PRACTICAL ELECTRONICS
ROBOTICS, MICROS, ELECTRONICS, INTERFACING

NOVEMBER 1984 - 90p

16 Page SPECIAL Pullout!

NICKEL CADMIUM BATTERIES

robotics SUPPLEMENT

RING MODULATOR
Other features include:
- Leakproof, frictionless rolling diaphragm seals.
- Buffered and latched versatile interface for BBC VIC 20 and Spectrum computers.
- 12 bit control system (8 on Neptune 1).
- Special circuitry for initial compensation.
- Rack and pinion cylinder couplings for wide angular movements.
- Automatic triple speed control on Neptune 2 for accurate 'homing in'.
- Easy access for servicing and viewing of working parts.
- Powerful—lifts 2.5 kg, with ease.
- Hand held simulator for processing (requires ADC option).

Neptune robots are sold in kit form as follows:

- Neptune 1 robot kit (inc. power supply) £1250.00
- Neptune 1 control electronics (ready built) £295.00
- Neptune 1 simulator £45.00
- Neptune 2 robot kit (inc. power supply) £1725.00
- Neptune 2 control electronics (ready built) £475.00
- Neptune 2 simulator £52.00
- ADC option (components fit to main control board) £95.00
- Hydraulic power pack (ready assembled) £335.00
- Gripper sensor £37.50
- Optional extra three fingered gripper £75.00
- BBC connector lead £12.50
- Commodore VIC 20 connector lead and plug-in board £14.50
- Sinclair ZX Spectrum connector lead £15.00

All prices exclusive of VAT and valid until the end of 1984.

Mentor is all-British in design and manufacture and comes in kit form at an astonishingly low price:

- Mentor robot kit (inc. power supply) £345.00
- Mentor Control electronics (ready built) £135.00
- Mentor Simulator (requires ADC option) £42.00
- ADC option (Components fit to control electronics board) £19.50
- BBC connector lead £12.50
- Commodore VIC 20 connector lead and plug-in board £14.50
- Sinclair ZX Spectrum connector lead £15.00

All prices exclusive of VAT and valid until the end of 1984.
CONSTRUCTIONAL PROJECTS

RING MODULATOR by John M. H. Becker 10
A sound lab in a box!

COMBINATION LOCK by Tom Gaskell BA(Hons) CEng MIEE 26
'High-Low' audio combination lock

NEPTUNE ROBOTS by Richard Becker and Tim Orr 28
Part Three: Servo-control circuitry, power supply and pump unit

COMPUTER DFM ADAPTOR by R. A. Penfold 47
Smart test instrument using your micro

GENERAL FEATURES

NICHEL CADMIUM BATTERIES by M. Tooley BA and D. Whitfield MA MSc CEng MIEE 17
Part One: Characteristics and construction

SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons) CEng MIEE 24
Pushbutton Locks (LS7228 and LS7229)

DISC DRIVES EXPLAINED by M. Tooley BA and D. Whitfield MA MSc CEng MIEE 40
Part Three: Two dual drive units reviewed

SEQUENTIAL LOGIC TECHNIQUES by M. Tooley BA and D. Whitfield MA MSc CEng MIEE 53
Part Two: Counter chips and circuits

NEWS AND COMMENT

EDITORIAL ... 7

NEWS AND MARKET PLACE ... 8
Including Countdown and Points Arising

INDUSTRY NOTEBOOK by Nexus 23
News and views on the electronics industry

PRINTED CIRCUIT BOARD SERVICE 37
A new service for readers

SPACEWATCH by Dr. Patrick Moore O.B.E. 38
Astronomers are Human; Amateurs Lead the Way; The Sky This Month

BAZAAR ... 45
Free readers' advertisements

SPECIAL SUPPLEMENT

ROBOTICS by Tom Ivall .. between pages 32 and 33

Unfortunately we are unable to publish the Radar Security Alarm Part 2 in this issue.

OUR DECEMBER ISSUE WILL BE ON SALE FRIDAY, NOVEMBER 2nd, 1984
(for details of contents see page 36)

© IPC Magazines Limited 1984. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.
ELECTROLYTIC CAPACITORS

Values in J7, 50V DC, 10% to ±20%, 10nF to 100uF, 100 to 1000pF, 500V DC, 10% to ±20%, 10pF to 100nF, 1000V DC, 10% to ±20%, 10pF to 10uF. All prices are for minimum order of 1000 pieces.

POLYESTER RADIAL LEAD CAPACITORS: 250V, ±10%, 6800pF; ADD 7p to ALL CASH ORDERS. OVERSEAS POSTAGE AT COST. PRICES SUBJECT TO CHANGE.

RANGE 1pF to 6800pF

ADD 70p TO ALL CASH ORDERS. OVERSEAS POSTAGE AT COST. PRICES SUBJECT TO CHANGE.

TAG-END TYPE: 64V, 4500 Vp-p, 3300 pF, 220, 1000V DC, 10% to ±20%, 10pF to 100nF, 1000V DC, 10% to ±20%, 10pF to 10uF. All prices are for minimum order of 1000 pieces.

TANTALUM BEAD CAPACITORS: 250V, ±10%, 1pF to 3300pF; ADD 10% TO CASH ORDERS. OVERSEAS POSTAGE AT COST. PRICES SUBJECT TO CHANGE.
Cirkit stock all the components, accessories and tools and the kits you’re looking for.

Designed and selected to offer the best possible standards at the best possible price.

Cirkit’s always well stocked.

As soon as new products are available, Cirkit has them.

When it comes to kits, Cirkit’s got the lot. At the price you want to pay.

Just send for our catalogue or visit one of our three outlets at:

200 North Service Road, Brentwood, Essex. CM14 4SG;
53 Burfields Road, Portsmouth, Hampshire. PO3 5EB; Park Lane, Broxbourne, Hertfordshire. EN10 7NQ.

Please add 15% VAT to all advertised prices and 60p post and packing. Minimum order value £5 please. We reserve the right to vary prices in accordance with market fluctuation.

To: Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ.
I enclose 85p. Please send me your latest catalogue and 3 x £1 discount vouchers!
If you have any enquiries please telephone us on Hoddesdon (0992) 444111.

Name __
Address __
Telephone __
Area of Special Interest __

Cirkit Kits

<table>
<thead>
<tr>
<th>Circuit Electronics Tool Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains: 15W Soldering Iron 2 spare bits, heat shunt, solder, pliers, cutters, and screwdriver</td>
</tr>
<tr>
<td>40-00007 15.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Audio Function Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versatile waveform generator with sine, triangular and square wave outputs</td>
</tr>
<tr>
<td>On board mains PSU 41-01302 27.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stereo 40W Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single board 40W per channel stereo amplifier</td>
</tr>
<tr>
<td>41-01301 38.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stereo VU Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 LED per channel stereo VU meter for use with stereo amplifiers</td>
</tr>
<tr>
<td>41-01401 11.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5W Audio Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>A very compact audio output stage for use in a wide range of equipment</td>
</tr>
<tr>
<td>41-01406 4.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Universal Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>A universal audio pre-amp with a gain of 10</td>
</tr>
<tr>
<td>41-01604 6.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mono Reverbulator Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single channel, spring line reverb unit to add echo effects to tape recording etc.</td>
</tr>
<tr>
<td>41-01602 10.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tone Generator and Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low distortion tone generator and signal detector for circuit fault finding</td>
</tr>
<tr>
<td>10MHz DFM 41-01603 10.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 Digit LED Digital Frequency Meter and Period Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-01500 54.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50MHz Prescaler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extend the range of the 10MHz DFM to 50MHz</td>
</tr>
<tr>
<td>41-01501 8.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5MHz Pre-Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low frequency pre-amp and waveform shaper for the 10MHz DFM</td>
</tr>
<tr>
<td>41-01502 5.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-30V 1mA-2A PSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustable 1-30V Power supply with pre-settable current limit from 1mA-2A</td>
</tr>
<tr>
<td>41-01600 37.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5-12V 1A PSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustable PSU from 5-12V with current protection, 1 amp max output 41-01504 6.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-30V 1.5A PSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-30 volt adjustable PSU with protected output up to 1.5 amps 41-01402 10.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Digit LED DVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVM to read up to 99.9 volts or configured as an ammeter to read up to 9.99 amps 41-01403 17.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infra Red Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single channel IR Link with relay output 41-01300 9.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermistor based temperature sensor with relay output 41-01303 6.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locomotive Sound Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realistic steam sound and whistle for model railways 41-01304 9.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lamp Dimmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control lamps and drill speed 41-01305 5.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Level Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm to indicate high water level or flooding 41-01601 2.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note Chime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doorbell chime with adjustable tones 41-01503 7.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2W Pre-Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miniature low-noise MOSFET pre-amp for the 2m amateur band 41-01307 3.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2W Converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low noise 144MHz-28MHz amateur band converter 41-01306 17.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2W Power Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>20W - 10dB gain power amplifier for the 2m band. Automatic TX switch over, RX pre-amp, robust construction 41-01404 32.87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>70cm Pre-Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low noise, miniature pre-amp for the 70cm amateur band 41-01506 4.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>70cm Converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>70cm to 144MHz low noise converter featuring pre-aligned helical filter, schottky diode mixer and low noise transistors 41-01405 21.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>70cm PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10W Power amp to boost the output of handheld and portable 70cm transceivers 41-01505 33.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crystal Calibrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal reference calibrator for alignment of receivers, outputs at 4.2, 1MHz, 100, 50 and 10MHz 41-00801 4.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CB Noise Squelch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improves to mute performance of the majority of CB rigs 41-01605 5.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Centronics Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect your personal computer to the outside world via the Centronics printer output 41-01406 22.50</td>
</tr>
</tbody>
</table>
RF Generator LSG17

A stable wide-range generator for the hobbyist, service technician, schools, colleges, etc.

- Frequency range: A = 100Hz-30kHz, B = 20kHz to 1MHz (Harmonics 96-450MHz), C = 1MHz-3.5MHz, D = 2.0kHz-11MHz, E = 1.07kHz-35MHz.
- 523MHz ± 150kHz, Accuracy ± 1.5%. Output greater than 100mV (no load). Ext. std osc for ± 1 to 1.5MHz crystal. Power required: AC100, 115 or 230V 3VA.
- Size & Weight: 150(H) x 238(W) x 130(D)mm, 2.5kg approx.

Linear ICs

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF351</td>
<td>06-0351-00 0.49</td>
</tr>
<tr>
<td>LF353</td>
<td>06-0355-00 0.81</td>
</tr>
<tr>
<td>LM380N</td>
<td>06-0368-00 1.45</td>
</tr>
<tr>
<td>LM381</td>
<td>06-0368-01 1.80</td>
</tr>
<tr>
<td>NE555N</td>
<td>06-0354-00 1.60</td>
</tr>
<tr>
<td>NE555</td>
<td>06-0354-01 2.10</td>
</tr>
<tr>
<td>U74HC1</td>
<td>06-0355-02 0.21</td>
</tr>
<tr>
<td>DIL low cost op amp</td>
<td>06-0741-04 0.42</td>
</tr>
<tr>
<td>TDA1062</td>
<td>06-0162-00 1.95</td>
</tr>
<tr>
<td>TDA1063</td>
<td>06-0183-00 1.95</td>
</tr>
<tr>
<td>HA1388</td>
<td>06-0183-01 2.57</td>
</tr>
<tr>
<td>MC1496P</td>
<td>06-0196-00 1.25</td>
</tr>
<tr>
<td>TDA2002</td>
<td>06-0202-00 1.25</td>
</tr>
<tr>
<td>ULN285</td>
<td>06-0283-00 1.00</td>
</tr>
<tr>
<td>CA3089</td>
<td>06-0389-00 2.84</td>
</tr>
<tr>
<td>CA3130E</td>
<td>06-3130-00 0.80</td>
</tr>
<tr>
<td>CA3140E</td>
<td>06-3140-00 0.46</td>
</tr>
<tr>
<td>MC3359</td>
<td>06-0359-00 2.95</td>
</tr>
<tr>
<td>LM3900</td>
<td>06-0390-00 1.20</td>
</tr>
<tr>
<td>LM3902</td>
<td>06-0390-01 0.68</td>
</tr>
<tr>
<td>KB412</td>
<td>06-0402-00 1.00</td>
</tr>
<tr>
<td>MC7555</td>
<td>06-0412-00 1.95</td>
</tr>
<tr>
<td>LM7555</td>
<td>06-0555-00 0.98</td>
</tr>
<tr>
<td>HA11225</td>
<td>06-0125-00 1.45</td>
</tr>
<tr>
<td>HA11207</td>
<td>06-0127-00 0.80</td>
</tr>
<tr>
<td>300 baud MODEM controller</td>
<td>06-0412-01 6.85</td>
</tr>
</tbody>
</table>

Selected Lines

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P82720</td>
<td>43-27201 0.55</td>
</tr>
<tr>
<td>10950A</td>
<td>20-10152 2.10</td>
</tr>
<tr>
<td>10960A/AA</td>
<td>20-11152 3.49</td>
</tr>
<tr>
<td>FC177</td>
<td>39-17700 20.00</td>
</tr>
<tr>
<td>CM161</td>
<td>40-0161 8.25</td>
</tr>
<tr>
<td>BIC to Centronics Cable</td>
<td>03-10017 7.25</td>
</tr>
<tr>
<td>C12 Computer Cassette Tape</td>
<td>21-00012 0.55</td>
</tr>
<tr>
<td>9 x 0.3" IC socket</td>
<td>26-00000 0.12</td>
</tr>
<tr>
<td>14 x 0.3" IC socket</td>
<td>28-14000 0.13</td>
</tr>
<tr>
<td>16 x 0.3" IC socket</td>
<td>28-16000 0.13</td>
</tr>
<tr>
<td>6V</td>
<td>46-8009 0.48</td>
</tr>
<tr>
<td>4V</td>
<td>46-8009 0.48</td>
</tr>
<tr>
<td>12V</td>
<td>46-8009 0.48</td>
</tr>
<tr>
<td>CX2I2P</td>
<td>46-90120 11.96</td>
</tr>
<tr>
<td>CX3201</td>
<td>46-90200 28.96</td>
</tr>
<tr>
<td>CX400</td>
<td>46-90500 26.98</td>
</tr>
<tr>
<td>CX401</td>
<td>46-90540 26.98</td>
</tr>
</tbody>
</table>

Books

- Beginners Guide to Amateur Radio 02-11262 4.50
- Beginners Guide to Electronics 02-04134 4.50
- Active Filter Cookbook 02-21168 12.70
- CMOS Cookbook 02-21398 11.85
- TTL Cookbook 02-10388 11.00
- Design of Active Filters 02-21539 10.15
- Design of Op-amp Circuits with experiments 02-21537 9.30
- Effectively Using the Oscilloscope 02-21794 9.30
- Practical Design of Digital Circuits 02-11831 10.45
- Electronic Projects for Home Security 02-05351 3.80
- Electronic Telephone Projects 02-21618 7.90
- 55 Timer Applications Sourcebook 02-21398 6.40
- Television Engineers Pocket Book 02-21371 8.50
- Electronic Pocket Book 02-21349 7.50
- Practical Electronic Projects 02-21625 5.90
- More Electronic Projects in the Home 02-21370 3.80
- The Radio Amateur's Question and Answer Reference Manual 02-02157 5.95
- Basic Programming on the BBC Microcomputer 02-02889 5.95
- Using Microprocessors and Microcomputers: The 6500 Family 02-98728 11.05
- Z-80 Microcomputer Design 02-21682 12.70
- 2800 Microprocessor: A Design Handbook 02-37345 16.10

HT320

High quality, high specification meter at a reasonable price. In addition to the usual ranges, facilities are provided for measuring transistor parameters such as Icge and Hfe. Meter movement fully protected against overloads.

- **Dimensions & Weight:** 150 (H) x 238 (W) x 130 (D)mm, 2.5kg.
- **Power Supply:** 240V 50Hz. Output Voltage: 2.9V for AA, C and D size, 11.6V for PP3 size. Weight: 0.475kg.
- **Size:** 119 x 109 x 55mm. 01-02024 9.45

Nicad Batteries & Chargers

High quality nickel cadmium rechargeable batteries. Equivalent in size with popular Dry Cell sizes e.g. HP7 (AA), HP1 (C), and HP2 (D). Minimum life 600 (200 PP3 size) full charge/discharge cycles. Batteries must be charged from a constant current source only. All batteries are supplied only with a residual charge and should be charged before used.

DATA & PRICES

<table>
<thead>
<tr>
<th>Type</th>
<th>V (nom)</th>
<th>Capacity</th>
<th>Stock No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>1.2V</td>
<td>500mA/H</td>
<td>01-12004</td>
<td>0.80</td>
</tr>
<tr>
<td>C</td>
<td>1.2V</td>
<td>1200mA</td>
<td>01-12024</td>
<td>2.35</td>
</tr>
<tr>
<td>D</td>
<td>1.2V</td>
<td>1200mA</td>
<td>01-12044</td>
<td>2.00</td>
</tr>
<tr>
<td>PP3</td>
<td>8.4V</td>
<td>110mA/H</td>
<td>01-04054</td>
<td>3.70</td>
</tr>
</tbody>
</table>

CH4/50

To recharge up to 4 AA size Nicads.

- Size: 112 x 71 x 37mm 01-00409 4.95

CH1/22

To charge PP3 type Nicads.

- Size: 70 x 50 x 32mm 01-00115 4.30

CH8/RX

Will recharge AA, C and PP3 size cells with automatic voltage selection. Will recharge following combinations: 4xD, 6xAA, 4xC, 2xPP3, 2xD + 2xC, 2D + 2xAAA, 2xD + 1xPP3, 2xC + 2xAA, 2xC + 1xPP3, 2xAAA + 1xPP3. Charge rate: 1mA for PP3, 45mA for AA size, 120mA for C and D size, for 16 hrs. Power: 240V 50Hz. Output Voltage: 2.9V for AA, C and D size. 11.6V for PP3 size. Weight: 0.475kg.

- **Size:** 199 x 109 x 55mm. 01-02024 9.45
For FREE CATALOGUE send 9" x 6" SAE — contains full list of stock range all at very competitive prices. Cash with order (except account customers). Access or Barclaycard telephone orders welcome. Add 65p p&p + 15% VAT to all UK orders. Overseas customers add £2.50 p&p & European, £6.00 elsewhere. Giro No. 529314002. Goods by return subject to availability. Shop open 9am — 5pm (Mon-Fri) 10am — 4pm (Sat). ALL PRICES EXCLUDE VAT.

MK19 Stereo Amplifier Controller Kit — for remote control of bass, treble and volume (or balance) by MK19. Includes a 10-Watt stereo remote control or independent unit. May be connected between the pre-amp and power amp of almost any audio system.

MK12 Receiver Kit — mains powered with 16 lactched or momentary outputs. Latched version is for applications requiring one output on at a time, eg TV channel selection. Momentary type gives an output only during transmission. Latch may be required as well. Size: 9 x 4 x 22mm. £13.50

MK15 Dual Latched Solid State Relay — for switching mains loads such as lamps, TVs, etc. from the outputs of the MK12. Total maximum 15 items may be switched independently using 8 MK15s. Triac input supports a switch at mains zero to reduce interference. £4.50

LOW COST! 10W ohm 3% digit 0.4 in. diameter. Auto zero and positive, low battery indication, overload protection includes test leads, battery, spare fuse, manual, carrying case.

Auto Ranging, 3% digit 10mm display. Continuity buzzer, low battery, overload and range indication 10A internal shunt for AC/DC current measurement. Carry case supplied.

Auto for use with a multimeter to measure temperatures from —20°C to +200°C. Accuracy: ±1°C @ 25°C, ±2°C @ 100°C. Response time (in water): 5 seconds. Oberd case, calibrated scale and instructions. (405 220) £7.95

For controlling motorised garage doors and switching garage and drive lights on/off to a range of 40ft.

These kits are designed to replace a standard wall switch to control up to 300W of lighting.

These kits are designed to replace a standard wall switch to control up to 300W of lighting.
UK THIRD WORLD STATUS!

Amazing as it may seem, the UK computer industry is losing ground rapidly to foreign competition in one particular area. The situation is becoming so bad that a recent report by the National Economic Development Committee commented that if we fail to exploit new technology "as urgently or effectively as other advanced nations we shall continue our decline to third world status." The report goes on to say that it may be possible to reverse the trend by taking "urgent and significant action" within the next year.

Which area is it that needs such significant action so urgently? The area is one we have heard so much about over the last year, Information Technology. For a few years now various bodies have been urging that the British IT industry needs assistance in setting up a national training scheme and a policy of pro-British procurement should be introduced by the Government. These continuing warnings have now been heavily underlined by the report which also requests more money to assist medium size businesses and for development and research.

ACTION

The warnings come from an official government sponsored body which is made up of various heads of industry, trades union leaders and government officials. It does not lay blame for the situation and clearly indicates just what "urgent and significant action" needs to be taken to ensure a place for the UK in this important area of technology.

Although the report acknowledges the work of the industry in this area, it points out that overseas competitors are doing better than the UK. While the UK's share of the world IT market has fallen from 9% to 5% over the last decade our imports have risen from 29% to 54%. Significantly the USA now has 56% of the world market and Japan 23%. One other worrying aspect, and one on which we have commented in the past (June 84 Editorial), is the underlying trend of reduced employment in an expanding industry. Over the last decade nearly 30,000 jobs have been lost, a reduction of almost 20% of the total number of jobs, while the UK IT market has grown roughly 800% (yes there should be two zeros!)

FUTURE

We need to stay at the forefront of this future technology; we need to beat our European rivals and be able to challenge the USA and Japan for emerging markets. Let us hope that, as the report indicates, it is not too late to reverse the trends. Let us hope also that the action suggested by the committee is taken up at government level with sufficient urgency to ensure a bright future for UK IT, and hopefully an increase in those employed in this area of technology.

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers and Binders

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 0PF, at £1 each including Inland/Overseas p&p. Please state month and year of issue required.

Binders for PE are available from the same address as back numbers at £5.50 each to UK or overseas addresses, including postage, packing and VAT where appropriate. State year and volume required.

Subscriptions

Copies of Practical Electronics are available by post, inland for £13, overseas for £14 per 12 issues, from: Practical Electronics, Subscription Department, IPC Magazines Ltd., Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment for subscriptions can also be made using a credit card.
...NEWS &...

PRECISION DRIVE-MOTORS

It cannot be denied that in recent years the world of the electronics enthusiast has come quite substantially and with every innovation comes a new avenue of exploration. Robotics, in the recent past, has gathered in a large flock of interested experimenters.

The need for high precision drive-motors in this field is of course an important factor, as is their price.

Two eminently suitable motors are now available from Service Trading Co. Both with high specifications and a reasonable price tag. The larger of the two motors is a 12/24V d.c. reversible model, it will actually operate from voltages as low as 2V d.c. A range of speeds from 2 to 36 r.p.m. is obtainable; at 6V (9 r.p.m.) the no-load current is around 6mA; at 12V (18 r.p.m.) 10mA and at 24V (36 r.p.m.) 18mA. The length of the motor and gearbox is 90mm, max dia 42mm; shaft length 15mm, shaft dia 6mm. The price of £19.55 is inclusive of VAT and p&p.

The smaller of the two motors is a 3/6V unit, it is an ironless rotor type geared motor with a 70 to 1 gearbox ratio. A range of speeds from 8 to 16 r.p.m. is obtainable; at 3V (8 r.p.m.) the no-load current is 5mA, and at 6V (16 r.p.m.) 10mA. The length of this motor is 48mm, its diameter is 24mm; shaft length 5-5mm, shaft dia 3mm. These smaller motors are ex-equipment; they are in good order and are individually tested, representing great value at £5.75 including VAT and p&p. Both motors are of Swiss manufacture. From Service Trading Co., 57 Bridgman Road, Chiswick, London W4 5BB (01-995 1560).

Shock switch revelation

Detectives from Practical Electronics have uncovered the shock existence of a new type of component that can detect a whack on the back (if hard enough) and close a set of contacts in response. This "biff" switch, or shock sensor, comprises a compression spring-loaded toroidal magnet through which is positioned a reed switch. The mass of the ferrite magnet and the spring constant are selected so that the reed switch is actuated by a jerk (of the mechanical kind) exceeding a given acceleration.

Model 5818 has a threshold sensitivity of 5G, but other sensitivities are available to order. Maximum switching is 200V d.c., 5A with a total contact rating of 10W. Response time is typically 8ms from impact, and the contacts usually stay closed for around 20ms. The sensor is only 38mm long (see photo). Industrial applications are manifold, but we feel that the sensor could be a big hit in robotic mobiles. Further details are available from Hamlin Electronics Europe Ltd., Diss, Norfolk IP22 3AY.

Aces Low

Two years ago this month saw the launch of the Jupiter Ace, a micro that uses an adapted version of the compiled language FORTH. When launched the Ace cost £89.95, since then however, the original company (Jupiter Cantab) have gone into liquidation, and now Boldfield have taken the Ace under their wing and are offering it for just £33. Although the machine has a small memory (only 3K of RAM), it is expandable and also on offer are 16K RAM Packs plus other peripheral items at greatly reduced prices.

Since February the machine's new owners have compiled a whole range of accessories, together with eleven new software titles, all of which are in stock. Many other Ace related products are available including books, spares, components and even party built and bare circuit boards. A large database of owner/users has been compiled and those listed will be kept up to date with latest developments. The price of £33 includes VAT and p&p. For further information contact Boldfield Limited Computing, Sussex House, Hobson Street, Cambridge (0487 840740).

ROBOT SHOP

The Robotics Workshop is to open as a showroom for the many emerging small robots which are primarily used in education and training. There will also be other robotic devices and some components. It is hoped that the London based forum will soon become a meeting place for those interested generally in robotics.

The Workshop is sponsored and funded by The Entryside Company Ltd., and their Managing Director will be taking a keen interest. He is especially looking for all designers of robots and other devices be it in their factory, garage, or kitchen! For further information contact Gordon Ashbee, Robotics Workshop, 121 Field Road, London SW10 (01-373 8571).
ONE FARAD CAPACITOR

Huh! Everyone knows that a one Farad capacitor would have to be the size of a dustbin! Everyone is wrong then, because NEC makes a 1F/5V capacitor of a diameter slightly over one inch. Its height is a fraction under one inch.

These devices are deservedly called Supercaps, and are intended to gradually take over from lithium and ni-cad batteries in power back-up for memories. Capacitors of such high capacity can be thought of as battery cells and will behave in a similar manner.

The extremely high volumetric efficiency derives from the double electric layer principle on which they are based. The large capacitance of such an array arises from the charge stored at the interface by the changing electric field between two available phases. In the Supercap, one phase is the activated carbon particle. The other phase is sulphuric acid solution as an ionically conducting electrolyte.

Installation is easy, they have a wide operating temperature range, are polarity free and maintenance free. Other advantages are an "open" failure mode and long life with no dry-out problems. Supercaps, however, are not recommended for filtering (ripple absorption) applications, and they are not available in high voltage ratings. They are currently available, along with application notes, from: Anglia Components, Burdett Rd., Wisbech, Cambridgeshire PE13 2PS. (0945 63281).

COUNTDOWN...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

Internecon Oct. 16-18. Metropole, Brighton. T1
Applying The 68000 (conf.) Oct. 30. City Conference Cntr., London. N Danny Green, 0483 31261
Test & Sensors Oct. 30-Nov. 1. Wembley. T
Custom Electronics & Design Techniques Nov. 6-8. Heathrow
Ponta Hotel. E
Scottish Engineering Nov. 6-10. Kelvin Hall, Glasgow. M
Leisure Electronics Nov. 8-11. Royal Horticultural Hall, London. T
Compe Nov. 13-16. Earl's Court. K2

P.C.B. Manufacture & UV Box Construction (meeting) Nov. 17. Electron Organ Constructors Society. Y4
Business & Data Processing Nov 20-24. Kelvin Hall, Glasgow. M
Northern Computer Fair Nov. 22-24. Belle Vue, Manchester. K2
Northern Energy Manager Nov. 27-28. Lancashire County Cricket Club, Old Trafford, Manchester. W3
Transducer Tempcon. Nov. 27-29. Harrogate Exhibition Cntr., Yorkshire. T
D4 Network 0280 815226
E Evan Steadman 0799 26699
K2 Reed Exhibitions, Surrey Ho., 1 Throwley Way, Sutton, Surrey
L Database 061-456 3833
M Mombuild 01-486 1951
O Online 01-468 466
T Trident Exhibitions 0822 4671
T1 Cahners 0483 30805
W3 MCM 01-231 1481
Y4 Percy Vickery 0202 423863
Z Beta Exhibitions 01-405 6283

Practical Electronics November 1984
OF all the circuits available to the electronic musician for sound modification, the Ring Modulator can produce some of the more dramatic changes, but the principles behind it are complex. Its function is basically very simple, to allow the combination of two frequency sources, applied to separate inputs, to interact and produce a modified pitch output. This is not the same as the function of a mixer where two or more signals are combined but retain their original frequency characteristics. In a ring modulator the two signals are combined in such a way that a composite output containing both the sum and the difference of their frequencies is produced.

CHARACTERISTICS

There are many ways in which this frequency translation can show itself, depending not only on the frequencies of the signals, but also upon their waveforms. Taking the simplest combination of all, assume two sine waves on the inputs, 264Hz on one and 396Hz on the other. The circuits within the modulator simultaneously add 264Hz to 396Hz, resulting in 660Hz, and also subtract 264Hz from 396Hz, resulting in 132Hz. Both the 132Hz and the 660Hz appear together at the output as a composite single signal. The two new frequencies cannot be separated from each other except by sophisticated filtering techniques, and in the case of closely similar resultant outputs, this filtering probably would be impossible. However, it is possible to combine the composite with both the originals in a standard mixing procedure. The final output then consists of all four signals together.

Relating these frequencies to musical notes, 264Hz is 'C' below 'Concert A' (440Hz), 396Hz = 'G', 660Hz = 'F', 132Hz = 'C' (sub-octave), which if mixed with the original 'G' and 'C' produces a musically concordant composite. Given the correct frequencies originally presented, it will be obvious that a ring modulator can produce other chords from other two note inputs. It should also be evident that if two identical frequencies are fed in simultaneously, then their sum will be twice the original, and their difference will be zero, hence simple frequency doubling occurs, with the new note one octave higher than the original. With two or more ring modulators cascaded it is possible to build up further complex relationships, and to theoretically go on doubling the frequency again and again.

When non-sinusoidal waveforms are presented to the inputs a much more complex situation is created. A sinusoidal waveform is pure tone, but any non-sinusoidal one contains odd harmonics that become more complex the greater the shift from the pure tone. Thus triangular, ramp and squarewaves contain their own particular harmonic characteristics, and the quality of a note produced from these waveforms is heavily dependent upon the strength of the overtones. Consequently for non-sinusoidal waveforms it is no longer a matter of adding and subtracting two frequencies, even though on an oscilloscope or frequency meter the frequencies appear to be singular. It is instead a situation of combining the fundamental frequencies and also the harmonics implicit in the non-sinusoidal shape. The resultant output then takes on a highly complicated characteristic. In practical terms there is probably little difference in the composite output for the fundamentals of a sine wave and those of a triangular wave, but the overtones at the output acquire a timbre that becomes more distinctive the greater the complexity of the waveform and its harmonic structure. As the structure becomes more complicated, especially with higher frequencies, a 'ringing' quality begins to develop. Curiously this is not why such a unit is called a 'Ring' modulator, the name actually derives from the mode of circuitry used in the earlier days of electronic music modification.

Fig. 1. Schematic diagram of the system
The unit has been designed to enable a wide variety of carrier and modulator combinations to be produced. In one mode speech, music or other signals can be modulated by an internal low frequency oscillator the rate of which is variable by a panel control. Normally referred to as the 'VCO' this produces four waveforms of sine, triangle, ramp and square waves, at a controllable amplitude level. Separate inputs for external carrier and modulating signals are included, enabling for example, two synthesiser VCO's to be intermodulated. Facilities for mixing the modulator and carrier signals with the processed composite have not been included as the most useful function of this facility is when both are derived from closely controlled sources, such as synthesiser VCO's, when mixing is best done back at source. An ordinary mixer unit could alternatively be used instead.

An integral mixer is provided for combining the internal VCO output with an external carrier. Self modulation of an input signal can also be switched in, allowing for frequency doubling. Automatic level control of the carrier signal is included, and optimises both the internal VCO amplitude and those of external carriers. A noise gate at the final output smoothly closes down the output in the absence of a main input signal, minimising system noise both from the unit and the original source. A block diagram is given in Fig. 1, and the complete circuit diagram is shown in Fig. 2.

