An up front discussion on tuner repair and module rebuilding.

TV service technician dealers are in business to earn a profit, providing customers with timely, professional work. To maximize profits and still provide quality work, it makes sense to take advantage of outside independent help. Our tuner repair and module rebuilding services can add new dimension to your shop’s profits. Consider the advantages PTS offers.

1. **One stop shopping.** Our tuner repair service includes all makes and models including foreign—color, black and white, tube, transistor or varactor. We repair them all. Our module rebuilding services include all leading brands.

2. **Repair** . . . our first business and our major business. Our service business isn’t an after thought to manufacturing. We stay on top of the latest design developments in all brands—not just one or two.

3. **Same day service.** Your reputation is as much time as it is quality. Same day service isn’t a gimmick with us, it’s a promise we strive to keep.

4. **Module Exchange.** Not only do we rebuild modules. We also exchange and buy duds.* You can turn dud modules into needed cash.

5. **One year warranty.** We’re so confident of the professional quality of our work, we provide a one year limited warranty to back it up.

6. **Protective packages.** Tuners and modules are shipped to you in protective packaging, eliminating risk of damage.

7. **Replacement parts.** All tuner and module services utilize original or superior parts. Parts are constantly updated to improve module and tuner performance and reliability.

8. **Servicenters.** There are PTS company owned servicenters in every metropolitan area of the U.S. Each is fully equipped and professionally staffed to serve you.

* Acceptable brands are Admiral, GE, Magnavox, Montgomery Ward, Philco, Quasar, RCA, Sylvania, Sears/Warwick, Walls/Gardner and Zenith. PTS reserves the right to reject any or all modules presented for dud value including ceramic encapsulated, broken or cannibalized modules.

PTS ELECTRONICS, INC.

A COMPLETE LIST OF PTS SERVICENTERS APPEARS AT THE RIGHT.
Electronic Servicing®

Contents

14 Practical Tips For Repairing Auto Radios—Both general and specific suggestions are given to help speed your repairs of these popular units—Homer L. Davidson.

20 Service Management Seminar, Part 3—Profit-and-loss statements can be the tool for spotting weak areas of your business—Dick Glass.

24 The Basics Of Industrial Electronics, Part 9—Examples prove that NAND and NOR gates can be wired to act as NOT gates. Six digital troubleshooting questions with answers and two digital experiments are presented—J. A. "Sam" Wilson.

32 Servicing Sylvania Color TV, Part 2—Output of one oscillator is divided to produce both the horizontal and the vertical sweep frequencies. Also, operation of the horizontal sweep and high-voltage sections are explained—Gill Grieshaber.

About the cover—The montage design that symbolizes auto-sound products is by Mary Christoph. Picture of the auto radio is shown by the courtesy of RCA.

DEPARTMENTS

4 Electronic Scanner
5 Symcure
6 Reader's Exchange
11 Troubleshooting Tips
49 Test Equipment
50 New Products
52 The Marketplace
52 Advertisers' Index

New Subscription Rates

Effective January 1, 1978, subscription rates for Electronic Servicing were increased to $8.00 for one year and $13.00 for two years; there is no longer a three-year subscription. Single copy price (for non-subscribers only) was increased to $2.25; back issues are $3.00. Because of a printing error, rate cards in the February issue reflected the lower subscription prices. Therefore, persons subscribing in March at the lower rates will receive their subscriptions at lower rates. Anyone subscribing after March 31, 1978, at the lower rates will have their payment returned.

Second class postage paid at Shawnee Mission, Kansas and additional mailing offices. Published monthly at 9221 Quivira Road, Overland Park, Kansas 66212 by Intertec Publishing Corp., 9221 Quivira Road, Overland Park, Kansas 66212. Send Form 3579 to 9221 Quivira Road, P.O. Box 12901, Overland Park, Kansas 66212.

©Copyright, 1978, Howard W. Sams & Co., Inc. All rights reserved. Material may not be reproduced or photocopied in any form without written permission of publisher.
We want to put our eggs in one basket... YOURS

Electron Tubes International supplies millions of tubes worldwide to equipment and tube manufacturers, distributors and service dealers.

The industry knows us well as a full service tube source with a multi-million tube inventory of over 1000 types available for immediate delivery at the most competitive prices.

Get to know us. We can help you with just about any replacement receiving or industrial tube you’re looking for. Contact your Electron Tubes International E-T Men's tube distributor or call us toll-free at (800) 645-9512.

