Build a
"Westminster Chime"
Digital Clock

Checking the Sun
for Home
Propagation
Forecasts

How to Protect
Power Supplies
From Damage

The 35-mm
Slide Syncer
AN AUDIO-VISUAL
PROGRAMMER TO BUILD

A CB/Ham
Selective
Calling Project

- CODED TONE ACTIVATES
- SILENT CHANNEL
RECEIVER
UNTIL WANTED

TEST REPORTS:
Spectro-Acoustics
Stereo Equalizer
Pickering
Stereo Cartridge
Siltronix CB AM
Mobile Transceiver

Decoder 250
Experience is the best teacher. You might settle for any CB first time around. Understandably. A lot of people think they're all pretty much alike. But you'll soon discover that, like everything else, there are exceptions.

Ask the pros. America's long distance truckers. These guys talk CB day in and day out. And they demand the best. That's why truckers refer to the Cobra 29 as "The Diesel Mobile."

Listen to Cobra. You'll hear a big difference. Because the Cobra 29 gives you features which assure crystal clear reception. Like switchable noise limiting and blanking, to cut out practically all pulse and ignition interference. Add squelch control and RF gain and you've got exceptional—adjustable—receiver clarity. Even in the heaviest CB traffic. You also get Delta Tuning which makes up for the other guy, because even off-frequency transmitters are pulled in. Perfectly.

Talk to Cobra. And you know you're punching through. One glance at the Cobra 29's over-sized illuminated meter tells you just how much power you're punching out and pulling in. For voice modulation the DynaMike delivers at 100%. Same way with power: The 29 transmits at maximum power levels.

Sooner or later you'll get a Cobra. And you'll get engineering and craftsmanship second to none. Performance that will make your first CB seem obsolete. Reliability and durability that have set standards for the industry.

Above all, you'll get power. The power to punch through loud and clear like nothing else. Because when it comes to CB radio, nothing punches through loud and clear like a Cobra.

Punches through loud and clear.

Cobra Communications Products
DYNASCAN CORPORATION
6460 W. Cortland St., Chicago, Illinois 60635

IF YOUR FIRST CB ISN'T A COBRA YOUR SECOND ONE WILL BE.
If you thought a rugged, professional yet affordable computer didn’t exist,

think IMSAI 8080.

Sure there are other commercial, high-quality computers that can perform like the 8080. But their prices are 5 times as high. There is a rugged, reliable, industrial computer, with high commercial-type performance. The IMSAI 8080. Fully assembled, it’s $931. Unassembled, it’s $599. And ours is available now.

In our case, you can tell a computer by its cabinet. The IMSAI 8080 is made for commercial users. And it looks it. Inside and out! The cabinet is attractive, heavy-gauge aluminum. The heavy-duty lucite front panel has an extra 8 program controlled LED’s. It plugs directly into the Mother Board without a wire harness. And rugged commercial grade paddle switches that are backed up by reliable debouncing circuits. But higher aesthetics on the outside is only the beginning. The guts of the IMSAI 8080 is where its true beauty lies.

The 8080 is optionally expandable to a substantial system with 22 card slots in a single printed circuit board. And the durable card cage is made of commercial-grade anodized aluminum.

The IMSAI 8080 power supply produces a true 28 amp current, enough to power a full system.

You can expand to a powerful system with 64K of memory, plus a floppy disk controller, with its own on-board 8080—and a DOS. A floppy disk drive, an audio tape cassette input device, a printer, plus a video terminal and a teleprinter. These peripherals will function with an 8-level priority interrupt system. IMSAI BASIC software is available in 4K, that you can get in PROM. And a new $139 4K RAM board with software memory protect. For the ultimate in flexibility, you can design the system for low-cost multiprocessor, shared memory capability.

Find out more about the computer you thought didn’t exist. Get a complete illustrated brochure describing the IMSAI 8080, options, peripherals, software, prices and specifications. Send one dollar to cover handling.

Call us for the name of the IMSAI dealer nearest you.

Dealer inquiries invited.

IMSAI
IMS Associates, Inc.
14860 Wicks Boulevard
San Leandro, CA 94577
(415) 483-2093

NOVEMBER 1976
You've got four hundred miles of dotted white line stretched out in front of you. And a couple of dozen tons riding in back.

That's why you keep the automatic CB sitting at your side. No hassle, no gadget controls, just the crisp, clean Johnson sound all day long. Automatically.

Johnson's exclusive voice tailored circuitry automatically drops off unwanted frequencies to give you clear reception. Our automatic noise limiter keeps reception clean and built-in gain control prevents "blasting" and "fading."

Johnson's unique electronic speech compression automatically selects and compresses the clearest voice frequencies to produce uniform, high-level modulation and maximum transmit range. All automatically.

When you hit the road, go with Johnson CB. We back every Johnson with a full year parts and labor warranty and walk-in service at more than 850 locations. See a Johnson CB dealer and take off on the great American adventure.

JOHNSON®

E. F. JOHNSON COMPANY WASECA, MINN. 56093

JOHNSON CB. THE GREAT AMERICAN ADVENTURE.

CIRCLE NO. 33 ON FREE INFORMATION CARD
FEATURE ARTICLES

PROPA GATION FORECASTS FOR RADIO COMMUNICATORS
How to examine the sun and use other sources to determine sunspot activity.
Editorial Staff 34

PRO TECTING YOUR POWER SUPPLY
Semiconductor components need protection from shorts, overloads, etc.
Robert C. Arp, Jr. 56

PRO FESSIONAL VS. CONSUMER TAPE
Would there be an advantage for the home recordist in using studio-type tape?
Larry Zide 66

ENGLISH-LANGUAGE SHORTWAVE BROADCASTS FOR NOV. THRU FEB
Richard E. Wood 102

CONSTRUCTION ARTICLES

A CB/HAM SELECTIVE CALLING PROJECT
Coded tone activates receiver, with channel silent until wanted.
Martin Meyer 41

TIE INTO HAM REPEATERS WITH THIS LOW-COST AUTOPATCH
Crystal-controlled unit for initiating telephone calls.
Joe Jarrett 47

DIGITAL ELECTRONIC "WESTMINSTER" CLOCK
The famous Big Ben tune played on your own digital clock.
Alan Roehl 57

BUILD ODDS-ON—A GAME OF CHANCE AND STRATEGY
David L. Heiserman 64

BUILD THE 35-MM SLIDE SYNCR
A low-cost programmer for audio-visual presentations.
Harry Lowenstein 74

COLUMNS

STEREO SCENE
Ralph Hodges 22

Hobby Scene Q & A
John McVeigh 32

SOLID STATE
Lou Garner 89

CB SCENE
Ray Newhall 94

DX LISTENING
Glenn Hauser 96

COMPUTER BITS
Hal Hauser 106

EXPERIMENTER'S CORNER
Forrest M. Mims 110

PRODUCT TEST REPORTS

SPECTRO ACOUSTICS MODEL 210 GRAPHIC EQUALIZER
78

PICKERING MODEL XV-15/625E PHONO CARTRIDGE
79

SILTRONIX MOHAWK AM CB MOBILE TRANSCIEVER
84

SCHOBER THEATRE ORGAN
86

DEPARTMENTS

EDITORIAL
Art Salsberg 4

LETTERS
6

NEW PRODUCTS
10

NEW LITERATURE
20

ADVERTISERS INDEX
133

Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Jerry Schneider, Rights and Permissions, Ziff-Davis Publishing Co., One Park Ave., New York, NY 10016. Editorial correspondence: POPULAR ELECTRONICS, 1 Park Ave., New York, NY 10016. Editorial contributions must be accompanied by return postage and will be handled with reasonable care, however, publisher assumes no responsibility for return or safety of manuscripts, art work, or models.

Copyright 1976 by Ziff-Davis Publishing Company. All rights reserved. POPULAR ELECTRONICS, including ELECTRONICS WORLD, Trade Mark Registered, in the Reader's Guide to Periodical Literature. Copyright 1976. Ziff-Davis also publishes Boating, Car and Driver, Cycle, Flying, Modern Bride, Popular Photography, Saving and Stereo Review.
MAJORITY RULES—THE BITTER PILL

The attitudes of hams toward CB’ers have been changing. Many radio amateurs, for example, have also become CB’ers, recognizing the value of a two-way radio communication system that can be widely used on all highways throughout the country at most any hour. Conversely, there are CB’ers who, “tasting” two-way radio, have become radio amateurs in order to enjoy the benefits of long-distance communications, video transmissions, etc., as well as the technical camaraderie that exists in hamdom.

However, there exists a hard-core minority of hams who begrudge the easy manner in which citizens can get on the air. This attitude was underlined by letters I received from some hams in response to the favorable viewpoint expressed by our CB columnist toward “Class E” CB allocations. In an effort to defend retention of a small slice of the radio spectrum for hams—and I do not denigrate this view—virtually all the writers focused on one point: The use of the radio spectrum is a privilege that must be earned!

Well, these radio amateurs are spitting into the wind. According to this philosophy, taxicab drivers shouldn’t be using two-way radios. Neither should boating enthusiasts. Obviously, personal communications via radio without requiring any technical know-how or passing of an examination is here to stay. So these hams shouldn’t rest on this argument. There are certainly enough more cogent reasons that can be used in defense of retaining the present 220-MHz spectrum allocation.

It’s doubtful, though, if these arguments will be sufficient to withstand the assaults of a majority group, judging by the way high-quality TV fare is excised owing to relatively low viewer numbers. In any event, this judgement is in the hands of the FCC, which must also consider many other factors.

Hams are an elitist group by any definition. And like elitist groups everywhere, don’t look kindly upon “out groups” that infringe on their territory. By maintaining high standards, however, their potential numbers—and “political” punch—are limited. Even today, most hams would prefer to maintain a Morse Code test, based on a 1975 ARRL study among its 100,000 members.

Moreover, proselytizing efforts over the years have been pathetically meager. This extends to top management of amateur radio equipment companies. As evidence, we get very little in the way of press releases on new equipment from these companies. Unlike CB manufacturers, they seem to be content to feed upon themselves by reaching people who are already hams. And that’s why the great ham-gear names such as Hallicrafters and Hammarlund, among others, have gone the way of the famous great Auk.

There are some faint signs of regeneration for amateur radio in the matter of expanding their numbers. The American Radio Relay League was represented by an exhibit booth at last year’s “Personal Communications” CB show, hoping to pick up some CB’ers. And the ARRL’s new “Tune in the World with Ham Radio,” with a workbook, cassette tape and call-area wall map for $7.00, is a nice package for beginners.

My 12-year-old, in fact, is using the above in his quest for a Novice license. I’d like him to become a ham because it is an accomplishment he can be proud of; and it can open the door to a life-long, fruitful hobby. In view of these opportunities for personal growth, I, for one, would look upon the weakening of amateur radio as a tremendous loss. We must make sure there is always room for the good things in life and not subjugate minority groups to the point of extinction.

Art Salsberg
Laser Beam Digital Watch

Never press another button, day or night, with America's first digital watch that glows in the dark.

Announcing Sensor's new Laser 220—the first really new innovation in digital watch technology.

Would you do this with your solid-state watch? Of course not. Most solid-state watches require care and pampering but not the Sensor. You can dunk it, drop it and abuse it without fear during its unprecedented five-year parts and labor warranty.

It's ingenious, it's simple and it makes every other digital watch obsolete. Scientists have perfected a digital watch with a self-contained automatic light source—a major scientific breakthrough.

SELF-CONTAINED LIGHT SOURCE

The Laser 220 uses laser beams and advanced display technology in its manufacture. A glass ampoule charged with tritium and phosphor is hermetically sealed by a laser beam. The ampoule is then placed behind the new Sensor CDR (crystal diffusion reflection) display.

The high-contrast CDR display shows the time constantly—in sunlight or normal room light. But, when the room lights dim, the self-contained tritium light source automatically compensates for the absence of light, glows brightly, and illuminates the display.

No matter when you wear your watch—day or night—just a glance will give you the correct time. There's no button to press, no special viewing angle required, and most important, you don't need two hands to read the time.

Replace the battery yourself by just opening the battery compartment with a penny. Free batteries are provided whenever you need them during the five-year warranty.

A WORRY-FREE WATCH

Solid-state watches pose their own problems. They're fragile, they must be pampered, and they require frequent service. Not the Laser 220. Here are just five common solid-state watch problems you can forget about with this advanced space-age timepiece:

1. **Forget about batteries** The Laser 220 is powered by a single EverReady battery that will actually last years without replacement—even if you keep the 220 in complete darkness. In fact, JS&A will supply you with the few batteries you need, free of charge, during the next five years. To change the battery, you simply unscrew the battery compartment at the back with a penny and replace the battery yourself.

2. **Forget about water** Take a shower or go swimming. The Laser 220 is so water-resistant that it withstands depths of up to 100 feet.

3. **Forget about shocks** A three-foot drop onto a solid hardwood floor or a sudden jar. Sensor's solid case construction, dual-strata crystal, and cushioned quartz timing circuit make it one of the most rugged solid-state quartz watches ever produced.

4. **Forget about service** The Laser 220 has an unprecedented five-year parts and labor warranty. Each watch goes through weeks of aging, testing and quality control before assembly and final inspection. Service should never be required. Even the laser-sealed light source should last more than 25 years with normal use. But if it should require service and during the five year warranty period, we will pick up your Sensor, at your door, and send you a loaner watch while yours is repaired—all at our expense.

5. **Forget about changing technology** The Sensor Laser 220 is so far ahead of every other watch in durability and technology that the watch you buy today, will still be years ahead of all others.

THE ULTIMATE ACHIEVEMENT

Other manufacturers have devised unique ways to produce a watch you can read at a glance. The new $300 LED Pulsar requires a map of the wrist to turn on the display, but the Pulsar cannot be read in sunlight. The new $400 Longines' Gemini combines both an LED and liquid crystal display. (Press a button at night for the LED display, and view it easily in sunlight with the liquid crystal display.) But you must still press a button to read the time. All these applications of existing technology still fail to produce the ultimate digital watch: one you can read under all light conditions without using two hands. Until the introduction of the Sensor.

PLENTY OF ADVANCED FUNCTIONS

Sensor's five time functions give you everything you really need in a solid-state watch. Your watch displays the hours and minutes constantly, with no button to press. But depress the function button and the month and the date appear. Depress the button again and the seconds appear. To quickly set the time, insert a ball-point pen into the recessed time control switch on the side. It's just that easy.

Sensor's accuracy is unparalleled. All solid-state digital watches use a quartz crystal. Sensor's crystal change frequency from aging and shock. And to reset them, the watch case must be opened and an air-tight seal broken which may affect the performance. In the Sensor, the crystal is first, it is installed, and secondly, it is actually cushioned in the case to absorb tremendous shock. The quartz crystal can also be adjusted through the battery compartment without opening the case. In short, your watch should be accurate to within 5 seconds per month and maintain that accuracy for years without adjustment and without ever opening the watch.

STANDING BEHIND A PRODUCT

JS&A is America's largest single source of digital watches and other space-age products. We have selected the Sensor Laser 220 as the most advanced American-manufactured, solid-state timepiece ever produced. And we put our company and its full resources behind that selection. JS&A will warranty the Sensor (even the batteries) for five full years. We'll even send you a loaner watch to use while your watch is being repaired should it ever require repair. And Sensor's advanced technology guarantees that your digital watch will be years ahead of any other watch at any price.

Wear the Laser 220 for one full month. If you are not convinced that it is the most rugged, precise, dependable and the finest quality solid-state digital watch in the world, return it for a prompt and courteous refund. We're just that proud of it.

To order your Sensor, credit card buyers may simply call our toll-free number below or mail a check in the amount indicated below plus $2.50 for postage, insurance and handling. Illinois residents add 5% sales tax.

We urge you, however, to act promptly and reserve your Laser 220 today.

Stainless steel w/leather strap $129.95 (for matching metal band)

Gold tone w/leather strap $149.95 (for matching metal band)

JS&A NATIONAL SALES GROUP

Dept. PE
JS&A Plaza
Northbrook, Illinois 60062

CALL TOLL FREE ... 800 323-6400
In Illinois call ... (312) 498-6900
© JS&A Groves, Inc. 1976
The author meant to imply the equivalent of "apples and oranges" to indicate dissimilarity.

A ROUND OF CHEERS

Three cheers for "DX Programs and DX Clubs on Shortwave" in the August issue. I hope you will continue to cover the SWL/DX field in the future.—Paul E. Kolke, St. Paul, MN

FIREFIGHTER SPEAKS OUT

I enjoyed reading the informative article "Lightning and the Radio Amateur" ("Amateur Radio," August 1976) but the last sentence of the second paragraph was in poor taste and a disservice to firefighters. What many people do not realize is that there are times when walls and wiring must be cut open to check for the existence of fire. If we did not do this where indicated, chances are that a "hidden" fire would burn a home or shack down after we left.—N. Nicastro, Jr., KMD1175, WDX2HHS, KNJ2AQ, Spotswood, NJ

The author meant no disservice to the dedicated force of firefighters. All he was pointing out was that it's better to protect against the possibility of lightning-induced fire than to suffer the damage that can result without taking the proper precautions.

PICO NOT MICRO

There are two errors in "Learning Electronic Theory With Hand Calculators, Part Two." In the center of page 64, the second sentence in the paragraph that begins: "Finally, in a series RC circuit..." the X in the next sentence should be changed to Z. The second error was in converting the displayed quantity: 78065963 11 to conventional capacitance notation; the correct answer should be 27.8 pF—not 0.0278 pF.—Ken Gentile, West Palm Beach, FL.

TUNING IN PHYSICIANS RADIO

In the May 1976 "Letters" column, you turned aside an inquiry about the Physicians Radio Network, stating that it was confidential and available only to physicians. In New York, dedicated hypochondriacs can receive the net on the SCA subcarrier of WEDV-FM. But believe me, for non-pro’s it wins the Emmy for the "World’s Dullest Program."—Edward M. Roberts, Glen Head, NY

In my area at least, PRN is broadcast as a standard SCA subcarrier on WIOQ (102.1 MHz). An SCA subcarrier can hardly be called "confidential."—L.S. Huntsinger, Audubon, NJ

PROGRAMMABLE CALCULATORS

I was pleased with the article "Here Are POPULAR ELECTRONICS
Hobbyist or professional, there are probably a lot of circuits you build just for the fun of it. And a lot you'd like to build, but never get around to.

One reason is the cost of parts. Parts you buy for one project, but can't re-use... because you haven't time to take them carefully apart. Or because of heat and mechanical damage that occur when you do.

Now, there's an easier way that can save you big money on parts and hours on every project, as well: Proto-Board* Solderless Breadboards.

Now, assembling, testing and modifying circuits is as easy as pushing in—or pulling out—a lead. IC's, LED's, transistors, resistors, capacitors... virtually every kind of component... connect and interconnect instantly via long-life, nickel-silver contacts. No special patch cords or jumpers needed—just lengths of ordinary #22-30 AWG solid hookup wire.

Circuits go together as quickly as you can think them up. And parts are re-usable, so as your "junk box" builds, you build more and more projects for less and less money.

Before you invest in your next project, invest in a CSC breadboard. See your dealer or order by phone 203-624-3103 (East Coast) or 415-421-8872 (West Coast)—major charge cards accepted. You've got nothing to lose... and a lot to gain.

CONTINENTAL SPECIALTIES CORPORATION
44 Kendall Street
Box 1942, New Haven, CT 06509
203-624-3103 TWX 710-465-1227
West Coast office: Box 7809, San Francisco, CA 94119 415-421-8872 TWX 910-372-7992

*Manufacturer's suggested list
Prices and specifications subject to change without notice

Model Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Tie Points</th>
<th>14-Pin DIP Capacity</th>
<th>Suggested List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB-6</td>
<td>630</td>
<td>6</td>
<td>$15.95</td>
</tr>
<tr>
<td>PB-100</td>
<td>760</td>
<td>10</td>
<td>$19.95</td>
</tr>
<tr>
<td>PB-101</td>
<td>940</td>
<td>10</td>
<td>$29.95</td>
</tr>
<tr>
<td>PB-102</td>
<td>1240</td>
<td>12</td>
<td>$39.95</td>
</tr>
<tr>
<td>PB-103</td>
<td>2250</td>
<td>24</td>
<td>$59.95</td>
</tr>
<tr>
<td>PB-104</td>
<td>3090</td>
<td>32</td>
<td>$79.95</td>
</tr>
<tr>
<td>PB-203</td>
<td>2250</td>
<td>24</td>
<td>$75.00</td>
</tr>
</tbody>
</table>

PB-203A: 2250, 24, 120.00

PB-6
- **Tie Points:** 630
- **14-Pin DIP Capacity:** 6
- **Suggested List Price:** $15.95
- **Features:**
 - Kit—10-minute assembly
 - Kit—with larger capacity
 - Distribution buses; higher capacity
 - Large capacity; moderate price
 - Even larger capacity; only 2.74 per tie-point
 - Largest capacity; lowest price per tie-point
 - Built-in 1% regulated 5V, 1A low ripple power supply
 - As above plus separate +15V and -15V internally adjustable regulated outputs

PB-100
- **Tie Points:** 760
- **14-Pin DIP Capacity:** 10
- **Suggested List Price:** $19.95

PB-101
- **Tie Points:** 940
- **14-Pin DIP Capacity:** 10
- **Suggested List Price:** $29.95

PB-102
- **Tie Points:** 1240
- **14-Pin DIP Capacity:** 12
- **Suggested List Price:** $39.95

PB-103
- **Tie Points:** 2250
- **14-Pin DIP Capacity:** 24
- **Suggested List Price:** $59.95

PB-104
- **Tie Points:** 3090
- **14-Pin DIP Capacity:** 32
- **Suggested List Price:** $79.95

PB-203
- **Tie Points:** 2250
- **14-Pin DIP Capacity:** 24
- **Suggested List Price:** $75.00

PB-203A
- **Tie Points:** 2250
- **14-Pin DIP Capacity:** 24
- **Suggested List Price:** $120.00

© 1976 Continental Specialties Corporation
FREE SCHEMATIC WOES

POPULAR ELECTRONICS has left it entirely up to project kit suppliers to provide free schematics and pc etching and drilling guides (when they’re not too large for magazine pages). But the May 1976 editorial states that it is unreasonable for a supplier to drop the free patterns after a period of time. (The period mentioned was something over a year.) I agree with him.

However, this means that your major construction articles have a built-in “destruct” feature.—Andrew Oldroyd, Norman, OK

Our new policy for future articles is to supply directly any artwork that is too large to appear in the magazine. We will keep such artwork on file for a number of years, thus obviating the problem of project obsolescence.

‘MUSIC MODULE’ PARTS SOURCES

The Top Octave Generator integrated circuit, IC4, called for in the ‘Music Modules’ (June 1976) is a Mostek device that is also available from AMI. Suitable sources for crystals include Crystal, International Crystal, andCTS Knight. The optional Molex connectors are available from Tracy Design Corp. and Force Electronics; alternatively, any standard 0.153” edge connector can be substituted.—Don Lancaster, Author

GIANT STEP FOR UN-GENIUSES

At last! An article on 7400 series TTL IC’s that explains the basic logic, with experimenter circuits. We, the un-geniuses of the IC world, took a giant step, thanks to the June 1976 “Experimenter’s Corner.” We would like to learn more and be shown more experiments with TTL devices.—F. Arthur Byington, Birmingham, MI

EUROPEAN TV QUALITY

The July 1976 Editorial titled ‘Who Killed TV Picture Quality?’ struck me as being rather incomplete in that it made no mention of the SECAM (Sequential Couleur a Memoire) TV system used in some 20 countries nor of PAL (Phase Alternation Line) used in 22 other countries, including all of Australia. As of the end of 1974, there were 162-million NTSC, 74-million SECAM, and 70-million PAL TV receivers in use worldwide. Surely, the higher color stability of SECAM and PAL should have been mentioned.

Because of its superior color rendition and stability, SECAM 60 equipment was carried by Pioneer X for its color-TV pictures of Jupiter.—J. M. Lagerwerff, Palo Alto, CA

Having been involved with color TV in England, I endorse your Editorial comments about the very poor quality here in the U.S. Principally, the English system uses PAL transmission, which eliminates the “Purple Priage.” Drift is cancelled by integration of adjacent lines by the eye. Thus, flesh tones are always correct, and no need exists to distort the receiver’s characteristics, which permits pure deep saturated tones to be displayed. In addition, the quality of electronic optics seems to be much better. British engineers demand pin-sharp convergence, even at the corners of the screen.

I have the Independent Broadcast Authority Technical Reference Book that gives Codes of Practice for TV studio and broadcasting standards for Commercial (note that this is not BBC) television in the U.K. The standards call for very elaborate and complete specifications for every parameter of audio and video performance and include very detailed rules for assessing and reporting transmission quality. I doubt such standards exist in the U.S.

It has been my impression that a well-adjusted receiver in the U.K. gives a picture as good as a Technicolor movie. I think most Americans are completely unaware that their TV quality is lousy because nobody has exposed them to what can be done.—R. J. Best, Miami, FL
Our new Powerhouse receivers outpower the competition.

Lafayette's new Powerhouse receivers have the power, the features and the performance you want. And the competition only promises.

Just check our spec chart. We deliver. With no gimmicks or technical tricks.

Besides incredible specs our new Powerhouse receivers have some features you've never had on any receiver before. Stop in at any of the Lafayette stores or dealers coast to coast and hear what Dolby® FM noise reduction, mike mixing and detent controls can do to give you clean, distortion-free sound.

Lafayette performance goes far beyond sound. We back you up with warranties, in-store service and people who can talk stereo in plain, simple language.

Our new line of Powerhouse receivers was built with power and backed up with consumer services to outpower the competition.

Now where does the competition stand?

<table>
<thead>
<tr>
<th>Specifications</th>
<th>LR-9090</th>
<th>LR-5555</th>
<th>LR-3030</th>
<th>LR-2020</th>
<th>LR-1515</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Min. RMS</td>
<td>90 ± 90</td>
<td>55 ± 55</td>
<td>30 ± 30</td>
<td>20 ± 20</td>
<td>15 ± 15*</td>
</tr>
<tr>
<td>20-20,000 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Harmonic Distortion (Less Than)</td>
<td>0.1%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.6%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Input Sensitivity: phono/Aux/Mike mV</td>
<td>2.5/150/6</td>
<td>2.5/150/6</td>
<td>3.5/150/6</td>
<td>4.0/150/6</td>
<td>4.0/150/6</td>
</tr>
<tr>
<td>Tone</td>
<td>Bass/Mid/Treble</td>
<td>Bass/Mid/Treble</td>
<td>Bass/Mid/Treble</td>
<td>Bass/Treble</td>
<td>Bass/Treble</td>
</tr>
<tr>
<td>FM Sensitivity (Stereo)</td>
<td>21.0 dBf (1.9 µV)**</td>
<td>21.0 dBf (1.9 µV)**</td>
<td>23.0 dBf (2.0 µV)**</td>
<td>23.0 dBf (2.0 µV)**</td>
<td>25.0 dBf (2.0 µV)**</td>
</tr>
<tr>
<td>Selectivity</td>
<td>80dB</td>
<td>80dB</td>
<td>70dB</td>
<td>70dB</td>
<td>60dB</td>
</tr>
<tr>
<td>Capture Ratio</td>
<td>1.25 dB</td>
<td>1.25 dB</td>
<td>1.5 dB</td>
<td>1.5 dB</td>
<td>2.0 dB</td>
</tr>
<tr>
<td>Price</td>
<td>$399.95</td>
<td>$399.95</td>
<td>$299.95</td>
<td>$249.95</td>
<td>$199.95</td>
</tr>
</tbody>
</table>

* @ 40-20,000 Hz ** IHF ('58) Sensitivity (Mono)

Lafayette
There is no competition.

For more information and a free catalog please write: Lafayette Radio Electronics, Box 159, 111 Jericho Tpke., Syosset, N.Y. 11791
Copyright 1976 Lafayette Radio Electronics
CIRCLE NO. 47 ON FREE INFORMATION CARD
New Products

Additional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

ROYCE IN-DASH CB TRANSCEIVER

The Royce 1-614 is a combination in-dash CB transceiver and AM/stereo FM radio, featuring a PLL circuit that delivers 23-channel CB operation from two crystals, a dual-conversion CB receiver section, AM/FM lighted slide-rule tuning dial, slide-type tone and balance controls, a local/distant switch for FM that is also an r-f gain switch on CB, and an LED that acts as a stereo indicator on FM and as a transmit light on CB. Other features include a 1/4" x 1/4" S/f-r meter, pushbutton automatic noise eliminator, variable squelch control, and a universal trim plate that is said to match the decor of most cars. Size is 7"W x 6"D x 2"H (17.8 x 15.2 x 5.1 cm). $269.95.

CIRCLE NO. 85 ON FREE INFORMATION CARD

AUDIO-TECHNICA HEADPHONES

The AT-705 electret condenser headphone from Audio-Technica features permanently polarized diaphragms that need no external source of power. The headphones plug into a small adapter that matches impedance circuits and contains a speaker/headphone switch. The AT-705 has a claimed frequency response of 20 to 20,000 Hz and has open-back ear cups. $89.95.

CIRCLE NO. 86 ON FREE INFORMATION CARD

MICROCOMPUTER POWER SUPPLY

Parasitic Engineering offers a constant-voltage power-supply kit for the Altair 8800 computer. Designed to ‘make the Altair almost immune to unreliable performance due to power line fluctuations,’ the power supply is said to deliver full output of 8 V at 12 A and ±16 V at 2 A “even when the line voltage is as low as 90 volts.” It is also said to provide increased isolation from line noise and over-voltage protection, with an increase of less than 3% in output when the line voltage rises to 130 volts. Heart of the kit is a ferro-resonant constant-voltage transformer, which replaces all three of the standard Altair 8800 power transformers. $75.00. Address: Parasitic Engineering, P.O. Box 6413, Albany, CA 94706.

CIRCLE NO. 87 ON FREE INFORMATION CARD

HICKOK IN-LINE CB TESTER

Hickok's 388 in-line CB tester provides a 7-digit readout of SWR, percent modulation, and frequency. The SWR and percent modulation functions use the “dynamic ratio technique,” which permits measurements without a calibrate/set adjustment regardless of power level. The 388 provides one-step connection of the coax connect-

CIRCLE NO. 88 ON FREE INFORMATION CARD

LAFAYETTE SUPER TWEETER

The Lafayette Model RP-1000 “Criterion Polymer” super tweeter can be used with existing two- and three-way speaker systems. The transducer utilizes a flat polymer diaphragm with an etched voice coil. When an audio signal is applied, the diaphragm is said to be driven equally at all points on its surface. No polarizing voltage or energizer is required. It is housed in a brushed aluminum case with a stand, and can be used as a freestanding unit or can be mounted in a speaker enclosure with the stand removed. Claimed frequency response is 4 kHz to 40 kHz, power handling capacity 30 watts, and impedance 8 ohms. Measures (excluding stand) 4 1/2" x 4 1/2" x 1 1/8" (11.4 x 11.4 x 3.5 cm), and weighs 1.25 lb (0.51 kg). $59.95.

CIRCLE NO. 89 ON FREE INFORMATION CARD

LENCO CASSETTE DECK

Made in Switzerland and distributed here by Uher, Lenco's first stereo cassette deck is the C-2003, with direct drive, two capstans, three heads, and Dolby equalization. All mechanical functions are solenoid-operated, and logic permits changing from one function to another without pressing the stop button. An illuminated panel shows all functions as selected. Automatic tape selection is provided for chrome tapes, with manual selection for three additional types. A tape-motion sen-

CIRCLE NO. 90 ON FREE INFORMATION CARD

B&K-PRECISION

MODEL E2000—$234

- Built-in 100kHz and 1MHz crystal calibration system
- 96 dB attenuation in 6 steps
- Leads included

B&K-PRECISION

MODEL E310B—$158

- Sine: 20Hz—2MHz
- Square: 20Hz—200kHz
- Constant voltage output
- 56 dB attenuation in 6 steps

Products of Dynascan

1801 West Belle Plaine Avenue
Chicago, Illinois 60613 312/525-3990
In Canada: Atlas Electronics, Toronto
Tired of garbled voices and CB static? Now, you can hear better with our C-3035 KRIKET® mobile speaker. Better than you believed possible.

Because AFS offers the first acoustically designed voice communications speaker. And, that means you get outstanding intelligibility across the entire voice range.

AFS — the only company with the "WORKING WALL"® speaker enclosure. Cross-laminated tubular fiberboard deadens channel noise, eliminates voice distortion by controlling rebounding sound waves. Brings the voice through — clean and clear.

Available at CB dealers everywhere.

Speakers are our only business. They have to be better!

World Wide Headquarters
Acoustic Fiber Sound Systems, Inc. 7999 Knue Road, Suite 116 Indianapolis, IN 46250 (317) 842-0620

Exclusive Canadian Distributor
Muntz Canada Ltd. 1149 Pioneer Road Burlington Ontario, Canada (416) 639-5373

All KRIKET® speakers are manufactured in the U.S.A. using American materials and craftsmen.

Copyright 1976, Acoustic Fiber Sound Systems, Inc.
Learn to service Communications/CB equipment at home...with

NRI'S COMPLETE COMMUNICATIONS COURSE

Learn design, installation and maintenance of commercial, amateur, or CB communications equipment.
The field of communications is bursting out all over. In Citizens Band alone, class D licenses grew from 1 to over 2.6 million in 1975, and the FCC projects about 15 million CB'ers in the U.S. by 1979. That means a lot of service and maintenance jobs . . . and NRI can train you at home to fill one of those openings. NRI's Complete Communications Course covers all types of two-way radio equipment (including CB), AM and FM transmission and reception, television broadcasting, microwave systems, radar principles, marine electronics, mobile communications, and aircraft electronics. The course will also qualify you for a First Class Radio Telephone Commercial FCC License or you get your tuition back.

Learn on your own 400-channel digitally-synthesized VHF transceiver.
You will learn to service all types of communications equipment, with the one unit that is designed mechanically and electronically to train you for CB, Commercial and Amateur communications: a digitally-synthesized 400-channel VHF transceiver and AC power supply. This 2-meter unit gives you "Power-On" training. Then we help you get your FCC Amateur License with special instruction so you can go on the air.
The complete course includes 48 lessons, 9 special reference texts, and 10 training kits. Included are: your own electronics Discovery Lab, Antenna Applications Lab, CMOS Frequency Counter, and an Optical Transmission System. You'll learn at home, progressing at your own speed, to your FCC license and into the communications field of your choice.

NEW CB SPECIALIST COURSE NOW OFFERED

NRI now offers a special course in CB Servicing. You get 37 lessons, 8 reference texts, your own CB Transceiver, AC power supply and multimeter . . . for hands-on training. Also included are 14 coaching units to make it easy to get your commercial radio telephone FCC license enabling you to test, install, and service communications equipment.
NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service TV equipment and audio systems. You can choose from 5 courses, starting with a 48-lesson basic course, up to a Master Color TV/Audio Course, complete with designed-for-learning 25" diagonal solid state color TV and a 4-speaker SQ™ Quadraphonic Audio System. NRI gives you both TV and Audio servicing for hundreds of dollars less than the two courses as offered by another home study school.

All courses are available with low down payment and convenient monthly payments. All courses provide professional tools and “Power-On” equipment along with NRI kits engineered for training. With the Master Course, for instance, you build your own 5" wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discovery Lab.

NRI’s complete computer electronics course gives you real digital training.

Digital electronics is the career area of the future... and the best way to learn is with NRI’s Complete Computer Electronics Course. NRI’s programmable digital computer goes far beyond any “logic trainer” in preparing you to become a computer or digital technician. With the IC’s in its new Memory Kit, you get the only home training in machine language programming... experience essential to trouble shooting digital computers. And the NRI programmable computer is just one of ten kits you receive, including a TVOM and NRI’s exclusive electronics lab. It’s the quickest and best way to learn digital logic and computer operation.

You pay less for NRI training and you get more for your money.

NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuitions and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can’t get better training.

More than one million students have enrolled with NRI in 62 years.

Mail the insert card and discover for yourself why NRI is the recognized leader in home training. No salesman will call. Do it today and get started on that new career.

APPROVED UNDER GI BILL
if taken for career purposes Check box on card for details.
tors between the transmitter and the antenna or dummy load. Frequency measurements are from 1 Hz to 60 MHz, with resolution to 10 Hz. Size is 8 1/2"W x 6 1/2"H x 4 1/2"D (21.6 x 15.2 x 10 cm). The 385 with standard time base has a frequency accuracy of 10 ppm, at $349.00. The 388X, with a temperature-compensated crystal oscillator, frequency accuracy of 1 ppm and aging of less than 1 ppm per year, is $475.00.

CIRCLE NO. 31 ON FREE INFORMATION CARD

TANDBERG AM/STereo FM REceiver
Tandberg's TR-2055 AM/STereo FM receiver, based on the top-of-the-line TR-2075, offers most of the same features, including the same FM tuner. The TR-2055 is rated at 55 watts per channel into 8 ohms at 20 to 20,000 Hz with less than 0.15% THD. Features include tape contour jacks, electronic tuning with varactor diodes, two phono inputs, two tape-monitor inputs with tape copy, two tuning meters, and diode switching for all sources. $749.00.

CIRCLE NO. 52 ON FREE INFORMATION CARD

Looking for an ultimate standard of listening?

Many hi-fi enthusiasts bought a Crown DC-300A power amplifier because they were impressed by its performance specs, and by the quality of its "listening" performance. It was, for them, the "ultimate" amplifier.

Why not do they did? Compare the specs for the Crown DC-300A with those of any other amplifier. Compare the clean, pure DC-300A sound that comes from low-distortion circuitry and plenty of headroom. And especially compare the DC-300A with its smaller relatives, the Crown D-150A and D-60. Same clean, pure sound, less power, but maybe just what you need.

Use your own judgment. You could find your ultimate listening standard in Crown.

DC-300A Stereo Amp
155 watts per channel min. RMS into 8 ohms (1-20,000 Hz), no more than .05% total harmonic distortion.

D-60 Stereo Amp
32 watts per channel min. RMS into 8 ohms (20-20,000 Hz), no more than .05% total harmonic distortion.

D-150A Stereo Amp
80 watts per channel min. RMS into 8 ohms (1-20,000 Hz), no more than .05% total harmonic distortion.

Fast playback coupon
When listening becomes an art,

CROWN
Box 1000, Elkhart IN 46514

CIRCLE NO. 33 ON FREE INFORMATION CARD

B&K SEMICONDUCTOR TESTER

The B&K 530 semiconductor tester features measurement of transistor cut-off frequency up to 1500 MHz in three ranges, with display on a separate meter. It permits in-circuit testing and lead identification of transistors, FET's (including power types) and SCR's. For out-of-circuit tests, transistor beta is measured in two ranges (20-200, 200-600) and FET's in two ranges (0.4-12, 4-400 millimhos); accuracy for both tests is within 10%. Other measurements include fT, gate leakage and Idss of FET's, and BVCEO, VDS, and FIV of diodes. LED displays indicate whether the transistor is good and whether it is an npn, pnp, or n-or p-channel FET. An audible tone also indicates that the transistor is good. $250.00.

CIRCLE NO. 95 ON FREE INFORMATION CARD

VALOR CB PREAMP

The Valor VRSC-115 is called a "CB Receive Signal Preamp," designed to raise the strength of weak signals, or to attenuate loud ones, to a usable level. It is compatible with AM and SSB transceivers. The preamp comes with a bracket for under-dash mounting. The front panel includes a gain/attenuate control and indicator lights for power and transmit. Valor claims that weak signals can be boosted to +15 dB, and loud ones attenuated to −20 dB, on all 23 channels. $39.95. Address: Valor Enterprises, Inc., 185 West Hamilton St., Dept. 532A, West Milton, Ohio 45383.

