Increasing Lamp Life

MTX 8 Channel A to D

Modems: Circuitry: Specifications: BT Approval

New Regular Robotics Review
Powertran's "Hebot II" and "MicroGrasp" kits offer unrivalled value for money to colleges, schools and individual enthusiasts. Put the kit together, plug into your micro and off you go!

Hebot II can perform a bewildering variety of actions under the control of a simple BASIC program. Features include independent control of two wheels, flashing "eyes" two-tone hooter and a retractable pen.

Complete kit £85 + VAT
Universal computer interface board kit £11 + VAT

Powertran kits are complete down to the last nut and bolt, with easy-to-follow assembly instructions.

TOP KITS FROM

POWERTRAN

MUSIC

Powertran's range of quality audio products offers top quality at low, low prices. All the products are finished in rugged metal cabinets suitable for 19" rack mounting or as free standing units.

HEADPHONE AMP
2 x 3 sets of stereo phones from either one or two inputs £89 + VAT

SYNTH MIX
Stereo keyboard mixer with 3 aux sends on each of its 6 inputs £169 + VAT

MPA 200 100 watt mixer-amplifier.
Complete kit £69.50 + VAT
SP2 200 2-channel 100 watt amplifier.
Complete kit £85 + VAT
Chromatique 5000
5-channel light show controller.
Complete kit £79.50 + VAT
Digital Delay Line Studio quality effects
– up to 1.6s delay £149 + VAT
Patchbay 16 pairs of jacks – for studio or stage. £35 + VAT

MCS-1 MIDI-controlled sampling unit – doubles as a high quality effects unit.
Complete kit £599 + VAT

Send for demonstration tape to sample some of the sounds available £2.50 + VAT

COMPUTING

Cortex II 16 Bit. 16 Colour.
Cortex II offers the speed and power of true 16-bit processing at the same price that you might pay for some of the 8-bit games machines on the market.

The standard kit has interfaces for TV, cassette and RS232 – others are available as optional extras. Add disc drives, printer and a monitor for a fully-fledged business system.

Price £249 + VAT

To Powertran Cybernetics Limited, Portway Industrial Estate, Andover, Hampshire SP10 3PE
Please send me the following kits
I enclose Cheque/Postal Order, value £
Name
Address

Please allow 21 days for delivery. Offers subject to availability. Prices apply to UK only, are exclusive of VAT and correct at time of going to press. Overseas customers, please contact our Export Department.

CONSTRUCTIONAL PROJECTS

MTX 8-CHANNEL A to D CONVERTER by R. A. Penfold .. 11
Analogue measurements using the Memotech MTX
HI FI STEREO VCA SYSTEM by Tom Gaskell BA (Hons) CEng MIEE 16
General purpose circuit for the most demanding applications
INCREASING LAMP LIFE by E. W. Hunter ... 20
Extend the life of projector or photofoild lamps—and save money
VOLTMETER MEMORY ADAPTOR by Jan Erik Borge .. 28
Multimeter add-on for tricky measurements
DIGITAL DELAY & SOUND SAMPLER with computer interface by John M. H. Becker 44
Part Two: Delay selection, master clock oscillator and address counter

GENERAL FEATURES

SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons) CEng MIEE 14
Voltage Controlled Amplifier (dbx 2150A)
BBC MICRO FORUM by D. Whitfield MA MSc CEng MIEE 24
Real-time clock software and Book Corner
ROBOTICS REVIEW by N. Clark .. 27
New regular look at robots and cybernetics
SPACEWATCH by Dr Patrick Moore OBE ... 30
MODEMS by M. Tooley BA & D. Whitfield MA MSc CEng MIEE 32
Part Two: Design techniques and circuit elements. BT "Approved Design" spec.
WHY FIBRE OPTICS? by Eric Hoffman ... 40
How it works and a report on the EDU-LINK kit
INGENUITY UNLIMITED ... 50
Readers' circuit ideas

NEWS & COMMENT

EDITORIAL ... 7
NEWS & MARKET PLACE ... 8
INDUSTRY NOTEBOOK 19
NEXT MONTH 23
BAZAAR 31, 43
BOOK REVIEWS 38
LEADING EDGE 49
P.C.B. SERVICE 52

'RUR' HOBBY ROBOT—2
We regret that due to circumstances beyond our control Part Two of RUR will not be published until next month

This month's cover shows a cluster of probes monitoring a thin-film circuit while nichrome resistors are trimmed to a tolerance of closer than five hundredths of a percent—courtesy of Mullard.

OUR AUGUST ISSUE WILL BE ON SALE FRIDAY, JULY 5th, 1985 (see page 23)

© IPC Magazines Limited 1985. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.
CPU/COMPUTER CORNER

EPSON RX80 Printer £208

EPSON RX80 F/T Printer £219

EPSON FX80 Printer £316

EPSON FX100 Printer £429

KAGA/TAXAN KP10 Printer £252

KAGA/TAXAN KP10 Printer £332

BROTHER HR15 Daisywheel Printer £208

Centronics PRINTER CABLE for all the above printers to interface with the BBC Micro £7

ZENITH 12” Hi-RES, Green Monitor 40/80 column select switch, value for money £66

MICROVITEC 14” colour monitor. RGB input Lead incl. £165

MICROVITEC 1451 Hi-res 14” Monitor incl. Lead £237

KAGA 12” MED-res £229

KAGA 12” Hi-res £310

TEX EPROM ERASER. Erases up to 12 ICs in 15-30 min. £30

Spare ‘UV lamp bulbs £8

**8½” or 9½” Fan fold paper (1000 sheets) £7 (150p)

MANY MORE PRINTERS, MONITORS, INTERFACES, AVAILABLE CALL AT OUR SHOP FOR DEMONSTRATION OR WRITE IN FOR OUR DESCRIPTIVE LEAFLET.

(P&P on some of the above items is extra) Call in at our shop for demonstration of any of the above items. Satisfy yourself before you buy.

PLASTIC LIBRARY DISC STORAGE CASES

Holds ten 5½” Discettes £1.80

DISC ALBUMS

Attractively finished in beige leatherette. Available from retail store up to 20 discs. Each disc can be easily seen through the clear window. Suits standard size discettes.**

ONLY £2.45

5¼” Disc Drive

HEADING CLEANING KIT

BBC MICRO WORD PROCESSING PACKAGE

A complete word processing package (which can be heavily modified to your requirements, maintaining large discount). We supply everything you need to get a BBC Micro running as a word-processor. Please call in for a demonstration.

Example Package:

BBC Micro, with DFS Interface, Wordwise, Twin 400K TEC Disc Drives, 12 High resolution monitors, Brother HR15 Daisywheel printer, Beebcalc & Database software on Disc, 10 MDiscs, 500 sheets of paper, 4 way mains trailing socket, manuals and all cables.

Only: £1,089

SPECTRUM 32K UPGRADE

Upgrade your 16K Spectrum to full 48K with our RAM Upgrade Kit. Very simple to fit. Fitting instructions inc. **ONLY £22**

ICD CONNECTORS (Screw type)

DIODES

SPEAKERS

• MICRO VITEC 1451
• ZENITH 12” Hi-RES.

DIAC 512 25

OPTO

LEDs offer fast output switching with Clips

T1209 Red 300m
T1211 Yellow 200m
T1212 Green 300m
T1213 Blue 200m

VOLTAGE REGULATORS

1A 100V, 300mA
1A 200V, 100mA
1A 300V, 50mA
1A 400V, 25mA

SPEAKERS (TEXTBOOK)

• 12A / 800V
• 12A / 100V

RIBBON CABLE

Waves Grey Colour
1*28 p/in 90 p/in 70 m/roll
1*32 p/in 95 p/in 70 m/roll
1*36 p/in 100 p/in 70 m/roll
1*40 p/in 125 p/in 70 m/roll

CONNECTORS

Pins 9 15 25 37 way
Male Solder 50p 80p 125p 150p
Female Solder 95p 125p 180p 250p
Cover 75p 100p 145p 250p
IC 25 way £1.25 50 p/in 450 m/roll

EDGE CONNECTORS

10p 20p 32p 50p

TOGGLE-2 AMP

6V 2A 3V1/2 1A
6V 2A 3V1/2 1A
4V 6A 2A 1A
6V 2A 3V1/2 1A
6V 2A 3V1/2 1A
3V1/2 1A 2A 1A
4V 6A 2A 1A
6V 2A 3V1/2 1A
6V 2A 3V1/2 1A

REED RELAY

10p 20p 32p 50p

SPECIAL OFFER

TRANSFORMERS (mainly Prim. 330-240V)
30-35 V 6-9 Volt 100mA. 135-190V 3-5 Volt 100mA. 78V 2-5 Volt 3-5 Volt 100mA. 6V 2-5 Volt 3-5 Volt 100mA. 28V 1-25 Volt 3-5 Volt 100mA. 24V 1-25 Volt 3-5 Volt 100mA. 18V 2-25 Volt 3-5 Volt 100mA. 15V 2-25 Volt 3-5 Volt 100mA. 12V 2-25 Volt 3-5 Volt 100mA. 9V 2-25 Volt 3-5 Volt 100mA. 6V 2-25 Volt 3-5 Volt 100mA. 3V 2-25 Volt 3-5 Volt 100mA. 1.5V 2-25 Volt 3-5 Volt 100mA. 0.9V 2-25 Volt 3-5 Volt 100mA. 0.6V 2-25 Volt 3-5 Volt 100mA. 0.35V 2-25 Volt 3-5 Volt 100mA. 0.2V 2-25 Volt 3-5 Volt 100mA. 0.1V 2-25 Volt 3-5 Volt 100mA. 0.05V 2-25 Volt 3-5 Volt 100mA. 0.025V 2-25 Volt 3-5 Volt 100mA. 0.0125V 2-25 Volt 3-5 Volt 100mA. 0.00625V 2-25 Volt 3-5 Volt 100mA.

BOARDS

DIY REED RELAY 20p 100p
10p 20p 32p 50p

NEW SIZED CASES

140x100, 120x90, 90x70, 70x50

100Ω 16V 1W 1%

BATTERY

RCA 1250 3.5p 4V 100mA 50p

WATFORD ELECTRONICS

Tel. (0923) 40588
Telex. 8956905
SIPPERY

MINIATURE 350A

- Designed for steady-state applications
- High reliability, low temperature coefficients
- Available in 350A and 500A ratings

HIGH PROFESSIONAL AUDIO POWER AMPLIFIERS

- Model 5500-D: Available in excellent, limited-edition condition
- Suitable for high-precision applications

CROSS-HATCH CONNECTORS

- Standard 8" floppy disc drives. Double-density up to 1.44MB.
- Power requirements: 24V DC.

SCROLLBOXES

- HEWLETT-PACKARD 114A Storage Oscilloscope
- TELEDUMPS 033 model dual trace 2400
- C5000 C5015 15MHz dual trace 2400

STEPPER MOTORS

- Type DEAC 10000K Button Stacks
- 3 cells (5VDC) per stack
- Measures 11.5 x 11.5 Diameter
- £1.60 each inc. VAT (pp 250)

PHASE STEPPER MOTORS

- New stock of ASTRONIC Type 2PAM/A7 stepper motors
- 20V DC, 42 steps per rev 15 mV at step (250,000)
- Speed: 27 x 7.2 V, step 1 V
- Measures 11.5 x 11.5 Diameter
- £3.60 each inc. VAT (pp 250)

OPTICAL ISOLATORS

- SPIFFY UNICOM max-300 isolation units providing 2kV of isolation between Masters and Terminals. 25 was '0' isolator (B2200 Interlect) in and out. Measures 3x5x7. Complex with handbook

BECKMAN TORS

- Miniature type (0.0026) Diameter, cutting up to 0.10 mm. "Helpful." Brand new with mounting instructions. Only £23.80 each inc. VAT & p&p

COUNTER LINEAR POWER UNITS

- Model 3402. 15A Output at 20V DC. £215 inc. VAT & p&p

SWEEPERS

- TELICON 3000 Sweep, 5V 200,000 sweep £25 inc. VAT & p&p

SPHARASEGMENTS

- DINELINE 2x200, 1000 sweep £20 inc. VAT & p&p

MOTOR STANDARDS

- INSTRUMENT COLOUR CARDS
- KORTING 51324 F51324 Colour & pattern pen

SPERRY UNICOM

- Model 3402. 15A Output at 20V DC. £215 inc. VAT & p&p

ESCAP DC MOTORS

- Precision Swiss-made 5V DC motors for less-cost repair with 11.1 reduction gear giving a DC drive speed of 11ppm at 5V. Measures 37 x 37 x 25. £125 inc. VAT & p&p

SPEED CONTROL KIT FOR MINI-DRILLS

- Includes completely assembled control unit in smart box with room for transformer. The only connections to make are 2 wires to a suitable transformer.
- The control unit will handle 2A continuous, 3A intermittent. £6.50
- Suitable transformer for above, 15V, 1A continuous, 1.5 intermittent, for smaller type drill. £2.80

ORDERS RESPONSIBLE

- For other items call 01-341 4254

SPEED CONTROL KIT FOR MINI-DRILLS

- Includes completely assembled control kit in smart box with room for transformer. The only connections to make are 2 wires to a suitable transformer.
- The control unit will handle 2A continuous, 3A intermittent. £6.50
- Suitable transformer for above, 15V, 1A continuous, 1.5 intermittent, for smaller type drill. £2.80

- Brand new stock of ASTRONIC Type 2PAM/A7 stepper motors
- 20V DC, 42 steps per rev 15 mV at step (250,000)
- Speed: 27 x 7.2 V, step 1 V
- Measures 11.5 x 11.5 Diameter
- £3.60 each inc. VAT (pp 250)
OPTICAL INPUT FEATURES: ZERO VOLTAGE SWITCHING, AUTO

All kits include PCBs, components and assembly instructions. For further details send S.A.E.

CRYSTALS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.375MHz</td>
<td>$1.00</td>
</tr>
<tr>
<td>13.425MHz</td>
<td>$1.50</td>
</tr>
<tr>
<td>14.318MHz</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

BT PHONE CONNECTORS

- **NEW LOWER PRICES**
 - Starter includes Microphone, Headset, 2 pin, 180 deg, 2.5mm jack.
 - Interchangeable headsets.

FOR FREE 28 PAGE CATALOGUE SEND SAE TODAY!

ACCESS & BARRCLAY CARD RING

01-567 8910 (24HRS)

SPECIAL OFFER

2733 EPROM £7.50

KITS

- CT4000 Clock/Timer $14.90
- CT1000K Clock/Timer + Box $17.40
- KA1011 Electronic Lock $11.50
- KA1024 3 Note Door Chime $5.50
- KA1046 Solid State Switch $5.50
- KA112 Mains Wiring Remote $4.00
- KA113 15W Radio $6.00
- KA118 300W Touchdimmer $7.50
- KA9001 300W Touchswitch $7.50
- KA9003 3000W Lightswitch $6.99
- TDK3001 IR Remote Controlled Lightswitch $14.95
- M300K IR Transmitter for TDK3001 $5.75
- TDK6K Touchdimmer extension $2.50
- TSA3001 Time Delay Touch Switch $2.50
- MK1 Thermistor $4.50
- MK2 Solid State Relay $2.50
- MK4 Proportional Tempora $6.50
- MK5 Mains Timer (1Kw) $4.50
- MMK Single Channel Infra Red Receiver (240V) $10.50
- MK68 Mains Power IR Receiver $3.50
- MK17 Single Channel Infra Red Receiver (12V) $10.50

HOME LIGHTING KITS

- Designed to connect to mains outputs independently.
- Switching on and off at preset times over a 7 day cycle.
- Ideal for central heating and domestic lighting.
- Switching on and off for weekends.
- Battery back up circuit includes button and menu.
- 18V Lighting Dimmer $29.95

DISCO LIGHTING KITS

- DL1000 This value for money 4-way chaser features bi-directional sequence and dimming 1kW per channel.
- DL1200 A lower cost uni-directional version of the above. Zeroswitching to reduce interference $8.95
- Optional 10pin interlinking audio light response (D/LA1) 70p
- DL900X 3-channel sound to light chaser features, zero voltage switching, audio level control and built-in micro phone. 1kW per channel $24.95

ACCESS ‘PHONE ORDERS 01-992 8430

To: RT-VC, 21B High St, Acton, London W3 6NG

Please send me

<table>
<thead>
<tr>
<th>Kit/s</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit A</td>
<td>£29.95</td>
</tr>
</tbody>
</table>

One deck kit costs £29.95 plus £2.75 p&p (£32.70)

I enclose PO/Cheque No. Value

Name

Address

STereo CASSETTE DECK

From £29.95

EXCLUDING VAT PLUS £2.75 P & P

For a special offer price of only £29.95 we’re offering you this super CASSETTE DECK Kit. Including tape transport mechanism, high- ready punched and back printed quality circuit board and all electronic parts i.e. semi-conductors, resistors, capacitors, hardware, top cover, printed scale, mains transformer and a self assembled simulated wood cabinet. You only need to solder and hook-up wire.

SPECIFICATIONS:

CALLERS WELCOME: 323 EDGWARE RD., LONDON W2.

- Open 6 days a week 9.00 – 5.30, 21 HIGH ST, ACTON LONDON W3 6NG
- Tel: 01-992 8430 – Open 6 days a week 9.30 – 5.30
- 1/2 day closing Wednesdays

Value

0.95

**ORDERING INFORMATION ALL PRICES EXCL.
**

- CLUDE VAT. FREE 75p in value over £55 Excluding VAT.
- Returned faulty or defective items within 30 days of receipt. Matched to original order.
- Local Authority and Export Orders exempt from VAT by return subject to availability.
UK LOSING GROUND

We are rapidly losing ground to our competitors in education generally, in technical education specifically. The words of the Chairman of STC to the Parliamentary Information Technology Committee. With virtually the whole of the UK electronics industry now needing qualified engineers, it does seem that the educational system is failing the employers. Fortunately schemes are being set up, in some cases with industry funding, to overcome these deficiencies. However we still appear to have some way to go before our educational system convinces our children (of both sexes) that engineering is more important and of higher standing socially, than the arts. Do we find it odd that art colleges still exist when we have no software colleges or IT colleges even outside of those funded by the industry?

The AEB 'O' level electronics course, based on a systems approach, which requires the student to build a project as part of the examination, claims less than 6,000 examinees this year. This course is the only true GCE 'O' level electronics course with more than a few hundred participants, and while it is growing each year the number still seems very small for such a large potential area of employment. It seems to us rather sad that such an interesting and rewarding 'O' level course can claim so few students when there are over 800,000 students of suitable age in the UK.

Our sister publication, Everyday Electronics, which caters for the "learning" end of the hobby sells more than 35,500 copies every month and, together with PE, could be said to be doing more for the industry than our educational system.

TWENTY YEARS OF STAGNATION

When I was at school—now more than twenty years ago—the electronics club and Ohms law in physics were the nearest we got to learning "electronics". It is a sad indictment of the system that for many students the situation has not changed in those twenty years, unless of course you know better? We would be very interested to hear from both students and teachers on just what is, or is not, going on in schools around the country as far as electronics is concerned. We would also like to hear any views you have on where the problems lie or even if you think everything is just fine! Let us hear from you so that we can expand on the above.

Mike Kenward

BACK NUMBERS and BINDERS . . .

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 0PF, at £1 each including Inland/Overseas p&p. When ordering please state title, month and/or issue required.

Binders for PE are available from the same address as back numbers at £5.50 each to UK or overseas addresses, including postage, packing and VAT.

SUBSCRIPTIONS

Copies of Practical Electronics are available by post, inland for £13, overseas for £15 per 12 issues, from: Practical Electronics, Subscription Department, IPC Magazines Ltd., Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment for subscriptions can also be made using a credit card.

Phone: Editorial Poole (0202) 671191

We regret that lengthy technical enquiries cannot be answered over the telephone.
A load off our minds

The problems encountered by micro users when loading programs via ‘ordinary’ cassette machines are by now legendary. Advice like ‘turn up the volume’ and ‘is the head clean?’ often only serve to further aggravate the frustrated user. Cheap High Street audio units may initially look like good value but perhaps, in the long run, a purpose-built cassette data recorder is the wiser buy.

The MC3610 from Waltham Electronics of Munich has already established itself in its home market. As a purpose-designed data recorder the unit has a precision tape drive with a transfer rate of 1,200 baud. Motor control is from the computer, level control and switch off are automatic. “Ready”, “Save”, “Load” and “Control” modes are displayed by a series of indicator lamps on the front panel. This unit is compatible (via interface cable) with the following micros: CBM64, VIC20, Atari 600/800, Spectrum, Spectrum plus, BBC, Electron, Sanyo Laser and MSX. An additional power supply unit is required for all but the Commodore machine. The read/write head is adjustable from the outside of the machine, which also features an oil-damped eject mechanism with tape counter. A monitor socket is sited on the front panel. Prices are as follows: Recorder unit £25.95; Power Supply £5.70; Interface Cables £3.99 (prices include VAT). Further details from Twillatar Computera Ltd., 17 Regina Road, Southall, Middx. UB2 5PL (01-574 5271).

The second unit featured here is the Binatone data recorder, once again a purpose-designed unit with optimised ‘Load’/“Save” circuitry. The model 01/6560 is plug compatible with the CBM64 and the VIC20. The model 01/6565, on the other hand, is compatible with a much wider range of machines, namely: BBC, Electron, Dragon, Spectrum, Spectrum plus and the MSX machines. This model features output level control and a monitor socket. Both models feature a ‘pause’ button and a soft eject mechanism.

The 01/6565 costs £29.95 and the 01/6560 £34.95 (prices include VAT). From Binatone International Ltd., Binatone House, 1 Beresford Avenue, Wembley, Middx. HA0 1YX (01-903 5211).

MAINTENANCE-FREE UPS

Mitsubishi (Tokyo) has developed what is believed to be the world’s first maintenance-free UPS (Uninterruptable Power Supply). The machine will maintain a power supply if the regular supply suffers ‘drop-outs’ or voltage ‘dips’. The system is designed to continue to provide power to computers or controllers of factory automation equipment and FMS (Flexible Manufacturing Systems).

A conventional UPS uses storage batteries whereas the new system employs a high-speed flywheel and a power generator hermetically sealed in a vacuum chamber. The flywheel rotates at around 30,000 r.p.m. on utility power, when the supply is cut its inertia will provide 5kVA of power for up to one minute. High magnetic induction is achieved by using a rare earth magnet—eliminating the need for brushes. This gives the equipment a maintenance-free life of up to 10 years.

The 01/6565 costs £29.95 and the 01/6560 £34.95 (prices include VAT). From Binatone International Ltd., Binatone House, 1 Beresford Avenue, Wembley, Middx. HA0 1YX (01-903 5211).
Crofton’s Bonanza

The very latest from Crofton Electronics is the imminent re-introduction of the PM-101, nine-inch monitor. This popular, metal cased monochrome unit was originally discontinued when the market trend swayed in favour of 12 inch units. Such trends, however, have a habit of reversing themselves and once again the nine-inch monitor is in demand. The PM-101 is available with a green or B/W screen and costs £82.80 inc. VAT and p&p.

IS YOUR VIDEOSAFE?

A useful anti-theft device is the latest VHS video accessory from Thorn EMI Ferguson. The “Videosafe” is shaped like a conventional video cassette but when armed and placed in a VHS video recorder it will emit a 98 decibel audible alarm if the machine is moved or an attempt is made to eject the device.

The unit is activated by simply locking it with the key supplied and a 15 second delay allows time for loading into the video recorder before it is armed. When de-activating, the eject mechanism brings the device to the eject flap where it is then unlocked with the key which turns off the alarm and releases the unit from the recorder. Videosafe costs around £25 and is available in the High Street.

