Low power microwave generators • Record care basics
Characteristics of resistors • 266 ready-to-build circuits

Satellite TVRO
a line of antennas as strong as its name in time for your peak selling season

Zenith

CHROMATENNA II

Transmission Line Termination bleeds off static charges thru antenna system ground. Terminal stub improves front to back ratio on lower channels.

Aluminum Construction of all key metal parts works to eliminate rusting—provides long life. Golden-Cor Finish is conductive—helps improve electrical performance!

Wide-Spaced, Heavy-Duty Feed Lines help prevent shorting from heavy build-ups of snow or ice.

Dual Isolator bars insure no loss of UHF to VHF signal transfer. (Combination models only.)

High-Impact Plastic Insulators double-lock each element to the boom for extra bracing and durability.

FM Block reduces FM gain up to 12dB. Remove to receive full FM gain.

Corner Reflector Bracket enlarged and re-located in most models.

Zenith Dipole on UHF. (Combination models only.)

Corner Reflector Bracket enlarged and re-located in most models.

VHF Colinear Directors provide extra signal boost on both low and high band VHF.

Electrically Matched Terminals With Stainless Steel Screws eliminate mismatch...protect against rusting, and provide positive electrical contact with improved no-strip stainless steel serrated washers for the take off terminals.

Zenith Dipole on UHF. (Combination models only.)

U-Bolt Mounting provides a larger clamping area, larger locking nut with teeth an integral part assures a more rugged U-BOLT arrangement.

Proximity Spaced Signal Balancer (Z elements) provides automatic taper control of periodic driver, improves impedance matching and signal leveling on both Lo and High band channels. Improves Channel 7 pattern.

Optional Break-away UHF Wing Directors provide maximum gain of standard UHF channels with optional coverage of Hi-UHF channels and translator frequencies when broken off. (Combination models only.)

VHF Colinear Directors provide extra signal boost on both low and high band VHF.

Loading Straps—metal plates close to first VHF element insulators provide compensation for Lo and High band by tuning the first driven element with extra capacity.

Sleeved Elements of heavy-duty construction afford extra bracing and protection.

Rugged 1" Square Boom provides extra-strength compared to many round-type booms.

Hi-Bracket with angled ends for added strength.

Zenith has quality easy-to-install antenna kits - UHF only. VHF YAGI and Stereo FM antennas as well as a complete line of reception aid equipment. See your Zenith distributor for news of his exciting money-making programs and Catalog No. 902-2019!
9 GOOD REASONS WHY MCM IS THE ONLY ELECTRONICS PARTS COMPANY YOU'LL EVER NEED.

Our friendly, knowledgeable salespeople take pride in fulfilling your business needs and giving the prompt, personal attention you deserve. You can count on it.

You can also count on 24 hour shipment of over 4500 parts in stock, including the largest selection of original Japanese semiconductors in the country.

And best of all, you can count on saving money with MCM's quality electronic parts. Our prices are among the lowest in the industry, quite often by a wide margin.

Your toll free call to one of our "9 Good Reasons" will show you what it really means to be a satisfied customer. Do it today.

CALL OR WRITE TODAY FOR YOUR FREE 120 PAGE CATALOG! OVER 4500 ITEMS!
CALL TOLL FREE 1-800-543-4330 (in Ohio, 1-800-792-4315)

MCM ELECTRONICS
858 E. Congress Park Drive, Centerville, Ohio 45459
Circle (4) on Reply Card

SOURCE NO. ES-2

www.americanradiohistory.com
12 An introduction to satellite TV receiving systems
By Martin Clifford
Of all the components in a TVRO system, the dish is probably the most important. In this installment of the series, Clifford highlights areas of concern that an owner or technician should be aware of before purchase or installation.

20 Low-power microwave generators
By Joseph J. Carr
As the market of products using microwave signals both as transmission media and for local oscillators in receivers and downconverters has surged, so has the need for trained personnel dealing with oscillator circuits. This first article in the series discusses applications of these types of circuits as well as their construction.

28 Test your electronic knowledge
By Sam Wilson, CET
This month's questions are about computers and software.

38 Caring for your records
By Kirk Vistain
No matter how careful you are with your records, inevitably minute damage will occur. Vistain gives hints for extending the life of your collection and suggests some record-care products.

46 Characteristics of resistors
By Sam Wilson, CET
The resistor, a basic in the electrical circuit, has so many characteristics. This refresher article pinpoints the variety of capabilities.

50 266 ready-to-build circuits
By Michael Covington
Designing a power supply can be time consuming especially if you do your own calculations. Covington defines through his computer computations all three circuit configurations with a variety of transformers and capacitors.
<table>
<thead>
<tr>
<th>Transformer volts</th>
<th>Transformer phase</th>
<th>Frequency (kHz)</th>
<th>DC voltage (V)</th>
<th>Ripple (mV)</th>
<th>DC ripple (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.2</td>
<td>1.00</td>
<td>1000</td>
<td>29.4 - 24.4</td>
<td>12.0</td>
<td>0.257</td>
</tr>
<tr>
<td>25.2</td>
<td>1.00</td>
<td>1200</td>
<td>32.2 - 24.4</td>
<td>14.6</td>
<td>0.307</td>
</tr>
<tr>
<td>25.2</td>
<td>0.60</td>
<td>1000</td>
<td>31.4 - 24.4</td>
<td>13.2</td>
<td>0.214</td>
</tr>
<tr>
<td>25.2</td>
<td>0.60</td>
<td>2200</td>
<td>33.2 - 24.4</td>
<td>9.8</td>
<td>0.214</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>470</td>
<td>29.3 - 24.4</td>
<td>17.9</td>
<td>0.141</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>1000</td>
<td>32.2 - 24.4</td>
<td>17.9</td>
<td>0.141</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>2200</td>
<td>35.7 - 24.4</td>
<td>13.3</td>
<td>0.141</td>
</tr>
<tr>
<td>25.2</td>
<td>0.30</td>
<td>500</td>
<td>29.8 - 24.4</td>
<td>16.0</td>
<td>0.271</td>
</tr>
<tr>
<td>25.2</td>
<td>0.30</td>
<td>470</td>
<td>29.8 - 24.4</td>
<td>16.0</td>
<td>0.271</td>
</tr>
<tr>
<td>25.2</td>
<td>0.30</td>
<td>1000</td>
<td>32.3 - 24.4</td>
<td>13.3</td>
<td>0.271</td>
</tr>
<tr>
<td>25.2</td>
<td>0.30</td>
<td>1200</td>
<td>29.8 - 24.4</td>
<td>16.0</td>
<td>0.271</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>1000</td>
<td>34.4 - 24.4</td>
<td>17.7</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>470</td>
<td>31.7 - 24.4</td>
<td>13.7</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>1000</td>
<td>34.4 - 24.4</td>
<td>17.7</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>2200</td>
<td>29.8 - 24.4</td>
<td>16.0</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.40</td>
<td>2200</td>
<td>29.8 - 24.4</td>
<td>16.0</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.40</td>
<td>1000</td>
<td>29.8 - 24.4</td>
<td>16.0</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.40</td>
<td>2200</td>
<td>31.1 - 24.4</td>
<td>13.1</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.30</td>
<td>470</td>
<td>31.1 - 24.4</td>
<td>13.1</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.30</td>
<td>1000</td>
<td>31.1 - 24.4</td>
<td>13.1</td>
<td>0.225</td>
</tr>
</tbody>
</table>

Departments

4 Editorial
6 Technology
18 Troubleshooting Tips
29 Profax
49 News
58 Readers' Exchange
61 Literature
62 New Products

Next Month...

The ES&T Test Lab features the Sencore model VA62. It is a large state-of-the-art instrument having functions of a phase-locked video generator, an all-channel RF generator, a television signal-injection analyzer with IF and drive signals, a VCR analyzer and a dc and peak-to-peak voltmeter.
So Long, Satcom I

For 8½ years, through the silent cold of space it has been orbiting above the earth. In that time, it has traveled more than one-half billion miles while never straying from its station 22,000 miles above a point on the equator. Satcom I, this country's first 24-transponder domestic communications satellite has done its job, lived out its life, and on June 4 was retired. According to a June news release from RCA, the broad communications capacity of Satcom I made possible the growth of cable television into today's multibillion dollar market, and ushered in the era of low-cost, long-distance telephone communications.

Satcom I was thrust into orbit on Dec. 12, 1975 by Delta 118. Earlier satellites were capable of only 12 communications channels (transponders), but by using a method called cross-polarization and frequency interleaving, Satcom was able to deliver 24 channels. This doubling of capacity permitted lower cost long-distance communications service. Another Satcom feature was 3-axis stabilization which simplifies attitude control compared to "spinner" satellites, and permits more accurate pointing of the satellite.

Cable programming via Satcom I started with Home Box Office and WTBS, and grew from there. Growth was slow at first, then became more rapid as it became recognized that satellites were the only means by which cable TV signals could be transmitted throughout the US at low cost.

During the eight and a half years it was in synchronous orbit, Satcom was maneuvered remotely from earth to keep it in an assigned position in the orbital arc by firing on-board thrusters. The firing of these small rockets compensated for the downward pull of gravity and the effect of solar winds. These control thrusters are powered by hydrazine fuel. When the fuel is exhausted, the satellite is no longer under the control of earth. Satcom carried an 8-year supply of hydrazine.

The number of satellite positions in the geosynchronous orbit above the equator is limited. When a satellite in synchronous orbit can no longer be controlled, it must be removed from that orbit. On June 4, a control on earth was actuated and a signal was beamed to Satcom I. The last of its hydrazine fuel flowed into the thrusters and the satellite was boosted out of its orbit. The satellite will continue to circle the earth above the equator, but each successive orbit will carry it farther and farther away from the earth. When the pull of gravity is no longer strong enough, Satcom will speed away from earth, possibly to be captured into orbit by some other planet, or to wander endlessly through space, or perhaps to plunge to a fiery end into the sun.

No gold watch, no retirement party, no Social Security: Satcom's retirement was a quiet affair that passed with little fanfare. But the world of communications has been considerably broadened during the eight plus years it spent in orbit. And whether you sell TV equipment, service or install it, or just sit back and watch, Satcom's effect on your television has been profound.
Small prices to pay for quality.

Before you invest in your next DMM, consider quality and features—not price alone. As in any good investment, the initial cost of extra value will be returned through years of top performance and reliable service.

The 8020B Series set the world standard for ruggedness, performance and accuracy.

8024B. Peak Hold, Temperature and Logic Level Test Capability for Just $249. The 11-function 8024B offers a powerful package of special features.

Attach a K-type thermocouple, and it displays temperature readings in degrees Celsius. Trigger Peak Hold, and it captures elusive voltage or current surges for you to record them. Plus, you can perform logic level checks and visual or audible continuity tests.

8020B. The Industry Standard for Only $194. The 8020B is preferred by engineers, technicians and service people worldwide. Its quality, ruggedness and extensive overload protection led the way for UL listing for the entire 8020B Series.

8026B. True RMS Accuracy. Now for $199! If your applications include measurements of non-sinusoidal waveforms, our 8026B features true RMS ac capability, plus 10 kHz ac bandwidth...at a new low price.

Each of our 8020B series DMMs are backed by a full two-year warranty. So why settle for less, when you can own a Fluke?

For your nearest distributor or more information, call toll-free 1-800-426-0361.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

8020B
8024B
8026B

$194
$249
$199

0.1% basic dc accuracy
0.1% basic dc accuracy
0.1% basic dc accuracy

fast audible continuity
fast audible continuity
fast audible continuity

2-year warranty & calibration cycle
2-year warranty & calibration cycle
2-year warranty & calibration cycle

U.L. 1244 listed
U.L. 1244 listed
U.L. 1244 listed

2-year warranty & calibration cycle
2-year warranty & calibration cycle
2-year warranty & calibration cycle

3-year calibration cycle
3-year calibration cycle
3-year calibration cycle

IN THE U.S. AND NON-EUROPEAN COUNTRIES:
John Fluke Mfg. Co., Inc.
P.O. Box 3010, M/S 2500
Everett, WA 98206
(206) 356-5400 Tlx 152662

IN EUROPE:
Fluke (Holland) B.V.
P.O. Box 5053, 5004 EB
Tilburg, The Netherlands
(013) 673 973 Tlx 52237

©Copyright 1984, John Fluke Co., Inc. All rights reserved. Ad No. 4701-8020/4/6. For technical data circle number 5.
Smaller ICs?

Enhanced-contrast yields closer circuit spacing

Scientists at the General Electric Research and Development Center, Schenectady, NY, have invented a practical way to make next-generation microelectronic chips with present-generation processing equipment.

Their basic development is a proprietary contrast-enhancement material that is applied to semiconductor wafers at the beginning of the fabrication cycle. This coating extends the capability of making chips with ultra-small circuits.

Aided by the coating, GE researchers have produced experimental microcircuits with line-widths of only 0.4 micron (a hundredth the thickness of a human hair), employing a commercially available optical projection system called a stepper aligner. Without the coating, the stepper is limited to the production of circuit lines twice as wide.

This 50 percent reduction in circuit widths of the new coating results in improved operating characteristics. When employed in the manufacture of circuits with lines 1 micron wide and larger, it helps to make chips with more precisely defined microstructures. Basically, the purpose of the coating is to pick up a faint or blurry image from the optical projection system and convert it into a sharp circuit pattern on the semiconductor wafer.

Various types of optical systems used in chip-making are employed to project the image of a tiny circuit pattern (contained on a photo negative-like "mask") onto a semiconductor wafer coated with a light-sensitive photoresist. The wafer is then etched to remove the exposed parts of the photoresist, leaving behind the desired pattern.

This approach has served the semiconductor industry well over the years. However, as manufacturers continue to reduce the size of the transistors and other elements they place onto microchips, the lenses used in optical projection systems have begun to reach the physical limits of what they can resolve.

At present, most commercial microchips have circuit lines with widths of 2 to 4 microns—although 1.5-micron chips are beginning to appear in the marketplace. As semiconductor manufacturers press toward 1 micron, the projected circuit images tend to be blurry and poorly defined because of lens resolution limitations, making it difficult to produce chips that meet specifications.

The material overcomes this limitation with the aid of a proprietary photo-bleachable dye. Normally this dye is opaque, but becomes transparent when exposed to light of a certain wavelength.

When a circuit image from an optical printer is focused onto a wafer coated with the contrast-enhancement material, the areas that see the highest-intensity light (areas where there is no circuitry) bleach through first, becoming transparent. This creates a window in the material where light can shine onto the underlying photoresist. Thus, the material acts as an in-situ mask on the wafers, providing sharp differentiation in the projected image between light areas (no circuitry) and black areas (circuitry).
The technology is advanced. The temperature stays put.

When you need controlled output soldering for sensitive components, you don't need uncontrolled temperature fluctuations at the work station. In the Weller EC Series, the tip temperature is maintained throughout the range of 350°F - 850°F to within 10°F. In addition, an electronic system utilizes thyristor power control with zero voltage thyristor drive. This ensures that no high voltage spikes or magnetic fields will be present on the soldering tip.

These technologically advanced stations are capable of handling all the delicate soldering operations necessary, in even the most sophisticated applications. They offer the ultimate in soldering flexibility with a choice of controls and readouts to suit your needs precisely.

Check with your Electronics Distributor. **Weller® EC series**

CooperTools

The difference between work and workmanship.

BOKER® CRESCENT® LUFKIN® NICHOLSON® PLUMES® WELLER® WISS® XCELITE®

The Cooper Group PO Box 728 Apex NC, 27502 USA Tel (919) 362-7510 Telex 579497

Circle (6) on Reply Card
Structures produced with this technique are extremely well formed (uniform line-widths, nearly vertical wall profiles, etc.), even with submicron circuit lines and spaces. The special dye used in the contrast-enhancement material has a combination of characteristics that makes it suitable for this application. Most important among them is its capability of absorbing light selectively. Also, the dye is compatible with common photoresist films.

Only two steps are required to implement the process. One, to apply a thin (0.3-micron) layer of contrast-enhancement material (this is done with a spin-coating apparatus identical to that employed to apply photoresist), and the second to remove the material after the wafer has been exposed.

The contrast-enhancement material is removed in the same chamber in which the wafer is developed. The chamber is programmed so that one of its extra dispense heads can be employed in the first part of the cycle to spray on a stripping solvent. After this is done, the wafer is spun dry and developed in the usual way. The stripping operation adds about 30 seconds to the overall process.

To demonstrate the contrast-enhancement process, the GE researchers have fabricated numerous test structures and circuits with minimum feature sizes ranging from 2 microns to 0.4 micron. In all cases, a significant improvement in the definition of the circuit elements and structures has been demonstrated.

Magnetic materials used as a memory for storing information have been studied for many years at Philips research laboratories. One result of fundamental studies of iron oxides is that magnetic tape for many applications, (including storage of large quantities of alphanumeric data and audio and video recording), has been produced for many years. As the use of these storage techniques increases and user requirements become more specific, various failings of the method became apparent. Storage capacity is limited and the information is only reliable for a certain time because of demagnetization. Because the law may require that information should be stored for a long time, it becomes necessary to copy the information every few years in order to guarantee its reliability. Furthermore, a disadvantage of magnetic tape is that it may take a long time to locate a particular item.

Electro-optical techniques originally developed for LaserVision and the Compact Disc may provide a promising alternative, because they are used for the storage of images and sound and are centrally produced. However, it is also possible for the user to store and retrieve information. In some cases, this information stored locally can be erased and replaced by new information. The major advantages of the new optical techniques are the larger storage capacity and more rapid access to the information.

Briefly, an electro-optical recording system consists of a disc (Continued on page 44)
Out of his quaint shop in Knoxville, Illinois, Charlie Brown has become one of the most dynamic Satellite TV dealers and installers in the country. With over 15 years experience in electronics sales and service, the last three years in TVRO, Brown knows how important quality products and service can be to the success of his business.

WHY DID BROWN CHOOSE CONIFER?
"When I first saw the Conifer DE-2001 system it was far ahead of anything else I had seen. The price point was better than anything else on the market."

WHY DID YOU CONSIDER CONIFER THE BEST VALUE?
"Conifer had the features that I wanted to sell. Everything was contained in one unit...the dish drive, the Polarotor, one cable...everything!"

WHY DO YOU LIKE THE MESH?
"It blends in well with surroundings and looks better than a solid dish. You can install a Conifer black dish (AN-1200C) in a wooded area and it blends right in."

WHAT ABOUT INSTALLATION?
"After the base is set we can assemble the dish and have a good picture in less than two hours. It really helps that the aluminum mesh is attached to the petals at the factory."

HAS CONIFER LIVED UP TO YOUR EXPECTATIONS?
"The very first Conifer system I sold and installed I've never made a service call on. It works as good as the day it was installed. I think Conifer still has the best system and mesh dish on the market. No question about it!"

WHAT HAS CONIFER DONE TO HELP DEALERS BE MORE SUCCESSFUL?
"I highly recommend that a new or experienced dealer call or write Conifer to get a FREE copy of their new booklet 77 Ways To Succeed In The Home Satellite TV Business. It's Great!"
1946.
Sams Introduces PHOTOFACT.

Your Inside Track To A Profitable

It started in the early days of television. Sams began reconstructing and documenting how technology works and published its first PHOTOFACT TV service manual.

But Sams didn’t stop there. Sams continued to apply its technical expertise in new areas. And in 1967, released the first computer book.

Now Sams has combined its knowledge of computers and technical servicing to bring you COMPUTERFACTS — the first and only technical manual series for servicing today’s microcomputers and peripherals.

The Future Is Bright.
The market for servicing personal computers is growing at an average rate of 36% per year. A national research survey shows computer technicians earn almost 20% more than TV servicemen.

