CMOS AUDIO AMPLIFIER

METERLESS TRANSISTOR TESTER

ALSO FEATURED

THE "M5" POCKET RECEIVER
Part 1
By arrangement with Messrs. MacMillan we are able to offer the above book at a special low price to readers of RADIO & ELECTRONICS CONSTRUCTOR.

Normal Price £4.35

SPECIAL OFFER PRICE £3.50

Saving 85p

Both prices include postage and packing

In this introduction to semiconductor devices, the author provides a comprehensive survey of modern active and non-active semiconductor technology. Without leaning too heavily on device physics, he explains device functions and then illustrates their use with typical circuits and applications.

Following a summary of the physical basis of semiconductor elements — in non-mathematical terms — a study of bipolar and field-effect transistors leads to considerations of monolithic integrated circuits. More advanced charge-coupled devices, semiconductor memories and optoelectronic devices are studied in some detail.

CONTENTS

1. Semiconductors
2. Basic Semiconductor Devices
3. Semiconductor Diodes and the Unijunction Transistor
4. Bipolar Junction Transistors, Amplifiers & Logic Gates
5. Field-Effect Transistors, Amplifiers and Logic Gates
6. Monolithic Integrated Circuits
7. Charge-coupled Devices
8. Semiconductor Memories
9. Thyristors and other Multilayer Devices
10. Optoelectronics

To: Data Publications Ltd., 57 Maida Vale, London W9 1SN
Please send me within 21 days copy/copies of
SEMICONDUCTOR DEVICES

I enclose Postal Order/Cheque for £

Name ..
Address .. (Block Letters Please)

(We regret this offer is only available to readers in the U.K.)
METERLESS TRANSISTOR TESTER 534
by Bruce Woodland

500th EDITION OF WORLD RADIO CLUB 539
Report by Ron Ham

NEWS AND COMMENT 540

POLARITY/BASE RESOLVER 542
(Suggested Circuit 317) by G. A. French

THE "M5" POCKET RECEIVER 546
— Part 1 by Sir Douglas Hall, K.C.M.G.

CMOS AUDIO AMPLIFIER 551
by R. A. Penfold

"HEADS OR TAILS?" — by J. R. Davies 556

MOBILE AMATEUR RADIO LOG REQUIREMENTS 558

ANTIQUE AND WARTIME RADIO by Ron Ham 559

SURGE CURRENTS (Notes for Newcomers) 561
by R. J. Caborn

CATALOGUE 563

TRADE NOTES 563

SHORT WAVE NEWS — For DX Listeners 564
by Frank A. Baldwin

MEDIUM AND LONG WAVE SUPERHET — 566
Part 2 by A. P. Roberts

IN YOUR WORKSHOP — TV Repair 570

RADIO TOPICS by Recorder 576

WORKSHOP AIDS 578

ELECTRONICS DATA No. 21 580
(For the Beginner — Screening)
WILMSLOW AUDIO

THE Firm for speakers!

SPEAKERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker Major 3, 8 or 15 ohms</td>
<td>£15.75</td>
</tr>
<tr>
<td>Goodman's D.I.N 20 4 or 8 ohms</td>
<td>£15.75</td>
</tr>
<tr>
<td>Goodman's MiniZen 20 ohms</td>
<td>£15.75</td>
</tr>
<tr>
<td>Helme XLK 15 8 ohms</td>
<td>£15.75</td>
</tr>
<tr>
<td>Helme XLK 35 8 ohms</td>
<td>£15.75</td>
</tr>
<tr>
<td>Helme XLK 40 8 ohms</td>
<td>£15.75</td>
</tr>
<tr>
<td>Kefir 1 8 ohms</td>
<td>£15.75</td>
</tr>
<tr>
<td>Peerless 1060 8 ohms</td>
<td>£15.75</td>
</tr>
<tr>
<td>Peerless 1070 8 ohms</td>
<td>£15.75</td>
</tr>
<tr>
<td>Peerless 1060 8 ohms</td>
<td>£15.75</td>
</tr>
</tbody>
</table>

COMPLETE KITS IN STOCK FOR

RADFORD STUDIO 90, RADFORD MONITOR 180, RADFORD STUDIO 270, RADFORD STUDIO 360, RADFORD STUDIO 360, RADFORD STUDIO 360,

HIFI ANSWERS MONITOR (Rogers), HIFI NEWS NO COMPROMISE (Frisy), HI FI NEWS STATE OF THE ART, WIRELESS WORLD TRANSMISSION LINE (Bailey), PRACTICAL HIFI & AUDIO MONITOR (Giles), PRACTICAL HIFI & AUDIO TRIANGLE (Giles), POPULAR HIFI (Colloms) ETC.

ON DEMONSTRATION

Akai, Armstrong, Bowers & Wilkins, Castle, Celestion, Dual, Chartwell, I.M.F. RAM, Neal, Dalesford, Sansui, J.R. Formula 4, Daftron,Integral, Linton,  S. and Sondek, Penton, Radford, Richard Allan, Rotel, Tandberg, Trios, Videotone, Wharfedale, etc.

ON DEMONSTRATION

Akai, Armstrong, Bowers & Wilkins, Castle, Celestion, Dual, Chartwell, I.M.F. RAM, Neal, Dalesford, Sansui, J.R. Formula 4, Daftron, Integral, Linton,  S. and Sondek, Penton, Radford, Richard Allan, Rotel, Tandberg, Trios, Videotone, Wharfedale, etc.

We stock the complete Radford range of amplifiers, pre-amplifiers, power amplifiers, tuners etc., and also Radford Audio equipment, low distortion oscillator, distortion measuring set, audio noise meter etc.

ALL PRICES INCLUDE VAT

Prices correct at 10/3/77

Send stamp for free 38-page booklet "Choosing a Speaker". All units guaranteed new and perfect.

Carriage and insurance

Speakers up to 12" £60.00; 12" £75.00; 15" £100.00; 18" £25.00; Kits £1.00 each (£2.00 per pair). Tweeters & Crossovers £30.00 each.

WILMSLOW AUDIO

DEPT REC

LOUDSPEAKERS, MAIL ORDER AND EXPORT: SWAN WORKS, BANK SQUARE, WILMSLOW, W.H.L.T. SWIFT OF WILMSLOW, 8 SWAN STREET, WILMSLOW CHERCHESTER.

PA, HIFI & ACCESSORIES: WILMSLOW AUDIO, 10 SWAN STREET, WILMSLOW,

CHESHIRE.

TELEPHONE: LOUDSPEAKERS, MAIL ORDER AND EXPORT WILMSLOW 2999, HIFI, RADIO ETC., WILMSLOW 28213

Access & Barclays Orders accepted by phone.
NEW THIS MONTH!

UNIT TWO
FOR LOW AND HIGH OUTPUT CARTRIDGES

Here's another real money saver from Stirling Sound! Wire it into your system and style it how you wish. Full instructions make this completely straight-forward. Use Stirling Sound power amps, for choice, but Unit Two will work superbly in any system. Active tone control circuits give bass and treble rise and cut of +5dB each, accepts inputs from 1 to 5 mV; RIAA corrected also adaptable for ceramics, etc. S/N ratio — 60dB, channel separation typically 58dB, frequency range — 30-20,000 Hz ±1dB. Tested for despatch (ready built) and guaranteed. For 10-20 V, operation.

£10.85

MORE STIRLING SOUND Q.V. MODULES TO SAVE YOU MONEY

UNIT ONE TONE CONTROL/PRE-AMP

A real money saver this. Compatible with all relevant Stirling Sound modules as well as other makes. Combined pre-amp with active tone-control circuits, +5dB at 1kHz treble and 30kHz bass. Stereo, Vol/balance/treble/bass, 200mV out for 50mV in. Operates from 10 to 18V supply.

£7.80

POWER AMPLIFIERS

3-40 Watts R.M.S.

SS.103 3 watt r.m.s. mono. Short-circuit proofed. Uses one 12V/8.75.

SS.103-3 Stereo version of above using two I.Cs.

SS.106 4 watts r.m.s. into 3 ohms, using 12V.

SS.110 10 watts r.m.s. using 24V and 4 ohms load.

SS.120 20 watts r.m.s. into 4 ohms, using 34V.

SS.140 Delivers 40 watts r.m.s. into 4 ohms using 45V supplies unit such as SS.348. Ideal for small disco, P.A. etc.

£2.25

£3.25

£2.75

£3.25

£2.65

£3.95

WHAT Q.V. MEANS TO YOU

It means Stirling Sound QUALITY and VALUE from modules made in our own Essex factory. They are all tested and guaranteed and offer unbeatable value. Designed by highly specialist electronic engineers with wide experience of constructors' and experimenters' needs. Watch how the Stirling Sound RANGE GROWS!

Power stabilising unit 300-50V adjustable for adding to unstabilised supplies. Built in protection against shorting (p/p 50p) £3.25

£3.75

£4.15

£4.60

£5.20

£6.25

£6.75

£12.50

SPECIAL DE-LUXE 25 WATT HI-FI AMP BARGAIN

Made to sell at £7.25

LIMITED NUMBER AVAILABLE AT £5.20

This is the Bi-Pre-Pak SS.125, designed and made for the connoisseur market of hi-fi and technical specialists. Gives 25 watts into 8 ohms using 50V, 22 watts into 4 ohms from 33V. Input sensitivity — 150 mV for full output; distortion less than 0.05% at all powers. Tested and guaranteed. Limited number only available. Ideal for test and lab, work, super hi-fi etc.

£11.95*
<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE MODERN BOOK CO WORLD RADIO T.V. HANDBOOK 1977</td>
<td>J. M. Frost</td>
<td>£5.50</td>
</tr>
<tr>
<td>UNDERSTANDING MICROPROCESSORS</td>
<td>by Motorola</td>
<td>£3.75</td>
</tr>
<tr>
<td>OP-AMP CIRCUIT DESIGN & APPLICATIONS</td>
<td>by J. Carr</td>
<td>£4.00</td>
</tr>
<tr>
<td>SIMPLE ELECTRONICS FOR MODELLERS</td>
<td>by I. R. Sinclair</td>
<td>£3.30</td>
</tr>
<tr>
<td>HAM RADIO A PRACTICAL GUIDE & HANDBOOK</td>
<td>by K. Ullyett</td>
<td>£5.00</td>
</tr>
<tr>
<td>BUILD-IT BOOK OF MINIATURE TEST & MEASUREMENT INSTRUMENTS</td>
<td>by R. P. Haviland</td>
<td>£3.30</td>
</tr>
<tr>
<td>MICROELECTRONICS</td>
<td>by C. L. Hallmark</td>
<td>£3.75</td>
</tr>
<tr>
<td>TOWERS’ INTERNATIONAL TRANSISTOR SELECTOR</td>
<td>by T. D. Towers</td>
<td>£5.10</td>
</tr>
<tr>
<td>RADIO COMMUNICATION HANDBOOK VOL. 1</td>
<td>by RSGB</td>
<td>£8.00</td>
</tr>
<tr>
<td>ELECTRONICS FAULT DIAGNOSIS</td>
<td>by I. R. Sinclair</td>
<td>£3.25</td>
</tr>
<tr>
<td>110 ELECTRONIC ALARM PROJECTORS FOR THE HOME CONSTRUCTION</td>
<td>by R. M. Marston</td>
<td>£2.25</td>
</tr>
<tr>
<td>CASSETTE TAPE RECORDERS</td>
<td>by J. Earl</td>
<td>£6.15</td>
</tr>
<tr>
<td>MASTER ELECTRONICS IN MUSIC</td>
<td>by T. D. Towers</td>
<td>£2.85</td>
</tr>
<tr>
<td>HI FI IN THE HOME</td>
<td>by J. Crabbé</td>
<td>£3.00</td>
</tr>
<tr>
<td>HI FI YEAR BOOK 1977</td>
<td></td>
<td>£3.60</td>
</tr>
<tr>
<td>BUILD YOUR OWN WORKING ROBOT</td>
<td>by D. L. Heiserman</td>
<td>£3.60</td>
</tr>
<tr>
<td>THE CATHODE RAY OSCILLOSCOPE & ITS USE</td>
<td>by G. N. Patchett</td>
<td>£4.00</td>
</tr>
</tbody>
</table>

Prices include postage.

We have the finest selection of English and American Radio books in the country.

19-21 Praed Street (Dept RC) London W2 INP

Telephone 01-723 4185

NEW STYLE SELF-BINDER

for

“Radio & Electronics Constructor”

The "CORDEX" Patent Self-Binding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Rich maroon finish, gold lettering on spine.

Specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for and the Cords will always remain taut and strong. It is impossible to overstretch the springs, as a safety check device is fitted to each.

PRICE £1.20

Including V.A.T.

P. & P. 30p

Owing to heavy demand please allow 27 days for delivery.
PRECISION IN YOUR HAND!

with the PRECISION PETITE miniature electric drills

The Mk. II PI drill illustrated is excellent for speedy work on p.c. boards, light metalwork and plastics. It operates from a 9-14v. d.c. source @ 2 amps and turns at 10,000 r.p.m. with 120 cmg. torque. A wide range of accessories is available.

ALSO the New P2 drill... more powerful, faster and of larger capacity has 4 collets for 0 to 3.5 mm. tool shanks, long ball bearing shaft and powerful motor running at 12,000 r.p.m. with 320 cmg. torque 12v d.c. @ 3 amps.

SOLE DISTRIBUTORS:

PRECISION PETITE LTD.

119a High Street, Teddington, Middlesex TW11 8HG
Tel.: 01-977 0878 24hr Telephone Enquiry Service

PRICES inc V.A.T.
- Transformer .. 6.60 70 p.p.
- Variable speed Transformer 8.25 70 p.p.
- S.30 Kit (Drill with 30 tools) 17.62 80 p.p.
- Kit Complete .. 33.48 1.15 p.p.
- P2 Drill only ... 16.50 65 p.p.
- Postage for spare (any quantity) 15p each

I. Understand electronics.

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.

(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure, without obligation to:

BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL,
P.O. Box 156, Jersey, Channel Islands.

NAME

ADDRESS

Block caps please

APRIL 1977
THE 'NUTS & BOLTS' OF THOSE PROJECTS!

TRANSFORMERS

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>M1720</td>
<td>£1.00</td>
</tr>
<tr>
<td>2025</td>
<td>M1100</td>
<td>£1.30</td>
</tr>
</tbody>
</table>

MINIATURE MAINS Pr 240v

<table>
<thead>
<tr>
<th>No.</th>
<th>Secondary</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>6v-6v-100mA</td>
<td>£1.80</td>
</tr>
<tr>
<td>2002</td>
<td>6v-6v-100mA</td>
<td>£1.80</td>
</tr>
<tr>
<td>2003</td>
<td>12v-12v-100mA</td>
<td>£2.30</td>
</tr>
</tbody>
</table>

STANDARD MAINS Pr 240v

<table>
<thead>
<tr>
<th>No.</th>
<th>Rating</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2027</td>
<td>1k C.T.</td>
<td>£0.12</td>
</tr>
<tr>
<td>2026</td>
<td>1k C.T.</td>
<td>£0.13</td>
</tr>
<tr>
<td>2025</td>
<td>1k C.T.</td>
<td>£0.13</td>
</tr>
</tbody>
</table>

NUTS & BOLTS

<table>
<thead>
<tr>
<th>BA BOLTS - bolts of B.A. threaded cadmium plated screws, slotted cheque head, supplied in multiples of 100.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type No.</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1505</td>
</tr>
<tr>
<td>1501</td>
</tr>
</tbody>
</table>

BA NUTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1508</td>
<td>£0.20</td>
</tr>
</tbody>
</table>

BA WASHERS

<table>
<thead>
<tr>
<th>Washers supplied in multiples of 100.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type No.</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1506</td>
</tr>
<tr>
<td>1507</td>
</tr>
</tbody>
</table>

SWITCHES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.D.S.T. toggle</td>
<td>£0.10</td>
</tr>
<tr>
<td>Rotary ON-OFF mains switch</td>
<td>£0.30</td>
</tr>
<tr>
<td>Push switch</td>
<td>£0.30</td>
</tr>
</tbody>
</table>

AUDIO OUTPUT Pr 12x Secondary 6 ohms

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>750x 15x 15mm</td>
<td>£0.29</td>
</tr>
</tbody>
</table>

MINIATURE INTER/DRIVER

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10k</td>
<td>£0.12</td>
</tr>
</tbody>
</table>

LGT30 MIN INPUT

<table>
<thead>
<tr>
<th>Order No.</th>
<th>£0.35</th>
</tr>
</thead>
<tbody>
<tr>
<td>1501</td>
<td>£0.42</td>
</tr>
</tbody>
</table>

LGT31 MIN DRIVER

<table>
<thead>
<tr>
<th>Order No.</th>
<th>£0.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>1501</td>
<td>£0.42</td>
</tr>
</tbody>
</table>

BRIDGE RECTIFIERS

<table>
<thead>
<tr>
<th>Order No.</th>
<th>£0.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>£0.50</td>
</tr>
</tbody>
</table>

FUSE HOLDERS & FUSES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>£0.10</td>
</tr>
</tbody>
</table>

L.E.D.'s

<table>
<thead>
<tr>
<th>Type</th>
<th>Order No</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1025</td>
<td>1552</td>
<td>RED</td>
</tr>
<tr>
<td>T1122</td>
<td>1552</td>
<td>GREEN</td>
</tr>
<tr>
<td>T1121</td>
<td>1553</td>
<td>YELLOW</td>
</tr>
<tr>
<td>T2115</td>
<td>1554</td>
<td>RED</td>
</tr>
<tr>
<td>T2115</td>
<td>1555</td>
<td>YELLOW</td>
</tr>
</tbody>
</table>

LED CLIPS

<table>
<thead>
<tr>
<th>Pack of 5</th>
<th>£0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>1501</td>
<td>£0.90</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR 7805</td>
<td>£1.25</td>
</tr>
</tbody>
</table>

ORDERING

VAT.

ADD 12¾% TO PRICES MARKED.

ADD 8% TO OTHERS EXCEPTING THOSE MARKED. THESE ARE ZERO.
Circuit Price Guide

<table>
<thead>
<tr>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>£4.50</td>
</tr>
<tr>
<td>131</td>
<td>£4.05</td>
</tr>
<tr>
<td>132</td>
<td>£3.50</td>
</tr>
</tbody>
</table>

Newnes Technical Books

- **No. 224 BEGINNERS GUIDE TO ELECTRONICS**
 - **Price:** £2.25
 - **Description:** No. 224
- **No. 317 BEGINNERS GUIDE TO COLOUR TELEVISION**
 - **Price:** £2.25
 - **Description:** No. 226
- **No. 225 ELECTRONIC DIAGRAMS**
 - **Price:** £1.80
 - **Description:** No. 226
- **No. 236 ELECTRONIC COMPONENTS**
 - **Price:** £1.80
 - **Description:** No. 237

Component PAKs

<table>
<thead>
<tr>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>£0.58</td>
</tr>
<tr>
<td>106</td>
<td>£0.60</td>
</tr>
<tr>
<td>107</td>
<td>£0.60</td>
</tr>
</tbody>
</table>

Slide PAKs

<table>
<thead>
<tr>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>£0.60</td>
</tr>
<tr>
<td>109</td>
<td>£0.60</td>
</tr>
<tr>
<td>110</td>
<td>£0.60</td>
</tr>
</tbody>
</table>

Ceramic PAKs

<table>
<thead>
<tr>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>£0.60</td>
</tr>
<tr>
<td>112</td>
<td>£0.60</td>
</tr>
</tbody>
</table>

Mammal I.C. PAK

<table>
<thead>
<tr>
<th>No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>£0.60</td>
</tr>
</tbody>
</table>

Linear PAKs

Manufacturers "Fall Out" which include Functional and Function PAKs. These are classified under the maker's very rigid specifications, but are ideal for learning and experimental work.

ORDER NO. 16227

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.60</td>
<td>ORDER NO. 1627</td>
</tr>
<tr>
<td>£1.50</td>
<td>ORDER NO. 1627</td>
</tr>
</tbody>
</table>

Veroboard PAKs

- **VB1 Approx 30 sq. ins. various sizes.**
 - **Price:** £0.60
- **VB2 Approx 30 sq. ins. various sizes.**
 - **Price:** £0.60

newcomer PAKs

- **C280 Capacitor PAK**
 - **Description:** 72 Mullard C280 capacitors, mixed values ranging from 20pF to 22μF. Complete with identification sheet.
 - **Price:** £1.20

Cables

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP1 Single Microphone</td>
<td>£0.76</td>
</tr>
<tr>
<td>CP2 Twin Microphone</td>
<td>£0.98</td>
</tr>
<tr>
<td>CP3 Stereo Screened</td>
<td>£1.14</td>
</tr>
<tr>
<td>CP4 Stereo Microphone</td>
<td>£1.26</td>
</tr>
<tr>
<td>CP5 2 Core Insulated Screened</td>
<td>£1.28</td>
</tr>
<tr>
<td>CP6 2 Core Screened</td>
<td>£1.30</td>
</tr>
<tr>
<td>CP7 3 Core Mains (Sample)</td>
<td>£1.08</td>
</tr>
<tr>
<td>CP8 2 Core Over O.D. Screened</td>
<td>£1.17</td>
</tr>
<tr>
<td>CP9 2 Core Screened</td>
<td>£1.07</td>
</tr>
<tr>
<td>CP10 5 Core L.D.G. (Sample)</td>
<td>£1.48</td>
</tr>
<tr>
<td>CP11 Multicore</td>
<td>£1.26</td>
</tr>
<tr>
<td>CP12 Standard V.H.Q. Coaxial</td>
<td>£1.40</td>
</tr>
</tbody>
</table>

Just a selection from our huge stocks

SPECIAL

- **1977 Catalogue**
 - 126 pages packed with valuable information
 - **Price:** ORDER NOW ONLY 50p plus 10p p+p

World Scoop!