Because Ferguson do not manufacture a Beta format machine they have not developed a Beta version of this idea—now there’s an opportunity!

ROBOTICS

A construction kit which could be very useful for experiments with robotics will shortly be available from Magenta Electronics Ltd. The kit is for the Stepper Motor Interface which will be described in our sister publication *Everyday Electronics* (August '85 issue). Magenta also supply a very useful motor-gearbox assembly, the Fischertechnik robotics kits (with Spectrum and BBC interfaces) and a general range of well over 100 kits for published projects.

The range includes such items as: an Insulation Tester, a Computer Cassette Load Simplifier, Spectrum and Amstrad amplifiers, BBC Storage Scope Interface, Digital Multimeter, Mains Cable Detector, Ultrasonic Burglar Alarm, Quasi Stereo Adaptor, Ioniser and many other projects for the home-owner, musician, motorist and photographer etc.

A complete catalogue with price list is available for £1 in stamps or the price list can be obtained free by sending a 9 x 4 stamped self-addressed envelope. From Magenta (mail order only), 135 Hunter Street, Burton-on-Trent, Staffs DE14 2ST (0283 654353).

DRILL SPEED CONTROL KIT

If you are constantly having trouble with stopping your mini-drill going “walkabout” on your printed circuit board due to excessive speed of the chuck, then we can recommend the latest Speed Control Kit for Mini-Drills from Croydon Discount Electronics.

The speed controller is specially designed for the small mini-drills that are so useful for delicate p.c.b. work and only requires the connection of two wires to a suitable transformer. The control unit is claimed to be able to handle 2A continuously or 3A intermittently.

The unit is built in a strong plastic case which also has space to take a suitable transformer. The front panel acts as the mounting plate for the control potentiometer, i.e., fuse, p.c.b. and drill input socket.

For the smaller type of drill, a suitable transformer rated at 15V 1A continuous, 1.5A intermittent is available from Croydon Discount for the sum of £2.90 plus 80p postage and packing.

It is usual for this type of controller to be advertised at the asking price of anything between £10 to £20 and over, but the price for the Mini-Drill Speed Control Unit kit is just £4.50 plus 80p postage and packing.

If the kit and transformer are ordered together it will only be necessary to include one remittance for postage and packing. For more details readers should contact Croydon Discount Electronics, 40 Lower Addiscombe Road, Croydon, CR0 6AA (01-688 2950).
DISPLAY DUO

Two dedicated 12" monochrome monitors have been introduced by Ferguson. They differ only in the colour of the screen phosphor. The MM02 (Green) and the MM06 (Amber) are both fitted with anti-glare face plates.

A dynamic-focus feature allows sharp focusing of all characters and maintains spot size consistency across the whole screen. A comprehensive range of sync inputs gives a high degree of user flexibility. Both linear and TTL inputs are acceptable and a shaded display can be produced with an linear input. Fast line flyback makes it possible to display up to 100 characters per row (25 rows). Available from good computer outlets at around £80.

WHEELS

A unique new £1.5M historical/tourist adventure entitled "Wheels"—Live the Legend of the Motor Car, was officially opened this week (June 5) by HRH Prince of Wales, at the National Motor Museum, Beaulieu.

Visitors are transported in pods through a series of twenty individual display areas, each of which concentrates on a separate "theme" from the history of motoring in Britain, including robotic car manufacture to lunar space vehicles.

Sound

Four basic sound systems are used in the "voyage". The first is the commentary given individually in each pod. This equipment was designed by Electrosonic of Greenwich and the ES1320 Digital Sound Store captures any conventional recorded sound in digital form in non-volatile EPROM.

Background music originates from 16-track tape machines working in tandem. Special sound effects emanate from Mackenzie message repeaters and digital sound stores.

In the event of an emergency, a sound system with battery back-up has been installed to give evacuation instructions.

Video

All the required film to be used throughout the ride has been transferred to laser disc, with the appropriate sections transferred by Philips Laser disc players to the appropriate TV monitors.

POINTS ARISING...

RUGBY CLOCK

April/May '85

The following points have been brought to our attention regarding this project:

- The four i.c.s IC4-IC7 should be 4015's and not 4008's as published.
- For maintenance purposes the Rugby transmission is shut down for four hours on the first Tuesday of each month. Additionally there is a two week annual maintenance period which this year was May 23rd to June 10th.
- For further information contact: The

RUGBY CLOCK

April/May '85

The following points have been brought to our attention regarding this project:

- The four i.c.s IC4-IC7 should be 4015's and not 4008's as published.
- For maintenance purposes the Rugby transmission is shut down for four hours on the first Tuesday of each month. Additionally there is a two week annual maintenance period which this year was May 23rd to June 10th.
- For further information contact: The

From Japan comes the news that multi-layer p.c.b.s for hybrid circuits are being produced with capacitors, resistors and other components actually within the layers. The 10 to 15 layer boards are made in such a way as to coat each layer with an electroconductive or insulating paste material that functions as a capacitor or resistor.

COUNTDOWN...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

The Computer Fair June 13–16. Earls Court K2
Cable July 9–11. Metropole, Brighton O
Video Software Sept. 1–3, Olympia G3
Personal Computer World Show Sept. 18–22. Olympia 2 M

Electron & BBC User Sept. 27–29. UMIST, Manchester L
Compee Nov. 12–15. Olympia K2

E 0799 26699
G3 01-686 2599
K2 061-429 8157
L 01-486 1951
M 01-868 4466

National Physical Laboratory, Queens Road, Teddington, Middx. TW11 0LV.

SIGNAL GENERATOR

February '85

When the sig/gen is used with power supply voltages greater than about 10V, the comparator trip point of IC3 requires that either the reference zener diode D5 is changed to approximately half the PSU voltage (e.g. 6V2 for a 12V PSU), or that the voltage at IC3 pin 14 be restricted to about 9V or 10V. For the latter insert a resistor of around 4700 between IC3 pin 14 and the +ve line, with a 9V1 or 10V zener between pin 14 and 0V line, and a 22μF capacitor across this zener. Note that the output frequency amplitude at IC3 pin 8 is at the level set by D5.
The Memotech MTX500 and MTX512 computers have features which make them an attractive proposition for anyone wishing to use a computer in control or measurement applications. Two features of this type are the built-in assembler and the user port which provides eight digital inputs and eight digital outputs. One obvious omission from the specification is any form of analogue to digital converter (ADC). Although these machines have two Atari/Commodore type joystick ports, they do not have a simple resistance sensitive A to D converter of the type fitted to Atari and Commodore computers.

It is not difficult to add an analogue to digital converter to the MTX computers though, and a circuit of this type can be added to either the user port or the expansion port. This design is for an eight channel converter which connects to the expansion port. Using the expansion port rather than the user port has the advantage of leaving all 16 user port lines free for use, and gives the computer a formidable interfacing capability. Fitting the converter to the expansion bus rather than the user port does not result in a significant increase in its complexity, and the unit is in fact very simple.

7581 ADC

The simplicity of the circuit is facilitated by the use of a sophisticated ADC, the 7581. Fig. 1 shows the block diagram for this CMOS chip.

At the heart of this device is a fairly conventional successive approximation converter. This compares the input voltage with the output of an 8-bit DAC. Initially the eight inputs to this converter are set low, apart from the most significant bit (bit 7). If the output voltage from the DAC is greater than the input potential bit 7 is set low by the comparator, but if not it is left high. Then bit 6 is set high, and this bit is reset by the comparator if the output potential of the DAC is higher than the input voltage. Next bit 5 is set high and the same basic procedure is repeated. In fact this routine is repeated, in turn, for all 8 bits, until at the end of

Practical Electronics July 1985
In the early 1960's Dr. Robert Moog proposed a new method of controlling audio signals which was known as 'voltage control'. The concept was that all parameters of an audio frequency signal should be controlled in a linear way by applied voltages. Hence, the frequency, amplitude, and spectral content (tone, or timbre) of a signal could all be varied independently by applying a.c., or even low-frequency a.c. signals to relevant points in the circuitry. This apparently straightforward principle was quite revolutionary at the time, and led the way towards the first Moog synthesiser, forerunner of most modern music synthesis equipment. Voltage control techniques did not stop with synthesizers, however, as they proved ideal for other purposes in audio reproduction. Specifically, the Voltage Controlled Amplifier, or VCA, has been an important 'building block' in audio compressor/limiters, automatic gain systems, recording studio mixing desks, and sound reproduction equipment of all types.

Unfortunately, the VCA has achieved a certain notoriety with audio engineers and enthusiasts over the years. The design of a wide ranging, low noise, low distortion voltage controlled amplifier is an extremely demanding exercise, and for many years the results were either extraordinarily costly and complex, or were severely lacking in performance; sometimes even both! With the advent of 'automated' and computer controlled audio mixing desks, the industry was crying out for a high quality, low cost, simple to use VCA. A number of manufacturers have been providing hybrid or modular VCA devices for a number of years now, but at considerable cost. Recently, however, the American audio company 'dbx' have produced an 8-pin monolithic VCA integrated circuit which seems to answer most audio requirements—it is small, easy to use, high quality, and inexpensive. That device is known as the dbx 2150A, and is the featured i.c. this month.

BASIC OPERATION

The dbx 2150A is a bipolar i.c. fitted into an 8-pin single inline package. The pinout is shown in Fig. 1, with the basic principle of operation being shown in Fig. 3. The i.c. is a current in/current out device. To produce a varying input current from a varying signal voltage an input resistor R_i is used, the input pin of the i.c. being effectively a virtual earth point. The output of the i.c. is connected directly into the inverting input of an op-amp which has a feedback resistor R_f. This arrangement converts the output current from the dbx i.c. back into a voltage. The voltage applied to the control input determines the gain or attenuation of the circuit, with a control law of approximately 5-9 millivolts per dB change in output level. The 2150A is an inverting device, so when combined with the inverting action of the op-amp, the overall result is no inversion of the signal.

INPUTS AND OUTPUTS

The input to the i.c. must be a.c. coupled to ensure that d.c. offsets from other circuitry are not varied when altering the gain of the VCA. The input pin must be loaded with a source impedance of less than 20kΩ at high frequencies (above 100kHz) to maintain stability. This is ensured by taking a resistor and capacitor to 0V; R2 and C2 in Fig. 7. At the recommended biasing current (i.e. the current drawn from pin 5) of 3mA, the maximum peak input current should not exceed 1.5mA.

The op-amp must have a small capacitor connected between its output and its inverting input to ensure stability. This capacitor should typically be in the range 47pF to 100pF. The audio quality of the final circuit is largely defined by the op-amp, so a BIFET type is recommended (TL071, 1/4 of a TL074), or for the highest quality systems, a 5534 or part of a 5532. At the recommended biasing current of 3mA, the sum of the input and the output currents should not exceed 1.78mA r.m.s. (The output current of the VCA i.e. is equivalent to the output voltage of the op-amp divided by its feedback resistor.)

CONTROL OF THE VCA

There are actually three gain control inputs to the VCA: GC1, GC2, and Distortion Adjust. A positive voltage on pins 2 or 4 will give gain, and a negative voltage will give attenuation. A positive voltage on pin 3, on the other hand, will give attenuation, and a negative voltage will give gain. More than one of these control inputs may be used simultaneously to give combinational effects of control inputs. Distortion can be adjusted, i.e. minimised, by applying a voltage between pins 2 and 4. Pin 4 should normally be driven by an impedance of 50 ohms, and pins 2 and 3 preferable from a very low impedance—less than 1 ohm. This would normally require an op-amp to drive directly into pin 2 or 3, but in Fig. 7 a higher impedance arrangement has been used for simplicity, albeit with a slight increase in distortion at higher levels.

In practice, it is normally GC1 (pin 3) which is used as the control input, with GC2 grounded, and the Distortion Adjust input taken slightly above and below 0V by a preset and potential divider, to allow nulling out of the distortion. The control law is between -5.8 mV/dB and -6.0 mV/dB at pin 3. The control law has a temperature coefficient of +0.3% per degree centigrade; in other words, at high temperatures, more control voltage is necessary to get the same gain or attenuation, and conversely if the control voltage is held constant, then the amount of gain, or the amount of attenuation, caused by the VCA will be reduced as the temperature rises. In practice, this effect is rarely a problem at normal operating temperatures, but if wide ambient temperatures are likely to be encountered and gain accuracy is important, then some form of temperature variation of the control voltage will be necessary to compensate for this effect.

The range of control of the i.c. is from -100 dB to $+40$ dB; a very considerable range which is adequate for most practical audio purposes except for variable high gain am-

Practical Electronics July 1985

Voltage Controlled Amplifier (dbx 2150A)

![Fig. 1. Pin-out of the VCA](image-url)
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Notes</th>
<th>Minimum Value</th>
<th>Typically</th>
<th>Max. Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>All spec's measured at +12V</td>
<td>+4.0</td>
<td>±12</td>
<td>±15.0</td>
<td>V</td>
</tr>
<tr>
<td>Bias Current, Iset</td>
<td>Current drawn from pin 5</td>
<td>3.0</td>
<td>4.0</td>
<td>6.0</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td></td>
<td>330</td>
<td></td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td>-10</td>
<td>+85</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Total Signal Current</td>
<td>Current into pin 1 + current out of pin 8</td>
<td>175</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>No signal (current measured into pin 1)</td>
<td>5</td>
<td>8.0</td>
<td>12</td>
<td>nA</td>
</tr>
<tr>
<td>Gain Linearity</td>
<td>−60dB to +40dB gain</td>
<td>+1</td>
<td>±1</td>
<td>±2</td>
<td>%</td>
</tr>
<tr>
<td>Output Noise (C.C.I.R. Weighted)</td>
<td>Input and output (resistors = 20k)</td>
<td>0dB gain</td>
<td>−93</td>
<td>−88</td>
<td>dBu</td>
</tr>
<tr>
<td>Voltage</td>
<td>Input and output (resistors = 20k)</td>
<td>0dB gain</td>
<td>+15dB</td>
<td>+30</td>
<td>mV</td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
<td>+2</td>
<td>±2</td>
<td>±3</td>
<td>mV</td>
</tr>
<tr>
<td>Gain Control Constant</td>
<td>Over range −60dB to +40dB gain</td>
<td>5.8</td>
<td>5.9</td>
<td>6.0</td>
<td>mV/dB</td>
</tr>
<tr>
<td>Total Harmonic Distortion (T.H.D.)</td>
<td>at 1kHz</td>
<td>0dB gain</td>
<td>±10</td>
<td>±15</td>
<td>mV</td>
</tr>
<tr>
<td>Intermodulation Distortion,</td>
<td>Measured as:</td>
<td>0.015</td>
<td>0.03</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>10kHz and 12kHz mixed equally</td>
<td>(2kHz product level) × 100%</td>
<td>0.05</td>
<td>0.07</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

Fig. 2. Specification

![Fig. 3. Basic principle of operation](image)

![Fig. 4. Effect of gain on output offset current](image)

![Fig. 5. Effect of gain on output noise current](image)

![Fig. 6. Distortion vs. input level for different gains (worst case)](image)

Fig. 4. Effect of gain on output offset current

Fig. 5. Effect of gain on output noise current

Fig. 6. Distortion vs. input level for different gains (worst case)

Using the i.c.

As with all audio circuitry, there are tradeoffs and compromises to be made, especially between distortion and noise. 10k input and op-amp feedback resistors will produce the best noise performance; typically −99.5dBu with a 5534A op-amp as opposed to −94.5dBu when using 20k resistors. However, headroom and distortion are worsened. With 10k resistors, the maximum input level before clipping is extremely variable from one i.e. to the next, and is typically between +15.5dBu and +17.5dBu. The distortion prior to the onset of clipping varies from around 0.01% THD to 0.04% THD at 1kHz. With 20k resistors, the maximum level is higher than +19.5dBu, and the distortion just below clipping is almost exactly half that obtained with 10k resistors. (These figures are taken after distortion has been nullled out with the distortion adjust preset.) Fig. 4 shows the
...effect of different gains on the output noise current, and Fig. 6 shows the effect of different input levels and gains on distortion. In practice, the noise is sufficiently low that in most systems 20k or 22k resistors are the optimum choice.

The distortion adjust preset can only be set correctly by using a distortion measuring instrument or spectrum analyser. The distortion is worst at low or mid frequencies, so setting the preset for minimum total harmonic distortion at 1kHz is quite adequate.

Fig. 7 shows a simple circuit for use in general purpose numerical applications. R7 and R8, with R5, scale the control input to give a control law of 100mV/dB; somewhat more practical than 5.9mV/dB. R9 has been increased from the normal 3k to allow for the i.c. being operated at ±15 volt supplies, although this will still give a worse performance than if ±12 volt supplies were used. Also, as previously explained, the relatively high impedance at the GC1 pin produces more distortion than the i.c. would normally be expected to produce with an impedance of less than 1 ohm at GC1. The way to reduce this distortion is to buffer the control input with an op-amp, selecting the gain of the op-amp to give the required 'millivolts per dB' control law. This is more thoroughly covered in this month's applications project.

APPLICATIONS

The dbx 2150A is ideal for use in a myriad of audio applications, from a simple remote level control to a complex mixing desk. As a voltage controlled gain element it can also prove ideal for use in test equipment, voltage controlled oscillators, equalisers, filters, etc. If the i.c. is being considered for non-audio applications, be aware that it is not intended to operate down to d.c. The frequency response is limited in practice by the input and output decoupling capacitors, and by the op-amp's feedback capacitor. Also note that the control law is linear volts per dB of gain; in other words, linear control voltage changes produce logarithmic gain changes. Since only 5.9mV of control change is necessary to produce 1dB's worth of level variation, then care must be taken to prevent noise or interference from getting into the control pin. Such effects would immediately manifest themselves as audio noise or distortion.

Two or similar i.c.s are also available from dbx; the 2151 and the 2155. The former is a 'selected' 2150A, guaranteed to have slightly better specifications, and the 2155 is a lower input/output current version. The 2151 is unlikely to be very much better than the 2150A, however, since the latter seems to be very consistent in performance, and usually exceeds its specifications by a considerable amount.

The dbx 2150A has done much to dispel the concern that once was rampant in the audio industry about the poor quality of VCAs. It offers an excellent solution to a whole range of level control problems, its performance is good, and the price is very reasonable.

AVAILABILITY

The dbx 2150A is available from Sonic Sound Equipment Ltd., Unit 2, 10 William Road, London NW1 3EN.

A HI-FI STEREO VCA SYSTEM

A GENERAL purpose stereo VCA circuit for use in the most demanding audio systems is shown in Fig. 8. Its Veroboard layout is given in Fig. 10. Most of the principles employed in this circuit have already been described, but specifically note that although ±15 volt rails are assumed for the circuit as a whole, separate ±12 volt regulators have been provided for the VCAs to obtain maximum quality. The values of R10 and R28 have been adjusted to suit this ideal supply voltage. R4 and R22 have been made 51 ohms, giving a more correct 50 ohm impedance at pin 4, rather that the nearest fit 47 ohms used in Fig. 7. The audio buffer op-amps have been chosen to be halves of a 5532 very-high quality op-amp. R8 and R26 provide some measure of decoupling capacitive loads from the op-amp output, maintaining stability, while R7 and R25 in series with the feedback capacitors again help stability at very high frequencies, sustaining the gain of the op-amps.

IC4 is an ordinary quad op-amp—any quad '741' or similar type will be quite adequate. (The prototype circuit used an MC3403P.) R11 and C8, and R15/C9, provide simple low-pass filters on the control inputs to help reduce h.f. interference and noise. The first op-amp for each control input is merely a unity gain buffer. The second op-amp in each case is in an inverting configuration with the resistor values being chosen to scale down the control voltage to give the equivalent of a nominal 100mV per dB. VR3 and VR4 adjust the control attenuation to give precisely the required control law, while C10 and C11 provide yet more h.f. roll-off to remove interference. D5 to D10 are arranged to limit the output voltage range of the op-amps under fault conditions, to help prevent damage to the VCAs. Because of the inverting action of IC4 in the two control paths, note that the control inputs now give gain for positive voltages, and attenuation for negative voltages, over the range −100dB (−10V) to +40dB (+4V).

C1, C2, C3, and C4 are currently a matter of controversy in the audio world! Hi-Fi purists would try to leave them out altogether, but unfortunately C1 and C2 at least are necessary, and some Hi-Fi purists wouldn't be seen dead with anything like a VCA anyway! For the rest of us, the sensible and safe rule is probably to try to avoid electrolytics if possible—go for unpolarised 1μF capacitors or larger, such as polycarbonate or polyester, but watch the roll-off at low frequencies due to the input capacitor and the 20k input impedance. If response down to around the 15Hz mark is important to you, then put several 1 or 2-2μF capacitors in parallel for C1 and C2, or try 'audio quality' reversible electrolytics. Please note, though, that I am definitely going to sit on the fence when it comes to how audible, or not, these various types of capacitor actually are.

Practical Electronics July 1985
Fig. 8. Hi-fi stereo VCA system circuit diagram
effect of different gains on the output noise current, and Fig. 6 shows the effect of different input levels and gains on distortion. In practice, the noise is sufficiently low that in most systems 20k or 22k resistors are the optimum choice.

The distortion adjust preset can only be set correctly by using a distortion measuring instrument or spectrum analyser. The distortion is worst at low or mid frequencies, so setting the preset for minimum total harmonic distortion at 1kHz is quite adequate.

Fig. 7 shows a simple circuit for use in general purpose uncritical applications. R7 and R8, with R5, scale the control input to give a control law of 100mV/Db, somewhat more practical than 5.9mV/Db. R9 has been increased from the normal 3k to allow for the i.c. being operated at ±15 volt supplies, although this will still give a worse performance than if ±12 volt supplies were used. Also, as previously explained, the relatively high impedance at the GCl pin produces more distortion than the i.c. would normally be expected to produce with an impedance of less than 1 ohm at GCl. The way to reduce this distortion is to buffer the control input with an op-amp, selecting the gain of the op-amp to give the required 'millivolts per dB' control law. This is more thoroughly covered in this month's applications project.

APPLICATIONS

The dbx 2150A is ideal for use in a myriad of audio applications, from a simple remote level control to a complex mixing desk. As a voltage controlled gain element it can also prove ideal for use in test equipment, voltage controlled oscillators, equalisers, filters, etc. If the i.c. is being considered for non-audio applications, be aware that it is not intended to operate down to d.c. The frequency response is limited in practice by the input and output decoupling capacitors, and by the op-amp's feedback capacitor. Also note that the control law is linear volts per dB of gain; in other words, linear control voltage changes produce logarithmic gain changes. Since only 5.9mV of control change is necessary to produce 1db's worth of level variation, then care must be taken to prevent noise or interference from getting into the control pin. Such effects would immediately manifest themselves as audio noise or distortion.

Two other similar i.c.s are also available from dbx; the 2151 and the 2155. The former is a 'selected' 2150A, guaranteed to have slightly better specifications, and the 2155 is a lower input/output current version. The 2151 is unlikely to be very much better than the 2150A, however, since the latter seems to be very consistent in performance, and usually exceeds its specifications by a considerable amount.

The dbx 2150A has done much to dispel the concern that once was rampant in the audio industry about the poor quality of VCA's. It offers an excellent solution to a whole range of level control problems, its performance is good, and the price is very reasonable.

AVAILABILITY

The dbx 2150A is available from Sonic Sound Equipment Ltd., Unit 2, 10 William Road, London NW1 3EN.