PEARCE-SIMPSON MOBILE CB TRANSCEIVER

Pearce-Simpson's "Tiger Mark 2" mobile CB AM transceiver features "Hetrolock," which uses three crystals for 23-channel capability. Features include a delta-tune control called "Receiv-O-Slide," 12-volt operation with positive or negative ground, automatic noise limiter, noise blanker, squelch control, tone control, r-f gain control, S/f-r power meter, transmit indicator lamp, external speaker jack. $229.95.

CIRCLE NO. 95 ON FREE INFORMATION CARD

DYNACO POWER AMPLIFIER

Rated at 150 watts per channel into 8 ohms, with less than .025% THD, the Dynaco Stereo 300 power amplifier kit is designed...
WARNING — It has been determined that reading this ad may be hazardous to your health, if you own another type computer system. We will not be responsible for ulcers, heartburn, or other complications if you persist in reading this material.

4 K BASIC° — 8 K BASIC°

- Full floating point math
- 1.0E-99 to 9.9999999E+99 number range
- User programs may be saved and loaded
- Direct mode provided for most statements
- Will run most programs in 8K bytes of memory (4K Version)
 or 12K bytes of memory (8K Version)
- USER function provided to call machine language programs
- String variables and trig functions—8K BASIC only

<table>
<thead>
<tr>
<th>COMMANDS</th>
<th>STATEMENTS</th>
<th>FUNCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST</td>
<td>REM</td>
<td>END</td>
</tr>
<tr>
<td>RUN</td>
<td>DIM</td>
<td>GOTO*</td>
</tr>
<tr>
<td>NEW</td>
<td>DATA</td>
<td>ON...GOTO*</td>
</tr>
<tr>
<td>SAVE</td>
<td>READ</td>
<td>ON...GOSUB*</td>
</tr>
<tr>
<td>LOAD</td>
<td>RESTORE</td>
<td>IF...THEN*</td>
</tr>
<tr>
<td>PATCH</td>
<td>LET*</td>
<td>RETURN</td>
</tr>
<tr>
<td></td>
<td>FOR</td>
<td>† INPUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRINT*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEXT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>† POKE</td>
</tr>
</tbody>
</table>

* Direct mode statements
† 8K Version only

MATH OPERATORS
- (unary) Negate
- Multiplication
- Division
- Addition
- Subtraction
† Exponent

RELATIONAL OPERATORS
- Equal
- Not Equal
- Less Than
- Greater Than
- Less Than or Equal
- Greater Than or Equal

© Copyright 1976 by Southwest Technical Products Corp. 4K and 8K BASIC Version 1.0 program material and manual may be copied for personal use only. No duplication or modification for commercial use of any kind is authorized.

You guys are out of your minds, but who am I to complain. Send —

- 4K BASIC CASSETTE $4.95
- 8K BASIC CASSETTE $9.95
- Kit $395.00

<table>
<thead>
<tr>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
</tr>
<tr>
<td>CITY STATE ZIP</td>
</tr>
</tbody>
</table>

Southwest Technical Products Corp.,
Box 32040, San Antonio, Texas 78284
THE STORM ALARM.
IT WARNS YOU ABOUT STORMS THE WAY
A SMOKE ALARM WARNS YOU ABOUT FIRES.

It sounds an alarm.
A built-in alarm that's set off any time—night or day—when
severe weather threatens.
The alarm is triggered by a signal from your local National
Weather Service transmitter.
After it sounds, a complete report on the danger and
survival instructions come on.
When conditions are normal, the Storm Alarm picks up the
weather station's continuous, up-to-the-minute forecasts.
Unlike ordinary weather radios, which the user must monitor, the
Storm Alarm continually monitors itself. The alarm sounds full blast
whether or not you have the volume turned up and are
listening. You're warned even when sleeping.
Crystal-controlled and switch-selectable.
Superior reception from as far out as 40-50
miles. Works on AC. Built-in back-up battery
feature. 25" telescoping antenna.
2½" speaker. Unit only 3" x 5" x 1½".
With all these features, it's no
wonder a leading electronics
magazine called the Storm Alarm a "sensitive weather receiver, and for
a relatively low price (under $40) an excellent disaster alarm."
The increase in U.S. weather emergencies has led to the
development of this unit.
Today, tornadoes, hurricanes,
severe thunderstorms and marine
emergencies are a constant threat
to life and property.

For a free "Tornado Tips"
booklet and the name of your
nearest dealer, write us at
637 S. Dearborn,
Chicago, Ill. 60605.
Get the Storm Alarm.
It's a foul and fair
weather friend.

STORM ALARM™
FROM WEATHERALERT

© 1976 by Weatheralert™, Chicago, Ill. 60605

for easy rewiring into a 4-channel unit at 75
watts per channel. Except for output
stages, all audio circuits are on two
factory-wired, pre-tested circuit boards.
The circuit is completely coupled (except
the input) with full complementary-
symmetry output and features thermally
tracking bias. Amplifier and speaker are
protected by volt-amp limiting, eight B+
fuses, four speaker fuses, and two thermal
breakers, plus the ac line fuse. Behind the
black panel, provision is made for either
two or four optional rear-lighted output
meters. It measures 18¾"W x 14¾"D x
7¾"H (46 x 36.5 x 18.7 cm). $489, kit form;
$699.00 assembled.

CHANNEL MASTER CB ANTENNA
Channel Master's "Power Wing" mobile
CB antenna will not bend at any speed,
according to the manufacturer, and is said

to provide higher average current and
greater radiating efficiency than inductively
loaded CB antennas. From base to
wing, the antenna measures 16" high, plus
an 8" telescoping stub for fine tuning.
$39.95.

MARANTZ STEREO PREAMPLIFIER
The Marantz 3800 combines a stereo
preamplifier with a control console and a
Dolby noise-reduction system. Distortion is
rated at no more than 0.02% THD and
0.01% IMD; frequency response is "essentially flat" from 20 Hz to 20 kHz. The
dynamic range is greater than 110 dB (high
level). Tone controls include detented
straight-line bass, midrange and treble
controls for both channels. Features two
tape monitoring jacks and an EQ switch
that permits equalizing tape-input signals
with the tone controls while recording.
$599.95.
Only Technics gives you the world’s most precise drive system all these ways.

Technics direct drive. Radio stations use it. Discos abuse it. And now you can get it in virtually any kind of turntable you want. Because Technics puts direct drive into more kinds of turntables than anyone else.

You’ll find it in three manuals that start at under $200* with the SL-1500. Or for a little more money you can get a lot more convenience with our newest turntable, the semi-automatic SL-1400. The world’s first turntable with a one-chip 321 element IC. That gets the platter to exact speed in only 1/3 of a revolution. There is also the fully automatic single disc SL-1300.

And the world’s first direct-crate changer, the SL-1350. But there’s a lot more to Technics direct drive than just more kinds of turntables. There’s also more precision, better performance and greater reliability.

Because in our direct-drive system the platter is an extension of the motor shaft. That means there aren’t any belts, gears or idlers to produce variations in speed. And that means all our turntables have less than 0.03% wow and flutter (WRMS), (0.04% for the SL-1350).

You’ll also find an electronically controlled DC motor that spins at exactly 33 1/3 or 45 RPM. Regardless of fluctuations in AC line voltage or frequency. What’s more, unlike high-speed, rumble-producing motors, our motor introduces so little vibration into the system that any rumble remains inaudible (−70 dB DIN B).

And it doesn’t matter which Technics turntable you choose. Because they all have the extras you need. Like variable pitch controls. A built-in stroboscope. Viscous-damped cueing. Feedback-insulated legs. As well as a dust cover and integral base.

So if you want a turntable good enough for professionals, get the turntables radio stations use and discos abuse. Technics direct drive.

*Suggested retail price.

Technics by Panasonic

CIRCLE NO. 71 OR FREE INFORMATION CARD
New Literature

CIRCUIT DESIGN CATALOG

E&L Instruments offers a new, 26-page catalog of electronic circuit design aids. The illustrated publication, describing over 180 products for experimentation with operational amplifiers, integrated circuit logic and microprocessors, includes solderless breadboarding sockets, tools, component kits and a selection of instruction manuals. Address: E&L Instruments, Inc., 61 First St., Derby, CN 06418.

CB ANTENNA CATALOG

A new 24-page catalog from Avanti illustrates its line of Citizens Band antennas. Described are seven base-station antennas, including the Moonraker; stacking kits; mobile antennas and accessories; marine antennas and accessories; monitors, switch boxes; and TV filters. All antennas are illustrated and complete specifications are provided. Also, a discussion of the variable conditions that affect antenna performance and a description of Avanti’s co-inductive principle. Address: Avanti Research & Development, Inc., 340 Stewart Ave., Addison, IL 60101.

BUZZ WORD BOOKLET

An expanded edition of “Sherry’s Guide to Data Communication Buzz Words” is available from ICC. The updated, 24-page, pocket-sized booklet first published in 1972 is designed to aid the newcomer to the data communication field. Included are definitions and terms relating to terminals and the EDP field. Address: Public Relations Dept., International Communications Corp., 8600 NW 41st St., Miami, FL 33166.

ABOUT QUADRAPHONY

“Spatial High Fidelity Through SQ Quadraphonic Recording and Broadcasting,” by CBS, is a 22-page, illustrated booklet, that answers questions most often asked by hi-fi listeners about quadraphonic broadcasting, recording and home listening. Included are sections on encoding, recording, decoding and logic systems used to produce ambient and surround sound, a technical summary of stereo-to-quadravision, a simple conversion of a home stereo to a quadravision system, and an explanation of the SQ quadravision system’s compatibility with existing stereo and mono broadcasting and playing equipment. Send a stamped, self-addressed envelope (approx. 8½” x 4”) to Information Services Dept., CBS Technology Center, 227 High Ridge Rd., Stamford, CT 06905.

ELECTRONICS SYMBOLS HANDBOOK

The Cleveland Institute of Electronics has available a new 22-page, pocket-sized reference titled “Electronics Symbols Handbook.” Listed alphabetically and divided into 19 categories, are more than five hundred of the most frequently used symbols representing electronics components. Also included is an electronics data guide, including conversion factors and constants, Ohm’s Law formulas, resonant frequency, impedance, a decimal table and a color-code chart. Price, 50 cents. Address: Cleveland Institute of Electronics, Inc., Dept. J-103H, 1776 East 17th St., Cleveland, OH 44114.

CIRCUIT DESIGN RELIABILITY

“Circuit Reliability is not Semiconductor Reliability” is the title of “Tech Tips 3-4,” offered by Westinghouse. Using equations and charts, the 3-page pamphlet illustrates that total circuit reliability is the product of the individual reliabilities of each component, and explains how to achieve this in circuit design. Address: Semiconductor Div., Westinghouse Electric Corp., Youngwood, PA 15697.
Form follows function.

At Yamaha, it's been that way since 1887, when we began making music by making the finest musical instruments in the world. Today, the same advanced technology found in our musical instruments has made Yamaha a leader in state-of-the-art audio components.

For example, we engineered our innovative Orthodynamic HP-1 and HP-2 stereo headphones to give both the smooth, crisp highs of the best electrostatic headphones and the rich, clean bass of the best dynamic types at a surprisingly low price.

But it wasn't enough to make them the best sounding headphones ever heard. We consulted world-famous designer Mario Bellini to help us make them the most comfortable headphones ever worn. Because we knew if they were uncomfortable, you wouldn't put up with them.

That's why a soft strap distributes the featherlight weight of the HP-1 and HP-2 evenly over your head. Special foam ear pads form a supple, compliant seal. Height and angle are completely adjustable to your head.

Yamaha musical technology is also highlighted in our superlative TC-800GL and TC-800D stereo cassette decks, offering cassette convenience with performance rivaling that of some of the finest open reel decks.

To satisfy the most sophisticated recordist, both the TC-800GL and TC-800D offer incredibly low 0.06% wow and flutter, Dolby* Noise Reduction, and Variable Pitch Control. (The TC-800GL can even be used for remote recording.) But, if you don't like to do a lot of fiddling around, both models offer automatic convenience features like Auto Timer Start, Auto Stop, Auto Memory Rewind, and Auto Switching for CrO2 tape.

Also showing Mr. Bellini's touch, the functional wedge styling and stepped controls of these cassette decks give you easy control and visibility from any standing, sitting, or reclining position.

If you'd like a closer look at some other examples of form following function, send for our free catalog of stereo components. Or see your local Yamaha Audio Specialty Dealer. You'll get a lot more than just a demonstration.

* Dolby is a registered trademark of Dolby Laboratories, Inc.

Yamaha International Corporation
Audio Division, P.O. Box 6600, Buena Park, Calif. 90622

Please send my free copy of the Yamaha stereo components catalog and a list of Yamaha Audio Specialty Dealers.

Name
Address
City
State
Zip

Yamaha

CIRCLE NO. 78 ON FREE INFORMATION CARD
MODS AND MODIFIERS

Breathes there a serious audiophile who has not at some time attempted to modify his equipment, either to personalize it or—if courageous or foolhardy enough—to improve it in some material way? Probably not many nowadays, given the complexity of design in modern audio gear. Interestingly, there are some people who make a business of equipment modification, offering customized versions of several popular components.

For a long time I've wanted to bring some of these business-minded customizers into these pages, to find out what they're doing and why, and to look critically at some of their products. This will be the first of (I hope) several columns that will explore the intricacies of this underground and interesting marketplace.

Doubling Dyna's. Dynaco is a company that is traditionally tolerant of unauthorized modifications—an unusually enlightened viewpoint. Consequently, the hills are alive with Dyna modifications. I first became aware of Jensens Stereo Shop and Frank Van Alstine because Dynaco tipped me off.

"He listens," said the Dyne spokesman, in tones meant to convey a certain amount of respect. And so I got involved with the venture.

Van Alstine's flagship product is essentially an augmentation of the Dynaco Stereo 400 power amplifier, dubbed the Double 400. A significant amount of labor goes into the modification. First, it is completely ripped apart to get at the bottom tabs of the heat-sink assembly, which are drilled to accept double the number of output transistors. Then leads from the power supply are brought out to a side-mounted socket, into which is plugged an outboard capacitor box that quadruples the capacity of the supply. A front-panel switch is installed that enables you to bypass the amplifier's front end (including the gain controls and the patented "Dynaguard" protective circuitry). A number of changes are also made in the driver boards. And finally Dyne's optional heat-sink fan is added.

This is not, as you can see, a redesign of the amplifier in any real sense. What does it buy you, other than the satisfaction of owning what is probably the biggest Leyden jar in the history of consumer audio? I can say, without hesitation or fear of serious contradiction, that it buys you a better-sounding amplifier than the original, for most practical purposes. And by "most practical purposes" I mean the difficult and erratic load presented to an amplifier by many loudspeakers.

The reduced impedance of the power supply and enhanced volt/ampere-handling capability of the output stage really do seem to make a difference. This reminds me of various learned dissertations that have appeared in the press on the subject of difficult temporal shifts in the voltage/current demands placed on the amplifier during its relationship with a typical loudspeaker. But without getting into that, I would characterize the audible difference between the modified and stock amplifiers as: an appreciable difference in the bass (you must decide which is better, because I can't reliably do so); and a reduction in the subjective noise level of the stock amplifier.

Noise level? Yes, because other listeners and I hear a quietness behind and within the flow of music that the stock version seems not to possess. (There is, I assume, no significant noise-level difference between them under non-signal conditions, so this "noise" arises from the program.)

There is general agreement on this verdict among all I have talked to that have compared the two amplifiers, so I don't think we're discussing will-o'-the-wisps here. But it is also rightly pointed out that the Double 400 modification, while possibly doubling the pleasure of very critical listeners, also comes close to doubling in price.

So we have a thoroughly clear picture. Dynaco, while conceding the merits of the modification, would have entirely missed its market by incorporating it into its product. The modification is intended for a much more specialized consumership willing to pay the price. It has been established that the stock Stereo 400 is entirely fit competition for its peers in cost. It remains to be seen whether the same can be said about the modification. But I think it has a good chance.

Pre-empting the Preamp. Van Alstine's modification of the Dynaco PAT-5 preamplifier has been an ongoing process. I have been through several versions, and I understand there is a still-newer one that I haven't heard.
MAGAZINES AT DISCOUNT!
You SAVE UP TO 50% OFF

Here's your chance for a bargain bonanza on your favorite magazines. You may select as many as four titles at the special introductory rates shown below—up to 50% off! Use the attached card to order or write to: MAGAZINES AT DISCOUNT, A Division of Ziff-Davis Publishing Co., P.O. Box 2703, Boulder, Colorado 80323.

BOATING (01) You pay only $6.00
Reg. Rate: 12 Issues for $10.00

CAR & DRIVER (02) You pay only $3.99
Reg. Rate: 12 Issues for $7.98

CYCLE (03) You pay only $3.99
Reg. Rate: 12 Issues for $7.98

CYCLE WORLD (55) You pay only $4.49
Reg. Rate: 12 Issues for $8.98

ESQUIRE (49) You pay only $6.00
Newsstand Rate: 8 Issues for $12.00

FAMILY HANDYMAN (51) You pay only $6.98
Reg. Rate: 9 Issues for $8.55

FLYING (04) You pay only $6.99
Reg. Rate: 12 Issues for $9.98

FAMILY HANDYMAN (51) You pay only $6.98
Reg. Rate: 9 Issues for $8.55

FLYING (04) You pay only $6.99
Reg. Rate: 12 Issues for $9.98

PSYCHOLOGY TODAY (08) You pay only $7.00
Reg. Rate: 12 Issues for $12.00

SPORTS ILLUSTRATED (38) You pay only $12.00
Newsstand Rate: 26 Issues for $26.00

STEREO REVIEW (11) You pay only $3.99
Reg. Rate: 12 Issues for $7.98

TV GUIDE (41) You pay only $7.39
Lowest available rate: 32 issues

BOATING (01) You pay only $6.00
Reg. Rate: 12 Issues for $10.00

CAR & DRIVER (02) You pay only $3.99
Reg. Rate: 12 Issues for $7.98

CYCLE (03) You pay only $3.99
Reg. Rate: 12 Issues for $7.98

CYCLE WORLD (55) You pay only $4.49
Reg. Rate: 12 Issues for $8.98

ESQUIRE (49) You pay only $6.00
Newsstand Rate: 8 Issues for $12.00

FAMILY HANDYMAN (51) You pay only $6.98
Reg. Rate: 9 Issues for $8.55

FLYING (04) You pay only $6.99
Reg. Rate: 12 Issues for $9.98

PSYCHOLOGY TODAY (08) You pay only $7.00
Reg. Rate: 12 Issues for $12.00

SPORTS ILLUSTRATED (38) You pay only $12.00
Newsstand Rate: 26 Issues for $26.00

STEREO REVIEW (11) You pay only $3.99
Reg. Rate: 12 Issues for $7.98

TV GUIDE (41) You pay only $7.39
Lowest available rate: 32 issues

NOVEMBER 1976
Imagine a microcomputer with all the design savvy, ruggedness, and sophistication of the best minicomputers.

Imagine a microcomputer supported by dozens of interface, memory, and processor option boards. One that can be interfaced to an indefinite number of peripheral devices including dual floppy discs, CRT's, line printers, cassette recorders, video displays, paper tape readers, teleprinters, plotters, and custom devices.

Imagine a microcomputer supported by extensive software including Extended BASIC, Disk BASIC, DOS and a complete library of business, developmental, and industrial programs.

Imagine a microcomputer that will do everything a mini will do, only at a fraction of the cost.

You are imagining the Altair™ 8800b. The Altair 8800b is here today, and it may very well be the mainframe of the 70's.

The Altair 8800b is a second generation design of the most popular microcomputer in the field, the Altair 8800. Built around the 8800A microprocessor, the Altair 8800b is an open ended machine that is compatible with all Altair 8800 hardware and software. It can be configured to match most any system need.

MITS' plug-in compatible boards for the Altair 8800b now include: 4K static memory, 4K dynamic memory, 16K static memory, multi-port serial interface, multi-port parallel interface, audio cassette record interface, vectored interrupt, real time clock, PROM board, multiplexer, A/D converter, extender card, disc controller, and line printer interface.

MITS' peripherals for the Altair 8800b include the Altair Floppy Disc, Altair Line Printer, teletypewriters, and the soon-to-be-announced Altair CRT terminal.

Introductory prices for the Altair 8800b are $840 for a kit with complete assembly instructions, and $1100 for an assembled unit. Complete documentation, membership into the Altair Users Club, subscription to "Computer Notes," access to the Altair Software Library, and a copy of Charles J. Slipp's Microcomputer Dictionary are included. BankAmericard or Master Charge accepted for mail order sales. Include $8 for postage and handling.

Shouldn't you know more about the Altair 8800b? Send for our free Altair Information Package, or contact one of our many retail Altair Computer Centers.

mits 2450 ALAMO S.E. ALBUQUERQUE, NEW MEXICO 87106 (505) 243-7821
Redesigned front panel. Totally synchronous logic design. Same switch and LED arrangement as original Altair 8800. New backlit: Duralith (laminated plastic and mylar, bonded to aluminum) dress panel with multi-color graphics. New longer, flat toggle switches. Five new functions stored on front panel PROM including: DISPLAY ACCUMULATOR (displays contents of accumulator), LOAD ACCUMULATOR (loads contents of the 8 data switches (A7-A0) into accumulator), OUTPUT ACCUMULATOR (Outputs contents of accumulator to I/O device addressed by the upper 8 address switches), INPUT ACCUMULATOR (inputs to the accumulator from the I/O device), and SLOW (causes program execution at a rate of about 3 cycles per second—for program debugging).

New, heavy duty power supply: +8 volts at 18 amps, +18 volts at 2 amps, -18 volts at 2 amps. 110 volt or 220 volt operation (50/60 Hz). Primary tapped for either high or low line operation.

New CPU board with 8080A microprocessor and Intel 8224 clock generator and 8216 bus drivers. Clock pulse widths and phasing as well as frequency are crystal controlled. Compatible with all current Altair 8800 software and hardware.

altair 8800-b

NOTE: Altair is a trademark of MITS, Inc.
The modification has generally been a study on designing a preamplifier in reverse. Mr. Van Alstine takes out things, and then devises ways to make the preamp live with the loss. Most of the process has concentrated on the high-level section, constructed around one integrated circuit per channel. First there was a search for the "fastest" IC's available to use as possible substitutes. (I will not reveal the devices ultimately chosen because Mr. Van Alstine feels that his laborious efforts have earned him some right to exclusivity, and I agree.) Then, when the IC's were obtained, frequency-compensation components around the IC began disappearing. Output capacitors also went, together with other devices, reducing the entire output stage to only three components when the tone controls are out of the circuit. Changes were made in the B+ rails, and also in the supply itself. Then tantalum capacitors were brought in for selected spots and now I understand that metal-film resistors are being routinely substituted for carbons.

The modified PAT-5 has proved to be a more controversial product than the Double 400. There is not even universal agreement as to whether all the evolutions have been steps forward rather than steps backward. However, I took the sample provided to me and put it through an exceedingly demanding (though not-always-valid) test: the phase-flipped straight-wire comparison.

The straight-wire test involves comparing the sound of a preamplifier to the sound of a simple link of cable that bypasses it, switching from one to the other. The phase-flipped test combines the outputs of the preamp and straight wire, while inverting the phase of one of them. Ideally, the two signals should cancel completely, leaving nothing. Anything that's left is, presumably, an error made by the preamp in processing the signal.

The phase-flipped test is not a valid critique of a preamp, because completely tolerable phase shifts, among other things, can legitimately occur within preamps to prevent cancellation. So you can't indict a preamplifier for its failure to pass this test. But you can do nothing but praise a preamplifier that does pass it, and the PAT-5 modification came astonishingly close.

Most of the time, everything was inaudible, including hiss generated in the pre-cancellation stages. On extremely high-level passages (the program chosen was London's new recording of Turandot, whose first scene probably contains every berserk manifestation of musical waveform you're likely to encounter) there was an occasional soft "tst" of high-frequency noise. When I find out what this "tst" is, the modified PAT-5's high-level section should serve as a useful test bed for evaluating other products. In the meantime, the unit has to be considered above reproach in the areas of frequency response and phase linearity, and I wouldn't know how to criticize it on noise and distortion.

For those interested in any of the above, Frank Van Alstine's address is Jensens Stereo Shop, 2202 River Hills Drive, Burnsville, Minn. 55337.

Armless. Tonearms are a necessary nuisance, which is probably why many of them are designed to look so pretty. Their function is to serve as a rigid and imperturbable platform for the cartridge, and we haven't yet discovered any practical alternative to them. But few of them are rigid and all of them are perturbable, whether from acoustic feedback, seismic disturbance, or gross undulations of the record surface. The only reasonable solution is to design an arm that interacts with the cartridge to create a fairly high (above 10 Hz) resonance. However, then very close attention must be paid to pivot bearings, leveling, and the distribution of mass, because these factors will now dominate the behavior of the tonearm.

For various reasons, the straight-line-tracking tonearm principle, properly executed, offers great promise. However not a great many such arms have been properly executed, and the principle itself has some intrinsic liabilities. For one thing, skating force, which straight-line arms eliminate, acts as a stabilizing/damping mechanism on rotating arms, as does the skating compensation device that engages in a constant tug-of-war with it. So a radial-tracking arm, lacking this stabilizing set of forces, must be very good in itself in order to succeed.

The Shreve-Rabco tonearm, a modification of the discontinued Rabco SL-8E, is a stab in the direction of proper execution, and an accurate one. The arm itself is fashioned out of balsa wood, (a total of twenty-two pieces, reportedly), except for a magnesium block that houses the pivot sockets and a threaded nylon rod that supports the counterweight. The contact lever for the advance mechanism has been whittled down to a slim (adjustable) wire, and the arm-lift system has been completely altered. Nine threaded counterweights are provided. You pick the one that positions the counterweight as close as possible to the pivot assembly with your preferred cartridge.

All these steps are taken in the interest of low effective mass. For the bearings, perpetually lubricated sockets of the best quality are installed to receive the original Rabco needle-cones after they have been re-polished. And the bearings, as well as the arm cartridge alignment, are ad-

The Shreve-Rabco tonearm, an adaptation of Rabco's SL-8E, is made of 22 pieces of balsa wood. Nine counterweights are provided.
The Control of Power by Sansui.

For the audiophile who wants the finest matched stereo amplifiers and stereo control amplifiers, Sansui offers the answer — its Definition Series. Look at two of these outstanding components. The Sansui BA 3000 is designed with plenty of power to handle those bursts of percussion and those dynamic fortissimos that give you concert hall presence. The CA 3000 controls and features are a true joy for the creative pro and audiophile who wants to tailor the music to his own personal preferences.

This extraordinary pair is designed for the most demanding tasks: recording studios, sound reinforcement and audiophile home listening. The Definition Series offers the clearest, cleanest fidelity available anywhere. Top of the line Sansui BA 5000, called the "Monster," is one of the most powerful amplifiers available today: 300 watts per channel min. RMS into 2, 4 and 8 ohms from 20 to 20,000 Hz with no more than 0.1% THD.

For complete information on the entire Definition Series visit your local Sansui dealer soon or write directly to us.

The CA 3000 phono preamplifier is within ±0.2 dB of RIAA equalization curve. Offers everything desirable in a preamplifier and more: triple tone controls, left and right input and output channel meters, tape controls for copy and playback, sensitivity controls, phone input capacitance selector.

The BA 3000 stereo amplifier, 170 watts per channel, min. RMS, both channels driven into 8 ohms from 20 to 20,000 Hz with no more than 0.35% THD. Safety abounds: 4 infinite heat sinks (Sansui patent pending), triple protection circuits for ample power protection, and front panel LED power watt protection indicator on the front panel to show safe operation. Specially clamped output power meter.

Each Definition Series component comes with a test data sheet, complete with all performance characteristics. And Sansui offers a limited 5 year warranty.

SAN SUI ELECTRON CS CORP.
Woodside, New York 11377 - Gardena, California 90247
SAN SUI ELECTRIC CO., LTD. Tokyo, Japan
SAN SUI AUDIO EUROPE S.A. Antwerp, Belgium
In Canada: Electronic Distributors

CIRCLE NO. 85 ON FREE INFORMATION CARD
Superb price!! Supreme quality!

6-DIGIT FREQUENCY COUNTERS

69.95
(30mHz Kit)
$99.95 assembled

119.95
(250mHz Kit)
$139.95 assembled

Perfect for: CBers, Hams, Service Techs, & Experimenters!

- HAM, CB, & COMMERCIAL BANDS
- WIRED & TESTED AVAILABLE
- 100KHz READOUT
- 6 DIGITS
- CRYSTAL TIME-BASE
- 1% OPTIONAL
- MASTER CHG. / B. AMERICARD OK
- ADD $2 SHIPPING

Incredible counters starting at $45.95 are also available!
All counters can be factory wired and tested. Write or call today!
Box 357, Dept. 52, Provo, UT 84601 (801) 375-8566

FREE McIntosh CATALOG and FM DIRECTORY

Get all the newest and latest information on the new McIntosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
FM/FM STEREO - AM TUNER AND PREAMPLIFIER

McIntosh Laboratory, Inc.
East Side Station P.O. Box 96
Binghamton, N.Y. 13904
Dept. PE

NAME

ADDRESS

CITY STATE ZIP

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.

justed by ear. You can imagine what a laugh that idea gave me until David Shreve stopped in and demonstrated the process, which I in turn demonstrated to friends and colleagues the following night with a similar deflation of mirth. At least all these adjustments are readily accessible, so you can fiddle to your heart's content.

As to the performance of the arm, there is no question about its being superb. When properly leveled it could probably not be dislodged from the groove by an earthquake. It tracks at any force usable with any cartridge, and it is stable. The sample I have, playing a commercial pressing of a very difficult piano recording, can almost match a one-off copy of the master tape—a phenomenon entirely new to me. If you pick the proper cartridge the arm will actually filter out orange-peel (mold grain) noise, and it will make rumble a thing of the past.

But note also that the arm is in short supply, difficult to make and adjust, and difficult to ship. It is also horrendously expensive. If you happen to be in David Shreve's neighborhood (3402 N. Oakland Avenue, Milwaukee, Wis. 53211) and are prepared to write out a check in excess of $500, be my guest. But be sure to have your spouse cradle it gently in his/her lap on the drive to your home.

Modify? You might consider modified components if you are (like me) an all-out audiophile, as well as a tinkerer. Of course there are certain hazards. For example, plugging Van Alstine's output-capacitorless preamp into the wrong power amp could create unbelievable havoc. If you acquire one of Shreve's tonearms, be prepared to follow his written instructions (which are excellent) down to the last comma, despite your own ideas.

And there are other drawbacks. At the manufacturer's discretion, the warranty for your modification can become a worthless piece of paper, and you may create ill will in him that could be troublesome when the time for routine maintenance arises. In either case, you depend on the modifier for satisfaction and abide by his stated policy.

I've mentioned here only people who, on the basis of fairly long acquaintance, I've discovered to be completely trustworthy. Certainly there are other good modifiers out there. However, considering the hazards, I would say: caution.
Let Walter H. Buchbaum, one of the nation’s leading electronics experts, show you how 4 easy-to-use troubleshooting techniques can solve 99% of your electronic problems in record time!

Act now. Save $10.97. Publisher’s price: $12.95. Yours for just $1.98.

Don’t spend one minute more than is necessary on any troubleshooting job!

It’s not a question of being lazy. It’s just a matter of knowing a surefire quick way to find the defect. And that’s the way you’re going to know.

Walter H. Buchbaum, one of the most respected authorities in electronics, has been collecting surefire troubleshooting methods for many years. From experts. In all areas of electronics. Now he’s put the best of them, along with his own proven techniques, into TESTED ELECTRONICS TROUBLESHOOTING METHODS.

This book is presently selling for $12.95. But, now you can have it for just $1.98! YOU SAVE $10.97!

It’s our way of introducing you to the Electronics Book Service, the no-risk book club which is curating a library of over 50,000 textbooks, troubleshooting books and hobbyists informed of the best, more useful new books in the field of electronics.

TESTED ELECTRONICS TROUBLESHOOTING METHODS is typical of the selections we offer members. It gives you solid, expert help on all kinds of troubleshooting problems. It shows you how to handle electronic equipment — money — and work.

This is why we have chosen it to introduce you to the Electronics Book Service. Join now, as a trial member, and you’ll receive your copy of TESTED ELECTRONICS TROUBLESHOOTING METHODS — for just $1.98! This is your only financial commitment of membership. For the Electronics Book Service is a risk-free book club. As a member, you buy only what you want, when you want, and at a substantial discount!

When you receive your copy of TESTED ELECTRONICS TROUBLESHOOTING METHODS, you’ll learn an easy method that reduces the time you spend on your electronic repair problems. And with record ease, speed and accuracy.

• The Symptom-Function Technique will quickly isolate the trouble to a particular part of the equipment. Once you isolate the trouble spot...
• The Signal-Trace Technique will help you find the trouble source. Or whatever the cause of the trouble. Or the Voltage-Resistance Technique will precisely pinpoint the component.
• The Voltage-Substitution Technique will verify the trouble. In some cases, you can combine several techniques to find the solution from among the remaining possibilities.

These 4 basic techniques form the foundation for all successful troubleshooting. You can use them singly or in combination. They work like magic for all the top-level electronics experts. And they’ll work for you!

And these 4 techniques aren’t the only surefire troubleshooting techniques you’ll find in TESTED ELECTRONICS TROUBLESHOOTING METHODS. Buchbaum brings you a whole battery of time-saving, work-saving methods — methods which the nation’s most successful electronics experts are using.

For bonuses, Buchbaum gives you additional guidelines for finding the most out of your equipment. You’ll see how to test and calibrate all standard meters. Even how to get the most for your money when you select test equipment.

What’s more, you’ll discover methods for finding and solving intermittent defects — which are usually hard to find. And for dealing with interference defects — which are often mistaken for component failure.

TESTED ELECTRONICS TROUBLESHOOTING METHODS contains over 100 illustrations that simplify these methods and formulas the experts use. You’ll have the circuit and block diagrams — tables — charts — schematics — and checklists that make Buchbaum’s troubleshooting easy.

With this battery of simplified troubleshooting techniques, you’ll be able to handle all kinds of electronic repair work quickly — easily — economically. And without wasting time — doing unnecessary extra work — or going through endless trial-and-error.

For these reasons, TESTED ELECTRONICS TROUBLESHOOTING METHODS is a perfect introduction to the ELECTRONICS BOOK SERVICE.

The Electronics Book Service does a job which you don’t have time to do for yourself. We carefully screen the hundreds of books on the subject, select those which are the most useful or which bring you the latest information on technical innovations and improvements of prime importance.

Your membership is an ideal way to keep in touch with the onrushing advances in electronics and its applications — to keep on top of a rapidly changing technology.

As a member, you can build a professional library of superb quality and permanent value — one which will meet your every interest and requirement, always available for you to consult for expert help in any need. And you can have this library as quickly or as slowly as you choose.

Remember, the Electronics Book Service has no minimum purchase requirements as do many book clubs. Once you’ve paid $1.98 for TESTED ELECTRONICS TROUBLESHOOTING METHODS, you don’t need to purchase any further selections!

Why delay? Mail the coupon below to get your copy of this $12.95 handbook for only $1.98 — and to receive all the benefits of membership in the Electronics Book Service on a risk-free trial basis. Fill out and mail your coupon right away.

Here is the practical and efficient way in which the Electronics Book Service operates.

1. When you enroll as a member, you receive — for only $1.98 — plus postage and handling, with tax where applicable — your copy of TESTED ELECTRONICS TROUBLESHOOTING METHODS. This is the only obligation you are committed to make.

2. You are under no obligation to accept any minimum number of selections within any time limit. You can take as many or as few as you wish. And, you may resign at any time with no obligation once you have paid for your copy of TESTED ELECTRONICS TROUBLESHOOTING METHODS.

3. On selections you do accept, your membership entitles you to a discount from the publisher’s list price. This discount is available only to members and extends to you with substantial savings.

4. Every four weeks we’ll send you a free bulletin describing the current selection. If you want the selection, no action is required; it will be shipped to you automatically. If you don’t want it, just return the card enclosed with the bulletin:

5. You have at least 10 days to decide whether you want the selection or not. Return the card so we receive it no later than the date specified. If you don’t have 10 days to review and receive an unwanted selection, return it at our expense.

6. Each bulletin also describes a number of alternate or additional selections, also available to you at the special discount price for members.
Have a problem or question on circuitry, components, parts availability, etc.? Send it to the Hobby Scene Editor, POPULAR ELECTRONICS, One Park Ave., New York, NY 10016. Though all letters can't be answered individually, those with wide interest will be published.

By John McVeigh

ACOUSTIC FEEDBACK

Q. How do the manufacturers and the users of commercial PA and sound equipment reduce or eliminate acoustic feedback, even at high sound pressure levels (such as at rock concerts)? Can I apply the same techniques at home?

—Richard Lei, Rego Park, NY

A. In his Stereo Scene column in May 1976, Ralph Hodges discussed “The World of Sound Contracting.” In that column he touched upon this particular subject and showed sample graphs for equalized and unequaled response of a large hall. By means of a narrow-band equalizer, the sound contractor can flatten out the frequency response and squash acoustic feedback. In the home, it is usually the turntable that is most affected by acoustic feedback. And in almost every case, the oscillations are at a low frequency. The best way to lick this problem is to physically isolate the turntable base, using a commercial shock mount with built-in damping or a home brew mount constructed from thick, spongy foam rubber.

FM INTERFERENCE

Q. I have a 5-band portable radio. When I switch to Public Service Band I (30-50 MHz) or PSB II/Air (108-174 MHz), I receive FM broadcasting stations. What causes this and how can I correct it?

—Barry Sheffield, Chester, VA

A. Either the receiver has insufficient selectivity or the front end is being overloaded. You didn't mention whether or not you are using the built-in whip or an external antenna. In either case, you could try putting a wave trap at the appropriate input. Use either a series LC circuit from the antenna input to ground or a parallel LC circuit between the antenna and the input to the r-f amplifier. Adjust either L or C to resonate the circuit and null out the undesired signal. But I'd suggest making the trap switchable (use a low-capacitance switch) so that you can still use the radio on the FM broadcast band!

COMPUTER RFI

Q. I recently got a Sphere Systems computer which is causing interference to nearby television receivers. (I am temporarily operating it outside of its cabinet.) Apparently, most of the interference is coming from the CPU board. Although I constructed a box from window screening and grounded it, the RFI problem remains. Any suggestions?

—Charles Skeldon, New Brighton, MN

A. The majority of information signals that are generated by a digital system are square waves. Mathematically, a square wave can be described as a summation of sine waves harmonically related in frequency. The high-order harmonics can cause RFI and TVI. The best way to combat the problem is to button up the case tightly, making sure that there are clean metal-to-metal connections. If you must use the microprocessor outside its cabinet, try using very, very fine screening. Also, use a “brute force” filter on the ac line. Finally, you might try using ferrite beads on any lead more than 4 inches long.

WINDSHIELD WIPER DELAY

Q. Do you have a circuit for a variable delay control for windshield wipers?

—Doug Swart, Plainview, NY

A. The circuit shown is a result of collaboration between myself and reader Jack Rutherford of Burlington, North Carolina. It will provide a sweep rate of from one every 5 seconds to one every 37 seconds. An SCR is used for triggering the windshield wiper motor rather than a relay to avoid mechanical bounce problems. The SCR, a HEP R1301, will handle 20 amperes of maximum forward current, sufficient for even a hefty wiper motor. The SCR should be heat-sinked. All resistors are half-watt carbon, and the 50µF capacitor should be a tantalum type.