- **Semiconductor PAKs**
 - Transistors, Diodes, Valve Adaptors, Resistors, etc.
 - 100 Pages pack.

Ordering

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED, NOT FORGETTING TO INCLUDE OUR PART NUMBER.

V.A.T.

ADD 12¾% TO PRICES MARKED
ADD 8% TO OTHERS EXCEPTING THOSE MARKEDI. THESE ARE ZERO

DEPT C5, P.O. BOX 6, WARE, HERTS.

SHOP 18 BALDOW ST, WARE, HERTS.

AT OPEN 9 to 5.30 Mon/Sat.
RESISTORS:
ADD 528
for each;
available
Send S.A.E.
PACKING
WITH WHICH
PLEASE
4645
104; 11V; 12V; 13V;
LOW
Dept.
47K, 100K,
BRIDGE RECTIFIERS: 2
and D027:

220K, 680K,

2200,

200V-40p;

45p;

200V-40p;

45p;

200V-40p;

400mW; Tol.

450V;

P.I.V.

400mW; Tol.

450V;

P.I.V.
RETURN OF POST MAIL ORDER SERVICE

NEW BSR HI-FI AUTOCHANGER STEREO AND MONO
Plays 10, 10 or 7" records. Automatic or manual start. kwatt quality unit backed by BSR
responsibility for 1 year. Suits 15 or 10" records. £11.25 each, 12 for £125.

ALUMINIUM TOGGLE SWITCHES,
Size 1 3/4 x 1 1/2 x 3/8 in. £1.50

ELAC 10in Hi-Fi UNIT
10 watt, 15lb full range unit, 95 to 16,000 Hz, with response to 10,000 Hz. Suits 7, 8 and 9 in.
next to 10 in. £9.95

BAGNAIN PRICE

HEAVY METAL PLINTHS
With P.V.C. Cover. Cut for, box. B.S.R. or Gulton decks. Silver grey
finish. Sizes 12 x 11 x 7/8 in. £5.65

EXTRA LARGE PLINTH & COVER
Size 20 in. x 19 1/2 in. x 3/4 in. £18.50

TINTED PLASTIC COVERS
Post £1.46 each, 10 for £13.75

GARRARD MINI Can
Small stereo minicassette deck. Made in England. £9.95

COMPLETE STEREO SYSTEM
Two way slim loudspeakers 13 in. x 10 x 3 1/2 in. Player
will attach to the speaker, making it extremely compact.
Overall size only 13 x 10 x 3 1/2 in. 3 watts per channel.
Complete system only £6.95

MARTENS TRANSISTORS ALL POST £2.95
250-0-250v 80mA 6.3-2A £2.95
275-0-250v 80mA 6.3-2A 30 in. £6.40
300-0-250v 80mA 6.3-2A 30 in. £6.80
350-0-250v 80mA 6.3-2A 30 in. £7.00
400-0-250v 80mA 6.3-2A 30 in. £7.25

MARTENS STABILISED POWER PACK KIT
All parts included plus detailed instructions to build your
unit. Voltages available: 6, 7.5, 9, 12, 15, 18, 24, 30, 40, 45, 60, 80, 100.
Please state voltage required.

STEREO FM/AM TUNER AMPLIFIER CHASSIS BY KUBBA

£2.95

Electro Magnetic Pendulum Mechanism

1 full vacuum tube 750 hours continuous for 258 bar, fast turn, best parts. Magnets, tuning, dials,
and parts are included. £50 each.

Leaflet & Systems: £2.50

COPPER RING 10in. POLAR SOCKETS 10in. LINE 180
BELL BOXES, SURFACE MOUNTS, BALANCED TWIN RIBBON FEEDER 300m. 5g yd
JACK PLUGS & SOCKET, 13" x 1/4", up to 100 Ohms. £2.50 per pair.

STEREO SENSORS LOCKETS 300m. £2.50 per pair.

£85 plus £2.50 carr.

NEW MIXER/AMP 150 WATT

PROFESSIONAL TRANSISTOR AMPLIFIER

£68

24 week's. £275 plus separate volume treble £15. Carr: £17.50

STEREO UNIT, ideal chassis for 5a, 8a, 1a, 4a, 13. £25

STEREO UNIT: £3.50

Send for leaflet on Disco Gear, Cabinets, etc.

RADIO COMPONENT SPECIALISTS

Minimum post 30p. Access and Barclaycard welcome. Phone your Order
Open 9-6 Wed, 9-1 Sat, 9-5 (Closed for lunch 1.15-2.30)
Cash price includes VAT
Rail Selhurst.
Tel. 01-684 1665

AUGUST 1977

337 WHITEHORSE ROAD, CROYDON, SURREY.

529
TRADE COMPONENTS

Just a few bargains are listed - send stamped addressed envelope for a quote on other requirements. Pay a visit.
Over 90% of stock below quantity wholesale price. All prices include the additional discount in lieu of guarantee.

VALVE BASES

<table>
<thead>
<tr>
<th>Printed circuit B9A-B7G</th>
<th>3p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis B7-B7G</td>
<td>8p</td>
</tr>
<tr>
<td>Shrouded chassis B7G-B9A-B8A</td>
<td>10p</td>
</tr>
<tr>
<td>B12A tube</td>
<td>9p</td>
</tr>
</tbody>
</table>

Speaker 6" x 4" 5 ohm ideal for car radio 70p

TAG STRIP - 6 way 3p. 5 x 50pF or 2 x 220pF

9 way 5p Single 1 trimmers 20p

BOXES - Grey polystyrene 511 x 112 x 31mm. top secured by 4 self tapping screws 32p.

Clear perspex sliding lid. 46 x 39 x 24mm 10p

ABS, ribbed inside 5mm centres for P.C.B., brass corner inserts, screw down lid. 50 x 100 x 25mm orange 48p; 80 x 150 x 50mm black 70p; 109 x 185 x 60mm black £1.10

ALUMINIUM

3" x 2" x 1/" 39p 4" x 2" x 2" 44p 5" x 3" x 3" £1.20

2 1/2 " x 1 1/2 " x 1/2" 46p 4" x 4" x 1/2 54p 5" x 7" x 3" £1.22

4" x 2" x 2 1/2" @ 46p 6" x 2" x 3" £1.50

SWITCHES

<table>
<thead>
<tr>
<th>Pole</th>
<th>Way</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Sub. Min. Slide 18p</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Slide 20p</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>13 amp rotary 6p</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2 A 250V A.C. rotary 20p</td>
</tr>
</tbody>
</table>

12 bank, multi-pole/way push-button (4 interlocking) 30p

S.P.S.T. 10 amp 240v. white rocker switch with neon. 1" square flush panel fitting 20p

S.P.S.T. dot 13 amp, oblong, push-fit, rocker 16p

AUDI LEADS

5 pin din plug 180° both ends 1/2 Mtr. 80p

3 pin din to open end. 1/2" yd twin screened 36p

Phono to din plug. 6ft. 36p

COMPUTER AND AUDIO BOARDS

VARYING PANELS WITH ZENER, GOLD BOND, SILICON, GERMANIUM, LOW AND HIGH POWER TRANSISTORS, DIODES, H.T. STAB RESISTORS, CAPACITORS, ELECTROLYTICS, TRIMMOPS, POT CORES, CHECS ETC.

3/p for 85p & 85p post and packing

7/p for £1.95 & £1.20 post and packing

1k horizontal preset with knob 3p

3" Tape Spools 3p

1" Terry clips 4p

12 Volt Solenoid 30p

TV KNOB

Dark grey plastic for recessed shaft (quarter inch) with free shaft extension 5p

ENM Ltd. cased 7-digit counter 2 1/2 x 1 1/2 x 1/2 approx. 12V.c.d. (48 a.c.) or mains 75p

ZM1162A INDICATOR TUBE

0-9 Inline End View, Rectangular Envelope 170V 2.6/M/A £1

REGULATED TAPE MOTOR

9v d.c. nominal approx 11/4 diameter 60p

12V 8 amp Transformer £2.50 (8p 85p)

Ferric Chloride, Anhydrous mill, spec. 11b bag 40p

THE RADIO SHACK

161 St. Johns Hill, Battersea, London S.W.11

Open 10 a.m. till 7 p.m. Tuesday to Saturday, VAT receipts on request. Terms: Payment with order. Telephone: 01-223 5016

RADIO & ELECTRONICS CONSTRUCTOR
COME TO THE NORTH'S PREMIER AMATEUR RADIO EVENT!
NORTHERN RADIO SOCIETIES ASSOCIATION ANNUAL

CONVENTION & EXHIBITION
BELLE VUE—MANCHESTER
SUNDAY 24th APRIL 1977 — DOORS OPEN AT 11 a.m.

★ Trade Stands
★ Inter-Club Quiz
★ Construction Contest
★ RSGB Bookstall
★ Club Display Stands
★ Grand Raffle
★ Club Stand Trophy
★ RTTY & Repeater Exhibits

Ample car parks and facilities for the family including ZOO and FUN FAIR!
Talk-in for FM mobiles on 2 metres S22 and R6 (GB3MP) and on 70cms 433.2 MHz and RB4 (GB3MR)
EXHIBITION HALL ENTRANCE IS AT REAR OF BELLE VUE, OPPOSITE MAIN CAR PARK — OFF HYDE ROAD, A57

REVOR OPTICAL & TECHNICAL
42 TAVISTOCK STREET
LONDON W.C.2
Tel. 01-836 4536

4" dia. lens
FLEXIBLE MAGNIFIER
WITH CAST IRON BASE,
PRECISION GROUND AND
POLISHED LENS, CHROME PLATED
FRAME AND FLEXIBLE TUBE.
IDEAL FOR HOBBIES, AND
DETAILED WORK WHICH REQUIRES
BOTH HANDS FREE.
CALLERS WELCOME
(Subject to price ruling at the time of issue)

THE METAC DIGITAL CLOCK ★ COMPLETE KIT ★

£10.00 POST FREE

Pleasant green display. 12/24 Hour readout
Silent Synchronous Accuracy. Fully electronic
Pulsating colon. Push-button setting
Building time 1 hr. Attractive acrylic case
Easy to follow instructions. Size 10.5 x 5.7 x 8 cm
Ready drilled PCB to accept components

KIT PRICE £9.60 + 76p VAT
SAME DAY DESPATCH: ORDERS RECEIVED BEFORE 2.00 P.M. ARE POSTED ON THE SAME DAY

SEND YOUR ORDER TO
DAVENTRY UXBRIDGE
METAC ELECTRONIC AND TIME CENTRE

67 HIGH STREET 3 THE NEW ARCADE
DAVENTRY UXBRIDGE
NORTHANTS. MIDDLESSEX.
TEL. 76546 TEL. Uxbridge (0895) 56981

Cash, Cheque or Postal Order or if you wish to use Barclaycard or Access, simply quote name, address and card number when ordering

RADIO & ELECTRONICS CONSTRUCTOR
INTRODUCING

A New Miniature Soldering Iron

220 - 240 Volts
16 - 18 Watts
Insulation tested at 1500 Vac
BIT TYPE
19 1:5mm
20 30mm
21 4.5mm
22 60mm
FEATURES
- Lightweight
- Slim, easy to hold
- Four tip sizes
- Complies with Consumer Protection Regulations B.S. N°:3456 2/4
- All parts easily replaced
- New bit securing method
- Built in suspension hook

PRICES: IRONS £3.70 each
BITS 41p each
(Inc.VAT and P & P)
Trade enquiries welcome.
Cheques & Postal Orders to Manufacturers & Distributors
S. & R. BREWSTER LIMITED
86 - 88 UNION STREET, PLYMOUTH, PL1 3HG
Telephone: 0752 - 650.11

No - I do Verdi well by getting all my components from HOME RADIO!

Forgive the terrible puns. If you don’t quite twig ‘em have a word with your opera-going friends and they will reveal all! Frankly, we’ve used the characters above simply to catch your attention and to lead you on to the more interesting point that Home Radio Components Ltd. are the people to deal with when you need components for the projects featured in this magazine, or for any other electronic gadget you may be creating. Thousands of constructors have proved that they get good advice, good components, good value, good service from Home Radio. Many buy over the counter at Mitcham, many purchase by Mail Order sending a cheque or P.O. each time they need something, and a growing number of customers are proving the advantages of joining the Home Radio Credit Account Scheme. Whichever method you opt for you’ll need a Home Radio catalogue. Read all about it in the paragraph below.

The famous Home Radio Components Catalogue comprises 200 pages, listing about 5,000 items, nearly 2,000 of them illustrated. Everything is set ‘out so clearly and concisely that the catalogue is a pleasure to use. When you buy one we also send you a free mini catalogue filled with extra special bargains. The saving on some purchases from this bargain list alone can more than pay for the catalogue, which costs £1 plus 40p for post and packing. Send off the coupon with your cheque or P.O. for £1.40 now. The catalogue and bargain list will come to you by return post.

POST THIS COUPON with cheque or p.o. for £1.40

HOMERADIO (Components) LTD., Dept. RC, 234-240 London Road, Mitcham, CR4 3HD
Regd. No 9234555 London
This test instrument allows the rapid determination of polarity and large signal gain of bipolar transistors. An I.E.D. readout replaces the usual moving-coil meter, conferring economic advantages and resistance to mechanical shock. The battery current demand is low and virtually the absolute minimum of manipulations is necessary to evaluate a transistor.

Many constructors augment their transistor supplies by the purchase of mixed untested transistors and reclaimed devices from computer boards. Again, during the design of circuitry it is often desirable to have at least a rough idea of the gain of a transistor even when this is a new marked device. For all these requirements some form of transistor tester is necessary.

SPECIFICATION

A quick look at the data sheet of any transistor will demonstrate the large number of tests which must be carried out to fully evaluate it. Fortunately, most home constructor applications require answers to three questions only:

1. Is the device functional?
2. What is its polarity?
3. What is its gain?

When a large number of devices are to be checked a testing instrument which is quick to use and involves the minimum of manipulations is obviously the most desirable. The tester to be described falls into this category and readily provides answers to the three basic questions just noted. No meter is incorporated, and so the cost and size can be kept to quite a small level.

PRINCIPLE

The block diagram of Fig. 1 illustrates the principle of operation of the transistor tester. A square wave oscillator provides an alternating voltage such that one output is at 2.7 volts positive when the other is at 2.7 volts negative, and vice versa, both voltages being

Fig. 1. Block diagram illustrating the operation of the meterless transistor tester
with respect to earth. One output is applied to the emitter of the transistor under test, whilst the other is applied to the transistor base via RB and to the transistor collector via RC.

If the transistor is a p.n.p. type (and assuming the requisite values in RB and RC) it will be turned on when the collector is negative and the emitter positive. The collector will then be positive of earth. When the polarities at the collector and emitter are reversed the transistor simply becomes non-conducting. Thus the presence of a p.n.p. transistor is indicated by a positive voltage at the collector during the half-cycles from the square wave oscillator when the voltage applied to RB and RC is negative. During the other half-cycles the collector will also be positive because a positive voltage is then applied to RC.

The reverse holds true with an n.p.n. transistor, the collector of which goes negative.

The collector is connected to the non-inverting input of an operational amplifier which has two light-emitting diodes wired in opposing polarity in its feedback loop. If the non-inverting input goes positive the op-amp output follows, lighting the l.e.d. which indicates “p.n.p.”. Similarly, when the non-inverting input goes negative the other l.e.d. lights up, to indicate “n.p.n.”.

If the transistor under test has an open-circuit collector, both l.e.d.’s will be illuminated, because the op-amp output then follows the square wave oscillator. The same will happen if the value RB is too high to allow the transistor to turn on.

BIAS RESISTOR VALUE

We may next investigate the value of RB which is required to cause the collector of the test transistor to be just at mid-rail voltage, i.e. at earth potential, during half-cycles when the transistor is conductive. The full rail voltage is twice 2.7 volts, or 5.4 volts, and we shall assume that the test transistor is a silicon type with a base-emitter forward voltage drop of 0.7 volt. Under these circumstances the current in RC is 2.7 volts divided by RC, whilst the current in RB is 5.4 volts minus 0.7 volts, or 4.7 volts, divided by RB. The gain is IRC divided by IRB, and this is equal to the first expression in Fig. 2. The second equation then gives an expression for RB. The practical circuit RC is 4.3kΩ, leading to the third and fourth equations in Fig. 2.

It will be seen from the last equation that RB in kilohms is equal to gain multiplied by 7.5. Thus, the collector of a transistor with a gain of 20 will be at earth potential when RB has a value of 150kΩ. The corresponding value of RB for a gain of 40 is 300kΩ, for a gain of 60 is 450kΩ, and so on.

The last equation in Fig. 2 is a little inaccurate for germanium transistors, with their base-emitter forward voltage drop of about 0.15 volt, but the error is not in practice of any serious significance. Most transistors encountered these days are, of course, silicon types.

We can now see how the arrangement of Fig. 1 can be employed for first determining the polarity of a transistor and then its gain. Should RB initially be given a relatively low value the test transistor, if serviceable, is bound to be turned on, whereupon one of the two l.e.d.’s will light up to indicate polarity. The value of RB is then increased until the collector of the test transistor passes earth potential, causing both l.e.d.’s to be illuminated. The value of RB at which this occurs then gives an indication of the gain of the transistor.

![Table 2](image)

Fig. 2. Equations developing the relationship between RB and test transistor gain when the transistor collector is at earth potential

WORKING CIRCUIT

The full working circuit appears in Fig. 3. This has two integrated circuits, of which IC1 is a CMOS MC14049 hex inverter/buffer and IC2 is a 741 op-amp. Two of the inverters of IC1, in association with C1, R1 and R2, form a simple square wave oscillator with a roughly equal mark-space ratio running at approximately 2.5kHz. The remaining four inverters are parallel coupled in pairs to increase their current sink and source capabilities, and are arranged to provide complementary polarity outputs from the oscillator. One output connects to the emitter of the test transistor and the other to R6, which replaces RC of Fig. 1.

Fig. 1. (a) The test circuit for testing the gain and polarities of a p.n.p. transistor. (b) The test circuit for testing the gain and polarities of an n.p.n. transistor. (c) The test circuit for testing the gain and polarities of a complementary polarity output device.

RB of Fig. 1 is replaced by R7 and whatever resistance, in R8 to R17, is switched in by S2.

A CMOS device is employed for IC1 as it is necessary to have a symmetrical voltage swing about earth. A t.t.l. device would be unsuitable.

The feedback loop around IC2 includes LED1, LED2 and R4. R3 sets the sensitivity such that 0.1 volt difference between the test transistor collector and earth corresponds to a flow of 10mA in the appropriate l.e.d. The l.e.d. current is limited by R4. When the non-inverting input goes positive the i.c. output follows and LED1 lights up. LED2 is illuminated when the non-inverting input goes negative.

A dual rail supply which is nominally 2.7 volts positive and negative of earth is given by the circuit comprising R5, ZD1, ZD2, C2 and C3. The press-button S1 ensures that power is only demanded from the 9 volt battery during an actual test, thus prolonging battery life. The current requirement is about 16mA, whereupon a PP3 battery is quite suitable.

It may be felt that, bearing in mind the internal output stage of a 741, a dual 2.7 volt supply may be insufficient to allow the l.e.d.’s to be illuminated. No
Fig. 3. Full circuit diagram for the transistor tester. The numbers at the contacts of S2 indicate the corresponding gain figures.

COMPONENTS

Resistors
(All 1/2 watt 5%)
- R1 39kΩ
- R2 68kΩ
- R3 10kΩ
- R4 68Ω
- R5 220Ω
- R6 4.3kΩ
- R7 150kΩ
- R8 150kΩ
- R9 150kΩ
- R10 150kΩ
- R11 150kΩ
- R12 750kΩ
- R13 750kΩ
- R14 750kΩ
- R15 750kΩ
- R16 750kΩ
- R17 750kΩ

Capacitors
- C1 0.01μF type C280 (Mullard)
- C2 20μF electrolytic, 10 V, Wkg.
- C3 20μF electrolytic, 10 V, Wkg.