A HI-FI STEREO VCA SYSTEM

A general purpose stereo VCA circuit for use in the most demanding audio systems is shown in Fig. 8. Its Veroboard layout is given in Fig. 10. Most of the principles employed in this circuit have already been described, but specifically note that although ±15 volt rails are assumed for the circuit as a whole, separate ±12 volt regulators have been provided for the VCA's to obtain maximum quality. The values of R10 and R28 have been adjusted to suit this ideal supply voltage. R4 and R22 have been made 51 ohms, giving a more correct 50 ohm impedance at pin 4, rather that the 'nearest fit' 47 ohms used in Fig. 7. The audio buffer op-amps have been chosen to be halves of a 5532 very high quality op-amp. R8 and R26 provide some measure of decoupling capacitive loads from the op-amp output, maintaining stability, while R7 and R25 in series with the feedback capacitors again help stability at very high frequencies, sustaining the gain of the op-amps.

IC4 is an ordinary quad op-amp—any quad '741' or similar type will be quite adequate. (The prototype circuit used an MC3403P) R11 and C8, and R15/C9 provide simple low-pass filters on the control inputs to help reduce h.f. interference and noise. The first op-amp for each control input is merely a unity gain buffer. The second op-amp in each case is in an inverting configuration with the resistor values being chosen to scale down the control voltage to give the equivalent of a nominal 100mV per dB. VR3 and VR4 adjust the control attenuation to give precisely the required control law, while C10 and C11 provide yet more h.f. roll-off to remove interference. D5 to D10 are arranged to limit the output voltage range of the op-amps under fault conditions, to help prevent damage to the VCA's. Because of the inverting action of IC4 on the two control paths, note that the control inputs now give gain for positive voltages, and attenuation for negative voltages, over the range −100dB (−10V) to +40dB (+4V).

C1, C2, C3, and C4 are currently a matter of controversy in the audio world! Hi-Fi purists would try to leave them out altogether, but unfortunately C1 and C2 at least are necessary, and some Hi-Fi purists wouldn't be seen dead with anything like a VCA anyway! For the rest of us, the sensible and safe rule is probably to try to avoid electrolytics if possible—go for unpolarised 1μF capacitors or larger, such as polycarbonate or polyester, but watch the roll-off at low frequencies due to the input capacitor and the 20k input impedance. If response down to around the 15Hz mark is important to you, then put several 1 or 2-μF capacitors in parallel for C1 and C2, or try 'audio quality' reversible electrolytics. Please note, though, that I am definitely going to sit on the fence when it comes to how audible, or not, these various types of capacitor actually are!
Fig. 8. Hi-fi stereo VCA system circuit diagram
Fig. 9. Examples of simple control inputs. (a) Remote Volume Control, (b) Slow Mute, (c) +20dB Gain Adjust

APPLICATIONS OF THE CIRCUIT

As a very simple example of the type of control techniques which are available, Fig. 9 shows three different control input circuits. The remote volume control allows for the gain of the circuit to be varied over the range 0dB to −80dB with a 10k linear pot. The 5.6k resistor limits the maximum attenuation to 80dB (i.e. −8V) even though the regulated −12V supply is used to derive the control voltage from. In Fig. 9(b) a capacitor is charged and discharged to act as a 'slow mute' control. When the switch is closed the audio level is turned down over the period of a second or so, and when it is released it rises up again fairly slowly, taking several seconds to reach full volume. This would make an excellent and very high quality mute circuit for use with a Hi-Fi system (when answering the telephone, for example), or even an automatic fader for use at the end of recordings. Finally, Fig. 9(c) shows a ±20dB gain trim circuit, to illustrate the use of a positive control voltage to give gain.

Further applications could involve noise-sensing circuitry to change the Hi-Fi volume depending on the background noise level in the room, and a sophisticated remote level control using infra-red signalling and remote control i.c.s. Unlike so many systems with this type of facility, a dbx 2150A based circuit would benefit from the excellent sound quality and performance that these VCAs are capable of producing.
Prospects

With employment now the dominant topic of political and economic debate, there is ample reassurance for qualified electrical and electronic engineers and for those studying to enter the profession.

This year's IEE salary survey reveals that unemployment in the membership is just 0.6 per cent compared with 1.1 per cent for the previous year. The national average is of the order of 13 per cent although there are considerable variations in types of occupation and in geographical locations.

The IEE figures highlight once again the chronic shortage of engineers. The Manpower Services Commission estimates an immediate shortfall of 1,500 engineers in the field of information technology alone and still rising and it is by no means the only engineering discipline in need of additional engineering skill.

It is safe to assume that qualified engineers will continue to be in demand. The prospects for the three million plus registered as available for, but not in, work is less certain. It is worthy of record that none of the major political forces now offers a cure for unemployment, only a suggestion that if certain courses are adopted some alleviation should follow.

World Trade

The future of our industry depends far more on external than internal events. The great locomotive of economic advance, the United States, is running out of steam. Countries like Brazil and Argentina are grotesquely in debt. South Africa is in turmoil. Iraq and Iran are still fighting after four years. And Sudan has a new military government following a bloodless coup.

The entry of Spain and Portugal into the European Common Market will have little immediate impact on the UK electronics industry, although in the longer term there should be more opportunity for exports of capital equipment in telecommunications and industrial electronics.

China and Russia provide more intriguing probabilities. China's dash for growth has run into inflationary difficulties with a consequent freeze on wages but the modernisation programme involving western technology should not be affected.

Kremlin watchers have so far been unable to determine how 54-year-old Mr Gorbachov will drag the USSR into the computer age or, indeed, whether he will be able to do so. First signs are that he is anxious for increased trade with the west in the general interest of the economy and in particular in importing more western technology.

There is growing nervousness over the success of the Hungarian experiment in permitting, albeit limited, free enterprise which has been successful and popular, not to mention the dramatic economic growth of China since their reforms started in 1978. My guess is that he will have to reform the economy in the light of raised domestic expectations but will only be able to hasten slowly.

A heartening sign for world trade is that Japan, under increasing pressure from the USA and Europe, is to allow easier access to the Japanese market. It is a reluctant concession and in no way weakens Japan's determination to become the world's greatest economic power.

The world development that is having the most immediate effect on the UK economy is the volatility in currency rates. An increase of 20 per cent in the value of the pound against the dollar in as many days, as happened last March, is unhelpful to industry planners whether importing or exporting. It reflected uncertainty on the stability of the US economy and reminds us once again that world trade is influenced more by confidence than by hard statistics.

Big Package

GEC, frustrated in an earlier attempt to buy British Aerospace, finally opted to spend some of its cash mountain on the purchase of naval shipbuilder, Yarrow. It seems odd to write of GEC as shipbuilders, but the acquisition makes good sense. GEC can now offer the complete naval package incorporating Marconi communications, radar, navigation equipment, action information systems, weapon control and even some of the weapons.

Naval hulls should have a service life of at least 20 years. But because electronics and weapons systems advance technically at a very much faster rate than a typical frigate, for example, will be completely re-fitted and updated to new standards at least twice, more often three or four times during the lifetime of the ship. It's almost worth supplying the original equipment at cost and take profit later during modernisation. I don't suggest that GEC performs in this manner, the point I am making being the on-going business following the initial sale with the customer virtually locked in.

On the other hand, GEC is not too proud to play a lesser role as a sub-contractor. For example, supplying under sub-contract to Hyundai of Korea the v.h.f. and u.h.f. train radio system for Iraq's railways. This sub-contract, worth some £2 million to Marconi's mobile radio division, demonstrates the international nature of the electronics business and a little of the complexities of overseas trade.

Another example, again involving Marconi, is a prime contract for the supply of an earth terminal for the Yemen Arab Republic, but the order came from Cable & Wireless. The earth station will work through the Arabsat satellite and will be ready for use next September, only nine months after signing the contract.

High Density

Further to my comments last month on surface mounting of components and consequent increase in circuit complexity per square inch of p.c.b. I note that British Telecom is also following the fashion. System X, largely modular, allows rapid adaptation to different operational requirements and improved manufacturing methods. In the new System X trunk exchanges the processor subsystem does the same job in two racks as the original design did in ten racks. As System X has been around for some years I imagine the saving is through the availability of VLSI super-seding LSI rather than surface mounting, but the principle is the same and the result equally uncomfortable for employment.

Oh, for the happy days of yester-year when every telephone subscriber had his own unselector at his local exchange, costly to manufacture and to maintain but employing thousands of people. But how rotten the service then compared with today. Electronics is both a curse and a boon.

Wealth

The purchasing power of the pound sterling today is only about five per cent of that in 1938. This means that today's millionaire ain't what he (or she) used to be. In fact, the richest hundred people in the UK all command at least £6 million according to Inland Revenue figures. Those below are still moneyed but compared with the top hundred can be classified only as also-rans.

Readers may be pleased, disgusted, proud, horrified, envious, jealous, critical or congratulatory in the knowledge that the top hundred include 40 electronics millionaires. Of the newer entrants Sir Clive Sinclair variously estimated as being worth around £100 million, is probably the wealthiest but he is a poor man compared, say, with pop star Paul McCartney with an estimated £250 million.

Readers in the disguised category may derive some satisfaction from the fact that few of the very rich can go to the bank and draw out a million. Their fortunes are in paper shares in their companies and they have to work harder than most of us producing results to maintain their value.

Myself, I say good luck to them. For I, too, am a millionaire—if measured in Italian lire.
An inexpensive circuit idea that can extend the life of projector or photoflood lamps, by allowing them to progressively reach their rated power

Most photographers will be aware that projector lamps and photoflood lamps have a very limited life, in the case of photofloods as short as a few hours. The main reason for this is that these lamps are slightly overrun to give a brighter and whiter light that is more suitable for photographic work. It will also have been noticed that these lamps, indeed lamps in general, almost always fail when switched on from cold.

Obviously something happens to the lamp when it is first switched on to cause it to blow. Can anything be done to extend the life of these lamps? What is the reason for the failure at switch-on?

LOW RESISTANCE

The answer to the second question is quite simply that the filament of an incandescent lamp, be it photographic or otherwise, has a very low resistance when the lamp is cold, and its resistance increases with increasing temperature. When power is first applied to the filament, the current flow rises to a peak value, which is many times higher than the lamp is rated for, and then falls back to a lower value as the resistance of the filament rises to its working value. This inward rush of current reduces the working life of the lamp, and is the reason that an old lamp usually fails at switch-on.

The answer to the first question, "Can the life of the lamp be extended?" is yes. The circuit described here reduces the switch-on current surge and thus increases the lamp life. It is intended for use with projector or photoflood lamps which have very limited lives and are very expensive to replace, so the saving made by extending the life of the lamp can offset the cost of the circuit quite quickly.

The resistance of a typical projector lamp is shown increasing in Fig. 1, as its power and therefore its temperature increases. The resistance was found by passing varying currents through the lamp, and measuring the voltage developed across it. The graph shows that the resistance of the lamp is approximately 0-11Ω when cold, therefore a current of over 50A could in theory flow if a six volt supply was connected across the lamp. Fortunately, the lamp supply will have a certain internal resistance, and so the current surge will be limited. While doing these measurements, a current surge of more than eight times the rated current for the lamp occurred if the six volt supply was connected across a cold lamp. The surge peak only lasted for a few milliseconds, and then fell steadily to the rated current. The power supply used for this experiment was of very low internal resistance, and so the surge was very large, but it clearly shows the short warm-up period of the lamp.

A very simple way of preventing the current surge through a lamp is to wire a high power thermistor in series with it. The thermistor has the opposite characteristics from the lamp filament, i.e. the resistance of the thermistor falls as its...
The circuit, Fig. 3, uses a unijunction transistor to generate the trigger pulse for the triac. This pulse is coupled to the triac gate via the 1:1 pulse transformer T1, and this isolates the trigger circuit from the supply side. The unijunction circuit is basically a conventional relaxation oscillator. The capacitor C2 is charged through R3 until the emitter voltage of the unijunction reaches the peak point voltage (about 0.7 times the voltage between B2 and B1).

TURN-ON POINT

At this point the unijunction transistor turns on and the resistance between the emitter and base 1 becomes very low. C2 then discharges through the emitter/base 1 junction and through the primary of the transformer and thus induces a pulse across the secondary of the transformer. The time taken for the peak point voltage to be reached is approximately R3 x C2. When the emitter voltage falls to about two volts, the unijunction ceases to conduct, and the capacitor begins to charge again from this two volt pedestal.

The supply for the trigger circuit is provided by full-wave rectification of the a.c. voltage. The supply line is not filtered, thus the voltage at base 2 of the unijunction reaches zero at the same time as the a.c. supply. When this happens, the unijunction triggers and discharges the capacitor through R4 so that the circuit is synchronised with the a.c. supply. The capacitor will now begin to charge again, and after a period determined by R3 x C2 (a little over 8ms) will be discharged into the transformer.

Up to this point, the circuit would allow only a small current to flow in the load, and the additional components R1, R2, C1, D2 and D3 are required to make the circuit gradually increase this current after a short warm-up period. When power is first applied to the circuit, C1 is discharged and begins to charge through R2 and D2 (some current also flows through R1). The voltage at the junction of R2 and D2 which is about 0.6 volts above the voltage on C1 will slowly rise until D3 becomes forward biased. This allows additional current flowing through R2 to charge C2 and causes a change in the trigger point; refer again to Fig. 2.

When C1 is fully charged, the time constant becomes R2 in parallel with R3 x C2, which with the values given is less than 1ms. Therefore the triac will conduct for most of each half-cycle. The diode D2 prevents C1 from discharging back through R2 as the supply falls to zero at the end of each half-cycle, or to charge C2 through D3. R1 is included to provide a discharge path for C1 when the supply is removed so that the circuit will operate correctly if switched back on after a short period. The time constant of R1 and C1 is about 12 seconds. The components across the triac reduce the amount of radio-frequency interference caused by the circuit.

The circuit as it stands can be used on a.c. supplies up to about 20V, but for use on 240V mains, the circuit must have some additional components as shown in Fig. 4. The Zener
diode D1 and R7 limit the maximum voltage swing to 20V. The value of R7 is calculated to limit the current through the Zener diode to less than 20mA, so its value for 240V mains will have to be about 15k for a Zener current of 15mA. The power rating of R7 will also have to be sufficiently high, because it will dissipate 3–3W, therefore a 5W device will be required. The current and voltage rating of the triac must also be adequate for the application. A triac with a minimum voltage rating of 50V is adequate for a 20V a.c. supply, but a 400V triac would be required for use on 240V mains. The current rating of the triac will depend upon the wattage of the lamp, and can be found by dividing the lamp wattage by its voltage.

![Circuit Diagram](https://example.com/circuit.png)

CONSTRUCTION

The circuit, which can be built on a piece of Veroboard 1-5 x 3 inches, is small enough to mount inside the case of most projectors. Because of the small size and simplicity of the circuit, a p.c.b. was not used; a suitable Veroboard layout is shown in Fig. 5. It is impossible to give fitting instructions because of the great variety of projectors, but some simple guidelines may be given.

![Component List](https://example.com/component-list.png)

IN USE

I have had this circuit installed in my own projector for the last sixteen months and find that it has functioned very well and has apparently lengthened the life of the lamp. I say apparently, because I have no way of knowing how long the lamp would have lasted without the circuit. Because the lamp life is affected by the number of on/off cycles as well as the time it is illuminated, it is very difficult to get a measure of improvement, but eliminating one cause of premature ageing is obviously a good move. The previous projector lamp I used lasted about eleven months, so the present lamp is already ahead.
all in your
AUGUST
issue!

Semiconductor Circuits - Universal Timer

The data sheet this month covers the HEF4753B Universal Timer, an extremely versatile i.c. capable of complex counting and timing operations. The project based on this device is a Digital Egg Timer with audible warning.

Computer Envelope Shaper

Electronic music generation using digital techniques is common now, but "stand-alone" units are expensive. This project shows how to use a Commodore or BBC computer to provide the complex control and memory circuitry for a relatively simple add-on sound synthesiser, which nevertheless offers over 100 different gain levels and virtually any envelope shape desired.

AUTOMATIC FISH FEEDER

We show you how to feed your pond fish whilst on holiday (you—not the fish!). Alternatively, the self-test electronics could be used to water your tomatoes every 12/24 hours.

modems - Getting Started

This final part of our short series looks at modem applications and includes a "getting started" Buyer's Guide.

PRACTICAL ELECTRONICS

ROBOTICS · MICROs · ELECTRONICS · INTERFACING

AUGUST ISSUE ON SALE FRIDAY, JULY 5
This month features software for the real time clock project described in the last BBC Micro Forum. Also starting in this issue is Book Corner, a look at a selection of the books available for the BBC Micro. Having explored the user port in some detail (but not yet exhausted its potential), it is then time to start looking at another of the micro’s ports; the analogue port.

SETTING THE CLOCK

Listing 1 shows a BASIC routine for setting up and starting the clock. The overall scheme is first to stop the clock, reset it, load the chosen start time into the clock registers, and finally re-start the clock when the chosen instant arrives. As before, the listing includes only the basic elements necessary for a working program. It excludes any error handling, range checking, comments or ‘pretty’ screen formats. Multi-statement lines have also been used to fit the interests of space economy. The program instructs the user to change the mode switch between read and write modes at the appropriate points. When the clock has been started, the clock read program (here called “RTCread”) is CHAIN’ed. The structure of the program is summarised in Table 1.

WHAT TIME IS IT?

Having set the clock running, the next requirement is obviously to be able to read time. After all, there is little point having a clock without a “face”! Listing 2 shows a program suitable for producing a continuous time display; if you are using it in any other year than 1985, it will be necessary to alter line 240, since it is not possible to read the clock’s year register. Exit from the program is achieved by pressing ESCAPE.

The overall structure of the program is summarised in Table 2. The actual read routine is written in assembler to achieve the necessary speed. The problem otherwise is that the clock will tend to ‘lose’, depending on how often it is read, because of the length of the read strobe when driven from BASIC. The routine makes use of the area in memory between &70 and &8F (called Time in the listing) which is reserved in BASIC for user applications. The valid contents of registers 2 to 12 are copied into locations (&70+2) to (&70+12). These are then picked up by the BASIC part of the program, and displayed to the user. In passing, this program is an interesting demonstration of the way in which BASIC is good for the overall structure and user display functions, while the time-critical and hardware I/O operations are best carried out in assembler.

TIMELY REMINDERS?

The read program above is obviously only a demonstration, and will need to be amended for inclusion in any practical application. This, for example, could be a program which runs automatically whenever the micro is switched on, and checks a file of birthdays or other important dates to give a timely warning. Could this end the need for “Sorry I forgot” greeting cards?

For the adventurous, the second of the books in Book Corner may encourage you to add some new * commands specially for the clock. Similarly, there is no reason why the machine code routine to read the clock cannot be present even when another BASIC program is running. The technique for this was described (for the numeric keypad) last month. All that is then needed is an interrupt to trigger the reading of the clock at appropriate intervals. One useful way of doing this (which also allows much of the keypad code to be re-used) is to make the clock generate a suitable interrupt, e.g. every minute. Fortunately the clock i.e. includes the necessary facilities to cause such interrupts, as shown in Table 3, and the clock circuit already has the interrupt line connected to CB1.

If the clock set-up routine is amended so that an appropriate value is written to register 15 before the clock is started, the clock will then raise a user interrupt (IRQ) on CB1 when the chosen interval has elapsed. The setting of bit 3 in the register determines whether the timer is in a one-shot or a continuous mode. The interrupt is reset by reading back the value in register 15, and this automatically restarts the timer when in continuous mode. The value read from register 15 will be shown in Table 4, and to ensure correct operation, the clock interrupt should be serviced within 16-7ms. These facilities should allow the keen machine code programmer to create a constant display of the time in a dedicated screen area, and update it every minute. Readers with suggestions for solution to this problem are encouraged to write to BBC Micro Forum Letters.

THE ANALOGUE PORT

Even now there are still many unexplored aspects of the user port. For the moment, however, readers should by now have a basic idea of its capabilities, and so I will move on to

Table 1. RTC set-up program structure

<table>
<thead>
<tr>
<th>Function</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>No interrupt</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interrupt at 60 sec intervals</td>
<td>0/1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interrupt at 5 sec intervals</td>
<td>0/1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Interrupt at 0-5 sec intervals</td>
<td>0/1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

D3 = 0 for single. **D3 = 1 for continuous interrupt**

Table 3. Interrupt register (write)

<table>
<thead>
<tr>
<th>Interrupt Status</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60 sec signal</td>
<td>0/1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 sec signal</td>
<td>0/1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0-5 sec signal</td>
<td>0/1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

D3 = 0 for no interrupt **D3 = 1 for interrupt**

Table 4. Interrupt register (read)

And look at the analogue port. As with the rest of the micro, this port is a little more than the name suggests, and I will begin this month with a quick look at the port’s connector. Even a brief look gives a hint that the analogue port is really more of a collection of ports which happen to share a common connector, than a single port.

I have (quite rightly) been taken to task by Mr. Boylett of Letchworth for skating over some important practical points when it come to describing connectors, and I will do my best to address these in the next issue.
to make amends this time. Fig. 1 shows the analogue port connector, and the view shown is looking into the connector from outside of the micro. The connector itself is a 15-pin D-type, with a socket on the micro; the plug mounts on the cable. Unlike the user port, there is no confusion as to which way up the connector fits. Hopefully you will now be able to avoid my mistake; anybody got a project which involves a 15-pin D-type socket? Remember, you need a plug to connect to the analogue port.