MIXING WITH A GRID DIP

Q. Recently, I accidentally made a discovery that has led to many hours of listening enjoyment. While varying the frequency of my grid dip meter, which was placed near an FM radio tuned off-channel (about 90 MHz), I found that I could receive many different r-f transmissions. Some of those I've received are TV sound, aircraft, police, CB, 2-meter FM, telephone calls, and even WWV. I'm fascinated! But how does it do it?

—Dennis Cole, Lincoln Park, MI

A. You have created a frequency converter stage. The grid-dip meter is the local oscillator, and some nonlinear element inside the receiver is acting as a mixer. The result is an additional heterodyne process. Exactly where the heterodyning is taking place is hard to determine, because one variation on Murphy's Law states that a linear circuit will often behave nonlinearly. Furthermore, just imagine how many junctions there are inside the radio's case, each of which can act as a diode mixer. Interestingly, you are receiving AM as well as FM transmissions. I imagine that is the result of slope detection. A variation of your technique has been used by many shortwave listeners who copy CW and SSB signals on shortwave portables lacking bfo's. By tuning a signal generator or the local oscillator of another receiver to the proper frequency, they could reinsert a "carrier" for proper detection. Happy Listening!
To SBE

warranty

is not just another word

We at SBE have built our reputation on the quality and reliability of every single product we sell. To maintain the high standards we have set for ourselves, every SBE product is thoroughly tested to insure meeting our stringent quality control before shipment.

Our insistence upon "out-of-the-box performance" is best evidenced by the fact that every CB radio, every scanner, and all land/mobile and marine transceivers are checked and re-tested before they leave our factory.

Skilled technicians with intricate test equipment insure that every product manufactured receives this double check-out before the SBE "Quality-Assurance Personalized Seal" is affixed to each box. With that seal goes our guarantee, for a full year, that the SBE product will perform up to its specifications—from the sophisticated circuitry to the smooth-functioning controls.

It is just such quality control, coupled with our advanced technology and innovative engineering, that has made SBE a leader in the CB field. The Brute is just one more achievement in this development—a small but precision-built 23-channel transceiver incorporating all the features and performance of a full-size CB.

You can count on every SBE product and accessory for dependable performance and reliability. We have built our reputation on that!
How to examine the sun safely and use other sources to determine sunspot activity.

In addition to being the ultimate energy source for all earthly life, the sun plays a dominant role in the long-range propagation of radio waves. Solar radiation causes atoms in the upper atmosphere to ionize, resulting in the formation of the ionosphere, off which radio waves bounce to return to the earth and provide long-distance communications. The density and height of the ionosphere determine the wavelength and the angle of the reflected wave.

There is also a correlation between the presence of sunspots on the solar disc and the degree of ionization of the upper atmosphere. With all we know about solar activity, however, we cannot yet predict with a high degree of accuracy ionospheric "weather" and its influence on radio.

Records of sunspot activity have been reliably kept since only about 1750; but this still enables us to develop a plot which shows the so-called sunspot cycle. The up-and-down nature of sunspot count is evident in the plot shown in Fig. 1; but note that irregularities can be detected. Observe, too, that sunspot peaks have been as low as 60 and as high as 200. Moreover, the valleys in the graph have not always reached the zero mark, although some have remained near zero for a year or more. Thus, the 11-year "sunspot cycle" is also an approximation since there have been longer and shorter cycles.

For more than a year now, knowledgeable people have been wondering when Cycle 20 (in the recorded history of cycles) is going to bottom out. Have we already passed the sunspot minimum? When will Cycle 21 begin to show strength? Is it already revealing itself? Will it ever? These are the questions being asked; and the answers given differ widely.

Equipment. Active hams, CB'ers, and SWL's have a keen interest in keeping up with the sun's activity. Most radio communication enthusiasts, however, don't realize that they can do so without setting up elaborate solar observatories in their...

* Source of Information: Edward P. Tilton, W1HDO

Fig. 1. Smoothed sunspot number plotted from 1750 to present. Cyclic variation is apparent.
Photo (above) of entire sun disc, Jan. 30, 1968, when sunspot activity was very high. Spots have dark centers (umbra) and surrounding grey areas (penumbra). Darkening around edge is from looking through more and more of sun's atmosphere.

View (below) of sun taken with chronograph. The bright surface (photosphere) is blocked to see atmosphere next to surface. Red chromosphere is seen in light of hydrogen-Alfa wavelength. Projections from chromosphere are prominences.
Fig. 2. Using a 5" reflector telescope and black box to view projected image of the sun.

back yards. One can keep track of what’s happening on the sun even at the bottom of Smog Valley with any old “spyglass.” People have used an antique mariner’s glass, a surplus military target telescope, bird watchers’ telescopes, a $29 zoom-lens telescope, and the 5” (127-mm) reflector shown in Fig. 2. Whatever you use, though, be sure you don’t look directly at the sun with the scope (or your naked eye) except with a filter that is safe for sun use. The various scopes mentioned above should be used for projection viewing only.

In Fig. 3, a Celestron 5 telescope is shown being used for direct viewing of the sun with the manufacturer’s full-aperture solar filter in place. This filter passes only 0.01% of the light striking it to the viewer’s eye, the minimum amount of filtering considered safe. You can make you own solar filter by mounting a Wratten neutral-density filter (density No. 4, available from Eastman Kodak dealers) in a lens-cap arrangement of your own fabrication. Be absolutely certain that any such filter is tightly mounted so that it doesn’t accidentally slip out of place when you’re looking into the scope’s eyepiece. Incidentally, the Wratten No. 4 filter is also useful with large telephoto lenses that can be attached to single-lens reflex cameras for solar photography.

With an inexpensive low-power telescope, a camera tripod equipped with a pan-tilt head, and a few viewing accessories, you’ll always be ready to check the sun, even on long road trips. To use the equipment, set the scope on the tripod and tilt it up in the general direction of the sun. Hold a white card in line with the eyepiece and adjust the orientation of the scope until the shadow it casts on the card is circular. Slow movement of the scope will then bring out a bright spot in the center of the shadow. This is the solar image. Adjusting the scope for a sharp-edged solar disc will bring the sunspots—if there are any—into near focus.

Better detail and contrast can be obtained by enlarging the shadow area. Put a card baffle measuring at least 12" (30.5 cm) square over the body of the scope to shade the projection surface from the sun’s direct light. For even more clarity, project the image into a “black box” (as shown in Fig. 2). An ordinary cardboard box painted flat black will do. The viewing surface can then be good-quality white paper or any smooth surface inside the box painted flat white. Better still, put a cover on the projection box and cut a hole just large enough to permit you to look into the box and see the projected image at the bottom.

You will discover that the more ambient light you exclude from the projection area, the better will be the detail of the image and the larger the image you’ll be able to use effectively. Bear in mind, however, that any gains you make must be paid for, which means that larger images will demand more precise aiming and tracking adjustments.

When you’re using a telescope of more than 20x, an equatorial mount and rack-and-pinion drive become very helpful. The better scopes are usually equipped with these features, and some have mounted projection devices and electric clock drives. The latter two are also available as options for those telescopes that don’t include them as standard features. A moderately priced 2" or 3" refractor that’s fully equipped with features and accessories makes an excellent setup for projection viewing.

Interpretation of what you see is an involved process that requires a skill developed through practice and experience. Correlating what you see with observed propagation effects can develop into an absorbing side hobby. You might find it useful to make two sketches of each observation; one to show the locations and general appearances of any spots and the other an enlarged view of major spots or groups of spots.
A LOOK AT SOLAR RADIATION

Sunspots are visible evidence of solar activity, wellsprings of the kinds of radiation that affect radio communication for better or worse. The types of radiation with which we are principally concerned are ultraviolet light and atomic particle emission. As with all electromagnetic waves, UV travels at roughly 300,000 km (186,000 miles) per second. Thus, if we see a sudden change in the appearance of a sunspot group or detect an increase in solar radiation by electronic means, we can expect propagation changes almost immediately.

Ionization of the earth’s outer atmosphere (production of the ionospheric layers that make long-distance communication possible) is a sudden effect, much like turning on a fluorescent lamp. The F layer, located some 140 to 200 miles out in space, is “turned on” by solar UV radiation and acts as the principal medium for signal propagation. Frequencies above about 25 MHz (higher in periods of generally higher solar activity) can open up for short skip, and signals may also show the typical auroral “fuzz,” or distortion, resulting from multipath scattering in the auroral layers. The distortion tends to increase with increasing frequency.

In times of generally lower solar activity, such as the present, the effects of particle radiation are mostly mild. Aurorae are relatively rare and the disturbances associated with solar-flare activity are much less severe and frequent than they will be in a few years from now.

A widely overlooked fact about solar cycles is that, regardless of the present, there are large variations in the level of activity from time to time. It’s rare to have more than 10 consecutive days of solar stability. Even near the normal “bottom” of the cycle, solar activity and visible sunspots can increase steadily for several days, reaching peaks more characteristic of middle or even peak years. These anomalies often sneak up on professional forecasters so that even the newest amateur observer will not have to wait long to find “official” forecasts as far off the beam as local weather forecasts are at times. High-activity peaks have appeared in 1974, 1975, and 1976, supposedly the lowest three years of a dying Cycle 20.

Sources of Information. There are several information sources for propagation conditions. For example, annual and monthly forecasts are offered by many shortwave club newsletters and amateur radio magazines. The National Bureau of Standards radio stations WWV and WWVH are another valuable source of information. These stations transmit continuously on 2.5, 5, 10, 15, 20, and 25 MHz, primarily for the purpose of providing accurate time and frequency standards.

Propagation bulletins are given at 14 minutes past the hour on WWV and are updated four times daily, usually at 0114, 0714, 1514, and 1914 Coordinated Universal Time. UTC is the same as GMT, which is equivalent to EST plus five hours. The following information is given: propagation quality forecast; condition of the geomagnetic field; coded forecast for the North Atlantic path; the K index; and the 2800-MHz solar flux.

Propagation quality is given in one of nine degrees, ranging from “useless” to “excellent.” Geomagnetic activity is given as “quiet,” “unsettled,” or “disturbed.” The coded forecast is a simple quantized statement of propagation quality. The K index is, in effect, a numerical statement of geomagnetic activity. It reflects an actual reading taken just before bulletin time and is a direct indication of likely propagation quality on high-latitude paths and on frequencies where geomagnetic field effects are critical (mostly below 15 MHz at times of low solar activity). The solar flux index is a measure of solar radiation. It correlates well with the muf (maximum usable frequency) for F-layer propagation and reasonably well with long-term sunspot number information. It is much more useful in planning radio communication than the sunspot number, because it is essentially current information. Both the K index and the solar flux are given with the expected direction of change, making them very valuable for short-term forecasting and planning when to use different frequencies.

A typical bulletin sounds like this: “The radio propagation quality forecast for 1900 UTC is fair to good. The geomagnetic field is quiet. The coded forecast is November five. The K index for 1800 UTC is two, expected to remain the same. The 2800-MHz solar flux index is 72, expected to rise slowly.” What does all this mean?

Since a steady K index of two or less means generally low geomagnetic activity, it can be assumed that there is no abnormal amount of charged-particle emission from the sun entering the earth’s magnetic field at the moment. And a low, but rising, solar flux indicates a somewhat higher F-layer muf will develop. If the bulletin is correct as to these trends, the propagation forecast will be right — conditions will be above average and the muf will rise. The “November” part of the coded forecast stands for N, or “normal,” and “five” means fair to good conditions.

A fast-rising K index means increased absorption of radio signal energy in the ionosphere and reduced signal levels or perhaps loss of communication entirely. The effects are generally more pronounced in the higher latitudes; hence the forecast for the North Atlantic path — a busy circuit traversing high latitudes from most of the United States. The operator will do well to get his message across as soon as possible since conditions are changing rapidly.

If the K index rises above three, there will be a marked deterioration in communication. At five or six, total
loss of contact will probably result. An index of seven means that a really severe disturbance is under way, affecting all but transequatorial paths, even those at the low end of the hf range. However, it's good news for vhf enthusiasts because auroral openings are almost certain in the northern US.

Rising solar flux means increased UV (ultraviolet) radiation. The reading broadcast over WWV is derived from information taken on 2800 MHz in Ottawa, Ontario, Canada, at 1700 UTC (noon Ottawa standard time). The 1914 WWV bulletin reflects the 1700 Ottawa observation. Although the language appears to imply that the reading is updated with each bulletin change, this is rarely the case. So, if you can't copy four bulletins each day, concentrate on the one at 1914. It's the best of the lot for fresh solar flux information.

As with the K index, the trend in solar flux is important. So is the rate of change. A slow, steady rise in solar flux—say one point per day—with perhaps no rise at all on some days within a generally upward period means gradually improving conditions on all frequencies, particularly if the K index remains low and fairly constant. The muf will increase perceptibly with each rise in the solar flux. A week of this can mean a great deal to amateur radio operation on the 15-meter band during the fall and winter of 1976-1977 and SWL's monitoring the 16- and 13-meter shortwave bands. A really marked rise can even bring the region above 27 MHz, including the Class D Citizens Band and 10-meter amateur radio band back to life briefly as F-layer DX territory.

Beware of a fast-rising solar flux. If it rockets up at a rate of three or more points per day, there will be short-lived gain, even a spectacular improvement in muf, but communications disaster isn't far away. When the solar flux peaks out, the K index will surely rise and then up goes the ionospheric absorption of hf signals. High-latitude circuits will fade out first, and the 160- and 180-meter amateur and 120-, 90-, and 75-meter shortwave bands will quickly go to pot. This can be followed by deterioration and blackout of the 60-, 49-, 41-, 40-, and 31-meter bands. Even 25 and 20 meters can go under. But be sure to watch the transequatorial circuits at such times. They may become extraordinarily active somewhere along the line, at least for a brief period of time.

Summing Up. Every change in the solar flux can be related to what can be seen on the sun by direct viewing or by projection. If your eyesight and viewing equipment are good and you get frequent looks at the sun under good viewing conditions, you'll be able to keep up with the propagation guessing game about as well as the pro's do. With some experience and understanding of the factors involved in charting WWV information and matching it with sketches of the visible variations of activity on the face of the sun, you'll discover a hobby-within-a-hobby that can be pursued at many levels of sophistication.

This is the time to start tracking the sun, when solar activity is generally low. Spots and groups of spots are presently well spread out. The significance of what is seen is far more easily grasped now than it will be in a few years, when the sun will likely become flackled with spots.

Editor's Note: As this article was going to press, there appeared evidence that the entire WWV propagation bulletin service might be terminated. Should this happen, ARRL has plans to air such bulletins over W1AW.
CB and Stereo in one... in dash

We've got the perfect radio for you who enjoy talking as much as listening. You'll be able to do both with Boman's CBR-9900. It has a 23 channel citizens band transceiver for truckin' down the road or when you're just beatin' around town shootin' the breeze. And when you want music to boogie with, just flip from the CB to the AM/FM stereo radio and let go. This one radio can make your travels more fun than ever before, and you don't have to hassle where to put a second unit because it's CB and Stereo in one... in-dash.

A. BM-1335 Deluxe Cassette Stereo Tape Player with AM/FM Stereo Radio
B. BM-1154E-E-Tape Player with AM/FM Stereo Radio
C. BM-1125 Deluxe E-Tape Stereo Tape Player with AM/FM Stereo Radio
D. CB-555 23 Channel Citizen Band Transceiver with R.F. Gain Control and Noise Blanker
E. CB-750 23 Channel Citizen Band Noise Free Transceiver with R.F. Gain Control
F. CB-770 23 Channel Single Side Band Citizen Band with Noise Blanker

Whether you want an all in one super radio like the CBR-9900, a conventional citizens band, or an AM/FM stereo radio—(8-track or cassette), check with Boman. We've got 'em all and they all sound great.

Boman- Astronox
9300 HALL ROAD DOWNEY, CA. 90241
Toll Free Numbers: Inside California 800-352-5553, Outside California 800-421-2333

NOVEMBER 1976
CIRCLE NO. 12 ON FREE INFORMATION CARD
DISAPPEARING ACT

MOTORIZED CB ANTENNA
by FAMOUS ARCHER®

Flip its switch, and the Archer electric antenna extends to its full 33" length and turns your CB radio on. Flip again, and it retracts into the fender and turns your radio off. Nobody will know you've got ears — it's Archer's automatic answer to CB rip-offs. A top performer that ends the bother of removing your antenna. Adjustable SWR. Center loading coil, excellent for mobile use.

Quality materials and workmanship. Installation hardware and instructions included. Our "disappearing act" is another reason why a million CB'ers will choose Radio Shack's Archer brand this year. Get 21-970 and you'll have something to hide and nothing to lose. Only 59.95*.

now you see it.
now you don't.

ASK FOR OUR '77 CATALOG

FREE! 164 pages, full color, 2000 exclusive items. Come in for your copy today!

LEADING THE WAY IN QUALITY CB SINCE 1960

Radio Shack

A TANDY COMPANY • FORT WORTH, TEXAS 76107
5000 LOCATIONS IN NINE COUNTRIES

*Price may vary at individual stores and dealers.

POPULAR ELECTRONICS
THE ever-increasing activity on the radio communication channels has created an urgent need for a device that will alert you to only those calls specifically directed at you. Ideally, the device would keep your receiver silent, turning on the audio only when a specially coded signal is received. This is exactly what the "Call Selector" described here is designed to do.

The Call Selector eliminates the need for you to monitor the constant "chatter" on the channel to which you are tuned while waiting for a call. The basic one-way Call Selector system consists of an encoder and a decoder (More elaborate arrangements are described later.) The calling party transmits a coded signal on a previously agreed upon channel. You (at the receiving end) leave your transceiver turned on at all times, but you do not hear anything until the special signal is decoded. Then you simply establish contact with no fuss or bother.

The encoded signal consists of a tone whose exact frequency and duration is keyed to the decoder at the receiving end. This tone can be transmitted over any AM, single sideband (SSB), or FM transmitter, making the system usable by CB'ers, hams, and commercial radio operators. There are about 100 combinations of time and frequency that can be selected, ensuring a minimum of false calls even in busy traffic areas. The system is also immune to extraneous noises and voices to further safeguard against false triggering.
Any number of transceivers can be equipped with the system and tuned to the same frequency/time signal to communicate with each other. For example, you can equip a number of mobile transceivers with only an encoder to allow a base-station operator to listen to only those calls in which he is interested.

About the Circuit. The encoder, shown schematically in Fig. 1, consists of dual 556 timer IC4, a small dynamic loudspeaker, and supporting components. Half of IC4 is used as a monostable, or "one-shot," multivibrator, which allows the other timer to free run for a given period of time when activated by closing S3. The output of the second timer is an audio tone with a frequency between 1000 and 4000 Hz. The actual operating frequency is determined by the setting of R41. The width of the monostable multivibrator’s output pulse (and thus duration of the audio tone) is controlled by R39 over a range of 1 to 4 seconds. The output of the free-running timer is coupled by R45 and C16 to the speaker.

The encoding tone is acoustically coupled to the microphone of the transmitter with which the Call Selector is being used. This is accomplished by pressing the microphone’s housing down on S3 and holding the mike’s push-to-talk switch closed for the full duration of the tone. Because the encoder draws no current until S3 is closed, a 9-volt transistor battery is suitable for the power source. However, if a two-way encode/decode system is desired, the encoder can be mounted on the same circuit board as the decoder and power can be drawn from a common +12 volt dc or ac supply. (If an on-board encoder is used, C20 should be omitted.) The encoder’s output will be the same with either power supply and will be stable over a wide temperature range.

The decoder is shown schematically in Fig. 2. The encoded signal from the receiver is coupled into the circuit through C1 and sensitivity control R1. The signal is passed through C19 and R3 into the inverting (-) input of IC1B. This operational-amplifier stage has a voltage gain of 10 and operates from a single-ended dc power supply, as do all succeeding op-amp stages. Resistors R2 and R4 set the noninverting input of IC1B at approximately half the supply voltage.

The output of IC1B goes to the inverting input of IC1A, which is a very selective bandpass filter whose cutoff frequency can be varied between 1000 and 4000 Hz by R8. When the receiver’s audio output contains a component at the center frequency of the filter, a signal appears at the output of IC1A. This signal is coupled by C4 to D1 and D2, which can detect (rectify) it, and the rectified waveform is smoothed by R12, R13, C5, and C6 into a dc voltage. When this dc voltage is applied to Q1, the Darlington transistor conducts and cuts off Q2, at which point, C9 starts charging through R17 and the base-emitter
the junction of Q4. The voltage across C9 drives Q3, the output of which is applied to the noninverting (+) input of IC2B and the inverting input of IC2A through R22 and R26, respectively.

Normally, the base of Q6 is positive, and the transistor conducts. However, due to the comparator action of IC2A and IC2B, the voltage at the base of Q6 will drop to zero after C9 begins to charge and then go positive as charging continues. The exact point at which the momentary drop in voltage occurs is determined by the setting of R20. Also, Q5 is always conducting except during the “window” period generated by the charging of C9.

Transistors Q4 and Q5 are normally conducting as a result of current delivered to their bases through R29 and R31. Both transistors are driven into cutoff only when two conditions are simultaneously satisfied. Transistor Q5 must be cut off by the drop in the voltage at the output of window generator IC2. Transistor Q4 will be momentarily cut off when the trailing edge of the tone signal discharges C9. If these events occur simultaneously, the outputs at the collectors of Q4 and Q5 go high and trigger on SCR1, which, in turn, energizes reed relay K1, closing its contacts. The SCR conducts and the relay remains energized until RESET switch S2 is closed.

The contacts of K1 close only when a tone of the proper frequency and time duration is applied to the input of the decoder. Any voice or low-frequency signal that passes through the active filter will constantly discharge C9. This makes the system insensitive to heterodynes, voice components, and noise. For stability, the decoder circuit, except for K1 and SCR1, is powered by voltage regulator IC3. If an encoder is mounted on a decoder’s circuit board, it will also receive its power from the regulated output of IC3.

Construction. The encoder and decoder can be assembled on perforated board, using sockets for the IC’s, or on a single or separate printed circuit boards. The actual-size etching and drilling and components placement guides for the system are shown in Fig. 3. If you plan to build the encoder and decoder on the same board, use the larger board and install the encoder components in the shaded area of the components placement guide. (Do not forget to omit C20 in this case.) Alternatively, if you wish to have the encoder and decoder in separate boxes, use both boards, but eliminate the components in the shaded area.

Wire the board or boards as shown, starting with installation of the fixed resistors and nonpolarized capacitors. Then install the electrolytic capacitors, diodes, transistors, and IC’s, paying careful attention to polarization, basing, and orientation. Finally, mount the potentiometers, reed relay, and switches. In the author’s prototype, S4 was formed from No. 4 machine hardware and a 1¾” x ½” (3.5 x 1.3 cm) piece of springy brass shim stock. The brass shim was formed to take advantage of its natural resilience to keep it from touching the machine screw contact. A short length of wood dowel or plastic rod can be used as the pushbutton switch. If you prefer, you can use a standard normally open pushbutton switch, connecting it to the pc board via short lengths of hookup wire

Mount J1, I1, I2, SPKR, and the dowel or plastic rod for S3 (or S3 itself) on the top of the box in which you house the encoder/decoder. If you are housing the encoder and decoder in separate boxes, install the 9-volt transistor battery for the encoder off the board where it will not interfere with the board, speaker, or S3. In either case, mount the activating button of S3 close to the speaker.

The numbers of the contacts on terminal strip TS1 on the encoder/decoder components placement guide refer to the same numbered points in Fig. 1 and Fig. 2. This terminal strip provides a convenient means of connecting the system to its power supply, an external speaker, and any other warning device you might want to use, such as a Sonalert, LED, etc., when a properly coded signal is received. The decoder board will also accommodate a Sigma No. 77RE2 dpdt relay in the event the spst reed relay will not provide a sufficient number of contacts.

Aligning the System. To get the Call Selector system to operate properly, the decoder must be made to respond

Fig. 2. The decoder detects the audio tone from the encoder and uses it to energize a reed relay.
to the selected frequency/duration characteristics of the encoder's output signal. To align a system consisting of separate encoder and decoder, you will need a shielded cable terminated at one end in a plug that mates with jack J1 in the project. Connect the "hot" lead of the cable terminal 8 and the shield to terminal 7 of TS1. For a system in which the encoder and decoder are on the same board, simply connect a jumper between terminals 4 and 8. This allows the system to be calibrated by direct interconnection, rather than by transmitting test tones on the air.

Connect power to the system. Set R1 in the decoder and R39 in the encoder to maximum clockwise and R6, R20, and R41 for center of rotation. Depress S3 and hold it down for the full duration of the test tone while adjusting R41 until 11 glows. This sets the encoder for the maximum 4-second tone duration. It may be necessary to repeat this procedure several times before R41 is properly set.

DECODER PARTS LIST

C1, C6, C7, C19	0.01-µF disc capacitor
C2, C3	0.008-µF, 10% Mylar capacitor
C4, C5	0.02-µF disc capacitor
C8	0.01-µF, 25-volt electrolytic capacitor
C9	1-µF, 25-volt tantalum capacitor
C10	100-µF disc capacitor
C17-220-µF, 25-volt electrolytic capacitor	
C18-500-µF, 25-volt electrolytic capacitor	
D1 through D6	1N4148 diode
D7, D8	1N4004 rectifier diode
F1	12-volt 600-mA lamp and assembly (Radio Shack No. 272-1535 or similar)
IC1	747A dual operational amplifier
IC3	723A voltage regulator IC
K1	12-volt spst reed relay (or Sigma No. 77RE2 dpdt relay—see text)
Q1	2N3056 npn Darlington transistor
Q2 through Q6	2N5232 npn silicon transistor
R1, R20	50,000-ohm trimmer potentiometer
R3	1500-ohm trimmer potentiometer
R4 through R7	Following resistors are 1/4 watt, 5% tolerance
R8	R10, R22, R23, R24, R26, R33
R5	220,000 ohms
R6, R27	120,000 ohms
R7	68 ohms
R11	330,000 ohms
R13, R29	470,000 ohms
R14, R28	82 ohms
R15, R31	47,000 ohms
R17	3 megohms

DECODER PARTS LIST

R18	2.2 megohms
R19, R21	12,000 ohms
R25	82,000 ohms
R30, R32	4700 ohms
R34	1000 ohms
R35	560 ohms
R36	4.7 ohms
R37	820 ohms
R38	2200 ohms
S1	DPDT pushbutton switch
S2	SPDT pushbutton switch
SCR1	C10681 silicon controlled rectifier
T1	12-volt, 500-mA transformer
TS1	8-contact screw-type terminal strip
Misc.	Perforated or printed circuit board; suitable chassis box; hookup wire; machine hardware; solder; etc.

Note: The following items are available from Netronics Research & Development, Rte. 6, Bethel, CT 06801. Complete kit of parts with instructions for one-way system which includes separate encoder and decoder, wood case for decoder, and plastic case with visor clip for encoder (Kit N5000), $44.95 + $1.50 postage. Separate encoder kit with plastic case, visor clip and instructions (Kit N6000), $14.95 + $1 postage and handling. Combination encoder/decoder for two way system which includes all parts, instructions, a wood case and built-in heavy-duty speaker (Kit N7000), $49.95 each + $1.50 postage and handling. Also available separately: decoder pc board, $5.25; encoder pc board, $3.95; reed relay, $2.60; 12-volt transformer, $2.75; $3 encoder switch and plunger, $1.30. Add $1 postage and handling for separate parts orders.
Once \(I1 \) comes on while \(S3 \) is depressed, \(I2 \) should blink about half way through the tone burst. Adjust \(R39 \) so that \(I1 \) turns off just after \(I2 \) blinks. Once this adjustment has been made, depress RESET switch \(S2 \).

Connect an ohmmeter between terminals 2 and 3 on \(TS1 \). The meter should indicate an open circuit. With power switch \(S1 \) off, the ohmmeter should indicate short circuit (zero ohms) with \(S1 \) on. Depress \(S3 \) for the full duration of the tone burst; \(I1 \) should turn off immediately after \(I2 \) blinks and the meter should indicate a short circuit. Depress \(S2 \); the relay's contacts will open and the meter should indicate an open circuit. If you do not obtain the proper results, repeat the alignment procedure until you do.

In Use. You can recalibrate the Call Selector system for any frequency between 1000 and 4000 Hz and for any tone duration between 1 and 4 seconds. Sensitivity control \(R1 \) can be set for any desired signal level threshold. In practice, you use the microphone to
depress S3, holding the mike's pickup element directly over the Call Selector's speaker for the entire duration of the tone burst. This keeps the activating signal modulating the carrier at a constant level because the mike will be stationary with respect to the speaker.

There are several different ways to connect the system to your transceiver, three of which are illustrated in Fig. 4. If you plan to use the decoder with an external speaker and do not want to touch the "insides" of the transceiver, follow the wiring scheme detailed in Fig. 4A. Use a length of shielded cable to transfer the audio signal from the receiver's external-speaker jack to the decoder's terminal strip. Terminate the cable with a plug that mates with the transceiver's jack.

You can wire the system to the transceiver's internal speaker as shown in Fig. 4B. This connection requires a slight rewiring of the transceiver's circuit. Break the connection between the audio output stage and the speaker. Rewire the circuit as shown, using shielded cable. When the relay contacts close, the audio path to the internal speaker will be completed.

The diagram shown in Fig. 4C is for systems in which the encoder and decoder are assembled on the same board. This wiring scheme allows you to use the decoder/encoder's built-in speaker as an encoder transducer and as the transceiver's external speaker.

For all three interconnections detailed in Fig. 4, the decoder can be bypassed by placing S1 in the off position. The receiver's audio signal will then be applied directly to the internal or external speaker.
A N INCREASINGLY important part of amateur radio operation these days is the vhf/uhf repeater (automatic relay station) and its common accessory, the autopatch. A repeater is usually located on top of a high building, a tower, or a mountaintop and in many cases it is able to increase the usual 3-to-10-mile range of low-power equipment to more than 100 miles.

An autopatch is an automatic telephone patch that enables repeater users to initiate and dial telephone numbers from a vehicle or hand-held transceiver without assistance from a phone operator or other amateur stations. An autopatch is legal as long as it is not used to avoid toll charges and approved interface equipment connects the repeater to the phone line. Most repeaters operate under remote control (not legal for CB radio use) and many of them have autopatch provisions. There must be a way of remotely turning these systems on and off in case of equipment malfunction or illegal use. Also, the users of autopatch must have a way of connecting or disconnecting the telephone line to the repeater phone patch and dialing the desired number.

One of the easiest ways to accomplish these jobs is by using the Touch Tone® approach. The Touch Tone system uses eight different audio tones at frequencies carefully selected not to be harmonically related. The keyboard is arranged in rows (horizontal) and columns (vertical) so that, when a particular key is depressed, two tones are generated—one for the row and the other for the column. These tones are then transmitted to the remote decoding equipment that “recognizes” the tones being transmitted as one of ten digits or six special codes (*, #, A, B, C, D). The four letters are extra keys and are not the same as those on conventional number keys. They are used in military systems and some computers.

Recently, the Mostek Corp. announced two dual-tone, multi-frequency (DTMF) generators, MK5085 and MK5086, that can be used to build a low-cost (under $25) Touch-Tone encoder. The only difference between the two IC’s is in the method of keyboard entry. In the MK5086 (used in this project), the row and column keys are switched to the positive supply when a key is operated. The MK5085 uses a calculator-type scanning technique that allows the use of single-pole switches on the keyboard.

Circuit Operation. The complete circuit is shown in Fig. 1. The reference frequency is determined by a conventional 3.579 MHz color-TV crystal, with R5 used as the bias resistor. Operating one of the pushbuttons on the keyboard starts the oscillator. (See box for details of IC operation.)

The TONE output of IC1 (pin 16) is coupled to modulation level potentiometer R3, whose rotor is connected through R4 and C3 to the transmitter microphone input. The circuit consisting of IC2, an audio power amplifier, is used to drive an internal loudspeaker for monitoring the tones, while R2 determines the speaker volume.

Operational amplifier IC3 is used as a 0.4-second timer for the transmit hold-on delay. The MUTE output (pin 10) of IC1 is held to ground when no key is depressed. Thus capacitor C4 is discharged through R6 to cause the non-inverting (+) input of IC3 to be at ground. The inverting input (−) is at a voltage level determined by the setting of hold-on time potentiometer R7.
Since the voltage at pin 5 is lower than the voltage at pin 4, the output of IC3 (pin 10) is at ground so both Q1 and Q2 are turned off. These two transistors are connected in a Darlington configuration and are used to key the push-to-talk (PTT) line of the transmitter when they are turned on.

When a key is depressed, the mute output of IC1 is pulled up to the positive supply. Diode D1 becomes forward biased and C4 is charged (within several milliseconds) to the positive supply. The (+) input of IC3 is now at a higher voltage than the (−) input so the output of IC3 switches to the positive supply. Resistors R8 and R9 reduce the drive to the transistors. When Q1 turns on, so does Q2 and the PTT line is pulled down to the ground level. This causes the transmitter to key and transmit the tone signal.

When the key is released, the mute output drops, D1 becomes reverse biased, and C4 begins to discharge through R6. As this happens, the voltage on the (+) input of IC3 decreases until it is no longer greater than the voltage on the (−) input. At this time, the output of IC3 switches to the ground level, thus turning off the two transistors and stopping the transmitter. Capacitor C4 will not discharge fast enough for this to happen as long as the keys are operated reasonably fast. Complete discharge will occur after the last key entry and depends on the setting of R7.

The value of resistor R4 is the coarse adjustment of the tone level. Depending on the transmitter used, the value of R4 can range from 1000 to 100,000 ohms.

Some older types of equipment may require high current for keying, or may key the positive supply instead of ground. In this case, a low-current relay can be used in the PTT line (connected to the 12-volt PTT line), with the relay contacts keying the transmitter.

View of the inside of the author's prototype.

PARTS LIST

C1—0.01μF, 50-V disc capacitor.
C2—0.01μF, 50-V electrolytic capacitor
C3—0.1μF, 50-V disc capacitor
C4—10μF, 25-V electrolytic capacitor
D1—IN914 diode
D2—1N758, 10-V zener diode
IC1—MK5086, DTMF generator (Mostek)
IC2—LM380 audio power amplifier (National)
IC3—741 op amp
KEYBOARD—Digitran Corp. KLS4 (12 keys); KL0049 (16 keys)
Q1, Q2, Q3—2N2222 transistor (or similar)
R1—1-megohm resistor
R2—100,000-ohm pc potentiometer (see text)
R3—50,000-ohm pc potentiometer
R4—47,000-ohm resistor (see text)
R5—10-megohm resistor
R6—270,000-ohm resistor
R7—10,000-ohm pc potentiometer
R8, R9—4700-ohm resistor
R10—180-ohm resistor
SPKR—8-ohm, small diameter loudspeaker
XTAL—3.57 MHz color TV crystal
MISC—Suitable chassis 4¾” x 2½” x 1½” (Vero Co. #90-20-087), 4-lead flexible cable, mounting hardware, etc.

Note: The following is available from S. D. Sales, Box 28810, Dallas, TX 75228: kit of all parts except chassis, speaker, and interconnecting cable at $22.50 plus $0.75 for postage.

Fig. 1. Outputs of IC1 drive audio amplifier and operate transmitter PTT circuit.
IC OPERATION

As shown in the block diagram of the MK5086, the row and column select keys are switched to the positive supply in the standard 2-of-8 format. (One key operates both the selected row and column. The output of the crystal oscillator is divided by two counters—one for the rows and the other for the columns—and the amount of frequency division is determined by the keyboard entry switching.

The two waveforms (row and column) are mixed in an op amp (on chip) to produce a true dual-tone signal. This is fed to a bipolar transistor (on chip) that supplies enough current to drive a 1000-ohm load to a typical 450 mV for the row tones and 640 mV for the column tones. (Telephone specifications require that the column tones be 2½ dB greater in amplitude than the row tones.)

Besides the tone output, the MK5086 has outputs called XMIT (pin 2) and MUTE (pin 10). The XMIT output is an npn bipolar transistor that is turned on and pulls to the positive supply when no keys are operated. It is an open circuit when any key is depressed. The MUTE output is a standard CMOS circuit that is at the negative supply (when used) and switches to the positive supply when a key is depressed.

Construction. The entire circuit can be assembled on a small pc board. An etching and drilling guide and component placement are shown in Fig. 2. Observe the polarities of diodes and polarized capacitors. Sockets for the IC's are optional. Note that IC1 is a CMOS device and must be handled with the usual precautions. The IC comes in a shorting carrier and should be kept in the carrier until time for installation. Handle it only by the edges of the plastic package. In soldering the CMOS IC, use a clip lead between the soldering iron tip and the positive foil pattern on the board. Note also that volume control R2 is mounted on the control board. If remote control is needed, use an outboard potentiometer and run the connecting leads to the R2 pads on the board.

After all components are installed, connect the leads for the keyboard and accessory cable. The latter should have four leads (PTT, microphone, ground, +12 V) and should be as long as necessary for the installation. The physical size of the keyboard will determine the finished size of the project and the case used to hold it. The 9-pin connector shown in the photograph was used to connect the project to an IC-230 transceiver.

Operation. After assembly, power up the system and determine the correct value for the combination of R3 and R4 to produce the required modulation level.

The dialer enables hands-off operation without annoying carrier drop between each dialed digit. The amount of hold-on time can be set by adjusting R7. The speaker volume is adjusted by R2.

The dialer should produce no r-f interference. A 5-watt rig has been keyed with its antenna resting on the dialer box with no discernable effect.

Because each section of the country has different rules regarding how to use repeaters, you must check your local repeater group for details before using the dialer.
One look at the new Pioneer SX-1250, and even the most partisan engineers at Marantz, Kenwood, Sansui or any other receiver company will have to face the facts.

There isn't another stereo receiver in the world today that comes close to it. And there isn't likely to be one for some time to come.

In effect, these makers of high-performance receivers have already conceded the superiority of the SX-1250.

To begin with, the SX-1250 is at least 28% more powerful than any other receiver ever made. Its power output is rated at 160 watts per channel minimum RMS at 8 ohms from 20 to 20,000 Hz, with no more than 0.1% total harmonic distortion.

And, for critical listening, no amount of power is too much. You need all you can buy.

To maintain this huge power output, the SX-1250 has a power supply section unlike any other receiver's, with a large toroidal-core transformer and four giant 22,000-microfarad electrolytic capacitors.

But power isn't the only area in which the SX-1250 excels. The preamplifier circuit has an unheard-of phono overload level of half a volt (500 mV). This means that no magnetic cartridge in the world can drive the preamp to the point where it sounds strained or hard. And the equalization for the RIAA recording curve is accurate within ±0.2 dB. A figure unsurpassed by the costliest separate preamplifiers.

Turn the tuning knob of the SX-1250, and you'll know at once that the AM/FM tuner section is also special. The tuning mechanism feels astonishingly smooth, precise and solid.

FM reception is loud and clear even on weak FM stations because the tuner combines extremely high sensitivity with highly effective rejection of spurious signals.

Of course, the Pioneer SX-1250 carries a price tag commensurate with its position at the top. But if you seek perfection you won't mind paying the price.

