-129 cable reduces capacitance to 8 psf per foot by surrounding the center conductor with air. This conductor is supported in a tube of polyethylene by being cramped into a saw-tooth form and placing the points of the saw-tooth against the inside of the tubing. The shield and outside insulation surround the polyethylene tube.

RADIO TIMER
International Register Co.,
Chicago, Ill.

The RC-101 timer is an electric clock which operates a switch. One operation at a setting is possible; if the radio is on, the clock will turn it off, and if it is off, the clock will turn it on.

LIGHT A. C. GENERATOR
D. W. Onan & Sons, Inc.,
Minneapolis 5, Minn.

Series AA, gasoline-driven power plants furnish 350 watts a.c. and weigh only 27 pounds. They are small enough to fit into the trunk compartment of an automobile.

TUBE SOCKETS
Yates Engineering Services,
Cranford, N. J.

A combination tube socket and mounting strip is made of steel or plastic. The socket is supplied mounted to the terminal board.

RESISTORS
The centers of resistors associated with the stage can be soldered to the socket and strip before the unit is mounted in the chassis.

Breakdown of mass production into simple subassembly operations is made possible, and—especially in military equipment—rapid servicing can be done merely by removing the entire stage and replacing it with a new one.

SMALL STORAGE DRAWERS
Cincinnati Ventilating Co., Inc.,
Covington, Ky.

Every ham, serviceman, experimenter, and constructor early in his career runs into the problem of storing resistors, capacitors, screws and nuts, and a thousand other small parts. The new interlocking small parts drawers are made of steel. Each drawer and its housing is 5/16 x 3/4 x 5 inches. The housings are tongued and notched so that they can be put together to form a rigid and durable cabinet of drawers of any size or shape. Staged with just a few, the buyer can obtain more drawers in any quantities at any time and add them to the old ones to form a larger cabinet. Each stage has a small handle and a holder for an identification card.

SMALL SOLDERING IRON
Transion, Inc.,
Metuchen, N.J.

The Solderion weighs only 3 ounces and has interchangeable heads. Push-button-controlled, it heats in 20 seconds from a cold start. It is operated from a 11 7/16-volt a.c. line through a transformer, or from a 4 7/16-volt battery.

HIGH-FIDELITY TRANSFORMERS
Standard Transformer Corp.,
Chicago, Ill.

The new Stancor HF and WF series high-fidelity audio transformers include a complete range of units for amplifiers, speakers, microphones, and pickups.

Special coil and core construction results in the reduction of hum pick-up and leakage reactance as well as of harmonic and intermodulation distortion.

The HF series, except for the HF-45 output transformer, has a frequency response of +1 db from 20-200,000 cycles. The HF-45 has a response of +1 db from 20-30,000 cycles. The WF Series, except for the WF-21, has a frequency characteristic of +12 db from 30-30,000 cycles. The WF-21 input transformer has a response of +23 db from 50-10,000 cycles.
New Devices

TWO-SIDE RECORD PLAYER
Markel Electric Products, Inc., Buffalo, N.Y.

Both sides of each disc are played by the Markel Duo Playmaster. The pickup has a cartridge with two stylus, one below and one on top. After play-

ANTENNA CHIMNEY MOUNT
JFD Manufacturing Co., Brooklyn, N.Y.

The adjustable chimney antenna mount consists of an angle bracket which rests against a corner of the chimney and a metal strap which passes around the chimney. Two of these mounts may be placed any dis-

distances apart to support the mast from 3/4 inch to 1 1/2, inch in diameter.

DISC HOLE REPAIRER
Dunwell Sales Corp., Chicago, Ill.

Frequently-played records often de-
velop an enlarged or chipped center hole, usually due to small maladjust-
ments of the changes. The result is erratic changing and wavering pitch. The Dunwell repair kit consists of a two-part tool and a set of eye-
lets. The threaded end of one of the tool sections is passed through the rec-

COMBINATION TESTER
Radio City Products Co., Inc., New York, N. Y.

The Model 8073 Servishop is a tube tester, FM, AM and 0.1 signal gen-
erator, and a 0-50 megohm multimeter. It consists of the Model 805A combination tube and set tester combined with the Model 730 signal generator.

The tube tester is calibrated for over 800 types of tubes including those with acorn and sub-miniature type bases. Readable scale on the ohmmeter is from 0.05 ohm to 25 megohms in 5 ranges. Other ranges are: 0.75-10-50-

PHONO AMPLIFIER
Langevin Mfg. Corp., New York, N. Y.

The Type 177A amplifier is designed to operate with a radio tuner and a phono-gram using LP microgroove, crystals and variable-selectivity car-
tridges. It delivers 4 watts output with less than 3% total harmonic distortion over the range of 50 to 15,000 cycles. Separate bass, treble and volume con-
trols are provided.

The unit is in a hammetone grey metal cabinet, small enough to fit into a bookcase or radio cabinet.

REMOTE CONTROL CONSOLE
General Electric Co., Syracuse, N. Y.

The Type EC-8A remote control unit, designed to FCC specifications, per-
mits remote operation of receivers and transmitters in land-mobile radio com-

MULTITESTER
Broshaw Instruments Co., Brooklyn, N. Y.

Model 30 Multitester has a single rotary selector switch which controls all ranges. Meter sensitivity on the volt-
age ranges is 1,000 ohms per volt and maximum are 1,250 volts d.c. and 6,000 volts d.c. Two d.c. milliamperes ranges are provided, 0-1 and 0-100. Resistance may be measured in three ranges, with a maximum of 1 megohm. A decibel scale reading from -10 to +57 db is provided. Zero db equals 6 mw in 500 ohms.

Performance Checks Available
If you are not at this time receiving the monthly AMERICAN PHENOLIC ENGINEERING NEWS—you will want to request the September issue which included pattern and gain charts for the Stacked Array. We will be glad to mail it and place your name on our list to receive future issues—write Dept. 120.

db GAIN •••
more signal strength for greater distance and the best picture

Stacked Array multiplies the universally acknowl-
edged features of the Amphenol All-Channel TV Antenna (No. 114-005). Stack to provide reception at greater distances—Stack for picture brilliance and clarity—Stack for controlled TV reception. Provide the TV Receiver with the Best Antenna to Produce the Best Picture. Amphenol's Stacked Array is your assurance of top TV picture quality.

JANUARY, 1949

©www.americanradiohistory.com
Introducing 1949

TIME DELAY RELAY

Postpaid

By Behnix

Model 3616, makes an excellent set up for an intercom set. Contains 3 multiple type wafer switches, one panel type fuse, one volume control, one master 2 pole double throw switch, one lock type sending and receiving telephone key, one local remote transmitter control, one single pole switch, one 24-volt Leach Relay with 2 contacts.

By Behnix

$1.29

Postpaid

COMMAND SET ACCESSORIES

RACKS

Double Transmitter rack. Brand new in original carton. No. FT-326 only 99c postpaid.

$1.95

Postpaid!

Antenna Relay

Antenna Relay Unit BC-442A or BE- 2/ARC-5. Originally used on Command Set (SCR-274). Contains an antenna change-over relay, a 1½ miles wire meter, with an external ½ amp, thermocouple. The meter scale reads R.F. current on linear scale calibrated 0 to 10. A truly sensational buy at only 1.95.

BC-616 Control Box

Originally used with the command set between Modulator BC-450A and Control Box BC-451A. Contains 3, 24 volt relays and other parts an excellent buy at only $1.39 postpaid.

$2.50

Stainless Steel Recording Wire

.006 Stainless Steel recording wire. New on original spools as used by Army and Navy recorders. Each spool contains at least ¼ mile of wire. Can be used on standard wire recorders.

2 volt Battery

$1.25

Postpaid

Brand new, compact, spillproof built in hydrometer, group terminal together to get higher voltages. Fully guaranteed. Shipped dry, add 35c to cover postage and handling.

2 volt Battery

$1.25

Postpaid

Brand new, compact, spillproof built in hydrometer, group terminal together to get higher voltages. Fully guaranteed. Shipped dry, add 35c to cover postage and handling.

NEW METERS 77¢

Brand new 3.0, 3. DC voltmeter 2" round case. Meter has 450 ohms resistance. 150 ohms per volt. Add 15c each to cover postage and handling.

Brand new 0.06 Stainless Steel recording wire. New on original spools as used by Army and Navy recorders. Each spool contains at least ¼ mile of wire. Can be used on standard wire recorders.

Stainless Steel Recording Wire

.006 Stainless Steel recording wire. New on original spools as used by Army and Navy recorders. Each spool contains at least ¼ mile of wire. Can be used on standard wire recorders.

2 volt Battery

$1.25

Postpaid

Brand new, compact, spillproof built in hydrometer, group terminal together to get higher voltages. Fully guaranteed. Shipped dry, add 35c to cover postage and handling.

NEW METERS 77¢

Brand new 3.0, 3. DC voltmeter 2" round case. Meter has 450 ohms resistance. 150 ohms per volt. Add 15c each to cover postage and handling.

Brand new 0.06 Stainless Steel recording wire. New on original spools as used by Army and Navy recorders. Each spool contains at least ¼ mile of wire. Can be used on standard wire recorders.

Stainless Steel Recording Wire

.006 Stainless Steel recording wire. New on original spools as used by Army and Navy recorders. Each spool contains at least ¼ mile of wire. Can be used on standard wire recorders.

Antenna Relay $1.95 Postpaid

Antenna Relay Unit BC-442A or BE- 2/ARC-5. Originally used on Command Set (SCR-274). Contains an antenna change-over relay, a 1½ miles wire meter, with an external ½ amp, thermocouple. The meter scale reads R.F. current on linear scale calibrated 0 to 10. A truly sensational buy at only 1.95.

BC-616 Control Box

Originally used with the command set between Modulator BC-450A and Control Box BC-451A. Contains 3, 24 volt relays and other parts an excellent buy at only $1.39 postpaid.

$2.50

Stainless Steel Recording Wire

.006 Stainless Steel recording wire. New on original spools as used by Army and Navy recorders. Each spool contains at least ¼ mile of wire. Can be used on standard wire recorders.

2 volt Battery

$1.25

Postpaid

Brand new, compact, spillproof built in hydrometer, group terminal together to get higher voltages. Fully guaranteed. Shipped dry, add 35c to cover postage and handling.

NEW METERS 77¢

Brand new 3.0, 3. DC voltmeter 2" round case. Meter has 450 ohms resistance. 150 ohms per volt. Add 15c each to cover postage and handling.

Brand new 0.06 Stainless Steel recording wire. New on original spools as used by Army and Navy recorders. Each spool contains at least ¼ mile of wire. Can be used on standard wire recorders.

Stainless Steel Recording Wire

.006 Stainless Steel recording wire. New on original spools as used by Army and Navy recorders. Each spool contains at least ¼ mile of wire. Can be used on standard wire recorders.
Take Advantage of These Bargains

525 Feet
Brand New Telephone Wire
$7.95

3 conductor braided insulated copper and steel telephone wire. It is of copper for conductivity and steel for strength. Worth at least 3¢ per foot, yet due to an exceptional buy we can now offer it at less than 1¢ per foot. (Shipped express charges collect)

E.R. Jubes
3 CP 1 Ind. Screen 95
3 DP 1-A Ind. Screen 95
3 FP 7-A 1.35
3 HP 7 1.45
(add 25¢ each to cover postage and handling)
5 FP 7 1.75
5 CP 1 1.95
5 BP 1 2.45
5 HP 1 2.45
(add 35¢ each to cover postage and handling)
7 BP 7 2.65
7 CP 1 2.85
(add 40¢ each to cover postage and handling)
9 GP 7 3.50
(Shipped express, charges collect)

Citizen Band Phantom Antenna
85¢
A transmitting antenna for use on approximately 450 MC. Complete with standard coax connector. A weatherproof unit. Add 25¢ to cover handling and postage.

R.P.M. MOTOR
3/4 MOTOR
$2.95
Ideal for a beam rotor, plenty of power. Originally designed for 24 volt DC operation, but easily converted, 110 volts AC. Complete instructions included. Excellent for other uses too. Brand new, surplus, guaranteed. (Add 40¢ each to cover postage and handling)

Gibson Girl TRANSMITTER
$4.95
SCR-578 Gibson Girl Transmitter complete with tubes, used but good, only $4.95. (Shipped express collect)

Limited Supply

TUNING CONDENSERS
Brand New in cartons. 4 Gang-13-226 MMF/Sec. 99c (Postpaid)
2 Gang as pictured (Postpaid) 69c

Surplus Jubes
All New, All Postpaid
8012 $1.69
1626 $.35
705-A $1.19
211 $.69

1300 FT. Heavy Duty Cable
$18.00

N. SILVERSTONE CO. 6532 E. Mottlchols, Detroit 12, Mich.

JANUARY, 1949

IMPORTANT!
All merchandise subject to prior sale, minimum order $2.00. No C.O.D. orders accepted. Michigan residents must add 3% State sales tax.
Radio - Television - Electronic Parts & Equipment Specials

TELEVISION-CATHODE RAY HIGH VOLTAGE

2000 volt D.C. Power Supply
For an unbelievable low price, we can supply a quality floor-model television or cathode ray 2000 volt D.C. power supply. Why bother with bulky, expensive cycle supplies or expensive R.F. power supplies when you can purchase a complete 2000 volt D.C. unit (not a kit) for only $2.25 to the 110 volt A.C. power line. The ridiculously low price has been made possible with an automatic purchase of high quality components. These units are brand new, completely tested and guaranteed. Price $7.95

4000-6000 VOLTS TELEVISION SUPPLY
Similar to the unit above, but has a much higher D.C. output voltage suitable for use with the new 7" and 10" television tubes. PRICE $12.50

NOISE FILTERS
Eliminates extremely noisy radio reception due to power line hum, high beam lights, refrigerator, washing machine, vacuum cleaner, elevator, oil burner, and similar noise. Filters out post-minded noises in the broadcast, short-wave bands.

1. Diathery Filter with a select line of transformers at 120 volts A.C. or D.C. Stacked in a special line 1 3/4" x 3 1/2" complete with male and female line connectors. PRICE $2.25

2. Industrial Type Noise Filter—Will handle up to 20 amperes. House in shielded case 9 3/4" x 5 1/8" x 3/4"
PRICE $5.00

RADIO ASSEMBLED RADIO KITS
5 Tube A.C./D.C. receiver in a brown plastic cabinet of artistic design, cabin-
et 12"x9"x10".

Variable condenser tuned; with 2 double tuned circuits.

Tubes used: 1 - 12AT7, 1 - 12SB7, 1 - 12SK7 1 - 3525, 1 - 96L6
PRICE $31.50 including A.C. plug cords

6 TUBE 2 WAY PORTABLE KIT
For operation on 110 volt A.C. or D.C. and 220 volt D.C.

Superhetdrome circuit
Full Vision dial
High gain loop
Cabinet of Blue Aeroplane cloth finish, size 13 1/2 x 11 1/2 x 12".

Tubes used: 1AT, 1IS, 3QS, 117Z6 and 2 - 1NS
PRICE $13.75 Most including tubes
6 TUBE 2 BAND SUPER KIT
Bands covered BC 556-1600 KC and 6-18 MC

Full vision dial
Variable condenser tuned, with two double tuned circuits

PRICE $19.50

A SCIENTIFICALLY DESIGNED PHONO SCRATCH FILTER
Reclaimed at approximately 4500 cycles effectively reducing objectionable needle scratch without altering the natural sound. Contains a HI-Q SERIES resonated circuit. Tested by means of an audio oscillator and an excellent to give 22 dB attenuation with very low signal loss.

Just two wires to clip on. Compact Price $1.98

THREE TUBE PHONO AMPLIFIER
An assembled unit ready for installation at once and volume control and its feet of rubber cord

PRICE $2.95 (Not including tubes)
With Complete Set of Tubes ... $3.95

PHONO OSCILLATOR
Wireless phonograph or radio transmitter recording for stratch less print or voice from carbon microphones or radio without wires. Can also be used as an extinction oscillator for synchronization of record player or phonograph. Price $2.95
With Complete Set of Tubes ... $3.95

SPECIALS

Mammouth assortment of radio and electronic parts, not less than TEN POUNDS of new transistorized filters, switches, coils, wire, hardware, etc. A superb selection of parts for experimenters, radio amateurs, and amateurs for only $1.25

Satisfaction guaranteed on all merchandise.

