Special Feature:

Eavesdropping On The Universe

Also:

- Monitoring The Nuclear Regulatory Commission
- Shortwave's Libyan Connection
- Selected English Language Broadcasts — Fall '86
- The Secret Signals On Shortwave: FAX
- Tune In On Soviet Cosmonauts
ICOM introduces the IC-R71A 100KHz to 30MHz superior-grade general coverage HF receiver with innovative features including keyboard frequency entry and wireless remote control (optional).

This easy-to-use and versatile receiver is ideal for anyone wanting to listen in to worldwide communications. With 32 programmable memory channels, SSB/AM/RTTY/CW/FM (opt.), dual VFO's, scanning, selectable AGC and noise blanker, the IC-R71A's versatility is unmatched by any other commercial grade unit in its price range.

Keyboard Entry. ICOM introduces a unique feature to shortwave receivers...direct keyboard entry for simplified operation. Precise frequencies can be easily selected by pushing the digit keys in sequence of frequency. The frequency will be automatically entered without changing the main tuning control.

Superior Receiver Performance. Passband tuning, wide dynamic range, a deep IF notch filter, adjustable AGC (Automatic Gain Control) and a noise blanker provide easy-to-adjust clear reception even in the presence of strong interference or high noise levels. A preamplifier allows improved reception of weak signals.

32 Tunable Memories. Thirty-two tunable memories, more than any other general coverage receiver on the market, offer instant recall of your favorite frequencies. Each memory stores frequency, VFO and operating mode, and is backed by an internal lithium memory battery.

Options. FM, RC-11 wireless remote controller, synthesized voice frequency readout, IC-CK70 DC adapter for 12 volt operation, MB-12 mobile mounting bracket, two CW filters, FL32-500Hz and FL63-250Hz, and high-grade 455KHz crystal filter, FL44A.
RECEIVE WEATHER CHARTS IN YOUR HOME!

You can DX and receive weather charts from around the world.

Tune in on free, worldwide government weather services. Some transmitting sites even send weather satellite cloud cover pictures!

You've heard those curious facsimile sounds while tuning through the bands—now capture these signals on paper!

Assemble ALDEN's new radiofacsimile Weather Chart Recorder Kit, hook it up to a stable HF general-coverage receiver, and you're on your way to enjoying a new hobby activity with many practical applications. Amateurs, pilots, and educators can now receive the same graphic printouts of high-quality, detailed weather charts and oceanographic data used by commercial and government personnel.

Easy to assemble—Backed by the ALDEN name.

For over 40 years, ALDEN has led the way in the design and manufacture of the finest weather facsimile recording systems delivered to customers worldwide. This recorder kit includes pre-assembled and tested circuit boards and mechanical assemblies. All fit together in a durable, attractive case that adds the finishing professional touch.

Buy in kit form and save $1,000!

You do the final assembly. You save $1,000. Complete, easy-to-follow illustrated instructions for assembly, checkout, and operation. And ALDEN backs these kits with a one-year limited warranty on all parts.

Only $995

Easy to order.

Only $995 for the complete ALDEN Weather Chart Recorder Kit. To order, fill out and mail the coupon below. For cash orders enclose a check or money order for $995. Add $5 for shipping and handling in the U.S. and Canada, plus applicable sales tax for CA, CO, CT, IA, MA, NY, WI. (Export price is $1250 F.O.B. Westborough, MA. Specify 50 or 60 Hz.) To use your MasterCard or Visa by phone, call (617) 366-8851.

ALDEN ELECTRONICS
Washington Street, Westborough, MA 01581

NAME:

CALLSIGN:

ADDRESS:

CITY: _______ STATE: _______ ZIP: _______

☐ I've enclosed a check or money order for $995.00 and $5.00 for shipping and handling, plus applicable sales tax.

☐ Charge to: [] MasterCard [] Visa

ACCOUNT # (ALL DIGITS)

EXPIRATION DATE

SIGNATURE REQUIRED IF USING CREDIT CARD

CIRCLE 25 ON READER SERVICE CARD

www.americanradiohistory.com
FEATURES

Scanning Today 8 by Robert A. Hanson
Who we are, what we want, and other topics.

Shortwave’s Libyan Connection 10 by Gerry L. Dexter
Here’s the latest information on Khadaffi and company and how this strange nation utilizes broadcasting.

The Very Large Array 13 by Ken McCormack
The ears of earth listen to the stars.

When Radio Was Young 18 by Alice Brannigan
Through the doors of history into a bygone era.

Selected English Language Broadcasts ... 22
The Fall installment of our popular series.

Monitoring The Nuclear Regulatory Commission .. 24
It’s been in the news, but have you tuned in yet? by Tom Kneitel, K2AES, Editor

“FAX” – The Secret Signals On Shortwave .. 28 by Tom Harrington
Now: facsimile, the easy way.

Product Spotlight 32
The Butternut SC-3000 Scanner Antenna by Skip Bradford, KNY2XL
The Micro Eye Express L. R. Radar Detector by F.X.F., North Dakota
The D-130 Super Discone Antenna by Lance McGraw

Public Service Award 37
Policeman’s fast action saves fall victim.

Photo Contest Winners 37
We’ve got some beauties this month.

DEPARTMENTS

Beaming In 4 Emergency ... 52
Mailbag 6 Scanner Scene 56
Books You’ll Like 31 Better Signals 58
Listening Post 38 Broadcast Topix 60
On The Line 41 Communications Confidential 65
Satellite View 42 Pirate’s Den 68
POP/COMM Products 47 Radar Reflections 70
RTTY .. 48 Communications Shop 74

EDITORIAL STAFF
Tom Kneitel, K2AES/ZF2JO
Editor
Elisa Nudelman
Associate Editor

CONTRIBUTING EDITORS
Gerry L. Dexter
Shortwave Broadcast
Robert Margolis
RTTY Monitoring
Gordon West, WB6NQA
Survivalist Communications
Don Schimmel
Utility Communications
Edward Teach
Alternative Radio
Harold A. Ort, Jr.
Military Consultant
Janice Lee
Radar Detectors
Chuck Gysi, N2DUP
Scanners
Julian Macassey, N6ARE
Telephone Accessories
Mark J. Manucy, W3GML
AM/FM Broadcasts
Ed Noll
Antennas

BUSINESS STAFF
Richard A. Ross, K2MGA
Publisher
Jim Gray, W1XU
Advertising Manager
Dorothy Kehrwieden
General Manager
Frank V. Fuzia
Controller
Arlene Caggiano
Accounting
Cheryl Chomicki
Subscriber Services

PRODUCTION STAFF
Elizabeth Ryan
Art Director
Barbara Scully
Artist
Dorothy Kehrwieden
Production Manager
Pat Le Blanc
Florence V. Martin
Phototypographers
Hal Keith
Technical Illustrator
Larry Mulvehill, WB2ZPI
Contributing Photographer

THE MONITORING MAGAZINE

Offices: 76 North Broadway, Hicksville, NY 11801. Telephone 516-681-2922. Popular Communications (ISSN 0733-3315) is published monthly by Popular Communications, Inc. Corporate officers: Richard A. Ross, Pres., Thomas S. Kneitel, Vice Pres., Alan M. Dorothy, Sec.-Treas. Second class postage paid at Hicksville, NY and additional offices. Subscription prices: Domestic—$16.00, two years $29.00, three years $42.00, Canada/Mexico—$18.00, two years $34.00, three years $51.00, Foreign—$24.00, two years $47.00, Foreign Air Mail—$27.00, three years $51.00, two years $147.00, three years $219.00. Entire contents copyright ©1986 by Popular Communications, Inc. Popular Communications assumes no responsibility for unsolicited manuscripts, photographs, or drawings. Allow six weeks for change of address or delivery of first issue. Printed in the United States of America.

Postmaster: Please send change of address to Popular Communications, 76 North Broadway, Hicksville, NY 11801.

www.americanradiohistory.com
Read What Rainer Lichte Says About the JRC/NRD-525

"Impressively manifests itself as the No. 1 receiver outside the commercial market bracket partially matches the reception quality offered by those very costly units. You ahead of the competition because this receiver delivers outstanding results in all modes of operation... absolutely marvelous functionality... Can cope with a variety of demands including complete computerized control... this radio is a BEST BUY.

Read the entire 525 review by Lichte written exclusively for GILFER and available FREE with GILFER's epic book "Radio Receiver - Chance or Choice" described below. Earliest purchasers of the book may obtain the 525 review from GILFER for $3 postpaid.

THE RECEIVER BOOK THEY DON'T WANT YOU TO READ.

"Radio Receiver - Chance or Choice" by Rainer Lichte. Published by GILFER, this is the book to read when you want to know about the receiver you have and the receiver you want to buy. Lichte says it straight, honest and all about all the famous brands of receivers, making his own tests on the same set of instruments for direct comparability. This famous book has the engineering background to do the job right, the writing ability, to communicate clearly, and the integrity to be objective on all points. Order this 264-page book now and get the straight truth on 75 receivers plus the FREE NRD-525 review. $18.50

GILFER EXCLUSIVE

DATONG
AD-270 Active 9-5' Indoor Antenna
Antenna: $114.50 + $3
AD-370 Active Outdoor Antenna, listed as "best" in famous handbook $34.50 + $4.50
SRB2 Automatic Woodpecker Blanker, removes Russian radar $169.95 + $2.50
FL-3 Automatic Audio Filter, digs out weak signs, removes interference, $229.95 + $4.

GILFER EXCLUSIVE

DRESSLER
ARA 500 Active VHF/UHF Scanner Antenna, 50-600 MHz Vertical, $169.95 + $4
ARA 30 Active HF Indoor/Outdoor Antenna, FET amp, $159.95 + $4

EAVESDROPPER II $66.95 + $3
45 Dipole made the right way according to a famous handbook. Center-fed trapped dipole w/ coax terminal. Best sensitivity for SWL bands.

ISOTRON "60" $75.95 + $5
60M omnidirectional antenna, no radial grounds needed; just 4' tall; requires 50 ohm coax, performs like full-wave dipole. Unassembled.

LONG RANGER $59.95 + $3
Broadbanded folded dipole, 9.5-20 MHz, with balun.

INVERT $19.95 + $3
Top quality long wire antenna, 80' long with 75 lead-in, 40' nylon rope, and insulators: 2 lb.

GILFER SHORTWAVE • 52 Park Ave. • Park Ridge, NJ 07656 • Ph 201/391-7887
Bingo! We’ve Run Out Of Numbers

It’s a good thing that there’s no ultimate number because I’m certain that we’d be barking at its heels within a few decades. This struck me the other day while punching what seemed to be an endless string of digits into the telephone while trying to place a long distance call. We have to keep modifying and lengthening our various designation numbers in order to hold our civilization together.

Couple of years ago, long distance calls could be made with seven alphanumerics and the help of an operator. Then someone invented “area codes,” later devising the whacky prefix “1” to sprinkle on top of the whole mess. For users of a few long distance services, placing a call could invoke 30 or more digits for each call placed. The money saved on toll charges has to be spent on courses in higher mathematics in order to handle such numbers.

At Teotihuacan, in ancient Mexico, the Toltecs spent centuries adding new levels to their Great Pyramid To The Sun. When it got to be 216 feet high they realized that they couldn’t add any more levels. Poof! That was the end of the Toltecs! Someday the ‘phone company is going to issue the infinity symbol to some hapless telephone subscriber and that will be the end of Mr. Bell’s invention!

Glenn Miller’s song, Pennsylvania 6-5000 was composed fifty years ago. Just imagine if they had to write it today—it would take the first 32 bars just to squeeze in all of the access numbers, area codes, and the rest of the extra baggage that’s been tacked on over the years.

The sinister computer at the Social Security Administration can’t give out more than 999,999,999 account numbers. Forget about Nostradamus’ predictions for determining the end of the world. T. S. Eliot was wrong too, the world isn’t going to end with a whimper. It’s going to end with a bang the instant they attempt to get that infernal computer to issue its one-billionth account number. I used to think that it would happen when the Postal Service tried to issue the one-hundred-thousandth ZIP code. Humanity was lucky that they copped out recently by adding an additional four ZIP numbers. The Canadian Post Office was smart in developing a postal code system that defies comprehension to the point where nobody, including its own computer, will realize where it saturates.

This hairy problem with running out of descriptive alphanumerics has hit hardest in the world of electronics and communications. We’re facing a crisis of titanic proportions. I don’t want to be accused of running around yelling, “The sky is falling!” but let’s say that it’s starting to sag in the middle to an alarming degree. You may have already been affected by this state of events.

Early vacuum tubes had designations that reflected the basic pioneering simplicity that pervaded our way of life in the days when cars were called “Model T” and “Model A” instead of things like “320-CSI” and “280-2X2 + 2.” What could be easier than vacuum tubes called the O1A or the 37? Even the 80 and 813 were within reason.

As more and more tubes came out, new and expanded designations were required to keep track of them. Communications people had to learn to cope with the 6V6, 12K7, 6E5 and the like. When that format got used up and tubes eventually slid into the realm of fancy grids, Loctal bases, then Compactrons, CRT’s, and Nuistors, the numbering systems were being expanded at a rapid pace so that the public could have tubes like the 6SK7, 6CL6, 17JZ8, 6CW4, 30PL12, and countless other marvels containing filaments, grids, plates and who knows what else.

To complicate matters, European tube manufacturers decided to call tubes values and added insult to injury by totally disregarding the carefully structured designation system we had devised. They commenced to flood the market with tubes bearing re- gade designations such as ECC82, YF183, DK91, HV235 and others too preposterous to repeat here. Books and directories had to be written in order to offer advice on some equivalents that might be substituted for the European tubes bearing capricious designations that had been assigned for the primary purpose of confusing the honest, law-abiding people of North America.

Between this cavalier European attitude, and the fact that we, ourselves, had begun to produce tubes carrying clumsy designations the likes of 4CX3500J and 3CW10000H3, it was obviously time for a change, time for someone to sit down and seriously consider inventing transistors as a replacement for vacuum tubes, thus allowing the start of a numbering cycle that could begin from scratch. How do you spell relief?

Ah, how easy it was to summon to the forefront of the mind the designations of those first diodes and transistors such as the 1N34, 2N35 and CK722. Sure, everybody knew that history would repeat itself and eventually semiconductors, too, would run out of suitable designation numbers—but nobody dreamed that it would happen in less than 30 years! But, there we were again. Only wimps with neckties, slide rules, pocket calculators, or physics degrees could have dealt with the complexities of modern life and still coped with solid state gizmos tagged with handles the likes of the MPS2222A, 43A168064P1, PL-151-030.

(Continued on page 72)
The Regency 30 is a compact, programmable 30 channel, multi band, FM monitor receiver for use at home or on the road. It is double conversion, the frequency for each channel is programmed through the numbered keyboard similar to the one used on a telephone. A "deep" acknowledges contact each time a key is touched. The Z30 scans approximately 15 channels per second.

Any combination of two to thirty channels can be scanned automatically, or the unit can be set to scan only one channel from monitoring of any one channel. In addition, the search function locates unknown frequencies within a band.

Other features include scan delay, priority and a bright/dimm switch to control the brightness of the 9-digit Vacuum-Frequency display. The Z30 can be operated on either 120 VAC or 12 VDC. Includes one year warranty from Regency Electronics (optional 3 year extended warranty only $25, gives you a total of 4 yrs complete warranty or 2 yr extended warranty only $25, gives you a total of 3 yrs complete warranty).

Digital Programmable 2 Channel Handheld Scanners with large illuminated keys for easy programming of the following frequency ranges: 30-50 MHz, 116-136 MHz, 144-174 MHz, 406-420 MHz. Covers complete service bands plus Aircraft. Priority, search, lockout, scan plus much more. Package includes MX1000, AC adapter, ni-cad battery, carry case, rubber antenna and 60 day warranty.

Complete package only **$216.99**

(6.50 shipping)

(3 year extended warranty only $35.00, 2 year warranty $25.00)

BEARCAT 100 XL: Handheld digital programmable, no crystal portable scanner. 16 channels, search feature, plus more! Frequency range: 30-50, 118-174, 406-512 MHz. Includes Ni-Cad rechargeable batteries, adapter/charger for $199.99 (6.50 shipping) (3 year extended warranty only $35.00, 2 year warranty $25.00)

ORDERING INFORMATION

Call (518) 436-9606 to place orders by phone or mail orders to Scanner World, 10 New Scotland Ave., Albany, NY 12206. Orders will be shipped the same day. We accept MasterCard, Visa, American Express, Discover, and C.O.D. New York State Residents add 8% sales tax. No returns allowed for typographical errors. All merchandise carries full manufacturer's warranty. Bid Proposals and Purchasing orders accepted from Government agencies. Free full line catalogue available upon request.

SHIPPING CHARGES

(*) Add $6 per scanner, and $3.00 for all accessories ordered at same time. C.O.D. orders will be charged an additional $3.00 per package. Full insurance is included in shipping charges. All orders are shipped by United Parcel Service. Shipping charges are for continental USA. Outside of continental USA, ask for shipping charge per scanner.
MAILBAG

LETTERS TO THE EDITOR

The most interesting questions we receive will be answered here in each issue. Address your questions to: Tom Knetel, Editor, Popular Communications magazine, 76 North Broadway, Hicksville, NY 11801.

Pick A Packet

From time to time my scanner stops at 145.01 MHz and I hear a pulsating "blip-blip" type of signal. Is this a radio beacon, or what?

Claudine Levesque, Rochester, NY

Your description of the sound isn't quite vivid enough to permit identification, but the frequency is a giveaway. This channel, which lies within the limits of the 2-meter Ham band (144 to 148 MHz), is generally used for something called Packet Radio. Packet is similar to RTTY but centered around home computers. Other popular Packet Radio frequencies are 145.03, 145.05, 145.07 and 147.55 MHz. In order to copy Packet Radio traffic you'd need a personal computer hooked to your scanner through a TNC (Terminal Node Controller) device. Packet Radio has been growing in popularity and computer communications, in general, is beginning to show up on numerous frequencies in and out of the Ham bands. —Editor

The Mounties To The Rescue!

The Royal Canadian Mounted Police (RCMP) detectives are part of the agency's General Investigation Section (GIS). How can I listen to the communications of the GIS here in British Columbia?

Kyle Birns, Mission, B.C.

The information we have here is that Burnaby is on 139.26 MHz; Surrey, North Vancouver, and Victoria are on 139.29 MHz; Port Moody and Coquitlam operate on 139.32 MHz; with Richmond on 139.38 MHz. If any readers have better information, let's hear from you! —Editor

Crystal Bowl

After spending 15 years accumulating assorted plug-in crystals for various CB rigs and scanners, I suddenly find myself with a shoebox filled with the things. What's worse, since none of my present equipment uses crystals, these gizmos no longer serve any practical purpose. I estimate that they represent almost $1000 worth of investment, so I decided to come up with a way to make something useful out of them. What I've done is solder safety pins to them and turn them into radio jewelry that I hope to sell at flea markets. I've also made up some to give as gifts to my friends and I'm there

fore enclosing one for you, Tom. What do you think of the commercial possibilities of this item?

Martin Renik, Rawlins, WY

I've received some wonderful items from readers, but I'd have to say that your gift was certainly unique. Aside from the fact that it's for a frequency I can't use, and the pin gets in the way of the crystal socket, you've got a pretty hot item there. If you replaced the pins with solder lugs, you could even branch out into charm bracelets. Although I doubt that Gucci has anything to worry about, these could well be the next fad to replace pet rocks and mood rings. Go for it! —Editor

Slipping Plates?

Some people claim to be able to predict earthquakes by fluctuations in radio waves. What are these fluctuations?

William O'Connell, Fort Bragg, CA

Several years ago I received several letters from a reader in the Netherlands Antilles who was conducting extensive research in this. As I recall, it was his theory that by comparing anomalies in the signals of certain specific distant stations, he could get a day or two's advance warning of earthquake. I'm sorry but I don't remember anything else about the how or why of his theory, but he claimed a high degree of accuracy. More recently, the Journal of Geophysical Research (Edition 90:6245, 1985) carried a report called "Electro Magnetic Radiations from Rocks" (by T. Ogawa and others) in which it was claimed, "It has been demonstrated by the sample rock experiments that the ordinary crustal rocks produced electricity when they were shocked or fractured and radiated EM waves in the frequency range of 10 Hz to 100 kHz." Readers having more specific information on using radio for earthquake predicting are invited to step forward. —Editor

On The Side

Not long ago I purchased several CB radios for business purposes. Normally, our communications take place on CB Channel 3, however while tuning around to find a less-crowded channel, I made a strange discovery. On Channel 16 there were stations operating that I couldn't understand because they seemed to be badly distorted. How could they understand one another if I was unable to copy them?

Paul Beauchamp, Cadillac, MI

Looks like you tuned to stations using Single Sideband (SSB) mode. While any CB station is entitled to use SSB communications, special equipment that can operate in that mode must be used for such operations. SSB transceivers (which are usually capable of operating in standard AM mode, too) cost more than AM-only transceivers. The advantages include a far greater communications range than AM, a more serious approach to communications use than is to be found on AM, and less crowded channels. Inasmuch as AM and SSB operations don't mix well on the same channels, there have long been unofficial agreements between operators whereby Channel 16, plus the channels between 34 and 40, are used exclusively for SSB communications. Of course, some operators don't go along with those arrangements (there's no FCC regulation requiring separation of AM and SSB operations), but it would be great to think that someday everybody would. —Editor

Bringing Home The Beacon

Thanks to coverage in POPCOMM of longwave monitoring, I have been doing some tuning on frequencies below 540 kHz. Radiobeacons and maritime CW stations especially interest me. Although I've logged and identified almost 100 different radio-beacons (with the help of Ken Stryker's book, The Aero/Marine Beacon Guide, which I found out about through a POPCOMM review), I know there are hundreds more I have yet to log. One station mystifies me, however. This station appears on 526 kHz with the radio beacon identification "CVY." Doesn't seem to be listed anywhere. Can you help?

B.J. Kolb
Warner-Robins, GA

That one has us stumped, too, B.J. In fact, it's got everybody trying to figure out its location. Ken Stryker says that, although it's location hasn't been pinned down, it has been reported by listeners in Alabama, Florida, Illinois, Maryland, Michigan, New Jersey, Ohio, and South Carolina. Other widely reported mystery radio beacons in the LF band include PV on 387 kHz, UCA on 390 kHz, and IF on 393 kHz (varies). —Editor

6 / POPULAR COMMUNICATIONS / October 1986
FOR THE BEGINNER

Our basic beginner's package is *Tune In the World With Ham Radio* which tells you how to obtain your Novice Amateur Radio License. It consists of a 208 page book which breaks the instructional material down into easy-to-learn bite-size chunks. A cassette is provided which teaches the code letter by letter. Thousands of hams owe their first licenses to the material learned from this package. For individual or classroom use, *First Steps in Radio* tells in simple terms in 95 pages how radio receivers and transmitters and their components work. *The FCC Rule Book* explains the regulations that all amateurs must follow in an easy to understand style. Every licensed radio amateur needs a copy of this book!

- Tune In the World With Ham Radio: $10
- First Steps in Radio: $5
- The FCC Rule Book: $4

HAM ADVENTURES

Tommy Rockford, K6ATX is back on the trail of high adventure! *In Death Valley QTH*, what starts as a typical field day operation becomes a matter of life and death for K6ATX and the Santa Bonita Amateur Radio Club. *SOS at Midnight* finds Tommy up against the Purple Shirt Mob and ham radio saves the day! The beachcomber seemed like a harmless character, but what did he have to hide in *CQ Ghost Ship*?

- SOS at Midnight: $5
- CQ Ghost Ship: $5
- DX Brings Danger: $5
- Death Valley QTH: $5
- All Four Adventures: $15

ON THE AIR!

What makes ham radio fun are all of the different things you can do. *The ARRL Operating Manual* tells about emergency communications, how to talk through satellites, QSLing and awards, message handling, contesting and data communication including the use of computers. The *ARRL Handbook* has been updated every year since 1926 and over 5.7 million copies have been sold. It has 1186 pages and 40 chapters of practical technical information and projects that most hams can build. It is widely used by students, technicians and engineers. *ARRL Membership* isn't limited to hams alone. Each month you will receive *QST*, which is packed with articles and features on rf communication, operating and Amateur Radio “happenings”.

- The ARRL Operating Manual: $7
- Paper edition: $18 US, $19 elsewhere
- Cloth edition: $27 US, $29 elsewhere
- ARRL Membership, 1 yr: $25 US, $33 elsewhere

PAYMENT MUST BE IN U.S. FUNDS

Shipping/Handling Enclose $2.50 For Book Rate or $3.50 for UPS.

() MasterCard () VISA () American Express

Acct. #: Good from Good to

Mastercard bank #

Date
Name (Callsign)

Address
City State/Prov Zip/PC

Have you fully completed your order form? Is your check (which must be drawn on a U.S. bank) signed or charge number indicated?

THE AMERICAN RADIO RELAY LEAGUE

225 MAIN ST., NEWINGTON, CT 06111

PC
The “Typical” Scanner Owner

Many of us enjoy scanning almost secretly because we simply don’t know of anyone who shares our interest in this unique activity. That naturally leads to curiosity about the hundreds of thousands of other scanner users out there . . . just who are they, anyway? We asked that question, “Who Are We?”, in one of our very first editorials after the founding of SCAN back in 1978. Later, we followed it up with several surveys of the membership. We found that there were some identifiable categories, such as police officers, fireman, amateur radio operators, and news media personnel. But large numbers of other members couldn’t be neatly categorized. About all that could be concluded was that they tended to be interested and concerned about their communities; they were Scout leaders, Little League coaches, members of the town council, or in some other way active in the area where they lived.

Today, I would venture to say, it would be nearly impossible to categorize who we are. The latest research shows that nearly 8% of all U.S. households has a scanner. In some areas surveyed it ranged up to 15%. Balancing that, of course, are some areas of the country where scanners are not yet caught on. But 8% of the population with access to a scanner is a staggering number! Why do we know so little about others who are scanner fans? I recall catching a TV newscast of the lady mayor of a very large city with a scanner radio behind her desk. When SCAN inquired about how she used it, her press secretary denied she even knew what a scanner was! The next time the TV news crews covered a statement by the mayor, the scanner was gone. But I am convinced to this day that she simply had it tucked away in a desk to be brought out when the window shades could be drawn and the door locked. For whatever reason, there are many famous people who are intense scanner enthusiasts but don’t want to advertise the fact. Perhaps they feel that the average citizen would view their hobby as somewhat out of the ordinary. Fortunately, as scanner use and the benefits of an informed society become more widely accepted, others are becoming more open about their enthusiasm for scanning.

Recently Business Week, (July 14 issue), the influential magazine aimed at the country’s top corporate executives, ran a feature story about the joys of scanning. Editor Donald H. Dunn explained the fun of having a scanner at football games and other sporting events, as well as at the weekend summer home. Could it be that scanning will become the latest craze of the business executive set and a hot topic on the country club golf courses? I hope so. Maybe the next time you see your mayor on TV, he or she will be proudly displaying a scanner as evidence of his/her concern for knowing what’s really happening in the community. In the meantime, don’t be surprised if you find out that your favorite entertainment or sports personality is secretly a scanner fan, too. There are many of them out there!

Digital Communications Revisited

Our column on the new digital communications and the ease with which a standard scanner and adapter could be used to read these messages has caused a flurry of letters. Sounds like you’re interested! To recap just a bit for those who missed it, much public safety, amateur radio and other communications is going from voice to digital to provide “hard copy” (written messages) at the intended receiver. On a scanner these new transmissions sound like two-tone chirps or pulsing buzz like sounds. That’s the bad news. The good news is that if you have a scanner with an audio output jack, you can simply plug in a decoder and working with an inexpensive computer, like a Commodore 64, have those messages displayed on a TV screen or printed.

The most frequent request in those letters was “where do I buy one?” Also, “how about a step-by-step guide to install a system” was a frequent request. We’ll try to have a detailed story on this in the future, but in case you can’t wait, here are a few suggestions:

- There are a number of companies who advertise in POPCOMM or its sister publication, CQ. Among these are HAL Communications Corp., Microlog, A. E. A., and MFJ Enterprises. Check out the ads and write for literature. Or, if you have a store specializing in amateur radio nearby, you might want to drop in and get some expert advice. The same equipment that hams use to decode digital communications will work on most other digital communications you’ll hear on your scanner. Happy listening, or should we say reading?

Missed Opportunities

One of the most frustrating things is to go to an event, such as one I just attended, and not have a working scanner. It was just one of those things, I forgot to charge up the portable the night before. Oh, I could have replaced the Ni-Cads with penlight cells, but I decided to just forget about it. The event was the annual Glenview Naval Air Station open house in Glenview, Illinois. All types of aircraft were on display and operating. The problem was, I never knew when. I’d be inside when a transport or a helicopter took off. Of course, the French precision flying team had a scheduled time to take off, for the annual lake front air show, so I was able to catch that. But how nice it would have been to listen in! Surely there were other scanner fans out there, but in the crush of the crowd I never ran into one. Well, there’s always next year. Except sometimes there isn’t a next year. It could be something special at a planned event, or something you just happen upon. Having a portable scanner with you all the time is the key. I remember the first time I ran into a member who had two identical portable scanners. I couldn’t understand why, until he explained that he was able to keep at least one unit operating at all times, while the other unit was on charge.

By the way, don’t be discouraged if you don’t know the frequencies in use. I have found an amazing number of frequencies at the event, be it air show, auto race, or football game, by using the search function on the radio, if you can get close to the transmitter source. Always start with a casual conversation with the radio technician . . . you might get lucky and he’ll tell you, or spot a printed label with the frequency on it! Failing that, try de-sensitizing the scanner all the way with the squelch control and go into the search mode. The very strong, nearby signal will break the squelch and reveal the frequency. Presto . . . you’re tuned in. I’ve even had success in the normal search mode by just being aware of the type of sound that pops up. Most special events have a special sound about them, usually background noises you don’t get in a permanent dispatcher-vehicle system. So, at the first hint of this type of sound, I stop searching and listen for a few minutes. Often it’s just what I’ve been looking for. Try it, and please write to us with your hints and suggestions.

Let’s Give Those Scanner Manufacturers a Piece of Our Minds!

I think that it is time to let scanner manufacturers know what we really would like to have in the next generation scanners. Not just with sporadic letters that tend to get lost, but in an organized way that has a chance of getting results. An example: So many of us are volunteer firemen that I just can’t understand why we don’t have a portable scanner that also has an alerting function. Why should we have to carry a scanner and a paging receiver? We’ve had priority functions in scanners for a long time now, but nothing that truly combines the function of an alerting pager and scanner. They are both receivers covering the same frequencies and transmissions, so it’s a simple thing to do. If you like the idea, send me postcard. If we end up with an avalanche of cards, we may see some results. I (Continued on page 74)
NEW! Scanner Frequency Listings

NEW! Regency® RZ60-GP

The Regency RZ60-GP is the perfect scanner to receive the exciting 1.2 GHz amateur radio band. The Regency RZ60-GP is powered by a rechargeable battery pack for up to 10 hours of continuous monitoring. The RZ60-GP has 64 channels and features direct access to the 10 MHz broadcast band. The Regency RZ60-GP is a great value at only $499.95.

NEW! Bearcat® RZ60-GP

The Bearcat® RZ60-GP is a true all-band scanner with 64 channels of coverage, built-in megahertz counter, 10-minute timer, battery backup, in memory scanning, new Priority function, and much more. The Bearcat® RZ60-GP features the same high performance of the Bearcat® R210XW, plus the added channel capability of the high performance Bearcat® RZ45. The Bearcat® RZ60-GP is available for $349.95.

NEW! Bearcat® RZ60X-GP

The Bearcat® RZ60X-GP is the newest addition to the Bearcat family. The Bearcat® RZ60X-GP features 64 channels of coverage, direct access to the 10 MHz broadcast band, built-in megahertz counter, 10-minute timer, battery backup, in memory scanning, new Priority function, and much more. The Bearcat® RZ60X-GP is available for $399.95.

NEW! Bearcat® RZ60XLT-GP

The Bearcat® RZ60XLT-GP is the newest addition to the Bearcat family. The Bearcat® RZ60XLT-GP features 64 channels of coverage, direct access to the 10 MHz broadcast band, built-in megahertz counter, 10-minute timer, battery backup, in memory scanning, new Priority function, and much more. The Bearcat® RZ60XLT-GP is available for $499.95.

NEW! Bearcat® RZ600-GP

The Bearcat® RZ600-GP is the newest addition to the Bearcat family. The Bearcat® RZ600-GP features 64 channels of coverage, direct access to the 10 MHz broadcast band, built-in megahertz counter, 10-minute timer, battery backup, in memory scanning, new Priority function, and much more. The Bearcat® RZ600-GP is available for $599.95.