Semiconductors
- IC1 MC14049 or CD4049
- IC2 741, 8 pin d.i.l.
- ZD1 BZY88C2V7
- ZD2 BZY88C2V7
- LED1 red l.e.d. (see text)
- LED2 red l.e.d. (see text)

Switches
- S1 press-button, push to close, miniature
- S2 1-pole 12-way rotary, miniature

Battery
- BY1 9 volt battery type PP3 (Ever Ready)

Miscellaneous
- Pointer control knob
- 8 pin i.c. holder
- 16 pin i.c. holder
- Battery connector
- Printed circuit board
- Materials for case (see text)
trouble was experienced in this respect with the prototype, which worked satisfactorily with battery voltages down to 6 volts. Taking into account the relatively high slope resistances of 2.7 volt zener diodes at low currents, this would indicate a comfortable voltage margin. The author employed l.e.d.'s of about 0.2in. diameter obtained from Radio Shack of Battersea.

CONSTRUCTION

The construction of the tester can be carried out in any reasonable manner preferred by the reader, and the following details of the author's instrument may be helpful as a guide.

The prototype is housed in a home-made case having internal dimensions of 5in. long by 2in. wide by 1½in. deep. The sides and ends consist of ¼in. wood and the front panel of s.r.b.p. sheet. The sides, ends and front are covered overall with Formica. The back consists of a piece of aluminium with flanges at the end which provide a push fit.

The printed circuit board is mounted on three ¼in. spacers tapped 6BA, these being secured to the s.r.b.p. panel by countersunk 6BA screws whose heads are covered by the outside Formica. The body of S1 is between the front panel and the component side of the printed board, appearing between R5 and ZD2. A miniature press-button was employed here. Larger push-buttons would necessitate increased spacing between the front panel and the board, and a corresponding increase in case depth. The author fitted two transistor sockets on the front of the case, one wired for transistors with a BCE lead-out configuration and the other for transistors with a CBE configuration. The l.e.d.'s are mounted directly on the printed board, being positioned such that their forward ends just fit into two holes drilled for them in the front of the case.

The ten transistors, R8 to R17, are mounted directly to the tags of S2. There is just sufficient space behind the printed board to take a PP3 battery, this being insulated from the copper pattern of the board by a piece of foam plastic sheet. The front panel is marked up with gain figures for S2, these corresponding to the gain figures shown in the circuit diagram of Fig. 3. The legend "PNP" appears alongside LED1 and "NPN" alongside LED2. The indentifying letters "B", "C" and "E" appear, as applicable, beside the transistor holders.

The printed board is reproduced full-size in Fig. 4.

Fig. 4. Component and copper sides of the printed board. This is reproduced full size for tracing.
It is strongly recommended that integrated circuit holders be used for IC1 and IC2, whereupon these two i.c.'s may be plugged in after all soldering is completed and the wiring has been checked. Fig. 6 shows the resistors which are soldered to the tags of S2.

USING THE TESTER

To use the tester first connect the transistor to be checked to the instrument. Set S2 to “20” and press S1. If the transistor is a satisfactory component and has been connected correctly, either the “PNP” or the “NPN” l.e.d. will light.

Keeping S1 pressed, rotate S2 to higher gain figures until both l.e.d.’s light up. The highest gain setting with only one l.e.d. alight is the value taken, the exact value lying between the two figures. If the transistor is not faulty, both l.e.d.’s should be alight when S2 is in the “0” position.

Normally, the transition from one l.e.d. being alight to two being alight should be of an abrupt nature as S2 is moved from one position to the next. However, it may be found with quite a few transistors that the second l.e.d. commences to glow faintly at the setting of S2 which is just below that at which both l.e.d.’s are fully illuminated. This will occur if the gain of the transistor is such that the collector voltage is just short of reaching earth potential. The gain figure is then that at which the second i.e.d. glows faintly, and will be more accurate than is given when the change from one i.e.d. to two i.e.d.’s is of an abrupt nature.
Since it began on 1st July 1967, more than 32,000 members have joined World Radio Club, a popular weekly programme broadcast by the BBC World Service for the benefit of shortwave listeners, and those who want to know more about the technical side of radio communication.

During the past decade, the lifetime of the programme, there has been a fantastic advance in electronics which has reflected in the design of radio receivers and transmitters, broadcasting and recording techniques, and in the world of amateur radio. Throughout this period, World Radio Club producers have done their best to keep its listeners informed of the progress with hundreds of outside interviews at places where the developments were being made. The Club's reporters have been to both national and international exhibitions and talked to representatives on their stands about their particular radio products. Listeners have heard reports from factories, schools, research labs, and the armed forces, in fact they have talked about anything from the world's smallest television set to the giant radio telescope at Jodrell Bank. Frequently outside specialists have been called in to take part in a particular programme along with their regular team. Often an article of special interest has appeared in one of the technical journals and soon afterwards, the author, or a representative of that journal, has been invited to WRC to discuss the subject further.

With this sort of background it was no surprise when the BBC invited, for the first time, an audience of radio enthusiasts to Bush House (HQ BBC World Service) to witness, and celebrate the recording of the 500th edition of World Radio Club, and furthermore, to take part in the programme by putting questions to a panel of experts. As usual, Frank Hennig, G3GSW, was in the chair and the panellists were Bill Wood, Head of the BBC's Engineering Information Department, Desmond Colling of the International Shortwave League, and Henry Hatch, G2CBB well known to listeners because, for many years he has answered members' technical problems in a straightforward and uncomplicated manner.

Questions from the audience about AM or FM, Fading, Amateur call signs, frequency allocations, and the sunspot cycle were adequately answered by the team in the true club spirit which has been the programme's hallmark since it began.

Among the enthusiastic studio audience were many people who had taken part in previous programmes as well as representatives from the technical press, radio clubs, and shortwave organisations. The RSGB President, Lord Wallace of Coslany and General Manager, George Jessop, G6JP, were in the audience and Lord Wallace delighted everyone when he told Frank Hennig that now he is President, everybody calls him George which emphasises the friendly atmosphere which exists throughout the world of amateur radio.

Richard Lambley, G8LAM, who has been producing the programme on a temporary basis read a letter of good wishes from the European DX Council and Reg Kennedy, regular producer, told of the time when his tape recorder belched out smoke while he and former chairman, Peter Baresby, were flying with the RAF in a piston aircraft over the north-Atlantic interviewing the crew for WRC. It was the human items like these that helped to make the evening of February 11th a most enjoyable one for all of us who were there.

The writer would like to add his good wishes for the future of World Radio Club, and to thank the BBC for a wonderful evening.
MASSIVE EXPORT CONTRACT

It is pleasant to report a massive export contract won by companies in the GEC-Marconi Electronics group. The contract, worth £150 million, has been awarded to GEC-Transportation Projects Limited for the provision of electrification, telecommunications, signalling and locomotive equipment operating at 25kV a.c. for Brazil's Federal Railway Network.

As well as system design responsibility, the contract includes the supply of equipment and services for a new "steel railway" which will run from the iron ore centre of Belo Horizonte to the major steel complex at Volta Redonda a distance of some 400 kilometres.

When completed in early 1982 the new rail link will carry quadruple headed trains of up to 12,000 tons at speeds reaching 60 kilometres per hour. It is expected to transport 50 million tons of iron ore each year from Belo Horizonte and Jacobina to Volta Redonda, and it will also provide a limited passenger service between the areas.

In addition, the contract provides for the electrification of the existing line which runs for some 450 kilometres from the port of Sepetiba near Rio de Janeiro via Volta Redonda to Manoel Paio near Sao Paulo.

This latest contract, the largest ever placed by the Brazilian Railway Authority, involves several GEC companies in the supply of equipment. Electrical equipment for the locomotives will be manufactured by GEC Traction Limited; signalling systems by GEC-General Signal Limited; substation equipment by GEC Switchgear Limited and GEC Power Transformers Limited, and cables, microwave radio and multiplex communications equipment by GEC Telecommunications Limited and Telephone Cables Limited. Further, the overhead contact system will be provided by Balfour Beatty Power Construction Limited, and a training programme for the Brazilian operating staff will be arranged by Transmark, the British Rail consultancy organisation.

GEC-Transportation Projects was set up in 1972 to seek comprehensive contracts in the expanding field of railway electrification and metro systems, incorporating equipment manufactured by the GEC product companies. It has certainly achieved an outstanding success in its Brazilian venture.

AID TO INSTALLING FM RADIO AERIALS

A single coaxial downlead can be used to connect both a television aerial and an FM radio aerial, using a new twin TV/FM outlet unit introduced by MK Electric.

This means that a householder can make use of his existing television downlead when he decides to install an FM aerial in the loft or developers can add to the "sellability" of new homes by providing for connection of FM radio as well as television aerials. Two of the new MK 3522 isolated TV/FM socket-outlets units will be required, installed on a "back-to-back" arrangement with one in the normal television aerial outlet position and the other suitably located in the loft. The coaxial downlead is connected to the rear of this second unit, and the TV and FM aerials are connected into the front-plate using normal coaxial plugs.

The twin TV/FM outlet unit will fit into the same box as the normal coaxial TV outlet and the two sockets are clearly engraved "TV" and "FM".

Although suitable for use in this way, the new twin outlet unit has been introduced by MK primarily to meet stringent regulations that have been proposed for multi-outlet aerial installation in blocks of flats etc. It is anticipated that, if introduced, these regulations will call for a 2,000V isolation value for the outlet units.

Recommended retail price of the 3522 isolated TV/FM coaxial socket-outlet is £3.08 plus VAT.

RADIO AMATEURS ASSIST SCIENTIFIC EXPEDITIONS

Following our comments in the January issue regarding the giving of news of activities and expeditions outside the scope of the individual shack or workshop, we are indebted to the latest edition of Region 1 News, the Journal of the International Amateur Radio Union Region 1 Division, for news of cooperation between Italian Radio Amateurs and recent scientific expeditions.

At the beginning of 1976, a team of fifteen Italians explored the King George Islands in Antarctica. This expedition was directed by Italian radio Amateur Remano Cepparo, l1SR. The programme of the expedition included biological studies, geological observations and exploration of some of the Island's mountains. One of the mountain peaks was named "CIMA RADIOAMATORI", to commemorate the very helpful work carried out by radio amateurs in sustaining communications between the expedition and Italy. Radio contact with the expedition was maintained by radio Amateurs from the towns of Monza, near Milan, most of the contacts being on the 14MHz Amateur band.

During July and August of last year, another Italian expedition visited Greenland and they had a volunteer radio operator in 14CDH. The expedition call sign was 14CDH/OX. The base camp was near Umiyamako Muna, close to latitude 72°N, and the radio station was operated from a tent.
EMI LAUNCH NEW PROFESSIONAL AUDIO RECORDING TAPES

EMI Tape Limited, of Hayes, Middlesex, has introduced a new range of professional audio recording tape — the EMITAPE 830 series.

The EMITAPE 830 range is based on a high-output low-noise professional tape developed specifically for high quality reproduction in studio mastering and broadcast applications. Its most significant features are increased high/low frequency magnetic remanence values and an excellent signal-to-print ratio. In addition, the extremely low modulation noise and low head wear properties previously associated with the highly successful EMITAPE 815 broadcast quality tape have been incorporated in the new product.

The new tape initially will be available in three formats: 831 non-backed standard play; 832 matt-back standard play, particularly good for non-pressure pad high-speed spooling; and 833 long play for use with low tension battery recorders, with a range of widths to suit studio requirements.

The 830 series has a much higher magnetic remanence which gives an improved signal to noise ratio of 77dB. This has been achieved by EMI Tape's new oxide formulation and a new type of production process. Reduced intermodulation and third harmonic distortion gives the tape, for instance, less than 4% third harmonic distortion at the 1KHz I.E.C. (International Electro Technical Commission) reference level. To provide a greater built-in overload fail-safe, EMI Tape has improved the headroom to give a maximum output of +8.5dB for 3% harmonic distortion at 1KHz. This high 1KHz output is complemented by a similar output at 10KHz.

NORTHERN RADIO SOCIETIES' ASSOCIATION

The Annual Convention and Exhibition of the NRSA, which is sponsored by radio societies in the North of England, will take place at Belle Vue, Manchester on Sunday, 24th April, 1977.

The doors will open at 11.00 am and there will be a record number of trade exhibitors in attendance, as well as club display stands.

Other highlights will include a Grand Raffle, an Inter-Club Quiz and a Construction Contest (s.a.e. for rules to Mr. John D. Clifford — G4BVE of 10 Arley Avenue, Bury, BL9 5HD).

XEROZA RADIO MOVES TO LONDON

Xeroza Radio, formerly of Bishop's Tawton, Devon, have now removed to new premises at 306 St. Paul's Road, Highbury Corner, London N.1.

They have extensive stocks of electronic components and carry a complete range for radio and electronics constructors.

The business is under the control of Mr. Tom Powell who has had many years experience in the component field.

Mrs. Rita Shepherd, G3NOB, has retired from the position of Honorary Secretary of the Radio Amateur Invalid and Bedfast Club. The new Honorary Secretary is Mr. H. R. Boutle, G2CLP, who is, incidentally, Business Manager of the famous Shuttleworth Collection of aircraft. Mr. Boutle's address is 14, Queen's Drive, Bedford MK41 9BQ.

Messrs Radio Shack, of 161 St. John's Hill, Battersea, London SW11, have informed us that they have on a number of occasions recently been confused with the famous American firm of the same name who are, of course, associated with the Tandy Corporation of Bilston Road, Wednesbury, W. Midlands. This can cause particular difficulty when components or equipment is involved.

We trust that readers will note the distinction to avoid inconvenience to both firms.

APRIL 1977
It is often possible to obtain job-lots of unmarked bipolar transistors at very low cost, whereupon it then becomes necessary to sort these out into n.p.n. and p.n.p. types, and to determine their lead-out functions. Such a process can be very tedious if, say, a multimeter switched to an ohms range is employed to find the transistor polarity, and it can still be excessively time-consuming if a standard transistor gain meter is used. This article describes an extremely simple and inexpensive item of test equipment which not only determines the polarity of a bipolar transistor but also identifies its base lead-out. In consequence, much of the initial sorting of unmarked transistors can be carried out with negligible difficulty and expenditure of time. The test instrument also provides a rough and ready check for transistor serviceability, since it will indicate whether a transistor has an open-circuit or short-circuit junction.

RESOLVER CIRCUIT

The circuit of the polarity/base resolver appears in Fig. 1, and it will be seen that it requires very few components. There are three test terminals, three light-emitting diodes, three resistors, a 3-way rotary switch, a single pole on-off switch and a 4.5 volt battery.

The transistor to be checked is connected to the three test terminals with S2 closed. S1 is then taken through its three positions. If all three l.e.d.'s light up for one position and only one l.e.d. lights up at the remaining two positions, then the transistor is an n.p.n. type and the switch position at which all three l.e.d.'s are illuminated corresponds to the base lead-out. Thus, should all the three l.e.d.‘s be lit when the switch is at position 3, then the base lead-out connects to test terminal 3.

If it is found that all three l.e.d.'s light up at two positions of S1 and a single l.e.d. is lit at the third position, the test transistor is p.n.p. Further, the switch position at which the single l.e.d. is illuminated corresponds to the base lead-out of the transistor.

The currents flowing in the circuit are low and there is no necessity to turn off S2 when connecting a transistor to the terminals. S2 can be turned on at the start of a checking session and turned off at the end. Its function is merely to prevent battery current drain when the instrument is not in use.

The operation of the circuit is quite easy to follow and it is helpful to remember that a bipolar transistor can be looked upon as two junction diodes connected back-to-back, as in Fig. 2. It should also be borne in mind that "conventional current" is assumed to flow from positive to negative, and that it flows in a diode in the direction indicated by the arrow-head which constitutes part of the diode symbol. It also flows in the direction indicated by the emitter arrow-head in the transistor symbol.

Fig. 1. The circuit of the polarity/base resolver. Despite its sophisticated performance this requires very few components.

Fig. 2. Bipolar transistors may be looked upon as two diodes connected back-to-back. The corresponding diodes for n.p.n. and p.n.p. transistors are shown here.
P.N.P. TRANSISTOR

We turn next to the situation which arises when a p.n.p. transistor is connected to the test terminals, as occurs in Fig. 4. Once more we connect the base lead-out to terminal 2 and we shall start by examining the situation when S1 is in position 2.

With the circuit in this state, current passes through R2 and LED2, causing this l.e.d. to light up. Current cannot flow to terminal 1 because the base-emitter junction of the transistor acts as a reverse connected diode. Similarly, current cannot flow to terminal 3 since the base-collector junction also acts as a reverse connected diode. Thus, only LED2 lights up.

When we come to consider the remaining positions of S1, circuit functioning becomes more complex and takes advantage of active transistor operation in addition to passive diode conduction.

Fig. 5(a) shows the situation with S1 in position 1. Current flows through R1 and LED1, and LED1 lights up. The emitter-base junction of the transistor acts as a forward conducting diode and current flows also into terminal 2 and thence into R2 and LED2. LED2 becomes illuminated. Since there is now a relatively high current in its emitter-base junction the transistor turns on and passes collector current to the emitter. With the base taken away, the transistor is turned off, and no current can flow into the base-emitter junction. The p.n.p. transistor may be recognised as being in the common emitter mode.
current, this flowing into R3 and LED3, which also lights up. The consequence is that all three l.e.d.'s are illuminated.

The circuit can be more readily followed if we omit the switch and redraw the circuit of Fig. 5(a) in the manner shown in Fig. 5(b). What we now have can be readily recognised as a common emitter amplifier with base bias from the negative rail being provided via LED2 and R2. The transistor is therefore turned on and causes collector current to be passed via LED3 and R3. Since the base and collector currents are approximately equal the circuit configuration requires only that the transistor has a current gain of unity, and such a requirement will obviously be met by any serviceable transistor.

In Fig. 6(a) we have the switch in position 3, whereupon current flows in R3 and LED3. The collector-base junction of the transistor acts as a forward connected diode and allows current to flow into R2 and LED2. Due to a minor anomaly associated with the bipolar transistor, current also flows from the emitter of the transistor into R1 and LED1. All three light-emitting diodes become illuminated.

To follow this situation more clearly, Fig. 6(b) shows the circuit of Fig. 6(a) rearranged and without the switch. Now, due to the symmetrical construction of a junction transistor it is possible for the device to function as a working transistor with the collector acting as an emitter and the emitter acting as a collector. The current gain offered by a transistor working in this mode is, normally, much lower than that given when the transistor is connected correctly but, in practice, the gain is found to be greater than the unity figure required by the present circuit. In Fig. 6(b) a base current flows in the base-collector junction (with the collector acting as an emitter) whereupon current flows in the circuit connected to the emitter (acting as a collector).

Reviewing the circuit operation illustrated in Fig. 4 to Fig. 6(b), a single l.e.d. lights up when S1 is in position 2 and all three l.e.d.'s light up when S1 is in positions 1 and 3. This identifies the transistor as a p.n.p. type with its base connected to terminal 2.

PRACTICAL POINTS

The author checked the prototype circuit with a wide range of transistors of both polarities, these consisting of modern silicon small signal and power types, and germanium small signal and power types. A few of the germanium transistors were very early types, such as the OC44, OC45 and OC71. All transistors checked out successfully in the manner just described.

Although not encountered by the author, there is a slight risk that some germanium power transistors may pass reverse leakage currents which...
may cause an l.e.d. to be partially illuminated when, properly, it should be extinguished. If this should occur, the partly lit l.e.d. should be considered as being extinguished and the transistor concerned looked upon as a specimen which passes a suspiciously high reverse leakage current. It is possible also that some p.n.p. transistors may not function adequately in the "wrong way round" mode of Figs. 6(a) and (b). Such an eventuality has to be mentioned for completeness but, in the writer's experience, it simply did not happen with any transistor checked by him.

Should it be found that a transistor does not cause illumination of the l.e.d.'s in one of the two manners just described, it is possible that it has a short-circuit or open-circuit junction or that it is, say, a field-effect transistor. A transistor with four lead-outs may be a bipolar type having one lead-out connecting to a shield and to the metal can. This lead-out can be identified with an ohmmeter before connecting the remaining three lead-outs to the test terminals.

The current flowing in each l.e.d. is of the order of 2mA and, assuming a forward voltage drop of 2 volts in each l.e.d., the highest voltage appearing at the test terminals will be 2.5 volts only. These low currents and voltages should not damage any transistors, including field-effect types, connected to the test terminals. In Fig. 5(a) the emitter current of the transistor is the sum of the base and collector currents, i.e. about 4mA. Similarly, the collector current in Fig. 6(a) is about 4mA. Such a current is still more than adequately low to ensure that no damage is caused to the transistor.

The three l.e.d.'s can be any small red types having reasonable sensitivity. Red l.e.d.'s Type 4, as supplied by Doram Electronics, were employed in the prototype circuit, and these give a surprisingly high light output at a forward current of 2mA. However, most other l.e.d.'s should offer a similar performance. With the Doram l.e.d.'s the anode lead-out is shorter than the cathode lead-out. The cathode lead-outs are those which connect to the negative rail.

