EXTRA 8 PAGES!

LOW COST BBC SPEECH SYNTHESISER

HEART BEAT MONITOR

OSCILLOSCOPE SPECIAL OFFER!

New BBC FORUM
Industrial Soldering Equipment - for the discerning amateur

SEND FOR NEW CONCISE LEAFLETS

'K' SERIES
SOLDERING TOOLS
FOR ALL APPLICATIONS

- K1000 micro soldering
- K2000 general electronic soldering
- K3000 heavy duty soldering

• Small selection of AD-IRON® LONG LIFE SOLDERING TIPS suitable for all Adcola soldering irons.

101 ELECTRONIC
CONTROLLED
SOLDERING STATION

for precision soldering with accuracy suitable for use on MOS, FET etc.
240V input - 24V on tool.
Temperature range 120-420°C
Many extra features

ADCOLA ACCESSORIES
include:
SIDE CUTTERS

SNIPING NOSE PLIERS

PLUS
- Desoldering Braid
- Desoldering Guns
- Tip cleaners
- Soldering aids
- Lamps, Lenses etc

For a no obligation demonstration, please contact:
ADCOLA PRODUCTS LIMITED Gauden Road London SW4 6LH
Telephone Sales (01) 622 0291 Telex 21851 Adcola G
CONSTRUCTIONAL PROJECTS

HEART BEAT MONITOR by P. Leah .. 10
Digital readout of your heart beat
AUTO SHUT-DOWN MULTIPLE REGULATOR by Tom Gaskell BA(Hons) CEng MIEE .. 18
Monitor system for a three rail power supply
LOW COST BBC SPEECH SYNTHESISER by A. Foord 31
Effective speech synthesis for the Beeb
MODULAR AUDIO POWER SYSTEM—Part 2 by M. Tooley BA and D. Whitfield MA MSc CEng MIEE .. 40
Dummy Load; Pre-amp; Mixer and Tone Controls
NEPTUNE AND MENTOR ROBOTS by Richard Becker and Tim Orr 48
Part Seven: Commissioning and testing of Mentor

GENERAL FEATURES

SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons) CEng MIEE .. 17
Quad Supply and Line Monitor (UC 3903)
MARS ELECTRONICS by Richard Barron .. 22
Computer applications and control in industry
INGENUITY UNLIMITED ... 26, 50
Readers' circuit ideas
BBC MICRO FORUM by D. Whitfield MA MSc CEng MIEE .. 36
A scintillating cauldron of new ideas for BBC wizards
SPACEWATCH by Dr. Patrick Moore OBE .. 52
SEQUENTIAL LOGIC TECHNIQUES by M. Tooley BA and D. Whitfield MA MSc CEng MIEE .. 54
Part Six: De-multiplexing and time domain multiplexing

NEWS & COMMENT

EDITORIAL .. 7
NEWS & MARKET ... 16
PLACE .. 8

SCOPE OFFER .. 28

The INMOS CAD design system lays out and simulates VLSI circuits.
A designer instructs the system where a transistor, or other structure is to be placed, and the screen displays an appropriate layout, obeying the design rules. It also stops the designer from, for example, attempting to put two structures too close together.
Created for the design of INMOS' transputer the system is now available from Racal Redac as part of their CIEE electronics design and engineering package.

OUR APRIL ISSUE WILL BE ON SALE FRIDAY, MARCH 1st, 1985 (see page 35)
TANDEM BEAD CAPACITORS:

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>500pF</td>
<td>560V</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>500pF</td>
<td>360V</td>
<td>4, 5, 6</td>
</tr>
</tbody>
</table>

SILVER MICA (µf)

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>500pF</td>
<td>660V</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>500pF</td>
<td>560V</td>
<td>5, 6</td>
</tr>
</tbody>
</table>

CERAMIC Capacitors: 50V

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>500pF</td>
<td>560V</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>500pF</td>
<td>560V</td>
<td>5, 6</td>
</tr>
</tbody>
</table>

POLYSTYRENE Capacitors

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>500pF</td>
<td>560V</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>500pF</td>
<td>560V</td>
<td>5, 6</td>
</tr>
</tbody>
</table>

RESISTORS S.I. Packages: 7, 16, 25, 30, 47, 56, 100, 150, 220, 270, 330, 1k, 10k, 12k, 27k, 33k, 100k, 1M, 220k, 22M, 100, 50, 47, 22, 10, 6.8, 3.3, 1.5, 0.47, 0.33, 0.15, 0.1, 0.068, 0.033, 0.015, 0.01, 0.0068, 0.0033, 0.0015, 0.001.

LINEAR ICs

<table>
<thead>
<tr>
<th>Device</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM324</td>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>LM330</td>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>LM340</td>
<td>85</td>
<td>3</td>
</tr>
<tr>
<td>LM350</td>
<td>85</td>
<td>4</td>
</tr>
<tr>
<td>LM360</td>
<td>85</td>
<td>5</td>
</tr>
<tr>
<td>LM370</td>
<td>85</td>
<td>6</td>
</tr>
</tbody>
</table>

COMPUTER ICs

<table>
<thead>
<tr>
<th>Device</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS299</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>LS297</td>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td>LS296</td>
<td>125</td>
<td>3</td>
</tr>
<tr>
<td>LS295</td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td>LS294</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

TRANSDUCERS

<table>
<thead>
<tr>
<th>Device</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF439</td>
<td>106</td>
<td>1</td>
</tr>
<tr>
<td>BF438</td>
<td>106</td>
<td>2</td>
</tr>
<tr>
<td>BF437</td>
<td>106</td>
<td>3</td>
</tr>
<tr>
<td>BF436</td>
<td>106</td>
<td>4</td>
</tr>
<tr>
<td>BF435</td>
<td>106</td>
<td>5</td>
</tr>
</tbody>
</table>

VAT

Export orders no VAT. U.K. customers please add 15% VAT to total cost incl. p&p. VAT invoice on request. It is advisable to check VAT at time of ordering. VAT rates subject to change.

POLYESTER RADIALLY STYLE CAPACITORS

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>500pF</td>
<td>560V</td>
<td>1, 2, 3, 4, 5, 6</td>
</tr>
<tr>
<td>500pF</td>
<td>560V</td>
<td>7, 8</td>
</tr>
</tbody>
</table>

POLYSTYRENE Capacitors

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>500pF</td>
<td>560V</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>500pF</td>
<td>560V</td>
<td>5, 6</td>
</tr>
</tbody>
</table>

CERAMIC Capacitors: 50V

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>500pF</td>
<td>560V</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>500pF</td>
<td>560V</td>
<td>5, 6</td>
</tr>
</tbody>
</table>

**RESISTORS S.I. Packages: 7, 16, 25, 30, 47, 56, 100, 150, 220, 270, 330, 1k, 10k, 12k, 27k, 33k, 100k, 1M, 220k, 22M, 100, 50, 47, 22, 10, 6.8, 3.3, 1.5, 0.47, 0.33, 0.15, 0.1, 0.068, 0.033, 0.015, 0.01, 0.0068, 0.0033, 0.0015, 0.001.

LINEAR ICs

<table>
<thead>
<tr>
<th>Device</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM272</td>
<td>106</td>
<td>1</td>
</tr>
<tr>
<td>LM271</td>
<td>106</td>
<td>2</td>
</tr>
<tr>
<td>LM270</td>
<td>106</td>
<td>3</td>
</tr>
<tr>
<td>LM269</td>
<td>106</td>
<td>4</td>
</tr>
<tr>
<td>LM268</td>
<td>106</td>
<td>5</td>
</tr>
</tbody>
</table>

COMPUTER ICs

<table>
<thead>
<tr>
<th>Device</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS299</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>LS297</td>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td>LS296</td>
<td>125</td>
<td>3</td>
</tr>
<tr>
<td>LS295</td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td>LS294</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

TRANSDUCERS

<table>
<thead>
<tr>
<th>Device</th>
<th>Value</th>
<th>Footnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF439</td>
<td>106</td>
<td>1</td>
</tr>
<tr>
<td>BF438</td>
<td>106</td>
<td>2</td>
</tr>
<tr>
<td>BF437</td>
<td>106</td>
<td>3</td>
</tr>
<tr>
<td>BF436</td>
<td>106</td>
<td>4</td>
</tr>
<tr>
<td>BF435</td>
<td>106</td>
<td>5</td>
</tr>
</tbody>
</table>
Mail order & shops:
441 PRINCES ROAD, DARTFORD, KENT DA1 1RB
Telephone: (0322) 91454

ORDERING INFORMATION: P/P 50p on orders less than £20 in value otherwise post free. All components full spec & guaranteed. Discounts available on orders over £50 — phone for details. For unlisted components phone for price. Goods normally despatched by return post.

NEW CATALOGUE NOW AVAILABLE CONTAINING THOUSANDS OF LINES MANY ILLUSTRATED

This incredible volume contains everything required by the home constructor, amateur radio and CB user and computer enthusiast.

We think the semiconductor section contains more types than have ever been offered to the hobbyist.

Sections are headed as follows:
- Aerials, Amplifiers, Audio Accessories
- Batteries, Boxes, Bulbs, Capacitors
- Crystals, Car Components, Car Audio

In addition to listed items we continue to provide a procurement service for obsolete and difficult to obtain types.

How many suppliers do you have at the moment that offer a service like this?

Please fill in coupon below and send with £1.25. Print clearly as coupon is used as address label.

Catalogue contains £2.50 discount order form — You make a profit straight away.

NAME

ADDRESS

POSTCODE

FREE DATA CARD!

Shows where to find voice, morse, teleprinter and slow-scan television in the HF amateur bands.

PLUS NEW SERIES

AMATEUR TELEVISION

A practical approach to transmission and reception on the 23/24 cm. band.

NEW CATALOGUE NOW AVAILABLE CONTAINING THOUSANDS OF LINES MANY ILLUSTRATED

This incredible volume contains everything required by the home constructor, amateur radio and CB user and computer enthusiast.

We think the semiconductor section contains more types than have ever been offered to the hobbyist.

Sections are headed as follows:
- Aerials, Amplifiers, Audio Accessories
- Batteries, Boxes, Bulbs, Capacitors
- Crystals, Car Components, Car Audio

In addition to listed items we continue to provide a procurement service for obsolete and difficult to obtain types.

How many suppliers do you have at the moment that offer a service like this?

Please fill in coupon below and send with £1.25. Print clearly as coupon is used as address label.

Catalogue contains £2.50 discount order form — You make a profit straight away.

NAME

ADDRESS

POSTCODE
OPTO 7-SEGMENT Displays

Brand new 1st Quality

LITRONIX

- **Model**: D7R 74-14-pin
- **Current**: 6.3 mA
- **Common Anode Display**

OPTOCOUPLED MODULES

A selection of large and small LED's in various shapes, sizes & colours, together with 7 Segment Displays in both anode & cathode plus photo transistors emitters and Detectors. Cadmium Cell ORP12 and Gerb photo transistors PCP14/PCP15 included in all £12 Normal Price, Order No. VP57.

SEMICONDUCTORS FROM AROUND THE WORLD

100 A collection of Transistors, Diodes, Rectifiers & Bridges, SCR's, Triacs, I.C's & Opto's all of which are currently available, Four Leaded, Guaranteed Value £10 Normal Price. Data etc. in each pack. Order No. VP65.

TECASBOTY

- **The Electronic Components and Semiconductor Bargain**
- **Description**: This collection of Components and Semiconductors for the hobbyist is probably the most value-packed selection ever offered, it consists of Resistors, Carbon and wire wound of various values, Capacitors, All types, sorts and sizes including electrolytics, Potentiometers – single, dual, slider and preset, Switches, fuses, Heat sinks, Wire, P.C.B., Plugs, Sockets etc. A PLUS selection of Semiconductors for everyday use in popular Hobby Projects. These include: SCR's, Diodes, Rectifiers, Triacs & Bridges as well as a first class mix of mixed transistors and I.C's. I.C's in all, we estimate the value of this in current retail catalogues to be £250! So, help yourself to a real surprise bargain. Time Box Toddle - 24hr Answerphone Service. ORDER NOW, Order No. VP 86.

ANTENNA COUPLER

Transceive/garo antenna coupler with coaxial cables, Or coaxial terminators in useful, expandable, Gau plug and the Opto's in PCP14 & Data.

POWER SUPPLY

- **Our Price £3.75**
- **Power supply fits directly into 13 x 20cm Soldering Iron with safety Polarized reversing socket. Volt--
- **age switch. Lead with multi plug connector.**

IC BARGAINS

- **40 Assorted TTL CMOS Integrated Circuits X Series & CD4000 Series**
- **New All Guts**
- **Tape Recorder Switch**
- **Use your own credit card.**
- **Send your orders to Dept BPI BIA-PC PO BOX 6 BIA-WARES 1710 Suspension Switches, Accessory BARGAIN: Are all included, Tape Flaps, M.S. etc. GREAT VALUE Data Book and Sheeted includes. 40 Pieces (Our exclusive £4.10)

TAPES

- **Use the credit card.**
- **Send your orders to Dept BPI BIA-PC PO BOX 6 BIA-WARES**
- **Site under plug with £10.00 or 50c if you refuse**
- **Remember you must add VAT at 15% to your order**
TOP QUALITY . . . TOP SERVICE

For FREE CATALOGUE send 9 x 6" SAE - contains full list of stock range all at very competitive prices. Cash with order (except account customers). Access or Barclaycard telephone orders welcome. Add 75p p&p + 15% VAT to all UK orders. Overseas customers add £2.75 p&p Europe, £6.50 elsewhere. Giro No. 52931402. Goods by return subject to availability. Shop open 9am - 5pm (Mon-Fri). 10am - 4pm Sat. ALL PRICES EXCLUDE VAT.

MICROPROCESSOR TIMER KIT

Designed to control up to 4 outputs independently, turning on and off at preset times over a 7-day cycle. LED display of time and day, easily programmed via 20 way keyboard. Ideal for heating control including different switching times for weekend/Battery back up circuit includes 16 time settings.

CT6000K

£39.00

XX 114. Relay Kit for CT6000 includes PCB, connectors and one relay. Will accept up to 6 relays. 3A/240V DC contacts £3.90

701 115 Additional Relays £1.65

ELECTRONIC LOCK KIT

With hundreds of uses indoors, garages, car anti-theft devices, electronic equipment etc. Only the correct easily changed four digit code will open the door with a S15V DC supply. Output 750mA. Fits onto standard electrical wall box. Complete kit (except front panel).

RX 110 Lock Mechanism for use with existing door lock and the above kit. Requires a 12V AC/DC supply. (RX 110) £27.00

HOME LIGHTING KITS

These kits are designed to replace a standard wall switch, control up to 300 of lighting.

TDR300K Remote Controlled Light Dimmer £14.95

MK 6 Transmitter for above £4.50

TDR300K Tough Dimmer £7.75

TSD30K Touch Switch £7.75

TDE3K 2 Way extension kit £2.50

TDE3K Rotary controlled Light Dimmer £3.95

DISCO LIGHTING KITS

DL1000K This value for money 4-way chaser features bi-directional sequential and dimming 1W per channel £15.95

DLS1000K A 4-way chaser independent of the version above. Zero switch to reduce interference. £8.35

Optional output allow audio 'beat' / light response (DLS111). DL3000K - 3-channel sound to light kit features complete control, automatic level control and built-in mic phone. 14W per channel £12.95

DVM/ULTRA SENSITIVE THERMOMETER KIT

Based on the ICs 7102 and a 3-digit liquid crystal display, this kit will form the basis of a digital multimeter with a few additional resistors and switches are required - details supplied. An advanced digital thermometer (-90°C to +150°C) reading 0.1°C. The kit has a sensitivity of 200mV per decade leading automatic polar and overload indication. Typical battery life of 2 years (6P2) £15.50
CHIPS FOR EVERYONE

IN JUST a few short months the chip suppliers have seen the market change from one where demand outstripped supply to one where they are laying off staff and shelving immediate development plans because there are now chips for everyone. While this is good for present users since it has resulted in the reduction of chip prices (although with the present pound to dollar ratio, these reductions are unlikely to show in the UK as most components are priced in dollars for sale around the world) the situation is worrying for the progressive future of high technology in general.

Over recent months up to 3,000 workers have been laid off by chip manufacturers in America and development planned for a semiconductor plant in Scotland has been shelved. These cut backs are a direct result of the supply and demand situation; fortunately many of the manufacturers are indicating that their long term development plans are not being significantly changed. For instance NEC (a Japanese company) is planning to expand its Scottish factory and Hughes Microelectronics are also planning investment in Scottish plant.

The industry in general invests massive amounts of money in the development of new production methods, larger wafers, new base materials, bigger chips and improved plant. Without the continuing profitable massive sale of chips that investment in future product cannot continue. The semiconductor industry is in the doldrums and the fifth generation is possibly staying out of reach because of it.

FUTURE

We do of course still have Sir Clive who is promising wafer scale chips from his research centre; perhaps he will sell even more computers if chip prices fall this year. Interestingly Sir Clive may make more profit because of the supply/demand situation and it may be that he invests that profit in the future of the industry, rather than the chips makers. Of course he will need a manufacturer to build the chips since it is highly unlikely that Sinclair will buy or build the necessary factory. Provided someone in the business is prepared to invest development should continue. That ability to invest may also be tied up with the future sales of the C5 vehicle!

Wafer scale chips will probably play a very important role in our future which seems to be tied up with fifth generation and the massive industrial advantage it could bring. One company has already shelved wafer scale development because of the massive costs involved.
Let Battle Commence

The arrival of cellular radio in the UK this year could be said to be the thin end of a wedge that will soon provide pioneering business people, commercial enterprises and the 'well off' with a carphone or portable handset. The thick end of that wedge will eventually put us all within reach of such communicative luxury—when prices fall or market saturation convinces us all that we cannot live without one!

Last year the Government granted 25 year licences to the two operating networks—British Telecom/Securicor with their Cellnet system and Racal with their Vodaphone system. The licences stipulate that each operator must have sufficient transmitter coverage to accommodate 90 per cent of the UK population by the end of the decade.

In marketing their respective wares the two organisations have appointed many well established retail outlets, who will sell, lease, install and connect the hardware. The AA for instance are one of Vodaphone's distributors who with their membership of 5·6 million motorists have a ready made clientele of potential carphone customers. Another interesting appointment is that of Granada by Cellnet. They will deal through their massive chain of High Street shops which lengthened last year when they bought out Rediffusion. Prospective roving operators will be able to get hands-on experience at these outlets.

The cost of the various options will vary, those quoted here therefore should be treated as indicative; they pertain to the Cellnet price structure.

A Class 1 carphone will cost around £1500 if bought outright, this includes installation and connection. To lease such a unit would cost around £60 per month, this includes a £25 per month subscription charge.

A portable unit will cost around £3000, to lease such a unit will be around £80 per month including the subscription charge.

Call charges will be 25 pence per minute during peak periods and 15 pence per minute at other times.

The principle of cellular radio lies in the constant re-use of radio frequencies by utilising small adjacent cells each containing its own transmitter. This principle represents a revolution in mobile communications. Cells vary in size from one to two kilometres across in urban areas to far larger cells in rural areas where demand is lower. As a user travels from one cell to the next his call is automatically transferred to the new cell's frequency without any interruption. The original cell, as a result, becomes free for the use of other subscribers. All of this allows the network to support a far greater number of simultaneous calls than any current system.

For further reading see 'Cellular Radio' Practical Electronics, Jan '85; and 'Leading Edge' in this issue.

NEW SHOP FOR SKYBRIDGE

Skybridge Ltd., have announced the opening of their new shop in Dartford, Kent.

Their product range includes the usual discreet components, which are stocked in depth, with the general product range being divided into categories. They include Audio and Electronics; Home radio; Computer; RC; Servicing; test equipment, etc. In many cases several options of the same product are available enabling cost conscious buyers to stick to a budget.

Customers at the shop can consult a technical library covering subjects from component data to constructional information; helpful advice is also on hand. A catalogue is presently being compiled so that a mail order service can be introduced. Skybridge Ltd can be found at 441 Princes Road, Dartford, Kent (0322) 91454.

DESIGN PCB

There are many avenues open to the constructor who wishes to develop prototype circuits quickly and economically, stripboard and plug-in blocks being a couple of obvious examples. A quite new option has now been developed by UK based E & H Electronics.

Protocard is a pcb measuring 210 x 100mm which houses six, 16 pin d.i.i. sockets whose pins are routed to large area solder pads. These extra large pads allow components to be poled easily onto their surface for quick assembly of prototype circuits. There are also eight transistor pads on the board. Each i.c. is marked with a pin location, and supply tracks, signal tracks, etc., run the full length of the board.

Once the circuit has been proven the board can be stripped and used again. Admittedly, a rather self-indulgent aid for the true amateur, but nevertheless a very handy item.

Protocard costs £5.50 inc. VAT and p & p; it is supplied with 10 circuit planning cards and a small quantity of equipment, wire and solder. From E & H Electronics, 33 North Street, Keighley, West Yorkshire BD20 3SL (0535 44103).
TV Switch

For use in the fast growing number of homes where the family TV set is now the heart of an increasingly complex array of electronic entertainment equipment, Ross Electronics have introduced their RF-170 television control centre.

Measuring 205 x 90 x 65mm, the centre provides instant selection of TV, video recorder, home computer, video game, Cable TV or additional VTR dubbing and monitoring facilities. It has inputs (1 phono, 5 co-axial sockets) which may be freely interconnected through a bank of six low-loss slide switches.

Supplied with a switching chart, the RF-170 retails at circa £31.95. Further details from Ross Electronics, 49/53 Pancras Road, London NW1 2QB. (01-278 6371)

Briefly...

The British Amateur Electronics Club (BAEC) is an amateur electronics club based in the UK, helping all who are interested in electronics. The key to the club's success lies in their quarterly Newsletter which contains many pages of circuits, advice, letters, news and exchanges etc. The club was formed in 1966 and now has many members from beginners to experts.

Membership for UK and Eire members is £7.00, overseas £8.50 (£12.50 air-mail). Please enclose remittance in sterling with a s.a.e. to: C. Bogod Esq., 'Dickens', 26 Forrest Road, Penarth, S. Glam. CF2 2BD

During 1983 Britain's exports to the USA were around £83 million and it is expected the final 1984 figure will be around £112 million. Furthermore City brokers estimate, at present pound/dollar levels, an additional £4 billion worth of business could be won this year. This would mean that the UK visible exports to the USA could be said to have tripled in five years. High quality manufactured goods such as Jaguar cars and Wedgewood china have spearheaded this trend.