Fig. 2. Complete circuit diagram of the Ring Modulator
RING MODULATOR CHIP
Naturally the heart of the modulator is the Ring Modulator chip itself and the one chosen is the type 1496. To call it a ring modulator chip is a slight misnomer, for it is actually a balanced modulator-demodulator connected in the configuration to act as a ring modulator. The manufacturer has allocated the name Carrier to pins 8 and 10, and the name Modulator to pins 1 and 4. Normally we regard the higher frequency applied as being the carrier, and the lower frequency as the modulator, and the terms up to this point have been used in this fashion. For the sake of clarity, the names used from hereon will conform to the manufacturer’s designations and the modulator will be the signal at pin 4 IC2, and the carrier that at pin 10 IC2, even though this means that the carrier will often be at a lower frequency than the modulator. Although IC2 has two carrier and two modulator ports only one of each is used as the signal application point. The bias on their counterparts though is an equally vital factor. In essence if the signal carrier ports are held in balance, then a modulator signal will not pass through, and if the modulator ports are balanced then the carrier will not get through. In the absence of either, then in theory there will be no signal at the two antiphase outputs.

In practice full suppression of the carrier and modulator signals is not possible, but it can be minimised. The breakdown strength is largely related to the strength of the signals, to the frequencies involved, and the accuracy of the balance point setting. The balance on the carrier ports is performed by VR3 and on the modulator ports by VR2. Note that they each control the throughput not of their own signals, but of those on the opposite inputs. The degree of imbalance accidentally or deliberately introduced, controls the amount of the signal that is allowed to pass through.

Beyond that, the amplitude at which the composite is delivered at the outputs is determined by the values of R14 and R15, together with the current through R9. The modulator input is only controllable by an a.c. signal, but the carrier input can be variably controlled by both a.c. and d.c. voltages.

CARRIER GENERATOR
The internal oscillator is designed around the XR2206 function generator chip which has been chosen for its widely variable frequency range and selection of waveform outputs. Those used here are selectable by S1 in order of sine, triangle, ramp and square. The chip is capable of producing other waveforms but these are unconventional variations of the above four and would add little to the existing versatility. The frequency range obtainable is initially set by the value of the capacitance across pins 5 and 6. It is then controllable by the current flowing through VR4 and R22. The relationship is complex and for sine, triangle and square waves is expressed as the formula:

\[F = \frac{1}{(R22 + VR4) \times (C/1000)} \times 1000 \]

For \(C = C4 = 0.033 \mu F \), \(R22 = 10k \), \(VR4 = 1M \), this comes out at 30Hz. With VR4 adjusted to nil with the other factors the same, the frequency becomes 3-03kHz. When C3 is switched in parallel with C4 by S5 the range is then 0.96Hz to 97Hz. Normal tolerance factors may produce slightly different ranges.

FREQUENCY SELECTION
The maximum resistance range of VR4 plus R22 is restricted to between 1k and 2M. The lower the resistance, the greater the current flowing and so the higher the frequency. When S1 is in the ramp position the value of R21 comes in and the frequency relationship formula changes to:

\[F = \frac{(2/C/1000) \times 1/(VR4 + R22 + R21) \times 1000}{1000} \]

and the resulting output frequency is approximately twice that of the other three settings. The two ranges selectable by S5 then become 1.9Hz to 176Hz, and 60Hz to 5-5kHz, again subject to tolerance factors. There is also a duty cycle factor involved expressed by:

\[R21/(R21 + R22 + VR4) \]

which has the effect of slowing the fastest edge of the ramp at low values of VR4. Clearly, because of the complexity of the formulae, it is not practical in a simple unit to keep the ramp output at the same frequency as the other waveforms for the same setting of VR4, even by switching in alternative capacitors. The output for the first three waveforms is taken from IC3 pin 2, where the amplitude is governed by the value of R20. The squarewave is taken from IC3 pin 11, where the amplitude is practically at line level, in accordance with the load current through R24. The selected waveform is taken via S1 to S2 where the carrier origin can be selected, in order of internal VCO, self modulation (frequency doubling), external modulation, and internal mixed with external modulation. The selected source is taken via the inverting buffer/mixer IC1d to S6 where the choice of unregulated or automatic level control can be selected.

AUTOMATIC LEVEL CONTROL
It is desirable for the carrier signal amplitude to remain fairly constant irrespective of origin. Each of the outputs from IC3 are intrinsically of different levels, and switching between them without an ALC varies the modulation depth. IC4 is the Compad chip type 571 used in this part of the circuit as the automatic level control. The carrier signal is split, one part going to the rectifier stage within IC4 at pin 2, and the other to the gain call and op-amp stages. The rectifier stage serves as a signal level detector and by feeding back the output, the circuit is arranged so that the gain is in-

INPUT STAGE
The modulator signal is brought into the buffer and gain stage of IC1a, and can come from practically any audio source, such as most microphones, preamps, synthesisers, cassettes, and so on. Two jack sockets are provided, one for low level signals, the other for higher levels. Within reason the unit will not be damaged by applying an incorrect signal to the wrong input, but the level may not be satisfactory. The total gain given at the preamp is set by the relationship of VR1 + R2 to the total of the input resistance. For low level signals only R1 is in circuit, and the gain can be varied from X5 to X100. With signals on the high input, the gain has a range of \(\frac{1}{2} \) to X10. The two sockets are not intended as mixable inputs, and priority is given to the lower level input. If a jack plug is in this socket, the other will automatically be cut out of circuit. In the absence of a plug in either, the input line will be grounded via R47. From IC1a the modulator is routed to S2 for use in self modulation, to the noise gate IC4, and to the ring modulator IC2. This is sensitive to the maximum level applied to its ports, and signals are given a 1/10th reduction. The preferred maximum seen at pin 4 IC2 is about 150mV peak-to-peak, allowing a maximum output from IC1a of 1.5V p-p. At the lowest setting on VR1, the maximum signal strength on the high input jack is thus 3V p-p.
versely proportional to the input level. Hence if this increases, so the output level reduces, and vice-versa, so maintaining a constant output amplitude until the input level falls below a predetermined region as set by R32. The output level is then finally allowed to reduce. The output level constant is however dependent upon the shape of the wave formed and the envelope timing as set by C10. If the decay of the envelope is too narrow, the response could become very edgy and uneven. If it is too slow, the response would not allow for abnormal peaks to be suppressed. The value of C10 thus represents a reasonable compromise.

The best amplitude control is achieved with sinusoidal waveforms, and square waves are not adequately controlled to the same degree, so an additional limiter has been set by including R25 as an attenuator for the square wave mode from IC3. The other three waveforms are represented at a suitable amplitude, between 1V and 2V. The threshold level as set by R32 allows signals as low as 40mV to be applied to the same degree, so an additional limiter has been set by maximum level. R46 is partially responsible for controlling the envelope decay of the square waveform with a threshold level including R25 as an attenuator for the square wave mode. Hence if this in-d e c a y of the envelope is too narrow, the response could increase, so the output level reduces, and vice-versa, so the output level is then finally allowed to reduce. The output level constant is however dependent upon the threshold level at which it is allowed to reduce, but the c.c. imbalance increases as the response of VR5 reduces, so allowing more of the original signal to pass through with less modulation.

CARRIER INPUT

As with the modulator input of IC2, the carrier input is also sensitive to overloading from the carrier signal. The input level is thus attenuated by R13 and R26 to about 1/10th. The maximum signal strength applied is controlled by VR5 from nil up to the maximum limited by R27. Two modulation modes are provided and selected by S4. With S4 open the modulation is purely a.c. via C21. The controllable strength of the output from IC2 is dependent upon this level applied. With the balance preset VR2 correctly adjusted and with VR5 turned right down, there is no significant output. As VR5 is increased, so the output rises until the maximum carrier input is under d.c. and a.c. control. With VR5 up the level is reached. With S2 closed, C21 is bypassed, and the carrier level is at maximum, though its effect is slightly and deliberately reduced by its resistance now in parallel with R13, so upsetting the balance on the carrier inputs. Because of this imbalance, some of the original signal from IC1a is permitted to pass through, but partially modulated with the carrier. As VR5 is turned down now, so the carrier level decreases, but the d.c. imbalance increases as the resistance of VR5 reduces, so allowing more of the original signal to pass through with less modulation.

MIX/AMPLITUDE CONTROL

At the minimum resistance of VR5, only the original signal from IC1a is heard. Effectively VR5 thus acts as a mix control when S4 is closed, and as an amplitude control when S4 is open. S7 is an override switch that when closed, optimises the imbalance on the carrier inputs, and shunts out the carrier signal.

P.E. AUDIO EFFECTS AND OTHER SUPER SOUND KITS!

<table>
<thead>
<tr>
<th>P.E. MONO-Stereo Echo-Revber (SEP94) 200ms echo, lengthy reverb, multi-tracking kit as published – BLK box: SET 218 E5566</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL CONTROLled SUPPRESSORS</td>
<td>CODE</td>
</tr>
<tr>
<td>BASS BOOST: Increases volume of lower octaves</td>
<td>SET 120B</td>
</tr>
<tr>
<td>BLOX BOX: Voice operated VCF & VCA for toning effects</td>
<td>SET 214</td>
</tr>
<tr>
<td>CHORDS UNIT: A solo voice or instrument sounds like more</td>
<td>SET 102</td>
</tr>
<tr>
<td>COMPaRESSOR: Limits & levels signal strength</td>
<td>SET 133</td>
</tr>
<tr>
<td>DIGITAL TO ANALOGUE: B/W binary to Lin & Log voltage</td>
<td>SET 176</td>
</tr>
<tr>
<td>ENVELOPE SHAPE: Not triggered ADSR unit with VCA</td>
<td>SET 174</td>
</tr>
<tr>
<td>EQUILISER: Variable combinations of Low, Mid, Top & Notch</td>
<td>SET 217</td>
</tr>
<tr>
<td>EQUILISER: 10 Channels variable equaliser</td>
<td>SET 167</td>
</tr>
<tr>
<td>FAJER: Voice operated with 6 response controls</td>
<td>SET 167</td>
</tr>
<tr>
<td>FILTER: Voice bandwidth enhancement over background</td>
<td>SET 160</td>
</tr>
<tr>
<td>FLANGER: Resonating music effects, plus phasing</td>
<td>SET 173</td>
</tr>
<tr>
<td>FREQUENCY CHANGER: Tunable note & waveform modifier</td>
<td>SET 172</td>
</tr>
<tr>
<td>FREQUENCY DOUBLER: Guitar octave raser & tone changer</td>
<td>SET 176</td>
</tr>
<tr>
<td>FREQUENCY MODULATOR: Multisine; 2:1/4:1/7:1kHz</td>
<td>SET 128</td>
</tr>
<tr>
<td>FUNKY-WINKY-LOO: Modulates a singing voice</td>
<td>SET 140</td>
</tr>
<tr>
<td>FUZZ: Smoother distortion, retains attack & decay</td>
<td>SET 91</td>
</tr>
<tr>
<td>GUITAR DRIVE: Heavy fuzz with selectable qualities</td>
<td>SET 86</td>
</tr>
<tr>
<td>GUITAR SUSTAIN: Extends note decay time, with noise gate</td>
<td>SET 222</td>
</tr>
<tr>
<td>GUITAR TO SYNTH INTERFACE: Wave voltage & page outputs</td>
<td>SET 173</td>
</tr>
<tr>
<td>HAND CLAPPERS: Auto & manual variable clap effects</td>
<td>SET 167</td>
</tr>
<tr>
<td>HEADPHONE AMP: 2 watts into phones or speaker, variable</td>
<td>SET 160</td>
</tr>
<tr>
<td>HUM CUT: Tunable mains hum cut filter</td>
<td>SET 141</td>
</tr>
<tr>
<td>JAWBREAKER: Voice disorder with reverb & tremolo</td>
<td>SET 150</td>
</tr>
<tr>
<td>METRONOME: With audio output & visual beat & downbeat</td>
<td>SET 133</td>
</tr>
<tr>
<td>MICRO-AMP: Variable input & switched tone controls</td>
<td>SET 147</td>
</tr>
<tr>
<td>MIXER: Several in available</td>
<td>SET 147</td>
</tr>
<tr>
<td>MOCK STEREO: Splits mono signal into stereo simulation</td>
<td>SET 113</td>
</tr>
<tr>
<td>MULTiVORM: Ring, Red, Face, Black, White, Vibe</td>
<td>SET 180</td>
</tr>
<tr>
<td>MULTIVORM/VOICE: Log voltage to frequency, switchable</td>
<td>SET 177</td>
</tr>
<tr>
<td>MUSIC MODULATOR: Standard waveform, plus sound effects</td>
<td>SET 166</td>
</tr>
<tr>
<td>MUSICAL CALL SIGN: Programmed call sign generator</td>
<td>SET 121</td>
</tr>
<tr>
<td>NOISE REDUCER: Reduces noise & signal distortion</td>
<td>SET 156</td>
</tr>
<tr>
<td>PHASER (SIMPLE): Auto & manual rate & depth controls</td>
<td>SET 164</td>
</tr>
<tr>
<td>REVERBERATOR: Mono/square, variable depth & delay</td>
<td>SET 153</td>
</tr>
<tr>
<td>RHYTHM GENERATOR: Drum driven, 8 drum effects</td>
<td>SET 185</td>
</tr>
<tr>
<td>RHYTHM GENERATOR: Tri wave-programmed rhythms, 9 effects</td>
<td>SET 185</td>
</tr>
<tr>
<td>BLK BOX – steel & all black plastic finish</td>
<td>SET 203</td>
</tr>
<tr>
<td></td>
<td>P.E. FILTER-SHIFT PHASER (ICT48): Enhanced phasing with filtered vibration</td>
</tr>
</tbody>
</table>

PHONOSONICS, DEPT PE4N, 8 FINUCANE DRIVE, ORPINGTON, KENT, BR5 4ED.

Tel: Orpington 37821 (STD 0689, London 66), Mon-Fri 10-7.
DIFFERENTIAL AMPLIFIER

IC2 has two outputs in antiphase and which are presented to the differential amplifier IC1b. It is d.c. coupled and gives equal weight to each phase. The resultant output with S7 in the overdrive mode is twice that at the output of IC1a and is suitable for presenting to an amplifier. However, as previously stated, the complete suppression of the modulation and carrier throughputs is not possible, and a small residual breakthrough is to be expected.

Quite distinctive waveform shapes appear, all of which have their own unique effect upon the final output quality. When bypassing the ALC control a 180° phase change occurs and the ramp waveform changes to the opposite slope introducing a fifth set of variations. Full modulation in the d.c. mode is intentionally inhibited as the increased level required would inherently raise the carrier breakthrough level. Full carrier modulation is of course provided when S4 is in the a.c. mode. When switching between both modes, the nature of the circuitry produces a cross-fade effect between them. This is due to the relative d.c. levels applied to C21 changing at a rate determined by the biasing resistors and provides a smooth changeover. A similar effect is produced when S7 is switched in and out.

NOISE GATE

Under normal conditions when signals are being processed, this residual is of no consequence. Indeed the maximum breakthrough is normally at least 50dB down, less of course if VR5 is down. In the absence of a modulator from IC1a though, it is usually undesirable to hear the breakthrough, and a modulator-sensitive noise gate is thus included and formed around IC4b. By connecting the output of IC1a to the gate, this will turn on and off in response to the presence of modulating signals. The output of IC1a is taken first to the level detector IC1c. This amplifies the modulator by an amount set by R41, but restricted to no more than 1.2V by D1 and D2. Signals from IC1a above about 100mV will produce sufficient output from IC1c to provide control of the rectifier stage of IC4b. At this level the rectifier stage allows the gate to be fully open to signals on its other input. As the control voltage drops, so the gate commences an expansion, progressively reducing lower level signals at a faster rate than the higher levels. This continues until a threshold point set by R35 is approached, whereupon the gate closes.

The attack and decay envelope is set at a reasonable shape by C14, allowing all but the harshest opening transients to come through unattenuated, and for the level to die away naturally without suddenly cutting out. Thus the gate opens for modulator signals, but in their absence it closes to low level residual carrier breakthrough. The 60dB crosstalk within IC4 is insignificant. Waveform distortion through the gate is trimmed out by the bias applied by VR7. At full signal strengths, the gain is set by R37, and the final output presented to the volume control VR6 from whence it can be sent to a normal amplifier system. The gate can be overidden by applying a fixed voltage to the control input by S3. The overdrive bias is set by R43 and R44, and at average signal strengths the level change is barely perceptible, though it will be at lower levels since the basic control voltage from IC1c will naturally be lower. The maximum output level available at VR6 is about 3V p-p.

POWER SUPPLY

The unit is designed to run from two 9V batteries. There is no reason why a stabilised power supply should not be used instead, though the maximum voltage should not exceed ±9V as this is the limit imposed by IC4. The current consumption is around 30mA, up to 20mA of which is taken by IC2. Whilst PP3 batteries could be used, longer battery life will come from the larger PP6s, which use the same PP3 clips. The larger still PP9s fit into the box, but require PP9 clips. Due to the current drawn by IC3, large smoothing capacitors are mounted off the board at the power switch, this minimises interference from the internal carrier clock frequency. With a stabilised power supply they can probably be eliminated, but batteries do not deliver their current so readily and smoothly.

Next Month: Construction, setting-up and effects oscillograms.
Practical Electronics November 1984

SPARKRITE (A Division of Stadium Ltd.), Queensway, Enfield, EN3 4SD.

ADDRESS

- Coloured - Brown, front and base panels
- Aluminium panels. The light brown case includes:
 - Front panel kits (except 351E), with connector included.
- Half size eurocards (100 x 80mm) are manufactured from high impact polystyrene and has a textured finish.
- Casing—High impact textured ABS
- Colour—Brown, front and base panels
- 1.6mm satin anodised aluminium

KITS FROM £7 TO £60

Buy Sparkrite Brand Leading Auto Electronics in self-assembly kit form — And save pounds!!

- Electronic Ignition systems — contact triggered and contactless
- Electronic Car Security Systems — including a new ultrasonic unit
- Car Drive Computer — with 12 functions

SEND FOR FREE LITERATURE PACK — TODAY!

8 SOPHISTICATED KITS TO CHOOSE FROM.

Plastic Boxes

Type A

- Plastic boxes consisting of a top and bottom moulding with front and rear aluminium panels, positively retained in the two halves.
- Top and bottom moulding—High ABS.
- Colour—Light grey top; dark grey base.
- Front and rear panels—Satin anodised aluminium 1.6mm thick

Type B

- Constructed of high impact polystyrene, these handsome two-toned grey boxes are suitable for wall mounting and free standing instruments. The two halves of the box are held together by screws inserted from the base.
- Material—High impact polystyrene
- Colour—Top light grey; base dark grey
- Panels—Satin anodised aluminium

Send 50p for a copy of the catalogue with details of the full range available.

ELECTROVALUE LTD

SPECIALIST SUPPLIERS for

ROTARY-SLIDE-PRESET

We offer a wide range of useful types which can be relied on for long working life, smooth action and good contact.

VARIABLE POTENTIOMETERS

- **ROTORUS**
 - Single turn
 - Slide control
 - Linear in 15 values, 100R to 4M7
 - Log. in 13 values from 220R to 2M2
 - Rev. Log. 10K, 22K, 47K
 - All without or with switch
 - JP 20 Twin track, matched
 - Twin gang matched, with or without DPST switch
 - Lin. or log. B values 1K-2M2 per section
 - Rev. Log. 10K, 22K
 - DF20 Twin Trace
 - Dual concentric spindle for controlling sections separately. With or without DPST switch

- **POTENTIOMETERS**
 - 3W and 1W, various values
 - **SLIDERS**
 - Lin. or Log. 4K7 to 1M, single or stereo
 - **PRE-SETS**
 - Horizontal or vertical. 100 to 10M in E3 series of values
 - **CERMET**
 - 100 to 4M7 in E3 series in values
 - **NOBS**
 - In a wide range of sizes, styles, finishes and colour also calibrated scales.
 - Mention P.E. when sending for comprehensive free A-Z list.

BRITAIN'S LEADING QUALITY COMPONENT SUPPLIERS — SEND FOR FREE 32 PAGE A-Z LIST

ATTRACTION DISCOUNTS FREE POSTAGE-GOOD SERVICE & DELIVERY

KMT

The unique new modular enclosure.

Suitable for alarm systems, counters, interfaces amplifiers, model controls and many other projects.

Hand Held Box

This box is moulded in two sections and has a textured finish. The battery compartment accepts a PP3 or nickel cadmium stack 25 x 45mm long. A circuit board 56 x 105mm may be mounted on three pillars in the base, location being provided by a 3mm spigot. The top moulding will accept a circuit board 71 x107mm.

- Material—Textured ABS
- Colour—Dark brown

易装配—10个螺丝。易口袋—房子你的项目经济上和专业上。

- For full size eurocards (100 x 160mm) mounted horizontally in the 35TE front panel kit.
- Half size eurocards (100 x 80mm) mounted vertically included as part of all front panel kits (except 351E), with connector included.

Hi-Style Desk Top Case

- Designed to house key boards and displays on two 1.6mm silver anodised aluminium panels. The light brown case is manufactured from high impact polystyrene and has a textured finish.
- Casing—High impact textured ABS
- Colour—Brown, front and base panels
- 1.6mm satin anodised aluminium

KITS FROM £7 TO £60

Sparkrite

Buy Sparkrite Brand Leading Auto Electronics in self-assembly kit form — And save pounds!!

- Electronic Ignition systems — contact triggered and contactless
- Electronic Car Security Systems — including a new ultrasonic unit
- Car Drive Computer — with 12 functions

SEND FOR FREE LITERATURE PACK — TODAY!

8 SOPHISTICATED KITS TO CHOOSE FROM.

KITS FROM £7 TO £60

Sparkrite

Buy Sparkrite Brand Leading Auto Electronics in self-assembly kit form — And save pounds!!

- Electronic Ignition systems — contact triggered and contactless
- Electronic Car Security Systems — including a new ultrasonic unit
- Car Drive Computer — with 12 functions

SEND FOR FREE LITERATURE PACK — TODAY!

8 SOPHISTICATED KITS TO CHOOSE FROM.

To:

SPARKRITE (A Division of Stadium Ltd.), Queensway, Enfield, EN3 4SD.

Telephone: 01-804 4343

NAME

ADDRESS

PE

Practical Electronics November 1984
Superkit II

This practical self-instruction kit has been developed to extend the original beginners' Superkit. Superkit II includes an instruction manual and many more components, enabling you to design and use adders, subtrators, counters, (ripple, up/down, synchronous, decade and Gray code), registers, pattern recognisers and 7-segment displays.

You need the board and components from Superkit to enable you to build the circuits in Superkit II. Together the two kits provide an excellent introduction to digital electronics - what really goes on inside a computer.

Superkit (SUP) £22.00

Superkit II (SUP II) £16.00

Special price £35.00 for both (SUP + II) (inc. VAT and p & p)

The Superkit series is backed by our theory courses, DIGITAL COMPUTER LOGIC (beginners' course), which covers the design of logical circuits, and DIGITAL COMPUTER DESIGN (more advanced), which covers the design of digital computers.

MICROPROCESSORS AND MICROELECTRONICS teaches you what a microprocessor is and what it can do.

DIGITAL COMPUTER LOGIC (DCL) £7.00

DIGITAL COMPUTER DESIGN (DCD) £9.50

Please send for full information on these and our other courses.

GUARANTEE If you are not completely satisfied, return the item to us within 28 days for a full refund. All prices include worldwide surface postage (ask for prepayment invoice for airmail). Allow 28 days for delivery in UK. Overseas payment by international credit card or by bank draft drawn on a London bank.

Cambridge Learning Ltd, Unit 24, Rivermill Site, FREEPOST, St Ives, Cambs PE17 4BR, England.

Tel: 0480-67446

MJI 102 — A NEW NUMBER IN BRITISH `SCOPES . . .

Simple Operation — Fully Automatic Trigger — Single Beam — 100mV to 50V/Div. — Sensitivity — 10mS to 1µS/Div. — Sweep — X - Y Facility — Lightweight and Compact

and at a very lightweight price

SEND FOR DETAILS NOW!

MJ Instruments

Hilltop House, Thingoe Hill, Bury St Edmunds, Suffolk, IP3 6E. Tel: (0284) 67104

Power Supplies to Clear

(ALL 240V I/P)

<table>
<thead>
<tr>
<th>Item</th>
<th>Mains Voltage</th>
<th>Amperage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Farnell N100 +/- 5V, +/- 12V, +/- 24V, 100W</td>
<td>75.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Farnell F237D7/10SC 0-7V, 10A</td>
<td>50.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Farnell N 300 +/- 5V, +/- 12V, 200W</td>
<td>95.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Farnell G12/10S, 8V-12.6V, 10A</td>
<td>130.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Farnell 7/10RC (ex equip) +5V, 10A</td>
<td>50.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Farnell 15/2TRC (ex equip) 2 x 12V, 10A</td>
<td>50.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Hewlett Packard G2605M 5V, 100A</td>
<td>60.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Gould DC 360 5V, 20A</td>
<td>60.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Gould PMA 51/24 0-30V, 5A</td>
<td>120.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Gould PMA 47 (marked) 0-15V, 3A</td>
<td>50.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Gould MG5-20B 5V, 20A</td>
<td>75.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Advance PMA 51 0-30V, 5A</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Advance MG5/40 5V, 40A (ex equip but as new)</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 ITT MP20BS 0-30V, 20A (weight 18kg)</td>
<td>65.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ITT 484LFE7560 27.5V, 10A (weight 15kg)</td>
<td>50.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qty 19" Rack Kits. Side panels 82" x 16" with guides & strip 20.50
Qty Lynx Keyboards. 58 keys in 8X by 10Y electrical matrix 20.50
18 Centronics Printer Mod 792 (serial). Special purchase of discontinued model. Spares still available. New & boxed 195.00
Qty Rodime 5MEG hard disk drives series RO 200. A low cost way to improve your system tech spec and interface. Data supplied 250.00

Remember, all prices include VAT and carriage.

Trade enquiries welcome on quantity items.

Dionics, Unit 50, Whitemoor Road, Kenilworth, Warwick. CV6 2BP.

Tel: 0926 59658 Telex: 312440 PBSSPA G.
THIS two-part article sets out to explain both the advantages and disadvantages of nickel cadmium cells. The characteristics of some common types of nickel cadmium battery are described and a typical application is discussed. Finally, we shall conclude with the description and constructional details of an automatic charger suitable for use with most commonly available nickel cadmium cells.

An appropriate choice of power source is crucial to the design and use of portable electronic equipment. The traditional solution to the problem of providing an energy supply for small items of electronic equipment has usually involved the use of one, or more, dry cell batteries of the zinc carbon (Leclanché) variety. These consumable items are readily available throughout the country.

Unfortunately, the prices of dry cells have followed the general rate of inflation in recent years, whilst the cost of electronic components, and integrated circuits in particular, has fallen in real terms. As an example of this, a dry cell battery which ten years ago cost 8p now costs 36p whereas, by contrast, an industry standard operational amplifier has fallen in price from 60p to 15p in the same period. It now becomes increasingly apparent that the life-cycle cost of replacement zinc carbon batteries can easily far outweigh the initial cost of the equipment to which they are fitted. This is true of both home-built and commercial equipment such as personal cassette players and the like.

A more cost effective energy source is thus highly desirable, and ideally this should retain some degree of compatibility with conventional zinc carbon batteries so that these cheaper alternatives may be substituted in emergency.

Nickel cadmium batteries, whilst not in any way a new development (they were first patented in 1901!), have achieved some measure of popularity in recent years. Whilst this has largely been in the industrial sector, an attempt to launch these cells on the consumer market has met with moderate success. These cells are now readily available in most high street stores in a range of popular physical sizes compatible with their zinc carbon counterparts.

Nickel cadmium cells offer significant advantages over zinc carbon types, not the least of which is that they may be charged and discharged many hundreds of times. The electrical characteristics of nickel cadmium cells are very different from zinc carbon types. As an example, provided it is treated in accordance with the manufacturer's recommendations, a single 'AA' type nickel cadmium cell is capable of the following performance:

- delivering a current of half an amp for an hour, or more
- supplying a load current of several amps for a short period
- operating over a wide range of temperatures (from minus 40°C to +50°C with reduced capacity at the extremes)
- surviving for a minimum of 600 charge/discharge cycles
- accepting prolonged overcharging
- requiring no maintenance other than periodic charging.

CONSTRUCTION

Nickel cadmium cells, or 'Nicads', are available in two types of construction, cylindrical (sintered) and button (mass plate). These cells have quite different characteristics, as summarised in Table 1.

Button cells invariably consist of either one or two pairs of circular plates separated by a porous insulating material, as shown in Fig. 1. Types with multiple plates generally exhibit a lower internal resistance than their two-plate counterparts of nominally similar capacity. The plates themselves are formed by compressing the active constituents into a metal mesh and hence they are often referred to as mass plate cells.

Cylindrical cells, on the other hand, employ a form of rolled construction using flexible plates which have been

NICKEL CADIUMM BATTERIES

MICHAEL TOOLEY BA

DAVID WHITFIELD MA MSc CEng MIEE

PART ONE
produced by sintering nickel powder onto a nickel substrate. The plates are separated by a thin porous material as shown in Fig. 2.

In either case, the battery is totally sealed by means of a nylon or rubber grommet. Cylindrical cells are, however, normally fitted with a pressure relief vent which prevents the internal pressure from reaching a dangerous level during excessive charge or discharge. This safety device operates at pressures of about 14 atm and closes at about 11 atm.

GENERAL CONCEPTS

Cells fall into one of two principal categories, primary cells which end their useful life when their chemical constituents are exhausted, and secondary cells in which the chemical reaction may be reversed thus permitting re-charging. Leclanché cells are perhaps the most common example of the former type whilst Nicads are an example of the latter type.

Groups of individual cells may be connected in series (parallel connection of cells is not usually recommended) according to the desired terminal voltage. The resulting arrangement is referred to as a battery, and the terminal voltage is the sum of the individual cells' terminal voltages.

A number of terms are used to describe the electrical characteristics and performance of batteries and, since these may be bewildering to the newcomer, we shall explain each one in turn.

Capacity

The capacity of a cell is the amount of electrical energy which it can deliver. This is simply the product of its rated discharge current (A) and discharge time (h) and is usually quoted in ampere hours (Ah). To be meaningful, however, capacity must be stated for a particular discharge rate. Depending upon the application envisaged, the cell is normally rated for discharge periods of between two and ten hours.

Energy content

The energy content of a battery is specified in watt hours (Wh), and is the product of the cell's capacity (Ah) and the average voltage (V) on discharge. As an example, consider a nickel cadmium battery which comprises three individual series connected cells (each having a nominal discharge voltage of 1.2 V). If the cells are rated at 450 Ah (at the five hour rate) the battery will nominally be capable of delivering a load current of 90 mA over a continuous five hour period. During this time the average voltage of the battery will be 3.6 V (falling to approximately 2.7 V at the end of the period) and its useful energy content will be:

\[
(0.450 \times 3.6) = 1.62\text{Wh}
\]
Efficiency

The watt hour efficiency is the ratio of the energy realised upon discharge to that which is required to fully charge the battery. If, in the previous example, the battery required eight hours to charge at an average terminal voltage of 3.9 V and at a constant current of 100mA, the energy required to charge the battery is:

\[(3.9 \times 0.1 \times 8) = 3.12\text{Wh}\]

The watt hour efficiency, expressed as a percentage, will thus be:

\[(1.62/3.12) \times 100 = 52\%\]

Charge/discharge rate

Charge and discharge currents are often specified in terms of that which will completely discharge the battery concerned in a continuous one hour period. This is referred to as the 'C-rate' (or 'C/1 rate') and multiples, or sub-multiples, of this are a convenient method of specifying charge and discharge rates. Thus 10C is the current which will discharge the battery in six minutes whereas C/10 is the current which will discharge the battery in ten hours.

Chemical action

Modern nickel cadmium cells featuring a totally sealed construction are a development of open style cells. These were designed to permit the release of gases produced during charge and discharge, and required periodic topping-up of the electrolyte in much the same manner as automotive lead-acid batteries. With sealed batteries it is not, of course, possible to replenish the active materials. Whereas this results in a virtually maintenance free battery, it carries the penalty that care must be exercised in the use of the batteries in order to avoid permanent damage.