Next month,
Electronic Servicing
begins a series about the circuits and servicing of Sony Betamax videocassette tape recorders.

Watch for these informative articles.
Claudette S. Wiley,
Electronics Technician,
NASA: National Aeronautics and Space Administration,
Goddard Space Flight Center, Greenbelt, MD 20771

“When the countdown begins
that’s no time for electronic component failure.
We trust GE replacement semiconductors.”
Your reputation is our reputation
Tube Products Department • Owensboro, Kentucky 42301

GENERAL ELECTRIC
Brian J. Marohnic, national service manager for the Zenith Radio Corporation, retired on January 31, 1978, after 44 years with the company. Brian (sometimes called “Bronc”) had been national service manager since 1963. He is succeeded by Richard C. Wilson, former West Coast field engineer, who has been with Zenith for more than 25 years.

American Telephone And Telegraph (AT&T) has widened the bandwidth of its audio microwave and phone lines (that distribute network TV programs over the United States) from the former 100-to-5,000 Hz to the new 40-to-15,000 Hz bandwidth. For the first time, high-fidelity TV sound is possible. However, before this improved frequency response can be heard, new TV receivers must be designed with better audio amplifiers and speakers. Therefore, about two years will be required before any new models can feature hi-fi sound. If stereo TV sound is wanted, AT&T can add an identical second channel.

The FCC has begun a nationwide crackdown on the sale of illegal 23-channel CB radio transceivers. U.S. marshals and FCC agents seized 350 23-channel CB radios from a retail store in Alabama last month. In October of 1976, the FCC announced a ban on the 23-channel CB radios, to become effective January 1, 1978. The radios were banned because they did not meet the new specifications that are necessary to minimize interference with TV receivers. (Owners who purchased 23-channel radios before that date may continue to use them.) Similar raids are planned for other localities. Persons convicted of these violations might face a fine and a prison term.

The FCC has banned the manufacture and sale of linear amplifiers (of the kind often used illegally to increase the power of CB transmitters). According to Electronic News, the agency also decided to require type-acceptance of linear amplifiers for radio amateur use, so the units could be designed to prevent operation in the 24-to-35 MHz CB range. The ban will begin 30 days after a notice is published in the Federal Register.

For many motorists stranded in the February blizzards, CB radio was the only method of communications available for emergency rescue operations. A bulletin from the Electronic Industries Association (EIA) credits CB volunteers with saving four lives in Lowell, Indiana. Numerous state police headquarters and other emergency officials reported that without the volunteer help of CBers, snowmobilers, and four-wheel-drive enthusiasts, rescue work would have been delayed and many lives lost. The manager of React International (a national volunteer group with 2,000 local chapters that monitor CB channel 9 offering help and assistance) also reported a large effort by the Massachusetts React chapters.

Color TV sales to dealers for 1977 were the second highest in history, reaching 9,106,826. According to the EIA, color sales to dealers in January of 1978 increased 2.3% over January of last year; however, B&W receivers declined 12.4%. January sales to dealers of radios with FM increased 33% over January of 1977, while AM radio sales decreased 2%.
Needed: Schematic and parts list for B&K-Precision 120 VOM. Will buy, or copy and return. Carl W. Higgins, 2242 South 85th East Avenue, Tulsa, Oklahoma 74129.

Needed: Schematic and service manual for a Clough Brengle oscillator model OC; also need a 9QP4 picture tube. Will buy tube, and copy or buy schematic. Charles L. Gauket, 14 Bell, Florence, Kentucky 41042.

For Sale: B&K-Precision instruments with cables and manuals (never used): 1077 Analyst, $375; 415 sweep/marker, $375; 1246 digital/IC color generator, $100; and E200D solid-state RF generator, $125. All prices FOB. Q. S. Hoshal, 1513 Hillside Drive, Bel Air, Maryland 21014.

For Sale: 1077B Analyst (new), 415 sweep/marker, 467 CRT analyzer/restorer (new), and 162 transistor tester, all by B&K-Precision, and less than two years old. Also, Leader color-bar generator; EICO tube tester model 667; Leader FET-VOM; B&K-Precision 501A curve-tracer; Leader 5-inch scope model LB-501; Sprague capacitor analyzer model TO-6A; about 300 TV and radio tubes; and one lot of new TV parts. Milton Obuch, 1308 North 4th, Sayre, Oklahoma 73662.