Buy Sams COMPUTERFACTS and you’ve got the inside track to a profitable career in this growing field. Because only COMPUTERFACTS have all the technical information you need to service computers right now.

Offer good in USA only. Prices and availability subject to change without notice.

In Canada, contact Lenbrook Electronics, Markham, Ontario L3R 1H2

Apple is a registered trademark of Apple Computer, Inc. Commodore is a registered trademark of Commodore Business Machines, Inc. Atari is a registered trademark of Atari, Inc. Osborne is a registered trademark of Osborne Computer Corporation. Diablo is a registered trademark of XEROX CORPORATION. TI 99/4A is a registered trademark of Texas Instruments, Inc. PHOTOFACT is a registered trademark of Howard W. Sams & Co., Inc. COMPUTERFACTS is a trademark of Howard W. Sams & Co., Inc.
Career In Microcomputer Servicing.

And like PHOTOFACT, COMPUTERFACTS cover every circuit, chip and control thoroughly and accurately with pages of:
- Fully-diagrammed schematics
- Disassembly instructions
- Logic charts
- Parts descriptions
- Terminal guides
- Troubleshooting hints

So you can spot and service problem areas in minutes.

So get Sams COMPUTERFACTS and get on the fast track to a profitable career. To order, contact your local Sams representative. Or call OPERATOR 133 at 317-298-5566 or 800-428-SAMS.
Introduction to satellite TV receiving systems

By Martin Clifford, Technical Consultant, KLM Electronics

Of all the components in a TVRO system, the dish is possibly the most important, and yet it is the only device in that system that is passive and non-electronic. Often incorrectly referred to as an antenna, it is just one part of the antenna system, functioning only as a microwave signal reflector.

Although it is a simple device, its selection, installation and orientation are critical. Because of the large surface area exposed to the wind, the wind loading factor of the dish (its ability to resist air pressure) is significant. The dish must have a clear line of sight to all the satellites whose signals are to be received. Finally, it is imperative that the dish remain permanently in its installed position, not deviating even slightly.

Not all areas are suitable for the installation of a dish, and, because considerable effort and expense may be involved, it is necessary to make a preliminary site survey, a sort of on-location feasibility study. Not difficult to do, the site survey shows what satellites will be available, and what changes in dish location, if any, need to be made. Satellite signals are high-frequency microwaves, which can be blocked partially or completely by buildings or terrain, or by trees, leaves and shrubbery.

Before doing a site survey, make a few preliminary checks. Overhead power lines can generate electrical noise; there may be underground telephone lines, power lines or other obstructions. Check local building codes to learn if there are any building restrictions.

A dish having a diameter of 10 feet or more (known as its aperture) requires a clear space of approximately 12 feet on each side of a square. It also needs a clear space of about 12 feet to clear the top of the dish. Because the signals picked up by the dish ultimately need to be delivered to the home, a site as close to the home as possible is desirable, with a maximum of about 300 feet in difficult locations. In many instances, site selection is a matter of compromise.

Following the preliminary "look around" site study, it is necessary to use a site tester. The site tester looks similar to a miniature telescope, although it has no lenses. It is equipped with an elevation plate calibrated in degrees, a bubble glass to keep the tester absolutely horizontal and a compass.

When using the site tester, you must know the azimuth and elevation headings for each of the satellites from your location. It is also necessary to have the magnetic deviation. This information is often supplied by dish manufacturers or can be obtained from commercial services, with the data in the form of a computer printout. The magnetic deviation is available from a local airport.

Using the site tester is easy following the detailed instructions it comes supplied with.

The device for supporting a dish, either holding it in a single fixed position or permitting the dish to turn in an arc, is known as its mount. There are three types: fixed, Az/El and polar. Of these, the polar mount is the most popular. The most obvious function of the mount is that it must support the dish, which requires that the mount support the weight of the dish and resist wind thrust.
The fixed mount is not only the simplest of the three types; it has a number of advantages. Once it is constructed and the dish is properly adjusted, no further changes are required. It is the least expensive to assemble and requires no drive motor and no voltage operating source. It is also suitable for roof mounting, assuming the structure of the roof can tolerate the weight and thrust. This type of mount is often used by cable companies and newspapers, but, depending on the dish that is used and its focusing arrangement, is usually limited to single, or possibly two, satellite pickup.

The azimuth/elevation mount (Az/El) has two separate axes of rotation: azimuth and elevation. These adjustments are independent of each other and can be done manually, although the Az/El does lend itself to motor operation by remote control.

The Az/El does present an operating problem. Making an adjustment in azimuth usually changes elevation and vice versa. Consequently, it is often necessary to work back and forth. The advantage of the Az/El over the fixed mount is that it can be used to sight more than one satellite. The Az/El is sometimes used to aim at a particular satellite and then to fix the mount into a locked position, thus changing it to a fixed mount type.

The polar mount is the most popular type for TVROs because azimuth and elevation adjustments are handled simultaneously. For this reason, this mount is used when the dish is to pick up as many satellites as possible. The polar mount can be adjusted manually at the dish but it lends itself well to motorized control from the home. With Memory Track–Polar Trak units the dish can be set to receive any desired satellite simply by pressing a previously set push-button.

Not all polar mounts are alike. Some have a limited satellite tracking ability, while others permit the dish to make a complete sweep. If the dish is unable to "see" more than two or possibly three satellites, having full dish sweep is an unnecessary luxury.

Ideally, a dish should collect the maximum amount of microwave signal energy possible and reflect all of this energy to the focal point of the feed, the entry area of the waveguide leading to the antenna probe and the LNA. As far as the feed is concerned, the dish is the signal source, and presumably that signal source delivers all its signal energy to the feed.

This, of course, is not the case, any more than a transmission line delivers all its energy to the antenna input terminals of a TV receiver. While the space between the dish and the feed is open, energy is delivered via that space; in a sense it is comparable to a transmission line.

Because not all of the microwave reflected energy reaches the feed or is used by it, consider the space between the dish and the feed as having a voltage standing wave ratio, or VSWR. This is the relationship between the utilized energy and that which is repetitively reflected. The lower the value of this ratio, the better. In an ideal arrangement, it would be 1:1, or unity. A representative value would be 1.2.

Any ordinary FM or TV antenna may be described in terms of its gain. Because the antenna has no amplification, it may seem odd to describe the component this way. Gain is a measure of the effectiveness of a unidirectional antenna in comparison with a reference standard, a half-wave dipole.

The same concept is applied to dishes and, in this case, the theoretical gain is directly related to dish aperture. Gain is important because it is indicative of the signal collecting ability of the dishes with representative values between 35 and 45dB. Higher values of gain are desirable because the ultimate quality of the picture as seen on the TV screen depends directly on it.

A 6-foot dish may have a gain of about 35dB, with an increase of 1dB for each 1-foot increase in diameter. Above a diameter of 11 feet, the increase in gain is only about 0.4dB per added foot.

The gain of a dish is also dependent on its adherence to a true
People don't know the importance of 40% more surge protection until lightning strikes.

Compared to most other surge suppressors, Philips ECG Surge Suppressors handle 40% greater surge current. They tame 53% more surge energy. Each has a positive overload protector that automatically shuts off equipment in the rare event of a massive overload surge. And each clamps spikes to 24% lower voltage. Philips ECG delivers almost twice the protection at a competitive price.

A good thing to have when lightning strikes.

Sell maximum protection. Call Philips ECG today for the name of your nearest distributor: 1-800-225-8326 (in Massachusetts, 617-890-6107).

If it's ECG, it fits. And it works.

Philips ECG
A North American Philips Company

www.americanradiohistory.com
Art 2. TVRO dish elevation depends on geographic location.

Art 3. An inclinometer is used to adjust elevation of TVRO dish.

curve, whether that curve is parabolic or spherical. If a dish warps in transportation or in use, there will be a directly related drop in gain. Although gain is specifically related to the dish, the accompanying feed, a small section of either cylindrical or rectangular waveguide and the antenna probe are all part of the dish system, and therefore contribute to the gain. The use of a series of concentric metal rings near the feed entrance also increases the resultant gain.

The microwave signal delivered by a transponder to a satellite dish is extremely small. Typically, the dc power input to the final power amplifier stage in the downlink transponder transmitter is 5W dc. This signal must not only travel approximately 22,300 miles to the dish, suffering attenuation in the form of space loss on the way, but the signal is spread over an extremely large area comprising about one-third of the earth's surface. The loss in space is about 200dB with a final microwave signal level of about 25×10^{-17}W. This signal level is less than the thermal noise surrounding it, so right from the start the battle is one between signal and noise, with noise in this respect indicating electrical noise.

Electrical noise is produced by a combination of factors, but primarily consists of thermal noise and noise due to the transmission of signal in other services using microwave frequencies. Thermal noise is caused by molecular thermal agitation of the earth's surface, but is also produced by the heating effect of ambient temperature, not only on the dish, but on other outside components of the TVRO system. Electrical noise ultimately appears on the TV screen in the form of horizontal rectangular glitches known as sparklies.

Generally, the relationship between a dish and the feed is considered from the viewpoint of the dish with respect to the feed. It is also possible to think of it as if the feed were looking at the dish, as indeed it does. If the feed "sees" the entire dish, from one point on the dish to a diagonally opposite
point, the dish is said to be fully illuminated. This isn't as hypothetical as it sounds for it means that all the collected signal energy is delivered to the feed, which is a desirable condition.

It is also possible for the feed to see beyond the edge of the dish, but in this case it would pick up additional noise without receiving additional signal. As a result the overall signal-to-noise ratio would be reduced. In an opposite situation, the feed would see just a relatively small area of the dish, and in that case would receive an inadequate amount of signal, possibly not enough to produce a good picture. Proper illumination is important and is a measure not only of correct dish curvature but of the correct placement of the feed with respect to the dish, and the design of the feed.

A dish is not a tuned circuit in the accepted sense of the phrase, but selectivity is associated with a dish because it can accept the signals of transponders of one satellite while rejecting signals from other satellites. A measure of the ability of a dish to do this is known as its beamwidth, an important characteristic because all satellites use the same downlink frequencies.

Beamwidth is calculated by having the dish face a selected satellite as accurately as possible. Under these circumstances, the dish might have a gain of 88. The dish is then adjusted until the gain drops by 3dB and the measurement in azimuth is recorded. The test is done twice, once to the east and again to the west of the starting point, or zero degrees. The total sweep in azimuth could, as an example, be three degrees. This indicates that a movement of 1.5 degrees either way would produce a signal decrease of 3dB. Generally, beamwidth is measured at the 3dB point. The narrower the bandwidth the more selective the dish.

One of the advantages of a dish having a larger aperture is that it is more selective.

Dishes are made of a variety of materials, but they all have one factor in common—every dish must be metallic. Some may not appear metallic because they are covered with fiberglass, but the fiberglass is simply protective and is not part of the reflective surface. The metal used in the dish can be stainless steel, aluminum or wire mesh.

Dishes may be made of a solid sheet of metal or can be in petallized form. The solid dish does not require assembly at the site, but does present shipping problems because the dish surface must be carefully protected. Dishes are often made of wire mesh, which is advantageous in reducing wind loading and in lower dish weight. These can also be petallized and are generally available in a variety of colors, with the protective paint bonded to the surface rather than simply painted on.
Partial raster
General Electric 19XA
(Photofact 1644-1)
Most of the GE b&w receiver’s raster was missing. Only about a fourth of the screen area (the lower left corner) had scanning lines. Although the missing area varied somewhat, the variations were not synchronized to picture changes and therefore were no help in pointing the type of defect.

The entire picture was not squeezed into the small visible rectangle. Apparently, the missing raster was being blanked-out. My experience has shown two general sources for problems that shade rasters from top to bottom (or side to side) or that remove sections of rasters by some kind of blanking. One kind originates in the blanking circuit, and the defect widens or otherwise distorts the original horizontal or vertical blanking pulses so that essential parts of the picture are removed. The second general source of misshapen blanking or shading sawteeth often is open or partially open capacitors. These can be bypass or filter capacitors in either B+ or AGC circuits.

Many of these incorrect conditions can be verified and identified by scope waveform analysis. But for open filter capacitors, it is easier to parallel them with a known-good test capacitor. Remember to turn off the receiver before attaching the test-capacitor leads. Then turn on the power and notice the performance. Before removing the test-capacitor leads, turn off the power.

As I followed by own advice and paralleled the test capacitor across the most likely filter and larger bypass capacitors, the missing section of raster was restored when I paralleled C269, a 470µF filter capacitor of the +22.3V supply.

René Rodríguez
Puerto Rico

Height variations
RCA CTC85
(Photofact 1800-1)
When power was applied to the receiver on our test bench, the vertical height was excessive, with part of the top and bottom missing. Adjustment of the vertical-height control produced normal height but caused a bright drive line horizontally across the center of the screen. After the receiver operated for about five minutes, the height would pull down from the top until only the bottom half of the screen showed a picture.

A new MDG001A vertical module was not available for replacement, so I sprayed canned coolant on the vertical transistors in turn. When Q8 was cooled, the screen would have full height for another five minutes or so. Dc voltages at P2-10, P1-5 and P1-4 all measured around zero instead of more than -17V, as is normal between those points and ground. Because C7 removes any dc voltages of the Q1/Q2 oscillator stage from the Q8 through Q6 amplifier stages, this indicated a problem in the latter stages. And the large out-of-tolerance dc voltages hint that the source might be in the Q8 stage. Q8 and all resistors around it was checked carefully, and I found 4.7MΩ R24 was completely open, although there were no visible signs of damage or overheating. Installation of a new R24 resistor removed the drive line and gave linear but insufficient height. A slight readjustment of the vertical-height control completed the repair.

Carl E. Jennings
Del City, OK

Have you solved a difficult troubleshooting problem? Send your solution to:
Troubleshooting Tips
Electronic Servicing & Technology
P.O. Box 12901
Overland Park, KS 66212
Attention Video Producers...

this informative new book from the publishers of Video Systems magazine is a must for your professional library.

Packed with information like:

- How to edit and direct a video script
- What kind of equipment to buy and how to use it
- Video graphics and special effects
- 112 pages including a 28-page appendix that analyzes 10 actual corporate case studies

Written by William McCavitt, associate professor and chairman of the Department of Communications Media, Indiana University of Pennsylvania

Edited by David Hodes, Video Systems editor

Educators...ask about discounts for classroom set prices.
Low-power microwave generators

By Joseph J. Carr

Microwaves are those frequencies above about 1 gigahertz (1GHz = 1000MHz). Until recently, few people had to concern themselves with microwaves, but now an ever expanding number of devices use those frequencies. There are police speed radars, certain avionic instruments, radio/radar telemetry and other devices. The upsurge of activity in Multi-point Distribution TV Services (MDS) and satellite TV reception has created a whole new line of products that use microwave signals both as transmission media and for local oscillators in receivers and down converters. Thus, more and more people now have to concern themselves with the oscillator circuits used to generate low power microwave signals. This article discusses these circuits. Not covered are high power oscillators used in microwave ovens, airborne and marine radar, and certain communications applications.

Vacuum tube methods

Vacuum tubes made before World War II ordinarily did not operate at either UHF or microwave frequencies. They did, however, seem to represent the best approach to researchers hoping to achieve UHF/microwave operation. There were two major problems with vacuum tubes that kept operating frequency low: interelectrode capacitance and electron transit time.

There are two approaches to the reduction of interelectrode capacitance. One is the electrode size and geometry, while the other is the interelectrode spacing. Reducing the electrode size not always is possible, however, because smaller electrodes do not dissipate the heat generated by the impact of electrons.

Increasing the element spacing in a vacuum tube will decrease the capacitance, but also will increase the transit time. Manipulation of geometry, size and spacing factors resulted in progress made in vacuum tube design, such that operating frequencies up to 450MHz were used in World War II.

As early as the 1920s investigators had noted that electron transit time seemed to be a fundamental limitation in the design of microwave vacuum tubes. Electron transit time is defined as the time required for an electron to travel from cathode to anode. Proper grid control of the electron stream requires that the period of alternating voltage applied to the grid be short compared with the electron transit time. Before WWII it was relatively easy to design around the transit-time problem at frequencies to 200MHz. Frequencies of 800MHz were attained by the 1950s, but normal mode operation at frequencies greater than 800MHz proved difficult to achieve on a commercial scale.

A solution to the transit-time problem was proposed in 1920 by Barkhausen and Kurz (Germany). The Barkhausen-Kurz oscillator (BKO) used a special configuration vacuum tube to generate 700MHz signals. In the BKO tube (Figure 1) the grid is made positive with respect to the cathode and the anode exactly the opposite of the usual arrangement. Electrons emitted by the thermionic cathode are attracted by the positive potential on the control grid. Some of these electrons will strike the grid, but most are accelerated through the grid structure toward the anode. Shortly after passing the grid, however, they are repelled by the negative potential on the anode and are deflected back towards the grid. The electrons will oscillate in an elliptical path around the grid structure. Output power can be obtained by connecting the grid to a load, and will consist of the minority of electrons in the grid path that
actually strike the grid.

The BKO was one of the first devices to overcome the transit-time limitation by making it work to advantage. The BKO overcame the time problem by keeping the electrons oscillating in a circular path in an electric field. The vacuum-tube grid, however, was a factor that limited available output power; its small dimensions often resulted in the grid running white hot during BKO operation.

A solution to this problem was proposed in 1921 by A.W. Hull: delete the grid altogether and keep the electrons in orbit using a magnetic field. Hull's original magnetron has been modified over the years, but the basic principle is still used today. Most microwave ovens, for example, use magnetron oscillators.

The power-vs.-frequency dilemma seemed unsolvable for several years. But, in the mid-30s, several investigators simultaneously reached similar solutions. Dr. W.W. Hansen (Stanford University) and Drs. A. and O. Heil began to think in terms of turning the transit time to advantage through the mechanism of velocity modulation of the electron beam. The Drs. Heil proposed in 1935 to use the electron transit time to control the electron stream. The heating problem was not solved, but was avoided because the electrons would not actually strike the control electrodes.

Russell and Sigurd Varian extended Dr. Hansen's work into the practical world in 1937 when they used Hansen's calculations to build the first klystron vacuum tube. This device used the transit time and the deceleration of bunched electrons to generate microwave RF energy. Velocity modulation of the electron stream in the klystron produces the bunching effect. It is the time between the arrival of successive bunches at a collector anode that determines the operating frequency of the klystron. Arrival of each bunch represents one cycle of RF energy.

The development of semiconductor devices saw similar, if not identical, problems. The high-frequency response of bipolar transistors, for example, was limited by the transit time of charge carriers (electrons or holes) across the base region. Attempts at reducing the width of the base region in order to decrease transit time produced additional problems, for example, increased capacitance and decreased tolerance to reverse bias potentials.

Even thin base regions could not solve the problem. Semiconductor materials exhibit a properly called electron saturation velocity, which is analogous to a similar problem in vacuum tubes. This limitation seems to be a fundamental limit to the high frequency operation of bipolar transistors. But, as with the vacuum-tube transit time problem, this problem can be turned into an advantage and used to create microwave oscillations.

An early solution to the problem was the use of diode frequency multipliers (Figure 2). A UHF oscillator is used to generate a frequency that is a subharmonic of the desired frequency. The signal is then applied to a fast operating microwave diode...
(D1), which distorts the signal and makes it harmonic rich. An output tuned circuit selects the desired harmonic, N (where N is an integer). The tuned circuits are shown here as LC networks, but in microwave circuits they might be stripline tuners, cavities, or some other resonant device. Some of the best generators use totally new effects—the Gunn diode, for example.

Transferred electron devices

John Gunn, of IBM, was studying the properties of n-type gallium arsenide (GaAs) material in 1963. He noted that the current through the material would become unstable if the applied voltage were increased above a certain threshold potential. It was discovered that the current would pulsate at microwave frequencies if the E-field were above this critical point.

