500mw WORKSHOP AMPLIFIER

3 BAND SHORT WAVE PRESELECTOR

ALSO FEATURED
INTEGRATED CIRCUIT SUPERHET—Conclusion
ANNUAL INDEX—Volume 28
Each £3 unit of Home Unit Insurance gives you protection up to the limit shown.

This is the simplified insurance you have been waiting for. Not just cover on the contents of your home but a package of personal protection you and your family need. And it's how we save you so much money: just ONE policy to issue instead of nine! You can build up to the cover you need by additional units (or ½ units after the first) up to a maximum of five. So simple. So easy. Apply to your Broker, Agent or local office of a General Accident company.

The Home Unit Policy can replace your existing insurances and remember - as you buy more possessions just add more Home Units at any time.

THE GENERAL ACCIDENT FIRE & LIFE ASSURANCE CORPORATION LTD
Metropolitan House, 35 Victoria Avenue, Southend-on-Sea, Essex, SS2 6BT

Please send me further particulars of the Home Unit Insurance.

Name
Address

It pays to be protected by a General Accident company

20/9468
DENCO (CLACTON) LIMITED
355-7-9 OLD ROAD, CLACTON-ON-SEA, ESSEX

Our components are chosen by Technical Authors and Constructors throughout the World for their performance and reliability, every coil being inspected twice plus a final test and near spot-on alignment as a final check.

Our General Catalogue showing full product range
DTB4 Transistor & Valve circuitry for D.P. Coils
DTB9 Valve Type Coil Pack Application circuitry
MD 1 Decoder Circuitry for Stereo Reception

All post paid, but please enclose S.A.E. with all other requests in the interests of retaining lowest possible prices to actual consumers.

I. Understand electronics.
Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.

(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.
Learn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure, without obligation to:
BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL, Dept AX 775
P.O. Box 156, Jersey, Channel Islands.
NAME ____________________________
ADDRESS ____________________________

JULY 1975
"I MADE IT MYSELF"

Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner than you would dream possible.

What a wonderful way to learn - and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating Techtron Course, you learn by building!

You build a modern Transistor Radio - a Burglar Alarm. You learn Radio and Electronics by doing actual projects you enjoy - making things with your own hands that you'll be proud to own! No wonder it's so fast and easy to learn this way. Because learning becomes a hobby! And what a profitable hobby, because opportunities in the field of Radio and Electronics are growing faster than they can find people to fill the jobs!

No soldering - yet you learn faster than you ever dreamed possible. Yes! Faster than you can imagine, you pick up the technical know how you need. Specially prepared step-by-step lessons show you how to read circuits - assemble components - build things - experiment. You enjoy every minute of it!

You get everything you need. Tools. Components. Even a versatile Multimeter that we teach you how to use. All included in the course. AT NO EXTRA CHARGE! And this is a course anyone can afford. (You can even pay for it by easy instalments).

So fast. So easy. this personalised course will teach you even if you don't know a thing today!

No matter how little you know now, no matter what your background or education, we'll teach you. Step by step, in simple easy-to-understand language, you pick up the secrets of radio and electronics. You become a man who makes things, not just another of the millions, who don't understand. And you could pave the way to a great new career, to add to the thrill and pride you receive when you look at what you have achieved. Within weeks you could hold in your hand your own transistor radio. And after the course you can go on to acquire high-powered technical qualifications, because our famous courses go right up to City & Guilds levels.

Send now for FREE 76 page book - see how easy it is - read what others say!

Find out more now! This is the gateway to a thrilling new career, or a wonderful hobby you'll enjoy for years. Send the coupon now. There's no obligation.

POST TODAY FOR FREE BOOK

Home of British Institute of Engineering Technology

LATEST BOUND VOLUME
No. 27

of

"Radio & Electronics Constructor"

AUGUST 1973 to JULY 1974

Comprising
772 pages
PRICE £2.40 P&P 50p

BOUND VOLUME No. 25
(August 1971 to July 1972)

BOUND VOLUME No. 26
(August 1972 to July 1973)

PRICES

VOL. 25
£2.00 per volume. P&P 50p

VOL. 26
£2.10 per volume. P&P 50p

Limited number of these volumes still available.

We regret all earlier volumes are now completely sold out.

Available only from

DATA PUBLICATIONS LTD.,
57 MAIDA VALE, LONDON, W9 1SN

www.americanradiohistory.com
THE MODERN BOOK CO

PRINCIPLES OF TRANSISTOR CIRCUITS
by AMOS. 1975 Edition
Price £3.50

110 OPERATIONAL AMPLIFIER PROJECTS
FOR THE HOME CONSTRUCTOR
by R. M. Marston
PRICE £1.95

BASIC MATH COURSE FOR ELECTRONICS
by H. Jacobowitz
PRICE £1.65

SOLID STATE HOBBY CIRCUITS
by R.C.A.
PRICE £1.25

THE AUDIO HANDBOOK
by G. J. King
PRICE £5.30

OPERATIONAL AMPLIFIER PROJECTS
FOR THE HOME CONSTRUCTOR
by R. M. Marston
PRICE £1.95

BASIC MATH COURSE FOR ELECTRONICS
by H. Jacobowitz
PRICE £1.65

SOLID STATE HOBBY CIRCUITS
by R.C.A.
PRICE £1.25

THE AUDIO HANDBOOK
by G. J. King
PRICE £5.30

ALL PRICES INCLUDE POSTAGE
We have the Finest Selection of English and American Radio Books in the Country
19-21 PRAED STREET (Dept RC) LONDON W2 INP
Telephone 01-723 4185

CHINAGLIA
PROFESSIONAL QUALITY
TEST EQUIPMENT

THE MINOR

33 RANGES
20kΩ/V d.c.
4kΩ/V a.c.

WITH

- ROBUST CLASS 1.5 PRECISION MOVEMENT
- ACCURACY 2.5% D.C. AND 3.5% A.C.
- 12 MONTH GUARANTEE
- SELF-POWERED AND POCKET-SIZED
- OPTIONAL 30kV D.C. PROBE

PRICE £16.30 Inc. VAT (P. & P. 80p)
PROBE £8.80

For details of this and the many other exciting instruments in the Chinaglia range, including multimeters, component measuring, automotive and electronic instruments please write or telephone:

CHINAGLIA
(U.K.) LTD.
19 Mulberry Walk, London
SW3 6DZ
Tel: 01-352 1897

JULY 1975
COMPONENTS

HOBBYIST - PROFESSIONAL - DOMESTIC - SURPLUS - INDUSTRIAL
JUST A FEW OF OUR BARGAINS ARE LISTED BELOW - SEND STAMPED
ADDRESSED ENVELOPE FOR A QUOTE ON OTHER REQUIREMENTS.
PAY US A VISIT. OVER 90% OF STOCK BELOW QUANTITY
WHOLESALE PRICE. RETURN POSTAL SERVICE UNLESS CHEQUE.

THANK YOU FOR YOUR ORDER.

710

THE RADIO SHACK
161 ST. JOHNS HILL, BATTERSEA, LONDON S.W.11
Open 9.30 a.m. till 8 p.m. Monday to Saturday Phone 01-223 5016
also Sunday afternoons

ROYALE & ELECTRONICS CONSTRUCTOR

710

Component List

Components

Valve Bases
- Printed circuit B9A - B7G...
- Chassis B7 - B9G - B7A...
- Shrouded chassis B7G - B9A...
- B8A - B9A chassis - B12A tube...

Speaker, 6" x 4", 50 ohm, ideal for car radio etc. £1

Tag Strip - 6 way 3p | **Wrist Compass** 9 way 5p Single 1p 30p with Needle Lock

Switches
- Pole | Way | Type
- 4 | 2 | Sub. Min. Slide 18p
- 6 | 2 | Slide 20p
- 4 | 2 | Lever Slide 15p
- 2 | 2 | Slide 10p
- 1 | 3 | + off Sub. min. edge 10p
- 1 | 3 | 13 amp small rotary 20p
- 2 | 2 | Locking with 2 to 3 keys £1.50

Piano Key Switch Unit
- 5 lever, interlocking 2 pole mains + 3 pole 2 way + 3 of 6 pole 2 way £1.50

Computer and Audio Boards
- Varying panels with Zenor, Gold Bond, Silicon, Germanium, low and high power transistors and diodes, Hi Star Resistors, Capacitors, Electrolytics, Tolumns, Pot cores, Chokes, etc.

Switches
- SKertain Presets
- Clear Plastic Boxes for component storage or projects, sliding lid, 13" x 18" 10p

Knobs
- Silver metal push on with pointer, or white plastic, grub screw with pointer and silver centre 8p each.
- 1" Diam. with 11" skirt spun aluminium grub screw fixing. 1.5" x 18" 30 each.

ZM1182A Indicator Tube
- 0-9 linear end view. Rectangular Envelope 170V 2-5mA £2.00

Resettable Counter
- English Numbering Machines Ltd.
- Model 4343-159-898

Resistors
- 1/2 watt 1p
- 1 watt 2p
- Up to 5 watt wire 10p
- 10 watt wire wound 12p
- 15 watt 14p

Pot
- Log or Lin carbon 13p
- Switched 27p
- Dual Pots 36p
- Dual 5 switch 50p
- Lin wire wound 7p
- Slider Pot 25p
- Dual slider 35p

Thermistors
- VA1008, VA1034, VA1039, VA1040, VA1055, VA1068, VA1082, VA1100, VA1077, VA1005, VA1026 1p

Relays
- 12 volt S.P.C.O. octal mercury wetted high speed 75p
- R.O. 3000 type, 1000 ohm coil, 4 pole c/o 60p
- 12 volt d.p.c.o. heavy duty octal 80p
- Boxed GE C788 valve £3

Electrolytics MFD/Volt. Many others in stock
- 70-200-300-400-500-600
- Up to 10V 25V 50V 75V 100V 250V 350V 500V

Bulgin
- 10 4p 5p 6p 8p 9p 12p 16p 20p
- 25 4p 5p 6p 8p 9p 15p 20p
- 50 4p 5p 6p 8p 13p 18p 25p
- 100 5p 6p 10p 12p 19p 20p
- 250 9p 10p 11p 17p 28p 85p £1
- 500 10p 11p 17p 24p 45p
- 1000 13p 17p 40p 75p £1.50
- 2000 23p 37p 45p

Indicators
- Bulgin 6676 red, takes M.E.S. bulb 20p
- 12 volt red, small pushfit 20p
- Mains neon, red, pushfit 20p

Capacitor Guide - Maximum 500V
- Up to .01 ceramic 2p
- Up to .001 poly 3p
- Up to 1000PF silver mica 5p, 1,200PF up to .01 silver mica 10p. 18p up to .25 poly etc. 4p
- 15p up to .68 poly etc. 5p

Trimmers
- 20p each
- 100PF Ceramic, 30PF Beehive, 12PF PTFE
- 2500PF 750 volt, 33PF MiN, Air spaced 5PF, MiN, Air spaced, 50PF Ceramic

Connector Strip
- Belling Lee L1469, 4 way polythene. 3p each
- Strong grey plastic box same design as die cast all 1/8" x 2/8" x 1/2"

Main Drops
- 36 + 79 ohm 8p
- 66 + 66 + 158 ohm 8p
- 66 + 66 + 137 ohm 25p
- 17 + 14 + 6 ohm, 266 + 14 + 193 ohm 25p
- 50 + 40 + 145 ohm 25p
- 285 + 575 + 145 + 35 ohm 35p
- 25 + 35 + 97 + 59 + 30 ohm
- 5/5" x 23" Speaker, ex equipment 3ohm 30p
- 2 Amp Suppression Choke 5p
- 3x2x1/4"
- PAXOLINE 2p
- 4x1/4" x 1/4"
- 2 for 1p
- 220K 6 100 ohm 3 watts resistors 4p
- Valve Retainer Clip, adjustable 2p

Output Transformers
- Sub-miniature Transistor Type 25p
- Valve type, centre tapped or straight 40p

3 pin din to open end. 1yd twin screened lead 35p
- Whiteley Stentorian 3 ohm constant impedance volume control way below trade at £1
- Drive Cord 1p per yd.
MAIL ORDER CUSTOMERS
ONLY ADD 8% V.A.T.

MAIL ORDER CUSTOMERS
ONLY ADD 8% V.A.T.
NEW STYLE SELF-BINDER

for “Radio & Electronics Constructor

The “CORDEX” Patent Self-Binding Case will keep your issues in mint condition. Copies can be inserted or removed with the greatest of ease. Rich maroon finish, gold lettering on spine.

Specially constructed Binding Cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated and the Cords will always remain taut and strong. It is impossible to overstitch the springs, as a safety check device is fitted to each.

PRICE £1.00

including V.A.T.

Available only from:

Data Publications Ltd.

57 Maida Vale London W9 1SN

RADIO & ELECTRONICS CONSTRUCTOR
Bargains in Semi-Conductors, components, modules & equipment.

Bargains from our FREE Catalogue
20 large pages, filled with real bargains in transistors, I.C.s, components, equipment, etc. Send large S.A.E. with 7p stamp for your FREE copy of 6th Edition by return. Meanwhile, for prompt delivery order from this month's adv.

TRANSISTOR PACKS ALL 50p EACH

B79
4 H4007 S.S. Rec.
diode-1.000@IV
H38
6 Integrated circuits
4 gates B M.C 962
1 amp. plastic
Red Switches, 1"
long 9.6 dia. High
speed P.O. type
B11
10 BD131/BD132 Complementary
Mixed Diodes, Gem.
Gold bonded, etc.
Marked & Un-
H35
108
marked
Short Lead Transistor.
H38
30 unmarked
N.P.N. Silicon Planar

UNMARKED & UTESTED

B15
1 Germanium Transis-
H20
15 tor-90N2 PNP.
B66
150
Type N.P.N. Silicon
Diodes Min. glass type
B84
100
D.O. 0.7
H34
15 Glass equiv. to OA200,
DIAG
B86
100
Sil. Diodes Sub. Min.
H67
10 NPN & PNP

SILICON POWER TRANSISTORS-

40 WATT PLASTIC

Type
Gun VEC Pre
40N1
15 15 NPN 20p
40N2
40 NPN 30p
40P1
15 15 PNP 20p
40P2
40 PNP 30p
80 WATT

90N1
15 15 NPN 26p
90N2
40 NPN 36p
90P1
40 40 PNP 26p
90P2
40 PNP 36p

NEW X-HATCH GENERATOR Mk.2

Essential for Colour TV. Disposal of 4 patterns. Featuring plug in I.C.'s and a more sensitive sync. pick-up circuit. The case virtually unbreak-

able—ideal for the engineer's toolbox

P & P add 3 lp Complete

over 1,000,000 TRANSISTORS IN STOCK!

CAPACITOR DISCHARGE IGNITION UNITS

Transistoured into Fit Improves performance, cuts fuel costs

P & P add 27p EACH £7.93* Ready built unit only £9.93*

SUNDRY

MNFRS AM/FM CHASSIS

To clear. NO Instructions or tuning

sticks. Send postcard for price. Discard

each £1

TERMS OF SERVICE

V.A.T. Prices shown do NOT include V.A.T. Please add 7\% to total value of your order, except for items marked with a * or (b) for which

V.A.T. rate is 8\%.

POSTAGE Except where stated, add 22p for postage & packing in U.K. Overseas—add £1, any difference being charged or refunded.

PAYMENT With order, Cheque or money order. Minimum value £1. You can also pay by ACCESS.

IMPORTANT—Every effort is made to ensure accuracy of prices and

description of items. Separating this advertisement and going to press. Prices are subject to alteration without notice.

STIRLING SOUND AUDIO MODULES come to you as basic units assembled on PCBs enabling you to add required components in

layouts of your own choice. Modules are tested and boxed before despatched and include well printed instructions.

AMPLIFIER MODULES

Pre-amplifiers: tone control

SS.100 Active tone control unit to provide bass, treble, balance and volume controls £1.80

SS.101 Pre-amp for ceramic cartridge, tape and radio £1.50

SS.102 Pre-amp for low output magnetic cartridge, tape and radio. With R.F.A.A. connection... 180 at 1K £2.25

POWER AMPLIFIERS

SS.103 Compact I.C. amp. with 3 watts R.M.S. output. Operating voltage 6 to 22. Size 3 1/2 x 2 £1.75

SS.103-3 Stereo versions of above using one I.C. each channel £3.25

SS.105 A compact and useful all-purpose amplifier which will run excellently on a 12v supply. With 5 watt output, two make a good stereo amp. Size 2 1/2 x 3 £2.25

SS.110 Similar in size to SS.105 but with a 10 watt output. Ideal for many domestic and small-size P.A. applications. Operates from 26 to 32V £2.75

SS.140 Excellent 40 watt R.M.S. (into 4 ohms) hi-fi amplifier. L.F./N ratio better than 75dB. THD better than 0.2\%. Power requirements—45V. d.c. With 0.15" centre edge connections. Two cars to bridge drive 80 watts R.M.S. input. £3.60

THE MODULES TO BUILD A STEREO F.M. TUNER

SS.202 L.F. stage (with I.C.) Pre-tuned. A.F.C. connection. Operates from 4.5 to 12V £5.25

SS.203 Stereo Decoder. Designed essentially for use with SS.201 and 2, this module can also be used in most mono F.M. tuners. A LED may be attached. Operating voltage 5-16V. d.c. £5.62

POWER SUPPLY STABILIZER

SS.300 Add this to an unsubsidised supply (say typically 45V. output) to obtain a steady powerful supply output adjustable from 12 to 66V. Essential for your audio and special systems. Money saving and very reliable. Ideal for workbench use. £3.25

MAIN TRANSFORMERS FOR ABOVE

Type A 18V/1A (Suit SS.103) £1.50

Type B 25V/2A (Suit SS.110) £2.00

Type C 30V/2A (Suit SS.140) £3.25

Bridge Rectifier Type A 21A (Suit 0/8 38p

STIRLING SOUND DISCO MINOR

Fully transportable. Console fitted twin turntables with cross fade, monitoring, L.R.Cuing, mic. with over ride. Ampower 40 loudspeaker has built-in mains powered 40 watt RMS power amp. Up to 10 Ampower may be added. £100 plus V.A.T. at 25\%. Car. U.K. £135.00 (8%)
The International Audio-Visual Aids Exhibition

THE NATIONAL HALL, OLYMPIA, LONDON

July 8th — 11th 1975

INTER NAVEX 75 is being held under the auspices of the EFVA/NCAVAE and organised by Brintex Exhibitions Ltd.

178/202 Great Portland Street, London W1N 6NH.

INTER NAVEX 75 Exhibits will include:

Audio-Visual Presentations
Audio-Visual Programmes
Audio Equipment
CCTV and Broadcast Television Equipment
Cameras (Cine & Photographic)
Cassette Players (Audio)
Cassette Teleplayers
Cassette (Audio)
Cassettes (Video Programmes)
Cassette & Tape Duplicators
Cleaning Aerosols & Solvents
Copying & Duplicating Courses
Drawing & Display Materials
Editing & Film Inspection Machines
Episcopes/Diascopes
Equipment & Materials Advice and Service Centres
Fade/Dissolve Projection Devices
Film Loops & Projectors
Film Projection Accessories
Films
Filmstrip Projectors

Filmstrips
Flannelgraphs & Services
Index (transparencies)
Information Services
Language and Learning Laboratories
Language Teaching Materials
Lenses
Lettering
Libraries
Magnetic Boards
Magnetic Tapes (Audio)
Markerboards and Chalkboards
Micro/Macro-Projectors
Multi-Media Kits
Overhead Projectors
Overhead Transparencies & Materials
Photography
Planetarium
Programmed Learning Projectors (8 mm)
Projectors (16 mm)
Publications and Literature
Public Address Equipmen

Radio Receivers
Real Projectors
Record Players
Records and Recorded Tapes
Screens
Slide Cabinets and Storage
Slide Projectors
Slides and Transparencies
Stereoscopic Equipment & Material
Synchronisers (Sound/Vision)
Taperecorders and Players (Audio)
Tapes for Audio Systems
Teaching Machine & Systems
Teleplayers
Television Receivers for schools
Training Services and Information
Transparency Makers
Trolleys and Stands
Video Discs
Video Projector
Video Recorders and Tapes
Viewers and Viewing Equipment
Wallcharts and Flip Charts

EXHIBITION HOURS:
Tuesday, 8th July 9.30 a.m. to 6.00 p.m.
Wednesday, 9th July 9.30 a.m. to 6.00 p.m.
Thursday, 10th July 9.30 a.m. to 6.00 p.m.
Friday, 11th July 9.30 a.m. to 4.00 p.m.
WILMSLOW AUDIO
THE Firm for speakers!