Listing 1. Clock set-up

```
10 REM BBC Micro Forum RTC Set-up
20 REM ----------------------
30 MODE 7:PCR = &FE6C:InOut = &FE60
40 DIR = &FE62:In = &F0:Out = &FF
50 PRINTTAB(10):CHR$141"Clock Set-up"
60 PRINTTAB(10):CHR$141"Clock Set-up"
70 ?PCR = (?PCR AND &1F) OR &E0
80 ?DIR = Out
90 PRINT "Set mode switch to WRITE"
100 PROCOutput(0,0)
110 PROCOutput(14,0):PROCOutput(15,0)
120 PRINT "Set mode switch to READ"
130 PROCSpace:
140 FOR I = 1 TO 3:PROCInput(15):NEXT
150 PRINT "Set mode switch to WRITE"
160 PROCSpace:
170 INPUT "Year:"
180 INPUT "Month (1-12):"
190 INPUT "Day of Month (1-31):"
200 INPUT "Day of Week (1-Mon):"
210 INPUT "Hours (0-23):"
220 INPUT "Minutes (0-59):"
230 PROCOutput(4, (Min% MOD 10))
240 PROCOutput(5, (Min% DIV 10))
250 PROCOutput(6, (Hrs% MOD 10))
260 PROCOutput(7, (Hrs% DIV 10))
270 PROCOutput(8, (DoW% MOD 10))
280 PROCOutput(9, (DoW% DIV 10))
290 PROCOutput(10, DoW%) 
300 PROCOutput(11, (M% MOD 10))
310 PROCOutput(12, (M% DIV 10))
320 PROCOutput(13, (2*(4-(%Y MOD 4))))
330 PRINT "Clock set up ready to go"
340 PROCOutput(14,1)
350 PRINT "Clock now running"
360 PRINT "Reset mode switch to READ"
370 PROCSpace:
380 DEF PROCOutput(Reg%,Value%)
390 Value% = Value% AND &OF
400 Reg% = (Reg% AND &OF)*16
410 ?InOut = Value% OR Reg%
420 ?PCR = (?PCR AND &IF) OR &C0
430 ?PCR = (?PCR AND &IF) OR &E0
440 ENDPROC
450 DEF PROCSpace:*FX15.0
460 PRINT "Press SPACE when ready ";
470 REPEAT UNTIL GET=32
480 PRINT:PRINT:ENDPROC
490 DEF PROCInput(Reg%)
500 ?InOut = (Reg% AND &OF)*16
510 ?PCR = (?PCR AND &IF) OR &C0
520 Temp = ?InOut
530 ?PCR = (?PCR AND &IF) OR &E0
540 ENDPROC
```

Listing 2. Clock read

```
10 REM Real Time Clock Display
20 REM ----------------------
30 DIM MC% 100:ON ERROR GOTO 290
40 InOut = &FE60:DIR = &FE62
50 PCR = &FE6C:Time = &70
60 PROCAssemble: ?DIR-&F0
70 MODE 7:VDU 23.1.0;0:010:
80 ?PCR = (?PCR AND &1F) OR &E0
90 REPEAT:CALL ReadTime
100 Secs%=FNInput(2)+FNInput(3)*10
110 Mins%=FNInput(4)+FNInput(5)*10
120 Hours%=FNInput(6)+FNInput(7)*10
130 Day%=FNInput(8)+FNInput(9)*10
140 DoW%=FNInput(10)
150 Month%=FNInput(11)+FNInput(12)
160 IF DoW%=1 Day$=" Mon"
170 IF DoW%=2 Day$=" Tues"
180 IF DoW%=3 Day$=" Wednes"
190 IF DoW%=4 Day$=" Thurs"
200 IF DoW%=5 Day$=" Fri"
210 IF DoW%=6 Day$=" Sat"
220 IF DoW%=7 Day$=" Sun"
230 PRINTTAB(7,9)Day$:"day ";Day%:
240 PRINT "/ ";Month$: "1985 
250 FOR I = 12 TO 13:PRINTTAB(13,I):
260 PRINT CHR$141:Hours%:" ":"Mins%:
270 PRINT ": ":Secs%: "NEXT I
280 UNTIL FALSE
290 VDU 23.1.1:0:0:0:PRINTTAB(0,15)
300 ?PCR = (?PCR AND &1F) OR &EO:END
310 DEFFNInput(Reg%) = (?Time + Reg%)
320 DEF PROCAssemble
330 FOR opt% = 0 TO 3 STEP 3:OPT = MC% 
340 [OPT opt%]
350 .ReadTime LDA #2:STA Time
360 .NextReg LDA Time:ASL A
370 ASL A:ASL A:STA InOut
380 LDA #12:AND PCR:SEI:STA PCR
390 LDX InOut:ORA #820:STA PCR:CLI
400 TXA:AND #OF:CMP #OF
410 BEQ ReadTime:LDX STA Time,X
420 LDA #12:CMP Time:BEQ Done
430 INC Time:JMP NextReg
440 .Done RTS
450 ]NEXT opt%:ENDPROC
```

Fig. 1. Analogue port connector
This month Book Corner takes a brief look at two books, one old and one new. The first is the Advanced User Guide, by Bray, Dickens and Holmes, published by the Cambridge Microcomputer Centre at £12.95. This book is described as an essential companion for the User Guide, so much so that it even resembles the original in size and presentation. The book covers the MOS in great detail, and is perhaps best described as an advanced user's guide to the MOS. The AUG is available either spiral bound (like the standard User Guide) or in a hard folder. A matching folder is also available separately for the User Guide.

The AUG starts with a 10-page re-run of the operating system commands (the * commands). This is not really new, but it does provide a useful reference section. The next section of 4 chapters covers assembly language programming. This comprises a 20-page introduction to the subject (not quite enough if you really are new to the subject), followed by 60 pages detailing the assembler mnemonics. The third section covers the operating system interfaces, and provides a wealth of invaluable detailed information covering the full set of FX calls, the use of memory, vectors, interrupts and the paged ROM system; beware, the latter may cause your head to ache! The remaining filing systems, however, receive only a cursory examination. The final section is concerned with the hardware, and provides detailed coverage of the various interfaces. As before, coverage of the optional filing system interfaces is rather limited. Finally, there are a number of useful appendices. These include summaries of the various calls (VDU, FX, OSBYTE and PLOT), a description of the p.e.b. links, and step-by-step disc upgrade instructions. Very useful at this point is that the manual also includes a full circuit diagram for the micro.

Verdict: Highly recommended.

The second book really picks up one of the areas covered by the AUG; the sideways ROM filing system. The discussion in the AUG is complete, but may leave you feeling that a gentler introduction might restore your battered ego! If this is the case, then The BBC Micro ROM Book, by Bruce Smith, published by Collins at £9.95, is an excellent remedy.

The book is written in a pleasantly readable style, and is well illustrated with software examples and screen illustrations. The sideways ROM paging system is explained in a detailed and logical manner. The method of writing your own ROM software is built up a step at a time. As with all subjects of this type, practical examples of other people's work is always the easiest way to learn, and this book makes profuse and effective use of extracts from commercial ROMs to get its points across.

The first 9 chapters cover the various stages in writing your own ROM-based software. There is then a chapter on the merits of the various add-on ROM/RAM systems. This is followed by a design (software and hardware) for an EPROM programmer. The next two chapters look at a selection of BASIC toolkit ROMs, and other language ROMs, respectively. Finally, there is a section on the BASIC II ROM. If you do not own an MEP bar code reader, this is effectively where the book stops, because what remains is 70 pages of bar code listings of the longer programs in the book. If you have a suitable reader, this will save your fingers, but if not the listing will provide encouragement to investigate this concept further (a contact address is provided).

Verdict: A good book, long overdue.

NEXT MONTH: BBC Micro Forum will be looking at the analogue port in greater detail.

Softlife

LOGIC ANALYSER

Used with the BBC Micro and Disc Drive for test and repair, development, education etc, etc, etc.

- 8 NHz 8 channel
- Selectable trigger and trigger position
- Diagnostic capabilities
- TTL or CMOSS inputs
- Complete with operating software probes and comprehensive documentation
- High-quality equipment with full specification at under £300.00

For technical information contact:
Alastair France B.A.
Softlife Ltd 7 Rose Crescent
Cambridge CB2 3LL Tel: (0223) 62117

REKKIE ROBOTS

'RUR' HOBBY ROBOT

DESIGNER APPROVED KITS AVAILABLE FROM

| BASIC KIT | £249 plus 15% VAT |
| ADD-ON ARM & ELEVATED TRAY | £290 plus 15% VAT |

CARRIAGE EXTRA Please write for a quotation

OFFICIAL ORDERS accepted from approved industrial or educational establishments, otherwise terms strictly CASH WITH ORDER

REEKIE ROBOTS

Beaufort Works, Beaufort Road, Richmond Road,
East Twickenham, Middlesex, TW1 2PQ.

Please allow 28 days for delivery

Practical Electronics July 1985
THE Russians might soon be enjoying the latest in British micro-technology. **Cybernetic Applications of Andover**, one of the leading innovators in small robot arms, has appointed an agent for the USSR. Richard Becker, managing director, said that he had not had any orders yet but was looking forward to the day when Nettunus and Mentors would be heading behind the Iron Curtain.

The move is part of the growing appreciation of British innovation in personal robotics all over the world. Becker himself has sold his machines, which cost from £500 to £2,800, to the major markets in America and Germany as well as Australia and Norway.

But he is not holding his breath waiting for a red order. He is busy adding more robots to his range. The latest, named the Serpent and costing around £1,700, was launched at Automan in May.

It is a scara robot which Becker describes as like a normal arm but working on its side, hence the name of Serpent. It has four axes plus a gripper, can lift 1kg and has a claimed accuracy of 1mm.

It is powered by DC motors with potentiometers providing the feedback. Most of the popular micros, BBC B, CB4 and Spectrum, can control it and software is being developed for these machines.

. . . Commander X “a hero figure” . . .

The robot market consists of three fairly distinct sections—toys, hobbyist and educational. Many products however break down those classifications and the latest of these is the robotics kits from Milton Bradley.

MB, an American company, is already well known in Britain for its Big Trak robot truck. The company has decided to introduce a product which is a little more complicated with kits that can be used to build a variety of devices.

Unlike the Fischertechnik kit, which has been on sale for some time and is intended as a tool for learning robotics, the imaginatively-named Robotix series is biased towards the toy market.

There are three main kits available, which can be used to build Commander X, "a hero figure" with a 12 page explanatory booklet, a Space Technician or Dr Steel "with removable helmet".

Imagination and two kits of extras will allow the more serious roboter to escape from having to play with dolls.

The essential elements are hinge torque, bi-directional motors and power droids which control the motors, a five-channel control console and any number of plastic components. The control console is available only with the most expensive kit.

One accessory kit contains a motor and power droid, the other more plastic parts. One of the kits has been on sale in Harrods since before Christmas. The top people’s shop was so impressed that it imported them specially.

For the rest of us the kits will cost between £20 and £80.

Remaining in the serious toy market, the Movit range is expanding. Commotion has taken over the distribution and another five models have been added to the original five already on sale in Britain.

At £16.95, Peppy 3 is a three-wheeled model which is sound activated, and Medusa 3 is a tripod which moves in response to the voice and costs £19.95. Avoider costs £29.95 and has an infra-red obstacle sensor and for the same price Navius is a programmable mobile. It is controlled by a card which is coloured to give the required instructions.

Top of the range is the Wizard. It costs about £75 and can be controlled from a Commodore 64.

As with the earlier Movits the new range comes in kit form, which is said to be simple to put together. Only a screwdriver and nimble fingers are required.

Commotion is also launching a Commodore version of the highly-successful Snap vision system. Until now the system has only been available for the BBC B at a cost of about £120.

The available software allows the system to capture images, freeze and print them, store and replay a series of images and build-up a grey-scale picture. It can also recognise non-overlapping objects.

. . . simple mobile robots or “beer-can buggies” . . .

For the inquisitive who prefer to learn about robotics under skilled tutors rather than play around with kits there is an event being held for the first time at the beginning of July.

In association with the First European Personal Robotics Conference and Exhibition there will be a series of workshops. Details were being worked out as we went to press but it was intended that a wide range of practical assistance would be available including the use of control languages like Logo and the building of simple mobile robots or “beer-can buggies”.

There are also plans to hold the first public competition in the Robat contest. That is the latest challenge issued by John Billingsley, the man behind the Micromouse contests.

Robat is a form of robot table tennis. It was first announced more than a year ago since when interest has been high on both sides of the Atlantic and enthusiasts have been working hard to produce a workable device.

A workshop was held earlier this year for the swapping of ideas and it is hoped that some good solutions will be on display.

. . . 70 entries in the Robot Butler section . . .

Another contest that is reaching its climax is BP Oll’s Build-a-Robot, part of the company’s Challenge for Youth. There have been 70 entries in the Robot Butler section and 50 in the freestyle group for any domestic task.

About ten regional finals will be held throughout this month (July) with the finals on October 28 at the Army School of Electronic Engineering at Arborfield, Berkshire. All the regional winners, as well as other good entries, will compete for the first prize of £1,000 in the finals. There is total prize money of £3,000.

The Butler, working in an enclosed area, will have to offer drinks to two people, asking them what they want from a list and serve it to them. The freestyle section can be for moving or stationary devices but they must be able to carry out some domestic task such as cutting the lawn or vacuum cleaning a carpet.

Ian Hekethly, BP Oll’s community affairs manager, said: “This time the challenge is more ambitious but we are sure that today’s youngsters are equal to it.”

The company held its first robot competition in 1983 when 400 schools throughout the country expressed interest and 20 entries reached the finals which were also held at Arborfield.

Robotics projects and features published in PE have generated so much reader interest that we are pleased to bring you a regular monthly update on news and developments in this field.

If your company produces items which might be of reader interest please let us know.
ONE of the problems with using voltmeters in confined spaces is the lack of spare hands to support the meter, hold the probes in the correct position and concentrate on reading the scale—all at the same time. This project provides a reliable yet simple solution to the problem in the form of a memory adaptor.

This compact unit can be used in conjunction with any analogue or digital multimeter to provide voltage readings up to about 24 volts, and with some additions could be extended to any voltage. This makes it particularly suited to working under car bonnets or testing equipment where a 'slipped probe' could mean disaster.

![fig1](image1.png)

Fig. 1. Block diagram of the Voltmeter Memory Adaptor

CIRCUIT OPERATION

From the block diagram (Fig. 1), it can be seen that the set-up is quite simple. The voltmeter is connected between the output and the non-inverting input of a high gain d.c. amplifier; and the test leads between the output and the inverting input. Also the inverting input is tied to the output via a capacitor, Cx. When a voltage is applied to the test leads, the amplifier will develop a voltage (V out) across the meter.

\[V_{out} = V_{in} \times (1 - 1/G) \]

(where G = gain)

Since the gain is very high, 1/G is negligible, so we can assume that \(V_{out} = V_{in} \).

When the test leads are removed, the input voltage will be held on the capacitor, which provides strong differentiating negative feedback which will resist any change in the output voltage. This causes the output voltage to remain stable for about one minute after the probes have been removed—plenty of time to surface from the depths of the car electrics to check the reading.

![fig2](image2.png)

Fig. 2. Full circuit diagram of the Voltmeter Memory Adaptor

CONSTRUCTION

Most of the discrete components are mounted on a small p.c.b. and normal care should be taken when soldering to avoid component damage or short circuits. The order of mounting the components is not critical as there is ample space and no hidden difficulties.

For the prototype a small case measuring 120 x 65 x 40mm was used to house all the components, batteries and the p.c.b. There is little space to spare so great care must be taken when mounting the switch, sockets and the battery as
Slight misjudgements could cause a problem. The 9V batteries were held in place by suitably adapted P-clips which proved to be satisfactory and the AA size battery was held in place by a purpose made holder.

As can be seen from the wiring diagram and the photographs, wiring was very easy, the wires held in form by small cable clips. The meter cable is taken from the back of the unit via a grommeted hole and the input test leads are fitted into 4mm test sockets mounted on top, together with an l.e.d. to provide power-on indication.

Components

<table>
<thead>
<tr>
<th>Resistors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R6</td>
<td>1M (2 off)</td>
</tr>
<tr>
<td>R2</td>
<td>10M</td>
</tr>
<tr>
<td>R3</td>
<td>20M</td>
</tr>
<tr>
<td>R4</td>
<td>300k</td>
</tr>
<tr>
<td>R5</td>
<td>1M2</td>
</tr>
<tr>
<td>R7</td>
<td>2k7</td>
</tr>
<tr>
<td>All resistors</td>
<td>⅛W 5% carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>470n encapsulated radial</td>
</tr>
<tr>
<td>C2</td>
<td>47n encapsulated radial</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.2" red l.e.d.</td>
</tr>
<tr>
<td>TR1, TR3–TR5</td>
<td>2N3393 (4 off)</td>
</tr>
<tr>
<td>TR2</td>
<td>2N4126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PL1, PL2 4mm test sockets (2 off)</td>
<td></td>
</tr>
<tr>
<td>SK1, SK2 4mm test plugs</td>
<td></td>
</tr>
<tr>
<td>P.c.b. PE 506–01</td>
<td></td>
</tr>
<tr>
<td>Batteries and holders</td>
<td></td>
</tr>
<tr>
<td>Test leads</td>
<td></td>
</tr>
<tr>
<td>P-clips</td>
<td></td>
</tr>
<tr>
<td>Wire, solder, etc.</td>
<td></td>
</tr>
</tbody>
</table>

Constructor's Note

If alternative transistors are used for TR1–TR5, any general purpose types will do providing that they have low leakage characteristics.

Expansion

As was mentioned earlier the unit can be adapted to measure much greater voltages. There are, however, a few points which must be taken into consideration.

One of the main problems is the availability of a suitable power supply with sufficient voltage output. Because the unit is designed to be easy to use and portable, it is unlikely that you will find suitable batteries. Also the transistors used must be capable of withstanding higher operating voltages.

Fig. 4. Pin connections of TR1–TR5

Photo illustrating the internal view of the Voltmeter Memory Adaptor
STARBURSTS

It cannot yet be said that we have a complete picture of the evolution of a star, but at least we are on much firmer ground than we used to be only a few years ago. There is no doubt that a star begins its career by condensing out of interstellar gas and dust: in fact, out of the material in a nebula. The Orion Nebula, M.42 is a typical stellar birthplace, and we have even caught stars in the act of blowing away their enveloping cocoons.

Our Galaxy is a spiral system, containing about 100,000 million stars; it is of the order of 100,000 light-years in diameter, and the Sun lies about 30,000 light-years from the galactic centre (the exact value is still a matter for debate). It is thought that "pressure waves" rotate around the nucleus and stars form inside these pressure waves.

The most massive stars, which run through their evolutionary cycles quickest, pass through their main sequence and giant stages, and many explode as supernovae; while they are obtrusive we see a spiral arm. This means that no spiral arm is a permanent feature.

Not all galaxies are alike, and by no means all are spiral. Recently there has been a great deal of interest in a strange system known as Arp 220. It lies in the constellation of Serpens Caput (now high in the evening sky) and is only of the 14th magnitude.

Originally it was thought to be either composed of two galaxies in collision, or else an unusual galaxy with a double nucleus. It is exceptionally powerful in the infra-red, and was, of course, carefully surveyed by the very successful IRAS satellite, launched in January 1983 and which continued to operate for most of the rest of that year. It has been calculated that Arp 220 emits about fifty times as much energy at infra-red wavelengths as our Galaxy does at the whole range of wavelengths!

FALSE IMPRESSIONS

Earth-based researches carried out mainly at the Whipple Observatory on Mount Hopkins, in Arizona, by R. Burg and R. E. Schild seem to show that these early interpretations were wrong. It is more likely that Arp 220 is simply a single galaxy crossed by an obscuring dust-line, giving the false impression of a double nucleus.

It is, however, a member of a pair of galaxies, the other being IC 4554, and there may well be tidal interactions between them. Moreover, observations carried out with the 1000-foot Arecibo radio telescope indicate that Arp 220 is an intense source of hydroxyl (OH) maser emission.

Bearing in mind that the distance of Arp 220 is of the order of 300,000,000 light years, it is hardly surprising that we cannot observe it in detail, but there are grounds for believing that it is one of those systems which are becoming known as "starburst" galaxies. In other words, the intense emission and the very high luminosity indicate exceptionally energetic star-formation is going on there.

According to the IRAS data, the main infra-red source is comparatively small (less than half a minute of arc in diameter as seen from Earth). Obviously it is tempting to infer the presence of a super-massive Black Hole. This is by no means out of the question; it may well be that active galaxies do have central Black Holes—notably the Seyferts, which have relatively condensed nuclei and only weak spiral arms. On the other hand, we must be cautious. Some astronomers regard Black Holes in the same light as some politicians regard North Sea oil: as remedies for everything!

Another starburst galaxy is M.82, in Ursa Major (the Great Bear), which is the smaller, irregular companion of the more conspicuous M.81. (Both are visible in small telescopes, and I can glimpse M.81 with good binoculars, though M.82 has eluded me unless I use a telescope; keen-eyed observers may do better.)

M.82 was formerly believed to show indications of a cataclysmic internal outburst. This is not now thought to be correct, and that tidal interactions with M.81 are responsible for its characteristics, but this does not mean that there is no starburst phenomenon; there probably is.

Material from M.81 streams down on to the nucleus of M.82, and shock-waves produced by the compression trigger off starbursts. But though M.82 is a strong infra-red and radio-wafer emitter, it is by no means as powerful as Arp 220, and it is also very much closer to us—only about 8,500,000 light-years, not so very far beyond the boundary of our Local Group.

The idea of starbursts is relatively new, but it is of great importance. IRAS is dead, and we must wait for some years for the launch of its successor, planned for the early 1990s; meantime the IRAS data is still being analyzed, and ground-based infra-red work is being carried out at many observatories, including that on the top of Mauna Kea at an altitude of some 14,000 feet above sea-level.

THE SKY THIS MONTH

The June nights are obviously the worst for star-gazing, as the hours of darkness are short, and when the Moon is obtrusive there is no proper darkness at all. This month the Moon is full on 3 June, and new on 18 June; the next full moon is on 2 July, so that only the middle part of the month will be suitable to see the stars in their full glory.

Of the planets, Venus continues to be visible as a brilliant morning object in the eastern sky; it reaches its greatest western elongation from the Sun (46 degrees) on 12 June. Jupiter is also brilliant, in the south-east in the morning, but it is so far south of the celestial equator that British observers will have problems when trying to chart telescopic detail. Saturn, in Libra, is also in the southern hemisphere, while Mercury and Mars are too close to the Sun in the sky to be seen at all.

The night sky—when dark—is dominated by the three brilliant stars Vega, Altair and Deneb, which make up a large triangle—about a quarter of a century ago, in a Sky at Night programme, I nicknamed this the "Summer Triangle", and everyone now seems to use the term, though it is completely unofficial, and the three stars are in different constellations; Vega is the leader of Lyra (the Lyre), Deneb of Cygnus (the Swan) and Altair of Aquila (the Eagle).

If the three, Deneb appears much the faintest but, as so often in astronomy, appearances are deceptive. Deneb is a true cosmic searchlight, at least 60,000 times as luminous as the Sun, and is so remote that we are now seeing it as it used to be in the time of the Roman Occupation, whereas Altair is a mere 10 times as powerful as the Sun, and is less than 17 light-years away. Of the first-magnitude stars, only Sirius, Procyon and Alpha Centauri are closer to us than Altair.

The brilliant orange Arcturus, in Boötes (the Herdsman) is high in the north-west, while the Square of Pegasus is just starting to come into view in the east in the early hours of the morning. This is the best time of the year to look for the Scorpion, led by the red super giant Antares, and the star-clouds of Sagittarius, the Archer. Both may be seen low in the south after dark. It is a pity that they are always so low for us in the Northern Hemisphere, but from North Scotland they barely rise at all; the Sagittarius star-clouds indicate the direction of the centre of the Galaxy, which we cannot see directly because of interstellar dust.

If you have a telescope, look at the globular cluster M.13, in Hercules, which is now very high up. It is just visible with the naked eye in good weather (from North Britain far better and Italy and Greece are far too south to be seen from anywhere in Europe.

30 Practical Electronics July 1985
Ap 220 and other systems of the same kind have presented us with many problems, but there is no reason to doubt that within a few decades from now we will have found out just what is really happening inside them.

IN BRIEF

Uranus, the planet discovered by William Herschel in 1781, is very much in the news. (It comes to opposition, this month, on 6 June, when it will be 2,703,000,000 km from the Earth, and of magnitude 5.8, so that it is just visible with the naked eye; it lies in the rather barren constellation of Ophiuchus.) Voyager 2 is now on its way there, and will rendezvous with Uranus next January. Pictures of the planet have already been obtained, and are superior to any Earth-based photographs, though as yet they do not show much detail.

The rings of Uranus were discovered in 1977, as a result of observations of the occultation of a star; both before and after occultation the star "winked", and the existence of the rings was subsequently confirmed visually by infra-red and then by CCD Charge Coupled techniques. On 25 June there may be an occultation of a 9th-magnitude star, SAO 184819, by the rings though not by the planet itself.

The predicted time of closest approach is 21.45 GMT. Energetic efforts will be made to observe the phenomenon, particularly to look for any unknown satellites, but sophisticated equipment will be needed to obtain any worthwhile results.

Meanwhile, occultation techniques have led to the suspicion of a ring round Neptune. I had forecast that there would be no Neptunian ring system, as the existence of a large satellite (Triton) moving in a retrograde orbit; if these observations are confirmed, I will have to eat my words!

On a sad note, we must record the death of William Hoyt of the Lowell Observatory. He was one of astronomy's leading historians, and published two major books, one dealing with Mars and the other with Planets X and Pluto.