Needed: Old service magazines and pre-1940 publications about all facets of radio. State cash price. Donald Erickson, 6059 Essex, Riverside, California 92504.

For Sale: Southwest Technical Products prescaler for any frequency counter, 500 millivolts maximum input level, divides by 10 up to 175 MHz, perfect condition, $30. John Augustine, 530 North 9th, Reading, Pennsylvania 19604.

Needed: Schematic for Sencore caddy-bar junior model number CG22. Active TV, 14547 South Halsted, Harvey, Illinois 60426.

For Sale: Printed-circuit-board supplies, valued at more than $40 or $10; high voltage section of a Heath GR270 color TV, $20; and 5 years of Radio Electronics magazines, $4 per year or 60 issues for $15. Douglas Mace, R.D.4, Box 84, Bellefonte, Pennsylvania 16823.

continued on page 8
You'll Find a
1000
USES
For
ONEIDA
NEW IMPROVED
HIGH VOLTAGE
PUTTY
Seals...
Insulates
Weatherproofs
Quiets, withstands Heat, Cold,
Exposure. Ideal for Electricians,
Technicians, Mechanics...

It's a space age composition . . . a lightweight, pliable, self-sticking synthetic black rubber material. Possesses excellent adhesion qualities and exceptional resistance to the effects of high voltage and ultra-violet light. It maintains a tight seal under changing weather conditions and temperatures ranging from -65°F. to 180°F. Indefinitely resilient, it conforms readily to irregular surfaces and will not shrink, crack, sag, or oxidize. Just one ply (approximate thickness 1/8") is sufficient to really do the job!

Specs like:

Percent of solids ... (negligible)
Water permeability .. 100%
(1/8" membrane as in MIL-2-19053A)
Elongation at 0°F. (ASA 1161-1960) 100%
Water impermeability MIL-S-19653A 0.0008

Immediate Delivery From Your Oneida Distributor

ONEIDA ELECTRONIC MFG. INC.
P.O. Box 678, Baldwin Street Est., Meadville, Pa. 16335
Phone (814) 336-2125

For More Details Circle (6) on Reply Card

Needed: Service or operating manual for Precise power-lab model 713. Roger Mosley, de Young Museum, Golden Gate Park, San Francisco, California 94118.

For Sale: Radiola III manual, 26 pages from 5 sources, $5; Rider's Radio Master Index for volumes 1 to 15, $12.50 or volumes 1 to 23, $15; early Rider's volume 1, 1919 to 1927, 200 pages, $17.50; Rider's Radio volumes 9, 10, 12, 15, 16, 17 and 19, $10 each; also, send for a list of other Riders books. Antique Radio Shop, 3403 Broadway, Long Beach, California 90803.

Needed: A power transformer part number 101408 for a Knight scope model KG-630, or the equivalent. William Mayer, 5722 SW 1st Court, Cape Coral, Florida 33904.

For Sale: Sencore SM152 sweep/mark generator, $175; and Sencore TF-1S1 transistor tester, $60. Both in A-1 condition, with cables and manual. Val Obal, 3201 South 73, Omaha, Nebraska 68124.

For Sale: Heathkit scope model IO-4540, completely assembled, used only a few hours, $145. P. T. Hauser, 190 Alexander Avenue, Upper Montclair, New Jersey 07043.

For Sale or Trade: Bell & Howell radio and TV course of 10 volumes, scope, TVOM, circuit-design board, plus all parts for the experiments; sell for $275, or trade for a triggered-sweep scope. Daniel Seidler, 5827 South Campbell, Chicago, Illinois 60629.

For Sale or Trade: 25 Radiant car-radio vibrators, assorted; and 12 assorted Delco volume, tone, and switch controls. Troch's TV, 290 Main, Spotswood, New Jersey 08884.

Needed: TV service equipment: dual-trace scope; transistor curve tracer; scope calibrator: ATC-10 color generator; EICO 685 transistor analyzer; B&K-Precision 970 analyst; Sencore YF-33 yoke and flyback checker; and Heath 10-4101 vectorscope. Please advise condition and price. Thomas Walls, 6360 Montgomery, Philadelphia, Pennsylvania 19151.
Pincushion components run hot
GTE-Sylvania D19 (Photofact 1269-3)

Several similar models have these defects, which produce varied symptoms, such as: no high voltage; no vertical sweep; intermittent height; or the smell of hot components.