Gunn speculated that a negative resistance phenomenon was responsible for the observed behavior (negative resistance generators can be made to oscillate under the right circumstances). Gunn speculated that the negative resistance phenomenon was due to a loss of electron mobility at the higher applied voltage. This theory can be inferred from the fact that some materials, such as GaAs, permit electrons to exist in either of two, rather than just one, conduction bands (Figure 3). In the lowest conduction band the electron-effective mass and electron energy are low. The energy level is close to the minimum allowed for conduction bands in that material. Electron mobility in this conduction band is high, i.e. on the order of 8000 cm²/V·s, so the material will act like an ordinary ohmic resistance.

If the electric field is increased to approximately 3 to 3.5 kV/cm, then the electrons will become more energetic and will transfer to the higher conduction band. An energy level of 0.35 eV separates the minima of the two conduction bands. The electron effective mass increases in the higher conduction band, while mobility and drift velocity are decreased.

Figure 4 shows that an increasing number of electrons are scattered into the low-mobility conduction band as the applied potential increases above a certain threshold voltage \(V_{th} \). At potentials less than the threshold potential, the electron velocity increases linearly with the applied voltage. This
The new AWS DM-3010. It’s not just another DMM. It’s a complete electrical/electronic testing system.

```
<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM-3010 Digital Multimeter</td>
<td>$80</td>
</tr>
<tr>
<td>SJA-870 Jaw Adapter</td>
<td>$65</td>
</tr>
<tr>
<td>HFE-840 Test Adapter</td>
<td>$29.95</td>
</tr>
<tr>
<td>HVP-860 High Voltage Probe</td>
<td>$49.95</td>
</tr>
</tbody>
</table>
```

Today’s electrical and electronic testing requirements call for equipment that can handle a wide range of applications. That’s why now more than ever you need the new AWS DM-3010 Testing System.

To start off with, the DM-3010 Digital Multimeter has an unbelievable $80 price tag. It offers 34 ranges with push-button control plus features usually found in much more expensive models such as: 10 Amp AC/DC range; UL244 type test leads; overload protection on all ranges; Hi and Low power ohms in all resistance ranges and more.

Complete the system by simply adding the following accessories as you need them...

SJA-870 Snap-Around Jaw Adaptor. Reads 0-1200 Amps AC. Its large jaws fit easily around any conductor up to 2-15/16" in diameter.

HFE-840 Test Adapter. If your work requires transistor and diode testing, this pocket-size adapter is a must.

HVP-860 High Voltage Probe. Provides safe, easy and reliable readings of 0-150KVDC on low power high impedance circuits.

So compare the DM-3010 Testing System for yourself. You’ll find that no other company offers a comparable system at these low prices.

For more information on the AWS DM-3010 Testing System, see your local distributor today or contact A.W. Sperry Instruments Inc., P.O. Box 9300, Smithtown, N.Y. 11787. Call Toll-Free 800-645-5398 (N.Y., Hawaii, Alaska call collect 516-231-7050).

A.W. SPERRY INSTRUMENTS INC.

behavior is exactly as expected in any material that obeys Ohm’s law. But at potentials greater than \(V_{th} \), the number of electrons transferred to the low mobility-low velocity conduction band increases with increasing voltage. This phenomenon causes the net electron velocity to drop, creating a negative resistance region between \(V_{th} \) and a saturation potential \(V_s \).

Microwave oscillators that depend upon the transfer of electrons between high- and low-mobility conduction bands are called **transferred electron oscillators (TEO)**.

The description of negative resistance operation adequately justifies the claim that the GaAs material will oscillate, but does not explain the structure of the Gunn device or the mechanism of oscillations in these devices. There are two different modes of oscillation in the Gunn device.

Incidentally, it has become common practice to call the Gunn device a “Gunn diode,” but this is not strictly correct: the Gunn device is not a diode. The Gunn device uses oscillations in a bulk medium, not a PN junction. The diode-like structure of the Gunn device shown in Figure 5 is not an ordinary PN junction. The end sections are not active, but are intended to facilitate ohmic contact between the electrodes and the active center region. Also, it is the practice of some people to refer to most solid-state microwave oscillators as Gunn diodes, even those that are of an altogether different structure. One recent advertisement listed as a “Gunnplexer” a device that contained an IMPATT diode. The Gunn device is a diode only in the sense that it has two electrodes but it should not be confused with PN junction diodes. Gunn devices are used to generate CW radar signals, as in police speed radar transmitters.

Gunn devices

The observations of Gunn in 1963 led to the invention of the Gunn device as a microwave oscillator. But, negative resistance oscillators were the subject of speculation by Shockley as early as 1954. Esaki (1956) had produced a 2-terminal “diode” device that exhibited a negative resistance property. This device is now known as the tunnel diode or Esaki diode. Sommers suggested in 1959 that the Esaki diode would have microwave applications, a prediction that has proven accurate. It was against this background that the Gunn device was invented in the mid-60s.

Gunn device structure

The basic structure of the Gunn device is shown in Figure 5. This device consists of three basic sections, labeled A, B, and C. Region A provides ohmic contact with the active center region, so should be made of relatively low resistivity (0.0012-cm) material. Its purpose is to ensure good contact with the end electrode and to prevent metallic ion migration from the electrode into the active region. The thickness of region A is approximately 1 to 2 microns, and it is grown epitaxially onto region B.
Region B is the active region in the Gunn device and consists of n-type gallium arsenide. The oscillating frequency of the device in one of its two modes depends on the thickness of this region, varying from 6GHz at 18µM to 18GHz at 6µM.

Region C is the substrate layer and is metallized to allow bonding to the device support structure: the "diode package." Again, low resistivity GaAs material is used.

Gunn devices are not very efficient, especially in the transit time mode of operation. These devices may require 20 to 50 times more dc power than they produce in RF output. As a result of the low efficiency, the substrate is usually bonded to a heatsinking package.

Modes of oscillation

The Gunn device can operate in either of two modes: transit-time (or Gunn) mode and the limited space-charge (or delayed transit-time) mode. The transit-time mode depends on the thickness of the active region for operating frequency, but does not require an external tank circuit for proper operation. The delayed-transit-time mode requires an external tank circuit, i.e. a tuned cavity, but is frequency-flexible and operates with more efficiency.

Transit-Time (Gunn) Mode

When a Gunn device is biased below the threshold potential V_{th}, the electric field will be uniform throughout the device (Figure 6A). The Gunn device will operate as an ordinary positive resistance in the region; the current will increase proportionally with the increasing voltage.

But in the situation (Figure 6B) when the Gunn device is biased to the threshold potential V_{th}, electrons are injected into the cathode end of the material faster than they are collected at the anode end. This causes a domain to build up that is rich in excess electrons on one side and deficient in electrons at the other side (the depleted region is on the anode side of the domain). This domain drifts through the length of region A in the Gunn device until it is collected at the anode end. A new domain forms as the old domain is collected at the anode.

The current output from the Gunn device maintains a low background level (Figure 7) until the domain is collected at the anode. At that instant a brief current pulse is generated in the output circuit.

The period of time between output current pulse peaks is the drift for that particular sample of material. The period, hence the operating frequency, is dependent on the path length and the drift velocity (on the order of 100cm/s) of the domain.

Delayed-domain mode

The delayed-domain, or limited space-charge (LSA) mode is more efficient than the transit-time mode. The transit-time mode, while elegantly simple, suffers from low efficiency and a frequency limitation that is determined by the thickness of the active region. The delayed-domain mode allows the Gunn device to adapt to the frequency of an external tank circuit, such as a high-Q resonant cavity.

Figure 8A shows an equivalent circuit in which the negative differential resistance (NDR) of the Gunn device is shown as a negative conductance placed in parallel with the LC tank circuit. Conductance G represents the ohmic losses in the tank circuit. The circuit will oscillate if | -G | > G.<

Suppose that we bias the Gunn device at some potential greater than the threshold voltage. The domain-creation phenomenon of the transit-time mode will cause several initial output pulses to excite (i.e. "ring") the external tank circuit into oscillation. This action will cause a continuous RF sine wave to build up (see Figure 8B) that has a frequency equal to the resonant frequency of the tank circuit. The RF voltage adds algebraically with the static dc bias such that the total bias is greater on
positive peaks and less on negative peaks. The value of the static dc bias must be carefully adjusted so that the total bias drops below V_{th} on the negative peaks of the RF cycle, yet will remain above the minimum sustaining potential. Whenever the total bias (i.e. sum of dc and RF voltages) is less than the threshold potential, the domains are quenched. If the previous domain reaches the anode while the bias is below V_{th}, then the creation of the next domain is delayed until the RF cycle brings the bias back above the threshold potential. This phenomenon causes the output current pulse period to adjust automatically to the period of the external tank circuit. Figure 9 shows LSA output pulses.

We can use the frequency agility of the delayed-domain mode to frequency modulate the device, or...
make it subject to *automatic frequency control* (AFC) operation by manipulation of the dc bias potential.

The delayed-domain or LSA mode is considerably more efficient than the transit-time mode. The output power available in the transit-time mode is usually less than 1000mW, with efficiencies on the order of only 1 to 5 percent. The delayed-domain mode, on the other hand, can deliver peak powers up to several hundred watts (duty cycle of 0.01 or less). The operating frequency of the transit-time mode is determined by the length of the active region and the saturated velocity of the electrons ($1/f = T = L/V_{sat}$), so is not variable. The delayed-domain mode, however, will adjust itself to the resonant frequency of the high-Q tank circuit in which it is operated. We can often adjust the operating frequency of one octave by adjusting the tank dimensions.

Figure 9. LSA mode output pulses.

Figure 10. Coaxial tuned cavity operation of a Gunn oscillator.

Figure 11. Operation in coaxial or rectangular waveguide.
Gunn oscillators

The Gunn device will oscillate in the transit-time mode using only a simple resistance for the load. The efficiency in this mode, however, is only 1 to 5 percent, so relatively large amounts of dc power are required to generate small amounts of RF power. If we place the Gunn device inside a resonant cavity and bias the device for the delayed-domain mode, the result will be better efficiency and some flexibility of the operating frequency.

Figures 10 and 11 show two methods for mounting a Gunn device inside a resonant cavity. Figure 10 shows a cutaway view of a coaxial cavity. The length of the cavity is half wavelength, while the base of the Gunn device is placed at the one-eighth wavelength point. A conductive dowel supports the Gunn device and connects it to the ends of the cavity. The dowel is also the center conductor of the coaxial cavity. A tuning screw is used to vary the operating frequency of the device. It effectively changes the dimensions of the cavity and is capable of fine tuning the operating frequency over a small range.

The oscillations on the inside of the cavity are coupled to the outside world through a short coupling loop that is situated parallel to the dowel center conductor. The load impedance of the Gunn device is set by the position of the coupling loop, and is adjusted for the best compromise between the stability of the operating frequency and the maximum output power.

The coaxial cavity, while simple, suffers from a few basic problems. It is a low-Q tank and is more sensitive to factors such as temperature and load impedance variations. The Gunn device in a coaxial cavity also may tend to oscillate on a harmonic of the tank frequency.

A rectangular waveguide (Figure 11) also can be used as a tuned cavity if one end is blocked off and the Gunn device is placed at the one-eighth wavelength point. dc bias is provided to the Gunn device through an RF choke that is designed for microwave operation.

The dimensions of the cavity are determined by the placement of a partition. Energy from the cavity is coupled into the waveguide transmission line through an opening called an iris. The size of this iris is a trade-off between maximum output power and a sensitivity to changes in the load and internal impedances of the Gunn device.

The second part of this series will discuss several other types of solid-state microwave generators. Included are IMPATT devices, TRAPATT devices and BARITT devices.
1. Which of the following is a method of getting into or out of memory by having an I/O device take control of the CPU for one or more cycles?
 A. MAD
 B. DAM
 C. AMD
 D. DMA
 E. ADM

2. Which of the following is software used to convert a program from a high-level language to assembly or machine language?
 A. compiler
 B. decoder
 C. encoder
 D. editor
 E. designator

3. Which of the following is a field effect transistor capable of delivering power to a load?
 A. VMOS
 B. CMOS
 C. PMOS
 D. MARK IV
 E. READ LEDGE

4. Back-to-back SCRs can be used in place of
 A. a diac
 B. a triac
 C. a variac
 D. an imnac
 E. hot carrier diodes

5. Crossover distortion is most likely to be a problem in
 A. emitter follower circuits
 B. Darlington amplifiers
 C. output transformers in power amplifier stages
 D. equalizers
 E. push-pull amplifiers made with bipolar transistors

6. Which of the following is part of the FM stereo signal?
 A. ACS
 B. SCA
 C. CAS
 D. SAC
 E. CSA

7. The symbol in this Figure represents
 A. an AND gate
 B. an OR gate
 C. a NAND gate
 D. a NOR gate
 E. an EXCLUSIVE OR gate

8. Which of the following motors is likely to be damaged if it is operated without a load?
 A. stepping motor
 B. shunt-wound motor
 C. series-wound motor
 D. capacitor start motor
 E. synchronous motor

9. In a frequency synthesizer you would likely find a
 A. PAL
 B. PLL
 C. PIL
 D. PLA
 E. VOR

10. A Bode plot
 A. compares two frequencies
 B. shows gain vs. frequency
 C. is used only for computer graphics
 D. shows frequency vs. temperature
 E. shows resistance vs. frequency

(Answers on page 37.)
Troubleshooting

1. D Direct Memory Access permits the memory to be loaded from outside the computer or microprocessor system.
2. A There is something about the name compiler that makes it sound like hardware.
3. A
4. B
5. E Remember that cross-over distortion is prevented by forward biasing the transistors. Unlike push-pull circuits made with tubes, the transistor version uses class AB bias. Tube circuits usually use class B bias.
6. B With an SCA decoder the music can be reproduced without the commercials.
7. C A NEMA symbol is shown. Unfortunately, there is more than one type of symbol used for logic circuits.
8. C A series-wound motor will undergo a continuous increase in speed until the motor destroys itself. There is an exception. Very small motors will sometimes reach a maximum speed before they are destroyed. The reason is that friction provides a mechanical load.
9. B A phase locked loop, in conjunction with a programmable counter, is used to select various frequencies.
10. B A bode plot shows gain and phase vs. frequency.

Answers to quiz
(from page 28)

Troubleshooting Tips Wanted

Electronic Servicing and Technology needs additional consumer-product Troubleshooting Tips. Most types of case histories are suitable, especially those with unique, puzzling or misleading symptoms.

List the brand, model and Photofact number followed by a narrative telling the original conditions or symptoms, the various troubleshooting steps, and the components replaced to restore the original performance. Please include a simple hand-drawn schematic of the stage that has a defect.

$10 will be paid for each Troubleshooting Tips published. Your name and city will be listed, unless you ask to remain anonymous.

Send all Troubleshooting Tips to:
Troubleshooting Tips Department
Electronic Servicing and Technology
P.O. Box 12901
Overland Park, KS 66212

July 1984 Electronic Servicing & Technology 37
By Kirk Vistain

Now there's a way to make all your phonograph records last indefinitely. It requires no liquids or potions, no brushes or anti-static guns, no special incantations. In fact, it's so simple, you will feel silly that you didn't think of it. The best way to preserve your records is: Don't use them. Leave them in their dust jackets, sealed away from the real world, and the fidelity will be as good as the day you bought them.

You see, no matter how careful you are, every time you use a record, you'll probably damage it a little. Either dust will cling to it because you built up several thousand volts of static electricity when you pulled it out of the jacket, or dust will settle on it while it is playing, or the stylus will slowly grind the grooves to dust and leave yet more residue to reduce fidelity.

Like backaches, record damage is inevitable. For this reason, scores of products are on the market that are designed to mitigate the effects of using phonograph records for their intended purpose. By the time you've finished this article, it may seem as if every time you decide to play a record, you'll have to spend five minutes per side preparing it, not to mention all the gewgaws and gizmos you'll have to set up to do it.

That's not much of an exaggeration. Record care is a never-ending battle to preserve the sound quality of a medium that audibly degrades every few times you use it. But, considering the price of records, it seems wise to take every precaution to preserve them.

Failure modes

Just what exactly causes records to wear and degrade? For the sake of this article, assume that the record was properly manufactured (something you can't always rely on), and that it hasn't been used for a frisbee or pizza plate. Obviously, avoid fingermarks, grease and scratches.

Barring the obvious, phonograph records are still plagued with three categories of trouble:
1. Static charges
2. Dust, dirt and contaminants
3. Wear

Interactions among all three are common, and while some products on the market try to address one problem at a time, others go after all three at once.

Static

Elimination of static is vital to record care. Modern phonograph records are manufactured from a copolymer of vinyl chloride and vinyl acetate. These compounds are part of a list of chemicals in something called the "tribic" series. What this means is that rubbing a record against almost any other substance it's likely to encounter (dust jackets, styli, human hands, etc.) tends to produce a negative static potential that can be as high as 5 or 10kV.

With that kind of charge on it, a record becomes an inviting home to every piece of floating debris in a 3-foot area. The electrostatic charge bonds dust to the record with thousands of pounds of pressure. Just try to get that stuff out of the grooves with a little brush that runs ahead of the stylus!

Static can also cause mistracking by unevenly attracting the tonearm during play. Annoying clicks and pops also result.

Static control

There are several approaches to static control. One requires the application of an anti-static fluid to the record, which may last for up to 100 plays before retreatment is required. Another uses a piezoelectric element in a small gun-shaped device that is used before each play. It eliminates unwanted charges much as a demagnetizer does on tape heads. A third approach uses a conductive record mat or brush to prevent static buildup during play.
Anti-static gun
This device neutralizes the static charge on the record by flooding it with a stream of ions of the opposite polarity. Usually a record is negatively charged, so cations (positively charged ions) are needed. Unfortunately, static guns also emit anions (negatively charged) which you want to eliminate. Presumably, the manufacturer thinks that records will occasionally become positively charged, but this is not common.

Also, it is a 1-shot treatment that you must repeat each time the record is played or handled. Furthermore, it is possible for a record to build up a 20kV or 30kV charge while playing.

Mats and conductive brushes
Anti-static mats and brushes are OK, but do not seem as effective as a fluid treatment. They also can't do much about the static charge that pulls dust onto the record as it is removed from the jacket.

Fluids
Fluid products need be applied only once every 50 plays or so, and, presumably, solve the problem of static buildup during both handling and play. Most of these are multipurpose compounds, which add a dry-lubricant coating to the record, as well as an antistatic treatment.

Do they work? Lab tests of two major brands, Audio Technica "Lifesaver," and Stanton "Permo-stat," show a long-term elimination of static charges and reduced record wear. The latter shows up as significantly better retention of high-frequency material on a treated record after 100 plays and slightly lower noise levels (5-10dB at high frequencies).

My own experience with such products corroborates these results, but I've found that the fluids must be applied carefully in order for the improvements to be heard. A haphazard wipe won't do.

Some experts recommend that you play a record several times with a conical stylus to clean dirt out of the grooves after an antistatic treatment. This primarily applies to older records. The particles set free by dissolution of the static charge will build up quickly on the needle until total cleaning is accomplished. Then you can switch to an elliptical stylus, or whatever type you prefer for playing.

Dust, dirt and contaminants
Once the static charge is eliminated, dust buildup slows but can still occur. Remember that a record groove is tiny, and even contaminants that seem diminutive to the naked eye can cause annoying noises and distortion, not to mention damage to the groove. Treated "record micro-dust" by the record care industry, these particles need to be removed at each playing. Among the products available are brushes that mount on the tonearm head, those which have their own separate "arm" and hand-held brushes.