The unit can be assembled in a small plastic case with S1, S2, the three l.e.d.'s and the test terminals on the front panel. A suggested panel layout is shown in Fig. 7. S1 is provided with a pointer knob, and lines are drawn on the panel linking it with the corresponding test terminals. This gives quick operation and there is no need to show the numbers 1, 2 and 3 on the panel itself. Also affixed to the panel is a card stating that p.n.p. transistors are identified by the fact that all three l.e.d.'s are lit at one switch position, whilst all three l.e.d.'s are lit at two positions for p.n.p. transistors. The card gives a reminder that the base lead-out is identified by three l.e.d.'s for n.p.n. transistors, and by one l.e.d. for p.n.p. transistors.
THE "M5" POCKET RECEIVER

Although this medium wave receiver is small enough to fit into a pocket it incorporates a full size 5 by 3 inch elliptical speaker and is specifically designed for economy of operation. The first two transistors are employed in a reflex circuit which provides a high level of amplification both at radio and at audio frequencies.

Almost all small portable receivers, whether commercially built or designed for home construction, have a weakness, in the author's opinion, in that too small a proportion of the space available is allowed for the speaker and the battery. Miniature speakers do not make a pleasant sound. The quality given by the 5 by 3 in. elliptical speaker used in the present design is far better than that obtainable, say, from the speaker measuring 2¾ in. in diameter. And very small batteries like the PP3 normally employed in such receivers cause expensive running costs unless the current passed is only about 2 or 3mA — hardly practicable if speaker operation is required at anything above a whisper.

The present receiver uses a battery consisting of two HP2 or SP2 cells, giving a nominal 3 volts from which 25mA is drawn. A perfectly satisfactory output volume is obtained for a pocket receiver. For similar results to be obtained from a 9 volt battery a current of about 10mA would need to flow (we are considering total receiver current, not that drawn by the output stage only). At the time of writing, two HP2 cells cost rather more than one PP3. Two SP2's cost less, but these will not give quite the same life as HP2's. According to figures supplied by Ever Ready, HP2 cells will give 205 hours at 25mA for an end point of 25% of the initial voltage, this assuming use at 4 hours per day. Under the same conditions only 18 hours use will be obtained from a PP3 at 10mA. Allowing for the extra cost of two HP2's, the economy of the arrangement used in this receiver is still about 8 times as good as that which would be given by a similar output from a PP3 battery. Which, when all is said and done, is worth having. Who would not jump at a mini which averaged 320 m.p.g.!

SPEAKER

The case of the receiver measures approximately 5½ by 4½ by 1½in., and the set can be carried in a jacket pocket or lady's handbag. It is built around the Doram Electronics 3-4 Ω speaker code number 248-785, which has nominal dimensions of 5 by 3 in. In practice the speaker is a little less than 5½ in. long and is 2½ in. wide. The mounting centres are 125.5 by 39.6mm., or approximately 5in. by 1½ in., whilst the magnet diameter is 3 in. We have been assured by Doram Electronics that, so far as can be reasonably maintained, speakers supplied against the code number just given will continue to have the same dimensions as that used in the prototype.

If a speaker having different dimensions is employed there may well have to be changes in the dimensions of the sections of the red receiver. This comment applies also to speakers having a magnet of different diameter. However, the circuit will work well with any 3 Ω speaker, and constructors who are not interested in miniature design can obtain excellent results using, say, an 8 by 5 in. speaker.

With reference to the name given to this receiver, the design is based on the author's "Miniflex" principle, which has formed the basis of four receivers appearing in earlier issues of this journal. A number of improvements have been made in the design and, of course, the layout and component details are quite new. The choice of title, "M5", is thus understandable.

Constructors are advised to study the diagrams carefully, and to read all the constructional details, before commencing work on the receiver. This will ensure that the parts are assembled together in correct manner.

CIRCUIT DETAILS

The circuit is shown in Fig. 1. The signal is picked up on the ferrite aerial winding, L1, which is tuned by VC1, and is applied to the base of TR1. Capacitor C1 provides a capacitive tap across the tuned circuit and allows reaction in the Colpitts mode to be provided without the necessity for a separate feedback winding. Selectivity is controlled to some extent by the value of C1. A value of 1,000pF gives slightly greater signal strength but with a small reduction in selectivity, whilst 470pF gives very good selectivity but with possibly unsatisfactory reaction at the higher frequen-
Part 1
By
Sir Douglas Hall, K.C.M.G.

The value of 680pF quoted in the Components List gives a good compromise.

TR1 is an emitter follower, and the r.f. signal at its emitter is applied to the base of TR2. At radio frequencies TR2 functions as a high gain common emitter amplifier, producing an output signal across the r.f. choke L2. This is applied to diode D1, which rectifies the signal and applies the detected a.f. back to the base of TR1 via L1. Note that D1 is a silicon diode and that a germanium diode must not be used here. C2 shunts the diode and allows some feedback of the r.f. signal for regenerative purposes.

Once again TR1 functions as an emitter follower and the signal across R1 is applied to the base of TR2 which, at audio frequencies, similarly functions as an emitter follower. Indeed, the two transistors form a Darlington pair at a.f., whereupon the output at TR2 emitter is at very low impedance — of the order of 50Ω. An interstage transformer, T1, is then employed.
COMPONENTS

Resistors
(All fixed values ± watt 5%)
- R1 6.8kΩ
- R2 390Ω
- R3 2.2kΩ
- R4 82Ω
- VR1 220Ω potentiometer, linear (see text)
- VR2 100kΩ pre-set potentiometer, 0.1 watt skeleton, horizontal

Capacitors
- C1 680pF silvered mica
- C2 47pF silvered mica
- C3 0.1µF plastic foil
- C4 100µF electrolytic, 3 V. Wkg., axial (Siemens)
- C5 1,000µF electrolytic, 3 V. Wkg., axial (Siemens)
- C6 100µF electrolytic, 3 V. Wkg., axial (Siemens)
- C7 2.2µF electrolytic, 25 V. Wkg., axial (Siemens)
- C8 47pF silvered mica
- VC1 300pF variable, “Dilemin” (Jackson)

Inductors
- L1 ferrite aerial (see text)
- L2 2.5mH r.f. choke, type CH1 (Repanco)
- T1 Interstage transformer type LT44 (Eagle)
- T2 Output transformer type TT56 (Repanco)

Semiconductors
- TR1 BF167
- TR2 BF115
- TR3 BC169C
- TR4 PN2905 or 2N4289
- D1 1S44

Switch
- S1 d.p.d.t. slide switch (see text)

Speaker
- LS1 3-4 Ω 5 by 3in., code no 248-785 (Iloram)

Miscellaneous
- 2-off HP2 cells (Ever Ready)
- 28-way tagstrip (see text)
- Ferrite rod, 4 by 8in.
- Spring clip, type no. LK-2721 (Lektrokit)
- 2-off control knobs
- 6BA studding
- Spring (see text)
- Materials for case (see text)
- Nuts, bolts, wire, etc.

To give a step-up in voltage (as against the more usual step-down arrangement encountered in transistor circuits), there is in consequence a “free” voltage amplification of 10 times before further a.f. amplification is given by TR3.

TR3 gives a very large degree of amplification and its collector connects directly to the base of TR4, which operates as a Class A emitter follower output transistor. TR4 emitter couples to the primary of output transformer T2, whose secondary couples in turn to the speaker. Pre-set potentiometer VR2 sets the bias current for the base of TR3 and is adjusted such that TR4 passes an emitter current of 23mA. A typical transistor in the TR4 position can be expected to have a current amplification of 150, whereupon a base current of about 150µA will produce the desired emitter current. This base current is also, of course, the collector current of TR3. Since TR3 collector current is only about 150µA, and since it has a current gain of about 500, its input impedance is high and there is no significant damping of the winding of T1 which feeds it. The overall amplification is therefore good as also, within the limitations of the output power available, is the quality of reproduction.

R3 provides negative feedback at d.c. for TR3 and TR4, a.f. feedback being cancelled here by the large

The internal construction of the receiver. The cylindrical assembly at the bottom holds the two HP2 cells which constitute the battery.
The main purpose of C8 is to prevent amplification by TR3 and TR4 of any r.f. signal which may filter through to these two transistors. C8 also provides a little top cut.

Volume and reaction are controlled by VR1. As the slider of this potentiometer approaches the end of the track connecting to C1 regeneration increases. On the other hand, as the slider approaches the end of the track connecting to the input winding of T1 the resistance across that winding reduces until, at zero setting, no audio signal at all is applied to TR3. The overall effect is that of an efficient reaction control combined with an equally efficient audio frequency volume control.

The type of component chosen for T2 is important. The d.c. resistance of its primary must be very low, as is essential when a 3 volt supply is available and only a small voltage drop can be afforded. Initially, the author employed an R.S. Components output transformer type T/T7. This has now been discontinued, but the author mentions the fact in case readers may have one of these transformers in their spares box. A suitable alternative is the Repanco type TT56 output transformer. The Repanco transformer is modified by the removal of its clamp.

Due to the small size of the receiver and other factors, a number of the components have to be specified by make and type. All the electrolytic capacitors are Siemens axial types, these being listed by Electrovalue Ltd., 28 St. Jude’s Road, Englefield Green, Egham, Surrey, TW20 0HB. Potentiometer VR1 is a type P20 component, also available from Electrovalue. One of the two alternatives for TR4, the PN2905, is again stocked by Electrovalue.

Slide switch S1 should be a miniature d.p.d.t. slide switch having fixing centres at approximately 1 in. (25 mm.). A miniature 28-way R.S. Components tagstrip is required, and this can be obtained from Doram Electronics as a 28-way tagstrip type B. The ferrite rod is 4 in. by 1 in. and may be obtained in this size, or can be a longer rod cut down. In the latter instance a V-cut is made with a triangular file all round the rod at the point where it is to be broken and it is then tapped sharply against the bench. The ferrite rod is held by a ¼ in. spring clip, this being a Lektrokit part no. LK2721 which is available (in packets of 10) from Home Radio. Home Radio can also provide 12 in. lengths of 6BA brass studding (threaded rod), which is required for the receiver assembly.

A small spiral spring is required for fitting between the two cells. This can be obtained from a cycle or hardware store, and further details of it are given later.

![Fig. 2. Details of the sections which make up the receiver case](image-url)
CONSTRUCTION

Construction starts with the cutting out of the items shown in Fig. 2. It will be seen that the materials used here are small pieces of 1 in. plywood, 1/8 in. s.r.b.p., and aluminium sheet of any gauge between 16 and 20 s.w.g. First cut out and drill the s.r.b.p. speaker panel and cut out the top and bottom plywood panels. Screw the top and bottom to the speaker panel using five countersunk screws for each plywood piece and then cover this assembly with Fablon of a suitable choice.

Take up VR1. The metal back of the case of this potentiometer makes contact with the negative side of the battery formed by the two HP2 cells, and it will be found that an extension of the plastic spindle protrudes slightly at the back (to couple with the switch in a combined potentiometer and switch). File down this extension, so that the HP2 cell will be able to make reliable contact with the potentiometer back.

Next cut out the two s.r.b.p. sides. The two 6BA clear holes on either side of the spindle hole for VC1 take 6BA bolts which secure the capacitor in place. It will be found that VC1 frame is very close to, or touches, the speaker frame when the sides are assembled, and it may be necessary to shift the 6BA clear holes very slightly to the left, as shown in Fig. 2. This was not needed with the prototype, but the point can be checked at the present state of construction. The orientation of VC1 can be seen in the wiring diagram of Fig. 3.

The fixing holes and dolly slot dimensions for slide switch S1 on the right hand s.r.b.p. panel (again as seen in Fig. 2) correspond to those required by the switch used by the author. They may require slight modification with other switches. When mounted, the body of the switch is on the inside of the s.r.b.p. panel.

The aluminium plate in Fig. 2 provides the battery positive connecting point. The 1/8 in. hole in its centre is not drilled all the way through, and drilling ceases when the tip of the drill just appears. The resulting depression ensures good seating for the battery positive stud. The contact plate is used as a template to mark out the corresponding two 6BA clear holes in the s.r.b.p. panel. Position of the aluminium plate on the s.r.b.p. panel so that there is a 1/8 in. hole at the bottom (to give clearance for the plywood bottom panel) and 1/8 in. clearance on either side, then mark out and drill the holes in the s.r.b.p. panel. Fit the contact plate, and cover both the s.r.b.p. panels with Fablon. A contrasting colour of Fablon for the sides, as against the front, top and bottom, gives an effective finish. The prototype had plain black for the front, top and bottom, and plain yellow for the sides and back (to be described later). Mount VC1, VR1 and S1, and also wire in C1, all as shown in Fig. 3. Then put the two s.r.b.p. panels on one side for the time being.

Make up a sleeve of paper or Fablon about 3 in. long, and put it on the ferrite rod. Close-wind 70 turns of 26 s.w.g. enamelled wire in a single layer on this sleeve, the winding starting about 1 in. from one end of the rod. Anchor the coil ends with tape and put the rod on one side for use later.

Mount the speaker over a piece of thin gauge, using three 1 in. roundhead 4BA bolts and one 1/8 in. roundhead 4BA bolt. Following the view shown in Fig. 3, fit the three 1 in. bolts at the bottom and upper left hand speaker holes, and the 1/8 in. bolt at the upper right hand speaker hole. As will be deduced from the diagram, two tagstrips and the ferrite aerial clip will be mounted on the 1 in. bolts.

![Diagram of wiring and layout of components in the receiver](image)

Fig. 3. Wiring and layout of the components in the receiver. Note that part of the circuit is completed via the clamp feet of T1

In next month’s issue, the concluding article will complete the constructional details for this receiver and will describe the simple setting up procedure required to bring it into full working order.

(To be concluded)
As anyone who has designed a Class B transistor a.f. amplifier will know, one of the main problems is the elimination of significant levels of crossover distortion. This type of distortion is particularly troublesome since it increases with decreasing output power, and it is at low levels that the distortion is most noticeable.

OUTPUT STAGE

A basic Class B emitter follower output stage is shown in Fig. 1. TRA is the driver transistor and the circuit is set up such that under quiescent no-signal conditions its collector potential is approximately mid-way between the positive and negative supply rails. If a signal is applied the collector then goes
Germanium transistors do not become conductive until the base is taken about 0.2 volt forward of the emitter. If TRB and TRC of Fig. 1 were germanium transistors, they would not amplify until the signal at TRA collector passed 0.2 volt positive and negative of the quiescent level. Again, a high degree of crossover distortion would result.

It is to prevent crossover distortion that resistor RB is interposed between the bases of TRB and TRC. The collector current of TRA flows through RB, and the latter can be given a value such that it drops about 1.3 volts (twice 0.65 volt) for silicon output transistors or about 0.4 volt (twice 0.2 volt) for germanium output transistors. Thus, both output transistors are just conductive under quiescent conditions, and respond to small as well as large signal excursions at the collector of TRA. In consequence the crossover distortion is reduced.

It is not, unfortunately completely eliminated. This is because the current gain of the output transistors is lower when they are just conductive than it is when they pass an appreciable collector and emitter current. One way of further reducing the crossover distortion which still remains is to give RB a higher value again, causing the output transistors to pass an appreciable current under quiescent conditions. Such an approach, however, raises further problems.

THERMAL RUNAWAY

If the two output transistors pass a significant current under quiescent conditions there is a waste of supply power, and this is an undesirable feature if the amplifier is battery driven. What is, perhaps, a more important point is that there is an increased risk of thermal runaway.

Should the temperature of the output transistors increase due to normal power dissipation or to a high...
Germanium transistors do not become conductive until the base is taken about 0.2 volt forward of the emitter. If TRB and TRC of Fig. 1 were germanium transistors, they would not amplify until the signal at TRA collector passed 0.2 volt positive and negative of the quiescent level. Again, a high degree of crossover distortion would result.

It is to prevent crossover distortion that resistor RB is interposed between the bases of TRB and TRC. The collector current of TRA flows through RB, and the latter can be given a value such that it drops about 1.3 volts (twice 0.65 volt) for silicon output transistors or about 0.4 volt (twice 0.2 volt) for germanium output transistors. Thus, both output transistors are just conductive under quiescent conditions, and respond to small as well as large signal excursions at the collector of TRA. In consequence the crossover distortion is reduced.

It is not, unfortunately completely eliminated. This is because the current gain of the output transistors is lower when they are just conductive than it is when they pass an appreciable collector and emitter current. One way of further reducing the crossover distortion which still remains is to give RB a higher value again, causing the output transistors to pass an appreciable current under quiescent conditions. Such an approach, however, raises further problems.

THERMAL RUNAWAY

If the two output transistors pass a significant current under quiescent conditions there is a waste of supply power, and this is an undesirable feature if the amplifier is battery driven. What is, perhaps, a more important point is that there is an increased risk of thermal runaway.

Should the temperature of the output transistors increase due to normal power dissipation or to a high ambient temperature, their base-emitter turn-on voltages become decreased, whereupon they are capable of passing under quiescent conditions an increased current. This in turn raises their temperature again, with a consequent further reduction in base-emitter turn-on voltage. The process is self-sustaining and can lead eventually to the transistor temperatures becoming so high that they burn out. The effect is known as thermal runaway.

Partial prevention of thermal runaway can be achieved by replacing RB with a temperature sensitive voltage dropping device such as a thermistor, a diode or a diode-connected transistor. The voltage across the device falls as its temperature increases, whereupon the base-emitter voltages applied to the output transistors decrease. An approach of this nature assists in preventing thermal runaway due to high ambient temperature, although it cannot guard against temperature rise due to power dissipation in the output transistors themselves unless the voltage dropping device is thermally coupled to them.

Another method of reducing the risk of thermal runaway consists of inserting low value resistors, RC and RD, in series with the emitters, as illustrated in Fig. 1. If the output transistor current increases, so does the voltage dropped across the resistors, with a corresponding reduction in the transistor base-emitter voltages. Naturally, some of the output power is wasted in the resistors.

In the amplifier circuit which is described in this article, advantage is taken of a CMOS linear op-amp to provide an output stage having none of the drawbacks which have just been detailed. Both the output transistor bases are connected together, whereupon the risk of thermal runaway is removed and resistors RC and RD are not required. Also, the very high gain of the CMOS op-amp enables a negative feedback loop to be set up which brings crossover distortion down to a negligibly low level.

RADIO & ELECTRONICS CONSTRUCTOR

APRIL 1977
ambient temperature, their base-emitter turn-on voltages become decreased, whereupon they are capable of passing under quiescent conditions an increased current. This in turn raises their temperature again, with a consequent further reduction in base-emitter turn-on voltage. The process is self-sustaining and can lead eventually to the transistor temperatures becoming so high that they burn out. The effect is known as thermal runaway.

Partial prevention of thermal runaway can be achieved by replacing RB with a temperature sensitive voltage dropping device such as a thermistor, a diode or a diode-connected transistor. The voltage across the device falls as its temperature increases, whereupon the base-emitter voltages applied to the output transistors decrease. An approach of this nature assists in preventing thermal runaway due to high ambient temperature, although it cannot guard against temperature rise due to power dissipation in the output transistors themselves unless the voltage dropping device is thermally coupled to them.

Another method of reducing the risk of thermal runaway consists of inserting low value resistors, RC and RD, in series with the emitters, as illustrated in Fig. 1. If the output transistor current increases, so does the voltage dropped across the resistors, with a corresponding reduction in the transistor base-emitter voltages. Naturally, some of the output power is wasted in the resistors.

In the amplifier circuit which is described in this article, advantage is taken of a CMOS linear op-amp to provide an output stage having none of the drawbacks which have just been detailed. Both the output transistor bases are connected together, whereupon the risk of thermal runaway is removed and resistors RC and RD are not required. Also, the very high gain of the CMOS op-amp enables a negative feedback loop to be set up which brings crossover distortion down to a negligibly low level.

THE CIRCUIT

The complete circuit of the amplifier is given in Fig. 3, and it will be seen that this is quite simple and requires few components. The input and driver stages are provided by the CMOS op-amp, which is a CA3130. The output transistors are germanium types rather than silicon, since their lower base-emitter forward voltages permit a slightly higher output voltage swing. They are connected in a complementary emitter follower output circuit. The amplifier will provide an output power of about 300mW into a 15Ω speaker. Higher impedance speakers can also be used but will cause a reduction in the maximum output power. With a 40Ω speaker, for example, the maximum output power is limited to about 125mW. Speakers with impedances lower than 15Ω should not be used.

An input of slightly more than 100mV r.m.s. is required for maximum output, and the input impedance is about 120kΩ. Both these figures apply when the volume control, VR1, is set to maximum. They can be altered to some extent to suit individual requirements by changing component values, and this aspect is discussed later.

The amplifier has a quiescent current demand of approximately 3.5mA from the 9 volt battery, this consisting of the current drawn by IC1 plus a small current in R1 and R2. In the absence of an input signal only leakage current flows in the output transistors. At full output the current consumption is at an average level of around 50mA.