An approximation of the chemical action of a nickel cadmium cell is given by:

\[2\text{NiO(OH)} + \text{Cd} + 2\text{H}_2\text{O} \xrightarrow{\text{charge}} 2\text{Ni(OH)}_2 + \text{Cd(OH)}_2\]

The dilute potassium hydroxide (KOH) electrolyte does not appear in the formula. However, it should be noted that water is produced during charging, and is absorbed from the electrolyte during discharge.

On discharge, the nickel hydroxide positive mass changes from 2NiO(OH) to 2Ni(OH)₂ whilst the metallic cadmium negative mass oxidises to produce cadmium hydroxide, Cd(OH)₂, at the negative electrode. On charge, the positive mass is converted to nickel hydroxide whilst the cadmium hydroxide changes to cadmium, releasing water into the electrolyte in the process.

The foregoing only applies whilst material is still available for conversion, i.e. before total charge or discharge has occurred. When all available material has been converted, either oxygen or hydrogen gas is evolved depending respectively upon whether material is first completely converted at the positive or negative plate.

Cells are normally designed so that only oxygen is evolved. This is accomplished by incorporating an amount of surplus cadmium hydroxide in the negative plate. Thus, when the positive plate is fully charged, the charge on the negative plate is still incomplete.

The oxygen released at the positive plate during periods of excess charge reacts with the metallic cadmium at the negative plate to produce cadmium hydroxide as follows:

\[\text{O}_2 + 2\text{H}_2\text{O} + 2\text{Cd} \rightarrow 2\text{Cd(OH)}_2\]

Hence the oxygen evolved can be effectively recombined avoiding the need to ventilate the cell so that the gas may escape. To aid the recombination process, the plates of the cell are separated by a very thin porous membrane which assists the passage of oxygen within the electrolyte.

To safeguard the cell from the effects of excessive discharge, cadmium hydroxide is added to the positive plate so that oxygen recombination is again possible, this time at the positive plate.

CHARACTERISTICS OF NICKEL CADMIUM BATTERIES

The terminal voltage of a single nickel cadmium cell is usually assumed to be 1.2V though, as one might expect, there is some variation during the discharge period. Unlike some other types of cell, nickel cadmium types exhibit a remarkably constant output voltage during discharge. After falling initially from approximately 1.3V, the cell voltage remains within about 5% of 1.25V for more than 75% of the discharge period.

A typical set of discharge curves for a cylindrical nickel cadmium cell are shown in Fig. 3. This clearly shows the effect of three discharge rates, C, 5C, and C/5. It should be noted that this cell is normally rated for a five hour discharge period and its performance over shorter periods reveals less capacity as the discharge rate is increased. In this particular case, and assuming a useful end voltage of approximately 1V, the capacity is reduced by approximately 10% and 25% at the C and 5C rates respectively.

Nickel cadmium cells exhibit an extremely low value of internal resistance (0.05 ohm for a typical 1Ah cell) and this makes them eminently suited to applications which require the delivery of high currents for short periods.

The ability of a nickel cadmium cell to retain its charge is very much dependent upon the temperature at which it is stored. Mass plate cells exhibit markedly better charge retention abilities than their sintered counterparts, and both types rapidly lose charge as the storage temperature is increased, as shown in Figs. 4(a) and 4(b).
The ability of a cell to accept a charge is also highly dependent upon temperature. Charge acceptance is extremely limited at temperatures above 45°C and, furthermore, the cell's ability to recombine oxygen is reduced at low temperatures. The recommended temperature range for charging nickel cadmium cells is thus between 10°C and 35°C.

The internal resistance of nickel cadmium cells increases as the temperature is reduced. Sintered cells offer an inherently lower internal resistance than mass plate types and are thus better suited to low temperature applications. Furthermore, nickel cadmium cells normally exhibit a negative temperature coefficient of voltage in the region of 4mV per °C. Thus a cell which produces an off-load terminal voltage of 1.25V at 20°C will produce only some 1.17V at 0°C.

COMPARISON OF ZINC CARBON AND NICKEL CADMIUM CELLS

On load, the voltage of a zinc carbon cell varies from approximately 1.5V when new to 1.2V towards the end of its service life. This compares with 1.3V falling to 1V for a nickel cadmium cell, as depicted in Fig. 5. From this it will be seen that, in the case of the zinc carbon cell, the fall-off in voltage during the service life is much more gradual. Whilst an ability to maintain a constant voltage during discharge may be considered highly desirable, it does mean that it is rather more difficult to ascertain the state of a nickel cadmium cell than a zinc carbon type.

Zinc carbon cells benefit greatly from periods of rest during discharge. They are thus very much better suited to intermittent use, particularly where high discharge rates are involved. Nickel cadmium cells are, by contrast, capable of continuously delivering high output currents. It is generally thought that nickel cadmium replacements for zinc carbon batteries will become cost effective after the first twenty charge/discharge cycles. Thereafter, and provided one has a suitable charger available, the nickel cadmium cell can be expected to provide reasonable service for a minimum of several hundred further cycles with only a minor fall-off in cell capacity. Beyond this, a 20% reduction in cell capacity is normally expected after about five hundred cycles. However, a great deal depends upon the life history of the individual cell concerned.

Applications in which nickel cadmium batteries should be considered prime candidates for the replacement of zinc carbon types include:

- **Cylindrical types**
 - Emergency lighting
 - Portable power tools
 - Motorised equipment
 - Cordless domestic appliances

- **Stacked button types**
 - CMOS memory back-up
 - Miniature radio equipment
 - Portable test gear

In certain applications, however, the lack of impending warning of battery failure may prove sufficient to outweigh the advantages of nickel cadmium cells. A good example of this is an intermittently used hand torch. Due to limitations of charge retention such an item cannot be relied upon when fitted with nickel cadmium batteries. Zinc carbon batteries are much to be preferred in this particular application.

CMOS MEMORY BACK-UP

In recent years CMOS static memories have become increasingly popular with the microprocessor system designer, and, to conclude the first part of this two-part series, we shall briefly discuss a typical application of nickel cadmium batteries in providing back-up for such memories.

CMOS memories, unlike their NMOS counterparts, require a supply current of only a few microamps. It thus becomes feasible to incorporate a battery within the equipment to supply power to the memory devices so that data will not be lost when the primary mains supply is interrupted. At this stage, it is, perhaps, worth pointing out that all we are trying to do is preserve the contents of the read/write memory, and no attempt is made to power the rest of the circuitry (CPU, read-only memory, etc).

The minimum voltage at which most CMOS memories will reliably retain their contents is normally 2V, hence three nickel cadmium cells connected in series will usually be adequate for this particular application. Furthermore, the chosen type of cell will usually be the button variety since these exhibit better charge retention characteristics than their sintered plate counterparts.

DISCHARGE CHARACTERISTIC

The typical discharge characteristic of a three-cell stacked button cell battery supplying a load current of 20μA is shown in Fig. 6. From this it should be obvious that the contents of a CMOS memory will be protected for several months provided that its demand for current is 20μA, or less. Furthermore, if the charge current is kept below the C/10 rate, the battery may be left permanently connected in circuit.

![Fig. 5. Comparison of nickel cadmium and zinc carbon cell discharge characteristics](image)

![Fig. 6. Typical discharge characteristics for a three-cell stacked button cell battery with a constant 20μA discharge current](image)
Do you know what a circuit looks like? Can you twiddle a dial?
Strum a guitar? Play a computer keyboard? If you can, then...

THE SKYS THE LIMIT AT

LEISURE TRONICS

There's so much waiting for you, it's impossible to cram it all in this space:
- satellite tracking and receiving equipment (impress the neighbourhood with your space-age dish)
- robots — bits and pieces, kits, computers, instructions (no more washing-up?)
- electronic music (instruments, synthesisers, keyboard, amps, midis)
- amateur radio (your club is there and Practical Wireless has a set-up that's bound to intrigue you)
- computers (with a wide range of games, books etc)
- components (special offers galore)
- tools and test instruments
- disco and light show equipment (dazzle 'em with your brilliance)
- radio controls for models, etc, etc...
- demos
- prizes

SEMINARS
You want to know what's the very latest — in technique and equipment — on electronic music. "Electronic Music Maker" is running seminars on Thursday/Friday a.m.

ROBOTS
How to build them. Where to get the parts. The Micros? Programming? Software? "Your Robot" will tell you in down to earth language on Saturday/Sunday.

HOME RECORDING STUDIO
are also running seminars, so if your want to start building, here's how on Thursday/Friday.

LIMITED ACCOMMODATION AT SEMINARS, SO MAKE SURE YOU GET THERE EARLY

LOOK WHO'S SPONSORING

- Electronics & Music Maker
- Electronics & Wireless World
- Everyday Electronics
- The Guitarist
- Software Index

LEISURE TRONICS

- Electronics & Computing
- Home Studio Recording
- Practical Electronics
- Practical Wireless
- Your Robot

— and they will all be there with advice and guidance.

How much will this cost you? £1.00 only if you fill in this coupon and hand it in at the Registration Desk. £2.00 without the coupon.

Leisuretronics is organised by Trident International Exhibitions Ltd.
21 Plymouth Road, Tavistock, Devon PL19 8AU, England.
Tel: 0822 4671 Telex: 45412 Tritav

This completed coupon entitles me to half-price admission to Leisuretronics.

MY MAIN INTEREST IS:
- Satellites
- Robots
- Music
- Recording
- Radio
- Computers
- Components, etc
- Tools/Test
- Disco/Light
- Controls

NAME

ADDRESS

POST CODE

Leisuretronics is at the Royal Horticultural Hall, London, Nov. 8, 9, 10, 11, 1984
Thursday, Friday and Saturday 10 a.m. to 6 p.m., Sunday 10 a.m. to 4 p.m.
A COMPLETE SECURITY SYSTEM FOR ONLY
£39.95 + V.A.T.

Alarms

BELT DRIVEN ALUMINIUM PLATTER PRECISION P256 TURN TABLE CHASSIS

SIREN & POWER SUPPLY MODULE PSL 1855

only £3.95 + V.A.T.

The heart of any alarm system is the control unit, the CA 1250. After having resisted trouble for up to 110db, at 2 metres with a horn speaker in addition, the unit is also suitable for use in a complete alarm.

POWER SUPPLY & RELAY UNIT PS 4012

Provides a stabilized 12V output at 50mA, which is then divided over a LED unit with a delay feature of 2 seconds. Operating from 216V.

SIREN MODULE SL 157

Provides a built-in siren. Two output types, one with fixed alarm times and the other with rotary back-up with tactile switch. Pressure and mesh filters, pressure and filter/mesh, an anti-spring and guard facility.

EXTENDED SYSTEM CS 1480

Price £62.50 + V.A.T.

The complete system with a hard wired alarm and one or more remotely mounted detectors, all wired in series together (X) and supplied with full instructions for ease of assembly. See 230 x 150 x 145mm (CA 1480).

FULLY SELF-CONTAINED ALARM UNIT CK 5063

only £37.00 + V.A.T.

No repeater installation. Each unit is supplied with its full instruction manual and tests provided to a high standard. Suitable for home offices, workshops, garages, etc.

SIREN & POWER SUPPLY MODULE PSL 1855

only £3.95 + V.A.T.

An improved transient response with a lower distortion response than the previous model. Ideal for Hi-Fi systems and quality discs. Price £7.99 each + 40p P.P.

PIEZO ELECTRIC TWEETERS — MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response to a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be used with existing speaker systems of up to 100 watts (more if 2 units in parallel). FREE EXCLUSIVE LEAFLET SUPPLIED WITH EACH TWEETER

LOUDSPEAKERS POWER RANGE THREE QUALITY POWER LOUDSPEAKERS (10", 12", and 18”) See Price Sheet. Ideal for both Hi-Fi and Disco applications. All units have attractive cast aluminium (ground plane) housing, specific specifications and prices.

10" 150 watt R.M.S. Impedance 8 ohms. 50 oz. magnet. 2" aluminium voice coil. Res. Freq. 20 Hz, Resp. 1 to 20 KHz. Sens. 97dB. Price £34.99 each + £3.00 P.P.

12" 100 watt R.M.S. Impedance 8 ohms. 50 oz. magnet. 2" aluminium voice coil. Res. Freq. 20 Hz, Resp. 1 to 20 KHz. Sens. 97dB. Price £62.99 each + £3.00 P.P.

18" 500 watt R.M.S. Impedance 8 ohms. 50 oz. magnet. 1½" aluminium voice coil. Res. Freq. 20 Hz, Resp. 1 to 20 KHz. Sens. 97dB. Price £225.99 each + £3.00 P.P.

LED SIREN ENCLOSED

only £12.95 + V.A.T.

3 levels of discriminator against false alarm conditions. Adjustable range up to 25m.

12V operation. All advanced modules use digital signal processing to produce an extremely silent self-deciding against potential false-alarm conditions.

ULTRASONIC MODULE ENCLOSURE

only £2.95 + V.A.T.

Suitable metal enclosure for housing an individual ultrasonic module type US 0821. US 0541. Supplied with the necessary mounting pillars and screws. For US 0821 order IC 5017.

INFRA-RED SYSTEM IR 1470 only £25.81 + V.A.T.

A complete system providing a highly sensitive system, which utilizes two 400kHz ultrasonic detectors; one for human presence and one for mistreatment. Suitable for home offices, workshops, garages, etc.
Jobs Confusion

By far the most vexing problem of the 1980s is unemployment, stubbornly staying at three-million-plus despite attempts at reduction. The old smokestack industries continue in decline, now overtaken by the high-technology sunrise industries of electronics and aerospace. The workforce in mechanical engineering has decreased by 88,000, equivalent to a 10 per cent cut. In the last five years the electrical and ancillary industries have over-taken the mechanicals and instead of being 20 per cent smaller are now an estimated 15 per cent larger.

Volume is still rising fast in the industries but this is not matched by an increase in jobs. If we look at Thorn EMI there are all the signs in the annual report of business expansion with turnover up over £100 million to £2-82 billion. But the number of employees worldwide dropped from 91,544 to 89,051 reflecting gains in productivity rather then employment. The situation for jobs is even worse when one remembers that a lot of Thorn EMI business is in the service sector in which expansion was expected to create many new openings in this area.

If we narrow our view to electronic engineering it is not the shortage of jobs but the shortage of qualified people that is the overriding problem. A recent report from the Engineering Council which looked at grass-root school level stated there is widespread confusion among pupils on the nature of the engineering profession and about the opportunities it offers. There is, apparently, less hostility to engineering than has been popular supposition, either teachers or pupils — the problem being not in general attitude but in widespread ignorance.

Much has already been done to promote engineering among the young but it has been fragmented. The Engineering Council recommends a stronger fully coordinated programme to educate both teachers and pupils. Isolated promotions such as the WISE (Women in Science and Engineering) bus now touring the country have their place but should be only part of a larger programme. The WISE initiative, incidentally enjoyed financial backing from Acorn, Thorn EMI and Esso as well as a personal launch by the Prime Minister who, herself, held a scientific education.

Concern

Yet another concern is that once a supply of well qualified engineers is available there remains the menace of the brain-drain which reached distressing proportions in the 1960s when the elite got on their bikes to the nearest airport to disappear, mostly, in the direction of the United States. The attraction is still there and not always for instant extra cash but often for better equipped labs and greater future opportunity.

We tend to think of electronics engineering in hardware design terms. Arts graduates were considered unsuited. Attitudes in the industry are now changing and it is argued that many arts people can get into electronics through software.

On the employers side much greater attention is being paid to general quality of character in engaging people. Claimed qualifications are more likely to be checked than hitherto and character defects searched for, aided in some companies by the analysis of handwriting by outside graphologists (with or without the applicants knowledge) on paper in very sensitive areas. By Polygraph. Recent revelations of widespread corruption in Rolls-Royce and other companies is accelerating the move to more positive and continuous vetting.

But while potential crooks and trouble makers are definitely not wanted there is a crack in the door for a few of the mentally disturbed. There is a school of thought that believes that maniac depressive in the overactive phase can be highly creative, so much so that the depressive phase is worth tolerating. This, of course, is the age-old image of the mad inventor or, in the arts, the creative genius with only a hairline separating him from insanity.

Who owns Whom?

It is difficult to keep pace with an electronics industry that has always been subject to dynamic changes. Who would have imagined five years ago that mighty EMI would be merging with Thorn? Or five months ago that Thorn EMI would own Inmos?

As I write, STC is courting ICL and GEC still has high hopes of acquiring British Aerospace. Racal has greedy eyes on Chubb now that the big Decca acquisition has been satisfactorily absorbed. The figures involved are quite astronomical but show the strength of successful companies. STC’s offer of close on £400 million for ICL was considered not enough and Racal’s £1.146 million for Chubb is likely to result in further bids if others join in.

Plessey has beefed up electronic warfare ability by acquiring 35 percent of the Italian EW company Eletronica with an option to go up to 49 percent. Eletronica in return will have a similar stake in a new joint company to be set up. Plessey has also bought out Microtechnology in the United States, a custom chip plant, in a £12 million operation.

Dragon Data, the Wales-based computer company which had cash-flow problems has been bought from the receiver by a Spanish consortium. The Dragon 32 and 64 computers will now be made in Spain but the Kenfig, Wales, plant is to continue making the Touchmaster pressure sensitive pad and graphics tablet.

Zehntel Inc. has bought Columbia Automation of Windsor, thus strengthening its own involvement in ATE while at the same time opening up the US market for Columbia ATE via Zehntel’s marketing network.

Deals

These are just a few of the deals made or in progress at the moment. Arguments on who owns a particular company at a particular moment are fruitless. Is Racal-Milgo Inc. in Florida less of an American company because of British ownership? But who owns Racal Electronics PLC? A broad spectrum of banks, insurance companies, pension funds, unit trusts and individual investors who may be British or foreign.

In this respect it is interesting to note that a City consortium which has just invested over £1 million in Prism Technology Holdings includes among its members the Coal Board’s investment arm. And, of course, cash-rich companies like GEC don’t leave it in the bank but put it to work through investment elsewhere as in the recent Distillers share purchase.

Who makes what?

Who makes what is equally difficult to track down, as is who designs what. The antenna systems for the RAF earth terminal due for completion in June 1985 are coming from the Harris Corporation in the USA under a 6 million dollar contract awarded by Plessey on behalf of the Ministry of Defence.

In fact, there is a whole complex of subcontracting in manufacture and cross-licensing of designs. Sir Clive may design his Sinclair computers but other companies manufacture them. If we come down to component level it is everybody’s guess. ITT Cannon who have just spent another £6 million on a new design and production plant at Basingstoke are turning out five million connectors a year with a fair proportion ending up in Japanese and US equipment, just as in British equipment we are likely to find many foreign-made components.

It all sounds a terrible mess. But it works. Compare this free-for-all with the rigid state control of industry in the Soviet Union. One can only feel sorry for the comrades.
LAST month we looked at the MM53200N encoder/decoder i.e., a device which had obvious applications in security systems. These i.e.s were used in pairs, one acting as an encoder and the other as a decoder. This month's featured i.e.s are new devices from LSI Computer Systems, the LS7228 and LS7229. These two i.e.s are superficially quite similar to the MM53200N, although their practical uses are somewhat different and they have a number of unique applications as '2-pushbutton locks' or address decoders.

The LS7228 and LS7229 are PMOS i.e.s which are recent additions to the popular LS7225 family of combination lock i.e.s featured in the very first Semiconductor Circuits back in May 1983. The block diagram is shown in Fig. 2, and covers both the 7228 and the 7229. There are two main inputs, the 'zeros' input, pin 14, and the 'ones' input, pin 13. The i.e.s are operated by codes entered at these input pins. Each complete code consists of nine input pulses applied to one or other of the inputs as shown in Fig. 3. An input to pin 13 corresponds to a logic 1 in the code, and an input to pin 14 corresponds to a logic 0.

The entered code is compared to the locally programmed code at pins 1 to 9 in a sequential manner. If there is an error in the incoming code compared with the locally programmed code then the circuitry is disabled and further code entries have no effect. A new code may be entered only after a delay time determined by an external R/C time constant. When a correct code entry is made the output pin goes to a high level (logic 1) for a period T_{on} indicating that the lock has operated.

Table: Characteristics of LS7228 and LS7229

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Notes</th>
<th>Minimum Value</th>
<th>Typically</th>
<th>Maximum Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Spec's are over full supply voltage range unless otherwise stated</td>
<td>2.5</td>
<td>15</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>'Standby' Mode</td>
<td>-25</td>
<td>15</td>
<td>+70</td>
<td>μA</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>For Logic 1 Level</td>
<td>(-ve supply</td>
<td>0</td>
<td>(+ve supply</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>For Logic 0 Level</td>
<td>-0.5</td>
<td></td>
<td>-2.5</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltages,</td>
<td>For Logic 1 Level</td>
<td>4.0</td>
<td>5.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Pins 1 to 9</td>
<td>Level +ve supply = 9V</td>
<td>7.6</td>
<td>9.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(Code Inputs)</td>
<td>Level +ve supply = 15V</td>
<td>13.6</td>
<td>15.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>For Logic 0 Level</td>
<td>0</td>
<td>1.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Level +ve supply = 9V</td>
<td>0</td>
<td>2.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Level +ve supply = 15V</td>
<td>0</td>
<td>4.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Input Current,</td>
<td>Inputs at 0V (Spec. is for each input)</td>
<td>-5</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Pins 1 to 9</td>
<td>Inputs at +ve supply (Spec. is for each input)</td>
<td>3</td>
<td>5</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Input Current, Pin 15</td>
<td>Input at</td>
<td>1.5</td>
<td>3</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>Output Current, Pin 11</td>
<td>O/P Voltage</td>
<td>8.0</td>
<td>20.0</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>+ve supply = 5V</td>
<td>14.0</td>
<td>36.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>+ve supply = 9V</td>
<td>14.0</td>
<td>36.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>+ve supply = 15V</td>
<td>20.0</td>
<td>53.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>External R at Pin 12</td>
<td>33k</td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Input Inter-pulse Time</td>
<td>T_{on}—See Fig. 3</td>
<td>30</td>
<td>T_{op}</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Output Delay</td>
<td>T_{op}—See Fig. 3</td>
<td>20</td>
<td>70</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Output Pulse Width</td>
<td>RC is value of ext. components at Pin 12</td>
<td>1.25RC</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>(with C at Pin 12 = 0.01μF or less)</td>
<td>80</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>T_{IPW} (See Fig. 3)</td>
<td>120</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>T_{IPW} (See Fig. 3)</td>
<td>200</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
</tbody>
</table>

Fig. 1. Pinout and specification

2-PUSHBUTTON LOCKS (LS7228 AND LS7229)

The difference between the two i.e.s lies in their input signal conditioning circuitry. The LS7229 is designed to accept switched inputs from two single-pole double throw momentary action pushbutton switches. The input signal conditioning circuitry is designed to eliminate contact bounce from the zeros and ones inputs, since any bouncing or spurious pulses would prevent an otherwise valid code from being correctly interpreted by the i.e. The LS7228, on the other hand, is intended for use with pulse train inputs, i.e. logic inputs with 'clean' bounce-free edges. Hence, on the LS7228 the common input, pin 15, is not used and should be left unconnected. Note that internal pull-down resistors are fitted to all three inputs, avoiding the need for any external biasing resistors.

When power is first applied to the circuit, the i.e. goes into a 'standby' mode, consuming only 15μA of supply current. Each time an input (either zeros or ones) is activated an external capacitor C_1 is charged up, which in turn causes the rest of the i.e.'s internal circuitry to be turned on. (See Fig. 2.) When the input is...
released, or drops to logic 0, C1 discharges via R4, and when the voltage on C1 reaches a logic 0 level the internal circuitry is reset and the i.c. goes back into its standby mode. Hence, each sequential code entry must be made within the time period determined by the time constant R5 x C1.

INTERNAL CODE COMPARISONS

Each time an input is activated, a 9 bit shift register is clocked on by one position. The inputs to this shift register are taken from pins 1 to 9, the local programming inputs. At each clock pulse the next code bit in the sequence is fed out of the shift register into the zeros and ones sensing circuitry. Any deviations from the correct code are detected by the zeros or ones sensing circuitry as soon as the next input is activated, causing the clock generator to be inhibited by the error sensing section, thus preventing further code comparisons. C1 and R1 must then be allowed to discharge before the circuitry is reset and code comparisons can start again. If a correct code sequence is entered, the Q output of the shift register goes to a logic 1, causing the i.c. output to go high. This output requires an external pull-down resistor to 0 volts in order to achieve an output voltage swing, i.e. to drive other logic devices. The output pulse slope is not very fast, so the i.c. might not satisfactorily drive some logic i.c.s such as flip-flops or counters without buffer gates being used in between. The output can only be expected to rise from 0 to 38mA typically from a 15 volt supply. The output pulse length (in seconds) is approximately 1.25 times the external R/C time constant R5 x C1 measured in ohms and farads (or megohms and microfarads, which is easier to calculate) respectively. If the output needs to be maintained at a high level for some time, a 10th code entry must be made and held on continuously at either the ones or the zeros input.

The code switch inputs, pins 1 to 9, need only to be pulled down with suitable switches to 0 volts, since they have their own internal pull-up resistors to the positive supply rail. Naturally, they can be programmed with logic signals from other circuitry if required, or hard wired if only one fixed code is normally wanted. A logic 0 or a connection to 0 volts corresponds to a logic 0 or low level in the code, and a logic 1 or an open circuit corresponds to a logic 1 or high level in the code.

USING THE I.C.S

As with the other i.c.s in this family, the LS7228 and LS7229 are very straightforward to use. The external R/C time constant is usually chosen to allow a time window of several seconds for each code entry. This then requires a wait of several seconds after the entry of one code before the next is tried, preventing an unauthorised person quickly trying all 512 possible combinations. Beware of potential problems of leakage current preventing proper operation at pin 12, which may be caused by using a large electrolytic capacitor with a high value resistor. (The resistor should always be in the range 33k to 3M3.) If this does seem to be a problem, the leakage current through the capacitor should be lowered; try a tantalum type, or use a lower capacitance value.

The code entry switches for the LS7229 are normally momentary action pushbuttons with changeover contacts, labelled '1' and '0', 'high' and 'low', or similarly. These are pressed in the appropriate sequence to actuate the lock. Take care to avoid spurious entry of code; the smallest error causes the system to inhibit and reset. Even just touching the bare terminals where wires connect from the switches to the i.c. while pressing the switches prevents proper operation. For longer codes, and the resultant
higher security, two or more i.c.s can be cascaded as shown in Fig. 4. The zeros and ones inputs are AND-ed with the output of the first i.e. then fed into the second, and so on. For the LS7229 all the common pins (pin 15) are connected together, whereas for the LS7228 all the common pins are left unconnected. The code then consists of 18 sequential entries—not the easiest thing to try to remember when unlocking the system! For more complex ‘multi-level’ systems, one i.e. could feed a number of secondary i.c.s in parallel, each responding to a unique 9 bits of code after sharing a common first 9 bits of code. As can be seen in Fig. 4, LS7229s can be used with logic inputs, even though they are intended for use with switches, if the common input is wired suitably.

APPLICATIONS
The obvious areas of application for these devices are in car and house burglar alarms, electronic locks on computers, electromechanical door locks, and similar security-based systems. They also have some unique applications as serial address decoders. For example, consider using a pair of LS7228’s in series on a serial data line, such as an RS-232 line, to decode incoming data and compare it with a local code, either pre-set by switches or controlled by computer. It could be arranged that further data would only be allowed to pass after the correct code had been received.

These are interesting, useful, and inexpensive i.c.s which are both versatile and easy to use. They can be obtained from TK Electronics, 11-13 Boston Road, London W7 3SJ (01-579 9794).

COMBINATION LOCK

The applications project this month uses a single LS7229 as a 2-pushbutton lock with some extra circuitry to enhance its operation and provide a toggling lock/unlock action. The code is entered with switches S10 and S11. Pressing S10 enters a low code bit and generates a low audio tone, whereas pressing S11 enters a high code bit and generates a high audio tone. This helps the user to memorise the correct code, and gives the project its name! When a correct code has been entered, a ‘warbling’ tone is heard for a short period and the output of the circuit changes state. When power is first applied, the output is at a low level and the ‘lock on’ i.e.d. is illuminated. The first correct code received turns the lock off, the next one turns it on again, the next off, and so on.

CIRCUIT DESCRIPTION

IC1, with its associated external components (Fig. 5), has already been described in detail. Note the pull-down resistor R2 on the output, and the values of R1 and C1 giving a time delay of approximately 5 seconds. C1 is a tantalum bead to help keep leakage down.

The two audio oscillators are formed by IC2c, IC2d, R12, R13 and C8 for the higher tone, and IC2a, IC2b, R14, R15 and C9 for the lower frequency tone. These are turned on by the appropriate switch action via IC3d and IC3b. The oscillators are also turned on by the action of the very low frequency oscillator formed by IC4b, IC4c, R5, R6 and C6. This very low frequency oscillator is turned on for ap-
approximately 1 second when a correct code has been received; the output of IC1 is fed via IC5a and IC5c to the pulse deriving circuit of C5, D1 and R3, which produces a pulse only 1 second in duration even though the output pulse from IC1 is several seconds longer than that. (R4 protects the inputs of IC4c and IC4a under fault or power-down conditions.) IC4a gates one output of the low frequency oscillator with its enable input in such a way that the control lines to IC3d pin 13 and IC3b pin 6 are normally at logic 0 when the low frequency oscillator is turned off. When it turns on, however, these two feeds to IC3 are low frequency square waves of opposite polarity; the one second long 'warble' therefore consists of a short burst of high frequency tone followed by a short burst of low frequency tone, then high again, then low again, etc., all at the repetition rate of the low frequency oscillator. IC4b combines the two audio frequency tones, and IC3c drives the piezo soun-
der with the resultant waveform.

The output of IC1 also feeds the clock of IC6 (pin 11) via IC5a and IC5b. IC6 is a D-type flip-flop connected as a divide-by-two counter so that the first correct received code will unlock the circuit, and the next will lock it again, etc. The output of IC6 turns on TR1, which in turn lights up the 'lock on' i.e.d. D2 and provides an open collector for turning on a relay or operating other circuitry. (Extra buffering should be provided if a high-power relay or solenoid is to be driven.) C7, R7 and R8 provide power-on reset for IC6.

CONSTRUCTION

Fig. 6 shows the Veroboard layout of the circuit. Nine way d.i.d. switches are difficult to obtain, so an 8 way SPST pack has been used for S1 to S8, and a sub-miniature slide switch for S9. These should be closed for a low code bit, or open for a high code bit. Switches S10 and S11 are momentary action changeover switches, and are shown in their normally closed or resting position. The piezo sounder X1 can be any typical low current type suitable for use with CMOS logic. (As sold by Maplin Electronic Supplies, CIRKIT (Ambit International), and many others.) The power supply can be any stabilised supply in the range 3 to 15V, or even a battery.

To vary the high frequency tone, change the value of R13 or C8, and for the low frequency tone change R15 or C9. The speed of warbling is varied by changing R6 or C6, and the duration of warble by C5 or R3. To adjust the entry time allowed for each bit of the code, alter the value of R1 or C1. Remember that this time allowance is also the delay time required between code entries, so if a second entry is required soon after a first entry has been completed, the appropriate time, defined by R1 and C1, must be allowed between them. Unlike the MM53200N last month, there is no serious restriction on the mark/space ratio of the incoming waveforms to IC1.

If the input pulses obey the specific timing restrictions shown in Fig. 3 and specified in Fig. 1 (which only really cause any restrictions if the inputs are from a logic system, rather than from switch contacts), and fall within the overall time period of R1 x C1, then that code entry will be satisfactory. This all helps to illustrate the simplicity and effectiveness of the LS7228 and LS7229, both of which are interesting additions to the range of electronic lock devices manufactured by LSI Computer Systems.
PART THREE

SPECIFICATION

The specification of the NEPTUNE II robot is given in Table 1, showing repeatability to be close to the limits for an arm of this size with a 12-bit control system.