Pads and potions
A proper hand-held cleaner is really a system, which includes the brush and cleaning fluid. Careful attention must be paid to the design of both components or all you'll be doing is pushing dust around and leaching stabilizers out of the vinyl. It's important that the fluid effectively dissolves contaminants without damaging vinyl.

One well-designed product is the Discwasher cleaning system. The brush is made up of a fiber pad whose bristles are small enough to reach deep in to the groove to remove contaminants. It is coupled with a special liquid for which the pad has a great affinity. Thus the majority of the fluid that comes in contact with the record simply dissolves the contaminants and is wiped off by the brush.

This type of cleaner is used just before playing. Most users clean both sides of the record first, but my experience indicates that each side should be cleaned just before it plays. Otherwise, the dust picked up from the record mat causes problems. This seems like a lot of trouble, and it is, but the reward is a record that sounds better and lasts longer than its untreated counterparts.

Brushes
Brushes are mounted on arms installed on the record player base, usually with a suction device or double-sided tape. Most consist of a pad and brush assembly. They track the record much as the tonearm does, except that their job is to clean the groove just seconds before it is played. The pad picks up dirt, while the brush functions to "track" the record groove, simultaneously root out dust. Most come with a special fluid to be used on the pad, although the ones I have used seem to work just as well dry.

Some, such as Audio Technica's "Auto-Cleanica," sport conductive bristles that are said to reduce the static charge on the record by effectively discharging it through a wire to ground.

One advantage of these devices is that they clean the groove immediately ahead of the needle, so they can eliminate dust that settles on the record during play.

However, arm-mounted brushes can produce annoying scraping sounds that occasionally are reproduced by the sound system. They may not track correctly, sometimes sliding from the outside to the inside of a record in a matter of seconds. You cannot use them with a record changer unless you set it for manual operation.

Reducing wear
This is an area of great controversy. Some believe that proper de-staticizing and cleaning of a record is all you should do, that a perfectly clean record, if properly manufactured, will provide optimum performance. Others prefer to put a dry lubricant onto the record surface to preserve it. One of the first record preservers was "Soundguard," developed by Ball Manufacturing (the people who brought you Mason jars). This type of treatment is also available in the multipurpose jars discussed under Static.

As is typical in the field of high-fidelity, this is one of those controversies in which both sides have good evidence. The Discwasher philosophy is that proper cleaning is best. Coatings are appropriate only for records that will be abused by patrons of the public library. Coatings can do nothing but obscure the information (albeit with an exceedingly thin film) that you're paying the record companies to put on the records.

The other camp, including Audio-Technica and Stanton...
among others, believes that the benefits accruing from a thin lubricating film far outweigh any possible sonic degradation. In fact, they have lab tests that seem to prove the point.

How about user feedback? Judging from my own admittedly unscientific use of the products, it is difficult to take sides. I have lubricant-treated records that sound fine and have lasted through many plays, but I also have untreated ones in the same condition. I can think of at least two occasions when application of a lubricant caused sonic changes in the record, which, though minor, were noticeable. Try a few products and judge the results for yourself.

Needle cleaners

People seem to forget that a dirty needle means dirty sound. Nearly all the record machines I see come in with dust on the stylus. Maybe people are simply afraid to mess with such a delicate device. Maybe they just forget. But it is important to clean that needle, preferably after each side of the record.

One effective device is the SC-2 stylus cleaner from Discwasher. It comes with a special fluid designed to dissolve the combination of vinyl particles, dust and other contaminants that build up on a needle during play. A drop of fluid goes onto the brush, which is then slowly drawn from back to front across the stylus. Usually one pass is all that is required.

At first sight, the brush looks more like a stylus-ripper than cleaner because the bristles are very densely packed. But in years of use, I've never damaged a needle using one, and the effectiveness is unmatched by other things I've tried.

Another approach uses a small brush with loose bristles, which is dipped in a thick, almost jelly-like fluid. When brushed across the stylus, the fluid dissolves and removes contaminants. Presumably, it's easier on the needle than the densely packed SC-2.

Many inexpensive stylus cleaners are also available, but are best avoided. Most do nothing to remove the tiny contaminants that build up on the needle, and some actually cause damage. Chief among these is the inverted brush that mounts permanently on a changer base. As the arm cycles, the needle is dragged across the brush sideways, putting unacceptable lateral stress on the stylus cantilever. It violates the basic principle of stylus cleaning, that you always clean from back to front. Usually only the largest gobs of dust are removed, which should not have built up to begin with.

Cleaning old records

Until now, we have talked about preserving the fidelity of newly purchased records. What do you do about your favorite oldies? Once you have heard a properly maintained record, those dust-ridden old-timers are going to sound disappointing unless drastic steps are taken.

One obvious cleaning method is to put the record into a diluted solution of water and dishwashing detergent. Carefully rubbing the record with a soft cloth, in a circular motion, helps loosen the years of debris. Follow up with a good rinse, dry with a lint-free cloth and you're done. I've had good luck with this unsophisticated method. The trick is to be thorough in the cleaning and rinsing phase. Follow-up with an anti-static treatment. You may notice that the stylus picks up quite a bit of debris for the first few playings so clean it regularly. This method works well with popular music of limited dynamic range, but still leaves a little too much surface noise for full enjoyment of wide-range orchestral music.

The ultimate cleaner for old records is a jelly-like compound, usually composed of vinyl alcohol, which is brushed onto the record and left to dry, forming a thin layer of vinyl resembling plastic wrap. You then peel it off the record, presumably pulling dust particles and dirt from deep down in the groove. Empire Scientific used to market a product such as this, and it may still be available. Do-it-yourselfers may want to refer to Reg Williamson's article on record care in the April 1981 issue of The Audio Amateur, in which he describes a brew you can make at home.

Preserve and enjoy

If you are like me, all the rituals and procedures we have discussed may make playing records seem more trouble than it is worth. But, if you are willing to sacrifice a bit of fidelity for practicality, why not tape your records? Make copies while the records are still in pristine condition, then play the tape instead of the record. If the tape gets damaged, somewhere around its 50th play, you just re-record. Granted, a tape recording won't sound quite as good as the original, but compared to what the record will sound like after 50 plays, it is more than satisfactory.

Of course, you'll probably have to pretreat the record first, so don't run over to the tape deck just yet. Go out, get some potions, say your incantations and start treating those records.
Nortronics
The Recorder Care Division of Nortronics Company, Minneapolis, has introduced its VCR maintenance kit. The kit provides an easy-to-use alternative to owners of portable VCRs manufactured by Matsushita Electronics. The new kit provides everything necessary for the owner to manually clean the VCRs video and audio heads as well as capstans and rollers.

The kit, VCR-96, contains a bottle of alcohol-free head cleaning solution; one reusable plastic wand; 11 soft, lint-free foam mittens, which fit over the wand; and a can of Super Blast compressed air duster. The suggested retail price for the kit is $14.95.

Most popular VCR drop-in cleaning cassettes will not work properly on VCRs using Matsushita's FP chassis because the tape tension sensing device is set to automatically shut the machine off if it senses more than 30 grams of tension on the supply or take-up motors.
Record care products

Nitty Gritty

Nitty Gritty, La Verne, CA, has introduced two systems that make professional record cleaning available to a broad spectrum of home audio hobbyists. The Nitty Gritty II and III at $299 and $399, respectively, yield state-of-the-art record cleaning in two easy steps. Using the record platform provided for support, the user first scrubs the record with the special brush and fluid. Then, he flips the record over and vacuums it dry. The whole operation takes less than one minute, and the result is a clean and static-free disc.

The Nitty Gritty record vacuum forms the heart of the Nitty Gritty Record Cleaning System. All the action takes place on the top, with the turning, record platform and also the Teflon-covered hemicylindrical suction lips. These lips suction a path across the entire grooved surface, removing the particle-laden solvent.

A powerful vacuum motor is directly coupled to the lips. The spinning turbine in the top half of the motor is responsible for creating the air movement (or vacuum), and also vaporizing the fluid by its action, turning 22,000 revolutions per minute.

The special brush has microscopically fine bristles that do not clump up or go limp in the presence of large amounts of fluid.

Circle (130) on Reply Card

Allsop

Allsop, Bellingham, WA, has entered the record care market with the Allsop 3 Orbitrac record cleaning system.

Under development for more than two years, the Orbitrac uses a patented dual disk cleaning action that makes record cleaning simple.

The Orbitrac cleaning pad's ultra-soft fibers are aligned with record grooves when its pivot arm is placed into the record spindle hole.

The cleaning disk is attached via a precision internal bearing to a control disk. As the user spins the control disk around the record, the cleaning pad remains in perfect contact with the record grooves while the control disk pivots freely with the hand motions.

Orbitrac's ultra-soft fabric fibers lift dirt, dust and impurities from deep within record grooves. The cleaning disk surface is kept clean with a brush supplied with every Orbitrac. Allsop's Orbitrac system uses a specially formulated anti-static cleaning solution that has been tested for safety on all types of record vinyl including delicate imported virgin vinyl.

The Orbitrac comes complete with an attractively designed storage case, anti-static mat, convertible pivot point, solution spray dispenser bottle and pad cleaning brush. The product will retail for about $25.

Circle (132) on Reply Card

Allsop has also introduced a new, improved version of its audiocassette deck cleaner.

The Allsop 3 Ultratone cassette deck cleaner model 71300 uses a dual-gear-driven wiper arm, which cleans an area 50 percent larger than previous Allsop cleaners.

The dual-gear drive assures uniform performance even in three motor decks and decks with take-up reel sensors.

The unit's virgin wool felt pads are encased in precision-molded cartridges making replacement of the capstan, pinch roller and head cleaning felt pads quick and simple. The unit includes dual capstan
and pinch roller cleaning cartridges to automatically clean auto reverse decks and players.

All three cartridges, (head, two capstan and pinch roller) can be replaced in seconds using an insertion tool supplied with Allsop replacement cartridge kits.

Another feature is the use of two tensioned capstan and pinch roller pads in each cartridge. Cleaning of these two critical elements is enhanced by dedicating a separate pad to each element. The tensioned capstan cleaner automatically adjusts the felt pad to clean capstans of different sizes.

Model 7100 cleaning system and case features the new gear-driven auto-reverse cleaner and also includes a larger supply of cleaning solution, a complete set of replacement cartridges with insertion tool, a supra leather carrying case and a home storage case. Suggested retail value for the Allsop 3 Ultraline model 71300 is $7.95 to $9.95. The Model 71200 Ultraline Cleaning System has a $14.95 to $16.95 value range.

The company has introduced the Allsop model 71010 replacement cartridge kit. The kit includes four pinch rollers and two head cleaner cartridges (enough for two complete replacements), a large bottle of Allsop cleaner and an insertion tool. Suggested retail value of the kit is $6.95 to $7.95.

Circle (139) on Reply Card

July 1984 Electronic Servicing & Technology 43
Tellurium-selenium alloys

One of the new materials for information storage is a polycrystalline tellurium-selenium alloy, to which small quantities of other elements have been added. For example, arsenic gives better control of the melting point and the stability of the material. A thin layer of the alloy is applied to a substrate. A narrow laser beam melts this material locally so that holes are created with the same depth as the layer. During the read-out process, with a less intense laser beam, the presence or absence of holes produces differences in the reflection of the laser light. These differences in reflection represent the information in coded form.

Research has been concentrated on determining the composition of the alloy and on finding an efficient technique for applying a very thin layer of the alloy to a disc. The shelf life of the discs is extremely good. Life tests have shown that the stored information can be guaranteed for at least ten years without any need for special environmental conditions. Shelf life will be greatly increased in a controlled environment.

Signal-to-noise ratio that can be achieved is so high that the disc with a tellurium-selenium alloy is suitable for use as a storage medium for both digital data (alphanumeric information or digital audio) and video recording. The data disc for the digital optical recorder uses this technology.

The use of tellurium alloys also makes it possible to record information on a disc, erase it, and then use the disc again to record new information. By choosing the energy output of the laser appropriately (compared with the level necessary for the hole disc) the polycrystalline material is melted locally, but no holes are formed. After the laser pulse, the molten areas cool down so quickly that they solidify in a metastable amorphous phase. These amorphous domains reflect differently from the crystalline surroundings on read-out. Erasure takes place when a laser with a sufficiently high energy level transforms the amorphous domains into the crystalline phase.

In most applications, the disc can be used and erased many

(Continued from page 8)

the size of an LP covered with a sensitive layer in which a laser makes microscopically small pits. Depending on the basic material, a particular physical effect occurs during read-out by the laser so the information becomes available in coded form. The nature of the material determines whether digital data (alphanumeric information and digital audio) or video information can be stored. This depends on the required signal-to-noise ratio. The requirements for video in this respect are more difficult because of the large number of grey levels. For digital data (only two levels) things are much easier. The material also determines whether the information can be erased.

Optical recording obviously had much to offer, so an intensive search began for materials on which information could be stored with the aid of a laser. Philips research laboratories are currently studying three classes of material that seem suitable for the optical recording of information: tellurium-selenium alloys, organic compounds and magneto-optical materials. The last two groups are still almost completely at the research stage. Much more is known about tellurium alloys. Their present uses include the data disc for the digital optical recorder used in the Megadoc system that Philips has recently introduced.

Despite great differences between the new media for optical recording of information, there are a number of characteristic similarities in the recording and reproduction systems. Whichever disc is used, the system works best with a diode laser that operates in the infrared (about 88nm). This laser creates a physical change in the storage material (hole formation or a phase change in a tellurium-selenium alloy, pit formation in an organic compound or domain of the opposite magnetization direction in a magneto-optical material). All such areas have a cross-section of about 1 micron. The power of the laser for writing in information is about 10mW at a pulse length of 50ns. The read-out power is about 0.5mW for all materials.
times. Storage of both digital data and video recording is possible because of the high signal-to-noise ratio. These materials for erasable storage are now at the transition stage between research and development.

Organic compounds
Organic dyes exist that absorb a great deal of light and have a high reflectance even when applied in thin layers. These thin layers of organic compounds seem to be a promising alternative to tellurium-selenium alloys. The memory effect is again obtained by melting the material locally with a laser to create small pits. A difference from the tellurium-selenium alloy is that these pits do not normally penetrate through to the substrate. The reflectance varies with the depth of the pit. The difference in reflection created by the pattern of pits is used when the information is being read.

This melting process is irreversible, so the disc can only be written once. The shelf life is good. It has been found that these organic compounds retain the information just as well as the hole discs with tellurium-selenium alloys. A great deal of research has been done on the light-fastness of the material, which ensures that its characteristic properties remain unchanged. These compounds have also been found to be resistant to heat and moisture. One attractive feature is the simple spin-coating process to applying the organic compound to the disc.

This type of disc has many applications. The signal-to-noise ratio obtained experimentally is high enough for the storage of both digital and video information.

Magneto-optical materials
Amorphous magnetic gadolinium-iron-cobalt compounds have been known for a long time. A laser can be used to heat the material locally, reverse the polarity of small areas and freeze it in this state. This technique makes it possible to write on a magnetized layer in a pattern of areas of opposite magnetization directions. This type of pattern can then be read out with polarized laser light.

The direction of polarization of the reflected light is rotated slightly with respect to the polarization of the original laser beam as a result of the Kerr effect. The written areas on the disc can be distinguished from the unwritten ones, and information can be read out. Information can be erased just as easily as it is written. Areas to be erased are heated by the laser, while an external magnetic field is applied with the same direction as the original magnetization of the layer; the magnetization of the heated area reverts to its original direction after cooling. Information can be written, erased and rewritten as often as required.

Present research is concerned with the operational life of the stored information. The stability of the material is important here. At present the signal-to-noise ratio is only moderate, so this storage method is suitable for digital data only (alphabetical information and digital audio signals). It could be possible to improve the signal-to-noise ratio sufficiently for the recording of video signals.
Characteristics of Resistors

By Sam Wilson, CET

Most resistors, such as the carbon composition, flame-proof and wirewound types, are described as linear, bilateral 2-terminal devices. They are 2-terminal for the obvious reason that they have two leads. Bilateral simply means they conduct equally well in either direction.

Linear simply means that resistance remains the same regardless of the voltage or current, and so a plot of current vs. voltage would be a straight line. If you double the voltage across a linear resistor, then the current passing through it will also double. That assumes you are operating the resistor well within its power and temperature ratings.

If a carbon composition resistor is used in a location where the ambient temperature is high, then its nominal power rating is no longer valid. It must be derated in compliance with manufacturer’s derating curves or charts. If those specifications are not available, then a simple equation can be used. If X is the temperature of the resistor location, then

Revised rating = Mfr’s rating x $[1-(X-70)/80]$

Example: A certain carbon composition resistor is rated at 1W. It is to be operated in a location where the temperature is 110°C. What is the power rating of the resistor in this location?

Solution:

Revised power rating = 1W x $[1-(110-70)/80] = 1/2W$

You might not always have time to make calculations such as this, but it is interesting to see how ambient temperature affects the selection of a resistor’s power rating. The message is clear—always replace resistors with the same power and resistance ratings.

Resistors operating in the presence of high-intensity electric fields may undergo changes that alter their characteristics. High-tension fields may even destroy the resistor even though it is operated within its power rating.

Non-linear resistors

A non-linear resistor does not conform to Ohm’s law. If you double the voltage across a non-linear resistor, the current through it will not double.

The resistance of metals increases when temperature increases. However, the resistance of semiconductors and certain mixtures (such as nickel oxide) decreases with an increase in temperature.

A thermistor is an example of a resistor with a negative temperature coefficient; that is, its resistance decreases with an increase in temperature.

Heavily doped semiconductors act similar to metals, so they have
a positive temperature Sensistor coefficient. A Sensistor is an example of a resistor with a positive temperature coefficient. (Sometimes they are called thermistors with a positive temperature coefficient.)

You could make a temperature probe with a thermistor by using a circuit such as the one shown in Figure 1. The milliammeter would be calibrated to indicate the temperature of the probe. As the probe temperature is increased, its resistance decreases, and the meter reads up scale.

The problem with the circuit in Figure 1 is that current flowing through the thermistor raises its temperature. Therefore, the probe resistance does not depend only upon the temperature being measured. Also, any change in battery voltage will change the temperature reading.

A better circuit is shown in Figure 2. With this bridge circuit, the same amount of current flows through the two thermistors. The balance of the bridge is not affected by current. Increasing the temperature of R3 unbalances the bridge. The meter is calibrated to display temperature.

I once put a question about the circuit of Figure 2 in a prototype Industrial Electronics test. I was surprised by the number of people who thought the bridge amplifies the thermistor resistance change. Of course, there is no amplification in the circuit of Figure 2. There is, however, an increase in sensitivity because the thermistor probe resistance depends only upon the temperature being measured.

The conduction of a semiconductor increases as its temperature goes up. That means the emitter-base current increases with an increase in temperature. When the emitter-base current increases, the collector current also increases.

The thermistor in the circuit of Figure 3 stabilizes the circuit against changes in ambient temperature. When the temperature goes up, the transistor's emitter-base current would normally increase. However, the increase in temperature causes the resistance of the thermistor to decrease. The result is a lower base voltage at the junction of R1 and the thermistor, so the base current is also decreased.

You will sometimes see it written that R3 is a bias resistor. Its real purpose is to stabilize the amplifier against temperature changes. If an increase in temperature reduces the transistor resistance, the current through it and through R3 rises. That makes the emitter more positive. It has the effect of decreasing the emitter-base bias current, so the transistor current is prevented from increasing.

Diodes as resistors
Diodes are usually used in applications where their non-linear,
voltage-current characteristics can be used. However, the forward and reverse resistances of diodes can also be used in circuits. Figure 4 shows how the temperature/resistance characteristic is used to stabilize an amplifier against changes in ambient temperature. The forward resistance of \(D_1 \) and \(R_s \) is used to pull down the base voltage to the proper forward bias value.