A progressive application of i.c.d. technology has been adopted by Nissan for their new car, the Laurel. Its rear view mirror has an automatic feature that protects the driver from headlamp reflections. The front of the mirror is covered by an i.c.d. which is normally transparent. A photosensor in the casing detects the excessive light and activates the i.c.d. which darkens, thus reducing the dazzle.

According to Computing, the Newspaper, Acorn Computers is withdrawing from the education market in the USA. Their hopes of capturing 10 per cent of the market were dashed following approval delays from the Federal Communications Commission. A further spanner in their works was the BBC micro's lack of success against Apple.
There are a wide variety of methods to measure beats of the heart from feeling the pulse in one's wrist to monitoring the differences in electrical potential through the body using an electrocardiograph. Such methods have their advantages and disadvantages. The primary disadvantage of all these methods is that they involve direct contact to the body and consequently impose a safety hazard if any mains operated electrical equipment is associated with the heart beat measurement. In this particular design of a heart beat monitor, light from a 12V bulb is shone through the finger onto a photodiode.

As there are no electrical contacts to the body, this method of pulse detection is inherently very safe. Each time the heart beats, a surge of blood is sent through the body which increases the density of the small fleshy parts of the body, particularly the fingers. Consequently the light passing through a finger will vary at each heart beat, and this variation is detected by the photodiode. The output from the photodiode is amplified in a detector circuit to provide a CMOS compatible pulse each time the heart beats.

In this particular design, the photodiode and 12V bulb are mounted on opposite sides of a 1 inch diameter plastic tube which is secured in an instrument case. For measurements to be taken, the finger is inserted into the plastic tube until it covers the photodiode and is held steady.

As a digital readout is preferred to an analogue one, the time between successive pulses from the detector is accurately measured and digitally converted into beats per minute which are subsequently displayed on a 3 digit I.E.D. display. The display is latched for approximately 3 seconds before being updated by the next measurement.

General Principle

A conventional frequency measurement technique of merely counting the pulses from the detector over a known time period cannot be used when measuring the relatively slow time periods associated with heart beats. Even a fast heart rate such as 150 beats per minute would take at least 8 seconds to obtain an accurate reading. A low heart rate of around 60 beats per minute would take around 20 seconds to obtain an accurate reading. Consequently a novel, but simple measurement and conversion technique has had to be used which avoids the need for sophisticated devices such as microprocessors.

The block diagram of the unit is shown in Fig. 1. The output from the detector circuit to the main unit initially measures the time interval between three successive output pulses from the detector. Assuming that the detector is monitoring heart beats at 60 beats per minute, the time interval between three successive pulses is 2 seconds.

Counter A is enabled for this period and is subsequently clocked from an 83.3Hz clock train. Hence, 166 will be counted and stored in the Counter A. The output from this counter is used to preset counter B to 166. Exactly 10,000 pulses are then passed into the presettable counter B. The output pulses from this counter of 10,000/166 = 60 are then counted and stored in the display counter before being displayed on the I.E.D. display. The 83.3Hz clock pulse and 10,000 pulse train generator are derived from an accurate 100kHz oscillator.

Detector Circuit Description

The detector circuit, shown in Fig. 2, comprises four operational amplifiers connected in series. A dual op amp (CA3240) IC1 was chosen for the initial amplification because of its relatively low noise and high impedance FET input. IC1a is connected as a simple amplifier which amplifies the variations in reverse leakage current through photodiode D3. The greater the intensity of light shining on the diode, the greater will be the reverse current through the diode. Resistor R17 provides additional bias current in order to ensure the output voltage of IC1a remains within the active region of the amplifier, even under extreme conditions of illumination. Resistor R13 is the feedback resistor for IC1a. Under direct illumination from the 12V bulb, the output of IC1a at pin 1 will be at almost 0V and will change to about 5.5V when placing a finger in front of D3. This output voltage is connected via resistors R19, R18 and C9 to the second operational amplifier IC14b.

This amplifier is connected as a second order, low pass filter with a cut off frequency of 15Hz, so that any mains frequency interference of 50Hz or 100Hz is attenuated. The output from this filter is coupled via C10 to another amplifier IC14a, which is connected as a straightforward, non-inverting, amplifier with a gain of approximately 50. The output from this amplifier is connected to IC1b via resistors R24 and R25. This amplifier is connected with positive feedback by connecting R26 between the amplifier output at pin 7 of IC1 and its positive input at pin 5. This feedback ensures the amplifier output voltage switches almost between the supply rails Voo and OV. Also, it ensures that the amplifier will switch between states at very small differences in input voltage, and will remain in the state to which it has switched, similar to a Schmitt trigger. As R24 and R25 are identical the current flowing through these resistors into pins 5 and 6 of IC1b will be identical. However, an additional current will flow into pin 5 from the output pin 7 via R20. Hence, if the amplifier output is at Voo, pin 5 will be positive with respect to pin 6. A sudden change in light intensity impinging on the photodiode D3 will cause a rapid drop in
voltage at pin 1, the output of IC1a. This fall in voltage will also appear at pin 5 of IC1b but due to the capacitor C12, pin 6 will be slower to respond to the voltage change. Consequently pin 5 will go negative to pin 6 and the amplifier output will switch states to OV. Due to the positive feedback described earlier, the output of IC1b will remain at OV until a positive going voltage appears at the output of IC1a.

Before connection to the Main Unit, the output pulse from IC1b is connected via the CMOS monostable of IC13a and IC13b. The amplification circuit is very sensitive, and the monostable ensures double switching does not occur, as the output pulse from the monostable is approximately 80 ms.

Resistors R15 and R16 provide a voltage divider chain which supplies VDD/2 for the bias voltage required for the operational amplifiers. C6 and C7 are supply decoupling capacitors.

MAIN UNIT CIRCUIT DESCRIPTION

The conversion and display circuits on the Main Unit are shown in Fig. 4 with CMOS being used throughout. The output pulse from the detector is initially buffered by NOR gate IC2a, before clocking the binary counter IC6a. During the time interval between the 3rd and 5th pulse from the detector, pin 4 of IC6a will be in the high state.

The signal from pin 4 IC6a is used to enable counter IC7. After the fifth pulse from the detector, pin 5 of IC6a will be in the high state and inhibits further counting of IC6a.

IC7 is also a binary counter in which the two counters are cascaded together to form an 8-bit binary counter. IC7 counts and stores the number of pulses from an 83.3-Hz pulse train that can be counted during the time the counter is enabled from IC6a. The 8-bit parallel output from IC7 is immediately preset into the presettable down counter IC8.

The 83.3-Hz train is derived from a 100 kHz oscillator comprising IC11a and IC11d. The oscillator can be varied by adjusting VR1 to compensate for component tolerances.

IC11c buffers the oscillator output before connection to IC3, a dual decade counter. These counters are connected in series to provide an output of 1 kHz which is connected to IC4b. This counter divides the pulse train by six, using gates IC12c and IC12d. The 166.7 Hz pulse train from IC4b pin 13 is connected to IC6b where it is divided by 2 to obtain the 83.3-Hz clock, required at the clock input of IC7.

The 1 kHz pulse train from IC3 is divided further by decade counter IC4a to produce 100 Hz, and by decade counter IC5a to produce 10 Hz at pin 6 of IC5. IC5 is only enabled after the 5th pulse from the detector has been received and counted by IC6, and IC7 has consequently counted and stored the 83.3-Hz pulses as explained earlier. Initially all outputs from IC5 are at zero. When enabled, pin 5 will eventually change to high which clears the old preset number in IC8 and clears the display counter at IC9. Approximately 1 second later pin 11 of IC5 goes high which inhibits the 'clear' output of pin 5 via the NAND gate IC12b. The output from pin 11 of IC5 is a pulse train of 5 Hz having an equal
mark to space ratio. Hence, logic level 1 appears for exactly 100ms which is the exact time it would take 10,000 pulses to be counted from a 100kHz clock. This 100ms pulse enables IC8 while the 100kHz clock pulses from IC11c clock IC8. The resulting pulse train output from IC8 is clocked into IC9 to be counted and displayed. The falling edge of the 100ms enable pulse activates the reset monostable comprising IC2c and IC2d. The resulting reset pulse of approximately 3 seconds duration, resets counters IC5, IC6 and IC7, while inhibiting further counting during those 3 seconds. After the three second period has elapsed a further measurement may commence and the whole cycle will repeat.

IC9 is a three digit BCD counter which provides a multiplexed output, ideal for use with I.e.d. displays. The four BCD outputs are connected to IC10 a BCD-seven segment decoder driver which drives the I.e.d. displays X1, X2, X3 directly via current limiting resistors R6 to R12. The digit driver transistors TR1, TR2 and TR3 operate directly from the digit select outputs of IC9 to switch on the displays as appropriate.

The decimal point of all digits are commoned to provide an indication that a pulse is being received from the detector. If the decimal points are not illuminated it is an indication that no pulses are being received from the detector. Its usefulness will become evident when actually measuring heartbeats. Resistors R3 and R5 are the bias resistors for

Fig. 4. Circuit diagram of the Main Unit
Components

Resistors

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2</td>
<td>4 kΩ (2 off)</td>
<td>2 of f</td>
</tr>
<tr>
<td>R3, R21, R26</td>
<td>100 kΩ (3 off)</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>390 kΩ</td>
<td></td>
</tr>
<tr>
<td>R5, R15, R16</td>
<td>1 kΩ (2 off)</td>
<td></td>
</tr>
<tr>
<td>R20, R22</td>
<td>1 kΩ (5 off)</td>
<td></td>
</tr>
<tr>
<td>R6-R12</td>
<td>680 Ω (7 off)</td>
<td></td>
</tr>
<tr>
<td>R13, R14</td>
<td>1 MΩ (2 off)</td>
<td></td>
</tr>
<tr>
<td>R17, R27</td>
<td>1 kΩ (5 off)</td>
<td></td>
</tr>
<tr>
<td>R18, R19</td>
<td>18 kΩ (2 off)</td>
<td></td>
</tr>
<tr>
<td>R23</td>
<td>47 kΩ</td>
<td></td>
</tr>
<tr>
<td>R24, R25</td>
<td>2 kΩ (2 off)</td>
<td></td>
</tr>
<tr>
<td>R28</td>
<td>150 Ω</td>
<td></td>
</tr>
<tr>
<td>R29</td>
<td>390 Ω</td>
<td></td>
</tr>
</tbody>
</table>

All resistors are ±W carbon.

Capacitors

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>680 pF poly styrene</td>
<td>680p polystyrene</td>
</tr>
<tr>
<td>C2</td>
<td>10 μF 16V tant</td>
<td>10 μF 16V tant</td>
</tr>
<tr>
<td>C3</td>
<td>1 nF ceramic</td>
<td>1n5 ceramic</td>
</tr>
<tr>
<td>C4, C5</td>
<td>10 nF ceramic</td>
<td>10n polyester (2 off)</td>
</tr>
<tr>
<td>C6, C7, C16</td>
<td>47 μF 16V tant (3 off)</td>
<td>47μ 16V tant (3 off)</td>
</tr>
<tr>
<td>C8</td>
<td>1 μF ceramic</td>
<td>1n ceramic</td>
</tr>
<tr>
<td>C9</td>
<td>2 μF polyester</td>
<td>2μ2 polyester</td>
</tr>
<tr>
<td>C10</td>
<td>220 μF polyester</td>
<td>220n polyester</td>
</tr>
<tr>
<td>C11</td>
<td>1 μF polyester</td>
<td>1x polyester</td>
</tr>
<tr>
<td>C12</td>
<td>2 μF 16V tant</td>
<td>2μ2 16V tant</td>
</tr>
<tr>
<td>C13</td>
<td>100 μF polyester</td>
<td>100n polyester</td>
</tr>
<tr>
<td>C14, C15</td>
<td>1500 μF 25V elect (2 off)</td>
<td>1500μ 25V elect (2 off)</td>
</tr>
</tbody>
</table>

Semiconductors

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1, D2</td>
<td>1N4001 (2 off)</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>IPL 33 photodiode</td>
<td></td>
</tr>
<tr>
<td>TR1, TR2, TR3</td>
<td>2N3702 (2 off)</td>
<td></td>
</tr>
<tr>
<td>TR4</td>
<td>BC109</td>
<td></td>
</tr>
<tr>
<td>IC1</td>
<td>CA3240E dual JFET op amp</td>
<td></td>
</tr>
<tr>
<td>IC2, IC13</td>
<td>4001 quad NOR gates (2 off)</td>
<td></td>
</tr>
<tr>
<td>IC3, IC4, IC5</td>
<td>4518 dual BCD counter (3 off)</td>
<td></td>
</tr>
<tr>
<td>IC6, IC7</td>
<td>4520 dual binary counter (2 off)</td>
<td></td>
</tr>
<tr>
<td>IC8</td>
<td>40103 256 presetable counter</td>
<td></td>
</tr>
<tr>
<td>IC9</td>
<td>4553 3 digit counter</td>
<td></td>
</tr>
<tr>
<td>IC10</td>
<td>4511 7 segment display driver</td>
<td></td>
</tr>
<tr>
<td>IC11, IC12</td>
<td>4011 quad NAND (2 off)</td>
<td></td>
</tr>
<tr>
<td>IC14</td>
<td>747 op amp</td>
<td></td>
</tr>
<tr>
<td>IC15</td>
<td>LM340K + 5V regulator</td>
<td></td>
</tr>
<tr>
<td>X1, X2, X3</td>
<td>I.e.d. 7 segment display (3 off)</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>s.p.d.t. miniature toggle switch</td>
</tr>
<tr>
<td>VR1</td>
<td>1k miniature hor. preset</td>
</tr>
<tr>
<td>T1</td>
<td>9-0.9V transformer 0.5A</td>
</tr>
<tr>
<td>Spartolight map light (Halfords)</td>
<td></td>
</tr>
<tr>
<td>Single sided p.c.b. 100 x 120mm and 125 x 125mm</td>
<td></td>
</tr>
<tr>
<td>0-1" stripboard 1" x 0.4"</td>
<td></td>
</tr>
<tr>
<td>Instrument Case 220 x 174 x 100mm</td>
<td></td>
</tr>
<tr>
<td>Red perspex filter 25 x 85mm</td>
<td></td>
</tr>
<tr>
<td>Various 4BA and 6BA mounting nuts and bolts</td>
<td></td>
</tr>
<tr>
<td>Interconnection wire 0.4mm and 0.6mm</td>
<td></td>
</tr>
<tr>
<td>Co-ax cable (150mm length)</td>
<td></td>
</tr>
<tr>
<td>Soldercon pins or d.i.i. holders</td>
<td></td>
</tr>
</tbody>
</table>

Practical Electronics, March 1985
TR4, the decimal point drive transistor. Capacitors C4 and C5 are decoupling capacitors.

POWER SUPPLY

The unit requires a regulated power supply of 180mA at around 8V d.c. to drive the logic and detector circuits, and around 300mA at 12V d.c. for the lamp. The p.s.u. circuit diagram is shown in Fig. 3. Briefly this comprises an 18V centre tapped transformer which is full wave rectified by diodes D1 and D2 to provide a peak voltage of 12V. This is smoothed by reservoir capacitors C14 and C15 before connection to the 5V regulator chip IC15. Any variable or +5V regulator i.c. which provides at least 500mA will suffice. The resistors R28 and R29 effectively boost the output voltage to around 8V, yet maintain regulation. Good regulation of the supply is necessary to prevent noise on the supply rail being picked up by the detector, and to ensure that the 100kHz oscillator remains within tolerance. The power to the 12V lamp is taken directly from the two 15,000µF microfarad capacitors C14 and C15. Such a high capacitance value is essential to reduce the ripple on the supply to the lamp to less than 800mV. Excessive ripple will cause variations in light intensity emitted by the lamp which will be detected by the photodiode and hence causes spurious readings.

PRINTED CIRCUIT BOARDS

Two printed circuit boards are required. The detector and power supply circuits were laid out on one p.c.b. while the Main Unit, containing the counters and display circuits, was laid out on the other. The component layout of the detector circuit p.c.b. is shown in Fig. 5 while the component layout of the counter and display p.c.b. is shown in Fig. 6. Particular care should be taken in placing the CMOS devices on the counter and display p.c.b. as the orientation of the chips varies. This was necessary to aid the track layout.

ASSEMBLY

The printed circuit board for the power supply and detector circuit is mounted directly on the base of the instrument case along with the mains transformer.

The positioning of the 1" diameter plastic tube, and the lamp to each other is critical however. It is essential that the lamp is held rigid in the instrument case as any movement, due to vibration etc., of the bulb will cause errors in the heart beat measurement. For this reason, a portable car map

Fig. 6. P.c.b. design for the Main Unit
reading lamp of the type sold by Halfords was chosen. Not only is it convenient to mount into the instrument case, but it has a bayonet style bulb which provides a superior light source. It is necessary to cut the bottom off the lamp holder in order to fit it into the instrument case, and to ensure the on-off switch is permanently 'on'. The lamp is secured by a 1" diameter vertical mounting capacitor clip, as shown in Fig. 7.

The plastic tube was cut so that it mounted directly onto the base of the case using a similar 1" diameter capacitor mounting clip as the lamp, and just protruded above the lid of the case. Hence the lid provides support against sideways movement of the plastic tube. The plastic tube must be mounted as close as possible to the lamp and immediately in front of it as shown in Fig. 7. Two holes should be drilled in the tube directly opposite each other. One hole of approximately 10mm diameter should be drilled in front of the lamp and the other of 4mm diameter should be drilled to mount the photodiode. It is essential that the photodiode is positioned exactly opposite the lamp.

The photodiode is mounted on a piece of Veroboard on which the screened cable to the detector circuit is terminated. The photodiode is then positioned in the 4mm hole in the plastic tube.

As the display circuit is mounted on the main p.c.b. it must be attached to the lid of the case using mounting holes drilled through the lid. A rectangular hole 13mm x 35mm must be cut into the lid for the display and should be backed by red perspex, araldited to the lid to emphasise the digits.

Further holes for the on-off switch and the mains cable must also be drilled.

TESTING AND SET UP

Testing and setting up the Monitor is greatly eased if an oscilloscope is available. Only the 100kHz oscillator needs to be accurately set up by adjusting VR1. This can simply be achieved by monitoring IC11c pin 10 and adjusting VR1 until a reading of 100kHz is obtained.

An initial test should show that, when the unit is first switched on, only the lamp is illuminated. This indicates the power supply is operating correctly. Moving a solid object such as a screwdriver in front of the photodiode should cause the decimal points of the display to illuminate each time the screwdriver moves across the photodiode. This indicates the detector circuit is operating correctly. Rapidly moving the screwdriver in front of the photodiode five or six times should cause a number to appear on the i.e.d. display. This indicates the counter and display circuit is operating correctly. The display will not automatically reset to zero, but will be retained until replaced by a subsequent reading.

If this sequence of events is detected the Monitor will be operating correctly and heart rate readings may be taken, after reading the Practical Considerations section.

FAULT FINDING

If the unit fails to operate correctly check for the obvious things first such as the correct voltage on the power supply. Next check the voltage levels at the output of the operational amplifiers. Check that the output of IC1a pin 1 and the output at pin 10 IC14 is approximately 5·5V when no light shines on the photodiode, and is approximately 0V when light from the 12V bulb shines directly on the photodiode. When actually measuring heartbeats, no detectable change in waveform will be apparent, however, at these outputs.

The output of IC14 pin 12 should be a 3·5 d.c. level with any light intensity shining on the photodiode, on which a 200mV pk-pk waveform should be superimposed when measuring heartbeats. The output of IC1 pin 7 should show 0V to 6·5V transitions at each heart beat.

If the counter/display circuit is suspected as being faulty, again check the power supply voltage, and then the os-
The three decimal points on the I.E.D. display will illuminate each time a heart beat is detected. Hence it should be obvious when the instrument is correctly detecting heartbeats, and any double switching etc. will be indicated by several quick flashes of these decimal points. If this condition is prevalent, move the finger to a new position or alternatively, use a different finger. Note it may take a few seconds for the Monitor to 'settle down' before regular readings are obtained.

If the three decimal points appear continuously illuminated, the detector circuit is picking up noise, and the IC1b monostable is continually being activated. As the monostable has an output pulse of approximately 80ms, pulses at 80ms intervals will be passed to the counter circuit. As this equates to 750 pulses per minute, readings on the I.E.D. display of 714 or 769 will occur. Such noise is probably caused by airborne interference as detected by the photodiode if a mains operated tungsten filament is shone directly at the photodiode.

The heartbeat monitor is accurate to within 1 beat per minute over the range 40 to 200 beats per minute. Below 40 beats per minute, the readings become random. Above 200 beats per minute, the quantisation error involved in digitally converting a time period measurement into a frequency measurement, becomes significant. Hence, accuracy decreases with increasing frequency.

FREE! READERS' ADVERTISEMENT SERVICE

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

LARGE quantity new components for sale. Resistors, capacitors, semiconductors. Also lots of magazines. PE, EE, ETI. John Rinaldi, 36a Durham Road, London SW20. Tel: 01-879 3439 (days)

FOR sale. Service manuals for Heathkit IM-230 voltmeter, GD-1U Gridip meter, HD-10 electronic keyer. £5 each. Mr. M. Small, 8 Cherry Tree Road, Chinnor, Oxon. OX9 4QY

WASP or other secondhand synth under £40 wanted. Mr. P. J. Andrews, 4 Watford Close, Cranley Road, Guildford, Surrey GU1 2EP. Tel: 0483 572705.

I AM interested in electronic music. Wanted circuit diagrams, manuals of drum machines, synthesisers, effects. Pawel Buczkowski, Emili Plater 28, 22, 00-113 Warszawa, Poland.

TEKTRONIX oscilloscope dual-trace 24 MHz. Good condition £130. Curve tracer for transistors £85. Marconi LCR bridge £75. Mr. T. J. L. Haley. Tel: 01-868 4231.