SOLENOID DRIVER BOARDS

Each axis has its own solenoid driver board. See Fig. 3.3. A desired position voltage (VO0 to 6) is sent to this board together with the position feedback voltage. The hydraulic valves are then opened and closed so as to servo that axis of the robot arm into a position where the desired position voltage = feedback voltage. This is a closed loop servo system. The arms move towards, and

<table>
<thead>
<tr>
<th>Table 1: NEPTUNE II specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
</tr>
<tr>
<td>DIMENSIONS</td>
</tr>
<tr>
<td>Overall width 474mm.</td>
</tr>
<tr>
<td>Overall depth 408mm.</td>
</tr>
<tr>
<td>CONTROL SYSTEM</td>
</tr>
<tr>
<td>All axes servo controlled with servoing performed by the control electronics.</td>
</tr>
<tr>
<td>Position defined by 12 data bits giving angular resolution of 0.025% (8 bits and 0.4% for Neptune I).</td>
</tr>
<tr>
<td>COMPUTER INTERFACE</td>
</tr>
<tr>
<td>Parallel. Robot addressed as if part of computer memory. Connects to expansion port (1MHz bus on BBC).</td>
</tr>
<tr>
<td>SOFTWARE PROVIDED</td>
</tr>
<tr>
<td>Extensive package of BASIC programs including direct control from computer keyboard, control by simulator, sequence storing, replay, sequence editing, sequence storage on disc or tape, multi-speed control, self calibration and graphical illustration of robot dynamics.</td>
</tr>
</tbody>
</table>

AXIS 0 (waist)	Angular movement 180°. Height of axle centre above top of base 170mm.
AXIS 1 (shoulder)	Angular movement 165°. Arm length between axle centres 410mm.
AXIS 2 (elbow)	Angular movement 165°. Arm length between axle centres 347mm.
AXIS 3 (wrist pitch)	Angular movement 180°. Length between axis 3 and axis 4 axle centres 202mm.
AXIS 4 (wrist yaw)	Angular movement 180°. Height of axis 5 axle above axis 4 pitch line 67mm.
AXIS 5 (wrist rotation)	Angular movement 310°.
AXIS 6 (gripper)	Jaw opening 55mm. Jaw pressure 40 newton. Distance between end of jaws and axis 4 axle 160mm.
REPEATABILITY	2mm.
LIFTING CAPACITY	2560gm.
REACH (from axis 1 axle centre)	1119mm.
COMPONENTS

NEPTUNE POWER SUPPLY

as shown in Fig. 3.1

Resistor
- R500 1k

Capacitors
- C500,501 10,000µ 40V electrolytic (2 off)
- C502,505 2,200µ 16V electrolytic (2 off)
- C503,504 2,200µ 40V electrolytic (2 off)

Semiconductors
- REC1 25A 200V bridge
- D500–507 1N4004 (8 off)
- VD500 27L270 varistor

Miscellaneous
- CN500 10-way terminal block
- CN501 6-way 0.156in MOLEX
- CN502 10-way 0.1in MOLEX
- F601 15A 1½ in fuse
- T500 Toroidal transformer
 - primaries: 0–110, 0–110–130V
 - secondary: 0–22V at 8A
- T501 Laminated transformer
 - primaries: 0–110, 0–110–130V
 - secondaries: 8–0V at 1.5A

fuse holder clips (2 off)

Fig. 3.1. Power supply circuit diagrams for Neptune

Fig. 3.2. Component layout and wiring for the power supply board

Practical Electronics November 1984
eventually stop at, a position determined by the magnitude of the input (desired) position voltage.

The robot has three speeds (fast, medium and slow) and a stop position. The speed changes are selected by the difference between the position voltage and the feedback voltage.

The decision-making electronics is divided into three similar sections. Each section controls a hydraulic valve for both direction and speed control. The circuit operation can be explained by examining one of these sections: IC402, TR400 to TR409. The input voltage (DAC output Vo) to 6) is fed into one side of the op-amp. The feedback voltage (measured voltage, M) is fed to the other side. The function of this circuit is to determine if M > DAC or if DAC > M. If M > DAC then the hydraulic ram should retract, and if DAC > M then the hydraulic ram should advance. This is the direction controller and is the most sensitive of the three circuits. There is a position where DAC = M. The axis is then in its stop mode.

The op-amps are used as comparators with both an offset and a Schmitt trigger action. The offset is used to control the size of the magnitude comparison. If the offset is 2mV, then M will have to be bigger than DAC by 2mV for the test M > DAC to be true. TR400 and TR401 are two current sources which sink current into R423 and R421, respectively. The current (approximately 1mA) multiplied by the resistor value generates the voltage offset. The voltage is automatically added to the M and DAC voltages on one side of the comparators. On the other side of the comparators is the opposite signal with no offset. Thus the M > DAC and the DAC > M comparisons are produced, where > implies “greater than with the offset added”.

Hysteresis was added to the comparison to prevent dither and instability. Differential transistor pairs (TR402, 403 and TR404, 405) are used to provide positive d.c. feedback around the op-amp. The magnitude of the hysteresis was chosen to be relatively smaller than the offset voltage so as not to significantly affect the magnitude comparisons. The op-amp outputs are used to drive transistors TR406 to TR409. These devices (ZTX651) have a VCEO voltage of 45V, a continuous current rating of 2A and an hFE in excess of 100 at 1A current. Furthermore they are small and cheap. They are used to turn on the hydraulic solenoid valves which take a current of about 300mA.

When the transistors are on they saturate at less than 100mV, resulting in an internal power dissipation of less than 30mW, therefore they run cool. L.e.d.s are connected in series with the base current drive so that it can be seen which transistors are on (Table 2), which can be translated into hydraulic actions. This is very beneficial during fault diagnosis as well as being instructional whilst observing the operation of the robot.

The two speed control circuits operate in exactly the same manner as the direction controller, the only difference being the size of the offset which is larger for the medium speed controller and larger still for the fast speed controller. Also they drive the speed control valves rather than the direction control valves.

Table 2: Solenoid chart for all speed positions

<table>
<thead>
<tr>
<th>Comparison Test</th>
<th>S6</th>
<th>S5</th>
<th>S4</th>
<th>S3</th>
<th>S2</th>
<th>S1</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>M >> DAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAST</td>
<td></td>
</tr>
<tr>
<td>M > DAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MEDIUM</td>
<td></td>
</tr>
<tr>
<td>M = DAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STOP</td>
<td>SLOW</td>
<td></td>
</tr>
<tr>
<td>M < DAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SLOW</td>
<td>MEDIUM</td>
<td></td>
</tr>
<tr>
<td>M <= DAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MEDIUM</td>
<td>FAST</td>
<td></td>
</tr>
</tbody>
</table>

Medium Speed Direction Slow Speed

Components...

NEPTUNE SOLENOID DRIVER BOARDS

as shown in Fig. 3.3. Note: There is one board per axis

Resistors

R400	R403, R408, R409, 413, 416, 434, 437, 450, 453, 463, 465	10k (13 off)
R402	405, 407	100k (3 off)
R404	47k	
R406	18k	
R451, R452, 454-456	3k3 (24 off)	
R420	422	102 (2 off)
R424, R425, 427, 428, 445-461	1k2 (6 off)	
R426, R429, 446, 462	27k (4 off)	
R430, 441, 443	10 (3 off)	
R457, 459	39 (2 off)	
Axis variables	R401, R421, 423, 442, 444, 458, 460	

(1W 1% 50ppm)

Capacitors

C400	10n polyester
C401	100n polyester
C402, 403	1u 63V electrolytic (2 off)

Semiconductors

D400, 401, 407, 413, 418, 420, 424, 426	1N4148 (8 off)
D402, 416, 421	3V3 400mW (3 off)
D403, 406, 409, 412, 416, 417, 422, 423	1N4004 (12 off)
D408, 427	Red i.e.d. (2 off)
D414, 428	Green i.e.d. (2 off)
D419, 425	Yellow i.e.d. (2 off)
IC400, 404, 406	RC455B (5 off)
TR400-405, 410-415, 417-422, 420-424, 425, 426, 432, 433, 434, 458, 460	
BC212L (18 off)	
TR406-409, 416, 423	
ZTX651 (6 off)	

Miscellaneous

CN400, 401	3-way 0-1in MOLEX (2 off)
CN402	6-way 0-156in MOLEX
CN403	26-way shrouded header
VR400	10k preset
8-pin d.i.l. socket (5 off)	

Table of axis variable resistors for solenoid driver boards

<table>
<thead>
<tr>
<th>Axis</th>
<th>R401</th>
<th>R421, 423</th>
<th>R442, 444, 458, 460</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20k</td>
<td>4017</td>
<td>82</td>
</tr>
<tr>
<td>1</td>
<td>22k</td>
<td>2237</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>22k</td>
<td>2237</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>22k</td>
<td>4017</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>16k</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>12k</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>18k</td>
<td>22</td>
<td>150</td>
</tr>
</tbody>
</table>

Practical Electronics November 1984
Fig. 3.3. Neptune solenoid driver control circuit
Fig. 3.4. Control and interface board component layout
Fig. 3.5. Component layout for the solenoid driver board
Fig. 3.8. Printed circuit board edge connector details

Fig. 3.6. Pump drive circuit diagram

Filter

Non-return valve

Motor

Sump return

Pressure gauge

Pressure switch inside this housing

Air inlet to pressure reservoir

Output to robot (also connects to inlet of pressure reservoir which is inside sump)
Components...

Neptune Computer Interface Board

Refer to Fig. 2.4

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R100-102</td>
<td>C100,102,120</td>
<td>IC100,101</td>
</tr>
<tr>
<td>R103</td>
<td>C101,103,104-119</td>
<td>IC102,103,129</td>
</tr>
<tr>
<td></td>
<td>C124-131</td>
<td>IC104,105</td>
</tr>
<tr>
<td></td>
<td>C132</td>
<td>74LS08</td>
</tr>
</tbody>
</table>

Miscellaneous
- 8-pin D.I.L. socket (5 off)
- 14-pin D.I.L. socket (3 off)
- 16-pin D.I.L. socket (5 off)

Neptune Computer Interface Board

Refer to Fig. 2.6

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R300,302</td>
<td>C300-302</td>
<td>D300-302</td>
</tr>
<tr>
<td>R301,303,304</td>
<td></td>
<td>IC300,303,305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC301,304</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC306</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC308</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC309</td>
</tr>
</tbody>
</table>

Miscellaneous
- 14-pin D.I.L. socket (9 off)
- 16-pin D.I.L. socket

Neptune Computer Interface Board

Refer to Fig. 2.7

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R200</td>
<td>R218</td>
<td>R200,201,202</td>
</tr>
<tr>
<td>R201,202,205-216,219</td>
<td>R222</td>
<td>204,205,206,207,210,211</td>
</tr>
<tr>
<td>R203,221</td>
<td>R223,226,229,232,235</td>
<td>IC200,201</td>
</tr>
<tr>
<td>R204,220</td>
<td>238,241,244</td>
<td>IC202</td>
</tr>
<tr>
<td>R217,224,227,230,233,236,239,242,245</td>
<td>R225,231</td>
<td>205,208</td>
</tr>
<tr>
<td></td>
<td>246</td>
<td>IC206</td>
</tr>
</tbody>
</table>

Miscellaneous
- 8-pin D.I.L. socket (6 off)
- 14-pin D.I.L. socket
- 16-pin D.I.L. socket (3 off)
- 20-pin D.I.L. socket

Pump Motor Drive

Refer to Fig. 3.6 and photograph.

To prevent large switching currents from reducing the life of the pressure switch a triac is used to supply current to the pump motor. With the switch closed the triac will be triggered when the mains voltage reaches about 20V, causing 20mA to flow through the gate via the 1k resistor. After triggering there is only about 1V across the triac so the resistor dissipation becomes negligible, but heat is generated in the triac and this is cooled by bolting to the aluminium switch housing box via an insulating washer. Suppression is provided by the 100 ohm/100n network.

Printed Circuit Boards

Double-sided plated-through p.c.b.s are used for the pump interface board and the solenoid driver boards of which there are six for Neptune I and seven for Neptune II. The power supply uses a conventional single-sided board. Layouts are Figs. 3.2, 3.4, 3.5 respectively and signal directories Figs. 3.7, 3.8.

Next Month: Mentor

R218: 47k
- R222
- R223,226,229,232,235,238,241,244
- R225,231
- R228
- R234
- R237,240,243
- R246

Capacitors
- 47n 25V ceramic disc (7 off)
- 10µ 25V tantalum (4 off)
- 2µ 25V ceramic disc (3 off)
- 1µ 25V tantalum (4 off)

Semiconductors
- 74LS244 (2 off)
- 74LS138 (3 off)
- 74LS374 (14 off)
- AD7541
- TLC082 (4 off)
- 7407
- 74LS02
- 74LS393

Miscellaneous
- 20-pin D.I.L. socket (16 off)
- Heatsink bracket
- 14-pin D.I.L. socket (3 off)
- 8-pin D.I.L. socket (5 off)

Practical Electronics November 1984 35
one of the most important tools in a hobbyist's toolbox is a soldering iron. our guide will help you choose the correct iron for your needs.

Car Computer

A car trip computer that indicates distance travelled, fuel used, instantaneous mpg, calculates trip average fuel consumption and trip cost in £'s.

Also features display control brightness, and predicted journey cost.

NICAD Charger

This automatic charger has separate controls to set both the charging current and time. It can provide a total of 24 different charge rates. Options for six different battery types (AAA, AA, C, D, PP3 and PP9).
PRACTICAL ELECTRONICS

PRINTED CIRCUIT BOARD SERVICE

Printed circuit boards for certain PE constructional projects are now available from the PE PCB Service, see list. They are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for overseas airmail. Remittances should be sent to: PE PCB Service, Practical Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project order code and the quantity. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here.

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>Order Code</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaphragm</td>
<td>NOV '79</td>
<td></td>
</tr>
<tr>
<td>Audio Isolator</td>
<td>MAR '80</td>
<td></td>
</tr>
<tr>
<td>Chip Checker</td>
<td>MAY '80</td>
<td></td>
</tr>
<tr>
<td>Greenhouse Temp. Controller</td>
<td>JUNE '80</td>
<td></td>
</tr>
<tr>
<td>20mA Current Loop</td>
<td>DEC '80</td>
<td></td>
</tr>
<tr>
<td>Linear Ohmmeter</td>
<td>FEB '81</td>
<td></td>
</tr>
<tr>
<td>Slave Light Dimmer</td>
<td>MAR '81</td>
<td></td>
</tr>
<tr>
<td>27/28MHz Converter</td>
<td>103-01</td>
<td></td>
</tr>
<tr>
<td>Microphone Mixer</td>
<td>103-02</td>
<td></td>
</tr>
<tr>
<td>Period Power Tester</td>
<td>103-03</td>
<td></td>
</tr>
<tr>
<td>Speech Processor</td>
<td>104-01</td>
<td></td>
</tr>
<tr>
<td>Mini Drill</td>
<td>104-02</td>
<td></td>
</tr>
<tr>
<td>Digisounder</td>
<td>MAY '81</td>
<td></td>
</tr>
<tr>
<td>Thermometer</td>
<td>JUNE '81</td>
<td></td>
</tr>
<tr>
<td>pH Meter</td>
<td>SEPT '81</td>
<td></td>
</tr>
<tr>
<td>Horologium</td>
<td>SEPT '81</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>109-01</td>
<td>£3.16</td>
</tr>
<tr>
<td>"</td>
<td>109-02</td>
<td>£3.11</td>
</tr>
<tr>
<td>"</td>
<td>109-03</td>
<td>£2.97</td>
</tr>
<tr>
<td>"</td>
<td>109-04</td>
<td>£2.87</td>
</tr>
<tr>
<td>"</td>
<td>109-05</td>
<td>£2.47</td>
</tr>
<tr>
<td>"</td>
<td>109-06</td>
<td>£2.28</td>
</tr>
<tr>
<td>Med. Resolution Equaliser (UK 101)</td>
<td>APRIL '82</td>
<td></td>
</tr>
<tr>
<td>Enlarger Timer</td>
<td>AUG '82</td>
<td></td>
</tr>
<tr>
<td>Automatic Photographer</td>
<td>208-01</td>
<td></td>
</tr>
<tr>
<td>Home Alarm</td>
<td>208-02</td>
<td></td>
</tr>
<tr>
<td>Waveform Digitiser</td>
<td>209-01</td>
<td></td>
</tr>
<tr>
<td>Radio Booster</td>
<td>FEB '83</td>
<td></td>
</tr>
<tr>
<td>Into the Real World</td>
<td>MAR '83</td>
<td></td>
</tr>
<tr>
<td>Accessory PSU</td>
<td>303-01</td>
<td>£3.99</td>
</tr>
<tr>
<td>"</td>
<td>303-02</td>
<td>£1.35</td>
</tr>
<tr>
<td>4 1/2 Digit Frequency Meter</td>
<td>303-03</td>
<td>£3.69</td>
</tr>
</tbody>
</table>

PROJECT TITLE | Order Code | Cost |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phaser</td>
<td>APRIL '83</td>
<td></td>
</tr>
<tr>
<td>Program Conditioner</td>
<td>JUNE '83</td>
<td></td>
</tr>
<tr>
<td>Guitar Active Tone Control</td>
<td>SEPT '83</td>
<td></td>
</tr>
<tr>
<td>Ground Communication System</td>
<td>309-01</td>
<td>£2.27</td>
</tr>
<tr>
<td>"</td>
<td>309-02</td>
<td>£2.13</td>
</tr>
<tr>
<td>"</td>
<td>309-03</td>
<td>£2.31</td>
</tr>
<tr>
<td>Expanding the Vic 20</td>
<td>DEC '83</td>
<td></td>
</tr>
<tr>
<td>Spectrum Autosave</td>
<td>MAR '84</td>
<td></td>
</tr>
<tr>
<td>Microstepper</td>
<td>APRIL '84</td>
<td></td>
</tr>
<tr>
<td>Sustain Unit</td>
<td>MAY '84</td>
<td></td>
</tr>
<tr>
<td>Audio Signal Generator</td>
<td>JUNE '84</td>
<td></td>
</tr>
<tr>
<td>EPROM Duplicator</td>
<td>JULY '84</td>
<td></td>
</tr>
<tr>
<td>Alarm System</td>
<td>JULY '84</td>
<td></td>
</tr>
<tr>
<td>Oscilloscope Calibrator</td>
<td>AUG '84</td>
<td></td>
</tr>
<tr>
<td>Comm. 64 RS232C Interface</td>
<td>408-01</td>
<td>£3.02</td>
</tr>
<tr>
<td>Field Measurement</td>
<td>408-02</td>
<td>£3.19</td>
</tr>
<tr>
<td>Digital Dice</td>
<td>408-03</td>
<td>£2.76</td>
</tr>
<tr>
<td>Simple Logic Analysers</td>
<td>408-04</td>
<td>£4.23</td>
</tr>
<tr>
<td>Alarm System</td>
<td>408-05</td>
<td>£2.93</td>
</tr>
<tr>
<td>"</td>
<td>408-06</td>
<td>£4.24</td>
</tr>
<tr>
<td>"</td>
<td>408-07</td>
<td>£3.14</td>
</tr>
<tr>
<td>"</td>
<td>408-08</td>
<td>£3.23</td>
</tr>
<tr>
<td>Parallel to Serial Converter</td>
<td>409-01</td>
<td>£2.92</td>
</tr>
<tr>
<td>Through the Mains Controller</td>
<td>409-02</td>
<td>£2.88</td>
</tr>
<tr>
<td>"</td>
<td>409-03</td>
<td>£2.71</td>
</tr>
<tr>
<td>Logic Probe</td>
<td>OCT '84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>410-01</td>
<td>£1.90</td>
</tr>
</tbody>
</table>

PE PRINTED CIRCUIT BOARD SERVICE
Please send me the following p.c.b.s.

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BLOCK CAPITALS PLEASE

I enclose cheque /PO for £

Name...

Address...

Practical Electronics November 1984 37
ASTRONOMERS ARE HUMAN

Astronomy is an exact science, involving measurements which are today almost unbelievably accurate. Yet mistakes can, and do, occur. I well remember the meeting of the Royal Astronomical Society in 1952, in which the German-born, American-based astronomer Walter Baade read a short paper in which he showed that there had been an error in the distance-scale of the outer galaxies, which were twice as far away as had been believed—a slight mistake of at least 100 per cent. This error was due to the fact that the measurements depended on short-period variable stars which turned out to be twice as bright as anyone had believed, and were therefore twice as remote.

A different case has just come to light, this time involving a simple but disastrous mistake in arithmetic. It concerns the mass of what is believed to be a Black Hole in the middle of a galaxy known as NGC 4151.

NGC 4151 lies in the little constellation of Canes Venatici, the Hunting Dogs, not far from the Great Bear. It is by no means conspicuous (the 39-cm reflector in my observatory can show it, but only as a dim blur), and it is around 50,000,000 light-years away.

It is what is termed a Seyfert galaxy, with a condensed centre and only weak spiral arms. Seyferts are active, and many of them are variable; it is usually thought that in the centre of such a system there is a Black Hole, formed by an old, collapsed star now pulling so strongly that not even light can escape from it. NGC 4151 shows these properties, and they come from the heart of the galaxy, where the Black Hole presumably lies. It was studied by instruments on board the very successful IUE or International Ultra-violet Explorer satellite, and it was found that as the nucleus brightens, the effects spread out into the spiral arms of the galaxy. But there are delays; obviously the outburst reaches the nearer spiral arms first. The ultra-violet spectra of the separate arms were studied, and the times when brightenings were observed gave a clue to the distances of the various arms from the centre of the outburst.

At the Royal Greenwich Observatory, a team of astronomers analyzed the results obtained from the IUE. The situation seemed quite clear-cut, and for the first time they were able to announce a value for the 'weight' (more accurately, the mass) of the Black Hole in NGC 4151. Things were helped by the fact that the galaxy is close as Seyferts go, and it shows well-defined features.

The results were remarkable. The Greenwich team announced that the central Black Hole must have a mass between 50 million and 100 million times that of the Sun.

AMATEURS LEAD THE WAY

The results, published in the Monthly Notices of the Royal Astronomical Society, caused a great deal of interest, but at this juncture two amateur astronomers came into the picture. One was R. F. Wood, a member of the British Astronomical Association—probably the world's leading observational society, with a mainly amateur membership together with a sprinkling of professionals. (Let me add that no actual qualifications are needed for membership; all that one needs is interest and enthusiasm—anyone who is interested can obtain full details from the Secretary at Burlington House in Piccadilly.) The other was a Swiss, Dr. Y. N. Chen.

Wood and Chen re-checked the calculations, and found that something was badly wrong. Their results indicated that the mass of the Black Hole had been underestimated by a factor of ten. The real value should be between 500 million to 1000 million times the mass of the Sun.

Wood passed on his comments to the British Astronomical Association, and they were relayed to Greenwich. Lesser men would have attempted a "cover up". The Greenwich team did not. They promptly and generously admitted the error. What had happened was that they had used a wrong value for the gravitational constant. It had slipped through both the authors of the paper and the various referees who had checked it.

The whole episode is, in its way, a tribute to both the Greenwich team and to the amateurs—and it stresses yet again that in astronomy, unlike most sciences, the amateur has an enviable and continuing role to play.

Can we be sure that a Black Hole is really responsible for the variations in NGC 4151, and in other Seyfert galaxies and quasars? It would be premature to claim that we are certain about it, and so high a value for the mass is undoubtedly staggering. Yet there is no doubt that the variations occur, and now that the arithmetic has been corrected the results seem positive enough. The next step must be to check with other external systems showing fluctuations of the same kind, and see whether the results are consistent.

Black Holes themselves remain enigmatic. What happens inside the 'event horizon' is extremely difficult to decide, mainly because we have no hope of obtaining any direct information. Does the old, collapsed star crush itself out of existence altogether? And is there any truth in the rather wild speculations about going into a Black Hole and emerging either in a different part of our universe, or in a different universe altogether?

Perhaps the new telescopes—the 15-metre, the Hubble Space Telescope and others will help in finding out. Meanwhile, the case of NGC 4151 has taken its place as one of the more bizarre episodes in the history of astronomy.

THE SKY THIS MONTH

During the earlier part of this year we had a splendid display of bright planets in the evening sky. However, all good things come to an end, and by now the display is more or less over for the time being. Venus, Mars, Jupiter and Saturn are all above the horizon after sunset, but all are low down and badly placed. Note, however, that Mars and Jupiter will be only 2 degrees apart on October 13. (This is four times the apparent diameter of the full moon—which, surprisingly, is not very much; the Moon looks much smaller in the sky than most people imagine.)

Jupiter is of course much brighter than Mars, as it generally is; only on rare occasions can Mars become the more brilliant of the two, and it will not happen again until 1988. Moreover Mars is fiery red, while Jupiter is yellowish, though many observers will class it as white.

Among the stars, the so-called 'Summer Triangle' of Vega in Lyra, Altair in Aquila and Deneb in Cygnus is still prominent, though Altair has become rather low in the west by late evening. (I plead guilty to bestowing the nickname of the 'Summer Triangle' on these three; I first used it in a Sky at Night programme more than a quarter of a century ago, and it has become semi-official, though of course to Australians and South Africans it should be the 'Winter Triangle'!)

Ursa Major, the Great Bear or Plough, is at its lowest in the north, though it remains well above the horizon. The Square of Pegasus is high in the south, and will be made prominent by the IRAS infra-red satellite showing a bright object in the sky. It is in Taurus, the Bull, the first to appear of Orion's retinue.

Wood and Chen re-checked the calculations, and found that something was badly wrong. Their results indicated that the mass of the Black Hole had been underestimated by a factor of ten. The real value should be between 500 million to 1000 million times the mass of the Sun.

Wood passed on his comments to the British Astronomical Association, and they were relayed to Greenwich. Lesser men would have attempted a "cover up". The Greenwich team did not. They promptly and generously admitted the error. What had happened was that they had used a wrong value for the gravitational constant. It had slipped through both the authors of the paper and the various referees who had checked it.

The whole episode is, in its way, a tribute to both the Greenwich team and to the amateurs—and it stresses yet again that in astronomy, unlike most sciences, the amateur has an enviable and continuing role to play.

Can we be sure that a Black Hole is really responsible for the variations in NGC 4151, and in other Seyfert galaxies and quasars? It would be premature to claim that we are certain about it, and so high a value for the mass is undoubtedly staggering. Yet there is no doubt that the variations occur, and now that the arithmetic has been corrected the results seem positive enough. The next step must be to check with other external systems showing fluctuations of the same kind, and see whether the results are consistent.

Black Holes themselves remain enigmatic. What happens inside the 'event horizon' is extremely difficult to decide, mainly because we have no hope of obtaining any direct information. Does the old, collapsed star crush itself out of existence altogether? And is there any truth in the rather wild speculations about going into a Black Hole and emerging either in a different part of our universe, or in a different universe altogether?

Perhaps the new telescopes—the 15-metre, the Hubble Space Telescope and others will help in finding out. Meanwhile, the case of NGC 4151 has taken its place as one of the more bizarre episodes in the history of astronomy.
An instant answer to every calculation you will ever make? With a Hewlett-Packard Professional Calculator, the answer is yes. We introduced Calculators for Professionals—sophisticated, powerful calculating facilities—around ten years ago, and our range has a calculator built for the kind of work you do.

There is a professional calculator for scientists and engineers, for software and computer specialists, for higher mathematics activities and for business users.

Pre-programmed for your needs
Each one is pre-programmed to perform your usual calculations automatically—and in addition, all of them can be programmed by you so you can solve your problems in your own way.

So wherever you are, you can have the Hewlett-Packard professional calculator range right from the start. You can see the Hewlett-Packard professional calculators at your dealer. Or complete the coupon below, and we will send you full details of the Hewlett-Packard professional calculator range and how it can help you.

Hewlett-Packard
Calculators for Professionals
All the calculating power you will ever need.

| HP 11C for scientists and engineers, pre-programmed maths, trig, log and stat functions. |
| HP 12C for business: Pre-programmed discounting and depreciation, interest and business statistics. |
| HP 15C for mathematicians: Add bytes of program capacity, complex numbers, facility, and finding integrals and roots of equations. |
| HP 16C for software activities: Your number base, versatile bit manipulation and up to 64 bits in binary. |

SEND TO: FREEPOST. Enquiry Section, Hewlett-Packard Ltd, Eskdale Road, Winnersh, Wokingham, Berkshire, RG11 1BR. Please send me details of the Hewlett-Packard professional calculator range (together with details of my local stockists) I am particularly interested in:

☐ Science and engineering applications
☐ Software and computer applications
☐ Higher mathematics applications
☐ Business applications

Name
Company
Address
Postcode
Tel No.

Prel 02

Practical Electronics November 1984
WHEN wrote this month we are reviewing two 5.25in disk units from the top end of the market. In these reviews we have concentrated on the user's view of the units when used in conjunction with a BBC Micro. Both of the units reviewed this month are of the 40/80-track switchable variety, and therefore before looking at how they behave in practice, we will be looking first at the principles of switchable drives.

40/80-TRACK SWITCHABLE DRIVES

The relative arrangement of tracks on 40-track (48t.p.i.) and 80-track (96t.p.i.) drives was described in Part 1, and is shown again in Fig. 1. As we can see from the figure, the even-numbered 96t.p.i. tracks are totally positioned within the space of the wider 48t.p.i. tracks. The odd-numbered 96t.p.i. tracks, however, overlap two adjacent 48t.p.i. tracks.

If we can arrange for an 80-track drive to step two tracks each time (i.e. 1/48th of an inch), we will be able to read whatever is written on a 40-track disc using an 80-track drive. This is exactly what is possible on so-called 40/80-track switchable drives. Basically these are 80-track drives, but with additional circuitry which may be switched in to cause each head step pulse from the computer to move two 1/96 inch tracks, rather than one. Thus, as long as the computer knows that we are reading a 40-track disc, and the appropriate switch settings are used, the drive will behave as if it is a 40-track unit. This is a very useful feature, particularly since quite a lot of software is currently supplied on (cheaper) 40-track discs. It is usual for drives in a twin-drive package to be separately switchable to allow direct transfer between 40-track and 80-track discs.

The track width of the read/write head in a 40/80-track unit still corresponds to 96t.p.i., and so it is not possible to use a switchable drive to write a disc to be read on a 40-track drive. This is because the odd-numbered tracks on the 80-track format overlap two adjacent 48t.p.i. tracks. When the wanted 96t.p.i. track is read back on a 40-track drive, the read head will also pick up whatever data is on the two adjacent tracks. Unless the disc was completely clean when the tracks were written (and we should note that manufacturers usually write data onto discs during testing), this will corrupt the read data. Normally the only chance of successfully producing a 40-track disc on a switchable unit which is readable on a 40-track drive is to clean the disc first in a magnetic bulk eraser.

The switchable hardware option is often available at a modest or even no extra cost. In some cases, however, the extra cost may be as much as £20 or even £30 per drive. Before making a decision on whether to buy a switchable drive, therefore, it is worth considering an alternative method of achieving the same effect as that just described. Instead of using hardware to effect the double-stepping, the same result can be achieved in software. Whether this can be done on a particular system depends on the flexibility and facilities of the DFS in the computer. The Watford Electronics DFS for the BBC Micro, for example, provides the double-step option as a standard facility (*FX110) which can be turned on and off for each drive separately. Alternatively, it may be possible to intercept the appropriate part of the DFS and write your own routine to produce the same result.

The final option is to build your own 40/80-track switching unit. What is required is some hardware inserted in circuit in the disc cable, positioned between the computer and the drive. The signals which must be intercepted are the step pulse and the drive select signal[s]. It should be borne in mind that these are open-collector signals (see Part 2). Anyone with a suitable circuit is invited to submit it for publication in PE's Micro-Bus.
CUMANA CD 800/S Reviewed

Cumana's selection of disc drives for the BBC Micro is one of the largest on the market today. Their range stretches from a basic single 40-track single-sided drive, right up to a twin switchable 40/80-track double-sided unit with integral power supply (our review unit). Cumana were one of the first suppliers of disc drives for the BBC Micro, and probably the first to supply proper documentation. Since then, they have built up considerable experience in the floppy disc market. Their current range includes almost every combination of 40/80 switchable, single/double-sided drives, with and without power supplies. Many models are now available in the high street chain stores, and a sample has even been seen on sale recently in the stationers at London's Heathrow Airport!

Inside the Box

The Cumana CD800/S is a dual double-sided switchable drive which comes well packed in an attractively presented box measuring approximately 39 x 26 x 21cm. If you are not familiar with disc drives, be warned that disc drives are deceptively heavy items! Inside the box we find the drive unit itself, complete with an integral mains lead and 13A plug, a disc interface cable for the BBC Micro, a user manual, an 80-track utilities diskette, and a guarantee card. The unit is guaranteed for 12 months, and comes ready set up and tested. It must be said that the overall presentation leaves a very good impression. The user manual in particular is well above average, being a quality printed 72-page book which includes numerous examples, photographs and illustrations. Indeed the manual is good enough to be available separately, and indeed it is stocked by many dealers as a standard reference for users of floppy discs with the BBC Micro. The only additional items required in order to set the unit to work, assuming that the computer has a suitable disc interface and software, will be a selection of blank diskettes.