NEW! Bearcat® RZ600XL-GP

The Bearcat® RZ600XL-GP is the newest addition to the Bearcat family. The Bearcat® RZ600XL-GP features 64 channels of coverage, direct access to the 10 MHz broadcast band, built-in megahertz counter, 10-minute timer, battery backup, in memory scanning, new Priority function, and much more. The Bearcat® RZ600XL-GP is available for $699.95.
"Political struggle that results in the victory of a candidate with 51 percent of the votes leads to a dictatorial governing body disguised as a false democracy, since 49 percent of the electorate is ruled by an instrument of governing they did not vote for, but had imposed upon them. This is dictatorship."—Col. Muammar Khadaffi, The Green Book.

Surprises on shortwave in the form of new stations or services coming on without any advance publicity are not uncommon. Still, early in 1982 when DXers first ran across the English language broadcasts from Radio Jamahiriya, eyebrows were raised across the land. What was more surprising was that the new service appeared to be directed at the United States, while broadcasters in North Africa have, historically, paid little time or attention to broadcasting outside their immediate area or to programming in much of anything besides Arabic.

The Reagan administration had been in Washington for little more than a year and the temperature of tension was inching upward as Khadaffi, more and more, seemed to be running a "plot-of-the-month club" and Washington began taking steps to make sure the world was aware of what kind of leadership was running the show in Tripoli.

So what was Khadaffi up to with the sudden implementation of English language broadcasts? The answer was plan enough: he was simply using broadcasting as a tool to help him achieve his political aims. Not an unusual step for any government, although the Colonel sometimes approaches broadcasting in, shall we say, creative ways?

"Representation is a denial of participation."—The Green Book.

RADIO: WHAT HATH KHADAFFI WROUGHT? Pull a 20-year-old edition of the World Radio TV Handbook off the DX library shelf, look up Libya, and you'll discover a much simpler era. Just four medium-wave stations in operation in the entire country, the largest running 50 kilowatts. Nothing but a home service relay running...
on shortwave using 100 kw on a frequency, the Handbook says, "between 5995 and 6030 kc."

Today there are medium-wave outlets in fourteen cities using everything from a puny 1 kw to 500 kw. There are low power FMs in Tripoli, Beida and Tobruk. On shortwave, a high power complex at Sabrata (Tripoli) beams programs out over 100 and 500 kilowatt transmitters.

Libyan radio, officially, is the Socialist People's Libyan Arab Jamahiriya Broadcasting Corporation or, more succinctly, Libyan Arab Jamahiriya Broadcasting. Jamahiriya is a Khadaffi-created word which has its roots in several Arabic words and means "that which is ruled by the masses" or "republic of the masses."

The Libyan home service, all in Arabic, of course, is beamed on shortwave as well as to the domestic audience on medium-wave. The schedule runs 1100 to 1745 UTC on 15235 and 1500 to 1745 on 17895.

A foreign language service operates with 1 kw from Misurata in English, French and Urdu for foreign residents on 1484 kHz. The Holy Koran program is beamed from a 20 kw transmitter at Tripoli on 1402 kHz.

The Voice of the Arab World is scheduled from 1745 to 0430 on 3200, 7425, 9890 and 17895 and 2000 to 0430 on 6155 and 11815. This service has also been flagged as the Voice of the Arab Homeland and dates back to pre-Khadaffi times. It came on the air in 1967 as a result of the Arab-Israeli war and claimed to be the only voice expressing the true feelings of Arabs, wherever they were living.

"Representation is a falsification of democracy." — The Green Book.

HOW TIME FLIES DEPARTMENT: Colonel Muammar Khadaffi has run the Libyan show since 1969. He took power in a military coup which ousted former King Idris who had earlier led the Libyan resistance against Italian occupation.

In the 17 years worth of sand which has passed through the glass since then, Khadaffi has had more adventures than a character out of J.R.R. Tolkien. He has berated, argued or fought skirmishes with every one of his neighbors and as many or more at greater distance. He has sponsored, backed or encouraged innumerable acts of terrorism and initiated several star-crossed unifications with other states.

He has used Libyan radio for all manner of overt and not-so-overt propaganda. Author Julian Hale, in his book Radio Power (Temple University, 1975) noted that Libya's "propaganda line makes the other Arab radios seem pro-Zionist in comparison."

The English service, Radio Jamahiriya, was once widely heard in the US (recent frequency changes have made it less so). The program appears to be a division of the Voice of the Arab World—or at least it is plugged into the middle of that service. Radio Jamahiriya has two English language programs, one beamed to Africa which was originally called the "Voice of Africa," although that title seemed to come into disfavor after Khadaffi apparently discovered it was also used by one of the Egyptian services. (Some DXers report still hearing the term in use.)

The current Radio Jamahiriya schedule is a little uncertain. As recently as late last year it was making regular appearances between 2230 and 0000 on about 11.815. Then it seemed to disappear for a time and may indeed have gone silent which, if true, would be hard to explain since tensions between the US and Libya were heating up further at the time. At any rate, the US beam has recently been rediscovered on 6155, a poor
choice for summertime reception here. 11815 is still being announced.

From the outset, Radio Jamahiriya provided some fascinating listening. Using the slogan “The Voice of Friendship and Solidarity” it offers such program features as “The Life-giving Force Behind the Jamahiriya”, “America and the Nuclear Mushroom”, “The Jamahiriya At the Front of the Struggle to Liberate the World”, “The Call of the Desert”, “French Neo-colonialism, A Threat to the African People’s Freedom” and others. There are readings from the Holy Koran as well as from Khaddaffi’s Green Book. There are letters from listeners and interviews with Americans living in Libya some of whom, in the past at least, strongly condemned the US position toward Khaddaffi. A more recent feature is “A Chat Worldwide” in which the station—taking a page from Radio Moscow’s book—invites listeners to send in cassette tapes telling about themselves, sending greetings to friends or dedicating songs.

There is revolutionary music (and also US popular hits). The revolutionary songs praise Libya and Khaddaffi and one listener recently commented in the DX press that the singers appeared to be American.

Put together a reception report on Radio Jamahiriya, mail it to the European Office (no replies seem to come out of Libya itself) at P.O. Box 17, Hamran, Malta, and in return you’ll receive one of the clashest QSL cards currently available from any station!

“Democracy means popular rule, not popular expression.”—The Green Book.

NOT-OFICIAL BROADCASTING.

At one time the Libyan Arabic service carried a program entitled “Liberation Magazine” which was directed at what was termed the “feudal” state of Morocco and was an undisguised attempt to subvert the rule of King Hassan. Morocco, incidently, responded with its own programs aimed at Libya, calling Khaddaffi’s rule “one of terror, stupidity, and ignorance,” according to author Julian Hare in Radio Power.

Libya beamed a quasi-clandestine service towards Lebanon in the spring of 1984 called the “Voice of the People’s Revolution” which was aired on 1251 and 15450 kHz.

Such moves in the Colonie’s radio games are the equivalent of a spare ace slipped under the table. But, as often as not, the table has a see-through top and it’s pretty easy to tell what’s going on and who’s playing what hand.

Libya has wanted a friendly government in next door Chad for a long while. Hissen Habre, the current president and former rebel leader has no love for Khaddaffi. The Colonel supports the former president and current rebel leader Goukouri Queddi and his Government d’Union National de Transition du Tchad (GUNT). Khaddaffi, who has invaded Chad on occasion, brings radio into the picture with a station called “Radio Chad”—formerly known as “Radio Bardai”—after the town from which it claims to operate. With some careful tuning, especially in mid-winter in the eastern and midwestern parts of the US, this station can occasionally be logged on 6009 up to around 2030 sign off. Although an address exists for GUNT (P.O. Box 2951, Tripoli) letters sent there invariably boomerang back to the sender.

During 1981-82 the Sudan first harbored Hissen Habre and then helped him gain control of the government of Chad, in the process ousting Khaddaffi’s friend Queddi. That, alone, would have been reason enough for Khaddaffi to put the evil eye on Sudan’s President Numeiry. Khaddaffi had other reasons as well and used his support of the Sudanese southern rebels which are seeking independence for that part of the country as an additional tool.

Enter the Voice of the Sudanese Popular Revolution. Beginning in 1982 the station beamed a three-hour daily broadcast (1430-1730) at Sudan on the Libyan frequency of 17930, sometimes 17940. On at least one occasion someone pushed the wrong button and brought up the regular Libyan broadcast on the frequency instead of the Voice of the Sudanese Popular Revolution. So it wasn’t hard to spot this as another smash hit from Khaddaffi Broadcasting Incorporated.

The Voice of the Sudanese Popular Revolution lasted until around April 1985, shortly after a military coup had ousted Numeiry, after which the station stuttered through several stops and starts before it finally disappeared.

During the time it was on the air there was a period during which its programs were interrupted on a regular schedule by yet another Khaddaffi offering—Radio SPLA which promoted the cause of the Sudan People’s Liberation Organization and Sudan People’s Liberation Army—the southern faction of Christian and animist groups which want independence for the southern Sudan. Once the coup was accomplished the plug was summarily pulled on Radio SPLA which was off the air until new hosts were found in Ethiopia.

Perhaps the most outrageous of the Colonel’s radio adventures was The Voice of Vengeance—The Voice of Holy Hatred—which had a lifespan of just a few weeks during March and April of 1985. The station used 711 kHz on the medium-wave band (three separate 50 kilowatt outlets use this frequency in Libya). The Voice of Vengeance called upon Arabs living in the Maghreb (Algeria, Morocco and Tunisia) to seek out and kill any Jews living near them and confiscate their property, claiming at one point that such actions were justified by the Koran. Tunisia complained to Libya about the broadcasts. Khaddaffi claimed he’d never heard the station, much less heard of it. Then Morocco’s King Hassan met with Khaddaffi and apparently made progress. The Voice of Vengeance went off the air shortly after that meeting and has not been heard since. One of Colonel Khaddaffi’s visions is that of a greater Maghreb to include, of course, Libya.

“‘To make a (political) party you split society.’—The Green Book.

What’s next? Will there be a new, not-so-secret clandestine voice out of Libya the next time the ghibli—that dusty, hot, dry desert wind—blows in from the south? Did the US raid on Libya’s terrorist infrastructure make a difference from a radio standpoint? We can’t guess. And perhaps not even the Colonel himself knows whether or when the next hand in the radio game will be played.
The Very Large Array

The Ears Of The Earth Listen To The Stars

BY KEN MCCORMACK

S

ince 1975, in a remote part of New Mexico, the earth's most sophisticated radio has been listening to the stars. Alone and isolated, its antennas lie in the rising heat and turn in unison like a mechanical chorus line. At first, before dish-shaped reflectors became common, old-timers took these objects for something weird, like flying saucers. They are, in fact, part of the Very Large Array (VLA), the most powerful telescope in the world.

The VLA is a radio. Fundamentally no different from the device the scientist listens to in his car on the way to work, it consists of an antenna, receiver and amplifier. Instead of loudspeakers to project sound for listening, magnetic tapes record the noise. From the tapes, a computer can create a picture of the radio source observed.

Radio astronomy began in 1932 when Karl Jansky, a radio engineer working for the Bell Telephone Laboratories, discovered steady radio noise emanating from the center of the Milky Way. Around 1940 a radio amateur in Illinois, Grote Reber, built the first dish-type radio telescope, now so familiar, and began mapping radiation systematically at several wavelengths. Reber not only verified that the Milky Way emits radio waves; he also discovered that, after the sun, the constellation Sagittarius, near the center of the Galaxy, is the most intense source of radiation.

Since then many amateurs have listened to space and contributed to the budding science of radio astronomy. Noise from the sun can hardly be avoided, and the planets of our solar system are accessible to a receiver of from 5 mV to 0.5 mV sensitivity and an antenna with a gain of 10 dB to 20 dB. Jupiter, in particular, astronomers say, makes good listening at 18 to 30 MHz. Rather than enjoying stellar broadcasts, however, which are usually monotonous, astronomers correlate changes in frequencies with changes in heavenly bodies and draw conclusions — making sure they do not contradict optical astronomers.

Though some of the early radio telescopes were built with ordinary telephone poles and chicken wire from Sears, modern telescopes outstrip in sophistication and expense anything an amateur could construct. In fact, the VLA is part of a system of telescopes known as the National Radio Astronomy Observatory (NRAO) which has units not only in New Mexico, but in Arizona and West Virginia as well.

At the VLA, an 82-foot parabolic reflector captures radio waves and focuses them on the six-foot subreflector above the dish which in turn sends them through the feed into the receiver. Several receivers, each with a fairly definite frequency range, are mounted on each of the 27 antennas. To change frequencies, you alter the subreflector in order to use other receivers.

The frequencies covered by the VLA extend from 73 MHz to 23 GHz. A popular one takes in 1340 to 1430 MHz in order to study neutral hydrogen, a commonplace, universal element, and also 1600 to 1730 MHz to study the four main frequencies of the OH molecule. Other NRAO telescopes are suited to handle additional parts of the radio spectrum.

External noise, of course, as with any radio, presents a major problem. Hence, the remote location of the VLA and the fact that some areas, as around the observatory at Green Bank, West Virginia, have been declared a "radio-quiet zone." However, interferences, such as automobile sparks and power line insulators, which crank and emit radio signals, continue to plague astronomers. Such problems have been dealt with as best as possible.

"We had a truck back then," recalls Richard Huguenin, a pioneer in the field, "with a little antenna, and we could find out which power pole the interference was coming from. We would very gently drive the truck into the pole and bang it. The shock knock-
ed the crust of dirt off the insulator and then we were okay. We used to go around doing this at the NRAO at Green Bank, and people thought we were plain crazy.”

Since radio stations emit interference, observing frequencies, such as the all-important 21 cm wavelength of hydrogen, are protected by law, but the laws, according to Huguenin, often do not work well. Radio telescopes sometimes end up observing in the military aircraft range simply because, except when the military does use it, it is very quiet. Few people, apparently, want trouble with the Strategic Air Command.

As I talked last spring to Bill Brundage, a staff engineer who did his graduate work at Ohio State University, he explained to me some of the research going on at the VLA. As with many NRAO scientists, Bill’s graduate work combined two disciplines, astronomy and engineering. His graduate work, in fact, was with John Kraus, well-known to Hams for a book on radio antennas. Kraus’s Radio Astronomy, originally published in 1968, is still the standard text on the subject.

Ordinarily at the VLA, teams from all over the world work around the clock on several projects at the same time. The VLA and NRAO are operated by Associated Universities, Inc., which includes universities such as Harvard, Columbia, and MIT, and are funded by the National Science Foundation. Access to facilities is determined solely on the merit of the research.

The day Bill and I were talking in the Control Center, three projects were going on. A team from the Naval Research Laboratory, NASA Goddard and the Imperial College, in England, was using three different bands, 1400 MHz, 5 GHz, and 23 GHz, working on high resolution observations of merging galaxies. A second team of five astronomers, including one from the Netherlands, at 5 GHz was “looking” at the center region of M51, a radio galaxy, whose extremely active center could be emitting from black holes. Yet a third team, using the familiar 1400 MHz band, was observing several radio sources, called wide angle tail sources—energetic galaxies whose emissions spurt off to the side and look like the tail of a dog. Whenever the telescope changes objects of study, the antennas hum melodiously and turn, slowly and gracefully, all 27 of them in unison, to point at a different part of the sky.

The major problem with radio astronomy, Bill explains, is resolution (distinguishing one distant radio source from another). Originally, radio telescopes could barely distinguish between two constellations. In addition, the signal received, especially when from outside the Galaxy, is usually extremely faint. To solve these problems you need a ridiculously large antenna.

“The larger the antenna the greater the spatial resolution,” Bill explains, “and the greater the collectivity, the more that is delivered to the receiver and the more sensitive it is.”

Yet reflectors at the VLA are by no means the largest in existence. One at the NRAO in Green Bank, West Virginia, is 300 feet in diameter, and another in Puerto Rico is 1000 feet. But the VLA 230-ton antennas work in pairs (interferometers) and move about on railroad tracks in the shape of a “Y,” with arms of 21 km and a base of 19 km. Communication between the antennas and the Control Center is via a waveguide buried underground. The overall maintenance operation is coordinated by personnel communicating on phone, or by standard commercial VHF radio at 160 MHz.

The array can create 351 pairs (27 x 26/2) of interferometers and spread out to cover almost 500 square miles. It is called the “interferometer.”

Repairmen diagnose problem with equipment housed underneath the 82-foot, 230-ton antenna.

At Control Center of the VLA, scientists examine readouts at a computer terminal.

Instead of loudspeakers for listening, tape recorders in the Control Center record the noise of radio sources received from antennas through an underground waveguide.

Computer pictures of radio sources.

At Control Center of the VLA, scientists examine readouts at a computer terminal.

Instead of loudspeakers for listening, tape recorders in the Control Center record the noise of radio sources received from antennas through an underground waveguide.

Computer pictures of radio sources.
The SONY AIR-8 Is Here!

WE LOVE IT!! We've been selling scanners for over 15 years, and believe us . . . this one's a beauty! When Sony puts their name on a product, you can be sure that it's superb, and the Air-8 is no exception. We'll stack this one against any hand-held scanner on the market today. It outperforms the whole bunch!

6 BANDS!

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency range</th>
<th>Tuning Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSB</td>
<td>144 - 174 MHz</td>
<td>5 kHz</td>
</tr>
<tr>
<td>AIR</td>
<td>108 - 136 MHz</td>
<td>25 kHz</td>
</tr>
<tr>
<td>FM</td>
<td>76 - 108 MHz</td>
<td>50 kHz</td>
</tr>
<tr>
<td>SW</td>
<td>1601 - 2194 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>MW</td>
<td>530 - 1600 kHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td>LW</td>
<td>150 - 525 kHz</td>
<td>1 kHz</td>
</tr>
</tbody>
</table>

* Frequency range with the MW tuning interval (9 kHz/10 kHz selector) set to 9 kHz.

Here Are Some of The Air-8's Outstanding Features!

11° helical flexible antenna • 40 memories (10 for each band) • Memory Scan
• Manual scan (up & down) • Priority channel • Key protect • Direct tuning
• Priority channel selector • Squelch Control • High quality speaker • Receive indicator • And more!

ORDER YOURS TODAY!

SPECTRONICS INC.

1009 GARFIELD STREET, OAK PARK, IL 60304

ICF-2010

329.95

TECHNOLOGY FEATURES

- Dual PLL quartz frequency synthesis — the world's most accurate tuning system; uses a quartz crystal's accuracy to abolish drift and maximize tuning stability
- New synchronous detection circuitry for the first time in a consumer radio; dramatically reduces fading and annoying "beat" frequency interference from adjacent stations
- Switchable IF bandwidth, "narrow" to select one station out of a crowded band, or "wide" for the lowest distortion when your station isn't fighting to break through the clutter
- Built-in ferrite bar antenna for LW and MW reception
- Telescopic antenna for FM and SW reception

SPECIFICATIONS

- Frequency Range: AM: 150-20,999.9 kHz, FM: 76-108 MHz, Air: 116-136 kHz
- Antenna System: LW, MW, Built-in Ferrite Bar Antenna, FM, Air, SW Telescopic Antenna
- Inputs: DC in 4.5V, External antenna input (minijack x 2)
- Outputs: Earphone (minijack), Record output (minijack)
- Speaker: 4 inch dynamic
- Power Requirements: Batteries "D" x 3 (SW) (optional), "AA" x 2 (SW) (optional) for programmable consumer, AC 120 Volts, 60 Hz, AC Adaptor (supplied) DC 12 Volts with DCC-127A Car Battery Cord (optional)
- Dimensions: 6 x 9 x 11/4 in. W x 2 x 1/4 in. D
- Weight: 3 lbs, 12 oz (with batteries installed)
- Color: Black
- Supplied Accessories: AC Adaptor, Earphone, Shoulder Strap, Long Wire External Antenna, External Antenna Connector (x 2), Short Wave Handbook
- Optional Accessories: DCC-127A Car Battery Cord, AN-1 Active Antenna

CONVENIENCE FEATURES

- Full AM band coverage (LW, MW, SW, USB, LSB) plus FM and Air Band reception
- Band select function for quick access to SW broadcast bands
- Direct Access "tuning" enables you to "key-in" station numbers directly
- Rotary tuning knob for smooth, convenient manual tuning up and down the band
- 32 station memory preset for immediate recall at the touch of a button
- Memory Scan tuning gives a brief sampling of each preset
- Automatic Scan tuning gives a brief sampling of each station on the band
- Built-in quartz clock with standby and alarm capability
- Programmable timer turns receiver on and off automatically up to four times per day, tuning in up to four different stations
- Sleep timer for 15, 30, or 60 minutes of music as you go to sleep
- Switchable 12-hour/24-hour clock indication, 24 hour indication facilitates reference to Greenwich Mean Time (GMT)
- Multi-function liquid crystal display (LCD) indicates tuned frequency, preset station number, AM (LW, MW, SW) or FM, shortwave meter band, and more

ORDER YOURS TODAY!

SPECTRONICS INC.

1009 GARFIELD STREET, OAK PARK, IL 60304

THE MONITORING MAGAZINE

October 1986 / POPULAR COMMUNICATIONS / 15
Visitors examine an exhibit outside the Visitor Center at VLA. With two such radios, built to a larger scale, earthlings could communicate with aliens over the vast distances of space.

Visitor checks out new Visitor’s Center at the VLA.

The amplifiers, Bill explains further, are designed for very low internal noise and often cooled to the level of liquid helium (4° Kelvin absolute temperature) and in special cases down to 1° or 2° Kelvin. “The lowest noise receiver amplifiers in existence are those used for radio astronomy,” Bill says.

A radio telescope requires high gain, wide bandwidth and high antenna directivity. The fact that these requirements are nearly contradictory has led over the years to a number of engineering challenges. The history of radio telescopes is largely the history of radio engineers coming up with new designs to study something astronomers need to know about. Astronomers then discover something new that requires yet another advance in technology.

The Hewish telescope built in England to observe quasars, for example, led to the discovery of pulsars—neutron stars rotating at very high speeds. At a cost of 15,000 pounds, it covered four and a half acres and was built by five scientists with the help of students. For the antenna, they put in a thousand posts connected by 120 miles of cable. When first detected, the neutron star emissions were so rapid and steady that astronomers thought they must be man-made or of some extraterrestrial civilization.

In response to the pulsar mystery, for further study, Richard Huguenin made adaptations to the 300-foot telescope at Green Bank. Now pulsars, quasars, black holes and the like are under regular study by the NRAO. The next big technological step will be the construction of the Very Long Baseline Array (VLBA), the completion of which is planned for 1990.

The VLBA will consist of ten precision antennas spread across the United States from Hawaii to the Virgin Islands. The interferometers will not be connected in real time, but by precise time measurements, using a hydrogen maser frequency standard. Very sophisticated 1-inch tape recorders, which can record at a speed of 270 inches per second, will generate 7 miles of data tape each day at an observation post to be sent to the Operations Center in New Mexico and correlated with the other tapes.
The VLBA will then be like a telescope with a lens almost the size of the earth. But that’s not all. Plans are afoot to place a 15 m telescope known as QUASAT in orbit. QUASAT will increase the baseline of the VLBA by a factor of three. More importantly, it will be the first step towards even more distant antennas in space which will permit even better resolution.

Such increased resolution will allow detailed studies of smaller energetic cores of galaxies—including mysterious-faster-than-light emissions from explosive ejections of quasars. It will also lead to a better understanding of the size and distances of the universe, the bending of radio signals as they pass the sun, the continental drift of the earth and the rate of the earth’s rotation.

Since each element radiates electromagnetic energy at a wavelength and intensity peculiar to it, radio telescopes can map the universe in ways superior to optical ones. Though an element such as hydrogen can be seen when it is heated by a nearby star, when cold, it is invisible and can only be detected through a radio. Moreover, radio waves are not as easily absorbed by interstellar dust as are visible rays, and with a radio one can “see” through a galaxy.

Spectral lines, when observed from earth, change with regard to their relative motion. Thus, a Doppler shift in frequencies can reveal the speed and direction of objects moving through space. In addition, the emissions of an atom over a range of wavelengths can give scientists information about the temperatures of heavenly bodies.

Most radio frequencies have been used to study many elements, some of which do not even exist on earth. Common molecules monitored are formaldehyde, ammonia, water, and methyl alcohol—some lines of the latter which radiate at 110 GHz.

Before I left the VLA, I met with Don Swann, the Personnel Manager, also in charge of Public Education, emerging from a spiffy new Visitor’s Center. Don is particularly excited by the VLA’s newest mission—to monitor Voyager 2. “We have the large gathering area,” notes Don. “When the Voyager goes by Neptune in 1989 (August 24) we’ll be able to get those very faint signals in better quality, and then we’ll do a satellite ship down to JPL in California,” he adds.

Last January 24 and 25, as astronomy buffs know, Voyager 2 passed by Uranus transmitting back some of the most remarkable images and information every gathered. When it reaches Neptune, its signal will be much weaker, but adding the VLA onto Goldstone, one of NASA’s three deep space receiving stations, will significantly improve the data flow. Voyager communicates at both S-band frequency, around 2300 MHz, and X-band, around 8400 MHz. The VLA will listen to X-band, the primary frequency. (S-band is for sending commands.)

In the midst of all this, one wonders what ever happened to the search for extraterrestrial intelligence (SETI). The answer is nothing. It is still going on.

Project Ozma, the first of its kind, was organized by Frank Drake of NRAO in 1960. Conferences on SETI have been held as recently as last year at Green Bank. Today several radio telescopes, though none at the NRAO or VLA, but including one at Harvard, are dedicated solely to searching for extraterrestrial intelligence. Hundred of millions of stars, scientists estimate, may have to be studies before significant results can be obtained.

Many astronomers think the odds against contacting another intelligent species are improbably high and turn the telescopes to more practical matters. Yet Carl Sagan speaks of extraterrestrial life as “an idea whose time has come,” and the cheapest way, for sure, to communicate with earth would be by radio (much more likely than by coming here in spaceships). Two such radios as those in New Mexico could mount the incredibly huge distances of space and allow earthlings to communicate with aliens.
When Radio Was Young
Through The Doors of History Into A Bygone Era

BY ALICE BRANNIGAN

No doubt about it, the letter carrier is going to get a spanned sacroilac from carrying all of the mail arriving for this section of the magazine. The items he brings are read, appreciated, and everything appropriate will find its way into print here.

For instance, a letter from Albert H. Ellis of Brantford, Ontario arrived containing an early QSL card from Amateur Broadcasting Station 10BQ in his home town. The QSL listing this station on 1200 kHz but gives few additional details; further checking in Radio Station Treasury, however, reveals that in 1931, 10BQ was running 5 watts and being operated by the Telephone City Radio Association, 12 Terrace Hill, in Brantford. The QSL does note that the antenna at 10BQ consisted of a two-wire "inverted L," 50 feet in length and 75 feet high.

Mr. Ellis comments this station came on the air in 1926 when Commander C.P. Edwards, Deputy Minister of Fisheries and Marine, issued authorizations for such stations in areas that had no nearby commercial broadcasting stations. At that time, while it was sometimes possible to hear KDKA (Pittsburgh), WHAS (Louisville) and WOAI (San Antonio), for most parts the radio dial was rather quiet in Brantford. When 10BQ went into operation, it was an immediate success and received reception reports from listeners from Newfoundland to New Zealand.

Other similar "amateur" broadcasters began operating—such as 10NX (now CKNX) of Wingham and another in Chatham, in order to bring local news to area listeners. By 1932, radio broadcasting had become very popular and there was no longer a shortage of commercial broadcasters in Canada. This resulted in the Radio Commission being flooded with requests from the commercial broadcasters that the "amateur" broadcasters be put off the air since they were "stealing" listeners! In 1934, the Canadian government told the "amateur" stations to qualify and apply for a high-power commercial license or else shut down. During those Depression years only a few had the money to do anything but pull the master switch and fade into history. By the way, Mr. Ellis (who sent us the QSL) was one of the operators at 10BQ!

Another Try At Amateur Broadcasting

While we're on the subject of early do-it-yourself broadcasters, a letter showed up from Don "Hoisy" Hosington, W4CJL, of Florence, Alabama. He tells of how, in March of 1932, he moved his little 10-watt self-excited oscillator (Heising modulated) phone transmitter out of the 160-meter Ham band to 1540 kHz (just past the high frequency edge of the broadcasting band in those days). Selecting the experimental callsign W9XBR for his Salina (Kansas) station, Hoisy began rebroadcasting the signals of WMAQ in Chicago. Listeners (if any) were invited to send in reports and it was quite surprising to find that 35 DX reports came in during the first week!

Reception was being reported from New York, Texas, Illinois, Colorado, Wisconsin and elsewhere, despite the poorly-modulated low-powered transmitter. In ten days, Hoisy even heard from Grand Island, Nebraska. It wasn't a reception report. The letter was from the FCC and contained a number of violation notices!

Hoisy lost his Ham license (W9DWH) for a year, a high price to pay for his brief career in home-broadcasting. He did eventually get into commercial broadcasting and recently retired after 46 years as Manager and Chief Engineer of AM and FM broadcasting stations. In 1967, Hoisy formed the Society for the Promotion of AM (SPAM) to save that mode of operation; the group publishes an excellent and interesting newsletter about AM operation in all radio services.

Write to them at SPAM, c/o F. Dunlap, WASTWF, 114113 Stoneshire, Houston, TX 77060. Don't forget your SASE!

Spiked Radio

Walter S. Andariase, of Atco, New Jersey, sent along a photo of a chromed railroad spike that he says has a connection to broadcasting. The spike is engraved, "A momento of the 3rd Ave 'El.'" WRCA and WRCA-TV, New York." The question is exactly how the spike connects with either broadcaster.

The 3rd Avenue "El" was, of course, an elevated urban railroad line that existed for many years in New York City. It was torn down more than 25 years ago. WRCA is one of the several calligns that have been used by the NBC station in New York on 660 kHz (ex-WEAF) now known as WNBC. The WRCA callign was used for a short time in the 1950's. The callsign WRCA-TV was NBC's station on TV Channel 4, a station that has also been known as W2XBS and WNB; it's now known as WNBC-TV (Channel 4).

Apparently NBC's New York stations gave away souvenirs of the rail line at the time it was razed, but we don't have any specific details of how or why the spikes were distributed. For a flea-market find, Walter
Some Light DX

Joel O'Brien of Vernon, Vermont, writes to say that many years ago his uncle was a Ham operator and was also a wireless operator on several lighthouses off the coast of New England. He enclosed one of his uncle's W1UF Ham QSL cards, made especially interesting by the line "U.S. Lighthouse Service. WPW" written along the card's lower left border.

That sent yours truly scurrying into the archives to see what I could find about station WPW. Turns out that, in the very early days, WPW was the callsign of the American ship S.S. James S. Whitney; but from there it gets a bit tricky. The next time the call shows up is 1930, when it belonged to Relief Lightship No. 90 of the Bureau of Lighthouses (U.S. Dept. of Commerce). It operated on 375, 410 and 500 kHz. This lightship, which was stationed in Boston, had previously been using the callsign NITS but (along with all other Lightships) switched to civilian-type callsigns because of the transfer of the vessels from Navy control.

Records of 1931, however, indicate that WPW was then assigned to newly built Relief Lightship No. 106, as ship No. 90 had been retired from service. By 1939, the lighthouses and lightships had been incorporated into the U.S. Coast Guard and Lightship No. 106 was given the callsign NGY (monitors reported hearing this station on 2670 and 3410 kHz). At times when the vessel was on station as Hens and Chickens Lightship or the Nantucket Shoals Lightship, it would have identified as NNB and NNSN, respectively.

So ends the odyssey of changing callsigns and ships. Looks like the W1UF QSL dates from the 1930's.

Deep In The Heart Of Texas

Public safety communications listeners should be interested in a photo we came across showing the communications station at the Victoria County (Texas) Courthouse and Jail (the jail is the newer-looking structure to the left in the photo).

This photo isn't dated; my guess it was probably taken in the 1960's. I tracked the sheriff's communications system back to the mid-1940's when, under the callsign of KEPL, it operated on 1714 kHz with 500 watts. The mobile units in the system transmitted on 37.18 MHz. By 1950 the FCC had done away with the KEPL call letters and replaced them with KKC355, an identification that was in keeping with their callsign format revisions.

Since those early years, this system has been modified to a considerable extent. Long gone are the old 1714 kHz and VHF low band rigs, also the KKC355 callsign. Presently the Victoria County Sheriff operates as KKF580 on 154.755 and 155.73 MHz, as WXQ944 on 155.19 MHz, and as KTV657 on 155.37 and 155.685 MHz. The callsign KKC355 is currently unsignaled. Can't imagine why it became unsuitable. Can you?

While on the subject of police radio, I wanted to share with you a great photo of the California Highway Patrol's 1938 mobile command post, KAPA. This rig looks something like an Airstream and has the station callsign displayed in large letters on the side. Running 50 watts on 1692 kHz, it normally communicated with CHP HQ in Sac-

The U.S. Navy's Cuban transmitter, NAW, as it looked in 1911.