RADIO DEALERS SUPPLY CO.
154 Greenwich St. New York 6, N. Y.

GE MODEL 140
If this set operates satisfactorily on batteries but not on a.c. or d.c., check the 354. When the switch is in the battery position, the two halves of the tube's filament are paralleled, so the set will operate even if one end of the filament is open. On the line, however, the filaments are in series, and the tube will not work with half of the filament open.

T. HORIUCHI
Rock Springs, Wy.

PHILCO AUTO RECEIVERS
When resistance or voltage measurements show an open i.f. coil, remove the assembly from the can and examine the lugs for broken leads frequently caused by vibration. A careful resoldering of the wire to the lug will make the transformer as good as new.

HURLEY D. ROBINSON
Pullman, W. Va.

PHILCO 48-200
If one or several stations fade in and out on this set, replace the oscillator coil. If that does not entirely cure the trouble, install the ceramic trimmer sold by Philco for this purpose.

JOSEPH WOLK
Brooklyn, N. Y.

RCA RECEIVERS
The condensers in certain RCA receivers were assembled with a compound in each end to hold the wires against the foil inside. This compound loosens, creating poor contacts with the foil. The condensers that have failed in a receiver must be replaced, but cost usually prevents replacing the rest. I paint the ends of each condenser with service cement to prevent their failing during my guarantee period.

ALAN SMITH
Shaftsbury, Vermont.

PHILCO 46-1201
Many of these sets develop a loud hum, either steady or intermittent. The radio-phonograph change-over switch which has a metal snap-on cover which may be loose. Retighten and bond it to keep the shielding intact.

A. G. SANDERS
Miami, Fla.

New Practical Disc Recording Answers Your Questions

PRACTICAL DISC RECORDING

Here is the book that thousands of radio enthusiasts have been waiting for. Whether you're interested in amateur or professional recording, you'll find PRACTICAL DISC RECORDING by Richard H. Dorf invaluable. It not only tells you how to make successful records, but in addition each important recording component is given a full chapter, explained in detail, and what features to look for when buying.

You'll like this book for many reasons. Without waste of words, it gets right down to business on the first page. It tells you what you need to make good records and how to do it by using any type equipment—from the simplest to the most expensive—depending on your purpose and pocketbook. You will find all the practical phases of recording covered as well as the underlying principles.

FILLED WITH FACTS
Chapter 1 discusses the various components which make up the complete system. Chapters 2 and 3 give the practical details of the selection and use of discs, motors and turntables, feed mechanisms and various types of microphones. Chapter 9 discusses all the important amplifier circuits. A complete chapter is given to recording and cutting of discs. Chapter 14 is a concise summary of common troubles in recording, and how to overcome them. The book ends with a comprehensive glossary of recording terms.

96 PAGES, 82 ILLUSTRATIONS
Only 75c

SEE COUPON BELOW

RACRAFT PUBLICATIONS, INC.
25 West Broadway, New York 7, N. Y.

Send me PRACTICAL DISC RECORDING
I enclose 75c.

Your Name

Address

Jobber's Name

Address

TECHNOTES

RCA 668X
A common trouble with this set gives all the symptoms of an open filter capacitor. If a check shows that the filters are good, replace the selenium rectifier with a new 100-ma unit.

TEDD FISHMAN
Brooklyn, N. Y.

SILVERTONE 3351
The set was intermittent while in the case but was satisfactory when removed from the case. The trouble was a frayed antenna wire which was shorting to chassis. A short piece of spaghetti over the lead cured the fault.

E. JERI. ZELLNER
Menominee, Mich.

GE MODEL 140

PHILCO 48-200

RCA 46-1201

PHILCO 46-1201

A common trouble with this set gives all the symptoms of an open filter capacitor. If a check shows that the filters are good, replace the selenium rectifier with a new 100-ma unit.

Tedd Fishman
Brooklyn, N. Y.

SILVERTONE 3351
The set was intermittent while in the case but was satisfactory when removed from the case. The trouble was a frayed antenna wire which was shorting to chassis. A short piece of spaghetti over the lead cured the fault.

E. JERI. ZELLNER
Menominee, Mich.

PHILCO AUTO RECEIVERS
When resistance or voltage measurements show an open i.f. coil, remove the assembly from the can and examine the lugs for broken leads frequently caused by vibration. A careful resoldering of the wire to the lug will make the transformer as good as new.

HURLEY D. ROBINSON
Pullman, W. Va.

PHILCO 48-200
If one or several stations fade in and out on this set, replace the oscillator coil. If that does not entirely cure the trouble, install the ceramic trimmer sold by Philco for this purpose.

JOSEPH WOLK
Brooklyn, N. Y.

RCA RECEIVERS
The condensers in certain RCA receivers were assembled with a compound in each end to hold the wires against the foil inside. This compound loosens, creating poor contacts with the foil. The condensers that have failed in a receiver must be replaced, but cost usually prevents replacing the rest. I paint the ends of each condenser with service cement to prevent their failing during my guarantee period.

ALAN SMITH
Shaftsbury, Vermont.
... I.F. TRANSFORMERS
A resistance check across the i.f. coils of a weak receiver showed as much as 3,000 ohms. The transformers were found to have corrosion under the first winding layer. Replacement was necessary.

PETER KACAOURA, Jamaica, N. Y.

... TUNABLE HUM
Tunable hum in a.c.-d.c. receivers whose grounds are not connected directly to the chassis can often be traced to the a.c.-d.c. bypass capacitor. If this capacitor is connected to the chassis, unsolder it and hook it to the circuit ground.

ALAN SMITH, Shaftesbury, Vt.

... 3526 REPLACEMENT
The 3526 rectifier used in several of the older makes of receivers is no longer being manufactured. Replace bad ones with a 2566 plus a 33-ohm, 5-watt series dropping resistor.

D. H. EBERT, Chicago, Ill.

... ADMIRAL 7C3
These sets are frequently brought in with a complaint of low volume. Sometimes the set is dead. Begin by checking the twin lead connecting the two halves of the loop antenna. It is fastened to the cabinet with staples, which, in some cases, short the loop. To prevent future trouble, remove the offending staples and replace them with ones small enough not to short the wires.

D. L. FUGA, Fairfield, Iowa

... REMOVE OLD CONDENSERS
When installing new power-supply filter condensers in a receiver, it is very bad practice to leave the old ones in place. They may eventually short and short out. Remove or disconnect them.

Removal of certain types of condensers benefits the serviceman in other ways. Old aluminum cans, for instance, are useful around the shop as r.f. probes, tube shields, night-light shades, and ballast housings.

R. P. BALIN, Miami, Fla.

... ZENITH 6MF080 FORD
I have serviced five of these auto sets, all with the same complaint of low volume and intermittent reception. Replacing the coupling capacitor between the 7B6 plate and the 7C6 grid with a 1,000-volt unit of the same value cured the trouble in each case. The sensitivity control usually needed adjustment, too.

DAVID H. HORN, Grenada, Miss.

... INTERMITTENTS
One cause of intermittents is ground loops riveted to the chassis. These sometimes loosen up enough to cause resistance. To fix them permanently, solder them securely to the chassis.

L. E. MEYERS, Ironton, Ohio
for the best in TELEVISION for CUSTOM-BUILT installations

520 SQUARE PICTURE 20 INCHES
5 SQUARE PICTURE 26 INCHES

PROJECTION TELEVISION

BAUSCH & LOMB F:1.9 PROJECTION LENS
RCA 5TP4 PROJECTION C. R. TUBE
PRE-WIRED 27-30 KV TRIPLEX FLYBACK POWER SUPPLY
ALUMINUM COATED TOP PROJECTION MIRROR
EASTMAN KODAK GLASS PROJECTION SCREEN
PRE-WIRED, PRE-TUNED I. F. PICTURE & SOUND STRIP (PAT. PEND.)
DUMONT INPUTUNER
all channels — All FM Radio
RCA 12" HIGH FIDELITY PM SPEAKER
MANUAL OF INSTRUCTIONS & SCHEMATIC DATA prepared & edited by renowned
JOHN F. RIDER PUBLISHER, INC.
COMPLETE WITH RACK, HOOD & PICTURE FRAME

Here's why Television Experts praise T.A.C. Television

Our products contain every new development, every new creation of television research. Our efforts are bent towards quality and this is particularly evident in the performance of our Assemblies. That's why men who know television are telling others about T.A.C. supremacy.

TELEVISION ASSEMBLY COMPANY GUARANTEE

All components are of the finest quality and are fully guaranteed under the Standard RMA Guarantee. All TAC Assemblies 'are guaranteed to operate when assembled' according to directions.

TELEVISION ASSEMBLY COMPANY

10" 12" or 15" TUBE TELEVISION
in easy to install units

STANDARD MODELS
30-tubes, including the C.R. Tube. Supplied with 13-tube I.F. Picture and Sound Strip (Pat. Pend.) completely wired, tubed, tested and aligned. Has standard tuner pre-wired to handle 13 channels, ready to use with above unit.

Available only through National Parts Distributors
Write us for list
Write for literature

TELEVISION ASSEMBLY CO. 540 Bushwick Ave., B'klyn 6, N.Y.
for the best in television for custom-built installations

- STANDARD and CHAMPION MODELS with 10-inch, 12-inch, 15-inch Tubes
- P-520 PROJECTION MODEL 520 inch PICTURE

DISTRIBUTORS

412 FULTON AVE. HEMPSTEAD LONG ISLAND, NEW YORK

In Buffalo, N.Y.

Here are the 2 GREATEST NAMES in TELEVISION for CUSTOM-BUILT INSTALLATIONS

DISTRIBUTORS for TELEVISION ASSEMBLY CO.

CUSTOM-MADE TELEVISION in SAN FRANCISCO CALIFORNIA

ASSOCIATED RADIO DISTRIBUTORS

1251 FOLSOM ST. SAN FRANCISCO 3

TELEPHONE HEMLOCK-10212

World-Wide Station List

By ELMER R. FULLER

<table>
<thead>
<tr>
<th>Location</th>
<th>Station</th>
<th>Freq.</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEMANIA</td>
<td>ZAA</td>
<td>7.550</td>
<td>1300 to 1530</td>
</tr>
<tr>
<td>ALGERIA</td>
<td>Constantine</td>
<td>11.820</td>
<td>0150 to 0315; 0620 to 0915; 1015 to 1045; 1400 to 1700; 1900 to 2100</td>
</tr>
<tr>
<td>ANDORRA</td>
<td></td>
<td>5.880</td>
<td>0800 to 1045; 1100 to 1200; 1530 to 1700</td>
</tr>
<tr>
<td>ARGENTINA</td>
<td>Buenos Aires</td>
<td>13.680</td>
<td>1530 to 1730; 1800 to 2200; 2230 to 1000; 1000 to 1600; 1630 to 1900</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>Melbourne</td>
<td>12.310</td>
<td>0945 to 1100; 1550 to 1700</td>
</tr>
<tr>
<td>BELGIUM</td>
<td></td>
<td>11.820</td>
<td>1300 to 1530</td>
</tr>
<tr>
<td>BOLIVIA</td>
<td></td>
<td>11.820</td>
<td>1300 to 1530</td>
</tr>
<tr>
<td>BRAZIL</td>
<td></td>
<td>6.980</td>
<td>0800 to 1045; 1100 to 1200; 1530 to 1700</td>
</tr>
<tr>
<td>CANADA</td>
<td></td>
<td>6.980</td>
<td>0800 to 1000; 1300 to 1500</td>
</tr>
<tr>
<td>CAMEROONS</td>
<td></td>
<td>7.500</td>
<td>1300 to 1500</td>
</tr>
<tr>
<td>CHILE</td>
<td></td>
<td>6.980</td>
<td>0800 to 1045; 1100 to 1200; 1530 to 1700</td>
</tr>
<tr>
<td>COLOMBIA</td>
<td></td>
<td>6.980</td>
<td>0800 to 1045; 1100 to 1200; 1530 to 1700</td>
</tr>
<tr>
<td>EGYPT</td>
<td></td>
<td>6.980</td>
<td>0800 to 1045; 1100 to 1200; 1530 to 1700</td>
</tr>
<tr>
<td>EQUATORIA</td>
<td></td>
<td>6.980</td>
<td>0800 to 1045; 1100 to 1200; 1530 to 1700</td>
</tr>
</tbody>
</table>

Radio-Electronics
<table>
<thead>
<tr>
<th>Location</th>
<th>Station</th>
<th>Freq.</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prague</td>
<td>1215 to 1220; 1315 to 1320; 1415 to 1430; 1530 to 1545; 1645 to 1700</td>
<td>11:46 to 13:15; 13:45 to 14:00; 14:30 to 15:00; 15:30 to 16:00; 16:30 to 17:00</td>
<td></td>
</tr>
<tr>
<td>Santiago</td>
<td>15:20 to 16:00</td>
<td>10:00 to 10:30; 10:45 to 11:00; 11:15 to 11:30; 11:45 to 12:00; 12:15 to 12:30; 12:45 to 13:00; 13:15 to 13:30; 13:45 to 14:00; 14:15 to 14:30; 14:45 to 15:00; 15:15 to 15:30; 15:45 to 16:00; 16:15 to 16:30; 16:45 to 17:00; 17:15 to 17:30; 17:45 to 18:00; 18:15 to 18:30; 18:45 to 19:00; 19:15 to 19:30; 19:45 to 20:00; 20:15 to 20:30; 20:45 to 21:00; 21:15 to 21:30; 21:45 to 22:00; 22:15 to 22:30; 22:45 to 23:00; 23:15 to 23:30; 23:45 to 24:00</td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>00:00 to 00:30; 00:30 to 01:00; 01:00 to 01:30; 01:30 to 02:00; 02:00 to 02:30; 02:30 to 03:00; 03:00 to 03:30; 03:30 to 04:00; 04:00 to 04:30; 04:30 to 05:00; 05:00 to 05:30; 05:30 to 06:00; 06:00 to 06:30; 06:30 to 07:00; 07:00 to 07:30; 07:30 to 08:00; 08:00 to 08:30; 08:30 to 09:00; 09:00 to 09:30; 09:30 to 10:00; 10:00 to 10:30; 10:30 to 11:00; 11:00 to 11:30; 11:30 to 12:00; 12:00 to 12:30; 12:30 to 13:00; 13:00 to 13:30; 13:30 to 14:00; 14:00 to 14:30; 14:30 to 15:00; 15:00 to 15:30; 15:30 to 16:00; 16:00 to 16:30; 16:30 to 17:00; 17:00 to 17:30; 17:30 to 18:00; 18:00 to 18:30; 18:30 to 19:00; 19:00 to 19:30; 19:30 to 20:00; 20:00 to 20:30; 20:30 to 21:00; 21:00 to 21:30; 21:30 to 22:00; 22:00 to 22:30; 22:30 to 23:00; 23:00 to 23:30; 23:30 to 24:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Station List

Television Assemblies

- **10", 12", 15" Picture Tube Standard and Champion Models**

For the best in TELEVISION for CUSTOM-BUILT installations

Distributors for TELEVISION ASSEMBLY CO.

Radio Supply Co.

853 PINE AVE.

Long Beach, Calif.

Television Assembly Co.

Headquarters for PROJECTION and DIRECT VIEW CUSTOM BUILT TELEVISION

Radio Parts Sales Co.

5220-22 So. Vermont Ave.

Los Angeles 37, Calif.

Distributors for TELEVISION ASSEMBLY CO.

For the Best in TELEVISION for CUSTOM-BUILT installations

Zack Radio Supply Co.