First Impressions

The first impression of the CD800/S is of a very neat unit which is attractively styled to match the BBC Micro. The two slimline drive units are horizontally mounted, and are stacked one above the other in a metal case. The upper drive is labelled 1, and the lower one is labelled 0, rather than vice versa as one might instinctively expect. If preferred, this arrangement can be altered by changing the drive selection links inside the case, a procedure which is well covered in the manual.

The unit measures approximately 20 x 12 x 32cm, and sits on four rubber feet. The disc cable is secured inside the case, and comes out through the base towards the rear. The 3-core mains cable exits through a cable clamp at the rear. Both mains and disc interface cables are approximately 1 metre long. This is a useful and generous length for the disc bus (the maximum allowed with most drives is usually only slightly longer than this), but the mains lead is rather a mean length. Actually mounted on the rear panel is an illuminated mains rocker switch and mains fuse. Ventilation slots are provided in the case on the base and sides, an arrangement which minimises the risk of foreign bodies getting inside.

On the front panel, each drive is provided with an l.e.d. select indicator to show when it is being accessed by the computer. On the right of the front panel are two switches to control the 40/80-track selection of the drives. The two drives are clearly labelled with their drive identities.

Setting Up

Setting the unit to work is simply a matter of connecting the disc interface cable to the computer, and connecting the unit to the main supply, or is it? The first problem, paradoxically, is that the manual is rather too detailed and thorough to answer this question quickly. What is really needed at this stage is a simple set of instructions telling us what to do with the unit we have. In practice, the procedure is as simple as the one just suggested. However, the manual is written to cover the whole Cumana range, and so it contains a lot of detail which does not apply to the unit you have. What would be helpful at this stage would be a summary (a single insert sheet would suffice), giving specification and setting up procedure for the drives in a particular unit. This would avoid the need, for example, to remove the unit's cover to be certain that the drive units in the CD800/S are in fact from Mitsubishi. Cumana's own product data sheet actually appears to be quite suitable in this respect, but unfortunately it is not included with the unit.

Practical Electronics November 1984
Track density | 961 p.i.
Recording method | FM or MFM
Track-to-track seek time | 3msec
Settling time | 15msec
Head load time | 50msec
Motor start time | 250msec
Weight | 1.5kg
Power supply +12V | 1.3A (av)
Power supply +5V | 0.5A (av)
Rotational speed | 300rpm

Table 1. Mitsubishi M4853 Specification

As we have said, the Cumana units come ready tested and set up, so setting them to work is quick and easy. The final step in setting up (unfortunately not covered by the manual) is to tell the BBC Micro how fast the drives are capable of being driven. This is done by setting links inside the micro to define the head load time (0 to 16msec), head settling time (16 to 50msec) and the step time (4 to 24msec). By default, the links are unmade, corresponding to settings of 16msec, 20msec and 24msec, respectively. These settings are ‘play-safe’, and are suitable for all modern drives. By setting up the system to match the drives’ capabilities, however, we can obtain the maximum access speed. Table 1 shows that the Mitsubishi drives can be used at maximum speed (links 3 and 4 made), giving a dramatic performance improvement in disc access speed when compared with the default settings.

The manual contains a detailed and interesting discussion of the internal link settings for the drive units themselves. This includes close-up photographs, and is one of the clearest discussions we have seen of the trade-offs which can be made in setting up a disc drive.

Getting Started
At this stage the guidance provided by the manual is excellent. We are taken step by step through the switch on, start up, booting and disc formatting procedures. Subsequent chapters clearly explain the workings of Acorn’s disc filing system (DFS) for the BBC Micro. Indeed, so thorough is the coverage that the user will probably not need to refer to the DFS manual provided with the disc interface to be able to get started with his newly-expanded system. Every stage is illustrated by examples, and the possible causes of common errors are explained.

The utilities disc contains programs for formatting 40-track and 80-track discs, and a disc verifier. These, usually quite standard items, are worthy of note, since they are really quite interesting to run. Initially, 40 or 80 numbered blank vertical bars are displayed, arranged as a triangular pattern with each bar shorter than its predecessor. These bars represent the tracks to be formatted, and they are filled in as formatting proceeds. Each successfully formatted and verified track is coloured green, and an audible bleep is produced. As formatting progresses, the pitch of the bleep rises. If the formatter makes any re-tries when verifying a track, noise is mixed in with the bleep, and the track is coloured yellow on the display; such a disc should be considered to be possibly unreliable. A track which fails verification after ten re-tries is deemed to have a hard error, and the track is coloured red; such a disc should be discarded.

At the end of successfully formatting a disc, the program plays the first two bars of Beethoven’s Fifth Symphony, or, if the formatting fails, the Funeral March is played instead!

In Use
Discs are loaded into the drives by sliding them in through the slot (label upwards) until they latch in place; this is most easily done by pushing them with a thumb or forefinger. The top flap of the door mechanism is then pressed down to lock the disc in place. The drives are designed so that the rotational motor is turned on whenever a disc is inserted, and stays on until the door flap is closed; this assists in correctly locating the disc on the hub. To remove a disc from the drive, the bottom part of the door flap is depressed. This trips the disc eject mechanism, which releases the disc and pushes it out by approximately 4cm. This is very convenient to use, and it makes changing discs a simple operation.

In use, the stepping motor can be quite noisy, particularly when moving across the full disc surface. The rotational motor, on the other hand, is very quiet. The rear of the unit (which is where the fully shielded power supply is located) becomes warm to the touch, but there is no significant temperature rise, even after prolonged heavy use.

The 40/80-track facility works well in practice. As mentioned earlier, this is primarily a read-only facility, which is usually used for loading software supplied on 40-track discs onto 80-track working discs. Tests show that we can create discs on 40-track drives, and read them back without trouble on the CD800/S, set in 40-track mode. The 40/80-track hardware and software switching techniques were compared using the software switch provided by the Watford DFS, and found to be quite compatible. Whether the extra cost of the hardware switching is justified probably depends on whether you already have an equivalent software facility, and how often you wish to use 40-track discs.

In six months of extended use, the CD800/S has given no trouble at all, despite being very heavily used. Not a single disc error has been observed, and this augurs well for the long-term reliability of the drives.

Verdict
Once you have discs, the thought of ever going back to cassette tapes seems like a return to the Dark Ages. The Cumana CD800/S represents an ideal complete package for the computer owner looking to move out of the Dark Ages for good. Although the unit is primarily aimed at the BBC Micro, it is also suitable for connection to many other computers by simply changing the disc interface connector. The standard of manufacture and presentation is good, the unit works well, and the manual is the best seen, although a few more details on the Mitsubishi drives would be welcome. In operation the unit is reliable and fuss free, and it represents an ideal way of upgrading to floppy discs. A package to be recommended.

The CD800/S costs £499 plus VAT, and is available from a number of advertisers in PE. Further information is available from Cumana Ltd., Unit 1, The Pines Trading Estate, Broad Street, Guildford, Surrey, GU3 3BH; Tel: 0483-503121.
MAIL ORDER MICROs

SALES DRIVE!

Check these crazy deep-cut VAT-INCLUSIVE prices and see how much you save

Make no mistake, these are the very latest half-height drives from TEAC — world leaders in high performance, high reliability 5¼ inch* floppy disk technology. They come complete with Formatting Disk, User Manual, Case, and Cables for direct connection to the Model 'B' with DFS disk interface and with a FULL TWELVE MONTH GUARANTEE.

If you've got a BBC Model 'B' with DFS disk interface, you'll never get another chance like this to add disk storage. But ACT NOW, this unrepeatable offer is only available while stocks last.

3 inch versions also available; please ring for details.

HOW TO ORDER
Fill in the coupon below; enclose your cheque, made payable to Mail Order Micros, or complete the Access/Barclaycard details if you wish to pay by credit card; and post to:
MAIL ORDER MICROs, 2a GREEN STREET, SANDBACH, CHESHIRE, CW11 9AX.
Telephone 0782 811711.

Enquiries from Dealers and Educational Authorities welcomed.

<table>
<thead>
<tr>
<th>SINGLE DRIVES</th>
<th>Our previous price (VAT Inclusive)</th>
<th>NOW (VAT Inclusive)</th>
<th>QTY</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD-55A SS 40TK 100K</td>
<td>(£169.05)</td>
<td>£102.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD-55B DS 40TK 200K</td>
<td>(£205.85)</td>
<td>£124.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD-55E* SS 80TK 200K</td>
<td>(£198.95)</td>
<td>£129.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD-55F* DS 80TK 400K</td>
<td>(£240.35)</td>
<td>£156.70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DUAL DRIVES</th>
<th>(with integral power supply)</th>
<th>(with integral power supply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD-55A SS 40TK 200K</td>
<td>(£319.70)</td>
<td>(£211.75)</td>
</tr>
<tr>
<td>FD-55B DS 40TK 400K</td>
<td>(£389.85)</td>
<td>(£241.50)</td>
</tr>
<tr>
<td>FD-55E* SS 80TK 400K</td>
<td>(£374.90)</td>
<td>(£241.50)</td>
</tr>
<tr>
<td>FD-55F* DS 80TK 800K</td>
<td>(£458.85)</td>
<td>(£297.85)</td>
</tr>
</tbody>
</table>

Post and packing (first unit) £ 5.75
Post and packing (each additional unit) £ 2.50

*Price includes 80/40 Track Switch

SAVE £66.70 TO £81.65 ON SINGLE DRIVES

SAVE £118.45 TO £181.70 ON DUAL DRIVES

Post to: MAIL ORDER MICROs,
2a GREEN STREET, SANDBACH, CHESHIRE, CW11 9AX.

I enclose cheque for

Please debit my ACCESS/BARCLAYCARD
(cdelete whichever not applicable)

Card number

Signature

Name

Address

Credit card orders must be signed by the card holder; address above must be the same as the card holder.

2a Green Street Sandbach Cheshire CW11 9AX

MAIL ORDER MICROs
Telephone 0782 811711
MAIL ORDER MICROS

The Mail Order Micros dual disc unit is similar in specification to the Cumana CD800/S, being a dual double-sided switchable drive unit with integral power supply. Many of the same general observations made above apply equally to both the Cumana and the MOM unit, and our comments in the main concentrate on those features which differ in some respect from the Cumana unit.

Inside the Box

Looking inside the double-box package we find the drive unit, complete with mains cable (but no plug), a disc interface cable fitted with connectors for the drive and the BBC Micro, a manual, an installation instruction summary sheet, and an 80-track utilities disc. The unit comes ready set up, and is guaranteed for 12 months. The 18-page user manual covers both 5.25in. and 3in. units, and contains sufficient information to get started without recourse to the DFS manual. As with the Cumana unit, the only real additional items required to get started (other than a mains plug) are blank diskettes; the summary sheet gives some useful recommendations for the selection of suitable types.

First Impressions

The first impression is of an extremely neat and compact unit, attractively styled to match the BBC Micro. Overall the unit is slightly smaller (18cm wide, 33cm deep and 12cm high) and appears to have cleaner lines than the Cumana unit. This is due in part to the fact that the 40/80-track selector switches are mounted on the rear panel rather than on the front, and in part to the fact that the Teac drives have a less 'fussy' appearance than the Mitsubishi drives. The two slimline Teac FD-55F drive units are horizontally mounted, and stacked one above the other in a metal case. The upper drive is conventionally set up as drive 0, and the lower one is drive 1, although on the review unit they were not actually labelled on the front panel. This arrangement can be changed if necessary, but the manual does not actually contain any details of the link settings for the Teac drives (although this information can actually be found in the Cumana manual).

The disc interface cable is detachable at both ends, which is a useful feature, and connects to the drive unit via a D-type connector on the rear panel. The cable is a good length at approximately 1 metre, but the 3-core mains lead is much too short at just under 1 metre long. The mains lead is well secured on the rear panel with a cable clamp. Also on the rear panel are the 40/80-track slide-type selector switches (one above the other in the same order as the drives), mains fuse, and illuminated mains switch. Placing the 40/80-track switches on the rear panel certainly gives a neater unit, and minimises the possibility of accidentally changing the setting. If you intend to use the facility a lot, however, your system layout will have to give easy access to these switches.

Small ventilation slots are provided high up on the sides of the case at the rear. These are arranged to minimise the risk of foreign bodies falling into the case and, in view of the very low power dissipation of the Teac drives, are more than adequate. On the front panel each drive is provided with an oblong red i.e.d. to indicate when the drive is selected.

Setting Up

The single sheet summary which is supplied with the unit simplifies setting up quite considerably. The process is simply a matter of fitting a suitable mains plug, and connecting the disc interface cable to the connector on the rear of the case and to the BBC Micro. As with the Cumana unit, however, no technical details concerning the drive performance is provided. The FD-55F drives can, however, be used at maximum speed by the BBC Micro; Table 2 summarises the technical specifications for the FD-55F.

Getting Started

The manual takes us through the basic steps in getting started, formatting and verifying discs. There is then a useful discussion of disc care and storage, write protecting discs, and saving and loading programs. This is followed by a description of the commands which are provided in the standard Acorn DFS. This description is well illustrated with examples, and gives warnings of the consequences of use of various commands. There is a brief introduction to the use of random access files, followed by an explanation of the DFS error messages. Finally an appendix describes how to run cassette-based programs when the disc system is installed.

The 80-track utilities disc contains three programs: a formatter, a verifier and a cassette-to-disc transfer utility. The formatter offers the choice of 35, 40 or 80 tracks on the disc, and the instructions on the screen are reproduced in the manual. At the end of the formatting process, the program displays a count of formatting and verifying errors (hopefully both zero!). As each track is formatted, its number is displayed in a table, and if any errors occur, the affected track is identified by a question mark. Once formatted, and in common with the Cumana unit, each BBC-format 80-track

Table 2. Teac FD-55F Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track density</td>
<td>96t.p.i.</td>
</tr>
<tr>
<td>Recording method</td>
<td>FM or MFM</td>
</tr>
<tr>
<td>Track-to-track seek time</td>
<td>3ms</td>
</tr>
<tr>
<td>Setting time</td>
<td>15ms</td>
</tr>
<tr>
<td>Motor start time</td>
<td>400ms</td>
</tr>
<tr>
<td>Weight</td>
<td>1.5kg</td>
</tr>
<tr>
<td>Power supply +12V</td>
<td>0.25A (av)</td>
</tr>
<tr>
<td>Power supply +5V</td>
<td>0.38A (av)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>4.9W operating</td>
</tr>
<tr>
<td>Power consumption</td>
<td>1.6W standby</td>
</tr>
<tr>
<td>Rotational speed</td>
<td>300r.p.m</td>
</tr>
</tbody>
</table>

Practical Electronics November 1984
The disc has a capacity of 400 Kbytes. The verifier program allows us to check for errors on a formatted disc at any time. The program automatically detects whether a 40-track or 80-track disc is present, and reports the number of verify errors detected.

The memory move program is a useful addition which allows a cassette program to be loaded even with the disc interface fitted. This works by loading the program from tape in the normal way (having turned on the cassette filing system first with *TAPE), turning off the DFS, and then moving it down in memory to its correct position.

In Use

This disc loading mechanism on the Teac drives is extremely simple, easy to use, and effective. The discs are loaded by sliding them in through the slot (label upwards) as far as they will go. This starts the rotational motor to assist the next step. The locking handle is turned down through 90 degrees, until it latches, to engage the disc on the hub. The lever has a wedge arrangement on the rear to gently push in the disc if it has not been correctly seated. When loaded, the lever physically prevents the disc being removed while the heads are loaded. Disc removal is a matter of releasing the lever, which is spring loaded to the open position. The disc itself is not ejected, but it is accessible due to the recessed design of the drive front panel. On balance, the disc loading is easier on the Teac drives, but disc removal is easier on the Mitsubishi drives.

In use, the drives are pleasantly quiet. The rotational motor is slightly noisier than the one in the Cumana unit, but is still quiet. On the other hand, the stepping motors and head load solenoids on the MOM unit are much quieter in operation. The unit runs very cool in operation due to the low power dissipation of the Teac drives. The 40/80-track switching facility works well, and is compatible with discs produced on 40-track drives, and with the software switching alternative provided by the Watford Electronics DFS.

Verdict

After extended use, the MOM unit has proved to be trouble-free. On balance it is slightly smaller and quieter in operation than the Cumana unit, but there is not much to choose between the two. The documentation is good but, in common with the Cumana unit, lacks a few technical details relating to the drives themselves. The unit is more than suitable for the computer owner looking for a complete disc package to complete his system upgrade, and is to be recommended.

The MOM dual disc unit costs £387.55 plus VAT. Further information is available from Mail Order Micros, 2a, Green Street, Sandbach, Cheshire, CW11 9AX; Tel: 0782-811711.

FREE! READERS' ADVERTISEMENT SERVICE

RULES

Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad must be accompanied by a cut-out valid “date corner”. Ads will not appear (or be returned) if these rules are broken.

WANTED

Compukit editor assembler for UK101, £5 offered. Nicholas Deacon, 4 Morse Road, Didcot, Oxon. Tel: Didcot 814933

SPECTRUM 48K plus Ferguson cassette recorder. Also software and manuals £90 o.n.o. Mr. S. Miles, 195 Grange Road, South Norwood SE26 6TG. Tel: 01-653 4896 (evenings)

URGENTLY required circuit diagram of Heathkit oscilloscope (O-12u) will return promptly. Send to: Mr. L. Young, 23 Grangefields Road, Jacobs Well, Guildford, Surrey GU4 7NR.

IF anybody wants to give me £2, I will give them a 8-867237MHz crystal in return. Mr. P. Rattray, 20 Uppin Terrace, Kinnoull, Perth PH2 7DG.

DKTRONICS light pen and software £15. Various stereo headphones each £5. All plus postage. Ralph Lovelock, 14 Knightley Road, Exeter EX2 5SR. Tel: Exeter 75892

ANOTHER! UK101 8K Cegmon incl. recorder software P5G speech A-D, D-A Make a silly offer. Dick Davies, 13 Harold Road, London SE19 3PU. Tel: 01-653 4753

WANTED HD38136S space invaders chip. Must be working. Please state price. I also pay postage. Mr. G. Jones, 16 Crown Lane, Crown Estate, Pontllanfraith, Gwent.

HITACHI 2732 eproms £2 each. Also a 6522 via £2. Kevin McKeever, 67 Dames Road, Bicester, Oxon. OX8 BLY. Tel: (0869) 243563. F.M. valve tuner, power supply. Various obsolete valves. Some new/boxed. Old radio knobs various. Tel: 01-366 7115.

DKTRONICS light pen and software £15. Various stereo headphones each £5. All plus postage. Ralph Lovelock, 14 Knightley Road, Exeter EX2 5SR. Tel: Exeter 75892

ANOTHER! UK101 8K Cegmon incl. recorder software P5G speech A-D, D-A Make a silly offer. Dick Davies, 13 Harold Road, London SE19 3PU. Tel: 01-653 4753

WANTED HD38136S space invaders chip. Must be working. Please state price. I also pay postage. Mr. G. Jones, 16 Crown Lane, Crown Estate, Pontllanfraith, Gwent.

HITACHI 2732 eproms £2 each. Also a 6522 via £2. Kevin McKeever, 67 Dames Road, Bicester, Oxon. OX8 BLW. Tel: (0869) 243563. F.M. valve tuner, power supply. Various obsolete valves. Some new/boxed. Old radio knobs various. Tel: 01-366 7115.

MULLARD CL8960 Radar Doppler Modules for burglar alarms. Unused and tested. £24.50. Parkland Drive, Oadby, Leicester LE2 4DG. Tel: 0653 471516.

WANTED Service manual for Tektronix 536A scope. Also any spares for it. Will pay reasonable sum. Mr. Whybrow, 'Thydon', Colleyland, Chorleywood, Herts. Tel: 09278 4018.

CASIO programmable calculator 620P. Including cassetteprinter interface, plus mini cassette recorder (Sanyo), boxed £75. 855-6895. David Turner, 202 Herbert Road, Plumstead, London SE18 3QD.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature Date

Please read the RULES then write your advertisement here—

one word to each box. Add your name, address and/or phone no.

COUPON VALID FOR POSTING BEFORE 2 NOVEMBER 1984 (One month later for overseas readers.)

SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

For readers who don't want to damage the issue send a photocopy or a copy of the coupon (filled in of course) with a cut-out valid "date corner"
Specialty Offers

Oric 1 computer 48K £95 (£92) £102.
Oric Atmos computer 48K £171 (£168) £188.
Oric Colour Printer £164 (£123) £140.
Oric disc drive £304 (£278) £286.
New Sinclair QL Computer £290 (£265) £275.
Sinclair Spectrum 48K £131 (£131) £144.
Spectrum 16K £91 (£105) £117.

Interface 2 £20.45 (£20) £24.
Microdrive £51 (£45) £60.
Blank microdrive cartridges £8 (£8) £9.
3K memory upgrade kit for 16K Spectrum (issue 5 and 6 only) £31 (£29) £30.
Fulmer Master Unit for the spectrum including speech synthesizer, amplifier and joystick port £56 (£56) £62.
FDS full sized keyboard for the spectrum with proper space bar £52 (£52) £62.
Spectrum printer interfaces with cable £62.
Centronics £13 (£47) £14.
RS232 £33 (£33) £38.
ZX printer has been replaced by the Alphacom 32 £71 (£71) £77.
5 printer rolls (State whether Sinclair or Alphasmart) £13 (£16) £21.
ZX81 computer £45 (£44) £54.
ZX81 16K packs £29 (£25) £36.

Commodore Computers
- **Commodore 64** £204 (£194) £204.
- **Vic 20** £104 (£97) £117.
- **Vic 20** £127 (£117) £137.

Centronics £27 (£24) £30.
RS232 £28 (£28) £30.
ZX printer for Commodore 64 £44 £45.

Commercial Computers
- **Commodore 64** £204 (£194) £204.
- **Vic 20** £104 (£97) £117.
- **Vic 20** £127 (£117) £137.

Centronics £27 (£24) £30.
RS232 £28 (£28) £30.
ZX printer for Commodore 64 £44 £45.

Ericsson £9.78 (£9) £11.

Brother HRS £185 (£171) £190.
Shinwa £58 (£52) £55.
Epson FX80 £235 (£20) £245.
Epson RX80 £332 (£299) £329.
Brother HR4000 £332 (£305) £329.
Epson FX80 £235 (£20) £245.
Epson RX80 £332 (£299) £329.
Brother HR5 £252 (£255) £255.
Smith Corona TP1 £58 (£52) £62.
Smith Corona TP1 £58 (£52) £62.

Fulmer Printer £35 (£33) £38.
Epson FX80 £235 (£20) £245.
Epson RX80 £332 (£299) £329.
Combination matrix printers £35 (£33) £38.
Combined matrix printers and electric typewriters £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Model P £228 (£228) £234.

Epson colour printer £33 (£33) £35.

Brother HR4000 £332 (£305) £329.
Epson FX80 £235 (£20) £245.
Epson RX80 £332 (£299) £329.
Brother HR4000 £332 (£305) £329.
Epson colour printer £33 (£33) £35.

Combination matrix printers and electric typewriters £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Combination matrix printers and electric typewriters £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Combination matrix printers and electric typewriters £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.

Display wheel printer £252 (£255) £255.
Model P £228 (£228) £234.
Combination matrix printers £35 (£33) £38.
Computer DF M Adaptor R.A.PENFOLD

... Use a little known feature of these machines to turn your micro into an audio frequency meter. It'll take less hardware than you think, and although we've provided software, this can be extended to create a customised 'smart' test instrument.

The VIC-20, Commodore 64, and BBC model B computers are popular with electronics enthusiasts as all three machines have a user port which gives 8 in/out lines plus handshake lines. A feature of all three machines which is less well known and seemingly little understood is the two 16 bit counter/timers. These can be used in a variety of ways, but the two of most interest are using a counter to act as a divider to give an output at some fraction of the system clock frequency, and using one of them to count pulses from an external circuit.

In this project both these modes of operation are utilised, with one counter providing the clock signal used to generate the gate pulse, and the other being used to count the input pulses. Together with some simple external logic and signal interfacing circuitry this gives a useful d.f.m. for audio frequency use, with three measuring ranges. These have full scale values of 6553-5Hz, 65-535kHz and 655-35kHz, with minimum resolutions of 0.1Hz, 1Hz and 10Hz respectively. A minimum input level of about 15 to 20 millivolts r.m.s. is needed, and the input impedance of the circuit is quite high at about 300k. The software includes a warning routine which indicates an overload if the input frequency is too high for the range in use, and this helps to prevent misleading readings.

SYSTEM OPERATIONS

Fig. 1 shows in block diagram form the system used in this frequency meter. The input signal is first taken to a buffer amplifier which gives the circuit a high input impedance. This is followed by a voltage amplifier which gives the unit good sensitivity, and then a Schmitt trigger is used to convert the signal to standard five volt logic levels. This circuit also helps to avoid inaccurate readings due to noise on the input signal. The signal is then applied to a gate which, depending on the range in use, is opened for 10 seconds, 1 second, or 0.1 seconds. A 16 bit counter (within the computer) registers the number of pulses let through the gate. If, for example, a one second gate period is used, and 5000 pulses are received by the counter, then the input frequency is obviously 5000Hz or 5kHz. When the other two ranges are in use it is simply a matter of multiplying or dividing by ten the number of pulses received by the counter in order to obtain an answer in Hertz, and this is easily accomplished using software. In fact, on the highest range the answer is converted to kilohertz, which is again easily accomplished using a software routine.

The clock oscillator is the system clock of the computer, and the frequency of this depends on the computer used.

This is 1.1082MHz for the VIC-20, 980kHz for the Commodore 64, and 1MHz for the BBC model B. The divide by n counter is the second 16 bit timer/counter of the computer, and it can divide by any integer from 2 to 131070 (double the number written to the counter in other words). In this case the counter is used to divide the system clock to give an output frequency of 50Hz, and this is then divided by a series of external divide-by-ten circuits to give additional frequencies of 5Hz, 0.5Hz, and 0.05Hz. A switch is used to select one of these three signals and connect it through to the control input of the gate.

In operation and with, for example, a 0.5Hz gate signal selected, the gate is continuously switched on for one second while the gate signal is high, off for one second while it is low, then on again for a second, and so on. The gate signal is applied to a digital input of the computer, and this enables the computer to synchronise its operations with those of the external circuit. Basically, what happens is that the counter is loaded with a value of 65535 while the gate is disabled. When the gate is enabled the counter counts downwards, and nothing else happens during this period. At the end of the gate time the control signal goes from the high state to the low one, and this is detected by the computer which then reads the counter, and converts the

calling owners of...
VIC 20, BBC,
COMMODORE 64
reading into Hertz or kilohertz. The fact that the counter counts downwards is only a minor inconvenience, and deducting the counter reading from 65535 effectively gives the required upwards count. Next the counter is reloaded to 65535 so that it is ready to start another count when the gate signal goes high again. This gives one reading every 20 seconds on range 1, one every two seconds on range 2, and 5 per second on range 3 (although on this range the limited speed of the computer may result in only every other reading being processed and displayed).

If the counter reaches zero it returns to 65535 on the next pulse and then starts counting down again. However, a bit of the interrupt register in the interface device of the user port is set high when the count reaches zero, and by monitoring this the software can give an overload warning and suppress incorrect readings.

THE CIRCUIT

The full circuit diagram of the frequency meter adaptor appears in Fig. 2. Components R11, D1 and D2 form a simple bipolar clipping circuit which protects the input stage against excessive input signal levels. TR4 is an emitter follower buffer stage, and a filter circuit (R12 plus C5) is included in the bias circuit to prevent noise on the supply lines from being coupled into the input of the circuit. C3 couples the output of TR4 to the base of TR3, and this device is used as the basis of a high gain common emitter amplifier. The output of TR3 is direct coupled to a standard two transistor Schmitt trigger which uses TR1 and TR2.

The gate is one section of a 74LS08 quad 2-input AND gate. Only one of the four gates are needed here, and the other three are simply ignored. An AND gate gives the required action with a low signal at one input preventing a signal applied to the other input from reaching the output, but a high control signal enables a signal applied to the other input to pass through to the output.

IC2 to IC4 are the divide-by-ten circuits, and these are the familiar 74LS90 decade counters. Range switch S1 selects the output from one of these devices and couples it through to the signal gate.

All three computers have a 5 volt output available at the user port, and this is used to power the circuit.

CONSTRUCTION

Fig. 4 gives details of the printed circuit board and wiring of the unit. Construction of the board is perfectly straightforward and there should be no problems here. Fit Veropins at the points where off-board connections will eventually be made.

A plastic case having metal front and rear panels, and approximate outside dimensions of 180 by 120 by 40 millimetres is used on the prototype. This is larger than is absolutely necessary though, and the unit could be fitted into a substantially smaller case if desired. Range switch S1 and input socket SK1 are mounted on the front panel. SK1 does
COMPONENTS

Resistors
- R1, 4, 6: 1k (3 off)
- R2: 10k
- R3: 100k
- R5: 10k
- R7: 47k
- R8: 2k
- R9: 560k
- R10: 1M
- R11: 47k
- R12: 1k5

All resistors 1W 5% carbon film

Capacitors
- C1: 100u 10V radial elect
- C2: 100n ceramic
- C3: 10u 25V radial elect
- C4, B: 100n polyester (2 off)
- C5: 100µ 10V axial elect

Semiconductors
- IC1: 74LS08
- IC2, 3, 4: 74LS30 (3 off)
- D1, 2: 1N4148 (2 off)
- TR1, 2, 4: BC549 (3 off)
- TR3: BC559

Miscellaneous
- S1: 4 pole 3 way rotary switch
- SK1: 3 5mm jack socket
- Case about 180 x 120 x 40mm
- Printed circuit board
- Control knob
- Computer connector and ribbon cable
- Veropins, wire, solder, etc.

SOFTWARE

```
110 GOTO 100
120 END
100 FOR BYTE =2054 TO 2062
101 R=READ D
102 POKE BYTE,D
103 NEXT BYTE
104 RETURN
105 DATA 166,87,164,88,24,32,240,255,96
2000 PRINT"REM SHIFT/CLR"
2010 POKE 87,3:POKE 88,14:SYS 2054:PRINT"FREQUENCY METER"
```

Practical Electronics November 1984
1 0 R E M F R E Q U E N C Y M E T E R P R O G R A M

2 0 R E M F R E Q U E N C Y M E T E R P R O G R A M

3 0 R E M F R E Q U E N C Y M E T E R P R O G R A M

4 0 R E M F R E Q U E N C Y M E T E R P R O G R A M

5 0 R E M F R E Q U E N C Y M E T E R P R O G R A M

6 0 R E M F R E Q U E N C Y M E T E R P R O G R A M

7 0 R E M F R E Q U E N C Y M E T E R P R O G R A M

8 0 G O S U B

9 0 P R Y T E N

1 0 N E X T B Y T E

1 0 3 0 P R IN T V

1 0 4 0 POK E 8 7 , 1 1 : POK E 8 8 , 7 : S Y S 4 1 0 2

1 0 5 0 P R IN T "

1 0 6 0 P R IN T "

1 0 7 0 P R IN T "

1 0 8 0 P R IN T "

1 0 9 0 P R IN T "

1 1 0 0 G O S U B

1 1 1 0 P R IN T "

1 1 2 0 P R IN T "

1 1 3 0 P R IN T "

1 1 4 0 P R IN T "

1 1 5 0 P R IN T "

1 1 6 0 G O S U B

1 1 7 0 P R IN T "

1 1 8 0 P R IN T "

1 1 9 0 P R IN T "

1 2 0 0 P R IN T "

1 2 1 0 P R IN T "

1 2 2 0 P R IN T "

1 2 3 0 P R IN T "

1 2 4 0 P R IN T "

1 2 5 0 P R IN T "

1 2 6 0 C L S

1 2 7 0 F O R Y = 0 T O 6

1 2 8 0 P R IN T " T A R T A R (Y) , C H R $ 1 3 2 , C H R $ 1 5 7 , C H R $ 1 3 1

1 2 9 0 N E X T Y

1 3 0 0 F O R Y = 1 T O 6

1 3 1 0 P R IN T " T A R T A R (Y) , C H R $ 1 3 2 , C H R $ 1 5 7 , C H R $ 1 3 1

1 3 2 0 N E X T Y

1 3 3 0 F O R Y = 2 T O 6

1 3 4 0 P R IN T " T A R T A R (Y) , C H R $ 1 3 2 , C H R $ 1 5 7 , C H R $ 1 3 1

1 3 5 0 N E X T Y

1 3 6 0 P R O C O n d (4 , " F R E Q U E N C Y M E T E R ")

1 3 7 0 P R O C o u t l (4 , " R a n q u e ")

1 3 8 0 P R O C O n d (5 , " K ")

1 3 9 0 P R O C O n d (5 , " C h a n g e r a n q u e f u n c t i o n k e y s . ")

1 4 0 0 E N D P R O C

1 4 1 0 4 2 0}

4 3 0 D E F P R O C r e d

4 4 0 R E P E A T U N T I L (1 6 & F E 6 0 0 0 1) = 0

4 5 0 4 6 0 & F E 6 0 0 0 1

4 6 0 & F E 6 0 0 0 2

4 7 0 R E P E A T U N T I L (1 6 & F E 6 0 0 0 0 1)

4 8 0 R E P E A T U N T I L (1 6 & F E 6 0 0 0 0 1)

4 9 0 1 0 4 6 0 6 0 0 0 0 1

5 1 0 5 1 0 5 2 0 5 3 0
not have to be a 3.5mm jack type, and any two-way audio or RF connector can, of course, be used here. The printed circuit is mounted on the base panel of the case using M3 or M6BA fixings, and the point to point wiring is then added.