An unusual Ham card from W1UF also carried the callsign WPW at the lower left. That callsign belonged to a lightship!
The ornate courthouse in Victoria, Texas. The communications tower in the center of the photo doesn't seem to belong in this turn-of-the-century scene.

Mysteries In Transit

Thusfar, our attempts to find out about the wireless towers on the roof of the old Dupont Hotel in Wilmington, Delaware, are producing results. Jack Caldwell, of Cop佩ville, Washington, has been in contact with some friends in Delaware who are pursuing the matter. At this point we know that the mystery towers appear in 1915 photos and could possibly have been there as early as 1912 (but not before that). Photos taken in 1928 show the towers gone. That's a start, and we'll be looking for additional data.

In the May issue I mentioned that I bumped into one of our readers at a conference I had attended. Bill asked why I never discussed old-time ship stations. That's why the May issue showed a photo of the radio shack aboard a ship called the "Elizabeth and Blanche" taken during its "1925-1928 Empire Cruise." Sorry to say, that I had no information at all on the vessel itself or its station, so I asked readers for help.

No readers wrote in, but when I went to Vienna, Virginia, in June for the Principles of Communications for Military Systems conference, I saw Bill again, and he had some answers regarding the mystery photo we had run at his request! How's that applies?

The vessel was a 40-foot motor lifeboat that was sent on a globe spanning cruise in order to test her seaworthiness, radio equipment, and general usefulness. There were only four persons aboard during the cruise, including Capt. G.E. Hitchins and "Sparks" Gilbert Moss.

Leaving London in November of 1925, the vessel embarked on a planned 38,000-mile adventure. Radio equipment consisted of standard Marconi lifeboat gear operated from a 1/4-horsepower air-cooled gasoline engine. Directly coupled to the engine was a 500 Hz AC generator capable of producing 200 volts. This was able to operate the 250 watt quenched spark transmitter used. The antenna was a 4-wire flattop.
Receiving equipment included a 6-tube direction-finder set and also a 2-tube receiver for general use. All equipment was designed for operation on frequencies in the general vicinity of 500 kHz, even though the 2-tube receiver was used on lower frequencies for reception of news and weather information from various coastal stations. Emergency battery power was available for use in the event of generator failure. The vessel achieved 2-way communications over a 200-mile range during daylight hours when contacting shore stations equipped with tube-type receivers. They were able to contact crystal detection equipped ships at a 175-mile range. British regulations required only that ships be equipped with crystal sets and be able to transmit/receive for 50-miles.

The good ship “Elizabeth and Blanche” completed its voyage safely in the allotted time.

Call Of The Orient

Thanks to Howard Siegel (KB2FL) of Scarsdale, New York, we have a chance to see the 1960 QSL of DZF2, The Call Of The Orient missionary station in Manila, Philippines.

This station verified his reception on 11920 kHz in December of ‘60 with an attractive red/green/white QSL. Under the callsign KZRM and the slogan Radio Manila, this historic station operated until WWII forced it off the air for several years. In the 1930’s it operated on 11830 kHz.

DZF2 no longer exists, so it was a welcome treat to be able to view its QSL card.

An Unusual Reception Report

We’ve seen some rather strange reception reports sent to radio stations but one recently provided us is the best yet. In 1933, radio WGY in Schenectady received the letter that is reproduced here and if you can’t quite make it out, the text is:

“WGY Schenectady—General Store—New York—States—SIR I AM GIDE FOR HUNTER MAN WOT COME AT DIS PLACE LAC-DES ISLE FOR HUNTING DEER DESE HUNTER MAN BRING IT WIT HIM MACHINE FOR HEE YO SPIT FROM FAR PLACE I Lissen wit him sunday nite also tuesday nite I heer song bout my old modder and I ting dates disne fine song also I heer oder song I dont de name tuesday nite storie for de small boy and girl boud mak de star shine for dem if they is good boy and girl hunter man lad lak hell and tole me ax you how we mak some moon shine

“I heer you spik just de same lak your at me place I ting you have good machine I lis sen more nex wick tank you and much oblige Gide Camille Porier, Chemir (?) P.O. Quebec Canada”

We wonder if that report earned him a QSL! See you soon.

Historic Ham QSLs

Reunion is an Indian Ocean volcanic island roughly 420 miles east of Madagascar. Within its 969 square-mile area, it is home to a small population of French extraction.

Today, Reunion has two AM broadcast stations (666 kHz with 20 kW and 603 kHz with 4 kW), about 60 low power FM stations, plus 6 TV stations and a bunch of TV repeaters. There isn’t any shortwave broadcaster on Reunion and relatively little Ham and “ute” station activity. Getting a QSL from Reunion if you’re a DX monitor isn’t altogether impossible, but it’s a pretty good trick. In the 1930’s, it was an even more difficult task.

For the above reasons, when it was revealed that a Ham station on Reunion was going to transmit special scheduled DX broadcasts for SWL’s, there was quite a clamor. The 1938 broadcasts, it was announced, would contain music and spoken material, and would be 30 minutes in length on each of three consecutive days in March. It wasn’t going to be easy to snag this rare DX catch, but the station was going to transmit only 25 watts on 14340 kHz. His beam would be directed towards North America to give the fickle signals all of the help possible.

The grantor of this DX bounty was Prince Vinh-San, licensed as FR8VX. He promised to send out special hand-made QSL cards to all who could hear these one-in-a-lifetime broadcasts. A few DX listeners in North America were able to dig FR8VX out from the QRM and were rewarded with a card for hearing one of the only shortwave broadcasts ever to come from Reunion.

POPCOMM is pleased to give you a look at FR8VX’s special QSL for those transmissions almost 50 years ago. Wouldn’t you like to have heard those broadcasts?
Selected English Language Broadcasts

Fall 1986

BY GERRY L. DEXTER

Note: This list of English language broadcasts was accurate at the time of compilation, but stations often make changes in the hours and frequencies of their broadcasts, often with little advance notice. Hundreds of broadcasts are aired daily on the shortwave radio bands, many of them directed to an audience in North America. This is a representative sampling and not intended as a complete reference. Some broadcasters air only a part of their program in English during a given hour or may run the English segment into the next hour. Many stations, such as the BBC, Voice of America and Radio Moscow operate in English around the clock and only representative times and frequencies are included for them. All times are in UTC. () indicates a starting time at the number of minutes past the hour indicated. Frequencies are in MHz.

### Time	Country/Station	Frequencies
0000	R. Beijing	11685, 15445, 11590, 15445
BRT, Belgium (30)	9790, 9830	
REE, Spain	7065	
R. Tirana, Albania	15150	
R. New Zealand	9680	
R. Portugal (30)	6010, 6190, 11815	
Vatican Radio (50)	6100, 6140, 9740	
RHC, Cuba	7410, 9435	
V. of Israel	5995, 9455, 9650	
Voice of America	5795, 6120, 6175, 7325, 9590	
BBC	5960, 9755	
RCI, Canada	5930, 7345, 9630, 9740, 11990	
RBI, E. Germany (15)	6080, 9730	
V. of Germany, W. Germany	6040, 6065, 1145, 9545, 11785	
RAI, Italy	9575, 11800	
RAE, Argentina	9690, 11710	
RAI, Austria (30)	6155	
R. Netherlands (30)	6020, 9895	
V. of Greece (30)	7430, 9420	
V. of Israel	7410, 9435	
V. of Nicaragua	6015	

0100 | R. Prague, Czechoslovakia | 5930, 7345, 9630, 9740, 11990
 | RBI, E. Germany (15) | 6080, 9730
 | V. of Germany, W. Germany | 6040, 6065, 1145, 9545, 11785
 | RAI, Italy | 9575, 11800
 | RAE, Argentina | 9690, 11710
 | RAI, Austria (30) | 6155
 | R. Netherlands (30) | 6020, 9895
 | V. of Greece (30) | 7430, 9420
 | V. of Israel | 7410, 9435
 | V. of Nicaragua | 6015

0200 | R. Beijing | 6015, 9645
 | RBI, E. Germany | 9560, 9620
 | VOFC, Taiwan | 5985, 6065, 11720, 11740, 15215
 | R. Tirana, Albania (30) | 7065
 | Radiobras, Brazil | 11745
 | R. RSA, South Africa | 5980, 6010, 9615
 | R. Korea, South Korea | 11810, 15575
 | R. Netherlands (30) | 6165, 9590
 | R. Kiev, Ukraine SSR | 6020, 7165, 7205, 11790, 11860, 15180
 | R. Cairo, Egypt | 5975, 9590

0300 | 0400 | R. Beijing | 5990, 9510, 11940, 15250
 | FBI, Switzerland | 6135, 9725, 9835
 | R. Polonia | 6095, 6135, 7145
 | R. New Zealand | 7270, 9525, 11815, 15120
 | HCJB, Ecuador | 6230, 9870, 11910
 | R. Beijing | 11970, 11980, 15280, 15445
 | R. Prague, Czechoslovakia | 5930, 7345, 9630, 9740, 11990
 | RBI, E. Germany (30) | 9560, 9620
 | V. of Germany, W. Germany | 6010, 9545, 9656, 9640, 9735
 | VOF, Taiwan | 5985, 6065, 11740
 | R. Baghdad, Iraq | 6050, 11750
 | R. New Zealand | 11780, 15150
 | R. Portugal | 9565
 | R. Sofia, Bulgaria | 7115, 7970
 | RFI, France (15, 45) | 6175, 7135, 9355, 9550, 9790, 11700
 | V. of Greece (30) | 7430, 9420
 | R. Budapest, Hungary | 6025, 9520, 9535
 | TWR, Bonaire | 7355
 | Radio Earth, USA | 4820
 | HRVC, Honduras | 5960, 9755
 | RBI, E. Germany (15) | 6080, 9730
 | V. of Turkey | 7410, 9435
 | V. of Israel | 6015
 | V. of Nicaragua | 4820, 7255
 | R. Botswana | 9696
 | RSI, Sweden | 6135, 9725, 9885
 | SRI, Switzerland | 5990, 6155, 9510, 9570, 11810, 11940
 | R. Bucharest, Romania | 6090, 6190, 1120, 6140, 9550, 9740, 11725
 | RHC, Cuba | 7135, 9535, 9550, 9790, 11700, 11955

0500 | V. of Germany, W. Germany | 5960, 6120, 6130, 9700
 | RBI, E. Germany (30) | 6055, 9630
 | R. Japan | 9735
 | R. Netherlands (30) | 6165, 9715
 | V. of Nigeria | 7255
 | R. Lesotho | 4800
 | RAI, Austria (30) | 9735
 | R. Cook Islands | 11760
 | GBC, Ghana | 4915
 | ELWA, Liberia | 4760

22 / POPULAR COMMUNICATIONS / October 1986

THE MONITORING MAGAZINE
<table>
<thead>
<tr>
<th>Time</th>
<th>Country/Station</th>
<th>Frequencies</th>
<th>Time</th>
<th>Country/Station</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0700</td>
<td>R. Japan</td>
<td>9735</td>
<td>1600</td>
<td>BSKSA, Saudi Arabia</td>
<td>9705, 9720</td>
</tr>
<tr>
<td></td>
<td>HCJB, Ecuador</td>
<td>6130, 9745, 9845, 11925</td>
<td></td>
<td>R. Norway (Sundays)</td>
<td>9570, 11925, 17840</td>
</tr>
<tr>
<td></td>
<td>VOFCT, Taiwan</td>
<td>5985</td>
<td></td>
<td>RFI, France</td>
<td>17620, 17795</td>
</tr>
<tr>
<td></td>
<td>KTWR, Guam (45)</td>
<td>11735</td>
<td></td>
<td>UAE Radio, UAE</td>
<td>11955, 15300, 15320, 17775</td>
</tr>
<tr>
<td></td>
<td>AFRTS</td>
<td>6030, 11790, 15265</td>
<td></td>
<td>R. Nacional, Angola</td>
<td>9535, 11955, 15255</td>
</tr>
<tr>
<td></td>
<td>R. Australia</td>
<td>5995, 9580, 11720</td>
<td></td>
<td>R. Cairo, Egypt</td>
<td>15560, 15600</td>
</tr>
<tr>
<td>0800</td>
<td>SIBC, Solomon Islands</td>
<td>5020, 9545</td>
<td></td>
<td>Voice of America</td>
<td>9655, 11925, 15310</td>
</tr>
<tr>
<td></td>
<td>R. Australia</td>
<td>9580</td>
<td></td>
<td>R. Norway (Sundays)</td>
<td>9920, 11585, 13745</td>
</tr>
<tr>
<td></td>
<td>KNLS, Alaska</td>
<td>11850</td>
<td></td>
<td>V. of Israel</td>
<td>15330, 15345, 15430</td>
</tr>
<tr>
<td></td>
<td>HCJB, Ecuador</td>
<td>6130, 9745, 11925</td>
<td></td>
<td>AFRTS, USA</td>
<td>11755, 11770, 11840, 12050, 15245, 15425</td>
</tr>
<tr>
<td></td>
<td>BBC</td>
<td>5965, 6195, 9510</td>
<td></td>
<td>R. Moscow</td>
<td>9620</td>
</tr>
<tr>
<td>1000</td>
<td>AIR, India</td>
<td>11705, 11810, 15320, 15335, 17875</td>
<td></td>
<td>R. Afghanistan</td>
<td>7170, 9610</td>
</tr>
<tr>
<td></td>
<td>R. New Zealand</td>
<td>6100, 9620</td>
<td></td>
<td>R. Kuwait</td>
<td>9510, 9640, 15160, 17745</td>
</tr>
<tr>
<td></td>
<td>V. of Vietnam</td>
<td>9840, 12035</td>
<td></td>
<td>R. Yugoslavia</td>
<td>9545</td>
</tr>
<tr>
<td></td>
<td>SLBC, Sri Lanka (30)</td>
<td>11835, 15170, 17850</td>
<td></td>
<td>R. Baghdad, Iraq</td>
<td>9150, 9550, 15160, 17745</td>
</tr>
<tr>
<td></td>
<td>R. Nepal (45)</td>
<td>5005, 9590</td>
<td></td>
<td>RAE, Argentina</td>
<td>15345</td>
</tr>
<tr>
<td>1100</td>
<td>R. Beijing</td>
<td>7215, 11790, 15084</td>
<td></td>
<td>RCI, Canada</td>
<td>15260, 17820</td>
</tr>
<tr>
<td></td>
<td>VOIR, Iran (15)</td>
<td>6060, 9580, 11770</td>
<td></td>
<td>R. Kuwait</td>
<td>11675</td>
</tr>
<tr>
<td></td>
<td>R. Australia</td>
<td>15575</td>
<td></td>
<td>R. Abidjan, Ivory Coast</td>
<td>11920</td>
</tr>
<tr>
<td></td>
<td>R. Korea, S. Korea</td>
<td>15595, 17640, 21765</td>
<td></td>
<td>R. Afghanistan</td>
<td>9665, 11805, 11880</td>
</tr>
<tr>
<td></td>
<td>R. Pakistan</td>
<td>11945, 15400</td>
<td></td>
<td>R. Japan</td>
<td>13705</td>
</tr>
<tr>
<td></td>
<td>R. Finland International</td>
<td>9840, 12035</td>
<td></td>
<td>RCI, Canada</td>
<td>11945, 15325</td>
</tr>
<tr>
<td></td>
<td>V. of America</td>
<td>9595, 9750</td>
<td></td>
<td>R. Cuba</td>
<td>15220, 15270, 17790</td>
</tr>
<tr>
<td></td>
<td>R. Pyongyang, N. Korea</td>
<td>11705, 11840, 13705, 15150, 15475</td>
<td></td>
<td>R. Damascus, Syria</td>
<td>9022, 11930</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11945, 1540</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td>1200</td>
<td>R. Tashkent, Uzbek SSR</td>
<td>9535</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Beijing</td>
<td>7235, 7325, 9600, 11785</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Bangladesh (30)</td>
<td>9535, 9640</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>VOPK, Kampuchea</td>
<td>15525, 17653</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Australia</td>
<td>9695, 11938</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>V. of America</td>
<td>6060, 9580</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Moscow</td>
<td>9760</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Finland International</td>
<td>11705, 11840, 13705, 15150, 15475</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Ulun Bator, Mongolia</td>
<td>11945, 1540</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Pyongyang, N. Korea</td>
<td>9615, 12015</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>TWR, Bonaire</td>
<td>9750</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td>1300</td>
<td>R. Beijing</td>
<td>9550, 9730</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>AIR, India (30)</td>
<td>9545, 11810, 15335</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>BRT, Belgium</td>
<td>15590</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Norway (Sundays)</td>
<td>6040, 9590, 15245, 15310, 17770</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Pakistan (30)</td>
<td>9465, 11925, 15595, 17660</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Finland International</td>
<td>8590, 15400</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Fiji, N. Korea</td>
<td>9550, 9750</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>FEBC, Philippines</td>
<td>9670, 11850</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>RCI, Canada</td>
<td>11955, 15440</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>V. of Vietnam</td>
<td>10040, 15010</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td>1400</td>
<td>R. Japan</td>
<td>5990</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Korea, S. Korea</td>
<td>9750, 15575</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Norway (Sundays)</td>
<td>15245, 15300, 15310</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Finland Int.</td>
<td>11945, 15400</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>RSI, Sweden</td>
<td>11705, 15345</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Yugoslavia</td>
<td>15240, 15415</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td>1500</td>
<td>HKBS, Jordan</td>
<td>9560</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>R. Japan</td>
<td>5990</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
<tr>
<td></td>
<td>V. of Kenya</td>
<td>9665</td>
<td></td>
<td></td>
<td>9620</td>
</tr>
</tbody>
</table>
Monitoring The:

Nuclear Regulatory Commission

It's Been In The News, But Have You Tuned It In Yet?

BY TOM KNEITEL, K2AES, EDITOR

The Nuclear Regulatory Commission (NRC), with its 3,200+ employees, has been operating since early in 1975 yet this important federal agency's communications are seldom reported as having been heard by monitors. So, let's take a look at the agency and what it does, where it does it, and how it's all tied together with communications. So far as I'm aware, the NRC's communications network hasn't previously been spotlighted—this could well be a first!

What It Is

The NRC licenses and regulates the users of nuclear energy to protect the public health and the environment. It does this by licensing persons and companies to build and operate nuclear reactors and those who own and use nuclear materials. The NRC also checks on the activities of the persons and companies licensed to ensure that they do not violate the safety rules of the NRC.

NRC responsibilities go far beyond licensing and regulating the construction/operation of nuclear reactors (and other nuclear facilities). The agency also administers the possession, processing, transport, handling and disposal of nuclear materials. It inspects licensed nuclear activities and facilities (and reported accidents at same), enforces its own regulations, and conducts many other related activities.

The NRC is structured with its executive headquarters at 1717 H Street, N.W., in Washington, and operations HQ at Bethesda, MD. The NRC operations are divided into five regions, with an NRC Regional Headquarters office located in each.

Communications

While regular landline communications are in use between the various NRC Regional Offices, VHF communications are used for local on-site operations at offices in the National Capital area. For long-range communications, especially as a backup and for such times as an emergency situation might arise, and for drills and tests, an HF short-wave network also exists.

In actuality, the HF stations appear to be participants within selected Federal Emergency Management Agency (FEMA) networks as opposed to constituting networks that belong exclusively to the NRC itself, although the NRC operates its own stations within those FEMA networks. The implication is that any national emergency relating to either agency would most likely require extensive coordination of the activities of both agencies. Hence, the need for direct high frequency single sideband communications over a large number of frequencies that can be selected for best coverage, day or night.

During daylight hours, stations monitor the calling and emergency frequency of 10494.5 kHz (USB); this is known as frequency "28" ("Foxtrot 28"). At night, stations monitor 5212.5 kHz ("Foxtrot 15") for the same purposes. "Foxtrot 44" (17650 kHz) is the secondary or backup emergency channel. "Foxtrot 48" (20028.5 kHz) appears to be the only channel upon shared by all five NRC Regional Offices.

The NRC is authorized for hand-held units on 27.575, 27.585, and 169.10 MHz. These units are available for use during field inspections and investigations. Of course, during an actual emergency situation there would be additional frequencies required. This was adequately proven several years ago during the nuclear accident at the Three Mile Island nuclear reactor in Pennsylvania. At that time, the NRC used federal frequencies allocated to the Interagency National Emergency Fire Cache. In the event of any future nuclear "incident," it's reasonable to assume that the NRC would again press this
group of on-site frequencies into service without delay. The frequencies are:

- **Air Tactical #1**: 166.675 MHz
- **Air Tactical #2**: 169.15 MHz
- **Air Tactical #3**: 169.20 MHz
- **Command #1**: 168.70 MHz (Input: 170.975 MHz)
- **Command #2**: 168.10 MHz (Input: 170.45 MHz)
- **Command #3**: 168.05 MHz (Input: 170.425 MHz)
- **Logistics #1**: 414.65 MHz
- **Logistics #2**: 415.40 MHz
- **Tactical #1**: 168.05 MHz
- **Tactical #2**: 168.20 MHz
- **Tactical #3**: 168.60 MHz

During any significant nuclear problem, in addition to NRC frequencies, you’d also find lots of activity on frequencies used by other federal agencies such as the USDA, FEMA, the Environmental Protection Agency, the Department of Energy, as well as the Army and Army National Guard. Naturally, a host of local, county, and state agency frequencies would also be buzzing away with increased activity.

This is the information on NRC communications that has thusfar been assembled by monitors from their own listening efforts and from various other sources. If this is all news to you, then you can thank POP’COMM for bringing you up to date on an agency whose communications have (until now) been far less discussed than the agency itself. What with civilian uses of nuclear energy approaching a crossroads, and embroiled in many levels of controversy, these are frequencies for an agency that you’ll undoubtedly be hearing more and more about as time goes on.

In the mean time, if you have information to add to that which we have presented here, pass it along and we’ll share it with our readers in a future issue of POP’COMM.
DXer's Dream

KENWOOD SALE

Kenwood offers a communication receiver to suit your listening pleasure. It covers the full spectrum: Lang, Medium, and Shortwave. AM-CW-SSB-FM Wide-Narrow Selectivity, Noise Blanker and more.

SONY SALE

SONY ICF 2010
- 150 kHz to 30 MHz AM, CW, SSB
- 150 MHz to 108 MHz FM
- 115 MHz to 136 MHz SSB band
- 32 Programmable Memories
- Event Timer
- Synchronous Detector
- Wide/Narrow Bandwidth

FREE EEB will extend your warranty from 3 to 6 months. EEB is a Kenwood Factory Authorized Service Center.

PANASONIC RF-6000

Sale
($585.00)

- 1.6 to 30 MHz, FM/LM/WMSW
- Microcomputer multi-tuning system
- 9 memory stations, scan
- Slow/fast rotary tuning
- 10 key direct access tuning
- Universal voltage

RF-3800 table top LST $294.95 Sale $229.95
RF-3100 table top LST $379.95 Sale $329.95
Add $4.00 UPS

Dxer's Dream

TOSHIBA RP-11
(KENWOOD R-11)

Full page in 1985 WRTY inside front cover for details
- Covers all International & Tropical Bands
- S Meter, Safety Off Lock

SAVE $50.00 SALE $79.95 + $4.00 UPS

One of the finest receivers available under $100.00.
List $129.95
Optional AC wall adapter TAC 64 $31.95

MAGNAVOX

JIL SCANNERS
JIL SX-200 SAVE $120.00
- Commercial Rafer AM/FM Scanner
- Extra Wide Coverage 26-68-108-138-240 Mhz
- CB PSB-HAM ARIBAND-Military 2 Way

On Sale at $219.95

NEW AND IMPROVED
MAGNAVOX D2999

SALSA-279.95
LST $399.95
- All FM-PEL Digital Tuning
- Same Frequency Input
- 16 Program memories
- 146 KHz -29.999 MHz All Mode
- 87.5 - 108 MHz - Auto Search
- 12/24 Hour Clock - Alarm
- Wide/Narrow Bandwidth
- World Power Switch 240V/50Hz
- 12VDC External or Internal Battery

SANGEAN ATS-801

Close-Out Limited Quantity

ONLY $84.95 + $4.00 UPS
LIST $269.95

- SW 5.6-15.5 MHz FM/AM
- LW 155-281 MHz
- 25 Program Memories
- Digital Frequency & Clock Readout
- Manual or Auto Tone

Free Stereo Headset + $39.95 SWL Book

ORDER DESK HOURS: MONDAY - FRIDAY
10 A.M. to 5 P.M. Eastern
SATURDAY 10 A.M. to 4 P.M. Eastern
Order Desk Phone Number: 800-368-3270

www.americanradiohistory.com
THE BEST GETS BETTER AT EEB

The Most Exotic VHF-UHF Receiver Ever Offered To General Public

ICR 7000 ONLY $949 + $10 UPS

EEB introduces the new ICOM R7000 VHF/UHF receiver, which also is available as the R7000 HP (high performance) with EEB-designed modifications that remarkably improve the sensitivity, audio frequency response, selectivity, and more.

In conformance with their record as a responsible manufacturer, ICOM has done everything possible to hold down production costs while leaving open the potential for post-production modification (e.g., R71A) that can substantially improve performance and give the discriminating operator a more cost effective unit with enhanced specifications.

You have read about EEB's R71A modification in World Radio TV Handbook. Now we have done it again with the ICOM R7000 VHF/UHF receiver.

When you are making an investment in this kind of equipment, it only makes sense to maximize your options by selecting the IC7000 and then to go that last yard toward ultimate performance by choosing the R7000 HP from EEB.

ICOM R-7000

Commercial Receiver
VHF-UHF 25-2000 MHz

- 25-2000 MHz coverage
- Precise frequency entry via keyboard
- 96 programmable memories
- Scan-memory-mode-select-memory-frequency
- 5 tuning speeds: 1, 1.0, 5, 10, 12.5, 25 KHz
- Narrow/wide filter
- Memory back-up
- "S" meter or center meter for FM
- AM & FM wide, FM narrow, SSB, CW

EEB HP Options

- Front end upgrade improves sensitivity
- Audio mod—better volume, less distortion
- Optional band pass filters
- Power supply, cooling mod to reduce chassis heat
- Spike protection, on AC line
- IF output for spectral display 10.7 (STD) 21.4, 30 MHz others available
- 24 hour bench test and realignment for optimum performance
- Extended warranty to 6 months
- Final alignment and overall checkout
- Installation of ICOM options purchased with your new R7000 at no charge
- More details next month's ad. Call or write for free flyer of EEB mods.

ICOM R71A

ONLY $799 + $8 UPS

- 100 KHz to 30 MHz
- 32 programmable memories
- SSB-CW-AM-RTTY (FM optional)
- Wide dynamic range
- Digital PLL
- Memory scan
- Band pass & notch tunable
- Computer control via IEC 71A & C64
- See ICOM's ads for more details

EEB HP Options

R71 (HP) High Performance. EEB has the reputation of excellence when it comes to R71A modifications. Many of our modifications are proprietary and not offered by any other source. EEB now offers a package deal including our most popular option—known as the R71 (HP) High Performance and includes the following:

- 24 hour bench test
- Narrow filter (choice of 3, see below) Replaces stock ceramic SSB filter. Improved selectivity and shape factor.
- Front end upgrade—improves dynamic range (plus) preamp enabled below 1500 KHz
- 4 KHz filter replaces stock. 6 KHz wide filter—improves AM selectivity.
- Audio output modification—increases audio output; reduces distortion.
- AGC time constant changed to better suit SW listening.
- Spike protection added.
- RFI line filter
- Installation of ICOM options purchased with your R71A HP.
- Final alignment and overall checkout.
- Free extended 6 month warranty.

R71 HP (MF) Mechanical Filter add $200
R71 HP (XF) 8 Pole, 2.4 KHz xtal filter add $250
R71 HP (XFS) Super 2.1 KHz filter add $300

ICM Options

Free installation when purchased with your R71A from EEB

- CR-70: DC Kit for 13.8 VDC operation
- CR-64: High stability oscillator
- CR-70: DC kit for VFO operation
- CR-64: High stability oscillator
- EX308: Computer interface connector
- EX310: Voice synthesizer
- FL32A: CW narrow filter (300 Hz)
- FL34A: Crystal filter (2.4 KHz)
- FL33A: CW narrower filter (250Hz)
- RC-11: Infrared remote control

ELECTRONIC EQUIPMENT BANK
516 Mill Street, N.E.
Vienna, VA 22180
Order Toll Free: 800-368-3270
Technical and VA Orders (703) 938-3350

10 miles west of Washington, D.C.
Sorry—No COD's 10-5 Tues., Wed., Fri.
Sat. 10-9 Thurs., 10-4 Sat.
Closed Sunday and Monday
"FAX", The Secret Signals on Shortwave

BY TOM HARRINGTON, W8OMV

The SWL has been deprived of one of the most interesting and fascinating modes in the shortwave bands—FACSIMILE. This has been largely due to the lack of proper, affordable FAX equipment that would receive the various speeds and indices of this illusive mode.

My first encounter with FAX was in the early 1950’s when I traded a shortwave receiver for a surplus facsimile machine. My newfound piece of gear required the use of a truck and three SWL friends to move it to my basement shack. After several months of preparation and with the help of two professional FAX technicians, I was successful in getting the unit running. From that time on, I was hooked on facsimile. My first acquisition of a surplus facsimile was followed by two additional units in order to receive some of the many speeds (drum speed) and index of cooperation of FAX that I found on the shortwave bands. Each FAX machine only covered part of what I wanted to receive and each was limited to a special use. I was in seventh heaven! Now, I had three working facsimile machines that filled a large wall of my expanding shack.

At this point the economics of my new SWL activities hit home. My various facsimile machines had expensive appetites. The average weekly expenditure of electrostatic and special papers for these machines was costing me between $35 and $45. In the early 1950’s, this was more than my budget could stand for my newfound hobby. My justification for this weekly expenditure was the amazing amount of weather information, press photos, government FAX and other interesting facsimile pictures I was receiving in my shack. It was very impressive, but expensive! During this time, there was a constant flow of SWL’s and Hams traveling to see all of my FAX equipment in action.

At this point, I will touch on several negative sides of the old FAX units that I was operating. The machines were filling the house with smoke and fumes to the extent that the walls of my shack required repainting after being coated with a heavy brown film of dust from the chemicals in the FAX print paper. The daily breakdown of these electromechanical devices was a headache. I found that I was spending almost all of my free time trying to repair these hungry beasts. This love affair lasted for four years until I moved and had to give up two of the three machines. From this point on, I have always had a machine or two in my possession. They ranged from a monster Westrex machine to many small converted Deskfax units for use on set drum speeds.

Actually during these many years, none of these machines filled my requirements as they were each built to a dedicated standard or set speed or IOC. Each of these brutes were built for weather service only, press service only, or some special government use; no single machine fulfilled my need.

I have always dreamed of a FAX machine that would be easy to use, inexpensive to print, would give me all of the drum speeds and indices, and print all of the facsimile that was transmitted on the shortwave bands and now from the many satellites.

Several years ago, I was working on some new solid state RTTY decoders with two friends, Dave Kelce and John Fellin (Info-tech/Digital Electronics Systems). Somehow during one of my visits, the conversation again came around to facsimile and the lack of affordable and suitable FAX equipment for the SWL. Several days later, I returned to the DES plant armed with the specifications for my dream facsimile set-up.

A. No special papers required—chemical, treated or special size. Print-out would be accomplished on inexpensive standard size paper.

B. Unit must receive all speeds 60-90-120-240 RPM drum speeds, and both index of cooperation, 288 and 576.

C. Unit must have start and stop functions, manual, and auto.

D. The unit must receive AM and shortwave facsimile and FM for satellite work. The FM section is now mandatory for all satellite work.

E. The power source must be 120 volts AC, 60 Hz, with no special DC power supplies needed. Units with foreign current were not acceptable because of the problems of synchronization of the various drum speeds.

F. There must be a print polarity choice of negative or positive. Press photos are traditionally transmitted with negative phasing. Also, some of the new satellite imagery is transmitted in the negative phase.

G. For greater versatility and future fac-
Facsimile developments, the unit must be able to print from right to left or left to right. Both directions of print are being transmitted from various sources. Weather photos are sent left to right while news-wire photos are sent right to left.

H. The unit would drive an inexpensive personal computer dot matrix printer, which would be Centronics parallel, 8 bit graphic addressable with proper 180 to 220 line pitch. This printer would be an inexpensive Epson FX-85 or the Epson LQ-800 or a compatible unit.

I. The facsimile print must have 16 levels of gray scale for wire photos and other pictures, plus a setting for black and white scale used on weather maps and marine meteorological work. These have to be two separate functions to produce a quality image in both modes.

J. The last specification would be that the unit had to be simple to use, reasonable in cost, yet be able to reproduce high-quality photo reproduction and line drawings.