If the ambient temperature goes up, the emitter-base resistance decreases as mentioned before. The resistance of the diode will also decrease. The change in resistance will be similar for the diode and transistor if they are made with the same material. The base voltage is decreased by the lower diode resistance, and that prevents the emitter-base current of the transistor from increasing.

I once took a course in systems and was privileged to have one of the best instructors I ever met. Unfortunately, I've lost touch with him, but I've continued using his technique for analyzing circuits. He treated most circuits from the standpoint of resistance rather than current and voltage. I just gave one example with the diode in the base pull-down circuit.

As another example, Figure 5 shows a simple voltage regulator of the type sometimes found in integrated circuits. The voltage across the diodes is nearly constant despite changes in forward current.

Because \(V = IR \), it is obvious that an increase in current must be accompanied by a decrease in resistance in order for \(V \) to be constant.

Suppose, for example, the current is doubled, making its value 2I. The resistance, then, must be halved, making it \(R/2 \), so that \(V \) does not change:

\[
V = I \times \frac{R}{2} = IR
\]

The diode circuit can be thought of as being a variable resistor that automatically adjusts to keep the voltage constant.

The transistor as a variable resistor

All of the 3-terminal amplifying devices (vacuum tubes, bipolar transistors and FETs) can be thought of as being variable resistors connected across a power supply. A good example is the audio power amplifier. A transistor example will be used here, but the concept works equally well with the other devices.

A power amplifier does not amplify power as its name implies. In reality, the power amplifier controls the amount of power delivered to a load of the power supply. In the case of the audio amplifier, the load is the speaker.

Suppose you connect a variable resistor as a rheostat in series with the load and the supply (see Figure 6). If the arm of the rheostat can be moved back and forth 1000 times per second, an audio tone will be heard in the speaker. The reason is that moving the arm causes the current to vary at that rate. This is actually what happens in a power amplifier circuit. Of course, the rheostat is replaced by the so-called power amplifier in the audio circuit. To summarize, the power amplifier can be thought of as being nothing more than a rheostat with the audio input voltage moving the arm of the rheostat back and forth.

Another good example of the power transistor being used as a variable resistor is in the simulated loads for power supplies and power amplifiers. By using a power transistor in those applications, it is possible to set the desired load simply by adjusting the base voltage (see Figure 7).

If you want to control an ac load you can use back-to-back transistors as simulated load resistors.

Voltage amplifiers can also be thought of as being variable resistors. In that case, the variable resistor is connected in series with a component that will produce an output voltage instead of current as in the case of the power amplifier.

The concept of analyzing circuits from the viewpoint of resistance will be extended as this series continues.
As player production is phased down at RCA's TV receiver plant in Bloomington, IN, the RCA Videodisc Division "will begin a concentrated marketing effort, with specific support for dealers and distributors, to move more players and discs through retail," Sauter said.

FCC decision on TV stereo incorporates dbx system

The Federal Communications Commission (FCC) decision on TV stereo broadcasting protects the pilot tone for the EIA's BTSC system. The BTSC system consists of the dbx-TV noise reduction system and the Zenith transmission system, which had been selected by the EIA as the industry standard for TV stereo broadcasting.

"As we understand the FCC decision, it follows an 'open marketplace' rule. The commission, however, specifies that the first subcarrier can be used for stereo only and that other transmissions cannot interfere with the pilot tone for the EIA-selected system," according to Les Tyler, dbx vice president for engineering. The pilot tone is the transmitted signal that enables the TV receiver to switch to its TV stereo decoding circuitry. The concept is similar to that used for FM radio multiplex broadcasting.

"dbx is pleased that the FCC protected the pilot tone of the system recommended by the EIA. This standard was the calculation of five years' work in reviewing and testing various proposed systems," Tyler said. "The FCC, with its 'open marketplace' ruling, wisely allows marketplace pressure to exert influence for future improvements if new technology arises. Meanwhile, the EIA's BTSC system will be the prevailing standard."

Business Opportunity

It's plenty tough being an electronics sales and service dealer these days.

That's why we're working so hard to make it easier for you to operate a cost-effective business.

NESDA offers business contacts, technical and management certification, substantial savings on bankcard rates — and that's just the beginning!

NESDA members are kept informed about industry developments and are offered the most comprehensive managerial and technical training programs available. Besides, NESDA is your representative at the national level — including your voice to manufacturers and the agencies of the federal government!

Opportunity knocks . . .

Answer it!

For more information and an application, write to:

NESDA, 2708 W. Berry St., Ft. Worth, TX 76108; Ph (817) 921-9061

Name ________________________________

Bus. Name ________________________________

Address __

State _______ Zip _______ Phone ________

Member of State □ Local □ Assn. ________

UNIVERSAL CRT ADAPTER

NOW YOU CAN USE YOUR CRT/RESTORE/REJUVENATE/CLEANER ON ANY COLOR CRT! YOU DO NOT NEED TO BUY A NEW CRT TESTER! SAVE HUNDREDS OF DOLLARS! "THIS IS THE ONLY ADAPTER YOU WILL NEED" USE ON NEW IN-LINE & ONE-GUN TUBES!

If your tester is the CLEANER/RESTORE/REJUVENATE type or any other CRT type, you can use the function on your present machine or any Color Tube listed from a 9" to a 26," including foreign types. Checks Quintrex, Japanese Miniature Base, Japanese In-Line, Sylvania, and GE 90 Degree In-Line, New Sony Trinitron, Zenith Special In-Line, European 110 Degree In-Line, Sylvania 105 Degree Color Tri-Potential, RCA 90 Degree In-Line, 110 degree Color, 90 degree Button Base, Large Trinitron, Small Trinitron.

Use with CRT Tester/Restorer/Rejuvenator:

CHECKS: QUINTREX-IN-LINE — TRINITRON — TRI POTENTIAL — FINLESS — JAPANESE — EUROPEAN 90°, 100°, 110° ALL CRT's VIDEO GAMES – COMPUTER TERMINALS, COLOR T.V.

SIZES 9" thru 36" SCREENS

MONEY BACK GUARANTEED
to solve all your CRT Testing problems, Obsolescence Proof Perpetual Set Up Manual, CA28 Adapter Kit with Sockets.

CHECKS OVER 2200 COLOR TYPES

REPLACES OVER 50 ADAPTERS

B & K BELTRON, SENCORE, RCA ALL OTHERS

Call Toll Free

1-800-331-9658

Comes with complete EASY-to-follow Instruction Manual and Picture Tube Index.

A MUST FOR THE TV TECHNICIAN

CALL OR WRITE

COD, Send Check or Money Order, CA-28 Kit $51.95, add $2.00 shipping and handling. Visa & Mastercard accepted.

DANDY MANUFACTURING Co.

1313 North Main Street, Muskogee, Oklahoma 74401

918-682-4286

Circle (18) on Reply Card

July 1984 Electronic Servicing & Technology 49

RCA to continue marketing discs

The RCA Videodisc Division will continue to actively market videodiscs to more than 550,000 owners of "CED" system players. RCA has announced that it plans to phase out the production of videodisc players this year because of continuing financial losses and narrowed prospects that the business would turn profitable.

Disc pressing operations are planned to continue at RCA's plant in Indianapolis for three years or as long as reasonable demand continues, according to Jack K. Sauter, RCA group vice president. The disc plant supplies products for the RCA, RCA-Columbia and other labels involved in the "CED" disc business.

For more information and an application, write to:

NESDA, 2708 W. Berry St., Ft. Worth, TX 76108; Ph (817) 921-9061

Name ________________________________

Bus. Name ________________________________

Address __

State _______ Zip _______ Phone ________

Member of State □ Local □ Assn. ________

UNIVERSAL CRT ADAPTER

NOW YOU CAN USE YOUR CRT/RESTORE/REJUVENATE/CLEANER ON ANY COLOR CRT! YOU DO NOT NEED TO BUY A NEW CRT TESTER! SAVE HUNDREDS OF DOLLARS! "THIS IS THE ONLY ADAPTER YOU WILL NEED" USE ON NEW IN-LINE & ONE-GUN TUBES!

If your tester is the CLEANER/RESTORE/REJUVENATE type or any other CRT type, you can use the function on your present machine or any Color Tube listed from a 9" to a 26," including foreign types. Checks Quintrex, Japanese Miniature Base, Japanese In-Line, Sylvania, and GE 90 Degree In-Line, New Sony Trinitron, Zenith Special In-Line, European 110 Degree In-Line, Sylvania 105 Degree Color Tri-Potential, RCA 90 Degree In-Line, 110 degree Color, 90 degree Button Base, Large Trinitron, Small Trinitron.

Use with CRT Tester/Restorer/Rejuvenator:

CHECKS: QUINTREX-IN-LINE — TRINITRON — TRI POTENTIAL — FINLESS — JAPANESE — EUROPEAN 90°, 100°, 110° ALL CRT's VIDEO GAMES – COMPUTER TERMINALS, COLOR T.V.

SIZES 9" thru 36" SCREENS

MONEY BACK GUARANTEED
to solve all your CRT Testing problems, Obsolescence Proof Perpetual Set Up Manual, CA28 Adapter Kit with Sockets.

CHECKS OVER 2200 COLOR TYPES

REPLACES OVER 50 ADAPTERS

B & K BELTRON, SENCORE, RCA ALL OTHERS

Call Toll Free

1-800-331-9658

Comes with complete EASY-to-follow Instruction Manual and Picture Tube Index.

A MUST FOR THE TV TECHNICIAN

CALL OR WRITE

COD, Send Check or Money Order, CA-28 Kit $51.95, add $2.00 shipping and handling. Visa & Mastercard accepted.

DANDY MANUFACTURING Co.

1313 North Main Street, Muskogee, Oklahoma 74401

918-682-4286

Circle (18) on Reply Card

July 1984 Electronic Servicing & Technology 49
By Michael A. Covington

Low-voltage dc power supplies are among the most common circuits in all of electronics; all line-powered solid-state equipment contain them. Of the many possible power supply circuits, only three: the half-wave, full-wave bridge, and full-wave center-tapped configurations, are in wide use (Figure 1). The only things that vary are the specifications of the transformer and filter capacitor and, of course, the nature of the load.

Designing a power supply can be time consuming, especially because if you calculate that you need a 15.6V transformer and a 1650µF capacitor, you can’t just specify these values in your parts list. You have to do the calculations a second time to find out if off-the-shelf components with values nearest the values you calculated (say, 18V and 1600µF) will give you acceptable output values. In this article I’ve done it all for you. The accompanying computer-generated tables cover all three circuit configurations with a wide variety of transformers and capacitors—266 combinations in all. For each combination of transformer and capacitor, the table gives the dc voltage swing (from valley to peak of the ripple waveform), the ripple as a percentage of the average dc voltage, and the dc current.

Configurations and efficiency

The half-wave rectifier circuit is the easiest to build—it requires only one diode, and the transformer need not be tapped. But, it isn’t very efficient. The transformer can only conduct when the diode is forward-biased, and this is only possible half of the time, when the ac voltage is swinging positive. Moreover, in order for the diode to

<table>
<thead>
<tr>
<th>Transformer</th>
<th>Transformer</th>
<th>Capacitance</th>
<th>DC</th>
<th>Ripple</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.2 1.00</td>
<td>1000.</td>
<td>29.0 - 34.9</td>
<td>18.6</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>25.2 1.00</td>
<td>2200.</td>
<td>32.2 - 34.9</td>
<td>8.1</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>25.2 0.60</td>
<td>1000.</td>
<td>31.4 - 34.9</td>
<td>10.8</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td>25.2 0.60</td>
<td>2200.</td>
<td>33.3 - 34.9</td>
<td>4.8</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td>25.2 0.45</td>
<td>470.</td>
<td>29.2 - 34.9</td>
<td>17.8</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>25.2 0.45</td>
<td>1000.</td>
<td>32.3 - 34.9</td>
<td>8.0</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>25.2 0.45</td>
<td>2200.</td>
<td>33.7 - 34.9</td>
<td>3.5</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>25.2 0.20</td>
<td>220.</td>
<td>29.5 - 34.9</td>
<td>16.8</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>25.2 0.20</td>
<td>470.</td>
<td>32.4 - 34.9</td>
<td>7.5</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>25.2 0.20</td>
<td>1000.</td>
<td>33.7 - 34.9</td>
<td>3.5</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>25.2 0.20</td>
<td>2200.</td>
<td>34.4 - 34.9</td>
<td>1.6</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>25.2 0.10</td>
<td>100.</td>
<td>29.0 - 34.9</td>
<td>18.6</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>25.2 0.10</td>
<td>220.</td>
<td>32.2 - 34.9</td>
<td>8.1</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>25.2 0.10</td>
<td>470.</td>
<td>33.7 - 34.9</td>
<td>3.7</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>25.2 0.10</td>
<td>1000.</td>
<td>34.3 - 34.9</td>
<td>1.7</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>25.2 0.10</td>
<td>2200.</td>
<td>34.7 - 34.9</td>
<td>0.8</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>24.0 1.00</td>
<td>1000.</td>
<td>27.3 - 33.2</td>
<td>19.7</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>24.0 1.00</td>
<td>2200.</td>
<td>30.5 - 33.2</td>
<td>8.5</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>24.0 0.60</td>
<td>1000.</td>
<td>29.7 - 33.2</td>
<td>11.4</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td>24.0 0.60</td>
<td>2200.</td>
<td>31.6 - 33.2</td>
<td>5.0</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td>24.0 0.30</td>
<td>470.</td>
<td>29.4 - 33.2</td>
<td>12.1</td>
<td>0.107</td>
<td></td>
</tr>
<tr>
<td>24.0 0.30</td>
<td>1000.</td>
<td>31.5 - 33.2</td>
<td>5.5</td>
<td>0.107</td>
<td></td>
</tr>
<tr>
<td>24.0 0.30</td>
<td>2200.</td>
<td>32.4 - 33.2</td>
<td>2.5</td>
<td>0.107</td>
<td></td>
</tr>
<tr>
<td>24.0 0.20</td>
<td>220.</td>
<td>27.8 - 33.2</td>
<td>17.7</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>24.0 0.20</td>
<td>470.</td>
<td>30.7 - 33.2</td>
<td>7.9</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>24.0 0.20</td>
<td>1000.</td>
<td>32.1 - 33.2</td>
<td>3.6</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>24.0 0.20</td>
<td>2200.</td>
<td>32.7 - 33.2</td>
<td>1.6</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>24.0 0.10</td>
<td>100.</td>
<td>27.3 - 33.2</td>
<td>19.7</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>24.0 0.10</td>
<td>220.</td>
<td>30.5 - 33.2</td>
<td>8.5</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>24.0 0.10</td>
<td>470.</td>
<td>32.0 - 33.2</td>
<td>3.9</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>24.0 0.10</td>
<td>1000.</td>
<td>32.6 - 33.2</td>
<td>1.8</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>24.0 0.10</td>
<td>2200.</td>
<td>33.0 - 33.2</td>
<td>0.8</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>18.0 1.00</td>
<td>2200.</td>
<td>22.1 - 24.8</td>
<td>11.6</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>18.0 0.60</td>
<td>1000.</td>
<td>21.2 - 24.8</td>
<td>15.5</td>
<td>0.214</td>
<td></td>
</tr>
</tbody>
</table>

Power supply characteristics for off-the-shelf component values.
supply circuits

Figure 1. Common power supply circuits.

Symcures Wanted

Electronic Servicing and Technology

needs a broader variety of television Symcures. Especially needed are reports of Quasar, General Electric, Sylvania (or Philco), Sony Sears and Magnavox.

Symcures are, by definition, solutions to problems that have been encountered during the repair of *more than one* television set of the same make and model, and that may reasonably be expected to be a source of *recurrent* failure.

Please give the brand, model number, Photofact number, a brief description of the symptoms, a rough hand-drawn schematic of the area containing the defect, and a short description of the cure (including whether the defective component was open, leaky, shorted or intermittent).

ES&T editors will adapt the material to the Symcure format and have Photofact-style schematics prepared.

Send seven Symcures each time. Only six will be published, but the extra gives the editor a spare for one already printed in the past (or otherwise not suitable to the format). $30 will be paid for each page of six actually published (remember to include full name and address).

Send to: Symcure Department
Electronic Servicing and Technology
P.O. Box 12901
Overland Park, Kansas 66212

QUALITY PARTS AT DISCOUNT PRICES!

SUB-MINIATURE D TYPE CONNECTOR

- Solder Type Sub-Miniature Connectors Used for Computer Hook Ups
 - DB-15 Plug: $2.75
 - DB-15 Socket: $4.00
 - DB-15 Mood: $1.50
 - DB-25 Plug: $2.75
 - DB-25 Socket: $3.50
 - DB-25 Mood: $1.25

PARALLEL PRINTER CONNECTOR

- D E P S M PhN Male Used on Parallel Data Cables
 - $5.50 EACH

FREE! FREE! FREE! 8 PAGE CATALOG

MINIATURE TOGGLE SWITCHES

- All Are Rated 5 Amps @ 125 Vac
 - S.P.D.T. (on-on)
 - P.C. Style Non-Threadded Bushing
 - 754 Each $1.00
 - Solder Lug Terminals
 - 10 for $7.00
 - S.P.D.T. (on-off-on)
 - P.C. Style Non-Threadded Bushing
 - 754 Each $1.00
 - Non-Threadded Bushing
 - 3 for $1.00
 - Solder Lug Terminals
 - 10 for $7.00

EDG CONNECTORS

- 22/44 2214 Solder Plated Contacts
 - 15/Contact Springs
 - $2.00 EACH
 - 10 for $18.00

METAL OXIDE VARISTER

- G.E. #X130A104
 - 12V350V
 - $1.00 EACH

CRYSTAL

- Case Style HC33U
 - $3.50 EACH

TOLL FREE ORDERS +1-800-826-5432

(Also available to California customers: 1-800-258-6666)