SATELLITE television 4GHz L.N.A. down converter, 2 metre/70cm transceivers, VDU terminal. Other equipment. SAE for full list. D. C. Chapman, 6 Pickhurst Green, Hayes, Bromley, Kent BR2 7Q7.

CIARIACIAS 280 build your own micro project. Anyone interested in forming a self help group contact: T. S. Houghton, Well Farm, Great Ouseburn, York YOS 9RQ. Tel: Green Hammer 30620.

HELP and advice needed on equipment required for recording 78 RPM acoustic records to acceptable quality. R. Newsome, 50 Carn Bosavern, St. Just, Penzance. Cornwall TR19 7OX. Tel: Penzance 787111.

UK101 64K memory basic X basic 5 C Jenny via board drive vertex operated word wizard disc £190. D. E. Melton, 35 Lyndhurst Road, London E4. Tel: 01-527 4492.

COMMODORE 64 computer with cassette and software. Original cost over £450. Will accept £200. Marwen E. Eisabab, Corpus Christi College, Oxford OX1 4JF. Tel: 0865 52500 (evenings).

WANTED transistor fundamentals volume I and II. Jack Anderson, 22 Landau House, Chatsworth Road, London NW2 4BW. Tel: 01-451 3093.

SOLARTRON CX 1444 sweep-delay X-amp. CX 1443 X-amp sub-unit. Both unused in original packagings with handbooks. Tel: 09358 23215.

WANTED any broken C.B.S, linear, transceivers, etc. Cash paid. Write to: A. Jordan, 23 Tyton Lane East, Boston, Lincs.

WANTED manual and circuit diagram for Hartley oscilloscope type CT436. Tel: 0303 42054.
MODERN electronic equipment is particularly sensitive to deviations from its normal power supply voltages. An excessively high voltage can often cause permanent damage, whereas a low voltage results in malfunction of the circuitry. The problem is compounded in multiple supply systems, where a low voltage on one supply rail can cause damage if another rail is held at the nominally correct voltage. A good example of this is in split rail supplies, where the loss of just one rail can cause damage to some types of op-amp. In order to help the designer avoid these problems, Unitrode have introduced a new I.C., the UC3903, which is intended for use as a supply voltage monitor in multiple supply rail systems.

BLOCK OPERATION

The block diagram of this I.C. is shown in Fig. 2. Essentially, it is a quad window detector capable of monitoring four voltages simultaneously. These four voltages are connected to the sense 1, 2, 3 and 4 inputs. The sense 4 input has an internal inverting op-amp provided which allows that input voltage to be either positive or negative, depending on the arrangement of external components used. Each sense input voltage is compared with two internally derived reference voltages, one which determines the over-voltage threshold, i.e. the maximum allowable limit of input voltages, and the other which determines the under-voltage threshold, which corresponds to the minimum allowable input voltage.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Notes</th>
<th>Minimum Value</th>
<th>Typically</th>
<th>Maximum Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (normal operation)</td>
<td>Spec’s measured at +15V supply unless otherwise stated</td>
<td>8</td>
<td></td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>No faults</td>
<td>6</td>
<td>11</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td>U.V., O.V., and line fault</td>
<td>10</td>
<td>18</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Supply Under Voltage Threshold</td>
<td>Below this supply voltage threshold, fault outputs are disabled</td>
<td>5.5</td>
<td>7.0</td>
<td>8.0</td>
<td>V</td>
</tr>
<tr>
<td>Minimum Supply to Enable ‘Power O.K.’</td>
<td>Output</td>
<td>3.0</td>
<td>4.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Reference Voltage V<sub>REF</sub> at 25°C (and see Fig. 4)</td>
<td>2.465</td>
<td>2.5</td>
<td>2.535</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Reference O/P Current</td>
<td>i.e. From pin 2, at 25°C</td>
<td>40</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Load Regulation</td>
<td>O/P current (pin 2) = 0 to 10mA</td>
<td>1</td>
<td>15</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Reference Line Regulation</td>
<td>Supply = 8 to 40V</td>
<td>1</td>
<td>8</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Open Collector Output Voltage</td>
<td>Pins 11, 12 and 14</td>
<td>40</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Open Collector Output Current (max)</td>
<td>Pins 11, 12 and 14, O/P = 2.0V</td>
<td>40</td>
<td>70</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Open Collector Saturation Voltage</td>
<td>Pins 11, 12 and 14, O/P current = 12mA</td>
<td>0.25</td>
<td>0.45</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Sense Input Bias Current (max)</td>
<td>Pins 6, 7, 8, 9 and 15</td>
<td>±1</td>
<td>±6</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Sense Input Voltage</td>
<td>Pins 6, 7, 8 and 9</td>
<td>−0.3</td>
<td>+20</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pin 15</td>
<td>−0.3</td>
<td>+40</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Pinout and specifications
under-voltage fault is detected, then the Power O.K. transistor is turned on, somewhat paradoxically showing that power is specifically not O.K.! To avoid false alarms, internal circuitry detects when the supply to the i.c. itself is at a low level (usually during turn on or turn off) and disables the outputs during this period. A separate line & switcher sense input is provided, which controls only the Power O.K. output to provide early warning of mains voltage or other power source failures. Finally, a 'general purpose' op-amp is provided to extend the flexibility of the i.c.; this is ideal for use when two negative supplies need to be monitored.

INPUTS AND THRESHOLDS

The four sense inputs have a permissible range of -0.3 to +20V, as can be seen in Fig. 1. In fact, the input circuitry includes a series 2k resistor and a 5.7V Zener diode to 0V, so at voltages above 5.7V the input impedance will be fairly low. This will rarely be a problem in practice because the i.c. is designed for a 'normal' input, i.e. a valid input voltage, of 2.5V. The input impedance at around this voltage is very high indeed, so the various voltages to be monitored can be scaled with potential dividers (or amplified externally if required) to the nominal 2.5V level.

The over and under-voltage thresholds are set by voltage reference circuitry within the i.c., in conjunction with a 'window adjust' voltage applied to pin 4. The effect of this can be seen in Fig. 3. At low window adjust voltages the fault window (in this case the range of 'acceptable' input voltages) is narrow, so the i.c. is very critical of errors in the sense input voltages.

At high window adjust voltages the fault window is wide, so the i.c. is very tolerant of variations in sense inputs. Typically, 1 volt on pin 4 will allow the inputs to vary by ±10% from nominal. Hysteresis prevents 'hunting' of the i.c. around the threshold points, and this is also shown in Fig. 3. Pin 4 is a fairly high impedance point so a simple pair of resistors can be used as a potential divider from the 2.5V reference output, pin 2. Incidentally, the voltage reference is ideal for use in other parts of the circuitry, if required. It has reasonable regulation, and tracks well with temperature as shown in Fig. 4. Furthermore, it has a high output current capability—typically 40mA.

NEGATIVE INPUTS

The sense 4 input of the UC3903 can be used as either a positive or negative voltage monitoring point. By connecting pin 5 to a high voltage the inverting op-amp output will be reverse biased, allowing pin 6 to behave as a perfectly normal sense input. However, if a resistor is connected between pins 5 and 6, and a negative voltage is connected to pin 5 via a second resistor, the op-amp will invert the negative voltage (with whatever gain or attenuation is set by the ratio of the resistors) and allow the sense 4 facility to monitor this positive derivation of the original negative.
The op-amp can source over 20mA of current, the first time since power was applied. Naturally, if driving inductive loads, dissipation for the whole IC poses in other parts of the circuitry.

OUTPUTS

The three outputs from the comparators section of the IC are all open collector transistors. Hence, to get a voltage swing out of these outputs a pull-up resistor to a positive supply will be needed in each case. All the transistors can switch 40mA or more, so they are ideal for directly driving relays or indicators. Total dissipation for the whole IC should be kept below 1W (at 25 degrees centigrade). Naturally, if driving inductive loads, protection diodes should be added between the IC's outputs and the load's positive supply rail.

The UC3903 is provided with sophisticated protection against erroneous outputs during power-up and power-down. Until the IC's own supply has risen above a supply under-voltage threshold (between 5.5 and 8.0V) all the outputs are disabled, and the start-up latch is reset. The latch prevents any under-voltage fault being signalled until all the sense inputs have gone above their under-voltage thresholds for a first time since power was applied. When they have all gone above the threshold the first time, the latch is set, and normal operation of the U.V. Fault output can begin. This has all been designed to allow for slow-starting or supply sequencing, but should be borne in mind if immediate response to under-voltage conditions, when power is first applied, is required.

The line/switcher sense input is a general purpose facility that directly affects only the Power O.K. output. No time delay is included, and its threshold is nominally 2.0V rather than the 2.5V used elsewhere. The Power O.K. transistor is turned on (i.e. power is NOT O.K.) when the line/switcher sense input drops to below this threshold. Its intended use is to allow the monitoring of voltage levels earlier on in a power supply system, either from the secondary of the mains transformer or from a power transformer in a switching regulator. In both these cases the waveform would have to be rectified (by a series diode), smoothed (capacitor and resistor to 0V) and attenuated prior to monitoring. The smoothing capacitor should be made as small as possible to allow fast reaction to any loss of power. This arrangement could allow the UC3903 to shut down other circuitry and systems before serious damage might be caused.

DELAYS

Both the under and over-voltage systems have a delay facility. This is activated by connecting capacitors from pin 10 and 13 to 0V. The effect is to delay the activation of the U.V. Fault or O.V. Fault outputs by a time of typically 50ms per microfarad. If the fault condition at the sense input is removed during the delay period then the delay is cancelled and no fault output is signalled. This arrangement allows for immunity against noise spikes on the supply causing spurious fault outputs. Leaving pin 10 or pin 13 open circuit provides the fastest possible response to fault conditions, but the least tolerance of noise on the supplies.

It is important to note that the delay circuitry was designed primarily to operate in the microseconds and small number of milliseconds range. Although fairly large capacitors can be used to give several seconds delay, they can cause the start-up latch to operate incorrectly. Specifically, the use of large capacitors results in under-voltage sense inputs triggering the U.V. Fault output (after the appropriate delay) directly after power-up, without having to first be taken above the under-voltage threshold as would normally be the case. (This is due to the inability of circuitry within the IC to charge up very large capacitors quickly enough.)

ADJUSTING WINDOWS!

Figs. 5 and 6 show techniques which can be used to alter an individual sense input's fault window. This can be necessary when just one particular input requires either tighter tolerance monitoring, as in the case of a precision reference, for example, or wider tolerance such as might be required for an unregulated supply.

The UC3903 is a very cleverly thought-out device, which is ideal for use in monitoring supplies in larger electronic systems. Its uses don't end there of course, as it makes an excellent general purpose window detector for many types of transducer input, giving warning of variations in liquid level, temperature, light level, etc., as appropriate. Other devices in the family are the UC1903 and the UC2903, which are functionally identical to the 3903 but feature extended temperature ranges and slightly better specifications.

AVAILABILITY

The UC3903 can be obtained from House of Power, Electron House, Cray Avenue, St Mary Cray, Orpington, Kent BR5 3QJ, or Thame Components, Thame Park Road, Thame, Oxfordshire.
+1.5V and +5V from unregulated +20V inputs. These are provided with the usual protection diodes and stability-maintaining capacitors. R11 and R12 tap down the +1.5V supply to a nominal +2.5V to feed into IC1, and likewise R13 and R14 feed IC3’s output to IC1. IC4 uses the sense 4 inverter, with R15 and R16 allowing, again, +2.5V to be present at pin 6 of IC1. Pin 8 is used to provide a push-button test facility, S1, which is not used, so is kept biased to the positive supply rail by R17, and the general purpose op-amp likewise is unused, so it is connected as a voltage follower (pin 16 is connected to pin 18), with the non-inverting input tied to VREF.

SHUTTING DOWN

The automatic shutting down is not a subtle affair, but it is effective! CSR1 and CSR2 are tests the effect of an under voltage at the sense 2 input. In normal use, sense 2 is biased to +2.5V by R20.

Resistors R18, R19 (two resistors keep the power requirement down) and D7 provide a ‘Power OK, i.e. d. facility. When the Power O.K. output transistor of IC1 turns on, current from R18 and R19 is sunk by IC1 pin 14, and the i.e.d. turns off. R21 and R22 set the window adjust voltage at pin 4 to 1.0V, which defines the fault window as ±10%, as shown in Fig. 3. C8 and C9 are connected as shown between terminal pins A, B and C, since their values might need some experimenting with. The line switcher input, pin 8 amp thyristors triggered by TR1 and TR2 respectively. TR2 in turn is turned on by TR3 and TR4, with associated resistors, which provide level shifting to the negative supply rail from the all-positive supply used by IC1. The U.V.Fault and O.V.Fault outputs are wired together so that the thyristor circuit is triggered by an over-voltage, an undervoltage, or even both simultaneously. When the thyristors are triggered they immediately blow both fuses and clamp the regulated supplies near to 0V via D1, D2 and D3.

The unregulated supply should be nominally ±20V. The positive half should not exceed +24V, since damage to IC3 might slow action prevents inadvertent blowing due to minor transient pulsing of the thyristors themselves when power to the circuit is turned off. The choice of thyristor is not critical, but 8 amp types were used in this case to be safe with surge current handling capability. The thyristors only conduct for a fraction of a second before the fuses blow, so there is no time for them to get hot and no need for heatsinks. IC2, IC3 and IC4 have been placed close to the edge of the board to allow easy fitting of their heatsinks, via insulating kits due to the internal connection of their metal tabs to the centre pin. Any momentary switch, local or remote, can be used for S1.

![Fig. 7. Auto shut-down multiple regulator](image_url)
Capacitors C8 and C9 should be selected to give the delays required. Typically, it is suggested that the response to over-voltages should be fast, as circuits are at considerable risk, whereas under-voltages are less serious. The prototype circuit used 1nF for C8 giving an over-voltage delay of approximately 30µs, and 100nF for C9, giving an under-voltage delay of 3ms. Be aware that too short a delay for under-voltages can result in false triggering due to the regulators not charging C2, C4 and C6 fast enough during turn-on, and too long a value can cause the effects described earlier. If a regulator output is under-voltage (for example, shorted to OV) when power is first applied, the circuit will fail to shut down; the UC3903 requires that the sense input must first be taken above the under-voltage threshold. It can be impractical to use the Power O.K. output, since that goes into the 'not O.K.' condition during power-up. If this is a concern, however, it is a fairly straightforward process to add extra circuitry to combine all three outputs satisfactorily to shut-down under even these conditions.

The circuit can prove rather tedious to test, since the first thing that happens if there's a fault is that it blows the fuses, at which point there's nothing to test any more! Initial tests should be done with R1 and R4 omitted, which prevents CSR1 and CSR2 being triggered. When the fuses have been blown, the supply should be turned off and the unregulated supply allowed to discharge before new fuses are inserted, or they will blow immediately in all likelihood. PCB fuse clips are used in Fig. 8, but off-board fuseholders could equally well be used, of course.

P.E. AUDIO EFFECTS AND OTHER SUPER SOUND KITS!

P.E. MONO-STERO ECHO-REVERB (SEP04) 200ms echo, lengthy reverb, multi-tracking kit as published – BLK box: SET 218 £55.66

P.E. MONO-STERO CHORUS RANGER (LAN85) Superb dual mode music enhancement. Kit as published – BLK box: SET 235 £39.66

BLK box – steel & aluminium, black plastic finish: STD BOX – plain aluminium, lipfed. Set codes include PCBs, parts, instructions, boards, wire, solder. More details & kits in catalogue – send SAE. (Overseas £1 or 5 IRCs).

PHONOSONICS, DEPT PE53, 8 FINUCANE DRIVE, ORPINGTON, KENT, BR5 4ED.

Tel: Orpington 37821 (STD 0689, London 66), Mon-Fri 10-7.

Fig. 8. Veroboard layout of the multiple regulator
As most readers of Practical Electronics will know, we have, over the last few years, maintained extensive coverage of modern developments such as micro computers and robot technology. In keeping with this policy, we are now looking at the applications and effects of these technologies in practical use.

TECHNOLOGY IN INDUSTRY

The scope and possibilities for the use of modern technology in all areas of commerce and industry are enormous. In a very short period of time, we have seen the introduction of computers, microprocessor control systems and robotics. Such acronyms as CAD/CAM, ATE and AGV have become everyday terms. Despite this, there are very few companies who have utilised this modern technology to any where near its full potential. Indeed it seems that the so called second industrial revolution is proving to be a fairly slow change.

The failure to respond by many firms, may well bring about their own downfall. However, one company which is committed to new technology is Mars Electronics which, for the last five years, had maintained a growth of 50 per cent per annum.

Mars Electronics are associated with Mars, the confectioners, and were originally set up to promote further outlets for their confectionery products. This was achieved by setting up their Money Systems Divisions in the seventies, which produced coin validation and acceptance mechanisms for vending machines. They now supply over 90 per cent of the European and 80 per cent of the world market in coin mechanisms.

Since then Mars have diversified their product range by setting up a Marine Systems Division which launched Vigil Radar in 1983. This product quickly established them as a market leader in small boat radar, a position which they look likely to maintain. In December 1984 they launched two new products, Vigil-2 and Vigil-RM which they claim will give them global supremacy for years to come.

At the moment they are working on Automatic Test Equipment (ATE), which they think will give many small electronics companies their first chance to buy advanced electronic test gear. Much of the ATE now available is far beyond the reach of these companies with prices often in the region of £100,000. Once again Mars confidently predict their superiority in the market place.
The key to the success of Mars lies in their unique manufacturing concept and clever marketing strategy. According to their Systems and Automation Manager, Nigel Kingsley "An ultimate aim of the company is to have total automation of stock handling and manufacturing processes." This together with their niche marketing strategy has made Mars one of the fastest growing companies in Europe.

"An ultimate aim of the company is to have total automation of stock handling and manufacturing processes"

COMPUTER INTEGRATED MANUFACTURE (C.I.M.)

In one of their two British factories at Reading, Mars have created a futuristic working environment. In a fairly small building tailored to their own needs are housed over 200 terminals (keyboards and VDUs) all linked by their own local area network (LAN). With a total staff of only 600, working on three shifts per day, this gives an average of one terminal for each employee.

The factory itself is completely open plan, fully carpeted in all areas including the production line. No one has an office and the canteen caters for management and staff alike. Some rooms are cut off from others but for reasons of security rather than personnel importance.

The computer network is split into several sections each dealing with a particular task, such as design, manufacturing and commercial activity. Because all these functions are interrelated information is being constantly transmitted between sections, enabling a very flexible and cost effective system to operate. Using this system almost every process is computer aided or controlled. A block diagram of the C.I.M. model is shown in Fig. 1.

COMPUTERS IN ACTION

The first stage in the production of a finished product is the design. This is only started after extensive market research into a particular area. The policy of Mars Electronics is to aim at a low to medium size market and then arrive at a product which they believe cannot be matched either in quality or price. This strategy allows them to lead a particular field and by constant improvement maintain this lead. (The reason for aiming at low to medium size markets is that it would be impossible at this stage to compete with mass production, and at the same time would drastically reduce flexibility.)

Much use is made of their CAD/CAM system (VAX 11/34), which is connected to the LAN and runs 'Apicon BRAUD' software. The six work stations connected to the system provide a comprehensive CAD/CAM facility enabling advanced design capability. Plans are now ahead to take the system further by direct connection to the process machinery. This will allow design and manufacturing data to be transferred directly to the automated process machines making for a more efficient system.

Once a product has been designed, then the required materials are entered into the manufacturing computer system and a production line and test area is set up. At all times there is a facility to change at very short notice to another product or modify designs to suit the manufacturing processes. In fact the Mars factory currently produce between 600 and 700 different products. This is achieved by their system of modular design whereby different production lines can easily be set up to meet changing demand.

The 'Manufacturing' computer (HP3000/48) has 3 Mbytes of on board memory with single 125 Mbyte and 404 Mbyte disc systems. Software such as: Manufacturing Management, Quality Assurance, Sales Specification and Administration are all carried out using around 40 terminals connected to the system.

Richard Barron

Fig. 1. Block diagram of the C.I.M. model

Practical Electronics March 1985 23
There are existing connections between this system, and the Commercial and Materials Control computer (HP 1000) via the DS/300 link. A further 20 terminals have access to the Commercial computer which performs: Sales order processing, Payroll, and various Ledger functions including Purchasing and Sales, to mention but a few. The Materials Control Computer has twin 64 Mbyte disks and provides all the necessary control data for the stock control system and the AGV's.

At this point automation really comes into its own. The computer's data store (memory) has all the necessary information to maintain stock levels and keep the production running smoothly. Much of the production is automatic and components can be distributed to any section of the assembly line or storage space as required. This is made possible by the use of Automatic Guided Vehicles (AGVs).

AUTOMATIC STORAGE AND RETRIEVAL SYSTEM

When stock is delivered to the factory it is manually placed into trays and bar coded. At the same time the relevant details are fed into the computer. AGVs then transport the trays to the storage area where they are transferred to 'automatic fork lift cranes'. The cranes move the materials to the required storage space under the guidance of the Materials System computer. This means that once goods have entered the factory, the computer has a record of the level and whereabouts of all materials. A diagram of the stock control system is shown in Fig. 2.

Throughout the factory there is a network of buried foil tracks which can guide the AGVs. This allows the movement of goods to any required area under complete control of the operating system. For example, suppose a batch of resistors is needed at a particular production area, then it is a simple task for a manual operator to key in the required code. The system will respond by checking the storage location of the item required and instructing the stacker cranes to retrieve the correct tray, and pass it to an AGV. The AGV will take the items to the selected area where they are accepted by a manual operator who will read the bar code. This will cause the computer to update its stock files and respond accordingly, maybe by producing an order form for more components.

At any one time there may be a number of AGVs moving around the factory, transporting and retrieving materials from all areas. This system offers many advantages over the old fashioned manual method of stock handling, such as: increased efficiency, smaller storage and total reliability.