SPEAKERS
Baker Group 25, 3, 8 or 15 ohm
Baker Group 35, 8 or 15 ohm
Baker Group 50/12, 8 or 15 ohm
Baker Deluxe 12", 8 or 15 ohm
Baker Major 3, 8 or 15 ohm
Baker Superb 8 or 15 ohm
Baker Regent 8 or 15 ohm
Baker Auditorium 12"
Celestion P518 (for Unilex)
Celestion G12H 8 or 15 ohm
Celestion G12M 8 or 15 ohm
Celestion G15C 8 or 15 ohm
Celestion G18C 8 or 15 ohm
Celestion MP1000 8 or 15 ohm
Eagle 13 x 8, 150 d/cone, 8 ohm
Eagle 13 x 8 type 350, 8 or 15 ohm
Eagle 13 x 8 20 watt bass
Eagle 5" 14A/730 mid-range 8 ohm
Eagle 6½" 93850 4 or 8 ohm
Eagle 8 x 5, cer. mag. 8 ohm
Eagle 8 x 5, 10 watt, d/c rolls 8 ohm
Eagle 10 x 6 93850 8 ohm
Eagle 12" tweeter 8 ohm
Elac 9 x 5, 59RM109 15 ohm.
Elac 13" d/cone, rol lerr, 8 ohm
Elac 6½" d/cone, 8 ohm
Eagle TV4 4" tweeter
Eagle 10" 10RM239 d/c 8 ohm
Eagle 5" ohm
Eagle Crossover 3, 8 or 16 ohm
Eagle CT5 cone tweeter 8 ohm
Eagle CT10 tweeter 8 or 16 ohm
Eagle DT33 dome tweeter 8 ohm
Eagle FF3 3 way crossover
Eagle SN75 crossover with tw. control
Eagle FF88 multicell, horn
Eagle HT15 horn tw. 16 ohm
Eagle HT21 horn tw. 8 ohm
Eagle MHT10 horn tw. 8 ohm
Eagle FR4 4" full range
Eagle FR4S 6½" full range
Eagle FR8 8" full range
Fan Pop 15 watt 12"
Fan Pop 25T 30 watt 12"
Fan Pop watt 12"
Fan Pop 35 12" 60 watt
Fan Pop 60 watt 15"
Fan Pop 100 watt 18"

SPEAKERS
£8.64
£10.25
£14.00
£13.75
£11.87
£16.12
£10.00
£16.25
£20.81
£15.00
£12.00
£24.00
£33.00
£21.95
£9.56
£7.69
£7.50
£9.80
£9.75
£12.06
£4.06
£12.10
£1.75
£1.12
£2.87
£1.75
£8.00
£8.00
£4.31
£6.31
£3.62
£7.60
£8.94
£6.30
£8.27
£7.50
£6.50
£2.31
£3.75
£3.87
£12.31
£5.25
£7.50
£12.00
£12.95
£13.75
£25.95

£34.50
£36.50
£47.50
£62.95
£14.95
£33.95
£16.00
£8.12
£3.44
£4.62
£5.50
£8.80
£13.95
£16.95
£15.95
£36.50
£40.25
£21.00
£16.00
£13.90
£20.00
£10.75
£69.50
£69.50
£75.00
£75.00
£80.00
£80.00
£7.44
£6.06
£6.94
£8.37
£6.50
£2.31
£3.75
£3.87
£7.37
£6.56
£.77
£.55
£1.63
£1.75
£2.69

£31.44
£47.19
£13.44
£25.44
£17.15
£26.52
£46.25
£84.48
£42.50
£17.19
£7.44
£24.38
£26.56
£40.50
£10.37
£15.94
£23.12
£27.50
£23.12
£40.61
£63.12

PA/DISCO AMPLIFIERS (Carr., and incs. £1)
Baker Major 100 watt
Linear 30/40
Linear 40/60
Linear 80/100
Linear 100 watt slave
Eagle PRO A120, 120 watts RMS
Eagle PRO A65, 65 watts RMS
Eagle PRO A35, 35 watts RMS
Eagles TPA30 mains/12v mobile
Eagle HT15 36 watts, mobile 12v
Eagle TPA20 paging amplifier
Eagle RAB59 Reverber (p. & p. 75p)
Eagle RAB56 Reverber (p. & p. 75p)

£57.25
£30.00
£35.00
£58.95
£44.00
£129.00
£98.50
£77.00
£50.00
£37.50
£45.00
£18.25
£12.50

MICROPHONES (p. & p. 50p)
Shure 515 SB Low Impedance
Shure 515 SA High Impedance
Shure 545 Dual Impedance
Shure 588 SB Low Impedance
Shure 588 SA High Impedance

£17.31
£18.25
£34.69
£23.12
£23.75

FREE with loudspeaker orders over £7 - "HiFi Loudspeaker Enclosures" book
All items guaranteed new and perfect
Prompt despatch
Carriage: 38p per speaker 12" and up 50p each,
25p per tweeter, crossover or 23/70mm speaker
filters 75p each (£1.50 pair).
Including VAT - 25% on HiFi and 8% on PRO
and PA.
Send stamp for free booklet 'Choosing a speaker'
Big discounts on Grundig, ITT, Koyo, etc.
Send stamp for list

WILMSLOW AUDIO
DEPT RC
LOUDSPEAKERS: SWAN WORKS
BANK SQUARE, WILMSLOW, Cheshire
AMPLIFIERS, RADIO ETC.
10 SWAN ST., WILMSLOW, Cheshire

The Ultimate Radio!
GRUNDIG SATELLIT 2000
You've got your yacht, private aircraft. Rolls
Cromleigh—then all you need for a full set of
status symbols is this latest model Grundig
Satellite. Germany's top radio. Radio per
formance, appearance and sound quality are
al superb. VHF/FM/AM, LW 10 SW bands
plus bandspread, 27 transistors and 22
diodes, flatness/instability (110/240V—).
2 speakers, 87" telescopic aerial.

Our Price £149.95
inc. VAT, carr. & ins.
Big discounts on Grundig, ITT, Koyo, etc.
Send stamp for list.

WILMSLOW AUDIO, 10 SWAN STREET, WILMSLOW, Cheshire

JULY 1975

www.americanradiohistory.com
You have heard of "Long Life" batteries, milk and beer, so why not a "Long Life" catalogue? The thought struck me the other night when I visited a friend to chat about a joint project we were building. We needed a few bits and pieces, so he went to a drawer and pulled out a catalogue. Yes, it was the famous Home Radio Components catalogue alright, but at first I didn't recognise it. "Gracious! How old is it?" I exclaimed. "Oh" he said. "About 5 or 6 years". Fascinated, I said. "Can you still use it? Surely, it's years out of date?". "No, not really" he said, "you see many basic things like plugs, sockets, resistors, capacitors, switches, don't change much. Only the prices change, and Home Radio were wise enough to take all prices out of their catalogue many years ago and put them on a separate list. What's more, they were far sighted enough not to change their catalogue numbers, so all I have to do is to write or phone them occasionally and 'hey presto' along comes an up to date price list. Not a penny extra to pay!" "You really believe in getting your money's worth out of a catalogue" I said. "Sure thing" he replied, "but I might have bought four or five catalogues and still not ordered any more goods. These catalogues must cost Home Radio a bomb to produce, so I imagine they are quite pleased if one of their catalogues produces business for say two years or more. However I must admit it's about time I got myself a new one".

65p. plus 33p POST AND PACKING

POST THIS COUPON with cheque or P.O. for 98p.

The price of 98p applies only to customers in the U.K. and to BFPO addresses.

HOME RADIO (Components) LTD., Dept. RC 234-240 London Road, Mitcham, Surrey CR4 3HD Phone 01-648 8422

This conversation set me thinking, Home Radio Components really do produce a catalogue that will last and last, and a service to back it up. So if you are keen to save the pennies, send for a copy today. You may still be using it in 1977. On the other hand, if you really like to keep up with the latest developments, Home Radio will be happy to sell you a new one. Each year they spend at least 5 or 6 months revising it in order to bring the latest trends to your notice. Either way you cannot lose. Especially when you bear in mind, that although the initial cost is 65p plus 33p postage and packing, they enclose 14 vouchers each worth 5p if used as directed. Add to that the fact you could easily make it last two or three years... well, to borrow a phrase, "You never had it so good". Don't wait, send off the coupon today with your cheque or P.O. for 98 pence.
CONTENTS

THREE BAND SHORT WAVE PRESELECTOR 718
By A. P. Roberts

POCKET R.F. GENERATOR 723
by T. Sutherns

NEWS AND COMMENT 724

LOW COST ELECTRONIC VOLTMETER 726
(Suggested Circuit 296) by G. A. French

HIGH VALUE OHMMETER 728
by F. G. Lloyd

THOSE LOCATING LUGS 730
by R. Desmond

30 WATT TRANSMITTER – Part 1 731
by F. G. Rayer

500mW WORKSHOP AMPLIFIER 736
by R. A. Penfold

REGENERATIVE OVERLOAD TRIP 741
by R. J. Caborn

TESTING TRANSFORMER TEMPERATURE 743
by E. Higgins

INTEGRATED CIRCUIT SUPERHET – Part 2 744
by R. A. Penfold

SHORT WAVE NEWS – For DX Listeners 750
by Frank A. Baldwin

IN YOUR WORKSHOP – Operational Amplifiers, 741 Op-Amp 752

TRADE NEWS 759

INDEX VOLUME 28 – August 1974 to July 1975 766

CONSTRUCTOR’S DATA SHEET No. 100 (Wien Oscillator C-R Values) iii

AUGUST ISSUE WILL BE PUBLISHED ON 1st AUGUST
Covering 1.65 to 32.5MHz in three switched bands, this preselector provides an extra tuned amplifier stage for insertion between the aerial and a short wave receiver.

There are many relatively simple and inexpensive short wave receivers in use at present, and most of these are capable of a fair performance. They do have limitations, however, and if they are of t.r.f. design are liable to suffer from a lack of sensitivity due to the low level of r.f. amplification provided, as well as a lack of selectivity because of the small number of tuned circuits incorporated.

Simple superhet designs are better in both these respects but they may suffer alternatively from image, or second channel, interference due to the relatively low intermediate frequency of 455 to 470kHz which is usually employed. Normally, a superhet is designed so that the oscillator frequency is higher than the required signal frequency by the intermediate frequency. If a signal which is higher than oscillator frequency by the intermediate frequency breaks through to the mixer, this signal will also pass into the receiver i.f. amplifier. It will then be detected and reproduced by the receiver loudspeaker or headphones or, at least, produce spurious beat notes with the required signal. This interfering signal is the image or second channel signal, and it is required of the r.f. tuned circuit or circuits before the mixer that it be rejected and that the required signal only is accepted. With simpler superhets the amount of second channel rejection may not be sufficiently high to give adequate protection against image interference.

When propagation conditions are poor, then of course virtually any simple short wave receiver will benefit from an increase in gain.

The use of a tuned short wave preselector such as that described in this article can improve the adjacent channel selectivity of a t.r.f. receiver, reduce second channel interference with a superhet receiver, and increase overall gain with any receiver. Provided it is operated sensibly, it can make a worthwhile improvement to the performance of many simple short wave receivers.

Preselector Design

The preselector to be described consists basically of a tuned amplifier which is inserted between the aerial and the receiver. Thus it provides additional selectivity and sensitivity for the whole receiving set-up.

The design uses two transistors, one of these being an f.e.t., and covers a range of approximately 1.65 to 32.5MHz (182 to 9.2 metres) in three switched bands. It obtains power from its own internal 9 volt battery, from which it consumes a current of 3mA. Construction is easy to carry out, and is aided by the use of commercially wound coils.

The circuit is given in Fig. 1. Here, the aerial is coupled to a normal carbon track potentiometer, VR1, which functions as a simple variable input attenuator. The signal from the slider of VR1 passes to the primary winding of L1, L2 or L3 according to the position of S1(a). The tuned winding of the selected coil is then coupled to the tuning capacitor, VC1, and the gate of TR1 via S1(b). S1(a)(b) is the range switch.

The f.e.t., TR1, operates as a grounded source amplifier, with R1 functioning as the source bias.
The two transistors form a hybrid cascode amplifier. The amplified signal at TR2 collector is fed to the output socket SK2 via the d.c. blocking capacitor, C2. This output signal is then coupled to the short wave receiver by a short length of coaxial cable, the braiding of which connects via SK2 to the preselector chassis at one end and to the receiver chassis at the other end. There is just a slight possibility that the short wave receiver in use may be an early mains-driven valve model having its chassis connected to one side of the

JULY 1975
mains. Because of the risk of shock, the preselector must on no account be coupled up to a short wave receiver of this type. If the receiver is mains-driven it must have a mains transformer which gives its chassis complete isolation from the mains. The earth connection to the short wave receiver is retained, this automatically giving an earth connection to the preselector by way of the braiding of the coaxial coupling cable between them. It is necessary to use coaxial cable because this ensures that the output of the preselector is screened, whereupon there can be no undesired coupling to the aerial input, which will probably be unscreened, at socket SK1.

Power is obtained from the 9 volt battery BY1, with S2 being the on-off switch.

It will be noted that the coils each have three windings, of which only two are used. The unused windings are intended for coupling to the base of a bipolar transistor and are not required here. The f.e.t. in the TR1 position offers a very high impedance at its gate and the tuned circuit selected can couple to this directly.

All the parts employed are standard items and are readily available. VCI is a small air-spaced single gang 365pF capacitor. In some catalogues it may be referred to as 'type OO'. S1(a)(b) can be conveniently obtained as a 4-pole 3-way miniature rotary switch, no connections being made to two of the poles.

CASE DRILLING

The preselector is housed in a ready-made instrument case measuring 8 by 5 1/2 by 2in. This consists of two pieces, one of which is aluminium and provides the front, rear and base, whilst the other is a vinyl covered steel top and sides. The latter is fastened to the base with self-tapping screws, which are supplied with the case.

Fig. 2 shows the drilling details for the front and rear panels.

Three countersunk 4BA clear holes are required in the front panel for VC1. Their positions can be marked out by pressing a piece of paper against the front plate of the capacitor and then using this as a template. When VC1 is later mounted (after all drilling has been carried out) it is held with three short countersunk 4BA bolts passing through these holes into the three tapped 4BA holes in its front panel. The bolt ends must not pass beyond the inside surface of the capacitor front plate as they may then damage the fixed or moving vanes of the capacitor. Spacing washers are required on these bolts also between the rear of the front panel and the capacitor front plate to provide spacing of 1/4 in. or more, thereby giving clearance for the front ball race of the capacitor.

SK1 and SK2 are standard coaxial sockets, and the 6BA clear mounting holes for these may be marked out with the aid of the sockets themselves. When these are later mounted, a solder tag is fitted under the 6BA securing nut of each which is nearer the centre of the rear panel.

Two 6BA clear holes are required in the base for the component panel shown in Fig. 4, and these may be marked out with the aid of the panel itself. The panel will take up the position, close to SK2, which is shown in the photograph of the internal layout. The photograph also illustrates a small aluminium bracket which holds the battery in place. Two suitably positioned 6BA clear holes may next be drilled for this. When the 6BA bolts are later fitted to these four holes, their heads will be below the cabinet base. Finally, four holes should be drilled near the base corners for four rubber feet.

WIRING

The drilling is now complete and the four rubber feet, VC1 and the components shown in Fig. 3 may be fitted. The spindles of VR1 and S1(a)(b) should be cut to a suitable length before they are mounted on the chassis. The three Denco coils are secured by plastic nuts which pass over threaded sections on their formers. These plastic nuts should be taken to 'finger tightness' only, as the plastic thread could otherwise be sheared. The coils should have the orientation shown in Fig. 3, i.e. pins 1 and 9 should be towards SK2.

The layout of components inside the case

RADIO & ELECTRONICS CONSTRUCTOR
It is possible to solder leads direct to the pins of the three Denco coils, but this is liable to lead to deformation of the plastic formers due to the heat from the soldering iron. It is recommended instead that B9A valverholders be fitted over the coil pins and connections made to the valverholder tags.

Fig 3 illustrates the chassis wiring, with all the components shown in a single plane for ease of presentation. Before wiring up to switch S1(a)(b) confirm with an ohmmeter or continuity tester the three outer tags corresponding to each centre tag used. The relative positioning of the centre and outer tags may differ, with some switches, from that shown in the diagram. All wiring should be kept reasonably short. The chassis connection to VC1 moving vanes is automatically provided by its mounting to the front panel, and a wiring connection to its fixed vanes tag is all that is necessary.

COMPONENT PANEL

The two transistors and their immediate components are wired up on a plain perforated panel, of 0.1in. matrix, having 16 by 25 holes. The component layout and underside wiring on this panel are shown in Fig. 4.

The panel cannot be purchased with the size shown, and it has to be cut out from a larger perforated board. After this, the two 6BA clear mounting holes are drilled out. (In practice, this process will be carried out at an early stage in construction to enable the corresponding 6BA clear holes in the cabinet base to be marked out.) The components are mounted in the positions indicated with their lead-outs bent over at right angles underneath the panel. The lead-outs are cut to length and soldered together to form the circuit. The underside wiring is represented by the broken lines in the diagram.

Four leads leave the panel to connect to S2, VC1 fixed vanes, the centre connector of SK2, and the chassis tag at this socket. Flexible insulated wires should be fitted here cut to a suitable length by putting the panel temporarily in position on the cabinet base, and then having their ends stripped for connection. The panel is next mounted by means of two 6in. 6BA bolts with two extra nuts, or spacing washers, on each to hold the panel a little way off the base. This method of mounting should be adequate to provide reliable clearance, but if it is felt that additional protection against short-circuits to the underside wiring is required, a piece of thin s.r.b.p. ('Paxolin') sheet having the same dimensions as the panel can be secured underneath it and directly against the cabinet base. The four insulated leads from the panel may then be soldered to the appropriate circuit points.

There is a space for the battery on the side opposite the component panel. A small piece of aluminium sheet may be bent to form a simple bracket which will hold the battery in position, and this bracket is secured to the cabinet base at the two 6BA clear holes drilled earlier.

When wiring has been completed it should be carefully checked over. The battery may then be fitted under its bracket and connected into circuit. The preselector is then ready for use.

Fig. 3. Chassis wiring. For convenience, all components are drawn in a single plane

Fig. 4. Component layout and wiring on the perforated panel
NOTES ON USE

The preselector is coupled to the short wave receiver by a coaxial cable in the manner described earlier. It is desirable to keep this cable as short as is reasonably possible in order to minimise losses. The aerial connects to the centre connector of SK1.

Operation of the controls is very simple. S1(a)(b) selects the desired range. In its extreme anticlockwise position it switches in the 3T coil, giving a coverage of about 1.65 to 5.5MHz (182 to 55 metres). The central position of S1(a)(b) selects the 4T coil, providing a range of approximately 5 to 15.5MHz (60 to 19.4 metres), and the fully clockwise position brings in the 5T coil, with a range of about 10.5 to 32.5MHz (28.5 to 9.2 metres). The cores of the three coils are fully screwed in, so that the ends of the threaded brass stems are flush with the ends of the formers.

VC1 is the tuning control and is adjusted to peak the wanted signal. It will need to be adjusted slightly every time the main tuning on the receiver is altered. Preselector tuning is quite sharp because of the negligible loading on its tuned circuit which results from an f.e.t. input stage. A slow motion drive for VC1 is not necessary, however, provided it is fitted with a reasonably large knob.

![Image of preselector]

The rear of the preselector, showing the two coaxial sockets and the three plastic coil securing nuts

It is very important to ensure that VR1 is not advanced any further than is necessary to provide an adequate signal for the receiver. If VR1 is left in the maximum position all the time with a t.r.f. receiver the detector may be overloaded with most signals, and audio quality and even selectivity may be impaired. With a superhet, excessive signal output from the preselector can cause a substantial increase in cross-modulation, thereby causing the increased overall gain to offer little benefit. VR1 must be kept at a low level setting with most signals if the preselector is to give optimum performance.

The main advantage of using a unit such as this is the improvement in r.f. selectivity it offers. When propagation conditions are poor and signal strengths are very low, then it is possible to take advantage of the full additional gain afforded by the preselector. It is essential to bear these points in mind and to operate the preselector accordingly to obtain the maximum benefit from it.

RADIO & ELECTRONICS CONSTRUCTOR

AUGUST ISSUE FEATURES

INTEGRATED CIRCUIT SIGNAL GENERATOR

Employing a recently introduced integrated circuit, this signal generator offers square wave, triangular and sine wave outputs from 10Hz to 1MHz. Constructional details are given in this issue, and methods of calibration will be described in the following month's concluding article.

★★★★

IMPROVED COURTESY LIGHT FOR CARS

★★★★

NEW MULTIPLE A.M. TUNING DIODES

30 WATT TRANSMITTER

(Conclusion)

ALL THE USUAL FEATURES PLUS MANY OTHER ARTICLES

PRICE 30p

Copies may also be obtained direct from the Publishers, 38p including postage. Published by Data Publications Ltd., 57 Maida Vale, London W9 1SN.

RADIO & ELECTRONICS CONSTRUCTOR
WHILST ONE CANNOT DENY THAT A WIDE BAND variable frequency signal generator is of tremendous help to the constructor, one has to use it a great deal if its expense is to be justified. For the experimenter who will only need an r.f. source once in while something cheaper is obviously required. The circuit to be described is extremely cheap, and is crystal controlled and almost infallible. By selecting appropriate crystals a wide range of frequencies may be covered, limited only by the high frequency performance of the transistor and the construction techniques employed. Frequencies offered by most fundamental crystals should be obtainable with little difficulty. The prototype was operated mainly at frequencies around 8MHz.

THE CIRCUIT

As can be seen from the accompanying diagram the circuit is very simple. It is basically a Pierce-Colpitts oscillator, with C1 and X1 forming the capacitive tap across the collector load. L1, R1 and R2 provide bias for the transistor. An extra winding is added to L1 to give a low impedance output.

The two resistors may be 10% types rated at 1/4 watt. C1 is silvered mica. Its precise value is not critical, but 100pF provides a good starting figure for the more experimentally minded. TR1 is a BCI09. A BF194 has also been tried and gives similar results. The crystal can be a surplus type of the required frequency or a brand new one. In either case the crystal should work in this circuit if it works at all.

L1 is a Repanco type CH1 2.5mH r.f. choke. L2 is an output coupling winding consisting of 40 turns of 34 s.w.g. enamelled copper wire or similar scramble wound on top of the choke coil. The coupling winding works satisfactorily into an impedance of 750Ω.

The battery can be an Ever Ready type PP3 or equivalent.

The author's circuit provides an output of 250mV peak-to-peak and second and third harmonics appear to be negligibly low. Current consumption from the 9 volt battery is very low, being about 0.25mA only. The whole unit complete with battery can be assembled in a small plastic or metal case, with the crystal socket, the on-off switch and the coaxial output socket mounted on the front panel. If a metal case is used, this is made common with the negative supply rail.

July 1975
LOW-COST RE-USABLE CIRCUIT ASSEMBLY KIT

Lektrokit Ltd. -- the well known Reading-based supplier to the electronics industry of professional quality modular racking and chassis systems, instrument cases, prototype hardware and the like -- have just announced the availability of their low cost re-usable Circuit Assembly Kit No. 13 that will prove of as much interest to home constructors and amateur designers as it will to professional design and development engineers.

Their new kit, which is simple to assemble and quick to dismantle, comprises five plain double-sided circuit boards (the same type LK-141 that Lektrokit supply to industry) together with 500 standard pre-tinned brass solder pins. At £4 a kit, plus V.A.T., it represents a real saving over the cost of having to buy the items individually.

The re-usable circuit boards are made of SRBP (synthetic resin bonded paper) and measure 4\(\frac{1}{2}\) by 4 in. They are perforated with 0.052 in. diameter holes on the international 0.1 in. matrix and are thus ideally suitable for link wiring and mounting standard components on either side, thus allowing single or double sided p.c.b. arrangements. 24-way edge connector adaptors (type LK-2241/2261) at 0.15 in., and 0.1 in. pitch are available for use with the kit.

The kit will prove of particular value for prototype work as well as for final circuit construction, and will doubtless also arouse great interest in schools, technical colleges, polytechnics, universities and other educational/training establishments.

EMI VIDICONS USED IN CCTV SYSTEM AT THE ROUND CHURCH CAMBRIDGE

In these days when many churches are reporting falling attendances, it is refreshing to hear of one that has such a large congregation, that to allow them to participate fully in the services the Church authorities have had to install a closed circuit television link combined to a sound system.

This is what has happened at the Holy Sepulchre Church -- the Round Church -- near St. John’s College, Cambridge. During his 20 years as incumbent the vicar, Canon Mark Ruston M.A., has built up his student congregation to the point where an overflow has had to be accommodated in the church hall across the road.

Canon Ruston’s Parochial Church Council is fortunate that the Hon.-Secretary, Mr. J. H. Hinton, was technically qualified to be able to install and operate the system. Since the equipment was installed, the church council has purchased two specially selected replacement vidicon camera tubes from the Electron Tube Division of EMI Electronics Ltd., Blyth Road, Hayes, Middlesex. This has enabled the camera to be used in the low light levels which prevail in this ancient church.

The original single camera set-up has proved so successful during its first year of operation that a second camera is being considered. Mr. Hinton was impressed with the advice and technical assistance he received from EMI after purchasing a relatively inexpensive tube. The company does, in fact, sell large quantities of vidicon tubes, coils and associated components to individuals.

Mr. Hinton, who believes that there is scope for more co-operation between churches on such matters, stressed the importance of utilising technical ability and training, to help churches take full advantage of modern technology in spreading their message. He said that the atmosphere of the service “comes over well” giving the overflow congregation the feeling of “being there.”