1450 Harrison St., Oakland 12, Calif.

881 So. First St., San Jose, Calif.

January 1949
World-Wide Station List

<table>
<thead>
<tr>
<th>Location</th>
<th>Station</th>
<th>Frq.</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD COAST</td>
<td>ZGY</td>
<td>1205</td>
<td>1045 to 1300</td>
</tr>
<tr>
<td>GUATEMALA</td>
<td>TGZ</td>
<td>6,650</td>
<td>1800 to 2300</td>
</tr>
<tr>
<td>Guatemala City</td>
<td>TWH</td>
<td>6,675</td>
<td>1830 to 2330</td>
</tr>
<tr>
<td>Guatemala City</td>
<td>TWE</td>
<td>15,170</td>
<td>1030 to 1430</td>
</tr>
<tr>
<td>Hawaii</td>
<td>KMB</td>
<td>5,900</td>
<td>0600 to 0815; 1100 to 1200; 1725 to 1830</td>
</tr>
<tr>
<td>Port-au-Prince</td>
<td>HMC</td>
<td>8,000</td>
<td>1300 to 1400; 1830 to 2000</td>
</tr>
<tr>
<td>Port-au-Prince</td>
<td>HCM</td>
<td>8,160</td>
<td>0645 to 0815; 1100 to 1200; 1700 to 1730</td>
</tr>
<tr>
<td>HONG KONG</td>
<td>KRH</td>
<td>15,120</td>
<td>0145 to 0230 (off Mon.-Fri.)</td>
</tr>
<tr>
<td>La Chine</td>
<td>MRD</td>
<td>8,250</td>
<td>1100 to 1200; 1900 to 1915</td>
</tr>
<tr>
<td>San Pedro Sula</td>
<td>HP1</td>
<td>8,360</td>
<td>1100 to 1200; 1800 to 1900</td>
</tr>
<tr>
<td>Tagalipa</td>
<td>HBR</td>
<td>5,870</td>
<td>0600 to 1000; 1300 to 1500</td>
</tr>
<tr>
<td>MALAGASY</td>
<td>FZI</td>
<td>12,000</td>
<td>0100 to 0630; 0900 to 1300</td>
</tr>
<tr>
<td>NEW CALEDONIA</td>
<td>HXRA</td>
<td>5,770</td>
<td>1200 to 1230; 1700 to 1730</td>
</tr>
<tr>
<td>MICRONESIA</td>
<td>HXRT</td>
<td>16,050</td>
<td>0330 to 0430; 0800 to 0900; 1300 to 1400</td>
</tr>
<tr>
<td>NIGERIA</td>
<td>KNA</td>
<td>14,200</td>
<td>0300 to 0330; 0525 to 0600; 0800 to 0830; 1100 to 1130; 1230 to 1250; 1630 to 1700</td>
</tr>
<tr>
<td>NORTHERN NAPOLI</td>
<td>KNN</td>
<td>15,120</td>
<td>1015 to 1030; 1300 to 1315</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>XST</td>
<td>14,800</td>
<td>1100 to 1130; 1200 to 1300</td>
</tr>
<tr>
<td>PARAGUAY</td>
<td>PXK</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>PERUVIAN</td>
<td>PFC</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>SAO PAULO</td>
<td>PAM</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>SERBIA</td>
<td>KKG</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>SPAIN</td>
<td>RBY</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>SWAZILAND</td>
<td>KSA</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>KZP</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>TANZANIA</td>
<td>KZT</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>THAILAND</td>
<td>KZT</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>TUNISIA</td>
<td>KZT</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>TURKEY</td>
<td>KZT</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>KZT</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td>KZT</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>URUGUAY</td>
<td>KZT</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>VIETNAM NOUVEAU</td>
<td>KZT</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
<tr>
<td>VIETNAM RÉVEAUX</td>
<td>KZT</td>
<td>15,120</td>
<td>1030 to 1100; 1430 to 1500; 1600 to 1700</td>
</tr>
</tbody>
</table>

TELEVISION ASSEMBLY

MALZ PRESENTS the Famous T.A.C. Model P-520

PROJECTION TELEVISION ASSEMBLY (520 Sq. Inch Picture)

and a Complete Line of TELEVISION ASSEMBLY CO. PRODUCTS

MALZ ELECTRIC CO.

6902 ST. CLAIR AVE. CLEVELAND, OHIO

TELEPHONE: EN-4008

FOLLOW THE ARROW FOR TELEVISION AT ITS BEST!

Write for Free Brochure

TELEVISION ASSEMBLY CO.

DIRECT VIEW AND PROJECTION TELEVISION ASSEMBLIES FOR CUSTOM-BUILT INSTALLATIONS

ARROW ELECTRONICS

82 CORTLANDT ST., NEW YORK, N. Y.
MIDGET ATOM SMASHER

An atom smasher no larger than a flower pot detects and counts neutrons, the vital building blocks in the structure of matter, Westinghouse announced last month. The neutron counter was developed jointly by Dr. William E. Shoup, manager of nuclear physics and electronics at the Westinghouse Research Laboratories, and Dr. Kuan-Han Sun, research physicist.

Neutrons cannot be detected by ordinary means because they carry no electrical charge. They are instrumental, however, in splitting atoms, and Drs. Shoup and Sun took advantage of this fact, constructing the atom smasher to make them reveal their presence.

Dr. Sun with world's smallest atom smasher.

In the new instrument a very small amount of uranium 235 is mixed with a special light-producing phosphor and the mixture is used to coat the surface of a phototube. The whole device is in a metal cylinder lined with two inches of paraffin, which slows down fast-moving neutrons.

When a neutron passes through the paraffin shield and strikes the uranium-phosphor mixture on the phototube, some of the uranium atoms are split. In the tiny explosion, nuclear fragments strike the phosphor, producing light rays. The light acts on the phototube cathode and liberates electrons.

The neutron-caused explosions can be observed directly on a fluorescent screen, or the electrons can be used to actuate recording devices which give an accurate count of the number of atomic explosions. The new detector can count the particles cast off by the exploding atoms at the rate of 100,000 a second—50 times faster than the standard Geiger counter.

Though all work so far has been devoted to neutron counting, Dr. Sun believes there is no reason the same instrument cannot be used to count the heavy mesons—components of cosmic rays—recently discovered in the upper atmosphere and artificially made in the giant cyclotron.

JANUARY, 1949

A WIDE RANGE HIGH QUALITY INSTRUMENT

Here is a fine radio, in chassis form, to please the most discriminating music lovers.

Easy to install in any console cabinet old or new, the Espey 511 AM-FM radio chassis embodies the latest engineering refinements for lasting high quality and enjoyment at a price that defies competition.

Features, 12 tubes plus rectifier and tuning indicator; drift compensated circuit for high frequency stability; tuned RF on AM and FM, high fidelity push-pull audio; 13 watts power output; wide range 12" PM speaker; smooth flywheel tuning; phone input provision; separate AM and FM antennas.

Other models available including 25 watt output.

Write Dept. K for your free catalog.

Makers of fine radios since 1928.

ESPEY MANUFACTURING COMPANY, INC.

528 EAST 72nd STREET, NEW YORK 21, N. Y. • TEL. BUTTERFIELD 8-2300

EASY TO LEARN CODE

It is easy to learn or increase speed with an Instructograph Code Teacher. Aids the quickest and most practical method yet developed. For beginners or advanced students. Available tapes from beginner's alphabet to typical messages on all subjects. Filled range 5 to 60 W.P.M. Always ready—no U.R.M.

ENDORSED BY THOUSANDS!

The Instructograph Code Teacher literally takes the place of an instructor. You learn at your own pace—on your own time!

Two ways to cut your RECORDING COSTS!

Find out about the MAGNETIC TAPE RECORDER that doubles your playing time—cuts your tape costs in half! Write today for technical literature.

AMPLIFIER CORP. OF AMERICA

398-10 Broadway, New York 13, N. Y.
ATTENTION; LUMBERMEN, PROSPECTORS, MINERS, PLUMBERS,
OIL COMPANIES, etc.

Below is a description of one of the finest metal detecting Mine Detectors ever built.

Operates in the manner of aural and visual method.

If you are looking for metal buried in logs, pipes in the ground, ore bearing rocks, under-ground cables, metallic fragments in scrap materials, metallic money buried or hidden in undetermined places this Mine Detector will probably surpass anything that was ever built. The United States Forestry Service has recommended procedure for using this detector to find concealed metal in tree logs and other timber products. Our government is reported to have paid several times the amount of our prices. They originally were sold by War Assets to jobbers for $166.00

Our Equipment Is Sold As Used

★ Unit consists of a balance-inductance bridge, a two tube amplifier and a 1000 cycle oscillator. The presence of metal disturbs the bridge balance resulting in a volume change of the 1000 cycle tone. Tubes used are low battery drain types such as 1G6 and 1M5. The circuit may be modified for control of warning signals, stopping of machinery, etc., when metal is detected.

★ Operates from two flashlight batteries and 103 v (B). However, a power supply operating for 100 v may be used.

★ This unit is brand new and comes complete with spare tubes, spare resonator and instruction manual—in wooden chest 81/4 inches x 281/4 inches x 16 inches. Weight in operation is 15 pounds. Packed in original overseas container.

★ We do not know exactly what the deepest possible penetration would amount to when this detector is used but we have had customers who have bought the detectors with the expectation that the detector would locate metallic objects buried several feet under the ground or under water and we have absolutely no complaints whatsoever regarding the detector not living up to the customers' expectations.

★ We can not overemphasize our belief that if an Army surplus mine detector could solve your problems in detecting metal that this detector should fill the bill.

NOTE: Batteries are not furnished, we can supply for $4.50 extra.

★ Below is a description of one of the finest metal detecting Mine Detectors ever built.

★ Operates in the manner of aural and visual method.

★ If you are looking for metal buried in logs, pipes in the ground, ore bearing rocks, under-ground cables, metallic fragments in scrap materials, metallic money buried or hidden in undetermined places this Mine Detector will probably surpass anything that was ever built. The United States Forestry Service has recommended procedure for using this detector to find concealed metal in tree logs and other timber products. Our government is reported to have paid several times the amount of our prices. They originally were sold by War Assets to jobbers for $166.00

Our Equipment Is Sold As Used

★ Unit consists of a balance-inductance bridge, a two tube amplifier and a 1000 cycle oscillator. The presence of metal disturbs the bridge balance resulting in a volume change of the 1000 cycle tone. Tubes used are low battery drain types such as 1G6 and 1M5. The circuit may be modified for control of warning signals, stopping of machinery, etc., when metal is detected.

★ Operates from two flashlight batteries and 103 v (B). However, a power supply operating for 100 v may be used.

★ This unit is brand new and comes complete with spare tubes, spare resonator and instruction manual—in wooden chest 81/4 inches x 281/4 inches x 16 inches. Weight in operation is 15 pounds. Packed in original overseas container.

★ We do not know exactly what the deepest possible penetration would amount to when this detector is used but we have had customers who have bought the detectors with the expectation that the detector would locate metallic objects buried several feet under the ground or under water and we have absolutely no complaints whatsoever regarding the detector not living up to the customers' expectations.

★ We can not overemphasize our belief that if an Army surplus mine detector could solve your problems in detecting metal that this detector should fill the bill.

NOTE: Batteries are not furnished, we can supply for $4.50 extra.
PRECISION TEST EQUIPMENT
(Government Surplus Release)

Low Voltage
CIRCUIT
TESTER
Model 1-42

★ Here is an instrument that any mechanic that works on automobiles, boats, or airplanes would be proud to own and we offer it at a fraction of its original cost.

★ The low voltage circuit tester is a self-contained trouble-shooting device for making a complete and rapid check of the generator—battery circuit, including any current and voltage regulators which may be used. Battery voltage, regulator and cut-out settings, and generator performance can all be easily determined.

★ This tester is enclosed in a gray heavy-gauge metal box with a strong hinged top that, when opened, is supported by a slide rod and when closed, is latched by clamps. There is a carrying strap attached to the box.

★ This instrument was manufactured for the Quartermaster's Corps, United States Government Ordnance Department under the most rigid specifications. It is comparable in beauty and dependability to instruments made today that sell for many many many dollars than our price. Electric Heat Control Company, Cleveland, Ohio, or the Heyer Products Company, Inc., Belleville, New Jersey manufactured these for the Army. Although the unit you receive may be made by either of these companies, it will be practically identical to the unit made by the other company and all are made under Heyer Products Company's design and according to Government specifications.

★ This low voltage circuit tester is 11 3/16" wide x 9 9/16" deep x 7 1/2" high and can be used on either a 6 volt or 12 volt system. There is a metal chart attached to the lid of each unit which is easily readable while using the instrument. This chart shows settings of all controls and gives operation instructions to be used in conjunction with the operating manual which is included with the tester. One can quickly determine and correct trouble with this instrument. There are two batteryleads with drive-in connectors (with spikes—lead coated) 8" long; ammeter lead (3-wire) complete with calibrated shunt, 6" long; voltmeter leads with alligator clip connectors and rubber insulators 8" long, and field rheostat leads with alligator type connectors and rubber insulators 5" long. The direct reading meter scale 4" in diameter with color-coded scales, along with the push-button switch, voltage selector (3-circuit toggle switch), meter polarity switch, utility switch, volt-ammeter scale selector switch, field rheostat, regulator test selector switch, multisection lead resistor, is used to control all operations and functions of this instrument. The master meter reads 0-60 volts and 0-60 amperes. One switch box indicator has following ranges: 0-9 volts and amperes, scale deviation—0-9 range in 1/10th of a volt, 0-18 in 2/10th's of a volt, 0-60 in 1 volt and ampere division, 0-9 in .05th of a volt and ampere.

★ They are brand new. Each weighs approximately 14 pounds. The price that we quote is only made possible because of the fact that they are Government surplus and this company bought them at a "steal". Remember, this is truly the finest of instruments and we cannot over-emphasize that we believe it is the best bargain ever offered.

PRICE $2975
TERMS: Cash with Order

ESSE
130 W. New York St.
Indianapolis 4, Ind.

JANUARY, 1949

TINY METEORS HELP RADIO

Millions of tiny meteors entering the earth's atmosphere may be responsible for our ability to receive radio broadcasts from long distances during the night, states Dr. A. G. McNish of the National Bureau of Standards.

Radio waves, which travel in straight lines, must be reflected back to the earth if they are to be heard at any great distance. Tiny electrified particles in the ionosphere bounce the short waves back to earth.

The ions that compose this reflecting layer are produced mainly by the action of the ultra-violet in sunlight which splits electrons off the atoms and molecules high up in the rarefied air. Some of the electrified particles may also be produced by impact of tiny corpuscles shot off from the sun, others by cosmic rays and by meteors.

The lower portion of the ionosphere is rich in free electrons during the day, due to the action of Dr. McNish pointed out. Directly after sunset most of the electrons are gone because they recombine with molecules.

"Yet—and here lies the mystery—a sufficient number of electrons persist at this lower height all through the night to reflect radio waves," Dr. McNish said.

"Judging from the rate of electron-decay just after sunset, one would not expect to find any significant number beyond midnight," he added.

Meteors may be the agency responsible for reflecting the radio waves at night. Astronomers estimate that more than a thousand billion of these particles, smaller than grains of sand, enter the earth's atmosphere during a 24-hour period. Traveling at speeds up to 200,000 miles per hour, they would smash violently into atoms and molecules of the upper air. These meteors may scatter electrons from these particles to which they belong and thus maintain the radio roof.

R. F. MASS SPECTROMETER

A new method of tracing chemical elements in certain parts of the body has been developed.

During radar research it was found that water vapor and oxygen absorbed ultra-high-frequency radio energy; their presence in air put an upper limit on the frequencies which could be used. Further research at M.I.T. and Columbia University showed that certain other gases and solid elements absorbed waves of particular frequencies.

The new spectroscope transmits ultra-high-frequency waves of frequencies in the bands which are absorbed by various gases. Specimens of the skin, hair, or nails of animals which have been fed small quantities of the selected isotopes are placed in the path of the r.f. energy. A detection device records how much of the transmitted energy is received. The difference is the amount absorbed by the isotopes. From this information, the quantity of the given isotope in the specimen can be calculated.