ICL Termiprinter, 300 baud, RS232 interface, with keyboard. £90. Buyer to collect. Mr. S. Morgan, 17 Willenhall Road, Bilston. Tel: 0902 402416.

FOR SALE Dartronics Model 510 oscilloscope/single trace. Perfect working order. £70. I. M. Herculou, "Rokoba", Carcach Avenue, Lenzie, Glasgow, G64 4HT. Tel: 041 776 3130.

PV DEC. 75 disco stereo amp pre amp power supply. 100W each channel. Offers plus postage, L. T. Hill, 14 Rothesay Terrace, Bedlington, Northumberland.

I WILL SWAP 2732 Eeproms for Victorian or Edwardian British stamps. One 2732 for five stamps. Mr. Andrew Wylie, 56 Eue Lionard, 1202 Geneva, Switzerland.

WANTED to borrow or buy handbook for tele- equipment oscilloscope Type D56. N. Roche, Knills Cottage, Instown Town, Bideford EX39 4L0. Tel: 0271 666737.

SIGNAL GENERATOR for TV Pye 940225 40-70Mhz piston attenuator, metered £22.90. Tel: 0424 221638.

SERVICE MANUALS Freedom Flexorithe terminal type 32.33.35 Vol 1 & 2 paper tape punch B.P.E. spare lists, Elliot TRM 250 type reader. Offers. L. T. Cowell, 69 Crewe Road, Hastings, COW 1X0. Tel: Crewe 581157.

MAPLIN 8-digit frequency counter, 10Hz-600MHz mains or 12V d.c. Fully working. £58 o.n.o G. S. Fox, 27 Windermere Road, Handsworth Wood, Birmingham Tel: 021 523 7240.

CELESTION speaker wanted (3.5*x 7*) elliptical, ridged knes, radiating from centre of diaphragm. Contact Mark—Tel: Medway (0634) 30822.

UK101, Wernon, cases available if required. £60. Mr. P. Richardson, 30 Whitehouse Avenue, Great Preston, Leeds 28. Tel: Leeds (0532) 871291.

PE July 80-May 85. EE May 79—April 85. Plus 24 other magazines. Offers. Whole or part. SAE to: Mr. A. P. Clark, 12 Cricket Lane, Liffield, Staffs. D73 1ER.

TELETEXT adaptor Avr model T11. Converts any television-to-teletext and remote control. £70. Mr. J. B. Rudge, 138 Mendip Road, Halesowen, W. Midlands B63 1JH. Tel: 021 550 1273.

WANTED software/hardware manual EG2330 or technical information in any form for colour Genie EG2000. Muneer A. Khan, BS 180 Bangal Road, Sardarwala, Pakistan.

WANTED audio timer or control unit, Exchange with speed reading course or cash. S. Leadle, 1 Church Close, Ormeley, Middlesbrough, Cleveland TS7 9AN. Tel: 0642 322124.

TEKTRONIX oscilloscope 502 with factory manual. Good condition. A comprehensive low frequency scope £60 o.n.o Mr. A. Bouskill, 129 Lymington Road, Sheffield S6 1HY. Tel: 0742 311191.

ADVICE needed on equipment required for recording 78 RPM acoustic records to acceptable quality for tapes. C. W. Burnett, 6 Meadhurst Road, Chertsey, Surrey. Tel: 0392 62417.

CLEARING OUT 1000 components for only £2. Plus £1 postage and packing. Paul Birt, 44 Mathie Crescent, Gourock, Renfrewshire, Scotland PA19 1YX.

DISC DRIVES $10 Shugart SA400 £80 each, £140 pair. Controller FD1771 £12. Radar modules CL8860 £20. K. Termie, 6 Parkland Avenue, Oadby, Leicester. Tel: 0533 717516.

FREE! READERS' ADVERTISEMENT SERVICE

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Ad. must be accompanied by a cut-out valid "date corner"—see page 43. Ads. will not appear (or be returned) if these rules are broken.

STUDENT requires scope for experimental work. Donation would be appreciated but can afford up to £30. S. Laws, 68 Nunney Street, Castle Heibingham, Halstead, Essex (0787) 61837.

SOFTY Eprom programmer/emulator, £100 post paid. Mr. D. H. Slater, 16 Blenheim Terrace, Frodsham, Cheshire. Tel: 0235 86244.

ROBOTICS, Genesis P1016 axis robot arm & processor, £500. Equipment worth £1000+ built, tested and working. Mr. T. Smith, 79 Ford Lane, Tricketts Cross, Fenord. Dorset BH22 8BG. Tel: Bournemouth 856259.

PE Nov. 1964 to Jan. 1974, ø/ly three missing, most in binders, any offers? Mr. A. E. Bourne, 27 Nightingdale Drive, Epsom, Surrey KT19 9RN.

2764 Eproms £2.50. ITT Cannon RC rack and panel plugs and sockets, 16 pin. £2.50 per set. N. E. Spier, 114 Grenway, Tunbridge Wells. Tel: 0397 34070.

FOR SALE Solartron Solar Scope dual beamvx army 64 valves, very heavy, needs three valves £80. John Horton, 149 Mill Road, Deal, Kent CT14 9BB.

PHILIPS 1700 video tapes wanted. Tel: 034 61376 evenings.

CASIO FX-720P pocket: computer, mini printer with charger and cassette interface. As new, £40. No splits. Chris Warwick, 8 Hartfield Road, Chessington, Surrey KT9 2PW. Tel: 01-397 9878.

PE Gemini stereo power amplifier with Sugden CS1 pre-amp high quality sound, £50. Brentwood (0277) 219639.

SECURITY pressure mats, large £3.50 each + £5p post; also 9V d.c. buzzers, high output, 90p each + 20p post; all n/w. Mr. P. C. Bellamy, 137 Garland Road, Redhill, Surrey RH1 6NY.

ATARI 400 computer £40. Jim Fulton, Derry, Dromore. Co. Tyrone BT78 3BE.

200 assorted components for £10. 500 assorted semi-conductors for £4.00. S. Burton, 202 Southbourne Road, Eastbourne, EN22 8RG. Tel: 0323 641036.

Practical Electronics July 1985
THE REGULATIONS

The regulations which relate to modems exist for two broad categories of reasons. The first is to ensure the safety of both the modem user and other BT users, and the second is to ensure technical compatibility with the telephone system, both national and international. The principal requirements which must be satisfied by modems are described in a series of British Standards, of which the principle ones are listed in Table 1.

Since 1983, the responsibility for approving modems for connection to the BT network (and awarding that essential green approval sticker) has been with the British Approvals Board For Telecommunications (BABT). (The board’s address is included in Table 1.) The original intention behind the transfer of approval authority from BT to BABT was to speed up the approval of telecommunications equipment, following the relaxation of the BT monopoly under the 1981 legislation. Unfortunately, the move has not greatly reduced the time, bureaucracy or cost of gaining approval for a modem.

The 1983 scale of fees, for example, indicates that to gain approval for a modem will cost around £2,800 in fees alone. If you think that is a bit steep, it costs £1,238 just to gain approval for a type 601A jack plug! However, although in true British fashion the mechanics of the process may arguably leave room for improvement, the underlying reasons for the approval regulations remain extremely sound. In the USA, for example, the FCC have similar approvals procedures, but they do seem to be able to carry them out rather more rapidly.

SAFETY

The safety considerations applied to modems are intended to safeguard users, BT’s staff and its equipment. The requirements for safety are contained in BS6301, and BABT require to be satisfied that this standard has been met before approval can be given. The standard relates to the protection from hazards arising from the modem, and to protection of the user from the line potential.

This is all very well, but it may leave you wondering what is dangerous about a telephone line? A standard BT line operates on a nominal 50V d.c., rising to around 75V a.c. when ringing current is being transmitted. The line current is limited at the exchange to a maximum of around 120mA. Although not lethal to a healthy adult, the line potential is enough to give a shock, and could have more serious effect on young children or anyone not enjoying full health. It is important, therefore, that the design of a modem should protect the user from exposure to the line potential.

In addition, BT is rightly concerned for the safety of both its staff and its other customers. To ensure continuity of service, BT also needs safeguards against the possibility of damage to its network equipment. Of particular concern in this area is the possibility of mains voltages being accidentally connected to the BT network. Clearly, the advent of the new-style BT plugs and sockets as standard fittings for all new installations serves to heighten concern over safety since user equipment is now normally connected directly to the network.

TECHNICAL COMPATIBILITY

In order not to upset the efficient working of both the BT network and the international networks, it is necessary that a modem is compatible with the telephone system. The regulations in this area serve to prevent undesirable effects on the network’s normal operation being caused by a modem. There are various frequency bands where signals are not permitted because of the possible effects on BT’s signaling equipment. The requirement (described in BS6305) concerning transmitted spectra is illustrated in Fig. 1. This shows that the bandwidth available for data transmission is quite small, and hence the design of modem filters is an exacting task. Other technical requirements which must be satisfied are detailed in BS6305.

DESIGNING A MODEM

The British Standards and the various signal standards (Bell, CCITT, etc.) give a starting point for designing a modem by specifying some of the requirements that must be satisfied. The remainder of this article looks at three different ways of approaching the modem design problem. This brief survey does
MODEM APPROVAL

Addresses
BABT, Enquiry Section,
Mark House, British Standards Institution,
9/11 Queen's Road, Linford Wood,
Hersham, Milton Keynes,
Walton-on-Thames, MK14 6LE.
Surrey, KT12 5NA.

British Standards
BS6301 Safety requirements for apparatus for connection to British Telecommunications networks.
BS6305 General requirements for connection to the British Telecommunications public switched telephone network.
BS6320 Modems for connection to the British Telecommunications public switched telephone network.

Approvals
The following standards have been approved by the Secretary of State:
82/001S Plugs suitable for connecting subscriber's apparatus to BT networks.
82/002S General safety requirements for apparatus for connection to the BT networks.
82/003S General requirements for connection to the PSTN run by BT.
82/004S Simple extension telephones for connection to a single exchange line of the BT PSTN.
82/005S Data modems and associated call set-up equipment for connection to the BT PSTN.

Table 1. Gaining approval for a modem

Table 2. Functions of modem elements

MODEM FUNCTIONS

Transmitter
Translator Converts from the RS232 levels to the logic levels used within the modem, usually TTL-compatible.
Modulator The FSK modulator is a voltage controlled oscillator whose output frequency depends on the data level to be sent (logic 0 or 1). Different frequency pairs need to be produced for different speeds, standards and modes.
Filter The transmit filter must prevent unwanted frequencies from being passed to the telephone line. This is particularly required to suppress any harmonics of the transmit signal which may be produced by the VCO.
Amplifier This matches the transmit signal to the level required by the line interface.

Receiver
Amplifier This boosts the a.c. signal from the line to the necessary level for the receiver circuits.
Filter This is a critical stage in determining the performance of the modem. The filter must remove any extraneous signals, and have a sharp roll-off characteristic to exclude the locally generated transmit frequencies. It must also have good phase characteristics to avoid corrupting the received pulses.
Limiter The limiter provides the following stages with a symmetrical square wave from a sine wave.
Demodulator The FSK demodulator is a combination of a PLL and comparator. The comparator output represents the direction of the frequency difference between the carrier and the received signal.
Detector The carrier detector indicates whether an in-band carrier has been detected.
Translator These convert from the logic levels produced by the receiver to the RS232 levels.
ways in which these basic elements may be realised in practice.

For today's modem user, the prospect of building a modem totally from discrete components is best regarded as an academic exercise. To meet the exacting demands imposed by the various standards, this represents a cumbersome and expensive approach. Modern designs are all based on integrated circuit technology of one sort or another, and our study therefore concentrates on this area. Anyone interested in the 'traditional' methods may be interested to note that the cheapest such modem in 1980 cost around £1,500. Not surprisingly, modems were then almost exclusively the province of professional and commercial users!

Technology has now advanced to the point where operational amplifiers are 3-terminal devices, and are used in much the same way as the robust transistors of the late '60s and '70s. Gone, for the majority of applications at least, are the compensating networks and offset null arrangements of yester-year. Anything which once required large numbers of discrete transistors can now be accomplished by a small handful of operational amplifiers, often at a substantially lower cost.

The filters used in modems are now almost invariably of the active type, based on operational amplifiers as their active elements. Similarly, many of the discrete circuit configurations have now been incorporated into integrated circuits, including some specially designed for digital data communications applications. The factor which tends to separate the various design approaches now tends to be the scale of integration, i.e. the number of different functions which are included on a single chip.

SMALL SCALE INTEGRATION

The receiver in a basic SSI modem is usually based on an i.c. phase-locked loop (PLL) device. The input to the receiver is derived from the telephone line interface, via an amplifier and bandpass filter. The PLL itself operates by detecting frequency shifts away from the nominal carrier frequency. The digital data is then recovered from the received signal via the phase comparator, which measures the difference between the input signal and the locally-generated carrier. A typical device used for the heart of a PLL receiver of this type is shown in Fig. 3.

MEDIUM SCALE INTEGRATION

Moving on from small scale integration, the next level of integration provides all of the basic signal processing on a single chip. An example of this approach is provided by the MC14412, which is available from Motorola and a number of other manufacturers. In this device the basic FSK modulator and demodulator stages are all included on chip, along with pin-programmable frequency bands for the standard Bell and CCITT standards.

Baud rates of 300 or 600 are selected by a single control line. The type (US or CCITT) and mode (answer or originate) are also selected by two more control lines. The modulator encodes the binary data from the computer into two discrete frequencies. The pair of frequencies generated are determined by the standard (USA or CCITT), the data rate, and the mode selected. The demodulator performs the logically opposite functions, and decodes the received pair of frequencies into binary data. All of the functions performed are digital, and are controlled by a master crystal clock.

Fig. 5 shows a typical configuration for a modem using the MC14412. Whilst it would be possible to extend this circuit to operate in any of the possible modes, the additional bandpass filters and switching tends to make this rather unattractive in any cost-conscious system. To give an idea of the circuitry involved in the filter stages, Fig. 6 shows a suitable bandpass filter for a 300 baud Bell 103 originate modem. This input filtering is
necessary in order to remove unwanted extraneous signals, and to give the signal detection circuits the best chance of working. The bandpass filter needs to be carefully designed to have a small and constant group delay over the passband; if not, the pulse edges will be smeared in time, and data errors will occur. Also it must allow data to be received at the same time as the modem is transmitting on another pair of frequencies along the same line.

Typically, a 6-pole filter is used in the receiver, but a simpler filter usually suffices for the transmitter. The limiter stage which follows the receiver filter is included to provide the demodulator with TTL/CMOS-compatible signals. The carrier for the
transmitter is a digitally synthesised sine wave. The transmit filter prevents the transmission of unwanted signals.

By comparison with the acoustic coupling arrangement described earlier, a direct connection to the telephone line using a transformer-coupled arrangement is shown in Fig. 7. The most important item to note here is the transformer. This needs to be a 1:1 600Ω isolating type which meets the appropriate specifications (e.g. HED 25819). High voltages (mains in particular) must be prevented from reaching the line, and this is usually effected by the transformer.

Another key feature of the transformer must also be its ability to maintain its signal performance whilst carrying up to 120mA d.c. in the primary (line) winding. Other requirements include a very high proof voltage, good isolation, linearity over a wide signal level range and very low insertion loss. Surprisingly, in view of these stringent requirements, such transformers are actually available at quite reasonable cost.
As we have seen, this scale of integration gives a convenient way of producing a single-mode modem. The same circuit layout is suitable for any of the possible configurations of mode, speed and standard. To change any of these requires only a different set of filter components and control input settings. A dual-mode modem is a reasonably straightforward switching problem, but thereafter things become rather more involved. At this point, the attractions of the simplification offered by the LSI approach begin to predominate over the rather high chip costs.

LARGE SCALE INTEGRATION

With the increasing popularity of modems, it was perhaps inevitable that a custom, all-singing, all-dancing modem chip would arrive on the scene before too long. Not surprisingly, it came from the home of the hacker, the USA. Even when introduced here in 1983 at around £55 in one-off quantities (yes, that was pounds each!), AMD’s Am7910 World-Chip FSK modem caused quite a stir. It requires only a quick look at the specification sheet to see why it was greeted with such enthusiasm.

Fig. 8 shows the schematic for a minimum configuration multi-mode stand-alone modem using the Am7910. The first thing which strikes you in this circuit is the lack of filters and external components; indeed, the lack of external circuitry in general. However, all that is missing is a power supply (±5 volts).

Having looked earlier at the circuitry normally necessary to produce a modem, even using I.C.s, this is clearly a significant advance from the designer’s viewpoint. “How does it work?” seems the next obvious question, and to answer this we really need to look inside the 28-pin package; after all, there is very little else to look at in the circuit!

Starting with a few block diagrams of the I.C. soon gives a clue as to the true nature of this impressive device. Fig. 9 shows the transmitter section, Fig. 10 shows the receiver section, and the remaining section, shown in Fig. 11, is the interface and control section. This last section is responsible for supervising the operation of the TX and RX sections, and it interfaces the control functions to the outside world.

DIGITAL PROCESSING

The Am7910 has eliminated the need for those most difficult of all sections of a modem (particularly for multi-mode types); the analogue filters. It does this by performing all of its signal processing operations digitally, and this is the reason for the ADC and DAC elements in the receiver and transmitter sections, respectively. The ADC samples the audio line signals to 11 bits of precision, and the digitised signals are then manipulated by a digital signal processor. This has 24k of ROM

Continued on page 42
Crofton Electronics are pleased to announce that they are now able to supply a C.C.T.V. camera, complete with a standard lens for the amazing price of £69 inclusive of V.A.T. and carriage. Though not new, each camera has been completely refurbished to a high standard in our own workshops and comes ready to work with any suitable monitor, digitiser, VCR etc. (may also be used with a domestic T.V. set by the addition of a simple modulator - kit available). From an input of 240 volts ac, the cameras give an output of 1 volt peak to peak and are equipped with mounting points for standard tripods. With applications as diverse as education, amateur dramatics and shop/industrial/domestic security systems demand is sure to be high and orders will be dealt with in strict rotation.

DON'T DELAY - PLACE YOUR OFFER TODAY!

Be sure to request our free catalogue describing our range of T.V. cameras, fixed and zoom lenses, sequential switches, special and general monitors (colour and b&w), video digitisers, light pens,eprom erasers etc.

MOST MAJOR CREDIT CARDS ACCEPTED

CROFTON ELECTRONICS 01-891 1923
35 GROSVENOR ROAD, TWICKENHAM, MIDDLESEX TW1 4AD

GRANDATA LTD.
9 & 12 THE BROADWAY, PRESTON ROAD
WEMBLEY, MIDDLESEX, ENGLAND
Telephone: 01-904 2093 & 904 1155/6

Please phone for brochure: 0264 50093.
West Portway Industrial Estate, Andover SP10 3PE.
A private and independent company giving prompt, personal service.
INTERFACING THE BBC MICROCOMPUTER

Author: Brian Bannister and Michael Whitehead
Price: £7.50 limp
Size: 230 x 150mm, 153 pages
Publisher: Macmillan
ISBN: 0-333-37157-7

Got a Bee? Interested in hardware and interfacing? If the answer is yes to both questions then this might be the book for you. It's a bit pricey at £7.50, but it's got lots of useful information about BBC hardware which is not covered in the standard manual.

This book is not intended for the beginner in either electronics or programming, but it does include plenty of background information which should prove useful to budding interfacerers at any level. Also included are a selection of data sheets on some of the most common interfacing chips for the 6500 family.

Chapter One is a general introduction to hardware facilities offered by the BBC Computer, and the following chapters go on to deal with the subjects of: the user port, analogue signal handling and the 1MHz bus, in great detail. The last chapter introduces a few applications using a variety of transducers and input/output methods, with a little bit of electronics thrown in. Appendices include: TTL, machine code, memory map and a summary of connections.

On the whole, I think it is a well organised and clearly illustrated guide to interfacing the BBC micro, and on second thoughts it's not that expensive at £7.50.

R.M.B.

DYNAMIC SEMICONDUCTOR RAM STRUCTURES

Author: A. Cardon and L. J. L. Fransen
Price: £60 Hardcover
Size: 235 x 150mm, 488 pages
Publisher: Pergamon Press
ISBN: 0-08-030578-4

This survey of the evolution of dynamic random-access memory structures (DRAMs) must rank as the definitive text. The authors are examiners at the European Patent Office, The Hague, but they have not confined their review to those patents filed only in Europe—there is extensive analysis of Japanese and U.S. documents as well, and one from the Soviet Union.

The introduction is a wide-ranging but economical survey of the development of single-cell-technology DRAMs, from 1k memories to 256k and 1M chips. The authors expect 1M DRAMs to be in mass production before 1990, using deep UV, X-ray, or electron-beam exposure techniques: the minimum exposable linewidth of a photoreist image has now reached the limit at 1.5 microns.

The technology to produce 1M and larger DRAMs exists, but their production will obviously depend on demand. The market for memory chips is volatile: at the time of writing there is no longer a shortage of 64k chips, for example, but a glut. The experience of the last 20 years, however, seems to indicate that when a faster, more compact, higher-density memory circuit exists, it will find a market. And eventually the device becomes widely available.

The glossary is placed sensibly at the beginning of this monograph, and includes such exotic items as GMICs, MESFETs, HEEs, and LOCOS. At the end, the topic is separately indexed by subject, company, inventor, and patent number.

The survey devotes the initial 43 pages of the main body of the text to the structure and mode of operation of the basic one-transistor MOSFET cell. This invention was first claimed by R. H. Dennard of I.B.M. in 1967, though it was to be a further ten years before mass-storage memory chips became widely available in the U.K. The authors trace the evolution of single-cell structures in chronological order, pointing out the limitations of each proposed improvement, as well as the advantages. The graphs and illustrations are as comprehensive as the text, though the diagrams are neither simple nor simplified.

The following two chapters, which comprise the bulk of this work, detail proposed improvements both to the standard one-transistor cell, and to other basic cells. In every case, the authors are meticulous in their discussion of the implications; they are not offering opinions, but presenting (and clarifying) a portfolio of ideas from the research laboratories of the world.

Soft-error prevention, an increasingly important consideration as chip density increases, is discussed at length, as is non-volatile backup for RAMs. Finally there is an excellent review of alternative technologies for dynamic cells, including bipolar circuits.

The claim that this book is "uniquely authoritative . . . compiled by specialists in the subject disciplines concerned" is fully justified, and it seems destined to become the standard reference for some time to come.

D.A.B.

SERVICING PERSONAL COMPUTERS

Author: Michael Tooley
Price: £17.95 limp
Size: 235 x 165mm
Publisher: Butterworth & Co.
ISBN: 0-408-01802-0

This personal computer market continues to be one of the largest growth areas of this decade and there must be thousands of books available which relate in some way to this subject. Despite this, there seems to be little information available on computer servicing techniques and procedures, which generally means servicing is left to the manufacturers or appointed agents.

This book may go some way towards changing this situation by providing a fairly comprehensive guide to computer and peripheral servicing. It starts with a wealth of background information on computer hardware, numbering systems, software and firmware, which is essential to any engineer or technician not already familiar with these products and concepts. A second chapter gives a useful guide to organising and setting up a servicing workshop, as well as providing a detailed list of the necessary test equipment and their uses.

The nitty-gritty of servicing micro computers is a very difficult subject to deal with, but Michael Tooley has managed to cover this vast and complicated topic precisely and succinctly within one chapter. This chapter is split into several key areas including: fault diagnosis, testing the memory and CPU and a guide to miscellaneous faults. It is all backed up by a number of software diagnostic programs which make up a large part of micro servicing techniques.