Our first approach was the use of some of the common home computers on the market. None of the six PCs produced the quality of print that was required. After researching this for the better part of a year, we found only what others had told us many times before—it was virtually impossible to produce a quality hard copy photo using any of the personal computers. At this point, we also found that video or screen renditions of the facsimile pictures were also lacking quality due to the low picture resolution of the monitors. This applied also to the many so-called high density monitors that are available. Our requirements for quality was high dot resolution per inch. During this period, we evaluated several foreign facsimile units which claimed to have good video resolution and print resolution. Both of these units were definitely not to our quality standards. They were expensive, had many failures and neither had a video or print picture that was in any way acceptable.

As our facsimile project progressed, we were informed by several printer manufacturers that they were ready to introduce several inexpensive, high speed, high resolution printers that would sell at very low retail prices. Upon evaluation of these pre-release printers, we knew a simple, cost effective facsimile system could be built. The balance of the project was time, money and software development. The DES M-800 is the product of this work.

The DES M-800 Facsimile Unit

This new unit fulfills all of the needed requirements for a simple-to-use, inexpensive facsimile print system using an Epson type
FX-85 or LQ-800 dot matrix printer. The cost of the facsimile printer paper is practically non-existent as many prints can be made for pennies. The M-800 converter unit fulfills all of the aforementioned specifications and produces the required quality black and white levels, plus the sixteen shades of gray levels for news wire photo reproduction and satellite earth pictures, plus quality black and white line drawings for weather information and maps.

Diagram of Facsimile Hook-up. The basic hook-up is extremely simple, the audio output from the general coverage receiver goes to the input of the MX-800 FAX unit. From the FAX input, a standard IBM cable plugs into the rear of the unit and then to the Epson type printer. The FAX signal is peaked on the tune LED. Proper IOC is selected with drum speed. The unit then will start facsimile print on the receiver of the start and stop tones of the facsimile signal.

Where Do We Find All Of The Facsimile Stations? The many hundreds of facsimile signals are listed in several facsimile publications which have recently been published. Plus, many utilities frequency lists are published by the government, Navy and National Weather Service. The government publications can be secured from the Government Printing Office at very low prices. The other facsimile guides are available at most shortwave dealers and contain all of the needed receiving information, such as speed, IOC and phasing. There are also presently several facsimile user groups in existence. A complete list appears at the end of this article.

Choice Of Printer. The M-800 facsimile converter uses the standard Epson type printer and does not require any printer modification. This allows the printer to double as a quality printer for your personal computer. The FAX hook-up is standard and the print can be directed to either the PC or the M-800 FAX unit with a simple, inexpensive A-B switch. We have found that these printers are absolutely clean of any RFI and do not cause any problems with high sensitivity, general coverage receivers. We did find, however, in the attempt to use low resolution video, that we were experiencing heavy interference and RFI problems with the video drivers and the low resolution monitors. This was another reason that we opted to pass on the video side.

In conclusion, the DES M-800 facsimile unit will produce unequaled high resolution hard copy print-out of all the press and wire service photos, weather maps from around the world, all marine meteorological facsimile products, full facsimile products transmitted by Navy and government agencies, plus superb quality print-outs from the many satellite services in existence. All that is needed is a high quality input signal to the facsimile system and away you go to a new world of shortwave listening, I know you will love it as I have for many years. Try it.

Sources Of Facsimile Items

DES M-800 Facsimile Converter
Universal Shortwave Radio
1280 Aida Drive
Reynoldsburg, OH 43068
Plus other leading SW dealers.

Facsimile Products Guide
U.S. Naval Eastern Oceanography Center Norfolk, VA.

Facsimile Guides
Universal Shortwave Radio (address above)
E.F.B., 516 Mill St. N.E., Vienna, VA 22180
EGE, Inc., 13646 Jefferson Davis Hwy, Woodbridge, VA 22191
CRB Research, P.O. Box 56, Commmack, NY 11725.

Other Weather Information (Worldwide Marine Weather Broadcast)
National Weather Service Office
Ocean Service Center
1120 Old Spanish Trail
Slidell, LA 70458
504-622-4450

National Weather Service Office
Room 302
World Weather Building
Washington, D.C. 20233

30 / POPULAR COMMUNICATIONS / October 1986

THE MONITORING MAGAZINE
Spanish Language Lab

If you're like me, you suffered through a couple of years of school-brand Spanish and ended up with a virtually useless smattering of assorted words. I spent 4 years trying to sort out whether the word *dentro* means "teeth" or "inside," and I still can't recall which it is!

Writing a reception report to a Spanish-language station has usually meant dragging out the English/Spanish dictionary and taking it word-by-word with sentences that translate into classics like, "The signal that comes from your station was such as strong as it might have been." I suspect that I'm not alone in this pickle; Gerry Dexter also came to the same conclusion. The main difference is that while I sat here confused, Dexter began putting together the Spanish Language Edition of his Language Lab.

Not a humble 4-page guide nor a multilingual report-form, the Language Lab is a 54-page 8½" x 11" book aimed squarely at the SWL who wants to send a Spanish Language reception report that is correct, complete, concise, courteous, and most importantly, coherent. It includes 15 ways to open your letter, 36 ways to describe receiving conditions, hundreds of programming descriptions, 17 clever ways to ask for the QSL, 23 letter closings, and many pages of miscellaneous useful words, phrases, and sentences to use in follow-ups and reports.

The Spanish wording was prepared by Dr. David Korn of the University of Wisconsin, assuring the user of accuracy and proper grammar. In looking through this well-organized book, you can easily realize how you can probably obtain a substantial increase in the success rate of your reports to stations in Spanish Language nations. In the works (and should be ready soon) are similar Language Lab books for French and Portuguese.

The Language Lab (Spanish Edition) is available from Tiare Publications, P.O. Box 493, Lake Geneva WI 53147. The price is $12.95 plus $1 shipping ($2 overseas). Add $1 in each category for First Class/Airmail. Prices are in U.S. funds.

Southeastern States Scanner Frequencies

For listeners throughout the Land of Dixie, there's a brand new directory of scanner frequencies to increase your scanner use and enjoyment. It's the Fox Southeastern States Regional Scanner Directory, a 526-page (large 8½" x 11" size) directory covering listings in Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Puerto Rico, and the Virgin Islands.

This fat book, weighing in at 2½ lbs., provides information on all state/county/local agencies (police, fire, local government), rescue squads, ambulances, forestry conservation, maritime, mobile telephone, weather, and more. In addition, it includes frequency spectrum and band usage information.

Looks to be quite thorough and well thought-out, done in a most professional manner, easy-to-use and read, and continues in the same tradition of the excellent directories in the series of Fox's local area directories. If you're into scanning in the Southeastern U.S. (or Puerto Rico and the U.S. Virgin Islands), this publication should come in very handy. Its huge size makes it quite impressive; it's got more pages and listings than some publications we've seen that purport to cover the entire nation!

The Fox Southeastern States Regional Scanner Directory is available at $12.95 per copy (plus $2 shipping/handling to addresses in USA/Canada/APO/FPO). It can be ordered by mail from CRB Research, P.O. Box 56, Commack, NY 11725.

World Broadcasting Systems

Can broadcasting systems retain independence from politics? What is the effect of new technologies on broadcasting worldwide? What are the problems facing broadcasters located near international borders? What effects have pirate stations had upon world broadcasters? These are just a few of the fascinating topics addressed by Sydney Head in his comprehensive new book, *World Broadcasting Systems, A Comparative Analysis*.

This is a 457-page hardcover book that provides a contemporary, comparative analysis of radio/TV/cable broadcasting systems in developed, undeveloped, and developing nations throughout the world. It is the only book to present the subject in a unified, global point of view.

Illustrated with charts and maps, this very well researched and informative book offers an enormous amount of information on broadcasting history, station ownership (private, governmental, religious groups), broadcast laws, programming, economics, facilities, audience research, access, and the highly volatile topic of broadcast freedom (free flow of information).

This is a book that I found so totally engrossing that I could hardly put it down once I started reading. The author is an expert on world broadcasting who has been professionally associated with all aspects of the industry for many years and who is presently a visiting professor at the University of Miami's School of Radio/TV/Film. Prof. Head was formerly chair of the University's Radio/TV/Film Sequence; Tom Knittel advises that Prof. Head was one of his professors when he attended that institution and that there was always a waiting list to enroll in his courses.

If you're interested in any aspect of broadcasting, you'll come away from *World Broadcasting Systems* with far more insight into what it's all about. Definitely an impressive work that undoubtedly contains the most provocative and stimulating approach we've seen in a very long time.

This book is priced at $29.75 from the Order Department, Wadsworth Publishing Co., 10 Davis Drive, Belmont, CA 94002.
For months I've been looking at the advertisement in POPCOMM for the Butternut SC-3000 base station scanner antenna. While offering unity gain on the VHF low band, the manufacturer claims it produces up to 3 dB gain on the VHF high band, up to 7 dB on UHF.

Having treated myself to a birthday gift of a sparking new scanner, I figured that it was definitely time to make my move towards that antenna. I especially liked that it covered 30 to 512 MHz, since my scanning interest matched up with those spec's, and I had been getting by with an antenna really intended only for the VHF high band.

I can't say that I wasn't impressed with the way this antenna looked with its assorted ground radials and "trombone" sections. In the looks department, it's about as interesting as a scanner antenna can get. These are the reasons that I was anxiously awaiting the arrival of the SC-3000, and that's why the parcel delivery hadn't even pulled out of my driveway when I began to dig the components out of the shipping carton.

At the end of the stream of aluminum tubes and clamps that came cascading out of the carton there was one final item—a folded piece of legal-size paper. What a pleasant surprise to learn that this was the instruction sheet for the SC-3000's assembly and installation. If a 20-page manual had come toppling out, I'd have been less fully enthusiastic about tackling the job! Only seven steps were required to get the SC-3000 into shape and ready for action.

The SC-3000 turned out to consist of three major sections made of aluminum alloy. Along with these parts are several attached and unattached "trombone" sections, radial rods, clamps, and some stainless steel hardware. All of this went together to form an 11-ft. high antenna in approximately 45 minutes. Assembly was rather straightforward with no unpleasant surprises: everything fit, all of the parts were there, and I wasn't left with any extra parts or hardware that didn't seem to be a part of the proceedings. I did note two discrepancies in the instructions. Step #1 refers to "section B" when it means "section C" while step #3 mentions the "upper (unslotted) end of section B" although that piece is slotted. These were, however, only minor discrepancies since it's quite obvious what is meant, and the pictorial diagram shows everything correctly.

Hey! This looks like it's going to be fairly easy to assemble!

The Butternut SC-3000 hard at work.

The SC-3000 mounts atop standard TV masting sections of standard sizes available at many electronics shops. I mounted it atop several sections that totalled 20 feet in height, attaching it to a 1-story building at the base and at a point about 8 ft. up from the base. For the base I used two cinder blocks, filling in the holes (around the masting) with cement. This held things quite sturdily and I haven't found the need to add any guyi further up the mast. The antenna is rated to survive in better than 100 MPH winds, but I'm certain that it would require better guyi than I've thusfar provided.

The SC-3000 has a place for attaching a regular PL-259 coaxial connector, thus making it all very simple. The manufacturer cautions that the feedline shouldn't be attached without first disconnecting the other end from the scanner; this to avoid any possibilies of electrical shock from improperly grounded (or ungrounded) scanners.

What I did was leave my previous antenna up and connected to other scanner. Since both scanners were the same make/model, I decided to run them side-by-side on the identical high-band frequency to see how the two antennas stacked up against one another. Both antennas were mounted at the same height, a 50-ft. distance separated the two masts.

The older antenna was a 2-meter Ham

Butternut's Model
SC-3000 Scanner
Antenna

Features:
- Heavy wall seamless aluminum tubing and all stainless steel hardware.
- Uses Butternut's patented "trombone" phasing sections thus providing gain without breaking the vertical element with insulators.
- Covers 30-512 MHz scanner ranges.
- Receive gain:
 - UHF Up to 7 dB
 - VHF Up to 3 dB
- Low Band Unity gain
- Omnidirectional coverage area.
- Uses an SO-2329 feedline termination.
- Wind survival 100+ winds.
- Height 11 feet.
- Designed for multi-band scanners.
broad omnidirectional type that had been achieved at 155 MHz. It had performed well for the 3 years I'd had it in operation. Still, the SC-3000 was able to pull in high-band signals from distant mobile stations without breaking through the squelch. The signals from distant mobile band omnidirectional type that had been the "mountains." The tector is a combination of navigational and security devices, some of which accurately detect two types of signals. The challenge remains, however, to achieve a balance between sensitivity and selectivity, a balance that is of particular concern when it comes to police radar, as the SC-3000 and similar devices have been shown to be capable of detecting both police and civilian signals. If the signal is strong enough, the SC-3000 will detect it, regardless of whether it is from a police or a civilian source.

The Micro Eye Express L.R. Radar Detector

Radar detectors for vehicles have been around for more than 25 years. I remember some of the very early, almost-experimental units that had first started to trickle onto the market from what was then regarded by many as outlaw companies. Most of the pioneers in the field have long since gone by the boards, if only today's IC technology had been around fifteen years ago. These days the radar detector industry has grown into a rather sedate $200-million giant; a far cry from the days of early units such as the Radar Zone, Radar Sentry, and other units from the early 1960's. And yet, the challenge remains unchanged. A mobile radar detector must be able to accurately detect two types of speed measuring radar and discriminate between a police radar gun and other radar signals from navigational and security devices, some garage door openers, traffic counters, etc. The key to the whole thing is the right combination of sensitivity and selectivity. Sensitivity picks up the weakest signals from distant points. Selectivity discriminates between police radar and other forms. Units made a couple of decades ago had problems dealing with all of these things. But that's in the past.

Recently I obtained what its manufacturer calls the "world's most sensitive radar detector." I couldn't resist a claim like that! The unit in question is the new B.E.L.-Tronics Micro Eye Express L.R. (Model 844s). This rather small and lightweight detector contains all of its receiving hardware and also its antennas within itself.

Reception takes place simultaneously on the X band (10,525 MHz) and the K band (24.150 MHz). Higher sensitivity in this model has been achieved by the use of a two-stage amplifier rather than the single-stage circuit utilized in the manufacturer's older long range detector (the Model XLR Long Range). Sensitivity is further increased by eliminating the need for the detector to analyze both sidebands of the received signal. In the Model 844s, only a single sideband is examined and the result is noise reduction and increased sensitivity. In operation, the unit is mounted where it can "see" an unrestricted view of the road ahead. The sun visor or dashboard should do just fine. The power connection is made to the vehicle's cigarette lighter socket.

The front of the unit contains a pilot light, a set of six relative signal-strength lights, a small loudspeaker, and three miniature slide switches. One switch is for power on/off, the other switches permit selection of internal filters and discrimination modes to maximize operation of the unit to your environment and driving conditions.

When the unit is turned on, it goes through a self-testing sequence that causes the LEDs to illuminate and several beeps sounds to generate. At that point, the unit goes into a quiet stand-by mode as it awaits reception of any incoming signals. A single pulsating yellow LED keeps you reassured that the device is, in fact, in operational stand-by status.

Of the two bands (X and K) used for radar speed-clocking purposes, the K-band is used solely by police and presents little problem for designers of detection devices; although these shorter wavelengths have only about half the effective detection distance as signals on the lower-frequency X-band. K-band signals tend to be absorbed by water molecules, allowing police only line-of-sight detection range; this is why the police sometimes place their radar clocks on the road. In the target vehicle is well within detection range.

B.E.L.-Tronics Micro Eye Express Specifications

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>MICRO EYE EXPRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st LO (Local Oscillator)</td>
<td>11.588 GHz resonant cavity</td>
</tr>
<tr>
<td>2nd LO</td>
<td>1.033 GHz ± 100 MHz</td>
</tr>
<tr>
<td>IF</td>
<td>1.033 GHz dual stage amplifier</td>
</tr>
<tr>
<td>Sweep</td>
<td>25msec</td>
</tr>
</tbody>
</table>

Die Cast Microwave Horn, Double Ridge Waveguide

- Operating Frequencies:
 - X-Band 10.525 GHz
 - K-Band 24.150 GHz
- Power: 10-14 volts DC, 360ma
- Operating Temperature: -4° to +176°
Receiving distance is better on the lower-frequency X-band, but design problems are increased. Many variables (temperature, humidity, terrain, velocity of police car, number of vehicles in area, nearby buildings, etc.) affect the transmission and reception of X-band signals. Also, the band is used, in addition to speed-measuring devices, for other high-tech electronic equipment including some types of automatic door openers, traffic flow sensors, security devices, etc., all of which have the potential for false activation of many vehicular radar detectors.

In the Micro Eye Express, incoming signals are fed through the unit’s internal microprocessor which quickly examines the characteristics of the received signals and then generates its warning signal (via audible beep and lit red LEDs) based upon the proximity of the signal and the amount of (or lack) of probable emergency involved. The type of audible signal produced also lets you know whether the incoming signals are arriving via the K-band or the X-band. In any event, after only minimal on-the-road experience with the Micro Eye Express LR, you rapidly become familiar with the several types of sounds it produces upon sensing microwave signals. You find that some messages it offers indicate that there are X-band signals present that aren’t from a speed-measuring device, and which other signals in the band are from just such units located in your general area. Of course, the distinctive K-band brasp sound is a clear indication that your vehicle has entered a police speed-check zone.

The ethics and moral aspects of the uses of radar for vehicular speed measurement, as well as the detection of those signals by motorists, has been written about and examined in print to the point of exhaustion so it won’t be gone into here, but one point should be mentioned. Radar detectors aren’t intended as, nor suitable for being, a license for operating a vehicle in an unsafe manner at speeds substantially above a posted speed limit. Such drivers will not find a radar detector to be of significant value; they can’t slow down quickly enough!

A radar detector is, however, a very effective defense against unnecessary speeding tickets caused by revenue-located speed traps or occasional lapses of concentration on the part of the driver.

In that respect, the B.E.L.-Tronics Micro Eye Express L.R., radar detector is a well-designed, precision-made, piece of equipment. While small in physical size, it incorporates sophisticated technology that offers many refinements not available on other units we have seen and tried.

This unit is made by B.E.L.-Tronics Limited, 2422 Dunwin Drive, Mississauga, Ontario, Canada L5L 1J9. The company’s offices in the USA are at 2205 West Harry St., Wichita, KS 67213, and 20 Centre Drive, Orchard Park, NY 14127. Many local dealers carry B.E.L.-Tronics products.

Reviewed by F.X.F., North Dakota

A Review of the D-130 Super Discone Antenna

BY LANCE MCGRAW

Antennas are about as subjective as the weather. Nevertheless, from time to time something comes down the pipe that is really interesting. In this case it is the Super Discone D-130. The antenna is unity gain, make no bones about it, but it does something that is terrific. It covers from 25 MHz to a little over 1300 MHz and remains flat while doing it. It is the mate to the new ICOM R-7000 receiver. It also has something else going for it. It will handle 50 watts of RF at 50, 144, 430, 450, and 1296 MHz. It comes complete with clamps and all the hardware is stainless steel. At no time does the SWR exceed 1.5:1. How can this indeed exist?

A discone antenna has been around for a long time and finds a wide range of use with the military and overseas embassies. It is inherently a wide range antenna and finds much application in time division frequency hoping. Most discones will handle a frequency disparity of several octaves while providing a matched impedance of 50 ohms.

The D-130 has an added twist to the standard discone. In addition to the standard antenna it has a trapped vertical radiator to extend low frequency operation to 25 MHz. The nominal portion of this antenna becomes a true discone starting at 50 MHz.

I have used this antenna at my house for transmitting on two meters as well as the 27 MHz portion of the spectrum and it worked just fine. It also hears extremely well across the entire UHF band.

In closing, this antenna will make a scanner sparkle. It’s hard to believe what a resonant antenna can do to pick up the ability to receive weak signals. Receivers tolerate high SWR because there is no heat loss in transmission or damage to other RF finals. Even with the addition of a preamp on your scanner, it must first have the signal to begin with. This antenna has allowed me to hear signals that I previously could not.

The antenna has an assembled height of 5 feet or so and is a little strange looking but do not let that deter you. Assembly takes about a half hour to put together and you would really have to go way out of your way to assemble this antenna wrong. At a cost of under $10 it is a bargain in the field. Presently, the antenna is available from ENCOMM, 1506 Capital Avenue, Plano, TX 75074.
Policeman's Fast Action Saves Fall Victim

Police Sgt. Dennis Cox heard the call for help on his police radio: A boy had fallen off a motor bike and suffered head injuries. The boy's father had decided to call paramedics.

When Cox arrived at the home of 13-year-old Benny Cimino in Pecatonica, a small town in northwestern Illinois, he found the young bike rider sitting in a chair. The boy had fallen when a "three wheeler" motor bike had tipped over outside of town. Benny had hit the ground, scraping his head.

Benny's father, Frank, decided to call the ambulance service to have his son treated. Cox arrived before the paramedics. Only a few seconds after Cox entered the Cimino home, Benny suffered from what appeared to be convulsions, and then he stopped breathing, according to an account of the incident in the Pecatonica News.

"I checked his pulse and noticed no heartbeat, which is standard procedure in a situation like that," Cox told the News. "So I gave him mouth-to-mouth (resuscitation) until he came to."

The police officer said that he continued the mouth-to-mouth even after Benny started breathing to make sure that the young accident victim would keep breathing on his own. Cox estimated that Benny was unconscious for a minute and a half.

A few minutes later, Pecatonica ambulance member Linda Buss, off-duty at the time, arrived at the Cimino home after hearing the call for help on her scanner. "He was convulsing and very delirious when I got there," Buss told the News. "I really got there at the end." The regular ambulance crew arrived a few minutes later.

Benny had suffered a concussion and received scrapes on his back and side, but was reported to be back in school shortly after the incident.

Several years earlier, Cox was successful in administering cardio-pulmonary resuscitation (CPR) to a man who had suffered a heart attack. He also revived a second victim using the CPR method, sustaining the life of a baby who later died in a hospital.

Cox attended Emergency Medical Technician (EMT) courses at Highland Community College in nearby Freeport, Illinois, and completed two EMT refresher courses at the time of the accident. He was also one of the original crew members of the Pecatonica Ambulance Association. He is no longer a registered EMT, but maintains his Red Cross certification through refresher courses.

Cox received the Certificate of Merit Award from the National Red Cross, and also received awards from Illinois Governor Jim Thompson, Congressman John Anderson and the Pecatonica Village Board.

The police officer explained that there was no time to analyze what was happening. "When something like that happens, you just don't think about it," he said. "It's just instinct. It's something everyone should know because you never know when you're going to need it."

For his quick action, Police Sgt. Dennis Cox will receive the SCAN Public Service Award, which consists of a special commendation plaque and a $100 cash prize. For making the nomination, Jon Schwarz, Editor of the Pecatonica News, will also receive a special commendation plaque.

Our winner in the "Most Equipped," or "You've Got To Be Kidding" category this month is Gene Santosi of Wisconsin Rapids, Wisconsin. Gene isn't kidding, he just has a lot of equipment with which to pursue his monitoring and amateur radio interests in this expansive shack.

Gene's primary monitoring gear includes a Bearcat 50 scanner, ICOM IC-R71 shortwave receiver and SX-100 general coverage receiver. A computer is used with the R-71A for RTTY monitoring with an AEA CP-1 interface.

The amateur equipment includes Collins S-Line gear, Heath SB-220 amplifier, and ICOM IC-745 transceiver with general coverage receive capability.

Gene also uses a Sony ICF-2002 portable and a 30-year-old Hammarlund HQ-180 and a 1940-vintage Hallicrafters SX-28A receiver. These units are not shown here.
The new Costa Rica station affiliated with Adventist World Radio ran test broadcasts for about a week during the second half of May. One of our reporters caught the station, as you'll see in the logging. At this writing, however, the tests seem to have been suspended. Keep an ear on 15460 from around 1900 UTC, until as late as 0100. The station is using the name Radio Lira and is also supposed to employ a frequency in the 49 meter band but we've seen no references as to anything more specific in this range.

South Africa is making some changes in its domestic service carried on shortwave. 3250 which formerly carried the Radio South Africa internal service has been switched to 3215 and during our evenings (to 0400 UTC) the frequency carries the Radio Orion light music service. After 0400, 3215 airs the Radio Oranya regional service in Afrikaans which is also carried on 7205 beginning at 0610.

Capital Radio in the South African homeland of Transkei now carries a religious outlet under the name Southern Sound during our evenings, again up to 0400, on 3930. Reception reports on Southern Sound may be sent to P.O. Box 96400, Briston 2019, South Africa.

The third of the new regional stations in Australia is now on the air. VLBT at Tannant Creek is scheduled from 2230 to 0730 on 4910 and 0730 to 1430, 1930-2230 (Fridays 1430 to 1930) on 2325 kHz. Most listeners in North America will have a better chance to hear this one on its 120 meter band frequency. Yes, it's a bit tougher than logging Radio Australia!

DX Party line host John Beck is on leave from the program for a few months. Longtime host Clayton Howard who had hoped to return to HCJB and fill in for John has been unable to do so due to a health problem. In John's absence the show will be hosted by station staff Roger Stubbe and Gary Volkhardt. The midweek program has been dropped in John's absence.

If you hear something announcing as "La Voz de Sur America" on 6090 in the evenings, don't get excited. It's simply a new "international" service from the old Argentinian station Radio Belgrano in Buenos Aires. But, exciting or not, we haven't been able to find it here and place the blame at Radio Luxembourg's doorstep.

Radio Discovery, the new station in the Dominican Republic operated by former Radio Clarin star Rudy Espinal and former Radio Earth star Jeff White, continues its test broadcasts. The station is scheduled daily at 1800-2000 on 15045 and 0100 to 0300 on 6245 using just 50 watts of power to an inverted V-halfwave dipole antenna for each frequency. By the time you read this the station should have increased power to 1 kW. An increase in broadcasting hours is also planned. Currently Radio Discovery is operating under partial authorization from the Dominican Telecommunications Ministry. Call letters HIVC (Voice of the Caribbean) have been requested.

The station's name was chosen to reflect "the historical significance of the Dominican Republic" since this was where Christopher Columbus' discovery of the New World took place in 1492. Studios and transmitters are on the second floor of Plaza Naco, the largest shopping mall in the Dominican Republic. Radio Discovery's programs will be in English and Spanish, with some Portuguese perhaps added later on.

If you log this one a correct reception report will get you a nice QSL card and a copy of the station's quarterly newsletter. The mailing address is P.O. Box 25454, Tampa, FL 33622. Radio Discovery's offices are at 332 Corey Avenue, St. Petersburg Beach, FL 33706.

The Cascade Mountain DX Club has a new mailing address. You can reach them at CMDXC, 3721 27th Place West #301, Seattle, WA 98199. The club publishes Shortwave Monitor twice per month for listeners in the Pacific Northwest, including British Columbia. If you'd like more info or a sample newsletter send an SASE to Gary Atkins at the above address.

WE'VE HEARD FROM: John Stefanick of Bradley, IL, whose SWLing dates back to the 1930's. John sent a copy of a listener's certificate issued by the National Radio Company a number of years ago. Unfortunately the quality isn't quite up to reproduction but we appreciate these historical bits just the same, John. Thanks very much!

Chuck Locsin of Bessemer, Alabama has DXed from the Philippines and the US west coast prior to getting situated in the southeast. He says most of the QSLs pictured in his photo (which we're featuring this month) were the result of his Far East listening efforts. His main receiver is a Yaesu FRG-8800 with a Panasonic RF2900 and an Electroband multiband radio serving as backups.

Can't make out the signature of the person who sends in a question about the Spanish-speaking female voice on approximately 9600, reading off numbers. This is a "numbers" station and not really our department in Listening Post. POPCOMM has carried a number of excellent articles on the numbers stations mystery and Tom Kneitel's book Guide to Embassy and Espionage Communications has lots of excellent info on these stations and what's behind their existence. It's available from CRB Research, P.O. Box 56, Commack, NY 11725 at $10.95, plus $1 postage to addresses in USA/Canada/APO/FPO. (Also available from other dealers.) Be sure to check listings of these stations in the "Communications Confidential" column each month.

Tim Magrann who lives at 17109 Cortner Avenue, Cerritos, CA 90701, would like to hear from others who use the Radio Shack DX-400 receiver.

Earl W. May, whose WSM Publishing company produces the excellent "World Status Map" each month (Box 466, Merrifield, VA 22116) notes he heard Radio Moscow with a discussion of the effects on the environment of industrialization. One engineer said "they had made environmental mistakes which they were trying to correct in future construction projects." Earl has also been struck by the rock music request program he's heard on Radio Moscow and advises the Voice of America to be careful that it doesn't end up sounding like Radio Tirana by comparison!

Deanna M. Kratzer wants to know what
happened with the Radio Botswana QSL contest which we ran to introduce our book *Secrets of Successful QSLing*. Nelson George of Fayetteville, NC was the winner of the contest, Deanna. Unfortunately, he hasn't won a Botswana QSL yet but we're working on it and, if successful, will certainly mention it here.

Michael C. Toth of Granada Hills, CA also raises the Botswana question and wants to know just why they don't QSL. As we understand the story, the engineer just got fed up with being flooded by poor and impolite reports. We believe things are changing at Radio Botswana, at least somewhat, so don't give up hope.

Michael holds ham call KB6GHI, although he says he derives most of his radio enjoyment from the SWBC bands. He is a jazz musician and provides us with a superb example of what you can do with an SWL card design if you give it some thought and creative spark. He includes these cards in his reception report and believes they have added to his success in obtaining verifications. Hope it will work with Botswana someday!

Jerry Cook in Portage, Indiana, recommends that every DXer and SWL own a world globe. Jerry says it's the best accessory a shortwave listener can own and that he uses it at least five times in every listening session. Good idea, Jerry.

Pamela Doty in Oklahoma City says her logging of Radio Caiman was the first clandestine she’s heard and she'd like the address. So would we all! But the station isn’t announcing one and, indeed, attempts to learn much of anything about this station have gone unrewarded. Meantime we wait, and hope. As for your question about whether it's common to receive a souvenir from a station instead of a QSL—no, not common, although it does happen. Are you making a specific request for a QSL in your reports?

Armund Groner of Kamloops, British Columbia has an unidentified Spanish speaker on 6260.4 around 0530. It’s very likely Radio Melodia, Arequipa, Peru. Your 15090 unidentified at 1601 when you thought you heard a mention of “Radio Kiribati” could have been almost anything and we wouldn’t even hazard a guess. To our knowledge, however, Radio Kiribati doesn’t use anything close to this frequency.

RULES AND REGS—Again this month some reports had to be junked simply because the reporter did not add his or her last name and state abbreviation after each logging. And, if you use both sides of the paper for loggings those on one side or the other won’t be used. Your cooperation on these two points, as well as listing stations by country and leaving space between items so they can be cut up, will make our job much easier. Thank you!

Your loggings, shack photos, QSL copies—originals if you have spares—questions, news, clippings, comments and so on are what makes the column go. Let’s hear from you regularly!

This Month's Loggings

ALASKA NKLX on 9750 at 1425 w/jazz music, announcer, in RRT & s/off at 1630 (Groner, BC). ASCENSION ISLAND BBC relay, 7105 at 0500 w/relay of World Service (Griffith, CO). IBERTSANA R. Botswana, 4820 at 0333 w/ID “You are tuned to Radio Botswana from Gaborone” & into current pops (Eaton, VA).

BRAZIL R. Araguia, Araguina, 4905 at 0234 in PW/w/rock, ID's, live vocals, ads, jingle & chas to 0315 s/off (Paszkiewicz, WI). R. Globo, Rio, 11085 at 0337 in PP (Shute, FL). R. Goucha, 6539, Porto Alegre, at 0835-0900 w/soft ballads, ID’s, ads (Hickerson, AR).

BULGARIA R. Sofia, 0700 at 2220 in EE (Cook, IN); 0715 in EE w/Daily Review of Events & Developments (Griffith, CO).

COSTA RICA R. Radio Lina, Trans World Radio, Alajuelita, heard at 2155 w/tests in EE on 15460 (Groner, CA).

CUBA R. Rebelde, 5025 in PW with mixture of Latin & big band mx (Eaton, VA). R. Havana at 0000 in EE on 6100 w/s/on. Also 0110 on 9740 (Cook, IN); 9730 at 2130 in PP. ID 2141, anthem, off at 2143 (Doty, OK).

CZECHOSLOVAKIA R. Prague, 5910 at
All of us at one time or another have had a need for a phone to talk between two fixed or semi-permanent locations. It may have been between the treehouse and the kitchen. It could be from a shack in the backyard to the den, or even from the order desk to the rear warehouse. The military, of course, has always had the need to pop up with an instant telephone back to a command post. The generic term for these systems with two instruments and a single pair of wires is a "Field Telephone".

These systems are simple to make, they can also be purchased on the surplus market. What is usually available surplus is a phone in a box with a set of batteries and a crank generator to ring the remote set. Very rugged, very ugly and available in only one color—Olive Drab.