The church of the Holy Sepulchre is one of only four remaining ancient Round Churches in England. It was originally built around 1130 AD, although many alterations have taken place over the centuries.

ANNUAL INDEX
Volume 28
August 1974 to July 1975
Pages 766, 767, 768

724
V.A.T.

We have received from Mr. Alan Sproxton, the well known director of Home Radio (Components) Ltd., copy of a letter he, as representative of a group of 25 businessmen who retail electronic components, has sent to his M.P.

The letter sets out the difficulties of implementing the legislation for a multiple V.A.T. system, where electronic suppliers are concerned. Home Radio state, for example, that they stock more than 6,000 different small electronic components which now carry 3 different rates of V.A.T. In addition, on many items, they say they cannot obtain a reliable definition of the rate of V.A.T. to apply.

We trust that readers will understand the great difficulties faced by electronic component retailers when pricing components.

SPECIAL DIRECT SUPPLY

Only very occasionally do we sell books not published by ourselves. When we do so, it is because we feel the book concerned is of particular value to those of our readers interested in the subject dealt with.

Such a book is Tower's International Transistor Selector, reviewed last month in Recent Publications. A full page advertisement for the book, together with a coupon which may be used if desired, appears in our advertisement pages.

SCOTCH RECORDING TAPE USED BY BIRMINGHAM'S COMMERCIAL RADIO STATION

What's long, green and heard all over the Midlands? The answer is Scotch 262 recording tape, a distinctive pea-green coloured magnetic tape which has been adopted for all its recording requirements by Birmingham's commercial radio station, BRMB.

BRMB Radio's chief engineer Dave Wood emphasised that live radio with its local immediacy was the goal aimed for by BRMB, but, he said, "you can't get away from tape and the tape you use must not only perform well, but consistently well". Scotch 262 was evaluated initially by the studio manager and the effect was immediate. "Now I prefer it to any other tape in the building".

B.A.R.T.G. 1975 CONVENTION

The British Amateur Radio Teleprinter Group's Annual Convention was held again this year at Meopham, Kent; a venue which has proved itself to be eminently suitable, and there was again a good attendance.

Several changes in the programme were made this year, the 'lectureettes' in the afternoon were increased and they ranged in topics from "Getting Started on RTTY" to the latest decisions taken at Region IIARU Conference at Warsaw, on Amateur RTTY Standards—such matters as teleprinter speeds, AFSK Standards, etc.

The usual sales stands offered plenty of scope for bargain hunters, those with "auto-heads" in their RTTY stations, but who had no facilities for cutting their own tapes, were well catered for by a group running a "tape factory". Instead of a "live station" this year, there was a 'closed-circuit' RTTY demonstration which probably gave a better demonstration to visitors.

Altogether a very enjoyable occasion.

JULY 1975
 Integrated circuits are at their most advantageous when they carry out a function with a minimum of external discrete components. A typical example of what can be achieved here is given by the use of a 741 operational amplifier as a voltage follower, in which configuration the output is connected directly to the inverting input. The device then offers a low impedance output voltage which is very nearly equal to the voltage at its high impedance non-inverting input, and the only other connections which need to be made to the i.c. are the positive and negative supplies. The difference between the output and input voltages is the very small offset voltage given in the particular operational amplifier employed in the required direction to permit emitter follower operation in TR1. It is feasible that the required very high input resistance at TR1 base will not be realised if a transistor passing exceptionally large leakage current is employed here. However, the author has had considerable experience of very high input resistance emitter follower circuits incorporating silicon planar transistors, such as the BC107 in the present circuit, and has yet to find an input transistor which did not give a satisfactory performance. Naturally, the transistor employed should be one of reputable manufacture which is properly marked up with the manufacturer's type number. A 'reject' or 're-brand' must not be used.

The voltmeter circuit is powered by two 6 volt batteries in series, and a connection is taken from the central voltage point between the batteries to the negative test terminal. The positive test terminal connects to the arm of the Range switch, S1. The 0-1 volt range is selected when this switch is at position 1, and the voltage at the positive test terminal is then applied direct to the base of TR1. Setting S1 to positions 2, 3 and 4 selects the voltage ranges indicated in the diagram, with R3, R2 and R1 functioning as voltmeter multipliers. Negligible current is consumed by the base of TR1' whereupon the multiplier resistors, merely require values which meet the requirement of 1MΩ per volt. Thus, when S1 is set to position 3, one-twentieth of the voltage across R2, R3 and R4 is applied to the base of TR1, and the range selected is 0-10 volts.

I.C. OUTPUT

The output of IC1 couples to the components R5, VR1 and M1. These form an internal voltmeter having a full-scale deflection of 1 volt. Since the output of IC1 is negative of the base of TR1 by a fixed voltage, the negative end of the internal voltmeter has to be returned to a point which is similarly negative of the negative test terminal, and this point is provided at the output of a second voltage follower, IC2. The potential of IC2 output is controlled by the potentiometer VR2 which, in consequence, becomes a Set Zero control. One of the useful attributes of an i.c. voltage follower is well exemplified by IC2. If the negative terminal of M1 were returned to the slider of a simple potentiometer connected across the supply rails, the standing current in that potentiometer would need to be well in excess of the f.s.d. value of the meter and this would cause a heavy drain on the supply. When the voltage follower circuit is used the only current drain is about 0.15 mA in R6, VR2 and R7, plus a current of some 1 to 2mA in the integrated circuit.

The internal voltmeter is set up to give an f.s.d. reading of 1 volt by adjusting VR1. This adjustment is carried out after the electronic voltmeter has been assembled.

To ensure complete isolation of the batteries when the voltmeter is not required, the on-off switch consists of the double pole component, S2(a)(b). This can be a standard d.p.s.t. toggle switch.

The pin numbering shown for the two integrated circuits is that corresponding to the original text.
voltage problem of from be resistance Readers series or more probably are resistors with values Unfortunately, with be be may meter the meter panel meter. a skeleton versions diagrams diagnostically 741.

Alternative rangeplier and top voltage accepted it becomes the reason that the present design restricts the highest voltage reading to 20 volts. If a lower input resistance can be accepted it becomes possible to have a top voltage range of say 0-100 volts, and the provision of suitable multiplier resistors is eased somewhat. Alternative range switching circuits

JULY 1975

Fig. 1. The complete circuit of the electronic voltmeter

Fig. 1. It will be helpful to wire up VR2 such that its slider travels towards R7 as the potentiometer knob is turned clockwise. Clockwise rotation of the knob then corresponds with a forward movement of the meter needle, providing a psychological linkage between the adjustment and its effect.

Fig. 2(a). Alternative multiplier resistor values for an input resistance of 200kΩ per volt

(b) An input circuit of 100kΩ per volt, offering the same voltage ranges as in (a). The resistors in both input circuits should be 1/2 watt high stability types

www.americanradiohistory.com
SETTING UP
The setting up process is carried out when the unit has been constructed. Initially, VR1 should be set to insert maximum resistance into circuit. The instrument is then switched on, and VR2 is adjusted to give a zero reading in meter M1 with the test terminals short-circuited.

A known voltage of 1 volt may next be applied to the test terminals with S1 set to position 1. This voltage is obtained by connecting a potentiometer across a battery and adjusting it such that a voltage of 1 volt is provided, as indicated by an external voltmeter. The arrangement is shown in Fig. 3(a). VR1 is adjusted until meter M1 gives an f.s.d. reading. The known voltage is then removed and the setting of VR2 re-checked. Should it be necessary to readjust VR2, the test voltage should be applied a second time and VR1 finally set up for f.s.d. reading in M1. There is no need for further adjustment to VR1, which is then at its final setting.

An alternative test voltage source can consist of a 9 volt battery with a monitoring voltmeter connected across it, as in Fig. 3(b). This time S1 is set to the 0–10 volt range. If the actual voltage of the 9 volt battery is, say, 9.2 volts, then VR1 is adjusted for a reading of 0.92mA in M1.

The author’s prototype circuit gave stable operation and adjustments to the Set Zero control were required very infrequently. Although it is preferable to adjust the Set Zero control with the test terminals short-circuited it was found that there was no difference in results if the adjustment was made with the terminals open-circuit. The current drawn from the two 6 volt batteries was 2.5mA when meter M1 gave a zero reading, and rose to about 3.2mA with M1 at full-scale deflection.

HIGH VALUE OHMMETER
By F. G. Lloyd

A simple approach towards the measurement of high resistance values

THE AVERAGE MULTI-TESTMETER IS CAPABLE OF CARRYING out many useful measurements but in most instances it has one shortcoming, this being an inability to give clear resistance readings for values above some 500kΩ. Ironically, it is resistors above 500kΩ which are the more liable to go high in value or open-circuit.

After a spate of trouble with resistors having values in this range, the writer decided to make up a robust knock-about unit which would be capable of measuring high resistances. It was found that a compromise had to be reached between simplicity and cost, and the design finally adopted is described here.

MEASURING RESISTANCE
The simplest way of measuring resistance consists of applying a known voltage across the resistance and measuring the current flowing through it. This method can be employed to measure high value resistances by either providing a very sensitive current reading meter, a high applied voltage, or a combination of the two.

It was felt that a current reading meter having a full-scale deflection of 50µA represented a reasonable sensitivity for general work. This f.s.d. figure has the advantage that many testmeters incorporate a 0–50µA current range and could be employed with the resistance measuring unit, thereby saving the cost of a separate 0–50µA meter movement. A transistor or i.c. op-amp current amplifier could be employed with the meter to enable lower currents to be measured, but this would introduce complications which the writer was trying to avoid. He decided instead to use the 0–50µA meter as it stood with a high applied voltage across the resistance being measured. The nominal voltage required by the unit is 45 volts, and the use of this voltage certainly results in a very simple and reliable design.

It can be argued that the provision of a 45 volt supply represents a relatively heavy initial outlay. On the other hand, there is the fact that if the unit is used only infrequently the battery life will be very long, approaching the shelf life. Should the unit be used extensively the batteries will naturally be exhausted correspondingly earlier, but they will at least have been earning their keep. The 45 volts may be provided...
by five 9 volt batteries in series, and they need to be replaced when the voltage across each falls to around 8 volts. The batteries could then be used in, say, a transistor radio until they were finally exhausted. Many experimenters have a bench supply offering outputs of up to 30 volts or more. Such a supply, in series with one or two 9 volt batteries, as required, could power the resistance measuring unit.

The circuit of the unit appears in Fig. 1. When S1 is closed the 45 volt supply is applied to VR1, R2 and LED1, causing the l.e.d. to light up and indicate that the unit is switched on. VR1 is a set-zero control and its slider couples to R1, a close tolerance 800kΩ resistor. This, in turn, connects via the 0–50μA meter to the upper test terminal.

OPERATION

To use the unit, S1 is closed and the test terminals are temporarily short-circuited. VR1 is next adjusted for an f.s.d. reading in the meter. The voltage between the slider of VR1 and the lower supply rail will then be 40 volts. The test terminals may next be connected to the resistance to be measured whereupon its value can be found with the aid of the chart reproduced in Fig. 2. As is to be expected, 800kΩ appears at the current mid-point in the chart, and it will be noted that readings up to 10MΩ can be resolved, with useful indications up to 20MΩ.

VR1 may be a carbon track potentiometer. It can alternatively have a value of 2.2kΩ or 2.5kΩ if either of these are more readily available. Should difficulty be experienced in obtaining any of these values in a carbon track potentiometer a small wire-wound component may be employed instead. If a single close-tolerance resistor of 800kΩ cannot be obtained for R1, two separate close-tolerance resistors in series may be used. Suitable preferred values would be, say, 120kΩ and 680kΩ, 240kΩ and 560kΩ or 330kΩ and 470kΩ.

The unit can be made up in a small case with S1, VR1 and the test terminals on the front panel. If a 0–50μA meter is to be made integral with the unit this may also be mounted on the front panel. Should a testmeter switched to read 0–50μA be employed instead, two terminals may be provided to which it can connect. The current drawn from the 45 volt battery when S1 is closed is about 5mA, this flowing mainly through VR1, R2 and LED1. In the author’s unit the 45 volt supply was obtained from five PP3 batteries.

Fig. 1. The circuit of the high-value ohmmeter. Cost may be reduced by employing a testmeter switched to read 50μA i.f.s.d. for M1

Fig. 2. Chart showing current readings and corresponding test resistance values
THOSE LOCATING LUGS

By R. Desmond

Drilling an additional panel hole for a potentiometer or rotary switch can result in a considerable increase in equipment reliability.

When you buy a potentiometer or rotary switch you will almost invariably find that it has a locating lug projecting forward at the front. The purpose of this locating lug is to ensure that the potentiometer or switch cannot be rotated if there is any slackening of the bush mounting nut securing it to the panel on which it is fitted. A ham-handed person operating a loosely secured control can turn its whole body, thereby twisting the wiring which connects to the control and possibly causing damage to components connected to it. Rotary switches and potentiometers fitted with switches are particularly susceptible to a fate of this nature.

Locating Lug

The problem can be overcome by drilling a small hole in the panel through which the locating lug of the potentiometer or rotary switch can pass. See Fig. 1.

![Diagram showing a potentiometer and locating lug](http://example.com/diagram)

Fig. 1. When fitting a potentiometer or rotary switch the locating lug should pass through a hole in the panel.

The hole diameter needs to be equal to or just slightly larger than the width of the lug. When the control is mounted it will then be impossible to accidentally rotate its body if the bush mounting nut works loose. The provision of panel holes or slots to take the locating lugs of rotary controls is common practice in manufactured electronic equipment.

The distance between the bush centre and the locating lug varies with different makes and models of potentiometer and rotary switch, whereupon it is necessary to mark out the locating lug hole on the panel with the aid of the control itself.

First, drill out the bush hole for the control, this in most instances being \(\frac{1}{4} \) in. in diameter. Then remove the mounting nut and shake-proof washer from the control, pass its bush through the hole just drilled and position it so that its tags appear in the approximate position desired. Next, push the control forward so that its locating lug is against the panel surface and turn its body through about 20° of rotation in both directions.

Marked out Arc

Remove the control and examine the panel. The locating lug will have marked out an arc as indicated in Fig. 2(a), this having just the correct radius from the centre of the \(\frac{1}{4} \) in. bush mounting hole. The locating lug hole can be drilled at any point along this arc. For reasons of neatness it will frequently be desirable for the locating lug hole to be on a horizontal line which also passes through the centre of the bush mounting hole, and this is particularly the case with potentiometers, whose tags will then project accurately above or below the potentiometer body. All that is then necessary is to draw a line parallel with the panel bottom or top edge through the bush mounting hole centre and the locating lug arc, as indicated in Fig. 2(b). The locating lug hole is then drilled at the point where the two lines intersect.

It is preferable that the rear surface of the panel be marked out since the arc will not then be visible from the front and will in any case be covered by the component body itself. If the marking out has to be carried out on the front of the panel (because, say, it is difficult to drill the hole from the rear) the arc should be marked out as lightly as possible, so that it may be later cleaned off. Alternatively, it can be covered by the knob which is fitted to the control.

Fig. 2(a) Marking out an arc on the panel with the aid of the locating lug.

(b) If desired, the lug and mounting hole centres can be on a horizontal line.
Primarily intended for operation on the 10 metre band of 28 to 29.7MHz, this transmitter will also operate, with modified coils, on the higher wavelength amateur bands up to 160 metres. The description of its construction will be completed in a concluding article in next month’s issue.

Continuing our series on 28MHz amateur band equipment

THOUGH THIS TRANSMITTER WAS ORIGINALLY BUILT TO use in conjunction with the other 10 metre equipments so far described in this series it lends itself well to operation on other bands, where it has been employed with equal success. The other equipments described are for 10 metres only and the 10 metre band is generally sufficiently unoccupied to be excellent for local contacts (although it can also of course be used for occasional long-distance working, dependent on conditions). But it is realised that some operators may have more interest in a lower frequency band, and the transmitter will give a very satisfactory performance on 80 metres or even 160 metres if wanted (the latter with reduced input to conform with licence conditions) as well as on 40, 20 and 15 metres.

The transmitter is a single unit, requiring only the addition of a microphone, aerial and a.c. mains supply. Any receiver covering the frequencies used can be employed for reception purposes, an extension control circuit from the transmitter giving complete control of the station.

The circuit is shown in two parts – the r.f. section and the modulator. The r.f. section is given in Fig. 1, and a few points may be dealt with so that its working is clear.
COMPONENTS

Resistors
(All fixed values ¼ watt 10% unless otherwise stated)

R1 47kΩ ¼ watt
R2 33kΩ ¼ watt
R3 10kΩ 5 watt
R4 22kΩ ¼ watt
R5 47Ω 1 watt
R6 22kΩ 3 watt
R7 5.6kΩ 10 watt
R8 47kΩ 1 watt
R9 47kΩ 1 watt
R10 1MΩ
R11 1.2MΩ
R12 270kΩ
R13 1.2kΩ
R14 3.3kΩ
R15 220kΩ
R16 33kΩ ¼ watt
R17 1MΩ
R18 100kΩ 5%
R19 100kΩ 5%
R20 3.3kΩ
R21 33kΩ 5%
R22 33kΩ 5%
R23 220kΩ 5%
R24 220kΩ 5%
R25 240Ω 1 watt
R26 1kΩ 3 watt
R27 100Ω 2 watt
R28 100Ω 2 watt
VR1 1MΩ potentiometer, log track

Capacitors
C1 22pF silvered mica (see text)
C2 0.01μF disc ceramic, 150 V. Wkg.
C3 0.01μF disc ceramic, 500 V. Wkg.
C4 0.02μF disc ceramic, 250 V. Wkg.
C5 100pF silvered mica
C6 0.05μF disc ceramic, 150 V. Wkg.
C7 2,000pF disc ceramic, 750 V. Wkg.
C8 2,000pF disc ceramic, 1kV. Wkg.
C9 0.01μF disc ceramic, 150 V. Wkg.
C10 0.01μF disc ceramic, 150 V. Wkg.
C11 2,000pF disc ceramic, 1kV. Wkg.
C12 32μF electrolytic, 350 V. Wkg.
C13 32μF electrolytic, 350 V. Wkg.
C14 47pF silvered mica
C15 50μF electrolytic, 6 V. Wkg.
C16 8μF electrolytic, 350 V. Wkg.
C17 0.25μF plastic foil, 350 V. Wkg.
C18 0.01μF plastic foil, 350 V. Wkg.
C19 50μF electrolytic, 6 V. Wkg.
C20 0.01μF plastic foil, 350 V. Wkg.
C21 0.01μF plastic foil, 350 V. Wkg.
C22 0.01μF plastic foil, 350 V. Wkg.
C23 50μF electrolytic, 50 V. Wkg.
C24 0.01μF plastic foil, 600 V. Wkg.
C25 0.01μF plastic foil, 600 V. Wkg.
C26 16μF electrolytic, 450 V. Wkg.
C27 32μF electrolytic, 450 V. Wkg.
TC1 10 or 12pF trimmer, concentric (see text)

VC1 250pF variable, Type C804 (Jackson Bros.)
VC2 250pF variable type C12, 0.024in. air-gap (Jackson Bros. – see text)
VC3,4 518 + 518pF variable, 2-gang Type L (Jackson Bros. – see text)

Inductors
L1 oscillator anode coil (see text)
L2 p.a. tank coil (see text)
L3 pick-up loop (see text)
L4 anti-parasitic choke (see text)
L5 10H smoothing choke, 85mA, (Home Radio) or similar
RFC1 2.6mH r.f. choke Type RFC5 (Denco)
RFC2 2.6mH r.f. choke, 250 mA, Type RFC9A (Denco)
T1 modulation transformer, Type 747 (see text)
T2 mains transformer, secondaries 250-0-250V 150mA, 6.3V 2A (see text)
T3 mains transformer, secondaries 250-0-250V 100mA, 6.3V 2A (see text)

Valves
V1 5763
V2 6146
V3 6BR7
V4 ECC83 or 12AX7
V5 EL84
V6 EL84

Diodes
D1-D4 silicon rectifiers, 1A 1kV p.i.v., 1N4007 or similar
D5, D6 silicon rectifiers, 1A 800V p.i.v., 1N4006 or similar

Switches
S1 4-pole 4-way rotary, 2 wafers
S2 2-pole 3-way rotary
S3 s.p.s.t. toggle

Fuse
F1 250mA cartridge fuse and holder

Meters
M1 0–5MA moving-coil
M2 0–150mA moving-coil (see text)

Crystals
X1, 2 7MHz or 14MHz crystals (see text)

Miscellaneous
Bulb, 6V 0.1A or 0.15A, and panel mounting holder
3 B9A skirted valveholders, with screening cans
2 B9A valveholders, plain
1 octal valveholder
2 crystal sockets (see text)
3 coaxial sockets (see text)
3-core mains lead with plug and 3A fuse
2-way external control socket

732
Fig. 1. The circuit of the r.f. section of the 30 watt transmitter. V1 is the crystal oscillator and V2 the power amplifier

CRYSTAL OSCILLATOR

In terms of frequency, the 10 metre band, at 28 to 29.7MHz, is very much wider than the other amateur bands from 15 to 160 metres. For this reason, crystal control is practical, and greatly simplifies construction. V1 in Fig. 1 is the oscillator, and switch S2(a), with the two crystals X1 and X2, selects alternative channels in the band. S2(a)(b) is a 2-pole 3-way switch, and in the third position S2(b) short-circuits RFC1 and disconnects TC1, so that a variable frequency oscillator may be plugged into the v.f.o. socket. The use of a v.f.o. is of course purely optional on any band employed.

V1 provides an output at a harmonic of the crystal frequency, so X1 and X2 may be 14MHz band or 7MHz band crystals. Adequate drive for the power amplifier V2, was easily obtained with any 14MHz or 7MHz crystals, the output from V1 being at twice or four times the crystal frequency.

V1 anode coil, L1, is tuned by VC1 to the required output frequency. VC1 allows grid current for V2, as shown by meter M1, to be adjusted. Grid current is run at about 2mA, which gives 44 volts bias across R4.

Switch S1(a), which appears in the modulator circuit of Fig. 2, allows h.t. to be applied to V1 only, and VC1 is always adjusted for a suitable grid current before switching on the power amplifier, V2. This procedure also allows the frequency which will be used to be found on the receiver.
POWER AMPLIFIER

The power amplifier, V2, receives approximately 400 volts h.t., and is run with an input of 70mA to 80mA, or 28 to 32 watts. Anode current is monitored by M2. R5 and the parallel anti-parasitic choke allow stable operation on any frequency. VC2, with L2 and VC3,4 form a pi network which allows the transmitter to feed a dipole, ground plane, or any other conventional single-band or multi-band aerial.