RADIO-ELECTRONICS FOR
A CHALLENGE—Order a model 247. Disregard the unbelievably low price and compare it on the basis of appearance, quality and performance to any other Tube Tester (ANY MAKE, ANY PRICE). If you are not completely satisfied with the model 247 after a 15 day trial, return it to us for full refund—no explanation necessary.

The model 247 is not surplus nor is it a hatched over pre-war model. It is newly designed and incorporates new advances in Tube Tester design. Read the description below and order one today!

The New Model 247 TUBE TESTER

Checks octals, locants, bantam Jr. peanuts, television miniatures, magic eye, hearing aids, thyratrons, the new type H.F. miniatures etc.

Features:
- A newly designed element selector switch reduces the possibility of oscilloscope to an absolute minimum.
- When checking Diode, Triode and 7Dode sections of multi-purpose tubes, sections can be tested individually. A special isolating circuit allows each section to be tested as if it were in a separate envelope.
- The Model 247 provides a highly sensitive method of checking for shorts and leakages up to 5 Megohms between any and all of the terminals.
- One of the most important improvements, we believe, is the fact that the 4 position fast-action map switches are all numbered in exact accordance with the standard R.M.A. numbering system. Thus, if the element terminating in pin No. 7 of a tube is under test, button No. 7 is used for that test.

Model 247 comes complete with new speed-read chart. Comes housed in handsome, hand-rubbed oak cabinet slanted for bench use. A slip-on portable binged cover is included for outside use.

ONLY $29.90 NET

The Model 38

A COMBINATION SIGNAL GENERATOR and SIGNAL TRACER

SIGNAL GENERATOR SPECIFICATIONS:
- Frequency range: 150 Kilocycles to 50 Megacycles.
- The R.F. Signal Frequency is kept completely constant at all output levels.
- Modulation is accomplished by grid-blocking action which is equally effective for alignment of amplitude and frequency modulation as well as for television receivers.
- R.F. obtainable separately or modulated by the Audio Frequency.

SIGNAL TRACER SPECIFICATIONS:
- Uses the new Silvania IN34 Germanium crystal Diode which combined with a resistance-capacity network provides a frequency range of 300 cycles to 50 Megacycles.

The Model 38 comes complete with all test leads and operating instructions. ONLY $28.85 NET

THE NEW MODEL 670 SUPER METER

SUPER METER. A combination VOLT- OHM - MILLIAMMETER plus CAPACITY REACTANCE, INDUCTANCE and DECIBLE MEASUREMENTS.

D.C. VOLT: 0 to 7.5/15/153/15/500/1500. A.C. VOLT: 0 to 15/30/153/15/500. D.C. CURRENT: 0 to 1.5 Amps. RESISTANCE: 0 to 500/1000 Ohms; 0 to 10 Megohms. CAPACITANCE: 150 to 2.75 MFD. 1 to 4 MIL. Quality guaranteed for electrical use! READY-ANCE: 700 to 27,000 Ohms; 15,000 Ohms to 5 Megohms.

REACTANCE: 1.75 to 700 Meters; 35 to 6,507 Meters.

DECIBLES: -10 to -1.8; -1.8 to -1.8.

$28.40

Available for Immediate Shipment From Stock—20% Deposit Required on All C.O.D. Orders

Moss Electronic Distributing Co.

DEPT. RC-1, 229 FULTON ST.
NEW YORK 7, N. Y.

JANUARY, 1949
BUILD THE NEW MODEL TV-67 ALL CHANNEL TELEVISION BOOSTER

FOR YOUR OWN USE OR FOR RESALE

With the aid of our TV-67 INDUCTOR TUNER illustrated below.

only $3.50

INDUCTOR TUNER comes complete with circuit and instructions for building the TV-67 TELEVISION BOOSTER. We will also include at no charge basic circuits utilizing the TV-67 INDUCTOR TUNER to build a Television and F.M. Signal Generator, a Television Interference Eliminator and front end for Television Receiver.

No need for switching when using the TV-67

INDUCTOR TUNER

Designed to Cover All Channels 2 to 13 Inclusive.

TV-67 Booster Features:
★ Permits use of Indoor Installations.
★ Reduces or eliminates interference including Amateur, F.M., Short Wave and Inter-Channel.
★ Permits TV reception in fringe areas.
★ Amplifies weak signals.
★ Provides brighter and clearer images.

Specifications:
★ The Model TV-67 employs 1-6AK5 as a high gain amplifier; 1-6C4 as an isolation amplifier and 1-6C4 as rectifier. Use of these highly efficient miniature tubes in conjunction with INDUCTOR TUNER results in maximum gain on all channels up to channel 13.
★ The Model TV-67 provides a 6 megacycle band-width reducing Video detail loss to absolute minimum.
★ The Model TV-67 is designed to operate with any antenna system indoor or outdoor—any impedance.
★ New INDUCTOR TUNER covers all television channels, 2 to 13, inclusive without switching.

INDUCTOR TUNER comes complete with circuit and instructions for building the TV-67 Television Booster. We will also include basic circuits utilizing the TV-67 INDUCTOR TUNER to build a Television and F.M. Signal Generator, a Television Interference Eliminator and front end for Television Receiver. only $3.50

GENERAL ELECTRONIC DISTRIBUTING CO.
98 PARK PLACE NEW YORK 7, N. Y. DEPT. RC-1

Try This One

PANEL LETTERING
Designations can easily be printed on radio panels with a rubber stamp outfit, obtainable at most stationery stores. The choice of stamp pad ink is important. Volger's opaque ink, available in several colors, and special stamp pad are excellent for marking dark panels; mistakes can be wiped off with a rag moistened with benzene.

HAROLD PALLATZ,
Brooklyn, N. Y.

CONDENSER GROUND LEADS
Many of the new molded tubular capacitors have no mark to indicate which lead is connected to the outer foil. To determine which is which, connect the capacitor across the input of an audio amplifier and place your finger on the capacitor at the end from which the grounded lead emerges. Then reverse the capacitor connections and repeat the test.

When your finger induces the least hum, the grounded lead is the one connected to the foil.

ALAN SMITH,
Shaftesbury, Vt.

USE FOR SOCKET PUNCHES
Many people do not know that screw-type tube-socket punches (such as the Greenlee and others) will also work with Preswood, Bakelite, and hard rubber.

NORRIS MCKAMEY,
Davenport, Iowa

CLEANING TOOL
Here is an interesting and useful tool which makes cleaning inaccessible parts, such as band switches and variable capacitors, much easier. Remove the head from an old vibrator-type electric shaver and attach a short fiber stick to the vibrating driver. The fiber is at right angles to the shaver so that when the shaver motor is turned on it vibrates lengthwise. A piece of cotton is glued to the other end of the fiber stick.

To use the gadget, dip the cotton in carbon tetrachloride, start the shaver, and apply the cotton to the dirty part. The vibration will make the cotton wipe off the dirt.

LLOYD O. WALTER,
Dillonvale, Ohio

DIAL POINTERS
To make a new pointer for a dial which has lost its original one, straighten a 12-inch length of solid tinned copper wire by fastening one end of it to a nail or screw on the bench and pulling on the other end with pliers until it breaks. Cut a piece the needed length, and fasten it to the dial shaft.

This is an excellent way to straighten wire for any purpose.

GEORGE L. GAVIN,
South Bend, Ind.

BC RECEPTION
Some surplus receivers, such as the BC-349, can be converted to broadcast-band reception with the aid of an a.c.-d.c. midget broadcast set to whose i.f. the surplus unit can be tuned.

RADIO-ELECTRONICS for
INSTRUCTION MANUALS
DC-36C SC-36C 36-36C 36-36A 225-36C 225-36A (28)...$2.25
D-36C 36-36C 36-36A 225-36C 225-36A (28)...$2.25
Mark II 1...$2.25 SC-36C SC-225C

VIBRATORS
TR-11601-2-30 $1.00
TR-12001-2-30 224-226 226 226...$1.00
TR-14001-2-30 224-226 226 226...$1.00
TR-14001-2-30 224-226 226 226...$1.00
Tachwithout, mech. and swtch $1.00
Tach without, mech. and swtch...$1.00

XMR TRING UNITS
BC-306A: Antenna Leading unit for BC-306A.

ROTARY BEAM CONTACTER
6 Heavy duty Contact Blocks. 1/2 wide. 3 3/8" long. Controls two receivers, and 22 is usable with 1100 or 2200 volt supply.

INTEGRATED ELECTRONIC
In the line of "DINAMOTORS" the circuit is designed to deliver peak power levels of about 1000 watts into a 5 ohm load for 15 cycles. This unit is designed for use in a BC-779-B receiver.

HEADSETS
Dynamite makes a new headset from the same materials as the D-36C. The new headset will be available in two styles: a high-quality, efficient one, with a B-10 task switch, and a low-cost, efficient one, with a B-10 task switch.

IN REGULAR ENDING
SCR 189 10-10 METER PORTABLE MOBILE RIG
SCR 189 Portable transmitter-receiver, 27 to 283 mc, crystal-controlled. Same for all three bands. May be used for 1000 watt power supply PE-97 and 600 watt power supply PE-98. All band selectivity is adjustable. 60 volts, 300 watts. $20.00

GREAT TUBE VALUES

CARBON PILE VOLTAGE REGULATORS

PHONE DIGBY 9-4124

AT LAST!! A LOW COST POWER UNIT FOR SERVICE WORK

“A” ELIMINATOR KIT

Only $19.50 including pictorial and schematic diagrams

For the first time, we are offering a well-engineered six volt direct current power unit for auto-radio and similar service work in kit form!!

This unit was formerly in the high-priced range. Now, we have placed all the essential components necessary for construction in kit form, and are offering them to you at this low, low price.

These kits fulfill the long-standing need of every serviceman and technician. They are designed to operate from a 115 VAC. 50/60 cycle source, and deliver 6 V.D.C. well-differented, from three to eight amperes, with a peak rating of ten amperes. The A.C. ripple percentage is held to remarkably low values.

This unit charges a standard auto battery in one day!!

- Do away with bulky batteries!
- Do away with corroding fumes!
- Simplify your service operation!

Order this fine kit for your bench today!!

Attention dealers! Write for quantity discounts

OPAD-GREEN COMPANY
71 Warren St. Phone: BEekman 3-7385 New York 7, N.Y.

JANUARY, 1949

DISCONNECT the secondary of the last i.f. transformer from the remainder of the broadcast-set circuit and attach leads of convenient length. Connect these leads to the antenna and ground posts of the surplus receiver. Now tune the surplus receiver to the i.f. of the midget, and tune the midget for whichever station is desired.

This is a particularly valuable idea when the surplus receiver has a good audio end. The broadcast-band receiver, from a 274-N, for example, was used to feed the input of a BC-779-B in one setup.

CURTIS M. EGGERS, Las Vegas, Nev.

WIRE STRIPPER
A pair of pocket fingernail clippers can be used as a wire stripper. Clamp the shears on the jaw to hold one end of the wire. Then, slide the other end of the wire through the jaws of the shears. This will allow the shears to be used as a small screwdriver.

CICIL HARRISON, Spencer, Okla.
INSTRUCTIONAL RECEIVER

Would like to have a diagram of a one-tube radio to which a second (audio) stage can be added at some future time. The set is to be used for instructing students in the elements of radio.—G.E.J., Bedford Hills, N.Y.

A. The set you requested is shown in the diagram. The r.f. tube is the 1S5. When the 1S5 circuit is constructed, use the headphones in the position shown by the dotted lines in the diagram. When ready to build the 1S4 amplifier, connect the 1S4 grid in place of the phones, and use the phones at the output of the 1S4.

The receiver will have fairly low gain. To increase the gain, the 1S5 is made regenerative. Over a standard broadcast loop, antenna wind 10 to 15 turns of No. 28 wire. You will have the correct number of turns when both volume and regeneration are easily controlled by C2.

If B is 90 volts, you may replace the headphones with a suitable output transformer and PM speaker.

CONVERTER FOR BC-312

Please print a diagram for a broadcast-band converter to be operated with a BC-312 surplus receiver.—E.W.W., Jefferson, Ohio.

A. A two-tube converter is shown in the diagram. The two filaments should be connected in series to the 12-volt winding of the transformer in the BC-312. B-voltage and a.v.c. can be obtained from the receiver as well.

The tuning range of the converter is about 550-1500 kc. If you have a local station at 1500 kc, you will be unable to receive it unless you set the i.f. coil to about 1500 kc, connect a signal generator set to 1560 kc to the 6L7 grid cap, and tune the transformer for maximum receiver output.

To use the converter, connect its output to the antenna post of the BC-312, tune the receiver to 1500 (or 1600) kc, and tune in your station with the converter.

Questions Box inquiries are answered by mail. Those of general interest are printed on this page. A fee of $1.00 is charged for questions requiring no research or schematics. Write for estimates on questions requiring research or schematics. Be sure to give full specifications and details. Due to nominal fees charged for this work, it must be handled as a part-time proposition. Therefore rapid service is impossible. Six to eight weeks is required to draw up answers involving large drawings or research.

PHONO AMPLIFIER

Please design a phonograph amplifier using a pair of 35Z4's as a voltage doubler, a 35L6 as output tube, and a suitable 12-volt tube as voltage amplifier. Provide a microphone input, too, please.—L.I.M., Milwaukee, Wis.

A. The amplifier you asked for is shown in the diagram. If you use a microphone, you may not get as much volume as you want unless a high-output crystal is used. In any case, the output will be higher from a crystal phonograph pickup.

BAND-SWITCHING RECEIVER

I am building a short-wave set with band switching. Please give me specifications for coils for 6, 10, 20, and 75 meters.—B.R.S., Vine Grove, Ky.

A. The front end of a typical receiver is shown in the diagram and coil data is given in the table. To get perfect tracking and the desired coverage it may be necessary to vary the coils slightly.

The coil values have been calculated for an i.f. of 1500 kc.

Questions Box inquiries are answered by mail. Those of general interest are printed on this page. A fee of $1.00 is charged for questions requiring no research or schematics. Write for estimates on questions requiring research or schematics. Be sure to give full specifications and details. Due to nominal fees charged for this work, it must be handled as a part-time proposition. Therefore rapid service is impossible. Six to eight weeks is required to draw up answers involving large drawings or research.

PHONO AMPLIFIER

Please design a phonograph amplifier using a pair of 35Z4's as a voltage doubler, a 35L6 as output tube, and a suitable 12-volt tube as voltage amplifier. Provide a microphone input, too, please.—L.I.M., Milwaukee, Wis.

A. The amplifier you asked for is shown in the diagram. If you use a microphone, you may not get as much volume as you want unless a high-output crystal is used. In any case, the output will be higher from a crystal phonograph pickup.

BAND-SWITCHING RECEIVER

I am building a short-wave set with band switching. Please give me specifications for coils for 6, 10, 20, and 75 meters.—B.R.S., Vine Grove, Ky.

A. The front end of a typical receiver is shown in the diagram and coil data is given in the table. To get perfect tracking and the desired coverage it may be necessary to vary the coils slightly.

The coil values have been calculated for an i.f. of 1500 kc.

Questions Box inquiries are answered by mail. Those of general interest are printed on this page. A fee of $1.00 is charged for questions requiring no research or schematics. Write for estimates on questions requiring research or schematics. Be sure to give full specifications and details. Due to nominal fees charged for this work, it must be handled as a part-time proposition. Therefore rapid service is impossible. Six to eight weeks is required to draw up answers involving large drawings or research.

PHONO AMPLIFIER

Please design a phonograph amplifier using a pair of 35Z4's as a voltage doubler, a 35L6 as output tube, and a suitable 12-volt tube as voltage amplifier. Provide a microphone input, too, please.—L.I.M., Milwaukee, Wis.