If, on the other hand, you'd mind, look into the new Pioneer SX-1050 or SX-950. They're rated at 120 and 85 watts, respectively, per channel (under the same conditions as the SX-1250) and their design is very similar. In the case of the SX-1050, virtually identical.

That means you don't just come to Pioneer for the world's best.

You also come to us for the next best.

For informational purposes only, the SX-1250 is priced under $900. The actual resale price will be set by the individual Pioneer dealer at his option.

Anyone can hear the difference.
<table>
<thead>
<tr>
<th></th>
<th>PIONEER SX-1250</th>
<th>MARANTZ 2325</th>
<th>KENWOOD KR-9400</th>
<th>SANSUI 9190</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power, Min. 20Hz, Max. 20,000 Hz</td>
<td>160W+160W</td>
<td>125W+125W</td>
<td>120W+120W</td>
<td>110W+110W</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>0.1%</td>
<td>0.15%</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Phono Overload Level</td>
<td>500 mV</td>
<td>100 mV</td>
<td>210 mV</td>
<td>260 mV</td>
</tr>
<tr>
<td>Input Phono/Aux/Mic</td>
<td>2/1/2</td>
<td>1/1/no</td>
<td>2/1/missing</td>
<td>1/1/missing</td>
</tr>
<tr>
<td>Tape Mono/Duplex</td>
<td>2/yes</td>
<td>2/yes</td>
<td>2/yes</td>
<td>2/yes</td>
</tr>
<tr>
<td>Tone</td>
<td>Twin Tone, Bass, Treble-Treble</td>
<td>Bass-Mid-Treble</td>
<td>Bass-Mid-Treble</td>
<td>Bass-Mid-Treble</td>
</tr>
<tr>
<td>Tone Defeat</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Speakers</td>
<td>A,B,C</td>
<td>A,B</td>
<td>A,B,C</td>
<td>A,B,C</td>
</tr>
<tr>
<td>FM Sensitivity (1kHz)</td>
<td>1.5 μV</td>
<td>1.8 μV</td>
<td>1.7 μV</td>
<td>1.7 μV</td>
</tr>
<tr>
<td>Selectivity</td>
<td>80 dB</td>
<td>80 dB</td>
<td>80 dB</td>
<td>55 dB</td>
</tr>
<tr>
<td>Capture Ratio</td>
<td>1.0 dB</td>
<td>1.25 dB</td>
<td>1.3 dB</td>
<td>1.5 dB</td>
</tr>
</tbody>
</table>
PROTECTING YOUR POWER SUPPLY

Components in modern power supplies cost too much to leave them unprotected from shorts, overloads, etc.

BY ROBERT C. ARP, JR.

The cost of modern sophisticated power supplies is high enough to warrant as much consideration for their protection as that given to their rectification and regulation circuits. While fuses and circuit breakers have been the traditional means of protecting power supplies, they are often not fast enough to prevent solid-state devices in newer supplies from destroying due to overloads and the like. The devices most able to protect semiconductors are other semiconductors.

Here are ways to protect a power supply from the three primary causes of failure: shorted output, shorted filter capacitors, and excessive current through the load. There are two general methods of protection. The first is the control of the transformer’s primary circuit. The second is the removal of base drive from a transistor in series with a load.

In either case, we will assume that the protection circuit is part of a more complex power supply. High-current power supplies are used in some examples simply to indicate that the methods of protection are not limited to low-current applications. Obviously, devices with lower current and power ratings can be used where possible.

Primary Circuit. The block diagram in Fig. 1 shows a basic method of power supply protection. Characteristic of this arrangement is the triac in series with the primary of the transformer. During normal operation, the trigger control allows the trigger circuit to apply a brief gate signal to the triac for every alternation of the ac line voltage. After the triac is turned on by the gate signal, it remains on for the complete half cycle until the zero-crossing point is reached at the end of the alternation. If the trigger control inhibits the trigger circuit while the triac is conducting, the triac cuts off when the line voltage approaches zero. It remains off until another gate signal is applied. Hence, the ac input to the transformer can be removed within a half cycle of the line voltage by designating the transformer’s secondary circuit to inhibit the trigger circuit when a filter-capacitor short or supply output overload occurs.

The circuit shown in Fig. 2 is one type of control technique used in the primary circuit of a power supply. Under normal conditions, the gate of triac Q1 receives a brief gate signal from the IC2 zero-voltage switch at the beginning of each line alternation while the line voltage is near zero. Resistor R1, in series with the MT2 terminal of Q1 and gate terminal of Q2, permits a continuous flow of alternating current through the gate of Q2. The primary of T1, in series with Q2, receives the full ac line voltage under these conditions.

Zero-voltage switch IC2 can be used to provide pulses that are synchronized with the time of zero voltage in the ac cycle to the gate of a triac. Triac firing can be inhibited by the application of a positive (TTL-compatible) voltage to pin 1 of IC2.

The triple 3-input NAND gate used for IC1 converts short-circuit logic-0 conditions to a logic-1 condition for inhibition of IC2 (A 5-volt dc supply was used for the IC’s power and, consequently, for the inhibit signal.) The inhibit signal appears at pin 1 of IC2 when points A or B (at Q3) are shorted to point O (common). With IC2 inhibited, Q1 cannot provide ac to flow through the gate of Q2. When the line voltage falls to zero at the end of the alternation, during which the short occurs, Q2 will cut off and remain off. After the short condition is removed, Q1 turns on with the next gate signal from IC2 and the system returns to normal operation.

If no filter capacitors were used (as in a simple battery-charging circuit), the self-resetting action would take place within one alternation of ac line voltage. Unfortunately, the inclusion of filter capacitors in the secondary circuit causes a resetting time lag on the order of one second for each 1000 µF used. If the resetting time is of no concern, no other consideration need be given this point. If you desire quick resetting time, you can do one of two things: First, include a dc reset switch to momentarily break the connections between points A and B and IC2. Secondly, you can omit the connection between point A and IC1 and include an isolation diode in the secondary circuit (Fig. 3); IC2 will not, however, be inhibited by a shorted filter capacitor.

The circuit in Fig. 2 will not reset if a short occurs across the output terminals while a load is connected. In such a case, the load must be removed, or a reset switch must be used as explained above.

Although Q2 will remove power from T1’s primary immediately when the output terminals of the supply are shorted, a spark will occur. The amplitude of the spark can be considerably reduced by incorporating the transistor stage shown in Fig. 3.

Removing Base Drive. If a transistor is placed in series with the output terminals of a power supply, an ar-
Fig. 2. One type of control technique used in the primary circuit.

rangement commonly used in series voltage regulators, the secondary circuit can be turned off by any action that removes base drive from this transistor. This can be done by shunting the base to ground with an SCR, optical coupler, or another transistor.

A method of removing base drive with an SCR when a desired maximum flow of current is exceeded is shown in Fig. 4. By varying R_g and R_s, the transistor can be cut off at any desired level of current flowing through the output of the supply.

Under normal operating conditions, the transistor is biased on by R_h. The current flowing through the output develops a voltage drop across R_h. Because a very low amplitude gate voltage is needed to trigger on the SCR, the resistance and power rating of R_h can be relatively small for high-current applications. The voltage drop across R_h is used to provide a gate signal for the SCR that is proportional to the level of the current flowing through the load. If the resistance of R_h is high enough, the level of load current at which the SCR shunts the transistor's base drive to ground can be varied by R_h. When the voltage drop across R_h is sufficient to trigger on the SCR, the transistor cuts off within microseconds. (A reset switch must be provided as shown to return the circuit to normal operation.)

Because of R_h, the transistor must operate in the active region. If the resistance of R_h is too low, the SCR will be required to handle a large current. Conversely, if the resistance of R_h is too high, the transistor will be forced to dissipate considerable power. Usually, a value for R_h must be chosen to keep the transistor's power dissipation and the current through the SCR at reasonable levels. The necessary current rating of the SCR can be determined (after R_h is chosen to provide the desired transistor power dissipation) by dividing the input voltage by the value of R_h.

Assume you're working with the following components and conditions: $V_{in} = 34$ volts dc, $C = 18,300 \mu F$ (40 V), $R_h = 30$ ohms (50 W), $R_v = 1780$ ohms, $R_s = 2.2$ ohms (220 W), $SCR = 2N682$, and $Q = HEP S7000$. Here, the SCR will trigger on when the current reaches 10 A. You can also measure the following parameters: $V_{TR} = 11.5$ V dc, $V_{HF} = 1.5$ V dc, $I_h = 350$ mA, and $I_{SFR} = 1.1$ A. And the power dissipation of the transistor can be found by using the formula $P_{TR} = V_{TR}I_h$, which would yield 115 watts.

Light-emitting diodes can be switched on and off in nanoseconds, and optical couplers with transistor detectors can switch at speeds of 2 to 5 μs. It is logical, therefore, to consider a protection system based on these high-speed devices. A typical optical coupler protection circuit is shown in Fig. 5.

It is not necessary for the series transistor in Fig. 5 to dissipate large amounts of power because this transistor (Q_1) can be operated in or near the saturation region. Heavy base drive is applied to Q_1 through Q_2 according to the formula $I_{hQ2} = I_{hQ1} - h_{feQ1}$, where I_{hQ1} is the minimum base current that assures saturation of Q_1, I_{hQ2} is the maximum expected collector current, and h_{feQ1} is the minimum expected h_{fe}. Transistor Q_2 is used to supply base drive for Q_1 so that only Q_2's relatively small base current need be shunted to ground to turn off Q_1.

Fig. 3. Isolation diode between filter capacitor and transistor permits instantaneous reset.
There are many variations of the circuit shown in Fig. 5, but we will limit our discussion to this specific circuit configuration. It should be noted that Rs can have a value much lower than 1 ohm, which results in a lower wattage rating for this resistor. The optical coupler should consist of an infrared LED and a silicon transistor detector.

After assembling the circuit as shown, disconnect the anode load of the LED from point A. Power up the supply, and monitor \(I_{\text{ON}} \) and \(V_{\text{ON}} \) while decreasing \(R_s \) until \(Q1 \) goes into saturation. Then adjust \(R_s \) until \(Q1 \) is operating in the active region, just short of saturation. (This speeds up the cutoff action of \(Q1 \) and keeps the photodetector current low.) When adjusting \(R_s \), monitor \(I_{\text{ON}} \), to make sure you don't exceed the current rating of the photodetector.

Connect the LED's anode back to point A and short the output of the supply. Adjust the \(R_{\text{RES}} \) control for an \(I_{\text{ON}} \) short-circuit current of 15 mA. (Actually, the short-circuit current can be set to about 1 mA, but the adjustment of \(R_{\text{RES}} \) becomes critical for currents below 15 mA.)

With the adjustments performed as described and a 5-ohm value for \(R_i \), \(I_{\text{VH}} \) would be 640 mA. Reducing \(R_i \) to 3.33 ohms would drop \(I_{\text{VH}} \) to 27 mA and \(V_{\text{VH}} \) to 4.4 V. This yields a 0.195-W \(P_{\text{VH}} \). This current-limiting circuit produces an \(I_{\text{VH}} \) versus \(R_i \) curve with a very steep slope, which results in very little overshoot of the desired maximum current.

With \(R_i \) and \(R_{\text{RES}} \) properly adjusted, \(Q1 \) will operate in or near the saturation region with a heavy base drive supplied by \(Q2 \). If the current through \(R_s \) exceeds the maximum for which the circuit is adjusted, determined by the resistance of \(R_s \), \(R_B \), and \(R_{\text{RES}} \), the LED will emit enough light to reduce the resistance of the photodetector. The result is that \(Q2 \)'s base drive will be shunted to ground and the transistor will be cut off.

Because this circuit is very temperature sensitive, a reset switch must be provided as shown. When power is first applied to the system, no current flows through \(Q2 \) until the reset switch is operated to momentarily disconnect \(R_s \) from ground. After a few minutes warm-up, the system is self-resetting.

A Current Limiter. The self-resetting circuit shown in Fig. 6 lacks some of the advantages of the previous circuits. Transistor \(Q1 \) is again in series with the load, while \(Q2 \) supplies sufficient base current to keep it operating in the saturation region for a significant range of loads.

In the following discussion, we will assume that a wide range of loads will be applied to the output of an unregulated power supply rated at 40 amperes. (If the load is to be fixed, circuit components can easily be chosen so that \(Q3 \) provides a sharp turn-off of \(Q1 \) if \(I_{\text{VH}} \) increases beyond a chosen maximum. However, if the load is variable, \(R_i \) must be selected so that \(Q1 \) passes the desired range of currents, with \(R_B \) and \(R_s \) chosen to provide rapid turn-off for the loads that will cause excessive current to pass through \(Q1 \).)

The graphs shown in Fig. 7 are plots of \(I_{\text{VH}} \) versus \(R_i \) for the circuit shown in Fig. 6. From plot A, it can be seen that as \(R_i \) is decreased (increased load), the current through \(Q1 \) increases to a maximum of 14.5 A when \(R_i \) is 0.3 ohm. Decreasing \(R_i \) further yields a reduction in \(I_{\text{VH}} \) instead of an increase. This \(I_{\text{VH}} \), decrease with increasing load continues until \(R_i \) is 0.25 ohm, at which point the circuit becomes unstable. When a load of 0.25 ohm is connected to the supply's output, \(I_{\text{VH}} \) momentarily goes to 12 A, after which \(Q1 \) turns off and \(I_{\text{VH}} \) reduces to zero. For load resistances less than 0.25 ohms, \(Q1 \) is in the cutoff region and \(I_{\text{VH}} \) is zero.

Plot B, an expanded view of \(I_{\text{VH}} \), shows how the \(Q1 \) collector current varies when load resistance approaches zero. When \(R_i \) is 0.3 ohm, \(I_{\text{VH}} \) is at the maximum 14.5-A value. For loads between 0.3 and 0.25 ohm, \(I_{\text{VH}} \) decreases almost linearly. Load resistances of less than 0.25 ohm are a virtual short circuit at the output terminals of the supply and cause \(Q3 \) to keep \(Q2 \) at cutoff.

The operation of the circuit quite

Fig. 4. A gate signal for the SCR is developed by the current through \(R_s \).

Fig. 5. Opto-coupler controls \(Q2 \) on basis of current in \(Q1 \).
Fig. 6. A self-resetting current limiter with short-circuit protection.

TABLE I—CIRCUIT PARAMETERS FOR DIFFERENT LOAD RESISTORS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_L = 15 ohms</td>
<td>V_{BE}</td>
<td>0.61 V</td>
<td>0 V</td>
<td>1.49 V</td>
<td>16 V</td>
<td>15.8 V</td>
</tr>
<tr>
<td>V_{BE}</td>
<td>−0.143 V</td>
<td>0.74 V</td>
<td>1.3 V</td>
<td>15.8 V</td>
<td>15 V</td>
<td>−0.35 V</td>
</tr>
<tr>
<td>V_{BC}</td>
<td>0.75 V</td>
<td>0.74 V</td>
<td>0.17 V</td>
<td>0.42 V</td>
<td>0.385 V</td>
<td>0.65 V</td>
</tr>
<tr>
<td>I_C</td>
<td>1.09 A</td>
<td>38 mA</td>
<td>0</td>
<td>23 mA</td>
<td>14 µA</td>
<td>48 mA</td>
</tr>
<tr>
<td>V_T</td>
<td>9 mA</td>
<td>46 mA</td>
<td>0</td>
<td>15 µA</td>
<td>9 µA</td>
<td>0.7 mA</td>
</tr>
<tr>
<td>I_{RB1}</td>
<td>32 µA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{RB2}</td>
<td>32 µA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{BE}</td>
<td>16 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_L</td>
<td>15.9 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_D</td>
<td>0.7 W</td>
<td>0 W</td>
<td>0 W</td>
<td>0.37 W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A) R_L = 15 ohms
(B) R_L = 0

Fig. 7. In (A) load varies from 15 to 0 ohms; (B) load approaches zero.

November 1976
standard 20,000-ohm potentiometer can, therefore, be used for \(R_h \).

The adjustment of \(R_h \) is accomplished by connecting point 1 of the pot to junction A and installing a resistance decade box set to zero ohms as \(R_h \). With a 15-ohm load connected to the output of the supply, \(I_{\text{VH}} \), should measure 1 A. (The collector current for Q1 should be monitored during all adjustments. Also, the power supply should be shut off when installing and removing ammeters.) Start with a 0-to-1-A ammeter and adjust \(R_h \) until \(I_{\text{VH}} \) is nearly zero. Continue in this manner, using a more sensitive ammeter, until \(I_{\text{VH}} \) is exactly zero.

Remove the ammeter from the supply and connect the base of Q3 as shown in Fig. 6. The decade box in the emitter leg of Q3 should still be set to zero. Short the supply’s output terminals; \(I_{\text{VH}} \) should drop to zero. If the current through the collector of Q1 doesn’t drop to zero, \(I_{\text{VH}} \) or \(R_h \) has not been set to zero. Remove the short from across the supply’s output, leaving only the 15-ohm load. The collector current of Q1 should remain at zero; if it doesn’t and the circuit self-resets, no \(R_h \) is needed. (This is not likely to occur.) With no self-reset, increase \(R_h \) in 1-ohm steps until \(I_{\text{VH}} \) goes back to 1 A. Short the output of the supply again; \(I_{\text{VH}} \) should go to zero and the circuit should restart when the short is removed.

The higher the resistance of \(R_h \), the greater will be the off current of Q1. With repeated trimming of \(R_h \) and \(R_h \), the collector current of Q1 when the supply’s output is shorted can be brought down to 5.4 mA. The circuit can be made much less dependent on the setting of \(R_h \) and \(R_h \) can be zero, if a reset switch is used to return the circuit to normal operation after an overload. In this case, \(R_h \) would be adjusted as before, and a reset switch would be operated to momentarily break the \(R_h \) connection to junction A. The pot could then be trimmed to yield a minimum collector current in Q1.

The capacitor shown across the input of the circuit in Fig. 6 is not part of the protection system. It is simply representative of the filter capacitor in the power supply. Under normal conditions, Q2 supplies the base current to Q1. Both Q1 and Q2 operate in the saturation region to assure that full power is delivered to the load. The A section of Table I shows the measured and calculated parameters for Q1, Q2, and Q3 for the 15-ohm load, \(R_h \).

If \(R_h \) is reduced to zero (shorted output terminals), Q3 will conduct and Q1 and Q2 will be driven into cutoff. The B section of Table I shows the parameters for the transistors when \(R_h \) = 0.

For intermediate values of \(R_h \), the transistors pass through all three regions of operations. These regions and the loads that cause the transistions are listed in Table II. When \(R_h \) is reduced to 1.66 ohms, enough forward bias is applied to the base of Q3 to bring it out of cutoff. As \(R_h \) is further reduced, \(I_{\text{VH}} \) increases until, finally, when \(R_h \) is 0.296 ohm, Q3 is shunting a large enough portion of Q2’s base drive to ground to cause both Q2 and Q1 to come out of saturation and begin operating in the active region. Eventually, when \(R_h \) is reduced to less than 0.25 ohm, Q3 is driven into saturation and Q2 and Q1 go into cutoff.

Because Q1 and Q2 must operate in the active region, even for so narrow a range of loads as from 0.296 to 0.25 ohm, the voltage drop across these transistors over this range causes the power dissipation of the devices to increase tremendously while they are operating in the active region. Plots of \(P_n \) versus \(R_h \) for Q1 and Q2 are shown in Fig. 8. Plot A shows that, for maximum protection, Q1’s \(P_n \) rating should be greater than 80 watts at the desired operating temperature. Plot B shows that Q2’s \(P_n \) rating should be greater than 5 watts.

Although the \(P_n \) ratings of Q1 and Q2 must be much greater than is necessary while the transistors are operating strictly at saturation, they need not handle the power dissipation that would be necessary in an unprotected series voltage regulator. For example, with a 14.5-A \(I_{\text{VH}} \), and a 16-volt \(V_{\text{in}} \), the \(P_n \) rating of a transistor used as an unprotected series regulator would have to be 232 watts at the operating temperature under shorted conditions. This would require a very expensive transistor.

Conclusion. We have proposed only a few of the many possible ways of protecting the more expensive and fragile components found in modern power supplies. Proper utilization of the proposed circuits, individually or in combination, will produce protection systems that are relatively inexpensive and reliable.

<table>
<thead>
<tr>
<th>TABLE II—OPERATING REGIONS FOR DIFFERENT LOAD RESISTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_h)(Ohms)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Q1</td>
</tr>
<tr>
<td>15 saturation saturation cutoff</td>
</tr>
<tr>
<td>1.66 saturation saturation active</td>
</tr>
<tr>
<td>0.296 active active active</td>
</tr>
<tr>
<td>0.25 unstable unstable unstable</td>
</tr>
<tr>
<td>0 cutoff cutoff saturation</td>
</tr>
</tbody>
</table>

Fig. 8. Power vs load for Q1 (A) and Q2 (B).

AmericanRadioHistory.Com
Digital Electronic
"Westminster"
Clock

BY ALAN ROEHL

The famous "Big Ben" tune
is played every hour with
portions every 15 minutes.

NOVEMBER 1976

by a 10-stage Johnson counter formed
by IC8 (Fig. 3). This counter is driven
by the 1-Hz output from IC19 so that
each tone has a 1-second duration.

Since the first half of the melody is
identical to the second half, a single
10-stage counter is adequate to pro-
gram the eight tones and two pauses

THERE ARE digital electronic
clocks with all sorts of
variations—alarms, radios, calendars,
etc. Now, here is one for the music
lover. It plays the famous Westminster
chime tune. On the quarter-hour, the
first ¼ of the tune is played; on the half
hour, ½ of the tune; on three-quarters,
¾ of the tune; and the full tune on the
hour. On the hour, the tune is followed
by a monotone chiming of the hour. By
using "surplus" parts, you can build
this clock for a very low cost, though it
does have 19 IC's.

How It Works. The complete circuit
of the clock is shown in three parts in
Figs. 1 to 3. The clock element is IC19
an MM5316 IC that drives conven-
tional fluorescent readouts DIS1
through DIS4. This clock IC was
selected because it has continuous
outputs that minimize the chime cir-
cuit interface requirements. If you
select a clock IC that has multiplexed
outputs, additional circuits will be re-
quired. The fluorescent readouts are
used because they can be driven di-
rectly by the MM5316 and they require
very little operating power.

In Fig. 1, IC1 and IC2 decode the
conditions of the 15, 30, 45, and 00
minutes. The outputs are OR'd by part
of IC4, whose output then initiates a
one-shot circuit formed by C1, R12,
and part of IC3 (Fig. 2). The pulse from
this one-shot sets a flip-flop formed by
two elements of IC5, which in turn,
activates the tone output through part
of IC9. The one-shot pulse also resets
the remainder of the chime circuits.

The Westminster chime sequence
uses four different tones. Instead of
having four different frequency oscil-
lators which may be difficult to keep
correctly tuned, a single tone oscil-
lator formed by IC15 (Fig. 3) is used,
with its output divided down to form
the four required tones. In this way,
even if the basic tone oscillator fre-
quency were to vary, the relationship
between the four Westminster tones
will be maintained and a harmonious
melody is ensured. The frequency di-
vision is performed by IC11 and IC12,
with portions of IC13, IC14, IC15, and
IC4. The output of counter IC3, pin
12 (Fig. 2), consists of narrow pulses.
These are used to toggle IC9, which
divides the frequency by two and pro-
duces a square-wave output. The lat-
ter is filtered by R20 and C7 and is
used to drive Q1, which is the audio
output stage.

The tone sequence is programmed
Construction. The prototype was constructed on perforated board having 0.1" hole centers, with sockets used for all IC's and "flea clips" for other components. A wiring pencil (or other means) can be used to make the various interconnections. Handle all CMOS-PMOS IC's with care to avoid static damage, although they do have internal protection. Note that, for all CMOS devices, any unused inputs must be connected to either supply voltage—not left "floating."

Operation. With the clock completely assembled, recheck all wiring for possible errors. Then supply power to the clock and check the operation of the function switches—RUN, HOLD, FAST, SLOW. The display should be cycled through a complete "day" to ensure that the proper counting takes place. Then the clock should be cycled to 1:00 PM. At this point, the chime circuit should work.

PARTS LIST

- C1 through C4—0.001-µF capacitor
- C5-C6—0.01-µF capacitor
- C8—22-µF, 15-V electrolytic capacitor
- C9—1000-µF, 25-V electrolytic capacitor
- D1-D2—IN4004
- D3—14-V zener diode
- D15 through D5—Fluorescent 7-segment display (Tung-Sol DT1704—DT1705)
- IC1, IC2, IC4—4002 CMOS dual 4-input NOR gate
- IC3, IC15—4049 CMOS hex inverter
- IC5, IC10, IC14—4001 CMOS quad 2-input NOR gate
- IC6, IC13—4011 CMOS quad 2-input NAND gate
- IC7—4012 CMOS dual 4-input NAND gate
- IC8, IC11, IC12—4017 CMOS decade counter/divider
- IC9, IC16—4013 CMOS dual D flip-flop
- IC17, IC18—4029 CMOS presettable up/down counter
- C19—MM5316 clock IC
- R1 through R9—470,000-ohm, ½-W resistor
- R10 through R15—100,000-ohm, ½-W resistor
- R16—270-ohm, ½-W resistor
- R17—100-ohm, ½-W resistor
- R18—10-megohm, ½-W resistor
- R19, R20—2000-ohm, ½-W resistor
- S1, S2—Single-pole normally open push-button switch
- S3, S4—Snap switch
- SPKR—8-ohm (or more) speaker
- T1—20-V CT at 100-mA; 6.3-V at 50-mA transformer
- Misc. Perforated board, flea clips, IC sockets, suitable enclosure, mounting hardware, etc.
Most people think there are only two levels of careers in electronics: the technician level and that of the degree engineer.

There is, however, a third and very important level. It is that of the engineering technician or *practical* engineer. The growing importance of this career level has created what might well be called the "New Professional" in electronics.

If you look at the various levels of employment in electronics, you will understand why this "New Professional" is so important.

The average technician is a person who has had vocational training in electronics. He understands the basic principles of electronics so he can troubleshoot, repair and maintain equipment. He usually works under close supervision in performing his duties.

The engineer has college training in electronics. He usually supervises technician personnel and is responsible for planning and developing of electronic equipment and systems. Frequently, however, engineers are more heavily trained in the scientific principles of electronics and less in their practical application.

The engineering technician, by contrast, is a specialist in the practical application of electronics. His training usually consists of a two-year college program in electronic engineering technology. In many organizations, the engineering technician handles several of the responsibilities of the degree engineer. He often has the title of engineer.

CREI programs are designed to give you at home the same level and depth of training you receive in a two-year college program in electronic engineering technology. CREI programs are, in fact, more extensive than you will find in many colleges. And CREI gives you the opportunity to specialize in your choice of the major fields of electronics.

Unique Design Lab

CREI gives you both theory and practical experience in circuit design with its Electronic Design Laboratory Program. The professional equipment included in this program allows you to construct, test out and correct the circuits you design until you have an effective circuit.

This Lab Program helps you understand advanced electronics. It also gives you practical experience in many other important areas of electronics, as in pro-
Career Training at Home

totype construction, breadboarding, test and measurement procedures, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

Only CREI offers the unique Lab Program. It is a complete college Lab and, we believe better than you will find in most colleges. The "Lab" is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree
CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while "going to college" with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Program Choice
CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

Free Book
In the brief space here, there isn't room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80, fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications
You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

CREI CAPITOL RADIO ENGINEERING INSTITUTE

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D.C. 20016

Accredited Member National Home Study Council

GI Bill
CREI programs are approved for training of veterans and servicemen under the G.I. Bill.

NOVEMBER 1976
Simple, low-cost parlor game

can be challenging and interesting.

BUILD

ODDS-ON

A GAME OF CHANCE AND STRATEGY

If you enjoy playing electronic games, grab your soldering iron and build "Odds-On," a low-cost game that combines the best elements of chance and strategy. Even though the readout is a single LED, don't get the idea that the game is easy to beat.

Odds-On uses a relatively high-speed oscillator to drive a counter and decoding system when its PLAY button is pressed. When the button is released, the count stops. If, when it stops, the LED turns on, you win. This is the chance feature. The element of strategy enters the game when you're allowed to select your own odds of winning. In this mode, you set a rotary switch to one of nine positions, each of which gives different odds ranging from 1:10 to a conservative 9:10.

Two or more players can compete with each other. The player who selects the longest odds, and wins, wins the game. The actual scoring technique is up to the players, but keep in mind that a more conservative player can consistently score and win, if his opponent is not just lucky.

Odds-On can be used to play a variety of games, including coin toss (odds 5:10), Russian Roulette, or any other games that call for playing against odds of 1:10 to 9:10.

How It Works. Free-running oscillator IC1 operates at a frequency of about 1000 Hz as a result of the values specified for R1, R2, and C2. When PLAY pushbutton S2 is depressed, the output pulses from the oscillator drive decade counter IC2, which cycles from 0 through 9 (10 different output
states). When the PLAY button is released, the counter holds its last output state.

Since IC2 produces 10 different output states, the chances are 1 in 10 that the count will stop at any particular state. However, it is possible to use the decoding logic of IC3 and IC4 and switch S3 to weight the odds. For example, if S3 is set to the 5:10 position, there is a 50/50 chance that LED1 will be on.

Construction. Because of the simplicity of the circuit, any type of construction will suffice, but a printed circuit board of your own design or perforated board will be most convenient. Sockets for the IC’s are optional. Switches S1, S2, and S3 should be mounted on the top of the box in which you house the circuit. Also mounted on the top of the box and held in place with a small rubber grommet or a bead of cement should be LED1. The three 1.5-volt AA cells that make up B1 should be mounted in a suitable holder inside the box.

Game Hints. Consider a game in which two or more players are participating with one player being very conservative. Suppose the conservative player selects odds of 6:10. When he presses and releases the PLAY button, he has six chances out of 10 to score a hit (LED comes on). If this happens, he scores 6 points. If the LED remains off, his score is 10.

The next player selects his own odds, say, 2:10. If after pressing and releasing the PLAY button the LED comes on, he gets a score of 2; if the LED stays off, he gets a score of 10.

From the foregoing, a player gets 10 points every time he loses and the first digit of the odds figure if he wins. The play continues until one player’s score reaches 100, at which time he loses. If there are more than two players, odds selection and play continue until all scores but one are 100. The one player whose score doesn’t reach 100 is the winner.

To play “coin-flip,” set the selector switch to the 5:10 position and operate the PLAY button. At each depression and release, there is a 50/50 chance that the LED will turn on and you win.

To play Russian Roulette, assume a six-shot revolver has a cartridge in only one chamber. The PLAY button becomes the “trigger.” Set the odds selector switch to the 2:10 position. If at any time the LED comes on, you definitely lose.
Professional vs. Consumer Tape

Would there be an advantage for the home recordist in using studio-type tape?

MAGNETIC tape manufacturers optimize the characteristics of their open-reel tapes according to the requirements of the markets they serve. Professional mastering tapes, for example, provide their best performance at a speed of 30 or 15 ips, both of which are commonly used by the pro’s. Consumer tapes, on the other hand, are best for the commonly used 7½ and 3¼ ips speeds of consumer decks.

One might ask if a professional tape, used on a consumer deck, will yield superior performance when compared with a consumer tape. At least one major manufacturer says no. However, might it not be possible to adjust a consumer machine to favor the professional tape? To answer this question, we embarked on a project to examine both professional mastering and consumer tapes, after idealizing a consumer tape deck for each type of tape to be used.

Bias and Equalization. We know that tape deck bias should be adjusted to suit the tape being used. What is less well known is that the precise amount of bias used in any given tape deck is a compromise of frequency response curves are decibels versus frequency in hertz.

Fig. 1. Overall response of the entire test set-up without a tape.

Fig. 2. Maxell UD-50 at 3¾ ips, bias 2 dB beyond peak at 10,000 Hz.
response versus distortion and/or noise. There is no one bias setting that will simultaneously provide both the widest absolute response and the lowest absolute distortion/noise. Bias is generally set in professional decks for lowest distortion and noise and let the frequency response fall as it may, while the bias in consumer machines is set to provide the widest frequency response.

Once the bias adjustment is made, the high-frequency equalization can be used to compensate for the record electronics so that a playback response as nearly flat as possible is obtained. All professional and many consumer tape decks, therefore, can be adjusted for high-frequency equalization. Many professional decks provide this equalization on the play side of the preamplifier, but all offer it on the record side. Playback equalization is always preset to a standard test tape. The record equalization attempts to adjust the response to match the standardized playback.

The normal manner in which bias is adjusted is to set the deck so that the tape is moving at the speed for which adjustment is to be made, with the mode set to record. An audio signal generator is then used to record a sine-wave signal and the bias is adjusted while the output of the tape is monitored. As the bias is advanced, the output of the tape increases until it reaches a point where additional bias reduces the output (particularly at the higher frequencies). This is because increased bias begins to erase very short wavelengths.

A common professional way to adjust the bias on a high-speed deck is to record a 10,000-Hz signal and adjust the bias beyond the peak until a 1- to 2-dB reduction in output occurs. This yields the lowest noise and distortion and an acceptable frequency response. If the bias were to be set at peak, the response might be so good at the high end that there would not be enough equalization to bring it down, but distortion would be high and noise might suffer.

Our Test Setup. The basic tape deck we selected for making our tests was the Revox Model A-700. This deck has 15, 7½, and 3¾ ips speeds, covering both the consumer and the professional ranges, and provides complete bias and equalization adjustment con-

![Fig. 3. Same as Fig. 2, but with bias set to peak at 1000 Hz.](image)

![Fig. 4. Same as Fig. 2, with 15-ips speed.](image)

![Fig. 5. Same as Fig. 3, with 15-ips speed.](image)

![Fig. 6. 3M's Scotch 250 at 15 ips with bias 2 dB beyond peak.](image)

![Fig. 7. Same as Fig. 6, with speed at 3¾ ips.](image)
trols for each speed and channel. Needless to say, this deck provides all the controls and speeds required for making a meaningful study of tapes.

For the tests, we used a UREI Model 200 X-Y frequency plotter with built-in automatic 20-to-20,000-Hz sweep frequency generator. On the receive end of this instrument, the signal returns, after going through the equipment under test, and drives the X-Y plotter that operates at an exactly synchronized speed of 120, 60, 30, or 15 seconds. We selected a 60-second sweep speed and a 2-dB/vertical inch of graph paper sensitivity.

A Ferrograph Model RTS2 Record Test Set served as an auxiliary audio signal generator, total harmonic distortion (THD) analyzer, and also as a noise meter.

The tapes selected for testing included the consumer Scotch Classic and professional 250 types from 3M, the consumer Maxell UD-50, and the professional Ampex Grand Master 456. We believe these tapes to be representative examples of the tapes available on today’s market.

The Tests. The method of setting up for each tape was as follows: bias was adjusted and frequency-response pre-tests were run before plotting by sweeping between 1000 and 10,000 Hz. The recording equalization was then adjusted to bring the 10,000-Hz response as much in line with that of the 1000-Hz response as possible.

For the tests conducted at 15 ips, all testing was performed at 0 VU recording input, including those for noise and distortion. When we performed out tests at 3 1/2 or 7 1/2 ips, the input was reduced to -10 VU. Distortion and noise were measured by increasing the input to 0 VU.

Our first frequency plot made on the UREI recorder is shown in Fig. 1. This is the overall response of the entire system without a tape running. As you can see, variations between 20 and 20,000 Hz are negligible.

The graph in Fig. 2 is the response of the Maxell UD-50 tape at the speed of 3 1/2 ips, with the bias set 2 dB beyond peak at 10,000 Hz. The signal-to-noise (S/N) ratio was -52 dB unweighted. (Our S/N measurements were all referenced to the 0-VU point on the deck's meters. Had we used the common 3% distortion point, the S/N figures for this and all subsequent tapes would have been better by 7 to 8 dB.)

Fig. 8. Same as Fig. 7, with bias set to peak at 1000 Hz.

Fig. 9. Scotch Classic at 15 ips and minimum equalization.

Fig. 10. Same as Fig. 9 with bias to peak at 1000 Hz.

Fig. 11. Scotch Classic at 3 1/2 ips, bias 2 dB beyond peak at 10,000 Hz.

Fig. 12. Same as Fig. 11, with bias set to peak.

Fig. 13. Ampex 456 at 15 ips, bias 2 dB beyond peak at 10,000 Hz.
Note that the response of this tape is essentially flat to \(-2\,\text{dB} at 17,000\,\text{Hz.}

When we adjusted the bias to peak at 1000 Hz, note, in Fig. 3, the slight roughness of the high end, although the actual response is still about the same. At 1.2\% , the distortion was slightly greater, but the S/N remained the same at \(-52\,\text{dB.}

Changing the speed to 15 ips produced the curve shown in Fig. 4 at 10,000 Hz and bias set at 2 dB beyond peak and Fig. 5 at 1000 Hz and bias set to peak. The Fig. 4 curve was obtained with minimal setting of the high-frequency equalization. The sharply rising high end is obvious, almost 5 dB at 20,000 Hz. At this setting, the THD was 1\% and the S/N was \(-55\,\text{dB.}

The bass end response of the Fig. 5 curve is typical of many tapes and is well within \(+1\,\text{dB from} 22\,\text{Hz. At the high end, the response is smooth and goes well beyond 20,000 Hz. This time, distortion was 0.75\% and S/N was \(-55\,\text{decibels.}

3M's Scotch 250 studio mastering tape, first tested at 15 ips, responded very well when the bias was set 2 dB beyond peak, as seen in Fig. 6. S/N was \(-58\,\text{dB and distortion measured 0.7\%. We saw no reason to alter the bias and left the setting alone.

The curve shown in Fig. 7 is for the Scotch 250 tape at the consumer speed of 3\%4\,\text{ips. At 2 dB beyond peak, the response is 2 dB down at 15,000 Hz, while S/N was \(-53\,\text{dB and distortion was 1.1\%. The curve in Fig. 8 is for the same tape and speed, but this time, the bias was set to peak at 1000 Hz. The high end suffers, S/N remains at \(-53\,\text{dB, and distortion improves to 0.9\%-not a very significant gain. It can certainly be assumed that this is not a tape to use at low speeds.}

The response of the consumer-grade Scotch Classic tape is shown in Fig. 9. The tape speed was 15 ips and high-end equalization was at a minimum. While the S/N figure is a healthy \(-57\,\text{dB, distortion is an unhealthy 2.8\%. Obviously, with the bias set at 2 dB beyond peak, this is not a good tape to use at the higher speed.

Setting the bias to peak at 1000 Hz and correcting the equalization provided the curve shown in Fig. 10. Note that the response has smoothed out to professional-grade full range; S/N remains at \(-58\,\text{dB; and distortion has dropped to an excellent 0.7\%. Classic can obviously quality as a good professional tape.}

Now, operating Scotch Classic at the consumer speed of 3\%4\,\text{ips, as shown in Fig. 11, the response was flat to \(-2\,\text{dB at} 20,000\,\text{Hz. However, at 2 dB beyond peak at 10,000 Hz, S/N was \(-53\,\text{dB and distortion was 2.5\%. With the bias set to peak, the response was \(-2\,\text{dB at} 16,000\,\text{Hz, with distortion down to 1.1\% and S/N \(-54\,\text{dB (Fig. 12). These two settings clearly reveal the tradeoffs of bias versus distortion and frequency response.}

The professional mastering Ampex 456 tape was very similar to the Scotch 250 tape in its bias requirements and performance characteristics. We performed our Ampex 456 tape tests with the bias set 2 dB beyond peak at 10,000 Hz. The Fig. 13 curve was obtained at 15 ips; S/N was \(-57\,\text{dB and distortion was 0.8\%. This is clearly a professional tape. At 3\%4\,\text{ips, the tape's response was rough but actually only 2 dB down at 20,000 Hz. The tape had a response of 1 dB at about 10,000 Hz at the minimum setting of the tape recorder's equalization adjustment. The distortion was an unimpressive 2.4\% and S/N was a good but not impressive \(-53.5\,\text{dB. Ampex 456 is a superb studio mastering tape, but much like the Scotch 250, it is not an idealized slow-speed tape.}

Summing Up. What have our tests proved? Depending on the bias and equalization settings of the tape deck, Scotch Classic, Scotch 250, and Maxell UD-50 performed very much the same at 3\%4\,\text{ips. We expected this of the Classic and UD-50 tapes, but seeing the performance of the 250 at this speed came as a bit of a surprise. At the high, and presumably professional, speed of 15 ips, each of the tapes tested was capable of nearly identical frequency response, distortion, and noise performance.