The mains transformer, T2, supplies h.t. for V2 only. This transformer has a 250-0-250 volt 150mA secondary and would normally supply a rectified voltage of about 250 at 150mA. However, the transformer has the full 500 volt secondary applied to a bridge rectifier and choke input filter in Fig. 1, whereupon a rectified voltage of approximately 400 volts appears across the smoothing capacitors, C12 and C13. The fact that approximately double the output voltage and half the output current is obtained results in the same power loading as would be given with a full-wave rectifier giving 250 volts at 150mA. It was found that, with the choke input providing about 400 volts only, the transformer can be run for lengthy periods at 80 to 90mA without any sign of overheating whatever. The use of T2 obviates any need for a high voltage transformer. The transformer employed by the author was a Parmeko type P.2931, which is not now in production and may be difficult to obtain. However, any other mains transformer offering the same h.t. and heater voltages and currents may be employed, although it may of course have a different construction and slightly different dimensions. C12 and C13 in series provide smoothing, and R8 and R9 are connected across them to equalise voltage and act as bleed resistors.

S1(c) applies h.t. to the p.a. at 'T' (Transmit). For ease of initial adjustment when changing bands or aerial, S1(c) has a 'Low' position which enables h.t. to be applied to V2 via R7. This allows tuning up at reduced power, with no danger of damaging V2. L3 is a loop near L2 and connects to a panel lamp. The loop draws a little r.f. power and the lamp acts as an indicator. This arrangement can assist in tuning, and it shows that the usual r.f. power is being produced. Switch S1(d) closes the external control terminals in the 'R' (Receive) position, thereby switching on the receiver.
or operating a relay to do this and transfer the aerial, if preferred.

T1 is the modulation transformer and a suitable component for this can be obtained from Garex Electronics, 7 Norvic Road, Marsworth, Tring, Herts., HP23 4LS. This transformer is ideal for the modulator and p.a. valves employed, and in terms of efficiency the circuit is fully up to standard and gives a potent signal. For ease of circuit presentation, the modulation transformer is also included in Fig. 2.

Two components which require mention are the variable capacitors specified for VC2 and VC3, VC3, 4 can be any non-miniature 2-gang receiver type component with a value of around 500pF each section. VC2, and the capacitor specified for VC3, 4, may be ordered direct from the manufacturers, Jackson Brothers (London) Ltd., Kingsway, Waddon, Croydon, CR9 4DG. It will be noted that meter M2 is specified as 0–150mA. If desired, a 0–100mA meter may be employed here instead.

MODULATOR

The circuit of the modulator appears in Fig. 2. The input is provided by a crystal microphone and this couples to the low noise high gain amplifier, V3. VR1 is the audio level control, and is followed by the double-triode V4. The first section of this valve, V4(a), functions as an amplifier and the second, V4(b), as a phase-splitter. Additional h.t. smoothing and decoupling for V3 and V4(a) are provided by C16 and R16.

V5 and V6 are the push–pull modulators, operating with about 280 volts at the anodes and 250 volts at the screen-grids. Fig. 2 also shows the switching operations carried out by S1(a) and S1(b). H.T. is present on the output anodes at all times. In the 'T' and 'Low' positions, S1(b) completes the h.t. circuit for the output screen-grids and for V3 and V4. S1(a) provides h.t. for the transmitter oscillator, V1, at all positions except 'R'. The h.t. supply is obtained from T3, with R27 and R28 acting as rectifier surge limiters. R26 and C26 give additional smoothing.

The modulation transformer, T1, has already been mentioned. The winding between terminals 2 and 6 is for an anode-to-anode load of 8kΩ with terminal 4 being the centre-tap. The winding between terminals 3 and 1 can work into a modulating impedance of 3kΩ to 8kΩ. The overall modulator circuit has always brought reports of very satisfactory speech quality, with freedom from hum and other defects, and the gain is easily sufficient for any crystal microphone.

The mains transformer, T3, gives the secondary voltages and currents quoted in the Components List, and that used by the author had dimensions which caused it to take up some 2¾ to 3in. of chassis space. If a transformer offering a somewhat higher voltage is used, the values of R27 and R28, or of R26, can be increased accordingly.

Switch S3 is the main on-off switch for both T2 and T3. Solid-state circuitry is not very practicable at the power level used in the r.f. section unless considerable care is exercised. In consequence, valves are preferred, and the types required are robust and easily obtained. No stage in either the r.f. or modulator section is run at maximum ratings, so there is some latitude in the voltages found. The EL84's can be run up to 300 volts for anode and screen-grid, giving 17 watts output, whilst the 6J146 may run up to 112mA at 600 volts. Thus, the transmitter is operating at well under these ratings.

NEXT MONTH

Constructional details will be given in the next article in the series, and this article will conclude the description of the transmitter. The final article in the overall series on 28MHz equipment will appear in the succeeding issue, and it will deal with 10 metre aerials.

The Components List accompanying the present article lists the electronic parts required for the transmitter. Some of the items which are indicated as 'see text' will be dealt with in the next article, and this will also clear up other outstanding points concerning the components. A second Components List, covering the chassis, case and other hardware, will be given next month.

(To be continued)

BACK NUMBERS

For the benefit of new readers we would draw attention to our back number service.

We retain past issues for a period of two years and we can, occasionally, supply copies more than two years old. The cost is the cover price stated on the issue, plus 8p postage.

Before undertaking any constructional project described in a back issue, it must be borne in mind that components readily available at the time of publication may no longer be so.

We regret that we are unable to supply photo copies of articles where an issue is not available. Libraries and members of local radio clubs can often be very helpful where an issue is not available for sale.
THIS PIECE OF EQUIPMENT WAS ORIGINALLY DESIGNED as a test instrument for use in the electronics workshop. There are numerous occasions when an amplifier of this type is needed for such functions as a.f. signal tracing in faulty audio equipment, and it has also proved very useful when checking newly constructed tuners, receivers and signal generators.

The amplifier has an input sensitivity of approximately 50mV for full output, and the input impedance is of the order of 200kΩ. The noise level is very low at -66dB with the input open-circuit.

Although the basic circuit configuration used in the output stage is not particularly modern, a large amount of negative feedback is employed and enables a level of distortion to be given which is lower than that of many more up-to-date circuits.

The unit is housed in an attractive home-made aluminium case which has dimensions of about 6 by 2 by 6in. The unit is powered from an internal 9 volt battery type PP7. Quiescent current is about 4.5mA, but this increases to peaks of over 100mA when the Class B output stage is used at full power.

A simple top-cut tone control is incorporated in the design.

An inexpensive general purpose a.f. amplifier which will be particularly useful for experimental, testing and servicing work.

Fig. 1. The circuit of the 500mW a.f. amplifier. A flat and ot
An inexpensive general purpose a.f. amplifier which will be particularly useful for experimental, testing and servicing work.

By R. A. Penfold

Fig. 1. The circuit of the 500mW a.f. amplifier. A relatively high level of feedback is applied over the driver and output stages.
shop amplifier

By R. A. Penfold

CIRCUIT OPERATION

The full circuit of the amplifier is given in Fig. 1. VR1 is the volume control, and the input signal is coupled from the slider of this to the base of TR1 via the d.c. blocking capacitor C2. TR1 operates as a low noise common emitter input stage with R1 as its base bias resistor and R2 as its collector load resistor. The un-bypassed emitter resistor, R3, provides negative feedback and has the effect of reducing noise and distortion as well as boosting the input impedance of the amplifier. These features are achieved at the expense of some voltage gain.

A top-cut tone control is given by R5, C3 and VR2. C3 offers a reactance which reduces as frequency increases, whereupon it provides a relatively high level of attenuation to the higher audio frequencies when VR2 slider is at the upper end of its track. This attenuation reduces as VR2 inserts more and more resistance, and is almost completely absent when VR2 slider is at the lower end of its track. The signal from the tone control is passed to the base of driver transistor TR2 via C4.

The collector of TR2 couples into the primary of the transformer T1. Base bias for this transistor is provided by R13 and R14 and, since R13 connects to the amplifier output, this resistor also provides negative feedback over both the output and driver stages. The feedback level is high and results in a correspondingly low voltage gain and distortion level in the driver and output stages.

Resistor R6, bypassed by C6, provides the emitter bias for TR2. C5 reduces the response of TR2 at high frequencies, and thus improves stability.

T1 has two secondary windings, one coupling to TR3 and the other to TR4. The signal feeds to these two transistors are in antiphase, so that TR3 produces the positive output half-cycles of signal whilst TR4 produces the negative half-cycles. A quiescent bias is provided by the potential divider R7, R8, R9 and R10, resulting in the output transistors both passing a small collector current in the absence of signal. This quiescent bias prevents the appearance of crossover distortion. Both transistors function as common emitter amplifiers.
Increasing base current in TR3 causes its collector current to increase and the collector to go positive. Increasing base current in TR4 similarly causes its collector current to increase, but the effect this time is that the base and emitter, which couples to the speaker, are drawn negative. The transistors offer a high current gain and the output impedance is sufficiently low to drive an 8Ω speaker via C7. Resistors R11 and R12 are included in circuit to limit current in the output transistors and thereby prevent thermal runaway. The output may also be coupled to a 15Ω speaker, whereupon the output power is slightly reduced. Speaker impedances lower than 8Ω must on no account be employed.

Theoretically, TR3 and TR4 should be a matched pair. Readers with access to component retailers may be able to have a pair of matched transistors selected for a small fee, although such a service is not advertised by the larger mail order houses. However, since there is a high level of feedback in the driver and output stages, satisfactory operation should be obtained with unmatched transistors. The writer checked this point experimentally by replacing one of the OC81's with an AC128 having quite a different gain and could detect no noticeable effect on performance at all.

S1 is the on-off switch for the amplifier and is ganged with volume control VR1. C1, R4 and C8 are supply decoupling components.

CASE CONSTRUCTION
The case is home-made from 20 s.w.g. aluminium sheet, and details of the two parts required are given in Fig. 2. A commercially made metal case of similar materials can be used. The component layout is given at the top of the next page.

Fig. 2. The dimensions of the two pieces which make up the amplifier case. The manner in which they fit together is described in the text.
dimensions could be used, if preferred, as the size is not critical provided the components and battery can be accommodated.

One section of the case, as shown in Fig. 2, is the piece of aluminium which forms the rear panel, base and front panel. This is made from a single piece of metal measuring 10 by 7 in. It is cut to the shape shown in Fig. 2 and then the front and rear panels are bent upwards with the aid of a vice and two wooden blocks. The two \(\frac{3}{4} \) in. side flanges are similarly bent upwards.

The holes in the front panel are next drilled out. Both the input and output of the amplifier are taken to 3.5mm jack sockets, and these usually require \(\frac{3}{4} \) in. diameter holes. The holes for VR1/S1 and VR2 are \(\frac{3}{8} \) in. diameter. Four holes to take screws securing rubber feet may next be drilled at the base corners. The holes for these are not shown in Fig. 2. Later, two further holes will be drilled in the base for the screws which secure the component panel.

The item which forms the top and two sides, or the cover, is also shown in Fig. 2. This is made from a 10 by \(\frac{3}{4} \) in. piece of aluminium. The two mounting holes in the sides are drilled clearance size for small self-tapping screws. The metal is next bent at the lines indicated to form the top and two sides. This item is then fitted over the first piece so that the sides pass over the \(\frac{3}{8} \) in. flanges. The front of the cover projects forwards over the front panel by a small amount in the manner illustrated in the photographs. Using the cover as a template, the positions of the two mounting holes in the \(\frac{3}{4} \) in. flanges are next marked out, and these are drilled tapping size for the self-tapping screws. When the amplifier is finally assembled, the cover will be secured in place by two self-tapping screws passed through the two sets of mounting holes.

The appearance of the completed amplifier is enhanced if the two bends in the cover are given a slight radius, as indicated in the photographs, instead of being bent abruptly. The corresponding top corners of the rear and front panels are slightly rounded off to suit.

Component Panel

All the amplifier components with the exception of the controls and the jack sockets are assembled on a piece of plain (i.e. with no copper strips) Veroboard of 0.15in. matrix measuring 3 in by 2 in. This is a standard size in which the board is sold. Fig. 3 illustrates the component layout on the board as well as the underside wiring. It also shows all the other wiring of the unit. Looking at the front panel from the front of the amplifier, the input jack is to the left.

Initially, the two 6 B.A. clear mounting holes are drilled in the Veroboard in the positions shown. The board is then used to mark out the corresponding 6 B.A. clear holes in the base of the case, and these are also drilled out. The components are then fitted to the Veroboard and wired up as shown. Wiring on the board is quite straightforward, and sleeving should be placed over any leads which cross over or are very close to other leads. In most cases the component lead-outs will themselves be long enough to make the appropriate connections. Where this is not the case the lead-outs may be extended by soldering on tinned copper wire of around 22 s.w.g.

The input screened lead has only its centre wire connected to the board. No connection is made to the braiding at this end. Ensure that all wiring under the board is reasonably flat and does not project downwards by an excessive amount. Leads to the controls and the output jack can be made a little longer than is required at this stage.
The board is secured to the base of the aluminium case by two 1 in. 6 B.A. bolts, with the heads underneath. Spacing washers or additional 6 B.A. nuts are used on the bolts to keep the underside of the board well clear of the base surface. If desired, additional protection against short-circuits to the aluminium base may be provided by mounting a second piece of s.r.b.p. ('Paxolin') of about the same dimensions underneath the board and immediately above the base.

Connections to the front panel components may then be carried out, the leads from the board being shortened as necessary. The amplifier picks up its chassis connection from the mounting bushes of the input and output jack sockets; if necessary, the appropriate socket tag may be located with the aid of an ohmmeter or continuity tester. An ohmmeter or continuity tester may also be employed to determine the requisite tags on S1, of which only one pole is used. Tag positioning on some switches may differ from that shown in Fig. 3.

There is plenty of space for the battery alongside the component board. A piece of foam rubber is glued to the underside of the case top above the battery, so that the battery is held firmly in place when the cover is fitted.

USING THE AMPLIFIER

After the amplifier has been completed, a testmeter switched to a high current range should be inserted in series with the positive supply lead and the amplifier switched on. If the testmeter indicates that it is safe to do so, the amplifier is switched off, a lower range selected in the meter and the amplifier switched on once more. The quiescent current drawn by the amplifier should be around 4.5mA. If the current reading is considerably different from this figure the amplifier must be switched off at once and the wiring re-checked.

As already mentioned, the amplifier may be coupled to an 8Ω or 15Ω speaker but must not be used with a speaker having an impedance lower than 8Ω. Speakers of impedance higher than 15Ω can be employed if the consequent loss in output power can be tolerated. The prototype is employed with an Eagle 4in. 8Ω speaker type FR.4 mounted in a home-made cabinet, and the combination gives very good results.

A word of warning is necessary concerning the output jack socket to which the speaker connects. With some types of 3.5mm. jack plug and socket it is possible to momentarily short-circuit the socket contacts during the process of inserting or removing the plug. In consequence, the speaker plug should not be inserted or removed when the amplifier is switched on and handling a signal, as excessive current might then flow in the output transistors and cause them to be damaged.

To avoid stray pick-up of mains hum and similar effects, the input connection to the input jack plug should be made by way of screened wire, the braiding of this being soldered to the plug contact which connects to the amplifier chassis.

The controls and jack sockets as seen from the rear

The amplifier in use in conjunction with an external loudspeaker
REGENERATIVE OVERLOAD TRIP

An add-on circuit which cuts off a d.c. supply whenever the current drawn exceeds a preselected value.

By R. J. Caborn

This overload trip circuit can be connected to the output of a d.c. power supply, and it may be pre-set to act at any current from 100 to 400mA. The basic switching device, a power transistor, remains conductive until the trip current is reached whereupon it turns off abruptly. The circuit can only be brought back to its previous state by disconnecting the excessive load. The trip circuit causes the voltage available from the d.c. supply to be reduced by about 1 volt, and it gives a very small degradation of the voltage regulation. The d.c. supply can have any output voltage up to some 30 volts.

TRIP CIRCUIT

The trip circuit is shown in Fig. 1. For convenience of presentation the negative rail appears at the top in this diagram, and it will be helpful to remember that a turned-on silicon transistor has its base about 0.6 volt above the emitter and its collector about 0.3 volt above the emitter. Both the transistors in the trip circuit are silicon types.

If, with no load connected, the d.c. supply is applied, a current of about 10mA flows into the base of TR1. This is sufficient to make TR1 conductive, whereupon a voltage is available at the negative load terminal which is about 0.9 volt positive of that on the negative rail. This voltage is the sum of those dropped across TR1 and the forward biased silicon diode D1.

The trip current level is adjusted by pre-set potentiometer R4. Let us say that this has been previously adjusted so that the circuit trips at 300mA. A load is now connected across the load terminals and this could initially draw a current of around 100mA. Most of this current flows through TR1 and D1, whilst a small fraction flows in R4, R3, R2 and the base-emitter junction of TR1. If we now cause the load current to slowly increase the current flowing in the base-emitter junction of TR2 will also increase, although at a much lower rate. When the load current reaches the trip level of 300mA, the current flowing in the base-emitter junction of TR2 is sufficiently high for its collector to take the base of TR1 slightly negative. In consequence TR1 collector goes slightly positive, with the result that the current in the base-emitter junction of TR2 increases. Its collector takes the base of TR1 further negative, the collector of TR1 goes increasingly more positive and the situation is soon reached where TR1 is completely cut off and TR2 is fully conductive. If signal polarities from the base of TR2 to the collector of TR1 are traced through it will be seen that the action which causes the two transistors to change states is regenerative, and that the combined gain of the two transistors appears in the regenerative loop. In practice, the turn-off in TR1 when the trip current level is reached is very abrupt. So long as the load is connected, TR1 remains cut off, and the only current in the load will be that which flows through R4, R3, R2 and the base-emitter junction of TR2. For most normal settings of R4 this current will be of the order of milliamps only. If the load is disconnected, the two transistors revert to their previous states, with TR1 on and TR2 off.

VOLTAGE DROP

It was just stated that as load current increases so does the current flowing in the base-emitter junction of TR2. This statement assumes that the voltage across the conducting TR1 and D1 increases with increasing load current and such is indeed the case. The voltage dropped across these two components increases by about 0.1

Fig. 1 The circuit of the overload trip. TR1 cuts off when the overload current is drawn
to 0.15 volt for each 100mA rise in load current. The consequent increase in base current in TR2, although small, is still sufficient to trigger the circuit. When R4 has been set to a particular current trip value, the short-term repeatability at that current value is in practice very good. Long-term repeatability should be nearly as good although there may be slight shifts in tripping current due to changes in ambient temperature.

The function of capacitor C1 is to slightly slow the voltage rise at TR2 base if loads which are near the tripping level are suddenly applied to the load terminals. Without C1, the abrupt connection of such loads may cause the transistors to trip.

If, as is probable, a high value electrolytic capacitor is connected across the load terminals, the charging current to this component can trip the circuit on switch-on. Should this occur an additional switch can be connected into circuit, as shown in Fig. 2. When this switch is set to ‘Out’, TR2 is cut off and the high value capacitor is then able to charge via TR1 and D1. The added switch can also be set to the ‘Out’ position when it is desired to use the circuit without the current trip facility. When the circuit has tripped and the load is disconnected, the switch may also be set to the ‘Out’ position to charge the high value electrolytic capacitor once more.

Returning to Fig. 1, the value of R1 should be such that about 10mA flows into the base of TR1. For a supply voltage of 10 volts R1 may be 1kΩ ¼ watt, for 20 volts it may be 2kΩ ½ watt, and for 30 volts it may be 2.7kΩ ¼ watt. Intermediate resistance values may be employed for intermediate supply voltages. If TR1 is an exceptionally low gain specimen and it is desired to have the circuit trip at currents approaching 400mA it may be necessary to increase TR1 base current by employing a slightly lower value for R1.

R4 should be a wire-wound potentiometer for two reasons. First, it is possible for currents approaching 15mA (with a 30 volt supply) to flow through its track if it is accidentally set to insert very low resistance when the circuit is tripped. Second, the setting of this potentiometer is a little critical and a wire-wound potentiometer will maintain its adjusted resistance value more reliably than will a carbon track potentiometer. The potentiometer is shown as 22kΩ in Fig. 1, but it may alternatively be 20kΩ or 25kΩ if it is easier to obtain these values.

TR1 is specified as a power transistor since it has to pass relatively high surge currents when there is a large value electrolytic capacitor across the load terminals. Its average dissipation is quite small and it does not need to be mounted on a heat sink.

Diode D2 ensures that a high reverse voltage cannot be applied to the base-emitter junction of TR2 after switch-off when a high value capacitor is connected across the load terminals. It is reverse biased during normal operation and has no other effect on circuit functioning.

The circuit is set up by adjusting R4 to trip the circuit when the desired maximum load current is being drawn. For ease of explanation, a theoretical means of drawing the load current for the setting-up process is illustrated in Fig. 3(a), in which RX is a current limiting resistor, RY is a variable resistor and the meter is a multimeter switched to read 0–500mA (or to read a suitable alternative f.s.d. current if a 0–500mA range is not provided). R4 of Fig. 1 and RY of Fig. 3(a) are both set to insert maximum resistance into circuit, then the power supply is switched on. RY is then adjusted until the desired trip current is indicated by the meter. The resistance inserted by R4 is next slowly reduced until the circuit trips. The power supply is then switched off, RY returned to insert maximum resistance and the supply switched on again. The resistance inserted by RY is slowly reduced until the circuit trips once more. If the circuit trips at a slightly different current from the desired one, a very small adjustment is made to R4 and the process repeated. After several runs of this nature it should be possible to bring R4 precisely to the desired setting.

In practice it will be unlikely for the constructor to have access to a suitable potentiometer for the RY position in Fig. 3(a) since this is called upon to carry current of the order of hundreds of milliamps. A practical alternative adjustable load is shown in Fig. 3(b), in which the load current is drawn by a power transistor such as the 2N3055. Initially, the 100kΩ potentiometer in Fig. 3(b) is set to insert maximum resistance. Reducing its resistance then has the same effect as reducing the resistance of RY in Fig. 3(a) and the setting-up procedure carries on in the same way as was described for Fig. 3(a). The 2N3055 will need to be mounted on a heat sink whose size depends upon the voltage and current it has to handle. A heat sink about 4 in. square should be adequate for most requirements.

If a high value electrolytic capacitor is to be connected across the load terminals, this should be wired into circuit after the setting-up procedure has been completed.
How to measure temperature rise in components wound with copper wire

Are you worried about the temperature at which the mains transformer in your latest pet circuit is running? There is a simple means of checking operating temperature in any inductive component which is wound with copper wire, and all that is required is a means of measuring resistance with reasonable accuracy. The method can be employed with mains transformers, modulation transformers, smoothing chokes, TV line output transformers and any other wound components handling relatively high power levels. It is, indeed, a standard procedure employed in the R. and D. laboratories of set-makers and component manufacturers.

Temperature Coefficient
To find running temperature, first measure the resistance of the winding, or one of the windings, in the inductive component whilst it is cool and is at ambient temperature. Next, connect the component up in its circuit and let it operate for a period until it has reached its final running temperature. Then, disconnect the component from its circuit and quickly measure the resistance of the winding once more. This will have increased because copper wire has a positive temperature coefficient of resistance, and the percentage increase will indicate the temperature of the copper wire above ambient.

The temperature coefficient of annealed copper wire is 0.0039 per °C. So, if the resistance has increased by 3.9% the temperature rise is 10°C. Should the resistance have gone up by 39% the temperature rise will be the unsafe figure of 100°C. Intermediate increases in resistance correspond to intermediate rises in temperature. A thermometer is desirable to give a measure of ambient temperature before starting the test but it is not needed for any other purpose.