The last two chapters go into detail about peripherals such as: cassette and disk drives, monitors and printers. Without this information, no book on micro servicing would be complete.

With all these subjects combined in one book, you have an indispensable reference manual for computer service engineers and technicians. However, for the hobbyist, it might be a little extravagant at £17.95, unless regularly engaged in computer servicing.

R.M.B.
AMSTRAD I/O

This unit incorporates a buzzer so that short circuits can be easily and quickly detected. Diodes and the majority of electrolytic capacitors can also be checked.

TRAIN SIGNAL CONTROL

All model train enthusiasts will want to build this signal controller. The red signal stops a train from entering a zone in which there is already another train. When the line is clear, the signal changes to green and the train can move.

Actually doing it!

Spread out before you are the following items: One magazine constructional article, a selection of small tools, a soldering iron and reel of solder, a p.c.b. and packets of electronic components. What do you do next? If you are a beginner, the answer is simple. Read this new regular column.

EVERYDAY ELECTRONICS and computer PROJECTS

JULY 1985 ISSUE ON SALE FRIDAY, JUNE 21
In fibre-optic cables, the signals are transmitted in the form of energy packets (photons) which have no electrical charge. Consequently, it is physically impossible for high electric fields (lightning, high-voltage, etc.) or large magnetic fields (heavy electrical machinery, transformers, cyclotrons, etc.) to affect the transmission. Although there can be a slight leakage of flux from an optical-fibre, shielding is easily done with an opaque jacket, so signal-bearing fibres cannot interfere with each other or with the most sensitive electric circuits, and the optically-transmitted information is, therefore, secure from external detection.

Jacketed fibre-optic cables can tolerate more mechanical abuse (crush, impact, flexing) than electrical cables of comparable size; moreover, fibre-optic cables have an enormous weight and size advantage for equivalent information capacity. Properly cabled optical-fibres can tolerate any kind of weather and can without ill-effect, be immersed in most fluids, or used in polluted air. The higher the carrier frequency in a communication system, the greater its potential signal bandwidth. Since fibre-optics work with carrier frequencies in the order of 10^{13} to 10^{14} Hz as compared with radio frequencies of 10^4 to 10^8 Hz, signal bandwidths are theoretically 10^9 times greater.

A single fibre is capable of replacing a very large bundle of individual copper wire. For example, a typical telephone cable may contain over 1000 pairs of copper wires and have a cross sectional diameter of 70 to 100mm. A single optical-fibre cable capable of handling the same amount of signal might be only 5mm in diameter. The actual fibre is a great deal smaller. The additional size is the jacket and strength element, and the weight reduction in this example should be obvious. Length for length, optical-fibre exhibits less attenuation than does twisted wire or coaxial cable. Also, the attenuation of optical-fibres unlike that of wire, is not signal frequency dependent.

In many wired systems, the potential hazard of short circuits between wires or from wires to ground, requires special precautionary designs. The dielectric nature of fibre-optics eliminates this requirement and the concern for hazardous sparks occasioning short circuits. Optical-fibre costs are continuing to decline while the cost of wire is increasing. In many applications today, the total system cost for a fibre-optic design is lower than for a comparable wired design. As time passes, more and more systems will be decidedly less expensive using optical-fibres.

EDU-LINK REVIEWED

The EDU-LINK kit is designed to give hands-on experience in the design and assembly of a fibre-optic transmitter and receiver. The package contains two pre-designed p.c.b.s and all the necessary components. The i.e.d. is a Siemens 665nm red emitter with a 5ns rise/fall time whilst the detector is a newly designed photo PIN diode with a 0-2μA/μW responsivity and 1ns rise time.

<table>
<thead>
<tr>
<th>Mode</th>
<th>OSE</th>
<th>TXD</th>
<th>Operation state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>0</td>
<td>L.e.d. off</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>L.e.d. on</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Built-in oscillator enabled</td>
</tr>
<tr>
<td>3</td>
<td>Open</td>
<td>1</td>
<td>Built-in oscillator enabled</td>
</tr>
<tr>
<td>4</td>
<td>Open</td>
<td>0</td>
<td>Data in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key</th>
<th>Operation state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 & 1</td>
<td>TTL logic levels</td>
</tr>
<tr>
<td>X</td>
<td>Doesn't care</td>
</tr>
<tr>
<td>TXD</td>
<td>Transmit data</td>
</tr>
</tbody>
</table>

Table 1. Transmitter truth table

TRANSMITTER

The transmitter contains a built-in oscillator so that link operation can be observed without the need for an external signal source. EDU-LINK is also capable of being driven from an external TTL level signal source, should one be available. The transmitter has four primary modes of operation as described in the transmitter truth table (Table 1). Modes one, two and three are used in the exercise described later. Mode four is the data transmission mode which responds to external signals applied to the TXD input.
The Gates output times to respond to changes in their various time constants in the circuit. The shortest time constant is small time delay (Fig. 2). This delay is provided by R5 and the input pin 2 should track the voltage at TP1 (Test Point) with a capacitance (5pF) of the gate. The longest time constant is about 2 microseconds and is associated with input (pin 2) of IC1a. It is determined by the value of R2 and the input capacitance (5pF) of the gate. The longest time constant is that of the network of R4 and C1 which is 0-3ms.

As you will discover, the relative size of these time constants is necessary for proper operation of the oscillator. For example, input pin 2 should track the voltage at TP1 (Test Point) with a small time delay (Fig. 2). This delay is provided by R5 and the input capacitance of gate IC1a.

When OSE is low, the output of both gates are high, preventing oscillation. In this state the i.e.d., D1, will respond to TTL level signals applied to TXD input. Assume now that OSE is switched to a high state at time=0(0). Due to the input capacitance associated with input of pin 2 of IC1a instantaneous voltage changes cannot occur on input pin 2. With both inputs now high, the output of IC1a goes low. Note that before the change in the state of OSE, one of the inputs of IC1b was low the other high. Such is the case now also, except reversed. Therefore the output of IC1b remains high. With IC1a output low and IC1b output high, the voltage developed across R1, and appearing at TP1 is high at t(+)9), and holds the output of IC1a output low, forcing completion of the charging half cycle of C1. The charging cycle is complete when the voltage at TP1 decays below the threshold value representative of a logic 1 at time t1. At t1, the oscillator changes states, ie IC1b output goes low and the discharge of C1 begins.

When the transmitter is in mode four the i.e.d. is turned on and off in response to TXD logic levels 1 and 0 respectively. Nand gate, IC1c acts as an inverter, which cancels the inverting action of driver transistor TR1. When TXD is driven high the output of IC1 goes low, turning of TR1 and allowing the i.e.d. to be forward biased through R2.

When TXD is driven to a logic low the output of IC1c goes high, turning on and saturating TR1, consequently the i.e.d. is switched off. The advantage of this type of transmitter design is that the power supply drain current remains constant whether the i.e.d. is on or off, reducing supply transient generation. Its disadvantage is its constant power drain.

Referring to the receiver schematic in Fig. 3. IC2a, PIN diode, D2 and R7 form a wide bandwidth current to voltage converter commonly referred to as a transimpedance amplifier (XZA). Its function is to convert the output current of the PIN detector to a voltage for further processing and level detection. The PIN diode can be modelled as a high quality (high resistance and low capacitance) current source, and responds linearly to optical flux incident upon it.

The output voltage of the XZA is also a linear function of the received optical power. Receiver bandwidth and sensitivity is most effectively determined in the first stage of amplification, the XZA, and the effective input time constant determined using the relationship: B=42/2RC, where A is open loop gain, R is the feedback resistor (R1), and C is the input capacitance. The smaller the effective input capacitance for a given bandwidth, the larger R can be, resulting in greater XZA gain (sensitivity) and higher signal-to-noise ratios for a given input flux level.

IC2b of the receiver is a peak signal detector. Its purpose is to hold a sample of the peak signal for reference purposes during extended periods of time between signal peaks. This stored reference signal allows one to sample the incoming signal at its point of minimum distortion, thereby reducing pulse width distortion. In particular, note that the voltage divider of R9 and R10 divides the detected peak signal by two relative to a common reference voltage for presentation to the input of output comparator IC2c. The reference voltage is generated by R11 and R12 which is buffered by IC1d to provide a low impedance source. As a result, incoming optical flux generates a signal current in D2 which is amplified by the XZA and used to drive output comparator IC1c.
CONSTRUCTION AND USAGE

From the photo it can be seen that very few components are needed to construct this interesting kit. The p.c.b.s are of a professional quality and the full kit can be assembled in a reasonably short time. The i.e.d. and the PIN diode fit neatly in their special connectors and only then should they be soldered to the board and finally secured with the screws supplied. Care must be taken when the actual fibre-optic cable is to be terminated as this is the key to optimum optical transmission. A sharp knife should be used to trim the edge to ensure a smooth surface otherwise some loss of transmission is inevitable.

The manual supplied with the kit gives full detailed descriptions accompanied by easy to follow diagrams of how to terminate the fibre-optic cable to the connectors.

Once the kit is completed and working it can be used first with the supplied exercises to give the constructor some hands-on experience of how a fibre-optic link operates. These will include some transmit/receive power calculations, pulse width distortion measurements, and finally how light through the fibre-optic cable can be affected by wrong use of the hardware.

Now that we understand how fibre-optic transmission works, the kit can be used to replace any means of ordinary wire transmission, whether connecting your computer to a remote printer or observing your software coming from your tape recorder. The use of the link is, of course, unlimited and as we can see in the fast growing technical industry the hard wiring is being replaced by fibre-optic alternatives in greater numbers every day.

CONCLUSION

The EDU-LINK is a well designed kit, easy to construct and by using the inclusive exercise sheet, will provide an in-depth understanding of fibre-optic data transmission.

modems

CONTINUED FROM PAGE 36

and 1.3k of RAM allow it to perform digital filtering, modulation and demodulation; even the carrier used for the transmitter is digitally synthesised in this section. Other functions included in the chip are auto-answer and analogue/digital loopback testing.

This approach gives all of the advantages of digital techniques, with filters which are stable, predictable and not subject to temperature and ageing effects (other than those affecting the master crystal). Also gone with the digital approach, to the relief of all of us not overly keen on 6-pole filter equations, is the problem of designing filters which can be built using 'sensible' component values. The result is typified by Fig. 12, which is an example of the output spectrum from the transmitter at 1200 baud.

OPERATING MODE

The operating modes of the modem are set by the five TTL-compatible control lines, MCO to MC4. These may be set manually by switches, or under software control from the computer. The level converters in the circuit are required in order to convert the chip's TTL levels to the standard RS232C/CCITT V.24 interface levels. In practice, many computers will not handle the full range of RS232C signals, and additional gating may be necessary. The phone line interface, which completes the picture, provides any additional filtering and protection necessary to meet local regulations.

This has clearly only been the briefest of looks at what is a very sophisticated device. The possibilities for this chip are almost endless, especially when it is combined with other i.c.s from the World-Chip series, and other computer peripheral sup-

Fig. 12. V.23 spectrum at 1200 Baud

port chips. Although the Am7910 has been discussed, it is but one example of the latest in LSI modem technology.

NEXT MONTH

This completes our brief look at modem design techniques. Next month we conclude this short series with a buyer's guide and a brief look at modem applications.
UNEMPLOYED—wants trainee position in electronics. Will travel anywhere. R. O. Taylor, 76 Brownings Avenue, Chelmsford, Essex CM1 4HY.

STUDENT of Elec/Electronic engineering requires year of industrial training from August. Please write for my full CV. Jonathan Miller, 4 St. Josephs Road, Bremly, Bristol BS10 6QL. Tel: 0272 503364.

GREAT OFFER! Spectrum Interface II in good condition. Only 3 weeks old. Only £16.40. Send postal order to: E. Schooling, Cunningham House, Queen Victoria Street, Dunblane, Perthshire FK15 0JY.

KEYBOARDS. Two new K-A keyboards in original packing. 37-note. £10 each, plus carriage. H. C. Farr, 57 Westminster Way, Newry, Avcliffe, Co. Durham DL5 4NN.

HELP wanted to repair Premier Microsystems Sprite colour board for UK101. J. P. Anderson, Stonehouse Road, West Croydon, Surrey CR0 2EN. Tel: 081 2083.

AVO valve characteristic meter MX4 with data book £55 o.n.o. ASR 33 300 baud 20mA loop £45. P. R. Ledger, 43 Harper Street, Oldham OL8 1BB. Tel: 061 652 9378.

ALMOST complete set E.T.I. August 76 to February 85 (4 missing). £10 to cancer research. Mr. Lambert, Byefall 41772.

WANTED Vocoder. Any make. Price to be agreed by both sides. Phone Leicester (0533) 740432.

CAPACITORS, 52 x 20,000 pF ceramic capacitors with bus bars and tray (ex ICL 7021 line printer). Offers. I. G. Milton, 29 Down- ing Crescent, Bedworth, Nuneaton, Warwick. Tel: 0203 491598.

COMPONENTS, i.e. relays, motors, transformers, wire, nuts, bolts, washers, solder tags, 3kg. assortment. £7.50 post free. K. Bailey 40 Seymour Close, Selby Park, Birmingham B29 7JD. Tel: 021 472 3658.

WANTED Crotch 3030 or 3035. Tel: 01-451 3093.

NEW BRAIN AD Computer, built-in display, PSU leads, handbook, information on software. £100. Tel: 01-397 3952 (evenings)

WANTED any surplus electronic equipment/components for a school introducing electronics into the syllabus. Mr. J. K. Bell, Orleans Park School, Richmond Road, Twickenham. Tel: 01-891 0187.

WANTED tape deck type Z937 for Bush Arena BS3032 new or new condition. Mr. L. Yates, 5 Whitney Moor Lane, Retford, Notts. Tel: Retford 704996.

FOR SALE 3 channel sound to light £25 and compatible light changer £25: mini drum synthesiser £23, C. Gough, 16 Chartres Court, Middleton Avenue, Greenford, Middx. UB6 8BP. Tel: 01-578 4305 after 6.00 p.m.

MICROTEN wanted in exchange for Texas T199/4a. Non-worker considered. T. Burnett, 33 Berkleyside Road, Low Fell, Gateshead, Tyne & Wear. Tel: 091-482 4307.

SPECTRUM 48K, interface 1 microcomputer, 3 micro- tridges, software hardly used. £120. Can separate. Tel: 01-397 0181.

MICROTEN boards for sale. Eeprom programmer, Eeprom switching and Tandex with basic B-gus assembler, etc. D. Francis, 50 Eastpark, Southgate, Crawley, W. Sussex RH10 8AS. Tel: 024620.

TELEQUIPMENT D51 oscilloscope dual trace plus many spares. £30 o.n.o. for quick sale. Tel: Hampshire (0298) 250224.

CB RADIO 40 channel legal band. New. Unwanted present. £20. Mr. G. Marshall, 16 Inverness Road, Southall, Middx. Tel: 01-571 2252.

WANTED: 10Mhz single trace oscilloscope. For sale eight 4116 memories. As supplied, £10 the lot. Adam Richard Cooper, "Broomside", Loggershead, Market Drayton, Salop. TF9 4NZ. Tel: Ashby 2634.

CUSTOM BUILT 61 note electronic organ. Touch sensitive keyboard with piano sound £100 o.n.o. D. S. Francis, 22 Clifton Wood, Holbrook, Ipswich IP2 9PY. Tel: 0473 328013.

SOLARTRON Solarscope Type CD7115.2, dual beam ex-army 64 valves + 3 valves needed, £60. Mr. J. B. Horton, 149 Mill Road, Deal, Kent CT13 9DR.

MICROGRASP robot arm + interface part assembled + computer, cost £440, bargain £150 o.n.o. 7 Carlton Road, Boston, Lincs.

TRSB01 Level II 32K microcomputer (expanded), LPVII Dot-matrix printer (BBC etc. compatible), comp-monitor, Cass recorder, + £200 software/books (cost £1150). Offers over £325. Tel: St. Helens (0744) B11816.

PRINTER dot matrix for sale teletext or A4 or Fanfold BBC compatible. £60 o.n.o. Bargain. Peter Vanlaerdt, 4 Cheveley Close, Andover, Hants. Tel: 0264 54949.

DRAGON CHIPS, 6809E and 74LS783, £4 each, £35/10: 2764 £3 each £27/10; capacitors 22u 16V £1/100. Nic Spiers, 114 Greenway, Tunbridge Wells, Kent TN2 3JN. Tel: 0892 44070.

LYNX 48K. Information regarding memory ex- pansion, interfacing memory and screen address locations, etc. required. Please contact: S. J. Burm, 129 Whitley Moor Lane, Retford, Notts. Tel: Retford 705996.

WANTED audio i.c. type HA1128B for Kingston mono portable TV model TB1239 and also circuit diagram. George Grieves, Makerhouse, Grange Farm, Dalmarnock, Renfrewshire G71 9BB. Tel: 0473 328013.

COLLECTOR of old electronics seeks early semiconductors and circuit cards. Write for details and prices. Mr. Andrew Wylie, 56 Rue Liardat, 1202 Geneva, Switzerland.

WANTED Practical Wireless "Sandbanks" metal detector with or without search coil. Mr. J. Dean, 26 Halcyon Way, Burton-on-Trent, Staffs. DE14 2JR. Tel: Burton 34679.

WANTED E1 Powertran Vocoder or Elektor Vocoder working or needs looking at. Any information appreciated. Paul Peet, 7 Coleman Close, off Coleman Road, Leicester, Leics. Tel: 0533 740432.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature: Date.

Please read the RULES then write your advertisement here— one word to each box. Add your name, address and/or phone no.

COUPON VALID FOR POSTING BEFORE 5 JULY, 1985

(One month later for overseas readers.)

SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1UQ.

For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner"
Digital Delay & Sound Sampler
WITH COMPUTER INTERFACE

John M.H. Becker

Part 2

DELAY SELECTION

In many digital delay units that are available the selection of the delay factor is controlled by varying the rate at which data is sampled and retrieved. In those cases, the write and read addresses always have a fixed relationship, and the fine tuning of the delay selection is controlled by varying the master clock oscillator rate, and coarse selection made by switching between either more or less memory blocks.

Up to a point this is a good way of doing it and with analogue delay units it is probably the only way available. It is also partly available here but another, and probably a better way is also used. It takes full advantage of the random nature of the memory address and data relationships. Normally the sampling clock is maintained at a constant frequency, and in theory a delay range of zero through to 65536 separate steps is possible. Such resolution of delay factors is not necessary in practice, and here, it is limited to a choice of 255 discrete delay steps. In this way the wow normally associated with varying clocking frequencies is avoided.

The principle is very simple. Say for example you put data into address 1. Step forward to address 2 and put in more data, you can now read back the data already at address 1. If it has taken 1 ms to put data into address 1 before you read it back, that is the delay time. Having read back address 1, both the Write and Read addresses are stepped forward one place. You write into 3 and read back 2. Still the same delay of 1ms applies. Taking it further, suppose the memory is full of data, and you read back not the previous location but the one 65535 steps earlier, the delay then becomes 65535 x 1ms, over 65 seconds.

Of course if you read back the 65536th step earlier, that is the same as reading back the data just this instant fed in, so no delay occurs, apart from that required in shifting from write to read mode. The same clock signal applies to both the read and write addresses, and only the displacement factor varies. When the clock counter reaches the final address number, it automatically resets to the first address so that a constant loop is maintained.

MASTER CLOCK OSCILLATOR

In Fig. 7, IC26 is a voltage controlled oscillator, where the frequency is determined by the timing capacitor, the control voltage at pin 9, the current at pin 11, and the line voltage. The latter is derived directly from the nominal 8V rail, for although most of the logic requires a 5V line, IC26 has a frequency range too low if only 5V is used to supply it.

With S4 open, pin 9 is held at 5V. VR20 controls the fine tuning of the delay selection is controlled by varying the rate at which data is sampled and retrieved.
selection of oscillation, and at minimum resistance with only C38 in circuit, a frequency of around 1MHz is generated. Switch in C39 and the minimum frequency reduces to around 400kHz. With S5 open and VR20 at maximum resistance the lowest clock rates then become about 60kHz and 15kHz respectively. With S5 closed, the resistance range of VR20 is reduced by R72. For normal musical use S5 remains closed and S6 open, so keeping the sampling rate sufficiently high to maintain a respectable signal bandwidth. R69 and D3 restrict the output voltage to 5V maximum, as required by the other controlled circuits.

Modulation of the clock frequency for phasing, flanging, vibrato, chorus etc, is effected by the standard triangle wave oscillator around IC25a and IC25b. The modulation rate is determined by C36 and the resistance of the panel control VR18. With S4 closed the modulation depth is controlled by VR19. Photos 11 and 12 show some effects of modulating the oscillator.

The output of IC26 is the controlling clock for the two A to D converters. These also need a negative line voltage of around -3V for correct operation. This is derived by buffering the high frequency by IC31a and IC31b, and using a diode pump around C42, C43, D1 and D2. In order to enable the A to D converters to perform their conversions within a given period of the timing sequence, they are driven by a higher frequency than the rest of the control network. Remember from earlier these need eight clock cycles to perform their task.

IC23b divides the original high frequency by two, which is a sufficiently reduced rate to maintain the remaining synchronisation factors. By matrixing the outputs of the decade counter, IC27, through the various OR gates IC28 to IC30, the required polarity and duration of the control pulses is easily achieved. Take CAS for example, the line needs to be high for three clock cycles, down for one, up for three, down for two and then up again on the 10th.

Photo 11. 660Hz Photo 12. 1.2kHz
Upper trace—final audio output. Lower trace—modulated waveform
The output of IC29a will be high on the 1st, 2nd, 3rd and 10th cycles. This is fed to the gate IC30a. The output of IC29b will be high on the 5th and 6th cycles, and also goes to IC30a, as does the 7th cycle so that the output here will be high on cycles, 1, 2, 3, 5, 6, 7, 10 as required.

Photos 13 and 14 show practical oscillograms of some aspects of the timing sequence.

ADDRESS COUNTER

Every 9th output of IC27 steps the address counter IC8 on by one place (Fig. 3). This is a 12-stage ripple counter, each stage dividing by two. The 12th output triggers the next counter IC9 on every 4096th pulse from the address trigger. This is a 7-stage ripple counter, though only four outputs are used. Between them these two counters go through their full count once every 65536 trigger pulses.

The first eight outputs of IC8 are used as the row address selectors, the last four and the first four of IC9 are the Column address selectors. Assume for the moment that IC10 and IC11 just allow the column address straight through, then the set of row and column addresses pass to the multiplexers IC12 to IC14. Each has 3 sets of twin inputs, and 3 equivalent outputs (only 2 are used on IC14). These i.c.s act as gates and if their controlling signal is high then each gate will open to only one side of the twin inputs, and allow the data to pass to the output. If the control signal is low, then the first side closes, and the second opens, so allowing the other lot of data to pass through.

By constantly taking the control up and down, so these gates repeatedly switch between the row and column addresses. IC28d is the OR gate delivering these control voltages. As things stand the Write address is always the same as the Read address throughout all 65536 steps. We need to displace the Read address in relation to the Write address in order to achieve the desired time delay.

ADDRESS DISPLACEMENT

All we need is to add another number to the Write address in order to get the Read address. As stated earlier, it would be possible to have an address displacement available for each of 65536 delay factors, but this resolution is far too close to be of practical use. 255 separate delay factors controlled from the panel are quite enough.