The unit is connected to the computer via a piece of five way ribbon cable about 0.5 to 1 metre long, and an exit hole for this is drilled in the rear panel of the case. For the VIC-20 and Commodore 64 computers, a 2 by 12-way 0.156 inch edge connector is needed to make the connections to the user port. These are readily available, but are not usually fitted with polarising keys. With a little ingenuity it might be possible to add these, or the top and bottom of the connector can be suitably labelled.

Connections to the user port of the BBC model B computer are made via a 20-way IDC header socket. Connection details for all three computers are given in Fig. 3.

SOFTWARE

Suggested software for the VIC-20, Commodore 64, and the BBC model B are provided in the accompanying listings. These are self explanatory in use, and do not really require any operating instructions. Do not omit the REM at line 1 of the VIC-20 and Commodore 64 listings: this is used to hold a short machine code routine which prints the frequency reading at a fixed point on the screen.

The way in which the counter/timers are used is fairly simple. If we take the VIC-20 first, this uses a 6522 VIA (Versatile Interface Adaptor) for the user port. The timer/counters are controlled by the auxiliary control register at address 37147. Timer 1 is controlled by bits 6 and 7 of this register, and it is this timer that is used to provide the 50Hz clock signal. The timer can operate in the one shot or free running modes, and in this case bit 6 is set high to select the free running mode. Bit 7 can be set high to provide the output signal on PB7 of the user port, and this is again done here. The timer is loaded in two 8 bit bytes, and these are POKEed to addresses 37140 (least significant) and 37141 (most significant).

Timer 2 is used as the 16 bit counter, and this is controlled by bit 5 of the auxiliary control register. This timer is set to the pulse counting mode by setting bit 5 of the auxiliary control register high. It then counts pulses received on line PB6 of the user port. With bits 5 to 7 of the register set high, this gives a total of 224 (128 + 64 + 32) to be written to the control register. Timer 2 is set to 65535 by writing 255 to both of the 8 bit registers which it comprises, and these are at addresses 37144 (low byte) and 37145 (high byte).

When timer 2 reaches zero it sets bit 5 of the interrupt flag register at address 37149, and an overflow of the counter can be detected by monitoring this bit. The flag is automatically reset when timer 2 is reloaded.

The BBC model B computer also uses a 6522 VIA for the user port, and this is set up and used in the same way as the 6522 in the VIC-20. Of course, the addresses are different, and the 6522 in the BBC machine is at addresses from &FE60 to &FE6F.

A slightly different device is used in the Commodore 64, and this is a 6528. This is an "improved" 6522 which includes a "time of day" clock facility. It has the two 16 bit timer/counters as well, but they are controlled and used in a slightly different manner.

Fig. 3. Connectors for the three machines

Timer B is used to provide the clock signal, and the appropriate figures for the required division rate are POKEd to addresses 56582 (low byte) and 56583 (high byte). The control register for timer B is at address 56591, and the operating mode is controlled by bits 5 and 6. In this case they are both set low so that the counter uses the system clock as its input signal. Bits 0 to 4 of this register also control the action of the timer, and bit 4 is set high to force a load of the number previously written to the counter. Bit 3 is set low to place the counter in the continuous rather than one shot mode, bit 2 is set high to give a squarewave rather than a pulsed output on PB7, and bit 1 is set high to enable output on PB7. Finally, bit 0 is set high to start the counter. This gives a total of 23 to be written to control register B.

Timer A is used as the 16 bit counter, and it is controlled in a similar way to timer B. Bit 5 is set high so that input pulses on line CNT (and not clock pulses) are counted. Bit 4 is also set high, to load the number written to the counter at addresses 56580 (low byte) and 56581 (high byte). Bit 3 is set low to give continuous rather than pulsed operation, while bits 2 and 1 are set low to prevent output on PB6. Lastly, bit 0 is set high to start the timer, and the start/stop action of the counter is then effectively controlled by the external gate circuit. The interrupt flag of timer A is at bit 0 of address 56589.
Rechargeable Nickel-cadmium batteries in stock. Equipment but very little used condition. DEAC 1000K Door bell Stacks 6 cells - 1500, Size 6 x 2" x 2". Capacity 84% incl. VAT (15% incl) DEAC 1000K Stacks 2 cells - 36V. Size 12 x 2" x 1". Capacity 66% incl. VAT (15% incl).

Also available — PCBs from which these batteries have been removed containing transformer, Diode rectifiers, smoothing capacitors, DIP relay, etc., all in good condition, ready to assemble to whatever the customer wishes. On Stock £50 IN - 0 50p. Connections supplied incl. VAT.
The 7447 seven-segment decoder accepts a 4-bit BCD input and produces the appropriate outputs for selection of the segments in a seven-segment I.E.D. display. The truth table for the segment outputs and resulting display is shown in Table 2.1. It should also be noted that a further six redundant display conditions exist for the unused input codes beyond '9' (1010 to 1111). These states are, of course, invalid in BCD counting and we will thus not, at this stage, concern ourselves with the actual patterns produced.

Table 2.1. Truth table for segment outputs of a 7447

<table>
<thead>
<tr>
<th>BOOLEAN EXPRESSION</th>
<th>DISPLAY</th>
<th>SEGMENT STATES</th>
<th>BCD 1/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>abcdefg</td>
<td>0</td>
<td>00000001</td>
<td>0000</td>
</tr>
<tr>
<td>abcdefg</td>
<td>1</td>
<td>10011111</td>
<td>0001</td>
</tr>
<tr>
<td>abcdefg</td>
<td>2</td>
<td>00100101</td>
<td>0010</td>
</tr>
<tr>
<td>abcdefg</td>
<td>3</td>
<td>00001110</td>
<td>0011</td>
</tr>
<tr>
<td>abcdefg</td>
<td>4</td>
<td>10011100</td>
<td>0100</td>
</tr>
<tr>
<td>abcdefg</td>
<td>5</td>
<td>01001100</td>
<td>0101</td>
</tr>
<tr>
<td>abcdefg</td>
<td>6</td>
<td>10100000</td>
<td>0110</td>
</tr>
<tr>
<td>abcdefg</td>
<td>7</td>
<td>00011111</td>
<td>0111</td>
</tr>
<tr>
<td>abcdefg</td>
<td>8</td>
<td>00000000</td>
<td>1000</td>
</tr>
<tr>
<td>abcdefg</td>
<td>9</td>
<td>00011100</td>
<td>1001</td>
</tr>
</tbody>
</table>

We shall now modify the hard-wired seven-segment display and incorporate a 7447 decoder/driver to permit BCD data input. The 7447 should be inserted into socket A, carefully checking that pin-1 is aligned with A1. The following additional links are required:

- A3 to S3 (lamp test input)
- A8 to OV (common)
- A9 to B5
- A10 to B4
- A11 to B3
- A12 to B2
- A13 to B1
- A14 to B7
- A15 to B6
- A16 to +5V (supply)

Now press S3 to generate a logic 1 at the lamp test input. All segments should be extinguished. Press S3 again to generate a logic 0 at the lamp test input. All segments should be illuminated, resulting in a display of '8'. Having confirmed that the lamp test facility is operational and that the 7447 has been wired correctly, we are now ready to connect the BCD inputs. Since all four switches of the Logic Tutor will be required, it is first necessary to remove the lamp test input.

Disconnect the link from A3 to S3 and make the following connections:
Four switches should be adjusted to S4 being the least significant (A0) and all S1 being the most significant (A3) and produce a logic 0 input (corresponding to a BCD input of 0000) and the resulting display should, of course, be ‘0’! The four input switches should now be used to generate each one of the further fifteen possible input states in turn. The possible input states (we shall include those states which are not present in BCD counting) and the resulting displays should be checked against those shown in Table 2.2.

DECADE COUNTER STAGE USING 7490 AND 7447 STAGES

Having established that the 7447 is capable of accepting a BCD input and displaying the states ‘0’ to ‘9’ correctly on a seven-segment I.E.D. display, it is but a relatively small step to add a 7490 to produce a complete clocked decade counter stage. The circuit of such an arrangement is shown in Fig. 2.2 in which the BCD output of the counter is taken directly to the BCD input of the decoder/driver.

The 7490 should be inserted into socket D, taking care to align pin-1 with D1. Remove the links from the switches to A1, A2, A6 and A7, and make the following additional connections:

- D1 to D14
- D2 to D3
- D3 to S1 (reset 0)
- D5 to +5V (supply)
- D6 to D7
- D7 to S2 (reset 9)
- D10 to A2
- D11 to A1
- D12 to 0V
- D13 to A6
- D14 to A7
- D16 to clock

Check that the counter cycles through the states ‘0’ to ‘9’ and then restarts at ‘0’. It should be noted that changes of state occur on the falling edge of the clock pulse. Check also that a logic 1 from S1 immediately resets the output to ‘0’ whereas a logic 1 from S2 sets the output to ‘9’. In either case the count being halted for the duration for which the respective switch is depressed, the count resuming on the next falling clock pulse after the switch has been released.

The simple decade counter and display driver arrangement suffers from the disadvantage that the display is constantly changing as the incoming clock changes. With a slow clock this does not, of course, present too much of a problem; however, where the clock is rapidly changing, the constantly fluctuating display may be disconcerting and it would be nice to have a means of periodically ‘freezing’ the state of the display so that it may be read. The action of holding the display static must, of course, not interfere with the normal counting function which must continue as normal if data is not to be lost. What is needed, therefore, is a means of latching or storing the count and updating the display periodically. The device which we use to satisfy this requirement is a 4-bit data latch of which the 7475 is a prime example.

THE 7475 DATA LATCH

The 7475 comprises four individual D-type bistable stages. These stages are arranged in pairs having a common enable input, G. Information present at the D input is transferred to the Q output when the G input is at logic 1 and

Table 2.2. Resulting displays achieved from Fig. 1.10

<table>
<thead>
<tr>
<th>BCD INPUT</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4 S3 S2 S1</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>1</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>2</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>3</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>4</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>5</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>6</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>7</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>8</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>9</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>C</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>D</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>U</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>E</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>F</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>G</td>
</tr>
</tbody>
</table>
Whereas the fundamental is timing pulse could be derived from a free-running oscillator, the accuracy and long-term stability is unlikely to prove adequate for serious applications. We shall now examine three possible solutions to this problem.

The first method involves the use of a crystal controlled oscillator operating at a few tens of kilohertz, or more, followed by a divider chain, as shown in Fig. 2.5. The crystal frequency and division ratio being chosen so as to minimise the expense associated with

LATCHED COUNTER USING 7490, 7475 AND 7447

We shall now construct a complete latched decade counter stage by extending the previous arrangement, see Fig. 2.4. The 7475 data latch should be inserted into socket E, checking as usual that pin-1 aligns correctly with E1. Disconnect the following links:—

- D10 to A2
- D11 to A1
- D13 to A6
- D14 to A7

Now make the following connections:—

- A1 to E16
- A2 to E15
- A6 to E10
- A7 to E9
- E2 to D11
- E3 to D10
- E4 to S3 (latch enable)
- E5 to +5 volts
- E6 to D13
- E7 to D14
- E12 to 0V (common)
- E13 to S3 (latch enable)

Adjust S3 to produce a logic 1 (D7 illuminated) and check that the normal counting sequence is produced. When S3 is taken to logic 0 (D7 extinguished) the latch is enabled and the display will remain frozen for as long as S3 remains at logic 0. When S3 is returned to logic 1, the count is updated such that the current BCD data from the 7490 is latched into the 7447 decoder/driver. It is important to note that the 7490 does not stop counting during the period for which the latch is enabled and that new data can be latched in at any time by means of the enable input, S3.

FREQUENCY AND TIME STANDARDS

A number of practical applications require digital signals of accurately known period or frequency. A typical example is that of a digital clock which counts in increments of one second. Whereas the fundamental 1s timing

Practical Electronics November 1984
the quartz crystal unit and the complexity of the divider chain. Typical crystal frequencies and division ratios required for a 1Hz output are shown in Table 2.3.

The second method involves the use of an off-air radio signal of accurately known frequency. The 200kHz long wave BBC transmitter is ideal for this purpose and readily accessible throughout the U.K. It is, of course, necessary to provide RF amplifier circuitry in order to raise the low-level RF input signal to TTL compatible levels before application to the necessary divider stages, as shown in Fig. 2.6.

The third method involves using the a.c. supply mains and, whilst this method is not as accurate as either of the previous methods, it is relatively simple. A typical arrangement is shown in Fig. 2.7. We shall now look at a practical example using three cascaded 7490 decade dividers.

CLOCK FREQUENCY STANDARD USING CASCADeD DECADE COUNTERs

The circuit diagram of the clock frequency standard is shown in Fig. 2.8. The 50Hz input signal is derived from the low-voltage secondary of the Logic Tutor mains adaptor. This signal is converted to a TTL compatible 50Hz square wave by means of a Schmitt inverter, IC1a, and resistor/Zener diode input clamp. The output of this stage, and of each of the three subsequent decade divider stages, is displayed on the logic level indicators provided on the Logic Tutor. These indicators, D1 to D4, flash at 50Hz, 5Hz, 0.5Hz, and 0.05Hz respectively.

The three 7490 decade counters should be inserted into sockets A, B, and C, whilst the 7414 should be inserted into socket E. In each case check that pin-1 aligns with pin-1 of the respective connector. The following links are required:

- A1 to D1 (D1 indicates the 50Hz output)
- A2 to D3
- A3 to logic 0
- A5 to +5V
- A6 to A7
- A7 to logic 0
- A10 to OV
- A11 to A14
- A12 to B1
- B1 to D2 (D2 indicates the 5Hz output)
- B2 to B3
- B3 to logic 0
- B5 to +5V
- B6 to B7
- B7 to logic 0
- B10 to OV
- B11 to B14
- B12 to C1
- C1 to D3 (D3 indicates the 0.5Hz output)
- C2 to C3
- C3 to logic 0
- C5 to +5V
- C6 to C7
- C7 to logic 0
- C10 to OV
- C11 to C14
- C12 to D4 (D4 indicates the 0.05Hz output)
- D2 (5Hz)
- D3 (0.5Hz)
- D4 (0.05Hz)

In addition, connect a 220 ohm resistor from either side of PL1 (6V a.c. input) to E1 and a BZY88 C4V7 Zener diode from E1 to OV (the Zener diode should be oriented so that the connection nearest the stripe on the package is taken to E1).

When power is applied, D1 will appear to be illuminated permanently but at reduced brightness. This is simply due to the fact that it is flashing on and off very rapidly and the approximate 50% duty cycle is responsible for the reduction in light output. The other I.e.d.s will be noticeably flashing with D2 at 5 times per second, D3 at 2 seconds per cycle, and D4 at 20 seconds per cycle. If desired, times for D3 and D4 may be checked using a stopwatch.

The versatile nature of the 7490 allows us to modify the simple frequency/time standard to provide a number of useful outputs. Suppose our digital clock required accurate pulses at 10Hz (tenths of seconds), 1Hz (seconds), and 0.1Hz (ten seconds). This could be easily achieved by making the first stage a divide-by-five rather than a divide-by-ten.

The following modifications are required:

Remove links from A12 to B2
A1 to A14
Reconnect A11 to D2
A11 to B1

This gives outputs at 50Hz, 10Hz, 1Hz, and 0.1Hz on D1 to D4, respectively.

Constructor's Note

Logic Tutor Board p.c.b.'s, components and constructional details are available from Howard Associates, 59 Oatlands Avenue, Weybridge, Surrey KT13 9SU (0932 42376).

NEXT MONTH: Counters and dividers.

Table 2.3. Typical crystal frequencies used in frequency and time standards

<table>
<thead>
<tr>
<th>CRYSTAL FREQUENCY</th>
<th>DIVISOR</th>
<th>OUTPUT FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 768kHz</td>
<td>2²</td>
<td>1Hz</td>
</tr>
<tr>
<td>100kHz</td>
<td>10⁵</td>
<td>1Hz</td>
</tr>
<tr>
<td>1MHz</td>
<td>10⁶</td>
<td>1Hz</td>
</tr>
<tr>
<td>2.097152MHz</td>
<td>2²¹</td>
<td>1Hz</td>
</tr>
<tr>
<td>3.2768MHz</td>
<td>2¹⁶</td>
<td>50Hz</td>
</tr>
<tr>
<td>4.194304MHz</td>
<td>2²²</td>
<td>1Hz</td>
</tr>
<tr>
<td>6.55360MHz</td>
<td>2¹⁷</td>
<td>50Hz</td>
</tr>
<tr>
<td>10MHz</td>
<td>1⁰⁴</td>
<td>1kHz</td>
</tr>
</tbody>
</table>

Fig. 2.8. Simple frequency standard based on three 7490 decade dividers
Hi-fi speaker bargains

125w high power amp modules

The power amp kit is a module for high power applications - disco units, guitar amplifiers, public address systems and even high power domestic units. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large safety margin output of generously spaced components, results, in a high powered rugged unit. The PC board is back printed, etched and ready 50% for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.

Accessories: Stereo mains power supply kit with trans. £10.50 + £2.90. Mono. £7.50 + £2.90.

Nicad chargers/batteries

SAFT/MAZDA BATTERIES
RX6 (2 cells) £1.50. RX7 (3 cells) £2.48 ea. or £4.07 a pair. RX2 (2 P33 size) 9 volt. £4.95 ea. or £8.90 a pair. 50p p&p per order on batteries.

SAFT/MAZDA RX22 Charger, (takes 2 P33's) £6.95 + £2.20 p&p.

UNIVERSAL CHARGER, takes 4 AA's, or 4 C's or D's or 1 P33. £5.50 + £1.40 p&p.

Bsr record decks

Auto-Changer model - takes up to 6 records with record overload. Supplied with stereo ceramic cartridge. £12.95 + £1.76 p&p.

3 speed, auto, set-down, with auto return. Fitted with viscous damped cue, subsonic aluminium counter-weighted arm, fitted with ADC magnetic head. Ideal suited for home or disco use. £25.95

Manual single play record deck with auto return and cueing lever. Fitted with stereo ceramic cartridge 2 speeds with 45 rpm single play adapter ideally suited for home or disco use. £13.11 'approx. £14.95 + £1.75 p&p.

All mail to: 21B HIGH ST, ACTON W3 ENG Callers: Mon - Sat 9:30 - 5:30. Half Day Sat. Access phone orders on 01-992 8450.

Our prices include VAT and are subject to change without notice. We will always pay your postage costs if error in description. RTVC Limited reserve the right to despatch their products without notice. All enquiries should be directed to S.A.E. Telephone or mail orders by ACCESS welcome.

Practical Electronics November 1984

Two fabulous offers from Alcon

The incredible 'MINI 20'

28 ranges
20kHz/1V d.c. & 4kHz/1V a.c.
(With protective fuse)

Accuracy: 2% d.c. and resistance, 3% a.c.

28 ranges: d.c. V 100mV, 3V, 10V, 30V, 100V, 300V, 600V, d.c. 150μA, 600μA, 6mA, 60mA a.c. V 15V, 50V, 150V, 500V, 1500V, a.c. 130mA, 300mA, 3.0A. Ohms 0-2kΩ. 0-2MHz dB from -100 to +22 in 6 ranges.

Dimensions: 105 x 130 x 40mm.

The 28 ranges cover about all likely requirements. Operation is straightforward just turn the selection switch to the required range. This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly £10.00.

The ideal instrument for the constructor

Only £21.60

'SUPER 20'

A completely re-designed stereo FM tuner

Special offer

£13.95 + £2.60 p&p.

This easy to build 3 band stereo FM/AM/tuner kit is designed in conjunction with PE Heavy 81. For ease of construction and alignment it incorporates three Mullard modules and an I.C. IF System. Front panel size 105 x 130 x 40m

MONO MIXER AMP

Ideal for baths and hotels

£45.00 + £2.60 p&p.

A five individually mixed inputs for 2 pick-ups (6er or meg), 2 moving coil microphones and 2 auxiliary for tape tuner, organs etc. Eight master controls -6 for level and 2 for master bass and treble, 4 extra treble controls for mc and aux inputs. Size: 13/2x6/9/3/2. Power output 50 W RMS (comb.) for use with 4 x 8 ohm speakers. Attractive black vinyl case with matching fascias and knobs. Ready to use.

CALLERS TO: 233 EDGWARE ROAD, LONDON W9. Telephone: 01-723 8432.

(5 minutes walk from Edgware Road tube station)

Now open 6 days a week 9 - 5.30. Prices include VAT.

Alcon

Instruments Ltd. 19 MILBURY WALK - LONDON SW3 6DZ TEL: 01-352 1857 - TELEX: 918867}

T.V. sound tuner

Series II BUILT AND TESTED

Complete with case £26.50 + £2.00 p&p.

In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over is "Will anyone notice if we save money by chop- ping this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common and all this is really quite sad, as the TV companies do their best to transmit the highest quality sound. Given this background a compact and independent T.V. tuner that connects direct to your Hi-Fi is a must for quality reproduction. The unit is manually operated. This TV SOUNDTuner offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder.

Dimensions: 105 x 71/2 x 2 1/2.

E.T.I. kit version of above without case, case and hardware. £16.20 plus £1.50 p&p.

Goodmans

125W HIGH POWER AMP MODULES

Also available with built-in headphone amp. ONLY £32.50 + £2.00 p&p.

13" x 11" approx.

Hi-Fi speaker

Supplied with all parts, circuit diagrams and instructions. A truly high powered unit. £14.95 + £1.75 p&p.

Tokuden - 8" x 0.8 ohm full range 7W twin cone speaker. £3.50 + £0.10 p&p.

125W high power amp modules

The power amp kit is a module for high power applications - disco units, guitar amplifiers, public address systems and even high power domestic units. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large safety margin output of generously spaced components, results, in a high powered rugged unit. The PC board is back printed, etched and ready 50% for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.

Accessories: Stereo mains power supply kit with trans. £10.50 + £2.90. Mono. £7.50 + £2.90.

Nicad chargers/batteries

SAFT/MAZDA BATTERIES
RX6 (2P3 size) £1.10. RX7 (3P3 size) £2.48 ea. or £4.07 a pair. RX2 (P33 size) 9 volt. £4.95 ea. or £8.90 a pair. 50p p&p per order on batteries.

SAFT/MAZDA RX22 Charger (takes 2 P33's) £6.95 + £2.20 p&p.

UNIVERSAL CHARGER, takes 4 AA's, or 4 C's or D's or 1 P33. £5.50 + £1.40 p&p.

Bsr record decks

Auto-Changer model - takes up to 6 records with record overload. Supplied with stereo ceramic cartridge. £12.95 + £1.76 p&p.

3 speed, auto, set-down, with auto return. Fitted with viscous damped cue, subsonic aluminium counter-weighted arm, fitted with ADC magnetic head. Ideal suited for home or disco use. £25.95

Manual single play record deck with auto return and cueing lever. Fitted with stereo ceramic cartridge 2 speeds with 45 rpm single play adapter ideally suited for home or disco use. £13.11 'approx. £14.95 + £1.75 p&p.

All mail to: 21B HIGH ST, ACTON W3 ENG Callers: Mon - Sat 9:30 - 5:30. Half Day Sat. Access phone orders on 01-992 8450.

Our prices include VAT and are subject to change without notice. We will always pay your postage costs if error in description. RTVC Limited reserve the right to despatch their products without notice. All enquiries should be directed to S.A.E. Telephone or mail orders by ACCESS welcome.

Practical Electronics November 1984
Determine your destiny with dice and dexterity with the NEW FANTASY ADVENTURE GAME "THE TOWER OF TERROR" IN PROTEUS 2:1 A Complete Fantasy Adventure Game Magazine ON SALE NOW.
PREAMPLIFIER MODULES
All modules are supplied with in line connectors but require potentiometers, switches etc. If used with our power amps they are powered from the appropriate Power Supply.

<table>
<thead>
<tr>
<th>Type</th>
<th>Application</th>
<th>Functions</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY6</td>
<td>Mono Pre Amp.</td>
<td>Full Hi Fi facilities</td>
<td>£7.95</td>
</tr>
<tr>
<td>HY92</td>
<td>Stereo Pre-Amp.</td>
<td>Full Hi Fi facilities</td>
<td>£14.95</td>
</tr>
<tr>
<td>HY73</td>
<td>Guitar Pre-Amp.</td>
<td>Two Guitars plus Microphone.</td>
<td>£15.95</td>
</tr>
<tr>
<td>HY76</td>
<td>Stereo Pre-Amp.</td>
<td>As HY66 less tone controls</td>
<td>£14.45</td>
</tr>
</tbody>
</table>

MOUNTING BOARDS: For ease of construction we recommend the B6 for HY6 £0.95 866 for HY66-78 £1.45.

POWER SUPPLY UNITS

<table>
<thead>
<tr>
<th>Type</th>
<th>For Use With</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSU324</td>
<td>1 or 2 HY93</td>
<td>£11.95</td>
</tr>
<tr>
<td>PSU354</td>
<td>1 or 2 HY66</td>
<td>£19.95</td>
</tr>
<tr>
<td>PSU421</td>
<td>1 HY93</td>
<td>£15.95</td>
</tr>
<tr>
<td>PSU431</td>
<td>1 HY66</td>
<td>£16.95</td>
</tr>
<tr>
<td>PSU512</td>
<td>2 HY124, 1 HY244</td>
<td>£17.45</td>
</tr>
<tr>
<td>PSU522</td>
<td>2 HY124, 2 HY244</td>
<td>£17.45</td>
</tr>
<tr>
<td>PSU532</td>
<td>2 MOS248, 1 MOS364</td>
<td>£24.45</td>
</tr>
</tbody>
</table>

All the above are for 240v operation.

WHY ILP? Years of experience in audio, unique designs, world wide sales and outlets, reliable delivery and friendly service......

BIPOLAR MODULES
Ideal for Hi Fi, Full load line protection integral Heatsink. slew rate 15v/µs

<table>
<thead>
<tr>
<th>Type</th>
<th>Output Power</th>
<th>Load Impedance</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY93</td>
<td>15</td>
<td>4 - 8</td>
<td>£8.45</td>
</tr>
<tr>
<td>HY60</td>
<td>30</td>
<td>4 - 8</td>
<td>£9.95</td>
</tr>
<tr>
<td>HY960</td>
<td>30 + 30</td>
<td>4 - 8</td>
<td>£19.45</td>
</tr>
<tr>
<td>HY124</td>
<td>60</td>
<td>4</td>
<td>£20.95</td>
</tr>
<tr>
<td>HY125</td>
<td>60</td>
<td>8</td>
<td>£20.95</td>
</tr>
</tbody>
</table>

MOSFET MODULES
Ideal for Disco's, public address and applications with complex loads (line transformers etc.). Integral Heatsink slew rate 20v/µs distortion less than 0.01%.

<table>
<thead>
<tr>
<th>Type</th>
<th>Output Power</th>
<th>Load Impedance</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS128</td>
<td>60</td>
<td>4 - 8</td>
<td>£30.45</td>
</tr>
<tr>
<td>MOS248</td>
<td>120</td>
<td>4 - 8</td>
<td>£39.95</td>
</tr>
<tr>
<td>MOS364</td>
<td>180</td>
<td>8</td>
<td>£45.95</td>
</tr>
</tbody>
</table>

FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT.
Post to: ILP Electronics Ltd., Dept. 6
Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP
Tel: (0227) 54778 Telex: 950760

Master Electronics - Microprocessors - Now!
The Practical Way!

- Electronics – Microprocessors – Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagram.

New Job? New Career? New Hobby?

Please send your brochure without any obligation to:

NAME
ADDRESS

SEND THIS COUPON NOW.

British National Radio & Electronics School Reading, Berks. RG1 1BR

ELECTRONICS
MICROPROCESSORS
RADIO AMATEUR LICENCE
CITY & GUILDS EXAMS

SEND THIS COUPON NOW.

OR TELEPHONE US
0734 51515 OR
TELEX 27758
(24 HR SERVICE)
SOFTWARE INDEX
The user guide to microcomputer software.
IS THE ANSWER
It's the most comprehensive magazine listing of software programs for the eight leading microcomputers.

BBC • COMMODORE 64 • DRAGON
VIC 20 • ORIC 1/ATMOS • ATARI
400/800 • SPECTRUM • ZX81

GAMES EDUCATION BUSINESS
PERSONAL MANAGEMENT
SPECIALIST PROGRAMS

OVER 4,000 PROGRAMS COVERED

ISSUE No. 4 OUT NOW

User Guide to Microcomputer Software
SOFTWARE INDEX 1984 No. 4 £1.50
Bringing the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-by-step instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses.

The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16-bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure long-term retention of the material covered.

You'll be proud to say, “I built it myself!”

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.
P.O. Box 3, Rayleigh, Essex, SS6 8LR.
Tel: (0702) 552911.
(For shop addresses see back cover.)

You’ll find Heathkits available for Amateur Radio Gear • Car Test Equipment • Kits For The Home • Self-Instruction Courses • Computer Kits • Test Instrument Kits • Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50p for the Heathkit International Catalogue complete with a UK price list of all items.

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.

Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

CLEF ELECTRONIC MUSIC

THE NEW CLEF CMS

The FULLY programmable digital synthesiser that you can AFFORD!

THE NEW CLEF COMPUTER MUSIC SYSTEM is so user programmable that you need a BBC Micro to run it! 32 harmonically programmable oscillators. 32 programmable envelopes. 5 octave touch sensitive keyboard, up to 4 OSC/ENVs per note. Real time sequencing. Massive potential for future software. Complete system (without BBC Micro) £475 built. Phone or write for details. Modular systems also available.

88/72 NOTE PIANOS SPECIALISTS SINCE 1972

Using Patented electronic techniques to give advanced simulation of Piano Key Inertia.

P.E. HYPERCASAHER

4 CHANNEL PSEUDO INTELLIGENT LIGHT UNIT
* 8 Programme
* Manual Flash Buttons
* Manual/Auto Programme
* Strobe Outputs
* Individual Dimming
* Sound To Light

Not just a light unit but a sophisticated & comprehensive effects unit. A full kit of parts including P.C.B., face, Case, etc. Reprint of article on request.

PRICE INCLUDING P & P £84.95

P.E. STAR DESK

8 + 4 CHANNEL LIGHT MIXING DESK
* 8 Channel Twin Fader Mixer
* Strobe Outputs
* 4 Independent Channels
* 8 Channel Sequences
* 8 Programmes
* Manual Flash Buttons
* 1KW Output/Channel (can be boosted to 2KW/Ch)
* Tired Crossfades
* Soft/Hard Sequences

A truly magnificent unit ideal for clubs, groups, dance, etc. A full kit of parts inc. P.C.B., Face, Case, etc. Reprint of article on request PRICE INCLUDING P & P £209

BENSHAM RECORDING LTD

327 Whitehorse Road, Croydon, Surrey CR0 2HS

9 am–6 pm. Mon-Sat.
Please allow 14 days for delivery

3 WAY CROSSOVERS

10 INCH CAR SUBS

P.R.O.