There are a couple of reasons why the armed services use telephones, despite the millions they spend on radios. The first one is security. It is much harder to tap the enemy's phones than it is to listen in to or jam their radios. The other main reason is simplicity. No frequency selection problems, fewer parts to break down. And most important, everyone knows how to use a phone. It is, of course, also a full duplex device, no need for "calling", "overs" and acknowledgements.

Field telephones are not very high tech but are certainly rugged. By the way, a standard phone is resistant to "EMP" which is the massive pulse caused by the detonation of a nuclear device. This is guaranteed to eat radios, but will leave simple field telephones intact. Even if there is no one left at the other end to answer the phone.

One of the best places to find Field Telephones is Fair Radio Sales, 1016 EastEu-ka Street, Lima, Ohio 45802. Phone: (419) 223-2196. They have real military Field Telephones, complete with carrying strap. Each unit weighs in at a respectable 19 lbs. Must be the army's idea of a "portable" unit. To get the system working, two units are required and a pair of wires between them. It uses two D cells which fit in the battery compartment. If the run of wire is long or you want them to sound louder, increase the battery voltage. These units are sold as the EE-8 and cost $50 each.

If you want something that can be used as a Field Telephone, and want it to look like a telephone as well, Fair Radio Sales have some units that fit the bill. They have desk and wall phones with a ringing magneto built in. You could use one of these at one end and the military EE-8 at the other. Put the fancy phone on the boss's desk and give the ugly one to the peons. These phones will work off three volts, but you may find they perform better at six to twenty-four volts. The desk phone is number D-NE-MPH and costs $44.50. The wall phone is number W-NE-MPH and costs $45.

These Field Telephones have not been FCC registered, which means you may not legally connect them to the public phone network. The worst that can happen if you are caught is your phone service will be cut off until you promise to be good. If you do connect a field telephone across the public phone network, it will work as a dumb extension. You can't dial on it, but certainly can talk and listen. Under no circumstances connect a field telephone to a regular phone line and crank the magneto handle. It may give someone at the Central Office a shock, it may also activate protection devices and disconnect your line. With a simple switch you could use a field telephone to call another party tell him he has a call and flip a switch to connect him to the outside (Figure 1). It's your own one extension PBX (Private Branch Exchange).

A pair of regular phones can be used as a Field Telephone. It will not have a ringing generator and the dial will be useless, but it will sound excellent (Figure 2). Putting together an alerting system can be done. There are several approaches to this problem. Some require another pair of wires and some require the use of diodes.

When super reliable communications are needed, such as on ships and down mines, the most reliable device is a "Sound Powered Phone." No batteries to go flat, almost nothing to go wrong. These devices do not give the best audio quality. When the ship is sinking, you have lost power and want to talk to the engine room, a sound powered phone will do the job. In the old days they used "Speaking Tubes" which were simply a pipe you talked through. Speaking Tubes had a limited range and the tube could not have any sharp bends. A sound powered phone uses a pair of wires which may be run anywhere.

A sound powered phone works on the principle that the microphone is a dynamic microphone so when struck by speech, a small current is generated which makes its way across the connecting wire to the other phone's ear-piece. Simple, very rugged.

You can make a simple four-wire sound-powered phone using four telephone earpieces and two pairs of wire. The earpiece to use is called an "U 3" and is the standard "receiver" used in old style handsets. With a bit of chopping and hacking, one of the U 3 receivers will fit where the transmitter or microphone used to be (Figure 3). To get this to work, the "transmitter" of one handset is connected to the "receiver" of the other. This provides a very weak signal, but it does work.

If you want to buy a Sound Powered phone, Fair Radio Sales has them. Their model TA-I/PT, which costs $25, also has a magneto generator for calling.

The ultimate low tech Field Telephone is the old tin can and string phone. It only works in straight lines. The level can be improved if a cardboard canister is used rather than a tin can. If the string is waxed, the level is further increased. Maximum range is about 100 feet depending on how capable the callers are at keeping the string taut.

THE MONITORING MAGAZINE
October 1986 / POPULAR COMMUNICATIONS / 41
On February 19, 1986 the Soviet Union launched its new Mir space station. "Mir" is the English translation of the Russian word for peace. With the launch of Mir, the Soviets have embarked on the next phase of their manned space program. This is not a spectacular new venture into space, but rather the next logical step in successfully maintaining a permanent Soviet presence in space.

The Mir is much like its predecessor, the Salyut 7 space station, but with two major differences. The Mir is a larger spacecraft, with almost one third more room than the Salyut 7. This extra room in the Mir is used for private quarters for the cosmonauts as well as a larger work area. The second difference is the number of docking ports. The Salyut 7 has two docking ports, one at each end of the spacecraft. One is used by the manned Soyuz-T spacecraft and the other is used by the "Progress" class supply ships, which regularly deliver supplies to the space station. The Progress supply ships look much like the Soyuz-T but they are unmanned and completely automated.

The Mir has six docking ports, four at one end of the spacecraft and two at the other. The end of the Mir with the four docking ports, has one port centered in the end so that two spacecraft can be docked end to end. The three remaining ports are spaced evenly around the perimeter of the space station. These three ports will be used to expand the space station by adding large "Kosmos" modules.

Space Complex

In March of 1986, the Soviets moved both the Mir space station and the Salyut 7 space station to within three miles of each other and in the same orbit. The Salyut 7 has a standard orbit of roughly 51° inclination at 350 miles altitude. Though the orbits have no doubt changed somewhat with the repositioning of the space stations, it should still take the space stations approximately 92 minutes to complete one orbit of the Earth.

A third spacecraft, possibly a supply ship or a Kosmos module, has been placed in close proximity to the space stations. This is a prelude to the docking of both spacecraft to the Mir station. The Soviets two most experienced cosmonauts, Lenoid Kizim and Maldimir Solovev, were chosen to begin work on this most important Soviet space project. Their Soyuz-T spacecraft was launched on March 14, 1986 and after docking with the Mir station the cosmonauts prepared the Mir to receive two Progress supply ships. These two ships delivered almost two tons of equipment and supplies. It took the two cosmonauts almost three weeks to complete the installation of the equipment. Placing the Mir station on automatic, the two crewmen entered the Soyuz-T 15 and prepared it for flight. Leaving the Mir station they did not head for home as might be expected, but rather flew to the nearby Salyut 7 space station which will be prepared for docking.

When completed, the Mir Space Complex will be the largest structure ever constructed in space and the first permanently-manned space complex of its kind. With the Mir's six docking ports the only limitations on the size of the complex will be budgetary considerations.

While the precise configuration of the space complex is still unknown we do know that the Salyut 7 space station was successfully docked with a Kosmos module several months ago, nearly doubling its size. This expanded station will be docked with the Mir, which Radio Moscow is now calling the Mir Laboratory, perhaps an indication of its main function in the complex. Any additional modules would also have a specialized purpose and function such as manufacturing or biology or pharmaceuticals.

The Salyut will likely be docked at the end of the Mir with the four docking ports. This will align the Mir and Salyut end to end. The Kosmos expansion modules will be docked at this end of the space complex, leaving the other two docking ports open for use by the Soyuz and Progress supply ship. The Soyuz and Progress are of traditional Soviet design with a spherical end and a cylindrical body.
A possible configuration for the Mir Space Complex is shown in Figure 1.

Interkosmos

The Soviet program for International Space Cooperation is known as Interkosmos. Since the beginning of the program in 1978, both men and women cosmonauts from no less than 10 countries, including France and India, have flown joint missions to the Salyut space stations. Most of the visiting crew members are, of course, from Eastern Bloc countries and in the early days of the program visiting crewpeople were largely used for their public relations value. But today’s visiting crew members are highly qualified specialists in a particular scientific discipline, being the rough equivalent of our Shuttle Payload Specialists.

When the Mir complex is fully operational the Interkosmos program will no doubt be accelerated as more people will be needed to keep up with the increased work load of manufacturing and scientific experiments which will be taking place on this permanently-manned space station.

Communications

The Soviets will no doubt equip the Mir complex with the latest voice and data communications gear. This will mean that the Russians will be heard on higher frequency bands. In an attempt to help secure their communications from the casual listener, the Soviets have in recent years, continued to move to higher and higher frequency bands as their technology has improved.

The Salyut 7 and the Soyuz-T spacecraft have used voice frequencies just off either end of the two meter Amateur band, which runs from 144.00 to 148.00 MHz. Some wideband FM and data transmissions from Soviet spacecraft can still be heard in the HF spectrum as well. Channels are usually clustered near 15.000, 18.000, 19.000 and 20.000 kHz. These frequencies are commonly used by the Progress supply ships for data communications. This is, no doubt, a cost cutting measure on the part of the Soviets, as the Progress ships, after being unloaded at the space station are undocked from it, are not reused and are destroyed upon re-entry. Dozens of these Progress spacecraft are launched each year to re-supply the Salyut 7. HF equipment has performed well on the Progress ships and is less expensive than VHF or UHF gear.

Iskra Satellites

One project for the crew of the next space complex will be the reactivation of the Iskra Amateur Radio satellite program. The first satellite in this program was launched from the Salyut 7 space station in April of 1981. A cosmonaut suited up and literally pushed the satellite out the docking port. The first three satellites of the Iskra program were
launched by hand from the Salyut and all three failed to reach a usable orbit. And in keeping with their name, Iskra is the Russian work for Spark. Each spacecraft was destroyed on re-entry after being in orbit only a few weeks. The Iskra satellites carry one radio transponder with an uplink of 145 MHz and a downlink of 432 MHz. Iskra 4 was to be launched from the Salyut 7 several months ago, but this and all other activity at the space station was interrupted when, according to official Soviet sources, the two cosmonauts suddenly became ill and were evacuated from the space station. Western analysts believe that the cosmonauts became embroiled in a personality conflict so deep that the mission had to be cut short. The Soviets almost never cut a mission short except under the most extreme circumstances. This may be a common problem encountered by cosmonauts who spend many months in close quarters with coworkers. Private quarters were presumably added to the Mir station for this very reason.

Radio Sputnik

The USSR's "Sputnik" Amateur Radio satellite program is also entering a new phase. Though the Sputnik satellites will not be launched from the Mir Space Complex, this program is still of interest as the RS satellites are easily heard in the HF bands and without the use of special equipment. The RS program was started in 1979 with the launch of RS-1 and 2. Then, in 1981, six new satellites, RS-3 through RS-8, were successfully launched from the same A-2 launch vehicle, which is a small task by the way. The A-2 rocket is also used to launch the Soyuz spacecraft. For larger payloads, the Soviets use their larger "Proton" launch vehicle.

Of the six RS satellites launched in 1981 only RS-5 and 7 are operational. Their downlinks and beacons can be heard in the 29,450 to 29,500 MHz range. RS-9, scheduled for launch in late summer of 1986, will carry an A mode transponder which operates with a 145 MHz uplink and a 29 MHz downlink. RS-9 will be a direct replacement for RS-7 which is nearing the end of its normal life span.

The Soviets plan to launch their all new third generation Sputnik Amateur Radio satellite, RS-10, in May of 1986, before the launch of RS-9. The RS-10 spacecraft will be considerably more complicated than the earlier RS satellites. This third generation satellite will carry three transponders, a mode A transponder similar to the transponder on RS-5 and 7 and 9, and two new frequency combinations will be used. A new Mode K with an uplink in the 21 MHz band and a downlink in the 145 MHz band. The third transponder, a Mode T, will operate with a 21 MHz uplink and a 29 MHz downlink.

RS-10 should have stronger downlink signals than the earlier RS satellites due to an increase in the RF output of the transponders. The 29 MHz downlink power has been increased from one watt to three watts. While the two meter transponders output has been increased from three watts to five.

Robots

All the Radio Sputnik satellites, including RS-10, carry robots. These are automated computer systems which enable an Amateur Radio operator to communicate directly with the spacecraft. This feature is limited to CW operation and a pre-set protocol. Both sides of these communications can be heard on many different frequencies. RS-10's robot frequencies are: 21, 140, 29, 457, 145, 957 and 146,003 KHz. These channels also double as telemetry channels on RS-10. Unlike the earlier RS satellites, RS-10 will send telemetry in both RTTY and CW. The data rates and decoding information is not known at this time. As of this writing the projected orbit for the RS-10 satellite are: Polar Orbit, Inclination-83°, Altitude-1,000 Km, Period-105 minutes.

The Soviets have made long term commitments to their Amateur Space program and they will continue to provide unique opportunities for the SWL to monitor space communication in its many forms. Radio communications will increase during the construction of the Mir Complex and should stay at higher levels with the increased manpower on board the complex and the possibility of extra vehicular activity. It has even been rumored that the Mir will be equipped with Amateur Radio gear, only time will tell.
Review of New and Interesting Products

Personal Size and Industrial Halon Fire Protection

American Safety Products recently introduced a complete line of 1 lb. thru 20 lb. Halon 1211/1301 blend fire extinguishers, that are tested to ANSI/UL 711 and ANSI/UL 1093 N.F.P.A. Code 10 standards. The line is completely approved by Factory Mutual and models 10J and 15J are U.L. listed. Models 22G and 30G will be listed in approximately 60 days.

Halon is an odorless gas that has fire extinguishing properties unmatched by other fire-fighting agents. As a halon blend, these cylinders are self-propelling and require no nitrogen as a propellant, so they can be used over and over in case of flashback. The blend is up to 50% more effective than either 1211 or 1301 used separately, and models 10G through 30G are backed by a 10-year shelf life warranty. The personal size units are easy to store right where they might be needed...in a desk drawer, mounted by the computer, in a car, boat, workshop or almost anywhere.

Unlike dry chemicals that leave a damming residue powder behind after use, halon evaporates completely and leaves no residue. Since it does not conduct electricity, it will not damage the sensitive electrical components of a computer, copier, office equipment, television or other solid state appliances, including sophisticated electronic switches.

After years of research to develop the only U.L. listed and Factory Mutual approved halon blend extinguishers, American Safety Products is the world leader in the manufacturing and distribution of Halon blend products. American Safety Products line is protected by a U.S. Patent.

Radar Video Announced

Motorists plagued with speeding tickets can now turn to their VCR's for professional advice about defending themselves. Recognizing that numerous tickets are caused by faulty traffic radar equipment or improper officer training, the Radio Association Defending Airwave Rights, Inc. has created *Radar on Trial*.

Radar on Trial documents the history of radar and the problems that cause spurious radar readings. It also depicts a typical radar speeding trial in traffic court while explaining why and how to establish a specific defense. Drivers who have never been in a courtroom will find that this is excellent preparation for their own defense of radar-based speeding tickets.

Radar on Trial features a nationally recognized radar expert, Lee L. Nichols, Jr., Director of Engineering at the Virginia Military Institute. Dr. Nichols discusses various types of traffic radar units and describes how they work. He also illustrates traffic radar's many shortcomings caused by mechanical and operator errors. These errors have all been documented by tests conducted for the National Highway Traffic Safety Administration and the International Association of Chiefs of Police. Dr. Nichols concludes by suggesting ways to improve traffic radar's accuracy and dependability.

The second part of the video presents a court case with Judge Alfred Nesbitt presiding. Nesbitt was the first judge to actually put traffic radar on trial. He did this after seeing a news program featuring a traffic radar unit that clocked a tree traveling 86 mph and a house sauntering along at 26 mph. In a landmark 1979 decision, Nesbitt ruled that radar evidence was not admissible because of traffic radar's fallibility. As a result, approximately 80 cases were dismissed in Dade County Traffic Court. In addition, Nesbitt's decision forced Florida to establish guidelines for the use of radar, for operator training, and specifications for radar equipment purchased by the state.

Radar on Trial was written and directed by John Tomerlin, a professional automotive writer. A former race car driver, Tomerlin has been writing about automotive safety for many years. Not long ago the editor of *Road and Track* wrote: "We believe John Tomerlin's articles on highway legislation and traffic safety are the most significant pieces of automotive journalism ever published."

Radar on Trial may be ordered by sending $34.95 plus $2 for handling and postage to: RADAR, Radio Association Defending Airwave Rights, Inc., 4949 S. 25A, Tipp City, OH 45371.
The National Security Agency is the largest and most secret intelligence organization in the U.S. It has monitoring installations throughout the world and the most sophisticated electronic equipment anywhere.

One of the modes the agency listens to in the radio spectrum is RTTY. This was disclosed last May during the espionage trial of Ronald W. Pelton Jr. He was convicted in Baltimore of telling the Soviet Union about an NSA installation off that country's coast. The installation was used to intercept Soviet military communications.

During the trial, William Perry Crowell Jr., chief of the NSA group that collects and analyzes Soviet communications, told a federal court jury of the possible damage caused to NSA's ability to intercept and decode Soviet communications signals because of a booklet Pelton wrote in 1978. The booklet, Signal Parameters File, was a "compendium" about many of the signals from the Soviet Union that are intercepted by the U.S., Crowell testified.

The booklet, as Crowell described it, gave the code name NSA to an intercepted signal, whether it was of a high or low frequency, whether the signal carried voice, teletype or pictures, and the type of Soviet user who sent the signal. It also outlined how one signal differed from another and how it was encrypted.

Kaz Sakai, JA6YB, from Japan, wonders why he has not been able to monitor AFP and UPI RTTY news broadcasts from Hong Kong since late 1984. At that time, AFP could be noted on 7542.5, 9072, 10730.7, 13615, and 19327.6 kHz, and UPI on 7485 and 19520 kHz.

I can offer two guesses about UPI: Either it has deserted HF radio for one of the Western birds in the sky or it ceased all HF radio transmissions because it was facing bankruptcy and could ill afford to hang onto its RTTY service. If you haven't been able to monitor AFP, Hong Kong, then it, too, is either beaming down from a satellite or was terminated forever. Does any reader know for sure what has happened? Please let us know.

Meanwhile, Kaz sends along an English transmission schedule for XINHUA, the Chinese news agency, which he can easily monitor. BAP44 is on 14923 kHz from 2330 to 0200, BAP40 on 10982 from 0530 to 0830, and BAP46 on 6915 from 0930 to 1230, 1330 to 1600, and 1730 to 1900.

Guy Atkins of Washington state asks for the name of a book that lists the frequency pairings used by ships and coastal stations for SITOR traffic. An excellent one, in my opinion, is Guide to Unity Stations, 4th Edition, by Joerg Klingenfuss. His listings for the coastal stations is nearly complete. He missed only a few stations while he compiled the book. CRB Research and Universal Electronics both carry this book.

Meanwhile, you are waiting to purchase the book. I would like to offer you my shortcut method of monitoring both stations; a method in which you won't have to flip pages of a book back and forth to see what's what.

As most of you already know, two frequencies are paired together for use by a ship in contact with a coastal station. Most of these pairings occur within the 4, 6, 8, 12, 16 and 22 MHz bands.

In the 4 MHz band, ships transmit RTTY from 4170.5 to 4177 kHz, and coastal stations transmit from 4350 to 4356.5 kHz. If you are monitoring a ship sending RTTY and want to find out the frequency of the receiving coastal station, just add 179.5 kHz to the ship's frequency. If you are monitoring a coastal station's frequency, subtract 179.5 kHz to find a ship's frequency.

In the 6 MHz band, the ship frequencies are from 6256.5 to 6267.5 kHz, and those for the coastal stations are from 6494.5 to 6505.5 kHz. Add 238 kHz to the ship frequency to find the coastal station frequency, or subtract 238 kHz from the coastal station frequency to get the ship frequency.

For the 8 MHz band you will find the ships from 8344 to 8357 kHz and coastal stations from 8705 to 8718 kHz. Add 361 kHz to the ship frequency or subtract 361 kHz from the coastal station frequency to find the other station.

Now, on the 12 MHz band, ships transmit from 12491.5 to 125.195 kHz and the coastal stations transmit from 13071.5 to 13099.5 kHz (considered to be a continuation of the 12 MHz band). The magic number to add or subtract is 580 kHz.

Moving to the 16 MHz band, tune from 16660.5 to 16694.5 kHz to monitor ship RTTY and from 17197.5 to 17231.5 kHz for the coastal stations. Add or subtract 537 kHz to find the second frequency in use.

Lastly, we come to the 22 MHz band, where ships transmit from 22192.5 to 22225.5 kHz, and coastal stations from 22561.5 to 22594.5 kHz. Add 369 to the lower frequency or subtract 369 kHz from the higher one to monitor the second station. Bon voyage!

Joining our growing contributors list this month is Peter from Great Britain. He asks that his full name not be used because, "As you probably know, ute listening is almost a hanging offense (in Great Britain)." Here in the States, Peter, a hanging offense is when your next door neighbor puts laundry out to dry in the backyard.

A catalog of POCOM RTTY decoders made by Poly-Electronic in Switzerland is available along with a price list for the price of two IRC's, according to Ulrich Kresber of the firm. Send your requests to Poly-Electronic, Sprangenstrasse 30, CH-8303 Baserdorf, Switzerland.

Ed Viaddock of Avoca, PA: Frankie Gittens, a contributor to the column, wants to correspond with you after having seen photos of your shack in this column last May. Please write to him at Apt. 8, "El Dorado," Black Rock, St. Michael, Barbados, West Indies.

Gittens also asks for the addresses of the major RTTY news agencies. Such a listing can be found in Radioteletype Press Broadcasts by Michiel Schaay, published by Universal Electronics, Inc., 1280 Aida Dr., Reynoldsburg, Ohio 43068. Write the company for the latest pricing on this publication and the cost for postage/handling.

Now let's settle back in our easy chairs and see what's been spewing from our RTTY machines lately.

RTTY Loggings

17011: Foxes & counting for 24-hour w/o ID, 17014: QRM mode (Bill Leveque, WDBP4AF/KM8BFG). My own thoughts lean towards US Army because of the 40 WPM speed, but Fred Hetherington of FL thinks it might be CIB, Borden, Ont. Anyway, Bill, good to have you contributing loggings to the RTTY column--Ed.

18513: Some as 1701 ximun (Leveque, MI).

2424: SAB, Goteborg, Sweden w/Telex to WILPLLAB G, ARG at 2349 (Peter, Great Britain).

2690: DMRJ, George Metro, FFR, w/d test tape 456 kHz at 0045 (Peter, Great Britain).
1822: TNL, USCNA, Brazzaville, Congo, w/RYRY or 2237, 600/64N (Ed.).
1834: Un-Id ship, SXLX to Athena in ARQ at 0207 E. Greek passenger liner STELLA OCEANIA--Ed.
1835: Un-Id Soviet ship w/URUS call sign to Nossiabiss, in ARQ at 0307 W. (Benghazi, LIB.)
1831: ZELM, Hong Kong flagged tanker at the HAMPSHIRE w/abs to WCC in ARQ at 1227 (Ed.).
8746: CLP1, MFA Havana, Cuba w/Perentimosirex rx in SS to Cuban embassies in C/S America & Africa at 425/66N (Havana, CUBA). An ore/coal/oxi car named the BORUTJA--Ed.
8701: "BB" w/ID & coded msg at 1715, 30/30R (Peter, Great Britain). This is AVU, ASECNA, Dakar, Senegal w/RYRY, 425/66R at 0413 talking to Hartung, MD.
9821: TNL2, ASECNA, Brazzaville, Congo, w/coded wx in TDM (Hershelton, FL). Time not stated--Ed.
1907: 6455: BIT30, un-Id station at 2037 W/RYRY, 100 wpm (David Alpert, NY). That's a real Finnish puzzle--Ed.
1939: SPK10, un-Id station w/RURY tape, 425/66R at 0940 (Albin Magliano, Tahiti).
1953: ATCC, Pyongyang, N. Korea w/na in FF, 1215-1311, 425/66N. ATCC was the FF abbreviation used in the log in the copy. It stands for Agence Telegraphe Centrale of France, w/RURY (NA).
1954: 70C, Aden Assertor, Yemen, w/RYRY at 2020, 44 wpm (Alpert, NY).
19642: CUB, USAF sales, Azeris, w/RYRY at 1830, 50/64R (Palermo, FRG).
19710: LBZ82, Buenos Aires Meteor, Argentina, w/na at 2045, 850/64R (Dallas Williams, CO).
19749: 7W, on 1 TDM channel & FF 1fc on the second channel from DFX, French AF in Paris at 0300 (Hershelton, FL).
19741: 7N, m/Vietnamese at 1311 followed by 7 NA in FF at 1330 from VNA, Hong, Vietnam 523/66R (Ed.).
19430: 7N, in Russian at 1246 from KCNA, Pyongyang, N. Korea, 160/64N (Ed.).
19434: NV130, the AAP of Sydney, Australia w/na in ARQ at 1028, 323/64N (Ed.).
1946: 45N, KK, Caracas Aeries in UGRY w/RYRY at 1115, 850/64N (Ed.).
19513: 7NA, Rome Meteor, Italy, w/na at 0028, 850/66 (Hartung, MD). polarity?--Ed.
19544: 5F messages sent from a N. Korean embassy in the USA w/RYRY, 425/66R (Ed.).
19550: BTA rx in EE from Sofia, Bulagria 1341, 425/66R (Ed.).
19552: Khaborov Meteor, USSR w/coded wx at 1235, 300/64R (Ed.).
19556: 7N, on FF in HM-Na, KCNA, Pyongyang, N. Korea in ARQ at 0208 (Ed.).
19572: 7NA, Tripoli, Libya w/na in EE, 1813-1845, 425/66R (Ed.).
19234: "KUL" w/RYRY & 5L groups at 1411, 425/66R. Could be the GDR embassy in Havana (Ed.).
19319: ADN rx in SS from Berlin, GDR, 375/66N at 2341 (Ed.).
19341: NN rx in SS from JALR12, Kyo/Rky, Tokyo, Japan, 425/66N of 0433 (Magliano, Tahiti).
19611: 6BOH, w/Telex to Shanghai via WLO in ARQ at 1609 (Paris TH.) This is a FRG freighter named the XING HE--Ed.
19571: Un-Id Soviet ship w/call UXJYC w/RYRY, 170/64N at 0000 (Hartung, CD). This freighter called the VOSKOL sailing out of Vladivostok, SSSR.
19673: 58DQ testing w/RYRY & SGG to 6BDJU, 17/64R at 0100 0040. What/when/where is the question.
19378: CCF, an un-Id Chinese naval station w/SS in ARQ at 0046 with a ships head rx at the same time was CCF, the Chinese Navy at Shanghai on 1032.7 kHz, 850/100R (Ed.).
19352: Inserted in Baghdad send RRRRRRR at 1610, messages at 1620 then followed by EE rx before abrupting leave the air (Freez, FRG).
DON'T LET THE ELECTRONICS REVOLUTION PASS YOU BY!

SUBSCRIBE TO

MODERN ELECTRONICS

Now you can reach out every month and learn about the latest innovations in consumer electronics and personal computers—what's new, how products and circuits work, and what leading authorities think of them.

* Stereo * Video * Home & Car Electronics
* Test Instruments * Circuitry & Devices * Servicing
* Personal Computers * Communications * Construction Projects

Feature articles, tutorials, and construction projects are the hallmarks of MODERN ELECTRONICS, the new monthly magazine for electronics and computer enthusiasts. Covering the entire spectrum of these fields, you'll gain insights into every important area to help you make buying decisions for work and play purposes... improve performance of your present equipment... increase your electronics competence... and add to your practical and intellectual knowledge of electronics and computers.

In every issue, authors lucidly explain how exciting, new electronics ideas are applied... issue forthwith buying counsel... present complete plans to build electronic devices to enhance products, even unique ones that are not yet being sold in the marketplace.

To be sure you get this valuable information delivered to you regularly, and share the experiences of our writers and editors—Forrest Mims, Len Feldman, Stan Prentiss, Charles Rubenstein, Don Lancaster, and many others—you can subscribe to MODERN ELECTRONICS today. As a new Subscriber, you’ll save 45% off the newsstand price when you buy a one-year subscription.

Just fill out the coupon and mail with your check, money order, or credit card information (Visa or MasterCard) to enter your subscription. Do it today to ensure earliest delivery!

MODERN ELECTRONICS
76 North Broadway, Hicksville, NY 11801
Please send me Modern Electronics for [] 2 Years [] 1 Year

[] MasterCard

Charge My Order To: Payment Enclosed $ [] []
[] VISA

Name
Street
City State Zip

50 / POPULAR COMMUNICATIONS / October 1986

THE MONITORING MAGAZINE
To preserve your copies of

A choice of handsome and durable library cases or binders for your copies of POPULAR COMMUNICATIONS.
Both styles bound in dark blue library fabric stamped in gold leaf.

Cases: Each case holds 12 issues. Price per case $7.95 three for $21.95; six for $39.95, postpaid.

Binders: Each binder holds 12 issues. Issues open flat. Price per binder $9.95; three for $27.95; six for $52.95 postpaid.

(Canadian and foreign requests should also include an additional $2.50 per item for shipping costs.)

To: Jesse Jones Industries (Since 1843)
P.O. Box 5120, Dept. P-Com,
Philadelphia, PA 19141

I enclose my check or money order for $________. Please send me ________ POPULAR COMMUNICATIONS
[] Files. [] Binders.

(Please Print)

Name ____________________________

Address ___________________________

City ______________ State __________ Zip __________

Please allow approximately 4 weeks for delivery.

EEB INTRODUCES THE NEW MARANTZ PORTABLES

PMD 430 Save $104 SALE $409.95
• Stereo Location Recording
• dbx Noise Reduction (75 db Dynamic Range)
• 3-Head off-the-tape monitoring while recording
• Dolby B Noise Reduction
• 4-Way Power
• Built-in Speaker/Channel Select

PMD 420 Save $80 SALE $319.95
Many features of the PMD 430 such as illuminated VU meters, standard phono input/output jacks but without off-the-tape monitoring & dbx noise reduction

PMD 221 Save $70 SALE $259.95
• Monaural Location Recording
• 3-Head off-the-tape monitoring while recording
• 4-Way Power
• Direct Telephone Connective Jack
• 2-Speed (1-7/8 & 15/16 IPS) allows up to 2 hour unattended recording (on C-120 tapes)
• Built-in Speaker with Volume Control
• 3-Position mic attenuator
• Line IN/OUT

Direct telephone connective jack on PMD201/PMD221

PMD 201 Save $70 SALE $209.95
Many features of the PMD 221 such as illuminated VU meter but without off-the-tape monitoring

PMD 420/430

Specifications

<table>
<thead>
<tr>
<th>PORTABLE CASSETTE</th>
<th>PMD221</th>
<th>PMD430</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response</td>
<td>40Hz—12.5kHz (40Hz—6.5kHz)</td>
<td>35Hz—14kHz</td>
</tr>
<tr>
<td>Normal tape</td>
<td>40Hz—14kHz (40Hz—7.5kHz)</td>
<td>35Hz—15kHz</td>
</tr>
<tr>
<td>Metal tape</td>
<td>40Hz—15kHz (40Hz—8.5kHz)</td>
<td>35Hz—17kHz</td>
</tr>
<tr>
<td>Signal to Noise Ratio, NR off</td>
<td>57dB</td>
<td>51dB</td>
</tr>
<tr>
<td>Dolby B NR on</td>
<td>--</td>
<td>60dB</td>
</tr>
<tr>
<td>dbx NR on</td>
<td>--</td>
<td>75dB</td>
</tr>
</tbody>
</table>

ELECTRONIC EQUIPMENT BANK
516 Mill Street, N.E. Vienna, VA 22180
Order Toll Free: 800-368-3270
Technical and VA Orders (703) 938-3350

www.americanradiohistory.com
Yo've seen it on television—the bed guys zig-zagging all over the city with the good guys tailing them on a mobile video monitor that shows a street map and a blinking dot. It may seem to be straight out of a James Bond movie, but video trackers are indeed here and our transportation industry is envisioning thousands of uses for these devices.

To whet your appetite, think of all the dispatchers that can spot their units on an electronic city map and pinpoint their locations within feet. Trucking lines can spot their loads all over the United States and see exactly which city the driver is in. The marine security market is keeping track of thousands of boats all over the United States to make sure they aren’t stolen from their slips. Super tankers are spotted within feet of their actual position thousands of miles away out on the high seas. And you have all seen NASA keeping track of their satellites and space shuttles with flashing lights on a huge world projection.

Let’s take a look at a typical tracking system to better understand the technology behind it, and to give you an idea as to how UN-complex the system really is.

The Video Maps. The high resolution video charts have been compiled by the Defense Department’s mapping agency in Denver, Colorado. Our government has been converting conventional paper maps and charts over to digitized electronic charts for the past several years. This very expensive process is an ongoing task by the Defense Department to ultimately map out electronic charts of every square inch of the United States.

Most major cities in the country have already been computerized, and it’s an ongoing government effort to be able to offer electronic charts of every single community and every single street within the United States by 1990. These government high-resolution digitized charts were not commercially available for the IBM-PC computer until about two years ago. The mass memory capabilities of hard disks, laser disks, and solid state RAM (random access memory) have given us the availability to store voluminous chart data so anyone with a modern computer and the right program can bring up the chart of their choice. Prior to two years ago, these charts could only be recalled by the massive computers that the government originally developed them on.