![Circuit Diagram](attachment:image.png)

Components

<table>
<thead>
<tr>
<th>Resistors</th>
<th>(All fixed values 1/4 watt 5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 5.6kΩ</td>
<td></td>
</tr>
<tr>
<td>R2 5.6kΩ</td>
<td></td>
</tr>
<tr>
<td>R3 12kΩ</td>
<td></td>
</tr>
<tr>
<td>R4 220kΩ</td>
<td></td>
</tr>
<tr>
<td>R5 220kΩ</td>
<td></td>
</tr>
<tr>
<td>R6 10kΩ (See text)</td>
<td>VR1 220kΩ potentiometer, log</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 330µF electrolytic, 10 V, Wkg.</td>
<td></td>
</tr>
<tr>
<td>C2 0.1µF type C290 (Mullard)</td>
<td></td>
</tr>
<tr>
<td>C3 150µF ceramic</td>
<td></td>
</tr>
<tr>
<td>C4 680µF electrolytic, 10 V, Wkg.</td>
<td></td>
</tr>
<tr>
<td>C5 100µF electrolytic, 10 V, Wkg.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1 CA3130</td>
<td></td>
</tr>
<tr>
<td>TR1 AC176</td>
<td></td>
</tr>
<tr>
<td>TR2 AC128</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sl s.p.s.t. switch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker (see text)</td>
<td>9 volt battery</td>
</tr>
<tr>
<td>Battery connector</td>
<td>Veroboard, 0.15in. Matrix</td>
</tr>
<tr>
<td>Veropins, 0.15in. type</td>
<td>Input socket (see text)</td>
</tr>
<tr>
<td>Screened wire.</td>
<td></td>
</tr>
</tbody>
</table>

APRIL 1977
All in all, the circuit of Fig. 3 is very versatile and will have many possible uses.

Considering the circuit in detail it will be seen that IC1 is used as a non-inverting amplifier. Both its inputs are coupled via resistors to the junction of R1 and R2, which provides a voltage which is central between the supply rails. C1 is a bypass capacitor.

Since the input impedance of the non-inverting input at lead-out 3 of the I.C. is extremely high, R4 can have any value. The input impedance of the amplifier can, if desired, be altered by changing the values of R4 and the volume control. C2 provides d.c. blocking at the non-inverting input. The 10kΩ resistor, R6, has no significant effect on a.f. performance and is merely a surge current limiting resistor to protect the I.C. if the input is derived from a battery powered pre-amplifier.

C3 is the compensating capacitor for the I.C. and prevents it from breaking into oscillation. No connection is made to lead-out 5 of the I.C. The output is taken from lead-out 6 and is applied directly to the bases of TR1 and TR2. C4 is the output d.c. blocking capacitor, whilst C5 is the supply bypass capacitor for the whole amplifier. S1 is the on-off switch.

NEGATIVE FEEDBACK

Negative feedback from the emitters of TR1 and TR2 to the inverting input of the I.C. is provided by R5 and R3. The voltage gain of the amplifier is equal to \((R3 + R5) / R3\), and this works out as a little under 20 times, or 26dB, with the resistor values specified. The open loop voltage gain of the CA3130 (i.e. the gain without feedback) is extremely high, being typically 320,000 times. Thus, a very large amount of negative feedback is provided in the circuit.

The manner in which the feedback takes up the output base voltage range at which neither transistor conducts is quite simple. Assume that both the non-inverting input and the output of the I.C. are at zero potential. Theoretically, the output transistors are non-conductive and there is no negative feedback.

The non-inverting input now starts to go positive. The slightest positive excursion at the op-amp input will cause its output to swing to the positive level required to cause TR1 to become conductive, whereupon the negative feedback loop will then come into operation. Similarly, the slightest negative excursion of the input will take the op-amp output sufficiently negative to turn on TR2 and cause the feedback loop to be completed once more.

As an input signal passes through zero level there will be an instant when the op-amp has its full open loop gain and its output swings from one transistor base to the other, thereby re-introducing negative feedback and normalising the gain. The input signal range over which the op-amp output changes from one transistor to the other is extremely small, whereupon crossover distortion is virtually eliminated.

The assumption was made just now that the op-amp non-inverting input and output were at zero level. In practice, the op-amp output would not remain steady at zero level but, due to the very high open loop gain, would swing from one transistor base to the other, actuated by the inevitable low noise level at the input.

In the accompanying oscillogram the lower trace shows a 500Hz sine wave applied at a power level of a few milliwatts to a 15Ω speaker. The corresponding waveform at the output of the op-amp is illustrated by the upper trace. The greatly increased gain in the op-amp near the waveform centre can be clearly observed.

CONSTRUCTION

The amplifier is assembled on a piece of Veroboard of 0.15in. matrix having 15 holes by 14 copper strips. The component and copper sides of this board are shown in Fig. 4. Before mounting any components, the two 6BA clear holes are drilled and the three breaks made in the copper strips.

The components and wire links may then be soldered to the board. To avoid damage to the integrated circuit, the soldering iron employed must
have a reliably earthed bit. Being germanium transistors, TR1 and TR2 are more liable to damage by heat than silicon types, and their lead-outs should be soldered reasonably quickly. Verobins are fitted for the external connections to the speaker, the battery, S1 and VR1. R6 is not fitted on the board and is wired between VR1 and the input socket. The latter can be a jack socket, phono socket or any other type of socket preferred. S1 may be ganged with VR1 if desired.

The circuit has a fairly high gain and input impedance, and the input and output are in phase. Screened leads must therefore be used in the input circuit. Otherwise, there could be feedback between the output and input wiring with consequent instability.

A suitable battery is the Ever Ready PP9.

The output quality is well above average for a simple battery operated amplifier, and this is due to the large amount of negative feedback which is employed. The noise level is also very low, as is to be expected when an op-amp provides the voltage amplification. The unweighted noise level of the prototype (input short-circuited) is approximately -80dB.

MODIFICATIONS

If required, the gain and input impedance of the circuit are easily modified. The voltage gain is varied by altering the value of R5, working to the expression for gain which was given earlier. However, R5 should not be given a value greater than 680k Ω as the output quality may then deteriorate. With R5 at 680k Ω the input required for maximum output is only about 35mV r.m.s. Slightly in excess of 2 volts r.m.s. is required at the amplifier output for maximum power.

The input impedance is determined by VR1 and R4. It is desirable for these to have approximately the same value whereupon the input impedance (with VR1 set to maximum) is approximately R6 plus one-half of R4. If the input impedance is reduced significantly the value of C2 should be increased proportionately, as there will otherwise be a loss of bass response. If an electrolytic capacitor is employed here, the negative lead-out connects to VR1 slider. Instability may be a problem if the input impedance is increased, and this can be cured by adding a 100pF capacitor between lead-out 3 of the i.c. and the negative rail. This reduces the input impedance of the circuit at high frequencies and so reduces unwanted feedback to an insignificant level. There is plenty of space for the extra capacitor on the Veroboard panel.

R6 is included to meet the manufacturer's specification that input currents at the inputs of the CA3130 should not exceed 1mA. If the amplifier were preceded by a pre-amplifier with an output coupling capacitor, the situation is feasible in which a current surge could flow at switch-on or switch-off of the pre-amplifier. R6 has a value suitable for a pre-amplifier powered by a 9 volt battery. It should be increased for pre-amplifiers with a higher supply voltage. A value of 15k Ω would be suitable if the pre-amplifier had a 12 volt supply, and so on. As already stated, R6 plays no part otherwise in the functioning of the amplifier.
Electronic 2-state gambling devices which offer a random output when a push-button is pressed have become popular over recent years. Currently, design has reached the stage where the output of a multiblirator is passed, via a press-to-break push-button, to the clock input of a J-K flip-flop. Two light-emitting diodes are driven by the Q and not-Q outputs of the flip-flop, these outputs changing state with each pulse from the multivibrator. There is then a true 50:50 possibility of either i.e.d. being illuminated when the push-button is pressed.

The circuit to be described here incurs a slight regression in design approach because it does not take advantage of the true 50:50 option provided by a J-K flip-flop. On the other hand it is extremely simple to assemble, requires very few components and can be set up for 50:50 operation as closely as can be determined by a multimeter set to an appropriate voltage range. What will be of greater interest to the serious experimenter is the fact that the circuit demonstrates a means of obtaining a 50:50 square wave from a 555 timer when it is connected as a standard astable multivibrator.

CIRCUIT OPERATION

The circuit of the 555 "Heads or Tails" appears in Fig. 1. For the time being components VR1 and R1 should be ignored.

After switch-on at S2, C1 commences to charge via R2 and R3 until the voltage at its upper plate reaches two-thirds of supply potential. The comparator at pin 6 of the i.c. is then triggered, causing the internal flip-flop to change state and pin 7 to go low in voltage. The capacitor then discharges via R3 on its own until the voltage on its upper plate falls to one-third of supply potential. The comparator coupled to pin 2 is then actuated, pin 7 becomes open and the capacitor charges once more via R2 and R3. The oscillations thus continue with the upper plate of C1 alternately rising to two-thirds of supply potential and falling to one-third of supply potential.

The output at pin 3 goes high when the capacitor charges and goes low when the capacitor discharges. When the output is high a current flows through R5 and LED2, whereupon this i.e.d. lights up. With the output low, current flows through R4 and LED1, causing the latter i.e.d. to become illuminated. In consequence the two i.e.d.'s light successively. The output at pin 3 is virtually completely isolated from the internal comparator trigger circuits.

If push-button S1 is pressed, the circuit to pins 2 and 6 of the i.c. is broken. Should this occur at an instant when the capacitor is charging it continues to charge until it reaches supply potential, and the output at pin 3 remains in the high state with LED2 continually lit. Had the circuit been broken when the capacitor was discharging, it would continue to discharge and the output at pin 3 would be maintained in the low state, with LED1 continually illuminated. Thus, pressing S1 causes either LED1 or LED2 to remain lit, and this provides the "heads or tails" function of the circuit. Releasing S1 causes the multivibrator to resume oscillation with LED1 and LED2 alternately flashing.

The circuit runs at a frequency of the order of 7Hz. This is sufficiently slow to enable the alternate illumination of LED1 and LED2 to be perceived but,
with human reaction time at about a third of a second, is just too fast to allow the push-button to be pressed at the appropriate instant by observation of the l.e.d.'s. Assuming that the output at pin 3 is a 50:50 square wave, the selection of either i.e.d. then becomes a random process.

SQUARE WAVE OPERATION

If VR1 and R1, which we have ignored up to now, were not in circuit, the output of the 555 could not, however, be a 50:50 square wave. This is because the capacitor charges via the two resistors R2 and R3 and discharges via the single resistor R3. In consequence the charge section of the multivibrator cycle is longer than the discharge section. It would be possible to have the output approach a 50:50 sine wave by making R2 very much smaller than R3. In the present circuit R2 has a value which is about one-twentieth of R3 and so the charge period is some 5% longer than the discharge period.

It is also assumed when discussing the 555 i.c., that internal flip-flop triggering occurs at precisely two-thirds and precisely one-third of supply voltage whereas, in practice, there must be some tolerance in the resistances in the internal potential divider to which the comparators connect. In the writer's experience, however, there is a remarkably high degree of consistency between the performance of 555 i.c.'s of different manufacture so far as flip-flop actuation is concerned.

Thus, without VR1 and R1, the circuit can be looked upon as providing what closely approaches a 50:50 square wave. When VR1 and R1 are introduced it becomes possible to obtain a virtually true 50:50 output, because all that is required is to adjust VR1 such that the charge period of C1 is slightly reduced and the discharge period is slightly increased. If the output of the 555 were connected to an accurate oscilloscope, VR1 would merely be adjusted to provide the requisite square wave, this normally being given with the slider of VR1 slightly positive of the mid-supply voltage. For the circuit to operate R1 requires a value which is about 5 times that of R3 or greater. VR1 may also be set up with the aid of a multimeter having (preferably) a resistance on its voltage ranges of 10,000 ohms per volt or more, and to see how this can be done it is necessary to examine the output circuit of the 555 i.c.

The output circuit is shown, in slightly simplified form, in Fig. 2, where the output transistors are TRB.

![Fig. 1. The circuit of the 555 "Heads or Tails?"
A feature of the design is that VR1 can be adjusted for a 50:50 square wave output from the 555](image)

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(All fixed values ½ watt 5%)</td>
</tr>
<tr>
<td>R1 470kΩ</td>
</tr>
<tr>
<td>R2 4.7kΩ</td>
</tr>
<tr>
<td>R3 100kΩ</td>
</tr>
<tr>
<td>R4 1kΩ</td>
</tr>
<tr>
<td>R5 1kΩ</td>
</tr>
<tr>
<td>VR1 100kΩ, pre-set potentiometer, skeleton</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 1µF plastic foil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICI 555</td>
</tr>
<tr>
<td>LED1 green i.e.d.</td>
</tr>
<tr>
<td>LED2 red i.e.d.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 push-button, press-to-break</td>
</tr>
<tr>
<td>S2 s.p.s.t., toggle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1 9 volt battery</td>
</tr>
</tbody>
</table>

![Fig. 2. The internal output stage circuit of the 555 timer i.c.](image)
MOBILE AMATEUR RADIO LOG REQUIREMENTS

One of the most pleasing of the changes which have been introduced into the new amateur radio transmitting licence regulations, now being issued to radio amateurs in this country by the Home Office, is that relating to the keeping of log books recording the activities of mobile amateur radio stations. The detail required in the past has been surplanted by much more reasonable — and practical — requirements.

It is also now not necessary to take out a separate licence for mobile work. The new licence covers mobile operation from "any vehicle or vessel, but not on the sea or within any estuary, dock or harbour". It also covers mobile operation "as a pedestrian"! It should be noted that it does not permit operation from an aircraft nor may the station be used from a public transport vehicle. When used as a mobile station in the permitted manner, as indicated above, the suffix "/M" shall be added to the call sign.

The keeping of a Log Book, recording the times and other details of transmissions, has always been an accepted requirement of operating an Amateur Radio Station and is welcomed by all reasonably minded radio amateur operators. The requirements for mobile operation in this connection have, however, been somewhat onerous in the past. Now, however, the new requirements make things much easier and more practical. A separate log book may be maintained for mobile or pedestrian use, distinct from the main station log. "Entries made in respect of calls made when operating from a vehicle or vessel, or as a pedestrian, should be made as soon as practicable after the end of the journey and must consist of date, geographical area of operation, frequency band(s) used and time of commencement and end of journey".

It is interesting to note the inclusion of "Pedestrian mobile operation" along with vehicular mobile operation in the new licence regulations. This has no doubt been done because of the greatly increased popularity of "hand held" miniaturised radio telephony equipment which is now so readily available. It is now commonplace at radio gatherings and meetings, to see portable, miniaturised, amateur radio telephony equipment, slung over the shoulders of those present in the manner and quite as conveniently as the more usually carried camera!

A.C.G.

RADIO & ELECTRONICS CONSTRUCTOR
ANTIQUE AND WAR-TIME RADIO

By Ron Ham

The author is presenting his collection of antique and wartime radio equipment this year from April 1st to October 31st at the Cornwall Aircraft Park at Helston, Cornwall.

Here are some of the items which will be exhibited.

HORN LOUDSPEAKER

The first photograph shows a early receiving installation which comprises an Amplion horn loudspeaker together with a Gecophone "kit" receiver on its right. Just visible on the left is one of the first d.c. mains radios, this being of Philips manufacture. The loudspeaker, with its fancy wooden horn, sold for £5 5s. in 1924.

The second photograph takes us up to the start of World War 2, the set on the left being the aircraft transmitter-receiver type TR9, which was in use with the RAF from around 1938 to the early 1940's. This set, working on short wave frequencies, provided voice communication between aircraft, and between aircraft and ground. The receiver was a t.r.f. design with pre-set regeneration between its r.f. stages and employed the old 6 pin 2 volt filament valves. These were powered by a 2 volt accumulator mounted externally. Inside the housing are two further batteries: a 120 volt high tension battery and a grid bias battery.

To the right is a version of the transmitter-receiver type TR1133 which superseded the TR9. This operated on v.h.f between 100 and 125MHz and the set illustrated has crystal controlled receiver oscillator tuning. The valves are 6.3 volt indirectly heated types and the equipment had 4 pre-tuned channels, selected by a push-button unit in the aircraft cockpit.

TWO "CIVVIES"

The third photograph shows two wartime receivers for which the author has great affection and which have attracted much attention on previous occasions.

The receiver on the left, made in 1943, is the medium-wave-only "WCR" or Wartime Civilian Receiver, and it is still in good voice after all these years. In the author's exhibition held at Worthing Museum last year it pounded out programmes from either BBC Radio 1 or BBC Radio Brighton for 12 hours every weekday throughout the 6 weeks of the exhibition.

What did you get in 1943 for your £12 3s 4d. (including Purchase Tax)? A bare but well made wooden cabinet with the absolute minimum of radio components on the chassis inside. The yellow metal dial (no glass) is inscribed with the words "Home" and "Forces", while underneath are just two knobs for volume and tuning, the on-off toggle switch being mounted on the chassis at the rear of the cabinet. The mixer and i.f. valves are red metallised types, there is a large glass rectifier and an equally large output pentode. Because the set was made in wartime the only identification on the valves is a BVA number. To save both space and power requirements the signal rectifier is a Westector.

The set in the picture spent the latter part of its life in a garden shed, and when the author received it some three years ago he cleaned the chassis and valveholders, oiled the moving parts and used a vacuum cleaner to clean the muck from the
loudspeaker. A cautious switch-on and the set burst into life, and has been going ever since with all the original parts.

NATIONAL HRO

How many readers looking at the second receiver in the illustration will at once say that it is the “good old HRO”? And how right they will be; many of these sets were used during the war on active service and quite a number are still being employed by amateurs today.

The actual set in the photograph was the property of the late Nell Corry (G2YL) and is not one of the later versions with 6.3 volt valves. Instead, this is one of the originals with the old 2.5 volt American UX-based valves.

A full description of the circuit and other details of this early communications receiver appeared in The Wireless World for August 18th 1938 (then published weekly at 4d). Its cost, with 4 coil units but less loudspeaker and power supply unit, was £49.15s.

Any HRO enthusiast will confirm that from the mechanical point of view the HRO is beautifully turned out. The tuning drive and dial are the highlights of the mechanical design; in fact, the effective tuning scale length is about 12 ft.

When Nell gave the author this set, shortly before she died, she warned that it had not been used for 25 years. The author located an old mains transformer made by Rich & Bunday in the mid-thirties which delivered 2.8 volts at 10 amps. Who could not resist coupling together these two old timers? An h.t. supply was soon knocked up and a speaker complete with transformer (the HRO output is at high impedance) connected to the receiver. Imagine the author’s pleasure when the 9 valves all lit up, the “S” meter jerked into life and the set was once again receiving short wave signals. Knowing these old sets, the author had expected it to work, and he is delighted to have this particular model in his collection.
SURGE CURRENTS

by R. J. Caborn

It pays to keep an eye open for the possibility of large surge currents when designing new circuits

In the early 1940's the author was engaged in the repair of American communications receivers. One popular model had what appeared at the time to be a somewhat unusual b.f.o. switching circuit. When the receiver b.f.o. was switched on for the reception of Morse signals the automatic gain control bias line was connected by a section of the b.f.o. switching circuit to chassis. If this was not done the b.f.o. signal applied to the detector would cause a small a.g.c. voltage to be produced, thereby reducing receiver sensitivity.

LIMITER RESISTOR

The apparently unusual feature of this b.f.o. switching circuit appears in Fig. 1, where the switch section shown is that which takes the a.g.c. line to chassis. When the b.f.o. was off the a.g.c. voltage appeared across the 0.05µF capacitor, and this could rise to some 8 volts or so. Turning on the b.f.o. caused the capacitor to be short-circuited via the 100Ω resistor, whereupon the a.g.c. voltage, relative to chassis, was reduced to zero. It should be added that the receiver was, of course, a valve model in which the resistors in the a.g.c. circuit were of the order of 470kΩ or more. Compared with these the 100Ω resistor of Fig. 1 was virtually a dead short.

Why, then, had the designer put it in?

The answer is that it was a current surge limiting resistor. If the switch had short-circuited the capacitor directly there would have been a tiny spark at the switch contacts each time they closed, even from a 0.05µF capacitor charged to only 8 volts. The resultant damage to the contacts would probably have been quite negligible after hundreds of switch operations, but what would have happened when these went into the thousands, as could easily happen over the years? Wisely, the designer took no chances and made certain that the surge current at the instant of switch closure was always safely limited by the 100Ω resistor. The instantaneous surge current with the resistor in circuit could be of the order of 80mA.

Without it, the instantaneous current as the capacitor discharged could well have been several amps.

Most of us have charged an electrolytic capacitor and then either accidentally or purposely discharged it. If the capacitor has a value of 100µF or so and is discharged to several hundred volts, the spark at discharge can sound like a pistol shot. Connecting a switch direct across a charged capacitor of this nature and then closing it would lead to the very early demise of the switch.

So, whenever a circuit requires that a capacitor be rapidly discharged by a switch, it is always wise to insert a current limiting resistor in series, as was done in Fig. 1. In general, this requirement applies to capacitors above some 0.02µF, and it definitely applies to all electrolytic capacitors. For low voltage circuits a current limiting resistor of about 10Ω to 30Ω is usually quite adequate and in most instances a ½ watt component will be satisfactory.