MUSICAL INSTRUMENTS

www.musical-instruments.com

BAND-BOX PROGRAMMABLE BACKING TRIO

As Published in P.E.

THREE PIECE BACKING BAND
Generates the sounds of three instrumentalists to back Soloists

DRUMS + BASS + KEYBOARDS
Over 3,000 chord changes (100 scores) on 132 different chords – 16 chord sounds. Master Rhythm also required.

FULL KIT £265

CLEFT PRODUCTS (ELECTRONICS) LIMITED

(Dept P.E.) 44A BRAMHALL LANE SOUTH BRAMHALL

STOCKPORT CHESHIRE SK7 1AH

TEL 061-439 3297

PRICES EXCLUSIVE OF P & P.

CLEFT ELECTRONIC PRODUCTS LTD

• all the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50p for the Heathkit International Catalogue complete with a UK price list of all items.

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.

Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

CLEFT ELECTRONIC MUSIC

THE NEW CLEF CMS

The FULLY programmable digital synthesiser that you can AFFORD!

THE NEW CLEF COMPUTER MUSIC SYSTEM is so user programmable that you need a BBC Micro to run it! 32 harmonically programmable oscillators. 32 programmable envelopes. 5 octave touch sensitive keyboard, up to 4 OSC/ENVs per note. Real time sequencing. Massive potential for future software. Complete system (without BBC Micro) £475 built. Phone or write for details. Modular systems also available.

88/72 NOTE PIANOS SPECIALISTS SINCE 1972

Using Patented electronic techniques to give advanced simulation of Piano Key Inertia.

P.E. HYPERCASAHER

4 CHANNEL PSEUDO INTELLIGENT LIGHT UNIT
* 8 Programme
* Manual Flash Buttons
* Manual/Auto Programme
* Strobe Outputs
* Individual Dimming
* Sound To Light

Not just a light unit but a sophisticated & comprehensive effects unit. A full kit of parts including P.C.B., face, Case, etc. Reprint of article on request.

PRICE INCLUDING P & P £84.95

P.E. STAR DESK

8 + 4 CHANNEL LIGHT MIXING DESK
* 8 Channel Twin Fader Mixer
* Strobe Outputs
* 4 Independent Channels
* 8 Channel Sequences
* 8 Programmes
* Manual Flash Buttons
* 1KW Output/Channel (can be boosted to 2KW/Ch)
* Tired Crossfades
* Soft/Hard Sequences

A truly magnificent unit ideal for clubs, groups, dance, etc. A full kit of parts inc. P.C.B., Face, Case, etc. Reprint of article on request PRICE INCLUDING P & P £209

BENSHAM RECORDING LTD

327 Whitehorse Road, Croydon, Surrey CR0 2HS

9 am–6 pm. Mon-Sat.
Please allow 14 days for delivery

3 WAY CROSSOVERS

10 INCH CAR SUBS

P.R.O.

MUSICAL INSTRUMENTS

www.musical-instruments.com

BAND-BOX PROGRAMMABLE BACKING TRIO

As Published in P.E.

THREE PIECE BACKING BAND
Generates the sounds of three instrumentalists to back Soloists

DRUMS + BASS + KEYBOARDS
Over 3,000 chord changes (100 scores) on 132 different chords – 16 chord sounds. Master Rhythm also required.

FULL KIT £265

CLEFT PRODUCTS (ELECTRONICS) LIMITED

(Dept P.E.) 44A BRAMHALL LANE SOUTH BRAMHALL

STOCKPORT CHESHIRE SK7 1AH

TEL 061-439 3297

PRICES EXCLUSIVE OF P & P.
The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £12.00 per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept, Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

RECEIVERS AND COMPONENTS CONT.

BRAND NEW COMPONENTS BY RETURN

Electrolytic Capacitors 18V, 25V, 50V
0.1µF to 100µF. 1% tolerance, 1800ppm. 5p.

2µF & 2.7µF. 100µF & 100µF. 220µF & 470µF.
47µF to 11µF. 47µF to 11µF. 1000µF & 150µF.
1000µF & 220µF. 1000µF & 220µF.

Subminiature beam Tantalum electrolytics.
0.1µF to 0.22µF to 22µF/35V. 22µF/35V to 68µF/100V.
100µF/250V & 100µF/400V.

Subminiature Ceramic Caps E12 Series 100V.
1% tolerance. 10µF to 100µF. 220µF to 1000µF.
56µF to 1000µF. 100µF/1000V.

Polypropylene (Film) 100V. Vertical Mounting.
10µF to 100µF. 220µF to 1000µF.

Polyester (Film) 100V. 0.1µF to 0.22µF. 0.22µF to 1µF.
1µF to 10µF. 22µF to 100µF.

Mylar (Film) Polyester 100V. Vertical Mounting.
0.1µF to 0.1µF. 0.22µF to 0.22µF.
1µF to 10µF. 22µF to 100µF.

High Stability Film Capacitors 10% 10µF to 100µF.
1% tolerance. 10µF to 10µF.

Klixon Ceramic Discs 100V. Horizontal Mounting.
10µF to 100µF. 220µF to 1000µF.

E12 Series 1µF to 100µF.
5µF to 10µF. 22µF to 100µF.

127, Chesterfield Rd., Sheffield S9 0RN.

TOP SPEC, lowest cost components. Hobbyists and Trade enquiries welcome. SAE for list. NP CONSULTANTS, 40 Westbourne Gardens, Hove.

BOOKS AND PUBLICATIONS

FULL SIZE, top quality service sheets £2.50 + I.S.A. CTV/Mark Centers £3.50 + I.S.A. Repair data almost any named TV/Videocassette £10.50 inc. circs. I.S.A. brings any quote free magazine price. TSPE, 76 Church, Larkhall, Lanarkshire. 0608 883334.

IMPROVE YOUR SKILLS

with skills all employers want. Train the easy way with modern home study courses from Ideal Schools.

MODERN ELECTRONICS

Takes you from the beginning, right up to C & G level 2 and BTEC national level.

COMPUTER PROGRAMMING

Learn BASIC with a Spectrum included if you wish.

For free booklet, write today to:
IDEAL SCHOOLS
(Ref. PE1) Freepost, Woking, Surrey GU21 4BR.

IMPROVE YOUR PROSPECTS

SERVICES

INVENTORS

Think of something new? Write it down!-

American industry offers potential royalties for your innovations and new products. We offer the free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

American Inventors Corporation
82, Broad Street, Dept PT
Westfield, Massachusetts 01086
United States of America.

A fee based marketing company.

ORDER FORM

PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for...

insertions. I enclose Cheque/P.O. for £...

(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

FREE! Parcel of components worth £10. Send only 80p postage. D. HORSLEY, 113 Christmas Road, Braintree, Essex.

RESISTOR PACKS FOR ALL PROJECTS

I watt carbon film resistors 5% 1 ohm to 10M. E24 series. Packs of 10 each value (1690 resistors) £10.00. Your choice of quantities/values 125 for £1.00. VAT and Post Free.

GORDON HALLETT
20 Bull Lane, Maldon Newton, Dorchester, Dorset DT2 0BQ

FREE! Parcel of components worth £10. Send only 80p postage. D. HORSLEY, 113 Christmas Road, Braintree, Essex.

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

SMALL ADS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

TURN YOUR SURPLUS capacitors, transistors, etc into cash.
Contact COLES HARDING & CO., 103 South Brook, Wisbech, Cambs. Tel. 0945 584188. Immediate settlement.

BOURNEMOUTH/BOCSMORE Electronic components specialists for 33 years FORRESTERS (NATIONAL RADIO SUPPLIES), Late Holdensharn Road Now at 36, Ashley Road, Boscombe. Tel. 020204. Closed Weds.

FIFTY 74 SERIES ICs on panel £2.00. Assorted components £5.0095.00 The or 100s post paid. J. W. BLANCHARD, 2 Barnfield Crescent, Sile, Chester M33 1NL.

BOOKS AND PUBLICATIONS

FULL SIZE, top quality service sheets £2.50 + I.S.A. CTV/Mark Centers £3.50 + I.S.A. Repair data almost any named TV-Videocassette £10.50 inc. circs. I.S.A. brings any quote free magazine price. TSPE, 76 Church, Larkhall, Lanarkshire. 0608 883334.
INDEX TO ADVERTISERS

AC/DC Electronics
Advanced Security Products Ltd
Alcon Instruments
Amateur Gardening
Amateurs Inventors Corp.
Bemah Records
Bicc Vero
B.K. Electronics
B.N.R.S.
Cambridge Laboratory
Cirkl Holdings
Cif Products
C.R. Supply Co.
C-Tec Security
Cybernetic Application
Cover 2
Dionics
Electrovalue
G.S.C.
Halb, Adam Supplies
Hallet, Gordon
Hamge
Hewlett Packard
ICS Interlaced
Ideal School
ILP Electronics
London Electronics College
Mail Order Micro
Maplin Supplies & Cover 6
M.J. Anicke
Modern Book Co.
Monorail Supplies
Muriel Dousbourne
Powertron
Proteus
R.C.S.
R.T.V.
Rale Electronics
Riscom
Scientific Wire Co.
Security Vision
Sparkle
Software Index
Swanley Electronics
T.K. Electronics
Trident Exhibitions
Wattord Electronics

INDEX TO ADVERTISERS

AC/DC Electronics
Advanced Security Products Ltd
Alcon Instruments
Amateur Gardening
Amateurs Inventors Corp.
Bemah Records
Bicc Vero
B.K. Electronics
B.N.R.S.
Cambridge Laboratory
Cirkl Holdings
Cif Products
C.R. Supply Co.
C-Tec Security
Cybernetic Application
Cover 2
Dionics
Electrovalue
G.S.C.
Halb, Adam Supplies
Hallet, Gordon
Hamge
Hewlett Packard
ICS Interlaced
Ideal School
ILP Electronics
London Electronics College
Mail Order Micro
Maplin Supplies & Cover 6
M.J. Anicke
Modern Book Co.
Monorail Supplies
Muriel Dousbourne
Powertron
Proteus
R.C.S.
R.T.V.
Rale Electronics
Riscom
Scientific Wire Co.
Security Vision
Sparkle
Software Index
Swanley Electronics
T.K. Electronics
Trident Exhibitions
Wattord Electronics

Join the growing habit!!

amateur
gardening

the leading weekly gardening magazine ON SALE EVERY THURSDAY

AG' SPECIAL OCT 6th issue

CURRANTS Red, black and white! How to grow and enjoy these healthy fruits.
AUTUMN ONION SETS. An easy way to grow a good crop of onions for next year.
Plus REVIEW of POWER CULTIVATORS and HOME PLUS—FREE with this issue—the Autumn edition of this colour magazine for the Home, Car and Garden. With special 'Living Electric' feature.

Don't miss out on this bumper issue GET YOUR COPY NOW!
NEW! We now have an arrangement with Music Maker Publications and will provide complete kits of projects that appear in Electronics & Music Maker and its sister publications Home Studio Recording and Guitarist.

Chromatheque 5000
5 Channel Lighting Effects System
Versatility is the key aspect of the Chromatheque. Musical input can perform switching of modulation of the light output. 5 banks of lamps of up to 500w each can be controlled in either analogue or digital mode. Variable light level controls provide scope for "mood" lighting. The kit's single-board concept makes for straightforward assembly.

Complete kit £79.50 + VAT

Transcendent 2000
This professional quality, single board 3-octave synth is transposable 2 octaves up or down giving an effective 7-octave range. There is portamento, pitch bending, VCO with shape and pitch modulation, VCF with high and low pass outputs and separate dynamic sweep control, noise generator and an ADSR envelope generator.

Complete kit £150.00 + VAT

Digital Delay Line
Digital quality at an Analogue price! With this unit you can have Phasing, Flanging, ADT, Chorus, Echo and Vibrato at the touch of a button. In a steel cabinet suitable for 19" rack mounting. Complete kit (400ms delay) £179.00 + VAT

Parts for Extra 400ms delay (up to 3 can be added) £19.50 + VAT

SP2 200 2-Channel 100 watt Amplifier
An ingeniously designed power amp. The SP2 200 can deliver over 100w rms into 8 ohms on each channel. Separate volume control and a sensitivity of 0.775 mV (0dBm) make this unit suitable for virtually all pre-amps or mixers. Construction is very simple, with minimal wiring and the steel cabinet is suitable for 19" rack mounting.

Complete kit £99.50 + VAT

Cortext II
16-bit 16-colour Computer
The new slimline Cortext offers constructors the speed and power of 16-bit computing for the same price as an 8-bit games machine. The standard kit has TV, cassette and RS232C interfaces - others are available as optional extras. Add disc drives, printer and monitor for a fully-fledged business system.

Complete kit £299.00 + VAT

Phone for illustrated brochure

DRA 100 Doppler Radar Intruder Alarm

NEW! MIDI CONTROLLED SAMPLER
See Electronics and Music Maker

DOPPLER RADAR INTRUDER ALARM

FEATURED IN THIS ISSUE

All kits are complete down to the last nut and bolt and are supplied with an easy-to-follow assembly handbook.

Write or phone for further details, stating which product(s) interest you. Access/Visa cardholders may order by telephone to avoid delays.

Prices apply to UK only and are correct at time of going to press. Overseas customers - please contact our Export Department for the name and address of your local dealer. Allow 21 days for delivery. Offers subject to availability.

Powertran Cybernetics Ltd.
Portway Industrial Estate, Andover, Hants SP10 3PE. Tel (0264) 64455
The amazing Maplin Catalogue is here again! The new edition is packed with hundreds and hundreds of new electronic components to bring you right up to date with all the latest developments. As all home constructors agree (and a good many professionals too) the Maplin Catalogue is the one essential piece of equipment they really need. And now with all our prices on the page the Maplin Catalogue is better value than ever.

On Sale From 10th November 1984.

Pick up a copy as soon as it's published at any branch of W.H. Smith or in one of our shops. The price is still just £1.35, or £1.75 by post from our Rayleigh address (quote CA02C).

Post this coupon now for your copy of the 1985 catalogue. Price £1.35 + 40p post and packing. If you live outside the U.K. send £2.40 or 11 International Reply Coupons. I enclose £1.75.

Name
Address

MAPLIN ELECTRONIC SUPPLIES LTD
46-48 Bevois Valley Road, Southampton. Tel: 0703-25831. All shops closed all day Monday.
the single-arm manipulator with multiple joints, as widely used in automatic spot welding of car bodies for example.

SMALL ROBOT STRUCTURES

The typical small single-arm robot is designed to stand on a table or lab bench. It is about a foot or more high and weighs roughly the same as a heavy-duty typewriter. The arm is made up of several sections or members constructed of metal plates or pressings, which are jointed in much the same sort of arrangement as an industrial robot (Fig. 1).

These members are comparable with the human trunk, upper arm, forearm, hand and fingers. They are articulated by rotating joints corresponding to the human waist, shoulder, elbow, wrist and prehensile joints in the hand. The robot is driven by low-power electric motors or hydraulic cylinders, under the control of a microprocessor or microcomputer system. It will lift and move loads which are typically to be measured in grams, compared with the kilogramms of industrial robots.

Also classed as personal robots are little wheeled vehicles called buggies or tortoises (‘turtles’ in the USA). These run about on the end of a flexible cable under remote control of a computer. Although they may well have some educational value in control systems generally, they do not have industrial ‘big brothers’ as directly as the single-arm manipulators do. Perhaps the nearest thing in industry is the AGV (automatic guided vehicle) used, for example, in automated warehouses.

HISTORICAL DEVELOPMENT

The idea of the robot has been around for many centuries. In literature it has existed from Homer to modern science fiction. The name itself comes from *robot,* the word meaning work in Russian and other Slavonic languages (written in the appropriate Cyrillic characters of course). It was, in fact, a Czech, the author Karel Capek, who coined the word in the 1920s, in his play *Rossum's Universal Robots.*

In the real world, robots have been known for several centuries in the form of automata (machines imitating animate creatures). The 18th century clockmakers Jacquet-Droz, for example, constructed several mechanical humanoids which wrote, drew or played musical instruments. But in the 20th century the term robot has been applied to almost anything automatic—for example traffic lights, because they replace policemen for directing road traffic.

With modern industrial robots, however, there is a return to the concept of machines with structures and actions similar to those of living creatures, as we have seen with the single-arm manipulator. Of course, this is not being done merely for the sake of imitation, as with the 18th century automata, but because the modern robots are intended to replace manual operations to some degree. They must therefore be designed to get as near as possible to the flexibility and versatility of the brain directed human arm and hand.

Moreover, the robot manufacturer cannot afford to produce many different types of highly specialised machine with restricted markets. He wants to make and sell large quantities of standardised robots which are versatile enough to work in many different manufacturing processes. Taken to its logical conclusion, this policy would end up in manufacturing robots which were in fact very similar to human beings. But in practice, of course, this is not necessary.

The present level of articulation in single-arm manipulators—five or six axes of rotation of the kind shown in Fig. 1—can be seen as developing slowly from the automation systems of fifty or more years ago. These were the early transfer lines in Detroit automobile plants and conveyor belts in other industries. Automatically operated rods or gates were used for simply pushing or pulling objects on or off these moving production lines at the right times and in the right directions.

Such simple devices, which are still in wide use, are only programmed to make one particular movement, and they repeat it tirelessly and reliably every time they receive the appropriate mechanical or electrical trigger. Thus they are rather like the mindless physiological reflexes in humans or other animals.

Some of the early programmable robots were derived from this pushing/pulling type of action, in that they were based on the principle of the telescopic arm—a rod that would extend and retract but not bend in the middle. But the telescopic arm was pivoted to allow it to move round in a horizontal plane, so that it could act in different directions, and also had a manipulatory hand or gripper on the business end. The early Unimate robots of this kind, for example, could pick up, set down and manipulate tools or objects under the control of instructions...
stored on a magnetic drum.

The increasing versatility of automation systems—especially with computer control coming in—led to the development of the articulated arm capable of performing much more complex movements. Unlike the telescopic arm, it could move its gripper up and over, or down and under or some other path, as necessary to avoid obstructing parts of the fixed machinery in a plant.

We now have both types working in factories. In general they are called first-generation or 'pick and place' robots. They will operate, such as welding heads or paint-spraying guns, or handle materials or workpieces, such as placing chocolates into paper trays or positioning metal components for machining processes.

They operate, however, with a fixed sequence of positions and actions, for which they have been initially programmed. And they are somewhat 'mindless' in this, because even if the tool or workpiece is missing for some reason they will just go on uselessly beating the air, repeating the same movements.

But first-generation robots are versatile devices when they can be re-programmed. This calls for a method of programming which allows the instructions to be quickly and easily changed. In the early days programming was done by hardware—mechanical stops, limit switches, hand-set electrical connections and pneumatic air tubes, cam-operated contacts and so on. This kind of technology is now being replaced by software programming, through minicomputers and microcomputers. Software programming is not only more convenient and flexible to use but also allows a higher level of machine intelligence to be introduced.

One technique of programming by software is to start from the desired movements and positions of the robot's hand in three-dimensional space (using Cartesian or cylindrical coordinates) then calculate by a long string of transformations the various arm and drive positions, control signals and program instructions required to achieve them. This is highly complex and difficult. Most manufacturers of commercial robots provide means for a much easier and quicker method of programming—empirical rather than analytical.

The user has a hand-held keyboard or control box which allows him to drive the various axes of the robot arm so that he can find the correct movements, positions and actions experimentally for the task involved. When each correct position or action is found in this way, the user presses a key to record it in the robot's programmable memory (e.g. a RAM). Thus a complete software program is built up empirically, and from then on can be repeated automatically. This is called 'training' or 'teaching' the robot.

CONTROL AND SENSING SYSTEMS

Drives for the various parts of the articulated arm—often electric but sometimes hydraulic or pneumatic—are controlled by electrical/electronic circuits which receive commands from the stored program. These control systems are either open-loop (sometimes called 'non-servo') or closed-loop (or 'servo'), as shown in Fig. 2.

In an open-loop control system—typically a sequence of pulses fed into a stepping motor—a given electrical change, say a single pulse, produces a known angular or linear displacement in the motor and arm mechanism. Open loop systems have the advantages of simplicity and low cost and can be very accurate for position control if there is no backlash, slip or other play in the mechanism. The more advanced designs of industrial robots, however, tend to use closed-loop control.

Here, as shown in Fig. 2 (b), the position resulting from a mechanical movement is measured by a transducer, such as an analogue potentiometer or a digital shaft encoder, and the information—the 'actual position'—is continuously compared with the 'desired position' supplied by the stored program. When they are different an error signal is produced. The motor, which could be an a.c. or d.c. servomotor or an hydraulic cylinder, drives the mechanism to reduce the error signal to zero and then stops. Such servomechanisms automatically deal with any mechanical lost motion because this is contained within the feedback closed loop. By their use, repeatable positioning accuracies in robots of better than 0.1mm are now being obtained.

But even the monitoring action of the closed-loop control system is confined within the robot itself. In the latest robotic systems now emerging, called 'second-generation' robots, greater accuracy, versatility and intelligence are obtained by extending the monitoring concept outside of the robot to include the workpieces, materials or tools being manipulated. Various sensing techniques are being developed, both privately and through publicly-funded research projects. Japan is spending about £550M on such work, the UK about £1.2M.

At present most of the sensors actually constructed or operating are optical and are therefore called 'vision systems' or 'machine vision'. Typically, a small television camera mounted near or actually on the robot views the objects being manipulated in relation to the operating end of the robot arm. The video signal from the camera undergoes analogue and digital signal processing to derive numerical data on size, position, shape, colour and any other information required, and this is used, via a computer, to control the robot arm in relation to the work.

For example, at a General Motors automobile plant in Canada, a vision system guides two co-ordinated robots to pick different gear housings off a moving conveyor and sort them into stacks according to type. RCA Laboratories have developed a vision guided equipment for assembling loudspeakers onto mounting points. The vision system locates the holes in the speakers and the studs on the mounts, while force transducers 'feel' to check whether a successful assembly has been achieved.

Conditional branching in computer programs, based on the logical operator implication (or IF p, THEN q), allows robots to make decisions—or rather implement human decisions—on the basis of inputs from sensors and transducers.

Some robots on the market already have force transducers built into their hands to detect if the grippers are actually in contact with the workpiece and holding it. The idea of incorporating speech recognition systems to enable robots to respond to spoken commands has been tried experimentally. It may well prove genuinely useful in industrial processes where an operator's hands are busy with other tasks requiring human levels of skill and dexterity.

Fig. 2. Two methods of position control used for drive motors or hydraulic cylinders in articulated arms: (a) open-loop, and (b) closed-loop. (For simplicity, diagrams do not show whether functional blocks and signals are analogue or digital)
Powertran’s range of educational robots has been tried and tested in schools, colleges and universities throughout the world.

From a simple demonstration of computer control to a full simulation of industrial robots, there is a Powertran product to suit – at a price that will suit your budget.

Powertran robots are now more reliable than ever. The developments and improvements made since our incorporation into the Feedback Group of companies are the direct result of Feedback’s 25 years’ experience.

Write or phone for our illustrated catalogue and full price list of kits and ready-built robots.
Armdroid I has 5 axes plus 3-finger gripper (6 stepper motors with open loop control) capable of lifting 300g. Supplied with PSU and software for BBC, Commodore 64 or Spectrum, but will interface to any micro with 8-bit parallel port. Microswitches to aid positional sensing are optional. Hand-held manual control box is available. Overall dimensions: 150 x 230 x 310mm with reach of 340mm. Price £495 + VAT (assembled), £445 + VAT (kit). An alternative 2-fingered gripper is available for £35 + VAT. Colvis solid state vision system allowing 32 x 32 pixels can be added. Price £899 + VAT.

Colne Robotics Co. Ltd., Beaufort Rd., East Twickenham, Middx TW1 2PO. 01-892 8197.

Fischertechnik telescopic robot arm is one of 6 micro controlled devices that may be built using their highly educational 'Computing Kit'. Each peripheral may be broken down and reassembled as another, to make such things as a plotter, a sun-seeking solar cell and a sorting machine. The robot incorporates 2 motors with potentiometer position sensing, and an electromagnetic pickup. Available from major toy stores. Price £64-95. Artur Fischer (UK) Ltd., Fischer House, 25 Newton Rd., Marlow, Bucks SL7 1JY. 01-Marlow 72882.

Teach Robot (TR2) is powered by 6 d.c. motors with optical shaft encoding for position sensing. It has 5 axes plus gripper, the main bearing comprising two ball races. The kit can be assembled in 6 hrs (spanners are provided). The robot may be manually activated from 'Action Box', or each motor micro driven by a Euro-board interface on a system bus allowing up to 9 boards. Vert. reach 760m, hor. reach 460mm. Prices: TR2 £185 (kit), 90-page manual £12.50. Action Box (kit) £41, 6-board interface/bus kit (without I.c.s) £180. Prices exclude VAT.

Remcon Electronics Ltd., PO Box 81, Chislehurst. Kent BR7 6LP. 01-467 7377.

RBSX is a mobile robot with onboard processor (±BK RAM) which is programmed by downloading from an external computer. Its language is Tiny BASIC, and software is available which allows the mobile to learn from its environment. Other features include: Plug-in space for custom electronics boards, a sonic rangefinder for up to 10 metres, 6 tactile sensors and an ability to find its charger and recharge itself when detecting a low battery state. There is a socket for preprogrammed software modules, two RS232 interfaces, six 8-bit I/Os, a horn and flashing l.e.d.s, plus an undercarriage photodiode system. Dimensions 330mm dia., height 580mm. Optional extending arm payload 0.45kg. Other add-ons such as speech synthesis/recognition available. Price $2295. R. B. Robot Corp., 18301 West 10th Ave., Suite 310, Golden, Colorado 80401.

Fischertechnik telescopic robot arm is one of 6 micro controlled devices that may be built using their highly educational 'Computing Kit'. Each peripheral may be broken down and reassembled as another, to make such things as a plotter, a sun-seeking solar cell and a sorting machine. The robot incorporates 2 motors with potentiometer position sensing, and an electromagnetic pickup. Available from major toy stores. Price £64-95. Artur Fischer (UK) Ltd., Fischer House, 25 Newton Rd., Marlow, Bucks SL7 1JY. 01-Marlow 72882.

Teach Robot (TR2) is powered by 6 d.c. motors with optical shaft encoding for position sensing. It has 5 axes plus gripper, the main bearing comprising two ball races. The kit can be assembled in 6 hrs (spanners are provided). The robot may be manually activated from 'Action Box', or each motor micro driven by a Euro-board interface on a system bus allowing up to 9 boards. Vert. reach 760m, hor. reach 460mm. Prices: TR2 £185 (kit), 90-page manual £12.50. Action Box (kit) £41, 6-board interface/bus kit (without I.c.s) £180. Prices exclude VAT.

Remcon Electronics Ltd., PO Box 81, Chislehurst. Kent BR7 6LP. 01-467 7377.
Teach Mover has 5 axes of movement (plus gripper) using stepper motors with open loop control. This unit has been specifically designed to simulate industrial robot operations in the laboratory or classroom; it has an on-board microprocessor. Via the teach control unit an operator can put together complex routines by positioning the arm with the various keys and pressing the 'Record' key. Up to 53 positions can be recorded in this way. An auxiliary 12V/4A power supply is required (£170). The price, £2,280, includes teach control unit, user manual and Apple II software package. Accessories include an experimenter's kit. Syke Instrumentation Co. Ltd., Syke House, 117/119 Station Road, Liss, Hants. GU3 7AJ. 0730 893821.

Minimover has 5 axes of movement using stepper motors with open loop control, it has an 'intelligent' gripper that can sense if it is holding something and judge its size to within 1-5mm. Will interface directly to Apple II, TRS 80 and Pet computers or any 8 bit parallel port machine. Max. payload at full extension is 445g. Auxiliary power supply required, 12V, 4A, from manufacturer, £130. Robot price £1788 including cable and user manual (prices exc. VAT). Accessories available include; Reference and applications manual; Pneumatic gripper (two finger) with mount adaptor kit; Pneumatic accessory kit with 4-way valve and speed control; Also various software packages. Syke Instrumentation Co. Ltd., Syke House, 117/119 Station Road, Liss, Hants. GU3 7AJ. 0730 893821.

Atlas is a self-contained stepper motor driven robot with onboard micro. It has 5 axes plus one supplementary function. The teaching console provides automatic editing. The robot is readily dismantled to allow students to study its mechanisms. Maximum payload is 1kg. Resolution better than 0.1mm and repeatability better than 1mm & full load. Price £1,950. Test & Diagnosis module £250 (kit). L. J. Electronics Ltd., Francis Way, Bowthorpe Industrial Estate, Norwich NR5 9JA. 0603 748001.

BBC Buggy kit is based on modular Fischer Technik parts, prewired stepper motors and assembled circuit boards, and may be modified during experimentation. Only a screwdriver is required for assembly. Interfaces are available for Spectrum and RML (Commodore 64 in pipeline) which include onboard ADC and 7-seg. display of control lines status. The Buggy accommodates a full range of sensors and is sold with a 13 program cassette. These are: Test & Familiarisation, Switch (direct computer control), Memory Switch, Recorder (route display), Snail (screen route planning), Routeplanner, Bar Code Routeplanner, Explore (seeks out object, defines its shape and returns to base), Explore Wall (maps boundaries), Sunseeker (mazes lightfinder), Man vs Buggy, Line Follower, and Tin Pan Alley (composing music by barcode). A 'Grab Arm' is available. Price (BBC version £164.35 + VAT) Economatics (Education) Ltd., Epic House, 9 Orgreave Rd., Sheffield S13 9LG. 0742 690801.
Neptune Models I and II (currently published in Practical Electronics) are electro-hydraulically powered robots. Neptune I has 6 servo-controlled axis movements and Neptune II has 7. These systems use water as the hydraulic medium, they are sold in kit form. Assembly time is minimised by the use of a preformed wiring loom, pre-assembled and tested electronics and pre-assembled cylinders which are leak-proof and incorporate inertial compensation. Suitable for the BBC, VIC 20 and Spectrum computers, Neptune I has 8-bit control and II has 12-bit control. Both robots are, with ADC option, controllable via a hand-held simulator (£45/£52). Maximum payload is 2.5kg. Prices: Neptune I: £1,732.50 including ready-built control electronics (optional), Neptune II: £2,530 including ready-built control electronics (optional). ADC option £109; ready-built hydraulic power pack £500; gripper sensor £43; optional three-fingered gripper £88; connector leads extra.

Cybernetic Applications, Portway Trading Estate, Andover, Hants. SP10 3PR. 0264 50093.

Hero 1 (ETW-18) is a mobile incorporating an extending arm (up to 127mm) plus a further 3 axes and gripper. The head rotates 360° to position the arm and sensors, the entire machine being powered by 8 motors, 7 of which are steppers. An optical encoder measures distance travelled, and there is a board for experimental circuits. Also includes: Voice synthesiser, ultrasonic motion detector, sound detector, light detector, 7-seg. display and keyboard for program entry, ultrasonic rangefinder, cassette interface, realtime clock/calender, battery charger, and a teaching pendant which provides an easy way to program movements. Includes 1200 page robotics course. Price £1,995 + VAT & p.p. Available ready-built from Zenith Data Systems Ltd., Bristol Rd., Gloucester GL2 6EE. 0452 29451. Available in kit (ETS-18) from Maplin (see advertisers' Index). Price £999.95.

Hero Junior is fashioned visually on Hero 1 but intended for domestic and entertainment use. It can sing, recite poetry, follow human beings around, and wake up its owner in the morning with a personalised alarm, detecting whether or not the reposer has stirred before taking appropriate action. Battery life is 4-6 hours. Hero JR can patrol a security round and activate the Heath burglar alarm upon detecting an intruder. Unfortunately, this and other wireless features are not suitable for use in the UK. A range of cartridges give JR a choice of personalities to suit situations, e.g. games and songs for a party, quizzes for education etc. JR has no arm. Price £499.95 (kit); £999.95 (assembled). Maplin Electronic Supplies.