Manufacturers of specific types of monitoring systems, such as a marine tracking security system for a local harbor, can also modify the chart hardware to show actual
slips, buoys, and other areas of marine importance.

Manufacturers of tracking devices to spot local delivery trucks might modify their local city maps to include designated parking areas for individual trucks to assist the dispatcher in determining at which warehouse door they are located. These local charts can also be electronically modified to indicate one-way streets, temporary street repairs, and any other notations that could assist the dispatcher.

For information about digitized computer maps for your local area, write: Defense Mapping Agency Charts, c/o NOAA U.S. Geographic Survey Maps, Reston, VA 22092.

Location Finders. Position information may be received instantly through the use of a Loran (Long Range Aid to Navigation) receiver within the vehicle being tracked (see the August 1986 issue of this column in POP'COMM Magazine describing Loran). The Loran signals cover every major boating area of the United States plus two-thirds of the country for accurate, instant position determination. Loran receivers have been miniaturized to easily fit into the size of an attache case. The Loran antenna looks almost like a base-loaded CB antenna—a yard long whip mounted on a small loading coil that also contains a built-in Loran 100 kHz pre-amplifier.

Another type of position receiver could be the transit satellite system. This is affectionately called "SATNAV" among mariners, and SATNAV equipment is reasonably priced, reliable, and offers position fixes with much greater accuracy than conventional Loran. The only problem with the transit satellite system is that the polar-orbiting satellites only come around about every 90 minutes for position data. The small satellite antenna (which also looks like a whip) must also be able to see the overhead satellite, so position fixes in a city with skyscrapers could be a bit tricky, if not impossible. The transit satellite position-finding system would lend itself well to marine applications as well as trucking companies who wish to
position-find their fleet every now and then as they crisscross the country.

Another system for pinpointing the location of a navigational receiver is the new global positioning system. The GPS system still has many years before it is completely finished, but altitude and position fixes within feet are available up to 12 hours per day throughout the United States. These position fixes are updated several times per second and are the most accurate of any type of hyperbolic radio navigation system yet developed. Unfortunately, GPS receivers are extremely expensive (around $10,000 and up), so we won't see widespread use of GPS as position locators for several years.

Another way of keeping track of a moving vehicle's or moving boat's location is through dead-reckoning. Dead-reckoning requires sensors that are placed on the vehicle or boat to measure speed, magnetic direction, forward or reverse motion, and turns. This type of system may work well in areas where radio navigation aids are not reliable or are not available. The DR position could also be confirmed and calibrated by sensors placed on certain street corners, or through the manual updating by a dispatcher when he asks the location of a mobile unit.

Dead-reckoning is used extensively by mariners with transit satellite receivers. The DR position calculates your location in between satellite passes. However, there are some serious drawbacks to a DR positioning device—consider the tugboat chugging up the Mississippi River. The DR sensors measure the speed through the water at 10 knots, and keep track of the heading and course steered to compute the approximate position of the tug. The only problem here is that the tug is bucking 7 knots of river current, so is only making 3 knots of real headway over land. It's this type of problem of current, drift, and set that can foul up positions when no other radio nav-aid is used for position verification.

Most companies are tying their tracking system into radio navigation receivers such as Loran and SATNAV.

Radio Reporting. Now let's take a look at the final link on how dispatchers receive the information as to the location of their fleet, boats, or "bugged" vehicles. Two-way and one-way radio does the trick nicely.

In local city use, VHF and UHF security and business frequencies may be used to transmit the radio location receiver data back to the base station to be processed for position finding on a screen. The security industry has many frequencies at their disposal for direct VHF and UHF digital signals that contain the navigational information. The tracking system may be an automatic one—sending out bursts of location information every 5 seconds, or every 30 seconds, or every minute. The more often the transmissions, the more up to date the actual position fix.

The cellular telephone service can also be used quite nicely for acquiring position-fix information. The mobile unit might transmit its information back to a base station through the cellular telephone system automatically every five minutes, or every hour, or every five hours if traveling across the country. It's also possible for agencies tracking these vehicles to dial up a specific mobile telephone number and poll the vehicle's receiver system and find out exactly where that vehicle is. As the cellular telephone system expands throughout the United States for uninterrupted coverage, we will see the same capabilities of retrieving information by mobile units "roaming" into other cellular telephone areas.

Another way of transmitting the information back to a central tracking station is through the use of mountain-top or building-high repeaters. Many frequencies in the special mobile radio (SMR) service and UHF business radio repeater service allow for digital transmission of information. The exchange may take place every few seconds, providing the repeater is not in use by another vehicle. The actual exchange of navigational data can take place in less than 500 milliseconds (one-half second), and this data can also be piggybacked onto the beginning or ending transmission of an operator using a voice two-way radio in that mobile unit. This data will also contain vehicle I.D. information so you know exactly which vehicle or ship you are tracking.

For marine high seas tracking, the Inmarsat marine satellite communication system is usually employed. This system is owned by many countries, and geostationary satellites provide voice and data communication almost anywhere large vessels may cruise throughout the world.

When the business radio service finally gets its own radio relay satellite for business voice and data communications, chances are it too will have several channels set aside specifically for vehicle and ship locators.

The bottom line is that any type of radio network can be used, providing the transmissions are clear and providing the transmissions are legal for the type of frequency being used, and providing the frequency being used propagates well to the receiving station. The area of operation of the stations to be tracked pretty well dictates what type of frequencies will be used for relaying back the digital position information.

Tracking Stations. One of the country's largest and expanding tracking services is called METS, Mobile Emergency Tracking System, 2301 W. Sample Road, Pompano Beach, Florida 33067; (305) 979-5404. This company has initially targeted the marine security business as one of their first introductions of their METS system. They are also going after the trucking industry, delivery parcel industry, and all of the other industries where mobile tracking is important. They can track police cars, fire
trucks, delivery trucks, airplanes, taxis and buses, and just about anything that moves—or shouldn’t move!

To answer your next question, it still is a few years away from when their tracking system might be small enough to conceal behind your belt buckle or your lapel! I've seen it as small as a briefcase, but that's about it for now!

The uses of mobile tracking are almost limitless. To equip a vehicle is about a $2,000 proposition per vehicle today, and will probably be a lot less in years to come. The tracking service is also an additional monthly fee; but when more people get on the tracking bandwagon, we'll see service prices drop, too. Rental and lease programs from METS are also available.

If you ever have an opportunity to see a base station tracking a mobile unit in operation, you'll be amazed at the accuracy. While the use of Loran may cause a mobile unit to stray a few hundred yards off the track of a road on the graphic monitor, chances are out on the open highway or in a small city out in the open that vehicle will stay within the boundaries of the CRT printed roadway.

And of course you can add to these trackers the ability to receive distress alarms, theft alarms, emergency alarms, fire, mechanical breakdowns, or simply a request to find out where he is and how to get to the next call! Welcome to James Bond gadgetry that is now reality.

POPULAR COMMUNICATIONS BOOK SHOP

The Radio Publications Group - The "Bill Orr Series"
These easy reading classics belong in the library of any active ham. Loaded with practical how-to information, with tables, charts, and formulas arranged for handy reference.
- Wire Antennas, 192 pages, paperback, $7.95. Order #R144.
- Cubical Quad Antennas, 112 pages, paperback, $6.95. Order #R146.

World Radio TV Handbook 1986
The world's only complete directory of international broadcasting and TV stations—the established, authoritative guide endorsed by the world's leading broadcasting organizations. A comprehensive country-by-country listing of short-, medium-, and long-wave stations, revised and updated to reflect actual conditions. Also includes special features on The Future Regulation of High-Frequency Broadcasting, Solar Activity in 1985, Technical Innovations at Radio Nederland's New Transmitting Station, and more. 600 pages, paperback, $19.95. Order #B097.

World Press Services Frequencies
by Thomas Harrington
A comprehensive manual covering the field of radiotelephone news monitoring—antennas, receivers, terminal units, monitors, and more. Contains 3 master lists of times of transmission, frequencies, plus ITU lists of over 50 news services worldwide. 84 pages, paperback, $8.95. Order #R178.

Broadcasting Law & Regulation
R. Terry Ellmore
A guide to the rules and regulations that govern commercial and non-commercial radio and TV broadcasting, including cable. 504 pages, hardcover, $24.95. Order #T213.

Protecting Electronic Equipment from Electrostatic Discharge
Edward A. Lacy
Provides an in-depth look at both the causes of ESD and the procedures and equipment used to combat it. 176 pages, paperback, $11.45. Order #T214.

Radio Handbook, 22nd ed.
by Bill Orr, W6SAI

Confidential Frequency List Revised 6th ed.
by Perry Ferrall
Bigger than the 4th edition, this new book has 30% more stations listed, more than 7500 operating between 4-28 MHz. Listings by frequency and callign. Complete list of Coastal CW stations plug Embassy, Aeronautical, Military, Time Signs, Feeders, VOLMET, FAX, INTERPOL, etc. Details on schedules, emergency channels, alternates, and never-before-published IDs. Paperback, $15.95. Order #G196.

The Shortwave Propagation Handbook, 2nd ed.
by George Jacobs, W3ASK
and Theodore J. Cohen, N4XX
A new, revised edition of the popular guide to all your propagation needs. Contains up-to-the-minute information and charts, and guides you through producing your own propagation data. 154 pages, paperback, $8.95. Order #C137.

Beginner's Guide To Reading Schematics
Robert J. Traister
A hands-on guide to understanding and using schematic diagrams that should be required reading for every electronics student and hobbyist. Here's the key to mastering the fundamental concepts needed to design, build, troubleshoot, and repair electronic circuits of all types. Filled with step-by-step explanations and plenty of clear, to-the-point illustrations. 140 pages, paperback, $8.95. Order #T215.

QUANTITY ORDER # TITLE PRICE TOTAL

Financial charges $2.00 per order. Shipping charges waived on orders of $25.00 or more. Books shipped best way. All orders are processed the day they are received, but please allow 30 days for delivery within North America.

<table>
<thead>
<tr>
<th>QTY</th>
<th>ORDER #</th>
<th>TITLE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Book Total

Shipping Charge

Grand Total

Name

Address

City

State Zip

[] Check [] MasterCard [] VISA

Card No. Expires

[]

Signature required on all charge orders:

PC

October 1986 / POPULAR COMMUNICATIONS / 55
New rules regarding the licensing of land mobile radio users that go into effect later this month are aimed at making radio channels clearer for all users.

Effective Oct. 22, any applicant for a land mobile radio license will be required to first submit an application to an FCC-approved frequency coordinator, which will determine whether the applicant has selected an appropriate frequency. Each radio service has had frequency coordination bodies certified by the FCC to handle this task. The FCC will no longer approve any land mobile radio application without this frequency coordination.

Up until now, applicants for radio licenses had a choice in applying for their permits. The most-used option by two-way radio users was to seek approval from a frequency coordinator before submitting a license application to the FCC. These frequency coordinators were varied by area and radio service. For instance, applications in the local government radio service in New Jersey could seek coordination through several recognized coordinators throughout the Northeast, including a branch of the New Jersey State Police. Applicants for business band licenses on any frequency above 450 MHz could seek coordination from the National Association of Business and Educational Radio. Some services, such as the special emergency radio service, which is used by ambulances and veterinarians, did not require coordination through recognized coordinators.

Applicants who wanted to bypass the coordination process for any number of reasons, could submit a field study with their application instead. One of the primary reasons field studies were elected over coordination was the time factor. Some coordinators would take months to approve a single application for the use of a frequency. The field study essentially could be a statement that the selected frequency was the best available for the applicant, considering the crowding on the band in a given area, that

FCC-certified Coordinators For Each Radio Service

<table>
<thead>
<tr>
<th>Service</th>
<th>Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>automobile emergency</td>
<td>American Automobile Association</td>
</tr>
<tr>
<td>business</td>
<td>National Association of Business and Educational Radio</td>
</tr>
<tr>
<td>fire</td>
<td>International Municipal Signal Association</td>
</tr>
<tr>
<td>forestry conservation</td>
<td>Forest Industries Telecommunications</td>
</tr>
<tr>
<td>highway maintenance</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>local government</td>
<td>Associated Public Safety Communications Officers</td>
</tr>
<tr>
<td>manufacturers</td>
<td>Manufacturers' Radio Frequency Advisory Committee</td>
</tr>
<tr>
<td>motion pictures</td>
<td>Alliance of Motion Picture and Television Producers</td>
</tr>
<tr>
<td>motor carrier</td>
<td>American Trucking Association</td>
</tr>
<tr>
<td>offshore zone frequencies</td>
<td>Central Committee on Telecommunications of the American Petroleum Institute</td>
</tr>
<tr>
<td>petroleum</td>
<td>Central Committee on Telecommunications of the American Petroleum Institute</td>
</tr>
<tr>
<td>police</td>
<td>Associated Public Safety Communications Officers</td>
</tr>
<tr>
<td>power</td>
<td>Utilities Telecommunications Council</td>
</tr>
<tr>
<td>railroad</td>
<td>Association of American Railroads</td>
</tr>
<tr>
<td>relay press</td>
<td>American Newspaper Publishers Association</td>
</tr>
<tr>
<td>special industrial</td>
<td>Special Industrial Radio Service Association</td>
</tr>
<tr>
<td>special emergency</td>
<td>National Association of Business and Educational Radio</td>
</tr>
<tr>
<td>taxicabs</td>
<td>International Taxicab Association</td>
</tr>
<tr>
<td>telephone maintenance</td>
<td>Telephone Maintenance Frequency Advisory Committee</td>
</tr>
<tr>
<td>460-MHz airport business frequencies</td>
<td>National Association of Business and Educational Radio</td>
</tr>
<tr>
<td>460-MHz alarm company frequencies</td>
<td>Central Station Electrical Protection Association</td>
</tr>
<tr>
<td>800-MHz business</td>
<td>National Association of Business and Educational Radio</td>
</tr>
<tr>
<td>800-MHz conventional business</td>
<td>National Association of Business and Educational Radio</td>
</tr>
<tr>
<td>800-MHz conventional industrial</td>
<td>Special Industrial Radio Service Association</td>
</tr>
<tr>
<td>800-MHz conventional public safety</td>
<td>Associated Public Safety Communications Officers</td>
</tr>
<tr>
<td>800-MHz industrial</td>
<td>Special Industrial Radio Service Association</td>
</tr>
<tr>
<td>800-MHz public safety</td>
<td>Associated Public Safety Communications Officers</td>
</tr>
<tr>
<td>800-MHz specialized mobile radio service (trunked)</td>
<td>none</td>
</tr>
<tr>
<td>800-MHz trunked</td>
<td>none</td>
</tr>
<tr>
<td>900-MHz paging</td>
<td>National Association of Business and Educational Radio</td>
</tr>
</tbody>
</table>
selection, recommend the most appropriate frequency on request and handle interservice frequency sharing requests. The new program also facilitates the establishment of a single contact point nationally for each group of radio users.

Illegal Hot Air

You might wonder what frequencies hot-air balloonists use during balloon races and other activities. Most hot-air balloon crews use business band (151.625 MHz is a popular frequency), aero band, or even CB to advise their chase crews as to their whereabouts.

However, a couple of businesses recently were caught by the FCC's field office in Douglas, Arizona using the 220-MHz amateur band for relaying communications between the balloons in flight and the chase crews. One group was found using 221.0 MHz and the other was found using 221.15 MHz. Each group was fined $750 for violating Section 301 of the Communications Act of 1934 for unlicensed operation on the ham bands.

Feedback

Many of you have written in response to the column I wrote on how to make certain scanners tune out of band. The only known tricks for certain scanners appeared in that article. We know of no other tricks for other scanners not mentioned in that article, however, we welcome your input if you know of tricks for other radios. Most letters I received went along the lines that you had a Gizmo XT500B scanner and wanted it to cover bands it did not cover. For instance, if it covered the 30-512 MHz bands, you may have written in asking how it might cover the 800 MHz band.

I don't mean to sound flippant, but if you wanted to listen to the 800 MHz band, you should have bought a scanner that can tune in the 108-136 MHz band in AM. When you buy a scanner, make sure you are getting a unit that will tune in activity that you want to hear. Deal with a reputable dealer who can advise you on the best unit for your listening interests. That way you don't get stuck with a Gizmo XT500B that tunes in 66-88 MHz instead of the 30-50 MHz band.

And, in the meantime, if you develop a trick to make a scanner tune out of band, please share it with us here at POPCOMM so we can tell other users of the same radio. That's what the hobby is all about—sharing information and knowledge.

We eagerly seek your input to this column and welcome all letters, questions, and photographs. You can write to us at: Chuck Gygi, N2DUP, Scanner Scene, Popular Communications, 76 North Broadway, Hicksville, NY 11801-2909.

On-glass antennas are becoming popular in the land-mobile radio services, particularly by cellular and 800-MHz users.

minimal interference would be caused to co-channel users and that those other co-channel users were far enough away as not to interfere. In some radio services, it also was necessary to notify all co-channel users—and in some cases those within a certain distance on frequencies 15 kHz removed—of the applicant's intent to file with the FCC.

Frequency coordinators had their good points and their bad points. The primary good point is that, because they keep track of the users on given frequencies, they can prevent a particular frequency from becoming overcrowded in a given area. With coordinators who had served in a more volunteer basis, it often took long periods of time to receive coordination. Some of the groups also charged fees for coordination, while giving breaks to members of their organizations. Hopefully, the new coordinators will push through the applications in a time frame that is beneficial not only to the two-way radio user, but also to the entire spectrum of users.

The frequency coordinators will review each FCC license application for completeness and file the applications with the FCC once they approve the coordination request. The coordinators will also handle post-licensing conflicts regarding frequency

SECURITY EQUIPMENT

- Bug & Tap Detectors
- Mini CCTV
- Voice Changers
- Courier Briefcases
- Voice Scramblers
- Books
- Night Vision
- Non-Lethal Weaponry
- Surveillance
- Mini Tape Recorders

Sherwood Communications
2788 Philmont Ave., Suite 108-PC
Huntington Valley Pa. 19006
Phone (215) 357-9065

CIRCLE 20 ON READER SERVICE CARD

SCOPE BUY-OUT!!!

05-106/USM-117 PORTABLE SCOPE, rugged military DC to 6 MHz unit with MX-2986 high-gain plug-in tunes 0.01 to 20 MHz in 11 steps, 115 VAC 60 Hz, 8.5 x 9 x 15, 20 lb. sh.

Used-remote...$115 Checked $175

05-106 with MX-2985 dual-trace plug-in (less MX-2986), remote...$195 Checked $225

MANUAL for USM-117, partial repro...$15

MANUAL for MX-2985, partial repro...$12

Prices F.O.B. Lima, O. - VISA, MASTERCARD Accepted.

FAIR RADIO SALES
1016 E. Eureka • Box 1105 • Lima, Ohio • 43547

CIRCLE 73 ON READER SERVICE CARD

October 1986 / POPULAR COMMUNICATIONS / 57
BETTER SIGNALS
ANTENNAS AND SIGNAL IMPROVING ACCESSORIES

Indoor Antenna Circus

Variables and inconsistencies are the rule in the installation and test of a suitable indoor antenna for shortwave listening. Move the antenna a bit and results can be quite different, especially on the higher-frequency shortwave bands. Antenna results seem to homogenize and even resonant points for specific lengths of antenna wire become vague. Sometimes an antenna wire taped to the ceiling does no better than the same length of wire beneath the carpet. All of this is related to the nearness of so many metallic surfaces, some attached to power system ground and others not. It is a hodgepodge of interaction.

Despite these limitations, all is not chaos. Improvements can often be made and sometimes results rise surprisingly near to the performance of a modest outdoor antenna.

Shielding of the signal, too, can be a severe problem and is usually prevalent in high rises because of their extensive steel girder support system. In a large city, the very nearness of like buildings adds to the problem. Usually an antenna system performs better if it can be positioned near a window to perk up signal pick-up from at least one or two key directions. Even aluminum siding in city, suburb or country sites can do a good job of shielding the signal from the indoor antenna. Sometimes a long antenna in the attic or crawl space does a fine job. Even a long antenna in the basement can help because it is below the sides and signals can sneak beneath, especially on the lower-frequency SWB bands.

Height is more important on 19 meters and the shortwave bands higher in frequency. A 19 meter dipole is only about 30° in length and you can stretch it out in the attic or crawl space of a dwelling even though the ends may drape vertically. You can obtain fine results on this favorite DX band along with good results on 16 and 25 meters. Remember that a good DX antenna on the higher-frequency bands need not be too long, see Figure 1.

Use #16 to #20 hook-up wire for your indoor antennas. The smaller diameter insulated wires are more flexible and can be hidden away. The coaxial transmission line can be run along the baseboards where you bring it down from above or up from below. Space available, you may wish to go for a dipole on 25 or 31 meters. In an apartment try a thin wire dipole along the hall at baseboard level, or in and out of two rooms or, for a large room, the ends can be folded back along the side walls at right angles. Usually it is easier to disguise the antenna then the coaxial line that must be linked back to your receiver. However, television has made us more accustomed to the coaxial lines that are snaked about our dwellings.

Single-wire antennas (Figure 2) often produce surprising results although they are more erratic and more hit-or-miss tries are necessary. In the case of a single-wire antenna the total quarter-wave length measurement must be made from the antenna terminal of the receiver to the far end of the antenna wire. Again use insulated hook-up wire for the antenna and you will avoid the problem of trying to avoid other metallic surfaces in the house that may come in contact with the wire.

A good ground is advisable from the standpoint of protection and especially for less noise and interference pick-up. A good ground exists here in the form of a stout line that runs to the nearest cold water pipe. However, in terms of signal pick-up it has to be a rare occasion when there was any significant difference in S-meter readings when the ground is removed quickly from the receiver. Many of you will find this quite unexpected especially when dealing with indoor antennas.

Some Antennas And Comparisons

There are three comparable indoor antennas in operation here. One that was mentioned previously is the 250° crawl space antenna that zig-zags back and forth along the rafters for about 30°. It does SW/MW/LW reception. A second single-wire antenna for SWB reception only is 48° long (a quarter wavelength on 60 meter). It drops down under the carpet from the radio table, passing across the hall and into the living room where it stretches out into a large L shape. It performs very well despite the fact that it is near ground level of the bungalow. More later. A third antenna is a rather elaborate, tunable, but very short antenna in the radio room, Figure 3. This is our reference antenna for checking indoor antennas. Its construction and operation will be detailed in next month’s column.

Quite often an indoor antenna consists of 15-20° length of wire. Actually, a length of 15°3° corresponds to a quarter wavelength on 19M. Reasonable results should be obtained. It should do well on 25M, too. However, you can do better because short wires of limited length are very much affected by surroundings; namely, the level of signal present and inability for the short piece of wire to intercept much signal at its physical location. Also, the performance of such a short wire is poor on the lower-frequencies bands. Pretty much the same problem exists in more situations than not, up to a length of 25°. A quarter wavelength on 31 meters is 24° and operating conditions remain shaky. You must position the wire at the right spot to obtain acceptable results. It’s a matter of cut and try. In the right

<table>
<thead>
<tr>
<th>Band</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>15°3°</td>
</tr>
<tr>
<td>25</td>
<td>19°10'</td>
</tr>
<tr>
<td>31</td>
<td>24°11'</td>
</tr>
<tr>
<td>41</td>
<td>32°6°</td>
</tr>
<tr>
<td>49</td>
<td>39°0°</td>
</tr>
<tr>
<td>60</td>
<td>48°0°</td>
</tr>
<tr>
<td>90</td>
<td>71°0°</td>
</tr>
</tbody>
</table>

One such length for single-wire feed
Two such lengths for a dipole

Figure 1: Lengths for quarter-wave single-wire on a number of bands.

Figure 2: Some basic indoor antenna lengths for single-wire antenna.
spot a 24' length also does well on 41 and 49 meters.

It has been our experience over the years that a tuner is of no or only limited help in building up signal level from a short antenna on the higher frequency SWB bands. However, such a tuner does help in transferring more signal to the receiver input from the antenna on the lower-frequency bands despite the shortness of the antenna wire.

Our own experience has indicated that a length of about 48' (quarterwave on 60M) does very well and is a good compromise between excessive wire length for indoor use and poor performance. The long wire length is of help in deriving good low-frequency band signals and, at the same time, a third harmonic (3/4 wavelength) relationship boosts the performance on the high-frequency bands. The longer antenna takes away some of the placement problems encountered with the very short antennas.

Stretch it out in as straight a line as possible. However, an L shape does well and even a U if you keep the two legs of the U separated as far as possible. Certainly this long indoor gives the outdoor 50-foot at 18' a good chase. Also a tuner can be of definite help in boosting signal levels on the 75/90/ and 120 meter bands and on up to the MW band.

Application Of “Flexo” Switch

A “Flexo” switch provides additional versatility for an antenna installation because it is able to compensate for placement variables. As detailed in the column for the September issue of POPCOMM, the Flexo switch has four positions that permit a choice of two antennas, connects both in dipole fashion or parallels both of them. The wiring arrangement of Figure 4 shows the connections for an indoor installation using a 20' and a 48' antenna wire. However, you can choose any pair of indoor antennas you like. A two-pole four-position switch is required. Sometimes it is easier to purchase a two-pole switch that has more positions. This is fine and you only need wire four of them into the circuit. Mount the switch close to the receiver and you can always make a quick changeover of the switch position setting when you change bands. Inasmuch as most antennas display some directivity you will find that the direction of arrival of the signal on occasion influences the switch position that delivers the best signal to the receiver. Often the switch is useful in selecting a position that delivers the cleanest signal when there is on-channel or adjacent-channel interference present.

If your indoor situation is such that you can stretch out the two wires in opposite directions check out the results over a period of time. Then do the same for a right angle pair. Here the space limitations limited us to the latter. Results did vary from band to band with the 48' length doing better than the shorter one on most of the bands. In the presence of interference there was often one position of the four that provided the best clarity.

Next we increased the length of the shorter wire to 33' (a quarter wavelength on 41 meters) and found an especially good combination for our situation. To overcome physical limitations we had to zig-zag and go around a bit to accommodate the added length. The shorter length then dominated on a couple of additional bands. Also on some bands the directivity became apparent and the best position switched about according to angle of signal arrival and I suppose the relative placement of the two wires.

Maybe some experiments along these lines will improve your indoor results. Remember after you have tried them out and come to a decision on a right combination you can usually do a job on keeping the wires hidden and in permanent position. In doing the initial checks don’t forget to set up some simple reference antenna so you won’t be working blindly against propagation variables. A Flexo switch can help you out with this condition. If you turn up something unusual don’t forget to send the information to this column.

Figure 3: Indoor antenna and loading coils near receiver – a top-performance reference antenna.

Figure 4: Flexo switch for indoor antenna application. Antenna wire positioning is not too critical. Fit it into your dwelling as best you can.

This is one time of the year the FM band picks up with some long distance reception due to the rapid temperature changes of the cool nights and warm days. Review some earlier Broadcast Topix columns for details on this phenomenon if you are not familiar with it. Rather than repeat the same info here, let me tell a few DX stories related to me this past spring.

Bob Frediani using a GE Superadio II was trying to receive a local FM on 89.1 and he heard something that didn’t sound familiar. The station turned out to be WMCU on 89.7 in Miami, FL. That’s quite a haul from New Jersey! All he was using was the antenna on the radio tilted at about 60 degrees. Bob found this to be the best angle. Jim Casper was driving in Southern California last April, headed toward Las Vegas, when he heard XHIS in Tijuana. He’s done better than that while parked one day in Huntington Beach he heard XHIFQ from Tijuana. The difference: XHIS runs 200 kw while XHIFQ runs only 3 kw! Jim also recommends the GE Superadio II for portable DXing.

Alan DesJardins has a Pioneer KE-A433 auto radio with which he does his DXing. This radio, he says, has AM stereo as well as an FM stereo section. Here’s a neat trick he had developed for making his FM radio directional. He is currently stationed in Massachusetts and finds by parking his car on one side or the other of the dormitory where he receives stations only in the direction away from the dorm. He loves this particular radio and found the FM section has not been sacrificed with the installation of the AM stereo. He also notes that of the Boston stations WMEX is doing more with their stereo than WBZ which still pretty much has that “AM” sound. He also says the AM section is a good DX radio.

One other letter this month about springtime FM reception is from Hank Rogers. From Pennsylvania he heard Pennacola, FL and Buffalo, NY using his home stereo with an “S” antenna on the roof. So sharpen those FM dials up for some of the fall DX reception!

Shall we leave AM DXing behind? Not by a long shot. Lots of DX will be coming up this fall and as the winter approaches the DX will continue to improve especially as the static levels continue to drop. The other day, while leaving my work station, I heard Larry King mention a new station just on the network and, being familiar with the station, had a good laugh since I knew the frequency of the station and the daytime power (minimum). For the station to be operating at night on a U.S. clear channel I figured they must be running only a few watts and the coverage must be a few miles at best. However, after the laughter subsided it dawned on me that this might be a new way to pick up stations which may have recently started operating at night. By listening each night at the beginning of the King show when he announces the new stations on the network it would then be an easy matter to check the station guides to see if the station had previously been a daytime only station. If it’s new at night there could be a possible logging! What’s more exciting than catching a new station?

The National Association of Broadcasters (NAB) is proceeding with their “DX” stations. Well, they’re not DX stations to them but they are to us I told you many months ago that they were going to build an experimental station in Virginia about 30 miles west of Washington to study the possibility of improving AM broadcast antennas. The improvement the NAB wants is to keep more signal closer to the ground so that the local signal is stronger and there will be less sky wave to cause interference with other stations on the same channel. The project consisted of two different antenna designs with which the NAB was going to experiment. The plan was to build one, run tests, tear it down and build the other. Well, now, the NAB has been able to get another location for the second antenna so the tests may be run simultaneously. The second site is near Greenbelt, Maryland, which is also near Washington. I will do my best to keep you up-to-date on these tests since it will be exciting to try to tune in and log these “test stations. They will be operating in the 1600-1700 kHz range for a limited period of time. Since this is pretty much a clear frequency, many of us living across the U.S. should be able to keep the signal more localized than being heard long distances. Stay tuned.

Boy, I tell you the AM stereo wars are really going full blast between Motorola and Kahn. It’s really sad for you and I and the listeners. We are the ones who are suffering because these companies continue to argue rather than trying to get a variable AM stereo system going in the U.S.A. The number of stations that are being added to the stereo list is becoming less all the time rather than increasing as would be the normal situation. With all the claims and counter claims going on it’s no wonder the broadcaster, much less the listener, doesn’t know what to do.

In a recent article in The Weekend Australian the story of AM radio in Australia parallels that of U.S. AM radio . . . down the tubes! They have seven metro FM stations versus 37 AM stations and the FMs have surged ahead in the polls and are making more. No mention, however, of whether or not AM stereo in Australia was helping to equalize the competition. Australia has selected C-Quam as the national standard for AM stereo.

Let me bring you up to date with what our readers are finding in the consumer world of AM stereo. Dick Soban sent a clipping from the J. C. Whitney catalog, the auto parts supplier out of Chicago, showing an AM stereo converter. This converter receives all four systems and converts them to the FM band, producing an FM stereo signal for the FM stereo radio in the car to receive. Neat! And only $79.95! I also received a letter which stated this converter overloaded the FM section of the auto radio and degraded the reception of other FM stations. Any other experiences with this converter?

Alan Ammann tells me that there are several other AM stereo multi-mode receivers on the market. He mentions the Sansui CX-990. Alan is another happy SRF-A100 owner. I understand from a recent report that the SRF-A100, although no longer available, might not be the best radio for checking on AM stereo platform motion. According to the report, this particular radio aggravates the effect of platform motion making it appear worse than it is in comparison to reception on other radios. I would tend to agree with this as I have noticed that the platform motion phenomenon does not seem as great a problem when listening on my auto radio. My auto radio is specifically designed for reception of C-Quam and Kahn whereas the Sony uses a compromise detector between the different systems.