PROCESS MACHINES

The process machines are not at the moment directly connec-

Fig. 2. Schematic diagram of the Automatic Storage And Retrieval System

Above: An AGV delivering materials to the store.
Right: Complex machinery gives total control

AUTOMATIC SEQUENCER

When a production run is decided upon, then the required stock which is recorded in the computer can be retrieved as and when necessary. The stock is distributed between the various departments for use at the required time. All axial components such as resistors, capacitors, diodes and inductors can be automatically inserted into the p.c.b. This is quite a complex operation and must be done in a strict sequence. To ensure this sequence an automatic sequencer will load bandeleros of components to be fed into the insertion machine. It does this under the control of a computer program which instructs the machine to extract particular discrete components from a series of feeders and place them one at a time in the bandelero (similar to that of a machine gun). The bandelero is then transferred to the insertion machine which need not be programmed with the type of component but merely the insertion sequence.
I NS ER T ION

Most of the components are automatically inserted, other than such items as relays and three terminal devices like transistors and regulators. The axial components are fed into the insertion machine already sequenced so it is a relatively straightforward task. The leads are formed to the required spacing and the p.c.b. is positioned under the insertion head. Each component is handled in much the same way. It is inserted into the predrilled p.c.b., the leads are cut and then bent over to provide mechanical strength. All parameters (lead length, bending etc.) are preprogrammable and may be altered at any time, so the whole operation may be done with the minimum of human supervision.

The d.i.l. package insertion is done in a similar way, except that the sequencing is an integral part of the operation. Feeders are loaded with a variety of devices, each feeder having a particular device. The p.c.b. is automatically positioned under the insertion head and the machine will select components in the required order, insert them, cut the leads, and bend them to the required pitch.

After these two operations are completed the p.c.b. is then transferred to the human operated production area via conveyor belts or AGVs. Here they are finished with any other components necessary before being transferred to the flow soldering machine. At any time throughout any of these operations a partially completed job may be taken back to the stores for temporary storage and at all times the computer would be aware of the progress and location of any particular component or partwork.

FLOW SOLDERING

When the p.c.b.s have been assembled they are fed into the flow soldering machines which exposes them to several processes. The boards are heated and fluxed before being fed into the solder bath. After this process the manually inserted component leads are cut and the whole board is immersed in cleaning fluid. When the boards come out they are fitted with the last few components which couldn’t be immersed or exposed to heat. From here they are passed to the inspection and testing sections.

The testing departments make extensive use of ATE which on most occasions has been made or modified for their own particular needs. Test jigs are set up for each particular type of board and tests can then be made for component values and tolerances, and p.c.b. faults such as short or open circuits. Following this stage they are passed to mechanical assembly which at the moment is essentially manual.

Photo illustrating an off-loading bay for the AGV. There are many of these situated around the factory at convenient positions. At the present off-loading is a manual operation but a five-year robotics plan is underway which will eventually make all stock handling automatic.
PEOPLE

The working environment for manual production is a far cry from the sweatshops and soul-destroying tasks of the first industrial revolution, although there are still a number of boring manual jobs which have to be done. "It is the aim of the company to eventually replace any manual tedious operations with robots." They are presently equipping a factory adjacent to their existing premises which will have all the current facilities but will be enhanced by a five year robotics plan. Particular emphasis will be on "Pick and Place" robots.

"It is the aim of the company to eventually replace any manual tedious operations with robots"

As was mentioned earlier the bulk of the mechanical assembly is done manually but to increase reliability and efficiency Mars have moved away from the traditional linear production line by introducing a Swiss idea of circular production. Here one person may be responsible for a complete assembly instead of being forced to a single task of, maybe inserting one type of component all day long.

This system works by having a rotating work station split into several sections. Each section will have a working area with the main assembly, and a parts tray. The idea is to fit one part to the assembly and then rotate to the next section and fit the same part to that assembly. When the initial section is reached another part may be fitted and the sequence repeated. At the end of the operation the result is a number of complete assemblies all being the responsibility of one person. This gives rise to a much greater sense of satisfaction than could otherwise be achieved under the old system.

THE FUTURE

The consequence of modern technological developments and their use in industry has not yet been seen and it will be a few years before their full effects are appreciated. It is certain that

Ingenuity Unlimited

SHOP COUNTER BELL

\[\text{Figure: Shop Counter Bell Circuit Diagram} \]

The human input—a fairly relaxed working environment—carpets all round!

many laborious and repetitive tasks will be undertaken by automatic machinery and that the field of communication and commercial business will become computer controlled. However, with the predicted increase in consumer goods manufacture and the so called computer revolution there may well be a social problem requiring a complete change in social attitudes.

The promised employment opportunities in the new industries have not happened and it looks now as if they never will. A report from the National Economics Development Office showed that employment in the industry has dropped by 12 per cent since 1980. It is a catch-22 situation where governments and individual companies face a difficult decision. If new technology is adopted then new jobs are unlikely in great numbers, but without it firms will find it difficult to compete with efficient manufacturers. The way ahead?

A selection of readers' original circuit ideas. Why not submit your idea? Any idea published will be awarded payment according to its merits. Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

ANYONE who has worked in a shop or similar workplace, having a customer operated bell, will agree that an awful lot of people are persistent button pushers.

This circuit was designed to give a single pulse train at a set frequency for a set duration. Any subsequent button pushing will be of no avail, until the circuit is manually reset by the operator.

The circuit is of simple design, employing a CMOS i.e. 40106 as an astable and a monostable. The monostable sets the oscillator into operation when the counter switch S1 is pressed and the oscillator drives a speaker via TR1. Once activated, the oscillator will run its course and further operation will be inhibited until the reset is activated.

M. Miller, Topsham, Devon.
When installed you can enjoy the peace of mind that results from a secure home. Don't wait until it's too late or order today. Any time with additional magnetic switches, pressure pads or ultrasonic sensors. Should you wish to increase the level of security, the system may be extended at supply. Assembly is straightforward with the detailed instructions provided. With Heathkit you can enjoy the peace of mind that results from a secure home. Should you wish to increase the level of security, the system may be extended at any time with additional magnetic switches, pressure pads or ultrasonic sensors. Don't wait until it's too late - order today.

CA 1250 - 2 zone alarm control unit with built in alarm & power supply. HW 1250 Enclosure & Hardware Kit for above.

Wide range of modules and accessories, etc. Send S.A.E. for details.

US 5063 - Advanced Digital Ultrasonic Detector, high sensitivity, with false alarm suppression.

SC 5063 - Enclosure for US 5063.

IR 1470 - infra-red system to provide 50' invisible beam, includes both transmitter and receiver.

SL 157 - Siren Module 12V.

Add 15% VAT to all prices.

Wide range of Heathkit security modules and accessories. Complete systems start from as little as £39.95.

A COMPLETE SECURITY SYSTEM FOR ONLY £39.95 + V.A.T.

Control Unit
CA 1250
Enclosure
HW 1250
Key Switch & 2 keys
KS 1001
5/8" Horn Speaker
HS 508
4 quality surface Magnetic Switches
MS 1025

With only a few hours of your time it is possible to assemble and install an effective security system to protect your family and property, at the amazingly low cost of £39.95 + V.A.T. No compromises have been made and no corners have been cut. The outstanding sensor results from volume production and direct supply. Assembly is straightforward with the detailed instructions provided. With Heathkit you can enjoy the peace of mind that results from a secure home. Should you wish to increase the level of security, the system may be extended at any time with additional magnetic switches, pressure pads or ultrasonic sensors. Don't wait until it's too late - order today.

Order code CS 1970

Instruments • Kits For Weather Measurement.

Maplin Electronic Supplies Ltd.
P.O. Box 3, Rayleigh, Essex, SS6 8LR.
Tel: (0702) 552911.
(For shop addresses see back cover.)
SPECIAL
OSCILLOSCOPE
OFFER!

Crottech
Type 3132
Dual Trace 20MHz
£299

- 2mV/division to 10V/division (12 steps) calibrated sensitivity (+-3%)
- DC-20MHz bandwidth (-3dB). Rise time 17ns
- X-Y operation
- 130MHz cathode ray tube
- 40ns/division to 0.2s/division (18 steps) timebase (+- 5%)
- 14 trigger functions
- Triggering to 40MHz
- Z modulation
- 10 x 8 division display
- Component comparator
- DC source outputs
- Measures 210H x 280W x 450D (mm), weight 8kg
 (approx.)

Crottech
Type 3030
Single Trace 15MHz
£183

Post to: Crottech Instruments Ltd., 2 Stephenson Road, St. Ives, Huntingdon, Cambridgeshire, PE17 4WJ.
PRACTICAL ELECTRONICS is pleased to be able to offer these quality CROTECH oscilloscopes to readers at special discount prices which include VAT and delivery. The 'scopes can be purchased using Access to spread the load.

Any of these three items would be an invaluable addition to the test gear used by an amateur or professional engineer. Each unit is supplied with an input lead, instruction manual and a free copy of "Getting The Best From Your Scope". Additional probes and accessories are also available.

The 'scopes have the additional facility of a built-in component comparator or tester which allows in-circuit testing of both passive and active devices and, on the 3132 direct comparison of components. Each 'scope employs regulated internal supplies and features a 1KHz, 200mV P-P calibration output.

THESE CROTECH PRODUCTS ARE ALL COVERED BY A TWELVE MONTH GUARANTEE.

Unfortunately we can only make this offer to UK readers due to delivery problems overseas.

EVERYDAY ELECTRONICS and computer PROJECTS

MARCH 1985 ISSUE ON SALE FRIDAY, FEBRUARY 15

HEADLIGHT ACTIVATED SWITCH

MONITORS...

Buyer's Guide

* 5mV/division to 20V/division (12 steps) calibrated sensitivity (± 3%)
* DC−15MHz bandwidth (−3dB). Rise time 23ns.
* X−Y operation
* 130mm cathode ray tube
* 200ns/division to 0.2s/division (18 steps) timebase (±5%)
* 6 trigger functions
* Triggering to 20MHz
* 10 x 8 division display
* Component tester
* Measures 160H x 265W x 317D (mm), weight 6kg (approx.)

PRICES INCLUDE VAT AND DELIVERY

* 5mV/division to 20V/division (12 steps) calibrated sensitivity (± 3%)
* DC−15MHz bandwidth (−3dB). Rise time 23ns.
* X−Y operation
* 95mm rectangular cathode ray tube
* 200ns/division to 0.2s/division (18 steps) timebase (± 5%)
* 6 trigger functions
* Triggering to 20MHz
* 10 x 8 division display
* Component tester
* Measures 125H x 240W x 335D (mm), weight 4.6kg (approx.)

PRAC T I C A L E L E C T R O N I C S i s p l e a s e d t o b e a b l e t o o f f e r t h e s e q u a l i t y C R O T E C H o s - c i l o s c o p e s t o r e a d e r s a t s p e c i a l d i s c o u n t p r i c e s w h i c h i n c l u d e V A T a n d d e l i v e r y . T h e ' s c o p e s c a n b e p u r c h a s e d u s i n g A c c e s s t o s p r e a d t h e l o a d .

A n y o f t h e s e t h r e e i t e m s w o u l d b e a n i n - v a l u a b l e a d d i t i o n t o t h e t e s t g e a r u s e d b y a n a m a t e u r o r p r o f e s s i o n a l e n g i n e e r . E a c h u n i t i s s u p p l i e d w i t h a n i n p u t l e a d , i n s t r u c t i o n m a n u a l a n d a f r e e c o p y o f " G e t t i n g T h e B e s t F r o m Y o u r S c o p e " . A d d i t i o n a l p r o b e s a n d a c c e s s o r i e s a r e a l s o a v a i l a b l e .

T h e ' s c o p e s h a v e t h e a d d i t i o n a l f a c i l i t y o f a b u i l t - i n c o m p o n e n t c o m p a r a t o r o r t e s t e r w h i c h a l l o w s i n - c i r c u i t t e s t i n g o f b o t h p a s s i v e a n d a c - t i v e d e v i c e s a n d , o n t h e 3 1 3 2 d i r e c t c o m - p a r i s o n o f c o m p o n e n t s . E a c h ' s c o p e e m p l o y s r e g u l a t e d i n t e r n a l s u p p l i e s a n d f e a t u r e s a 1 K H z , 2 0 0 m V P - P c a l i b r a t i o n o u t p u t .

U n f o r t u n a t e l y w e c a n o n l y m a k e t h i s o f f e r t o U K r e a d e r s d u e t o d e l i v e r y p r o b l e m s o v e r s e a s .

EVERYDAY ELECTRONICS

and computer PROJECTS

MARCH 1985 ISSUE ON SALE FRIDAY, FEBRUARY 15

HEADLIGHT ACTIVATED SWITCH

MONITORS...

Buyer's Guide

* This new regular feature will be of particular interest to Spectrum owners. Each month, a different aspect of the machines will be examined, including software, interfacing, and hardware add-ons.
THE NEW
MPF-1/65

(6502 Microprocessor)

Professional Documentation All the Instruction You Need.

In being a total learning tool, the MPF-1/65 supports the user with clear, operating documentation. Both the User's Manual and Monitor Program Source Listing Manual are written with the beginner and professional in mind.

The User's Manual includes a complete introduction to the features and capabilities of the system. Detailed descriptions of both hardware and software. The Source Code Listing Manual provides complete listings of the monitor software. For the programmer and learner, this provides insight into all the capabilities and functions of the complete system.

Technical Specification

ADVANCED INTERACTIVE MONITOR: The heart of the MPF-1/65 software resides in 16K bytes of permanent memory (ROM) located on board. The monitor is designed to provide a user friendly interface by presenting language that the microprocessor understands in an easily understood format. Self prompting single key commands also provide an easy yet powerful means of input. These features provide for the most effective means of understanding the real way in which a microprocessor operates.

The MPF-1/65 monitor includes a wide range of powerful features that offer user convenience, easy-to-learn commands and powerful programming capabilities. These include the screen editor, disassembler, text editor, two pass assembler, printer driver routines and special debugging commands.

FLIGHT
Electronics Ltd.
Quayside Rd, Southampton, Hants SO2 4AD.
Tel. (0703) 340031/27721. Telex 477793.

DISASSEMBLER: The built-in disassembler allows the user to list 6502 microprocessor instructions on both printer and video display. The disassembled data, in mnemonic symbols, translates the complex machine language of the microprocessor into symbolic form with 3 letter abbreviations. Understanding of low level operations provides learners with a comprehensive understanding of the 6502.

SCREEN EDITOR: The screen editor allows for rapid alteration of data displayed on the video output console. Commands previously entered onto the screen can be verified, monitored and changed accordingly. With word processor-like functions, the screen editor is an attractive feature for programmers and industry alike.

MPF-1/65 MONITOR INDUSTRIAL COMMAND SUMMARY. The commands of the system monitor allow for single key programming convenience. Such software includes the following features:
- Display/Alter of selected memory contents
- Move/Verify of a block of memory contents
- Display/Alter Registers
- Select display page/mode
- Mnemonic form listing of instructions
- Single key program execution
- Read/Write data to or from cassette tape
- Easy printer select for hard copy results

TEXT EDITOR: The text editor provides the power of changing, adding or deleting instructions anywhere in the program without affecting any other portions of the program. The text editor's simple commands may be displayed on video output or in hard copy form. Source code in the machine's editing buffer can be efficiently translated into machine code for faster operation. The text editor also combines with other features to provide a powerful debugging tool.

TWO PASS ASSEMBLER: The two pass symbolic assembler provides 6502 programmers with the ability to write extremely efficient programs for applications requiring fast execution speed. OEMs and professionals can more efficiently develop complex programs. Students of the 6502 can use the functions of the two pass assembler to grasp the fundamentals of microprocessor programming.

PRINTER DRIVER: The printer driver resident in ROM provides software drive interface with Epson printers.

DEBUGGING FEATURES: The MPF-1/65 also packs features that provide software for programming simplicity and efficiency via strong debugging functions. These include:
- Setting, clearing and displaying breakpoints
- Single step program execution on printer or display
- Tracing of one instruction
- Displaying register contents

MEMORY
- USER MEMORY: 64K dynamic RAM.
- PERMANENT MEMORY: 16K of ROM stored in two 8K by 8 bit chips.

DISPLAY MODES: TEXT: Two pages of 40 x 24 text.

GRAPHICS: Bit mapped graphics in six colours controlled by machine code instructions.

INPUTS AND OUTPUTS
- AUDIO SPEAKER: 2.25 inch 8 ohm speaker.
- AUDIO CASSETTE INTERFACE: 1000 bit per second data transfer from memory to cassette tape.
- PARALLEL PRINTER INTERFACE: With Centronics printer interface and EPSON software driver.
- COLOUR TV INTERFACE: R/F modulator with video and sound output provides for colour TV interface.
- SYSTEM EXPANSION CONNECTOR: 50 pin connector to provide interface with RS-232c or ROM cartridges.
- KEYBOARD: Standard QWERTY 49 key keyboard with 153 ASCII codes.

Send for the latest catalogue Now!
See the latest systems and accessories; Single Board Computers with 280, 6502 and the latest 8088-16 bit microprocessor.

Name
Address

Signature
Date

Multitech
See us at the Microprocessor Development Centre, Wembley Conference Centre, 12th - 14th February 1985.
Low Cost BBC Speech Synthesiser

Anthony Foord

A number of designs have been published in the electronics press for speech synthesis units, either intended specifically for the BBC Computer or more widely compatible. They are generally connected to the parallel printer or user port. This ties up one port and takes up valuable desk space.

A much neater solution is provided by Acorn themselves. Their system consists basically of two integrated circuits for which provision has been made on the main p.c.b. The computer's internal speaker and amplifier are used and the operating system takes care of the interfacing requirements.

On consideration however, the Acorn unit does appear to have two drawbacks; firstly, it is preprogrammed, giving only a limited selection of words and, secondly, it retails at over £50.

The design presented here uses the popular General Instruments Speech Processor to give a virtually unlimited vocabulary. If constructed as described it may simply be plugged into one of the sockets inside the computer; no track cutting or other modifications are necessary. It is compatible with the operating system, and retains the other advantages offered by Acorn's system (but will not, of course, produce intelligible speech with software written for the Acorn Unit). As a bonus, two different volume levels can be selected under program control and the total cost should not be more than about £15.

SYNTHESIS

There are several possible techniques for the production of artificial speech. One method is to record the required phrase in digital form and then play it back—hardly synthesis really. With adequate data rates this can sound extremely good (compact discs are an example). Acceptable quality can only be achieved at the cost of large amounts of memory, making this approach somewhat inflexible. At the other extreme, electronic analogues of the human vocal tract have been built. These consist of a number of filters, an oscillator and a noise source, all controlled from the computer.

At the present time the systems in widespread use fall into one of two classes. Either information describing complete words is stored (in a compacted form to reduce memory requirements); or, a collection of basic sounds, known as ALLOPHONES, are used, which may be strung together to form any desired word.

The latter approach is inherently more versatile, and it is this method which is used in the General Instruments SP-0256 i.c. The attendant disadvantage is that whereas human beings can subtly adjust the individual allophones, depending on the neighbouring sounds, to produce smoothly connected speech, electronics (as yet) cannot. Both methods are capable of adequate (though rather mechanical sounding) results.

The SP-0256 can produce 59 separate sounds (and five pauses of varying lengths) which enable English words to be built up. It should be noted that both the SP-0256 and the Texas Instruments TMS5220, used by Acorn, have digital, Pulse-Width Modulated outputs. This takes the form of a series of pulses at a frequency of several kHz. Varying the width of the pulses alters the mean output voltage and this average level is recovered by low-pass filtering to give an audio signal.

Fig. 1. Circuit diagram of the Special Synthesiser
CIRCUIT DESCRIPTION
The heart of this circuit, like many others, is the SP-0256 i.c. This device is responsible for the actual speech synthesis. The remainder of the circuitry is required to allow it to replace a TMS5220, and to provide two switched volume levels. The circuit diagram is shown in Fig. 1.

All the necessary filtering and amplification is performed by components already present in the computer. The SP-0256 accepts a six bit binary input which corresponds to one of sixty four possible output sounds (including the five which are silent). This is taken from lines D0 to D5, and is stored in internal latches on receipt of an active-low WS pulse. The remaining data lines, D6 and D7 are latched by the 4013 dual D-type flip-flop. Inverter IC3b is included as the 4013 expects an active-high clock signal. D6 is taken high by the computer as part of the procedure to reset the TMS5220, and so is used (in inverted form) to reset the SP-0256. This ensures that the unit remains silent on power-up and BREAK. D7 is used to select between volume levels. Both the output of the SP-0256 and that of the 4013 are buffered by inverters. If D7 is a logical '1', then the cathode of D1 is taken to +5V. It thus has no effect on circuit operation and full volume results. A logical '0' causes the cathode to be taken to ground and the diode clamps the voltage excursion at the output, reducing the volume obtained.

The SBY output of the SP-0256, which goes high when it has finished speaking or is reset, is inverted to give RDY. This is an active-low signal informing the computer that it may send the next data byte. Using the active-low output of the SP-0256 would prevent the computer from successfully executing a reset operation as this too goes high, inhibiting the transfer of data.

L1, C1, C2 and C4 are frequency determining components for the SP-0256 internal oscillator. C4 enables some adjustment of the vocal pitch to be made, and it is worthwhile trying the effect of different settings. Increasing frequency also makes the computer talk slightly faster. Finally, note that a 4049 must be used. A 4069 has a reduced output capability, and may be too slow for this application.

CONSTRUCTION
The method of construction adopted for the prototype (see photographs) is slightly unusual in that it involves soldering the p.c.b. directly to the d.i.l. header at right angles.

This is recommended as it results in a single, rigid, self-supporting assembly and cuts down on off-board wiring. However, it is perfectly possible to use the more conventional length of ribbon cable, and even to build the circuit on matrix board. If you make your own p.c.b. from the layout given, be sure to cut it to the size shown. There is very little clearance inside the BBC Computer.

The first step is to mount all the components on the p.c.b., not forgetting the eight wire links. IC1 is a relatively expensive MOS device and should certainly be socketed. It is probably worth using sockets for the other i.c.s. as this will save a great deal of trouble if any problems occur. Soldering calls for some care as several tracks run very close to each other.

The 28 pin headers used to be hard to find, although this seems no longer to be the case. An alternative is to chop up a 40 pin header. Anything else is definitely not a good idea—sticking bits of wire in may damage the BBC's socket. The next step then is to glue the p.c.b. to the header.

First tin the tracks where they are to be soldered to the header. The p.c.b. should be placed so that it is between the two rows of pins and so that the tracks line up with the pins. A bracket is needed to hold it in this position. For the prototype a length of 1/4" plastic channel which is generally available at modelling shops, was used, but a similarly sized strip of wood could be employed. With the p.c.b. located as shown in the photo and pressed against the header pins, glue the bracket to both it and the header, using a quick setting epoxy resin compound. This is the only tricky part. When this has set the six flying leads may be wired from the p.c.b. to the header, as shown in Fig. 2.