Edinburgh Turtle is a production version of that produced by the a.i. department of Edinburgh University. It may be programmed to move a fixed distance in any direction, or to turn a specific number of degrees. Incorporates a retractable pen, which, using the language LOGO may be used to draw shapes and remember how to do it again in the future. Two types available: TURTLE-SEER with serial interface, PSU and EPROM for use with any micro, and TURTLE-PARA in which a specific interface for the micro used is supplied. In the latter, disc or cassette software is downloaded. RC4 Turtle does not require a cable link because it has an onboard rechargeable battery, and communicates via a two-way radio control link. Therefore its movements are not restricted, and additional sensors can feed data back to the micro. Prices: Edinburgh Turtle £350 (SERI), circa £170 (PARA). RC4 £175. To all prices add p&p and VAT. Jessop Microelectronics Ltd., Unit 5, 7 Long St., London E2 BHN. 01-739 3232.
Alfred (featured currently in Everyday Electronics) is powered by six servomotors, five of which provide axis control, and one of which is mounted on the forearm (but not shown in photo) to control the gripper. Power is transmitted along the plastic arm by toothed belts, producing a highly articulated arm using simple components. Alfred interfaces to any micro with an 8-bit I/O port, and requires a 12V/2.5A PSU. The arm heralds a range of peripherals including vision and mobile base. Software includes simulated pendant. Arm reach is 380mm, payload 170g. Price £140 + VAT. Available from Robot City Technology, 20 Burners Lane, Klin Farm, Milton Keynes MK11 3AU. 0234 750120.

Beasty Arm is powered by 3 radio control type servomotors using the well known 'Beasty' - a matchbox sized motor controller which communicates with a BBC micro serially (theoretically allowing optical, and even radio link-ups). The standard arm uses a hook, although a gripper can be added. Arm lengths, joint leverages etc. are selectable, facilitating custom design. Software supplied on cassette is ROBOL which is a simple control language. Price £110 (basic configuration). Also available: EV1 Electronic Vision of 128 x 256 pixels scanned in 0-05 secs Price £129.95. Beasty Mobile Base is a caterpillar vehicle measuring 360 x 304 x 225mm high, capable of conveying a 6.5kg load over rugged terrain at up to 5 m.p.h. Price £60. Commotion, 241 Green Street, Enfield, Middlesex EN3 7SJ. 01-804 1378.

Mentor has 6 axes of movement, simultaneously servo controlled. Features integral control electronics and power supply, long life bronze and nylon bearings and inertial compensation circuitry. Optional ADC (on-board) available, also hand-held simulator. Suitable for use with the BBC, VIC 20 and Spectrum computers using BASIC. Mentor is supplied as a kit with ready-built control electronics (optional). Price £552. ADC option £22.50; Simulator (requires ADC option) £48; prices include VAT. Connector leads extra. *Cybernetic Applications*, Portway Trading Estate, Andover, Hants. SP10 3PR. 0264 50093.

MA2000 Open University robot has 6 axes, powered by d.c. servo motors, plus a pneumatic gripper (for which a compressed air cylinder, or compressor is required). Supplied in wooden case which converts into operating base, keypad, and controller interface for BBC Model B and the University's Hektor micro. Software (partly BASIC) enables 3 alternative movement programming methods. Experiment kit also available. Arm reach is 500mm, payload 1kg. Price to be announced. *Tecquipment International Ltd.*, Bonsall St., Long Eaton, Notts NG10 2AN. 0602 722611.

NOTE: Prices were correct at time of going to press, but in many cases should only be considered as a guide. The supplement heading picture shows a robot made by ASEA Ltd., spot welding SAAB motor cars.

George can be programmed with up to 48 steps, and will go forwards, backwards, hold, turn, or curve left, or right, and retract. He has 3 speeds and 9 time intervals, and incorporates a light beam and sonder. A demo program is provided. George is 168mm high. Price £23.95. Available through retail outlets. *Computer Games Ltd.*, CGL House, Goldings Hill, Loughton, Essex IG10 2RR. 01-508 5600.
Cyber 310 has 5 degrees of movement with a programmable gripper (6 stepper motors) and a maximum payload of 250g. It has the rare ability to rotate the shoulder through 300 degrees in the vertical plane to operate on the opposite side with the arm upside down. Ideal for use with BBC micro or 8 bit parallel (centronics) ports; uses ROBOFORTH (extension of FORTH) learning system, sub-routines in BASIC (non-learning). Price £772.50. Includes ROBOFORTH software, cable, step by step tutorial. Application software available (£230)—the core of the package is Cartesian co-ordinates (x,y,z); Cylindrical polar co-ordinates (distance, height plus angle); this (three in one) package allows movement by describing a position in space and the approach angle of the gripper. Also includes Towers of Hanoi using real disks. Cyber Robotics Ltd., 1 Ditton Walk, Cambridge CB5 8GD. 0223 210675.

EE Buggy (published in Everyday Electronics May 1984) uses a twin motorised gearbox with magnetic clutch. Optoelectronics feedback provides closed loop control, along with 2 collision detectors. For use with micros having 8-bit user port. Price £37 (excluding p.c.b.s which are available from the EE PCB Service). Greenveld, 443 Millbrook Rd, Southampton SO1 0HX. 0703 772501.

Genesis series: P102 is a hydraulic anthropomorphic arm with 5 axes plus gripper capable of a 3lb payload. It has double-acting cylinders with inductive positional feedback, and 2-speed operation. Dedicated 6802 control box offers 8 programmable sequences of up to 64 steps, but allows greater sophistication by way of an RS232 link to an external computer. 4K of non-volatile memory is incorporated. Price £1,476 + VAT.
P101 is a simplified version with single-acting cylinders, and 2K of non-volatile memory (8 programmable sequences of up to 32 steps). Price £1,060 + VAT.
Micrograsp (also shown in the photograph) is a motor-driven arm of 4 axes plus gripper. Potentiometers provide positional sensing. Can be driven from almost any micro (ZX81 especially) using the interface board supplied. Construction is basic with all those parts subject to wear readily replaced. Price £272 + VAT.
Hebot II (shown above) is a turtle type robot featuring independent 2-wheel drive, collision detectors, retractable pen, flashing eyes and a horn. Supplied with this is a universal interface board. Price £95 + VAT.
All these robots are available in kit form from Powdertran Cybernetics Ltd., Portway Industrial Estate, Andover. Hants SP10 3BR. 0264 64455.
HRA34 is a ready-built version of P102 (with improved interface). P/ce £2,726 + VAT. Available from Feedback Instruments, Park Rd., Crowborough. Sussex TN6 2QR. 08926 3322.
BUYER'S GUIDE

SMALL ROBOTS

Movit Mini Robots range comprises 5 battery powered machines (shown in order).

MV913 Line Tracer is guided along a line by an infra-red sensor. It has 3 wheels driven by 2 d.c. motors. Price £17.99.

MV915 Piper Mouse uses a sound sensor to follow instructions issued by its owner using a whistle. Has 3 wheels driven by 2 d.c. motors. Price £19.99.

MV918 Memocon Crawler contains RAM to remember and follow instructions entered through a keyboard. Has 3 wheels driven by 2 d.c. motors. Price £34.99.

MN919 Monkey romps along a tightrope, activated by a clap of the hands, or other fragor. Driven by 2 cranked gripper arms. Price £9.99.

MN935 Circular is controlled using a hand held unit, and can wheel around the floor in any direction, or turn on the spot. Has 2 wheels driven by 2 d.c. motors. Price £29.99.

Prism Micro Products Ltd., Prism House, 18-29 Mora St., City Rd., London EC1V 8BT. £91-253 2277. Movits are available through High Street hobby and toy stores.

SWITCH YOUR MICRO TO CONTROL TECHNOLOGY

ARMDROID 1 ROBOTIC ARM

Five axis stepper motor driven robot, assembled or in kit form, for use with most 8-bit micros.

COLVIS COMPUTER VISION SYSTEM

Image processor with its own computer and lightweight camera for attaching to a robot.

MOTORIZED GEARBOX

As featured in 'Computer Control of Small Vehicles' in May issue of EE. Complete set of components (not PCB) + Gearbox & Wheels (as recommended by the authors) for £37.

These units are as used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the electromechanical parts required in building remote controlled vehicles. The unit has 2 x 3V motors, linked by a magnetic clutch, thus enabling turning of the vehicle, and a gearbox contained within the black ABS housing, reducing the final drive speed to approx 50rpm. Data is supplied with the unit showing various options on driving the motors etc. £5.95. Suitable wheels also available. 3" Dia plastic with black tyre, drilled to push-fit on spindle. 2 for £1.30 (limited qty). 3" dia aluminium disc 3mm thick, drilled to push-fit on spindle. 2 for 88p.

GREENWELD

84 PAGE CATALOGUE NOW AVAILABLE!

It's Bigger, Brighter, Better, more components than ever before. With each copy there's discount vouchers, Bargain List, Wholesale Discount List, Bulk Buyers List, Order Form and Reply Paid Envelope. All for just £1.00!

IF YOU'RE going to build your own robot you'll need lots of components... our packs offer outstanding value and big variety. A few are listed here - for details of over 30 others send £1 for CAT or large SAE for latest pack list.

K021 Miniature JW 5% carbon film resistors, as used in nearly all projects. 10 each of all values from 16R to 1M in the E12 range. Total 610 resistors. Price £3.95.

K003 ITT PMT 100V range or similar polyester capacitors. 10 each of: 0.01 0.02 0.033 0.047 0.068 1.5 2.2 3.3 4.7uF. Price £3.16.

K010 Electrolytic caps, 16V wkg. 10 of each of: 1.2 2.4 3.7 4.7 10 22 47 100 200 470 1000uF. Total 160 capacitors. Price £7.02.

K518 200 Disc Ceramic Capa. Big variety of values and voltages from a few pf to 2.2uF. 3V to 32V. £1.00.

K517 Transistor Pack. 50 assorted full spec marked plastic devices NPN PNP RF AF. Type numbers include BC114 117 172 182 183 196 239 251 214 255 320 BP196 255 384 2N4404 etc. etc.

IT'S BIGGER, BETTER, MORE...

Retail cost £7. Special low price 275p.

Official orders welcome — minimum invoice charge £10. No min. on CWO. Goods normally dispatched by return of post.

Colne Robotics Co Ltd.

M Marvin Road, Milnrow, Rochdale, Oldham, Lancs. 1W 2NC

Telephone (0392) 8079 or 8067. Telex 6881056.

4410 Millbrook Road, Southampon. SO1 DHX Tel (0703) 773501/783746.

ALL PRICES INCLUDE VAT.

GREENWELD

84 PAGE CATALOGUE NOW AVAILABLE!

PRICES INCLUDE VAT.

STANDARD POSTAGE: 35p.

LOW POSTAGE: 34p.
Although the small educational and personal robots are somewhat crude in mechanical design compared with their industrial big brothers, in another respect they are more advanced. Programming by software, and all the operational flexibility it provides, came rather late in the day to industrial robots — when minicomputers and microcomputers eventually arrived in the factory. With the small educational and personal robots it was the other way round.

The means of programming by software — microprocessors and microcomputers with their associated programming languages — already existed in some abundance and variety before the small robots were even thought of. In fact it was the electronics and software that really sparked the mechanics of these devices into existence.

A generalised schematic of a personal or educational robot is shown in Fig. 1. The technology is similar in principle to that of the industrial programmable controller used for sequence control of machines or processes. Such a system can be broken down, as shown, into three main functions: a stored, alterable program, a control section, and whatever device is being actuated (in this case a machine under position control).

To make a single-arm robot perform a required task — say picking up an object, moving it to another place and putting it down there — the various mechanical members of the articulated arm have to be moved through sequences of positions in space. So the electric motors or low-power hydraulic cylinders that drive these members, rotating them about the various joint pivots, have to produce related sequences of angular or linear positions at their drive shafts or rods (depending on the gearing, transmission etc).

In turn this means that the drive motors or cylinders must be energised for specific durations and at specific times throughout the task. The electric or hydraulic power is switched to them in the required pattern by a control system — typically by switching semiconductor power amplifiers on and off.

The power switching is controlled by electrical signals and these in turn are initiated by data from a stored software program. Usually this program is held in one or more semiconductor memory chips. Part of the total storage capacity is a programmable memory, usually a RAM: this holds the user's application programs, which can be loaded and changed as required.

The remaining storage capacity is used for necessary firmware: a permanent (ROM) or semi-permanent (EPROM or RAM) memory holding an internal system program — called an operating system by some manufacturers — which allows the applications software to be conveniently run on a particular arrangement of robot hardware. This internal 'managerial' firmware is, of course, dictated by the design of the robot system's fixed hardware.

In software terms the applications and internal system programs are stored lists of position-control instructions. Electrically they are spatial patterns of binary states in the bit cells of the memory chips. They are written into and read out of memory under the control of a microprocessor. When read out to perform their position-control functions, the static bits become a stream of digital data, which passes out of the 'Program' block in Fig. 1 via a serial or parallel input/output channel.

At this point the program instructions are in binary code, typically a sequence of 8-bit bytes. They therefore have to be decoded to form the switching signals, and this is done in the 'Control' block of the Fig. 1 schematic.

As systems, the small robots now on the market can be divided into two groups. In the first group, the 'Program' digital storage and processing section of Fig. 1 is built into the equipment by the manufacturer, along with the 'Control' section and mechanisms. The programmable part of the memory might be a small capacity RAM (say 8K) and the microprocessor a 6502 chip. Also provided is a purpose-designed control box or keyboard.

In the second group of products, the 'Program' section in Fig. 1 is not built into the robot but has to be provided by the user as an external home or personal computer, as indicated in the diagram.

The important difference between them is this. In the first group of robots, the detailed control and co-ordination of the arm positioning is taken care of automatically by the internal system program, or operating system, stored as firmware. This allows the whole robot to be controlled by a comparatively simple steering keyboard, the keys directly commanding the five or six arm joints to rotate in one direction or the other.

In the second group, however, this system program is not provided as built-in firmware. The user can write it himself by analysis of the whole robot control system, perhaps using machine code, then place it in the home computer's RAM via the computer keyboard. Or he can make use of software already prepared by the robot manufacturer on magnetic disk or cassette and load this into his computer. Such prepared software uses versions of existing programming languages such as BASIC and FORTH.

Fig. 1 and the preceding discussion merely outline the general character of these small robot systems. But when examined in detail the products on the market reveal a bewildering variety of...
physical shapes and sizes, design techniques, performance levels, facilities and prices. To get a grasp of what is going on in this technology you have to mentally take the products to pieces and look at the individual parts in some detail. This is what we are doing in the rest of the document.

It's more helpful to divide these robot systems into their functional parts, rather than into the actual pieces of equipment which house them as commercial products. These functional parts are: (1) the mechanical structure of the articulated arm; (2) the drive system, including the electric motors or hydraulic actuators, gearing and transmission; (3) the control system for these drives, including conversion of digital data into control signals; and (4) the software programming and its associated hardware. Let's look at them in turn.

MECHANICAL STRUCTURE OF ARM

As outlined in the previous article, the articulated single arm consists of five main members, corresponding to the human trunk, upper arm, forearm, hand and (rudimentary) fingers. The vertical 'trunk' part rotates through about 360° at the 'waist', pivoting on a base unit intended to stand on a table. These general features can be seen from Fig. 1 in the previous article.

The extension members are jointed at pivots which allow rotation in one plane at any given point in the arm (e.g. forearm rotation relative to the upper arm, at the elbow). At the wrist, however, a more complex double pivoting arrangement, usually based on a differential gear, allows rotation of the hand in two planes relative to the forearm carrying it.

One axis allows the hand to pivot as in bending the wrist to wave good-bye (called pitch). The other allows the hand to rotate axially, as in using a screwdriver (called roll)—even when the wrist is well bent, which is more than human anatomy can do (try it!)

The wrist differential gear has two input bevel gears driven by separate motors and a planetary output bevel gear which moves the hand in the two ways described. When the two input gears are rotated equal angular distances in opposite directions, the output gear simply rotates on its own axis, producing the 'roll' wrist rotation. When the two input gears are rotated in the same direction through a given angular distance, the output gear moves as a whole in planetary fashion round the input gears (without axial rotation) producing the 'pitch' motion, up or down according to the input drive direction.

At the extremity of the articulated arm the rudimentary 'fingers' take the form of grippers, which can be closed and opened to grasp and release objects. These are short members on pivots corresponding to 'knuckles': a pair for gripping square objects or three for gripping round objects.

In the manufacturers' literature, the versatility of the arm for manipulation is specified as the number of joints at which distinct rotations are possible (e.g. forearm relative to upper arm) in the articulation system. This is expressed as a number (typically 5 or 6) of 'degrees of freedom', or 'degrees of motion' or 'axes of rotation' or 'axes of movement'.

Don't be confused by these different terms: they all mean the same thing. ('Degrees of freedom', a term borrowed from physics and chemistry, is particularly unfortunate because it has nothing to do with the angular degrees of rotation at the joints but might be thought to mean this.)

But the mechanical versatility of the structure also depends on the angular distances through which the various members can be rotated, so these figures should be studied in the literature as well.

DRIVE SYSTEMS

The extension members of the articulated arm are rotated on their joint pivots in a variety of ways. In the electrically driven robots, the motors are either mounted directly on the various members, at or near the joints, or some distance away—usually in the 'trunk'—transmitting their drive to the joints by arrangements of cables and drums or toothed plastic belts and gear wheels.

The second, remote method has a double advantage. It does not have to lift the weight of the motors added to that of the arm members, and it keeps the centre of gravity low so that the robot doesn't have a tendency to topple over.

Gearing down is used in all arrangements, both to reduce the motor shaft speed to the comparatively slow rotation required at the joints and to obtain the necessary torque or force at the joints. This is done by direct meshing of metal or plastic gear wheels, by cables and drums or by belt drive gearing, depending on the transmission requirements of the structure.

In the hydraulically operated robots, the arm members are
received their electric power directly without conversion. The cylinders provide a linear thrust. To obtain the two directions of motion required for ‘push’ and ‘pull’ at a given joint, either a spring return cylinder or a double-acting cylinder must be used. In some parts of the arm mechanism the linear motion of the cylinder is converted into rotary motion by a rack-and-pinion system.

Some electrically operated robot arms use d.c. motors in closed-loop systems (see Fig. 2(b) in previous article) for position control. But many of the products use stepping motors, of the low-cost kind mass-produced for video recorders.

In broad principle the stepping motor is rather like an a.c. synchronous motor, in so far as the angular movement is locked to pulses of current. In the synchronous motor these current pulses are half-cycles of a.c. and arrive repetitively from the mains to produce continuous rotation. In the stepping motor they are square pulses (switched d.c.) which can be sent to the motor singly, whenever required, to produce discrete steps of angular motion.

For example, in one widely used stepping motor each incremental pulse fed to the windings results in a precise angular movement of 7½° degrees. Thus 48 steps are needed to complete 360 degrees of rotation. So a known number of current pulses fed into a stepping motor will result in a known angular displacement. In conjunction with a known gear ratio between the motor and the arm mechanism, this offers a very precise means of position control.

Most of these stepping motors are four-phase types. They have four stator windings and the rotor is moved round, one step at a time, by applying current pulses to the windings in a cycle of events as shown in Fig. 2, with a 90 degrees phase difference between successive pulses. So the complete 360 degrees electrical cycle is made up of 4 × 90 degrees.

Different methods of drive are chosen to meet particular product design requirements. The main considerations are performance, cost, size and operational convenience. For example, the stepping motors in common use are chosen because they are cheap. They suit the pulse type of output given by digital electronic systems, and their incremental action allows precise positioning without the extra complexity and cost of closed-loop control systems.

Their main disadvantages are their limited torque (typically 85mN·m holding torque), which restricts the loading capacity of the robot, and their vulnerability to slip, which affects positional accuracy. In addition, to remain stationary in order to hold a given arm position they need continuous application of electric power—which can make them get rather warm.

 Hydraulic cylinders are chosen because, for a given force output, they are more compact than the majority of electric motors. Consequently for a given size of robot they can drive larger loads than electric motors can. This is because the mechanical power (fluid pressure) is supplied directly to the actuator, whereas an electric motor has to include an electromagnetic system to convert electricity to mechanical power.

For linear movements the hydraulic actuator is faster than the (rotary) electric motor. To hold a static position under heavy load the cylinder requires no consumption of power at all: the piston simply rests on a stationary volume of virtually incompressible fluid shut into the cylinder by a valve.

One disadvantage of the hydraulic cylinder is that it needs a closed-loop system for accurate position control. An hydraulic system also needs a central motor driven hydraulic pump to provide the necessary fluid pressure, whereas electric motors receive their electric power directly without conversion. Finally, hydraulic connections and other components may prove rather messy if they leak.

CONTROL SYSTEMS

The purpose of the 'Control' block in Fig. 1 is to control the energisation of the various drive motors or actuators in accordance with a sequence of positioning commands coming from the 'Program' section. These commands arrive as binary coded data, typically a stream of 8-bit parallel bytes output from a parallel interface unit (PIU).

Position control systems in small educational and personal robots follow the general principles of those in large-scale industrial robots. Both open-loop and closed-loop systems are employed (see previous article). Open-loop systems (Fig. 2(a) in previous article) are widely used in the small robots because they are simpler and in principle cheaper to manufacture than closed-loop systems. Perhaps a more important reason is that they can take advantage of stepping motors as very convenient positioning devices which can be directly driven from digital signals (see 'Drive' section).

Here the task of the open-loop control system is to take the binary coded position commands from the program memory and convert them into pulses of current to drive the stepping motors. The general method shown in Fig. 3 is used in several small robots.

Encoded position-control data arrives as 8-bit parallel bytes on lines D1 to D8. Each 8-bit byte contains three distinct groups of information. D1 to D3 is a three-bit code which tells the control system which one of the six stepping motors to select. D4 to D6 is a four-bit code which causes the selected motor to be stepped round a required number of steps. Finally, D7 provides a one-bit strobe pulse (logic 0 or 1) which causes the selected motor to receive the stepping code then present on D3-D6.

The D1-D6 motor selection code is decoded in an i.c. which produces a signal on one of six lines to bring in one of the six motor circuits. The general form of the decoding process is like this:

<table>
<thead>
<tr>
<th>D1 D2 D3 D4 D5 D6 Motor selected</th>
<th>Joint driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1</td>
<td>Gripper</td>
</tr>
<tr>
<td>0 1 0</td>
<td>Wrist roll</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Wrist pitch</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Elbow</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Shoulder</td>
</tr>
<tr>
<td>1 1 0</td>
<td>Waist</td>
</tr>
</tbody>
</table>

Stepping-code bits D7 to D8 are fed simultaneously in parallel to six i.c. latches for the six motors. For each 8-bit input byte arriving, the decoder emits a control signal which causes one of
these six latches to hold the stepping code and apply it through power switches to the windings of the corresponding motor. This occurs if the decoder has received the appropriate strobe pulse from D_4. If the motor turns in 74° degree steps, the stepping code could operate in the following manner:

In closed-loop position control (Fig. 2(b) in previous article) the drive electric motors or hydraulic actuators operate continuously until the sensed 'actual position' equals the commanded 'desired position' and then stop. For electrically operated robots, d.c. motors are used. In hydraulically operated robots the hydraulic cylinders are energised by fluid under pressure (oil or water) which is switched to them by solenoid valves controlled by on/off electrical signals.

Whatever the type of drive, the system needs a transducer to continuously sense the actual angular or linear position reached by the output shaft or rod. With d.c. motor drive the transducer is usually a potentiometer, the wiper terminal giving a d.c. voltage proportional to the angular position of the control spindle. This voltage is the 'actual position' signal which is compared with the 'desired position' signal to generate an error signal in the closed-loop system.

In hydraulically operated robots, some models use an inductive transducer, a linear variable differential transformer (LVDT). This takes the form of a cylinder holding inductively coupled primary and secondary coils, and this structure slides over the hydraulic cylinder as a whole. Fed with an audio frequency a.c. voltage, it senses the position of the cylinder's piston because this metal component acts as a moving core within the transformer coils and so alters the flux linkages and inductive coupling between the primary and secondary windings.

The a.c. output signals of all the LVDT transducers are rectified to give d.c. voltages (typically in a 20-50mV range) which are proportional to the positions of the pistons and hence cylinder output rods. In one model these d.c. voltages are sampled repetitively at a rate of 200kHz and thus multiplexed for the whole robot arm. The multiplexed voltage signals are then fed to an A to D converter, which converts each analogue value into an 8-bit code, thus giving a resolution of 1 part in 256 for each position measured in this way.

Some closed-loop position control systems include refinements such as two-speed movement or three-term control to improve the dynamic performance of the system and its ability to match the requirements of the manipulation task. Three-term control, a technique widely used in industrial process control to avoid overshoots, hunting (oscillations) and other undesirable effects, modifies the error signal characteristic as a function of time. The 'three terms' mean terms of an equation expressing the overall control behaviour. They are called 'proportional' (linear term), 'integral' (integration term) and 'derivative' (differentiation term), and these three modifying components, pre-adjusted by the user, are added to form the overall control characteristic.

When studying the manufacturers' literature on robot control systems, one often meets the term 'continuous path' as a description of the method of arm positioning. This can be confusing, because it is used differently in small robot technology and in industrial robot technology. In the small robot field 'continuous path' usually means that all the arm joints are driven simultaneously, instead of one after the other, to accomplish a total arm movement from one programmed position to another.

In the industrial robots field, 'continuous path' means that the path taken by, say, the gripper in moving from point A to point B is continuously controllable by the program—and hence by the programmer—over the whole of its length. Perhaps a specially shaped path, rather than a straight line, is needed for welding along a seam, spraying paint to follow a contour or to avoid some obstacle presented by the production process or machine. 'Continuous path' industrial robots are so named to distinguish them from 'point-to-point' robots, in which the user can program the required positions of point A and point B but has no control over the path taken by the gripper in moving between them.

SOFTWARE PROGRAMMING

As in other computer technology, the program which orders the robot arm to perform a sequence of actions is a list of instructions, stored in binary form in a semiconductor memory. The user writes it for the particular task concerned, often with the aid of a software package supplied by the robot manufacturer. In practice the programmable memory usually has enough capacity to hold several tens of program steps.

The manufacturers' software employs algorithms that take account of the design of the particular robot system and so open up this specialised piece of hardware to the user's more general requirements. For example, the user may wish to steer the robot by simple electrical signals commanding the various joint positions. These signals could come from a manually operated keyboard or control box, or they could arrive automatically as in factory automation systems.

Software packages from some of the manufacturers make it a straightforward matter to write programs relating to the geometry of the space in which the robot functions. The
algorithms start from required positions in three-dimensional space (of, say, the robot's gripper), as defined by Cartesian co-ordinates \((x, y, z)\), by cylindrical co-ordinates (angle and two distances), or other co-ordinate systems.

As already mentioned, there are two kinds of program in general use: application programs written by the user and internal system programs (or operating systems). Some robots on the market have system programs already built in as firmware. These often contain positional control information that allows the robot to be steered manually from a keyboard, and the maker supplies a control box for this purpose.

Other robots do not have such 'managerial' firmware built in, but the same purpose is served by the user writing his own system programs on an external home computer perhaps with the aid of manufacturers' software. In this case, if manual steering is required the computer's keyboard is used as a control box.

The robot makers normally supply their software on cassette or magnetic disk. It is often prepared in a special version of some existing programming language, such as a mixture of BASIC and machine code. The user loads it into the RAM of his home computer and then, using the VDU and keyboard, writes a program by the interactive process of responding to options displayed on the screen in menu form.

One manufacturer, for example, offers software packages in a version of FORTH, which is particularly suitable for control applications in any case. The instructions take the form of:

\[E \ 80 \ MOVE \]

where \(E \) is a mnemonic that selects the elbow joint in the arm, 80 is the number of steps chosen by the user to advance this joint relative to its existing position, and MOVE is the command to perform this instruction. Another type of instruction, for absolute, rather than relative, positioning has the form:

\[300 \ W \ 200 \ S \ GO \]

which means that the waist (W) and shoulder (S) are instructed to move to absolute positions of 300 and 200 respectively. These numbers are parameters identifying particular positions within a finite range of numbered positions fixed by the engineering design of the arm.

What makes software programming of robots particularly interesting for educational purposes is the possibility of using conditional branching or jump instructions in programs. These give the robot the power to 'decide' on a particular course of action in response to a situation in the manufacturing environment which it doesn't 'know' in advance—for example, whether an object presented to it on a conveyor is the correct size or not.

Of course, the robot doesn't really decide. It implements a generalised decision made in advance by the human programmer: e.g. that the instruction sequence in branch A of the program will be carried out if, say, a certain sensed value is greater than \(x \), or the instruction sequence in branch B if this value is less than \(x \). (The process is a mechanism of the truth-functional operator implication in deductive logic.)

Such 'decisions' by the robot require an information input sensed by the environment from some transducer (indicated by 'intelligence' feedback in Fig. 1). This could be a simple switch built into the gripper to detect whether it has closed on an object or not, or it could be a whole vision system giving more complex information.

neptune

for low-cost training in

real-life robotics

The advanced design of the Neptune 2 makes it the lowest cost real-life industrial robot available. It is mechanically powered using a revolutionary water-based system (no relay hydraulic cell), it performs 7 symmetrical movements (as on Neptune 1) — more than any other robot under £15,000.

Our program length is limited only by the memory of your computer. There's nothing that can do for your BASIC programming skills.

And it's British designed, British made.

Skeawy Software

David Husband
73 Curzon Road, Bournemouth, BH1 4PW, ENGLAND.
Tel: (0202) 302385.
International +44 202 302385.

"Run more than ten tasks on a ZX81-FORTH ROM?"

Sure! More than 10 tasks simultaneously and, in some cases, up to 300 times faster! That's what replacing the basic ROM with the new FORTH does for the ZX81—and more!

The brains behind the breakthrough belong to David Husband, and he's building Skywave Software on the strength of it. Already orders are flooding in and it's easy to see why.

The ZX81-FORTH ROM gives you a totally new system. In addition to multi-tasking and split screen window capability, you can also edit a program while three or four others are executing, schedule tasks to run from 50 times a second to once a year, and with a further modification switch between FORTH and BASIC whenever you like.

Return of post subject to availability.

Mentor Applications Ltd

FORWHAT TRADING ESTATE, ANOVER, HANTS, SP10 3HS
TEL: (0206) 50079

Robots Supplement 15
Meet Hero Jr., a fully pre-programmed mobile robot, who speaks, sings songs, recites poems and nursery rhymes and can play games with you. With its light and sound detector, motion detector (optional extra) and sonar, you can use it as a security guard or just as a faithful friend and companion.

Built-in RS232 interface allows direct connection to your home computer's RS232 interface, so you can write your own programs to make him do what you want. Jr. has his own personality that you can adjust to your needs via a keyboard on his head where the game cartridge slot and carrying tray are also located.

Build-it-yourself kits KA00A Price £599.95
Factory assembled KA01B Price £1099.95
Motion detector kit KA02C Price £139.95

NB. RS232 interface and cartridge slot are not included in the kit version.

Hero 1 is a completely self-contained, mobile, electro-mechanical robot capable of interacting with its environment. Controlled by an on-board programmable computer, it has electronic sensors to detect light, sound, motion and obstructions in its path. Capable of seven axes of motion, Hero 1 can be programmed to pick up small objects with its arm. It will also speak in complete sentences using its voice synthesizer. Hero 1 is complete with comprehensive documentation, "probably the best personal robot at the moment."

Build-it-yourself kit HK20W Price £1299.95
Factory assembled HS80B Price £2199.95
Training course HK21X Price £114.95

Many add-ons also available including extra RAM, RS232 interface and a direct voice command recognition system.

* ALL PRICES INCLUDE VAT * where applicable

Hero 1 may be seen at any of our shops by previous arrangement only.
Depending on your point of view, the small robots or ‘microrobots’ now on the market can be seen as toys or as educational equipment. In practice they can be both. Most children get their first ‘hands on’ experience of machinery through mechanical toys. This early empirical approach, purely for fun, provides valuable intuitive knowledge for those who may later take up engineering as a career.

On the hobby or amusement level, ‘personal’ robots, as they are being called, are to be welcomed as something interesting one can do with a home computer. All that skill acquired in ‘driving’ a computer can be adapted to the concrete business of programming movements of real objects in three-dimensional space—instead of just churning out symbols or graphics on a flat screen.

On the level of education and training, small robots costing a few hundred pounds are being used as models or simulators to allow students and factory staff to get some understanding and feel for industrial robots in a safe and economical way. Full-scale industrial robots usually cost tens of thousands of pounds—very expensive as educational equipment! And the machines already working in factory production lines are far too busy to be interrupted for training purposes.

Because the market for educational robots is much more predictable than that for personal robots—which could be just a short-lived fad—most of the small robots now on sale are being designed as miniature, low-power training versions of the industrial machines. (Though in some cases they are well enough built to be used in factories for light packing or assembly tasks.) This means, in general, that they imitate the commonest and most versatile form of robot found in manufacturing industry—