A. The amplifier you asked for is shown in the diagram. If you use a microphone, you may not get as much volume as you want unless a high-output crystal is used. In any case, the output will be higher from a crystal phonograph pickup.
Dr. Willard H. Bennett has been designated head of the Physical Electronics Section of the Atomic and Molecular Physics Division, National Bureau of Standards, where he will be actively engaged in basic research on cathode emission processes and the physical properties of negative atomic ions. Dr. Bennett is responsible for the recently developed radio-frequency mass spectrometer tube and assisted in the early development of a gas-filled, cold-cathode rectifier. He has also done considerable research on high-voltage generators and tubes and numerous other electronic devices.

Ricardo Muniz of Rutherford, N. J., well known to readers of Gernsback publications as the author of articles on technical subjects, has been appointed to the post of General Manager of the Television Receiver Division of Allen B. Dumont Laboratories, Inc., of Passaic and Clifton, N. J., according to Leonard F. Cramer, Vice President of the company.

George D. O'Neill, assistant to the manager of research, Sylvania Electric Products, Inc., Flushing, N. Y., has been elected Fellow by the Board of Directors of the Institute of Radio Engineers. He will receive a Fellowship Award for his work in electron-tube theory and design during the Institute's National Convention in March, 1949.

Among his engineering contributions widely used in radio and electronic developments are: twin-element tubes; indirectly heated power output tubes; indirectly heated, low-voltage-drop rectifiers; and microwave developments restricted for security reasons. During his career as a radio engineer, he has been granted twenty patents and now has six applications pending.

Milton L. Kuder, prominent in Navy radar and guided-missile development projects, has been appointed to the staff of the National Bureau of Standards, Mr. Kuder will be concerned with research and engineering in the Bureau's Ordnance Research Section.

Dr. Allen V. Austin has been named Chief of the Electronics Division, National Bureau of Standards, Washington, D. C., to succeed the late Harry Diamond.

JANUARY, 1949

The Capacitors that Lick MOISTURE VIBRATION HEAT

...yet cost you not one cent extra!

SPRAGUE PHENOLIC MOLDED TUBULAR CAPACITORS

Types **TM** and **MB**

(600 Volts) (1600 Volts)

Take a look at Sprague Type TM and MB Phenolic Molded Tubular Capacitors! See how their sturdy phenolic jackets offer complete protection against moisture, vibration and heat—the three factors that cause 9 out of 10 failures in ordinary wax tubulars. Then try Sprague TM's and MB's on your toughest jobs—and you'll quickly understand why these little units represent the greatest capacitor development in modern radio servicing history!

Sprague TM's and MB's are a "must" for auto radio, aircraft radio and television applications. And because they cost exactly the same as ordinary wax cardboard tubulars, wise servicemen use them exclusively for all service replacements. There are no service complaints, no dissatisfied customers when you use Sprague TM's and MB's.

Get the genuine article! Be sure and ask for Sprague TM's and MB's by name!

SPRAGUE PRODUCTS COMPANY
North Adams • Massachusetts
JOBING DISTRIBUTING ORGANIZATION FOR PRODUCTS OF THE SPRAGUE ELECTRIC COMPANY
Charles Freshman, Chicago-born pioneer radio manufacturer, died October 2 at his Pasadena, Calif., home. The founder of the Charles Freshman Company, a radio manufacturing company in New York in the early 1920's, he introduced the Freshman Masterpiece, the first low-cost, mass-produced radio for home use. Later he set up plants in Chicago and other cities. In 1928 he sold out his interest in the firm and was Eastern sales director for the Belmont Radio Corporation in Chicago before his retirement.

Dr. Robert D. Huntoon has been appointed Chief of the Atomic and Molecular Physics Division, National Bureau of Standards, Washington, D. C. He will also serve as consultant to several specialized laboratories of the Bureau's Electronics Division.

Arnold Everett Bowen, research engineer of the Bell Telephone Laboratories, died at the age of 47 in Stroudsburg, Pa., after a brief illness. Mr. Bowen helped to develop the system for transmitting microwaves through hollow guides, which made possible new forms of radar used in World War II. During the war, he served in Washington as officer-in-charge of the Air Forces' Airborne Radar Equipment Board with the rank of lieutenant colonel.

Dr. Newburn Smith has been appointed Chief of the Central Radio Propagation Laboratory of the National Bureau of Standards, Washington, D. C., where he will plan and direct basic theoretical and experimental radio wave propagation research, head the operation of the world-wide network of radio propagation observatories, and direct development of radio measurement standards at frequencies from 10 kilocycles per second to 300,000 megacycles per second.

G. Lester Jones has been appointed Chief Engineer of Lear, Incorporated, of Grand Rapids, Mich., according to an announcement made by Mr. Richard M. Mock, President of Lear, Inc.

During the past year, Mr. Jones served as assistant to the President of Indian Motorcycle, Springfield, Mass., where he supervised subcontracting and tooling of two new motorcycles. Mr. Jones was instrumental in setting up their new plant in East Springfield.
CIRCUIT-DESIGN AID

Patent No. 2,446,993
Joseph Alter, Long Branch, N. J.

This device is intended to save time in designing radio and television amplifiers. It aids the designer in selecting optimum values for the components. All the components that might be used in a standard voltage- or power-amplifier circuit (the drawing shows an audio voltage-amplifier) are mounted on a panel, with several different types of tube sockets wired in parallel. All components are made variable to eliminate the necessity for soldering in a number of different capacitors or resistors. Indicating lights are placed above the controls to indicate which ones are in use.

SUPersonic INSPECTION

Patent No. 2,448,318
Vincent A. Shry, Pittsburgh, Pa. (Assigned to Sperry Products, Inc.)

The thickness of an object, or the distance from its surface to a flaw beneath it, is measured by the time needed for supersonic waves to travel through it. As in radar, the time between a transmitted pulse and its reflection (from the flaw or the other surface of the body) is observed on a cathode-ray tube.

AC POWER SUPPLY AND SPEAKER

Completely wired power supply and speakers, with tone control, 1 V and on off switch. Frequency: 180 cycles. 110 and 120 V. Price: Complete $14.95

BC 454 COMMAND RECEIVER

3 to 6 Megacycles. Covers 60 and 80 meter amateur band. Price, complete with schematics—NEW—$6.95

TUNING CRANK

For Comm. Receivers—65¢ ea.

SELSYN TRANSMITTER & INDICATOR

Ideal for Radio-Beam position Indicator for Equality Modulation, or Commercial use. Complete with 7 1/2-in. Indicator, 12 Volt 60 cycle transformer, and wiring instructions. Price: NEW—$7.95

TRANSFORMERS

Primary 110 Volt 60 cycle 24 Volt Sec. 1 amp—$1.95

Primary 110 Volt 60 cycle 24 Volt Sec. 3 amp—$1.50

Primary 110 Volt 60 cycle 4:14 Volt Sec. 7¼ or 15 amp. $4.95

Primary 110 Volt 60 cycle 12 Volt Sec. 3 amp—$1.50

ADDRESS DEPT. RE

Prices are F.O.B., Lima, Ohio
25% DEPOSIT ON C.O.D. ORDERS

NEW PATENTS

BRAND NEW! SUPER-SENSITIVE TELEVISION SET!

JUST RECEIVED! THE NEW SPELLMAN F1.9 PROJECTION TV LENS

Dimensions: Length 7; Diameter 4½
F1.9 EF.5 in. (127.0 mm.): This lens incorporates in barrel a corrective lens for use with a 5744 projection tube. It is easily removable for use with flat type tubes. Lens can be utilised to project picture sizes from several inches to 7 x 9 feet.

Only $90 complete with mounting rings.

Machined slotted Mounting Ring available for hand focusing adjustment. Has 4 holes for easy mounting on plate. $8.00 extra.

SEND FOR FREE PROJECTION TELEVISION CATALOG

- Stand for Projection Television Sets
- Front and Rear Projection Television Screen
- Hi-Voltage RF Coils—15KV, 25KV
- Hi-Voltage Tube Meters—0 to 30KV

PIONEERS IN PROJECTRON TELEVISION

SPELLMAN TELEVISION CO., INC.
DEPT. B, 130 WEST 24TH STREET, NEW YORK 11, N. Y. • AL 5-3680

AC POWER SUPPLY AND SPEAKER

Completely wired power supply and speakers, with tone control, 1 V and on off switch. Frequency: 180 cycles. 110 and 120 V. Price: Complete $14.95

BC 454 COMMAND RECEIVER

3 to 6 Megacycles. Covers 60 and 80 meter amateur band. Price, complete with schematics—NEW—$6.95

TUNING CRANK

For Comm. Receivers—65¢ ea.

SELSYN TRANSMITTER & INDICATOR

Ideal for Radio-Beam position Indicator for Equality Modulation, or Commercial use. Complete with 7 1/2-in. Indicator, 12 Volt 60 cycle transformer, and wiring instructions. Price: NEW—$7.95

TRANSFORMERS

Primary 110 Volt 60 cycle 24 Volt Sec. 1 amp—$1.95

Primary 110 Volt 60 cycle 24 Volt Sec. 3 amp—$1.50

Primary 110 Volt 60 cycle 4:14 Volt Sec. 7¼ or 15 amp. $4.95

Primary 110 Volt 60 cycle 12 Volt Sec. 3 amp—$1.50

ADDRESS DEPT. RE

Prices are F.O.B., Lima, Ohio
25% DEPOSIT ON C.O.D. ORDERS

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO

FAIR RADIO SALES

132 SOUTH MAIN ST., LIMA, OHIO
RADIO TUBES
All Brand New
MONEY BACK GUARANTEE!
THIS LIST COMPRISIES OVER
100,000 TUBES
RUSH YOUR ORDERS IN

1A7, Sylvania .59
1H5, Kenrad .59
1LC6, Sylvania .69
1LD6, Sylvania .49
1LE5, Sylvania .79
1LN5, Sylvania .39
1N5, Sylvania .59
1R5, Unbranded .49
1S5, Tungsol .49
1T4, Unbranded .29
3Q5, R.C.A. .59
3S4, Unbranded .29
5Y3, R.C.A. .39
6B66, Philco 1.59
6C4, Nat. Union .22
6C8, Stand. Brand .69
6H8, Western Elec. .37
6SAl, Stand. Brand .46
6SK7, Stand. Brand .46
6SL7, Philco .49
6SQ7, General Elec. .39
6X5, Stand. Brand .49
12K8, R.C.A. .57
12S J7, Tungsol .49
12SR7, Kenrad .29
14A7, Sylvania .49
14B6, Sylvania .49
14Q7, Sylvania .49
14R7, Sylvania .49
2AS6, Stand Brand .79
2SL4, Sylvania .54
35L6, Sylvania .55
35W4, Tungsol .37
35Y4, Sylvania .59
35Z5, R.C.A. .39
50A5, Sylvania .69
50L6, R.C.A. .55
117L7, Philco .88
117Z3, Tungsol .69
117Z6, Sylvania .74
0Z4, Stand. Brand .59
0916, Philo 1.89
9001, Hytron .39
9002, Hytron .39
9003, Hytron .39
9004, Stand. Brand .59
K5SB, Hytron .29
27, Philco .36
37, R.C.A. .34
77, Nat. Union .39
78, Philco .49

Substitutes of other standard brands will be made if listed brands are out of stock.

BROOKS RADIO DIST. CORP.
80 Vesey St., Dept. A, New York 7, N. Y.

Parallel circuits are made to resonate at the radar frequency.

The variable resistor R is adjusted so that the total resistance between the L center-tap and ground is R/4 during periods of conduction. (It is the impedance of the parallel network LC at the radar frequency.) With this adjustment currents are attenuated to zero (theoretically).

During non-conducting periods the added resistance of L2C2 makes this condition. There is practically no current flowing from this network, therefore attenuation is almost zero.

Currents from both channels are mixed in a transformer circuit. The output transformers are spaced a quarter wavelength from the common line to prevent interaction.

H. F. GENERATOR
Patent No. 2,448,501
Howard J. Tyner, Coldwell, N. J. (Assigned to Ferris Laboratories)

Most technicians and designers have had experience with the mysterious behavior of high-frequency circuits. Dead spots may appear over portions of the dial due to transit time difficulties and h.f. losses. When these dead spots are eliminated by circuit changes, they occasionally reappear at other points on the dial. To make it difficult to design an oscillator amplifier and cover a wide band.

A switching arrangement is used in the h.f. oscillator shown here. A three-way switch is shown automatically as the tuning condenser is rotated. The switch is the feedback circuit to produce more efficient operation over each portion of the dial.

FREQUENCY MEASUREMENT
Patent No. 2,449,800

This circuit is effective over the audio range. During each cycle a condenser becomes charged and then discharges through a voltmeter which reads in proportion to the frequency.

The input tube is biased to this point during the half of each cycle. During the periods condenser C charges from the B-supply through one of the

6 tube superhet—3 tube intercom permits communication between radio-master and up to 4 sub-stations.

WHILE THEY LAST $29.95
With 1 sub-station and 50 feet of cable Extra sub-stations $3.95 each

MIDGET I. F. TRANSFORMERS
Original List $2.10
NOW 36c EACH

Matched Pair, 120-240 Volts, 400-500 Kc range

INPUT—A826
OUTPUT—A827

1 meg. VOLUME CONTROLS
85% DISCOUNT
Universal with switch

Better Hurry
THESE WON'T LAST AT THIS PRICE $29c

ORDER INSTRUCTIONS
Minimum order—$2.00. 25% deposit with order required for all C.O.D. shipments. Be sure to include full name—orders accepted will be refunded. Orders received without postage will be shipped express collect. All prices F.O.B. Detroit.
rectifiers. When the tube begins to conduct, C discharges through it and through the other rectifier. Charging and discharging pulses are filtered by R-C circuits. The meter is connected across A and B.

It is often more convenient to have the meter read in proportion to the logarithm of the frequency, rather than directly with frequency. The values shown provide a logarithmic relationship over a range of 800-10,000 cycles.

During positive output peaks (such as P in Fig. 2-a), the bias is reduced. Therefore, the grid goes positive and clips the positive peak of the signal (Fig. 2-c). During negative peaks (such as N), the negative bias is increased and there is no clipping. Therefore, only alternate positive peaks of incoming signal are lost. This is shown in Fig. 2-c.

As a result of clipping action, only alternate cycles are effective in driving the class-C amplifier. This increases output at the desired sub-harmonic.

STATIC ELIMINATOR
Patent No. 2,444,455
Emile Lebin, New York City and Ros B. Hoffman, E. Orange, N. J. (assigned to Federal Tel. and Radio Corp.)

This frequency subdivider is designed for efficiency and simplicity. While the following describes only the second subharmonic, others may be generated if desired.

The input circuit (Fig. 1) is tuned to an incoming signal of frequency f. The output is a high-Q circuit tuned to f/2. The second triode is a class-C amplifier biased to twice cutoff. When a signal is applied, subharmonic energy is available at circuit O. Due to flywheel action the voltage will be nearly sinusoidal (Fig. 2-a) although the plate current is composed of pulses (Fig. 2-b). Part of the output is fed back through condenser C to the first tube to control its grid bias.

FREQUENCY SUBDIVIDER
Patent No. 2,445,461
Vernon H. Vogel, Cedar Rapids, Iowa (assigned to Collins Radio Co.)

This frequency subdivider is designed for efficiency and simplicity. While the following describes only the second subharmonic, others may be generated if desired.

The input circuit (Fig. 1) is tuned to an incoming signal of frequency f. The output is a high-Q circuit tuned to f/2. The second triode is a class-C amplifier biased to twice cutoff. When a signal is applied, subharmonic energy is available at circuit O. Due to flywheel action the voltage will be nearly sinusoidal (Fig. 2-a) although the plate current is composed of pulses (Fig. 2-b). Part of the output is fed back through condenser C to the first tube to control its grid bias.

For GREATER Earnings... LEARN RADIO-ELECTRONICS

This fast-growing science of RADIO, TELEVISION, RADAR and ELECTRONICS, offers tremendous opportunities, and in no industry is RADIO-ELECTRONICS more important than in aviation. A skilled technician who knows the modern application of electronic devices, as used in the aircraft industry, is always in demand... not only in aviation, but in many other industries. Many large organizations call on Spartan regularly for graduates. Often, students are hired months before graduation.