Circle (19) on Reply Card

July 1984 *Electronic Servicing & Technology* 51

[Image of electronic components and pricing information]
<table>
<thead>
<tr>
<th>Transformer volts</th>
<th>Transformer amps</th>
<th>Capacitance (mF)</th>
<th>DC voltage swing</th>
<th>Ripple (%)</th>
<th>DC amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.0</td>
<td>0.60</td>
<td>2200.</td>
<td>23.1 - 24.8</td>
<td>6.8</td>
<td>0.214</td>
</tr>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>470.</td>
<td>21.0 - 24.8</td>
<td>16.6</td>
<td>0.107</td>
</tr>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>1000.</td>
<td>23.0 - 24.8</td>
<td>7.5</td>
<td>0.107</td>
</tr>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>2200.</td>
<td>23.9 - 24.8</td>
<td>3.3</td>
<td>0.107</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>470.</td>
<td>22.2 - 24.8</td>
<td>10.8</td>
<td>0.071</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>1000.</td>
<td>23.6 - 24.8</td>
<td>4.9</td>
<td>0.071</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>2200.</td>
<td>24.2 - 24.8</td>
<td>2.2</td>
<td>0.071</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>220.</td>
<td>22.4 - 24.8</td>
<td>11.6</td>
<td>0.035</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>470.</td>
<td>23.5 - 24.8</td>
<td>5.3</td>
<td>0.035</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>1000.</td>
<td>24.2 - 24.8</td>
<td>2.4</td>
<td>0.035</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>2200.</td>
<td>24.5 - 24.8</td>
<td>1.1</td>
<td>0.035</td>
</tr>
<tr>
<td>12.6</td>
<td>1.00</td>
<td>2200.</td>
<td>14.4 - 17.1</td>
<td>17.2</td>
<td>0.357</td>
</tr>
<tr>
<td>12.6</td>
<td>0.60</td>
<td>2200.</td>
<td>15.5 - 17.1</td>
<td>10.0</td>
<td>0.214</td>
</tr>
<tr>
<td>12.6</td>
<td>0.45</td>
<td>1000.</td>
<td>14.4 - 17.1</td>
<td>17.0</td>
<td>0.161</td>
</tr>
<tr>
<td>12.6</td>
<td>0.45</td>
<td>2200.</td>
<td>15.9 - 17.1</td>
<td>7.4</td>
<td>0.161</td>
</tr>
<tr>
<td>12.6</td>
<td>0.30</td>
<td>1000.</td>
<td>15.3 - 17.1</td>
<td>11.0</td>
<td>0.107</td>
</tr>
<tr>
<td>12.6</td>
<td>0.30</td>
<td>2200.</td>
<td>16.3 - 17.1</td>
<td>4.9</td>
<td>0.107</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>220.</td>
<td>14.4 - 17.1</td>
<td>17.2</td>
<td>0.035</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>470.</td>
<td>15.9 - 17.1</td>
<td>7.7</td>
<td>0.035</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>1000.</td>
<td>16.5 - 17.1</td>
<td>3.5</td>
<td>0.035</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>2200.</td>
<td>16.8 - 17.1</td>
<td>1.6</td>
<td>0.035</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>220.</td>
<td>15.5 - 17.1</td>
<td>10.0</td>
<td>0.021</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>470.</td>
<td>16.4 - 17.1</td>
<td>4.5</td>
<td>0.021</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>1000.</td>
<td>16.8 - 17.1</td>
<td>2.1</td>
<td>0.021</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>2200.</td>
<td>17.0 - 17.1</td>
<td>1.0</td>
<td>0.021</td>
</tr>
<tr>
<td>10.0</td>
<td>0.30</td>
<td>1000.</td>
<td>11.7 - 13.4</td>
<td>14.2</td>
<td>0.107</td>
</tr>
<tr>
<td>10.0</td>
<td>0.30</td>
<td>2200.</td>
<td>12.6 - 13.4</td>
<td>6.2</td>
<td>0.107</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>470.</td>
<td>12.2 - 13.4</td>
<td>9.9</td>
<td>0.035</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>1000.</td>
<td>12.8 - 13.4</td>
<td>4.5</td>
<td>0.035</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>2200.</td>
<td>13.2 - 13.4</td>
<td>2.0</td>
<td>0.035</td>
</tr>
<tr>
<td>6.3</td>
<td>0.60</td>
<td>2200.</td>
<td>6.6 - 8.2</td>
<td>21.9</td>
<td>0.214</td>
</tr>
<tr>
<td>6.3</td>
<td>0.30</td>
<td>2200.</td>
<td>7.4 - 8.2</td>
<td>10.4</td>
<td>0.107</td>
</tr>
<tr>
<td>6.3</td>
<td>0.20</td>
<td>1000.</td>
<td>7.0 - 8.2</td>
<td>15.6</td>
<td>0.071</td>
</tr>
<tr>
<td>6.3</td>
<td>0.20</td>
<td>2200.</td>
<td>7.7 - 8.2</td>
<td>6.8</td>
<td>0.071</td>
</tr>
</tbody>
</table>

Power supply characteristics for off-the-shelf component values.

As a result, the rms current through the transformer is much higher than the continuous dc current drawn by the load—about 2.8 times as high, to take a conservative estimate—and a 1A transformer can only provide 360mA of load current. Because of its inefficiency, the half-wave circuit is used only in relatively small power supplies.

An improvement is the full-wave bridge circuit, which achieves conduction on both half-cycles by using four diodes to "sort out" the incoming voltage and send it in the same direction each time, regardless of which way it is swinging. The result is greater efficiency; the transformer current rating need be only 2 times the required dc current.

![Figure 2. Ripple waveform.](image-url)
However, the full-wave center-tapped circuit is still better. Not only does it charge the capacitor on both positive and negative half cycles, but it uses each half of the transformer only half of the time. Because the duty cycle of any part of the transformer winding is only 50 percent, the effective current through the transformer is only half what it would otherwise have been. As a result, the transformer current rating can be equal to the dc load current, or even slightly less.

Because of the superiority of the center-tapped circuit for high-current applications, the table dealing with it covers a wider range of transformers and capacitors than the other two tables.

Ripple

The dc that comes out of these power supply circuits contains a small amount of residual ac called **ripple** (Figure 2). The amount of

<table>
<thead>
<tr>
<th>Transformer volts</th>
<th>Transformer amperes</th>
<th>Capacitance (µF)</th>
<th>DC voltage swing</th>
<th>Ripple (%)</th>
<th>DC amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.2</td>
<td>1.00</td>
<td>1000.</td>
<td>30.1 - 34.2</td>
<td>13.0</td>
<td>0.500</td>
</tr>
<tr>
<td>25.2</td>
<td>1.00</td>
<td>2200.</td>
<td>32.3 - 34.2</td>
<td>5.7</td>
<td>0.500</td>
</tr>
<tr>
<td>25.2</td>
<td>0.60</td>
<td>470.</td>
<td>28.9 - 34.2</td>
<td>16.8</td>
<td>0.300</td>
</tr>
<tr>
<td>25.2</td>
<td>0.60</td>
<td>1000.</td>
<td>31.7 - 34.2</td>
<td>7.6</td>
<td>0.300</td>
</tr>
<tr>
<td>25.2</td>
<td>0.60</td>
<td>2200.</td>
<td>33.1 - 34.2</td>
<td>3.4</td>
<td>0.300</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>470.</td>
<td>30.2 - 34.2</td>
<td>12.4</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>1000.</td>
<td>32.4 - 34.2</td>
<td>5.6</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>2200.</td>
<td>33.4 - 34.2</td>
<td>2.5</td>
<td>0.225</td>
</tr>
<tr>
<td>25.2</td>
<td>0.20</td>
<td>220.</td>
<td>30.5 - 34.2</td>
<td>11.7</td>
<td>0.100</td>
</tr>
<tr>
<td>25.2</td>
<td>0.20</td>
<td>470.</td>
<td>32.5 - 34.2</td>
<td>5.3</td>
<td>0.100</td>
</tr>
<tr>
<td>25.2</td>
<td>0.20</td>
<td>1000.</td>
<td>33.4 - 34.2</td>
<td>2.5</td>
<td>0.100</td>
</tr>
<tr>
<td>25.2</td>
<td>0.20</td>
<td>2200.</td>
<td>33.9 - 34.2</td>
<td>1.1</td>
<td>0.100</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>100.</td>
<td>30.1 - 34.2</td>
<td>13.0</td>
<td>0.050</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>220.</td>
<td>32.3 - 34.2</td>
<td>5.7</td>
<td>0.050</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>470.</td>
<td>33.4 - 34.2</td>
<td>2.6</td>
<td>0.050</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>1000.</td>
<td>33.8 - 34.2</td>
<td>1.2</td>
<td>0.050</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>2200.</td>
<td>34.0 - 34.2</td>
<td>0.6</td>
<td>0.050</td>
</tr>
<tr>
<td>24.0</td>
<td>1.00</td>
<td>1000.</td>
<td>28.4 - 32.5</td>
<td>13.7</td>
<td>0.500</td>
</tr>
<tr>
<td>24.0</td>
<td>1.00</td>
<td>2200.</td>
<td>30.6 - 32.5</td>
<td>6.0</td>
<td>0.500</td>
</tr>
<tr>
<td>24.0</td>
<td>0.60</td>
<td>470.</td>
<td>27.2 - 32.5</td>
<td>17.8</td>
<td>0.300</td>
</tr>
<tr>
<td>24.0</td>
<td>0.60</td>
<td>1000.</td>
<td>30.0 - 32.5</td>
<td>8.0</td>
<td>0.300</td>
</tr>
<tr>
<td>24.0</td>
<td>0.60</td>
<td>2200.</td>
<td>31.4 - 32.5</td>
<td>3.6</td>
<td>0.300</td>
</tr>
<tr>
<td>24.0</td>
<td>0.30</td>
<td>220.</td>
<td>26.9 - 32.5</td>
<td>19.1</td>
<td>0.150</td>
</tr>
<tr>
<td>24.0</td>
<td>0.30</td>
<td>470.</td>
<td>29.9 - 32.5</td>
<td>8.5</td>
<td>0.150</td>
</tr>
<tr>
<td>24.0</td>
<td>0.30</td>
<td>1000.</td>
<td>31.3 - 32.5</td>
<td>3.9</td>
<td>0.150</td>
</tr>
<tr>
<td>24.0</td>
<td>0.30</td>
<td>2200.</td>
<td>32.0 - 32.5</td>
<td>1.8</td>
<td>0.150</td>
</tr>
<tr>
<td>24.0</td>
<td>0.20</td>
<td>220.</td>
<td>28.8 - 32.5</td>
<td>12.4</td>
<td>0.100</td>
</tr>
<tr>
<td>24.0</td>
<td>0.20</td>
<td>470.</td>
<td>30.8 - 32.5</td>
<td>5.6</td>
<td>0.100</td>
</tr>
<tr>
<td>24.0</td>
<td>0.20</td>
<td>1000.</td>
<td>31.7 - 32.5</td>
<td>2.6</td>
<td>0.100</td>
</tr>
<tr>
<td>24.0</td>
<td>0.20</td>
<td>2200.</td>
<td>32.2 - 32.5</td>
<td>1.2</td>
<td>0.100</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>100.</td>
<td>28.4 - 32.5</td>
<td>13.7</td>
<td>0.050</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>220.</td>
<td>30.6 - 32.5</td>
<td>6.0</td>
<td>0.050</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>470.</td>
<td>31.7 - 32.5</td>
<td>2.8</td>
<td>0.050</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>1000.</td>
<td>32.1 - 32.5</td>
<td>1.3</td>
<td>0.050</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>2200.</td>
<td>32.4 - 32.5</td>
<td>0.6</td>
<td>0.050</td>
</tr>
<tr>
<td>18.0</td>
<td>1.00</td>
<td>1000.</td>
<td>19.9 - 24.1</td>
<td>19.0</td>
<td>0.500</td>
</tr>
<tr>
<td>18.0</td>
<td>1.00</td>
<td>2200.</td>
<td>22.2 - 24.1</td>
<td>8.2</td>
<td>0.500</td>
</tr>
<tr>
<td>18.0</td>
<td>0.60</td>
<td>1000.</td>
<td>21.6 - 24.1</td>
<td>11.0</td>
<td>0.300</td>
</tr>
<tr>
<td>18.0</td>
<td>0.60</td>
<td>2200.</td>
<td>22.9 - 24.1</td>
<td>4.8</td>
<td>0.300</td>
</tr>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>470.</td>
<td>21.4 - 24.1</td>
<td>11.7</td>
<td>0.150</td>
</tr>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>1000.</td>
<td>22.8 - 24.1</td>
<td>5.3</td>
<td>0.150</td>
</tr>
</tbody>
</table>
Full-wave bridge power supplies

<table>
<thead>
<tr>
<th>Transformer volts</th>
<th>Transformer amps</th>
<th>Capacitance (μF)</th>
<th>DC voltage swing</th>
<th>Ripple (%)</th>
<th>DC amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>2200</td>
<td>23.5 - 24.1</td>
<td>2.4</td>
<td>0.150</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>220</td>
<td>20.3 - 24.1</td>
<td>17.1</td>
<td>0.100</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>470</td>
<td>22.3 - 24.1</td>
<td>7.7</td>
<td>0.100</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>1000</td>
<td>23.2 - 24.1</td>
<td>3.5</td>
<td>0.100</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>2200</td>
<td>23.7 - 24.1</td>
<td>1.6</td>
<td>0.100</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>100</td>
<td>19.9 - 24.1</td>
<td>13.0</td>
<td>0.050</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>220</td>
<td>22.2 - 24.1</td>
<td>8.2</td>
<td>0.050</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>470</td>
<td>23.2 - 24.1</td>
<td>3.8</td>
<td>0.050</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>1000</td>
<td>23.6 - 24.1</td>
<td>1.7</td>
<td>0.050</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>2200</td>
<td>23.9 - 24.1</td>
<td>0.8</td>
<td>0.050</td>
</tr>
<tr>
<td>12.6</td>
<td>1.00</td>
<td>2200</td>
<td>14.5 - 16.4</td>
<td>12.2</td>
<td>0.500</td>
</tr>
<tr>
<td>12.6</td>
<td>0.60</td>
<td>1000</td>
<td>13.9 - 16.4</td>
<td>16.5</td>
<td>0.300</td>
</tr>
<tr>
<td>12.6</td>
<td>0.60</td>
<td>2200</td>
<td>15.3 - 16.4</td>
<td>7.2</td>
<td>0.300</td>
</tr>
<tr>
<td>12.6</td>
<td>0.45</td>
<td>1000</td>
<td>14.5 - 16.4</td>
<td>12.1</td>
<td>0.225</td>
</tr>
<tr>
<td>12.6</td>
<td>0.45</td>
<td>2200</td>
<td>15.6 - 16.4</td>
<td>5.3</td>
<td>0.225</td>
</tr>
<tr>
<td>12.6</td>
<td>0.30</td>
<td>470</td>
<td>13.8 - 16.4</td>
<td>17.6</td>
<td>0.150</td>
</tr>
<tr>
<td>12.6</td>
<td>0.30</td>
<td>1000</td>
<td>15.2 - 16.4</td>
<td>7.9</td>
<td>0.150</td>
</tr>
<tr>
<td>12.6</td>
<td>0.30</td>
<td>2200</td>
<td>15.9 - 16.4</td>
<td>3.5</td>
<td>0.150</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>220</td>
<td>14.5 - 16.4</td>
<td>12.2</td>
<td>0.050</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>470</td>
<td>15.3 - 16.4</td>
<td>5.5</td>
<td>0.050</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>1000</td>
<td>16.0 - 16.4</td>
<td>2.6</td>
<td>0.050</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>2200</td>
<td>16.2 - 16.4</td>
<td>1.2</td>
<td>0.050</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>100</td>
<td>13.9 - 16.4</td>
<td>16.5</td>
<td>0.050</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>220</td>
<td>15.3 - 16.4</td>
<td>7.2</td>
<td>0.030</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>470</td>
<td>15.9 - 16.4</td>
<td>3.3</td>
<td>0.030</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>1000</td>
<td>16.2 - 16.4</td>
<td>1.5</td>
<td>0.030</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>2200</td>
<td>16.3 - 16.4</td>
<td>0.7</td>
<td>0.030</td>
</tr>
<tr>
<td>10.0</td>
<td>1.00</td>
<td>2200</td>
<td>10.8 - 12.7</td>
<td>16.1</td>
<td>0.500</td>
</tr>
<tr>
<td>10.0</td>
<td>0.30</td>
<td>1000</td>
<td>11.5 - 12.7</td>
<td>10.3</td>
<td>0.150</td>
</tr>
<tr>
<td>10.0</td>
<td>0.30</td>
<td>2200</td>
<td>12.2 - 12.7</td>
<td>4.6</td>
<td>0.150</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>220</td>
<td>10.8 - 12.7</td>
<td>16.4</td>
<td>0.050</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>470</td>
<td>11.9 - 12.7</td>
<td>7.2</td>
<td>0.050</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>1000</td>
<td>12.3 - 12.7</td>
<td>3.3</td>
<td>0.050</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>2200</td>
<td>12.6 - 12.7</td>
<td>1.5</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Ripple (peak-to-peak) + = \(I_{dc}/(FC) \)

where \(F \) is the frequency of the charging pulses, \(C \) is the filter capacitance in farads, and \(I_{dc} \) is the dc load current in amps.

From the formula you can deduce a number of convenient rules of thumb:

1. The ripple is proportional to the load current. Cut the load current in half and you cut the ripple in half (the maximum, or peak, voltage remains the same, and the minimum voltage moves closer to it). Remove the load entirely, and the ripple disappears. (This means that you can not test a power supply for ripple with the load disconnected!)
<table>
<thead>
<tr>
<th>Transformer volts</th>
<th>Transformer amps</th>
<th>Capacitance (mF)</th>
<th>DC Voltage swing</th>
<th>Ripple (%)</th>
<th>DC amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.0</td>
<td>2.00</td>
<td>10000.0</td>
<td>14.6 - 16.3</td>
<td>10.8</td>
<td>2.00</td>
</tr>
<tr>
<td>24.0</td>
<td>1.50</td>
<td>4700.0</td>
<td>13.6 - 16.3</td>
<td>17.8</td>
<td>1.50</td>
</tr>
<tr>
<td>24.0</td>
<td>1.50</td>
<td>6400.0</td>
<td>14.3 - 16.3</td>
<td>12.8</td>
<td>1.50</td>
</tr>
<tr>
<td>24.0</td>
<td>1.50</td>
<td>10000.0</td>
<td>15.0 - 16.3</td>
<td>8.0</td>
<td>1.50</td>
</tr>
<tr>
<td>24.0</td>
<td>1.00</td>
<td>4700.0</td>
<td>14.5 - 16.3</td>
<td>11.5</td>
<td>1.00</td>
</tr>
<tr>
<td>24.0</td>
<td>1.00</td>
<td>6400.0</td>
<td>15.0 - 16.3</td>
<td>8.3</td>
<td>1.00</td>
</tr>
<tr>
<td>24.0</td>
<td>1.00</td>
<td>10000.0</td>
<td>15.4 - 16.3</td>
<td>5.3</td>
<td>1.00</td>
</tr>
<tr>
<td>24.0</td>
<td>0.60</td>
<td>2200.0</td>
<td>14.0 - 16.3</td>
<td>15.0</td>
<td>0.60</td>
</tr>
<tr>
<td>24.0</td>
<td>0.60</td>
<td>4700.0</td>
<td>15.2 - 16.3</td>
<td>6.8</td>
<td>0.60</td>
</tr>
<tr>
<td>24.0</td>
<td>0.60</td>
<td>6400.0</td>
<td>15.5 - 16.3</td>
<td>4.9</td>
<td>0.60</td>
</tr>
<tr>
<td>24.0</td>
<td>0.60</td>
<td>10000.0</td>
<td>15.8 - 16.3</td>
<td>3.1</td>
<td>0.60</td>
</tr>
<tr>
<td>24.0</td>
<td>0.30</td>
<td>1000.0</td>
<td>13.8 - 16.3</td>
<td>16.6</td>
<td>0.30</td>
</tr>
<tr>
<td>24.0</td>
<td>0.30</td>
<td>2200.0</td>
<td>15.1 - 16.3</td>
<td>7.2</td>
<td>0.30</td>
</tr>
<tr>
<td>24.0</td>
<td>0.30</td>
<td>4700.0</td>
<td>15.7 - 16.3</td>
<td>3.3</td>
<td>0.30</td>
</tr>
<tr>
<td>24.0</td>
<td>0.30</td>
<td>6400.0</td>
<td>15.9 - 16.3</td>
<td>2.4</td>
<td>0.30</td>
</tr>
<tr>
<td>24.0</td>
<td>0.30</td>
<td>10000.0</td>
<td>16.0 - 16.3</td>
<td>1.5</td>
<td>0.30</td>
</tr>
<tr>
<td>25.2</td>
<td>2.00</td>
<td>6400.0</td>
<td>14.5 - 17.1</td>
<td>16.5</td>
<td>2.00</td>
</tr>
<tr>
<td>25.2</td>
<td>2.00</td>
<td>10000.0</td>
<td>15.5 - 17.1</td>
<td>10.2</td>
<td>2.00</td>
</tr>
<tr>
<td>25.2</td>
<td>1.00</td>
<td>4700.0</td>
<td>15.3 - 17.1</td>
<td>10.9</td>
<td>1.00</td>
</tr>
<tr>
<td>25.2</td>
<td>1.00</td>
<td>6400.0</td>
<td>15.8 - 17.1</td>
<td>7.9</td>
<td>1.00</td>
</tr>
<tr>
<td>25.2</td>
<td>1.00</td>
<td>10000.0</td>
<td>16.3 - 17.1</td>
<td>5.0</td>
<td>1.00</td>
</tr>
<tr>
<td>25.2</td>
<td>0.60</td>
<td>2200.0</td>
<td>14.8 - 17.1</td>
<td>14.2</td>
<td>0.60</td>
</tr>
<tr>
<td>25.2</td>
<td>0.60</td>
<td>4700.0</td>
<td>16.1 - 17.1</td>
<td>6.4</td>
<td>0.60</td>
</tr>
<tr>
<td>25.2</td>
<td>0.60</td>
<td>6400.0</td>
<td>16.3 - 17.1</td>
<td>4.7</td>
<td>0.60</td>
</tr>
<tr>
<td>25.2</td>
<td>0.60</td>
<td>10000.0</td>
<td>16.6 - 17.1</td>
<td>3.0</td>
<td>0.60</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>2200.0</td>
<td>15.4 - 17.1</td>
<td>10.5</td>
<td>0.45</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>4700.0</td>
<td>16.3 - 17.1</td>
<td>4.8</td>
<td>0.45</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>6400.0</td>
<td>16.5 - 17.1</td>
<td>3.5</td>
<td>0.45</td>
</tr>
<tr>
<td>25.2</td>
<td>0.45</td>
<td>10000.0</td>
<td>16.7 - 17.1</td>
<td>2.2</td>
<td>0.45</td>
</tr>
<tr>
<td>25.2</td>
<td>0.20</td>
<td>1000.0</td>
<td>15.5 - 17.1</td>
<td>10.2</td>
<td>0.20</td>
</tr>
<tr>
<td>25.2</td>
<td>0.20</td>
<td>2200.0</td>
<td>16.4 - 17.1</td>
<td>4.5</td>
<td>0.20</td>
</tr>
<tr>
<td>25.2</td>
<td>0.20</td>
<td>4700.0</td>
<td>16.8 - 17.1</td>
<td>2.1</td>
<td>0.20</td>
</tr>
<tr>
<td>25.2</td>
<td>0.20</td>
<td>6400.0</td>
<td>16.9 - 17.1</td>
<td>1.5</td>
<td>0.20</td>
</tr>
<tr>
<td>25.2</td>
<td>0.20</td>
<td>10000.0</td>
<td>17.0 - 17.1</td>
<td>1.0</td>
<td>0.20</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>470.0</td>
<td>15.3 - 17.1</td>
<td>10.9</td>
<td>0.10</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>1000.0</td>
<td>16.3 - 17.1</td>
<td>5.0</td>
<td>0.10</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>2200.0</td>
<td>16.7 - 17.1</td>
<td>2.2</td>
<td>0.10</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>4700.0</td>
<td>16.9 - 17.1</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>6400.0</td>
<td>17.0 - 17.1</td>
<td>0.8</td>
<td>0.10</td>
</tr>
<tr>
<td>25.2</td>
<td>0.10</td>
<td>10000.0</td>
<td>17.0 - 17.1</td>
<td>0.5</td>
<td>0.10</td>
</tr>
<tr>
<td>24.0</td>
<td>2.00</td>
<td>6400.0</td>
<td>13.7 - 16.3</td>
<td>17.4</td>
<td>2.00</td>
</tr>
<tr>
<td>Transformer volts</td>
<td>Transformer amps</td>
<td>Capacitance (mF)</td>
<td>DC voltage swing</td>
<td>Ripple (%)</td>
<td>DC amps</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>24.0</td>
<td>0.20</td>
<td>1000</td>
<td>14.6 - 16.3</td>
<td>10.8</td>
<td>0.20</td>
</tr>
<tr>
<td>24.0</td>
<td>0.20</td>
<td>2200</td>
<td>15.5 - 16.3</td>
<td>4.8</td>
<td>0.20</td>
</tr>
<tr>
<td>24.0</td>
<td>0.20</td>
<td>4700</td>
<td>15.9 - 16.3</td>
<td>2.2</td>
<td>0.20</td>
</tr>
<tr>
<td>24.0</td>
<td>0.20</td>
<td>6400</td>
<td>16.0 - 16.3</td>
<td>1.6</td>
<td>0.20</td>
</tr>
<tr>
<td>24.0</td>
<td>0.20</td>
<td>10000</td>
<td>16.1 - 16.3</td>
<td>1.0</td>
<td>0.20</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>4700</td>
<td>14.5 - 16.3</td>
<td>11.5</td>
<td>0.10</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>1000</td>
<td>15.4 - 16.3</td>
<td>5.3</td>
<td>0.10</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>2200</td>
<td>15.9 - 16.3</td>
<td>2.4</td>
<td>0.10</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>4700</td>
<td>16.1 - 16.3</td>
<td>1.1</td>
<td>0.10</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>6400</td>
<td>16.1 - 16.3</td>
<td>0.8</td>
<td>0.10</td>
</tr>
<tr>
<td>24.0</td>
<td>0.10</td>
<td>10000</td>
<td>16.2 - 16.3</td>
<td>0.5</td>
<td>0.10</td>
</tr>
<tr>
<td>18.0</td>
<td>2.00</td>
<td>10000</td>
<td>10.4 - 12.0</td>
<td>14.9</td>
<td>2.00</td>
</tr>
<tr>
<td>18.0</td>
<td>1.50</td>
<td>6400</td>
<td>10.1 - 12.0</td>
<td>17.7</td>
<td>1.50</td>
</tr>
<tr>
<td>18.0</td>
<td>1.50</td>
<td>10000</td>
<td>10.8 - 12.0</td>
<td>11.0</td>
<td>1.50</td>
</tr>
<tr>
<td>18.0</td>
<td>1.00</td>
<td>4700</td>
<td>10.3 - 12.0</td>
<td>15.9</td>
<td>1.00</td>
</tr>
<tr>
<td>18.0</td>
<td>1.00</td>
<td>6400</td>
<td>10.7 - 12.0</td>
<td>11.4</td>
<td>1.00</td>
</tr>
<tr>
<td>18.0</td>
<td>1.00</td>
<td>10000</td>
<td>11.2 - 12.0</td>
<td>7.2</td>
<td>1.00</td>
</tr>
<tr>
<td>18.0</td>
<td>0.60</td>
<td>2200</td>
<td>9.8 - 12.0</td>
<td>20.9</td>
<td>0.60</td>
</tr>
<tr>
<td>18.0</td>
<td>0.60</td>
<td>4700</td>
<td>11.0 - 12.0</td>
<td>9.3</td>
<td>0.60</td>
</tr>
<tr>
<td>18.0</td>
<td>0.60</td>
<td>6400</td>
<td>11.2 - 12.0</td>
<td>6.7</td>
<td>0.60</td>
</tr>
<tr>
<td>18.0</td>
<td>0.60</td>
<td>10000</td>
<td>11.5 - 12.0</td>
<td>4.2</td>
<td>0.60</td>
</tr>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>2200</td>
<td>10.9 - 12.0</td>
<td>9.9</td>
<td>0.30</td>
</tr>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>4700</td>
<td>11.5 - 12.0</td>
<td>4.5</td>
<td>0.30</td>
</tr>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>6400</td>
<td>11.6 - 12.0</td>
<td>3.3</td>
<td>0.30</td>
</tr>
<tr>
<td>18.0</td>
<td>0.30</td>
<td>10000</td>
<td>11.8 - 12.0</td>
<td>2.1</td>
<td>0.30</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>1000</td>
<td>10.4 - 12.0</td>
<td>14.9</td>
<td>0.20</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>2200</td>
<td>11.3 - 12.0</td>
<td>6.5</td>
<td>0.20</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>4700</td>
<td>11.7 - 12.0</td>
<td>3.0</td>
<td>0.20</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>6400</td>
<td>11.8 - 12.0</td>
<td>2.2</td>
<td>0.20</td>
</tr>
<tr>
<td>18.0</td>
<td>0.20</td>
<td>10000</td>
<td>11.9 - 12.0</td>
<td>1.4</td>
<td>0.20</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>4700</td>
<td>10.3 - 12.0</td>
<td>15.9</td>
<td>0.10</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>1000</td>
<td>11.2 - 12.0</td>
<td>7.2</td>
<td>0.10</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>2200</td>
<td>11.6 - 12.0</td>
<td>3.2</td>
<td>0.10</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>4700</td>
<td>11.9 - 12.0</td>
<td>1.5</td>
<td>0.10</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>6400</td>
<td>11.9 - 12.0</td>
<td>1.1</td>
<td>0.10</td>
</tr>
<tr>
<td>18.0</td>
<td>0.10</td>
<td>10000</td>
<td>11.9 - 12.0</td>
<td>0.7</td>
<td>0.10</td>
</tr>
<tr>
<td>12.6</td>
<td>1.50</td>
<td>10000</td>
<td>7.0 - 8.2</td>
<td>16.5</td>
<td>1.50</td>
</tr>
<tr>
<td>12.6</td>
<td>1.00</td>
<td>6400</td>
<td>6.9 - 8.2</td>
<td>17.2</td>
<td>1.00</td>
</tr>
<tr>
<td>12.6</td>
<td>1.00</td>
<td>10000</td>
<td>7.4 - 8.2</td>
<td>10.7</td>
<td>1.00</td>
</tr>
<tr>
<td>12.6</td>
<td>0.60</td>
<td>4700</td>
<td>7.1 - 8.2</td>
<td>13.9</td>
<td>0.60</td>
</tr>
<tr>
<td>12.6</td>
<td>0.60</td>
<td>6400</td>
<td>7.4 - 8.2</td>
<td>10.0</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Power supply characteristics for off-the-shelf component values.

(2) The ripple is inversely proportional to the frequency. Therefore, full-wave configurations, which charge 120 times a second, have only half as much ripple as half-wave circuits with the same capacitance and load current.

(3) The ripple is inversely proportional to the capacitance. Double the capacitance and you cut the ripple in half.

Transformer characteristics

The rated voltage of a transformer is the voltage it delivers under full load. The voltage under no load is typically 15 percent higher for power transformers, or as much as 50 percent higher for small plug-in wall transformers. This should be taken into account when an unregulated power supply is connected to something that would be damaged by too high a voltage.

The calculations in the tables assume that the resistance of the transformer secondary is small. A transformer secondary with appreciable resistance has some advantages. The voltage drop does, of course, cause the voltage to vary with load current, but the resistance puts a limit on the intensity of the charging pulses, reducing ripple and allowing a transformer with a given current rating to carry a heavier dc load. So, if you come across a commercially built power supply that, according to the tables, ought not to work, don't lose your faith in the equations presented here. The transformer winding resistance may have been figured in.
Full-wave center-tapped power supplies

<table>
<thead>
<tr>
<th>Transformer volts</th>
<th>Transformer amps</th>
<th>Capacitance (mF)</th>
<th>DC voltage swing</th>
<th>Ripple (%)</th>
<th>DC amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6</td>
<td>0.60</td>
<td>10000</td>
<td>7.7 - 8.2</td>
<td>6.3</td>
<td>0.60</td>
</tr>
<tr>
<td>12.6</td>
<td>0.45</td>
<td>4700</td>
<td>7.4 - 8.2</td>
<td>10.2</td>
<td>0.45</td>
</tr>
<tr>
<td>12.6</td>
<td>0.45</td>
<td>6400</td>
<td>7.6 - 8.2</td>
<td>7.4</td>
<td>0.45</td>
</tr>
<tr>
<td>12.6</td>
<td>0.45</td>
<td>10000</td>
<td>7.8 - 8.2</td>
<td>4.7</td>
<td>0.45</td>
</tr>
<tr>
<td>12.6</td>
<td>0.30</td>
<td>2200</td>
<td>7.1 - 8.2</td>
<td>14.9</td>
<td>0.30</td>
</tr>
<tr>
<td>12.6</td>
<td>0.30</td>
<td>4700</td>
<td>7.7 - 8.2</td>
<td>6.7</td>
<td>0.30</td>
</tr>
<tr>
<td>12.6</td>
<td>0.30</td>
<td>6400</td>
<td>7.8 - 8.2</td>
<td>4.9</td>
<td>0.30</td>
</tr>
<tr>
<td>12.6</td>
<td>0.30</td>
<td>10000</td>
<td>8.0 - 8.2</td>
<td>3.1</td>
<td>0.30</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>1000</td>
<td>7.4 - 8.2</td>
<td>10.7</td>
<td>0.10</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>2200</td>
<td>7.8 - 8.2</td>
<td>4.7</td>
<td>0.10</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>4700</td>
<td>8.0 - 8.2</td>
<td>2.2</td>
<td>0.10</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>6400</td>
<td>8.1 - 8.2</td>
<td>1.6</td>
<td>0.10</td>
</tr>
<tr>
<td>12.6</td>
<td>0.10</td>
<td>10000</td>
<td>8.1 - 8.2</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>4700</td>
<td>7.1 - 8.2</td>
<td>13.9</td>
<td>0.06</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>10000</td>
<td>7.7 - 8.2</td>
<td>6.3</td>
<td>0.06</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>2200</td>
<td>8.0 - 8.2</td>
<td>2.8</td>
<td>0.06</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>4700</td>
<td>8.1 - 8.2</td>
<td>1.3</td>
<td>0.06</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>6400</td>
<td>8.1 - 8.2</td>
<td>1.0</td>
<td>0.06</td>
</tr>
<tr>
<td>12.6</td>
<td>0.06</td>
<td>10000</td>
<td>8.2 - 8.2</td>
<td>0.6</td>
<td>0.06</td>
</tr>
<tr>
<td>10.0</td>
<td>1.00</td>
<td>10000</td>
<td>5.5 - 6.4</td>
<td>14.0</td>
<td>1.00</td>
</tr>
<tr>
<td>10.0</td>
<td>0.30</td>
<td>2200</td>
<td>5.2 - 6.4</td>
<td>19.6</td>
<td>0.30</td>
</tr>
<tr>
<td>10.0</td>
<td>0.30</td>
<td>4700</td>
<td>5.8 - 6.4</td>
<td>8.7</td>
<td>0.30</td>
</tr>
<tr>
<td>10.0</td>
<td>0.30</td>
<td>6400</td>
<td>6.0 - 6.4</td>
<td>6.3</td>
<td>0.30</td>
</tr>
<tr>
<td>10.0</td>
<td>0.30</td>
<td>10000</td>
<td>6.1 - 6.4</td>
<td>4.0</td>
<td>0.30</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>1000</td>
<td>5.5 - 6.4</td>
<td>14.0</td>
<td>0.10</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>2200</td>
<td>6.0 - 6.4</td>
<td>6.1</td>
<td>0.10</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>4700</td>
<td>6.2 - 6.4</td>
<td>2.8</td>
<td>0.10</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>6400</td>
<td>6.2 - 6.4</td>
<td>2.1</td>
<td>0.10</td>
</tr>
<tr>
<td>10.0</td>
<td>0.10</td>
<td>10000</td>
<td>6.3 - 6.4</td>
<td>1.3</td>
<td>0.10</td>
</tr>
<tr>
<td>6.3</td>
<td>0.60</td>
<td>10000</td>
<td>3.3 - 3.8</td>
<td>14.3</td>
<td>0.60</td>
</tr>
<tr>
<td>6.3</td>
<td>0.30</td>
<td>4700</td>
<td>3.2 - 3.8</td>
<td>15.2</td>
<td>0.30</td>
</tr>
<tr>
<td>6.3</td>
<td>0.30</td>
<td>6400</td>
<td>3.4 - 3.8</td>
<td>11.0</td>
<td>0.30</td>
</tr>
<tr>
<td>6.3</td>
<td>0.30</td>
<td>10000</td>
<td>3.5 - 3.8</td>
<td>6.9</td>
<td>0.30</td>
</tr>
<tr>
<td>6.3</td>
<td>0.20</td>
<td>4700</td>
<td>3.4 - 3.8</td>
<td>9.9</td>
<td>0.20</td>
</tr>
<tr>
<td>6.3</td>
<td>0.20</td>
<td>6400</td>
<td>3.5 - 3.8</td>
<td>7.2</td>
<td>0.20</td>
</tr>
<tr>
<td>6.3</td>
<td>0.20</td>
<td>10000</td>
<td>3.6 - 3.8</td>
<td>4.5</td>
<td>0.20</td>
</tr>
</tbody>
</table>
For sale: Heathkit solid-state, 5-inch oscilloscope, model 10-102, in good condition with probe and manual, $40 plus shipping, or send money order for $50 total. B.H. Minner, P.O. Box 879, South Portland, KY 41171.

For sale: Used flybacks, yokes and triplers for color TV, any item for $12. Send SASE for complete list. Also, Tektronix oscilloscope, RM16, $150; Hewlett-Packard oscillators, 200CV, 202C, and 202A, $35 each. Includes UPS on all items. Fred Jones, 407 Morning Court, Natick, MA 01760.

For sale: GE 16CW74, good CRT condition, also GE yoke ES76X4, reasonable price. Jirsenek TV, Farmington, IA 52032.

Needed: Service manuals for the JVC model JR-5861W stereo receiver, (except Spiegel, sale: Spiegel, 1639 Beach, CA 90704, 525-4379.). Also need manuals for the following: Ace services, Williams, 1639 Beach, CA 90704; Ace services, Mack, 1639 Beach, CA 90704; Ace services, Geiger, 1639 Beach, CA 90704. Also need manuals for the following: Ace services, Williams, 1639 Beach, CA 90704; Ace services, Mack, 1639 Beach, CA 90704; Ace services, Geiger, 1639 Beach, CA 90704.

Wanted: Sencore V4A8 video analyst in good condition (desperately needed). Will pay $700 plus O.D. shipping. Also want Sams' Photofact auto radio volumes, prefer to have complete set (will buy single or multiple volumes). Dawn Williams, 1029 W. Standley St., Utica, NY 13554; 709-678-5709.

For sale: Heath model 2264 digital multimeter, plus extra. Assembled and tested, never used. Farrell Beene, Route 8, Box 8, River Road, Luling, LA 70070.

For sale: Sencore Super Mack CR31A CRT tester, with many additional sockets; Sencore Ports-Pak Supply System 43, and B & K 1500, 1000Hz, 4-channel scope. All equipment in excellent condition with probes and manuals. Best offer, Al Andelos, 2211 S. 10th St., Milwaukee, WI 53215; 414-849-7985.

For sale: FC54 frequency counter, $250; B & K 820 capacitor meter, $75; Eico 653 CRT tester with adaptors, $100. UPS included. Bill Bechtold, 7229 Frederick, Omaha, NE 68142; 402-297-2461.

Needed: Sams MHP-HTP or TR manuals and/or compilations of manufacturer's service literature covering Hi-Fi (amps, tuners, cassette decks, etc.). Nothing over two years back, please. Bryan Haywood, 2407 Guess Road, Durham, NC 27705.

Needed: Schematic, parts layout, or any information on Lake model 4101 AM-FM stereo and 8-track tape player will be greatly appreciated. Jim Garrison, 171 Cornell Drive, Bridgeton, NJ 08352.

For sale: Supreme service manuals R 1 through 27. AU-1, TV-1 through 29 (except TV-19), C-69, C-70, UHF-1 and master index. Prepaid UPS to any U.S. address for $200. C.E. Maupin, 214 S.W. 68, Oklahoma City, OK 73159.

Needed: Audio output transformer and schematic for Ace tone 160W channel mixer musical amplifier, model #VM-89, or current address of manufacturer, Ace Electronics Industries, Inc. William M. Sعبارة, 458 Burnett Ave., Stratford, CT 06617; 303-888-8888.