Fig. 1. Part of a b.f.o. switching circuit in a communications receiver. Its main interest lies in the use of a current limiting resistor in the capacitor discharge circuit.
SWITCH-ON SURGES

There is also a surge current when a voltage is suddenly applied to a discharged capacitor. A very common example is shown in Fig. 2(a) in which a 9 volt battery connects to a transistor radio having a capacitor of, say, 200µF across its supply rails. At the instant of switch closure a surge current flows into the discharged capacitor which can be looked upon, at that instant, as being a short-circuit. Fortunately, the magnitude of the current is largely limited by the internal resistance of the battery. With a PP9 battery this is of the order of 10Ω, whereupon the instantaneous surge current at switch-on is a little less than an amp.

The situation changes markedly if the set-owner decides to economise by replacing the battery with a mains power supply, as in Fig. 2(b). If, with this arrangement, the a.c. mains supply is switched on first, a rectified voltage at low impedance is developed across the reservoir capacitor. Turning on the receiver switch can then cause a surge current considerably higher than an amp to flow. Thus, to ensure long life of the receiver on-off switch it is always preferable to close the receiver switch before turning on the mains supply.

Another circuit in which an initial high current surge can flow at switch-on is given by the emitter follower voltage regulator of Fig. 3. At the instant of closing the on-off switch the transistor is turned fully on, and the surge current flowing into the discharged electrolytic capacitor is largely limited by the battery internal resistance only. For applications like this it is a good policy to choose a transistor which is capable of passing a peak collector current of an amp, even if the running current drawn from the emitter in normal use is in the region of, say, 20mA. A good candidate here is the BFY50 which, although it is in a small TO-5 can, has a peak collector current rating of 1,000mA. If a transistor having a maximum collector current rating of the order of 100mA were employed, it is quite possible that it may mysteriously expire one day when the on-off switch is closed.

FILAMENT LAMPS

Apart from capacitors, another cause of heavy current surges is given by filament lamps. It does not always seem to be remembered that the cold resistance of a filament lamp can be lower than one-tenth of its hot resistance, whereupon switch-on surge currents can be surprisingly high. It is, indeed, a salutary exercise to check the cold resistance of several lamps with the aid of an ohmmeter. A 240 volt 100 watt domestic light bulb consumes some 0.4 amp when it is switched on and has a hot resistance of about 570Ω. The cold resistance of such a bulb is, typically, only 40Ω!

Turning to smaller lamps, a 2.5 volt 0.3 amp flash-lamp bulb will have a hot resistance, at 2.5 volts, of about 8Ω. Its cold resistance will normally be lower than 1Ω.

The fact that filament lamps have such relatively low cold resistance values should always be borne in mind when these are switched on by transistors, as occurs in Fig. 4(a). A useful dodge here is to add a resistor across the transistor, as in Fig. 4(b). When the transistor is turned off, the resistor allows a current to flow which causes the bulb filament to be just below the visible glow level. The bulb resistance is then well above its cold value, and less initial surge current flows in the transistor when it turns on and causes the bulb to light up at full brightness.
CATALOGUE
MAPLIN ELECTRONIC SUPPLIES

The new 1977-78 Maplin Electronic Supplies Catalogue has now been published and is readily available to readers who mail the coupon on the back page of this issue.

Considerably bigger than the previous Maplin Catalogue the present edition has no less than 216 large pages measuring 11½ by 8in. with over 1,000 photographs and drawings. Over 30 pages give full details of constructional projects, and a considerable amount of useful information is provided with individual components including in particular linear integrated circuits.

The exceptionally wide range of items listed includes test gear, electronic organ components, TV game i.c.'s, disco effects, technical books, coils, transformers, cases, tools and a full and comprehensive selection of resistors, capacitors and discrete and integrated semiconductor devices. All products are identified by order codes or descriptions and type numbers, and a full index allows items to be located in the Catalogue with the minimum of delay.

Full information on ordering, postage and VAT is given in an early page in the Catalogue, with corresponding notes in French, German and Italian for overseas clients. The new Maplin Catalogue has been carefully prepared and is very well presented, and should be of considerable value to anyone interested in electronics.

TRADE NOTES
LEADLESS CHECKER

The first of the two accompanying photographs illustrates an intriguing item of test equipment which has just been introduced in the United States. Referred to as a Leadless Continuity Checker it is marketed by Transonics Electronic Distributors, 9305 N.E. 11th Street, Vancouver, Washington 98664.

The interesting feature of the Leadless Continuity Checker is that it requires no return lead. The return circuit is made via the body of the person using the device. In the photograph, for instance, the person tracing through the multi-core cable simply puts the finger of one hand on the lead to be traced. The checker is then held in the other hand and its tip is applied to the leads at the opposite end of the cable in turn. When the correct lead has been located an i.e.d. built into the checker lights up.

The checker is also capable of testing capacitors and diodes. One lead-out of the component is held in one hand and the checker in the other; with diodes, both serviceability and polarity may be determined. Other functions associated with a continuity tester can also be carried out.

Since no return wire is required the checker may be conveniently clipped into a pocket like a pen. The voltage at the tip of the checker in the stand-by mode is 0.5 volt and maximum testing current is 11μA.

PAL DECODER

In the second photograph can be seen an assembled PAL decoder card, for colour television receivers, incorporating three new integrated circuits introduced by SGS-ATES. It is stated that these incorporate the highest degree of integration possible within 16 lead i.d.l. packages for the decoder application, and that the external component requirement is reduced by 10 to 20% compared with existing assemblies, thereby giving increased reliability and savings in space and cost.

The i.c.'s concerned are type numbers TDA2140, TDA2150 and TDA2160, and further advantages conferred are low spread of brightness, contrast and saturation controls with a consequent avoidance of pre-setting, a wide range of output black level adjustment, compensation for chroma delay line attenuation by an a.c.c. loop, high noise immunity, and the provision of a composite blanking and burst key pulse generator together with an independent video signal output for a sync generator.

Further information on the three i.c.'s and the associated circuitry is available from SGS-ATES (United Kingdom) Ltd., Walton Street, Aylesbury, Bucks.

APRIL 1977

563
Times = GMT

We commence this month with some news of two clandestine transmissions and some schedules of programmes designed for local consumption in the Domestic Services of the countries concerned which may be heard here in the U.K.

● CLANDESTINE
 The “Voice of Arab Syria” reportedly operates on 9510 from 0800 to 0900 in Arabic. The programmes are, of course, anti-government and critical of the present Syrian Regime.
 The “Voice of the Communist Party of Turkey” now radiates anti-Turkish government programmes on 6200 daily from 0810 to 0840 (Sundays to 0900).

● DOMESTIC SERVICES
 “Radio Pakistan”, Karachi, has a Domestic Service which is best heard here in the U.K. from around 1500 through to 1810 on 3890 and 4735. Programmes from Rawalpindi may be logged from around 1500 to 1800 on 4060 and from Islamabad from 1630 to 1810 on 3330 and on 4785. All this information accords with their published schedule but past experience has taught that the actual frequencies used quite often differ from those announced or published.
 There is also a Regional Network in which programmes in various local languages and English are taken from the above network and radiated from Quetta on 3240, 3270, 3990 and 5980 and from Peshewar on 3155 and on 6080.

● IRAN
 “Radio Iran” with its First Programme may be logged throughout the entire 24-hour period on various channels but that period from 1630 to 2030 is probably convenient for most listeners. The frequencies are 8215, 11930 and 15085, the language of course being Persian (Farsi).

CURRENT SCHEDULES

The frequencies and times quoted here are correct at the time of writing but either can be subject to change at short notice.

● HUNGARY
 “Radio Budapest” broadcasts to Europe in English from 1200 to 1240 (Monday to Friday inclusive only) on 6150, 7155, 9585, 11910, 15160 and on 17785; from 1515 to 1530 (Tuesdays and Fridays only) a Dx programme on 6110, 7200, 7215, 9585, 11910 and on 15160; from 2130 to 2200 on 5965 7150, 7200, 9655, 11910 and on 15415.

● BANGLADESH
 “Radio Bangladesh”, Dacca, presents an External Service in English to Europe from 1230 to 1300 on 11900 and 15270; from 1815 to 1915 on 11890 and 15410.

● GREECE
 “Voice of Greece”, Athens, produces a daily newscast in English from 1920 to 1930 on 6140, 7215 and on 9675.

● NETHERLANDS
 “Radio Nederland Wereldomroep”, Hilversum, operates in English to Europe as follows — from 0930 to 1050 on 5955, 6045, 7240 and 9660; from 1400 to 1520 on 5955, 6045, 11740 (Madagascar transmitter), 15120, 15185 and 17810; from 1830 to 1950 on 6020, 11730 and on 15375; from 2000 to 2120 to West Europe from the Madagascar relay on 11730.

● ROMANIA
 “Radio Bucharest” schedule lists the following programmes for Europe. From 1300 to 1330 on 9690, 11940 and 15250; from 1930 to 2030 on 6150 and 7190; from 2100 to 2130 on 5990 and 7225.

● BULGARIA
 “Radio Sofia” has an External Service in English to the U.K. and Eire from 1930 to 2000 on 6070 and 9700 also from 2130 to 2200 on 9700.

● ALBANIA
 “Radio Tirana” is in English to Europe from 0630 to 0700 on 7065 and 9500; from 1630 to 1700 on 7065, 9480 and on 11985; from 1830 to 1900 on 7065 and 9480; from 2030 to 2100 and from 2200 to 2230 also on the latter two channels.

● CZECHOSLOVAKIA
 “Radio Prague” features programmes in English to the U.K. and Eire from 1900 to 1930 on 5930, 7245 and on 7345; from 2000 to 2030 on 5930 and 7345 and from 2130 to 2200 on 6055.
 The Radio Prague Inter-Programme for Europe in English may be heard on 6055 and 9505 from 0745 to 0800; 0845 to 0900; 0945 to 1000; 1045 to 1100 and from 1145 to 1200 the programme consisting of a feature, news bulletin or news summary.

● TAIWAN
 The “Voice of Free China”, Taipeh, directs a programme in English to Africa, the Middle East and Europe from 2130 to 2230 on 9510, 9600, 11860, 15225 and on 17720.

● PAKISTAN
 “Radio Pakistan”, Karachi, has an External Service in which programmes in English are radiated to Europe as follows — from 1100 to 1115 (a newscast read at slow speed) on 15110 and 17665; from 1815 to 1820 (newscast) on 6115 and 7085 and from 2115 to 2145 (newscast and feature) on 6210 and 7085.
 The World Service directed to the U.K. is as follows — from 0830 to 1100 in Urdu on 15110 and 17665; from 1915 to 2045 in Urdu, from 2045 to 2115 in Sylheti on 6210 and on 7085.
AROUND THE DIAL

CHINA
- Radio Peking on 6645 at 1404, OM and YL in Kazakh in the Domestic Service with a programme for minority groups, scheduled from 1400 to 1455.
- Radio Peking on 6790 at 1357, YL in Standard Chinese to Taiwan from 0830 to 1903 and from 2000 to 0129 on this channel.
- Urumchi on 4970 at 1441, YL in Kazakh in the Domestic Service.
- PLA Fukien on 4380 at 1551, YL in Chinese to Taiwan and other offshore islands, scheduled from 0230 to 1900.
- Radio Peking on 6540 at 1933, OM in Italian in a programme directed to Somalia, scheduled from 1930 to 2000 at this point on the dial.
- Radio Peking on 7620 at 1935, OM with a newscast in English directed to North and West Africa, scheduled from 1930 to 2030 (the programme — not a one hour news reading!).
- Radio Peking on 7385 at 1400 when signing-off with "East is Red", followed by the Tamil programme directed to South Asia, scheduled from 1400 to 1430.
- Wulumqi on 4110 at 1610, OM's in chorus, mandolin-type instrumental music in the Uigher Service.
- Wuhan on 3940 at 1525, classical Chinese music, YL announcer.
- Radio Peking on 6860 at 2025, signing-off with "Internationale" after the programme in Esperanto, scheduled Fridays and Saturdays from 2000 to 0200.
- Wulumqi on 4220 at 1615, OM in Mongolian in the Home Service.
- Wulumqi on 4500 at 1620, YL with arias in Chinese opera.
- Radio Peking on 2460 at 1542, Chinese orchestral music, YL announcer.

TURKEY
- Ankara on 11880 at 1330, local music and songs in a programme for Turks abroad, scheduled from 0400 to 1330 and from 1630 to 2100 on this channel.

INDONESIA
- RRI Palembang on 4855 at 1450, YL with songs in local-style, OM announcer, orchestral music.

PAKISTAN
- Radio Pakistan, Karachi on, 7280 at 1328, interval signal, identification and programme in vernacular.
- Islamabad on 3330 at 0140, YL with song in the Home Service then local-style music programme.
- Karachi on 7085 at 2145, signing-off with choral National Anthem after announcements in English.
- Karachi on 3380 at 1555, OM with songs in Urdu, local-style music. Quetta on 3240 at 1511, YL with song in Urdu, orchestral music, OM announcer.

BURMA
- Rangoon on 4725 at 1410, YL in Burmese, local pop records. Suddenly off without National Anthem at 1415.

KHMER REPUBLIC
- Phnom-Penh on a measured 4908 at 1429, YL in Khmer (Cambodian), songs and music in the distinctive local style.

CAMEROON
- Garoua on 5010 at 1832, OM with the world news in English. Also at 2200 when signing-off with National Anthem and interval singing after epilogue in Arabic.

NIGERIA
- Lagos on 4900 at 2000, interval signal (talking drum), 6 pips, identification and the news in English. They have been logged on this channel since early December.

BRAZIL-1
- Radio Ribra Preto on 3205 at 0535, OM in Portuguese, local songs and music despite the schedule (should close at 0400). Still there as late as 0610 fade-out.
- Radio Clube do Para on 4855 at 2218, OM with a sports commentary in Portuguese.
- Radio Timbira on 4976 at 2126, OM in Portuguese, ads, jingles and identification.
- Radio Poti on 4964 at 2135, OM's with a discussion in Portuguese.
- Emisora Rual on 4948 at 2213, YL with song in Portuguese, OM with a talk at 2215.
- Radio Diif, Sao Paulo on 8095 at 0120, OM with an excited commentary in Portuguese.

VENEZUELA
- Radio Occidente, Tuvor, on 3225 at 2353, Latin American music in typical local style, OM announcer. The schedule of this one is from 1030 to 0300 and the power is 1kW.
- Radio Valera, Valera on 4840 at 0216, OM in Spanish with a long talk about Venezuelan commercial and political affairs.
- Radio Sucre, Cumana, on a measured 4959 at 0225, OM with a political talk in Spanish followed by identification and local-style dance music. The schedule is from 1000 to 0400 and the power is 1kW.
- Radio Libertador, Caracas, on 3245 at 0131, OM with identification in Spanish followed by a political talk about the Presidency. The schedule of this one is from 1000 to 0400 and the power is 1kW. Reportedly, there is a newscast in English from 2200 to 2230 when the writer has never yet succeeded in logging — but hope springs eternal!
- Radio Monogas, Maturin, on 3325 at 0136, oddly enough in parallel with Radio Libertador on 3245 together with other Venezuelan stations on the 60 metre band.

BRAZIL — 2
- Radio Nacional, Brasilia, on 11780 at 2059, which I must confess is a more reasonable hour to listen to South America, with the bell-chime interval signal, identification by OM and the English programme commencing with a newscast mainly composed of items about the Brazilian domestic scene.

ECUADOR
- Radio Quito, Quito, on 4920 at 0325, OM with a local newscast in Spanish with many mentions of Quito.

NOW HEAR THIS
- **PAPUA NEW GUINEA**
- NBC Boroko on 4890 at 2000, National Anthem, OM in pidgin with a newscast till 2010 then signal lost under interference.

APRIL 1977
In this concluding article the assembly of the component panel is described, after which details are given of final wiring and alignment.

COMPONENT PANEL

All the components and the ferrite aerial are mounted and wired up on a plain s.r.b.p. ("Paxolin") panel having the dimensions shown in Fig. 4. This diagram is reproduced full size and may be traced, if desired.

First, the panel is cut out to the desired size by means of a hacksaw, after which the two 6BA clear holes and the holes for component wires are drilled out. A small diameter drill is used for the component wire holes. Since it is possible that the constructor will not obtain a trimmer having precisely the same dimensions as that used by the author, the two holes for TC3 should be marked out with the aid of the actual component to be used. This should be a trimmer having a tag at each end of its body rather than two tags at one end. For greatest accuracy, the constructor is also advised to mark out the holes for the tags and mounting lugs of the oscillator coil and the two i.f. transformers with the aid of the components themselves. The same comment applies to TR2 and TR3. These two transistors have lock-fit pins instead of wire lead-outs, and the pins pass through the holes in the panel which are drilled for them.

The components are mounted on the panel and their lead-outs bent flat against its underside. The oscillator coil and i.f. transformers are held in position by bending their mounting lugs outward against the underside of the board. A similar procedure is adopted with the pins of IC1 and the tags of TC3. The ferrite aerial is secured to the panel by two lengths of single strand p.v.c. insulated wire. These are looped over the ferrite rod, taken through the appropriate holes in the panel, and then each set of wire ends is twisted tightly together so as to firmly secure the rod to the panel. Note that only the insulated wires should be twisted together. If the bare wire itself is twisted together it will constitute a shorted turn which will prevent the ferrite aerial from functioning properly.

When all the components have been mounted, the lead-out wires are cut to length where necessary and soldered together, as shown in Fig. 4. Tinned copper wire of around 22 s.w.g. is employed where lead extensions are required or to bridge wiring gaps. Note that part of the negative supply rail circuit is completed via the mounting lugs of the oscillator coil.

FURTHER WIRING

The component panel is secured to the front panel by means of a bracket having the dimensions shown...
Fig. 4. The component and wiring sides of the component panel. This is assembled on a piece of plain s.r.b.p. board, and is reproduced full size.
in Fig. 5. This is secured to the front panel under the mounting bushes of VR1 and S2. The bracket is made of 18 s.w.g. aluminium. Should it become necessary for the 3in. dimension of the front panel to be increased, the 1¼in. dimensions of the bracket should also be increased by the requisite amount.

All the remaining wiring of the receiver is shown in Fig. 6. P.V.C. insulated wire is employed to couple the front panel and component panel sections together, and this should be kept reasonably neat and short. However, the leads to the speaker should be flexible and about 10 to 12in. long. Switch S2 is any single pole 2 way rotary switch. That employed in the prototype and visible in the photographs was a 4 pole switch with no connections made to three of the poles.

It should be possible to trace out the ferrite aerial connections from Figs. 4 and 6. If any doubt exists this can be dispelled by referring back to the circuit diagram of Fig. 1. The tap in L2 is electrically nearer the earthy end of the coil, which connects to the negative supply rail. If an ohmmeter is available, the resistance between the tap and the earthy end of the coil will be found much lower than the resistance between the tap and the non-earthly end.

The quiescent current consumption of the set is about 7mA, but it rises to many times this value when the receiver is used at high volume levels. In the interest of good battery economy it is necessary to use a fairly high capacity 9 volt battery such as a PP6, PP7 or six HP7 cells in a suitable holder. There is plenty of space for the battery under S2, and a simple bracket can be made up to hold it in place.

ALIGNMENT

The i.f. and mixer-oscillator circuits have to be aligned before the front panel and component panel assembly can be fitted in the case. Alignment commences with the i.f. stages.

Upon initially switching on it should be possible to tune in one or two stations with S2 in the medium wave position. The medium wave aerial coil can be moved along the ferrite rod to peak one of the transmissions. If a multimeter having a sensitivity of 10,000 ohms per volt or more on its voltage ranges is available, this can be connected across VR1 with the positive test lead connecting to the negative supply rail. It should be switched to read voltages of the order of several volts. The receiver is then carefully tuned to a station and the i.f. transformer cores adjusted for a maximum voltage reading.

In the absence of a meter the receiver may be tuned to a fairly weak station and the i.f. transformer cores adjusted for maximum volume. A strong signal cannot be used in this case because of receiver a.c. action.

The i.f. transformers are pre-aligned at the factory and very little adjustment of the cores should be required. Obviously, the cores must not be tampered with prior to the process of alignment. The cores
Fig. 6. The wiring to the components on the front panel. Not shown here is the bracket of Fig. 5. This is mounted behind the front panel on the bushes of VR1/S1 and S2

A further view of the completed receiver. The larger control knob is that for the tuning capacitor

should be adjusted with a proper trimming tool, such as the Denco type TT5. An ordinary screwdriver could damage them.

Trimmer TC2 is adjusted to give the set the correct frequency coverage. If no suitable r.f. signal generator is to hand it is probably best to wait until after dark when Radio Luxembourg on 208 metres can be received. TC2 is adjusted so that this station is received with the tuning capacitor close to its minimum capacitance setting.

If the multimeter is available and is connected across VR1, tune to a consistently strong signal at the high frequency end of the band (the same end as Radio Luxembourg) and adjust TC1 for maximum voltage. Tune to a similarly strong signal at the low frequency end of the band (tuning capacitor vanes nearly fully enmeshed) and move the medium wave coil along the ferrite rod for maximum signal strength. Retune to the high frequency end and re-adjust TC1, then return to the low frequency end and re-adjust the position of the medium wave coil on the ferrite rod. Repeat the procedure until no further improvement can be obtained.