We feel, therefore, that part of our original contention that, at low speeds, tapes designed for that speed range are best, has been proven. But at high speeds, it would appear that the best buy is the lowest priced and most readily available tape—at least among those tested by us.

It is evident that proper performance from any tape means that the tape deck on which it is used must be properly set up for it. Bias must be set for distortion versus frequency response, but the setting must permit an acceptable normalizing of the high-end response.

The $750 Alternative.

<table>
<thead>
<tr>
<th>200 Watts RMS, per channel, both channels driven into 4 or 8 Ohms from 20Hz to 20kHz at no more than 0.05% Total Harmonic Distortion</th>
<th>0.05% IM into 4 or 8 Ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(signal to noise) greater than 100dB</td>
<td>Plug-in board modules</td>
</tr>
<tr>
<td>Forced air cooling</td>
<td>Only 11' deep</td>
</tr>
<tr>
<td>Weighs less than 42 lbs.</td>
<td>Superb construction using only the finest materials and component parts</td>
</tr>
<tr>
<td>Available in black rack mount (as shown) or our traditional satin gold and black</td>
<td>You'd have to look a long time to find a power amplifier that delivers this much value.</td>
</tr>
</tbody>
</table>

SAE 2400 Professional Dual-Channel Power Amplifier

AmericanRadioHistory.Com
Herb Laney's a tough-minded optimist.

How about you?

Herb takes his future seriously. Without worrying about it. He knows his CIE training is giving him valuable skills in electronics. Skills a lot of people will be glad to pay for. And that's good reason for all the optimism in the world. How about you?
Learning new skills isn't something you just breeze through. Especially in electronics. You've got to really want success if you're going to build your skills properly.

Herb knew that right from the start. But he also knew what rewards he could earn if he took some time and did it right. He knew that, in today's world, people who really know electronics find a lot of other people... even whole industries... looking for their help.

How about you? How much do you want that thrilling feeling of success... of being in demand? Enough to work for it?

Why it pays to build skills and know-how.

One of the things that got Herb interested in electronics is that electronics seems to be something just about everybody needs. Almost everywhere you look these days—in a business office... a manufacturing plant... a department store... a doctor's office... a college... even your own home you'll find all kinds of electronic devices.

That spelled "opportunity" to Herb. Plus he liked the idea of having a set of skills that might lead to jobs in places as different as a TV station... a hospital... an airport... a petroleum refinery.

But what Herb liked most about electronics is that it's just plain interesting. Even though it takes time and effort to learn, the subject is so fascinating it almost doesn't seem like "studying" at all!

How CIE keeps you interested.

CIE's unique study methods do a lot to keep you interested. Since electronics starts with ideas... with principles... CIE's Auto-programmed Lessons help you get the idea—at your own most comfortable pace. They break the subject into bite-size chunks so you explore each principle, step by step, until you understand it thoroughly and completely. Then you start to use it.

How CIE helps you turn ideas into reality.

Depending on the program you choose, CIE helps you apply the principles you learn in a number of different ways.

If you're a beginner, you'll likely start with CIE's Experimental Electronics Laboratory. With this fascinating workbench lab, you actually perform over 200 experiments to help you grasp the basics! Plus you use a 3-in-1 precision Multimeter to learn testing, checking, and analyzing.

In some programs, you build your own 5MHz triggered-sweep, solid-state oscilloscope—and learn how to "read" waveform patterns... how to "lock them in" for closer study... how to understand and interpret what they tell you.

To help you develop practical, skill-building knowledge you then receive a Zenith 19" diagonal solid-state color TV featuring nine removable modules. You learn how to trace signal flow... how to detect and locate malfunctions... how to restore perfect operating standards.

What to do first.

Get all the facts. Send for CIE's FREE school catalog and career information package TODAY. Check all the CIE programs—and see which one's right for you. Do it now.

Why it's important to get your FCC License.

More than half of CIE's courses prepare you for the FCC License exam. In fact, based on continuing surveys, better than 4 out of 5 CIE graduates who take the exam get their License!

That's important. For some jobs in electronics, you must have your FCC License. For others, employers often consider it a mark in your favor. It's government-certified proof of specific knowledge and skills!

Free catalog!

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name of this magazine. We'll send you a copy of CIE's FREE school catalog—plus a complete package of independent home study information! For your convenience, we'll try to have a representative call to help you with course selection. Mail the card or coupon... or write: CIE, 1776 East 17th Street, Cleveland, Ohio 44114.
THE Slide Syncer is a programming device which enables you to record musical or talking material and a slide projector advance signal on the same tape track. It can be built using readily available, inexpensive parts, and will provide reliable and quiet performance. Incorporated into the Slide Syncer is a speaker for use with the external speaker jack on a cassette or open-reel tape recorder. The self-contained power source consists of four "AA" cells which should last for one year with moderate use.

About the Circuit. As shown in Fig. 1, IC1, a 567 tone decoder phase-locked loop, is the heart of the Slide Syncer. This eight-pin DIP contains a

A low-cost programmer for audio-visual presentations.
control oscillator, phase-locked circuitry, and an output stage that can sink up to 100 mA of direct current.

It is customary to use an external tone generator to trigger the 567. However, the output of an external oscillator would have to be very close to the response frequency of the tone decoder for proper triggering to occur. This means that high-tolerance, low-drift components would have to be used. Fortunately, the output of the internal oscillator of the 567 can be picked off at pin 5 so the tone generated can be coupled from pin 5 to the microphone input of the tape recorder. Then it will be recorded on the same track as the commentary. The frequency at pin 5, determined by R3 and C2, is exactly that which is required as an input signal to trigger the phase-locked loop.

When S2, a spring-loaded SPDT pushbutton switch, is tapped, the “beep” at pin 5 is coupled onto the microphone line (the hot side of J3 and J4) through C3 and the attenuating network R5R6R9. This switch also allows current to flow through the coil of reed relay K1, LED2, and D3. When the relay contacts close, gate current is provided for triac Q1 if a low-voltage source is connected to jack J1. This triac is used to control the slide advancing mechanism in the projector, which is most often an ac-actuated circuit.

However, there is no need to have the projector set up when you are recording a program. When LED2, the pulse indicator, is lit, the command tone is being recorded on the audio track at about 10 dB down from the commentary level. The Slide Syncer eliminates the need for a two-track recorder (one track for the commentary, the other for the advance tone). But you will find that the tone is not loud enough to be distracting.

On playback, the audio output of the recorder is taken from the external speaker jack and applied to the Slide Syncer’s internal speaker and transformer T1 through J2, the audio input jack. Resistor R7 and R8 attenuate the audio to a level that IC1 can handle. The drive signal for the phase-locked loop is coupled from the secondary of T1 through R2 and C1. When the tone that was taken from pin 5 and recorded on the tape appears at pin 3, pin 6 is grounded and sinks current for the coil of K1 and LED2 through D2. Then the contacts of K1 close, and Q1 turns on and activates the advance mechanism in the projector. The 567 will not sink current unless a sustained tone of the proper frequency appears at pin 3, so normal speech and music will not cause the projector to advance to the next slide.

Most inexpensive cassette recorders have better audio sections than their small speakers would lead you to believe. For this reason, the 8-ohm speaker is included in the Slide Syncer circuit. It is a 4" x 2½" (10.2 x 6.7 cm) oval speaker, and should improve the sound quality of your audio-visual presentations.

The Slide Syncer requires +6 volts dc at about 25 mA quiescent current, which increases to 47 mA when S2 is depressed. At these low current levels, four AA penlight cells mounted in a battery holder form an inexpensive power source.

PARTS LIST

C1, C2—0.1-µF Mylar or disc ceramic capacitor
C3—0.001-µF disc ceramic capacitor
C4—1-µF, 10-volt electrolytic capacitor
C5—5-µF, 10-volt electrolytic capacitor
C6—10-µF, 10-volt electrolytic capacitor
D1, D2, D3—IN4001 diode
IC1—567 tone decoder PLL IC
J1—1/4" insulated phone jack
J2, J3, J4—miniature two-conductor open-circuit phone jacks

K1—4.8-volt reed relay with SPST contacts
LED1, LED2—20-mA light emitting diode
Q1—200-volt, 6-ampere triac (Radio Shack 276-1001 or equivalent)
The following resistors are 1/4-watt, 10% tolerance components.
R1—330 ohms
R2—33,000 ohms
R3, R9—4,700 ohms
R4, R7—100 ohms
R5—100,000 ohms
R6—220 ohms
R8—10 ohms
S1—Spst switch (see text)
S2—Spdt pushbutton switch
SPKR—8-ohm, 4" x 2½" (10.2 x 6.7 cm) oval speaker — Sanyo R-S6367A or equivalent
T1—8-ohm/500-ohm audio transformer (Radio Shack 273-1381 or equivalent)
Misc.—Suitable enclosure, shielded cable, hookup wire, dry transfer lettering, printed circuit or perforated board, IC socket or Molex Soldierconn, hookup wire, solder, machine hardware, etc.

NOVEMBER 1976
Construction. The circuit is not too complex, so you can use perforated board or printed circuit construction techniques. Be sure to observe polarities on the electrolytic capacitors and the semiconductors. It is suggested that an IC socket or Molex Soldercons be used in mounting the 567 IC on the board. This will avoid heat damage to the chip. All LED’s, jacks, and switches are mounted off the board. Use shielded cable for all audio lines.

The Slide Syncer should be mounted in an enclosure about 6½” x 5½” x 2” (16.5 x 14 x 5.1 cm). The speaker cutout can be made with a nibbling tool. Current limiting resistor R1 is mounted on the lugs of S1. (The author used a DPDT slide switch wired as an SPST, with the unused contact lugs for tie points to the power leads and R1 and LED1.) Jack J1 should be insulated from the front panel if a metallic enclosure is used. Rubber or fiber washers can be used for insulation and mechanical support. A small bracket can be fashioned from a piece of scrap aluminum stock to secure the battery holder to the enclosure. Dry transfer lettering can be used to label all jacks, LED’s, and switches. Spray the lettering with clear Krylon spray after it has been transferred to the panel.

Prepare shielded jumper cables for the audio inputs and outputs (external speaker jack to J2, microphone jack to J4) and terminate them with plugs compatible with your cassette recorder. Connect a ¼” phone plug to the advance control cable from your projector.

Checkout and Use. Insert all plugs into their corresponding jacks, and plug the recorder microphone into jack J3. Record a short test program on the cassette recording, pushing S2 each time you want the projector to advance to the next slide. Then turn the projector on and play back the tape. The projector should advance each time the control “beep” is heard.

The 567 tone decoder requires an input level of 100 to 500 µV for reliable operation. The Slide Syncer is designed so that normal audio levels from a small cassette recorder placed in an average-sized living room will consistently advance the projector. Resistors R8, R7, and R2 attenuate the audio to the working level of the IC. For high-volume audio-visual use — say, in a classroom — R2 should be increased to a value between 68 and 82 kilohms. For low-level use, R2 can be reduced to 10,000 ohms or so. If you prefer, you can mount these three attenuating resistors on the foil side of the printed circuit board so they can be easily changed (if necessary) to prevent false triggering.

The tone output from the Slide Syncer is very low, but is sufficient to trigger the tone decoder. However, if you have a recorder with automatic gain control, the advance tone will be loud on playback. If possible, use a recorder with a manual gain control to keep the tone almost inaudible. But the Slide Syncer will work with either type of tape recorder. The advance tone, using the values given for R3 and C2, is about 2200 Hz. You can change it to any other frequency simply by using different values for these two components. You can also build two decoders sharing a common audio input and output to trigger two projectors. In that case, the two tones should be somewhat removed from each other — say, 1000 and 2200 Hz — so that each projector will advance only on its proper tone command.
FLUKE PROVES AN INEXPENSIVE, HANDHELD DMM CAN BE BUILT WITHOUT LEAVING EVERYTHING OUT.

Let's face it.
Before now, if you bought an inexpensive, handheld digital multimeter you didn't get much—they just left most everything out.

We knew that was no answer.
So we built the 8030A 3½-digit DMM. It's a small, portable, inexpensive, handheld DMM, but it performs like our benchtop units.

With one basic difference. The 8030A was designed, built and tested to a size and shape proven best for field service and laboratory technicians. There's a built-in hood that can be slipped forward to shade the readout in sunshine. It has rms capability. The best overload protection. Diode test. It weighs 2.2 pounds, and will take a beating without failing. Finally, we guarantee accuracy specifications for one year.
And it only costs $235*.

True rms. Fluke
1-year accuracy specs. Fluke
High voltage protection. Fluke
Diode test. Fluke
A full line of accessories offering rf voltage, high current ac, high voltage dc, and temperature measurement probes. Fluke

There's only one place to go for all the performance you need in a handheld DMM.

There are measurement functions in five selectable ranges for dc volts, ac volts (true rms), dc current, ac current (true rms), and resistance. DC voltage measurement is from 100 μV to 1100V with basic accuracy of ±0.1%, ac measurement is from 100 μV to 750V rms with basic accuracy of ±0.5%. DC and ac current is from 100 nanoamps to 1.999 amps with basic dc accuracy of ±0.35% and basic ac accuracy of ±1%. Resistance measurement is from 100 milli-ohms to 2 megohms with a basic accuracy of ±0.4%.

We added true rms response for ac measurements. Specified accuracy is still attainable when the measured waveform is distorted.

80T-150 Temperature Probe

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>1 mV/°C or 1 mV/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy:</td>
<td></td>
</tr>
<tr>
<td>+15°C to +35°C</td>
<td>±2°C(3.6°F)−25°C to ambient:</td>
</tr>
<tr>
<td>±125°C ±3°C(5.8°F)</td>
<td>−50°C to −25°C and</td>
</tr>
<tr>
<td>+125°C to +150°C</td>
<td></td>
</tr>
<tr>
<td>0°C to 15°C, 35°C Add 1°C(1.8°F) to</td>
<td></td>
</tr>
<tr>
<td>to 50°C ambient: above</td>
<td></td>
</tr>
</tbody>
</table>

You can also get temperature measuring capabilities with the 8030A.
And because the 8030A gives you so much in performance, let us remind you once more of the price.

Only $235*.

For the first handheld DMM that's small in size, small in price, but huge in performance.

For data out today, dial our toll-free hotline, 800-426-0361.

John Fluke Mfg. Co., Inc., P.O. Box 43210, Mountlake Terrace, WA 98043

Fluke (Netherlands) B.V., P.O. Box 5053, Tilburg, The Netherlands.
Phone: (013) 673-973 Telex: 52237

*U.S. price only.

A NEW ADVANCE. 8030A DMM.
The SPECTRO ACOUSTICS MODEL 210 has enough front-panel switching to permit completely flexible operation. It can be used with a tape deck or any other program source you can use with your amplifier. Part of the excellent performance of the Model 210 can be credited to its gyrator inductors, which replace the usual bulky, hum-sensitive wire-wound components.

Pickering, in its broad line of cartridges, offers units that share a common body and electrical configuration, differing only in stylus parameters and prices. The XV-15 series illustrates this philosophy. The newest member of the series, the XV-15/825E, is third from the top of the line in tracking ability, yet has frequency response and sonic characteristics almost identical to other members of the family. However, this cartridge tracks at forces between 1 and 1.5 grams, making it ideal for use in high-grade automatic record players. Our tests also show that it has above-average ability to play heavily recorded discs with low distortion.

—Julian D. Hirsch

SPECTRO ACOUSTICS MODEL 210 GRAPHIC EQUALIZER

Features great versatility; uses gyrator inductors.

On the Spectro Acoustics Model 210 stereo graphic equalizer there are 10 separate octave-band controls to adjust the frequency response of each channel. The center frequencies of the octave filters are at 30, 60, 120, 240, 480, 960, 1920, 3840, 7680, and 15,360 Hz. The slide-type potentiometers in each octave range provide a boost/cut range of ±13 dB within each filter passband. The Q of the filters, which is 2.5 ± 10%, has been selected to provide maximum versatility in shaping the frequency response with a minimum of ripple.

The equalizer measures 17”W x 6½”D x 6”H (43.2 x 16.5 x 15.2 cm) and weighs 6 lb (2.7 kg). It is also available with a 19” x 7” (48.3 x 17.8 cm) rack-mounting panel. The equalizer is finished in black with white and blue markings and control knobs. It retails for $295, plus $40 for an optional wood cabinet.

General Description. The equalizer employs active circuit elements called "gyrators" to simulate inductors in its filters. The elimination of actual inductors in the signal-processing circuits makes it completely immune to induced hum from external fields. Since the overall gain of the signal channels can be considerably changed when several of the equalizer potentiometers are moved from their zero positions, there is a small horizontally oriented pot under each group of filter controls to change the gain of each channel by ±15 dB and reestablish a unity-gain condition. With all controls centered, the gain of the equalizer is unity and its response is flat to within ±0.5 dB from 20 to 20,000 Hz.

The operating mode of the equalizer is controlled by five pushbutton switches located at the lower center of the front panel. One button controls the power and has adjacent to it a red LED that glows when power is on. The equalizer is normally connected into an audio system via the recording inputs and outputs, but it can also be installed between the preamplifier and power amplifier. A duplicate set of tape input and output jacks is provided on the rear apron of the equalizer so that the tape facility is not lost when the equalizer is connected to an amplifier or receiver. The TAPE MON pushbutton switch connects the tape recorder playback into the signal path for playing tapes or monitoring a recording while it is being made.

The EQ BYPASS pushbutton completely bypasses all of the equalizer’s circuits. (The power need not be applied to the equalizer when this button is depressed.) The EQ LINE button is pressed for most normal operation of the equalizer, inserting the equalizer’s circuits into the signal path and returning the equalized program to the amplifier. A most useful feature is the EQ TAPE button, which places the equalizer in the signal path going to the tape recorder. The program played through the amplifier can be either the unequalized input signal or the playback from the equalized recording. It is also possible to record an unequalized signal and place the equalizer in the recorder's playback line.

On the rear apron of the equalizer are all the input and output jacks, the tape recorder jacks, and a single unswitched ac accessory receptacle.

The equalizer is designed to do only one thing—modify the frequency response of a program to compensate for sound-system or listening room deficiencies. Its noise and distortion have been reduced to the point where they can barely be measured, much less heard. With all controls centered, the signal-to-noise ratio is rated at better than 90 dB below 2 volts. Since the equalizer can deliver a maximum of 10 volts rms, its total dynamic range can
be greater than 105 dB. The 600-ohm output impedance makes it possible for the equalizer to drive a 10,000-ohm load (the lowest that will be presented by any power amplifier) at full output. The input impedance of 30,000 to 50,000 ohms is compatible with any commercially made preamplifier or tape deck.

The distortion of the equalizer is specified at less than 0.05% at 1 volt output over the full 20-to-20,000-Hz audio range when the controls are set to the flat, or zero, positions. The IM distortion is rated at less than 0.0075% at any output up to 10 volts equivalent sine-wave signal with the standard 60- and 7000-Hz test signals.

Laboratory Measurements.

Measuring the distortion of the equalizer taxed the capabilities of our test instruments. Up to a 1-volt output, the distortion was less than 0.005% between 20 and 20,000 Hz. At 2 volts output, the results were the same, except that at the high end, the distortion reached 0.01%. At a 3-volt output, it was 0.01% to 0.018% over the entire audio range, while at 10 volts, just before clipping occurred, it was between 0.022% and 0.056%. The IM distortion reading was the residual of our Crown IM analyzer—0.002% to 0.003%—up to 3 volts output, reaching 1% at a 10-volt output. At the minimum measurement level of 60 mV, the IM was a negligible 0.01%.

Response of the equalizer to 1000-Hz square-wave input.

At 120 Hz, the hum was 82 dB below 1 volt, or 88 dB below the rated 2-volt output. The noise was not measurable, being less than the 100-µV minimum indication of our meter. We could only determine that it was much better than 90 dB down, referred to a 2-volt output.

Each of the equalizer's filter controls had a range of ±13 dB, and the shape of their individual response curves conformed to the expected response with a filter Q of 2.5. With the controls centered, the response was flat to within ±0.25 dB from 20 to 20,000 Hz. A check with a 1000-Hz square-wave signal revealed that the phase characteristics of the equalizer were as good as its amplitude response (controls centered). The square-wave signal output was virtually indistinguishable from the input signal.

User Comment. It is generally agreed that an octave-band equalizer is the most practical and effective means for correcting normal hi-fi system aberrations caused by speaker system and listening-room characteristics. Fewer than 10 bands would sacrifice versatility, while more bands would make adjustment too difficult. The center frequencies of the filters in this equalizer have been well chosen.

The equalizer comes with an instruction manual that could serve as an excellent primer on equalization techniques. It is also a model of how an instruction manual should be written. Only the omission of the equalizer's schematic diagram prevents us from giving the manual a 100% rating.

We experimented at some length with the equalizer and are convinced that it can do anything any other equalizer we have used can do and that it can do more than most of the others. The control switching is especially versatile, making it possible to equalize before or after a tape recorder, to listen to an equalized or unequalized signal (whether or not the recorded program is being equalized), or to replace the equalizer's circuits with, literally, a straight wire connection.

Our only criticism of the equalizer's design is that it has no center detents on the controls to simplify locating the flat positions. Otherwise, the equalizer represents an excellent hi-fi system accessory that is well worth its price.

CIRCLE NO. 30 ON FREE INFORMATION CARD

PICKERING MODEL XV-15/625E PHONO CARTRIDGE

Excellent tracking ability at moderate price.

Characteristics. The interchangeable stylis are designed for use with tracking forces as high as 5 grams and as low as 0.75 gram. They are rated according to what Pickering calls "Dynamic Coupling Factor" (DCF), which is essentially a measure of tracking ability, called "Track-A-Ability" by the company.

The latest addition to the XV-15 family is the Model XV-15/625E cartridge whose 0.3 x 0.7-mil elliptical stylus is designed to track with a force between 0.75 and 1.5 grams, with a nominal 1-gram rating. It is best suited for the higher-grade automatic turntables with low-friction tonearms as well as with manual players. The nominal output at 5.5 cm/s is 4.4 mV; recommended load is 47,000 ohms in parallel with 275 pF.

As with other Pickering cartridges, this new cartridge's stylus assembly has an integral hinged "Dustmatic" brush that rides on the record surface to remove surface dust. The brush can easily be removed if desired. When it is used, however, the indicated tracking force of the tonearm must be set 1 gram higher than the actual tracking force desired to compensate for the upward thrust of the brush.

The cartridge is supplied with snap-in plastic mounts that simplify installation in several popular record-player tonearms, including models from BSR, Dual, and Garrard. With the snap-in mounts, screws are not required to fasten the cartridge to the tonearm shell. Without the mounts, the cartridge can be installed in any tonearm in the conventional manner.
As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. **Equipment you'll build and keep.** Our courses include equipment like the NTS/Heath Digital GR-2000 Solid State color TV with first-ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock), and big 315 sq. in. ultra-rectangular screen.

Also pictured above are other units — 5" solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It's the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it's field-type — like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.

Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.

Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-
tion privileges spelled out. Make your own comparisons, your own decision. Mail card today, or clip coupon if card is missing.

NO OBLIGATION. NO SALESMAN WILL CALL

APPROVED FOR VETERAN TRAINING

Get facts on new 2-year extension

NATIONAL TECHNICAL SCHOOLS

TECHNICAL-TRADE TRAINING SINCE 1905

Resident and Home-Study Schools

4000 So. Figueroa St., Los Angeles, Calif. 90037

NOVEMBER 1976
The retail price of the Pickering Model XV-15/625E cartridge is $59.95.

Laboratory Measurements. With the recommended load and the cartridge installed in the tonearm of a popular high-quality record player, the output signal level was about 3.5 mV at a velocity of 3.54 cm/s. The levels from the two channels differed by only 0.4 dB. The vertical tracking angle of the stylus measured 24°.

The cartridge tracked our high-velocity test records, including the low-frequency Cook 60 and the mid-frequency Fairchild 101 records, at its nominal 1-gram force. The 30-cm/s 1000-Hz tones of the Fairchild record were played with virtually no visible waveform distortion. At 1 gram, the cartridge played the 60-micron level of the German Hi-Fi Institute record. With an increase in stylus force to 1.5 grams, it played the 80-micron level. The performance at 1 gram is typical of many good-quality and medium-priced cartridges, while only a few of the best cartridges can cope with the 80-micron level of the 300-Hz tones on the test record. We used a 1-gram force for all other tests.

The frequency response of the cartridge, using the CBS STR 100 record, was very closely matched between the channels, sloping slightly downward at frequencies beyond 500 Hz and a small-amplitude high-frequency stylus resonance at about 18,000 Hz. The overall frequency response was a very good ±2 dB from 40 to 20,000 Hz. Channel separation was somewhat better than that of most cartridges over the major portion of the audible range, measuring 25 to 30 dB up to nearly 10,000 Hz. It was still a good 12 dB at 20,000 Hz. The low-frequency resonance in the tonearm we used was at about 10 Hz.

We measured the tracking distortion with the aid of two Shure test records. The TTR-102 is an IM record that contains 400- and 4000-Hz tones recorded in a 4:1 level ratio at velocities from about 7 cm/s to 27 cm/s. The cartridge revealed a smoothly rising IM distortion characteristic over that full range, increasing from about 1.7% at the lower velocities to 6% at the maximum level. This contrasts with the behavior of some cartridges, which may have slightly less distortion at low velocities but often mistrack and severely distort well below the maximum level on the record. There is probably little to choose from between the two types of cartridge distortion, since both have satisfactorily low levels at the velocities found on most commercial recordings, which rarely exceed about 15 cm/s.

The second test used the Shure TTR-103 record, a high-frequency tracking test involving 10,800-Hz tone bursts at a 270-Hz repetition rate. Failure to track the specially shaped bursts results in an increase in the 270-Hz component of the cartridge's output. In this test, the Pickering cartridge had low distortion, measuring less than 1% up to about 20 cm/s and a smooth rise to 3.8% at 30 cm/s. The square-wave response, using the CBS STR112 record, revealed an almost perfectly square output waveform, with one or two cycles of moderate-amplitude ringing at the 18,000-Hz stylus resonance. A listening test of tracking ability, using the Shure TTR-110 "Audio Obstacle Course—Era III" record, confirmed the excellent tracking ability of the cartridge. At 1.5 grams, the cartridge handled everything on the record with ease; but at 1 gram, it mistracked on the highest level of the sibilance test and sounded strained at the highest levels of bass drums and violins.

User Comment. The cartridge sounded much as one would expect it to from its measured performance. The sound was very smooth and natural. In fact, those listeners who expect sparkle and dazzle from a cartridge will be disappointed in the Model XV-15/625E's relatively bland sound. To us, however, this is a sign that the cartridge is not significantly altering either the waveform or the frequency balance of a record it is playing at the time.

Perhaps if one selected some especially difficult recording, it would be possible to find something the cartridge could not track. But among the various records we heard, the cartridge was always unstrained and thoroughly unflappable, even when operated at a 1-gram tracking force. Our conclusion, therefore, is that this moderately priced cartridge for today's market represents an excellent value for any purse.

SILTRONIX MOHAWK AM CB MOBILE TRANSCEIVER

Popularly priced, compact unit with frequency synthesis.

The Siltronix Mohawk is a compact AM CB mobile transceiver, employing crystal frequency synthesis to provide operation on all 23 CB channels. Among its standard features are adjustable squelch, volume control with on/off switch, r-f gain control, switchable automatic noise limiter (anl), S/r-f meter, PA operation, external-speaker jacks, full legal power, and detachable high-impedance dynamic microphone. The transceiver is designed to be operated from any nominal 12-volt dc positive- or negative-ground mobile electrical...
system. Built into its power supply are a line filter and reverse-polarity protection.

The transceiver measures 9½"D x 6½"W x 2½"H (24.1 x 16.5 x 6.2 cm). It retails for $169.95.

General Description. The receiver section employs dual conversion with a first i-f of 10,000, 10,010, 10,020, or 10,040 MHz, obtained by heterodyning the CB signal with one of six crystals in the 16,965-to-17,215-MHz range, depending on the channel selected. The first i-f stage is then converted to a 455-KHz i-f by beating the first i-f signal with one of four crystal frequencies in the 9.545-to-9.585-MHz range and using the difference frequency that results.

The receiver's grounded-base r-f stage is diode protected. The r-f gain control is a potentiometer that functions as a variable attenuator at the antenna input. Grounded-emitter transistors are used in the remaining stages that make up the receiver. There are two mixers, followed by a ceramic filter that feeds the two i-f stages. The filter provides the i-f bandpass and selectivity. R-f selectivity for good image and other unwanted-signal rejection, while maintaining a uniform bandpass over the CB range, is ensured with a double-tuned antenna-input circuit.

A voltage-doubling detector and a series-gate and precede the audio section that consists of three stages, including a class-B output section that is also used for PA operation and modulating the transmitter. Voltage-doubling diode rectifiers provide a high degree of agc. A single diode rectifier at the i-f output provides voltmeter action for the S meter. An amplified squalch is activated by a separate voltage-doubling agc-type setup.

The transmitter frequency is obtained by using the sum of one of the nominal 17-MHz synthesizer crystal frequencies and one of four crystal frequencies in the 10,000-to-10,040-MHz range. The transmitter mixer for this purpose is a dual-gate FET, followed by a triple-tuned bandpass circuit for minimizing spurious output responses.

An unusual setup is that there is a buffer stage preceding the r-f section. The r-f section consists of predriver, driver, and power-amplifier stages. The output section for matching to a 50-ohm load consists of a multisection network that includes a TVI trap.

Another not often found arrangement is that the driver and power-amplifier stages are operated in a grounded-collector configuration and are both emitter modulated. Automa-

The more you know about electronics, the more you'll appreciate EICO. We have a wide range of products for you to choose from, each designed to provide you with the most pleasure and quality performance for your money. The fact that more than 3 million EICO products are in use attests to their quality and performance.

"Build-it-Yourself" and save up to 50% with our famous electronic kits.

For latest EICO Catalog and name of nearest EICO Distributor, check reader service card or send 50¢ for fast first class mail service.

EICO—283 Malta Street, Brooklyn, N.Y. 11207

Leadership in creative electronics since 1945.
ng the same 13.8-volt dc source, nsmmitter carrier output measured 4 watts. (This was also the power indicated on the rig's r-f output meter, which is calibrated in actual watts when working into a 1:1 SWR.)

Raising the microphone input level 16 dB above that required for 50% modulation held the modulation to a sine wave at 100% modulation with 12% THD at 1000 Hz. Adjacent-channel splatter under this condition was 50 dB down. The mike gain with voice operation was quite high, resulting in greater than 16 dB of compression and a tendency toward clipping and negative-peak overmodulation. Nevertheless, the splatter still held to within 50 dB down.

User Comment. The selector control is a good size and easy to manipulate. The r-f gain, volume, and squelch controls are rather small, with a barlike grip to make it easy to "feel" or see their positions. The PA/CB and ANL on/off switches are miniature toggles types.

The pointer of the edgewise-mounted meter is readily visible. A lamp illuminates the meter on transmit to provide an indication that the transmitter is live. Although the channel selector's numerals are quite small, they are easy to read under most conditions.

When operating the transceiver, the setting of the volume control is a bit critical, requiring only a slight advance for normal output volume. The S meter was very sensitive, moving about 25% upscale with r-f input signal level of nominally 1 µV. The performance of the anl was most effective in the presence of low-level signals (less than 5 µV), for which it is mostly needed. In this respect, noise attenuation could be improved even more by reducing the r-f gain while still maintaining an adequate signal level for good readability. This is also a good measure for reducing normal background noise since the overall gain of the receiver is quite high.

There is no volume control for PA operation. The speaker, as usual, faces down.

CIRCLE NO. 92 ON FREE INFORMATION CARD

SCHOFER THEATRE ORGAN KIT

Produces true cinema-organ sound in a compact, curved step-board design

A series of sub-kits. Kit No. ETC-1 consists of all the electronic sections that make up the organ ($849.50). Kit No. BTC-1 includes all the special organ parts such as keyboards, stop tablets, swell shoe, and final-assembly materials ($907.50). Kit No. PTC-4 includes the pedal clavier assembly made up of a 25-note, full-length pedal switch assembly ($199.50). Kit No. CTT-1, priced at $529.50, includes the organ console and bench that must be assembled from precut and preshaped pieces of walnut and walnut-veneered lumber, plus all materials needed for furniture finishing. A considerable number of options are available. Included here are the percussion group kit, and a variable echo device Schoder calls the "Reverbatape" kit.

The organ measures 50"H x 44"W x 41"D (1.3 x 1.1 x 1.0 m) with pedals. It weighs approximately 225 lb (102 kg).

Kit Assembly. According to Schoder, the estimated assembly time for the organ is between 200 and 300 hours, which gives some idea of the complexity of the kit. We spent slightly more than 250 hours assembling our kit. In essence, this is a two-step kit: assembly of the electronic portion and assembly and finishing of the fine furniture cabinet. One must exercise patience in accomplishing both steps.

Each of the printed circuit boards that make up the kit comes in a separate package that contains all the components to be mounted on the board with assembly instructions.

The pc boards are well made. All component locations are clearly identified on the top sides of the boards, and in many cases the foil sides too. Sockets are provided for every transistor, numbering in the hundreds. All components appear to be of the highest quality.

The circuit-board assemblies are more densely packed that in most other kits we have assembled. Even so, the boards are easy to wire. Each board has rubber feet to facilitate proper mounting and spacing. External connections to the pc board assemblies are made via tubular terminals, each clearly identified.

Because of the interlocking nature of the many circuits that make up the organ, the only elements that can actually be tested after assembly are the power supply and the 12-tone-generator boards. (The tone generators are stand-alone audio oscillators.) After checking that the power supply is delivering the proper output, each generator board is in turn connected to it; any type of audio amplifier is used to check for the various tone outputs. At this time, each board can be tuned to the correct frequency. Although the use of a frequency counter is suggested for the tuning procedure, it is not really needed because the coil/capacitor tuning elements are pre-tuned from the factory. If they need adjustment, only a minimum of "touching up" is required. In our kit, the tone oscillators were pretty much "on the nose" during testing.

At first glance, the various wood pieces look as though they are impossible to assemble into the finished organ console. In reality, however, the console goes together quite easily.
Each piece of wood is supplied carefully cut to size, drilled and shaped as required. Pieces exposed to view are either solid walnut or walnut veneer.

Lots of glue and screws are used in assembling the console. This results in a very rigid, durable structure. After assembling the main body of the console, one gets a pretty good idea of what the finished organ will look like and how much it weighs. We recommend that if you decide to build this organ, you assemble it in the same location where it will be used—it is that large and heavy.

Before the keyboards, stop-tablet horseshoe, pedal assembly, and electronics are installed, the exterior of the console must be finished. This involves the use of several grades of fine sandpaper, special stain and finishing compounds, and plenty of elbow grease. Once the console is sanded and stained, the first finish coat is applied. By this time, if care was exercised in the sanding and staining process, the console will reveal its fine-furniture qualities. (Schober supplies enough material for many finish coats, but leaves the number up to the builder.)

The 12 tone-generator assemblies fit into a small wooden "card cage" enclosure inside the console. The remaining board assemblies mount in various locations inside the console, each secured in place by its rubber feet. Then the keyboards mount in place, also with the aid of rubber feet.

Interconnections between the circuit-board assemblies, keyboards, power supply, and decoupling board are accomplished with lengths of color-coded hookup wire. It would have been nice if a wiring harness had been supplied, but we can understand the practicality and economy behind the decision not to provide one. In any event, interconnecting the various elements is not a difficult task. It is merely time-consuming.

The audio output of the organ is brought to a phono connector mounted on a small bracket on the back of the console. We connected the output to the aux input of a home hi-fi system, crossed our fingers, and turned on the power. The small lamps over the voice-switch stop tablets in the horseshoe came on and illuminated the colored tabs. We then depressed a couple of tablets for each keyboard, put a foot on the swell pedal, and depressed it slightly, and touched a few keys on the keyboards. Happily, there was the full sound of a real theatre organ filling the room. Once we knew the organ was operating properly, all we had to do was adjust the various trimmer potentiometers in accordance with the detailed instructions.

With the organ working, we put together the curved-leg bench and assembled the pedal clavier kit. The 25-note clavier kit keyboard is meant to be played with the toe of one foot, while the other foot is operating the swell shoe pedal. It contains 25 full-length maple struts and sharps made from unbreakable black plastic. The pedal clavier assembly slides into a slot on the bottom of the organ and is screwed into place. This completes the assembly of the basic organ.

The optional percussion group produces the sounds of a celesta, chrysoglott (organ harp), orchestral bells that can also be played with reiteration, piano, harpsichord, xylophone, and mandolin. It consists of a number of almost identical pc boards that mount inside the organ console along the rear brace. The activating switches for the percussion group mount directly below the top keyboard.

A considerable amount of wiring is required to install the optional percussion group, but the organ would really be incomplete as a theatre instrument without it. Schober suggests using a separate audio amplifier for this option, which we did.

The other option built and installed in the organ was Schober's "Reverbatepe," a form of modified endless-loop tape recorder that provides a variable echo.

User Comment. Assembling the Schober Theatre Organ kit is obviously a major undertaking. Although a knowledge of electronics is not really necessary to complete the project, time and patience are. However, once completed, one has a magnificentsounding musical instrument worth thousands of dollars more than the basic kit price. Moreover, the organ is a striking piece of furniture.

Although the organ is compact for its type, it does require more space than, say, a "spinet" organ. For example, its pedals, which are pivoted front and back, just rather far out into the room. But the benefits of easier heel-and-toe playing are worth it if you have the space.

Most importantly, the "sound" of this Theatre Organ is very impressive especially if you use good-quality audio equipment, which includes speaker systems with full, powerful bass response. This is truly a theatre-type organ, with the number and types of voices needed for full musical appreciation of light music of all types. (It can also be used to play organ classics, of course, but the choice of voices was not made for playing mostly "church" music.)

The organ's vibrato sound is very satisfying, with ample adjustment of the range achieved through a potentiometer that changes the frequency of a phase-shift oscillator. With this system, vibrato does not operate on the pedals, unlike most commercial types of popularly priced electronic organs. This is as it should be, since low pedal notes sound terrible with tremolo added.