On the prototype it proved necessary to slightly file down one edge of the header to clear a capacitor in the computer.

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Inductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 10k</td>
<td>C1 39p metallised ceramic plate</td>
<td>L1 100μ</td>
</tr>
<tr>
<td>R2 330</td>
<td>C2 27p metallised ceramic plate</td>
<td></td>
</tr>
<tr>
<td>All resistors ± 5% 1/2W carbon</td>
<td>C3 100n disc ceramic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4 22p miniature trimmer</td>
<td></td>
</tr>
</tbody>
</table>

Semiconductors

| IC1 SP-0256 | IC2 4013 | IC3 4049 |

Miscellaneous

<table>
<thead>
<tr>
<th>p.c.b. 503-05</th>
<th>28 pin i.c. socket</th>
<th>16 pin i.c. socket</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 pin d.i.l. header</td>
<td>1/4" plastic angle</td>
<td></td>
</tr>
</tbody>
</table>
INSTALLATION

Fitting the unit is very straightforward. The top of the computer is secured by four screws. These are situated one either side at the back and underneath at the front.

All further directions assume the computer is viewed from the normal position, i.e. the keyboard is in front. Thus the power supply lies to the left. The speech processor socket (labelled IC 99) is the righthand of the two adjacent 28 pin sockets by the p.s.u. With the computer switched off, the speech synthesiser should be plugged in so that the p.c.b. is on the left side and extends towards the back. This can be seen in the photographs. Care should be taken to ensure that all the pins are correctly sited and pressed fully home.

The sound quality will be dramatically improved if the top is put back on the computer, although it would perhaps be tempting fate to replace the screws before testing the system!

OPERATION

To send a byte to the speech synthesiser, use is made of the BBC Microcomputer’s OSBYTE call (CALL &FF4). This is entered with A% set to the parameter to be passed. An illustration of this is given by PROCspeak in the demonstration program. The program allows ten words to be defined and spoken. It was developed on a computer fitted with OS-1.2. To keep it as short as possible few REM statements have been included, but it should be quite self explanatory. PROCspeak expects data to be stored as character strings,

<table>
<thead>
<tr>
<th>Allophone No.</th>
<th>+128</th>
<th>Example</th>
<th>Allophone No.</th>
<th>+128</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>128</td>
<td>10mS</td>
<td>32</td>
<td>160</td>
<td>shOut</td>
</tr>
<tr>
<td>1</td>
<td>129</td>
<td>30mS</td>
<td>33</td>
<td>161</td>
<td>Dot</td>
</tr>
<tr>
<td>2</td>
<td>130</td>
<td>50mS</td>
<td>34</td>
<td>162</td>
<td>Got</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>100mS</td>
<td>35</td>
<td>163</td>
<td>IVing</td>
</tr>
<tr>
<td>4</td>
<td>132</td>
<td>200mS</td>
<td>36</td>
<td>164</td>
<td>Gear</td>
</tr>
<tr>
<td>5</td>
<td>133</td>
<td>tOY</td>
<td>37</td>
<td>165</td>
<td>SHoe</td>
</tr>
<tr>
<td>6</td>
<td>134</td>
<td>tIE</td>
<td>38</td>
<td>166</td>
<td>meaSure</td>
</tr>
<tr>
<td>7</td>
<td>135</td>
<td>pEt</td>
<td>39</td>
<td>167</td>
<td>tRap</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>Cone</td>
<td>40</td>
<td>168</td>
<td>Fat</td>
</tr>
<tr>
<td>9</td>
<td>137</td>
<td>Pet</td>
<td>41</td>
<td>169</td>
<td>taCK</td>
</tr>
<tr>
<td>10</td>
<td>138</td>
<td>roGer</td>
<td>42</td>
<td>170</td>
<td>Cat</td>
</tr>
<tr>
<td>11</td>
<td>139</td>
<td>tIN</td>
<td>43</td>
<td>171</td>
<td>Zap</td>
</tr>
<tr>
<td>12</td>
<td>140</td>
<td>tln</td>
<td>44</td>
<td>172</td>
<td>kINg</td>
</tr>
<tr>
<td>13</td>
<td>141</td>
<td>Tin</td>
<td>45</td>
<td>173</td>
<td>Lit</td>
</tr>
<tr>
<td>14</td>
<td>142</td>
<td>Rat</td>
<td>46</td>
<td>174</td>
<td>Wet</td>
</tr>
<tr>
<td>15</td>
<td>143</td>
<td>dUck</td>
<td>47</td>
<td>175</td>
<td>AIR</td>
</tr>
<tr>
<td>16</td>
<td>144</td>
<td>Mix</td>
<td>48</td>
<td>176</td>
<td>WHy</td>
</tr>
<tr>
<td>17</td>
<td>145</td>
<td>peT</td>
<td>49</td>
<td>177</td>
<td>Yet</td>
</tr>
<tr>
<td>18</td>
<td>146</td>
<td>THat</td>
<td>50</td>
<td>178</td>
<td>CHip</td>
</tr>
<tr>
<td>19</td>
<td>147</td>
<td>tEA</td>
<td>51</td>
<td>179</td>
<td>sIR</td>
</tr>
<tr>
<td>20</td>
<td>148</td>
<td>pAY</td>
<td>52</td>
<td>180</td>
<td>tURN</td>
</tr>
<tr>
<td>21</td>
<td>149</td>
<td>found</td>
<td>53</td>
<td>181</td>
<td>gO</td>
</tr>
<tr>
<td>22</td>
<td>150</td>
<td>tUtor</td>
<td>54</td>
<td>182</td>
<td>oTHer</td>
</tr>
<tr>
<td>23</td>
<td>151</td>
<td>tALK</td>
<td>55</td>
<td>183</td>
<td>Sit</td>
</tr>
<tr>
<td>24</td>
<td>152</td>
<td>tOp</td>
<td>56</td>
<td>184</td>
<td>Not</td>
</tr>
<tr>
<td>25</td>
<td>153</td>
<td>YET</td>
<td>57</td>
<td>185</td>
<td>Hook</td>
</tr>
<tr>
<td>26</td>
<td>154</td>
<td>cAt</td>
<td>58</td>
<td>186</td>
<td>OR</td>
</tr>
<tr>
<td>27</td>
<td>155</td>
<td>Hit</td>
<td>59</td>
<td>187</td>
<td>pARt</td>
</tr>
<tr>
<td>28</td>
<td>156</td>
<td>haBlt</td>
<td>60</td>
<td>188</td>
<td>EAR</td>
</tr>
<tr>
<td>29</td>
<td>157</td>
<td>THick</td>
<td>61</td>
<td>189</td>
<td>Go</td>
</tr>
<tr>
<td>30</td>
<td>158</td>
<td>hOOk</td>
<td>62</td>
<td>190</td>
<td>paddLE</td>
</tr>
<tr>
<td>31</td>
<td>159</td>
<td>mOOn</td>
<td>63</td>
<td>191</td>
<td>Bat</td>
</tr>
</tbody>
</table>

Table 1. Complete list of available allophones

Table 2. Some (appropriate) examples of word construction

Other solutions are possible, such as integer arrays.

The numbers recognised by the speech synthesiser are listed in Table 1, together with their corresponding sounds. Values in the range 0 to 63 will cause the allophones to be spoken quietly, while those in the range 128 to 191 will result in the same allophones being spoken with greater volume. Numbers between 64 and 127 or 192 and 255 inclusive will turn the unit off, as will the BREAK key.

Table 2 contains some examples. Constructing words becomes very easy with a little practice. It is important to think of them as strings of sounds and to pay no attention to spelling. There are several very similar allophones, and the best result may only be obtained through trial and error. Not all the sounds are equally good, the 'TH's seem particularly bad, and here substitution of another allophone is often worthwhile. The short vowels such as 'E' (No. 7) and the 'S' and 'F' sounds can be used twice in succession to stress a syllable. It is also possible to place short pauses in words to good effect. A 50ms pause is about right between words in a phrase, and a longer pause between phrases. It is important to end with a pause or the last allophone will continue to sound. This is taken care of in PROCspeak.

There are algorithms which convert written text to allophones and one of these might be implemented. Obviously they cannot be perfect in a language which allows "cough" and "rough", and pronounces "lead" differently in

Photograph illustrating the position of the 28 pin socket (IC99) for the Speech Synthesiser
different contexts, but with judicious mispelling they are a big help, and often incorporate a dictionary of such exceptions. In addition to speech, some fascinating sound effects are possible, try a string of 'i's or 'p's or random allophones.

Like most speech synthesizers, it is much easier to understand if you are used to it and know what is being said.

Apart from its obvious applications for the blind and situations where you cannot watch a television screen, it is hard to suggest a compelling reason to build it, although there is great scope for experimentation with speaking alarm clocks etc. But, it is one of the cheapest computer peripherals available, and most people still find a speaking machine surprisingly impressive.

DEMONSTRATION PROGRAM

10 MODE 7
20 DIM name$(9)
30 DIM allophone$(9)
40 PRINT TAB(6,2); "SPEECH DEMONSTRATION PROGRAM"
50 PRINT TAB(6,3); "=" * 60

60 REM title$ IS ALLOPHONE STRING FOR TITLE
70 title$="7152C1 GPXXK7MgT%XKlg5=gZP"
80 PROCspeak(title$,1)
90 REM SET UP USER DEFINED KEYS
100 *FX225,128
110 *FX226,138
120 FOR index%=0 TO 9
130 allophone$(index%)=CHR$(O)
140 PROCmenu(index%)
150 NEXT
160 REM speakmode=FALSE
170 REPEAT
180 IF speakmode THEN PROCgetword ELSE PROCupdate
190 UNTIL FALSE
200 END
210 REM PROCupdate ALLOWS MENU TO BE ALTERED
220 DEF PROCupdate
230 PRINT TAB(2,23);"Type 'S' for Speech mode."
240 INPUT TAB(2,17);"WORD NUMBER (0-9)"; reply$
250 PROCspeak(17)
260 PROCspeak(23)
270 IF reply$="S" THEN speakmode=TRUE: ENDPROC
280 index%=VAL(reply$)
290 IF index%>9 THEN 240
300 PRINTTAB(2,19); name$(index%)
310 PRINT TAB(2,20);
320 FOR count%=1 TO LEN(allophone$(index%))
330 PRINT:ASC(MID$(allophone$(index%),count%,1));" ";
340 NEXT
350 PRINT TAB(2,23);"Press (RETURN) to continue"
360 INPUT TAB(2,17);"WORD NAME "; reply$
370 IF reply$<" " THEN name$(index%)=reply$
380 PROCspeak(17)
390 PROCspeak(23)
400 word$=""
410 REPEAT
420 PRINT TAB(2,23); "Press (RETURN) to continue."
430 INPUT TAB(2,17); "ALLOPHONE NUMBER (0-63) "; reply$
440 PROCspeak(17)
RUGBY CLOCK

A standard time signal is transmitted from Rugby containing information about the time, date and year. This project will enable you to decode the time signal and produce a digital display of the date, hours, minutes and seconds. A further option will allow you to decode the actual day as well as the date.

Power Control Interface

Another useful add-on for any computer with an 8-bit output port. The Power Controller Interface is capable of proportional a.c. power control with complete isolation at up to 10 amps. Designed to control heater elements, it may be used for many power applications.

A wide range of the currently available printers for computer systems are featured in this buyer's guide together with an explanation of specifications.
Welcome to BBC Forum, P.E.'s new monthly page devoted to the BBC Micro. You may be wondering why we are intending to devote a whole page, every month, to this machine. After all this is an electronics magazine, and such columns have a habit of being full of software listings of interest only to an eccentric minority; no fit subject for a soldering iron user. Have no fear, the emphasis will be on practical applications of electronics to computers, and not computing for computing's sake. In this first column, therefore, we would like to take a little time to explain our approach to the subject. Incidentally, Sinclair owners may be interested to hear that our sister publication, Everyday Electronics, will be running a similar series aimed at the Spectrum.

Over 370,000 BBC Micros have been sold since the machines first became available in early 1982. It boasts a performance which still compares favourably with its most recent competitors, it's well equipped, widely used in schools, there's plenty of software available for it, and it can be used at the heart of all sorts of systems. Price is the BBC Micro's major drawback, but this does not prevent it from having a wide and enthusiastic following. I must confess to being a convert to the cause myself.

So much for the potted biography of the machine, but what about the reality of owning a computer? We are constantly told that computers will revolutionise our lives, but for many people 'home computer' is just another word for 'games machine'. At the next level, we see users moving on from proprietary software to writing their own, usually in BASIC. Equally, the trend is away from games to applications which actually set the machine to work, e.g. word processing. As our understanding of the machine increases, the more directly we are able to apply the power at our disposal, e.g. central heating control. To make this final step, however, we usually need to move away from BASIC, and look at the hardware of the computer itself. In this way we can add hardware to the computer to control our own peripherals such as lamps and valves, rather than the more traditional printers and cassettes already catered for. This is the objective of this column.

The projects and techniques that we will be looking at will not involve opening up the micro, and will only connect to the interfaces supplied as standard on the model B. However, even if you do not have a BBC Micro, many of the projects will be readily adaptable for many other machines, particularly those with a 6502 microprocessor such as the Commodore 64 and Apple IIe.

INTERFACES

The BBC Micro is particularly well endowed with interfaces. Even if not actually fitted with a particular interface when delivered, the main circuit board, case and power supply are all designed to take all of the interfaces without the need for external add-on boxes or adaptor modules. In this way, any BBC Micro can be upgraded to the full specification if required. The interfaces which can be supported as follows:

- **Cassette Interface**
- **RS423 Port**
- **Analogue Input Port**
- **Light Pen Input**
- **RGB Monitor**
- **UHF Television**
- **Composite Video**
- **Parallel Printer Port**
- **Floppy Disc Interface**
- **User Input/Output Port**
- **1MHz Bus Interface**
- **Processor Bus Interface**
- **Econet Interface**
- **Speech Synthesiser**
- **Paged ROMs**

The model B is supplied with all of these fitted except the floppy disc interface, Econet and speech synthesiser. With the now discontinued Model A 16k RAM is fitted, and the interfaces are limited to UHF television, composite video and the cassette port. The BBC Micro can thus reasonably be described as having enough I/O facilities to be going on with! Indeed, the problem is a little more like being spoilt for choice. Over the next few months, therefore, we will be exploring these interfaces, their strengths and weaknesses.

Wherever possible, we will be including a brief discussion of the internal hardware which supports the interfaces.

USER PORT

We start this month with a look at the user input/output port. Next month we will be describing this port and its uses in greater detail, but for the moment we will start by looking at its connections. The user port is the centre one of the five connectors located on the underside of the keyboard. As shown in Fig. 1, the port has eight input/output lines and two control lines. The 20-pin user port connector requires a mating insulation displacement cable mounting socket and ribbon cable for connection to the outside world. These are available, either separately or made up as leads, from a number of advertiser's in P.E. The RS part number of a suitable connector is 469-881, and of corresponding 20-way ribbon cable is 357-867. NEXT MONTH: Using the I/O Port.

FINALLY

I would be delighted to hear from readers with suggestions, hints for inclusion or problems, but would like to stress that any reply will only be through this column. Correspondence should be addressed to BBC Forum Letters, at P.E.'s editorial address.

Anyone considering purchasing a BBC microcomputer can obtain pre-sale advice from a number of sources, including: BBC Microcomputer System, PO Box 7, London W3 6XJ (send a large SAE).

![Fig. 1. Viewed looking into the socket](image)
PUT BBC BASIC IN CONTROL
USE THE 6502 2ND PROCESSOR
WITH BIG CONNECTIONS

• Single Eurocard – can stand alone and run BBC BASIC programs.
• Program your control applications in BBC BASIC ...
 ... FORTH, PASCAL or any other language ROM.
• Adds I/O expansion to your BBC via the 6502 bus connector.
• Tube Interface for fast development.
• Battery backed up Real Time calendar clock.
• Runs BASIC programs in ROM or from battery backed up RAM.
• Complete set of software utility modules available in ROM.
• A full range of Eurocards for use in target applications.
• Ideal for industry, education, research and commerce.

Move over to CMS today

44a Hobson Street
Cambridge CB1 1NL
(0223) 324141

Cambridge
Microprocessor
Systems Limited

Practical Electronics | March 1985
Auto-Electronics of the future.

KITS FOR SELF-ASSEMBLY

ELECTRONIC CAR ALARM & SECURITY SYSTEM
- Guard doors, boot and bonnet from unauthorised entry.
- **AT-40** – Armed/disarmed using concealed switch.
- **AT-80** – Armed/disarmed by magnetic key fob.
- Flashes headlights and sounds horn.

AT-UL ULTRASONIC INTRUDER DETECTOR
- Supplementary to AT-40 and AT-80.
- Detects attempted break-in.

Other kits in the SPARKRITE range include:
- Electronic ignitions SX1000 (E1395), SX2000 (E2095), TX1002 (E2495) and TX2002 (E3795).

Why a Toroid?
- Smaller size & weight to meet modern 'slimline' requirements.
- Low electrically induced noise demanded by compact equipment.
- High efficiency enabling conservative rating whilst maintaining size advantages.
- Lower operating temperature.

Why ILP?
- Ex-stock delivery for standard 240v range.
- Fast prototype service available.
- 3 weeks despatch for special orders.
- 2 year no quibble guarantee.
- No price penalty for call-off orders.

Mail Order – Please make your crossed cheques or postal orders payable to ILP Electronics Ltd.
Trade – We will open your credit account immediately upon receipt of your first order.

Post to: ILP Electronics Ltd., Dept. 2
Graham Bell House, Roper Close, Canterbury, Kent, CT2 7EP
Tel: (0227) 454778

Prices including P&P and VAT

<table>
<thead>
<tr>
<th>VA Size</th>
<th>£</th>
<th>VA Size</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>0.705</td>
<td>160</td>
<td>12.12</td>
</tr>
<tr>
<td>50</td>
<td>0.67</td>
<td>225</td>
<td>12.76</td>
</tr>
<tr>
<td>100</td>
<td>0.60</td>
<td>300</td>
<td>14.97</td>
</tr>
<tr>
<td>120</td>
<td>0.60</td>
<td>300</td>
<td>17.50</td>
</tr>
</tbody>
</table>

For 10V primary input, insert "O" in place of "X" in type number.
For 220v primary (Europe) insert "1" in place of "X" in type number.
For 240v primary (UK) insert "2" in place of "X" in type number.

IMPORTANT: Regulation – All voltages quoted are FULL LOAD.
Please add regulation figure to secondary voltage to obtain off load voltage.

Why a Toroid?
- Smaller size & weight to meet modern 'slimline' requirements.
- Low electrically induced noise demanded by compact equipment.
- High efficiency enabling conservative rating whilst maintaining size advantages.
- Lower operating temperature.

Why ILP?
- Ex-stock delivery for standard 240v range.
- Fast prototype service available.
- 3 weeks despatch for special orders.
- 2 year no quibble guarantee.
- No price penalty for call-off orders.

Mail Order – Please make your crossed cheques or postal orders payable to ILP Electronics Ltd.
Trade – We will open your credit account immediately upon receipt of your first order.

Post to: ILP Electronics Ltd., Dept. 2
Graham Bell House, Roper Close, Canterbury, Kent, CT2 7EP
Tel: (0227) 454778 Telex: 965780
THE LEADING EDGE

BARRY FOX

COMMERCIAL BREAK

I make no apologies for coming back so soon to cellular radio. In no other area of electronics is so much of such importance happening so fast. By the time you read this, Britain should have its first cellular system. We shall by now be seeing how the Government policy of splitting the service between two rivals works in practice.

To recap very briefly, on the one hand there is TSCR, a joint venture between British Telecom and Securicor which will provide a service called Cellnet. The rival company is Racal which will provide the Vodafone service.

Technically both services are compatible, with transmission on the 900MHz UHF band, and 25kHz channel spacing. The British system TACS (Total Access Communication System) is derived from the American AMPS (Advanced Mobile Phone System) which operates at around 850MHz with 25kHz spacing.

Under the terms of the Government licence given to TSCR and Racal the two services have to be completely separate and running by March. The intention, of course, is to stimulate competition. In fact the situation is made even more competitive, because TSCR and Racal are only allowed to provide a service and sell air time. They cannot sell hardware to end users. This has to be done through retailers and it's where the real commercial battle is being fought.

The cellular service with the best retail backing is the one which will show a profit in the long run. In the short term it won't matter. There is a pent-up demand from people who desperately want a phone in their car or briefcase. They will buy from anyone. But once this pent-up demand has been satisfied, the service will have to be sold with a capital S.

COMPUTER SWITCH

Racal played a quiet, clever game. While saying little to the press, the company struck a deal with Ericsson of Sweden to provide the computer switch. This is a daunting piece of equipment. It controls all the base stations in a city area, so that as a mobile moves from one cell to another the signal is "handed off" from one transmitter to another with a different frequency for each cell.

If you talk to anyone in the armed forces, the odds are they will have heard of Racal. The company makes radio communications and location equipment for the services. So Racal knows about frequency hopping and chose Ericsson for the switch, because the Swedish company also has a big market in the defence sector. Moreover, Ericsson built the switches for the NMT, which is the Nordic Mobile Telephone Service. This provides cellular radio for 120,000 subscribers across Finland, Sweden, Norway and Denmark, on the 450MHz band.

The Ericsson switch has two central processor units, run in synchronism, so that if one goes down the other takes over. The program is stored in a dual memory of 1.5 megaword capacity. The words are 18 bits; 16 data plus 2 for error correction. The data store, for subscriber numbers and billing information, is of similar 1.5 megaword capacity. The power supply is 48V floating from the mains on batteries. All memories are double up for security.

One switch can support around 60,000 subscribers. The first Ericsson switch went to Racal for use in London and the next should be on show now be installed in Birmingham.

Choosing Ericsson for the switch helped Racal pull in its prize catch, retail support from Pye and Philips. In domino fashion the Pye-Philips liaison helped convince the AA to back Racal and so put the company automatically in touch with its 5.6 million members. These are all potential subscribers to cellular radio, although only a fraction will be able to afford it.