Don't confuse the RADIO-ELECTRONICS course offered by SPARTAN with other courses, offered anywhere! As a graduate from this famous school you will know the application to industrial control devices; to the search for petroleum; and the important uses of radar, television and other electronic equipment.

SPARTAN offers two complete and thorough courses. You will work on the most modern and complete equipment. You will build equipment. You may join the SPARTAN "Ham" Club. Either course prepares you for Federal Communication Commission license tests—first class radio telephone, second class radio telegraph, or class "B" radio amateur.

SPARTAN
SCHOOL OF RADIO AND ELECTRONICS

For Greater Earnings... LEARN RADIO-ELECTRONICS

This fast-growing science of RADIO, TELEVISION, RADAR and ELECTRONICS, offers tremendous opportunities, and in no industry is RADIO-ELECTRONICS more important than in aviation. A skilled technician who knows the modern application of electronic devices, as used in the aircraft industry, is always in demand... not only in aviation, but in many other industries. Many large organizations call on Spartan regularly for graduates. Often, students are hired months before graduation.

Don't confuse the RADIO-ELECTRONICS course offered by SPARTAN with other courses, offered anywhere! As a graduate from this famous school you will know the application to industrial control devices; to the search for petroleum; and the important uses of radar, television and other electronic equipment.

SPARTAN offers two complete and thorough courses. You will work on the most modern and complete equipment. You will build equipment. You may join the SPARTAN "Ham" Club. Either course prepares you for Federal Communication Commission license tests—first class radio telephone, second class radio telegraph, or class "B" radio amateur.

For GREATER Earnings... LEARN RADIO-ELECTRONICS

This fast-growing science of RADIO, TELEVISION, RADAR and ELECTRONICS, offers tremendous opportunities, and in no industry is RADIO-ELECTRONICS more important than in aviation. A skilled technician who knows the modern application of electronic devices, as used in the aircraft industry, is always in demand... not only in aviation, but in many other industries. Many large organizations call on Spartan regularly for graduates. Often, students are hired months before graduation.

Don't confuse the RADIO-ELECTRONICS course offered by SPARTAN with other courses, offered anywhere! As a graduate from this famous school you will know the application to industrial control devices; to the search for petroleum; and the important uses of radar, television and other electronic equipment.

SPARTAN offers two complete and thorough courses. You will work on the most modern and complete equipment. You will build equipment. You may join the SPARTAN "Ham" Club. Either course prepares you for Federal Communication Commission license tests—first class radio telephone, second class radio telegraph, or class "B" radio amateur.

For GREATER Earnings... LEARN RADIO-ELECTRONICS

This fast-growing science of RADIO, TELEVISION, RADAR and ELECTRONICS, offers tremendous opportunities, and in no industry is RADIO-ELECTRONICS more important than in aviation. A skilled technician who knows the modern application of electronic devices, as used in the aircraft industry, is always in demand... not only in aviation, but in many other industries. Many large organizations call on Spartan regularly for graduates. Often, students are hired months before graduation.

Don't confuse the RADIO-ELECTRONICS course offered by SPARTAN with other courses, offered anywhere! As a graduate from this famous school you will know the application to industrial control devices; to the search for petroleum; and the important uses of radar, television and other electronic equipment.

SPARTAN offers two complete and thorough courses. You will work on the most modern and complete equipment. You will build equipment. You may join the SPARTAN "Ham" Club. Either course prepares you for Federal Communication Commission license tests—first class radio telephone, second class radio telegraph, or class "B" radio amateur.

For GREATER Earnings... LEARN RADIO-ELECTRONICS

This fast-growing science of RADIO, TELEVISION, RADAR and ELECTRONICS, offers tremendous opportunities, and in no industry is RADIO-ELECTRONICS more important than in aviation. A skilled technician who knows the modern application of electronic devices, as used in the aircraft industry, is always in demand... not only in aviation, but in many other industries. Many large organizations call on Spartan regularly for graduates. Often, students are hired months before graduation.

Don't confuse the RADIO-ELECTRONICS course offered by SPARTAN with other courses, offered anywhere! As a graduate from this famous school you will know the application to industrial control devices; to the search for petroleum; and the important uses of radar, television and other electronic equipment.

SPARTAN offers two complete and thorough courses. You will work on the most modern and complete equipment. You will build equipment. You may join the SPARTAN "Ham" Club. Either course prepares you for Federal Communication Commission license tests—first class radio telephone, second class radio telegraph, or class "B" radio amateur.

For GREATER Earnings... LEARN RADIO-ELECTRONICS

This fast-growing science of RADIO, TELEVISION, RADAR and ELECTRONICS, offers tremendous opportunities, and in no industry is RADIO-ELECTRONICS more important than in aviation. A skilled technician who knows the modern application of electronic devices, as used in the aircraft industry, is always in demand... not only in aviation, but in many other industries. Many large organizations call on Spartan regularly for graduates. Often, students are hired months before graduation.

Don't confuse the RADIO-ELECTRONICS course offered by SPARTAN with other courses, offered anywhere! As a graduate from this famous school you will know the application to industrial control devices; to the search for petroleum; and the important uses of radar, television and other electronic equipment.

SPARTAN offers two complete and thorough courses. You will work on the most modern and complete equipment. You will build equipment. You may join the SPARTAN "Ham" Club. Either course prepares you for Federal Communication Commission license tests—first class radio telephone, second class radio telegraph, or class "B" radio amateur.
NOVEL 12-WATT AMPLIFIER

Seldom do 12-watt audio amplifiers use transmitting-type output tubes as in this circuit taken from Radio and Hobbies (Australia). The tube line-up consists of a 6SJ7 voltage amplifier, 6SN7 paraphase inverter, 6SN7 push-pull driver, and push-pull, triode-connected 807's. This amplifier delivers up to 12 watts output with negligible distortion. Input terminals are provided for phonograph and radio tuner. All inputs are high-impedance.

Inverse feedback is developed between one side of the voice-coil winding and the cathode of the input section of the phase inverter. With feedback, about 1.5 volts of input are required for full output. Without it, only 0.15 volt is required. The signals on the grids of the 807's are balanced by varying the setting of the 20,000-ohm potentiometer in series with the plate load resistors of the driver stage. Feed an oscillator signal through the amplifier and compare the a.f. voltages on the 807 grids with a v.t.v.m. Adjust the potentiometer until the voltages are equal.

If a suitable capacitor C is inserted in the feedback circuit, the gain of the stages within the feedback loop will vary inversely with frequency. The amount of feedback is controlled by the series resistor R. Values of R and C, on the diagram, are selected to give bass boost below 60 cycles of 6 db per octave when one end of the loop is connected to an 8-ohm voice coil. Combinations of 4,700 ohms-0.1 μf and 2,200 ohms-0.2 μf are for 15- and 23-ohm voice coils, respectively.

The 6SJ7 stage is designed to have the same bass-response characteristics as the feedback network with C in the circuit. The gain at middle frequencies is 2.5 times or about 8 db. Close S3 and short out the 6,800-ohm resistor for full gain from this stage.

There are four positions on the PHONO-RADIO switch S1. Two of these are connected to the radio input terminals and two to the output of the 6SJ7. S1 and S2 are ganged so that the feedback capacitor C can be included in the feedback loop for added bass boost.

PHONO AMPLIFIER

When used with a high-level crystal pickup, this amplifier produces about 5 watts output. Inverse feedback is used from the output transformer secondary to the first cathode. If the amplifier squeals, reverse the secondary connections. Varying the 3,500-ohm feedback resistor may improve results, but if its value is too low, the circuit will motorboat.

The 6F6's are connected as triodes to reduce their plate resistance and provide better listening results. All cathode resistors are unby-passed to add additional stability.

EDGAR SCHROENIKE, Winona, Minn.

WIRELESS CODE PRACTICE

A battery and a normally closed s.p.d.t. telephone-type relay hooked up as shown make a good high-pitched buzzer for code practice. If a nearby radio is turned on and tuned to a clear spot on the band, the sound of the buzzer is inaudible. The relay can be heard clearly through the speaker.

The tone of the buzzer usually can be adjusted over a small range by varying the spring tension and battery voltage.

This makes a simple and satisfactory arrangement for the beginner who is learning code.

ROBERT F. CUTA, La Crosse, Wis.

(The buzzer may create interference to nearby radios, so be careful to avoid offending the neighbors.—Editor)

TWO-TUBE RECEIVER

The unusual feature of this 2-tube regenerative receiver, which has an amazing amount of sensitivity and output volume, is in the r.f. tuning section. Instead of the usual high-impedance an-

Radio-Electronic Circuits

...
Noise-factor measurements are made by connecting a properly loaded resistance to the diode, and measuring the noise output by an output meter. After noting the reading, the diode is turned on and its filament current increased until receiver output is twice its original value. The diode anode current is used as the receiver noise factor after it has been corrected for transit time and spurious receiver response.

The 100 mA maximum anode current makes noise factor measurements possible up to 20 dB. The transit-time reduction is 3 dB at 3000 mc.

The co-axial diode consists of an outer conductor (the anode) and a concentric inner conductor. The ratio of the diameters of the conductors produces a 50-ohm characteristic impedance, making the diode suitable for direct connection to the antenna terminals of many high-frequency receivers. The 3.2- and 2.5-amp. filament current enters the diode through a lead inside the inner conductor and returns through the inner conductor itself. Further information on this tube is to be found in the March 1947 issue of RCA Review.
MULTIMETER SHOWS ONLY DESIRED SCALE

Ever since the invention of the multimeter, radioists have complained that a single meter face with enough scales to cover all the ranges is confusing and time-wasting.

The Simpson Electric Company has put on the market a multimeter designed to solve this problem. Known as the Roto-Ranger Model 221, it has 18 different ranges, measuring voltage, current, and resistance. Instead of having all the scales printed on its face, there is a mask over the entire meter face. As the photograph shows, a slit in the mask is just large enough to reveal a single calibrated scale.

The cutaway view of the rear of the panel indicates how the scales are changed. A drum behind the meter has 18 slotted recesses, each containing a single volt, ohm, or current scale. A molded wheel on the end of the drum is scalloped, with each scallop recessed to fit a 3/16-inch ball bearing. The ball bearings comprise the indexing mechanism, which holds the drum securely in any of its 18 positions.

Movement of the drum is controlled entirely by the range-selector knob. A pair of beveled gears transmits motion of the selector-switch shaft to a shaft which moves the drum.

In addition to the single-scale meter feature, the Roto-Ranger incorporates an unusual range switch. Unlike most rotary switches, it is entirely enclosed.

Mechanism which keeps rotating dial and switch in step. Note encased multiplier resistors.

PROBLEMS OF ELECTRONIC BAKING

Recent experiments in England have drawn attention to the problems of baking bread electronically. The tests were conducted by the British General Electric Company, Ltd., using standard high-frequency dielectric heaters.

One of the most interesting factors in electronic baking is illustrated by the photograph of two loaves of bread. The loaf on the right, baked by ordinary radiant heat common in today's bakeries, looks normal in every way. The loaf on the left, however, has no crust.

It was baked by high-frequency dielectric heating, one characteristic of which is that the heat penetrates into the very center of the heated object even before it acts on the outer surfaces. Because all parts of the bread are heated at about the same time and to about the same degree, no crust can develop. But most people seem to prefer bread with
a crust except when it is used for sandwich making or other special purpose.

Another difficulty is placing the bread and electrodes in their correct relative positions. For uniform heating, the air gap between the electrodes and the heated material must be uniform at all points, and it should be very small. Since bread batter is not rigid, it must be held in a container. Baking tins cannot, of course, be used, since they shield the bread electrically. Wood and cardboard containers were used in the recent experiments with some success, but

"Oven" is designed to keep load constant.

a fully satisfactory solution has not yet been found.

Bread creates additional difficulties because it rises during baking. Any uneven bulges cause some parts of the loaf to come closer to the electrodes than others, with the resultant danger of local burning. The photograph of a loaf of bread being placed between the electrodes shows how this problem was at least partially solved. The sides of the container are made rigid so that the loaf rises only in a vertical direction. Then the electrodes are placed at the sides of the container.

Heating time is extremely important, much more so than with ordinary radiant heating. Heat continues to be generated in the bread all the time it is between the electrodes and undesirably high temperatures may develop if it is left in too long. Since the heat initially centers within the loaf, the outside of the loaf does not necessarily indicate how well the bread is baked. If the process is used commercially, automatic timing devices will be necessary to prevent drying, toasting, or even total burning of the loaf. It is interesting to consider that if the bread were allowed to toast, it would actually develop a crust on the inside!

The practical results of high-frequency baking are fairly encouraging. Baking time for an individual loaf is less than 5 minutes. However, because the heating kills the yeast almost instantly, very little rising takes place during baking and a long, "rising time must be allowed the raw dough before baking so the yeast can work.

Although the results are interesting, General Electric states, baking does not appear to be an immediate commercial application for dielectric heaters, especially when its high cost is considered.
LEOTONE SPEAKER REPAIRS SINCE 1927

FACTORY SPEAKER REPAIRS

RM-4 RECORDING MOTOR. Rock scale by popular demand again this year. Motor has been revised and price. Great deal at 115V, 60 cycles. Silent operation. Frequency 3.5 to 3.7 kHz. $12.50.

HIGH FIDELITY CRYSTAL MICROPHONES. 20 selections at top of the Cliff Made for a world famous recording studio. Crystal diaphragm condenser microphone. Designed for professional use. $49.95.

SHOCK MOUNTS—Moulded rubber in sturdy metal frame at money-saving prices. 3" mic. in series 37/32" deep 0.05 to 0.10 for $1.00. 7" mic. in series 1/8" deep 0.05 to 0.10 for $2.00. 10" mic. in series 1/8" deep 0.05 to 0.10 for $4.00 (Min. order 50). 220V. $1.00.

INSULATED STAPLES. Handy size 87 x 1". $0.25 per 100. 1000 for $1.00.

CO-AXIAL FITTING #359 (6-1/2). Low lost payoff. Priced for quick turnover. $4 for 1000.

AREA COILS. Nos. 399, 490, 491 & 492. Sirens, motors, etc. 60 cycles. F. G. A. 1930. ML. $0.15 each. 100 for $10.00.

FREE SUPPLEMENT CHECK EXTRAS DESIRED P/P. SPEAKERS REPAIRS & ACCESSORIES.

HEARING AID & MINIATURE PARTS

Gears, shafts & pulleys. $1.45.

PE-157 POWER SUPPLY. A cold motor of relays, switches, autotransformers, rectifiers, etc., and complete audio unit. F. G. A. 1930. ML. $1.65.

JUMBO RADIO PARTS ASSORTMENT

A selection of over 500 parts that will delight any 100 lbs. of useful items at no bargain price! Plus $1.00 for each additional pound. Priced to sell is this complete assortment of F. G. A. 1930. ML. $0.75.

POWER RHEOSTATS. The rheostat of a thousand resistances. Almost all are done up in home or home kits, controlling small motors, electric trains, etc. Priced to sell is this complete assortment of F. G. A. 1930. ML. $0.15 each.

TUBES AT LOW PRICES!

Stock up for RPS off line. Matadors with each quartet. GUARANTEED PERFECT QUALITY.

$2.00, $2.25, $2.75, $4.00, $5.00, $6.00, $7.00, $8.00, $10.00, $15.00, $20.00.

$4.17, $4.17, $7.00, $11.00, $16.00, $24.00, $45.00, $60.00, $80.00.

$60.00, $60.00, $100.00, $125.00, $150.00, $200.00, $250.00, $300.00, $500.00.

Most-needed inventions of 1949, according to the National Inventors Council, include a number of improvements and ideas in the radio-electronic field. First among these is simplified frequency control of radio equipment, either with synthetic quartz crystals or magnetostriction units or some other means, and new construction methods for ultra-lightweight radio equipment. Other needed inventions are satisfactory miniature batteries and a high-speed electronic telegraph printer. A more efficient collapsible field antenna was also listed.