The accompanying table shows resistance increase and the corresponding temperature rise above ambient for temperature increases up to 103°C. The temperature figures are given to the nearest whole number, whereupon a 4% (not 3.9%) resistance increase is shown as corresponding to a temperature above ambient of 10°C.

To take an example, assume that a transformer winding, when cold, has a resistance of 40Ω and that this rises to 44Ω when the wire is hot. The resistance increase is 10% and so the temperature rise above ambient is 26°C. If the ambient temperature were 20°C the winding wire, when hot, would be running at 46°C.

Speaking in very general terms, the wire temperature in well designed impregnated transformers and chokes can run up to a maximum of 100°C. Don’t forget that the temperature found by the resistance measurement technique is above ambient temperature. Ambient temperature in a hot environment, e.g. in a crowded chassis on a very hot day, may well run up to 45°C, which leaves 55°C safe winding temperature increase in hand. Allowing a safety margin of 10°C gives a maximum practical increase above ambient of 45°C. However, even when these safeguards are taken into account, it is still wise to keep winding temperature rises to below some 35°C for really long life and reliability.
INTEGRATED CIRCUIT SUPERHET

By R. A. Penfold

In this concluding article details are given of the wiring, assembly and alignment of the receiver. Also described is the construction of the optional add-on audio output stage which enables the receiver to be coupled to a speaker.

The article in last month's issue completed the examination of the receiver circuit and its mode of operation. Also described was the work involved in making up the chassis, front panel and other metal parts. The next processes in construction are assembly and wiring up.

MIXER WIRING

All the controls, sockets and valveholders may now be mounted on the front panel and chassis. The two 6 B.A. securing screws for the tuning drive should be short types with round heads. Valveholders should have the pin orientation shown in Fig. 6. A solder tag is secured under both mounting nuts of L1 and L3 valveholders, and a further tag is held under one of the mounting nuts of L2 valveholder.

VC6 is specified in the Components List (published last month) as Jackson type CG04, but the capacitor employed in the prototype was a different type of the same capacitance. The Jackson capacitor should just clear the tags of the valveholder for L1. If necessary, these tags may be bent down a little and the outer end of the valveholder centre spigot (if fitted) cut away. It may be found more convenient to fit VC6 after the wiring to the valveholder has been completed.

Before finally fitting the 3-gang capacitor in position an insulated lead about 3in. long is soldered to each of the three lower fixed vane tags. These leads are then passed through the three chassis holes under the capacitor frame. A solder tag is secured under the rear mounting nut for the capacitor.

The aerial input and mixer-oscillator stages are then wired as in Fig. 6. Here, all leads should be kept short and direct. The padding capacitors, C6, C7 and C8, are shown away from L3 valveholder for clarity; in practice they connect to the appropriate valveholder tags by short leads. Some of the valveholder tags to which no coil connections are made are used as anchor tags.

There are four connections from the component panel to the mixer-oscillator circuit, these being two connections from IFT2, a positive supply from R16, and the a.g.c. connection. These wires are taken from the component panel to the points shown in Fig. 6 at a later stage, after the component panel has been assembled and mounted.

Two leads are shown passing from the moving vanes tag of VC5 to VR1 and JK1. The lead to VR1 connects to the tag at the minimum volume end of its track. The lead to JK1 connects to the jack socket contact corresponding with the sleeve of the jack plug. This last lead is only needed if the jack socket is of the insulated type. Should the jack socket be of the non-insulated type it will take up its chassis connection via its mounting bush and nut.

The components below the chassis with the battery and its bracket
Fig. 6. The wiring of the aerial and mixer-oscillator stages. The moving vanes of VC6, VC1 and VC5 connect to chassis via their mounting bushes

COMPONENT PANEL

The component panel has already been cut out and has had its four mounting holes drilled. It now needs to be prepared to take the components and wiring shown in Fig. 7. The diagram shows the panel full size, and it may be traced so that the various holes can be accurately located. This point does not, however, apply to the i.f. transformers, whose positions are shown in outline only. The positions of the tag and lug mounting holes are marked out with the aid of the leaflet provided with each transformer. Central holes to allow core adjustment are needed also for IFT2 and IFT3. The holes for the component lead-outs should be 1/16in. diameter.

When the board has been drilled, mount the i.f. transformers, the integrated circuit, R11, R12 and C17. Then wire up five insulated leads on the panel underside as shown by the broken lines in the upper view. Next, mount and connect the rest of the components and the two link wires on the component side of the board. These link wires are also insulated.

Non-insulated wiring on the panel underside is shown in the lower view in Fig. 7. The edge 'A-A' is identified in both views to assist in locating the wiring positions. In most instances the component lead-outs will be long enough to make the various interconnections but, where necessary, they may be extended by lengths of 22 s.w.g. tinned copper wire. Note that some chassis connections are made via the i.f. transformer mounting lugs.

Finally, add thin flexible insulated wires for the connections to external components and to the mixer-oscillator stage. These leads are made longer than will be required, and are cut down to the correct length when their remote ends are connected. Note that C19 is not on the panel but is soldered to VR1 at the tag connecting to the maximum volume end of its track.

Next, fix the panel in position on the chassis, with IFT3 nearer the front of the receiver, using four 6 B.A. bolts and nuts. Spacing washers or extra nuts are fitted to ensure that the panel underside wiring is well clear of
Fig. 7. Drilling and wiring details for the i.c. component panel. This is reproduced full size and the diagram may be traced.
the chassis surface. The free ends of the flexible leads may then be connected to the external points, being shortened as necessary. Later, however, the panel has to be dismounted and positioned on its side for alignment purposes, and the flexible leads should be given sufficient length to enable this to be done.

Two of the leads from the panel connect to S1. This is simply a single pole 2-way rotary switch and its only requirement is that it is small in size so that it does not interfere with the coil in the L1 position. A suitable component would be the ‘butterfly type’ switch Type A retailed by Henry’s Radio, Ltd. The author used a midget 3-pole 4-way switch with adjustable end stop in the prototype. The lead from the component panel to S2 connects to one tag of this switch. The remaining switch tag connects to the positive battery connector. The lead to the S-meter couples to the positive terminal of this component. Its negative terminal connects to chassis via a solder tag under one of its mounting nuts.

The negative battery connector is coupled to VR1 at the tag connecting to the minimum volume end of its track.

AERIAL AND EARTH

As with any short-wave receiver, an efficient aerial is essential if the set is to be used for serious listening. A good indoor aerial will provide reception of a reasonable number of stations, and quite acceptable results can be obtained with such an aerial. If possible, though, an outdoor aerial consisting of about 50 to 100 ft. of good quality aerial wire should be used, this being positioned high enough to be clear of buildings and other obstructions. With an aerial of this nature the receiver should provide excellent world-wide reception.

If a short indoor aerial is to be used permanently, it will probably be beneficial to make the aerial connection to pin 6 of L1 instead of pin 8. This will provide a very worthwhile increase in signal strength.

An earth connection is by no means necessary, and is only really likely to be of benefit if the constructor is interested in medium wave Dx, or in the 160 and 80 metre amateur bands. At these frequencies an earth connection will produce a very noticeable increase in signal strength.

ALIGNMENT

As was just mentioned, it is necessary to temporarily dismount the component panel and turn it on its side to enable the i.f. circuits to be aligned. A chassis connection to the panel can be made via a short piece of wire.

Insert the Range 2 coils (Blue coil at the front, Yellow in the middle and Red at the rear), connect an aerial and headphones and switch on. Set VC1, VC5 and VC6 to about half maximum capacitance. The i.f. transformers are pre-aligned at the factory and their cores should be sufficiently near the final settings required to give quite good i.f. sensitivity. Adjusting the main tuning control should allow reception of a few stations. The three plug-in coils are supplied with their cores screwed right in. The cores should be adjusted so that about 3⁄4 in. of the threaded brass stem protrudes from the top of each former.

Tune to a station at a setting of about 50 on the tuning dial and adjust the cores of L1, and then L2, to obtain a peak reading in the S-meter.

I.F. transformers IFT2 and IFT3 are adjusted next with the receiver carefully tuned to a station which is not prone to fading. Each i.f. transformer has two cores, one reached from above and the other reached from below. They should only be adjusted with a proper trimming tool, and the Denco trimming tool type TT5 is suitable.

First adjust the upper core of IFT3 and then its lower core, following with the upper and lower cores of IFT2 in that order. Repeat the procedure several times to ensure that the alignment is at its optimum. All these adjustments are for maximum reading in the S-meter.

Switch off, remount the component panel on the chassis and then switch on again. Set VC7 to approximately half maximum capacitance and accurately tune in a weak station. Switch on the b.f.o. and adjust the core of IFT1 for a whistle or heterodyne if one is not already present. Adjust the core of IFT1 for the lowest possible note.

Switch the b.f.o. off. Next, plug in the Range 3 and Range 4 coils in turn, adopting the same procedure for setting up their cores as was used on Range 2.

OPERATING NOTES

If the main interest is in the short-wave broadcast bands then Range 4 will be the range of principal interest, since most of the popular broadcast bands are included in its coverage. For amateur band listening, Range 3 covers the 160 and 80 metre bands whilst Range 4 includes the 40 and 20 metre bands, the latter being in general the best for Dx reception. Range 2 provides medium wave reception and may be employed for medium wave Dx or, with the optional add-on a.f. output stage, normal entertainment listening.

On short waves always keep VC1 and VC5 adjusted for peak signal strength when receiving a.m. signals. The S-meter can be used as a tuning meter here.

The b.f.o. is switched in for s.s.b. and c.w. (morse) reception. For best results on s.s.b. the a.f. gain control should be tuned to maximum and VC5 adjusted to peak the signal. VC1 can also be peaked on weak signals, but with stronger ones it must be backed off slightly. This is necessary as b.f.o. injection has been kept low to prevent the formation of an a.g.c. voltage which would reduce sensitivity. Strong s.s.b. signals can therefore easily swamp the b.f.o., resulting in a poor quality audio signal.
C.W. signals are peaked in the same way as a.m. signals, and the b.f.o. frequency control is adjusted to give a comfortable audio beat note.

If the S-meter should be found to be too sensitive, as could occur due to spread in the i.c. and component tolerances, a small value resistor may be inserted in series with it. The value can be found by experiment and will probably be of the order of 330Ω. The resistor can be inserted between the negative terminal of the meter and the chassis tag, in place of the wire currently fitted.

ADD-ON OUTPUT STAGE

The receiver, as described so far, has an output which is only suitable for high impedance headphones or any other medium to high impedance load. This output is relatively quite high, and a very simple output stage offering quite low voltage gain can be readily added for driving a speaker. The receiver can still be used with high impedance headphones when required, these now being plugged into the output from the add-on audio stage.

The addition of the output stage enables an external 25Ω speaker to be driven up to a maximum r.m.s. output of about 300mW.

The circuit of the output stage is given in Fig. 8. Four transistors are used, two (TR1 and TR2) as a Darlington pair driver and two (TR3 and TR4) as emitter follower output transistors.

The a.f. output of the i.c. from C18 is applied to the base of TR1 via R1 in the diagram. This transistor attenuates any i.f. signal that may still be present in the i.c. output and ensures overall stability. TR1 and TR2 provide a high level of amplification and couple into the bases of TR3 and TR4. These operate in a standard Class B configuration with TR3 amplifying positive half-cycles and TR4 negative half-cycles. R5 is adjusted to allow a small quiescent current to flow, thereby avoiding crossover distortion. The output emitters couple to the speaker by way of C2.

R3 and R2 form a potential divider which, at d.c., allows the output emitters to take up approximately half the supply potential under quiescent conditions. At a.c. these resistors appear in a negative feedback network comprising R3 and R2, the latter being in parallel, via R1, with the impedance at the a.f. output of the integrated circuit. A voltage gain of the order of 8 to 10 times is thereby given.

Capacitor C1 is the supply decoupling capacitor for the output stage. The accompanying Components List shows the parts required for the stage.

ASSEMBLY

The amplifier components are assembled on a piece of plain Veroboard of 0.15in. matrix having 16 holes by 16 holes. The component and wiring sides of this board are shown in Fig. 9.

First cut out the board and then drill the two 6 B.A. clear mounting holes. The components are fitted and wired as illustrated. As with Fig. 7, one edge of the board is marked 'A-A' to enable the wiring to be followed more readily.

An L-shaped bracket having the same width as the board is made up from 18 s.w.g. aluminium sheet, and it secures the board to the chassis rear next to the earth socket in the manner shown in the photograph of the chassis underside. The board takes up its chassis

Resistors

(All fixed values ½ watt 5%)

- R1 1.8kΩ
- R2 5.6kΩ
- R3 18kΩ
- R4 1kΩ
- R5 1kΩ preset potentiometer, standard skeleton, horizontal

Capacitors

- C1 100μF electrolytic, 10 V. Wkg.
- C2 100μF electrolytic, 10 V. Wkg.

Transistors

- TR1 BC169C
- TR2 BC169C
- TR3 BC182L
- TR4 BC212L

Miscellaneous

- 25Ω speaker
- 3.5mm. jack plug
- Plain Veroboard panel, 0.15in. matrix, 16 holes by 16 holes
- 18 s.w.g. aluminium for mounting bracket

RADIO & ELECTRONICS CONSTRUCTOR
connection by means of a solder tag at one of the mounting holes. This is bolted to the bracket which, in turn, is bolted to the chassis.

The receiver wiring has to be modified slightly to bring the audio stage into circuit. The lead from C18 on the i.c. board to JK1 is unsoldered at JK1 and taken to the input of the audio board. A lead from the negative side of C2 on the audio board is connected to JK1 in place of the lead just removed.

The positive supply lead from the i.c. panel to S2 is disconnected at S2 and connected to the positive rail on the audio board. Another lead from this positive rail is then taken to S2.

The final process required is that of setting up R5 on the audio board for the correct quiescent current in the two output transistors. Set R5 to give minimum resistance between the two output transistor bases by turning its slider fully clockwise. Insert a multimeter switched to read 20 to 50mA f.s.d. in the positive supply lead from the battery. Put the receiver a.f. gain control to its minimum setting.

Switch the receiver on and observe the meter. This should indicate a current flow of about 10 to 15mA. Slowly adjust R5 to insert increasing resistance between the output transistor bases until the meter reading increases by 2.5mA. The meter can then be removed, and the set is once more ready for use.

With the add-on output stage incorporated, a 25Ω speaker may be plugged into JK1. So also may the high impedance headphones, which will now offer a higher volume of sound. Normally, the a.f. gain of the receiver will need to be at a lower setting than before when headphones are plugged in.
Clandestine transmitters come and go, they rise in the firmament, blaze like super novas and then ignominiously fizzle out, leaving a black hole where they once so brilliantly shone. Recent military and political events in the Far and Middle East have had their repercussions on the short wave scene and in the deceased column we must list our old friend the “Voice of Iraqi Kurdistan”. With Iranian support the Kurds had resisted inclusion into the Iraqi state and had, from time to time, operated the transmitter whose precise location was never detected. The site has now been found, it was underground and well camouflaged near Darband in the mountains of northern Iraq. The equipment had been smashed by the Kurds.

Then we have the demise of the clandestine “Voice of the National United Front of Cambodia” which, towards the end of the siege of Phnom-Penh, greatly increased the total hours of transmission time but has not been heard since late April and the occupation of the capital by the Khmer Rouge. The Phnom-Penh domestic service which abruptly ceased transmissions in mid-April returned to the air later with the identification “Here is Phnom-Penh, the broadcasting station of the National United Front of Cambodia Radio.”

In the births column we have the “Voice of Chilean Resistance” which is to be heard daily from 2330 to 2400 on 7145 via the facilities of Radio Algiers and the Chilean resistance movement resident in Algeria.

CURRENT SCHEDULES

- **PORTUGAL**
 Radio Portugal, “Emissora Nacional”, Lisbon, presents an External Service in English to Europe from 0300 to 0330 and from 0400 to 0500 to USA and Canada (East and West Coast) on 6025 and 11935; from 1400 to 1430 to India on 17895 and 21495; from 1600 to 1630 to the Middle East on 17895 and 21495; from 1800 to 1900 to East and West Africa on 11875 and 21495.

- **DOMINICAN REPUBLIC**
 “Radio-Television Dominican Onda Internacional”, Santo Domingo, operates an External Service in English from 2145 to 2200 on 9505 consisting of both home and world news.

- **ISRAEL**
 The Israel Broadcasting Authority, Jerusalem, offers programmes in English as follows – from 0500 to 0515 to Europe and North America on 5900, 7395, 9009, 9815, 11700, 11960, 12025 and on 15240; from 1130 to 1200 to Europe and N. America on 9009, 11960, 12025, 15240 and on 21590; from 1830 to 1845 to the Middle East (relay of Arab World Service) on 5915; from 2000 to 2055 to Europe, North America and Africa on 7395, 9009, 9630, 9730, 9815, 11960, 12025 and on 15240.

- **TANZANIA**
 “Radio Tanzania”, Dar-es-Salaam, has a Home Service in Swahili from 0300 to 1500 on 4825 and 5050; from 0700 to 1110 on 7165 and 9550 (also from 1600 to 2110 on 4825). The Commercial Service operates from 0300 to 0500 on 4785; from 0900 to 1100 on 7280 and 9530 and from 1400 to 2015 on 5050.

- **TUNISIA**
 The Tunisian Home Service, all programmes in Arabic, can be heard from sign-on at 0458 to sign-off at 2200 on 11970 and 15225.

- **INDONESIA**
 Radio Republik Indonesia currently radiates the National Programme from 1000 to 1600 and from 2200 to 0100 on 4805, 6045 and on 11720; from 0500 to 0930 on 6045, 7270 and on 11720.

- **PORTUGAL**
 An External Service from Lisbon is that in Portuguese to Portuguese workers resident in European countries from 1200 to 1300 and from 1730 to 1800 over the “Radio Trans-Europa” transmitter at Sines on 6115.

- **SOUTH AFRICA**
 “Radio RSA” – The Voice of South Africa”, Johannesburg, presents an External Service in English as follows – from 0300 to 0425 to East and Central Africa and the Middle East on 3995, 4875, 5980 and on 7270; from 0615 to 0705 to West Africa on 11900, 15220 and on 17780; from 1000 to 1045 to South, North and East Africa on 11970 and 15220; from 1100 to 1200 to Central and East Africa on 11900, 15220 and on 21535; from 1300 to 1550 to Central and East Africa on 11900 (to 1550), 15220 and on 21535; from 1600 to 1650 to East Africa and the Middle East on 7270, 11900 and 15255; from 2100 to 2200 to West Africa on 11900, 15220 and on 21535.
on 15175; from 2100 to 2150 to West Africa and Europe on 4875, 5980, 7270 and on 11900; from 2230 to 2320 to North America on 5980, 9525, 9695 and on 11900.

● CANADA
Radio Canada International, Sackville, has re-arranged the morning broadcast in English directed to Africa and the transmissions are now of 20 minutes duration; from 0620 to 0640, 0700 to 0720 and from 0740 to 0800 on 7155 and 9685 via BBC transmitters at Daventry and on 7290, 9605 and 17820 via the Malta relay.

● SPAIN
Radio Nacional Espana, Madrid, has replaced the 9620 frequency with that of 9505 for the broadcast in Spanish to Europe from 1000 to 2030.

● AUSTRALIA
Radio Australia’s programme in English directed to the U.K. and Europe may be heard from 0645 to 0745 on 9570 and on 11765, the newcast being at 0715, the latter being repeated from 0815 to 0830 suitably updated.

● SOUTH VIETNAM
Saigon Radio domestic service is reportedly (BBC Monitoring Service) adhering to the following schedule – from 0700 to 1600 and from 2200 to 0400 on 4877, 6165, 7175, 7245, 9620 and on 9755. Identification in Vietnamese is “This is the liberated Saigon Broadcasting Radio – the Voice of the Saigon-Gia Dinh people broadcasting from Saigon”.

AROUND THE DIAL
Some of the transmissions recently logged by us which may possibly interest other listeners are listed monthly under this heading.

● CLANDESTINE
Azad Kashmir is still currently using the 3383 channel and was logged at 1822 when signing-off with their interminably long choral anthem with a surprisingly high signal strength.

● MOZAMBIQUE
Lourenco Marques is often to be heard here in the U.K. on the 90m band channels of 3210 and 3265. The former frequency was entered in the logbook at 1803, at which time a programme of guitar music with announcements by male and female announcers in Portuguese was heard; the latter channel at 1748 with a programme of Afrikaans pops. The schedule of the 3210 transmitter is from 0400 to 0600 and from 1500 to 2210, that of the 3265 transmitter being from 1630 to 0400. RCM Beira can be heard on 3235, being listed here at 1742 with country and western music records. Schedule is from 1500 to 1830.

● COLOMBIA
Radio Catatumbo, Ocana, at 0202 on a measured 4768.5, OM with identification, commercials and then programme of local pop records. This one is listed on 4765 and has a schedule from 0000 to 0400.

● HONDURAS
HRPL3 Radio Progreso, El Progreso, at 0212 on 4920, OM with clear identification, songs in Spanish, local music. Schedule is from 1100 to 0500.

● COSTA RICA
THB Radio Capital, San Jose, at 0205 on 4832, lively pop songs in Spanish, identification at 0214. THB has a 24 hour schedule and, although listed as a 1kW transmitter, is often one of the best signals on the 60m band, especially around 0200.

● PERU
OAX8F Radio Atlantida, Iquitos, at 0300 on a measured 4790 (listed 4785) with full identification, commercials, local announcements and local music. This one has been drifting around from 4785 to 4790 for some time and was logged earlier this year on 4788 on several occasions. The schedule is from 0900 to 0455 but has been reportedly signing-off on Sundays at 0400 and weekdays as late as 0600.

OAX2S Radio Jaen, Jaen, at 0220 on 5005, OM with songs in Spanish, announcements but no positive identification at 0230 (tentative logging). The observed schedule of this 250 watt transmitter is from 1045 to 1250 and from 0000 to 0400.

● BRASIL
ZYK28 Radio Olinda, Pernambuco, at 0230 on 3375, full identification, announcements, local pops. Schedule is from 0800 to 0325 but reportedly heard as late as 0400 on occasions.

● ECUADOR
HCWE1 Radio Nacional Espejo, Quito, at 0251 on 4679, OM with full identification, local music and songs in Spanish. Schedule is of 24 hour duration.

● VENEZUELA
YVRA Radio Monogas, Maturin, at 0235 on 3325, local pops, OM in Spanish with announcements and commercials. This one is a relatively easy-to-log Latin American on the 90m band, the power is 5kW and the schedule is from 1000 to 0400 but has been heard signing-off as late as 0540. Sometimes also identifies as “Voz de Matarin”, which all helps towards the fun and games!

● AUSTRALIA
ABC Brisbane as early as 1910 (rather surprisingly) on 4920, OM with announcements in a record programme including such popular hits as “Puppet on a String” etc., with full identification and a newscast, including both world and local news at 1930.