In a careful run-up to launch, Racal has been investing heavily in TV advertising which does nothing more than familiarize the public with the Racal name. Behind the scenes Racal has been talking to journalists in specialized areas, for instance broadcasting, telling them how valuable cellular radio will be to a news team on the run.

The deal with answering machine company Answercall, with Dixons as an outlet, puts Racal in touch with the high street. In fact, few people reckon that cellular radio will be a real consumer item. What is a consumer? "Someone who pays for what they buy out of their own pocket," says Leni Davis of Philips, which is just about the best definition I've heard.

ONE-STOP FITTING SERVICE

Most people who use cellular radio will be spending company money. Dixons will have to organise some sort of "one stop" fitting service, where customers can leave the car in the morning and pick it up at night, with dial tone buzzing. Buying and fitting picemelal is a potential disaster.

Cleverly, Racal has insisted that all retailers use the service name Vodafone. This should cut through some of the confusion which is bound to arise when two competitive, different but compatible, rival cellular systems hit the market.

CELLNET UPDATE

At ludicrously short notice TSCR held a press conference to bring us up to date on Cellnet activities. Invitations for a Wednes-
day meet were received through the post on Tuesday. With or without justification TSCR blamed the BT share flotation.

When you get behind some of the PR and management front at Cellnet, the engineering expertise is impressive. TSCR uses Motorola computer switching. Each unit handles around half the number of subscribers handled by the Ericsson switch used by Racal, around 30,000 instead of 60,000.

This will let Cellnet make its service dynamic, that is shrink and change the size of cells, reduce transmission power and change reception and hand-off thresholds to suit special requirements. For example, if every company director with a car or portable phone goes to Wimbledon tennis next summer, the Cellnet service can make more channels available for them by tightening the cells in that area. How will McEnroe react to the sound of phones ringing?

The dynamic system may make it easier for Cellnet to provide a service for small hand portables rather than fixed car phones or bulkv transportable units. These need higher signal strength and smaller cells.

For their last-minute demonstration, Cellnet showed frequency reuse. All demonstrations before that had relied on cells using different frequencies. But, of course, cellular theory relies on different cells in the same area re-using the same frequencies. Cellnet ran two 4 kilometre cells, around 15 kilometres apart, each using the same 10 channels, without mutual interference.

To test signal strength, Cellnet engineers have been driving around Britain for the last year with a Rover car equipped with a magnetometer. This plots its position accurately by reading the Earth's magnetic field. The car also has a signal strength measuring system which logs reception data every three centimetres which the car travels. This lets the engineers try out transmitter sites and see how they cover an area in practice.

BE WARNED

In America some manufacturers are now selling off Japanese cellular equipment very cheap. It is likely that some of this will find its way into Britain, and will be offered for sale at under the going price of around £1,500 for a mobile transceiver.

Be warned. Unless you buy from an authorised dealer, the transceiver won't work with either the Cellnet or Vodafone system. US frequencies and channel spacings are different. The UK main computers just won't accept any calls unless the subscriber's number is stored into the Cellnet or Vodafone service memory with an OK code.
Finally, the tin is filled with clean multi-grade oil to within 10mm from the top and then the lid assembly is lowered into the oil, checking that the resistor bodies are fully immersed. It is, of course, important to check that the lid is firmly in place before using the load.

Calibration graphs for 4 and 8 ohm dummy loads are shown in Figs. 2.3 and 2.4 respectively. Measurements are made with a d.c. milliammeter connected between SK3 and SK4 and with a 1kHz sinusoidal input. A suitable signal source based on a 741 operational amplifier will be described in Part Three.

The dummy load permits testing all of the power amplifier modules and configurations described without the need for adequately rated loudspeakers. A further obvious advantage is that testing can take place without damaging one's eardrums or alienating the neighbours! Unlike the loudspeaker systems which it replaces, the load is small, lightweight and inexpensive.

Although the load is somewhat conservatively rated at 100W continuous r.m.s. output power, it is capable of handling power levels in excess of 200W for short periods. Essentially the load consists of ten parallel connected flameproof ceramic resistors, each rated at 7W. The complete arrangement is immersed in an oil bath which aids cooling, hence raising the maximum total power dissipation.

The load is conveniently housed in a 1lb Golden Syrup tin, the seal between the outer case and lid being perfectly adequate to contain the oil without risk of spillage whilst the outer tin-plate casing provides further effective heatsinking. If desired the case can be painted matt black in order to assist with radiation of heat.

The load is also provided with a simple signal detector which, with the aid of a d.c. meter and the calibration graphs supplied, will enable constructors to ascertain the output power level achieved with a reasonable degree of accuracy.

Fig. 2.1. Circuit diagram of the Dummy Load

The circuit of the dummy load is shown in Fig. 2.1 whilst the physical construction is shown in Fig. 2.2. The tin lid is prepared by marking out ten equidistant points on the flat section (near the outer rim). These points should be at intervals of 36 degrees and should be indented using a centre punch before drilling with a 1mm diameter drill. The four sockets should then be mounted and sealed (to prevent oil escaping from the container) using an epoxy resin based adhesive.

Next, the resistors should be mounted on the tin lid which provides a common termination for the resistors. The resistor leads should be fed through the 1mm holes and soldered on both sides of the lid before trimming. The other end of the resistors are then fed to a 'star' point which is linked to SK1 using a substantial conductor (e.g. 16/0.2mm stranded PVC covered wire). The remaining components are then assembled and soldered into place following the layout shown in Fig. 2.2.

Fig. 2.2. Internal construction of the Dummy Load
PRE-AMPLIFIER/LINE DRIVER

The power amplifier module described last month requires an input of approximately 1V r.m.s. for full output. Where a signal source is unable to provide such an output level, extra gain will be required. Furthermore, in many applications one or more power amplifier modules will have to be driven from a remote signal source. In such applications, low impedance distribution is advantageous as is the ability to provide a balanced output.

The pre-amplifier/line driver module provides a modest value of voltage gain which is adjustable from 1 to 5 approximately. The pre-amplifier/line driver has both low and medium impedance balanced and unbalanced outputs and operates from nominally +30V and −30V. These rails can be derived either from the power amplifier itself or from the power supply module described in Part Three.

CIRCUIT DESCRIPTION

The circuit of the pre-amplifier/line driver module is shown in Fig. 2.5. A simple inverting operational amplifier is formed by IC1 and associated components. The gain of this stage is made adjustable by means of VR1. IC2 and its associated components form a unity gain phase inverter. Signal outputs at 1 and 2 are thus of equal amplitude but are in anti-phase. A Darlington transistor, TR1, is used as an emitter follower to provide a separate low-impedance unbalanced output. The supply voltage rails for IC1, IC2 and TR1, are regulated by means of shunt Zener stabilisers, D1 and D2.

COMPONENTS . . .

Resistors
R1, R2, R3 47k (3 off)
R4, R6 1k (2 off)
R5 470
R7, R8 100 (2 off)
R9, R10 100k (2 off)
R11 22
R12, R13 1k 0-5W (2 off)
VR1 220k min. horizontal skeleton pre-set
VR2 100 min. horizontal skeleton pre-set

Except where otherwise stated, all fixed resistors are 0-25W 5% carbon.

Capacitors
C1, C2 220µ 250V polyester (2 off)
C3 100µ 18V p.c. electrolytic
C4, C5 220µ 16V p.c. electrolytic (2 off)

Semiconductors
D1, D2 BZY88 C9V1 (2 off)
TR1 TIS151
IC1, IC2 TL071 (2 off)

Miscellaneous
P.c.b.
8-pin d.i.l. sockets (2 off)
Terminal pins (13 off)
Small instrument case (see text)
SK1, SK2 standard 0-25in. closed circuit jack sockets (2 off)
SK3, SK4 5-pin 270 deg. DIN sockets (2 off)
CONSTRUCTION

With the exception of the input and output signal connectors, all components are mounted on a single-sided p.c.b. measuring approximately 65mm x 115mm (i.e. identical in size to the power amplifier module). The component overlay for the p.c.b is shown in Fig. 2.6. Components should be assembled on the p.c.b in the following sequence; terminal pins, i.e. holders, resistors, capacitors, transistor, Zener diodes, and pre-set resistor. Care should be taken to ensure the correct orientation of all polarised components.

When the p.c.b wiring is complete, the underside of the board should be carefully checked for solder bridges and dry joints whereas the component side should be examined paying particular attention to the correct placement of components.

In applications where the power amplifier module is to be used in the proximity of the signal source (as would be the case in a ‘domestic’ environment) the pre-amplifier/line driver module may be conveniently mounted within the same enclosure as that used for the power amplifier module. In this case the supply rails can be simply derived from the power amplifier.

Alternatively, where the power amplifier module is located remotely, the pre-amplifier/line driver module may be mounted in almost any small instrument case. In this case a typical wiring layout is shown in Fig. 2.7. As before, the supply rails may be derived from the power amplifier module using a 3-core cable plus a separate screened signal lead. In some applications (i.e. where a very long cable run is necessary) such an arrangement may not be convenient and
hence the separate mains powered module (to be described in Part Three) should be utilised.

The line-driver input may be linked to either of the pre-amplifier outputs or, where remote distribution is concerned, may be used separately to monitor the signal input with medium/high impedance headphones.

SYSTEM CONFIGURATION

Various system configurations are possible depending upon the number and location of power amplifier modules and on the total output power required. Six typical arrangements are shown in Fig. 2.8.

Fig. 2.8a shows the arrangement for driving a single power amplifier from a pre-amplifier/line driver module. Interconnection is by means of a screened cable which may be up to 10m in length. Where convenient, power for the pre-amplifier may be derived from the power amplifier module. In this case, three extra wires will be necessary in the interconnecting cable. These, however, need not be screened and, under no circumstances should they be contained within the same screened cable as the audio signal.

For long cable runs a 'local' pre-amplifier power source is preferable. In this case a single screened cable should be used to link the pre-amplifier/line driver module with its associated power amplifier. In Part Four we shall be describing a simple power unit which is suitable for use with up to four pre-amplifier modules.

Fig. 2.8b shows how further power amplifiers can be 'daisy-chained' from a single pre-amplifier/line driver module. As many as ten such units can be driven from a
single pre-amplifier module. Each power amplifier must, however, have its own associated loudspeaker system since parallel output connection is inadvisable.

Since the pre-amplifier provides anti-phase outputs, it is possible to drive two power amplifiers separately, as shown in Fig. 2.8c. Here the important consideration is that, if the loudspeaker systems are serving the same area, or are in the same enclosure, it is essential that one set of speakers is connected with reverse polarity.

A useful alternative to Fig. 2.8c is shown in Fig 2.8d. Here the two power amplifiers are physically adjacent and thus a twin screened (balanced) cable can be employed. Like the previous arrangement, it is essential to ensure that one set of speakers is reverse phased.

A bridge output stage is shown in Fig. 2.8e. This arrangement is ideal where a single loudspeaker system (suitably rated) is to be operated at very high power levels (up to 200W from the power amplifier modules described in Part One). It is essential that both the loudspeaker system and the common outputs of the power amplifier are linked together using a very substantial conductor since, at 200W output into 4 ohm, the current in this link will be approximately 7A!

Fig. 2.8f shows an alternative bridge arrangement in which a twin screened (balanced) cable is employed. This balanced arrangement is instrumental in reducing the effects of hum and induced electrical noise and is much to be preferred in situations where cable runs in excess of 50m are unavoidable.

PRE-AMPLIFIER, MIXER AND TONE CONTROL

Whilst the simple pre-amplifier/line driver described previously is ideal for driving one, or more, power amplifier modules from a single source, there will be many occasions where several signals of varying levels are to be combined before sending to one, or more, power amplifier modules.

A typical example is where a microphone is to be mixed with the output of an electric guitar or synthesiser. In such a case, a simple mixer arrangement is required coupled with some additional tone controls and a master gain control. The unit described was designed to satisfy just such a requirement and yet is simple to build and uses only low-cost, readily available components.

The simplified block schematic of the pre-amplifier, mixer and tone control is shown in Fig. 2.9. The pre-amplifier, mixer and tone control provides four input channels, each having its own individual gain control, has separate treble and bass controls and a master gain control.

The overall voltage gain of the pre-amplifier is well in excess of 200 and thus the maximum input sensitivity is of the order of 10mV to drive an associated power-amplifier module to full output. The frequency response of the prototype unit is shown in Fig. 2.10.
CIRCUIT DESCRIPTION

The complete circuit diagram of the pre-amplifier, mixer and tone control unit is shown in Fig. 2.11. A low-noise quad operational amplifier is used and this is operated from +9V and -9V supply rails stabilised by means of D1 and D2 respectively.

VR1 and VR4 act as the individual channel gain controls and R1 to R4 may be added in order to match a variety of inputs (see Table 1). IC1a forms a summing amplifier which provides a voltage gain of approximately 10 on each channel. IC1d is an active Baxandall arrangement which provides a maximum 'cut' and 'boost' of around 15dB at both LF and HF. C14 is added in order to ensure unconditional stability of the arrangement when maximum treble boost is selected.

IC1c operates as an inverting amplifier with a fixed
<table>
<thead>
<tr>
<th>Signal source</th>
<th>Requires own pre-amp?</th>
<th>Nominal input impedance</th>
<th>Nominal sensitivity</th>
<th>Input resistance R1 to R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic microphone (high output)</td>
<td>No</td>
<td>50kΩ</td>
<td>10mV</td>
<td>s/c</td>
</tr>
<tr>
<td>Dynamic microphone (low output)</td>
<td>No</td>
<td>600Ω</td>
<td>10mV</td>
<td>s/c</td>
</tr>
<tr>
<td>Electret microphone</td>
<td>No</td>
<td>50kΩ</td>
<td>10mV</td>
<td>s/c</td>
</tr>
<tr>
<td>Tape-deck</td>
<td>No</td>
<td>500kΩ</td>
<td>100mV</td>
<td>470kΩ</td>
</tr>
<tr>
<td>Ceramic pick-up</td>
<td>No</td>
<td>1MΩ</td>
<td>200mV</td>
<td>1MΩ</td>
</tr>
<tr>
<td>Magnetic pick-up</td>
<td>Yes</td>
<td>600Ω</td>
<td>10mV</td>
<td>s/c</td>
</tr>
<tr>
<td>Tuner</td>
<td>No</td>
<td>500kΩ</td>
<td>100mV</td>
<td>470kΩ</td>
</tr>
</tbody>
</table>

Table 1. Typical signal sources and input arrangements

voltage gain of approximately 20 (if desired, the gain may be increased to approximately 40 by raising the value of R15 to 220k). The output of IC1c is at a relatively low impedance and will directly drive as many as ten parallel connected power amplifier modules.

IC1b acts as a unity gain inverter and provides the low-impedance anti-phase output required for the differential and bridge output configurations described earlier.

CONSTRUCTION

The pre-amplifier, mixer and tone control unit is built on a single sided p.c.b. measuring approximately 65mm x 115mm (i.e. again identical in size to the power amplifier module).
Fig. 2.14. Input arrangement for low-impedance unbalanced microphones

Fig. 2.15. Input arrangement for low-impedance balanced microphones

Fig. 2.16. Input arrangement for ceramic pick-up cartridges

The component overlay for the p.c.b. is shown in Fig. 2.12. Components should be assembled on the p.c.b. in the following sequence: terminal pins, i.c. holder, resistors, capacitors, and Zener diodes. Care should be taken to ensure the correct orientation of all polarised components.

When the p.c.b. wiring is complete, the underside of the board should be checked for solder bridges and dry joints and the component side should be examined paying particular attention to the correct placement of components.

As before, and depending upon the individual constructor's preference, the pre-amplifier may be either mounted in the same enclosure as that used for the power-amplifier module or, alternatively, may be mounted in its own equipment case. This latter arrangement is, of course, preferable when one, or more, power amplifiers are to be used from remote locations.

A suitable internal wiring diagram is shown in Fig. 2.13 and the corresponding front panel labelling is shown in the photograph. Connectors, SK5 and SK6 will, of course, not be required where the pre-amplifier and power-amplifier modules are housed in the same cabinet.

NEXT MONTH: Signal source and power supply module.
Construction of the MENTOR robot starts at the base plate of the robot (Fig. 7.1) to which the power supply board and transformer are fitted. The main wiring loom passes through a slot under the board ready for connecting to the interface board which is later sited beneath the robot.

At the base of the column is attached a gear which then engages with another gear fitted to axis 0 motor which is then secured to the base plate.

The arm assembly is secured to the column with a nut on axis 1 axle (Fig. 7.3) and the large counterbalance weights fitted. These result in the robot's position being stable when there is no power applied to the motors. They also increase the accuracy of the robot in that no error signal from the servo system is required simply to hold a position.

The wrist motors which together provide elevation and roll can now be screwed to axis 2 arm (Fig. 7.4) and the gears fitted. There are two pairs of spur gears to transfer torque from the motors to the wrist axles and three bevel gears to turn the torque through 90 degrees to the gripper assembly.
The gripper components are now fitted (Fig. 7.5). A pair of torsion springs open the jaws after tension is released on the Bowden cable which closes them. The cable is driven by a motor attached to the cover of axis 1 arm (Fig. 7.6).

POTENTIOMETERS

Next, the wiring harness and position sensing potentiometers are fitted. The potentiometers are adjusted such that the voltage on the wiper will be about 10% of the 10V supply voltage when the axis is at its minimum position. The harness passes up the column and through the axles branching out on the way to connect to the potentiometers and to the motors via terminal blocks.

The interface board is now screwed to its plate (Fig. 7.7) and after checking that the power supply is operating correctly the power supply lead and the harness are plugged into the board and the robot is then ready for connecting to a computer for calibration.

CALIBRATION

The robot is operated as if it were part of the memory of the computer and instructions consist of POKEs for sending data and PEEKs for receiving data. Axis 0 is at the lowest address in the block allocated to the robot. As the system is defined in 8 bits each axis has 256 possible positions to which it may move, i.e. there is a resolution of 1 part in 256 (0.04%) and the data sent to each axis may be any integer from 0 to 255. To send each axis to its centre position using the BBC computer the instructions are as follows:

```plaintext
CALIBRATION PROGRAM
10 A=&FD00
20 FOR I=0 TO 5: ?(A+I)=128 NEXT I
Or for a ZX Spectrum:
10 LET a=32
20 FOR i=0 TO 5: POKE a+i,128: NEXT i
Or for a Commodore VIC20:
10 A=8192
20 FOR I=0 TO 5: POKE A+I,128: NEXT I
Or for a Commodore 64:
10 A=56832
20 FOR I=0 to 5: POKE A+I, 128: NEXT I
```

The Commodore 64 plugs onto the same edge connector as the VIC20. The only significant difference between the interfaces is at the computer end where the board which plugs into the cartridge slot is laid out on a 0.1" pitch whilst the VIC20 is on 0.156" pitch. Virtually any 8- or 16-bit micro system or computer can be used provided there is access to the address, data and control bus.
Fig. 7.8. The complete Mentor Robot

With mid-position data sent to each axis the wrist is set by slackening the gripper assembly, moving it and securing in the centre position. Fine adjustment is carried out with pre-sets P203,204.

Axes 0,1,2 are set by sending them in turn to position 0 and adjusting pre-sets VR200,201,202 so that the axis stops just before the end stop is reached. VR205 is used to make the gripper start to operate at some convenient datum such as 50.

POSITION DATA

There are ADCs on the interface board to enable the positions of the simulator and the robot axes to be read. To operate the robot it is not necessary to use the ADC but it is useful to know for certain when the required position has been reached. Otherwise a transit time would have to be calculated based upon the size of the position change.

The arm ADC is read by first writing to it, with a POKE instruction, which axis is to be read. This is defined by the top 4 bits of the data byte so the data is the axis number multiplied by 16. The ADC is then written to at the next address to tell it to start conversion. After that the arm position is ready with a PEEK instruction. For the BBC computer the instructions to read axis 0 position are as follows:

- 30 $\text{(A+6)}=0$
- 40 $\text{(A+7)}=0$
- 50 DA0=(A+17)

Similarly for axis 2:

- 60 $\text{(A+6)}=32$
- 70 $\text{(A+7)}=0$
- 80 DA2=(A+17)

The simulator is read similarly except that the multiplexer address is defined by the bottom 4 bits of the data byte so the data is the axis number and the ADC is at an address one lower so to read axis 2 of the simulator via a BBC computer. The instructions are:

- 90 $\text{(A+6)}=2$
- 100 $\text{(A+7)}=0$
- 110 DS2=(A+16)

By use of the following program the MENTOR will copy in real time the movement of the hand-held simulator showing clearly the ease of use of the MENTOR control system.

10 A-&FD00: FOR N=0 to 5
20 $\text{(A+6)}=N$: $\text{(A+7)}=0$
30 $\text{(A+N)}=\text{(A+16)}$
40 NEXT N: GOTO 10

Furthermore by being on the bus of the computer it is very simple to add additional devices into the system. The BBC computer is particularly suited to this as the 1MHz bus is buffered and daisy-chaining of other robots, sensors etc. is easily implemented.

Constructors' Note

MENTOR and NEPTUNE are available as kits or ready-built from: Cybernetic Applications, West Portway Industrial Estate, Andover, Hants.

ELECTRONIC SEISMOGRAPH

This circuit can detect the waves and oscillations of the movement of the earth. The sensitivity of the instrument depends upon the sensor and its construction. In this case it consists of a pendulum made up of a magnet supported by a long steel wire. The longer the wire and the heavier the bob, the greater the sensitivity. To get the most reliable and accurate measurements the magnet should be in close proximity to the pick-up coil, L1.

When the magnet is disturbed by movement, a current is induced into the coil and a signal is passed to IC1. This acts as a standard low pass filter with a cut-off frequency of around 10Hz. The filtered signal is amplified by IC2 and fed to an oscilloscope, where it can be monitored.

The signal is also fed to IC3 which is used to indicate an overload condition via D1, and VR2 is used to set the level of the oscilloscope signal.

K. Alizadeh, Tehran, Iran.
MARCO TRADING

FREE CAREER BOOKLET

Train for success, for a better job, better pay
Enjoy all the advantages of an ICS Diploma Course, training you ready for a new higher paid, rewarding career.
Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!
Look at the results awaiting you.
Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today — at no cost or obligation at all.