RADIO-ELECTRONICS for
JANUARY, 1949

THE HOUSE OF TUBES

8748 Linwood Ave., Detroit 6, Mich.

Phone: Tyler 6-7129

World's widest and fastest service. List your needs with us on all ham gear. All tubes are standard brands and guaranteed. Merchandise in original containers. Minimum order $5.00. 25% deposit required on all C.O.D. orders. F.O.B. Detroit. Request our prices on receiving tubes.

THE HOUSE OF TUBES

8748 Linwood Ave., Detroit 6, Mich.

Phone: Tyler 6-7129

E-Z to Save as you Build

With this comprehensive book of plans you can build E-Z to Save Save as you Build plans for your car and double your income. Write, Grand Federal, Argentine Branch Box 257, Kansas City 1, Kansas.

CRISTAL SET—TELEPHONE COMPOSITION DIAGRAMS AND INSTRUCTIONS 25c. Includes attractive offer, literature, your membership in "UTE" and "CRISTAL SET CLUB." Box 468, Torrance, Calif.

RADIOMEN, SERVICEMEN, BEGINNERS—MAKE more money, save more money, better your health; show how. Information fee. Marit Products, 214-312 122nd Avenue, Springfield Gardens, L. New York.

"RADIO BUILDER" FOR CRYSTAL 1-TUBE EXPERIENCES 3 Issues 25c. Laboratories, 3909 Santa Fe Drive, San Diego, California.

PHONOGRAPH RECORDS Inc. CATALOGUE. PARAMOUNT, 2-312 East Main, Wilkes-Barre, Paasas.

OCCUPATION AD-LETS

Advertisements in this section cost $1.50 a word for each insertion. Insertion address and business must be on letterhead. No charge for second insertion if desired. All classified advertisements unless placed by an accredited advertising agency will carry a disclaimer word for not less than ten words. All ads must contain 25 words. Ten percent discount for six-months' use. Twelve issues (write) or misleading advertisements not accepted. Advertisements for positions open, 12 issues, must reach us not later than December 31, 1948.

Radio-Engineers: 25 W. Broadus, New York, N. Y., Thursday, etc.

SELECTED GROUP OF MEN GRADUATES OF WELL-KNOWN TRADE SCHOOL. Accepted at radio factory. Will travel anywhere. Qualified in radio servicing, installation, etc. Instrumental in setting up first Radio Civic Center, Pleasant Drift, Eastern Technical School, 880 Purchase Street, New Bedford, Mass.

AMATEUR RADIO LICENSER. COMPLETE THEORY preparation for passing amateur radio examinations. Home study and resident course. Foundation Institute. 261 West 90th St., New York City. See our ad on Page 51.

WE REPAIR ALL TYPES OF ELECTRICAL INSTRUMENTS, tubes and meters and anything to do with home electronics. Request them by mail. Commercial Servicemen, 538 First Ave., New York, N. Y.

J-1—1949 ALLOU CATALOG

The latest Allied Radio Corporation catalog No. 117, needs no introduction to most servicemen, amateurs, and experimenters. It has 176 pages and contains complete listings of radio and electronic parts and equipment, tools, supplies, and books. — Gratis

J-2—INSTRUMENT CATALOG

Bradshaw Instruments Co. issues a four-page illustrated leaflet describing the Range Master Models 10 and 10-P multimeters, the Model 30 multitester, and the Model 300 signal generator. — Gratis

J-3—ELECTRIC PLANT GUIDE

A 20-page guide points out differences between the a.c. d.c., and battery-charging electric plants made by D. W. Oman & Sons, Inc., and gives instructions for choosing the proper type and size for any application. A.C. models supply from 300 to 3500 volts at all standard voltages and frequencies. D.C. models deliver 25 to 15,000 volts at 115 volts, and 2 to 150 volts. Battery-Charging plants deliver 30 to 5,000 volts at 12, 32, and 110 volts d.c. — Gratis

J-4—CONVERTER CATALOG

This 12-page catalog lists specifications of vibrator-type converters and power supplies made by Electric Laboratory, Inc. Converters deliver 115-volt, 50-cycle a.c. from 6-, 12-, 22-, and 110-volt d.c. and from 115-volt, 22- and 50-cycle sources. Power supplies deliver high-voltage d.c. from 6-volt d.c. and 12 or 110-volt a.c. Replacement vibrator for converters, amplifiers, and transmitters are listed. — Gratis

J-5—POWER SUPPLY BULLETIN

A 2-page bulletin, issued by Electro Products Laboratories, Inc., lists several types of A- and B-eliminators for use with hi-fi equipment. They are available for operating from 6-volt d.c. or 117-volt, 60-cycle sources. A 6- or 12-volt d.c. supply is also listed. —Gratis

J-4—PRIMER ON C.R. TUBES

The cathode-ray tube and Typical Applications, by Instrument Division, Allen B. Du Mont Labs., Inc. is a 63-page non-technical discussion of the cathode-ray tube and its functions. Supplied with a wall-chart, the book is intended for schools and colleges. — Gratis to teachers and instructors requesting on stationery, 50c per copy to all others

LITERATURE

ANSWERS TO QUIZ ON PAGE 37

1. If the control were open, there would be no d.c. path from grid of the tube to ground: the grid would block, and the set would squeal and motorboat. If shorted, however, the grid would be at ground potential for audio. To check, touch the center lug with a screwdriver held in your bare hand. If nothing is heard, the grid is shorted to ground, probably through a shorted control or a lug touching the control's case.

2. Anywhere between 1 and 3 watts, depending on the resistances. If the 2-watt resistor were twice as large as the 1-watt unit, twice the voltage of the 1-watt unit, and therefore twice the wattage, the 2-watt resistor would be 3 watts. If both resistors were equal, the same voltage would appear across each, and each would have to dissipate the same power. Obviously, the maximum for each resistor would be 1 watt, with total circuit dissipation of 2 watts. To convince yourself, assign values to a pair of resistors and work out the current, voltages, and wattages.

3. In the parallel circuit the voltage across both resistors is the same, but the current through each varies with the resistance values. Again maximum dissipation is from 1 to 3 watts, depending on the resistances.

4. A practical temporary repair is shown in the diagram. R1 is 0.8 times the original volume control's resistance, and R2 is 0.2 times the original.

5. If the receiver is an a.c. model, remove tubes one by one, beginning with the antenna end of the circuit. After each tube is removed, rotate the volume control and note the change in background noise. Then, after removing a particular tube, rotating the control has no effect on the noise, you can assume that the control was in the circuit of the tube just removed.

In an a.c.-d.c. set, removing a tube opens the filament string. However, if you rotate the volume control before the filaments have a chance to cool down, you will still hear the change in noise. Of course, you must replace each tube and give the heaters time to warm up again before pulling out the next.

Radar for locating icebergs was used last summer by ships of the U.S. Coast Guard. Since the international service for detection of icebergs, derelicts, and other obstructions was set up in 1914, operations from both ships and aircraft have often been hampered by fog. The radar penetrated fog. A standard radar scope shows the icebergs as pips on the screen and their exact locations are worked out with the aid of loran.
Radio Thirty-Five Years Ago
In Gernsback Publications

HUGO GERNSBACK
Founder
Modern Electricity 1908
Electrical Experimenter 1913
Radio News 1919
Science & Invention 1920
Radio-Craft 1929
Short-Wave Craft 1930
Wireless Association of America 1908

JANUARY, 1949

LET THIS "AUTOMATIC TEACHER" show you exactly how to repair over 4800 RADIO MODELS without expensive test equipment!

GHIRARDI SAVES YOU TIME—HELPS YOU MAKE MONEY

Ghirardi's RADIO TROUBLESHOOTER'S HANDBOOK is the ideal manual to show you exactly how to repair radios at home in spare time—quickly and without a lot of previous experience or costly test equipment. It contains MORE THAN 4 POUNDS OF FACTUAL informati on-saver, money-making repair data for repairing all models and makes of radios better, faster and more profitably than you may have thought possible!

NOT A "STUDY" BOOK

RADIO TROUBLESHOOTER'S HANDBOOK can easily pay for itself the first time you use it. You don't have to study it. Simply look up the make, model, and trouble symptom of the Radio you want to repair and go to work. No lost time! Clear instructions tell exactly what the trouble is likely to be—EXACTLY how to fix it. Actually, this big 714-page manual-size HANDBOOK brings you factual, specific repair data for the common troubles that occur in practically every radio in use today—far over 4800 popular models of Home and Auto radio receivers and Automatic record changers of 200 manufacturers! In addition, there are hundreds of pages of helpful repair charts, tube charts, data on tuning alignment, transformer troubles, tubes and parts substitution, etc., etc—all for only $5 ($5.50 foreign). Read it for 10 days...it's our risk! Use coupon.

NEW SUPER-CLIP-BOARD

King of all clip-boards is this "Electronic Circuit Panel" developed recently by Kepco Laboratories. It substitutes push-down binding posts for the clips, and circuits are printed on sheets with holes which fit over the posts. Thus it is necessary only to wire directly over the line below to follow the circuit. The 22 circuit charts cover a wide range of circuits, from diode detectors to scale-of-two counters. Blank sheets are also provided for the students' own circuits. Rear wiring shown below.

3000 pages. 766 Illus.
725 review questions

10 DAYS' FREE EXAMINATION

Technical Division, MURRAY HILL BOOKS, INC.
Dept. RC-15, 223 Madison Ave., New York 16, N. Y.

Send me the books checked below for 10 days examination on approval. In 10 days I will pay for the books plus a few cents postage or return them with full refund. (Shipping costs on orders under $5 extra)

□ MODERN RADIO $5.50 (445 pages)
□ RADIO TROUBLESHOOTER'S HANDBOOK $5.50 (190 pages)
□ Special MONEY-SAVING COMBINATION
(will send books for only $9.50 ($10.50 foreign)

Name

Address

City & Dist. No.
(Please print or write plainly) State

Send coupon for complete data on test instruments.

COMPLETE DATA ON TEST INSTRUMENTS—TROUBLESHOOTING—REPAIR

A. A. Ghirardi's big 1560-page MODERN RADIO SERVICE is the finest, most complete instruction book on Radio-Electronic service work for either the novice or the professional Radio-Electronic serviceman. In fact, the Ghirardi HANDBOOK brought to the starting point the complete course in servicing, by the most modern methods, used for reference, is an invaluable means of brushing up on any servicing problem. Gives complete information on all essential service instru-

www.americanradiohistory.com
ONLY $99.50 IS THE COST!

TELEVISION KIT

Complete with new built-in preselector and aligned 13 Channel tuner, all parts and easy step-by-step instructions and schematics.

Specially designed cabinet for kit.

$99.50 less tubes

GET YOUR TEST INSTRUMENT KITS from GREEN

HIGH PRECISION VACUUM TUBE VOLTMETER

Model 221X Complete Kit

$23.95

THERE'S NO NEED TO SPEND the TIME, ENERGY, AND HARD-earned INCOME on the radio TELEVISION KIT.

Model 221X - Complete Kit

THE MOST USEFUL TOOL ON YOUR RAD10 BENCH.

D.C. and A.C. ranges 0-5, 0-10, 100, 500, and 1000 volts. D.C. range is 25 megohms, A.C. input impedance is over 1500 megohms. D.C. input sensitivity is 0.001 microvolt and wider frequency range to 20 Kc. Large, rugged, 4½" meter with all A.C. and D.C. readings on one simple scale. All multiplier positions matched to 1500 megohms. Complete with B4, 6X5, 6J5, and test panels. All numbers etched into panel, can not be run off. Heavy gauge steel cabinet. Ships in 4' x 3' x 5' shipping box. Weight 11 lbs. NOTHING ELSE TO BUY!

Pocket V.O.I.T.O.H.M. MILLIAMPERE COMPLETE KIT

Model 221-1:

A POCKET-SIZE INSTRUMENT KIT TO HAVE IN EVERY SERVICE MAN'S TOOL KIT.

$49.95

CONTAINS:

1.000 megohm, 15 megohm D.C. Input. 0/10.000 volts. D.C. Input impedance over 30,000 megohms. Separate input terminals for each range. Frequency range 60 to 1500 Kc. A.M. and F.M. input terminals. 2½" ganged meter with 2½" ganged meter. Complete with A.C. test leads, V.O.I.T.O.H.M. signal generator, and instructions to over 1000 pages. Complete, all parts. No soldering or dicing required.

OScillograph Kit

Model 420X:

INEXPENSIVE KIT FOR HOME VARIETY TELEVISION TUBE TESTING.

$39.45

Kits are complete with instructions, test leads, tubes and all parts. Complete and in ready to operate condition.

SENSATIONAL PRICE REDUCTION!

Model 113-A MULTI-ANALYST

NOW ONLY $69.95

A Complete VTVM that delivers signal from antenna to speaker and serves as sound source. Ideal for small laboratory. 3 tubes - Same as unit in photo above. Delivered NOW!

Radio astronomy will be studied at Cornell University with a new radio telescope, the university announced last month. The telescope, completion of which is expected in a few months, will consist of a 17-foot parabolic reflector with a small antenna at the focal point. Sensitive receivers will record extraterrestrial r.f. noise. This is the first instrument of its capabilities built especially to study cosmic noise. The telescope described last March was a converted Wurzburg radar antenna.

New radar telescope at Cornell University.

The analogy between the radio telescope and a standard optical telescope is very close. Both are used to detect electro-magnetic radiations. The optical telescope receives radiations in the visible range, which includes a band of frequencies about one decade wide, that is, with a 10 to 1 ratio between the highest and lowest frequencies at each place. The parabolic antenna is very sharpened and polarized. It will scan areas of the sky with diameters of 2 to 30 degrees, depending on frequency. It will be rotatable in several directions, as well as turning on its own axis to vary polarization.

Receivers for 50, 200, 1400, and 3000 mc are being assembled. Through the comparatively new medium of radio astronomy Cornell hopes to discover much new and enlightening information about the structure of the universe.

Television may be used for teaching deaf children as the result of experiments conducted by RCA and Dictograph. Group hearing aids will be tied into the sound channel of the receiver. A demonstration of the new technique was given last month in Detroit at the convention of Teachers of Deaf Children, a national organization.
COMMUNICATIONS

LIKES NEW R-E FORMAT
Dear Editor:

As a faithful reader of your magazine for the past 10 years, I think you have set the pace for magazines. I've always longed for one which had all the items on successive pages. Thanks to you, the feature may be read without thumbing through the whole magazine.

Your new name surely expresses the contents of the magazine and in my opinion could not have been better.

WALDEN MCKIM,
Bessemer, Ala.

LANGHAM HAS A FAN
Dear Editor:

How about a few more articles like those by James R. Langham? I think an article written in story form with a bit of humor is very informative as well as being amusing. Of course I don't mean that all articles should be written that way!

I regard the Technote Section very highly, as well as articles such as W. G. Exley's "Time-Saving Repair Tips" (July, 1948). The magazine has provided me with much of my radio education and I hope it will continue to do so in the future.

BART DE KAT,
Minburn, Canada

R-E INTERPRETS SCIENCE
Dear Editor:

Your article describing the transistor in the September issue was of great interest to me.

A private experimenter of limited formal education, I sometimes find such periodicals as the Journal of Applied Physics, Physical Review, and so on, hard to understand. Radio-Electronics has become a sort of interpreter for translating scientific literature into the little fellow's language.

Keep up the good work!
HERMON E. COTTER,
Detroit, Mich.

DOWN WITH NOISE!
Dear Editor:

I agree with Mr. Ward (Communications, November) that ignition noise must go, and the sooner the better. But let's not stop with ignition noise—let's go further and eliminate all man-made static! We should have little trouble dealing with radio interference now that there are plenty of spark-plug suppressors and power-line filters on the market.

Mr. Boehne said (same issue), an interfering amateur gets into plenty of trouble; at the same time we have to put up with noise caused by some defective household appliance.