● KENYA
Nairobi at 1853 on 4804, OM with a talk in English about the developing countries of Africa. This one is not all that easy to log and from practical experience has been found to ‘vanish’ from the scene for long periods at a time. This channel carries the Home Service in English and the schedule is from 0235 (Sundays 0355) to 0630 and from 1300 to 2010 (Saturdays 2110) and the power is 5kW.

● NIGERIA
NBC Kaduna, logged at 1826 on 3396, light orchestral music programme. This is the North Central State Programme and the schedule is from 0430 to 0705 and from 1630 to 2305, the power is 10kW.
This month Smithy returns to the subject of operational amplifiers. He discusses the internal circuitry of the 741 op-amp and then deals with offset null adjustments and basic negative feedback circuits.

741 OP-AMP

"But dash it all, Smithy," wheedled Dick, "you promised." Exasperated, the Serviceman clattered his soldering iron down on its rest.

"Am I ever," he snorted, "going to get any peace from you today?"

"But you promised," repeated Dick.

"In our last technical session you started telling me about operational amplifiers and you then described the 709 op-amp."

"Well?"

"You next said that you'd give me some more gen on op-amps, including the 741, at a later date."

"So?"

"Well, this is the later date! It's ages since you discussed the 709 and I'm getting more and more agog with curiosity about these op-amps."

break from routine servicing work, provided that it is a short break. I'll get out my data book on linear integrated circuits."

As Smithy walked over to the filing cabinet his delighted assistant brought his stool over and perched himself alongside Smithy's bench. Smithy returned with a bulky manufacturer's data book and placed it on his bench.

"Now, let me quickly recap on what I said last time," he remarked, as he settled himself on his own stool. "I told you that two of the most popular op-amps which are available these days are the 709 and the 741. We then went through the internal circuit of the 709 and saw that an offset voltage has to be applied to the input terminals if the op-amp output is to be at earth potential."

"That earth potential," chimed in Dick, "being mid-way between the positive and negative supply rails."

"Correct," confirmed Smithy. "We saw also that with the 709 we require two external capacitive feedback loops to provide frequency compensation. These loops give high frequency attenuation and ensure that the op-amp is kept stable despite it's exceptionally high voltage gain."

"And that gain," said Dick with satisfaction, "was no less than 45,000 times typical. That's what I call a voltage gain!"

"Indeed," concurred Smithy. "Well, in a few moments we'll press on and take a look at the 741 op-amp, which is an improvement on the 709, but before we do that I want to discuss some of the disadvantages of the 709. The first of these is the necessity of having to add the external frequency compensating components. Ideally, an integrated circuit should have all its essential parts neatly tucked away inside it, so that all you have to connect up to it are a power supply and the input and output circuits. There are two further disadvantages with the 709 which I didn't mention last time. One of these is that the 709 is liable to 'latch up', or stick at an extreme positive or negative output level, if both its inputs are taken too far away from earth potential. And the other is that the output stage can burn out if too much current is drawn from it due to, say, an accidental short-circuit. Because of this last factor it is normally desirable to insert a current limiting resistor between the output pin of the 709 and the output circuit into which it feeds, and this means yet another external discrete component."

"I see," said Dick thoughtfully. "Do you get any of these disadvantages with the 741 op-amp?"

"All these snags," stated Smithy, "are completely absent with the 741. The 741 doesn't require external compensating components, it doesn't latch up and its output is short-circuit proof."

"Blimey," said Dick. "That is an improvement. If the 741 is so good, why is it that there are so many 709's knocking around?"

"Partly because the 709 is still a jolly good op-amp," replied Smithy. "It can give an excellent performance if you don't mind adding the extra external components it needs and if you treat it with a little care. Also, if the external frequency compensating capacitors are given very low values it can be made to operate at frequencies higher than the 741. So a 709 may be a better choice than a 741 for high frequency applications. And having said all that, let's now get down to the 741. First of all, we'll take a look at its..."
internal circuitry."

Smithy opened the data book and pointed to a diagram giving the internal circuit of the 741 operational amplifier. (Fig. 1).

"Dear, oh dear," sighed Dick. "This has got more transistors in it than the 709."

"True, true," agreed Smithy. "Even so, it's still fairly easy to find your way around the circuit. We'll start off with the differential amplifier to which the inverting and non-inverting inputs are applied. In the 709 the differential amplifier consists of two transistors with a constant current generator between their common emitter connection and the negative supply rail. The differential amplifier is the other way round in the 741 and what is effectively a constant current source couples the differential amplifier transistors to the positive supply rail. Also, the two single differential amplifier transistors in the 709 are replaced in the 741 by two pairs of transistors. For instance, the non-inverting input goes to the base of an n.p.n. transistor whose emitter couples to the emitter of the p.n.p. transistor immediately below it. That's one of the pairs. The inverting input goes to another n.p.n. transistor with a p.n.p. transistor immediately below it, and that's the second of the differential amplifier pairs."

"The collectors of the p.n.p. transistors," remarked Dick, "connect to the collectors of two n.p.n. transistors whose emitters go to the negative rail via 1kΩ resistors. What do those bottom two transistors do?"

"They act as high value collector load resistors for the p.n.p. transistors," stated Smithy. "As I said last time, it's often easier to add a transistor to an integrated circuit than it is to add a resistor."

"The emitters of those bottom two transistors," went on Dick, staring closely at the circuit, "are taken out to two pins marked 'Offset Null'. What are those pins for, Smithy?"

"They enable an external circuit to be applied which cancels out the offset input voltage," replied Smithy. "But forget about those two pins for the moment and just assume that nothing is connected to them."

DARLINGTON PAIR

"Righty-ho," said Dick obligingly. "In the 709 the output from the differential amplifier is taken from the collector of the right-hand transistor and fed to a Darlington pair."

"The same sort of thing happens with the 741," said Smithy. "There is a direct connection from the collector of the right-hand p.n.p. transistor to the input base of a Darlington pair. This Darlington pair then feeds the bases of the emitter follower output transistors directly, current from the positive rail for the Darlington pair collectors being supplied via a second constant current generator."

"I notice," remarked Dick, "that the two output transistor bases aren't connected directly together, as they are in the 709. There's a transistor with 45kΩ and 7.5kΩ biasing resistors between them. Will this transistor keep the output transistors turned on all the time?"

"It will," confirmed Smithy. "And so you don't get crossover distortion, as you do with the 709. Now, let's have a quick look at signal polarity as a signal goes through the amplifier. If we start at the inverting input, the signal at the collector of the p.n.p. transistor in the inverting input pair is in phase with the signal at the input, because that signal has gone through what are effectively an emitter follower and a grounded base transistor. The signal is then inverted by the Darlington pair before it hits the output stage. So the inversion given by the Darlington pair provides the inversion needed by the inverting input."

Fig. 1. The internal circuitry of the 741 operational amplifier

JULY 1975
"This circuit," said Dick cheerfully, "seems to be a lot easier than the 709 one. Now, how about a signal at the non-inverting input? This will obviously be inverted once by the differential amplifier and it will then be inverted a second time by the Darlington pair."

"Very good," commented Smithy. "And those two inversions bring the signal back to its initial phase, so that the op-amp output is in phase with its non-inverting input."

"You said that the output of the 741 is short-circuit proof," Dick reminded Smithy. "How is that arrived at?"

"If," replied Smithy, "the output is fully positive and is short-circuited to earth or to the positive supply rail, the current which flows is mainly limited by the 30Ω resistor in the output circuit. If, on the other hand, the output is short-circuited to earth or to the negative rail when it is fully positive, the output current is limited by the 250Ω resistor in the output circuit and the transistor whose base and emitter are connected to that resistor. There's a very crafty little circuit here and, to explain it more fully, I'll identify the three transistors involved as TRA, TRB and TRC."

Smithy added the three identifications to the circuit. (Fig. 2.)

"Now let's say," he went on, "that the base of output transistor TRB is fully positive and that the current from the output pin to earth or to the negative rail is gradually increased. As soon as the increasing current in the 250Ω resistor reaches about 25mA a voltage of around 0.6 Volt appears across it. This turns on TRC, whereas upon some of the relatively low constant current from TRA starts to flow in the output. If the potential on the output pin is taken further negative, the collector of TRA is correspondingly pulled negative by TRC, whereupon the base voltage of TRB falls also. In consequence the only current that can flow in the output is the 25mA in the 25Ω resistor plus a proportion of the constant current from TRA."

"That is neat. Well, you've explained the short-circuit proof bit, Smithy. Now tell me how it is that the 741 doesn't need external frequency compensation components."

"I should tell you that?" snorted Smithy. "Dash it all, the reason is staring you in the face."

"Is it? Where?"

"Look at the input of the Darlington pair. What's the component which connects to the first base?"

Dick stared closely at the circuit. Suddenly, the truth dawned.

"Why, there's a capacitor there!" he gasped. "Stone me, Smithy, somebody's smuggled a dirty great 30pF capacitor in amongst all the transistors and the resistors!"

"Exactly," agreed Smithy. "And that dirty great 30pF capacitor, as you call it, couples effectively from the collectors of the Darlington pair back to their input base, and it provides all the high frequency compensation that the op-amp requires. Getting a capacitor diffused into an integrated circuit is no mean feat, and this is the major step which raises the 741 above the 709."

OFFSET NULL

"This 741 op-amp," said Dick enthusiastically, "certainly packs in some neat schemes. The only bit you haven't explained so far are those two offset null pins. Can you carry on to them next, Smithy."

"Okey-doke," replied Smithy obligingly. "However, I think that the best thing for me to do here will be to deal with the three most common methods of obtaining offset null with both the 741 and the 709."

"For a start," commented Dick, "you could tell me what 'offset null' means?"

"Fair enough," replied Smithy. "Well, 'offset null' describes the process by means of which you cancel out the offset input voltage and bring the op-amp output to earth level. Let's get my pad over."

Smithy drew his note-pad towards him and sketched out a circuit. (Fig. 3(a).)

"Here's a simple method of getting offset null," he continued. "I've drawn the op-amp in the usual manner as a triangle on its side with the output appearing at the apex. The op-amp I've shown here can be a 741 or, if the external frequency compensating components are added, a 709. The inverting input of the amplifier connects to earth via a resistor which in practice could be part of the op-amp negative feedback circuit. The non-inverting input connects to the slider of a pre-set radio & electronics constructor."
out the offset voltage when the inverting input is returned to a potential which is positive or negative of earth. It might be necessary then, of course, to alter the fixed resistor values so that the pot slider can be brought up to the voltage at the inverting input."

"That method," said Dick critically, "doesn't actually cancel out the offset voltage at all, does it? You'll still have the offset voltage existing between the two inputs after you've set up the pot."

Smithy shot a surprised glance at his assistant.

"Hey, you're bright today." Dick beamed.

"I have my moments," he responded cheerfully. "Behind this lofty brow of mine thobs a dynamic and powerful brain which has never yet been exercised to the full."

"Humph," grunted Smithy. "Well, your comment is certainly correct. The method I've shown for obtaining an offset null is only used when you're interested in input signals at the inverting input and it doesn't matter if the voltage at the non-inverting input is a little removed from that at the inverting input. Incidentally, if you use this circuit with a 741 there's no need to make any connections to its two offset null pins. You simply leave them open-circuit."

"I've just had another great thought." "This is getting worrying. What is it this time?"

"Well," said Dick, "we know that op-amps have fantastically high voltage gains. Because of this high gain, won't there have to be a very critical setting of the pot to bring the op-amp output to earth potential?"

"Blimey, you really are with it! And you're perfectly right again, too. When the op-amp is employed without an external negative feedback circuit the setting up of the pot in that circuit is extremely critical. When, however, the feedback circuit is added, the overall gain is reduced, normally, to something between unity and some 200 times according to circuit requirements. The pot adjustment is then very much less critical. For simplicity, I didn't put a feedback circuit in my diagram, but I'll be showing you how such a circuit works shortly."

Smithy proceeded to sketch out a second circuit (Fig. 3(b)).

"Now," he stated, "when it's required that the op-amp output be at earth potential when both the inputs are at the same potential, it's necessary to start making null adjustments to the internal circuitry of the op-amp. If this is a 741 you connect an external 10kΩ pot between the two null points and couple the pot slider to the negative supply rail as I've shown here. As you can see, adjusting this pot varies the collector loads for the 741 differential amplifier. Okay?"

"Sure. What do you do if it's a 709?"

"There's a neat approach here," said Smithy, "which is recommended..."
by R.S. Components. Here's the idea.

Smithy drew a third offset null adjustment circuit. (Fig. 5(c).)

"You saw the internal circuit of the 709 during our last session," he stated.

"The 470kΩ resistor I've shown here couples to the inverting input transistor in the differential amplifier. Adjusting the 100kΩ pot in the null circuit thus varies the effective collector load for that transistor."

741 PARAMETERS

Smithy turned a page in the data book on his bench and showed his assistant some of the characteristics of the 741 operational amplifier.

"The 741," remarked Dick, "has a higher typical voltage gain than the 709. According to the book, it's 200,000 times."

"It also has a higher maximum input voltage swing," said Smithy, "as well as a higher maximum dissipation figure. Like the 709, it's available in the round 8-lead TO99 can as well as in 8 pin dual-in-line and 14 pin dual-in-line packages. The supply, input and output pins are also the same as for the 709. The three 709 pins which are employed for frequency compensation appear, in the 741, as two null offset pins and one 'no connection' pin."

Smithy pointed to the pin layout diagrams for the 741 in the data book. (Fig. 4.)

"It's funny," remarked Dick, "how pin layout diagrams for i.c.'s are always top views with the pins pointing away from you, whilst lead layout diagrams for transistors are always the other way round with the leads pointing towards you."

"Like the beefburger," commented Smithy, shrugging his shoulders, "that's one of the little mysteries of life. Let's examine some typical feedback circuits next."

Smithy drew out a further circuit. (Fig. 5(a).)

"This," he continued, "is pretty well the classic resistive feedback circuit for an op-amp. The amplifier used may be a 741. It could also be a 709, in which case you'd need to add the external frequency compensating components and use the alternative offset null circuit I showed you. Also, with a 709 it's customary to insert a 51Ω resistor between the output and the load, at the point I've marked with a cross."

"Let's stick with the 741," said Dick, "it makes things less complicated."

"All right," responded Smithy. "From now on all the circuits I'll show you will use the 741, although they could alternatively employ the 709 if the appropriate external components are fitted. Now, there are two resistors in the present circuit which are marked R1 and R2. R2 is the feedback resistor and R1 is a resistor in series with the input signal source. It is assumed that the latter has an internal resistance of zero. Now, the overall voltage gain in the circuit is equal to R2 divided by R1."

"That seems pretty obvious," commented Dick. "Let's say that R2 divided by R1 is 5. Then, if the input goes positive by 1 volt the output will swing negative by 5 volts. Despite the very high gain of the op-amp, the output can't swing negative by more than 5 volts because this would then shift the potential of the inverting input by an impossibly high amount."

"You've got the idea," said Smithy approvingly. "There will in practice be very tiny shifts in voltage at the inverting input but these will be so small that they can be completely ignored. The inverting input can, in consequence be looked upon as a 'virtual earth' and this fact can be very useful in some circuit calculations. Incidentally, if R2 is equal to R1 the overall voltage gain is unity."

"What sort of supply voltages do you need in a circuit like this?"

"The two rails can be anything from about 6 to 15 volts positive and negative of earth. Neither rail must be above the maximum figures of 18 volts positive or negative of earth."

"What sort of values do you require in the two resistors?"

"Normally," said Smithy, "you try to keep them above 1kΩ and below 1MΩ. There's no hard and fast rule here but resistance values above 1kΩ keep currents nice and low whilst resistance values below 1MΩ ensure that you don't get problems with offset current or the accumulation of mains hum or static voltages and things like that. A qualifying factor here is that R1 provides the input resistance of the overall amplifying circuit. Now, here's another circuit. This one allows the input to be fed to the non-inverting input."

Smithy drew a further circuit (Fig. 5(b)).

"Hallo," remarked Dick. "The voltage gain isn't equal to R2 divided by R1 this time."

"No, it isn't," agreed Smithy. "The voltage fed back to the inverting input is equal to the output voltage multiplied by R1 over the sum of R1 and R2. Which is, of course, what you'd expect with a simple potential divider like this. The voltage gain is the reciprocal of the fraction of the output voltage that's fed back and so it's equal to the sum of R1 and R2 divided by R1."

"Wait a minute," said Dick frowning. "Let's try this out with an actual figure. Suppose the voltage across...

TABLE

<table>
<thead>
<tr>
<th>741 - Principal Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (VS+ and VS-)</td>
</tr>
<tr>
<td>Supply current (VS=15V)</td>
</tr>
<tr>
<td>Input voltage range, either input</td>
</tr>
<tr>
<td>Duration of output short-circuit</td>
</tr>
<tr>
<td>Input offset voltage</td>
</tr>
<tr>
<td>Maximum p-p output swing</td>
</tr>
<tr>
<td>Large signal voltage gain</td>
</tr>
<tr>
<td>Input resistance</td>
</tr>
<tr>
<td>Total power dissipation (below 55°C ambient)</td>
</tr>
</tbody>
</table>

R1 is one-fifth of the output voltage. The output voltage will then swing positive by 5 volts when the input goes positive by 1 volt, because there will then be 1 volt feedback going back to the inverting input. Why, of course, it all figures!"

"Satisfied?"

"Yes, definitely. Have you got any more feedback circuits, Smithy?"

Smithy sketched out another circuit. (Fig. 6(a).)

"Here's another amplifier which gives unity gain," he remarked. "The output is connected direct to the inverting input. This time we don't bother about an offset null circuit or the earth point and we employ just a positive and negative supply rail. What we have here is a voltage follower and the output voltage is almost exactly equal to the input voltage, the only difference being the uncancelled offset input voltage. You could cancel out the offset voltage by adding an external offset null potentiometer circuit but for most applications it isn't worth going to the bother."

"What's the advantage of the circuit?"

Fig. 5(a). A standard op-amp voltage amplifier circuit with controlled gain. A 741 with an external null offset circuit is assumed.

Fig. 5(b). Another standard op-amp circuit with resistive feedback. This time the input is applied to the non-inverting input.

GAREX

Modulation transformers
Valve type 747, as specified for 30W Tx
£2.60

Transistor type, p/p NKT404 to QV03-20a (or QV03-10), with driver transformer to match - special offer - the two £1.45.

Audio transformers - driver and output (2W) p/p NKT404 to 30 the two 70p NKT404 power transistors
17p each, 4 for 60p

Mains transformers (multiple primaries)
250-0-250V 200mA, 6.3V 5A, 5V 2A
fully shrouded, (suitable for 30W Tx - matching style to mod. transf.) £5.70
345-0-245V 150mA, 5V 2A £5.45
6.5-0-6.5V 3A, 6.5-0-6.5V 2.9A £5.45
6.5-0-6.5V 4.2A, 6.5V 2.7A £5.45
37V 30mA £5.45

Toroidal Inverter Transformer
Input 12V DC, output 170/380V 150mA £2.05

Relays GPO type 2400, 12V coil. 8A contacts, 4PCO or 2P make any 4 for £1.00

Connection data or circuits supplied with transformers.

Components are ex-equipment, in good condition, your satisfaction guaranteed.

Prices inclusive of UK Post, Packing and VAT at 25%

Mail order only. Sole address:

GAREX ELECTRONICS
7 NORVIC ROAD, MARSWORTH,
TRING, HERTS HP23 4LS

Cheddington (STD 0296) 686884

GREENBANK ELECTRONICS

FREE!

Data and circuit diagram for Digital Clock Chip AY-5-1224, Digital Alarm Clock Chip MK 50253, also data sheet for DL-704E, DL-707E, DL-747E and DL-750 LED displays. (A stamped addressed envelope with enquiries is a great help to us, but is not essential.)

CLOCK CHIPS (ex. VAT)

AY-5-1224, 4 digit, 12/24 hr, 50/60 Hz, TTL compatible, zero reset, easy display interface, 16 pin DIL package: £3.66

MK 50253, 4/6 digit alarm clock chip, 50 Hz, 12/24 hr, AM/PM and activity indication, "snooze" feature, intensity control, simple time setting, 28 pin package, compatible with earlier type MK 50250: £5.50

LED DISPLAYS (ex. VAT)

DL-704E 0.3" LED 7 Seg Display C Cathode £8.5p
DL-707E 0.3" LED 7 Seg Display C Anode £1.70
DL-750 0.6" LED 7 Seg Display C Cathode £2.25
DL-747E 0.6" LED 7 Seg Display C Anode £2.04

CLOCK KITS (ex. VAT)

SOX/1 Many parts for 4 x 0.6"
LED Clock £14.95

SOX/2 Many parts for 4 x 0.3"
LED Alarm Clock £13.50

Add VAT 8% to all above prices. (If in doubt, ask for a quotation, or send 25% VAT and we'll work it out and any excess, post etc. 10p + 8% VAT per order.

GREENBANK ELECTRONICS
(Dists. CRT) 154 New Chester Road,
New Ferry, Wirral, Merseyside.
L62 5AG.

Tel: 051-445 3391

757
"It offers a high impedance input and a low impedance output," said Smithy. "The supply voltage can be between 12 and 15 volts. Now, let's put a resistor in between the output and the inverting input."

Smithy added the resistor. (Fig. 6(b))

"What does that do?" asked Dick.

"Nothing in particular," grinned Smithy. "The current flowing through the resistor to the inverting input will only be a fraction of a microamp so, provided the value of the resistor is not too high, say lower than 470kΩ, the circuit will still act as an accurate voltage follower."

Dick scratched his head.

"Then why," he asked, "have you added the resistor?"

"Because," said Smithy, "it allows me to take the next step of putting in another resistor, together with two resistors which hold the non-inverting input at a central potential between the supply rails. Also, the input now goes to the inverting input." (Fig. 6(c))

"Blimey," said Dick. "It looks as though you've got a feedback amplifier just like the first one you showed me."

"That's right," chuckled Smithy. "This amplifier will give a voltage gain equal to R2 divided by R1 just as before. As there isn't a reference earth point, the circuit is probably better employed for a.c. and not for d.c. amplification, whereupon it's necessary to put in input and output coupling capacitors."

With a flourish, Smithy added the two capacitors. (Fig. 6(d))

"There you are," he said. "This is the circuit of a jolly useful fixed gain a.c. amplifier which only requires two supply rails, either of which can be at earth potential."

INTEGRATING CIRCUIT

"You said last time," stated Dick, "that if you put a capacitor between the output and the inverting input of the op-amp, an input square wave becomes changed to an output triangular wave."

Smithy glanced at his watch.

"You've certainly got a good memory," he remarked wryly. "Okay then, but this will have to be our very last look at op-amps. Here's what you get if you have a capacitor between the output and the inverting input."

Smithy drew out the circuit. (Fig. 7)

"This is general theory," he went on, "so I'm only showing the two amplifier inputs, the output and an earth point. Now, when the square wave takes the inverting input positive the amplifier output tries to go negative. But the left hand plate of the capacitor takes the inverting input negative also. As a result, the output can go negative at a slow rate only, as the capacitor gradually charges. The opposite happens when the square wave takes the inverting input negative, and the consequence is that you get a triangular wave at the output of the op-amp. The effective value of the capacitor is the actual voltage multiplied by the voltage gain of the op-amp."