If no meter is available, these adjustments may be made for maximum volume, choosing weak transmissions instead of strong ones.

Carefully tape the medium wave coil to the ferrite rod so that it cannot be accidentally moved from its correct setting.

Put S2 to the long wave position, and set the tuning capacitor to about the centre of its range. Adjust TC3 to accurately tune in Radio 2 on 1,500 metres. Finally, slide the long wave coil along the rod for best reception and then tape it in place. Alignment is now complete and the front panel and component panel assembly can be fitted in the receiver case.

The procedure just described involves no adjustment of the oscillator coil core, which should be correctly set at the factory. If desired, the low frequency end of the medium wave range may be altered by adjusting the oscillator coil core, but this will then necessitate repeating the entire mixer-oscillator alignment process. In general, it is best to leave the oscillator coil core undisturbed, this being particularly the case when an r.f. signal generator is not available.
Whistling contentedly, Dick picked up the only set left on the “For Repair” rack, a 14 inch 625 line black and white television receiver, and carried it over to his side of the Workshop. He plugged it into one of the row of assorted mains sockets at the back of his bench, connected the u.h.f. aerial and switched on. At once the sound channel of one of the local transmitters became audible from the speaker of the set.

As he waited for the picture tube to warm up he glanced cheerfully out of the window. Outside, the warm glow of an April sun permeated the late afternoon sky. It was patent that God was in His heaven and, for the time being at any rate, all was well with Dick’s particular world.

FRAME FAULT

The screen of the receiver lit up to reveal a bright and well contrasted picture which was out of vertical synchronisation. Humming to himself, Dick gazed for a moment at the frames as they rolled downwards, then he turned the set partly round, located the vertical hold control and adjusted it experimentally. He found a critical setting at which the picture remained steady momentarily then he took his hand away from the control.

The frames started to roll upwards.

“Well,” came Smithy’s voice at Dick’s ear, “you’ve picked a nice easy fault.”

“Do you mean this set?”

“I do.”

“How is it easy then?”

“Well, just look at it. You’ve got an excellent picture with a steady line lock. All that’s wrong with it is that there’s a loss of frame sync at or after the sync separator. You couldn’t have it much simpler.”

“Simple you call it? Blimey, the fault could be anywhere. What about the frame timebase?”

“The frame timebase is almost certainly all right,” pronounced Smithy. “Not only were you able to take the frame hold control to correct frame frequency, but you could also adjust it on either side of that frequency. When you had the frames rolling downwards the timebase was running above frame frequency and when they rolled up it was running below frame frequency.”

So the frame timebase is working just as it should do, and its hold control has a good wide range of adjustment. All that the timebase needs is a spot of sync.

“Perhaps you’re right,” admitted Dick grudgingly. “If there are no sync pulses getting to the frame timebase then it has no reference frequency to follow.”

“That would be a true presentation of the facts if we were talking about a horizontal flywheel sync circuit,” Smithy corrected him, “but the situation is different with a frame timebase. Don’t forget that in a conventional frame timebase the frame hold control actually varies the length of the scan section of the timebase waveform, the short flyback section being the same length whatever the length of the scan section. You then adjust the frame hold control so that, without sync pulses, the timebase would run slightly below frame frequency. This corresponds to the scan section of the waveform being a little too long. The sync pulses trigger the timebase into flyback, so that the timebase then runs at sync pulse frequency.”

“Fair enough,” said Dick. “Well, I might as well get the service manual out for this set.”

“There’s no need,” stated Smithy. “I’ve got it here.”

SERVICE MANUAL

Smithy placed the manual in front of his astonished assistant, then opened it at the circuit diagram of the receiver.

“Hell’s teeth,” gasped Dick. “Have you got second sight or something?
First of all you almost completely diagnose what's wrong with this set, and then you produce its service manual out of thin air. I don't get it."

"All that's happened," explained Smithy patiently. "is that I finished my last job for the day just as you were picking up that TV. So I thought I'd do the TV with you, whereupon I first got its service manual out of the filing cabinet. Okay?"

"Yes, I suppose so," grunted Dick reluctantly. "But it seems to me that there's no end of sidling and pussyfooting going on this afternoon."

"Now just stop that," snarled Smithy. "I'm getting more than a bit fed up with your comments about my movements. Let's have a look at this circuit."

"All right then," said Dick, switching off the television receiver and turning his attention to the diagram. "Where's a good place to start?"

"At the vision detector," replied Smithy promptly, as he pointed to the appropriate section of the circuit. "Seeing that we've got a case of missing sync pulses it will be a good plan to trace through from the vision detector, keeping in mind the sync pulse polarity at the subsequent circuit points." (Fig. 1.)

"Well," said Dick, "for a start the 625 line signal has negative modulation with sync pulse tips corresponding to maximum signal amplitude. The vision detector diode is connected so that it passes negative half-cycles, and so the sync pulses in the detected signal will be negative going."

"Very good," remarked Smithy, pleased. "Now, the signal at this stage splits into two directions. In one direction it goes off to the 6MHz intercarrier sound amplifier and in the other it goes to a video amplifier transistor. The intercarrier amplifier won't have any effect on frame sync pulses and so we carry on to the video amplifier transistor."

"The signal splits up in two directions there, too," remarked Dick, his finger tracing out the circuit lines in the diagram. "One direction is from the transistor emitter and the other is from the transistor collector."

"Right," confirmed Smithy. "The signal from the emitter goes to the video output transistor, which then couples to the cathode of the picture tube. Unless we have a really way-out fault we can next eliminate that part of the receiver as well. As a matter of passing interest, you'll see that there's a 6MHz acceptor tuned circuit coupled to the emitter. This is a 6MHz trap, and it prevents the 6MHz intercarrier signal getting to the video output stage."

"The signal we want is from the video amplifier collector," said Dick excitedly. "Look, it couples direct to the sync separator transistor."

"And so it does" agreed Smithy. "Now, the signal going to the video amplifier base had negative going sync pulses. The signal at the collector will be inverted and so it will have positive going sync pulses."

"How does that sync separator work, Smithy?"

"It just amplifies the most positive part of the signal," said Smithy. "If you forget that series 1kΩ resistor in its base circuit for the time being, the 0.22μF coupling capacitor charges up such that the base-emitter junction of the sync separator is fully conductive when the sync pulse tips are present. The signal amplitude is quite high at this point of the circuit, and so the
sync separator transistor is simply cut off by the signal between pulses. (Fig. 2.)

"Then," said Dick slowly, "the sync separator only passes collector current when the sync pulses are present."

"That’s right," agreed Smithy. "All you get at its collector are pulses which appear at the same time as the pulses applied to its base. These must, of course, be negative going."

FLYWHEEL SYNC

"You said to ignore that 1kΩ series resistor just now," said Dick. "What does it do?"

"Not a great deal," admitted Smithy. "In company with the 0.22μF capacitor it offers a time constant which enables the sync separator to handle the signal at its base more readily. Also, it limits peak charging current in the capacitor. Now, let’s see where those negative going sync pulses at the sync separator collector go. In this particular receiver they are passed to a phase splitter stage whose major function is to operate the line flywheel sync section. However, our present interest is with frame pulses so we’ll just give the line flywheel sync section a miss."

"Hey, wait a minute," interjected Dick. "We could at least take a quick look at it."

Smithy glanced at his watch and frowned.

"Well, it will have to be pretty quick, then," he remarked. "As we saw just now we have negative going sync pulses going into the base of the phase splitter. These will be large enough to turn off the phase splitter when they’re present, with the result that we’ll get large positive going sync pulses at the collector of the phase splitter and large negative going pulses at its emitter. These then go to the flywheel sync diodes coupled to the line timebase."

Smithy pointed to the diodes in the service manual diagram. (Fig. 3.)

Those pulses, he resumed, “cause the two diodes to become conductive when the sync pulses are present and to be non-conducting when the pulses are absent. Applied to the centre of the diodes is a waveform derived from the line output stage which has a steeply falling ramp corresponding to the line flyback period and a much less steep rising slope corresponding to the line scan period. When the line timebase is running correctly the steep ramp is applied to the diodes at the same time as they are made conductive by the sync pulses. In consequence, and ignoring the line hold potentiometer for the moment, the voltage at the centre of the two 12kΩ resistors across the diodes becomes the same as that held by the steep ramp when the diodes conduct. This is the control voltage for the line timebase frequency. If the line timebase tries to run too slowly an earlier part of the steep ramp coincides with the sync pulses and the control voltage goes positive. Conversely, if the timebase tries to run too fast the control voltage goes negative. The control voltage is applied via what is effectively a smoothing circuit, which provides the flywheel effect, to the timebase oscillator, and it controls the oscillator frequency in such a manner as to counteract any changes in it." (Fig. 4.)

"What about that line hold potentiometer?"

"Ah," said Smithy, "I was coming to that. The line hold potentiometer
AN AUDIO SIGNAL GENERATOR
for only £14.95!

STAR FEATURES:
- 15Hz-150KHz
- Sine/Square Wave Output
 Variable 0-3V PkPpk
- Very Low Current Consumption,
 9V Btry
- One IC Plus 4 Transistor Circuit
- Smart ABS Case, Drilled and
 Screen Printed
- KIT includes All Components,
 Drilled PCB, Controls, etc.
- Unbeatable Value:
 KITONLY £14.95 (pp 70p)

Owing to heavy demand, there is now a waiting list for six months.

MORSE MADE EASY

BY THE RHYTHM METHOD!

These courses, which have been sold for over 23 years, have been proved many times to be the fastest method of learning Morse. You start right away by learning the sounds of the various letters, numbers, etc., as you will in fact use them. Not a series of dots and dashes which later you will have to translate into letters and words.

Using scientifically prepared 3-speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it. It's as easy as learning a tune.

18 W.P.M. in 4 weeks guaranteed.

The Complete Course consists of three records as well as instruction books. For Complete Course send £5.00 including P.P.I. etc. (overseas surface mail £1 extra).

THE MORSE CENTRE

Box 8, 45 Green Lane, Purley, Surrey.

I enclose £5.00 or large s.a.e. for explanatory booklet.

Name:__

Address:___

Fig. 3. The anti-phase pulses from the phase splitter are applied to the line flywheel sync diodes, causing these to be conductive when the pulses are present.

Fig. 4(a). Here, the pulses cause the diodes to be conductive at a central part of the steep ramp in the waveform from the line output stage.

- **(a)**
- **(b)** If the line oscillator runs too slowly, an earlier part of the ramp is sampled by the diodes, giving a positive control voltage.
- **(c)** A later part of the ramp is sampled if the oscillator attempts to run too quickly.

APRIL 1977 573
setting modifies the voltage present at the diodes when they conduct. It provides a reference voltage which allows the overall circuit to run at correct line frequency, with the frequency still being held steady by the sampling of the waveform from the line output stage."

Smithy stopped talking and looked expectantly at his assistant. "Blimey," said Dick, "you really were quick with that explanation."

"I had to," stated Smithy. "It's missing frame sync pulses we're looking for, not missing line sync pulses. Still, that little sojourn with the line flywheel sync circuit did have one beneficial result. Since the line sync is working, it's obvious that there are positive going sync pulses at the collector of the phase splitter. When the broad frame pulses are transmitted these should be integrated by the following 18kΩ resistor and 2,000pF capacitor, whereupon large positive going frame sync pulses are available for the frame timebase multivibrator."

"Let's take a look at that next," said Dick quickly.

FRAME MULTIVIBRATOR

"Oh, all right," conceded Smithy. "At least it will be more to the point to discuss this than it was to talk about the line flywheel sync circuit. Here's the multivibrator bit."

Smithy indicated another part of the diagram. (Fig. 5.)

"Now," he continued, "this multivibrator controls an output stage which drives the frame deflection coils and which provides its own waveform shaping. All that the multivibrator has to do is to run at the correct frequency and to give scan and flyback periods of the correct length. During the scan period the right hand transistor is cut off and during the flyback period it is turned on. Shall we have a go at it first without sync pulses?"

"Yes please," said Smithy.

"Right," said Smithy. "We can start at a moment in the multivibrator cycle when the right hand transistor is off and is just about to turn on. It's turned off because its base has been taken positive by the 0.22µF capacitor, which is discharging into the resistors connected to the base. Don't forget that the transistors in this multivibrator are n.p.n. instead of p.n.p., as all the previous ones have been. When the right hand transistor starts to pass current its collector goes positive, reducing the current flowing via the 10kΩ resistor to the base of the left hand transistor. The collector current of the left hand transistor reduces, the collector voltage goes negative, and the right hand transistor cut off. The circuit stays in this state for the short period required for the 0.22µF capacitor to charge via the emitter-base junction of the right hand transistor and the 330Ω resistor. This is the flyback period."

Smithy paused.

"That's all nice and easy to follow up to now," commented Dick. "What happens next?"

"As soon as the 0.22µF capacitor becomes fully charged the base current in the right hand transistor reduces and the base goes slightly positive. There is a reduction in collector current, causing the collector to go negative and allow a small base current to flow into the left hand transistor. This is all that is needed to start the reverse changeover in the multivibrator. As soon as the left hand transistor starts to draw current its collector goes positive, and the 0.22µF capacitor takes the base of the right hand transistor positive, completely cutting this transistor off. We have now started the long scan period, with the left hand transistor turned fully on, so that its emitter is negative of the base of the right hand transistor. The duration of this period is the time needed for the 0.22µF capacitor to discharge into the 120kΩ resistor and the 47kΩ pot."

"And that," chimed in Dick, "will be a much longer period than the one when it charged via the 330Ω resistor because the resistance values are a lot higher."

"You've got it," said Smithy. "Also, the length of the scan period is controlled by the 47kΩ pot, which in consequence becomes the frame hold control."

"Right," said Dick, "let's now put in the frame sync pulses."

"They're easy," said Smithy. "As we already know they're positive going, and they're applied via a diode to the base of the left hand transistor. They then turn this transistor off and initiate the flyback period a little earlier than it would otherwise start. This assumes, of course, that the 47kΩ pot is adjusted so that the frame scan period without sync pulses is a little longer than the period when sync pulses are applied."

Smithy stopped and Dick gazed at the circuit diagram of the television receiver with enhanced understanding.

"I certainly," he remarked, "know my way around this circuit a lot better than I did before."

Smithy gave a mock bow.

"Our earnest aim," he intoned, "is to provide satisfaction for our clientele."

"Indeed. Now, as you said earlier on, the frame multivibrator must be working all right. And there must be positive going sync pulses at the collector of that phase splitter transistor."

"Correct."

"So that only leaves the components
in between."

"Which," pointed out Smithy, "consist of one 18kΩ resistor, one 2000pF capacitor, one 0.1µF capacitor and a diode. With, perhaps, a spare 18kΩ resistor in the 470kΩ resistor connected to the diode. I told you it was an easy one."

FAULT LOCATION

"With a bit of luck I'll be able to find it with an ohmeter," pronounced Dick. "Anyway, here goes."

He connected the receiver from the mains and removed its back. After that he pulled his battered multimeter towards him, switched it to an ohms range and adjusted its set-zero control.

"I'll leave you to get on with it for a minute or two," said Smithy. "I've just got to finally screw up the back on the set I finished before I came over here."

Smithy walked back to his bench to complete his work, while Dick located the 18kΩ resistor connecting to the collector, and the emitter with the transistor, simultaneously. He reasoned that as one side of this connected to two capacitors he would get an accurate reading of its value by simply applying its test prods to the resistor lead-outs. This he next proceeded to do. (Fig. 6(a)).

The testmeter indicated 1.2kΩ.

"Smithy," he called out happily, "I've drawn blood first go! The 18kΩ resistor is reading low in value."

Jubilantly he picked up the soldering iron and applied it to the printed board, after which he carefully removed one of the resistor lead-outs from the board. Unknown to him, Smithy now returned and was standing alongside him. As a routine check, Dick connected the testmeter prods to the 18kΩ resistor, which now had one of its lead-outs free of the circuit.

The meter showed 18kΩ.

A grin passed over Smithy's face and he moved quietly to the spares cupboard then returned, just as quietly, to his assistant's side.

Frowning, Dick soldered the resistor back in place on the board and measured its resistance once more. Again the testmeter indicated 1.2kΩ.

Puzzled, Dick decided to check elsewhere. He next applied his testmeter between the receiver chassis and the junction of the 18kΩ resistor and the 2000pF capacitor. The meter indicated zero ohms. (Fig. 6(b)).

"Ah," muttered Dick to himself, "that's more like it."

This time he unsoldered one lead of the capacitor from the board. He applied the testmeter prods to the capacitor and was rewarded again with a reading of zero ohms.

He unsoldered the remaining capacitor lead and removed it from the board. Dick Smithy reached forward and presented him with a new 2000pF capacitor.

"Oh thanks, Smithy," said Dick absently.

He bent the capacitor leads so that they would fit into the holes in the printed board, then suddenly stopped. A look of alarm spread over his face.

"Hey, what happened then?"

"I gave you a new 2000pF capacitor."

Dick turned and pointed a trembling finger at the Serviceman.

"You've done it again," he accused. "Not only have you let more creep up on me, and by my knowing, but you've jumped one step ahead of me in fixing this set. There's something supernatural about you today, Smithy. It's either that, or you've got a time machine. For, you can make little leaps back and forward in time."

"I just exercise," stated Smithy modestly, "a little informed foresight."

"Informed foresight?" repeated Dick incredulously. "The way you're acting you should be able to see into the middle of next week. I tell you, you're getting decidedly spooky. First of all, you've started gliding soundlessly around all over the place and when you get within my range, you just... haver! And how on earth were you able to hand me a new capacitor just after I'd found out that the one in the set was short-circuited?"

"I guessed," explained Smithy, "that the 2000pF capacitor in the set was shorted when the 18kΩ resistor read low when it was connected to the board and then showed its correct value when one of its leads was disconnected. Pretty well the only component which could cause these two readings was that 2000pF capacitor."

"But," protested Dick. "how could that capacitor cause the low reading even if it was shorted?"

"Because it's connected to chassis, and the other end of the 18kΩ resistor couples via a 330Ω resistor to the positive rail. In many transistor TV circuits there is quite a low resistance between a positive supply rail and chassis because of base bias networks and similar resistive circuits between the two. So these were effectively connected across the 18kΩ resistor by way of the short-circuited capacitor."

Dick continued to gaze suspiciously at the Serviceman.

"Well, fair enough," he remarked eventually. "But I hope you're not going to get up to any more tricks like that. This has been an extremely unsettling afternoon."

TEAMWORK

With which words Dick once more picked up his soldering iron and fit the new capacitor to the board. After snapping off the excess lead-out wires on the copper side of the board, he turned the set round, plugged it into the mains again and switched it on.

After a period the cathode ray tube reproduced the picture which was fairly locked in both the horizontal and vertical directions. Dick checked the frame hold control, to find that this had a good and very satisfactory lock-in range. It was obvious that the frame
sync pulses were now finding their way, fully integrated and completely unobstructed, to the multivibrator in the frame timebase.

"There you are, Smithy," said Dick triumphantly, turning to his side. "Another set finished and..."

But Smithy had vanished.

Unnerved, Dick gazed around the empty Workshop. There was suddenly a rattle at the door handle, after which Smithy entered, rubbing his hands together briskly.

"Where the heck," asked Dick, "did you disappear to?"

"To my usual port of call," replied Smithy innocently. "I tend to pop out there now and again throughout the day. Ah, I see that that TV is working all right now. We did a good job there."

"We?"

"We," confirmed Smithy cheerfully. "There's nothing to beat teamwork between two people, where each one knows precisely what the other one is up to."

And it has to be recorded that Dick, on hearing this estimable observation on the part of the Serviceman, for once had no reply to offer at all.

Fig. 6(a). Dick initially checked the resistance of the 18kΩ resistor in the frame sync pulse integrating circuit following the phase splitter. Part of the frame multivibrator is also shown here.

(b). Dick's second check consisted of applying his testmeter to the 2,000pF capacitor.

I should imagine that I am in company with most electronically minded home constructors when I admit to the fact that I am something of a hoarder. I just can't bring myself to throw out things unless they have a nuisance value which definitely outweighs any advantage they may possess. Into this last category fall such obvious items as broken down capacitors and resistors which have shifted in value. The rest remain.

Although this means that quite a lot of space is cluttered up with components and hardware for which there is no apparent use, the availability of the odd part can at times be of considerable help in solving some of the more unusual problems that arise. Let me give a few examples.

POWER SUPPLY SWITCH

Amongst my equipment is a variable voltage power supply, the mains input of which is turned on and off by means of a double pole rotary toggle switch. When, some time ago, I turned the power supply on at the start of a working session the internal insulation between the two switch poles broke down, causing an impressive crack and the untimely demise of the cartridge fuse in the mains plug. What was obviously required was a new switch, but I just didn't have on hand a replacement of the same type. This fitted in a 6in. front panel hole, whilst all I had available were standard sized dolly operated toggle switches requiring a larger panel hole. I didn't particularly relish the idea of filing the existing panel hole wider to take one of these. One reason was that the rotary switch knob matched in with the remaining control knobs on the
valveholders, the latter being mounted with the tags uppermost. Obviously, no connection was made to one of the valveholder tags. The resulting appearance was admittedly rather non-technical but the valveholders adequately served their purpose in providing what were effectively 9-way circular tagstrips.