GCE

Over 40 'O' and 'A' Level subjects from which to choose. Your vital passport to career success.

ORDERING: All components are brand new and to full specification. Please add 45p postage/packaging (unless otherwise specified) to all orders then add 15% VAT to the total. Either send enclosed/pospaid order or send telephone your Access or Visa number. Official orders from schools, universities, colleges most welcome.

For non-finance method and for our 1985 catalogue — only 65p per copy. All orders dispatched by return of mail.

NEW RETAIL 100p shop price now open Mon-Fri 9.30-6.00. Sat 9-12.

ICS Dept, E05 as 8 Elliott Place
Clydeway Centre
Glasgow G3 8EF
041 221 2926
or 01 922 9911

ROBOTS

For Education, Training and Industry

NEPTUNE I

NEPTUNE II

NEPTUNE — for clean hydraulic power — NEPTUNE is the hydraulic fluid!

Kit from £1250

Kit from £1725

ROBOTS may also be taught by 'lead' by the room method.

Extensive software is supplied free with each robot.

Leads available for connection to BBC, ZX Spectrum, Apple IIe, Commodore 64 and VIC 20.

Most other micros are also easily usable with these robots.

Please phone for brochure: 0204 50093.

110 Portway Industrial Estate, Adderley SP10 3PE.
A private and independent company giving prompt, personal service.
MARTIAN HEAD

Much has been heard recently about the 'head' on Mars, and I think I must deal with it — though as briefly as I can!

In the 1975s the Viking landers came down on Mars, one in the ochre desert of Chryse and the other in Utopia. Both sent back invaluable data. No definite traces of Martian life were found, but we learned a great deal about the nature of the surface and the atmosphere.

We were also able to study pictures of the areas round the grounded spacecraft. One rock bore an almost uncanny resemblance to a human face. Of course this was pure coincidence, but now, for some curious reason, there have been sensational reports that we really are seeing a piece of Martian artwork!

I have examined the evidence and the relevant pictures. There is absolutely no doubt that we are dealing with nothing more than a natural rock, with its attendant light and shade effects. Enough said.

There have been comments about the Solar Polar Mission, a joint ESA-NASA venture now officially renamed Ulysses. It is scheduled for launching in May 1986, from the Shuttle, and will travel out as far as Jupiter, passing round the giant planet and then coming back to pass over the Sun's poles in 1990. All kinds of investigations will be carried out, ranging from solar wind studies to measurements of the solar and interplanetary magnetic fields.

The number of asteroids with well-known orbits continue to increase. The total has now passed the thousand mark. However, the four spaceprobes which have so far passed through the asteroid belt (two Pioneers and two Voyagers) have emerged unscathed, so it may be that there is less scattered material there than was once feared. No doubt time will tell.

BETA PICTORIS

The southern constellation of Pictor, the Painter, is by no means conspicuous. It contains no star brighter than the third magnitude, and has no obvious shape. We remember it mainly because a fairly bright nova flared up in it in 1925. Pictor is not visible from Britain; it is too far south, and it is in fact close to Canopus, which is the brightest star in the sky apart from Sirius (and is much more luminous and remote).

The second star of Pictor is Beta Pictoris, of magnitude 3.8; it has no individual name. It is white, with an A-type spectrum; its distance from us is 78 light-years, and it is approximately 60 times as luminous as the Sun. Up to now it has only been dismissed as a very ordinary star indeed. But Beta Pictoris has suddenly leaped into the scientific headlines.

The story began in 1983, with observations carried out from the infra-red astronomical satellite IRAS. It is fair to say that IRAS was one of the greatest successes of the space age so far. It transmitted for the best part of a year, discovering thousands of new infra-red sources and also detecting comets, dust-tails to known comets and even a strange asteroid which ventures perilously close to the Sun.

When the equipment was being checked, infra-red excesses were found associated with several stars, including Vega and Fomalhaut. This was attributed to the presence of cool material which might well be planet-forming.

One star studied in this way was Beta Pictoris, and a few months ago two American astronomers, Drs. Bradford Smith and Richard Terrile, decided to make an optical investigation. They went to the Las Campanas Observatory in Chile, where conditions are exceptionally good. Las Campanas comes under the same management as Mount Wilson in California, and like Mount Wilson it has a 100-inch reflecting telescope — the main difference is that Mount Wilson 100-inch is old (it was completed in 1917) whereas the Las Campanas instrument is ultra-modern.

Smith and Terrile used the telescope together with a CCD or Charge-Coupled Device, which is much more sensitive than any photographic plate. The results were startling. Beta Pictoris is surrounded by a disc of material which extends nearly 50,000 million miles from the star. The disc is seen nearly edge-on, and is probably no more than a few hundred million years old.

LIFE FORMING

It is possible to make a shrewd estimate of the composition of the disc. Ices, silicates and carbonaceous substances are strong candidates. Now, these are the materials from which the planets in our own Solar System were formed well over 4,000 million years ago. Analysis of the density of the Beta Pictoris ring material indicates that planets may have been formed there too, and by extrapolation it seems that the interior particles in the disc have been swept away, possibly by orbiting planets.

What can we make of all this?

The main importance is that for the first time we have actually seen what may be an extra-solar planetary system; up to now we have had to rely either upon infra-red work, or upon the admittedly very uncertain measurements of nearby stars which 'wobble' slowly as they are perturbed by associated bodies which may be of planetary rather than stellar mass. There is absolutely no doubt that the Beta Pictoris shell does exist, and although we cannot be over-confident it seems that a planetary system is much the most likely explanation for it.

Beta Pictoris itself is a normal star; neither particularly luminous nor particularly dim, neither a cosmic heavyweight nor a stellar minnow. And if it is indeed the centre of a family of planets, the evidence in favour of numerous similar systems becomes almost overwhelmingly strong.

Investigations are proceeding, and there is every hope that more discs of the same kind will soon be found round other stars. Whether any of these hypothetical planets are inhabited is quite a different matter, but there seems no valid reason why not. Beta Pictoris has taught us a great deal, even though as yet we cannot claim to have done more than scratch the surface of the main problems.
THE SKY THIS MONTH

Throughout this month the early-evening sky continues to be dominated by the planet Venus. It reaches its greatest brilliancy on 26 February, when its magnitude will be 4.3. Under such conditions it is easily found with the naked eye even when the sky is still bright, and is obvious with binoculars—though I must again repeat my oft-given warning never to sweep around with binoculars or a telescope unless the Sun is completely below the horizon.

As Venus draws in towards inferior conjunction, which will be reached on 3 April, its phase decreases. The amount of disc illuminated is 44 per cent at the beginning of February and only 25 per cent into March.

This being so, it may seem strange that Venus is at its brightest when less of the sunlit face is turned toward us. The answer is that as the phase decreases, the apparent diameter increases, because the planet is coming closer to us. At its very closest, of course, it is at inferior conjunction—more or less between the Earth and the Sun—and cannot be seen at all.

The only chances of seeing Venus when it is directly aligned with the Sun occur at the times of transit. However, the last transit took place as long ago as 1882, and the next will not be until 2004.

Of the other planets, Mercury is to all intents and purposes out of view: Jupiter and Saturn are morning objects, but badly placed; Mars is still visible in the evening, but its magnitude is now only 1.4, so that no telescope will show much on its surface. The apparent diameter of Mars is now less than 5 seconds of arc.

HALLEY'S COMET

Halley's Comet is now under regular observation, and is becoming brighter as it moves inward, but it is still beyond the reach of any but giant telescopes. However, there is one mildly encouraging sign. The comet is starting to become active earlier than expected, and it may eventually be brighter than was at first predicted, though it will certainly not be spectacular—as it has been at some past returns. The most we can really hope from Britain is that it will become a naked-eye object late this year.

Among the stars, Orion remains dominant. It is high in the south during February evenings, and is quite unmistakable, together with its brilliant retinue. Sirius also is at its best. It is a pure white star of spectral type A, but because it is so bright, and because it is never very high up as seen from Britain, it seems to flash various colours of the rainbow.

Sirius is, in fact, the supreme "twinkler", though when seen from countries south of the equator, where it can pass overhead, it looks much steadier. It is rather surprising to remember that Sirius is an ordinary Main Sequence star, a mere 26 times as powerful as the Sun—whereas Rigel in Orion, which looks well over a magnitude and a half fainter, is equal to 60,000 Suns combined.

There are opportunities this month for seeing Algol, in Perseus, at minimum light. Algol is an eclipsing binary, its 'rest' magnitude is just below 2, approximately equal to the Pole Star, but during mid-eclipse the magnitude falls to below 3.

Fading takes 4 hours, and minimum lasts for only 20 minutes, after which a further 4 hours is needed for Algol to regain its lost light. Minima occur at 3.1 hours GMT on 18 February, 23.9h GMT on 20 February, and 20.7h GMT on 23 February. Of course, there are minima every 2½ days; I merely give these as being convenient to observe.

MJI 102 — A NEW NUMBER IN BRITISH 'SCOPES . . .

Simple Operation — Fully Automatic Trigger — Single Beam — 100mV to 50V/Div. — Sensitivity — 10mS to 1µS/Div. — Sweep — X - Y Facility — Lightweight and Compact

Send for FREE details NOW!

MJI Instruments
HILLTOP HOUSE, THINGOE HILL,
BURY ST EDMUNDS, SUFFOLK, IP32 6BE. Tel: (0284) 67104

Printed Circuit Hardware & Component Catalogue

- COPPER CLAD LAMINATES
- PHOTO-RESIST LAMINATE & CHEMICALS
- PRINTED CIRCUIT DRAUGHTING AIDS
- VERO BOARD & PROTOTYPING SYSTEMS
- CONNECTORS/CASES/GENERAL HARDWARE
- SELECTION OF COMPONENTS
- EDUCATIONAL COMPUTING
- ELECTRONICS KITS

Send for your free catalogue to:
KELAN ENGINEERING LTD.
Circuit Products & Components Division.
27-29 Leadhall Lane, Harrogate.
North Yorkshire. HG2 9NJ.
Tel: (0423) 870938.
NAME
ADDRESS

£129.95
Part Five of the series we looked at a family of devices which allow us to route several incoming data signals along the same path. We shall now look at the opposite problem; that of connecting a single incoming line to one of several output lines.

When explaining the action of the de-multiplexer we can, as before, use a simple switch analogy. A four-way de-multiplexer is, like its multiplexer counterpart, equivalent to nothing more than a single pole four-way switch. The important distinction is that, in the case of the data multiplexer data is being selected from one of four incoming signal lines whereas, in the case of the de-multiplexer, data is being routed to one of four outgoing lines. This vital difference is illustrated in Fig. 6.1. Furthermore, since digital multiplexers and de-multiplexers rely on logic gates (which are unidirectional devices) for their operation, the two functions are quite distinct.

THE 74LS139

The 74LS139 is a common example of a data de-multiplexer which contains two independent four-way de-multiplexers within a 16-pin D.I.L. package. Each four-way de-multiplexer has a single active-low enable input, EN, two select inputs, S0 and S1, and four outputs, 0 to 3. The pin connections for the 74LS139 are shown in Fig. 6.2. As for its data multiplexer counterpart (the 74LS153) the two halves of the device (referred to as A and B) are conveniently brought out to pins on opposite sides of the package; the A-side using pins 1 to 7 whilst the B-side uses pins 9 to 15. The supply, which follows the normal convention of pin-8 (0V) and pin-14 (+5V) is common to both halves of the device.

The internal logic of the 74LS139 is shown in Fig. 6.3. This shows how the two select signals, S0 and S1, are gated with the enable signal, EN, in each of the four three-input NAND gates. It should be noted that, since NAND rather than AND gates are employed, the outputs go to logic 0 in the selected state and revert to logic 1 in the de-selected state. This is important since, in typical applications, the 74LS139 is used in conjunction with other devices which have active low select or enable inputs. If this is a little hard to follow don't despair as we shall be returning to this topic with a practical example a little later!

The complete truth table for the 74LS139 is shown in Table 6.1. This
The enable input is produced by latching switch S3, which should
initially be adjusted to produce a logic 1 (disabling the de-
multiplexer). The two

truth table is, of course, identical for each half of the device. When the EN
line is at logic 1 all four outputs go to logic 1 regardless of the state of the
select inputs, S0 and S1. When both select inputs are at logic 0 and the EN
line is taken low, the 0 output line goes to logic 0 (the other three outputs
remain at logic 1). With S0 at logic 1 and S1 at logic 0 the 1 output line goes
to logic 0, and so on.

Developing the four-way switch analogy a little further, it should
be noted that, the enable line effectively acts as a data signal input; the selected
output reflecting the state of this line. To further explain this action, if we
have selected output 0 (by placing a logic 0 on both S0 and S1), the 0 output
line will follow the logical state of the EN input; i.e. when EN goes low the
0 output will go low and when EN goes high the 0 output will go high.

We shall now turn our attention to a practical investigation of the 74LS139
using the circuit arrangement shown in Fig. 6.4. It should be noted that only
one half of the device is used. The 74LS139 should be inserted into
socket C of the Logic Tutor with pin-1 aligned with C1. The following
connections should then be made:—

C1 to S3 (S3 acts as the enable input)
C2 to S1 (S1 acts as the S0 input)
C3 to S2 (S2 acts as the S1 input)
C4 to D1 (D1 shows the state of output 0)
C5 to D2 (D2 shows the state of output 1)
C6 to D3 (D3 shows the state of output 2)
C7 to D4 (D4 shows the state of output 3)
C8 to OV (common)
C16 to +5V (supply)
(A total of 9 links)

Table 6.1. Complete truth table for the
74LS139

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>S0</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The enable input is produced by
latching switch S3, which should ini-
tially be adjusted to produce a logic 1
(disabling the de-multiplexer). The two

momentary action switches, S1 and
S2, will in the absence of a depression
produce logic 0 on both of the select
inputs, S0 and S1. In this state all four
of the output indicating I.E.D.s, D1 to
D4, should be illuminated.

S3 should now be adjusted to
produce a logic 0 to enable the
demultiplexer. D1 should now become
extinguished showing that, with the S0
and S1 inputs both at logic 0, output 0
has been selected. Now, leaving S3 at
logic 0, S1 should be depressed. D2
will then become extinguished show-
ing that, with S0 at logic 1 and S1 at
logic 0, output 1 has been selected.

S1 should then be released and S2
depressed. D3 will now be ex-
tinguished confirming that, with the S1
input at logic 1 and the S0 input at
logic 0, output 2 is selected. Finally, S1
and S2 should be simultaneously
depressed. D4 will then become ex-
tinguished showing that output 3 is
selected when both select inputs are at
logic 1.

The results of this investigation have
been summarised in the truth table of
Table 6.2. This table has been con-
structed on the basis that the de-
multiplexer is always in its enabled
state. Readers should, however, con-
firm that whenever S3 is set to logic 1, all
four outputs will immediately revert
to logic 1 (illuminating all four I.E.D.s)
regardless of the state of the two select
inputs.

Table 6.2. Truth table for the practical
investigation of the 74LS139

<table>
<thead>
<tr>
<th>S# (S1)</th>
<th>S1 (S2)</th>
<th>3 (D4)</th>
<th>2 (D3)</th>
<th>1 (D2)</th>
<th>0 (D1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The sequence produced by the circuit
should follow that shown in the timing
diagram of Fig. 6.6. This shows that, at
any time, three of the output indicating
I.E.D.s are illuminated and one is ex-
tinguished. The effect is that a logic 0

In Part Four we showed how a
sequencer could be constructed using
a shift register. We shall now consider
an alternative arrangement based on a

FOUR-CHANNEL SEQUENCER
USING THE 74LS139

74LS139 de-multiplexer as shown in
Fig. 6.5.

The two select inputs of the
74LS139 are fed from the outputs of a
simple binary divider configured around
a 74LS74 D-type bistable element. The select inputs are thus sup-
plied with a binary count sequence and thus a low is transferred from one output of the de-multiplexer to the next on each falling clock edge.

The 74LS139 should be left in
socket C whilst the 74LS74 should be
inserted in socket B checking, as usual,
that pin-1 aligns with B1 on the Logic Tutor. The following connections are
required:—

B1 to logic 1
B2 to B6
B3 to clock
B4 to logic 1
B5 to C3
B7 to OV (common)
B16 to +5V (supply)
C1 to logic 0 (active-low enable)
C2 to B3
C4 to D1
C5 to D2
C6 to D3
C7 to D4
C8 to OV (common)
C16 to +5V (supply)
(A total of 15 links)

The sequence produced by the circuit
should follow that shown in the timing
diagram of Fig. 6.6. This shows that, at
any time, three of the output indicating
I.E.D.s are illuminated and one is ex-
tinguished. The effect is that a logic 0

Table 6.2. Truth table for the practical
investigation of the 74LS139

<table>
<thead>
<tr>
<th>S# (S1)</th>
<th>S1 (S2)</th>
<th>3 (D4)</th>
<th>2 (D3)</th>
<th>1 (D2)</th>
<th>0 (D1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The sequence produced by the circuit
should follow that shown in the timing
diagram of Fig. 6.6. This shows that, at
any time, three of the output indicating
I.E.D.s are illuminated and one is ex-
tinguished. The effect is that a logic 0
circulates from D4 → D3 → D2 → D1 and then restarts at D4.

TIME DOMAIN MULTIPLEXING

Thus far we have only separately considered the actions of the multiplexer and de-multiplexer. The time has now come for us to put these two devices together in an arrangement which allows us to send several data signals over a common path and yet still separate them again at the far end.

Since we have restricted ourselves to the use of four-way multiplexers and de-multiplexers in this series we shall provide for four inputs at the ‘sending end’ and four outputs at the ‘receiving end’. The multiplexer at the sending end provides us with a means of routing each data line to the common signal path for a pre-determined time whilst the de-multiplexer at the receiving end connects the common signal path to each output line for a similar pre-determined time.

It is, of course, important to ensure that the data appearing on each data input line is correctly routed to the corresponding data output line. It should, therefore, be apparent that some means of synchronising the data at the sending and receiving ends of the path is of paramount importance. To this end we shall need to generate a common set of select signals at each end of the path.

Data communication systems of this type rely on the availability of a common clock signal at both the sending and receiving ends. At this point we should perhaps point out that, in most practical data communication systems, we would almost certainly prefer to have an asynchronous arrangement in which the data was ‘self-clocking’.

The circuit arrangement employed in our practical investigation of time domain multiplexing is shown in Fig. 6.7. The common select signals are generated from the Logic Tutor’s internal clock operating in conjunction with a single-stage binary divider based upon a 74LS73 J-K bistable. Fig. 6.8 shows the timing diagram of the clock and select input lines. Each data line is activated for half of the clock cycle period and follows the sequence, D0, D1, D2, and finally D3. The sequence is then repeated with one complete cycle of all four data inputs occurring in a time equal to one cycle of the signal on the S1 line.

The four data inputs are applied to a 74LS153 multiplexer and, from there, follow a time shared common data path. Since the 74LS139 has an active-low enable input, a single inverting stage (using a 74LS04) is included in the common data path. Furthermore, due to the inverting action of the internal logic of the 74LS139 (remember that the selected output line goes low whilst the other three lines remain high) we shall need to invert each of its data outputs. This is achieved using a further four inverting gates of the 74LS04.

The integrated circuits should be inserted into the Logic Tutor in the following manner:

- **Socket A** = 74LS153
- **Socket B** = 74LS139
- **Socket D** = 74LS04
- **Socket E** = 74LS73

In each case it is, as usual, important to check that pin-1 of the integrated circuit is correctly aligned with pin-1 of the Logic Tutor’s connecting strip.

The following links are required:

- A1 to 0V (active-low enable)
Output
Select 0
A2 to E14 (select 1)
A3 to S4 (S4 acts as the D3 input)
A4 to S3 (S3 acts as the D2 input)
A5 to S2 (S2 acts as the D1 input)
A6 to S1 (S1 acts as the D0 input)
A7 to D1 (time-shared data output)
A8 to OV (common)
A14 to E1 (select 0)
A16 to +5V (supply)

B1 to D2 (inverted time-shared data input)
B2 to A14 (select 0)
B3 to E14 (select 1)
B4 to D3 (inverted D0 output)
B5 to D5 (inverted D1 output)
B6 to D11 (inverted D2 output)
B7 to D13 (inverted D3 output)
B8 to OV (common)
B16 to +5V (supply)

D4 to LED D1 (D1 shows D0 output)
D6 to LED D2 (D2 shows D1 output)
D7 to OV (common)
D10 to LED D3 (D3 shows D2 output)
D12 to LED D4 (D4 shows D3 output)
D16 to +5V (supply)

E1 to clock
E2 to logic 1
E3 to logic 1
E4 to +5V (supply)
E13 to OV (common)
E16 to E3

(A total of 31 links)

All four of the input switches, S1 to S4, should initially be adjusted to produce logic 0 data inputs. In this state, all four of the output indicating I.e.d.s should be extinguished showing that all four data outputs are similarly at logic 0.

Now depress, and hold down, S1 to produce a logic 1 on the D0 input line. The I.e.d. indicator D1 will shortly become illuminated showing that the D0 output has gone to logic 1. Note, however, that D1 only remains illuminated for the duration of each alternate low cycle of the clock (compare the indications produce by the clock I.e.d., D9 and the D0 output indicating I.e.d., D1). The corresponding timing diagram is shown in Fig. 6.9.

Readers should now check each one of the other data lines in turn, noting the correspondence between the switch depressed and the I.e.d. which becomes activated. Finally, all four switches should be adjusted to produce a logic 1 on all four data input lines. In this state the four I.e.d.s will flash in sequence, clearly showing the time-shared characteristic of the arrangement.

Readers may now be wondering whether there is any way that a received logic 1 can be preserved for a period equivalent to the select 1 signal, thus maintaining the logical state of the output. This can, of course, be achieved by simply adding a suitable bistable latch to each data output such that data is latched each time the respective data line is enabled. Furthermore, if we were to use bistable latches in which the Q output was made available, we could dispense with the four output inverters. We will, however, leave this particular exercise for the more adventurous reader!