IC7 is another A to D converter, and works in the same way as IC5, needing a clock, a convert trigger, and an output enable. These last two occur at different timing points to IC5, and the other difference is that the analogue voltage is a d.c. level set by VR14 and VR15. VR16 and VR17 are used to restrict the voltage seen by IC7 to within only the required limits of the 1 to 255 output range. IC7 samples the voltage programmed by VR15 and of course produces its binary equivalent. In practise on the prototype it was found that sampling this voltage too frequently was apt to produce a possibility of a high speed variation of the output number if the pot was set so that the voltage was really just between two numbers. Consequently the sampling rate is restricted to once every 8192 cycles (2\(^{13}\)).

At this point IC23a is triggered, then on receipt of the pulse from the timing network pin 9 IC27 the output changes state and triggers the monostable IC24a. Thereafter it will not trigger again until the next 8192nd pulse.

Although this sampling takes place so comparatively infrequently, the data of each sampling is held by IC7 which can allow it through any time instructed. The timing sequence tells it to do so each time the memory needs to be read for the delayed data. At this point the data passes through to the two adders IC10 and IC11. These automatically add this number to the column number presented from IC8 and IC9. If the actual answer is above 255 the adders ignore the overflow, and treat the number as though it were 255 numbers less. Thus the displacement address has been produced. R52 to R59 ensure that the adders IC10 and IC11 regard the input from IC7 as zero when that chip is closed, and so the write address has nothing added to it.

POWER SUPPLY

The power supply required is basically a 5V single stabilised line and is shown in Fig. 8. In the prototype the transformer used has two identical 6V windings each at 3VA and coupled in parallel to produce 6V with a 6VA capability. Full wave rectification of 6V a.c. produces about 8.5V d.c. This reduces slightly to roughly 8V on load, and supplies power to the LFO around IC25, the HFO around IC26, and the compander around IC2 and IC3. In the latter two cases ripple is rejected by the insertion of R68 and C37, and R80 and C14. The max. current is around 65mA.

Fig. 8. Circuit diagram of the p.s.u

IC36 takes the 8V and produces a stabilised output of 5V. Despite the good regulation of this type of IC, it still takes time to correct for transient current changes, and so some HF spikes are still expected on the power lines. Various capacitors such as C51 to C60 are placed at strategic points throughout the printed circuit boards to minimise them. R25, R26 and C21 supply a split level reference to IC1 and IC4. R17, R18 and C13 do likewise for IC2 and IC3.

Then that concludes the main circuit. We will leave the details of interfacing with a computer, and the associated circuitry until after the main unit assembly has been described. So for the moment ignore IC24b, IC35a and b, IC31c, and assume that IC33 and IC34 allow the control signals to pass straight through to their ultimate destination.
19 INCH RACK MOUNTING UNIT KIT 234-R: £295
MORE P.E. AUDIO EFFECTS AND OTHER SUPER SOUND KITS!

MONO-STERO ECHO-REVERB (P.E. Sept. '84) £295 20ms echo (extendable), lengthy reverb, multitracking. Kit as published. Set 218BK
ENHANCED PHASE (P.E. Oct. '84) Enhanced phasing with modulated filter shifting. Kit as published. Set 297BK
MONO-STERO CHORUS-FLANGER (P.E. Jan. '84) Superb dual mode music enhancement. Kit as published. Set 283BK
CYBERVOX (E.E. Apr. '85) Amazing robot type voice unit, with ring modulator and reverb. Kit as published. Set 298BK
STereo NOISE GATE & VCA (P.E. May '85) Automatic noise reduction circuit for modern stereo kit. Kit as published. Set 277BK
SIGNAL GENERATOR & F.V (P.E. Jan. '85) Audio test equipment. Multimode waveform VCO, & frequency to voltage converter, & sweep generator. Kit as published. Set 233 £46.96
Add 15% VAT. Add EPS £1.19 each "BK" Kit. £3.00 for Rackmounting Kits.

MONO STEREO ECHO-REVERB

1985
50pp per £50. (Obligatory on credit card orders). Details correct at press. E & O E.

BASS BOOST: Increases volume of lower octaves
BLOW BOX: Voice operated VCF & VCA for fascinating effects

CHARITY SIMPLE: Multiplied sound enhancements

COMPANDER: Mono companding, or stereo compression or expansion, switchable

ENVELOPE SHAPER: Note triggered ADSR unit with VCA

EQUALISER: Variable combinations of Low, Mid, Top & Notch

FLANGER SIMPLE: Fascinating phased resonance effects

FREQUENCY DIPPER: Guitar octave range & tone changer

PUZZ: Smooth division, returns attack & decay

GUITAR OVERDRIVE: Heavy fuzz with selectable qualities

GUITAR DISTORTION: Extends note decay time, with noise gate

GUITAR TO SYNTH INTERFACE: With voltage & output gates

HAND CLAPPER: Auto & manual variable clap effect

JABBROVER: Voice distortion with reverb & tremolo

MÖCK STEREO: Splits mono signal into stereo sound

MULTIPROCESSOR: Ping, Ring, Fuzz, Wash, Wash, Vib

MUSICAL MODULATOR: 8 variable tremolo & wash guitar effects

REVERBER SIMPLER: New longer decay chip. For mono or stereo

RHYTHM GENERATOR: Switchable pre-programmed rhythm clip

RHYTHM GENERATOR: Computer driven, 9 drum effects

SILKY: Versatile robot type vowel sound generator

STORMS EFFECTS: Auto & manual wind, rain & surf effects

TOM TOM SYMTH: Sound triggered, multivibrato

TREBLE BOOST: Increases volume of upper octaves

TREMOM: Mono variable rate & depth modulation

VACAVOX: Modular oscillator, 1 channel, extendable

VIDALEK: Robot type voice modulator

VH-WAH: Auto, manual & note triggered

ADD 15% VAT. Add EPS £1.19 each "BK" Kit. £3.00 for Rackmounting Kits.

DESCRIPTION US 5063

ULTRASONIC DETECTOR

ULTRASONIC MODULATOR

ULTRASONIC MODULATOR

ULTRASONIC MODULATOR

TUNER/HEM I RF SYSTEM 14700 £25.61 + VAT.

UNFURLED SYSTEM 1 4700 £25.61 + VAT.
CONSTRUCTION

It is well worth while assembling and testing methodically and in easy stages. Assemble each board in the usual order of resistors, diodes, small capacitors, i.e. sockets, presets and then any larger components. Omit C31 unless the computer only version is being built (see later). Save all the long cut off wires as they can be used to make most of the short wire links on the p.c.b.s.

For the long matrixing top side wires on the memory board strip the covering off about 12 to 18 inches of ordinary stranded wire. Take one of the strands, insert one end through the top of the p.c.b. into the first hole in the series to be connected, and solder it on the other side. Feed the other end through the top of the 2nd hole, and pull fairly tight, then push the same end back through the same hole and pull until a short loop remains under the PCB. Solder the loop but don't cut it off yet. Repeat the process for each hole along the series. Now again go along each loop pulling it while the iron is applied, ensuring that the wire is taut enough on the top side of the board to prevent adjacent wires from touching, then the loops can be cut off and the next series wired likewise. It doesn't take long and is a simple low cost way of getting a double sided board for the price of a single.

In industrial circles a board using chips of this nature would probably be designed so that the matrixing tracks actually pass between the individual i.e. legs. This is superb if you then have industrial soldering equipment, such as a flow soldering bath. For most enthusiasts though the accurate soldering of such a board is probably beyond the capabilities of all but the most experienced. On the other boards where the resistor cut off leads may not be long enough, a similar linking method can also be used. As there are quite a few interconnecting wires, use 1mm terminal pins, to which the wire can be soldered on the top side. Now drill out the cabinet, apply control legends and mount all pots, switches and sockets, but at this stage do not attempt any interwiring between boards or controls and also leave out all i.c.s except for the regulator IC36. This should be mounted horizontally out from the p.c.b. to avoid touching the board to be stacked above it. Note that most i.c.s are MOS and so always discharge static from yourself by touching an item of earthed equipment before handling them. (The rest of the p.c.b. designs and wiring diagram will be shown next month).

Constructors' note:

A full kit of parts or separate p.c.b.s are available from PhonoSonics, Dept DDL, 8 Finucane Drive, Orpington, Kent BR5 4ED. (Send s.a.e. for details.)

NEXT MONTH: The remaining p.c.b. designs and the wiring diagram. Also complete testing procedures and setting up.
THE LEADING EDGE

WRONG NUMBER

Recently I discovered something so extraordinary about cellular radio, that I have to pass it on to the benefit of anyone who plans to use the system, or who plans to call a cell radio subscriber.

In America cell radio subscribers are charged computer time both for calls which they make from a mobile phone and for calls which they receive. As you can imagine this is not popular, especially when someone with a mobile is pestered by junk calls, for instance trying to sell them life insurance which they don't want.

In Britain a decision was taken early on that subscribers would not be charged for incoming calls. They would pay only for calls made out of the mobile. The price varies up to 25p a minute depending on the time of day.

Originally (in a British Telecom price list issued in June 1984) the Cellnet service (run by British Telecom and Securicor) made no mention of how much would be charged per call per minute. The rival service Vodafone, from Racal, then jumped in and promised to charge only in fractions of a minute. So Cellnet then switched to charging per half minute. Obviously this makes a lot of difference because on a minute charge basis you would pay for 2 minutes if you spoke for 81 seconds.

What no-one really realises is that this is a flat rate which applies across the whole of Britain. So you pay 25p a minute to call from a mobile to a house down the street, which is exorbitant, and you pay 25p a minute to call from a mobile in London to a house in Scotland, which is excessively high. But they charge 45p for a 3 minute local call, house to house.

But this is not the extraordinary discovery which I recently made. Both services, Cellnet and Racal, have assured me that they make no charge for incoming calls. BT's June price list says in black and white that Cellnet subscribers are not charged for incoming calls! It's true. But what the services haven't publicized, and for very good reason I am sure, is that anyone who phones a cell radio mobile from a domestic or business phone, pays at the Irish Republic rate for that call! This means that you pay 45p a minute, instead of the local rate of around 3 3/5p a minute, to call someone on cell radio.

The awful truth of this will not emerge until the service has been running for at least six months, because people will not realise that their bills are high until they have received several quarterly charges. Perhaps the worst part is this: mobile users may well make a one minute call at 25p, and ask the recipient to phone back, thinking it will be cheaper. It will be, but only for the mobile user. For the poor unfortunate caller, using a domestic or business telephone, the rate will be 13 times the rate for a normal local call.

ORBitating COSTS

Why do direct broadcasting satellites (DBS) cost so much?

The British Government wants Unisat, a consortium of British Telecom, British Aerospace and GEC Marconi, to build the direct broadcasting satellite for Britain. For three years rumours have been flying around about the high prices Unisat want to charge and how it would be cheaper for Britain to shop abroad.

For three years we have refused to talk about pricing. Now, under pressure from the consortium members, Unisat has talked to the press. And the talk is not particularly reassuring.

Originally the British DBS service was to be two channels, of 240W transmission power. The high power should let people on the ground with small dish aerials get clear pictures.

The price being quoted to the BBC, three years ago, was £24.4 million per year over seven years. After the BBC realised it could not afford to run a DBS service, the ITV companies and several independent firms like Thorn-EMI and Granada joined in to make the so-called Group of 21. They promised a three channel service, still with 240W transmitters. The price was put at a staggering £80m a year.

At first Unisat refused to comment. Now Unisat says the cost of providing a three channel service would be anything between £40 million and £80 million a year, spread over 10 years. The highest price is for three satellites, two in orbit and one on the ground. That gives 95 per cent probability of service without interruption.

But how is probability measured? Not very accurately. If we have one hundred satellites in orbit for ten years, then 95 per cent probability means 95 of them will still be up there and transmitting after ten years. This is a bizarre concept, because there is only one DBS satellite in orbit, and that is the Japanese craft which has three transmitters of only 100W each and two of them failed almost immediately. No-one has ever tried to fly a craft with 240W transmitters. So how on earth can anyone even guess at how a hundred craft will perform over ten years?

The biggest question mark is over what happens when the satellites pass through eclipses. Inevitably any solar-powered craft in orbit will have to shut down its transmissions when the sun's rays are eclipsed. The orbital slots (31 deg. West for Britain) are chosen so that these eclipses will happen in the middle of the night, when no-one is watching television. But they happen 88 times a year, in two clusters of 44.

The eclipses vary in duration from between 2 minutes and 90 minutes. At these times, the travelling-wave tube (TWTA) amplifiers which generate the microwave power, go from hot to cold to hot again. Just like an electric light bulb being switched on and off, that's when they are most likely to fail. It is what happened with the Japanese satellite. The tubes that failed in the Japanese satellite were made by Thomson-CSF of France.

Although Unisat has now talked to the press about pricing, it has still not demonstrated any of the technology. This is because there aren't any 240W travelling wave tubes in Britain. For one demonstration, which was not opened to the press, Marconi borrowed a 240W TWT from the German company, Telefunken-ANT. This went back to Germany immediately afterwards.

If and when Marconi decides it is worth demonstrating to the press, I have a lot of questions to ask.

PAPER CHASE

If you run a computer with a printer you have a choice of either feeding in separate sheets one at a time, perhaps through a stack feed, or using a tractor feed and continuous paper from a fan-folded box. Here is a couple of tips that can save you time, money and frustration.

When buying continuous tractor feed paper with rows of feed holes down each edge, choose 'microperf' type. On this paper the edge strips are secured to the main area of the paper by a continuous line of tiny perforations—rather like sheets of h-inch toilet paper on a roll. In this way, after printing out text or graphics, you can strip off the paper edges.

The individual sheets are also joined together by microperfs so that these too are easily separated. Because the perfs are micro you end up with ordinary-looking individual sheets. But you are not finished yet.

Computer printers usually work on a basic format of six lines to the inch. Exotic printers can be set up by computer wizards to move the paper in smaller fractions. But movement is still on a fraction of an inch basis.

The metric standard for A4 size paper is a page length of 297mm. This does not convert accurately into fractions of an inch. It works out at 11.693 inches. And one-sixteenth will not divide neatly into 11.693.

Some paper firms sell pseudo A4 paper, which is 11½ inches long. This matches an inch printer. But other firms sell genuine A4 metric paper for continuous tractor feed. If you use this paper on an inch printer the text will gradually get out of step with the page breaks so that the headers and footers gradually creep up or down the page and eventually onto and over the perforations.

The answer is to use 11in printer paper or pseudo A4 at 11½. Don't be bullied into buying genuine metric A4 unless you are sure your printer can cope.

BARRY FOX
INTELLIGENT LEVEL CROSSING WARNING LIGHTS CONTROLLER

MODEL railway enthusiasts have lots of tiny road signs available with built-in i.e.d.s. This circuit provides automatic control of level crossing lights, without affecting the railway circuitry. This is achieved with the use of two infra-red beams shone across the track.

The circuit is bi-directional, in as much that the direction of the train is irrelevant, because the circuit can 'remember' which detector was interrupted first. It will then concentrate on the second detector to establish when the train is clear of the roadway. Fig. 1 shows the general layout.

As the circuit consists of two identical parts, only one part is described. If the train breaks either beam, say from D1, then the output from TR1 will go low. VR3 and C1 allow a small delay before allowing IC7a to go low. This prevents the circuit from being affected by breaks in the train between carriages.

At this point the output of IC7b will set the latch IC1a; this in turn feeds an Ex-Or gate which sets the final latch. The output of this latch should be connected to a simple flasher unit.

When the train has cleared the first detector, the beam is re-established. The train will then break the second beam and the same action will occur, except that the Ex-Or gate will give a low output. This will reset the input to the final latch, IC3.

Re-establishment of the second beam will cause the output of IC2 to go high which will send a reset pulse to IC1a, IC1b and IC3. This will cause the final output to go low and the flasher circuit will be turned off. The infra-red beam works well on any track layouts, up to two N-Gauge tracks. If a wider gap is used, then an amplifier circuit will be required to pulse the transmitter.

R. S. Bacon,
Luton,
Beds.
7-SEGMENT LOGIC PROBE

UNLIKE most logic probes, this design will indicate the state of the logic under test with a letter and decimal point on a seven-segment display. The decimal point is used to indicate an open circuit or a pulsing condition, and 'high' is indicated by 'H' and 'low', 'L'. From a 5 to 18V supply with a probe input resistance of about 15K it will draw only 20mA.

When pins 5 and 6 of IC1 are low, IC2 is triggered if the probe is in an open circuit condition. This is indicated by the decimal point being permanently lit. If the probe is taken 'high', then IC1a does not change, but TR1 is switched on via R1 and R2. This causes the display to indicate a 'high' condition by lighting the appropriate segments. At the same time, pin 2 of IC2 is taken high and the decimal point is switched off after a short delay caused by the monostable.

When the probe is taken low, TR1 is switched off and the appropriate segments are lit to indicate this condition. If a pulse train is present there is a short time when the probe is effectively in an open circuit condition causing the monostable to be triggered. The delay is about 1 second, causing a short pulse to be stretched. This will cause the pulse condition to be indicated by the decimal point, together with either the 'H' or 'L'.

D5 prevents damage due to supply reversal and TR2 together with R8 and D6 provide a 5V supply from any input voltage above 6V, enabling the probe to be used with CMOS circuits. If the supply is only 5V the switch should bypass TR2.

M. Pocook,
Taunton, Somerset.

HAVE A GO!

If you’re a regular Practical Electronics reader and have not yet submitted an idea for Ingenuity Unlimited, why not have a go now? We will pay £40.00 per page for any article published.

We are looking for original ideas which may be simple or complex, but most importantly are useful and practical. Areas of particular interest are ideas for car electronics, test gear designs, home projects and computer interfacing.

What to do
Just send in your idea to our editorial offices, together with a declaration to the effect that it has been tried and tested, is the original work of the undersigned and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proved by us, but are included to stimulate further thought.

Quality
To help us to process articles which are offered for publication, all subject matter should conform to the usual practices of this journal. Special attention should be paid to circuit symbols and abbreviations and all diagrams should be on separate sheets, not in the text. Also manuscripts should be typed with wide margins and double line spacing or neatly hand written in the same fashion.

THE START OF SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge… why not join us in GCHQ? We are recruiting RADIO OFFICERS who after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.

Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion, opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.

The basic requirement for the job is two years’ radio operating experience or hold a PMG, MPT or MRGc or be about to obtain a MRGC.

Registered disabled people are welcome to apply. Salaries start at £4,762 at age 19 to £5,755 at age 25 and over during training and then £6,399 at age 19 to £8,510 at 25 and over as a Radio Officer. Increments then follow annually to £11,741 inclusive of shift and weekend working allowances.

For full details and application form 'phone 0242 329123 or write to:

GCHQ
Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire, GL52 5AJ.
PRACTICAL ELECTRONICS
PRINTED CIRCUIT BOARD SERVICE

Printed circuit boards for certain PE construotional projects are now available from the PE PCB Service, see list. They are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for overseas airmail. Remittances should be sent to: PE PCB Service, Practical Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project title, order code and the quantity. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here.

<table>
<thead>
<tr>
<th>PROJET TITLE</th>
<th>Order Code</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum Autosave</td>
<td>MAR '84</td>
<td>£1.83</td>
</tr>
<tr>
<td>Sustain Unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Signal Generator</td>
<td>MAY '84</td>
<td></td>
</tr>
<tr>
<td>Cross Hatch Generator</td>
<td>JUNE '84</td>
<td>£3.52</td>
</tr>
<tr>
<td>Simple Logic Analyser I</td>
<td>407-01</td>
<td>£7.73</td>
</tr>
<tr>
<td>EPROM Duplicator</td>
<td>407-02</td>
<td>£3.74</td>
</tr>
<tr>
<td>Alarm System</td>
<td>407-03</td>
<td>£3.19</td>
</tr>
<tr>
<td>Oscilloscope Calibrator</td>
<td>407-04</td>
<td>£4.23</td>
</tr>
<tr>
<td>Comm. 64 RS232C Interface</td>
<td>AUG '84</td>
<td></td>
</tr>
<tr>
<td>Field Measurement</td>
<td>408-01</td>
<td>£3.02</td>
</tr>
<tr>
<td>Simple Logic Analyser II</td>
<td>408-02</td>
<td>£3.19</td>
</tr>
<tr>
<td></td>
<td>408-03</td>
<td>£2.76</td>
</tr>
<tr>
<td></td>
<td>408-05</td>
<td>£2.93</td>
</tr>
<tr>
<td>Parallel to Serial Converter</td>
<td>SEPT '84</td>
<td></td>
</tr>
<tr>
<td>Through the Mains Controller</td>
<td>OCT '84</td>
<td></td>
</tr>
<tr>
<td>Logic Probe</td>
<td>JAN '85</td>
<td></td>
</tr>
<tr>
<td>Computer DFM Adaptor</td>
<td>NOV '84</td>
<td></td>
</tr>
<tr>
<td>Ni-Cad Charger</td>
<td>DEC '84</td>
<td></td>
</tr>
<tr>
<td>Outrider Car Computer (Set of 2 boards)</td>
<td>501-01/2</td>
<td>£9.10</td>
</tr>
<tr>
<td>Modular Audio Power System Pt-1: Power Amp Board</td>
<td>FEB '85</td>
<td>£4.19</td>
</tr>
<tr>
<td>Spectrum DAC/ADC Board</td>
<td>502-02</td>
<td>£3.69</td>
</tr>
<tr>
<td>Modular Audio Power System Pt-2: Pre-Amp/Line Driver</td>
<td>Main Board</td>
<td>£5.00</td>
</tr>
<tr>
<td>Heart Beat Monitor</td>
<td>MARCH '85</td>
<td></td>
</tr>
<tr>
<td>Main Circuit Board</td>
<td>503-03</td>
<td>£8.90</td>
</tr>
<tr>
<td>Detector</td>
<td>503-04</td>
<td>£6.62</td>
</tr>
<tr>
<td>Low Cost Speech Synthesiser</td>
<td>503-05</td>
<td>£2.42</td>
</tr>
<tr>
<td>Power Control Interface</td>
<td>504-01</td>
<td>£3.36</td>
</tr>
<tr>
<td>Disc Drive PSU</td>
<td>504-02</td>
<td>£6.64</td>
</tr>
<tr>
<td>Modular Audio Power System Pt-3: Test Signal Source</td>
<td>Power Supply</td>
<td>£4.20</td>
</tr>
<tr>
<td>Amstrad Synthesiser Interface</td>
<td>505-01</td>
<td>£4.23</td>
</tr>
<tr>
<td>Rugby Clock Pt-2</td>
<td>504-03</td>
<td>£24.22</td>
</tr>
<tr>
<td>Heart Beat Monitor</td>
<td>504-04</td>
<td>£9.06</td>
</tr>
<tr>
<td>Main Circuit Board</td>
<td>504-05</td>
<td>£5.12</td>
</tr>
<tr>
<td>Power Supply</td>
<td>504-06</td>
<td>£9.54</td>
</tr>
<tr>
<td>Low Cost Speech Synthesiser</td>
<td>504-07</td>
<td>£5.40</td>
</tr>
<tr>
<td>Low Cost Speech Synthesiser</td>
<td>504-08</td>
<td>£10.24</td>
</tr>
<tr>
<td>CBM64 MUSIC KEYBOARD</td>
<td>506-02</td>
<td>£4.55</td>
</tr>
<tr>
<td>Keyboard</td>
<td>506-03</td>
<td>£3.50</td>
</tr>
<tr>
<td>Main PCB</td>
<td>JUNE '85</td>
<td></td>
</tr>
<tr>
<td>MTX B Channel A to D</td>
<td>JULY '85</td>
<td></td>
</tr>
<tr>
<td>Voltmeter Memory Adaptor</td>
<td>507-01</td>
<td>£3.92</td>
</tr>
<tr>
<td></td>
<td>506-01</td>
<td>£3.28</td>
</tr>
</tbody>
</table>

DON'T MISS A VITAL COPY!