The instrument's four couplers, which add stops from one manual to another and change pitch registers,

SCHOBER THEATRE ORGAN VOICES

Solo (upper manual):
- Tibia 16' Oboe 8'
- Cello 16' Diapason 8'
- Stentorphone 16' Brass Trumpet 8'
- Tuba Mirabilis 16' Violin 4'
- Viola d'Amore 8' Tibia 4'
- Vox Humana 8' Tromba Clarion 4'
- Solo String 8' Piccolo 2'
- Clarinet 8' Fifteenth 2'
- Tibia 8' Flageolet 1'
- Fife 1'

Accompaniment (lower manual):
- Tibia 16' Diapason 8'
- Dulciana 8' Harmonic Tuba 8'
- Vox Humana 8' Harmonic Flute 4'
- Tibia 8' Octave 4'
- Orchestral Strings 111 Tubas Clarion 4'
- Dulciana 8' Tubas Profunda 16'
- Tibia 16' Brass Flute 8'
- Diapason 16' Tuba 8'

Percussion Group (optional):
- Celesta Piano
- Chrysoglott Harpsichord
- Orchestra Bells Xylophone
- Orchestra Bells (reit) Mandolin
If you want a microcomputer with all of these standard features...

- 8080 MPU (The one with growing software support)
- 1024 Byte ROM (With maximum capacity of 4K Bytes)
- 1024 Byte RAM (With maximum capacity of 2K Bytes)
- TTY Serial I/O
- EIA Serial I/O
- 5 parallel I/O's
- ASCII/Beaudot terminal compatibility with TTY machines or video units
- Monitor having load, dump, display, insert and go functions

...then let us send you our card.

HAL Communications Corp. has been a leader in digital communications for over half a decade. The MCEM-8080 microcomputer shows just how far this leadership has taken us...and how far it can take you in your applications. That's why we'd like to send you our card—one PC board that we feel is the best-valued, most complete microcomputer you can buy. For details on the MCEM-8080, write today. We'll also include comprehensive information on the HAL DS-3000 KSR microprocessor-based terminal, the terminal that gives you multi-code compatibility, flexibility for future changes, editing, and a convenient, large video display format.

HAL Communications Corp.
Box 365, 807 E. Green Street, Urbana, Illinois 61801
Telephone (217) 367-7373

BREADBOARD CAPACITY YOU'LL NEVER OUTGROW.

No matter how big (or small) your circuit design and testing needs, we have the answer; CSC's QT Sockets and Bus Strips* The expandable, interlocking solderless breadboarding system that accommodates virtually all types of components with plug-in ease. Resistors, Transistors, DIP's, LED's. You name it. All instantly connect and reconnect without damage.

On your next project, save time, save money, save effort for as little as $3.00** See your CSC dealer, or write for our catalog and distributor list.

CONTINENTAL SPECIALTIES CORPORATION

EASY DOES IT

44 Kendall Street, Box 1942
New Haven, CT 06509 • 203-624-3103 TWX: 710-465-1227
West Coast office: Box 7809, San Francisco, CA
94119 • 415-421-8872 TWX: 910-372-7992

© 1976, Continental Specialties Corp.
*U.S. Pat. No. D235,554
**Manufacturer's suggested list, QT-7S. Prices and specifications subject to change without notice.
RARA AVIS

In case you've forgotten your high school Latin (or didn't study it), the title of this column, loosely translated, means "rare bird." And that's exactly what we're going to discuss this month—some of the "rare birds" among semiconductor devices. Not rare in the sense of availability, for most may be obtained through the larger industrial and better-stocked mail order distributors, but in terms of familiarity among hobbyists and experimenters.

Offered by several manufacturers, including Teledyne Crystalonics (147 Sherman St., Cambridge, MA 02140), the constant-current diode is identified by a special schematic symbol as shown in Fig. 1. It is essentially a field effect transistor (FET) with an internal connection between its source and gate electrodes. Some firms refer to the device as a "current regulator diode." Regardless of its name, however, the internal short maintains a gate-to-source voltage of zero, causing the device to act as a high-impedance, constant-current source when operated at drain voltages higher than its pinch-off rating. Typical units are types 1N5283 through 1N5314, all of which are basically n-channel JFET's with on-chip metallization to provide the source-gate short and a nominal pinch-off of six volts. Depending on type, current ratings range from 0.22 mA to 4.23 mA.

A sampling of constant-current diode applications is given in Fig. 2. Perhaps the simplest and most obvious is the constant current power supply, Fig. 2A. Here, the prime dc power source, whether batteries or a line operated power supply, is set for a voltage greater than pinch-off (i.e., 6 volts for the types listed above). Under these conditions, the load current will remain essentially constant at the value set by the diode regardless of variations in load impedance. The device also can serve as a constant-current bias source for bipolar transistors, FET amplifiers, FET emitter followers, and differential amplifiers, as shown in Fig. 2B.

For a change of pace, connect a pair of the devices back-to-back, add shunt back-to-back zener diodes, and you have a simple, but effective, square-wave generator or clipper, as shown in Fig. 2C. Due to the current limiting...
action of diodes D1 and D2, this circuit provides an output waveform with a flatter top and less crossover distortion than the more conventional resistor-zener clipper. What’s more, with a lower power dissipation, it’s also a more efficient circuit. For optimum performance, the square-wave clipper should be driven with a signal several times larger than the zener diodes’ voltage rating. Replace the zeners with a capacitor, and the circuit becomes a triangular wave shaper, as in Fig. 2D. Triangular output signals will be produced with either sine- or square-wave inputs, but the latter will provide a cleaner output waveform at zero crossover. The circuit’s output amplitude is directly proportional to the diode current and the time period of a half-cycle is inversely proportional to the value of the shunt capacitor.

The photo-Darlington in another of our rare birds. Comprising photosensitive and amplifier transistors in a single package, (Fig. 3), the device behaves as if it were a single, but highly sensitive, phototransistor. It is capable of detecting changes in light levels as well as the absolute presence or absence of light. Photodarlingtons can be used in virtually all types of light-controlled systems and serve as rate sensors, frictionless potentiometers, smoke detectors, thickness gauges (for translucent materials), modulated-light-beam detectors, and sound-on-film detectors.

With suitable support circuitry, photo-Darlingtons can be used in solid-state relays, choppers, intruder alarms, card and tape readers, door openers, liquid level indicators and controls, safety interlocks, vehicle light controls, and various types of test equipment. Typical units are GE types 2N5777 through 2N5780, with \(V_{BE} \) ratings of 25 and 40 volts and minimum \(h_{FE} \) (gain) specifications of 2500 and 5000, depending on type.

Two of the photo-Darlington’s many possible applications are shown in Fig. 4—normally open (A) and normally closed (B) ac line-operated solid-state relays. Both circuits employ medium-current (10 A) triacs in conjunction with silicon bilateral switches (SBS). In each, the photo-Darlington is activated by a LED source to provide full line isolation.

In Fig. 4A, the photo-Darlington is connected across a diode bridge between the ac source and the SBS serving to trigger the triac. When the photodarlington is dark, it acts as a high impedance, preventing conduction through the bridge circuit and, therefore, the application of gate drive voltage through the SBS. The triac, then, remains in a nonconducting state. When a control current is applied to the LED, illuminating the photo-Darlington, the latter starts conducting. This allows the diode bridge to conduct and apply voltage through the SBS to the triac’s gate, switching this device On and permitting current flow through the load. In the normally closed circuit, Fig. 4B, the action is reversed. Here, the diode bridge is between the SBS’s voltage source and circuit “ground.” With the photo-Darlington dark and in a nonconducting state, the bridge also acts as a high impedance, allowing full drive voltage to be applied to the triac’s gate through the SBS, thus holding the triac On and permitting current flow through the load. When the photo-Darlington is illuminated, however, it and, of course, the bridge shift to a low-impedance state, dropping the SBS’s source voltage across the 51k series resistor and reducing the triac’s gate drive below the level needed to maintain conduction. When this happens, the triac switches to a high-impedance or Off condition, blocking load current. In either of the light-controlled ac power switching circuits, the load can be a solenoid, lamp, heater, or other device, as long as the triac’s maximum ratings are observed.

Although not “rare” in the same sense as the constant current diode and photo-Darlington, the LM387 dual preamplifier probably is not as familiar to most experimenters as are such devices as the 741 op amp or 555 timer, yet needed to maintain conduction. When this happens, the triac switches to a high-impedance or Off condition, blocking load current. In either of the light-controlled ac power switching circuits, the load can be a solenoid, lamp, heater, or other device, as long as the triac’s maximum ratings are observed.

Although not “rare” in the same sense as the constant current diode and photo-Darlington, the LM387 dual preamplifier probably is not as familiar to most experimenters as are such devices as the 741 op amp or 555 timer, yet
it can be just as useful in quite a variety of projects. Manufactured by the Signetics Corporation (811 East Arques Ave., Sunnyvale, CA 94086), the LM387 is a low-noise device comprising some thirty transistors, four zeners, and six diodes in an 8-pin mini-DIP. Half of these are used in each of the independent preampl circuits, as shown by the equivalent single-channel schematic diagram, Fig. 5A. Actual lead connections are identified in Fig. 5B. The device features an internal power supply decoupler-regulator which provides 110 dB power supply rejection and 60 dB channel separation. In addition, it offers an open-loop gain of 104 dB, a noise level of only 0.8 µV, an output voltage swing within 2 V of the dc source, and unity gain bandwidth of 15 MHz. With internal short circuit protection, the unit can dissipate up to 500 mW, and can be operated on single-ended dc supplies from 9 to 40 volts. It is internally compensated for all gains above 10, offers an input resistance of 100,000 ohms (or more), an output resistance of only 150 ohms, and a THD at 75 dB gain of only 0.1%.

Four of the LM387's many applications are illustrated in Fig. 6. A magnetic phono preamplifier is shown in Fig. 6A, a multi-channel audio mixer in Fig. 6B, a two-pole fast-turn-on NAB tape preamplifier in Fig. 6C, and a tape playback preamplifier in Fig. 6D. Only one channel is shown in each schematic, although both sets of input and output lead connections are identified. In addition to the suggested circuits, the LM387 can be used in the audio sections of radio transmitters and receivers, in TV sets, in intercoms, in hearing aids, in PA systems, and in many types of test instruments.

Chances are you have at least a nodding acquaintance with operational amplifiers, but how about power op amps—those with outputs specified at milliwatt rather than milliwatt levels? Such devices are offered by a number of manufacturers. Regardless of manufacturer or specific type, most of these share certain common characteristics. Most of them are hybrid rather than monolithic IC's, have comparatively limited bandwidth (though more than adequate for general audio applications), require heat sinks to realize their full output potentials, and are relatively expensive, although not overly so when compared to the cost of assembling an amplifier with comparable power output using discrete devices. The 833-21C is a typical unit. Manufactured by Beckman Instruments, Inc. (2500 Harbor Boulevard, Fullerton, CA 92634), the device can deliver output currents in excess of ±1 A when operated on a ±12-V dc power source. With an open-loop gain of 100 dB, a full power bandwidth of 15 kHz, and a typical input impedance of 1 megohm, the 833-21C requires only one external compensation capacitor and two current-limiting resistors for proper operation. A hybrid device comprising a small-signal monolithic op amp and a complementary-symmetry power output stage using chip transistors, the unit is supplied in an 8-pin TO-3 package and is, therefore, no larger physically than a conventional power transistor.

Reader's Circuits. Indicating that he would welcome pen pals, one of our overseas readers, Ulf Nordquist (Frejas Väg 34, 240 21 Löddeköpinge, Sweden), contributed the circuits shown in Figs. 7 and 8. Ulf has specified standard American devices in his designs, implying that these must be readily available in Europe. In Fig. 7, a 555 timer (IC1) is used as the basis for an electronic "coin flipper" featuring red (LED1) and green (LED2) visual readouts.

Put more punch in your work.

With a Greenlee Chassis Punch you can punch clean, true holes in seconds. Round, square, key or D. In 16-ga. metal, hard rubber, plastic or epoxy. Available at radio and electronics parts dealers. Write for catalog E-730. Greenlee Tool Co, Rockford, Ill. 61101.

GREENLEE TOOLS CO
a subsidiary of
Ex-Cell-O Corporation

1702A Manual EPROM Programmer

Features hex keypad, two digit hex address and two digit hex data display. Controls include load, clear, go! (step), key/copy, data in/data out, and counter up/down. Profile card includes high voltage pulse regulator, timing, 8 bit address and 8 bit data drivers/receivers. Two 6¾" x 9" stacked cards with spacers. Allows programming in 20 minutes — copying in 5 minutes. Requires +5, -9, and +80 volts.

- **ASSEMBLED** .. $299.95
- **KIT** .. $189.95

NOW

The best of two worlds... use our 1702 EPROM programmer as a manual data/address entry programmer... or connect it to your processor.

IMSAI/ALT AIR computer interface (requires 3 output ports, +1 input port) and software .. $49.95

Briefcase unit with power supplies and interface connectors (assembled and tested only) .. $599.95

ANNOUNCING

Our NEW 16K Byte Pseudo-Static, IMSAI/ALTAIR compatible RAM. Single card slot. Uses less power than equivalent low power RAM. All memory chips socketed. Uses all prime factory fresh IC's. High quality, two-sided, through-hole plated circuit board. Crystal controlled, totally invisible refresh system requires NO software management. Just plug it in and use-like STATIC memory.

Complete kit .. $349.95
Assembled, tested, and burned in .. $549.95

ASSOCIATED ELECTRONICS
1244 Lambert Circle • Garden Grove, CA 92641
(714) 539-0735

NOVEMBER 1976
With power on, the circuit is operated simply by touching a small metallic plate. In addition to the 555 and the two standard LED's, all that is required for assembly is four half-watt resistors, two small ceramic or plastic film capacitors, a spst switch (S1), a 9-to-15 volt battery (B1), a small touch plate (about 1 cm on each side), and, of course, wire, solder, a suitable case, and mounting hardware. Component values are not overly critical and, if desired, 1-k resistors can be substituted for the 470-ohm units specified for R1 and R2 to reduce battery current drain.

Fig. 7. Electronic coin flipper is operated by touching metallic plate.

Ulf's second circuit, Fig. 8, is an alternate LED flasher featuring a standard 7400 quad NAND gate IC. Here, a 5-volt dc power source is required and a large electrolytic feedback capacitor is employed to achieve a low flashing rate. According to Ulf, the value specified in Fig. 8 establishes a flashing rate of about 1 Hz. This rate may be increased by using a lower value or decreased (made slower) by using a higher value capacitor for C1.

Fig. 8. Flashing rate of LED circuit is determined by value of large capacitor.

Device/Product News. Working with Tate Audio, Ltd. (4324 Promenade Way, Suite 311, Marina del Rey, CA 90291), the National Semiconductor Corp. (2900 Semiconductor Drive, Santa Clara, CA 95051) has developed a group of integrated circuits which will accurately separate and reproduce "quadraphonic" four-channel audio programs from phonograph records and tape cassettes. Designed to decode SQTM (CBS) type programs, the Tate/National system employs three different IC's and is said to provide separation of channels in any direction approaching 40 dB from 20 Hz to 30 kHz while maintaining a signal-to-noise ratio of 70 dB and a THD of 0.05 percent.
"Power mikes?" you say, "but two of them look like headsets." And you're right! And if you're a seasoned CBer ready to move up, take a second look at the aviation-type Telex CB-88 power-mike headset. Your CB listening is private; let others around you visit, relax or sleep without a blaring speaker. You hear better and transmit better. Weighs less than 3 oz. Uniquely, you can wear it without the headband by attaching it to your eyeglasses (adapter included). Check out the CB-1200, especially right for high-noise environments, and the aviation-inspired Double-Header power mike. Then move up to Telex, the quality standard of the aviation communications industry, now producing the most powerful CB gift ideas around. And if you want to drop a loud-and-clear hint, just tear out this ad and leave it where your gift-giver will find it... or take it to your Telex CB dealer for a gift-idea demonstration.

Can be worn without headband. Easy-to-use eyeglass adapter.

Boom pivots for left/right ear.

Fully cushioned for comfort.

Both headsets include in-line push-to-talk switch.

Noise-cancelling variable-gain power mike.

High quality mike with fixed-level FET amplifier.

Both headsets include in-line push-to-talk switch.

Adjustable mike boom, 310° swivel, close to lips.

Use as conventional power mike or as superior noise-cancelling, power mike thanks to Double-Header feature.

Built-in variable gain power amplifier.

Style used by pilots around the world, fits every hand.

Front mount ends mike fumbling. Mike comes off bracket in talk position. Rear mount also included.

Three "power mike" gift ideas from Telex.

The Pilot People
TELEX COMMUNICATIONS, INC.
9600 Aldrich Ave. So., Minneapolis, MN 55420 U.S.A.
Europe: 22 rue de la Legion d'Honneur 93200 St. Denis, France
Canada: Telak Electronics, Ltd., Scarborough, Ontario.
The latest FCC rule-making decision adds 17 new AM/SSB channels to the existing 23, effective January 1, 1977. Thus, the new frequency band for Class D CB will extend from 26.965 to 27.410 MHz, a bandwidth of 445 kHz.

The FCC has decided that no manufacturer should have a headstart in placing 40-channel units on the market. Consequently, all manufacturers will have an opportunity to present 40-channel CB transceivers for type acceptance by the FCC between Sept. 10 and Nov. 1, 1976. The FCC indicates that any transceivers received during this period that are accepted will get the go-ahead for selling Jan. 1, 1977. After Nov. 1, it will be the first come, first served. However, there is a debate concerning to whom these new units can be sold. The FCC appears to mean selling to distributors, while some manufacturers feel that the date restriction should apply to consumers, not distributors or dealers. Consequently, that first batch of 40-channel CB models may not see the light of dealers' shelves too quickly.

It will likely be many months after Jan. 1, 1977 before extended-channel rigs start crowding out 23-channel ones in dealers' showcases. Indications are that 40-channel units will probably be in short supply until next summer. Furthermore, the new rigs (mobile) are expected to sell for about $20 to $40 more than the 23-channel transceivers. That's on the basis of a suggested selling price. In the marketplace, however, prices of 23-channel rigs will undoubtedly be reduced. So you will do well to pick up some 23-channel units at bargain prices before the end of 1976.

Led by Pathcom and Hy-Gain, a growing number of CB radio manufacturers have announced that anyone buying one of their phase-locked loop (PLL) types of transceivers will be able to have it "re-manufactured" so that frequencies can be extended to 40 channels and interference radiation can meet new FCC requirements. Cost of the re-manufacturing ranges from "up to 20%" of the unit's original suggested selling price to a flat $25 or $30, depending on the manufacturer.

Other Changes. FCC Docket 20120 made several other changes to the FCC Rules, also. For example, it will no longer refer to channels by number, specifying them, rather, by frequency only. Note that two of the new frequencies will be added between present channels 22 and 23, while channels 26 through 40 (15 channels) will be added at 10-kHz intervals above channel 23. However, the EIA has suggested an industry standard that will doubtlessly be adopted—to have the frequencies numbered as consecutive channels, with the new frequencies numbered 24 through 40. The two out-of-order frequencies would be channels 24 and 25, with internal changes that won't be apparent to users.

Other revisions are as follows:
- Channel 11 has been released for general communications, leaving channel 9 the only one of the 40 channels reserved for specific use (emergency and mobile assistance). Technical specifications for type-acceptance have been tightened, requiring that harmonic radiation be suppressed at least 60 dB below the base frequency, with the stipulation that the CB operator is responsible for reducing harmonic radiation even further by the use of external low-pass filters where specific TVI complaints have been filed against him. The Docket makes it evident to the manufacturers that even more stringent standards will be imposed in the near future.
- As of January 1, 1977, all new rigs must be engraved with a permanent serial number. The Commission also urges all users to engrave their own personal identification numbers into the equipment, as well, to reduce the saleability of stolen equipment.
- A copy of Part 95, as well as Forms 505 and 555-B, must be shipped with all new rigs.

The PURAC Meeting. The second general meeting of the Personal Use Advisory Committee (PURAC) was held last July at the FCC Laboratory Facility at Guilford, Maryland. The PURAC group consists of leaders of user groups, CB journalists, and companies that have a vital interest in CB. These people volunteer their time and their organizations' facilities to develop joint recommendations to guide the FCC in future rule-making for the Citizen's Radio Service.

Many of the new FCC Rules were in accordance with earlier PURAC recommendations, and much of the business of this PURAC meeting dealt with interpretations of new regulations. Some highlights follow:
- Local Interference. Task coordinator, Richard E. Horner, President of E.F. Johnson Co., and his subcommittee leaders presented a dramatic picture of the interference problems being created by the proliferation of CB transceivers. These problems are real, devastating and on an uncontrollable increase. The primary effects of local interference are felt on TV channels 2, 5 and 6, and also on unshielded solid-state audio equipment.

Causes of local interference are numerous. Some are caused by insufficient harmonic suppression, while others are caused by excessive spurious emissions from CB receiver sections. However, the biggest interference problems result from insufficient filtering incorporated into commercial entertainment equipment. It is evident that interference problems must be attacked on two fronts: the technical specifications for CB equipment must be tightened considerably (even though tighter specs will result in higher prices), and TV and audio equipment manufacturers must be required to include adequate filtering and shielding in their equipment in order to exclude unwanted harmonics and spurious interference.

Information Dissemination. There are actually three subcommittees studying the problems of information, education and training. One of the least understood informational problems deals directly with interference. Both the CB public and the general
public must be made aware of the causes of interference and actions which can be taken to prevent it. TV service technicians must also be educated to recognize the various types of TVI, and know the cures for each. At least one group of TV stations has agreed to produce educational TV programming to acquaint TV viewers with the problems of TVI.

Personal Use Radio Needs. This "blue-sky" subcommittee is charged with examining the future needs of the public for personal radio communications. It is headed-up by Ted Andros, Executive Vice President of Hy-Gain Electronics. Ted has recruited CB notables such as Dave Thompson, President of SBE, to work with him on this important project. He plans to enlist the aid of psychologists, sociologists and economists to predict the future course of personal radio communications. His subcommittee may have a major effect on the future course of CB radio. He asks the logical question, "Why should the general public, in this day of personal mobility, be tied to the end of a telephone line?"

Personal Observations. While at the Guilford Laboratory, I spent some time checking out rumors regarding the extent of FCC activities. One such rumor suggested strongly that the Commission has not adhered strictly to its own type-acceptance policies. I believe that if type acceptance is to succeed, it must be stringently controlled. Because CB is a nontechnical service the CB'er must place his trust in the manufacturer's advertised specs and its compliance with type-acceptance requirements. I feel that type-acceptance testing must extend to random sampling of production models as well as pre-production prototype examination. The manufacturer must share some of the blame if type-accepted rigs fail to meet FCC performance specifications, unless it can be proved that the rig has been tampered with.

I questioned Milton Mobley, Chief Engineer at the FCC Laboratory, on this subject. He assured me that he, personally, had conducted type-acceptance tests on all submitted samples since April, 1976, and that every model receiving a type-acceptance certificate had earned it by passing all aspects of these tests. He would not comment on type-acceptance testing procedures in effect before that date, even though the regulation has been in effect since 1974. Mr. Mobley concedes that it has not been FCC practice to retest production samples unless complaints had been filed. But he explains that testing will be automated in the near future and that production models will be sampled at that time. We certainly hope so.

Congressmen, Please Note. We are all aware that the FCC is "taking in" about $2,000,000 each month in new CB licensing fees. Many of us are not aware that these fees go directly into the U.S. Treasury, not to the FCC. The Commission continually blames many of its short-falls upon the lack of budgeting to cope with the CB problem.

It is about time that Congress recognized the Citizen's Band as a new national force which encompasses from 5% to 10% of all Americans, and growing fast. The FCC must be budgeted to accommodate the growth of CB, and should certainly receive a lion's share of its own proceeds allocated for use to administer the Citizen's Band.

Get More from Your Car with a Mark 10 System.

The best-selling CDI system of its kind in the world—now at discount prices!

Would you like more power? Better mileage? And could you stand to eliminate 3 out of 4 of those expensive tune-ups? Well, that's what the MARK 10 capacitive discharge electronic ignition system is all about. Very simply, it boosts the spark to your engine—promoting better combustion, and minimizing combustion contaminants. Spark plug life is extended, all-weather starts are insured, and you can feel an increase in acceleration and overall engine performance—no matter what kind of car you drive. Learn more about a MARK 10 CDI system for your car (and take advantage of year-end discount prices), when you write today for a catalog and price list.
RELOCATION of the radio spectrum, on an international basis, is long overdue. Despite some adjustments, the frequency ranges allocated at the World Administrative Radio Conference in Atlantic City in 1947 have remained essentially the same ever since. Many of the developments in radio communications which have taken place in the last few years were not foreseen at that time.

Consider, for instance, the advent of satellite communications, which require a lot of space in the spectrum at super-high-frequencies and reduce the need for some high-frequency circuits. Other factors include the growth of CB in the USA, the prolonged trough in the sunspot cycle, and informed speculation that subsequent peaks in the cycle will not attain previous levels. (The latter means there will be less need for the higher part of the hf spectrum and more need for the already overcrowded lower part.

Groundwork for the 1979 WARC conference has been underway for several years. Each administration wants to have its position solidified, in time for the multi-national negotiations, where third-world nations are expected to hold the balance of power.

To arrive at the U.S. position, the FCC has been sponsoring meetings in Washington of various interest groups. International broadcasting is but one of the subject areas of these meetings. Representatives of FCC-licensed hf broadcasters, listeners' groups such as the North American Shortwave Association and the Association of North American Radio Clubs, and interested individuals have worked toward formulating U.S. policy. At this writing, some proposals have been made, but are not formally adopted. The FCC will have the final say, after several more meetings. However, it is not too soon to discuss some of the initial ideas.

Satellite communications are so superior, both in capacity and quality, to hf point-to-point links, that the latter seems destined to be used mainly as backup, and for contacting the few spots on the globe still without earth stations. This means that a very large fraction of the hf spectrum, presently allocated to international fixed public service (point to point) is no longer needed for that purpose.

International broadcasting, next to CB, suffers most from overcrowded bands. Much of this is the broadcasters' fault because they use more power and more frequencies than are necessary. It's a vicious cycle. Radio Nederland's Jim Vastenhoud pointed out at a meeting of the European DX
Council last May that there were about 600 shortwave transmitters in the world with 250 kW or more of power. And many more were being installed, especially in China and the Middle East. Yet there are at present only about 400 channels available on the hf bands, and many of these in the 21- and 25-MHz bands are of little use during the sunspot trough.

There is no prospect that nations will voluntarily cut back their broadcasting to alleviate the present average level of three mutually interfering transmissions at once on each channel. So the solution is to expand the broadcasting bands into regions presently occupied by IFPS.

Out of Band. Band limits cannot be enforced (though one imaginative layman suggested jamming as a means of enforcement). Many stations already operate outside the allocated broadcasting bands. Some have historical precedent on their side—using frequencies that were theirs before the 1947 limits were established. Others have taken up *OOB* (out of band) broadcasting more recently, as a strategy to escape in-band congestion.

Until this year, *Voice of America* broadcast strictly in-band, while employing more and more PTP channels OOB. Some of the latter are independent sideband (ISB), with different programs on each side; others are compatible single sideband (CSSB). Domestic in-band transmitters themselves are considered by the VOA to be feeders for relay, with the exception of some broadcasts to Oceania and Latin America.

Last summer, VOA decided to make use of a loophole in ITU regulations (which the U.S. adheres to, though it is not forced to), allowing OOB broadcasting, as long as no interference is caused to the primary service on a given frequency. The VOA relay in Liberia began using 12000 kHz, which is 25 kHz above the nominal limit of the 11-MHz band. There could hardly be any PTP complaints, as the frequency was already used by Radio Moscow! This new VOA policy lessens its competitive disadvantage against Radio Moscow, which has always felt free to use any channel it pleases.

Though there is no sign that Radio Moscow is giving up OOB, a number of Soviet regional stations have begun a minor counter-trend toward in-band broadcasting. Alma Ata on 9380 and 10,530 and Magadan on 12,240 kHz recently vacated those long-established frequencies far OOB.

The bands have already been widened, *de facto*. But the proposal is to make it *de jure*. If this is done, all countries will feel free to use the new frequencies, not just those bold ones leading the way. Before long, the congestion would also expand, (though, we hope, at a reduced level). The International Broadcasting Service Group proposes the following band expansion, to be used *worldwide*. (At present, one of the problems is usage of certain bands in certain regions only.)

<table>
<thead>
<tr>
<th>Present kHz</th>
<th>Proposed kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>3900-4000</td>
<td>3900-4060</td>
</tr>
<tr>
<td>4450-4650</td>
<td>5740-6200</td>
</tr>
<tr>
<td>7300-7700</td>
<td>9400-9900</td>
</tr>
<tr>
<td>11500-12000</td>
<td>13600-14000</td>
</tr>
<tr>
<td>15050-15700</td>
<td>21450-21850</td>
</tr>
</tbody>
</table>

Sencore

DVM36 $148
3½ digit LED display,
5% DCV accuracy,
battery or AC operated

DVM32 $198
3½ digit LED display,
.5% DCV accuracy,
battery or AC operated
with automatic battery saver

DVM38 $348
3½ digit LED display,
1% DCV accuracy,
AC operated, auto-ranging,
auto-zero, king size pushbuttons

100% MADE RIGHT LIFETIME GUARANTEE
so you can be sure your meter was made right. If at any time you discover that a Sencore DVM was not made right, Sencore will make it right, parts and labor free of charge, for the lifetime of the product.

Plus other "make sure" features such as: direct reading with no parallax error; no effect from magnetic fields such as motors & RF fields; lab accuracy with high resolution; auto-polarity auto-zeroing and auto-ranging on the DVM38 — and you can see why you can be sure more times, in more circuits, than with any other multimeter on the market today — and for less money than old fashioned analog meters.

Sencore
3200 Sencore Drive
Doux Falls, S.D. 57107
The "giftbook" of is in the

and if you aren't already on our customer mailing list,

The Heathkit Christmas Catalog is off
the press, and that's good news for
gift-givers, kitbuilders and everyone
else, too. It's brim-full of the latest
electronic products in easy-to-build kit form. Everything from
lamp dimmers to color TV's, nearly
400 great gift ideas. Gifts for
homeowners, businessmen
and people interested in
electronics, sports, fishing,
electronics mail

now's the time to send for your copy

amateur radio—gifts for anyone you can think of. And giving a Heathkit product is the way to make someone really happy this Christmas. They're interesting and fun-to-build. They give pride and satisfaction along with great performance. So send the coupon today and get your FREE copy of the Heathkit "giftbook". It will help you have a happier holiday, too.

THE NEW HEATHKIT CHRISTMAS CATALOG

World's largest selection of easy-to-build electronic kits—stereo components, color TV, test equipment, Amateur Radio, digital clocks and weather instruments; marine, aircraft and auto accessories, nearly 400 kits in all. Plus special buys on CB radios and antennas, and many special sale and bonus offers just in time for the holidays. Send coupon for your copy today. It's FREE

MAIL COUPON TODAY!

Send for your FREE "Heathkit Giftbook" today—in time for early-bird Christmas shopping!

Heath Company, Dept. 10-23 Benton Harbor, Michigan 49022

FREE

Please send me my FREE Catalog. I am not on your mailing list.

Dept. 10-23

Name
Address
City
State
CL-619 Zip

I'd like to do a favor for a friend—send another catalog to:

Deport 10-233

Name
Address
City
State

NOVEMBER 1976

CIRCLE NO. 5 ON FREE INFORMATION CARD

AmericanRadioHistory.Com
A Logical Solution to your Digital Logic Problems!

THE NEW CATCH-A-PULSE® LOGIC PROBE!
- Multi-family
- Pulse stretching
- Open circuit detection
- 60 Nsec pulse response
- High input impedance
- Replaceable tip and cord

Compatible with TTL, DTL, ITIL, CMOS, MOS, and Microprocessors using a 3.5 to 15 V power supply. Thresholds automatically programmed for multi-logic family operation. Automatic resetting memory for single or multi-pulse detection. No adjustment required. Visual indication of logic levels, using LEDs to show high, low, bad level or open circuit logic and pulses. Highly sophisticated, short-pocket portable (protective cap over tip and removable cooled cord). Eliminates need for heavy test equipment. A definite plus in time and money for engineer and technician.

TO WESTERN NORTH AMERICA

<table>
<thead>
<tr>
<th>TIME PST</th>
<th>TIME GMT</th>
<th>STATION</th>
<th>QUAL*</th>
<th>FREQUENCIES, MHZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00-3:15 a.m.</td>
<td>1100-1115</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>5.99</td>
</tr>
<tr>
<td>3:00-4:25 a.m.</td>
<td>1100-1225</td>
<td>Trans-World Radio, Bonaria N.A.</td>
<td>G</td>
<td>5.99 (via Saskville, 11.75 (via Tebrau))</td>
</tr>
<tr>
<td>3:00-5:30 a.m.</td>
<td>1100-1330</td>
<td>London, England</td>
<td>G</td>
<td>9.74, 11.75, 15.31 (via Tebrau)</td>
</tr>
<tr>
<td>3:00-6:00 a.m.</td>
<td>1100-1400</td>
<td>Tokyo, Japan</td>
<td>F</td>
<td>5.99</td>
</tr>
<tr>
<td>3:00-6:00 a.m.</td>
<td>1100-1400</td>
<td>**VOR, Washington, USA</td>
<td>P</td>
<td>5.99</td>
</tr>
<tr>
<td>4:00-4:15 a.m.</td>
<td>1200-1215</td>
<td>Tokyo, Japan</td>
<td>P</td>
<td>**Takashin, U.S.S.R.</td>
</tr>
<tr>
<td>5:00-4:30 a.m.</td>
<td>1200-1230</td>
<td>Tokyo, Japan</td>
<td>P</td>
<td>9.60, 11.925</td>
</tr>
<tr>
<td>5:00-5:30 a.m.</td>
<td>1200-1230</td>
<td>**Santigo, Chile</td>
<td>F</td>
<td>9.566, 11.81, 15.15</td>
</tr>
<tr>
<td>5:00-6:00 a.m.</td>
<td>1200-1230</td>
<td>HCB, Quito, Ecuador</td>
<td>G</td>
<td>11.745, 15.115</td>
</tr>
<tr>
<td>6:00-6:30 a.m.</td>
<td>1230-1400</td>
<td>Trans-World Radio, Bonaria N.A.</td>
<td>G</td>
<td>15.255 (Sat., Sun.)</td>
</tr>
<tr>
<td>6:00-7:20 a.m.</td>
<td>1300-1315</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>9.74, 11.75, 15.31 (via Tebrau)</td>
</tr>
<tr>
<td>6:00-9:05 a.m.</td>
<td>1300-1615</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>9.90, 11.925</td>
</tr>
<tr>
<td>7:00-7:15 a.m.</td>
<td>1400-1520</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>5.99</td>
</tr>
<tr>
<td>7:00-8:15 a.m.</td>
<td>1400-1520</td>
<td>**Hilversum, Holland</td>
<td>G</td>
<td>9.58 (closes 1555 Sun.)</td>
</tr>
<tr>
<td>8:00-8:15 a.m.</td>
<td>1500-1615</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>5.99</td>
</tr>
<tr>
<td>8:00-8:30 a.m.</td>
<td>1500-1615</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>17.84 (via Ascension)</td>
</tr>
<tr>
<td>8:00-8:30 a.m.</td>
<td>1500-1615</td>
<td>Tokyo, Japan</td>
<td>F</td>
<td>11.855 (Sun.)</td>
</tr>
<tr>
<td>8:00-9:30 a.m.</td>
<td>1600-1709</td>
<td>Oslo, Norway</td>
<td>F</td>
<td>5.98, 15.385 (via Saskville, opens 1500 Sat.)</td>
</tr>
<tr>
<td>8:42-8:51 a.m.</td>
<td>1642-1651</td>
<td>Hilversum, Holland</td>
<td>G</td>
<td>11.82, 15.19 (via Bonaria, Mon.-Fri.)</td>
</tr>
<tr>
<td>9:00-9:15 a.m.</td>
<td>1700-1715</td>
<td>Tokyo, Japan</td>
<td>F</td>
<td>5.99</td>
</tr>
<tr>
<td>10:00-10:15 a.m.</td>
<td>1800-1815</td>
<td>Tokyo, Japan</td>
<td>F</td>
<td>9.51, 11.86, 15.37</td>
</tr>
<tr>
<td>10:30-11:30 a.m.</td>
<td>1830-1930</td>
<td>Tokyo, Japan</td>
<td>F</td>
<td>11.82 (via Ascension)</td>
</tr>
<tr>
<td>11:00-11:15 a.m.</td>
<td>1900-1915</td>
<td>**Papete, Tahiti</td>
<td>F</td>
<td>11.82, 15.17 (ex. Sun.)</td>
</tr>
<tr>
<td>12 noon-12:15 p.m.</td>
<td>2000-2015</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>9.565</td>
</tr>
<tr>
<td>12 noon-1:15 p.m.</td>
<td>2000-2120</td>
<td>**Hilversum, Holland</td>
<td>G</td>
<td>9.565</td>
</tr>
<tr>
<td>1:00-1:15 p.m.</td>
<td>2100-2115</td>
<td>Tokyo, Japan</td>
<td>F</td>
<td>11.73 (via Tahita)</td>
</tr>
<tr>
<td>1:15-3:00 p.m.</td>
<td>2115-2300</td>
<td>Tokyo, Japan</td>
<td>F</td>
<td>9.565 (via Ascension)</td>
</tr>
<tr>
<td>2:00-2:15 p.m.</td>
<td>2200-2215</td>
<td>Tokyo, Japan</td>
<td>F</td>
<td>15.105</td>
</tr>
<tr>
<td>2:00-4:00 p.m.</td>
<td>2200-2400</td>
<td>**VOR, Washington, USA</td>
<td>F</td>
<td>17.82, 17.895, 21.61</td>
</tr>
<tr>
<td>3:00-3:05 p.m.</td>
<td>2300-2305</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>5.90, 7.395, 7.412, 9.435</td>
</tr>
<tr>
<td>3:00-3:10 p.m.</td>
<td>2300-2310</td>
<td>Jerusalem, Israel</td>
<td>G</td>
<td>5.98, 9.585, 11.80, 11.90</td>
</tr>
<tr>
<td>3:00-3:30 p.m.</td>
<td>2300-2330</td>
<td>Johannesburg, S. Africa</td>
<td>F</td>
<td>9.566, 11.81, 15.15</td>
</tr>
<tr>
<td>3:30-4:30 p.m.</td>
<td>2300-0030</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>15.105</td>
</tr>
<tr>
<td>3:30-5:00 p.m.</td>
<td>2300-0100</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>6.175, 9.51 (via Saskville), 9.58 (via Ascension)</td>
</tr>
<tr>
<td>3:45-4:00 p.m.</td>
<td>2345-2400</td>
<td>Tokyo, Japan</td>
<td>F</td>
<td>6.04</td>
</tr>
<tr>
<td>4:00-4:15 p.m.</td>
<td>0000-0015</td>
<td>**VOR, Washington, USA</td>
<td>F</td>
<td>6.13, 5.94, 11.74</td>
</tr>
<tr>
<td>4:00-5:00 p.m.</td>
<td>0000-0100</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>15.105</td>
</tr>
<tr>
<td>4:00-5:00 p.m.</td>
<td>0000-0100</td>
<td>Tokyo, Japan</td>
<td>G</td>
<td>11.83, 11.895, 15.40</td>
</tr>
<tr>
<td>Time</td>
<td>Frequency (MHz)</td>
<td>City, Country</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00-7:00</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:30-7:00</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00-7:30</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30-8:00</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00-8:30</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30-9:00</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00-9:30</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30-10:00</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00-1:30</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00-2:30</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:30-3:00</td>
<td>5.905, 7.275, 7.295, 7.305</td>
<td>Jakarta, Indonesia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Reception quality, East Coast (West Coast) location: G-good, F-fair, P-poor
**Not intended for North America, but receivable satisfactorily.
Days refer to local date in target area.
MASS-STORAGE SYSTEMS

Many interesting and useful applications of hobbyist computers require a program-controlled mass-storage device. Although a simple audio-cassette interface can be used, there are other more automatic, practical storage systems.