"That circuit," commented Dick confidently, "must be one which would have been quite impossible before

Fig. 7. A basic Miller integrator. A square wave at the input produces a triangular wave at the output

integrated circuits appeared on the scene."

"I've got news for you," chuckled Smithy. "The circuit I've just described is a Miller integrator, and it can employ any type of voltage amplifier including a valve. Do you know when the Miller integrating effect first saw the light of day?"

"Fairly recently?"

"Believe it or not," said Smithy, "the Miller effect was originally described as long ago as 1919!"

And with this demonstration that some basics of electronics are not as new as we fondly imagine, Smithy resolutely closed the discussion and returned to the television receiver whose repair had been so rudely interrupted by his avidly curious assistant.
VERSATILE 12V DRILL
Electroplan Limited, the Royston based distributor of electronic instruments, tools and accessories have introduced a new versatile drill to their broad range of laboratory bench aids.

Manufactured by EXPO, the 12V operated drill is supplied complete with a full range of accessories which include twist drills, cutting, milling, reaming and grinding tools. Although small, the drill has a high torque with a typical load current between 500mA and 1 Amp.

The chuck rotates at approx. 9000 r.p.m. and has three collets that accommodates the range of accessories.

The new handy drill will saw, grind, de-burr, brush and polish with the efficiency of drills that are more expensive and larger in size and yet, is sufficiently small to reach places where a conventional drill could not be used.

PRICE – £9.17 + V.A.T.
Available from: Electroplan Limited, P.O. Box 19, Orchard Road, Royston SG8 5HH, Herts.

RESISTANCE METER

As electronic and electrical circuits become more comprehensive the need for greater specialisation in associated measuring equipment correspondingly grows. Thus, for resistance measurement over a wide range and with sensible accuracy, Chinaglia have developed the OH470 multi-range resistance meter.

Built to professional standards in the usual Chinaglia style, the OH470 uses a Class 1.5, 40uA moving-coil movement with core magnet and sprung jewel mounts. A tough ABS case combined with a full view scale and simple range switching make for an easy-to-use instrument suited to a wide variety of environments.

Six measuring ranges are provided, giving the ability to identify resistance from 0.1 ohms up to above 50M ohms to within 2.5% accuracy. Internally housed batteries make the instrument independent of external power sources and suitable test leads designed to cooperate with specially designed sprung sockets on the instrument simplify low value measurements.

For further information please contact: Chinaglia (U.K.) Ltd., 19 Mulberry Walk, London SW3 6DZ.

SOLDERING IRON FOR DEVELOPMENT ENGINEERS

The Litesold Conqueror soldering iron has been designed to meet the needs of development engineers and laboratory technicians for an iron capable of tackling most light soldering jobs.

The iron weighs only 1 ½ oz. (35 gm) and is less than 8 inches long, yet it will cope with a wide range of jobs which would normally require several different irons. This versatility is achieved by combining high thermal efficiency with a range of five slip-on bits from ⅛ in. to ⅛ in. diameter.

A bench stand for use with the Conqueror iron incorporates spring holder, a wiping sponge and locations for four alternative bits, on a heat proof base having non-slip pads.

The Litesold Conqueror iron, available in 12V, 24V, 115V, 220V, and 240V A.C./D.C. ratings, is one iron which will satisfy most of the soldering requirements in the development department or laboratory.

Full details and the comprehensive Litesold catalogue are available from Light Soldering Developments Limited, 97-99 Gloucester Road, Croydon, Surrey.

JULY 1975
DIRECT SUPPLY SERVICE TO READERS . . .

TOWERS INTERNATIONAL TRANSISTOR SELECTOR

This is dead!

If it takes you longer than 1 minute to find out all about these transistors then you need a copy of TOWER'S INTERNATIONAL TRANSISTOR SELECTOR. Its one of the most useful working books you will be offered this year. And probably the cheapest!

In it you will find a really international selection of 10,000 transistor types - British, Continental European, American and Japanese. And we think that they will solve 90% of your transistor enquiries.

Current and widely used obsolete types were carefully selected and arranged in Numero-Alphabetical order by an author who was uniquely qualified to do the job. With his compendium, all you need to know is the type number and you can learn all about a transistor's specification; who made it and where to contact them; or what to use to replace it.

Look at the entry for 2N909

<table>
<thead>
<tr>
<th>TRANSISTOR NUMBER</th>
<th>PM OA LT</th>
<th>PACK - AGE</th>
<th>LEAD INFO</th>
<th>VCB MAX</th>
<th>VCE MAX</th>
<th>I C MAX</th>
<th>T J MAX</th>
<th>P TOT</th>
<th>F C MIN OB MAX</th>
<th>H FE</th>
<th>H VE BIAS</th>
<th>USE</th>
<th>MFR</th>
<th>EURO EQUIV</th>
<th>USA EQUIV.</th>
<th>ISS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N909</td>
<td>NS</td>
<td>TO18</td>
<td>L01</td>
<td>60V</td>
<td>30V</td>
<td>5V</td>
<td>200MA</td>
<td>1.75G</td>
<td>500KWMF</td>
<td>25P</td>
<td>10MIN</td>
<td>50MA</td>
<td>AMG</td>
<td>SG5</td>
<td>BSK 33</td>
<td>2N731</td>
</tr>
</tbody>
</table>

This is what you will learn from it

Tower's International Transistor Selector

by T. D. TOWERS

MBE, MA, BSc, C Eng, MIREE

£3.30 inc. post and packing

To:- DATA PUBLICATIONS LTD.
57 MAIDA VALE
LONDON W9 1SN

Please send me copy/copies

to the address shown below

NAME
ADDRESS
 (Block capitals)

760

www.americanradiohistory.com
SMALL ADVERTISEMENTS
Rate: 5p per word. Minimum charge 75p
Box No. 10p extra.

Advertisements must be prepaid and all copy must be received by the 4th of the month for insertion in the following month's issue. The Publishers cannot be held liable in any way for printing errors or omissions, nor can they accept responsibility for the bona fides of Advertisers. (Replies to Box Numbers should be addressed to: Box No. — Radio and Electronics Constructor, 57 Maida Vale, London, W9 1SN

BUILD THE MULLARD C.C. TV CAMERA. Complete kits now available from Crofton Electronics. Send large s.a.e. for details to:- 124 Colne Road, Twickenham, Middlesex, TW2 6QS. Telephone: 01-898-1569.

FOR SALE: Polarisied relays, suitable for RTTY terminal units. £1.00. Box No. G235.

WANTED. Early radio books, prior to 1925. Box No. G236.

TREASURE HUNTERS! Construct highest performance electronic metal detector for under £2. Equals models costing up to £50. For simple illustrated plans send £1. Colin Lucas, 241 Upminster Road South, Rainham, Essex.

SERVICE SHEETS for Radios/TV’s etc. 50p and s.a.e. Catalogue 20p and s.a.e. Hamilton Radio, 47 Bohemia Road, St. Leonards-on-Sea, Sussex.

UNIQUE VHF KITS, 80-180MHz. Bigger world wide sales. Send £5 or Johnsons Radio (C), Worcester, WR1

FOR SALE: Heathkit oscilloscope IO-102, plus electronic switch ID-101 for double trace display; low capacitance and demodulator probes. New and perfect. £165 the lot, or v.n.o. Toms, 6 St. Mary Road, London E.17. Telephone: 01-520-6954 evenings.

LONG DELIVERY or discontinued I.C.’s – 2537V, 55 off £1.60; 2533V, 10 off £75; MM5051, 20 off £65. Enquiries to Box No. G262.

FOR SALE: Regulated power supply. PU189, 0-15V, 0.4 amps, meter to monitor voltage. £14.40. Touch sensitive switch drive TTL or relay, £1.25. T. Edwards, Box No. G263.

ANTIQUE RADIO ENTHUSIASTS. For all your requirements in radio 1920 to 1945, contact Tudor Rees’ Antique Wireless Service. Our full 1975 catalogue now available, price 40p post paid. Tudor Rees, 64 Broad Street, Staple Hill, Bristol, BS1 5NI. Telephone: 0272-565472.

(Continued on page 762)

WANTED for cash or loan, circuit details of "Lerna-Kit" oscilloscope also Practical Wireless April 1971 and other issues containing "Workshop Oscilloscope". Box No. G264.

JOIN THE INTERNATIONAL S.W. LEAGUE. Free services to members including Q.S.L. Bureau, Amateur and Broadcast Translation, Technical and Identification Dept. — both Broadcast and Fixed Stations, DX Certificates, contests and activities for the SWL and transmitting members. Monthly magazine, Monitor, containing articles of general interest to Broadcast and Amateur SWLs, Transmitter Section and League affairs, etc. League supplies such as badges, headed notepaper and envelopes, QSL cards, etc., are available at reasonable cost. Send for League particulars. Membership including monthly magazines, etc., £3.75 per annum. (U.K. and British Commonwealth), overseas £10.00 or £4.00. Secretary ISWL, 1 Grove Road, Lyndey, Glos., GL15 5JE.

POSTAL ADVERTISING? This is the Holborn Service. Mailing lists, addressing, enclosing, wrapping, facsimile letters, automatic typing, copy service, campaign planning, design and artwork, printing and stationery. Please ask for price list. The Holborn Direct Mail Company, Capacity House, 2-6 Rothsay Street, Tower Bridge Road, London, S.E.1. Telephone: 01-407 1495.

SHACK CLEARANCE. Diodes (from 1p), transistors (from 3p), valves, transformers, resistors, capacitors, computer boards, PSU, etc. S.A.E. list. Box No. G266.

FIBRE OPTICS, OPTOELECTRONICS. Complete range fibre optics, photo-detectors, LED's, lenses, retroreflectors, polarisers, ultrasonic transducers. Send 9" x 6" s.a.e. for shortform price list: FIBRE OPTIC SUPPLIES, 2 Loudoun Road Mews, London NW8 0DN.

RADIO & ELECTRONICS CONSTRUCTOR. Due to loss in warehouse fire, we require copies of the June and July 1973 issues. Cover price paid, remittance by return. Send to Data Publications Ltd., 57 Maida Vale, London W9 1SN.

(Continued on page 763)
SMALL ADVERTISEMENTS

(Continued from page 762)

FOR SALE: Touch sensitive switch, rain detector; drive TTL or relay, £1.25. Regulated power supply PU189 0-15V 0.4'amps, meter to monitor voltage, £14.40. Kilton Electronics. Box No. G268.

SUPERB INSTRUMENT CASES by Bazeli. Manufactured from heavy duty P.V.C. faced steel. Hundreds of radio, electronic and hi-fi enthusiasts are choosing the case they require from our range of over 200 models. Generous trade discount. Prompt dispatch. Free literature; Bazeli, Dept. No. 26, St. Wilfrids, Foundry Lane, Halton, Lancaster, LA2 6LT.

STEREO JACK PLUGS (standard) desoldered from new equipment, 50p for 5 (including P. & P.). Price for larger quantities on request. 5 Powderham Road, Exeter, Devon, EX2 9BS.

FOR SALE: 1,000 mixed resistors £1.00. 100 mixed 3-5W resistors £1.00, postage 25p. Switch cleaner 75p, 5 tins £2.50. Stereo cassette mechanism (just requires power supply and amplifier) £20.00. New 50cc 2-stroke engine £17.50. 100 new records £10.00. Sample free. Box No. G269.

HARDWARE SUPPLIES. Sheet aluminium, screws, nuts, washers, etc. Fascia panels in aluminium, individual requirements. Printed circuit boards, one-off or small runs, individual and for patterns published in this magazine. Send 10p for list. Ranger Constructor Services, 29 Sheilbourne Road, Stratford-upon-Avon. Warwicks. CV37 9JP.

FOR SALE: Selenium solar cells 10p. 16 digit 2 memory calculator £75.00. 100 unmarked BZY88 50p. 50 unmarked 2W sensors 75p. 50 unmarked BC107/8/9 50p. Closed circuit camera construction manual £2.00. Low-band Pye Rangers, tested, £10.00. 8mm zoom cine camera £15.00. Box No. G270.

WANTED: Decoder Type 6, ex Grundig radiogram KS560. Also wanted Tannoy truncated horn speaker. Leeves, Kingsnongton, North Devon.

FREQUENCY LIST TRANSFERS. We have a limited supply of sheets of Dial Frequency Transfers in black. Short Wave frequencies 1.8Mc/s to 32Mc/s and 144Mc/s and 146Mc/s. Includes amateur band marker frequencies at 100kc/s points and other short wave frequencies from 2 to 32Mc/s at every 500kc/s points. Each frequency is repeated. Two sheets for 5p., five sheets for 10p., postage 4p. Data Publications Ltd., 57 Maidia Vale, London W9 1SN.

WANTED URGENTLY: Circuit diagram of Indicator Unit A.M. Ref. No. 110 QB/13 and/or manual of equipment of which this unit is part. Unit incorporates 2 x SFP7, 2 x 6H6, and 2 x DPCO 24V relays type BA-1755-2. Any reasonable payment. Box No. G272.

WHEREVER YOU LIVE Partridge have the key, to the DX! World Record patented VFA aerial system guarantees a solution to your short wave reception problem. Stamp for brochure. Partridge Electronics Ltd., Broadway, Kent.

(Continued on page 765)
The "CORDEX" Patent Self-Binding Case will keep your copies in mint condition. Issues can be inserted or removed with the greatest of ease. Specially constructed Binding cords are made from Super Linen of great strength, very hard twisted and twice doubled. They are attached to strong RUSTLESS Springs under tension, and the method adopted ensures PERMANENT RESILIENCE of the Cords. Any slack that may develop is immediately compensated for, and the Cords will always remain taut and strong. It is impossible to over-stretch the springs, as a safety check device is fitted to each.

PRICE 95p P. & P. 20p

including V.A.T.

Available only from:

Data Publications Ltd. 57 Maida Vale London W9 1SN

DATA BOOK SERIES

DB5	TV FAULT FINDING	132 pages. Price 90p, P. & P. 12p
DB6	RADIO AMATEUR OPERATOR'S HANDBOOK	88 pages. Price 70p, P. & P. 10p
DB16	RADIO CONTROL FOR MODELS	Now out of print
DB17	UNDERSTANDING TELEVISION	512 pages. Revised edition available September

I enclose Postal Order/Cheque for ___________ in payment for ___________

NAME

ADDRESS

(Please mention this magazine when writing to advertisers)

Post Office Orders should be crossed and made payable to Data Publications Ltd.
Overseas customers please pay by International Money Order.
All publications are obtainable through your local bookseller.
Data Publications Ltd., 57 Maida Vale, London W9 1SN

Please mention this magazine when writing to advertisers
SMALL ADVERTISEMENTS
(Continued from page 763)

GUARANTEED BRAND NEW SEMICONDUCTORS. BC107 transistors gen. purpose p.p. 9p; BC177 transistors gen. purpose p.p. 11p; 2N3055 transistors, h. power 45p; 1N4004 diodes, 400V p.i.v., 1A 5p; 1N4143 diodes 4p. Data sheets for each of the above 4p. P. & P. 15p per order. VAT extra. C.W.O. All orders despatched same day. Send large s.a.e. for full lists of semiconductors, caps., res., nuts, screws, etc. Nestra Electronics Ltd., Scott Street, Bognor Regis, Sussex.

PERSONAL

JANE SCOTT FOR GENUINE FRIENDS. Introductions to opposite sex with sincerity and thoughtfulness. Details free. Stamp to: Jane Scott, 3/Con North St. Quadrant, Brighton, Sussex, BNI 3GJ.

HOLIDAY ACCOMMODATION. Burwood Lodge Hotel, Dallowish Road, Teignmouth, South Devon. Especially suitable for parents with young children. Facing south, on the cliffs, direct access by private path to the sea. Mothers' kitchen, automatic washing machines, baby listening service. Licensed lounge. Ample free parking.

YOUNG MAN DISABLED needs work at home. Electronic/wire assembly. Would collect and deliver. Mr. B. Grimes, Llainwen, Glangwyd, Cardigan, Wales, SA43 3PE.

ARE YOU ADVENTUROUS? If so, you can make exciting new friends. Write: S.I.M. Computer Dating, (REC/3), 109 Queens Road, Reading, Berks.

ESSEX GARDENERS. Buy your bedding and rock plants, shrubs, etc., also cacti from May’s Nurseries, 608 Rayleigh Road, Hutton, Brentwood, Essex. Callers only. Monday to Saturday.

SPONSORS required for exciting scientific project. Norwich Astronomical Society are building a 30" telescope to be housed in a 20’ dome of novel design. All labour being given by volunteers. Already supported by Industry and Commerce in Norfolk. Recreational. Educational. You can be involved. Write to: NAS Secretary, The Manse, Back Lane, Wumondham, Norfolk.

IF YOU HAVE ENJOYED A HOLIDAY on the Norfolk Broads, why not help to preserve these beautiful waterways. Join the Broads Society and play your part in determining Broadlands future. Further details from: — The Hon. Membership Secretary, The Broads Society, “Icknield”, Hilly Plantation, Thorpe St. Andrew, Norwich, NOR 8SS.

SOCKET SETS
£6.99 p+p 35p

Construction and repairs made easy with this 1st class drive high quality steel socket set. Bright chrome plated parts, strong metal box with snap catches. 39 piece (as illus.) with 11AF, 11MM & 11BA sockets. Reversible ratchet, 2 extensions, sliding T-bar, flexible handle, tommy bar. 17 piece in plastic box with either 11AF, 11MM or 11BA sockets, same accessories as 39 piece £4.49 p+p 35p. (State AF, MM or BA when ordering.)

SILHILL PRODUCTS Dept. REC7
226 Mary Street, Birmingham B12 9RJ. Tel. 021-440 3600

POWER SUPPLIES FOR ELECTRONIC EQUIPMENT. J. R. Nowicki, Published recently in 2 vols. A full treatment of all power supplies is given. Includes rectifiers, inverters, transistors, silicon diodes and other electronic devices. With full circuit diagrams and component values. Originally published at £4.50 per volume. Bargain price £4 for the 2 volumes postpaid. Postage.

THE MOBILE RADIOTELEPHONE EQUIPMENT HANDBOOK. Gives circuits, diagrams and illustrations plus some valuable modification details for COMMERCIAL RADIOTELEPHONE equipment. Price of this edition including postage £8.25.

HOW TO MAKE WALKIE-TALKIES FOR LICENSED OPERATION. 40p, p.+p. 15p.

THE GOVERNMENT SURPLUS WIRELESS EQUIPMENT HANDBOOK. Gives circuits, data and illustrations plus valuable information for Britain/USA receivers, transmitters, trans/receivers. £4 including postage.

DIRECTORY OF GOVERNMENT SURPLUS WIRELESS EQUIPMENT DEALERS! Gives details of surplus wireless equipment stores and dealers including addresses plus equipment and spares that they are likely to have available. A valuable book only 50p, p.+p. 15p.

THE THEORY OF GUIDED ELECTROMAGNETIC WAVES. The most comprehensive book yet written about waveguides, transmission lines, cavity resonators. Over 500 pages. Ideal for anyone interested in Radar and UHF. Published at £11.50. Special offer £4.50 p.+p. 50p.

WORKED EXAMPLES IN ALTERNATING CURRENT. A must for the student, technician and electrical engineer. Contains numerous examples and how they were arrived at. Published at £1, 25. Bargain price 60p. p.+p. 20p.

THE BARGAIN BOOK GAZETTE. Contains thousands of interesting new and out of print books at bargain prices. Subjects include all types of hobbies, collecting, 1001 interests. Published regularly and sent free on request.

Dept. R. C. GERALD MYERS (Publisher & Bookseller), 138 Cardigan Rd., Headingly, Leeds 6, Yorks. (Callers Welcome).

MORSE MADE EASY BY THE RHYTHM METHOD!
FACT NOT FICTION. If you start RIGHT you will be reading and commercial Morse within a month. (Normal progress to be expected.)

Using scientifically prepared 3-speed records you can automatically learn to recognise the code RHYTHM without translating. You can't help it. It's as easy as learning a tune. 18-W.P.M. in 4 weeks guaranteed. For Complete Course Rate, Records & Books send £4/95 including P.P.I. etc. (overseas surface mail £1 extra).

Further details of course Ring 01-660 2896 or send large S.A.E. for explanatory booklet. to:- S. BENNETT, G3HSC (Box 38) 45 GREEN LANE, PURLEY, SURREY.

BARGAIN COMPONENT PARCELS contain some very useful bits and pieces. Save yourself £1 on these well selected parcels 2 kilos nett weight £1.80.

BRAND NEW WIRE-WOUND RESISTORS 1–7 watts, good selection, 100 for £1.35.

ASSORTED CAPACITORS. Silver Mics, Tubular and Disc Ceramics, Polystyrene. Tremendously good selection 300 for £3.55.

SPECIAL OFFER — Metallised Polyester Capacitors by Berrill, Mullard, etc. Values include 0.016/160V, 0.022/160V, 0.033/160V, 0.047/160V, 0.068/160V, 1/160–250V, 22/160V, etc. This is a bargain not to be missed, 100 for £1.95.

Please note all prices include Postage and V.A.T.