In 1946 WNAX had the tallest tower in the USA. Today the tallest tower is about twice the 927 feet of this tower.
Station Updates

<table>
<thead>
<tr>
<th>Call</th>
<th>Location</th>
<th>Freq</th>
<th>Pwr</th>
<th>Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAFC</td>
<td>Clewiston, FL</td>
<td>590</td>
<td>1.47</td>
<td>DA-N</td>
</tr>
<tr>
<td>WMMX</td>
<td>Xenia, OH</td>
<td>1110</td>
<td>1.10</td>
<td>DA-D</td>
</tr>
<tr>
<td>WWCC</td>
<td>Concord, MA</td>
<td>1120</td>
<td>5.00</td>
<td>DA-D</td>
</tr>
<tr>
<td>KERI</td>
<td>Wasco, CA</td>
<td>1250</td>
<td>0.80</td>
<td>DA-D</td>
</tr>
<tr>
<td>KUBR</td>
<td>San Juan, TX</td>
<td>1210</td>
<td>50.0</td>
<td>O</td>
</tr>
<tr>
<td>KULK</td>
<td>Hillsboro, OR</td>
<td>1240</td>
<td>5.00</td>
<td>O</td>
</tr>
<tr>
<td>KGAL</td>
<td>Redlands, CA</td>
<td>1400</td>
<td>5.00</td>
<td>DA-C</td>
</tr>
<tr>
<td>WPWC</td>
<td>Dunfries, VA</td>
<td>1420</td>
<td>1.00</td>
<td>O</td>
</tr>
<tr>
<td>KTLU</td>
<td>Rusk, TX</td>
<td>1580</td>
<td>0.80</td>
<td>O</td>
</tr>
</tbody>
</table>

FM

<table>
<thead>
<tr>
<th>Call</th>
<th>Location</th>
<th>Freq</th>
<th>Pwr</th>
<th>Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRSO</td>
<td>Sioux Falls, SD</td>
<td>88.1</td>
<td>2</td>
<td>160'</td>
</tr>
<tr>
<td>KNTU</td>
<td>Denton, TX</td>
<td>88.1</td>
<td>100</td>
<td>402'</td>
</tr>
<tr>
<td>WRPS</td>
<td>Rockland, MA</td>
<td>88.3</td>
<td>.105</td>
<td>140'</td>
</tr>
<tr>
<td>WEPS</td>
<td>Elgin, IL</td>
<td>88.9</td>
<td>.74</td>
<td>34'</td>
</tr>
<tr>
<td>KLYT</td>
<td>Albuquerque, NM</td>
<td>89.5</td>
<td>10</td>
<td>4172'</td>
</tr>
<tr>
<td>KEWZ-FM</td>
<td>Cheney, WA</td>
<td>89.7</td>
<td>20</td>
<td>418'</td>
</tr>
<tr>
<td>KSSU</td>
<td>Boston, MA</td>
<td>89.9</td>
<td>3</td>
<td>730'</td>
</tr>
<tr>
<td>KLSA</td>
<td>Alexandria, LA</td>
<td>90.7</td>
<td>100</td>
<td>N/C</td>
</tr>
<tr>
<td>KUSC-FM</td>
<td>Los Angeles, CA</td>
<td>91.5</td>
<td>250</td>
<td>666'</td>
</tr>
<tr>
<td>WVEV</td>
<td>Cumming, GA</td>
<td>91.5</td>
<td>8.9</td>
<td>961'</td>
</tr>
<tr>
<td>KEMC</td>
<td>Bilings, MT</td>
<td>91.7</td>
<td>72</td>
<td>663'</td>
</tr>
<tr>
<td>WSGD</td>
<td>Brick, NJ</td>
<td>91.9</td>
<td>.195</td>
<td>57'</td>
</tr>
<tr>
<td>WJZ</td>
<td>Port Henry, NY</td>
<td>92.1</td>
<td>1.27</td>
<td>.77'</td>
</tr>
<tr>
<td>WPSV</td>
<td>Ogdenburg, NY</td>
<td>92.7</td>
<td>3</td>
<td>310'</td>
</tr>
<tr>
<td>WQSL</td>
<td>Wilkes-Barre, PA</td>
<td>92.9</td>
<td>5.25</td>
<td>1383'</td>
</tr>
<tr>
<td>WLSD-FM</td>
<td>Big Stone Gap, VA</td>
<td>93.5</td>
<td>.15</td>
<td>1419'</td>
</tr>
<tr>
<td>WTPA</td>
<td>Mechanicsburg, PA</td>
<td>93.5</td>
<td>1.18</td>
<td>525'</td>
</tr>
<tr>
<td>WSGM</td>
<td>Staunton, VA</td>
<td>93.5</td>
<td>2.8</td>
<td>338'</td>
</tr>
<tr>
<td>KXIQ</td>
<td>Bend, OR</td>
<td>94.1</td>
<td>86.3</td>
<td>993'</td>
</tr>
<tr>
<td>WIXV</td>
<td>Savannah, GA</td>
<td>95.5</td>
<td>100</td>
<td>981'</td>
</tr>
<tr>
<td>KEFM</td>
<td>Omaha, NE</td>
<td>96.1</td>
<td>100</td>
<td>1440'</td>
</tr>
<tr>
<td>WXII</td>
<td>Shelby, NC</td>
<td>96.1</td>
<td>100</td>
<td>1745'</td>
</tr>
<tr>
<td>KKSL</td>
<td>Kansas City, MO</td>
<td>96.5</td>
<td>100</td>
<td>984'</td>
</tr>
<tr>
<td>WCW-FM</td>
<td>Sparta, WI</td>
<td>97.1</td>
<td>100</td>
<td>587'</td>
</tr>
<tr>
<td>WKCM</td>
<td>Rome, GA</td>
<td>97.7</td>
<td>472</td>
<td>780'</td>
</tr>
<tr>
<td>KEMG</td>
<td>Osceola, AR</td>
<td>98.1</td>
<td>52</td>
<td>350'</td>
</tr>
<tr>
<td>WSIP-FM</td>
<td>Paintsville, KY</td>
<td>98.8</td>
<td>59</td>
<td>700'</td>
</tr>
<tr>
<td>WHMP-FM</td>
<td>Northampton, MA</td>
<td>99.3</td>
<td>3</td>
<td>321'</td>
</tr>
<tr>
<td>WFXC-FM</td>
<td>S. Williamsport, PA</td>
<td>99.3</td>
<td>21</td>
<td>1230'</td>
</tr>
<tr>
<td>KSUR-FM</td>
<td>Greenfield, CA</td>
<td>99.5</td>
<td>N/C</td>
<td>492'</td>
</tr>
<tr>
<td>KFRZ</td>
<td>Portland, OR</td>
<td>100.3</td>
<td>100</td>
<td>1434'</td>
</tr>
<tr>
<td>WCNB-FM</td>
<td>Connersville, IN</td>
<td>100.3</td>
<td>28</td>
<td>270'</td>
</tr>
<tr>
<td>WWKJ</td>
<td>Kokomo, IN</td>
<td>100.5</td>
<td>25</td>
<td>500'</td>
</tr>
<tr>
<td>WFMA</td>
<td>Rocky Mount, NC</td>
<td>100.7</td>
<td>100</td>
<td>1968'</td>
</tr>
<tr>
<td>WBNR</td>
<td>Wildwood, NJ</td>
<td>100.7</td>
<td>26</td>
<td>350'</td>
</tr>
<tr>
<td>WFVA-FM</td>
<td>Frederickburg, VA</td>
<td>101.5</td>
<td>30</td>
<td>400'</td>
</tr>
<tr>
<td>WDKO</td>
<td>Cleveland, OH</td>
<td>102.1</td>
<td>20</td>
<td>1000'</td>
</tr>
<tr>
<td>WPTM</td>
<td>Roanoke Rapids, NC</td>
<td>102.3</td>
<td>2.53</td>
<td>352'</td>
</tr>
<tr>
<td>KFZ</td>
<td>S. Lake Tahoe, CA</td>
<td>102.9</td>
<td>.589</td>
<td>2952'</td>
</tr>
<tr>
<td>WQBP</td>
<td>Ann Arbor, MI</td>
<td>102.9</td>
<td>49</td>
<td>500'</td>
</tr>
<tr>
<td>WVEG</td>
<td>Atlanta, GA</td>
<td>103.0</td>
<td>100</td>
<td>1000'</td>
</tr>
<tr>
<td>KWOZ</td>
<td>Mountain View, AR</td>
<td>103.3</td>
<td>100</td>
<td>987'</td>
</tr>
<tr>
<td>WRKX</td>
<td>Steubenville, OH</td>
<td>103.5</td>
<td>16</td>
<td>880'</td>
</tr>
<tr>
<td>WRX</td>
<td>Hattiesburg, MS</td>
<td>103.7</td>
<td>100</td>
<td>266'</td>
</tr>
<tr>
<td>WCKQ</td>
<td>Campbellsville, KY</td>
<td>103.9</td>
<td>1.85</td>
<td>411'</td>
</tr>
<tr>
<td>KZLTF-MF</td>
<td>E. Grand Forks, MN</td>
<td>104.3</td>
<td>100</td>
<td>444'</td>
</tr>
<tr>
<td>WSSB</td>
<td>Baltimore, MD</td>
<td>104.3</td>
<td>23</td>
<td>720'</td>
</tr>
<tr>
<td>KRKG</td>
<td>Carthage, MO</td>
<td>104.9</td>
<td>N/C</td>
<td>462'</td>
</tr>
<tr>
<td>KMXU</td>
<td>Manti, UT</td>
<td>105.1</td>
<td>63</td>
<td>2358'</td>
</tr>
<tr>
<td>KLSS-FM</td>
<td>Mason City, IA</td>
<td>106.1</td>
<td>100</td>
<td>1000'</td>
</tr>
<tr>
<td>KFXZ</td>
<td>Maurice, LA</td>
<td>106.3</td>
<td>1.3</td>
<td>494'</td>
</tr>
<tr>
<td>WSLT</td>
<td>Ocean City, NJ</td>
<td>106.3</td>
<td>3</td>
<td>328'</td>
</tr>
<tr>
<td>KMAX</td>
<td>Arcadia, CA</td>
<td>107.1</td>
<td>3</td>
<td>44'</td>
</tr>
<tr>
<td>KGRS</td>
<td>Burlington, IA</td>
<td>107.3</td>
<td>100</td>
<td>429'</td>
</tr>
</tbody>
</table>

FREE Consumer Buyer’s Guide

With Guaranteed Lowest Prices

- Explains all about 100 channel Satellite TV and how to shop for an earth station!
- Lists GUARANTEED LOWEST PRICES...we will not be undersold, save 30-50% over local dealer prices!

The new SATMAN Buyer’s Guide is a necessity for any prospective or current earth station owner who wants to save big money on name brand satellite products. Buy direct, Do-it-Yourself, and save with SATMAN. Toll free ordering, no sales tax (IL only), major credit cards accepted, huge in-stock inventories available, and free UPS shipping anywhere in U.S. Check with SATMAN before you buy...we will not be undersold! Call now for your free 20 page SATMAN Buyer’s Guide!

1-800-4-SATMAN
1-3119-6921

THE MONITORING MAGAZINE

October 1986 / POPULAR COMMUNICATIONS / 61
CALL TOLL FREE
& COMPARE
COMMUNICATION
DISCOUNTS

ICOM
R-7000
For listening to 25-100 MHz. 99 memory channels with back-up. Direct keyboard frequency access.

R-71A
General Coverage Receiver. All-mode with FM optional. 32 memories. Accessories available include filters, remote control, voice synthesizer, and extended service agreements.

KENWOOD
R-2000
General Coverage Receiver. Ask about extended service agreements.

YAESU
FRG-8800
All mode including FM 150 kHz - 30 MHz. 15 memories with multi-function scanner. Keypad entry.

FRG-9400
New Receiver for 60 - 905 MHz. 100 keypad-programmable memory channels. Band or memory scan.

SW Listening
Additional Receivers by Sony, Panasonic, and Bearcat.

Books
Full selection of books in stock.

Scanners
Scanner models for mobile, base station, and handheld use.

Regency
HX 1500
55-channel Handheld.

Bearcat
BC 310XW
20 channels, 8 bands. Synthesized programmable scanner. Automatic search. Direct channel access.

Telephones
by AT&T, Southwestern Bell, Cobra, and Panasonic

CBs
By Uniden, Midland, and Cobra

Radar Detectors
By Uniden, Cobra, and Whistler

Get the whole story!
Send $1 for our Current Buyer's Guide-Catalog.

Antennas
Indoor and outdoor antennas by Sony, MFJ, B&W, Butternut, and Antenna Specialist.

Interfaces
Decode Morse and RTTY. By MFJ or Kantronics. Packet equipment by MFJ and Kantronics.

More Helpers
• Amateur Radios and Accessories
• Towers and all types of antennas
• Commercial Land Mobile by Yaesu and others
• Marine By Icom and Regency Polaris

VIRGINIA
13646 Jefferson Davis Highway
Woodbridge, Virginia 22191
Information & Service: (703) 643-1063
Service Department: (703) 494-8750

Orders & Quotes Toll Free: 800-336-4799
(In Virginia: 800-572-4201)

Store Hours: M/T: 10 am—6 pm
Wed: 10 am—8 pm
Sat: 10 am—4 pm
Order Hours: M/F 9 am—7 pm
Sat 10 am—4 pm

NEW ENGLAND
Orders & Quotes: 800-237-0047

NEW ENGLAND
8 Stiles Road
Salem, New Hampshire 03079

New Hampshire Orders:*
Information & Service: (603) 898-3750

LACOMBE DISTRIBUTORS
LOUISIANA
Our Associate Store:
Davis & Jackson Road, P.O. Box 293
Lacombe, Louisiana 70445
Information & Service: (504) 882-5355

Terms: No personal checks accepted. Prices do not include shipping. UPS COD fee: 92.35 per package. Prices are subject to change without notice or obligation. Products are not sold for evaluation. Authorized returns are subject to a 15% restocking and handling fee and credit will be issued for use on your next purchase. EGE supports the manufacturers' warranties. To get a copy of a warranty prior to purchase, call customer service at 703-643-1063 and it will be furnished at no cost.

Hard to get through on our 800 numbers?
Call before 10 a.m. or after 5 p.m., or call one of our regular numbers. If you pay for the call and order, we'll credit your order with $1.

Dealer Inquiries Invited
the way, Alan, thanks for the nice comments. Other new products are the Sanyo multi-mode boom box, model number MV-250. Their new chip for multimode reception is the LA 1919 IC.

Walt Marcus of Kent County High School sent me an informative letter about their high school station. Now folks, here is a full-fledged radio station which is operated by a high school and does a real snappy job. I know, because I have listened to WKHS (FM), 90.5 MHz, in the Twin Falls area, ID. This station is 17,500 watts; no 10 watts here, friends! Anyway, Walt is the guy that makes these kids do the work once and I said to Walt, he does a good job. I know there are a lot of young readers and maybe you'd like to see about getting your high school involved in something like this. There are not very many stations like this in the U.S.; most high school stations are of the 10 watt (FM) or carrier current (AM) type. I know it takes a lot of work on Walt's part, but maybe he might be able to find a few minutes to help you if you'd like to get your school involved. Write him in care of Kent County High School, Worton, MD 21678. Also, if there are other high school stations on the air and operating both Walt and I would like to hear from you. Tell us about your operation.

If you live in a small town, it is probable that the local station is interested in high schoolers that show interest in broadcasting. That's how I got my start in radio. Of course, back in the stone age of radio the pay was pitiful for a lad in high school. I received the grand wage of the fun of doing the Sunday top 40 countdown if I would be there every weekend to do it. Today's wage laws are little more than the fast-food places, but if you are interested in broadcasting it shouldn't really matter. I can't guarantee that you can have an air show, but there are many things to learn around a radio station before one can go "on the air."

Raymond Taylor sent a letter explaining some of the solutions to Mr. W. Burke's problems I covered a few months back. He mentions from personal experience that strong SW signals may also mix inside the radio itself creating spurious signals and other unwanted garbage. Ray also has a problem with his BFO not zeroing. Many times the BFO knob is an extension of a slug-tuned core, Ray, therefore if you remove the knob then you may be able to adjust the shaft of the knob which restricts the turning of the shaft more than about 300 degrees. Try loosening the set screw on the collar and carefully tune a station to its exact frequency (might be easier with a BC band station) then turn the BFO on and adjust the shaft to zero beat. Then set the detent on the collar to the center of the shaft's rotation, re-tighten the collar and the knob. You should be back in business.

Also, speaking of attenuators as Ray-
Dear Mr. Grubbs:

Please accept this letter as verification of reception from Radio Station WBT, Oklahoma City, Oklahoma, transmitting on 930 kilocycles.

We are always pleased to receive such reports and appreciate your writing us.

Very truly yours,

WKY RADIOPHONE COMPANY

P. A. Suggs
Station Manager

Note the verification stamp and the date. The stamps were from an earlier era and were not used much past the 1940's.

Resistive pads: Shown is the schematic diagram for a resistive pad. It is constructed using DPDT (Double Pole, Double Throw) switches such as Radio Shack part numbers: 275-666, 275-663, 275-607, 275-636 and 275-691 or 275-403. The last two would give better isolation due to the wider spacing of the contacts but would not be as easy to mount as the single hole toggle switch. Mount the switches in a row in a metal box (RS part # 270-239 or 270-238) with a jack at each end for the in and out cables. If you want to get fancy use a fancy box (RS # 270-252 or 270-272), just be sure the box is all metal and not plastic. The connectors may be phone jacks, RS # 274-346, or expensive BNC jacks, RS # 278-105. Use RG type 58 or RG-174 for the connecting cables, not phono type shielded wire.

To be effective we should have at least four switches with a maximum of seven. Use pad values of 1dB, 2dB, 3dB, 10dB and 20dB. Two or three more 10 or 20 dB sections may be added for additional attenuation if desired. Get the resistor values from last month's Broadcast Topix column.

NOTE: Groundwire runs to each connector on either end of box and provides ground for resistor "P".
Two readers have responded to the February 1986 column regarding RAAF and RNZAF operations. Les Ottaway, New Zealand advises that RNZAF can best be heard on 5709 (officially 5707) USB. He added, “Although activity is likely at any time, the most active period is usually between 2000 and 0500 UTC. Try on the hour and half past as aircraft in the air usually report in to Airforce Auckland or Airforce Wigram at these times. RNZAF frigates and Hercules aircraft are likely to be in the air any time of the day or night for many purposes including civil emergency assistance to the Pacific Islands, flood and other disaster assistance within New Zealand, assistance to shipping in distress, and so on. During the tour of New Zealand by Queen Elizabeth and Prince Philip, I was thrilled to hear the Royal aircraft using call sign Royal One and support aircraft on 5707 and 8907 flying within New Zealand and across to Australia.”

Damien Vale, Australia offered the following information on RAAF activity:

Domestic HF Network Organization
(Frequencies in kHz)
South Eastern -2869, 4678, 5526, 8876
Central Eastern -3452, 6610, 8831
North Eastern -3452, 6616, 8891
North Central -3452, 6541, 8843
North Western -3461, 6604, 8900
South Western -3461, 6484, 6565, 8822
South Central -3461, 4693, 6580, 8858

Military aircraft usually operate on RAAF frequencies only when on task in restricted areas. Normally they can be found on domestic civil frequencies. Mirage and Macchi aircraft are not equipped with HF.

Clarke Durham, KY reports hearing a strange signal on 790 kHz on his car radio and on a R-392 receiver during later evening hours after station WAKY had reduced power. The signals consist of tickings with one per second and a tone on each minute. Two “R’s” in CW follow within 2 to 8 seconds. This sounds like it might be a harmonic of a beacon but I can’t make a positive identification. There is an “RR” beacon on 205 kHz but it is located at Kandahar, Afghanistan with 50 watts of power. The “RR” beacon was reported also by Gary Vendetti, NJ but he heard it on 570 kHz.

DXers interested in monitoring aviation frequencies will find this information from Mark Coady, Ontario to be helpful. Mark says, “All major airlines, as well as private aircraft, use 8891 USB during the daylight hours while flying the great circle route that takes them over Canada’s north. Some of the stations that can be heard are: VAP Churchill, Manitoba; UFC Cambridge Bay, NWT; UFF Frobisher Bay, NWT; VFG Gander, NFld; VFR Resolute, NWT: TAP Reykjavik, Iceland. All stations identify by the name of the town only.”

Some neat photographs of FAX transmissions were received from Raymond Pfaff located in Seoul, South Korea. His intercepts included: NOJ, Kodiak Alaska on 8459; RX070 Khabarovsk, USSR on 9230 at 0821; BAF4 Beijing, PRC on 10115 at 0400; JM33 Tokyo, Japan on 9438 at 1000; Tokyo Meteo on 7305 at 0900; JIJI Press Tokyo on 7370 at 0630. JIJI, Kyoto and CNA (Taipei) Press Services use FAX to transmit Japanese and Chinese characters rather than using RTTY. A sample transmission is shown in Figure 1.

We heard from George Osier, NY who says he is back in operation now that he has his NRD-515. George sent in a copy of a bulletin indicating the German Hydrographic Institute (DHI) has discontinued
transmission of time signals via stations at Elmshorn, Osterloog, Kiell (Callsigns: DAM, DAIU, DADO) as of 1 November 1985. Holders of Time Signal references will want to make this correction to their publications.

Supplementing the data of SAC Communications that was previously carried in this column, Chris Storey, CA advised hearing an Emergency Action Message (EAM) on a SAC frequency and then about 15–20 minutes later he heard it re-broadcast (by a different operator) on a US Navy frequency of 4416 kHz.

Larry Vogt, VA reports picking up some rather strange beacon type transmissions. On 1644 kHz he heard CW station KABA9357. My FCC listing shows that callsign assigned to a Health Service in Henry Co., Iowa on 465 MHz. The other station was KABA9555 in CW on 1642 kHz. My info shows the callsign assigned to a construction firm in Tennessee on 451 MHz!

Peter, in Great Britain, told of two addresses he used for QSLs as follows: For Haifa Radio he used just Haifa Radio, Hafi, Israel as the address. For French Navy station FUG, La Regine he used: Marine National, Ile Region Maritime, Chef du Service T/F, F-83000 Toulon-Naval, France.

Identification

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Aircraft Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSY</td>
<td>All RAFF act when flying international</td>
</tr>
<tr>
<td>AUSY 624,25,27,29</td>
<td>Boeing 707 No. 34 Squadron</td>
</tr>
<tr>
<td>ALADDIN</td>
<td>Macchi</td>
</tr>
<tr>
<td>BUCKSHOT</td>
<td>Flight of F-111C (leader maintains comms)</td>
</tr>
<tr>
<td>BUCKSHOT COLT</td>
<td>Chinook helicopter</td>
</tr>
<tr>
<td>BUFFALO CONSORT</td>
<td>Mirage</td>
</tr>
<tr>
<td>DESPOT</td>
<td>Iroquois UH-1 helicopter</td>
</tr>
<tr>
<td>EAGLE</td>
<td>Canbou</td>
</tr>
<tr>
<td>ENFIELD</td>
<td>BA-1111-C, HS-748</td>
</tr>
<tr>
<td>ENVY</td>
<td>F-111C</td>
</tr>
<tr>
<td>FLY CON</td>
<td>F-18 Hornet</td>
</tr>
<tr>
<td>MACH</td>
<td>Mirage</td>
</tr>
<tr>
<td>MARINER</td>
<td>Lockheed P-3 Orion</td>
</tr>
<tr>
<td>RAMROD</td>
<td>Mirage</td>
</tr>
<tr>
<td>REGENT</td>
<td>Mystere Falcon, BA-111</td>
</tr>
</tbody>
</table>

Figure 2: This list contains tactical callsign prefixes currently used by the RAFF aircraft, the suffix usually being the last 3 numbers of the tail registration, e.g. Iroquois UH-1 helicopter reg. no. A2-487 would be EAGLE 487.

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>CT-4 Airtrainer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockheed P-3 Orion series C</td>
<td>Lockheed Hercules</td>
</tr>
<tr>
<td>Lockheed P-3 Orion series B, Mirage</td>
<td>Test flight, or act from Aircraft Development and Search Unit</td>
</tr>
<tr>
<td>Macchi</td>
<td>Lockheed Hercules</td>
</tr>
<tr>
<td>Canbou</td>
<td>Boeing 704 act (eg AUSY 624) flying</td>
</tr>
<tr>
<td>within Australia</td>
<td>HS-748</td>
</tr>
</tbody>
</table>

www.americanradiohistory.com
...presented simultaneously with the World Series. The 1936 World Series was played between the New York Giants and the Chicago Cubs. The Giants won the series, which was also known as the "Boston Red Sox" World Series, in four games to one. The 1936 World Series was the last one played before the implementation of the World Series playoff system.

1936 World Series

The 1936 World Series was a best-of-five-game series played between the New York Giants and the Chicago Cubs. The Giants won the series, which was also known as the "Boston Red Sox" World Series, in four games to one. The 1936 World Series was the last one played before the implementation of the World Series playoff system.

1936 World Series

The 1936 World Series was a best-of-five-game series played between the New York Giants and the Chicago Cubs. The Giants won the series, which was also known as the "Boston Red Sox" World Series, in four games to one. The 1936 World Series was the last one played before the implementation of the World Series playoff system.

1936 World Series

The 1936 World Series was a best-of-five-game series played between the New York Giants and the Chicago Cubs. The Giants won the series, which was also known as the "Boston Red Sox" World Series, in four games to one. The 1936 World Series was the last one played before the implementation of the World Series playoff system.

1936 World Series

The 1936 World Series was a best-of-five-game series played between the New York Giants and the Chicago Cubs. The Giants won the series, which was also known as the "Boston Red Sox" World Series, in four games to one. The 1936 World Series was the last one played before the implementation of the World Series playoff system.

1936 World Series

The 1936 World Series was a best-of-five-game series played between the New York Giants and the Chicago Cubs. The Giants won the series, which was also known as the "Boston Red Sox" World Series, in four games to one. The 1936 World Series was the last one played before the implementation of the World Series playoff system.

1936 World Series

The 1936 World Series was a best-of-five-game series played between the New York Giants and the Chicago Cubs. The Giants won the series, which was also known as the "Boston Red Sox" World Series, in four games to one. The 1936 World Series was the last one played before the implementation of the World Series playoff system.
One of the facts of life in radio-related writing is that anyone who writes about pirate radio will, sooner or later, be accused of supporting and encouraging pirate broadcasting. It is something you can just count on; it's as certain as jammers following Radio Liberty or a fade just at ID time. In my case, the accusation came sooner rather than later. So, let me try and set our course here, even though it may be a case of soapbox preaching in the middle of an otherwise empty forest. Pirate radio operations are illegal but that fact does not make such transmissions any less interesting. In fact, it probably adds to the fascination for some. I am assuming that the readers of this column have an interest in pirate radio and wish to log as many stations as it is possible for them to do. This column attempts to help those readers do that. If occasionally bemoan the real or apparent lack of targets for the pirate chaser, that should not be read as encouragement for radio hobbyists not now operating a pirate station to start doing so nor as encouragement for those who have a pirate broadcasting set up to use it more frequently. I neither support nor condemn free radio, alternative radio, pirate radio, or whatever you choose to call it, but I do like to monitor those stations.

If you, as an individual, do support pirate radio then there are things you can do quite on your own to keep it going. If you are against pirate radio then there are things you can do as an individual to weaken the movement. I am quite prepared to report on both. This column will continue to try to provide news about pirate activity and, yes, occasional comments which the reader may interpret as he or she wishes.

ARE THEY OR AREN'T THEY? "Rock 'n' Roll Radio WQNR" says they are a legitimate, if unlicensed, station. The FCC says they're not, at least partly not.

The Selden, New York station began about two years ago operating a low-power carrier-current station on 640 kHz. The station says it operates with an all-volunteer staff on a nonprofit basis, using mostly area high school students who are aiming at a broadcasting career. WQNR maintains a heavy schedule of public service announcements, community events information and has promoted its own concerts.

Earlier this year, after seeking advice from what station officials thought was a qualified engineer, they began operating on a frequency just below the bottom of the standard FM broadcasting band (87.9 MHz), a move which brought a large and immediate audience increase. On April 25 and 26 the FCC observed WQNR's FM signal and subsequently issued a "Notice of Apparent Liability to Monetary Forfeiture" to owner and president Kristian V. Holtegaard of Selden. The citation stated that the operation "was conducted in the absence of a license issued by the Commission permitting such operation and produced a signal strength in excess of the limits specified in Part 15 of the Rules and Regulations for low power operation."

Now loyal listeners are up in arms because only a few can hear the 640 kHz outlet. WQNR has accepted full responsibility for the mistake and is appealing to both its listeners and to the FCC for help and understanding.

Another FM'er which recently had a run-in with the FCC is KSOS, an unlicensed station on 107.9 which operated from Seaside, California. KSOS was slapped with a $2,000 fine. The station aired soul, jazz, and rhythm n' blues from studios at 1966 Fremont Boulevard and was programmed for a black audience. Thanks to Keith R. Beard of Monterey, CA for this information.

A rather new and apparently quite widely heard pirate is CFTN also ID'ing as TNFM. The station was heard by David Lowrey, KB6APL in Concoro, CA on 7.415 from 0200 to 0600 on 25 and 26 May giving a phone number of (604) 537-4445 and a mailing address of Box 1345, Ganges, British Columbia, V0S 1E0. Dave says they broadcast locally on 100.3 and feature mostly rock music with an occasional comedy record. Garth Carmean of Edmonton, Alberta logged them on 17 May on 7440 starting at 0445 (they later moved to 7415) playing older top 40 music. When Garth called the station he learned they were also being relayed by another, unspecified station.

Terry O'Laughlin in Madison, Wisconsin found the station on 8 May on 7420 at 0440. Terry heard CFTN as the call but also identifications for TNFM. Terry called the station and disc jockey Alan said the station was "in the boones" on Galiano Island in the channel between Victoria and Vancouer. Marshall Moss in Houston, Texas found them on 10 May on 7440, although with a poor signal. It may be that the shortwave broadcasts are not controlled by the station being broadcast (or relayed).

KCBS was the tentative call heard on May 5 at 0355-0535 on 7420 by Paul Johnson of Phoenix, Arizona. Paul notes that the disc jockey sounded like the one on KQRO. The station was playing classic rock and gave out a phone number to call collect for music requests. An address was also announced but Paul couldn't copy it as the signal was subject to long and deep fades.

OTHER PIRATE ACTIVITY RECENTLY INCLUDES: KEAT with country and western music on 7435; KROK with oldies on both 7435 and 7445; Radio Clandestine with songs, comedy and satire using 7360;
Radio Deadman on 7436 with fake commercials; Secret Mountain Laboratory on 7425 with humorous fake commercials and features as well as alternative music; Tangerine Radio on 7414; The Voice of Laryngitis on 7425 running novelty songs and satire; WYMN using 7435 with women announcers and female vocalists; and WPBR on 7438 lower sideband with fake ads and the Messenger and the Soldier.

You Own More Than Your TV Set is the title of a booklet sent in by Mark Pierce of Sun Valley, CA. The book blurs that, "This book challenges the Federal Communications Commission to justify its posture as guardian of the public interest in broadcasting." The content, written by Frank Orme, is described as a "condensed and updated version of ten white papers on broadcasting and the consumer which were published and distributed as a public service between 1979 and 1982" by the National Association for Better Broadcasting, Religious Media Ministry, National Organization for Women, and other groups. The book is $4 from the National Association for Better Broadcasting, 7918 Naylor Avenue, Los Angeles, CA 90045.

REMEMBER to send in your pirate loggings, news, press clippings about pirate stations, copies of pirate QSLs and such. If you operate a pirate station please send in some information about your station and photos if possible.

Good hunting!

Since 1967, CRB Research has been the world's leading publisher and supplier of unique hobby and professional books and information including:

- Scanner Frequency Guides
- Shortwave Frequency Guides
- Military/Federal Communications
- Broadcast Station Registries
- Undercover Communications
- Survival Communications
- Covert Operations
- Electronic Espionage
- Surveillance
- Monitoring
- Cryptography & Codes
- Bugging
- Wiretapping
- Communications Antennas
- Electronics & Projects
- Fox Scanner Directories
- Computer Technology
- & Other Related Topics!

New titles are constantly being added to our exciting catalog. If it's interesting and unusual, we've got it. You'll see! Ask for our latest FREE catalog.

CRB RESEARCH
P.O. Box 56
Commack, NY 11725

RF Limited

Suggested Retail Price $99.95

- New UV-800
- Converts your UHF scanner to Cellular Telephone Frequencies!
- 384 MHz offset
- 12-13.8 VDC operation
- patch cord included
- 1 year limited warranty
- Send for free brochure
- Dealer inquiries invited

Dimensions – Height: 1"; Width: 2½"; Length: 4¼"
California City Cops To Upgrade Radar Training Program

Following a Sacramento Municipal Court judge's charge that city police were inadequately trained in the use of radar, Police Chief John P. Kearns announced recently that training would be reviewed "to make it more acceptable to the court."

In a prepared statement, Kearns said his department would review the program, even though he felt officers already were "well trained in comparison to other cities in California."

"Ours is as good or better than any agency in the state," Kearns said, adding the department would continue to use its thirty radar units for traffic enforcement during the program review.

"City police officers meet all guidelines set by the National Highway Traffic Safety Administration," Kearns added.

The department’s radar training program was criticized in the Municipal courtroom of Judge Michael S. Ullman.

In a twenty-four page ruling, Ullman warned that admission of future radar evidence from Sacramento police might be "the exception instead of the rule," unless the particular officer in the case could show he had received sufficient training or experience.