I also keep scraps of 0.1in. Veroboard if these are not too small. They are ideal as templates for marking out and even drilling the holes in a printed board for d.i.l. integrated circuits or their holders.

And so it goes on. It is quite amazing what uses one can find for odd parts, particularly those which have hung over from old valve days. As for things like bolts, nuts and similar items, my collection goes back to the early 1950's. But then, who heard of a radio construction enthusiast who ever threw away a single nut or bolt?

A SOCIAL NOTE

Looking back over some of my jottings of 12 months ago, I detect a welcome change which has been brought about by the increasingly large numbers of colour television receivers installed throughout the country. In those earlier days of black and white TV's, one of the perils of being known as someone connected with electronics was being approached by acquaintances who wanted their television sets repaired on the cheap. It was surprising how many people, at that time, were prepared to drop the most outrageous hints in order to jol you into fixing some clapped-out old monochrome receiver.

Not so nowadays, I'm happy to say. Anybody who has a colour TV regards it with the utmost veneration, and the last thing he wants is someone who doesn't wear a professional service engineer's hat tinkering around with its innards. And so you can relax and talk about electronics as much as you like, without being subject to the blandishments of those television owners whose sets "have only got a wire loose".

A pleasant change indeed.

TRANSISTOR TYPE NUMBERS

You would think that, if two transistors have the same type number, they should be identical regardless of the manufacturer. This is not always the case, however, and occasional differences tend to creep in.

An example I bumped into recently is concerned with the BFY60, BFY51 and BFY52 "family" of transistors. These are n.p.n. silicon planar transistors intended for general purpose industrial applications. They are listed by Mullard, in whose data they are described as being housed in a TO-5 can. They are also listed by Texas Instruments, who describe them as being in a TO-39 case!

The Mullard and Texas Instruments data on the transistors are virtually identical and each version of the transistor has the same lead-out layout, with the collector connected to the can. In practice, there isn't a great difference between the TO-5 and TO-39 encapsulations, both of which have the usual locating lug. Whereas the width of the TO-5 can is 8.20 to 8.50mm, the width of the TO-39 can is 7.75 to 8.51mm, and other dimensional discrepancies are of the same minor order.

Still, it's a little disconcerting when one first encounters two different encapsulations for the same transistor.

Another transistor which appears in more than one guise is the n.p.n. 2N3404. This is listed by American General Electric and appears also in the old Brimar lists, and the lead-outs appear in the order: base, collector, emitter. It is listed also by Sescosam, however, who show the lead-out order as: collector, base, emitter.

It is very rarely that incongruities of this type crop up. I remember one popular f.c.t. whose manufacturer, some years ago, issued data sheets in which the drain and source lead-out identifications were transposed. In this instance the difference between the two sets of data didn't really matter as, in practice, the f.c.t. seemed to work quite happily connected either way round!
WORKSHOP AIDS

TEST INSTRUMENT RANGE

C. E. Hammond & Co. Ltd., 105 Oyster Lane, Byfleet, Surrey, announce the availability of the following Leader Test Instruments: Model LDC-821 Digital Frequency Counter with the following features: Automatic control of trigger level; Easy-to-read display tubes, unlike 7-segment indicators; Four gate times for good resolution; High sensitivity — only 50mVrms input required; Compact construction. Model LAG-120 Audio Generator with the following features: Wide frequency range — 10Hz to 1MHz with flat output response; Synchronizing with an external frequency source is possible when required; Compact construction requires only a small space on the bench. Model LMV-186A Stereo AC Millivoltmeter which has been developed especially for voltage measurement from two separate inputs at similar levels. Model LEM75 Electronic Multimeter with the following features: Battery operated for portability; Mirror-backed scales for accurate readout; Measures both DC and AC currents to 300mA; Tilt stand for easy viewing.

VERO WIRE KIT

Vero Electronics Ltd., have improved their Verowire® prototyping system by the addition of a number of items.

The system itself is designed for the fast and easy construction of prototype breadboards or short production runs. Interconnections are made by means of a polyurethane-insulated wire, passed through a wiring pen. This enables fine wiring to be achieved quickly and in a single operation. Soldering of the whole board can likewise be consolidated into a single task, since the heat of the solder melts the wire insulation, which acts as a flux, avoiding the repetitive and time-consuming cut-strip-route-solder routine.

The Verowire® kit now contains spools of wire in four different colours to facilitate the identification of wires. Each spool contains 40 metres of 0.15 mm. diameter wire, rated at 0.030 amps. A soldering iron, Order Code 22-0176E, is now available for use with Verowire. This iron is fitted with 1.8 metres of twin core mains cable, and is notable for its very low current leakage.

Full details of the improved Verowire® system are available in a new leaflet from Vero Electronics, Industrial Estate, Chandlers Ford, Eastleigh, Hampshire.
SMALL ADVERTISEMENTS

Rate: 8p per word. Minimum charge £1.00
Box No. 20p extra

Advertisements must be prepaid and all copy must be received by the 4th of the month for insertion in the following month’s issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers. Replies to Box Numbers should be addressed to: Box No. 20p, Radio and Electronics Constructor, 57 Maidan Vale, London, W9 1SN.

WANTED TO PURCHASE: All early books on radio, preferably before 1925. Box No. 282.

MAINS TRANSFORMERS, 240V Pri. Two separate secondaries, 71V at 800mA each, £1 each plus 35p p&p. NF Electronics, Church Lane, Flax Bourton, Bristol.

SERVICE SHEETS for Radios/TV’s etc. 50p and s.a.e. Catalogue 20p and s.a.e. Hamilton Radio, 47 Bohemia Road, St. Leonards-on-Sea, Sussex.

HOW TO BUILD a cheap set of good quality speakers. Leaflet 20p plus s.a.e. Ex-TV speakers, 3 ohm, 50p plus 25p post/pkg. Circuit diagrams back to 1980, 25p each plus s.a.e. Reply to: R.U.I., 19 Reginald Road, Eastney, Portsmouth, Hants. PO4 9HL.

WANTED: Large and small quantities of transistors, L.C.’s, displays, etc., etc. Call any Saturday to: 306 St. Paul’s Road, London N.1. Telephone: 01-359 4224.

SIX 7-SEGMENT LED DISPLAYS £1. Ex-equipment but guaranteed in arrays of 6, with data. Mr. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

60kHz MSF RUGBY RECEIVERS BCD time-of-day output. High performance PLL 5V operation, pulsating LED. Kit or assembled instrument available. Prices £14.08-£23.47. Details: Toolex, Sherborne, Dorset.

FOR SALE: Fuzz kit £1, AC128 10p, C60’s 60p. All inclusive. Delos Electronics, 76 Ber Street, Norwich, Norfolk.

TV REPAIRS SIMPLIFIED. Full repair instructions individual British sets £4.50; request free circuit diagram. Stamp brings details of unique TV publications. Auserec, 76 Churches, Larkhall, Lanarkshire.

GRIMSBY ELECTRONICS, LAMBERT ROAD, GRIMSBY: For components, cases, Veroboard, surplus, etc. by return. Lowest prices. Bargains list Sp. (Callers Saturdays only).

(Continued on page 581)
Use the NEW Strip-fix Plastic PANEL SIGNS

★ SET 3 - Wording - WHITE
★ SET 4 - Wording - BLACK
Over 1,000 words and symbols, covering more than 300 terms, in each set
Illustration of actual size = RADIO

★ SET 5 - DIALS
6 sheets containing one Large and two Medium scales, Large Horizontal Tuning scale, Frequencies, 12 Control Panels

- Easy to fix
- Stapled in booklet form
- Designed to hang above workbench
- Pocket for loose cuttings
- Professional finish

PRICE
SET 3: 75p
SET 4: £1.00
SET 5: 38p
(P. & P. 7p per set)
ALL PRICES INCLUDE V.A.T.

The Perfect Transfer for the Home Constructor

To Data Publications Ltd., 57 Maida Vale, London, W.9 1SN

Please supply Panel Signs as follows: Set 3 Set 4 Set 5 (Tick which set is required)

NAME ..
ADDRESS ...

(BLOCK LETTERS PLEASE)
COLLECTORS’ ITEMS: Bound volumes of The Wireless World (which was then published weekly) for 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938 and 1939 (nine months only for this year due to outbreak of war). Two volumes per year, total of 18 volumes. All in very good condition. Offers invited. Box No. G319.

THE RADIO AMATEUR INVALID & BEDFALST CLUB is a well established Society providing facilities for the physically handicapped to enjoy the hobby of Amateur Radio. Please become a supporter of this worthy cause. Details from the Hon. Secretary, Mrs. Rita Shepherd, 59 Paintain Road, Loughborough, Leics., LE11 3LZ.

WANTED: Plug for the 6 volt d.c. socket on the Bush TP60 Cassette Tape Recorder. Box No. G326.

FOR SALE: Heathkit DX60 Phone-CW Transmitter, with H10 80-2M VFO Unit. Heathkit 5-band receiver HR10 for AM, CW and SSB. £50.00. s.a.e. for details. — Box No. G329.

FOR SALE: 108-136MHZ Receiver. Size 5in x 3in x 2in. Pocket size. Easily adjusted to tune over 144MHz band with good sensitivity. £16.50 post and packing paid. Romak Engineering Ltd., Dept. RE, 10 Hibeh Road, Macclesfield, Cheshire SK10 2AB.

JOIN THE INTERNATIONAL S.W. LEAGUE. Frees services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. — both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, Monitor, containing articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazines, etc., £3.75 per annum. (U.K. and British Commonwealth) overseas £10.00 or £4.00. Secretary ISWL, 1 Grove Road, Lynden, Glos., GL15 5JE.

MULLARD COMPONENTS, Send s.a.e. for free list to P.M.S. Dept REC6, PO Box 6, Crawley, Sussex, RH10 6LH. (Continued on page 583)
THE OPEN DOOR TO QUALITY

4th ISSUE INCLUDES NEW METERS AND SWITCHES as well as items from advanced opto-electronic components to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts continue on many purchases. Access and Barclaycard orders are accepted.

SEMI-CONDUCTORS • COMPONENTS • ACCESSORIES • TOOLS

FREE POSTAGE on all C.W.O. mail orders over £2 list value (excluding VAT) in U.K., add 15p handling charge.

MULLARD FERRITE CORES — LA3 100 to 500 kHz, 75p; LA5 30 to 100 kHz, 100p; LA7 10 kHz, 100p LA13 for W.W. Oscilloscope, £2.00.

SPECIAL OFFER — Metalised Polyester Capacitors by Eric Mullard, etc. Values include: 01/150V, 01/250V, 015/160V, 022/160V, 033/160V, 047/160V, 068/160V, 1/160-250V, 22/160V, etc. This is a bargain not to be missed. 100 for £3.00.

TRANSISTORS — All branded BC147, BC148, BC149, BC157, BC158, BC159, BF194, BF195, BF196, BF197, 10p each or 100 for £8.50.

Please note all prices include UK Postage and appropriate VAT @ 8% or 12%.

XEROZA RADIO
306 ST. PAUL'S ROAD, HIGHBURY CORNER, LONDON N1
Tel: 01-226 1489

A CAREER IN RADIO

Start training today and make sure you are qualified to take advantage of the many opportunities open to the trained person. ICS can further your technical knowledge and provide the specialist training so essential to success.

ICS, the world's most experienced home study college, has helped thousands of ambitious men to move up into higher paid jobs — they can do the same for you.

Fill in the coupon below and find out how!

There is a wide range of courses to choose from, including:

CITY & Guilds Certificates
Telecommunications Technicians
Radio TV Electronics Technicians
Electrical Installations Technicians
Electrical Installation Work
Radio Amateurs
MPT Radio Communications Cert.
EXAMINATION STUDENTS — GUARANTEED COACHING UNTIL SUCCESSFUL

TECHNICAL TRAINING

ICS offer a wide choice of non-exam courses designed to equip you for a better job in your particular branch of electronics, including:

Electronic Engineering & Maintenance
Computer Engineering/Programming
Radio, TV & Audio Engineering
Electrical Engineering, Installations & Contracting

COLOUR TV SERVICING

Technicians trained in TV Servicing are in constant demand. Learn all the techniques you need to service Colour and Mono TV sets through our new home study course approved by leading manufacturers.

POST THIS COUPON OR TELEPHONE FOR FREE PROSPECTUS

I am interested in ____________________________

Name ____________________________ Age _______

Address ____________________________

ICS Accredited by CACC Member of ABCC

To: International Correspondence Schools, Dept. T850, Interest House, LONDON SW8 4UJ or phone 01-822 9911 (all hours)

HAM RADIO

A Practical Guide and Handbook
KENNETH ULLYETT
26 illustrations £4.50

Without the use of mathematics, circuit diagrams or scientific formulae, the author initiates the amateur in setting up a communications receiver which, in perfect conditions, span the globe for shortwave listening. Exchange QSL (message-received) cards, technical examinations, setting up transmitters and handling morse and continuous wave codes are also included.

MAKE YOUR OWN ELECTRICITY

TERENCE MCLAUGHLIN
33 illustrations £3.95

Learn to make and control your own power supply with simple, economical generating equipment. Full construction details and circuit diagrams are provided for efficient harnessing of the wind, sun and water as well as oil and other available sources.

DAVID & CHARLES
Brunel House Newton Abbot Devon

Management Information Systems

An instruction Manual for Business Students
Deals with the underlying principles of systems and is a companion volume to "Data Processing" by Oliver & Chapman.

45 pages. Price 75p including postage

From:

D. P. PUBLICATIONS, 4 AMPOR CLOSE WINCHESTER, HANTS.

For the Radio Amateur

HAM RADIO

Radio & Electronics Constructor

582

I SHALL BE PLEASED TO SUPPLY your components for projects in this magazine. State your requirements for a quotation. Barras Electronics, 11 North Street, Coventry, Warwickshire.

FREQUENCY LIST TRANSFERS. We have a limited supply of sheets of Dial Frequency Transfers in black. Short Wave frequencies 1.8Mc/s to 32Mc/s and 144Mc/s and 146Mc/s. Includes amateur band marker frequencies at 100ke/s points and other short wave frequencies from 2 to 32 Mc/s at every 500Kc/s points. Each frequency is repeated. Two sheets for 5p., five sheets for 10p., postage 7p. Data Publications Ltd., 57 Maida Vale, London, W9 1SN.

SURPLUS SEMICONDUCTORS. All new and marked. OC28, OC29, BD181, BDY20, BD116, RCA40411, 50p each. AU110, R2008B, 1p each. AF118, AC176/K, 25p each. TAA630Q (G8 decoder) £2. Box No. G331.

PERSONAL

JANE SCOTT FOR GENUINE FRIENDS. Introductions to opposite sex with sincerity and thoughtfulness. Details free. Stamp to: Jane Scott, 3/Con North St. Quadrant, Brighton, Sussex, BN1 3GJ.

SPONSORS required for exciting scientific project. Norwich Astronomical Society are building a 30" telescope to be housed in a 20' dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational, Educational. You can be involved. Write to: NAS Secretary, The Manse, Back Lane, Wymondham, Norfolk.

IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads. Why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadslands future. Further details from: — The Hon. Membership Secretary, The Broads Society, "Icknield," Hilly Plantation, Thorpe St. Andrew, Norwich, NOR 85S.

SMALL ADVERTISEMENTS

(Continued from page 581)

PLAIN-BACKED
NEW STYLE
SELF-BINDERS

for your other magazines

(max. format 7¼" x 9¼")

The "CORDEX" Patent Self-Binding Case will keep your copies in mint condition. Issues can be inserted or removed with the greatest of ease. Specially constructed Binding cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for, and the Cords will always remain taut and strong. It is impossible to over-stretch the springs, as a safety check device is fitted to each.

COLOURS: MAROON OR GREEN

(If choice not stated, colour available will be sent)

PRICE £1.15 P. & P. 30p

Owing to heavy demand please allow 27 days for delivery

Available only from:—

Data Publications Ltd.
57 Maida Vale London W9 1SN

APRIL 1977

583
RADIO & ELECTRONICS CONSTRUCTOR

Single Copies
Price 35p each, postage 11p
Issue(s) required ...

Annual Subscription
Price £5.50, post free, commence with.................................issue

Bound Volumes:
Vol. 27. August 1973 to July 1974 Price £2.40, post & pkg 75p
Vol. 28. August 1974 to July 1975 Price £2.75, post & pkg 75p

CORDEX SELF-BINDERS
With title, 'RADIO & ELECTRONICS CONSTRUCTOR' on spine,
maroon only Price £1.20, post & pkg 30p
With no title on spine, maroon Price £1.15, post & pkg 30p
With no title on spine, green Price £1.15, post & pkg 30p

Prices include V.A.T.

DATA BOOK SERIES
DB5 TV Fault Finding, 132 pages Price 90p, P. & P. 18p
DB17 Understanding Television, 504 pages Price £3.25, P. & P. 60p
DB19 Simple Short Wave Receivers 140 pages Price 80p, P. & P. 18p

STRIP-FIX PLASTIC PANEL SIGNS
Set 3: Wording — White Price 75p, P. & P. 7p
Set 4: Wording — Black Price £1.00, P. & P. 7p
Set 5: Dials Price 38p, P. & P. 7p

Prices include V.A.T. on Panel Signs

I enclose Postal Order/Cheque for..............................in payment for

NAME
ADDRESS...

...(BLOCK LETTERS PLEASE)

Postal Orders should be crossed and made payable to Data Publications Ltd.
Overseas customers please pay by International Money Order.
All publications are obtainable through your local bookseller

Data Publications Ltd., 57 Maida Vale, London W9 1SN

PLEASE MENTION THIS MAGAZINE WHEN WRITING TO ADVERTISERS
Screening, or shielding, is employed to prevent unwanted signal radiation or pick-up, or unwanted coupling. In (a) a stray capacitive coupling exists between two equipment signal points, X and Y; this is almost completely removed in (b) by the metal screen (shown, as is customary, in broken line). Both points now have a stray capacitance to the equipment chassis, and virtually none with each other. Complete capacitive screening is achieved by enclosing one point in a metal casing, as in (c). These are examples of electrostatic screening.

The two radio frequency coils in (d) can have an inductive, or magnetic, coupling between them which is much greater than the stray capacitive coupling. One coil is placed in a metal screening can in (e); eddy currents induced in the inside surface of the can produce a magnetic field opposing that due to the coil and very nearly cancel it out. Complete isolation between the two coils is given in (f), where both are in cans.

Eddy current magnetic screening is less effective at low frequencies and an inductive component may then be screened by enclosing it in a can of high permeability metal (i.e. metal in which a changing magnetic field flows readily). The magnetic field around the component, or an external field impinging on it, flows readily in the screen and is largely prevented from passing through. In (g) a microphone transformer is so screened.

In (h) a non-magnetic metal shim, which does not form a complete turn, has been interposed between the primary and secondary of a mains transformer. This provides electrostatic screening between the windings. Screened cables are shown in (i) and (j).
The new Maplin Catalogue is no ordinary catalogue...

We stock some super digital clocks. A mains driven clock with alarm, snooze and all the features you could expect. A digital clock with automatic display change, when you switch the engine off. A very accurate clock that switches on at a preset time and off at a preset time – if you’ve got a tape recorder there’s no need to miss your favourite programmes ever again.

The book section contains over 150 titles of books about electronics, radio, TV, Hi-Fi etc. Browse through the pages and choose from some of the best titles around including a superb set of books that will teach you electronics by experimentation! (Foot of catalogue page 142)

Catalogue includes a very wide range of components: hundreds of different capacitors; resistors; transistors; I.C.s; diodes; wires and cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; stylus; test equipment; boxes and instrument cases; knobs, plugs and sockets; audio leads; switches; loudspeakers; books; tools – AND MANY MANY MORE.

SEND THIS COUPON FOR YOUR COPY OF OUR CATALOGUE ON APPROVAL! Price 50p – SEND NO MONEY NOW
Please rush me a copy of your brand new 1977/78 catalogue by return of post. Only if I am completely satisfied that it is worth every penny will I send 50p within 14 days of receipt.
If I am not satisfied, I may return the catalogue to you within 14 days without obligation. I understand that I need not purchase anything from your catalogue should I choose to keep it.
NAME
ADDRESS

Maplin Electronic Supplies P.O. Box 3, Rayleigh, Essex, SS6 BLR

DON’T DELAY POST COUPON NOW. IT COULD BE THE BEST 50p YOU’VE EVER SPENT

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices – our latest special offers (they save you pounds) – details of new projects and new lines. Send 30p for the next six issues (5p discount voucher with each copy).

ELECTRONIC SUPPLIES
P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR
Telephone: Southend (0702) 715155

Call at our shop: 284 London Road, Westcliff-on-Sea, Essex (Closed all day Monday) Telephone: Southend (0702) 47379