Interference makes things even harder for us in Alaska than for you in the States. We rely on short-wave reception for the programs you hear from your local station.

FLOYD P. BROWN, JR.,
Sitka, Alaska

JANUARY, 1949

SENSATIONAL RADIONIC OFFER TUBES 32c in bulk, lots of 100 per type Individually White Boxed, ass'd 36c each Made by Testing manufacturer—unbranded. RMA guaranteed. Money back, less postage, if not completely satisfied. THOUSANDS OF SATISFIED BUYERS.

15S 486G 6S6GT 1257GT

RCA • GE • SYLVANIA • NATIONAL UNION • KEN-RAD • HYTRON TUNESOL • RAYTHEON Type Packed in bulk Individually white 100 per type boxed • assorted
573GT .45 $.59
6P6GT .45 $.59
6S7GT .45 $.59
1256GT .45 $.59
25L6GT .45 $.59
25SE6 .45 $.59
35L6GT .45 $.59
35SE6 .45 $.59
50L6GT .45 $.59

Above 10 types in Manufactur- ers brands. Shipment will be made when available. STANDARD RMA GUARANTEE APPLIES...

Minimum order $10 for deposit, balance C.O.D.

Send for Free Bargain Bulletins

RADIONIC EQUIPMENT COMPANY
Tribune Theater Entrance 192 W. Jackson Blvd., Chicago. 7
WORTH 2-0421
Open daily 9-6; Saturday 9-5

THE ROSE COMPANY
58 Park Place, Dept. C, New York 7, N. Y.

TINY RADIO!

Best plastic case no hitches, butt, pockets, or glitz. All solid state. Removable 500 watt battery. $4.95.
You can become a Radio and Television Technician now!

A million new jobs — almost 4,000 a week — will be created in the television industry during the next five years according to estimates of industry leaders. Actually, during 1948, television grew faster than any other industry in the history of America.

Here is a real opportunity for you. Trained television technicians are in demand. By starting now, you can get in on the ground floor — grow as television grows.

To help supply this needed manpower, the Milwaukee School of Engineering has expanded its radio and television courses. Now you can get complete practical, technical training in the MSOE laboratories. This is not just a textbook's course. It prepares you for a career in all of the technical phases of television and radio.

This special course prepares you for any of the following careers:

- Television Serviceman
- Radio Serviceman
- Radio and Television Retailer
- Television Supervisor

Other Courses Available

- Television Serviceman
- Radio Serviceman
- Television Assembly
- Radio and Television Tester

Service

- 6 to 12 Months
- 1 to 2 Years
- 3 Years

Technical

- 1 to 2 Years
- 3 Years
- 4 years

Professional

- 3 Years
- 4 years
- 5 years

Milwaukee School of Engineering

Milwaukee, Wis.

Without obligation send me free booklet "Career Building" and more details on courses in radio and television.

Name:

Address:

City:

STATE:

EARN money while you learn.

LEARN RADIO!

In only 19 months prepare for a good job! Commercial Operator (Code) Broadcast Engineer Radio Serviceman.

Television Serviceman — 15 Months

Veterans get $150.00 Equipment Send for Free Literature.

Baltimore Technical Institute

1422 East Pratt St., Dept. C, Baltimore 17, Md.

RADIO ENGINEERING!

Tri-State College

2419 College Ave.

Angola Indiana

Radio and Television

Thorough training in all technical phases.

Approved for Veterans.

Radio and Television

In AM — FM — Television

If you are looking for a career with a future, we need the graduates of the University of Baltimore Technical Institute.

The demand is great for qualified radio personnel in AM-FM-Television. Training now to be an announcer, script writer, disk jockey, news man, or studio technician. Complete day and night classes... latest equipment. Free placement service. Approved for veterans. Write for free booklet.

Don Martin School of Radio Arts

1055 North Cherokee St.

Hollywood 26, Calif.

Radio and Television Institute

480 Lexington Ave., N.Y. 17 (46th St.)

Plaza 3-4585 5 blocks from Grand Central

Radio Courses

Commercial Radio Institute

Founded 1932

38 West 6th Street, Baltimore 1, Md.

Sound Recording School

A practical engineering course in Sound Fundamentals, Sound Recording, Sound Interpretation in a laboratory containing transmission sets, oscillators, false wave generator and intermodulation analyzer, and other equipment.

Complete recording studio assimilating broadcast, motion picture and commercial sound recording under the direction of H. V. Tracy, Director.

Hollywood Sound Institute, Inc.

1040-C No. Kenmore

Hollywood 27, Calif.

RCA COURSES

- Radio Operating
- Radio Servicing
- Electronics
- Television
- Refrigeration Servicing

Write for Catalog and Picture Brochure.

T.M.C.A. Trade & Technical Schools

13 W. 63rd St. (N.Y. 23) New York City

Radio and Television

Approved for Veterans

Radio and Television

In AM — FM — Television

If you are looking for a career with a future, we need the graduates of the University of Baltimore Technical Institute.

The demand is great for qualified radio personnel in AM-FM-Television. Training now to be an announcer, script writer, disk jockey, news man, or studio technician. Complete day and night classes... latest equipment. Free placement service. Approved for veterans. Write for free booklet.

Radio and Television Institute

480 Lexington Ave., N.Y. 17 (46th St.)

Plaza 3-4585 5 blocks from Grand Central
ELECTRIC SHAVERS INTERFERE WITH FM?

Dear Editor:

The letters on FM interference you have published during past months have left me puzzled as to why the powerful buzz-saw interference of electric razors eludes not only the excretion it deserves, but even mention. Razors interference is an even greater evil than ignition noise. Why is the lesser evil dwell on the exclusion of the greater?

I could name a Scandinavian country where everything likely to create interference must by law be quieted. Laws like this will have to be passed here some day...meantime, what primitive chaos!

I wonder if the silence of the press on razor interference is evidence of how subservient it is to commercial interests? (Aren't motor cars also objects of commerce—Editor.)

I'd like to see what the neighbor's beard does to television—but not in my living room. The ruination of music is bad enough, thank you.

C. P. BROCKETT,
Aja, Ontario

(In our experience, a genuine FM set—not a wide-band, high-frequency AM set—gives practically no evidence of an electric shaver, even brought close to the antenna lead. Have other readers had shaver trouble?—Editor)

WANTS MORE COMMERCIAL AUDIO CIRCUITS

Dear Editor:

May I take this opportunity to say I like your new title, style, and layout very much? I am an audio fan, and I wish to thank you for the very fair way you allocate space to the different departments. My friends and I all think it is the most interesting of the many publications we get. You cater to everybody, and I think everybody should be well satisfied.

Your latest Audio-Sound issue was, of course, especially interesting to me. Could we have a few more circuits like the Langevin 122 amplifier? They keep us up on modern practice.

H. G. WARREN,
Lutan, England

LONG BEACH, CALIF., WILL HAVE PORT RADAR

Dear Editor:

We appreciate your inquiry regarding the installation of us by a port radar. Our friend, the Harbor Commissioners is giving final consideration to the installation on our pier of a pilot station for such radar equipment.

Incidentally, you committed a grave error in stating, "that you plan the construction of a port radar for Los Angeles." There is a keen rivalry between the ports of Long Beach and Los Angeles even though they are located in the same geographical area; this radar is being considered for Long Beach. At the present time we are the fourth largest producer of oil in the state of California with an annual income from oil of approximately $30 million per year. Therefore we prefer that a distinction be made between the two ports.

A. K. MADDY,
Executive Secretary.
Board of Harbor Commissioners.
Long Beach, Calif.

(RADIO-ELECTRONICS desires to apologize for its error, and wishes the port of Long Beach every success in its struggle for its proper place in the sun. Latest report, incidentally, says contract has been let and work is about to start.)

Get Started in Radio

10 "HOW-TO-DO-IT" BOOKS

Get a solid foundation in radio by means of these 10 truly useful books. Each clearly written, originally designed, for the amateur. You'll be amazed at the wealth of information found on these pages for technical study. Your money back if not satisfied.

5 BOOKS for 50c 10 BOOKS for $1.00

Sent to You Postpaid

No. 1—How to Make Your Money (Leading Text) No. 2—How to Make the Most of Your Radio—A New and Easy Textbook

No. 3—How to Read Radio Transistors, Tubes and Tube Testing Diagrams

No. 4—To Read Radio Instruments No. 5—Building Aircraft

No. 6—Building Electrical Equipment

No. 7—Building Radio Antennas

No. 8—Building Radio Interference Reduction

Bonus by check or money order—register letter if you send cash or stamps.

RADIO PUBLICATIONS

52A West 8th St.
New York, N. Y.

$3.00 FOR CARTOON IDEAS

RADIO-CRAFT prints several radio cartoons every month. It is desired to contribute humorous radio ideas which can be used in cartoon form. It is not necessary that you draw a sketch, unless you wish.

IDEAS NOT WANTED

No electrical or radio definitions wanted. None of these were published in the past, but the subject is about exhausted.

All checks are payable on publication.

RADIO CARTOONS, RADIO-CRAFT

25 West Broadway, New York 7, N. Y.

Amateur and commercial radio operators, servicemen, and shortwave listeners will appreciate the wealth of technical data on communications receivers and allied equipment made between the end of the war and midsummer 1948. The average amateur—always wondering about the other fellow's receiver—will find delight in circuits and data on 26 communications receivers, the Gon-Set converter and RME's preselector and converters.

Flyers, amateur and professional sailors, and aircraft- and marine-radio technicians will be interested in data on 22 pieces of marine and aircraft radio equipment.

The material, prepared in the same manner as the Photofact folders, contains diagrams, key photographs and pertinent servicing information, on all the equipment described. —R.F.S.

This is a compilation of 433 practical electronic circuits that have appeared in Electronics, Electronic Industries, QST, Radio, Review of Scientific Instruments, Sylvania News, RCA Review and others. The authors were careful to select only practical circuits that illustrate novel approaches to particular problems. The circuits have parts values so the reader can use them without spending time experimenting or computing the values of each component.

The circuits are divided into 20 classifications according to function. Among the chapter headings are: Capacitance Control, Cathode-Ray, Metal Locating, Temperature Control, Timing, Photoelectric, Ultrasonic, and Motor-Control Circuits. Stroboscopes, voltage regulators, multivibrators, oscillators, limiters and power supplies are also described.

The material is listed in a cross-index so the reader can find a circuit although it may be known by a variety of names. The original source of material is given at the end of each article.

Engineers and students may find material in this book that will save countless hours spent in searching through technical literature. Instructors can use many of the circuits to illustrate theoretical text-book material.

This, plus Part I of the same work, published in 1943, is, in the true sense of the word, a textbook. The author, head of the Engineering Training Department of the BBC, has compiled all the available information on receivers.

Each portion of a receiver has been given a comprehensive treatment. The chapter on a.f. amplifiers, for example, is 56 pages long and all information except that directly applicable to receivers has been excluded. A separate 75-page chapter takes care of power amplifiers.

There are eight chapters in the volume, six of them rounding out the AM receiver information with material on power supplies, automatic gain control, push-button, remote, and automatic tuning, and performance measurements, and the last two dealing with FM and TV receivers.

The material is compressed to give the maximum information in a given space, though the old engineering practice of stating a proposition in very vague (and uninformative) terms and then restating it mathematically appears to delay the reader to some extent. However, this is a minor complaint. More important is the fact that almost every useful formula for receiver design is given.

In short, the book is uninteresting from a literary standpoint, but an unusually complete reference text for receiver design engineers, for which purpose it was obviously written.—R.H.D.

Suggested by J. F. Dunnett, Vancouver, B.C., Canada

JANUARY, 1949
Cut Out This Page For Ready Reference

GUARANTEED BY WELLS

Brand new, standard make tubes by the thousands are ready for immediate delivery at the lowest prices in our history. Check this list for exceptional values in magnetrons, cathode ray tubes, voltage regulators, transmitting tubes and also neon, pilot and flashlight bulbs. Be sure to order enough for future needs directly from this ad or through your local parts jobber.

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

PILOT AND FLASHLIGHT BULBS

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Name</th>
<th>Volts</th>
<th>Watts</th>
<th>Bulb Base</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-40</td>
<td>3-8 CP</td>
<td>6-8</td>
<td>1.5</td>
<td>G-6</td>
<td>.07</td>
</tr>
<tr>
<td>350-50</td>
<td>1 Amp</td>
<td>28</td>
<td>3.0</td>
<td>T-31/2</td>
<td>.12</td>
</tr>
<tr>
<td>350-33</td>
<td>3.0 CP</td>
<td>13-16</td>
<td>2.5</td>
<td>G-41/2</td>
<td>.08</td>
</tr>
</tbody>
</table>

DISTRIBUTORS

Distributors: Our standard jobber arrangement applies. Order directly from this ad.

MANUFACTURERS

Manufacturers: Write for quantity prices.
Greatest Advance in V.O.M. History

Beautiful Streamlined Instrument.

Large 5½ Inch Meter in special molded case under panel.

Resistance Scale Markings From .2 Ohm to 100 Megohms. Zero Ohms Control Flush With Panel.

Only one switch... Has Extra Large Knob 2½" Long... Easy To Turn... Flush With Panel Surface.

New Molded Selector Switch... Contacts Are Fully Enclosed... will retain lubrication without dust contamination.

Batteries Easily Replaced... New Double Suspended Contacts.

All Resistors Are Precision Film Or Wire Wound Types... Sealed For Permanent Accuracy.

Unit Construction... Resistors, Shunts, Rectifier, Battery All Are Housed In A Molded Base Built Right Over The Switch... Provides Direct Connections Without Cabling... No Chance For Shorts.

NOTE
the Sensational Improvements
Model 630

$3750 U.S.A. Dealer Net

Leather Carrying Case $5.75

ADAPTER PROBE FOR TV HIGH VOLTAGE TESTS EXTRA

A completely new Volt-Ohm-Mill-Ammeter that does more... has proved components... and will give a lifetime of satisfaction.

Precision first... to Last

TECH DATA

D.C. VOLTS: 0-12-60-300-1200-6000, at 20,000 Ohms/Volt
A.C. VOLTS: 0-12-60-300-1200-6000, at 5,000 Ohms/Volts
D.C. MICROAMPERES: 0-60, at 250 Millivolts
D.C. MILLIAMPERES: 0-12, at 250 Millivolts
D.C. AMPERES: 0-12, at 250 Millivolts
OHMS: 0-1000-10,000; 4.4 Ohms at center scale on 1000 scale; 44 Ohms center scale on 10,000 range.
MEGOHMS: 0-100
DECIBELS: -30 to +4, +16, +30, +44, +56, +70
OUTPUT: Condenser in series with A.C. Volt ranges

TRIPLETT ELECTRICAL INSTRUMENT CO. • BLUFFTON, OHIO

In Canada: Triplett Instruments of Canada, Georgetown, Ontario

www.americanradiohistory.com
The case of the Creeping Sleeve

Lead sheathing on telephone cable meets many stresses — the tug of its own weight, wind pressure, contraction and expansion from cold and heat. Then, too, there's the pressure of nitrogen gas put in Long Distance cable to warn of sheath breaks and keep out moisture.

And, sometimes, lead is subject to "creep" — a permanent stretching — even when the stress is but a fraction of the normal tensile strength. Creep is especially likely at the lead sleeves used where two lengths of cable are joined. The sleeve may stretch and break open exposing telephone circuits to the elements.

So Bell Laboratories scientists have developed methods to test and control creep. In a special testing room, weights are applied to scores of samples of lead, under controlled conditions. Exact records of the amount of creep are obtained with a precision instrument.

Years of careful study have produced a lead composition which resists creep and yet has all the other properties required of sleeves. This means better telephone service for you and helps give that service at lowest possible cost. It is an example of the way Bell Telephone Laboratories scientists study and improve every part of the great telephone plant.

BELL TELEPHONE LABORATORIES
EXPLORING AND INVENTING, DEVISING AND PERFECTING, FOR CONTINUED IMPROVEMENTS AND ECONOMIES IN TELEPHONE SERVICE.