MAIL ORDER ONLY XEROZA RADIO 1, EAST STREET, BISHOPS TAWTON, DEVON
INDEX
VOLUME TWENTY-EIGHT
August 1974 - July 1975

AMPLIFIERS

Basic Power Amplifier, by J. D. Campbell 439 Feb. '75
'Constant Current' Class A Amplifier, by G. A. French 276 Dec. '74
Half Watt I.C. Amplifier, by A. P. Roberts 270 Dec. '74
Using The TBA820 Power Amplifier, by J. B. Dance 111 Sept. '74
2 Watt Record Player Amplifier, by R. A. Penfold 416 Feb. '75
500mW Workshop Amplifier, by R. A. Penfold 736 July '75

AMPLIFIER ANCILLARIES

Alternative Speaker Feed Circuit, by N. R. Wilson 367 Jan. '75
Four Channel Synthesiser – Part 1, by R. A. Penfold 544 Apl. '75
Four Channel Synthesiser – Part 2, by R. A. Penfold 604 May '75
Low Z Microphone Pre-Amplifier, by A. P. Roberts 142 Oct. '74
Soft Audio Limiter, by A. Foord 665 June '75

ELECTRONICS

'Auto-Slide' – An Automatic Slide Timer, by S. A. Money 96 Sept. '74
Battery Voltage Monitor, by G. B. Brown 296 Dec. '74
Current Limiting Power Supply, by G. A. French 404 Feb. '75
Electronic Egg Timer, by R. J. Caborn 605 May '75
Emitter Coupled Limiter, by A. Foord 428 Feb. '75
Hand Tremor Detector, by Stephen Price 536 Apr. '75
Lamp Dimmer, by R. A. Penfold 12 Aug. '74
L.E.D.-L.E.D. Isolator, by G. A. French 532 Apl. '75
Light-Emitting Diodes, by R. J. Caborn 368 Jan. '75
Low Volts-Drop Current Readings, by S. Jeffrey 158 Oct. '74
Mains Failure Monitor, by N. R. Wilson 414 Feb. '75
Novel Latch Circuit, by R. N. Reynolds 474 May '75
Piller Protection Unit, by F. G. Lloyd 30 Aug. '74
Potentiometer Power Ratings, by F. L. Smith 25 Aug. '74
Precision A.C. to D.C. Converter, by A. Foord 741 July '75
Regenerative Overload Trip, by R. J. Caborn 598 May '75
Sequential Lamp Circuit, by G. A. French 662 June '75
Sequential Transistor Oscillator, by G. A. French 53 Aug. '74
Simple Square Wave Generators, by M. J. Darby 473 May '75
Simple Wiper Delay Unit – Further Notes, by J. B. Dance 410 Feb. '75
SN7400 Oscillators, by D. F. W. Featherstone 743 July '75
Testing Transformer Temperature, by E. Higgins 422 Feb. '75
The Principles of Electronic Flash Units, Part 1, by A. Foord 477 May '75
The Principles of Electronic Flash Units, Part 2, by A. Foord ... 342 Jan. '75
Touch Button Circuits, by G. A. French 102 Sept. '74
Touch Activated Switch, by A. P. Roberts 160 Oct. '74
Transistor Lead-Out Locater, Part 1, by J. R. Davies 218 Nov. '74
Transistor Lead-Out Locater, Part 2, by J. R. Davies 349 Jan. '75
Two More Uses For The 555, by J. Lewis 352 Jan. '75
2.5–25 Volt Power Supply Unit, by R. A. Penfold 590 May '75
Voltage Controlled Oscillator, by A. Foord 472 May '75
Voltage Warning Device, by D. Stanbury 304 Dec. '74
Zener Clipping Circuits, by K. V. Logan 295 Dec. '74

GENERAL

Amsterdam Radio Exhibition Firato – 74 109 Sept. '74
Car Battery Monitor, by Vincent S. Evans 553 Apl. '75
DX News Broadcasts, by S. A. Money 249 Nov. '74
Electronic Oddities, by R. River 146 Oct. '74
Flashing Pilot Lights, by G. A. French 468 May '75
Fourth Radio Control Model Expo 75 534 Apl. '75
"Materials for Electronic Components" Conference ... 366 Jan. '75
Midland National Amateur Radio and Electronics Exhibition 149 Oct. '74
Oscar 7, by Arthur C. Gee 558 Apl. '75
Relay Routing Circuits, by D. Snith 37 Aug. '74
'Skywires', by Frank Osborn 682 June '75
Soldering Iron Saver, by P. Thomas 670 June '75
Switching Delay Circuit, by F. F. Hughes 676
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Launching of Oscar 7, by Arthur C. Gee</td>
<td>490</td>
</tr>
<tr>
<td>The Wheatstone Telegraph, by D. P. Newton</td>
<td>680</td>
</tr>
<tr>
<td>Those Locating Lugs, by R. Desmond</td>
<td>730</td>
</tr>
<tr>
<td>Volts, Amps & Ohms, by S. L. Martin</td>
<td>586</td>
</tr>
<tr>
<td>IN YOUR WORKSHOP</td>
<td></td>
</tr>
<tr>
<td>An Exercise In Simple Logic Using A Switching Device</td>
<td>116</td>
</tr>
<tr>
<td>Bedside Radio Receiver Incorporating The ZN414</td>
<td>46</td>
</tr>
<tr>
<td>Circuits And Techniques Employed In Stereo Record Players</td>
<td>307</td>
</tr>
<tr>
<td>Constructing An Electronic Voltmeter</td>
<td>371</td>
</tr>
<tr>
<td>Current A.M. - F. M. Receiver Design</td>
<td>499</td>
</tr>
<tr>
<td>Inexpensive A.M. Receivers</td>
<td>628</td>
</tr>
<tr>
<td>Low And High Pass R.C. Filters</td>
<td>433</td>
</tr>
<tr>
<td>Operational Amplifiers, 709 Op-Amp</td>
<td>609</td>
</tr>
<tr>
<td>Operational Amplifiers, 741 Op-Amp</td>
<td>752</td>
</tr>
<tr>
<td>Readers Hints</td>
<td>561</td>
</tr>
<tr>
<td>Repair Of A Television Gated a.g.c. Circuit</td>
<td>177</td>
</tr>
<tr>
<td>Transformer Secondary Currents</td>
<td>243</td>
</tr>
<tr>
<td>RECEIVERS</td>
<td></td>
</tr>
<tr>
<td>Double Reflex S.W. Personal Receiver, by Sir Douglas Hall, K.C.M.G.</td>
<td>152</td>
</tr>
<tr>
<td>Integrated Circuit Superhet - Part 1, by R. A. Penfold</td>
<td>672</td>
</tr>
<tr>
<td>Integrated Circuit Superhet - Part 2, by R. A. Penfold</td>
<td>744</td>
</tr>
<tr>
<td>Mains Table Radio, by A. P. Roberts</td>
<td>608</td>
</tr>
<tr>
<td>Miniature Ceramic Radio, by J. B. Dance</td>
<td>44</td>
</tr>
<tr>
<td>Personal Integrated Circuit Receiver, by R. A. Penfold</td>
<td>480</td>
</tr>
<tr>
<td>Portable 28MHz Transmitter-Receiver - Part 1, by F. G. Rayer</td>
<td>492</td>
</tr>
<tr>
<td>Portable 28MHz Transmitter-Receiver - Part 2, by F. G. Rayer</td>
<td>540</td>
</tr>
<tr>
<td>Pulse Counting F.M. Tuner - Part 1, by R. A. Penfold</td>
<td>288</td>
</tr>
<tr>
<td>Pulse Counting F.M. Tuner - Part 2, by R. A. Penfold</td>
<td>361</td>
</tr>
<tr>
<td>Reflex Short Wave Receiver, by R. A. Penfold</td>
<td>206</td>
</tr>
<tr>
<td>Selective Receiver For The L.F. Bands - Part 1, by F. G. Rayer</td>
<td>88</td>
</tr>
<tr>
<td>Selective Receiver For The L.F. Bands - Part 2, by F. G. Rayer</td>
<td>170</td>
</tr>
<tr>
<td>Selective Receiver For The L.F. Bands - Part 3, by F. G. Rayer</td>
<td>232</td>
</tr>
<tr>
<td>Super-Regenerative 28 MHz Receiver, by F. G. Rayer</td>
<td>654</td>
</tr>
<tr>
<td>The 'Slide Rule' Receiver Cum Capacitance Meter - Part 1, by Sir Douglas Hall, K.C.M.G.</td>
<td>620</td>
</tr>
<tr>
<td>The 'Slide Rule' Receiver Cum Capacitance Meter - Part 2, by Sir Douglas Hall, K.C.M.G.</td>
<td>683</td>
</tr>
<tr>
<td>The ZN414 Receiver, by G. A. French</td>
<td>465</td>
</tr>
<tr>
<td>Three Transistor Regenerative Receiver, by A. P. Roberts</td>
<td>238</td>
</tr>
<tr>
<td>Three Waveband Transistor Portable - Part 1, by Sir Douglas Hall, K.C.M.G.</td>
<td>297</td>
</tr>
<tr>
<td>Three Waveband Transistor Portable - Part 2, by Sir Douglas Hall, K.C.M.G.</td>
<td>359</td>
</tr>
<tr>
<td>Transfilter I.F. Amplifier, by P. R. Arthur</td>
<td>106</td>
</tr>
<tr>
<td>Two Transistor Receiver, by A. P. Roberts</td>
<td>398</td>
</tr>
<tr>
<td>RECEIVER ANCILLARIES</td>
<td></td>
</tr>
<tr>
<td>Battery Miser, by V. S. Evans</td>
<td>214</td>
</tr>
<tr>
<td>Extension Speakers For Transistor Radios, by R. N. Soar</td>
<td>175</td>
</tr>
<tr>
<td>1 MHz Crystal Marker, by F. G. Rayer</td>
<td>22</td>
</tr>
<tr>
<td>Portable Radio Supply Unit, by James Kerrick</td>
<td>22</td>
</tr>
<tr>
<td>Radio 2 Converter, by P. R. Arthur</td>
<td>334</td>
</tr>
<tr>
<td>Stereo Decoder, by R. A. Penfold</td>
<td>78</td>
</tr>
<tr>
<td>Three Band Short Wave Preselector, by A. P. Roberts</td>
<td>718</td>
</tr>
<tr>
<td>TRANSMITTING</td>
<td></td>
</tr>
<tr>
<td>Car Battery Monitor, by Vincent S. Evans</td>
<td>109</td>
</tr>
<tr>
<td>Portable 28 MHz Transmitter-Receiver - Part 1, by F. G. Rayer</td>
<td>492</td>
</tr>
<tr>
<td>Portable 28 MHz Transmitter-Receiver - Part 2, by F. G. Rayer</td>
<td>535</td>
</tr>
<tr>
<td>Versatile Vertical For Top Band, by V. S. Evans</td>
<td>616</td>
</tr>
<tr>
<td>30 Watt Transmitter - Part 1, by F. G. Rayer</td>
<td>731</td>
</tr>
<tr>
<td>TEST EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>Diode 'Sorter-Outer', by S. M. Peters</td>
<td>286</td>
</tr>
<tr>
<td>Direct Reading Capacitance Meter, by Alan C. Ainslie</td>
<td>224</td>
</tr>
<tr>
<td>Electrolytic Capacitance Meter, by G. A. French</td>
<td>82</td>
</tr>
<tr>
<td>Low Cost Electronic Voltmeter, by G. A. French</td>
<td>726</td>
</tr>
<tr>
<td>Low Volts-Drop Current Readings, by S. Jeffrey</td>
<td>158</td>
</tr>
<tr>
<td>Oscilloscope Amplitude Calibrator, by A. Foord</td>
<td>280</td>
</tr>
<tr>
<td>Oscilloscope Calibration Generator, by P. R. Arthur</td>
<td>462</td>
</tr>
<tr>
<td>Pocket R.F. Generator, by T. Sutherms</td>
<td>723</td>
</tr>
<tr>
<td>Precision A.C. to D.C. Converter, by A. Foord</td>
<td>25</td>
</tr>
<tr>
<td>Shock Excited C-Meter, by M. G. Robertson</td>
<td>485</td>
</tr>
<tr>
<td>Simple Square Wave Generators, by M. J. Darby</td>
<td>53</td>
</tr>
<tr>
<td>Small Capacitance Checker, by A. P. Roberts</td>
<td>526</td>
</tr>
<tr>
<td>The Base Tracer, by S. F. May</td>
<td>667</td>
</tr>
<tr>
<td>The 'Slide Rule' Receiver Cum Capacitance Meter - Part 1, by Sir Douglas Hall K.C.M.G.</td>
<td>620</td>
</tr>
<tr>
<td>The 'Slide Rule' Cum Capacitance Meter - Part 2, by Sir Douglas Hall K.C.M.G.</td>
<td>683</td>
</tr>
<tr>
<td>Three Range F.E.T. Voltmeter, by A. P. Roberts</td>
<td>32</td>
</tr>
</tbody>
</table>

JULY 1975
Transformer Ratio Analyser, by S. L. Martin
Transistor Gain Meter, by G. A. French
Zener Diode Checking Unit, by G. A. French

CAN ANYONE HELP?

CONSTRUCTOR'S CROSSWORD

LETTERS

NEWS AND COMMENT

NEW PRODUCTS

RADIO TOPICS

RECENT PUBLICATIONS AND BOOK REVIEWS

SHORT WAVE NEWS

TRADE NEWS

CONSTRUCTOR'S DATA SHEETS

No. 89 Cut-off Frequencies – I
No. 90 Cut-off Frequencies – II
No. 91 Cut-off Frequencies – III
No. 92 Enamelled Wire Coil Lengths
No. 93 S.S.C. Wire Coil Lengths
No. 94 D.S.C. Wire Coil Lengths
No. 95 Weight Conversion Table I
No. 96 Weight Conversion Table II
No. 97 Common Musical Terms I
No. 98 Common Musical Terms II
No. 99 Resistor Current Values
No. 100 Wien Oscillator C-R Values

56 Aug. '74
20 Aug. '74
86 Sept. '74
150 Oct. '74
212 Nov. '74
105 Sept. '74
223 Nov. '74
121 Sept. '74
183 Oct. '74
101 Sept. '74
339 Jan. '75
42 Aug. '74
94 Sept. '74
157 Oct. '74
230 Nov. '74
57 Aug. '74
185 Oct. '74
306 Dec. '74

235 Nov '74
17 Aug. '74
216 Nov. '74

595 May '75
A Wien bridge oscillator has series C and R from amplifier output to non-inverting input and parallel C and R from non-inverting input to earth. If both C's and R's are equal, \(f = \frac{1}{2 \pi CR} \). The table shows worked values of R against C and frequency. Thus, f is 400Hz when C is \(0.01 \mu F \) and R is \(40k\Omega \).

<table>
<thead>
<tr>
<th>Frequency</th>
<th>500pF</th>
<th>1,000pF</th>
<th>2,000pF</th>
<th>5,000pF</th>
<th>0.01(\mu F)</th>
<th>0.02(\mu F)</th>
<th>0.05(\mu F)</th>
<th>0.1(\mu F)</th>
<th>0.2(\mu F)</th>
<th>0.5(\mu F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50Hz</td>
<td>6.4M(\Omega)</td>
<td>3.2M(\Omega)</td>
<td>1.6M(\Omega)</td>
<td>640k(\Omega)</td>
<td>160k(\Omega)</td>
<td>64k(\Omega)</td>
<td>32k(\Omega)</td>
<td>16k(\Omega)</td>
<td>8k(\Omega)</td>
<td>4k(\Omega)</td>
</tr>
<tr>
<td>100Hz</td>
<td>3.2M(\Omega)</td>
<td>1.6M(\Omega)</td>
<td>800k(\Omega)</td>
<td>320k(\Omega)</td>
<td>160k(\Omega)</td>
<td>80k(\Omega)</td>
<td>32k(\Omega)</td>
<td>16k(\Omega)</td>
<td>8k(\Omega)</td>
<td>4k(\Omega)</td>
</tr>
<tr>
<td>150Hz</td>
<td>1.6M(\Omega)</td>
<td>1.1M(\Omega)</td>
<td>530k(\Omega)</td>
<td>210k(\Omega)</td>
<td>110k(\Omega)</td>
<td>53k(\Omega)</td>
<td>21k(\Omega)</td>
<td>11k(\Omega)</td>
<td>5k(\Omega)</td>
<td>2.5k(\Omega)</td>
</tr>
<tr>
<td>200Hz</td>
<td>1.1M(\Omega)</td>
<td>800k(\Omega)</td>
<td>400k(\Omega)</td>
<td>160k(\Omega)</td>
<td>80k(\Omega)</td>
<td>40k(\Omega)</td>
<td>16k(\Omega)</td>
<td>8k(\Omega)</td>
<td>4k(\Omega)</td>
<td>2k(\Omega)</td>
</tr>
<tr>
<td>300Hz</td>
<td>1.1M(\Omega)</td>
<td>530k(\Omega)</td>
<td>270k(\Omega)</td>
<td>110k(\Omega)</td>
<td>53k(\Omega)</td>
<td>27k(\Omega)</td>
<td>11k(\Omega)</td>
<td>5k(\Omega)</td>
<td>2.5k(\Omega)</td>
<td>1.25k(\Omega)</td>
</tr>
<tr>
<td>400Hz</td>
<td>800k(\Omega)</td>
<td>400k(\Omega)</td>
<td>200k(\Omega)</td>
<td>100k(\Omega)</td>
<td>50k(\Omega)</td>
<td>25k(\Omega)</td>
<td>12.5k(\Omega)</td>
<td>6.25k(\Omega)</td>
<td>3.125k(\Omega)</td>
<td>1.5625k(\Omega)</td>
</tr>
<tr>
<td>500Hz</td>
<td>640k(\Omega)</td>
<td>320k(\Omega)</td>
<td>160k(\Omega)</td>
<td>80k(\Omega)</td>
<td>40k(\Omega)</td>
<td>20k(\Omega)</td>
<td>10k(\Omega)</td>
<td>5k(\Omega)</td>
<td>2.5k(\Omega)</td>
<td>1.25k(\Omega)</td>
</tr>
<tr>
<td>750Hz</td>
<td>420k(\Omega)</td>
<td>210k(\Omega)</td>
<td>110k(\Omega)</td>
<td>55k(\Omega)</td>
<td>27.5k(\Omega)</td>
<td>13.75k(\Omega)</td>
<td>6.875k(\Omega)</td>
<td>3.4375k(\Omega)</td>
<td>1.71875k(\Omega)</td>
<td>0.859375k(\Omega)</td>
</tr>
<tr>
<td>1,000Hz</td>
<td>320k(\Omega)</td>
<td>160k(\Omega)</td>
<td>80k(\Omega)</td>
<td>40k(\Omega)</td>
<td>20k(\Omega)</td>
<td>10k(\Omega)</td>
<td>5k(\Omega)</td>
<td>2.5k(\Omega)</td>
<td>1.25k(\Omega)</td>
<td>0.625k(\Omega)</td>
</tr>
<tr>
<td>2,000Hz</td>
<td>160k(\Omega)</td>
<td>80k(\Omega)</td>
<td>40k(\Omega)</td>
<td>20k(\Omega)</td>
<td>10k(\Omega)</td>
<td>5k(\Omega)</td>
<td>2.5k(\Omega)</td>
<td>1.25k(\Omega)</td>
<td>0.625k(\Omega)</td>
<td>0.3125k(\Omega)</td>
</tr>
<tr>
<td>3,000Hz</td>
<td>110k(\Omega)</td>
<td>55k(\Omega)</td>
<td>27.5k(\Omega)</td>
<td>13.75k(\Omega)</td>
<td>6.875k(\Omega)</td>
<td>3.4375k(\Omega)</td>
<td>1.71875k(\Omega)</td>
<td>0.859375k(\Omega)</td>
<td>0.4296875k(\Omega)</td>
<td>0.21484375k(\Omega)</td>
</tr>
<tr>
<td>4,000Hz</td>
<td>80k(\Omega)</td>
<td>40k(\Omega)</td>
<td>20k(\Omega)</td>
<td>10k(\Omega)</td>
<td>5k(\Omega)</td>
<td>2.5k(\Omega)</td>
<td>1.25k(\Omega)</td>
<td>0.625k(\Omega)</td>
<td>0.3125k(\Omega)</td>
<td>0.15625k(\Omega)</td>
</tr>
<tr>
<td>5,000Hz</td>
<td>64k(\Omega)</td>
<td>32k(\Omega)</td>
<td>16k(\Omega)</td>
<td>8k(\Omega)</td>
<td>4k(\Omega)</td>
<td>2k(\Omega)</td>
<td>1k(\Omega)</td>
<td>0.5k(\Omega)</td>
<td>0.25k(\Omega)</td>
<td>0.125k(\Omega)</td>
</tr>
<tr>
<td>7,500Hz</td>
<td>42k(\Omega)</td>
<td>21k(\Omega)</td>
<td>11k(\Omega)</td>
<td>5.5k(\Omega)</td>
<td>2.75k(\Omega)</td>
<td>1.375k(\Omega)</td>
<td>0.6875k(\Omega)</td>
<td>0.34375k(\Omega)</td>
<td>0.171875k(\Omega)</td>
<td>0.0859375k(\Omega)</td>
</tr>
<tr>
<td>10,000Hz</td>
<td>32k(\Omega)</td>
<td>16k(\Omega)</td>
<td>8k(\Omega)</td>
<td>4k(\Omega)</td>
<td>2k(\Omega)</td>
<td>1k(\Omega)</td>
<td>0.5k(\Omega)</td>
<td>0.25k(\Omega)</td>
<td>0.125k(\Omega)</td>
<td>0.0625k(\Omega)</td>
</tr>
</tbody>
</table>
HENRY'S ELECTRO-STEREO TUNER

HENV ELEC TRO-STEREO TUNER

Join the LARGE BAND OF HAPPY CONSTRUCTORS!

NEW SPECIAL PURCHASE
MULLARD TYPE LP178 AND
LP177 AM/FM TUNER MODULES

These two modules together form a high-quality AM/ FM tuner covering the long, medium and VHF broadcast bands. Requires only 16 resistors and capacitors and a switch to complete.

Supplied with circuits and specs, etc.

LP177 FM Coverage 87.5kHz-108kHz
Bandwidth 300kHz
Selectivity 35dB
Signal to noise ratio at limiting threshold 40dB
Available to order 75p

LP177 AM Bandwidth 55kHz
Sensitivity 1nV
Built-in AGC
Supply 6V negative earth
LP177 and LP171 £4.63 each or £6.63 pair
Suitable for Fernteak radio 83p

MULLARD MODULAR AM/FM AMPLIFIERS

LPL117 FM Type
LPL185 10/W FM/AM
LPL186 10/W FM Tuner
Gorier PM1 FM Tuner

Amplifiers with controls
E120 12 volt 21-24 watts 8 ohms
SAC14 Mains 7-7 watts 8 ohms
SAC20 Mains 15-15 watts 8 ohms
CA030 9 volt 4-4 watts 8 ohms
CA040 12 volt 4-4 watts 8 ohms

FM and AM Tuners and Decoders
FM2514 (8) & 3W FM TUNER
FM316 (6) & 3W FM Tuner
SD912 Decoder for 6.3
SD691 691 decoder for FM Tuner
SP11 691 stereo FM Tuner
AS107 9 V/AM AM Tuner
AS108 3W AM Tuner
AS109M (0) tuner for above
C475 12W stereo decoder general purpose kit

Power Supplies Main Input
*Class RA receiver
40/40V 250/250 MA无不 with 8s
PS66 9 volt 500 MA
HC424 3/36/114, 400MA stabilized
PPI 36V, 3amp 3.30
PPI 36V 3amp 3.92
PPI 36V 3amp 5.50
PPI 36V 3amp 7.50
PPI 36V 3amp 15.00

FREE stock lists (Ref. No. 19) on request, CALL IN AND SEE FOR YOURSELF AT HENRY'S DISCO CENTRE, 392 EDGWARE ROAD, LONDON NW1 65W.

HENRY'S RADIO

WIN! £35.00 inc VAT P & P 35p

Don't mis your copy of only Henry's New 1975 Catalogue

- OVER 5,000 ITEMS - Largest UK range of electronic components for home projects, hobbies and restoration.
- 200 PAGES - every aspect of electronics and components for amateurs and hobbyists - kits, projects, test gear
- NO. S of new lines and new ranges.
- MANY price reductions throughout the new Catalogue.
- A Discount Voucher with every copy, worth 50p.

Write now for your copy, enclosing 50p remittance.

Electronic Football & Tennis WITH THE FABULOUS VIDEO SPORT

ON YOUR OWN TV

Play three exciting electronic games & FOOTBALL
- TENNIS WOULD YOU LIKE TO BE LIKE THE PROS? Play the incredible companion of that great sporting hotel, the Whirlwind of your TV and everything you get. Complete with your own TV, your children and your TV. Just £35.00. Recommended By The Mail on Sunday. Make a proximity notice. In your home today £35.00 inc VAT.

NOW OPEN—SUPERMARKET

Come and browse round the new components supermarke at 402 Edgware Road, Barnetage goods. Goodie Bags, Components, etc.

WANT FOR FURTHER DEVELOPMENTS!