Ever been in the middle of a project only to find the next issue sold out? An annual subscription to PRACTICAL ELECTRONICS solves the problem.

SUBSCRIPTION RATES

U.K. £13.00
Overseas £15.00

COMPLETE AND POST THIS ORDER FORM TODAY!

PRACTICAL ELECTRONICS SUBSCRIPTION ORDER FORM

POST COPIES TO
NAME
ADDRESS
POST CODE

I enclose my cheque/PO. payable to IPC Magazines Ltd. for £
Charge my credit card A/C at quoted rate

Card valid from to
Signature

25
BAKER'S DOZEN PACKS

SUPER BARGAIN PACKS £1 EACH ORDER 12 AND GET ONE EXTRA FREE!

ALL GOODS BRAND NEW EXCEPT WHERE STATED

Please add £1 post & order with order

PACK A

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>13 amp ring main junction boxes</td>
</tr>
<tr>
<td>2.</td>
<td>13 amp ring main fuse boxes</td>
</tr>
<tr>
<td>3.</td>
<td>13 amp fuse boxes</td>
</tr>
<tr>
<td>4.</td>
<td>Surface mounting switches suitable for mains voltage</td>
</tr>
<tr>
<td>5.</td>
<td>Push switches (replacement type) will also replace 1 or 2 way switches</td>
</tr>
<tr>
<td>6.</td>
<td>3 flat free switches</td>
</tr>
<tr>
<td>7.</td>
<td>2 long wall switches</td>
</tr>
<tr>
<td>8.</td>
<td>20 wall bracket switches</td>
</tr>
<tr>
<td>9.</td>
<td>2 mains transformers with 15 amp permanence</td>
</tr>
<tr>
<td>10.</td>
<td>Extension socket cabinet for F&G switch</td>
</tr>
<tr>
<td>11.</td>
<td>3 basic brass for relays or valves</td>
</tr>
<tr>
<td>12.</td>
<td>10 pull cord switches</td>
</tr>
<tr>
<td>13.</td>
<td>10 GCF 70 plate transistors</td>
</tr>
<tr>
<td>15.</td>
<td>Assorted pressure transistors (6622)</td>
</tr>
<tr>
<td>18.</td>
<td>4 tape heads, 2 record, 2 spares</td>
</tr>
<tr>
<td>18.</td>
<td>2 ultrasonic transducers and 2 mics receivers</td>
</tr>
<tr>
<td>18.</td>
<td>2 1500 watt computer grade electronics</td>
</tr>
<tr>
<td>19.</td>
<td>9 light dependent resistors known OFF 12</td>
</tr>
<tr>
<td>20.</td>
<td>5 off micro switches</td>
</tr>
<tr>
<td>21.</td>
<td>2 mains interference suppressors</td>
</tr>
<tr>
<td>22.</td>
<td>2 25 watt crossover units</td>
</tr>
<tr>
<td>24.</td>
<td>3 6/3 way crossover unit</td>
</tr>
<tr>
<td>26.</td>
<td>2700 various screws and switch points</td>
</tr>
<tr>
<td>27.</td>
<td>1 of each water switches - for 3 way, 6/3 way, 3 way, 6/3 way, 3/2 way</td>
</tr>
<tr>
<td>26.</td>
<td>2 tone deck cassettes</td>
</tr>
<tr>
<td>27.</td>
<td>1 6 digit counter 12v</td>
</tr>
<tr>
<td>27.</td>
<td>1 6 digit counter mains voltage</td>
</tr>
<tr>
<td>27.</td>
<td>1 6 digit counter mains voltage (with second hand)</td>
</tr>
<tr>
<td>30.</td>
<td>2 NIG30 battery chargers</td>
</tr>
<tr>
<td>31.</td>
<td>2 key switch with lock</td>
</tr>
<tr>
<td>32.</td>
<td>3 humidity switches</td>
</tr>
<tr>
<td>33.</td>
<td>7 contact pins of 62 Day Lubricant</td>
</tr>
<tr>
<td>34.</td>
<td>96 1 x metre lengths colour-coded connecting wires</td>
</tr>
<tr>
<td>35.</td>
<td>4 battery operated model motors</td>
</tr>
<tr>
<td>36.</td>
<td>1 air operated 2 gang timing contacts</td>
</tr>
<tr>
<td>37.</td>
<td>2 solid diode 2 gang timing contacts</td>
</tr>
<tr>
<td>38.</td>
<td>10 compression terminals</td>
</tr>
<tr>
<td>38.</td>
<td>1 Long & medium wave tuner kit</td>
</tr>
<tr>
<td>38.</td>
<td>4 46 NC 1 transformers</td>
</tr>
<tr>
<td>41.</td>
<td>10 Rocker switches 10 amp mains SPST</td>
</tr>
<tr>
<td>42.</td>
<td>2 Rocker switches 10 amp mains SPST</td>
</tr>
</tbody>
</table>

PACK B

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>13 amp ring main junction boxes</td>
</tr>
<tr>
<td>2.</td>
<td>13 amp ring main fuse boxes</td>
</tr>
<tr>
<td>3.</td>
<td>13 amp fuse boxes</td>
</tr>
<tr>
<td>4.</td>
<td>Surface mounting switches suitable for mains voltage</td>
</tr>
<tr>
<td>5.</td>
<td>Push switches (replacement type) will also replace 1 or 2 way switches</td>
</tr>
<tr>
<td>6.</td>
<td>3 flat free switches</td>
</tr>
<tr>
<td>7.</td>
<td>3 long wall switches</td>
</tr>
<tr>
<td>8.</td>
<td>20 wall bracket switches</td>
</tr>
<tr>
<td>9.</td>
<td>2 mains transformers with 15 amp permanence</td>
</tr>
<tr>
<td>10.</td>
<td>Extension socket cabinet for F&G switch</td>
</tr>
<tr>
<td>11.</td>
<td>3 basic brass for relays or valves</td>
</tr>
<tr>
<td>12.</td>
<td>10 pull cord switches</td>
</tr>
<tr>
<td>13.</td>
<td>10 GCF 70 plate transistors</td>
</tr>
<tr>
<td>15.</td>
<td>Assorted pressure transistors (6622)</td>
</tr>
<tr>
<td>18.</td>
<td>4 tape heads, 2 record, 2 spares</td>
</tr>
<tr>
<td>18.</td>
<td>2 ultrasonic transducers and 2 mics receivers</td>
</tr>
<tr>
<td>18.</td>
<td>2 1500 watt computer grade electronics</td>
</tr>
<tr>
<td>19.</td>
<td>9 light dependent resistors known OFF 12</td>
</tr>
<tr>
<td>20.</td>
<td>5 off micro switches</td>
</tr>
<tr>
<td>21.</td>
<td>2 mains interference suppressors</td>
</tr>
<tr>
<td>22.</td>
<td>2 25 watt crossover units</td>
</tr>
<tr>
<td>24.</td>
<td>3 6/3 way crossover unit</td>
</tr>
<tr>
<td>26.</td>
<td>2700 various screws and switch points</td>
</tr>
<tr>
<td>27.</td>
<td>1 of each water switches - for 3 way, 6/3 way, 3 way, 6/3 way, 3/2 way</td>
</tr>
<tr>
<td>26.</td>
<td>2 tone deck cassettes</td>
</tr>
<tr>
<td>27.</td>
<td>1 6 digit counter 12v</td>
</tr>
<tr>
<td>27.</td>
<td>1 6 digit counter mains voltage</td>
</tr>
<tr>
<td>27.</td>
<td>1 6 digit counter mains voltage (with second hand)</td>
</tr>
<tr>
<td>30.</td>
<td>2 NIG30 battery chargers</td>
</tr>
<tr>
<td>31.</td>
<td>2 key switch with lock</td>
</tr>
<tr>
<td>32.</td>
<td>3 humidity switches</td>
</tr>
<tr>
<td>33.</td>
<td>7 contact pins of 62 Day Lubricant</td>
</tr>
<tr>
<td>34.</td>
<td>96 1 x metre lengths colour-coded connecting wires</td>
</tr>
<tr>
<td>35.</td>
<td>4 battery operated model motors</td>
</tr>
<tr>
<td>36.</td>
<td>1 air operated 2 gang timing contacts</td>
</tr>
<tr>
<td>37.</td>
<td>2 solid diode 2 gang timing contacts</td>
</tr>
<tr>
<td>38.</td>
<td>10 compression terminals</td>
</tr>
<tr>
<td>38.</td>
<td>1 Long & medium wave tuner kit</td>
</tr>
<tr>
<td>38.</td>
<td>4 46 NC 1 transformers</td>
</tr>
<tr>
<td>41.</td>
<td>10 Rocker switches 10 amp mains SPST</td>
</tr>
<tr>
<td>42.</td>
<td>2 Rocker switches 10 amp mains SPST</td>
</tr>
</tbody>
</table>

FREE TOOLS

TOOLMAIL CATALOGUE

Free 80-page Mail Order Colour Catalogue

TOOLMAIL CATALOGUE

- *Home Safety*
- *Ladders and scaffold towers*
- *Buying power tools*
- *Exterior painting*

HOME HANDY MAGAZINE

Full of good ideas for the home, car and garden

J.BULL (Electrical) Ltd.

(Dept. PE), 34-36 AMERICA LANE,

HAYWARDS HEATH, SUSSEX RH16 3QJ.

Established 30 YEARS

FREE TOOLS

TOOLMAIL CATALOGUE

HI-TECH COMPONENTS

GILRARY ROAD, DIES

NORFOLK IP22 3EU

PHONE 0379 4131 FOR FAST DELIVERY

MIDSUMMER MADNESS

POPULAR I.C.'s AT INCREDIBLE PRICES!!!

CPU'S

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6502</td>
<td>Z80A</td>
<td>£3.49</td>
</tr>
<tr>
<td>6502A</td>
<td>Z80B</td>
<td>£4.99</td>
</tr>
<tr>
<td>6800</td>
<td></td>
<td>£1.99</td>
</tr>
</tbody>
</table>

SUPPORT DEVICES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6522</td>
<td>Z80APIO</td>
<td>£3.49</td>
</tr>
<tr>
<td>68854</td>
<td>Z80AISO-O</td>
<td>£8.99</td>
</tr>
<tr>
<td>Z80ACTC</td>
<td></td>
<td>£1.99</td>
</tr>
</tbody>
</table>

MEMORIES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4016-15</td>
<td>6116-EP3</td>
<td>£1.20</td>
</tr>
<tr>
<td>4016-15</td>
<td>8118</td>
<td>£1.75</td>
</tr>
</tbody>
</table>

EPROMS

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2764-25</td>
<td>27128-25</td>
<td>£3.20</td>
</tr>
<tr>
<td>2764-30</td>
<td>27128-30</td>
<td>£3.00</td>
</tr>
</tbody>
</table>

TTL

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7437</td>
<td>74LS123</td>
<td>£0.45</td>
</tr>
<tr>
<td>74LS00</td>
<td>74LS163</td>
<td>£0.20</td>
</tr>
<tr>
<td>74LS04</td>
<td>74LS244</td>
<td>£0.20</td>
</tr>
<tr>
<td>74LS08</td>
<td>74LS245</td>
<td>£0.20</td>
</tr>
<tr>
<td>74LS10</td>
<td>74LS393</td>
<td>£0.90</td>
</tr>
</tbody>
</table>

4000 SERIES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4013</td>
<td></td>
<td>£0.30</td>
</tr>
</tbody>
</table>

1. All prices exclude VAT and carriage
2. Carriage charge £1.00 (orders up to £100.00) FREE (above £100.00)
3. Strictly cash with order or credit card (Access or Visa)
4. Delivery by return post.

RING NOW BEFORE WE CHANGE OUR MINDS
SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £12.00 per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5846).

HEATHRICK UK spares and service centre. CEDAR ELECTRONICS, Unit 12 Station Drive, Birtley, Tynemouth, Northumberland. Tel. (0664) 73127.

P.C.B.s SINGLE AND DOUBLE SIDED (not through plated) P.C.B.s prepared to customers specifications. High quality, quick service. Send transparency or scale drawing, making clear whether view is from copper side or component side, and we will send you a quote by return. GOVAN I.T.E.C., Holmfirth Road, Linthouse, Glasgow G51 4RY.

R.J. HEAP ELECTRONICS. Professional or hobbyist services. SAE details: Church Hill Works, Sydenham Dameral (Tavistock), Devon PL19 8BU.

TURN YOUR SURPLUS capacitors, transistors, etc into cash. Contact COLES HARDING & CO., 103 South Brink, Wisbech, Cambs. Tel. 0941 548118. Immediate settlement.

RECEIVERS AND COMPONENTS

BOURNEMOUTH/W/BSOCOMBE. Electronic components specialists for 33 years. FORRESTERS (NATIONAL RADIO SUPPLIES), Late Holdenhurst Road. Now at 36, Ashley Road, Bournemouth. Tel. 302204. Closely

BARGAIN BUMPER BOX OF BITS

Contains: working calculator, working watch module, Various ICs, transistors, display tubes, P.C.B.s, diodes batteries, gears, switches etc., etc., etc. All useful items. Would cost much, much more if bought separately. ONLY £15 (inc. VAT and P&P). Send cheques/PO to: Barbara Page, Spares Dept., Decimo Ltd, 4-18 Chobham St., Luton LU1 3BS.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for insertions. I enclose Cheque/P.O. for £

(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Practical Electronics)

<table>
<thead>
<tr>
<th>NAME</th>
<th>ADDRESS</th>
</tr>
</thead>
</table>

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

HOME SECURITY

CENTURION ALARMS

Manufacturers of Professional Alarm Equipment for DIY & the TRADE. Send now for our New 16-page Brochure. Full of Information & The Lowest prices.

CENTURION Dept PE
36 Wakefield Road, Huddersfield.
HDX 9AB. Tel: (0484) 21000 or 35527 24 hr.

WHO'S WHO LOW LOW LOW PRICES

peace of mind at a price you can afford

PEACE OF MIND

P R O F S S I O N A L C L A S S I F I E D A D V E R T I S I N G

P R O F S S I O N A L C L A S S I F I E D A D V E R T I S I N G

PROFESSIONAL CLASSIFIED ADVERTISING SUBSCRIPTION

CENTURY

30 Ward Road, Altrincham.
CH6 7QY. Tel: (0362) 3440

GREAT VALUES CLEAR OUT

200 AGENTS NATIONWIDE

200 AGENTS NATIONWIDE

MAIL ORDER CATALOGUE FROM 09/85

FREE to anyone buying

P R O F S S I O N A L C L A S S I F I E D A D V E R T I S I N G

P R O F S S I O N A L C L A S S I F I E D A D V E R T I S I N G

PHONE or S.A.E

ORDER FORM

PRACTICAL ELECTRONICS

Classified Advertisement Dept., Room 2612, King's Reach Tower, Stamford Street, London SE1 9LS. Telephone 01-261 5846

Rate:

36p per word; minimum 12 words. Box No. 60p extra.

7/85

Practical Electronics July 1985
SERVICES

INVENTORS

Think of something new? Write it down! -

American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write with or without products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write with or without products.

FULL-TIME TRAINING COURSES

2 YEAR

B-TEC NATIONAL DIPLOMA (OND) ELECTRONICS & COMMUNICATIONS ENGINEERING

15 MONTHS

B-TEC NATIONAL CERTIFICATE (OND) ELECTRONIC EQUIPMENT SERVICING

15 MONTHS

B-TEC HIGHER NATIONAL CERT (HNC) COMPUTING TECHNOLOGY & ROBOTICS

9 MONTHS

B-TEC HIGHER NATIONAL CERT (HNC) COMPUTING TECHNOLOGY & ROBOTICS

THESE COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS

SHORT COURSES WITH PREVIOUS KNOWLEDGE

Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywren Road, London SW5 3SU. Tel: 01-373 8721.

BELLs TELEVISION SERVICES

for service sheets of Radio, TV, etc. £1.50 plus SAE. Colour TV Service Manuals on request. SAE with inquiries to R.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

BOOKS AND PUBLICATIONS

FULL SIZE, top quality service sheets £2.00 + SAE. Repair data almost any named TV/Video £10.50 inc. SAE. Large free monthly magazine/piece lists. TISFE, 76 Churches, Larkhall, Lanarkshire. 0688 83334.

BOOKS WANTED FOR CASH

Top prices paid for your unwanted electronics and computer books. We also have a wide selection of new and used books and magazines in stock.

For list of currently available titles and details of our guaranteed buy back plan SAE please send to:

JAMES ELECTRONICS (DEPT. P.E.) P.O. Box 2, Rothwell, Leeds LS26 0UY

MISCELLANEOUS

SUPERB INSTRUMENT CASES by Bazzelli, manufactured from PVC. Fast range, competitive prices start at a low £1.50. Puch casing facilities at very competitive prices.

BAZELLI, (Dept. 23), St. Wifillard, Roundley Lane, Halton, Lancashire LA2 6LT.

BURGAL ARM Alarm Equipment - Ring Bradford (0724) 308920 for our catalogue or call at our large show room, opposite Oadby Stadium.

CABINET FITTINGS

Fretcloths, Crevettes, Shelves, Hangers, Mantels, Castors, Flight Case Locks & Paris, Jacks, XLRs, Bulbins, Reverb Trays, P & N GMC Stand ASS Glasshouse Homes CELESTION POWER Speakers

Send 30p cheque

P.O. for illustrated catalogue: Adam Hall Supplies Ltd, Unit G, Carlton Court, Grangier Road, Southend-on-Sea.
TRAIN FOR A BETTER JOB IN ELECTRONICS

Everyday more people are needed to design, install, operate and service electronic systems.

It's big business and the career opportunities are both limitless and richly rewarding.

Prepare yourself for a future in Electronics with an ICS Home-Study Course quickly, easily and in your own time.

Proven teaching methods

ICS is the world's largest correspondence school with over 90 years experience.

So far nearly 9 million people have taken advantage of our tried and tested teaching methods.

Find out how we can help you. Send today for your FREE information pack. No obligation.

INDEX TO ADVERTISERS

Adola Products
A.D.E.
American Inventors Corp.
Arnon Electronics
Audio Electronics
B.N.R.E.
Bell J.
Centrum Alarm
Clef Products
CrickwoodElectronics
Crofton
Croydon Discount Electronics
C.R. Supply Co.
Cybernetic Application
Decimo
Electrovalue
E.G.R.
G.C.H.Q.
Granda
Hall Adam Supplies
Hi-Tech Components
ICS Internext
James Electronics
London Electronics College
Maplin Supplies
Marco Trading

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisers in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:

(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

INDEX TO ADVERTISERS

Adola Products
A.D.E.
American Inventors Corp.
Arnon Electronics
Audio Electronics
B.N.R.E.
Bell J.
Centrum Alarm
Clef Products
CrickwoodElectronics
Crofton
Croydon Discount Electronics
C.R. Supply Co.
Cybernetic Application
Decimo
Electrovalue
E.G.R.
G.C.H.Q.
Granda
Hall Adam Supplies
Hi-Tech Components
ICS Internext
James Electronics
London Electronics College
Maplin Supplies
Marco Trading

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisers in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:

(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisers in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:

(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.
Industrial Soldering Equipment - for the discerning amateur

SEND FOR NEW CONCISE LEAFLETS

‘K’ SERIES SOLDERING TOOLS FOR ALL APPLICATIONS

K1000 micro soldering
K2000 general electronic soldering
K3000 heavy duty soldering

- Small selection of AD-IRON® LONG LIFE SOLDERING TIPS suitable for all Adcola soldering irons.

101 ELECTRONIC CONTROLLED SOLDERING STATION

for precision soldering with accuracy suitable for use on MOS, FET etc 240V input - 24V on tool. Temperature range 120-420°C Many extra features

ADCOLA ACCESSORIES include:
SIDE CUTTERS
SNIPER NOSE PLIERS

PLUS
- Desoldering Braid
- Desoldering Guns
- Tip cleaners
- Soldering aids
- Lamps, Lenses etc

For a no obligation demonstration, please contact:
ADCOLA PRODUCTS LIMITED Gauden Road London SW4 6LH Telephone Sales (01) 622 0291 Telex 21851 Adcola G
More This Month at Maplin

25kD—RAM 41256—120ns ONLY £9.95 (QY747).
25k PROM 27256—250ns ONLY £18.95 (QY755).
Right-angle pcB mounting rotary switches: 1P12W—F156, 2P8W—FT57M, 3P4W—FT58N, 4P8W—FT59P. All £2.95 each.
Stepper motor 48 steps/rev, 12V 0.13A per phase, 4-phase unipolar, 57g, working torque 8Nm max. ONLY £9.95 (FT37Q).
Driver chip for motor: SAA1027, data sheet and passives ONLY £3.75 (QY76H).

Professional Quality High Power Loudspeakers featuring:
- Virtually indestructible high-temperature voice-coil reinforced with glass-fibre.
- 100% heat overload tolerance.
- Advanced technology magnet system.
- Rigid cast alloy chassis.
- Linen or Plastiflex elastomer surrounds.
- 5-year guarantee (in addition to statutory rights).
Prices from £17.97
Send S.A.E. for our free leaflet XH625.

Top Ten Kits

1. (1) Live Wire Detector £2.95 (L6E1T)
2. (1) 75W Maplet Amp £15.95 (LWS1F)
3. (2) Toyota £10.99 (LW9R)
4. (4) Con Burglar Alarm £7.99 (LW7R6)
5. (9) Utopic Interruptor £7.99 (L1080E)
6. (10) Computer £9.95 (L5SG)
7. (8) Light Pen £9.95 (L151F)
8. (11) Symptom Drum Synth £12.95 (L6E81T)
9. (7) SW Amplifier £4.95 (L10EM)
10. (8) 2831 I/O Port £10.49 (LW7R6)

Over 100 other kits also available. All kits supplied with instructions. The descriptions above are necessarily short. Please ensure you know exactly what the kit is and what it comprises before ordering, by checking the appropriate Project Book mentioned in the list above.

Sounds Terrific

BIG CAT

More Choice In Multimeters

A new range of very high quality multimeters offering truly amazing quality at the price.
Pocket Multimeter, 16 ranges, 2,0000V DC/AC £6.95 (YJ00G).
M-102BZ with continuity buzzer, battery tester and 10A DC range, 23 ranges, 20,000V DC £14.95 (YI07H)
M-2020S with transistor, diode and LED tester and 10A DC range, 27 ranges, 20,000V DC £19.95 (YI08H)
M-5050E Electronic Multimeter with very high impedance FET input, 53 ranges, including peak-to-peak AC, centre-zero and 12A AC/DC ranges £34.95 (YI09K)
M-5010 Digital Multimeter with 31 ranges including 200V and 20mA DC/AC, FSD ranges, continuity buzzer, diode test, and gold-plated pcB for long-term reliability and consistent high accuracy (0.25% + 1 digit DCV) £42.50 (YI10L)

The Maplin Service

All in-stock goods despatched same day for all orders received before 2:00 pm. All our prices include VAT and carriage (first class up to 750g).
a 50p handling charge must be added if your total order is less than £5.00 on mail-order (except catalogue).

Phone before 2:00 p.m. for some day despatch.

1985 CATALOGUE

Pick up a copy now at any branch of W.H. Smith or in one of our shops. Price £1.35, or by post £1.75 from our Rayleigh address (quote CA02C).
All offers subject to availability. Prices firm until 10th August 1985.