The ruling stemmed from a motion to exclude evidence of radar readings in sixteen upcoming speeding trials.

Three defendants represented the entire group in pre-trial hearings, explained James Dirks, an attorney with the Drivers' Defense Clinic of Sacramento.

Officials from the clinic argued that speed-measuring radar units were unreliable for many reasons, including inaccurate readings derived by inadequately trained officers.

All of the sixteen defendants were cited by either Sacramento Police Officer Lloyd Davis or California Highway Patrol Officer Dave Lynch.

During the pre-trial hearing, one city officer testified his training consisted of three hours of instruction (including a test), verification, visual estimates and the reading of an obsolete pamphlet. Meanwhile, CHP officers received about twice that much of instruction.

In conflict with the officer's testimony, Kearns said that the department had a 16-hour training program, including four to eight hours in class, a written test, in-field instruction and a lesson in testing the radar.

Ullman's ruling on the radar program may be among the first of its kind in California, both Ullman and Dirks acknowledged.

Ted Costa, manager of the drivers' clinic, said although he was pleased to hear the judge's criticism, he still planned to appeal the ruling to allow the radar evidence in the accused speeders' trials.

He said he hoped the case would encourage other drivers to fight back when they felt they had been issued unfair speeding tickets.

"The traffic court has atrophied into a revenue reimbursement system. People just pay their tickets without question, and it's a $40 million business in Sacramento County every year," Costa said. "Only 15 percent of those who get tickets, fight them. And it's time to fight back."

Charlotte Officer Suspended for Illegal Use Of Radar Gun

A Charlotte, NC, police officer has been suspended for allegedly issuing invalid speeding tickets using a radar gun for which he was not certified.

Charlotte Police Chief Sam Killman said officer Doug Martin was suspended without pay pending a hearing before the civil service board. Killman said he has recommended that Martin's employment be terminated.

Canada's Solicitor General Supports Use Of Radar Detectors

Allowing the use of radar detectors in Alberta should reduce speeding and have a beneficial effect on highway safety, says Solicitor General Ian Reid.

Reid confirmed recently that he has instructed police in Alberta to stop enforcing the radar detector law.

It will be repealed by the provincial Transportation Department when the legislature resumes. The law disallows the use of radar detectors.

The provincial Motor Vehicle Administration Act is administered by Reid, but the Highway Traffic Act falls under Transportation Minister Marvin Moore.

In a recent interview, Reid said he views the move to allow motorists to use detectors as positive because it will improve driver awareness.

"We're not interested in writing more tickets but to get people to drive more safely," said Reid.

Reid said he feels the law is especially unfair to out-of-province motorists who live in areas where the detectors are legal, but are not aware they are illegal in Alberta.

Motorists operating the devices are aware of the fact that police cars are around and are therefore more likely to drive safely and abide by the speed limit Reid contends.

Reid also said that most police officials support legalizing the devices. He said few charges have been laid by police under the act's radar detector section.

New Book Provides Defense Against Police Radar

Sooner or later nearly everyone gets a speeding ticket. All too often, it's not deserved. Most speeding tickets today are based on readings from police radar devices—even though there's overwhelming evidence that they are inaccurate and inconsistent.

Beating the Radar Rap, just published by Bonus Books, documents the problems with radar and helps motorists prepare to fight their speeding tickets in court without a lawyer. It tells what to do and what not to do, while describing a clear, easy-to-follow format for preparing and presenting a case.

Motorists should know about the arsenal of radar devices in use today; sources of radar interference and inaccuracies; beam width, panning error, shadowing error, and batching error; sources of operator error; radar case law; the courts, judges, prosecutors, and witnesses; evidence, testimony, and cross-examination; the chances of winning.

Beating the Radar Rap was written by two experts on police radar—Dave T. Smith, inventor of the original Fuzzbuster® radar detector, and John Tomerlin, highway affairs analyst for Road and Track magazine. The authors have combined their technical and analytical skills to write the most damning critique of the use of police radar—and the motorist's best defense.

Beating the Radar Rap may be ordered...
Seventeen Counties In California Currently Using Radar

Drivers in seventeen California counties, watch out! The Highway Patrol is watching you on radar.

Although the legislature has always refused to let the CHF use radar statewide with the state funds, the Highway Patrol, since 1961, has been using radar purchased by individual counties on troublesome county roads and one accident-prone highway.

But the legislature's most persistent radar critic says he's worried that radar might be used to raise revenues through speeding tickets and says he'd rather have more officers visible on the roads to deter speeders.

Traffic officers have used radar for decades to clock the speed of motorists and back up their own visual estimates. Traffic officers, that is, except for the California Highway Patrol. Most California city and county traffic officers use radar, but California was always the only state whose state traffic officers could not. During the 1970s, the CHF periodically asked the legislature for permission to use radar to catch speeders on state highways. The patrol did not need permission technically, since state law does not prohibit it, but CHF officials realized they would run into trouble with lawmakers if they went ahead without the legislature's blessing. But lawmakers always turned the CHF down. The chief group opposing radar was the Teamsters Union, which represents truckers.

The most outspoken legislative opponent has always been Assemblyman Lou Papan.

"No one is going to convince me the Highway Patrol is going to do a better job (with radar) when the state's leading the nation in the issuance of tickets," Papan said at a 1980 hearing on an unsuccessful bill that would have allowed the CHF to seek federal funds to buy radar equipment.

The program has been expanded to twenty-four sites in seventeen counties, according to CHF spokesman Steve Kohler.

The areas are Lake Valley and Placerville in El Dorado County; Bridgeport in Mono County; Truckee in Nevada and Placer counties; Grass Valley in Nevada County; North Sacramento and South Sacramento in Sacramento County; Hayward in Alameda County; Martinez in Contra Costa County; Corte Madera in Marin County; Fresno in Fresno County; Hanford in Kings County; Santa Ana and San Juan Capistrano in Orange County; El Cajon and Oceanside in San Diego County; Santa Barbara and Santa Maria in Santa Barbara County; Santa Cruz in Santa Cruz County; Ventura in Ventura County and Malibu and Woodland Hills in Los Angeles County. The latest one, added this winter, was the San Jose area of Santa Clara County.

by sending $13.95 (includes postage and handling) to Electrolert, Inc., 4949 S. 25A, Tipp City, Ohio 45371.

See what you can hear with the
NEW 1987
RADIO DATA BASE INTERNATIONAL

More than 350 pages... Complete in one volume... Packed with information that every shortwave listener needs.

- At a glance: Data on every Broadcast Station in the shortwave spectrum... Names, Locations, Frequencies, Operating time, Language, Target area and Transmitter power... All displayed in a convenient easy to read frequency graph form.
- Separate cross indices of major stations alphabetically by country.
- Buyer's guide to more than 50 tabletop and portable receivers.
- Reviews on all new receivers introduced during the past year.
- Antenna recommendations.
- How to use personal computers to enhance your listening enjoyment.

If you thought that the 1986 Radio database International was terrific, wait until you see this brand new expanded edition. IBS has gone all out to make it the best, most useful radio listening publication available anywhere.

1987 Radio Base International is only $12.95 (plus $1.95 for shipping and handling).

TO RECEIVE YOUR COPY, SIMPLY CALL US
TOLL FREE AT 800-368-3270.

www.americanradiohistory.com
Beaming In (from page 4)

Time was when a KC4-prefix meant that you'd zeroed in on rare DX in Antarctica or on Navassa Island. This KC4USB card is from 1964; back when you could get an easy handle on DX by hearing the prefix.

Maybe we could petition the courts for legal name changes. It turns out to be impossible to counsel a reasonable approach to the maniac who has been issuing all of these numbers for the past 70 years, his identity (wisely) is a closely guarded secret. We ought to retire him, like the number Joe DiMaggio used to wear on his New York Yankees jersey!

Let's also keep in mind that we've long passed the acceptable limits for reasonable callsigns and international prefixes. Once upon a time, stations fit neatly into a sensible master plan with prefixes between AA and ZZ. If you heard a station starting with a W or a VE, you knew generally where it was located. You automatically knew that any station running a weird callsign past you (like ones starting with an B, M, LY, ES, ZA, or YL) was definitely worth logging. Unless you happened to bump into something especially unusual, like a YI or YA prefix, you never had to look it up anywhere. There was such a glut of callsigns that nobody even cared that the letter Q was singled out and thrown away for prefix purposes.

Right after WWII, the free ride ended. Callsigns and prefixes dried up. The first omen that we were in trouble was when the FCC began recalling the 4-letter format callsigns that had been assigned to police and fire stations. These were replaced by tongue-twisters made up from 3 letters and 3 digits, and presently 4 letters plus digits.

That frightening trend began at about the same time many people decided to start creating new nations, an activity that continues even as we speak. Gone are Tannu Tuva, Ceylon, Rhodesia, Gold Coast and other favorites. Here comes Burkina Faso, Sri Lanka, Zaire, Lesotho and many others that demanded newly-created prefixes. They didn't want used hand-me-downs. Traditionally, none of the established nations were willing to gracefully chip away at their traditional prefix allocations to help out the new nations. Money? Maybe. Prefixes? Forget it.

The International Telecommunications Union (ITU) shifted into panic mode. New prefixes needed to be generated, but nobody could figure out from where. Someone suggested that new callsign prefixes be created using the classical alphabet of ancient Greece (as in Epsilon, Theta, Omicron, etc.), but college fraternities and sororities complained. The ITU pondered and one by one rejected creating additional prefixes from alphabets in Gaelic, Cyrillic, Hebrew, Sanskrit, Arabic, Norse Runes, the Ogham tree alphabet, Old English and even lower case letters. They also discussed Chinese, Japanese, and Egyptian hieroglyphics until someone mentioned that Western Union wouldn't deliver ideograms.

A scuffle amongst the delegates broke out at the suggestion that they consider using punctuation marks such as the semicolon, comma and exclamation point as prefixes. Ultimately, the delegate from the tiny nation of Danzig stood up and suggested that they think about using prefixes like asterisk (*) and cross-hatch (#) symbols. His motion was seconded by feisty little Trieste. This idea was thought to be so immensely silly that those few delegates who had remained voted forthwith to abolish both Danzig and Trieste as nations. Years later, the crafty old ITU quietly peddled the "*" and the "#" idea to AT&T for use as meaningless buttons on all Touch Tone telephone instruments. These two buttons exist to this very day while telecommunications engineers around the world work feverishly to be the first to discover a use for either or both.

Months after the conference ended, the ITU's concierge conceived the idea of creating new prefixes from digits followed by letters, and when those ran out, from single letters followed by a digit (although his idea for using fractional numbers for especially small nations was discarded). To many observers this plan seemed the high point of the devil-may-care atmosphere that pervaded the whimsical ITU during the hectic post-WWII era. It wasn't until a decade later, when ITU headquarters were inadvertently moved from Berne (Switzerland) to Geneva, when anybody realized that the thin Alpine air mixed with too much edelweiss was undoubtedly the main factor in the ITU's erratic behavior and their selection of the puckish digital prefixes.

The new prefixes were so bizarre and cat-

9-006, and the ubiquitous 11-4-2020-06200(MP). The numbers had gotten so far out of hand that they became larger than the devices they described. Manufacturers took to printing the designations on cards to which the tiny semiconductors were attached as if they were an afterthought.

It was a real shame to have to do away with transistors, diodes, thermistors, FETs, Varicaps, and the like simply because there weren't any more numbers left to call them. It was back to the drawing boards for a quick-fix bail-out and yet another chance to start the numbering all over again. This time it was decided to discover IC's. Unfortunately, the dopers began the numbering system badly and even early IC's were staggered under the weight of monickers like SP0256-AL2, the LM383/TDA2002, and worse. The whole system now seems doomed to an untimely and premature demise. I knew nothing good would come of the damned things and have always said that chips are things best left on gambling tables and in pastures.

One possible way off the hook would be to give serious thought to dubbing newly invented chips with reissued designations that had formerly been used by much beloved and fondly remembered vacuum tubes out of the past. Why not? Ship names are recycled, so are movie titles, callsign, even people's names. The next new chip could be the 6L6 (or 6L6, Jr.), or the 6SK7, or the 807. A worthy tribute, don’t you think?
chy that even sedate older nations wanted to get in on the fun and were demanding allocations from these blocs. Chile was given 3G, Colombia wanted two and they were assigned 5J and 5K, Mexico grabbed everything from 6D to 6J even though it would take care of their needs well into the 25th century, Sweden hooked 8S; they were queuing up for these allocations like shoppers at a Columbus Day department store sale!

Wasn't it long before the airwaves were brimming with calls, such as with C6, J8, J7, V2, A6, 9K, 8J, 8R, 6Y, 5A and other similarly strange new creations that were designed to both amuse and confuse. There were even stations in Tonga on the air running an A3S prefix! But there was a catch.

The ITU either didn't know or didn't care that their new prefixes had previously been reserved and used for other purposes. What about 3D, 3M, 4F, 4H? When I hear 3D, I think about the 1953 Vincent Price movie, “House of Wax;” and isn't 4H a club for youngsters who grow allula? As long ago as the 16th Century, Shakespeare was asking, "2B or not 2B?" I'm confused!

The ITU itself is confused, not being quite certain if 3D belongs to Swaziland or whatever is left of New Guinea. They ought to give 3D back to the Creature From the Black Lagoon. I still can't figure out if 5W4GT is a Ham station in Western Samoa or a glass vacuum tube!

The entire mixup also threw the FCC into a tailspin. In the 1950's, the FCC said that CB stations wouldn't have traditional callsigns. Instead, the agency decided, the stations would be issued what they felt were essentially serial numbers such as 2A0305, 6Q5029, 4W2101, etc. It never even occurred to the FCC that at least some of those serial numbers contained callsign prefixes that had been allocated to other nations. The ITU and several nations squawked and the FCC hastily withdrew the wrongly-issued identifications, replacing them with proper K-prefixed callsigns. One can only wonder if that boo-boo went into the FCC's more recent decision to abandon altogether the use of formal CB callsigns. Or perhaps it was that CB operators had stopped using them seven years earlier, or that the FCC's computer was not really up to the task anyway. More than once, the FCC computer freaked out and had assigned duplicate callsigns to hundreds of thousands of CB stations!

We also can't help but wonder if, at some point, the FCC decided that if the ITU wanted new prefixes, they'd teach 'em a couple of lessons. The agency's flair for satire was manifested in the Amateur Radio Service. Time was when an AC4 station was in exotic Tibet, NV4 stations were American sailors stationed in Cuba, KC4 meant Navassa Island or Antarctica, KR6 denoted Okinawa; forget that now!

Stations with these prefixes, ones like AE6, NF7, A8A, KD7 and hundreds of other exotic callsigns may sound like DX but the FCC has unleashed them right here at home! Drives the world's Hams and SWL's right up a wall. And you thought the FCC had no sense of humor!

Where and when will the number crunch end? Nobody really knows, what with new nations still emerging and the single-digit prefixes already pretty well used up. Surely, electronic component designations will pass the Dow-Jones average while callsign prefixes will zoom past double-digits.

I don't even want to think about what happens when they run out of numbers to describe new frequencies. For now, I'm willing to let the FCC cop out by expressing the ultimate radio frequency as being "above 300 GHz." Easy for them to say!

You can tell how bad it's getting when there are so many new countries that they've even started running out of original names to call them. There are already duplicate countries named China, Yemen, Germany, Korea, the Virgin Islands, Samoa, and Guinea— with no less than three places called Kiribati! This is a very serious situation.

Can't anybody out there in charge of things remember when nations didn't go around ripping off the names of other nations? What do you think Coca Cola would do if somebody else started using that name for a soda? How dare some country use 4X4 as a Ham prefix when that best describes a small truck? Doesn't anybody out there remember when 3M was a brand of recording tape and not a radio prefix in China? When 4F was what the Draft Board classified guys who were nearsighted or had flat feet?

Guess I'm lucky for having been assigned a good, old fashioned no-frills callsign like K2AES and ZF2JO. They reflect solid and homey values, although some may find them a tad on the fuddy-duddy side. Still, I wonder where its all heading. If 7UP is still a drink (and not an Algerian radio station), I'm going to some and cognate these latest portents of the coming apocalypse.

Order Back Issues of POPULAR COMMUNICATIONS

148 PAGES - 100'S OF NEW PRODUCTS

TUBES — 2,000 TYPES DISCOUNT PRICES!

New 20-pg. wholesale catalog for the radio collector/hobbyist. Antique, hard-to-find and modern tubes. Also transformers, capacitors and parts for tube equipment and books, etc...

Antique Electronic Supply
688 W. First Street Tempe, AZ. 85281
(602)894-9503

CIRCLE 37 ON READER SERVICE CARD

CAN'T HEAR THE WEAK ONES?

Increase your receiver's sensitivity by a factor of 10 (19 dB) with our PA-19 wideband preamp. Covers 0.5 to 200 MHz. Comes built, tested and ready to install ... and about the size of a postage stamp!

ONLY $9.95 pdp

Money-back guarantee.

DIGITREX ELECTRONICS
Dept. JG, 10073 N. Maryann,
Northville, MI 48167
Phone Orders: (313) 348-7313

CIRCLE 34 ON READER SERVICE CARD

Please reserve my copy of the 1986 Dick Smith Catalog. I enclose $1 to cover shipping.

Name ____________________________
Address ____________________________
City ____________________________ Zip ______

DICK SMITH ELECTRONICS INC.
P.O Box 2245 Richwood City OH 45673
EVERYTHING FOR THE ELECTRONICS ENTHUSIAST

October 1986 / POPULAR COMMUNICATIONS / 73
Where still is understandable confusion about what to send to SCAN and what to send to Popular Communications. Even we were confused at first, so don’t feel alone! Here’a brief rundown you may want to save for reference.

Change of Address: If you’re a SCAN member, your old mailing label and new address should be sent directly to: SCAN Address Change, P.O. Box 414, Western Springs, IL 60558. Sending it to Popular Communications will cause delays if you’re a SCAN member. On the other hand, if you’re not a SCAN member, address changes should go to Popular Communications.

Communications Shop Ads: These should go directly to: PC Communications Shop, 76 N. Broadway, Hicksville, NY 11801. Please, please type your ad or print very clearly.

Membership Renewal: Please send your SCAN membership renewal (which includes subscription to Popular Communications) only to SCAN, P.O. Box 414, Western Springs, IL 60558. Popular Communications subscribers who are not SCAN members should continue to send renewals to Popular Communications.

Photo Contest Entries: Send to SCAN Photo Contest, P.O. Box 414, Western Springs, IL 60558.

Public Service Award Nominations: Send to SCAN Public Service Award, P.O. Box 414, Western Springs, IL 60558.

Co-Op Service Orders: Send to SCAN Co-Op Service, P.O. Box 414, Western Springs, IL 60558.

SCAN Insurance Claims: Send directly to Hartford Insurance using the address shown on the policy.

Comments and Suggestions: Always welcome at either Popular Communications or SCAN (or both!)

(from page 8)

know that there are plenty of other good ideas out there, so please send them along, too. We’ll run a column on some of the best ideas we receive in the future. It should make mighty interesting reading!

Car Rental Program Improved Again

SCAN has now concluded a new agreement with Alamo Rental Cars for special member discounts at all their locations, which include the most popular vacation destinations and many other cities as well. Our Avis program remains in effect, so you now have two choices to save when you need to rent a car. To use the Avis program, just show your SCAN membership card when renting. It contains a special Avis “AWD” discount code number. For Alamo rentals, you must give them a special number which will be sent to you with your next membership renewal kit. If you’d like to have that number before your renewal kit arrives, please send a self-addressed stamped envelope to SCAN Car Rental, P.O. Box 414, Western Springs, IL 60558.

We constantly endeavor to achieve new membership benefits. For instance, at the suggestion of several members, we are currently negotiating with hotel/motel chains, book publishers, and equipment manufacturers. The Co-Op Service recently added some exciting new items, which we are able to purchase in quantity for substantial discounts. Complete info comes in the membership kit, which also includes an FCC frequency assignment chart, personalized membership certificate, I.D. card and vehicle decal. A $1,000 accidental injury or death insurance policy from Hartford Insurance is also included with membership at no extra charge; this is a valuable free benefit for anyone, but is especially important for firemen, policemen, EMTs and others on the front lines of public safety work. Membership includes a subscription to POP’COMM, too! Dues are currently just $19 per year in North America, to SCAN, P.O. Box 414, Western Springs, IL 60558. If you are already a POP’COMM subscriber, be sure to enclose a current magazine label (very important!) so that your subscription can be extended and so you won’t receive duplicate issues.
WANTED TO BUY: Panasonic R.F. 9000 S.W. video monitor. 12" diagonal. Ideal for CB operators. $600.00. Dana Archer, 8532 Columbus Ave., #23, Sepulveda, CA 91340.

COMPLETE ANTENNA DIMENSION TABLES for shortwave broadcast bands. Band-by-band and multi-band dimensions for dipoles, verticals, slopers, longwires and a simple beam. Simple drawings too so you can’t go wrong. A recent addition is a set of tables for US HF Ham bands for SWLers and Hams. US and Canada $3 plus 50¢ postage and handling. SLOPER ANTENNAS for shortwave broadband designs and excellent performance. Complete dimensions for single and multi-band simple dipole. Simple drawings too so you can’t go wrong. U.S. and Canada $3 plus 50¢ postage. Foreign, U.S. $5.50 for surface mail. LANDMOBILE AND MARINE RADIO TECHNICAL HANDBOOK. The 1985 classic book of two-way radio fundamentals and practice. Study for certification or just a 575 page mammoth at $29.50 plus $2.00 Foreign, U.S. $35.00 by surface mail. If you like, send SASE long for outline. All publications from Ed Noll, P.O. Box 75, Chalffont, PA 18914.

ESPIONAGE/EMBASSY Communications Guide, by Tom Kettle. What’s behind mystery “numbers” transmissions, coded embassy messages, and stations operated by foreign governments in the USA & Canada. How nations monitor each other’s official codes and communications. Illustrated! Includes largest/latest registry of stations (frequencies/callsigns/locations) operated embassies of the world’s governments, intelligence agencies, U.N., Interpol, International Red Cross, U.S. State Department; HF/VHF/UHF. Now you can tune in on Embassy & Embassy Communications. $10.95 + $1 postage (USA/Canada/APO/FPO) from CRB Research, Box 56, Commmack, NY 11725.

WORLDWIDE SINGLES...101 countries, interested in friendship/marriage with Americans and Canadians. Cherry Blossoms, Box 1021PR, Honolulu, Hawaii 96827.

CB RADIO OWNERS! We specialize in a wide variety of technical info, parts, and services for CB radio. FM conversions, expert mail-in repairs. Our 11th year! 16-page catalog $2. CBC1, Box 31500PC, Phoenix, AZ 85046.

BEARCAT 211 programmable 18 Channel, five band scanning receiver. Send certified check or M.O. $100. David Cain, 200 West 20 Street #607 NY NY 10011.

LISTENING AROUND THE WORLD, what, where, when, how. $5.95. By RKW. $4.95 + $1.00 postage and handling. K.F.P. Publishing, Box 19, Dept C, Springville, UT 84663.

SCANER UNSCRAMBLERS, lets you hear the coded sound, LF meter, & audio channel. Complete satisfaction guaranteed. DNE, Inc., R. R. 7, Box 257, Hot Springs, Arkansas 71910; 501-623-6027.

THE MONITORING MAGAZINE

October 1986 / POPULAR COMMUNICATIONS / 75
We specialize in a wide variety of technical information, parts and services for CB radios. 10M-FM conversions, repairs, books, plans, kits, high-performance accessories. Our 11th year! Catalog $2.

CB RADIO OWNERS!

LEARN MORSE CODE in 4 hours. My method works. $5.25 to J.L. Steiger, 375 Hillside Rd., Seven Hills, Ohio 44131.

TUNE IN HIDDEN SCA BROADCASTS. Commercial free background music, Talking books for the blind. Medical news, Radio paging, etc. Adapter plans $4 Adapter kit $39.95 Catalog $1. OCETE(M) Box 840, Champlain, NY 12919.

"SUPER SAVINGS" R-7000 $899.95, FG-9600 $499.95, ICR-71A $699.95, Sony 1950 $299.95, DX 1000 $379.99, HX 1200 $239.99 WANTED used scanners, and shortwave receivers, Write with your best offer. We Take Trades! 31-page 1986 Picture Catalog, $1 (refundable). Galaxy Electronics, Box 1207, 67 Eber Ave., Akron, OH 44309. (216-376-2402)-9pm EST.

TELEPHONE TRANSMITTER. FM room transmitter schematics with detailed construction procedures using Radio Shack's numbered parts. Both: $6. Receivers available Sheffield Electronics, 7223 Stony Island, Chicago, IL 60649.

New Low Frequency Accessories. The L-4008 LF active gain antenna (3kHz - 5kHz) with improved gain and excellent broadcast interference reduction. LF converters, receiving systems and more. Write for our catalog. LF Engineering Co., Inc., 17 Jeffery Road, East Haven, CT 06512.

Expert Repair on scanners, shortwave receivers, ham gear and stereo. FCC licensed. Timberline Electronics, P.O. Box 2064, Idywild, CA 92349. 714-659-4018.

CLANDESTINE CONFIDENTIAL! keeps you up to date on the latest in clandestine broadcasting. 6 issues per year $10 in the U.S., $13 foreign. G.L. Dexter, RR4 Box 110, Lake Geneva, WI 53147.

SIBLEND OPERATORS! Join the oldest/largest network of 27 Mhz SSB operators. Now more than 100,000 strong! Send self-addressed stamped long (#10) envelope for FREE details and application (no obligation). SSB Network, P.O. Box 968, Smithtown, NY 11787.

ATTENTION WRITERS: Manuals wanted on a wide variety of communications and monitoring subjects. SASE brings want list or send your suggestions, resumes, credits. Tiare Publications, P.O. Box 693, Lake Geneva, WI 53147.

COMPUTER PROGRAMS for Commodore 64. Menu driven providing logs for BCL/SWL. Update formats, QSL records, other. Disk or tape. Screen and/or printer. Send SASE for more info & sample printout. Manucy, P.O. Box 5624, Baltimore, MD 21210.

WANTED: CASH PAID FOR USED SPEED (TRAFFIC) RADAR EQUIPMENT! Write or call: Brian R. Esterman, P.O. Box 8141, Northfield, IL 60093, 312-251-8901.

**COMMUNICATIONS PLANS, BOOKS, KITS! AM/FM broadcasting (licensed/unlicensed), 1750 Meter transceivers, ham/CB amplifiers, surveillance bugs, more! FREE catalog. PAN-COM, Box 131-P, Paradise, CA 95969.

CABLE TV CONVERTERS & EQUIPMENT. Plans and parts. Build or buy. Send S.A.S.E.

CRB Research 69

Capri Electronics 73

Communications Electronics 9

Computer Trader 55

Cow Electronics 74

Deco Industries 67

Dick Smith Electronics 73

Digitrex Electronics 73

EGE, Inc 62

ENCOMM, Inc. 59

Elec. Equip. Bank... 26, 27, 51, 71

Fair Radio Sales 17

Fox International 17

Gilder Shortwave 3

Ham Station 16

ICOM America, Inc. 76

JoGunn Ent. 49

Kenwood 76

MFJ Enterprises, Inc. 20

Madison Electronics 55

Mouser Electronics 75

Pacific Cable Co. 76

Palomar Engineers 49

Pop'Comm Book Shop 55

RF Limited 69

Satman 61

Scanner World, USA 5

Sherwood Communications 57

Signal Engineering 40

Spectronics 15

Tiare Publications 36

Universal SW Radio 74

Van Valzah 75

World-Tech Products, Inc. 69

Yaesu Electronics Cov.III

AMC Sales 71

ARRL 71

Alden Electronics 71

All Electronics 67

Amerco 67

Antenna Specialists 25

Antique Electronics 73

Barry Electronics 76

CBC International 76

CRB Research 69

Capri Electronics 12

Communications Electronics 9

Computer Trader 55

Copper Electronics 74

Deco Industries 67

Dick Smith Electronics 73

Digitrex Electronics 73

EGE, Inc. 62

ENCOMM, Inc. 59

Elec. Equip. Bank... 26, 27, 51, 71

Fair Radio Sales 17

Fox International 17

Gilder Shortwave 3

Ham Station 16

ICOM America, Inc. Cov.II

JoGunn Ent. 49

Kenwood Cov.IV

MFJ Enterprises, Inc. 20

Madison Electronics 55

Mouser Electronics 75

Pacific Cable Co. 76

Palomar Engineers 49

Pop'Comm Book Shop 55

RF Limited 69

Satman 61

Scanner World, USA 5

Sherwood Communications 57

Signal Engineering 40

Spectronics 15

Tiare Publications 36

Universal SW Radio 74

Van Valzah 75

World-Tech Products, Inc. 69

Yaesu Electronics Cov.III

76 / POPULAR COMMUNICATIONS / October 1986

THE MONITORING MAGAZINE
Yaesu has serious listeners for the serious listener.

Yaesu's serious about giving you better ways to tune in the world around you. And whether it's for local action or worldwide DX, you'll find our VHF/UHF and HF receivers are the superior match for all your listening needs.

The FRG-9600. A premium VHF/UHF scanning communications receiver. The 9600 is no typical scanner. And it's easy to see why.

You won't miss any local action with continuous coverage from 60 to 905 MHz.

You have more operating modes to listen in on: upper or lower sideband, CW, AM wide or narrow, and FM wide or narrow.

You can even watch television programs by plugging in a video monitor into the optional video output.

Scan in steps of 5, 10, 12½, 25 and 100 KHz. Store any frequency and related operating mode into any of the 99 memories. Scan the memories. Or in between them. Or simply "dial up" any frequency with the frequency entry pad.

Plus there's more, including a 24-hour clock, multiplexed output, fluorescent readout, signal strength graph, and an AC power adapter.

The FRG-8800 HF communications receiver. A better way to listen to the world. If you want a complete communications package, the FRG-8800 is just right for you.

You get continuous worldwide coverage from 150 KHz to 30 MHz. And local coverage from 118 to 174 MHz with an optional VHF converter.

Listen in on any mode: upper and lower sideband, CW, AM wide or narrow, and FM.

Store frequencies and operating modes into any of the twelve channels for instant recall.

Scan the airwaves with a number of programmable scanning functions. Plus you get keyboard frequency entry. An LCD display for easy readout. A SINPO signal graph. Computer interface capability for advanced listening functions. Two 24-hour clocks. Recording functions. And much more to make your listening station complete.

Listen in. When you want more from your VHF/UHF or HF receivers, just look to Yaesu. We take your listening seriously.

Yaesu USA
1720 Edwards Road, Cerritos, CA 90701
(213) 404-2700

Yaesu Cincinnati Service Center
9070 Gold Park Drive, Hamilton, OH 45011
(513) 874-3100

Prices and specifications subject to change without notice.

FRG-9600 SSB coverage: 60 to 460 MHz.
KENWOOD
... pacesetter in Amateur radio

Scan the World

R-2000
All-mode receiver

Superior engineering, quality, and performance describe Kenwood's multi-mode communications receiver.

The R-2000 receiver has the most often-needed features for the serious or casual shortwave broadcast listener. Listen in on overseas news, music, and commentary. "Listen up" on the VHF public service and Amateur radio frequencies, as well as aircraft and business band communications with the R-2000 and VC-10 option. The R-2000 has a muting circuit so you can monitor your Amateur radio station's signal quality.

- Covers 150 kHz - 30 MHz in 30 bands.
- All mode: USB, LSB, CW, AM, FM.
- Digital VFO's, 50-Hz, 500-Hz or 5-kHz steps. F. LOCK switch.
- Ten memories store frequency, band, and mode data. Each memory may be tuned as a VFO.
- Lithium batt. memory back-up.
- Memory scan.
- Programmable band scan.
- Fluorescent tube digital display of frequency (100 Hz resolution) or time.
- Dual 24-hour quartz clocks, with timer.
- Three built-in IF filters with NARROW/WIDE selector switch. (CW filter optional.)
- Squelch circuit, all mode, built-in.
- Nose blanket built-in.
- Large front mounted speaker.
- RF step attenuator. (0-10-20-30 dB.)
- AGC switch. (Slow-Fast.)
- "S" meter, with SINPO scale.
- High and low impedance antenna terminals.
- 100/120/220/240 VAC operation.
- RECORD output jack.
- Timer REMOTE output (not for AC power).
- Muting terminals.

Optional accessories:
- VC-10 VHF converter for R-2000 covers 118-174 MHz.
- HS-4 Headphones.
- HS-5 Deluxe headphones.
- HS-6 Lightweight headphones.
- HS-7 Micro headphones.
- DCK-1 DC cable kit for 13.8 VDC operation.

Additional information on Kenwood all-band receivers is available from authorized dealers.

www.americanradiohistory.com

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
CIRCLE 52 ON READER SERVICE CARD