For sale: B & K 1077B TV analyst in original carton, used one time, $300; B & K 415 alignment generator, $150; and RCA 535A oscilloscope, new in original carton, $300. Ralph Dorgan, 117 Petran St., Terrell, TX 75160; 814-565-7100.

If you still believe in me, save me.

For nearly a hundred years, the Statue of Liberty has been America's most powerful symbol of freedom and hope. Today, the erosive action of almost a century of weathering salt air has eaten away at the iron framework, etching holes in the copper exterior.

On Ellis Island, the ancestors of nearly half of all Americans stepped onto American soil, the Immigration Center now a hollow ruin.

Inspiring plans have been developed to restore the Statue and to create Ellis Island a permanent museum celebrating ethnic diversity of this country of immigrants. When restoration is begun now, these two landmarks of our nation's heritage could be closed at the time America is celebrating its four hundredth anniversaries. The 230 million dollars needed to carry the work is needed now.

All of the money must come from private donations; the federal government is not raising the funds. This is consistent with the Statue's origins. The French people paid for its creation themselves. And America's businesses spearheaded the public contributions that were needed for its construction and for the pedestal.

The torch of liberty is everyone's to cherish. Could we hold up our heads as Americans if we allowed the time to come when she can no longer hold up hers?

Opportunities for Your Company.
You are invited to learn more about the advantages of corporate sponsorship during the nationwide promotions surrounding the restoration project. Write on your letterhead to: The Statue of Liberty-Ellis Island Foundation, Inc., 101 Park Ave, N.Y., N.Y. 10178.

Save these monuments. Send your tax deductible donation to: P.O. Box 886, New York, N.Y. 10008. The Statue of Liberty-Ellis Island Foundation, Inc.
For sale: Senore model SG-165 AM/FM stereo analyzer, $500. B&K model 290 solid-state electronic servicer including a PR-32 demodulator preamp and a PR-28 high-voltage multiplier probe; $150. B&K model 9200 80MHz frequency counter including a SA-10 signal tap; $180. All equipment is like new with accessories and instruction manuals. Clarence G. Meier, 5216 Zion Road, Rossville, IN 47877; 517-659-7879.

For sale: Sams Photofact intermitter sequence 37 to 277, 34 volumes, 1975 to 1979 Delco; service manuals (five volumes), $2.25 each. Richard E. Wood, 355 Lynn Road, Newburgh, IN 47660.

Needed: Schematic and owner's manual for Wilson WE-800 transmitter receiver. Will buy manual or pay for reproduction cost. Ken Johnson, 606 Harvey Drive, Ruxton, MD 21209; 301-687-5019.

For sale: Simpson model 3DM 461 digital voltmeter with adapter, nicads; $115. Sams Photofact numbers 66 to 1185, with four filing cabinets; $1000. Senoresent transistor checker, model TR109, $89. Mike Terry, Terrane 77, 809 Awtry St., Huntsville, PA 15280; 412-684-8700.

For sale: Iles model 466 scope, good working condition. $100 plus $10 for shipping. God Bursaly, 84-89 1889 St., Kew Gardens, NY 11415.

Needed: Documentation schematics, operating manual and any other available service information on the Hazeltine H2000A video terminal. Samuel Pearlman, 45 Wollcott Road, Lynn, MA 01902; 617-598-0610.

For sale: Senore CA 55 capacitor analyser, mint condition. $400. Daniel C. Lee, P.O. Box 18, Osawalo, MN 56580; 612-835-7857.

For sale: B&K analyser model 1077B. Will ship. $300. Al Ross, 650 Daphne St., Broomfield, CO 80020; 303-464-6788.

Needed: Schematic for Stroemer-Carlson #325 radio receiver. Gene Vitori, 528 Main St., Los Angeles, CA 90066.

Needed: Chronetics pulse generator service manual for model FG 13B. Will buy copy and return. Also need the company's new address or phone number. Richard Curtis, 15 Wall Street, Santa Monica, CA 90404; 213-881-3397.

Wanted: Zenith factory service manual for a chassis 14N27 TV receiver. Paul Capota, 687 W. 21st St., Erie, PA 16508.

For sale: Heathkit IT-3120 transistor tester and IM-5228 VTVM, assembled with manuals. $40 each including shipping. Carvin Logue Jr., 1125 Washington Lane, Westminster, MD 21157.

For sale: Senore SG165 stereo AM/FM analyzer. Used only once. $300 or trade for 2 meter. Robert Duncan Enterprises, 1513 Sixth St., Eureka, CA 90011; 707-440-7879 (remington).

For sale: VTVM Heathkit IM-15, $80. Color generator, $50. TV ignition generator, $80. All in good condition and with manuals. Jose Navarro, 6101 W Fifth St., Miami, FL 33146; 305-966-5155.

For sale: RCA Mark II color test jig, $75; Western Electric radiorf signal generator model 65B, $35; Conar model 228 tube tester, $75; and Facit digital multimter model 7050, $10. George C. Pulman, 6722 Bateman Drive, P.FWashingtom, MD 20714, 901-449-7812.

MOVING?
If you're planning a move in the near future, don't risk missing an issue of Electronic Servicing & Technology. Please give us 6-8 weeks notice if you're planning on changing your address. Just write in your new adress below and mail this coupon, WITH YOUR SUBSCRIPTION MAILING LABEL, to:

Electronic Servicing & Technology
20 Overland Park, S 66212

Name ____________________________
Address ____________________________
City ____________________________ State __ Zip ____________

Subscriber Serves P. O. Box 1290: Overland Park, S 66212

60 Electronic Servicing & Technology July 1984

www.americanradiohistory.com
A 24-page, full color catalog from Vaco describes the new Ultra Precise pliers, professional pliers, and folding hex key sets. Other products include ball end hex tools, interchangeable blade drivers, specialty screwdrivers, a logic probe, a coax stripper, heat sinks, crimper, and electrical connectors.

Coming in the August

ELECTRONIC
Servicing & Technology

The TVRO waveguide and LNA. This article describes how a satellite TV receiving system collects the microwave signal from the satellite, feeds it to the antenna and amplifies it. Low-noise amplifier specifications are also discussed.

Reports from the test lab. Carl Babcock, ES&T's Consumer Servicing consultant reports on the results of his testing Sencore's model VA62 Universal Video Analyzer.

Low-power microwave generators—Part II. This article continues the discussion of microwave devices begun in the July issue. An understanding of these devices will help to make such technology as TVRO and DBS receiving equipment more intelligible.

Use ES&T classified ads

RCA Distributor and Special Products Division has revised and updated its Cross Reference Volume II of TV modules for RCA TV chassis. This volume covers color chassis CTC98A through CTC121D. It cross references the modules in three different listings: stock number to module designation, module designation to stock number, and chassis to circuit.
Digital multimeter

The hand-held Weston model 7320 is designed for field-service applications. Two autoranged dc voltage ranges provide measurements to 200V with an accuracy of 0.1 percent of reading 1 digit. If connected to an ac source of greater than 20Vrms, whether a dc component exists or not, the 7320 will automatically switch to an ac mode and provide autoranged displays to 600V, 45Hz to 1kHz, with a basic accuracy of 1 percent of reading. An ac component below 20V triggers a display annunciator, and the user can then manually switch to low volts, ac to read the exact value. A continuity mode produces an audible tone if connected to less than 10, while a diode check mode displays the forward voltage drop of a conducting diode, and an audible tone signals a normally conducting junction. Three autoranged resistance ranges to 20M are also provided.

Digital tester

An updated model 3210 Brainmaster, a hand-held digital tester designed to troubleshoot Computer Command Control (C-3) systems on 1981-1984 General Motors cars, has been introduced by All-Test. The Brainmaster uses the latest in microprocessor technology to interact with the vehicle's computer. It will check all trouble codes and perform a battery of tests on sensors, solenoids and switches in two or three minutes. Plug one lead into the car's cigarette lighter and the other into the computer connector under the dash. Select the appropriate function on the tester, dial the vehicle type, and the Brainmaster gives instant indication of any problems. The Brainmaster gives readouts on each of the C-3's trouble codes,
checks rpm and mph. It provides access to all sensors and solenoids and to the following switches: park/neutral, idle speed noise, air conditioning and altitude. In addition, the Brainmaster provides information on the degrees of spark retard due to engine knocking, closed loop/open loop status, cross counts and idle air control motor position (electronic fuel injection models), and vote (T-cars only).

Circle (61) on Reply Card

All circuit evaluators

AP Products has expanded its line of All Circuit Evaluators to include breadboards that can accommodate even larger testing and prototyping projects. New to the AP line are the ACE 245 and ACE 254.

The ACE 245 features a universal matrix of 4488 solderless plug-in tie-points and is composed of 640 separate 5-tie-point terminals, 40 vertical distribution buses, plus 4 horizontal buses. These buses can be used for power, ground signal lines and more.

For larger projects, the ACE 254 combines the plug-in ease of a 0.1" X 0.1" solderless matrix with the convenience of 768 separate distribution buses of 5-tie-points each, plus four horizontal buses, each with 24 connected 4-tie-point terminals. Buses may be linked in various combinations to provide voltage and ground distribution in reset lines, clock lines and shift commands. The matrix of 5424 solderless plug-in tie-points accepts DIPs of all sizes and a wide variety of discrete components with leads up to 0.032" in diameter. DIP capacity is up to 54 14-pin DIPs.

Circle (59) on Reply Card

Oscilloscope

The V-1100 is a 100MHz portable oscilloscope from *Hitachi Denshi*. This full-function scope has a CRT readout that displays frequency counter and DVM functions as well as constant ground level display.

With the use of built-in microprocessor circuits, the V-1100 displays the measurement of voltage value between ground level and reference cursor or two cursors and the time difference between two points. It then determines panel settings on the CRT screen.

Additional features include quad channel with independent position controls, 8-trace with alternate sweep, 18kV–6-inch rectangular CRT, minimum deflection factor 1mv/div, maximum sweep time 2ns/div, TV-sync, X-Y operation up to 1MHz (3" or less), variable hold-off, gate output for A and B sweep, and channel 1 signal output to 100MHz (~3db).

Circle (60) on Reply Card

FOR SALE (CONT.)

SERCORE PS-163 Dual Trace Scope, Good trace. $475 Includes shipping, probes, manuals, Retiring. Bob Begun, 1056 Fraser, Aurora, Colo. 80010. 303-396-2800. No collect calls. 7-84-11

CRYSTALS: Over 100,000 In Stock. All frequencies available CB, Ham, monitor and others. Medicom. Box 6202, Lubbock, TX 79403. 7-84-31

TUNERS, Tuner Parts, Tubes, Test Equipment. Self Addressed Stamped Envelope for list. Bernstom, 3004 S. 94th East Ave., Tulsa, OK 74145. 7-84-11

ELECTRONIC SURPLUS: CLOSEOUTS, LIQUIDATIONS! Parts, equipment stereo, industrial educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog ETCO-011, Box 762, Plattsburgh, NY 12901. 6-76-1n

SCRAMBLED TELEVISION, encoding/decoding. New book. Theory/circuits, $9.95 plus $1 shipping. Workshop, Box 296ES, Dept. E, Bethpage, NY 11714. 7-90-1m

WHOLESALE -- transistors, flybacks, yokes, batteries, WilsonXcelite, VCR, computer parts. Apple Compatible computers, printers, drives, monitors, custom electronics software. More. Send for catalog. United Service Association, Old Grand Union Shop, Ctr. R 5W, Story Point, N.Y. 10809 (914) 942-2173. 1-84-1n

TUBOS -- Receiving, and Industrial and Semi-conductors, factory boxed. Free price list. Low, low prices. TRANSACTERONIC INC., 1365-39th Street, Brooklyn, NY 11218. 800-221-5002, 212-633-2800. 5-62-1n

TV TROUBLE ANALYSIS TIPS. Over 300 symptoms and cures; mostly solid-state and late models. A real moneymaking timesaver. Send $11.95 to J-A Electronics, 1708 Chestnut St., Muskogee, OK 74403. 7-84-31

VCR and TV TROUBLESHOOTING TIPS: Hundreds of symptoms and cures. Most popular solid-state and late models. A real moneymaking timesaver. Send $11.95 to J-A Electronics, 1708 Chestnut St., Muskogee, OK 74403. 7-84-31
BUSINESS OPPORTUNITIES

TV SALES & SERVICE BUSINESS in Rapid City, South Dakota in the Black Hills. Established for 10 years. $160,000 average gross income for the past 3 years. Excellent business, $30,000 includes inventory. Call 605-343-2042. 7-84-11

TV VIDEO RENTAL SYSTEMS. Manual or computerized for Apple and Iris 80 computers. Increase your income, cut your workload and payroll. $5.00 for print-outs and complete details. GOLDCOAST COMPUTERS, BOX 33, OWENSBORO, KY 42302. 7-84-11

LEARN TO REPAIR HOME VIDEO GAMES IN YOUR OWN SHOP! Did you know that more than 9 million HOME VIDEO games have been sold? Now you can learn to repair! Atari, Coleco, Intellivision, or Atari 400/800 computers in your own shop. Our courses are taught on VIDEO TAPE (Beta or VHS) and come with a manual containing all the necessary technical information you will need to do repairs. For more information or to order, call: Electronic Institute, (800) 221-0834 (outside N.Y.) or (212) 377-0369 (in N.Y.) Customized live in shop training courses are also available, call for more information and price schedules. 7-83-11

PICTURE TUBE REBUILDING EQUIPMENT, one man operation, full training and technical assistance. Buy with confidence from experts in the field. Call or write: Chicago Television, 633 N. Semoran Blvd, Orlando, Florida 32807, Ph. 305-281-1260. 7-84-31

SERVICES

SPEAKER RECONING: Most makes, sizes, models. For prompt service send to Mercury Speaker Reconing, 2601 W. Division St., Chicago, Illinois, 60622. (212) 276-2211. 7-83-11

MEDIABUYERS

These firms ARE the electronics industry

And, they ALL advertise with ES&T...

AP Products

B&K Precision

Cleveland Institute

Cooper Group

John Fluke

General Electric

Global Specialties

Gould Instruments

Heathkit

Hitachi

Keithley Instruments

Leader Instruments

NRI Schools (McGraw-Hill)

Panasonic

Philips ECG

RCA

Howard W. Sams

Sencore

Simpson Electric

Sony

Sprague Products

A.W. Sperry Instruments

TGC/New-Tone

Tektronix

Unger

Winegard

Zenith

...to name a few.

Your test equipment, replacement parts, books, schools, microcomputers, satellite TVRO, audio & video, and other servicing-related clients deserve ES&T, too.

It's the HOT new medium in electronics...

* More sales leads (over 100,000 in 1982)
* Total ad lineage up by 300%
* Total ABC audited, paid-circulation has doubled

Go with those who know...

Ask for a media kit

Electronic Servicing & Technology

Advertising Sales Offices

NATIONAL SALES MANAGER
Greg Garrison
P.O. Box 12901
Overland Park, KS 66210
Phone: (913) 888-4664

LONDON, ENGLAND
John Ashcraft & Co.,
John Ashcraft
12 Bear Street, Leicester Square
London WC2H 7AS, England
Phone: 930-0525 Telex: 895-2387

AMSTERDAM, Holland
John Ashcraft & Co.
John J. Lucassen
Akerdijk 150A
1171 PV-Badhoevedorp, Holland
Phone: 0-2968-6226 Telex: 18406 HARKE NL

TOKYO, JAPAN
Haruki Hirayama,
EMS, Inc.
Sagami Bldg., 4-2-21, Shinjuku,
Shinjuku-ku, Tokyo 160, Japan
Cable: EMEISPERIOD
Phone: (03) 350-5665
Telex: 232520 EMSINCJ

NORWOOD, AUSTRALIA
Haswell, Williamson, Rouse PTY, LTD.
P.O. Box 419
Norwood, S.A. 5067
Phone: 332-3322
Telex AA 87113

Advertisers’ Index

Reader Service
Page Number
Name

19 All Electronics Corp.51
12 B & K Precision 25
7 Conifer Corp. 9
1 Consolidated Electronics, Inc. ... IBC
22 Cook's Institute of Electronics
Engineering 62
6 The Cooper Group 7
18 Dandy Manufacturing Co. 49
16 Digitron Electronic 45
ETA 55
5 John Fluke Mfg. Co., Inc. 5
1,13 MCM Electronics 127
NATESA 55
NESA 47,49
New-Tone Electronics, Inc. 37
17 Optima Electronics 47
9 PTS Corp. 17
10 Pace, Inc. 21
Philips ECG 15
15 Primetex 45
14 Projector-Recorder
Belt Corp. 41
8 Howard W. Sams & Co., Inc. ... 10-11
2,3 Sencore, Inc. BC
11 A.W. Sperry Instruments, Inc. ... 23
20 Sperry Tech, Inc. 61
21 Unity Electronics 61
Zenith Radio Corp. IFC

Also publishers of...

Broadcast Engineering

Radio TV

Television

ABP

IFC

www.americanradiohistory.com
HELLO CEI, I NEED SOME ET SEMIS.

CERTAINLY SIR! I'LL HAVE YOUR ORDER PROCESSED RIGHT AWAY!

WITHIN MINUTES, THE ORDER IS INSPECTED AND READY FOR DELIVERY!

INSPECTION
THIS ORDER IS COMPLETE

AGAIN, SUPER CEI IS OFF WITH ANOTHER PACKAGE THROUGH THE WORLD.

THE END RESULT IS COMPLETE SATISFACTION.

WOW! THANKS CEI! YOUR SUPER!

THERE'S YOUR ORDER SIR!

CALL TOLL FREE TODAY!
FOR OUR CURRENT CATALOG

1-800-543-3568 NATIONAL WATS

Consolidated Electronics, Incorporated
705 WATERVLIET AVE.

1-800-762-3412 OHIO WATS

TLX NO. 288-229

DAYTON, OHIO 45420

Circle (1) on Reply Card

www.americanradiohistory.com
The people who gave you the Video Service Standard of the 70's. Now introduce the all new standard for the 80's—MODEL VA62.

Cut your video service time in half

The Sencore VA48 TV Analyzer, introduced in 1976, quickly became the industry standard for video service. It is now used by more than 22,000 technicians nationwide who have averaged an overall 54% reduction in service time, according to a recent survey of VA48 owners.

But Times Change: Today's video circuits include projection TV, 4-head VCRs, SAW filters, comb filters, integrated flybacks, cable-ready tuners, and many more circuits you just can't service effectively with the VA48. That's why we now have the VA62—the only video analyzer that equips you for all of these new video circuits—and then some.

In a Nutshell: Here's what makes the VA62 unique:
- It's a TV analyzer—Fully updated for the latest circuits.
- It's a VCR analyzer—Makes VCR analyzing a snap (using two inexpensive accessories) . . . and it meets all manufacturers' requirements.
- It's cable-ready—Test all the latest digital tuners.
- It has unique patterns—Special test patterns, plus standard patterns simplify troubleshooting.
- It's obsolete proof—it can be updated as needed for new circuits or formats . . . quickly and inexpensively.

Guaranteed Results: The VA62 can cut your service time in half on all video circuits—new and old. We guarantee it or we'll refund your money at the end of 30 days.

Update Today: If you're ready to update your bench to service the new circuits of the 80's, write or call toll-free today for a complete color brochure.

TOLL-FREE 1-800-843-3338
In Canada Toll-Free 1-800-665-4871
South Dakota, Alaska, and Hawaii call collect at 605-339-0100.

Please send complete VA62 details:

Name ____________________________
Address ____________________________
City ____________________________ State ______ Zip ______
Phone ____________________________

(Mail to Sencore, 3200 Sencore Drive, Sioux Falls, SD 57107)