Applications Needing Mass Storage. Home accounting is a computer application that is often mentioned as needing a mass storage. One would expect a double-entry bookkeeping method to be used here, with all incomes and expenditures divided into a number of accounts according to the nature of the transaction. Once a week, or as needed, new transactions would be added to the appropriate accounts. Ideally, a verbal description of each transaction would be retained with the account record as well as the amount and date. Monthly, or as required, the system could be instructed to compute and print a personal financial statement. Also, if the accounts were set up properly, preparing a tax return could be a relatively simple task. The amount of mass storage needed, however, can become substantial. Assuming a moderately detailed system of 30 accounts and an average of 25 transactions per account per year, yields a total of 2250 transactions to save for the 3-year record-holding period required by the IRS. Allowing 30 bytes for a description, 4 bytes for a date and 4 bytes for an amount, gives a total of 85k bytes required for the application.

Learning games are an exciting application that benefit from mass storage. A learning approach to implementing complex game-playing programs such as checkers is often easier and can give better results than a direct approach. Such a program, when first run, would only be cognizant of the game rules. As it plays human opponents, files of data concerning fatal mistakes made by the program and winning tactics employed by the opponent would be accumulated. Eventually the program would acquire a skill level just below that of the best opponent and would not suffer from "stupid" mistakes. Additionally, intermediate data files at various skill levels may be retained. Such files may get rather large. They are also subject to frequent change as the program learns. High-speed access to the data is helpful in keeping the game moving along.

Text editing for letters, reports, and other documents is another mass-storage-oriented application. The editing process may involve frequent changes, insertions, and deletions of blocks of text in the document. Also, it may be desirable to move a block of text from one portion of a document to another. The amount of storage needed varies with the type of document. A thesis may require 300k bytes, an article 30k and a letter 3k. Large insertions in the middle of a document may cause problems with certain types of mass storage.

Mass-Storage Terminology. Over the years, many terms have been developed to describe mass-storage systems. Perhaps most fundamental is the on-line storage capacity of a system. On-line storage capacity is the amount of data that can be accessed automatically by the program without requiring human intervention to change tapes, etc.

On all mass-storage systems, data is organized into blocks called records. When a data transfer between the storage system and the computer is performed, an entire record must be transferred. Some systems utilize a fixed record size, which means that all records are of the same length. Most tape systems, however, allow a variable record size, which means that a record may be as short as one byte or as long as desired. Note that the use of short records may reduce the storage capacity substantially due to gaps between records.

The transfer rate of a system is a measure of how fast data can be read from, or written into, the storage media. Often this is qualified further by specifying a "burst", transfer rate and an "average" transfer rate. The burst rate is the actual speed during reading or writing. The average rate is measured for a long transfer of several thousand bytes. It is usually less than the burst rate because of the gaps between blocks of data or time spent searching for the next block of data.

In a sequential access storage system, all of the data is stored as one long string of records. The access mechanism (usually a magnetic head) can be located at any point in the string. In the simplest systems, only two operations are allowed: read (place the head at the beginning of the string); and read forward, starting at the current head position. Writing of new data is always done at the end of the string. More sophisticated sequential-access systems may allow reading backward and high-speed search in both directions. Some may even allow records in the middle of the string to be updated.

Data records in a random-access storage system are organized in a rectangular array consisting of a number of rows and columns. A particular record is read or written simply by giving its row and column numbers. The storage device goes directly to the requested location, usually without any searching. Individual records may be rewritten at will. Random-access storage systems almost always utilize fixed record lengths.

Tape Mass-Storage Systems. Tape, particularly in cassettes, is a popular, inexpensive mass-storage medium. The on-line storage capacity of a C60 cassette, for example, ranges from 50k bytes using the Computer Users Tape System or CUTS (see "Computer Bits," March, 1976) audio format (also known as Kansas City format) to approximately 600k bytes using the Digital Group's "group coded recording" digital format. Transfer rates range from about 25 bytes per second for standard audio to over 1000 bytes per second for high-performance digital recording. Most tape systems for hobbyist use allow variable-length records with perhaps a maximum allowable length.
Magnetic tape is inherently a sequential-access storage medium. Here, data records are strung out along the length of the tape with enough blank space between records to allow for starting and stopping the tape. Finding a desired record on the tape and reading it into the computer’s memory is a fundamental operation. If the record’s location is not known, about the best that can be done is to rewind the tape and start reading until the needed record is reached and read. This, of course, can take several minutes even on a high-performance digital cassette system. One possibility for speeding up is to maintain an “index record” at the beginning of the tape that contains the location of all of the other records on the tape. The program would keep the index in memory while that particular tape is loaded on the drive. Then, on a simple system, at least a decision between reading forward and rewinding and starting over can be made. On a system with read-backward capability, the average search time may be shortened further by reading backward when appropriate, rather than rewinding. A system with high-speed search allows records to be counted at two to ten times the normal tape speed in either direction. When the required number of records has been skipped, normal read speed is resumed and the desired record is read. Using the high-speed search feature allows average random-access times of less than 30 seconds on a 600k byte tape with one currently available cassette system.

All three applications described earlier required data records to be updated (read, modified, and rewritten) frequently. With a simple tape system the only possible method of updating is to make a copy of the “old” tape onto a “new” tape, changing the records to be updated during the copying. Besides requiring two tape drives, the process can be quite slow if individual, random updates are required, as in the game application. Some sophisticated systems will allow records to be updated in the middle of the tape provided the updated record length is the same as the original. One possibility, if records are expected to grow as in the accounting application, is to start with a long record padded with zeroes and then gradually replace the zeroes with new data as updates take place. Large insertions and deletions such as in the text-editing

Our whole family helped assemble this wonderful Schober Organ... and now we all play it!

Talk about real family fun! We all worked together, for a few hours almost every day. Almost too soon, our Schober Organ was finished. Our keen-eyed daughter sorted resistors. Mom soldered transistor sockets, although she'd never soldered anything before. And it did our hearts good to see the care with which our son—he's only 12—installed the transistors. Me? I was the quality control inspector—they let me do the final wiring.

Our completed Schober Organ compares favorably with a “ready-made” one costing twice as much (the five models range from $650 to $2850).

Just send the coupon for the fascinating Schober color catalog (or enclose $1 for a 12-inch L.P. record that lets you hear as well as see Schober quality).

The Schober Organ Corp., Dept. PE-68 43 West 61st Street, New York, N.Y. 10023

Please send me Schober Organ Catalog.

Enclosed please find $1.00 for 12-inch L.P. record of Schober Organ music.

NAME

ADDRESS

CITY STATE ZIP

NOVEMBER 1976

The POLY 88 Microcomputer System

The POLY 88 Microcomputer System brings to the user, in one compact package, the capability of developing programs and hardware as well as enjoying the interaction with computers.

The POLY 88 System uses a video monitor for display, a keyboard for input and cassette tape for storage. The system will also connect to a hard-copy terminal. POLY 88 hardware consists of an 8080 based CPU circuit card with onboard memory and I/O, video display circuit card with keyboard input port and graphics capability, and mini-cards that connect to the CPU board via ribbon cable for cassette or serial interface.

The Firmware Monitor is integral to the POLY 88 System. This 1024 byte program in ROM allows the user to display data on a TV screen, enter data into memory using a keyboard, read and dump data to the cassette interface in Kansas City format, and single step through a program while displaying the contents of each of the 8080's internal registers.

Prices: Basic kit including chassis, CPU and video cards — $595, $795 assembled. Cassette option — $90 kit and $125 assembled. 8K of RAM — $300 in kit form or $385 assembled.

Dealers: This system will sell itself.

All prices and specifications subject to change without notice. Prices are USA only, California residents add 6% sales tax. Prepaid orders shipped postpaid. BankAmericard and Master Charge accepted.

PolyMorphic Systems

737 S. Kellogg Avenue, Goleta, Ca. 93017 (805) 967-2351

CIRCLE NO. 58 ON FREE INFORMATION CARD

CIRCLE NO. 55 ON FREE INFORMATION CARD
application are still best handled by the update/copy technique when using a tape mass-storage system.

Disk Mass-Storage Systems. A disk-based mass-storage system has several very desirable characteristics. On-line storage capacity ranges from about 300k bytes for a floppy-disk system to over 200M bytes for some high-performance commercial systems. The range on transfer rates is considerably less, being from 32k bytes per second for the floppy to about 1.5M bytes per second for large hard-surfaced disk systems.

Although most disk mass-storage systems are very expensive, floppy-disk systems are reasonable and are becoming much more numerous among hobbyist users. The components to build a floppy-disk system cost about $600 while complete kits list for around $1500. The disk itself is housed in a flexible plastic envelope measuring eight inches square and one-sixteenth-inch thick and costs seven to ten dollars each. Each disk holds over 300k bytes and can be inserted into or removed from the disk drive in a couple of seconds.

Unlike tape, mass-storage disks are random-access devices. The circular disk surface is divided into a number of concentric *tracks*. Each track is further subdivided into a number of *sectors*. This is equivalent to the rectangular array of records mentioned earlier. Each sector contains one data record which is fixed in size. To access a particular record, the magnetic head is first positioned to the correct track by moving it radially in or out. This is called *seeking*. Then the system waits for the proper sector to rotate under the head for reading. The amount of time necessary to do these operations varies but is relatively unaffected by where the data is on the disk. All disk systems allow individual sectors to be updated.

A floppy disk may have, for example, 77 tracks and 32 sectors on each track for a total of 2464 possible data records. Each record has 128 useful data bytes. Moving the head from one track to another takes about 10 milliseconds per track moved. At 360 rpm it takes 166 milliseconds for the disk to rotate one revolution. Thus the longest required time to find and read a record will be just under a second. The average time is less than half that figure. Since a search of the whole disk would take considerably longer than this, some kind of index is always maintained so that the exact track and sector numbers of the desired data are known.

A floppy-disk mass-storage system is nearly ideal for all three example applications. The accounting system, for example, can be set up so that each transaction would be stored on one sector. Thus three years of financial records may fit on one $7 floppy disk. In the game program, many random data accesses and updates can be performed in the time allowed for the computer to make its move. Even the

Stamp Out

Hot soldering irons can be murder on delicate electronic components such as IC's. That's why the DIGI-DESIGNER will become your bug's best friend. It's a solderless breadboarding instrument that can save you time and burned out parts.

DIGI-DESIGNER comes complete with clock, dual pulsers, logic monitors, voltage switches, built-in 5 volt supply, binding posts for external power, input/output BNCs, and more. Everything you'll need for fast, efficient circuit design.

Use the coupon below to order your kit today. U.S. price - $70.00

CIRCUIT DESIGN, INC.
Division of E & L Instruments, P.O. Box 24, Shelton, Conn. 06484

☐ Please send my model DO-1K DIGI-DESIGNER in kit form. Price $70.00.

Name ________________________________
City ___________State ___________
Zip ___________Telephone _______

Enclose check, money order or numbers from BankAmericard or Master Charge. We will ship post paid anywhere in continental U.S.
large insertions and deletions required in the text-editing application are readily handled. With such quick random access to records, the inserted text may be stored in any unused positions on the disk. Deleted records are simply marked as unused and will later be overwritten. Sorting of records using a single disk drive is not only possible but is relatively easy. With a tape system, at least three drives and a number of update/copy operations are required to do sorting.

Error Handling. Unfortunately it is a fact of life that magnetic recording media can have defects and can be damaged by improper handling. The result of a defect is that data recorded over it is subject to error. Since alteration of even a single bit can be disastrous (such as a difference between $1081 and $9081 in the accounting application), methods must be employed to detect the presence of these errors and to allow recovery from them.

Errors can be detected in a number of ways. The most common employs a checksum byte at the end of a record. A checksum is simply the sum of all of the data bytes in the record with overflows ignored. If the sum of the data read back is the same as the checksum byte for the data written, then the data is assumed to have been read accurately.

To prevent writing over a bad spot on the media, the data is typically read back and compared immediately after it is written. If an error is detected, then the record is erased and rewritten further on or in another sector.

More Hobbyist Clubs

Canada

Amateur Microprocessor Club of Kitchener—Waterloo, % Reading Rm. Eng. II, Dept. Electrical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

TRACE, Toronto Region Association of Computer Enthusiasts, Box 545, Streetville, Ontario, Canada L5M 2C1.

Connecticut

Southern New England Computer Society, 267 Willow St., New Haven, CT 06511.

Florida

Space Coast Microcomputer Club % Ray O. Lockwood, 1825 Canal Ct., Merritt Island, FL 32952. (305) 452-2159.
THE SILICON SOLAR CELL

YOU CAN now buy silicon solar cells for less than a nickel per milliwatt of output power. This is still too costly to make high-power solar panels economically feasible in most (especially experimenters') applications. But it is low enough to allow many of us to assemble small solar panels for charging nickel-cadmium batteries.

This month, we'll take a look at the design factors and construction procedures involved in fabricating small solar batteries. But first, let's review how solar cells work and examine some of the reasons for their high cost.

Solar Cell Theory. The construction of a typical silicon solar cell is shown in Fig. 1. It is essentially a p-n junction diode, and depends on the photoelectric effect for its operation. When the cell is in darkness, no current flows through it. The barrier potential of the junction keeps the charges from crossing from one side to the other. But when photons (light particles) strike the silicon, electron-hole pairs are created resulting in an output voltage. If the output terminals of the cell are connected to a load, a current will flow. The cell voltage is relatively independent of the light level, and is usually from 0.45 to 0.55 volt. Output current, however, is directly related to the intensity of the light striking the cell's surface.

The theoretical maximum conversion efficiency (the ratio of cell power output to light power input) of a "perfect" silicon solar cell is 20 to 25 percent. No such cell exists, but some laboratory cells have demonstrated an efficiency of nearly 20 percent. Commercially available cells range in efficiency from 8-10 percent for older devices to 10-15 percent for the superior grade of cells developed over the past few years.

How They Are Made. Silicon is the second most abundant element on earth, and, at $600 per ton, bulk metallurgical grade silicon is actually rather cheap. But silicon solar cell efficiency is directly related to the purity of the silicon used to make the cell, and ultra-pure silicon costs 100 times more than metallurgical grade material.

Materials cost is only part of the picture. The major reason for the expense of silicon solar cells are these five production steps:

- Growth of boules of silicon from molten silicon.
- Slicing of the boules into thin wafers.
- Smoothing the surface of the wafers by chemical etching or mechanical polishing.
- Formation of a p-n junction by heating the wafers in a furnace in the presence of appropriate dopants.
- Affixing metal electrodes to the front and back surface of the cell.

Actually, these five steps are only the minimum required to produce a working solar cell. More efficient cells can be produced by additional etching of the front surface, formation of better electrodes, oxidizing the front surface to reduce reflection losses, and careful attention to junction formation.

Considering the materials cost and complex procedure, the high cost of silicon solar cells is certainly justified. Fortunately, improved production techniques promise to lower solar cell prices considerably in years to come.

Building Practical Solar Cell Arrays. Figure 2 shows how a silicon solar battery is connected to a nickel-cadmium storage cell. The five solar cells in the battery produce a total of about 2.75 volts open circuit in bright sunlight, and perhaps 1.5 volts when loaded down by the NiCd cell. Blocking diode D1 keeps the cell from discharging through the solar battery during hours of darkness. If the NiCd cell is disconnected from the circuit during darkness, D1 and one of the five solar cells can be omitted from the circuit. (The fifth solar cell compensates for the forward voltage drop across the diode.)

Designing practical chargers requires a knowledge of the charging requirements of the storage cells and the maximum current output of the solar battery. The maximum charging rate for most NiCd cells is 10 percent of the cell's capacity in milliampere-hours (mAh). Therefore the maximum charging rate for a 500-mAh cell is 50 mA. A higher charge rate can damage or destroy the cell. Most cells require 12-14 hours at the maximum charge rate to achieve full capacity: But fast-charge units which can be charged to full capacity in only about 4 hours have recently become available. They are charged at 30 percent of the mAh rating (for example, 150 mA for a 500-mAh battery).

With these facts in mind, here are some useful guidelines to follow when designing your own solar battery charger:

- Use 3-4 solar cells in series for each series connected NiCd cell (e.g. 2 cells in series require 6-8 solar cells in series).
- Add one solar cell if a blocking diode is used.
- When assembling the array, temporarily wire the solar cells together and connect them to the batteries through a milliammeter as shown in Fig. 3. The current level should not
exceed the maximum allowable for the NiCd cells when the solar battery is in bright sunlight. If the current level is too high, remove one or more solar cells until the current falls to a safe level. If the current is too low, add cells as required.

Remember that you can achieve any combination of voltage and current from a solar battery by employing appropriate series and parallel connections of solar cells.

Practical Chargers. I recently built two solar-cell chargers for NiCd batteries to take with me on a bicycle trip in the mountains of New Mexico. One charger had 9 series-connected 2-cm square solar cells connected to two series-connected NiCd cells. The other consisted of 18 series-connected cells connected to 4 NiCd batteries. You can make similar chargers yourself.

In making the chargers, it is convenient to solder (carefully) the cells together in groups of three. Use a low-power soldering pencil and tinned, stranded hookup wire. Next, use small squares of masking tape to temporarily secure the strips of cells face down on a Plexiglas panel. Then apply GE RTV-108 or a similar clear silicone cement between the rows of cells. Smooth the cement across the backs of those cells not secured with masking tape.

Allow the adhesive to cure for 12 hours. Then carefully solder the strips of cells to one another to make the desired total. Attach output leads and a 1N914 blocking diode to the battery. Next, spread adhesive across the backs of all the cells (masking tape removed) and place a sheet of clear vinyl over the adhesive. Secure the vinyl in place for 24 hours with tape.

These simple assembly methods will permit you to produce a reliable NiCd solar-battery charger quickly and easily. Both of the panels I built provide 5 to 15 mA of charging current on overcast days.

Fig. 3. Using a milliammeter.

The milliammeter will permit you to produce a reliable NiCd solar-battery charger quickly and easily. Both of the panels I built provide 5 to 15 mA of charging current on overcast days.
FOR SALE

NON-DISPLAY CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services. $2.25 per word (including name and address). Minimum order $33.75. Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance. **DISPLAY CLASSIFIED:** by 1 column (2 1/4" wide), $290.00. 2" by 1 column, $520.00. 3" by 1 column, $780.00. Advertiser to supply film positive. For frequency rates, please inquire.

GENERAL INFORMATION: First word in all ads set in caps at no extra charge. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses must supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which press after closing date. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st. Send order and remittance to POPULAR ELECTRONICS, One Park Avenue, New York, New York 10016, Attention: Hal Cymes.

12 or 24 HOUR LED CLOCK

12 VOLT AC OR DC POWERED FOR FIXED OR MOBILE OPERATIONS.

BATTERY BACK-UP FOR POWER FAILURE OR TRANSPORTING FROM HOUSE TO CAR, ETC.

- 6 JUMBO 4" RED LED'S BEHIND RED FILTER LENS WITH CHROME COVER.
- SET TIME FROM FRONT VIA HIDDEN SWITCHES • 12/24-HR. TIME FORMAT.
- STYLISH CHARCOAL GRAY CASE MADE OF HIGH MODULUS TPE. POLYMER.
- BRIDGE POWER INPUT CIRCUITRY — TWO WIRE NO POLARITY HOOK-UP.
- OPTIONAL CONNECTION TO BLANK DISPLAY (Use When Key Off in Car, Etc.).

RADIO

AM

- BANDS: 530, 160, 100, 10, 50, 30, 9, 6, 3, 2, 1.
- POWER: 5000, 1000, 100, 10, 5, 1 WATT.
- FREQUENCY: 2000, 500, 100, 50, 10, 1 KHZ.
- SENS: 50, 10, 1, 0.5, 0.1 MUV.
- DIAL: 2000, 500, 100, 50, 10, 1 KHZ.
- REDE: 5, 2, 1, 0.5, 0.25, 0.15 MUV.
- RATING: 50, 10, 1, 0.5, 0.25, 0.15 MUV.

FM

- BANDS: 88, 76, 64, 52, 40, 29, 25, 20, 18, 17, 12, 10, 8, 7, 5, 3, 2, 1.
- POWER: 5000, 1000, 100, 10, 5, 1 WATT.
- FREQUENCY: 2000, 500, 100, 50, 10, 1 KHZ.
- SENS: 50, 10, 1, 0.5, 0.1 MUV.
- DIAL: 2000, 500, 100, 50, 10, 1 KHZ.
- REDE: 5, 2, 1, 0.5, 0.25, 0.15 MUV.
- RATING: 50, 10, 1, 0.5, 0.25, 0.15 MUV.

TV

- BANDS: 40, 30, 20, 15, 12, 9, 7, 4, 2, 1.
- POWER: 5000, 1000, 100, 10, 5, 1 WATT.
- FREQUENCY: 2000, 500, 100, 50, 10, 1 KHZ.
- SENS: 50, 10, 1, 0.5, 0.1 MUV.
- DIAL: 2000, 500, 100, 50, 10, 1 KHZ.
- REDE: 5, 2, 1, 0.5, 0.25, 0.15 MUV.
- RATING: 50, 10, 1, 0.5, 0.25, 0.15 MUV.

Send for your information packet today— which also includes circuit function, component line-up, 2nd & 3rd editions. Information Packet $1.00 (refundable with order).

MECHANICAL, ELECTRONIC devices catalog 100 Cents. Greatest Values - Lowest Prices! Fenix's, 5249 D-Philadelphia, Pa. 19132.

LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP. 3174 8th Ave. S.W. Large, Fl. 33540. ELECTRONIC PARTS, semiconductors, kits. FREE FLYER Large catalog $1.00 deposit. BIGELOW ELECTRONICS, Blu. West, 45817.

RADIO—T. V. Tubes—30 cents each send for free catalog. Cornell. 4213 University, San Diego. Calif. 92108.

AMATEUR SCIENTISTS, Electronics Experimenters. Science Fair Students. Complete plans—Complete, including drawings, schematics, parts list with prices and sources. Robot Man —Psychadelic shows —Lasers —EmotionJIone Director-Type Time Delay—Quadrifonic Adapter. Transistorized Ignition —Burglar Alarm —Sound Meter —over 60 items. Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group, Box 5994, University Station, Raleigh, N.C. 27607.

METERS—Surplus, new, used, panel or portable. Send for list. Han krótki. Box 5517. Riverside, Calif. 92507.

QUALITY PC BOARDS & COMPONENTS—EXEMPLARY INSTRUCTIONS

MECHANICAL, ELECTRONIC devices catalog 100 Cents. Greatest Values — Lowest Prices! Fenix's, 5249 D—Philadelphia, Pa. 19132.

LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP. 3174 8th Ave. S.W. Large, Fl. 33540. ELECTRONIC PARTS, semiconductors, kits. FREE FLYER Large catalog $1.00 deposit. BIGELOW ELECTRONICS, Blu. West, 45817.

RADIO—T. V. Tubes—30 cents each send for free catalog. Cornell. 4213 University, San Diego. Calif. 92108.

AMATEUR SCIENTISTS, Electronics Experimenters. Science Fair Students. Complete plans—Complete, including drawings, schematics, parts list with prices and sources. Robot Man —Psychadelic shows —Lasers —EmotionJIone Director-Type Time Delay—Quadrifonic Adapter. Transistorized Ignition —Burglar Alarm —Sound Meter —over 60 items. Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group, Box 5994, University Station, Raleigh, N.C. 27607.

METERS—Surplus, new, used, panel or portable. Send for list. Han krótki. Box 5517. Riverside, Calif. 92507.

QUALITY PC BOARDS & COMPONENTS—EXEMPLARY INSTRUCTIONS

MECHANICAL, ELECTRONIC devices catalog 100 Cents. Greatest Values — Lowest Prices! Fenix's, 5249 D—Philadelphia, Pa. 19132.

FAIRCHILD ANNOUNCES THE

SOLID STATE TECHNOLOGY KIT

• FOR THE EXPERIMENTER WITH TASTE FOR "STATE OF THE ART" PRODUCTS
• COMPLETE SPECIFICATIONS ARE PRINTED ON THE BACK OF EACH TECHNOLOGY KIT

FTK0020

CARD FRONT

DIGITS

FTK0001 0.5" High Common Cathode Digit $1.00
FTK0002 0.5" High Common Anode Digit 1.00
FTK0003 0.57" High Common Cathode Digit .75
FTK0004 0.8" High Common Cathode Digit 2.00
FTK0005 0.9" High Common Anode Digit 2.00

0.8" HIGH DISPLAY ARRAYS

FTK0010 12 Hour, 3½ Digit Clock Display 7.00
FTK0011 24 Hour, 4 Digit Clock Display 8.00

FTK0020

CARD BACK

FTK0020

PHOTO ARRAYS

FTK0040 9-Element Tape Reader Array 16.00
FTK0041 12-Element Card Reader Array 24.00
FTK0042 Reflective Opto Coupler 4.00

COUPLERS

FTK0040 3 General Purpose Opto Couplers 1.00
FTK0050 Darlington Opto Coupler 1.00

MOS CLOCK CIRCUITS

FTK0040 Digital Clock/Calendar Circuit (FCM7001) 7.00
FTK0041 Digital Clock/Calendar with BCD Outputs (FCM7002) 7.00
FTK0042 Direct Drive Digital Clock Circuit with AC Output (FCM3817A) 5.00
FTK0043 Direct Drive Digital Clock Circuit with DC Output (FCM3817D) 5.00
FTK0045 Direct Drive Digital Clock/Calendar Circuit (FCM7015) 6.00

KITS

FTK0040 Automobile Clock Kit 40.00

FTK0106

CARD FRONT

• THESE PRODUCTS ARE PACKAGED FOR OUTSTANDING WALL DISPLAY APPEARANCE
• FULL FAIRCHILD PRODUCT LINE TO FOLLOW

JAMES

NOW OPEN SATURDAYS

1021 HOWARD STREET
SAN CARLOS, CA 94070
PHONE ORDERS – (415) 592-8097

NOVEMBER 1976

Satisfaction Guaranteed. $5.00 Min. Order. U.S. Funds. California Residents – Add 5% Sales Tax. Send a 24¢ Stamp (postage) for a FREE 1977 Catalog.

CIRCLE NO. 45 ON FREE INFORMATION CARD

DEALER'S AND WHOLESALER'S INQUIRIES INVITED – PRICE LIST AVAILABLE.

BUY WITH PRIDE THE PRODUCTS BUILT BY THE INDUSTRY'S LEADER – FAIRCHILD
POLICE, Fire monitors, scanners, crystals, CB Transceivers, New Crystal-less scanners. Discount priced. Box 19224, Denver, CO 80219.

TELETYPE EQUIPMENT for sale for beginners and experienced computer enthusiasts. Twenteen types, models, parts, supplies. Catalogue $1.00 to ATLANTIC SALES, 3730 Nautilus Av., Milwaukee, WI 53214. Tel: (212) 372-0349.

IC BONANZA

- Data Sheet included on these items

- Minimum order $5.00, data sheets 25 cents each. Include 5% of order for postage and handling.

- Texas Instruments integrated circuits sale

BONANZA

P. O. Box 24767
Dallas, Texas 75224

DON'T LET VOLTAGE TRANSIENTS ZAP YOUR HI-FI.

SOLAR CELLS

The sun's energy converted into power, 46V 500W. This item usually sold for $800.00 elsewhere. Send $10 for latest free catalog. Minimum order $5, phone orders welcome. (617) 386-4708. Include sufficient postage, excess refunded. Bank Americard & Mastercharge welcome. All numbers needed for processing. Min. charge $15.

CIRCLE NO. 61 ON FREE INFORMATION CARD

DELTA ELECTRONICS

P. O. Box 2, AMESBURY, MA. 01913

GRIGSBY DRY REED RELAY

Types TGRS1-10, 12-OHMS, 24VDC, 500 MA. Includes complete schematic, P.O. Box 1295, Plainfield, Ill. 60544.

CIRCLE NO. 82 ON FREE INFORMATION CARD

DUAL ELECTRONICS

P. O. Box 20, CLINTON, IA. 52732

ALSO IN STORES NATIONWIDE

CIRCLE NO. 83 ON FREE INFORMATION CARD

Low Priced Electrical Supplies

CIRCLE NO. 84 ON FREE INFORMATION CARD

Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.

INTEGRATED CIRCUITS

Digital Alarm/Clock Kits

6-50 LED Displays

Battery operated, beautiful stainless finish, quartz crystal accuracy. Excellent for mounting on wall of any boat, camper, etc. One year guarantee.

R/C-4 digital clock kit (no alarm)

R/C-6A digital clock kit with alarm and radio or light play alarm

Not a Cheap Clock $17.45

Includes everything except RX.

R/C-5 LED Displays, 5314 clock chip transformer, complete components and full instructions

R/F SWITCH Only

Most important: $9.95

between any two video, audio or R/F signals.

Over 300,000 in use.

5kHz at 30 MHz.

LED Connectors

Reliable, one moving part.

TERMS: $5.00 min. order U. S. funds Calif. residents add 6% tax.

CIRCLE NO. 60 ON FREE INFORMATION CARD

AmericanRadioHistory.Com

POPULAR ELECTRONICS

CIRCLE NO. 26 ON FREE INFORMATION CARD
4K LOW POWER RAM BOARD KIT

Imsai and Altair 8080 plug in compatible. Uses low power static 21L02-1 500 ns RAM's, which are included. Fully buffered, drastically reduced power consumption, on board regulated, all sockets and parts included. Quality premium plated thru PC Board.

$89.95

8 Digit LED

“METRIC MASTER” $19.95

“RAPID MAN – 12” $29.95

ALARM CLOCK KIT SIX DIGIT LED

Thousands of MC725P Brand new, 2.6” X 1.1” “METRIC MASTER” C103Y 1N4745Á 1N4002 Leads current drain, only supply. SPECIAL 6000 TYP. Like MJ3001.

FND FND
cical.

Slide Switches

Mostek 50252 .01 Disc Cap

1N914 IN4002 Rectifiers

Filter

and are

And

you

are

now very

very

powerful

and

part.

NEW – $36.95 with data LIMITED QUANTITY

MICROPROCESSORS & THINGS

By AMD

8080A Better than Intel $24.00

8080-1 High Speed 8080 $12.50

8212 /0 Port 3.50

8224 Clock Generator 4.95

2513 Character Generator 10.00

UP YOUR COMPUTER! 21L02-1 1K LOW POWER 500 NS STATIC RAM

100 HZ CRYSTAL TIME BASE FOR DIGITAL CLOCK S. D. SALES EXCLUSIVE! $5.95

KIT FEATURES: A. 60 hz output with accuracy comparable to a digital watch B. Directly interfaces with all MOS Clock chips C. Super low power consumption (1.5 Ma typ.) D. Uses latest MOS 17 stage divider IC E. Eliminates forever the problem of AC line glitches F. Perfect for cars, boats, campers, or vehicles at ham field days. BUY TWO FOR $10.00! G. Small size, can be used in existing enclosures.

KIT INCLUDES CRYSTAL, DIVIDER IC, PC BOARD PLUS ALL OTHER NECESSARY PARTS AND SPECS.

1000 MFD FILTER CAPS Rated 35 WVD. Uplight style with P. C. leads. Most popular value for hobbyists. Compare at up to $1.25 each from franchise sales parts stores. S. D. SPECIAL 4 for $1.

SLIDE SWITCH ASSORTMENT

1/4 W 5% and 10%. PC leads. A good mix of values. 200/$2.

RESISTOR ASSORTMENT

256 Ohm High Speed RAM Same as 82516

$3.95

1K PROM BACK IN STOCK! 82512, 256X4, Bipolar, 50 NS. FAST. WITH SPECS.

$3.95

8T978

Hex Tri-State Buffer. Back in stock. $1.25

CALL YOUR BANK AMERICARD OR MASTER CHARGE ORDER IN ON OUR CONTINENTAL UNITED STATES TOLL FREE WATTS: 1-800-527-3460 Texas Residents Call Collect 214/271-0022 S. D. SALES P. O. Box 28810-D Dallas, Texas 75228

ORDERS OVER $15. CHOOSE 1, FREE MERCHANDISE

S. D. SALES Co. P.O. BOX 28810-D • DALLAS, TEXAS 75228

4K LOW POWER RAM BOARD KIT

THE WHOLE WORKS

$1,000,000 CALCULATOR PURCHASE! We bought the entire stock of a major manufacturer. New, guaranteed units.

Five functions PLUS complete Metric Conversion functions. Rechargeable batteries. Small, hand held size. With AC charger.

12 Digit – Desk Top Style. Sturdy design. With memory and four complete functions. Big, bright display.

60 HZ CRYSTAL TIME BASE – FOR DIGITAL CLOCK S. D. SALES EXCLUSIVE!

$5.95

<table>
<thead>
<tr>
<th>TTL INTEGRATED CIRCUITS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7400 – 10c</td>
<td>7430 – 19c</td>
</tr>
<tr>
<td>7402 – 19c</td>
<td>7432 – 34c</td>
</tr>
<tr>
<td>7404 – 29c</td>
<td>7437 – 39c</td>
</tr>
<tr>
<td>7406 – 19c</td>
<td>7438 – 39c</td>
</tr>
<tr>
<td>7408 – 19c</td>
<td>7439 – 45c</td>
</tr>
<tr>
<td>7410 – 20c</td>
<td>7440 – 46c</td>
</tr>
<tr>
<td>7411 – 20c</td>
<td>7441 – 49c</td>
</tr>
<tr>
<td>7412 – 20c</td>
<td>7442 – 55c</td>
</tr>
<tr>
<td>7413 – 20c</td>
<td>7443 – 65c</td>
</tr>
<tr>
<td>7414 – 20c</td>
<td>7444 – 75c</td>
</tr>
<tr>
<td>7415 – 20c</td>
<td>7445 – 85c</td>
</tr>
<tr>
<td>7416 – 20c</td>
<td>7446 – 95c</td>
</tr>
<tr>
<td>7417 – 20c</td>
<td>7447 – 105c</td>
</tr>
<tr>
<td>7418 – 20c</td>
<td>7448 – 115c</td>
</tr>
<tr>
<td>7419 – 20c</td>
<td>7449 – 125c</td>
</tr>
<tr>
<td>7420 – 20c</td>
<td>7450 – 135c</td>
</tr>
</tbody>
</table>

WESTERN DIGITAL UART No. TR14038, 40 pin DIP This is a very powerful and popular part. NEW – $6.95 with data LIMITED QUANTITY

C & MINI TOGGLE SWITCH No. 7103 SUB MINI LED'S CENTER OFF, SPECIAL – 99c

TERMS:

Money Back Guarantee. No COD. Texas Residents add 5% tax. Add 5% of order for postage and handling. Orders under $10. add 75c. Foreign orders: US Funds ONLY!

CIRCLE NO. 64 ON FREE INFORMATION CARD

NOVEMBER 1976

AmericanRadioHistory.com
ECONOMIZE WITH Solar Energy Chips

IMAGINE! 7 SWITCHES ON A DIP!

Imagine! A firm has POLY PAKS in the SOLAR ENERGY Business. We make fine in metal boxes and once again we have "DIP" them all! These solar energy chips were used by the National Ammunition Corporation for the construction of a high-speed all-digital switch. In a recent test this POLY PAK switch was used in a communication link, where it was required to operate at a speed of 100,000 cycles per second. The basic POLY PAK switch is 15 volts and the voltage requirements were not met. However, a POLY PAK switch was used in the same system and it was found that the POLY PAK switch operated at the required speed of 100,000 cycles per second.

A "solid set" in now here! POLY PAKS is the SOLAR ENERGY Business. We make fine in metal boxes and once again we have "DIP" them all! These solar energy chips were used by the National Ammunition Corporation for the construction of a high-speed all-digital switch. In a recent test this POLY PAK switch was used in a communication link, where it was required to operate at a speed of 100,000 cycles per second. The basic POLY PAK switch is 15 volts and the voltage requirements were not met. However, a POLY PAK switch was used in the same system and it was found that the POLY PAK switch operated at the required speed of 100,000 cycles per second.

Cat. No. 11E3219
Type: Dual
Size: N 2805
Price: $13.95
FREE: Free Each 100 chip box
FREE: Minimum 25 dip-chips

LARGEST CLOCK PANEL!

The largest clock panel ever! 1.2" high, 4-diode, 7-segment.

FULL EPOXY SILICON BRIDGE RECTIFIER

- WAVE: 2 Amp, 6 Amp, 10 Amp
- Price: $150
- Size: 1.25" x 1.25"
- Stock: 250 pieces

22.50

Citizens Band (CB) Supply

- 12 VAC & M.F.P.
- Regulated, continuous duty
- Inlets, mounts, earphones, etc.

Digital Clock

- Use Encoder MOS ROM
- 7 LED test feature
- Modes

ECC INDUSTRIAL SPEED CONTROL

The "ECC" Industrial Speed Control is designed for ac or d.c. applications. It is built on a solid-state basis and is ideal for controlling motors and for use in industrial equipment. The unit is built in a solid-state case and is ideal for use in industrial equipment. The unit is built in a solid-state case and is ideal for use in industrial equipment.

ROTOR FANS

RF-145, 185, 255, 300, 395,
+200, 600, 900, 1200, 1600
cubic feet per minute

$49.50

$9.95

$59.95

$69.95

$1.95

$13.95

$150

$2.25

$18.88

$1.79

$2.75

$11.95

$14.95

$8.88

$5.50

$3.99

$1.95
GOVERNMENT SURPLUS

SURPLUS ELECTRONIC equipment, government and manufacturers. Grab Box Assortment—diverse, useful new and used parts, assemblies, etc. Cartoon packed: 50 lbs. $6.00, 100 lbs. $10.00. F.O.B. Lima. Send for BIG Free Cata-

d with 10% oil.

Merrick, Huntington, California, 92643. (816) 483-4612.

DISCOUNT Music Club, 650 Main St., Dept. S-1176, New Rochelle, New York, N.Y. 10801.

TAPE and RECORDERS

RECORD RATERS WANTED! Anyone qualifies. We ship you nationally released LP's at rate. We pay postage and handling. You pay nothing for LP's. All you pay is small membership fee. Applicants accepted "trial come basis. Write: E.A.R.S., Inc., Dept. P.E., Box 10245, 5521 W. Center Street, Milwaukee, Wisconsin 53210.

INSTRUCTION

EARN ELECTRONICS DEGREE by correspondence. Free information bulletin: Grantham, 2000 Stoner Avenue, Los Angeles, California 90025.

FREE Educational Electronics Catalog. Home study courses. Write: Edukits Workshop, Department NHSC, 2000 Grant, Los Angeles, California 90028.

SCORE high on F.C.C. Exams. Over 500 questions and answers. Covers 3rd, 2nd, and even 1st and even Radiation. First Second Test, $14.50. First Class Test, $15.00. All tests, $25.00 (for E., Inc., Box 808, Sarasota, Florida 33077)

UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D.'s. Free revealing details. Counseling, Box 317-PET1, Turin, California 90208.

SELF-STUDY CB RADIO REPAIR COURSE. THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $16.00 an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. P.E., 531 N. Ann Arbor, Oklahoma City, Okla. 73127.

LEARN WHILE ASLEEPS HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion, Box 24-2Z, Olympia, Washington 98507.