ADDRESS DECODING

Finally, we shall consider a typical example of the use of a de-multiplexer in the form of an address decoder for use in a microcomputer system. Let's assume that we have a 64K memory space which is occupied by four 16K random access memories (RAM). The data inputs and outputs of these memories are all connected to the system data bus (conventionally 8 bits wide). Each RAM is assumed to have fourteen address input lines (A0 to A13 inclusive) and one active-low chip select (CS) line. The address lines on each RAM are connected to the similarly numbered address line on the system address bus hence, unless we do something to prevent a conflict, we would find that all four RAM devices were being written to or read from at the same time. What is needed, of course, is a means of decoding the two most significant address lines, A14 and A15, in order to activate the four RAM chip select lines. A suitable decoding scheme is shown in Table 6.3. In effect, we have divided the total 64K address space into four blocks of 16K, each associated with a particular RAM. RAM1, for example, corresponds to the lowest 16K (decimal addresses 0 to 16383 inclusive) whilst RAM4 corresponds to the highest 16K (decimal addresses 49152 to 65535 inclusive). RAM1 is selected whenever address lines A14 and A15 are both at logic 1 whilst RAM4 is selected when these two address lines are both at logic 1.

The problem of decoding the two most significant address lines is easily resolved using a 74LS139 in an arrangement similar to that shown in Fig. 6.10. The inverted logic of the 74LS139's outputs being just what is required for the active-low RAM chip select lines. (This, of course, is no mere coincidence!)

NEXT MONTH: We shall be concluding the Sequential Logic Techniques series with a look at binary full adders. We shall also include an Index to the complete series.
VIDEO NASTIES?

Pictures that wobble, won't lock or suffer from noise bars? - machines that won't latch, trace or light up? - our pages are full of guidance on VCR servicing problems. TV too - chopper, colour and linearity problems of every sort. Plus news and information on technical developments. March issue features...

ELECTRONIC SPEECH FOR TVS AND VCRS

The theory of synthesised speech and a practical circuit that gives clear speech.

ORIC AND SILICON COMPUTERS

ACORN COMPUTERS

Electron £173 (£179) £199. BBC Model B £204 (£205) £216. Kenda double density disc interface system £149 (£131) £141. See below for suitable disc drives.

CUMANA DISC DRIVES

To suit disc interfaces of Sinclair spectrum, BBC B and VideoGenie. Single-40 track single sided £176 (£158) £178, 40 tr double sided £181 (£165) £185, 60 av £207 (£186) £206. 80 av £234 (£209) £230, 40 av £239 (£235) £230, 80 av £372 (£334) £374, 40 av £437 (£390) £430.

PRINTERS

Cambridge Learning Ltd, Unit 28, Rivermill Site, FREEPOST, St Ives, Cambes PE17 4BR, England. Tel: 0480-67446.

please send me (initial letters used)

... SUP @ £22.00
SUP II @ £16.00
SUP + II @ £35.00
DCL @ £7.00
DCC @ £9.50
MIC @ £6.50

Please charge my credit card.

No.

Telephone orders from credit card holders accepted on 0480-67446 (24 hrs)

Name

Address

Signature

March 1985

Practical Electronics
Public Ownership

The privatisation of British Telecom transformed Britain from a nation of shopkeepers to a nation of shareholders. Up to that point the company with the largest spread of shareholders was ICI with 350,000. Including overseas holdings BT enjoys the support of over 2 million shareholders. The initial figure was some 2.3 million, since whittled down by profit-taking. But this is no bad thing. First-time-ever investors who selling for a quick return or holding, have had a sniff of excitement which is bound to encourage them in future investment.

A Labour Party pledge to renationalise BT should they form a government fell on deaf ears. With a substantial share ownership among the electorate my guess is that the threat will be conveniently forgotten and that, in any case, the famous Clause 4 was all but dead before the BT sale. Old style public ownership is out, new style public participation is in.

Self-Interest

The BT unions, following Labour policy, opposed privatisation and recommended members to ignore the share offer. In the event the free shares were taken up with gusto and the vast majority of the employees bought extra shares.

This wasn't the only example of self-interest triumphing over ideology. Strikes in the docks and in the automobile industry collapsed last year through lack of popular support. Steelmen resisted all attempts to entice them to limit output which supposedly would help the miners in their struggle and the most extraordinary happening of all was union members taking their leaders to court.

The mining dispute, whatever the outcome, is bound to end in tears. A soap opera dragging on through months of farce as well as tragedy. The industrial result is that no government, no company, no householder will ever again rely entirely on coal as an energy source. Not the miners but their leaders have alienated the markets. That alone would secure their future.

No wonder that progressive union leaders are seeking better ways to improve their members' prospects and, incidentally, their own standing in society. These include expanding the market instead of destroying it, consulting the membership, perhaps even encouraging share ownership in the enterprises in which they are employed. Self-interest can be just as noble as martyrdom if it also leads to the common good.

Change

It is of little use looking back to the great battles of 1926 (lost) or 1974 (won) as do the miners' leaders. The world is moving on and moving fast. Enterprise, the freer the better, is the fashion for the 1980s.

As I often mentioned in the past two years, China is the last of the truly great markets to be mined by foreign companies. The People's Republic has looked at South Korea, Singapore, Hong Kong and Taiwan, all booming economies not entirely unrelated to expertise in production of electronics goods. Why can't China be just like them?

No reason at all except that it is political as well as technologically difficult to dismantle 35 years of Chinese socialist planning overnight. So capitalism remains a dirty word while 'responsibility' is newly acceptable. The first of the 'responsibility systems' came in agriculture, boosting output and enriching many farmers and merchants. Now it's the turn of industry with incentives relating to outputs, levels of efficiency and more cash for workers to spend on luxuries.

Another Chinese euphemism is the 'social channel' which, translated, means an individual having a financial holding in a company, in short becoming a shareholder and hence an entrepreneur, and likely to spread. In China, as in the Soviet Union, nobody is officially unemployed although plenty of people are, the blemish on society easily overcome by describing them as 'waiting-for-jobs people'.

Our most vigorous operator in the Chinese market is Wang Feng of Wireless which has done wonders since privatisation. With a strong base in Hong Kong and the newly acquired Hong Kong Telephone Company there is no shortage of technical expertise and Chinese-speakers to assist the People's Republic in modernising and expanding its communications systems, the prerequisites for industrial growth. In fact such is the technical standing and business trust of the company in Chinese eyes that a number of commentators suggest that C & W as a British flag carrier creates openings for newcomers.

It is interesting, too, to note that socialist France has reverted to capitalism and sound economics and that the newly elected Labour government of Mr Bob Hawke in Australia has swung decidedly right. Who could have imagined six months ago that Mrs Thatcher and President Mitterand, once mutually hostile, would be seen on TV together? And yet it is in a changing world.

Change indeed! Ever since semiconductort production started in bulk it has been the custom to send the part-finished product to the Far East for packaging because of lower wage costs. Today we see building work on a major packaging plant at Irvine, Scotland. The company is Indy, a U.S. specialist, who expect to employ 500 people when in full production.

With rising wage levels and transport costs in the Far East and improved methods of production the crossover point has now been reached when it is cheaper as well as faster to package in Europe. Packaging, in this context, includes die separation, wire bonding, sealing, testing, lead finishing and marking. Far East equipment is used as a stop-gap until one's own facilities are up and running. But where another company is also researching the economics and possible sites for a European packaging base.

Oversold

Not that the free enterprise system is faultless. It did well in popularising the home computer and bringing it cheaply to the buyer. But it has done some harm in overselling the product and in a frantic rush to get to market quality has suffered.

In a survey of 100 retail outlets it is reported that the top seller had a return rate of 25 percent, others between 13 and 4 percent. Three-quarters were due to technical faults, the remainder because of customer dissatisfaction.

Product promotion has been first-class in respect of games. But is this a matter. Does any household of reasonable intelligence need a computer to handle simple accounts or compile an address book? An amusing exercise, perhaps, but hardly economic, time-saving or necessarily more accurate than old-fashioned pen and paper. As for word-processing you need to go well up-market for a really competent machine.

With so many companies making a fleeting appearance and then disappearing, the Japanese MSX approach has much to commend it with its standardised software and complete compatibility between makes. Critics are saying MSX will retard technical progress but at least customers are safe from loss of supply and know what they are paying for.

Fifth Generation

We hear a lot about fifth generation computer research with Japan often quoted as potential world leader. Yet at the fifth generation computer conference in Tokyo last November the British were prominent and highly respected contributors. Not least, interest was enormous on the Imos transputer and its Occam language together with aspects of the British Alvey programme in which industry and the government are equal partners.

It was a surprise to see how open the Japanese were on their government-funded Icot research programme and exchanges between the computer industries from the leading countries, including Israel, showed that while competition is healthily fierce the outcome will benefit world industry.
Printed circuit boards for certain PE constructional projects are now available from the PE PCB Service, see list. They are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for overseas airmail. Remittances should be sent to: PE PCB Service, Practical Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project title, order code and the quantity. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here or in the November 1984 issue.

PROJECT TITLE	**Order Code**	**Cost**
Slave Light Dimmer | FEB '81 | £1.88
27/28MHz Converter | MAR '81 | £1.92
Microphone Mixer | MAR '81 | £1.79
Period Power Tester | MAR '81 | £1.83
Speech Processor | APRIL '81 | £2.25
Mini Drill | APRIL '81 | £1.55
Digisounder | MAY '81 | £1.50
Thermometer | JUNE '81 | £6.65
pH Meter | SEPT '81 | £1.49
Horologium | JULY '81 | £2.06
Analogue Frequency Meter | JULY '81 | £3.16
Ignition System | JULY '81 | £3.11
Med. Resolution Equaliser (UK 101) | AUG '82 | £2.97
Enlarger Timer | AUG '82 | £2.47
Automatic Photographe | JAN '83 | £1.94
Home Alarm | JAN '83 | £3.21
Audio Booster | JAN '83 | £3.32
Radio Booster | FEB '83 | £1.80
Into the Real World | MAR '83 | £3.99
Accessory PSU | MAR '83 | £1.35
4½ Digit Frequency Meter | MAR '83 | £3.69
Program Conditioner | JUNE '83 | £2.30
Guitar Active Tone Control | SEPT '83 | £2.27
Ground Communication System | SEPT '83 | £2.31
Expanding the Vic 20 | DEC '83 | £5.18
Temp. Controller | FEB '84 | £1.85

PROJECT TITLE	**Order Code**	**Cost**
Spectrum Autosave | MAR '84 | £1.83
Microstepper | APRIL '84 | £1.07
Sustain Unit | MAY '84 | £2.82
Audio Signal Generator | MAY '84 | £4.28
EPROM Duplicator | JULY '84 | £8.74
Alarm System | JULY '84 | £3.19
Oscilloscope Calibrator | JULY '84 | £2.76
Comm. 64 RS232C Interface | AUG '84 | £3.02
Field Measurement | AUG '84 | £3.19
Simple Logic Analyser | AUG '84 | £2.76
Parallel to Serial Converter | SEP '84 | £2.93
Through the Mains Controller | SEP '84 | £2.92
Logic Probe | OCT '84 | £2.88
Computer DFM Adaptor | NOV '84 | £2.71
Ni-Cad Charger | DEC '84 | £2.40
Outrider Car Computer (Set of 2 boards) | JAN '85 | £9.10
Modular Audio Power System | FEB '85 | £4.19
Pt: 1: Power Amp Board | FEB '85 | £3.69
Spectrum DAC/ADC Board | MAR '85 | £5.00
Modular Audio Power System | MAR '85 | £5.12
Pt: 3: Pre-Amp/Lake Driver | MAR '85 | £6.90
Main Board | MAR '85 | £6.62
Heart Beat Monitor Detector | MAR '85 | £3.42
Main Circuit Board | MAR '85 | £3.42
Low Cost Speech Synthesiser | MAR '85 | £3.42

PE PRINTED CIRCUIT BOARDS SERVICE

Please send me the following p.c.b.s.

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
</table>

BLOCK CAPITALS PLEASE

I enclose cheque/PO for £...

Name... Address...
THE NEW CLEF COMPUTER MUSIC SYSTEM that you can develop is 5 octave touch sensitive keyboard, up to 4 OSC/ENV per note. Real time sequencing. Massive potential for future software. Complete system (without BBC Micro) £895 built. Phone or write for details. Modular systems also available.

AFFORDABLE ACCURACY
QUALITY MULTIMETERS FROM ARMON

ANALOGUE

ARMON-1022Z
1000:1 Range, 200K/I, DC, AC, Battery Test Scale: £13.00
19 measuring ranges

ARMON-1092
19 measuring ranges

DIGITAL

HC-5010 0.5% Accuracy, Standard Model
£23.50
HC-5010T 0.25% Accuracy. Test Facility
£39.50
All models have full functions and ranges and features:

3½ digit 0.5" LED display
Low battery indication
Auto range & Auto polarity
ABS Plastic Case & Tilt Stand
DC AC ion range
Overload Protection on all ranges.
Battery, Spare Fuses, Test Leads and Manual included with each model.

FULL DETAILS ON APPLICATION FROM:

ARMON ELECTRONICS LTD
DEPT L, HERON HOUSE, 109 WEMBLEY HILL ROAD, WEMBLEY, MIDDLESEX HA9 7AB
TELEPHONE 01-400 4211 TELEX 923855

Please add 15% to your order for VAT & P&P free of charge. Payment by cheque with order. Offer applicable to mainland U.K. only.

Trade enquires invited
Please allow 28 days for delivery.

Clef Electronic

THE CLEF CMS

The FULLY programmable digital synthesiser that you can AFFORD. THE NEW CLEF COMPUTER MUSIC SYSTEM is an easy programmable that you need a BBC Micro to run it! 32 harmonically programmable oscillators, 32 programmable envelopes, 5 octave touch sensitive keyboard, up to 4 OSC/ENV per note. Real time sequencing. Massive potential for future software. Complete system (without BBC Micro) £895 built. Phone or write for details. Modular systems also available.

MUSIC

MASTER RHYTHM
PROGRAMMABLE DRUMS

Twenty-Four Rhythm programmable Drum Machine with twelve instruments. Eight sections are extended to 24/32 bar programming. Sequence operation and instrument tone adjustment. COMPLETE KIT £79

STRING ENSEMBLE £159.50
ROTOR-CHORUS £138.00
MICROSYNTH P.B. & ELECT KITS £66.50
PERCUSSION SYNTH P.B. & ELECT KITS £87.50

88/72 NOTE PIANOS
SPECIALISTS SINCE 1972
Using Patent electronic techniques to give advanced simulation on Piano Key Inertia. COMPONENT KITS including Keyboard
88 NOTE £276
72 NOTE £234
The above may also be purchased in four parts
All COMPONENT KITS £270

SQUARE FRONT KEYBOARDS
98 NOTE £60
49 NOTE £29
23 KEY £25
30 NOTE £19

ALL PRICES INC. VAT & TELEPHONE ADVICE £14 FOR FULL SPC & MAN PRICES VIA ACCESS AMERICAN EXPRESS Competitive quotes can be given for export. Allow 3-4 days for normal dispatch.

CLEFT PRODUCTS (ELECTRONICS) LIMITED
(Dept P.E.) 44A BRAMHALL LANE SOUTH BRAMHALL STOCKPORT CHESHIRE SK7 1AH
TEL 061-439 3237

BAND-BOX

PROGRAMMABLE BACKING BAND

As Published in P.E. THREE PIECE BACKING BAND Generates the sounds of three instrumentals to back Solists DRUMS + BASS + KEYBOARDS Over 3,000 chord changes (60 scored) on 132 different chords—16 chord sounds. Master Rhythm also required.

FULL KIT £265 BUILT £270

FOR QUALITY COMPONENTS BY MAIL ORDER

FREE
44 PAGES
PRICED AND ILLUSTRATED CATALOGUE ON REQUEST

FREE POSTAGE GOOD DISCOUNTS GOOD SERVICE THOUSANDS OF STOCK ITEMS PHONE YOUR ORDER ACCESS OR BARCLAYCARD

ELECTROVALUE LTD 28 St. Jude's Road, Engrfield Green, Egham, Surrey TW20 0HB Phone Egham (0784) 336303. Telex 264475
North Branch, 560 Burnage Lane, Manchester M19 1NA
Phone 061 432 4945
Please mention this publication when replying.

G R A N D A T A L T D.
9 & 12 THE BROADWAY, PRESTON ROAD WEMBLEY, MIDDLESEX, ENGLAND Telephone: 01-904 2998 & 904 1115/8 Telex: 83385 Summit

Please edit P&P and VAT at 15%. Check Colliages, etc. orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brand new components. All values are new and boxed. No Ring for items not listed. We stock 3,000 items.

Please mention this publication when replying.

GRANDATA LTD. March 1985

61
SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £12.00 per single column centimetre (minimum 2·5 cm). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent, registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for insertions. I enclose Cheque/P.O. for £

(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME

ADDRESS

PRACTICAL ELECTRONICS

Classified Advertisement Dept., Room 2612, King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01-261 5846

Rate: 36p per word, minimum 12 words. Box No. 60p extra.
All new in the 1985 Catalogue

Professional Quality High Power Loudspeakers

A new range of superb quality loudspeakers.
- Virtually indestructible high temperature voice-coil reinforced with glass-fibre
- 100% heat overload tolerance
- Advanced technology magnet system
- Rigid cast alloy chassis
- Linen or Plastiflex elastomer surrounds
- 5-year guarantee (in addition to statutory rights)

Available in 5, 8, 10, 12, 15 and 18 inch models with 80Ω and some 16Ω impedances and with input powers ranging from 50W to 300W e.g.
- 5in: 50W 95dB 8Ω: XG39N / 16Ω: XG40T £17.95
- 8in: 100W 98dB 8Ω: XG43W £29.95
- 10Ω: 100W 100dB 8Ω: XG46A £29.95
- 12in: Twin Cone 100W 101dB 8Ω: XG49D £29.95
- 12in: 100W 100dB 8Ω: XG51F £31.95

Note: the output power doubles for each 3dB increase (ref 1W@1m).

Precision Gold Multimeters

A new range of very high quality multimeters offering truly amazing quality at the price.
Pocket Multimeter, 16 ranges, 2000Ω/V DC/AC £6.95 (YJ06G)
M-102BZ with Continuity buzzer, battery tester and 10A DC range, 23 ranges, 20,000Ω/V DC £14.95 (YJ07H)
M-2005S with Transistor, Diode & LED tester and 10A DC range, 27 ranges, 20,000Ω/V DC £19.95 (YJ08J)
M-5050E Electronic Multimeter with very high impedance, FET input, 53 ranges including peak-to-peak AC, centre-zero and 12A AC/DC ranges £34.95 (YJ09K)
M-5010 Digital Multimeter with 31 ranges including 20Ω and 20uA DC/AC FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy (0.25% + 1 digit DCV) £42.50 (YJ10L)

Our huge range of top quality electronic components at very competitive prices are all detailed in our catalogue, and with well over 600 new lines in our 1985 edition and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue. (The items below are NOT kits).
- Most phono and jack plugs now with integral strain relief sleeve - gold-plated types also available from 14p (gold from 70p).
- Stereo Disco Mixer with cross-fade, talk-over, cue monitoring, aux input, slide controls. Only £58.95 (AF99H)
- 10-Channel Stereo Graphic Equalisers - 3 models - basic; with peak level meter; and with spectrum analyser - from £77.95
- Digital Delay Line permits Slap-back, Doubling, Flanging, Chorus and Echo. 11 controls. Only £195.00 (AF98G)
- Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
- Detailed descriptions of the exciting new 74HC range of IC's which combine the advantages of CMOS and TTL. From 46p
- Keyboards: sloping keys, two-tone grey, mounted in steel frame, very smart cases (extra) available. 61 keys, only £33.95 (YJ12N)
- 79 keys, only £37.95 (YJ13P)
- 1% Resistors now 50ppm°C, 0.4W, only 2p each!
- Digital Clinical Thermometer. Only £13.95 (FK51F)

Check our 1985 Catalogue for all our other fascinating new lines.

MAPLIN ELECTRONIC SUPPLIES LTD.

Mail Order: P.O. Box 3, Rainleigh, Essex SS6 8LR. Tel: Southend 0702 552911

SHOP:
- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
- LONDON 159-161 King Street, Hammersmith, W6. Tel: 01-748 0926.
- MANCHESTER 8 Oxford Road, Tel: 061-236 0281.
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 0703 25831.
- SOUTHEND 292-294 London Rd, Westcliff-on-Sea, Essex. Tel: 0702-554000

N.B. All our prices include VAT and carriage. A 50p handling charge must be added if your total order is less than £5 on mail order (except catalogue).

Prices firm until Feb 9th 1985.
Once again, Powertran and E&MM combine to bring you versatility and top quality from a product out of the realms of fantasy and within the reach of the active musician.

The MCS-1 will take any sound, store it and play it back from a keyboard (either MIDI or 4/8 octaves). Pitch bend or vibrato can be added and infinite sustain is possible thanks to a sophisticated, looping system.

All the usual delay line features (Vibrato, Phasing, Flanging, ADT, Echo) are available with delays of up to 32 secs. A special interface enables sampled sounds to be stored digitally on a floppy disc via a BBC microcomputer.

The MCS-1 gives you many of the effects created by top professional units such as the Fairlight or Emulator. But the MCS-1 doesn’t come with a 5-figure price tag. And, if you’re prepared to invest your time, it’s almost cheap!

Specification

- **Memory Size:** Variable from 8 bytes to 64K bytes.
- **Storage time at 32 KHz sampling rate:** 2 seconds.
- **Storage time at 8 KHz sampling rate:** 8 seconds.
- **Longest replay time (for special effects):** 32 seconds.
- **Converters, ADC & DAC:** 8 bit companding. Dynamic range: 72 dB.
- **Audio Bandwidth:** Variable from 12 KHz to 300 Hz.
- **Internal 4 pole tracking filters for anti-aliasing and recovery.**
- **Programmable wide range sinewave sweep generator.**
- **MIDI control range:** 5 octaves.
- **+1/- octave control range:** 2 octaves with optional transpose of a further 5 octaves.

Digital Delay Line

Introduced in 1982, Powertran’s DDL has brought digital quality effects to thousands of musicians. Still available in kit form at only £179.00 + VAT.

writes or phone now to place an order.
Powertran Cybernetics Limited,
Portway Industrial Estate,
Andover, Hants, SP10 3PE.
Telephone: 0264 64455

POWERTRAN cybernetics ltd