GRANTHAM'S FCC LICENSE STUDY GUIDE—377 pages, 1465 questions with answers. Discussions—covering third, second, first radiotelephone examinations. $10.70 post-

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Sture, Pickering, Stanton, Empire, Grado and ADC. Send for free catalog. LYLE-CARTRIDGES, Dept. P, Box 69, Kensington Station, Brooklyn, New York 11218.

TAPE and RECORDERS

RENT 4-Track open reel tapes—free brochure. Stereo-Parti, P.O. Box 7, Fulton, Calif. 95401.

1930-1962 Radio Programs. Reels, $1.00 Hour! Cassettes, $1.00 Showel! Mammoth Catalog. $1.25 AM Treasuries, Box 1929PE, Babylon, N.Y. 11703.

RECORDS—TAPES! Discounts to 73%; all labels; no purchase obligations; newsletter; discount dividend certifi-

POPULAR ELECTRONICS
Consumer Electronics

Pong Super Pong

- **Single Game Price**: $55.00
- **4 Games in One**: $79.95

Features of Pong Super Pong

- Electronic sound effects, music, and sound effects
- Dazzling lights and colors
- Easy to use and play

Games Included in Super Pong

- **Pong**: Classic table tennis game
- **Catch**: Ball throwing game
- **Super Pong**: Handball variation

Additional Information

- Instructions and setup guide included
- Suitable for ages 8 and up

Display LEDs

<table>
<thead>
<tr>
<th>Type</th>
<th>Polarity</th>
<th>Value</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>N</td>
<td>0.150</td>
<td>Red</td>
</tr>
<tr>
<td>Green</td>
<td>P</td>
<td>0.150</td>
<td>Green</td>
</tr>
<tr>
<td>Yellow</td>
<td>N</td>
<td>0.150</td>
<td>Yellow</td>
</tr>
<tr>
<td>Blue</td>
<td>P</td>
<td>0.150</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Dip Switches

- **New LED**
 - Mounting System: 350 Hz, 50 Hz
 - Format: CMOS, 0.75 mm

Zeners - Diodes - Rectifiers

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>0.600</td>
<td>Blue</td>
</tr>
<tr>
<td>Red</td>
<td>0.300</td>
<td>Red</td>
</tr>
<tr>
<td>Yellow</td>
<td>0.150</td>
<td>Yellow</td>
</tr>
<tr>
<td>Gray</td>
<td>0.050</td>
<td>Gray</td>
</tr>
</tbody>
</table>

Telephone Numbers

- **JAMES**: 1021 Howard Ave., San Carlos, CA 94070
- **Order Line**: (415) 592-8097
- **Price**: Normal Price

Molex Pins

- **Special Offer**: 100 Per String
- **Price**: $2.95

Data Handbooks

- **Pinout & Description**: Available for $2.95
- **Linear Pinout & Description**: Available for $2.95

Circle No. 45 on Free Information Card

Miniature Toggle Switches

- **PB-123**: $1.75
- **PB-26**: $1.75

Transistors

- **Epitaxial**: 55100
- **DS**: 55100
- **SS**: 55100

Capacitors

- **Waseda**: 55100
- **G usług**: 55100
- **Corner**: 55100

Customer Service

- Send a $5.00 Phob for a Free 1977 Catalogue

American Radio History

- Visit AmericanRadioHistory.com for more information and resources.
MICROPROCESSOR COMPONENTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080A</td>
<td>$3.95</td>
</tr>
<tr>
<td>8080</td>
<td>$5.95</td>
</tr>
</tbody>
</table>

8080 SUPPORT DEVICES

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8212</td>
<td>$4.95</td>
</tr>
<tr>
<td>8216</td>
<td>$4.95</td>
</tr>
</tbody>
</table>

MONITOR CONTROLLERS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8224</td>
<td>$24.95</td>
</tr>
</tbody>
</table>

CLOCK CHIPS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM5316</td>
<td>$0.93</td>
</tr>
<tr>
<td>MM5211</td>
<td>$0.93</td>
</tr>
<tr>
<td>MM5312</td>
<td>$0.93</td>
</tr>
<tr>
<td>MM5314</td>
<td>$1.93</td>
</tr>
</tbody>
</table>

COUNTERS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5116</td>
<td>$2.55</td>
</tr>
<tr>
<td>IC5118</td>
<td>$2.55</td>
</tr>
</tbody>
</table>

CALCULATOR CHIPS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC501</td>
<td>$0.93</td>
</tr>
</tbody>
</table>

DIGITAL PEERLESS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC581</td>
<td>$0.93</td>
</tr>
</tbody>
</table>

MISC.

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M53</td>
<td>$18.93</td>
</tr>
<tr>
<td>M5340</td>
<td>$18.93</td>
</tr>
<tr>
<td>M53550</td>
<td>$18.93</td>
</tr>
<tr>
<td>M53550</td>
<td>$18.93</td>
</tr>
<tr>
<td>M53545</td>
<td>$18.93</td>
</tr>
<tr>
<td>M53540</td>
<td>$18.93</td>
</tr>
</tbody>
</table>

DIODES

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC500</td>
<td>$2.93</td>
</tr>
</tbody>
</table>

TRIACS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC500</td>
<td>$2.93</td>
</tr>
</tbody>
</table>

3½ DIGIT DVM KIT

- **Proabra Board 100**
 - **The National Brand**
 - **Price $19.95**

BIPOLAR PROM SPECIAL

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z110-120</td>
<td>$2.95</td>
</tr>
</tbody>
</table>

Continental Specialties

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11102-1</td>
<td>$0.95</td>
</tr>
</tbody>
</table>

DIGITAL WATCHES

Western Watch

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>W11-104</td>
<td>$1.95</td>
</tr>
</tbody>
</table>

DIGITAL CLOCK KIT

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$4.95</td>
</tr>
</tbody>
</table>

DIGITAL QUARTZ CAR CLOCK

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$4.95</td>
</tr>
</tbody>
</table>

MOBILE CB ANTENNA

- **Features**
- **Base Load - Fiberglass Whip**
- **Mounts on Hood or Trunk Lid**
- **Size 6 1/2" x 3 1/8" x 3/4"**
- **Power Input: 5 Watts**
- **Weight: 4 lbs**
- **Price $24.95**

KRACO CAR SPEAKERS

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$14.95</td>
</tr>
</tbody>
</table>

5 FUNCTION ELECTRONIC CALCULATOR

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$8.95</td>
</tr>
</tbody>
</table>

RADOFIN MODEL 260

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

RADOFIN MODEL 1170

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

NOT A KIT

- **JE700 CLOCK**
 - **The JE700 is a low cost digital clock, but it is very highly quality. The kit fea-
 tures a unique watch kit with an 8" long sweep second hand and bold plastic.
 The complete kit is fully assembled and is available in concentrations of 1176**
 - **Price $17.95**

Digital Alarm Clock

- **Features**
- **12 or 24 hour mode**
- **Dial operates with 3 AA batteries**
- **Power Indicator**
- **Not a Kit**

JE803

- **Price $9.95 Per Kit**

5 VOLT POWER SUPPLY

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

JOYSTICK

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$15.95</td>
</tr>
</tbody>
</table>

DIGITAL DASH

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$9.95</td>
</tr>
</tbody>
</table>

P/T V/A 1A Supply

- **This is a standard V/A power supply using the wall outlet.**
- **Price $9.95 Per Kit**

BOUNTY HUNTER

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5112</td>
<td>$9.95</td>
</tr>
</tbody>
</table>

CIRCLE No. 46 ON FREE INFORMATION CARD

NEW IDI ICB-630

- **Price $99.95**

MONITOR CONTROLLERS

- **Price $24.95**

BASE LOAD - FIBERGLASS WHIP

- **Mounts on Hood or Trunk Lid**

ANTX 8 TRACK AM/FM STEREO

- **Price $69.95**

O.M.S.

- **Features**
- **Compact - only 12 1/2" x 12 1/2" (122 mm) deep, 5 1/16" (13 mm) high**

Amplifiers

- **Price $69.95**

Super 8008

- **Price $19.95**

RADOFIN MODEL 170

- **Price $19.95**

BUDGET KIT

- **Price $19.95**

31/2 Digit Counter

- **Price $12.95**

Calculated Power Supplies

- **Price $12.95**

POWER INPUT: 4 Watts RMS

- **Price $24.95**

SMALL KIT

- **Price $19.95**

NEW IDI ICB-630

- **Price $99.95**

8080 SUPPORT DEVICES

- **Price $24.95**

NOVEMBER 1976

CIRCLE No. 46 ON FREE INFORMATION CARD
EDLIE'S BARGAIN BONANZA

ONLY HIGHEST QUALITY PRODUCTS

Surplus Tubes - Guaranteed for 1 full year

ANY 3 FOR $1.49

Acquired from U. S. Defense depots or unused equip. (new and used). These are laboratory tested and guaranteed for one full year! Most are of such standard as RCA, GE, etc.

HP037 COPPER CLAD BOARDS

Copper on one side, 1/16" thick. Ex. Greater quality for either production or experimental work. 6x 17" $1.15 ea. 2/$2.99.

HP018 COPPER ON BOTH SIDES

16" x 18". $1.99 ea. 3/$4.99.

HP134 ROTARY SWITCHES

Some multiple gang. $1.00.

HP128 13 MINIATURE ELECTROTIC CAPACITORS

Assorted values. $.25 each. 35 values.

HP144 TRANISTOR REPAIR KIT

19 various parts used to repair transistorized devices.

HP356 TO-3 TRANSISTOR SOCKETS

12 for $1.00.

5 V. BUZZER FOR ALARMS

95c ea. 6 for $5

HP354 ROLLS OF WIRE

Approx. 25 ft. per roll, 20-28ga.

HP160 TAPE RECORDER SPARE PARTS KIT

$2.95. Parts for repairing most tape recorders. 2 avails.:

Lossless (50-001) Alkaline and 250-001 - NiCad.

BREAKOUT POST & INSERTION TOOL

$5.95. A useful tool for inserting components into projects.

MONEY BACK GUARANTEE

Terms: Minimum order $5.00. Include postpaid full payment with order or 20% deposit, balance COD.

BONUS FREE CAPACITOR KIT

With Every $5 Purchase

WRITE FOR FREE VALUE PUBLISHED-CASES LISTING Tens of components, tubes, transistors, IC's, kit, test equipment.

EDLIE ELECTRONICS, INC. 2700-HP HEMPSTEAD TPKE., LEVITTOWN, N.Y. 11756

Charge No. 20 on Free Information Card

BOOKS AND MAGAZINES

POPULAR ELECTRONICS INDEXES for 1975 now available. Prepared in cooperation with the Editors of "PYE," this Index contains hundreds of references to products, test equipment, construction projects, circuit tips and theory and is an essential companion to your magazine collection. 1975 Edition. $1.00, copy 1972, 1973 and 1974 editions each, or $.55 for the set of four (1972 thru 1975). Add $.25 per order for postage and handling. INDEX. Box 2228, Falls Church, Va. 22042.

BACK ISSUE MAGAZINES. 1880 to 1976. Free list. Send stamped envelope to the Free Book Department, VVardens' Bookshop, Dept. PE, 317 West 6th St., Los Angeles, CA 90014.

SOFTWARE BREAKTHROUGH — Basic Software Library over 500 pages. Business, Recreational, Engineering, etc. programs; plus Basic Language Christmas special. $39.59 ($32 handling) or send for information. Software, Box 208J, Ashland, VA 23005.

FREE! Consumer Service Division Catalog. Includes a wide variety of products associated with the electrical interests of readers of Ziff-Davis magazines — PSYCHOLOGY TODAY POPULAR PHOTOGRAPHY, STEREO REVIEW, POPULAR ELECTRONICS, BOATING & FLYING, CAR & DRIVER CYCLE, SKIING. Send for YOUR free catalog today. Consumer Service Div., 595 Broadway, Dept. CL, N.Y. N.Y. 10012.

THE SEVENTH MONTH'S SPECIALS!

1976?

RELAY SWITCHES

8-300/500}$3.95 ea.

Bismuth Alloy Melting Spool $4.95 4 oz. $3.95 1 lb. $9.95.

HEAT SHRINKABLE TUBING

Ass. 2.95

25 ft. lengths

$5.95 50 ft. $9.95

LEADS

$1.00 per hundred

Soldering Irons

1/$1.95

2/$3.95

ELECTRONIC KEYBOARD

__

INSTRUMENTS

100 for $13.95

COULOMB'S LAW

$19.95

PERIODIC TABLE (LAMINATED)

$2.95

REAL ESTATE MAGAZINES

95c per issue

American Radio History. 1306 22nd St., N.W., Washington, D.C. 20037.

EDUCATIONAL AIDS

Magnetron $1.95

Lambert's keyboard $9.95

DEMONSTRATION SYSTEMS

$29.95

EDUCATIONAL SCALES

Price 79p

BOOKS

ELECTRONIC NOISE

$1.95

Design, build, use, and troubleshoot through understanding. Illustrated brochure contains a complete explanation of noise theory; a full-scale model of a state of the art noise meter. 26 pages: 260 words. Available to experienced engineers, 100 for $3.95. Send to: H.E. Ryder & Co., Suite 2 17.7, 22042.12 E.

FREE with every $5 purchase

RED RELAYS

($295.00) SPST, 12V, 1000 ohms coil.

Prices are subject to change without notice.

CIRCLE No. 24 on FREE INFORMATION CARD

POPULAR ELECTRONICS
Under-Dash

LOCK MOUNT
AU-344
229 Reg. $6

LOCKS player in place. Slides in & out. 6 x 13'/16" x 7/8". 6 or 12 VDC. Shipping weight 2 lbs.

Auto Stereo

8-Track Tape Player
AU-428
1999 Reg. $24

Player mounts easily under dash. Slide controls. 7/8" x 5/8" x 23/4". 12 VDC. reg. grd. Styles may vary. 4 lbs.

Standard Dial

DESK PHONE
PH-117
799 Reg. $13

Pencil-Tip

Soldering Iron
TL-448
1999 Reg. $3.29

Tip reaches temperature to 250° in 90 sec. long. 117 VAC, 1/4 lb.

PARTS & COMPONENTS

6 Track Tape Deck Chassis
RA-303 17.00 11.99
4 Digit Mechanical Counter
XM-267 4.49 3.49
5 Digit Mechanical Counter
XM-543 3.00 2.79
2 watt Solid-State Phone Amp.
AM-529 16.00 11.00
5 Digit 117 volt AC Counter
XM-333 2.00 1.99
12 Hour Timer, 117 V AC
SW-777 4.00 1.79
6 Digit 117 V AC Counter
XM-481 2.29 1.39
L.E.D. Pkg of 5 Small Red 2V, 5 MA
PL-234 1.19 .60
L.E.D. Pkg of 5 Large Green 2V, 5 MA
PL-235 1.19 .60
L.E.D. Pkg of 5 Small Green 2V, 5 MA
PL-236 1.19 .60
L.E.D. Pkg of 5 Large Yellow 2V, 5 MA
PL-237 1.19 .60
L.E.D. Pkg of 5 Small Yellow 2V, 5 MA
PL-238 1.19 .60
L.E.D. Pkg of 5 Large Orange 2V, 5 MA
PL-249 1.19 .60
L.E.D. Pkg of 5 Large Clear 2V, 5 MA
PL-274 1.19 .60
7 sec. L.E.D. Readout, 5 Com., Reel
XM-414 2.00 1.29
Medium Power Transistor 258474
TR-510 1.60 1.19
3 Amp. 50 PIV Diodes Pkg. of 2
DI-055 .70 .59
3 Amp. 400 PIV Diodes Pkg. of 2
DI-056 1.20 .79
1 Amp. 200 PIV Diode Piece Kit
TR-030 1.19 .59
P Channel FET N-135G60
DI-045 1.49 .59
Axial 400, 200 PIV Diode H342583
TR-147 1.79 1.29
40 Watt NPN Transistor, Pkg. of 4
TR-440 1.29 .59
700 IC Hi-Scale DP-Am
RG-131 1.49 .69
PC Board Kit — Make Your Own
XM-393 6.59 3.99
PC Wire Kit, 150 Ft.
WP-375 1.89 .99
Magnet Wire, 26 Ga. 375 Ft.
WH-261 .89 .69
4PDT Plug-in Relay, 117 V AC Coil
SW-543 1.79 .79
16 Step Relay, 110 Ohm Coil, 450 Ohm Reset
SW-342 5.79 3.79
SPDT 5A. Plug-in Relay 117 V AC
SW-417 1.19 .79
DPST Power Relay 25A. Cont., 117 V AC
SW-646 1.69 1.69
Heavy Duty Solenoid, 117 V AC
SW-639 1.79 .79
Miniature Solenoid, 1/2 Triac 117 V AC
SW-424 1.89 .89
Reed Switch with Mag. Pkg. 10
SW-432 2.69 .89
SPDT Key Switch 3A. Contacts
SW-408 1.20 .79

PARTS & COMPONENTS

1/4 RPM Timing Motor, 117 V AC
MD-277 .49 .30
1 RPM Timing Motor, 117 V AC
MD-269 .49 .30
8 RPM Reversible Motor, 117 V AC
MD-393 2.50 .99
Tubular Capacitor Kit, 100 Pcs.
CC-229 2.00 1.29
Ceramic Capacitor Kit, 100 Pcs.
CC-211 1.49 1.19
100 Ceramic Capacitors, values clearly marked
CC-210 1.29 .80
50 Ass't. Electrolytic Capacitors, Axial/Radial
CD-407 5.00 2.00
120 Ass't. Ceramic Resistors, %-5-.1 Watt Sizes
RR-017 1.19 .60
5 Ass’t. SCR’s, 15 V. and up, 100 MA to 1.6 AMP
TR-296 1.79 1.00
500 MHz Zener Diodes, 4.36-3.9-1.17 & 15 Volts
DI-052 1.00 .50
3 Unijunction Transistors, 40 V, 375 MW, 4 DNS
TR-441 1.29 .50
L.E.D. Pkg of 5 Red, 2 Volt - 5 MA
PL-233 1.19 .60
Ultra-Mini L.E.D. Pkg. of 5 Red, 2 V, 5 MA
PL-289 1.29 .70
Calculator Key Board, 20 Keys
XM-523 5.00 1.60
Mini Liquid Crystal Display
XM-371 10.00 3.00
Darlington Amp. Transistor Kit, 6 Transistors
TK-057 2.00 1.50
Photo Transistor, 5 Pieces - Epoxy Type
TR-052 1.00 .60
6 Amp. Full Wave Bridge Rectifier 50 PIV
DI-057 1.20 .80
6 Amp. Full Wave Bridge Rectifier 400 PIV
DI-058 1.90 1.00
Photo Transistor Assortment Pkg. of 10
TR-445 1.00 .60
NTN Transistor Assortment Pkg. of 10
TR-446 1.00 .60
6 Segment L.E.D. Display 3 in. Green
XM-349 1.69 1.00
6 Segment L.E.D. Display 3 in. Red
XM-348 1.69 1.00
6 Segment L.E.D. Display 3 in. Yellow
XM-342 2.49 1.00
Micro Type Switch Kit, 7 Assorted
SW-430 1.89 1.49
Knob Keypad, 25 Pcs. Assorted
KM-030 1.00 .60
Hobby Motor Kit, 3-6 V. DC, Pkg. 5
MD-333 5.99 .49

TOOLS — SPECIAL AND PRINCIPAL
Wire Wrap Tool, 30 Ga wire on .025 Post
TL-045 2.60 2.00
IC Insertion/Extraction Tool
TL-256 1.50 .00
IC Plug-in Test Adapter
TM-396 2.60 2.00
12 Volt DC Solder Iron, Pencil Tip
TL-795 4.00 3.00
Toner/Contact Cleaner, 6 oz. Can
TL-450 1.49 .60
Tyco Label Maker,Uses 7/8 in. Tape
TL-752 1.89 .60
Double Face Foam Tape 1/2 x 42 in.
TA-093 1.00 .60

RECORDING TAPE AND ACCESSORIES
8 Track, 40 Min. Blank Tape
TA-097 69 .50
10 In. Reel 3000 Ft. 1.1 Mylar Tape
TA-606 2.99 2.00
8 Track Road Demagnetizer, 12 Volt DC
HF-050 3.00 1.30

INSTALLATION AVAILABLE FOR
CB-AUTO STEREO SECURITY ALL OLSON
STORES WEST COAST-TO-COAST

REPAIR SERVICE AVAILABLE IN ALL OLSON STORES.
The BIGGEST "BRIGHTEST" BESTEST
6 Digit LED Alarm Clock & Elapsed Timer Kit
available at this very low price anywhere...
$17.95 Complete

- 6-Farci, 50" LED Displays
- 0.60 Min. Elapsed Timer
- 12 HR 60 cycle oper.
- AC or DC oper.

The kit contains P.C. Boards, Xformers, and EVERY PART Required for the Clock and all options except Cabinet or Crystal Time Base for D.C. Oper. If desired, see below.

AC/DC - ALARM CLOCK KIT - 12/24 Hr.
$7.50 quantities of 15
$5.60 quantities of 60 & up

Your choice of Display Colors - Red, Green, Blue, Amber
Displays Hrs. & Min. Switch to Min. & Secs. on Command.
AM/P.M Indication
Field Tested for 6 months

The kit will include a 5316 National Clock Chip, 4 Fluorescent Display tubes, all electronic components, switches, controls & complete instructions, spec...etc, for clock and all optional Features. Other parts required if desired are as follows:
- PC Board, Drilled & Silk Screened for Clock & all options...
- $3.00
- Xformer (for AC oper.)...
- $1.00 App. (SCR output) timer kit...
- $2.00
- Speaker Alarm Kit...
- $2.00

AMPLIFIED 320 TO 420 100 WATTS.

HOBBS-TRONIX, INC.
Box 511, Edison, N.J. 08817

Orders must include Check - No COD's. Add $1.00 handling for orders under $25.00 N.J. residents - add 5% tax.

- 5375AB Nat. Clock Chip
- "Freeze" Feature on any Mode
- 24 Hr. Alarm w/snooze
- Field Tested over 6 months

Features:
- Simple construction needing only the parts listed below
- Small enough for hand held case
- Needs only 3 A.C. batteries

Kit Includes:
- 1 National Tech-Lite Uniflex Mos Chip # 7205
- 2.376 MB 24 Bit Crystal
- 2 mm slide & 3 M.O.M. PB Switches
- 6 digit & Double Digit LED Displays

P.C. BOARD for above...

60 Hz Crystal Time Base Kit...
$4.95 complete
- Includes P.C. Board, Crystal, 17 Stage Divider IC and all camps.

Wooden Case - Walnut gr. incl. Filter...

Dimension - 6 5/16" W x 2 9/16" H x 3 7/16" D (% Material)

Plexiglass Case (Ch. - Blt., White, Blue, & Smoke)...

Dimensions - 5 13/16" W x 2 1/4" H x 5 3/8" D (% Material).

Individual Filters - Red, Smoke, Blue, Amber and Green...

$5.00 each

Blinkly/Flasher/Timing Kit...

$2.50 each for...

P.C. Board, 555 Timer, all components and a connector for a 9V Battery

ELECTRONIC COMPONENTS - A small SAMPLING

21100 1 Low Power 500NS 1A Ram...
$1.95 ea

LM3025 .50 Volt Regulator - Raytheon...

LM3040 Series Reg. - 5, 6, 12, 15 & 24 V (pos).

7401 Op. Amp. 14 Pin Dip Punk...

2N3052 100M Transistor 10-Pac ...

2N4094 PNP (complement to 2N4055)...

25 Amp. - 200 Volt Full Wave Bridge...

10 Pk. - 220 Power Tab Kits. NPN & PNP Ass't...

15 Pk - LED's Assorted Sizes and Colors...

B-Color LED's - Red/Green...

14, 16, & 18 Pin IC Sockets...

$10 for...

Circle No. 40 on FREE INFORMATION CARD

PRINTED CIRCUIT BOARD

4/4" X 4/4" SINGLE LAYER EXPOSED BOARD...
BOARD 1/16" thick, unlapped...
$5.95 ea...
VECTOR BOARD 1/SPACING 4/16"...
$1.75 ea...

4 WATT IN LIQUID SILICATE...

2W 250 O.F.F....
$5.40 ea...
2W 250 A.U.T....
$5.40 ea...

ERGON ZIPPCO DRIVERS...

Min. Order...

BUSHING PCD, 1.5755O...

$1.75 ea...

VERIFIX PCB BOARD...

This board is a 1/8" single sided printed circuit board, 4"x6" DRILLED and ETCHED, which will hold up to 21 single 14 pin IC's or 8, 16, or 16 pin DIP IC's, with boxes for the power supply connector...

$4.00 ea...

V586 GREEN/YELLOW/GREEN...

BIPOLAR LED...

$1.75 ea.

2 PHOTO TRANS.

RED, YELLOW, GREEN ON...

AMBER LARGE LED's...

$2.00 ea...

10 PIN DIP SOCKETS...

$2.00 ea...

MOLE PINS...

1000 ea...

PI MINI DIP SOCKETS...

100 ea...

10 WATT ZENERS 3.9, 4.7, 5.6, 8.2, 12.5, 18.2, 25.1, 33.0, 47.0, 68.0...

10 WATT ZENERS 6.8, 12.0, 18.2, 25.1, 33.0...

Si-CONE Solar Cells...

5V at 500 ma...

$6.65 ea...
$6.275 ea...

REGULATED MODULAR POWER SUPPLIES...

- 15 VDC AT 100ma...

$2.75 ea...

SMD AT 1.15V...

$2.04 ea...

12V AT 1.05A...

$2.45 ea...

110/220V 1.625A...

$3.75 ea...

SILICON POWER RECTIFIER...

- PRV 1A...

$1.99...

- 100...

$1.20...

- 200...

$1.20...

- 400...

$1.20...

- 600...

$1.20...

- 1000...

$1.20...

- 2000...

$1.20...

LED READOUTS...

- FND 500-5...

$1.99...

- HM 7400-3 C.C....

$1.45...

- HN 3-3 C.A...

$1.35...

- HN 2-3 1/16"...

$0.79...

American Radio History
HOME ENTERTAINMENT FILMS

START A NEW HOBBY... COLLECT SUPER 8 MAGNETIC SOUND FILMS. Runs the gamut from "Where Jesus Walked" (Biblical Judea and Galilee) to "Bye-Bye Birdie" with Ann-Margaret and Dick Van Dyke; "Queen Boxer" (Judy Lee—Karate) — each 400 Super 8 Color Magnetic Sound — only $46.95 PPD (limited offer) — you save $3.75 each. "Member of the Wedding" (Elihu Wailes); "Christmas Carol" (Alastair Sim); "Drighlie" (A Frank Capra Feature) — each 400 By-W MAGNETIC SOUND FILM, $36.95, save $3.75 each. Or, make selection from Columbia Pictures or Castle catalogs, $50 each; or Sporlone order form, $25 (icons, stamps, no checks, pls). SPORT-LITE, Elect-11, Box 24-500, Speedway, IN 46224.

INVENTORS WANTED

INVENTORS RECOGNITION... FINANCIAL REWARD... OR CREDIT

FOR "INVENTING IT FIRST" MAY BE YOURS! If you have a new product or a way to make an old product better, contact us, "the idea people." We'll develop your idea, introduce it to industry, negotiate for cash or royalty licensing. Write now, without cost or obligation, for free information. Fees are charged only if services are contracted. So send your FREE "Inventor's Kit." It has important Marketing Information, a special "Invention Record Form" and a Directory of 500 Corporations Seeking New Products.

RAYMOND LEE ORGANIZATION

230 Park Avenue North, New York, NY 10017

NAME: ____________________________

ADDRESS: _________________________

CITY: ___________ STATE: _______

At no cost or obligation, please send me your FREE "Inventor's Kit No. A-172".

RUBBER STAMPS

RUBBER ADDRESS STAMPS. Free Catalog. 46 type styles. Jackson's, Dept. K, Brownsville Rd., Mt. Vernon, Ill. 62864.

DO-IT-YOURSELF

HYPNOTISM

SLEEP learning. Hypnotic method. 92% effective. Details free. A.R. Foundation, Box 2345280, Fort Lauderdale, Florida 33307.

FREE Hypnosis, Self-Hypnosis, Sleep Learning Catalog! Drawer H400. Railroad, New Mexico 88345.

MISCELLANEOUS

WINEMAKERS. Free ill-illistrated catalog yeasts, equipment. Simplex, Box 1227SP, Minneapolis, Minn. 55412.

FREE! CONSUMER SERVICE DIVISION CATALOG

Includes a wide variety of products associated with the special interests of readers of John Davis magazines—Popular Electronics and Popular Photography. Stereo Review, Popular Electronics, Boating, Flying, Car and Driver, Cycling, Skiiing.

Send your free catalog today. Consumer Service Div., 595 Broadway, N.Y. N.Y. 10012

ARIES brought you the first calculator kit, and the first digital clock kit... and now brings you three of the most innovative electronic kits ever made. The System 170 Electronic Music Synthesizer kit, the most advanced in the world today, regardless of price. The AR-781 is a space-age beauty for any decor. And the wholly solid state AR-830 does the work of a $400.00 tape memory unit.

WARNING... if you are interested in music synthesizer, don't make a move until you see our catalog first. It's more like a handbook than a catalog, with hundreds of in-depth photographs and descriptions to explain electronic music principles, and to show equipment to do the job. ARIES now offers a complete complement of modules, keyboards, and cases, matched to the most rigorous professional standards. Starter systems priced as low as $395.00.

A clear, ruby-red cylinder shows off all six digits of this modern calendar clock. Easy-to-read numbers show the hours, minutes, and seconds, as well as the month and day every ten seconds. Red LED 7-segment numerals are 0.33" high, in a sturdy cylinder 2-1/2" in diameter and 4-1/4" long, with finished hardwood ends. Time and calendar are controlled by 60 15,000 frequency, with a 12-month movement. Separate time and calendar adjustments. Includes all the components, PC boards, housing, and instructions. Weight 2 lbs. AR-781 Clock Kit... $34.50.

Add finger-tip touch operation to your old-fashioned dial telephone with an ARIES AR-830 Automatic Digital Telephone Dialer. This has the same layout and convenience as Ma Bell, plus other features she doesn't offer yet. For instance... AR-830 always remembers the last number you dialed, in case you didn't dial it. For the busy person who wants to dial again later. Not only that, but the Dialer's memory can store as many as fifteen of your favorite numbers for one-touch dialing. AR-830 uses standard dialing and muting contacts; connects dial tariffs before connecting. 8, 2 lbs. AR-830 Dial Kit... $69.50.

ARIES INC.

119 Foster Street
Peabody, Mass., 01960

(617) 532-0450

CIRCLE NO. 9 ON FREE INFORMATION CARD

POPULAR ELECTRONICS INDEX for 1975 now available. Prepared in cooperation with the Editors of "P/E," this index contains hundreds of references to tests, construction projects, circuit tips and theory and is an essential companion to your magazine collection. 1975 Edition, $3.75; 1972, 73, and 74 editions also available at $1.50 each, or $5.50 for the set of four (1972 thru 1975). Add $.25 per order for postage and handling.

INDEX, Box 2228, Falls Church, Va., 22042

133
LIVE IN THE WORLD OF TOMORROW...TODAY!
And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items - plus 4,500 finds for fun, study or profit... for every member of the family.

A BETTER LIFE STARTS HERE

WORLD'S SMALLEST RECHARGEABLE CALCULATOR!
Small but mighty! 8-digit, 4-function electronic calculator does everything big ones do...even has automatic % key...for only $15.95. Take it anywhere. Fits in your pocket - to size of cigarette pack. 3½ oz. dynamic features floating decimal, constant key, lead zero depression. Includes plug-in rechargeable NiCad battery pack. 2 x 3½ x ⅛" with plenty of room for most fingers. Another Edmund first with advanced technology.

Stock No. 1945AV $19.95 Pd.

SAVE 50%
8 X 20 MONOCULAR
Fantastic bargain! Top quality Spy Scope, a $30 value, now offered at $14.95. Our special purchase saves you 50% and you get 100% coated optics; 393 ft. field of view. Only 2 oz. - stores in pocket; purse; or compartment. Fits in your palm - peer into hard-to-see places without letting subject know you’re spying. Great for birders and race fans; nick; neck strap; leathere 3½ x ⅛" case. Beautiful brushed metal finish. Buy two...one for a gift.

No. 1668 (9½ x 5 x 4¼") $149.95 Pd.
LOW COST STARTERS' UNIT (PORTABLE)
No. 71.609 AV (4½ x 2¼ x ⅛") $55.00 Pd.

FUEL MISER RECLAIMS HEAT
Save your 40% wasted heat to warm a basement, garage or rec room at no extra cost! Instead of sending up the chimney...it goes where you want it. Remove part of furnace exhaust pipe. Slip Heat Exchanger in. At 125° fan automatic, forces heat clean air through unit which heats to over 200° F., can be ducted to 20 ft. from unit. 110V AC Inst.

No. 19, 194AV (5½" Dia.) Shpg. 17 lb. $121.00 FOB
No. 19, 195AV (6" Dia.) Shpg. 17 lb. $121.00 FOB
No. 19, 198AV (7½" Dia.) Shpg. 17 lb. $121.00 FOB

NEW! THE UNIQUE EDMUND

4¼" NEWTONIAN RICHEST FIELD REFLECTOR TELESCOPE

Clear, brightest, most spectacular wide view of moon, stars, comets, galaxies, ever...and portable! See heavenly wonders! Sets up in seconds (precollimated, ready to use). Pop the eyepiece in, focus...and zing! 3½" field of view gives you more stars in a single view than any other type "scope. Bright, crisp, finely resolved images. For sky gazing and earth gazing! Take it anywhere! (only 17" x 10 lb., easily use it over your shoulder, (no adjustable carrying strap), in your lap, on a tripod; rotate the spherical base on its own mount for use on a table, car hood. Top quality optical system. Features 4½" f/4 parabolic primary mirror (½ wave, 17° F.); std. 26mm Kellner eyepiece (15X). No other telescope likes it. Great Christmas gift...it's even brighter red!

No. 2031AV $129.95 Pd.
Spt. Introductory Price! Goes to $149.95 Dec. 25, 1976

18 HOURS' WEATHER AT A GLANCE
Glance at our Weather Wizard and know what to expect for the next 8-18 hrs. Be up to 80-85% accurate (better than most pro's) Based on wind...no charts, dials...no computations! Program WVM for your location once, then forecasting is automatic. Room-mounted windvane sends pulses to indoor control unit programmed with 75 yrs. data; interprets on 3 panel lights (Unsettled, Fair, Change). Who needs TV? Incls vanes, support, 6 ft. of cable, 3x46x36" control unit, instruc.

No. 72,262AV... (120v AC) $127.50 Pd.

HANDY VERSATILE METAL DETECTOR
Not only ideal for searching out treasure, metal or minerals (its pitch tells you which), this hand-held (8 oz.; 12" long) high quality 2 oscillator BFO unit is great on security searches! And a real bloodhound at locating hidden pipes, other metal at home or work. Self-contained 6" oval search coil and compact size let you get where ordinary detectors won't; has extension handle. It may make you rich, can save lives (concealed weapons, letter bombs) and work!

No. 72,255AV (9V Batt. Not Incl) $39.95 Pd.

MAIL COUPON FOR GIANT FREE CATALOG!

164 PAGES • MORE THAN 100 UNUSUAL BARGAINS

COMPLETELY NEW 1977 EDITI! New items, complete categories, descriptions of electronic and electromechanical parts, accessories, numerous selection of Astronomical Telescopes. Unique lighting and electronic items. Micro-computer and terminal equipment;邦盟s; Magnifiers; Microscopes; Leapers, Microscope; Hand-to-get sieve; 3D stereo glasses; 100% of components.

EDMUND SCIENTIFIC CO.
300 Edsorpe Building, Barrington, N.J. 08007
Please rush Free Giant Catalog "AV"

Name ____________________________
Address ____________________________
City State Zip ____________________________

COMPLETE & MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO.
300 Edsorpe Building, Barrington, N.J. 08007

How Many Stock Nos. Description (608) 547-3481 Price Each Total

PLEASE SEND GIANT FREE CATALOG "AV"

Charge my American Exp.
BankAmericard Master Chp.

Interbank No. _________________

My Card No. _________________

Card Expiration Date _________________

30-DAY MONEY-BACK GUARANTEE

You must be satisfied or return any purchase in 30 days for full refund.

Name ____________________________
Address ____________________________

City State Zip ____________________________

Add Service and Handling Charge $1.00

$__________________________

Check the money order for TOTAL $__________________________

Signature ____________________________

CIRCLE NO. 76 ON FREE INFORMATION CARD
What's **rare earth** doing in Pickering's new OA-7's? Making the greatest sound in the slenderest headphones...That's What!

An important technological advance makes possible a headphone with superb listening characteristics and a particularly high degree of comfort.

The innovation is the use of rare earth elements in the compound of the permanent magnet of each earpiece...besides having superior magnetic properties, these magnets are also of much smaller size (and lighter weight), while still achieving an improved response over conventional permanent magnets.

The foam cushioned headband is exceptionally comfortable, and the earpiece yokes incorporate a unique pivoting system that enables the earpiece to fit snugly against the ear.

This is Open Audio headphone design and engineering at its best!

PICKERING

"for those who can hear the difference"

For further information write to: Pickering & Co., Inc., Dept. PE, 101 Sunnyside Blvd., Plainview, N.Y. 11803
The new Dual CS721 is the ultimate expression of the principles that determine the performance of tonearms and drive systems. Its straight-line, tubular tonearm pivots horizontally and vertically within a true four-point gimbal, thus maintaining dynamic balance in all planes.

Another Dual innovation—Vertical Tonearm Control—contributes in yet another way to fine tracking performance. A vernier height adjustment over an 8mm range parallels the tonearm to the record with any cartridge. This eliminates the added mass of cartridge spacers, otherwise needed to achieve precise vertical tracking angle. In all, there are seven tonearm settings and adjustments—from stylus overhang to cueing height and descent speed—all serving to optimize tracking performance with any cartridge.

The direct-drive system of the CS721 is of comparable precision. The electronically-controlled, DC, brushless motor is the smoothest and quietest ever made. A major contribution to this end result is an exclusive Dual feature: two stacked coil layers, each consisting of eight coreless bifilar-wound coils, that overlap to achieve a gapless rotating magnetic field. This eliminates the successive magnetic pulses typical of all other motor designs.

Although the CS721 is Dual's most expensive model, it is hardly the most expensive turntable available today. When you make comparisons, as we believe you should, you may well consider the CS721 considerably underpriced.

The new Dual CS721 represents everything Dual has learned about turntables.

United Audio Products

120 So. Columbus Ave., Mt. Vernon, N.Y. 10553

Features: E.S. Bureau. Non Agency for Dual.

The Dual CS721: Single-play direct-drive turntable with fully automatic start and stop plus continuous repeat. Features include: 10% electronic pitch control, illuminated strobe, dynamically-balanced "2" plates, antiskating separately calibrated for conical, elliptical and "long-contact" stylus. Less than $4,000, including base and cover.

Dual CS704. Similar, except semi-automatic.

Mechanical sensor locates lead-in groove of 12" and 7" records; tonearm lifts and motor stops off end of play. Less than $310, including base and cover.

Counter-balance contains two mechanical filters, tuned to absorb energy in resonance-frequency ranges of tonearm/cartridge system and absorber to avoid feedback.

Other Dual turntables: Fully automatic, single-play/multi-play: 1225, less than $140; 1226, less than $175; 1228, less than $200; 1249, less than $280. Semi-automatic, single-play: Duals: 5G, less than $160; 5F, less than $200.