On the convergence board, check the pincushion-amplitude control (R848) for burned appearance or erratic operation, and look at the T800 pincushion transformer for burned windings.

It is not clear which of the two components fails first. Current from the cold end of the vertical yoke flows through L807, R848, and one winding of T800. The other winding of T800 has horizontal pulses from the flyback. The vertical current permits T800 to load-down the horizontal-sweep circuit near the top and bottom of the picture, thus reducing the width and pincushioning there. That's normal operation.

Several times, after the two bad components were replaced, the horizontal pulses at T800 have measured too high (also the HV was excessive). It seems likely that the abnormal pulse amplitude caused shorted turns in the original T800, and this changed the primary-to-secondary turns ratio, thus applying an excessive pulse amplitude to the "pincushion-amplitude" control (R848). In turn, R848 operated too hot and failed.

In any event, make certain the high voltage is no higher than 25KV with a black raster, and that neither T800 nor R848 operates too hot after they are replaced.

Sargent's Distributing Company
Bellflower, California

Blackout after warmup
RCA KCS169B B&W (Photofact 984-2)

Gradually, the sync weakened; and after 15 to 30 minutes of operation, the raster disappeared.

These symptoms seemed to indicate a problem with either the 8FQ7 oscillator or the 33GY7 horizontal-output tubes. However, replacement of both tubes did not resolve the problem.

continued on page 12

March, 1978
Finding the right semiconductor replacement is easy with.....

not change the symptoms.
Because the output tube glowed red after the blackout, I replaced the flyback. That did not help either.

Finally, after many other tests, I noticed that the heaters of this hybrid chassis were supplied through diode X2, which reduced the heater-string voltage by eliminating the negative peak of the line voltage. I looked more carefully at the tubes, and realized their heaters all were too bright. Replacement of the shorted diode cured the twin problems.

Evidently, the overloaded heaters had caused grid leakage (or other defects) from the excessive internal heat, thus affecting the sync clipping and the operation of the horizontal oscillator.

Robert Marchant
Manomet, Massachusetts

Black area moved upward
RCA CTC51/52 (Photofact 1361-2)
A black triangle near the right edge of the screen moved slowly upward, and the color had foldover at the same area.

Now, the black triangle might have originated in a video stage or the power supply, but the effect on the
RCA's all new 1978 Replacement Guide!

RCA's biggest and most complete Guide, ever. Our comprehensive line of replacement transistors, rectifiers, thyristors, integrated circuits, and high voltage triplers has now grown to over 750 SKs that replace 143,000 domestic or foreign semiconductors. And it's all under one cover.

It's an encyclopedia of solid state replacements. The new Guide includes 387 SKs which have been added to the line since February 1977. It contains 240 pages that represent thousands of hours of engineering know-how.

Everything you need to stay up-to-date. The new Guide covers consumer, TV, Hi-Fi, CB and industrial applications. And more importantly, they're available from your RCA SK distributor. And remember, too, that every RCA SK is backed up by RCA. They're Top-of-the-Line quality.

Ask your RCA Distributor for a copy of the 1978 SK Replacement Guide. Or write, enclosing $1.50. (check or money order) to: RCA Distributor and Special Products Division, PO Box 85, Runnemede, NJ 07078.

RCA SK Replacement
Solid State

color indicated a defect in a color stage.
This trouble was traced to the V4A second-chroma stage, where the R22 cathode resistor had been overheated.
After the 6GH8 tube and the 390-ohm cathode resistor were replaced both symptoms were gone. According to our tube tester, the tube was shorted.
Vidal V. Cantu, Sr.
Laredo, Texas

Vertical won't lock and linearity poor
Magnavox B&W T960 (Photofact 1406-2)
Over the years, I have found a component failure that happens often and is a bit hard to find.

Vertical flip or poor locking
Panasonic CT-26 and others (Photofact 1371-1)
Some of these hybrid TV receivers are labeled Singer, or other house brand. They can be recognized by the 12FQ7 phase splitter in the sync circuit and the 25HX5 vertical tube.
Usually, the original complaint is no-picture or no height. After repairs have eliminated the primary symptom, they often display poor sync, vertical flip every 16 seconds, horizontal jitter, or a buzz in the sound.
These problems usually are caused by an open electrolytic capacitor on the IF/sync/AGC circuit board. There are six or seven of them, all mounted near one end of the board. It's so much trouble to remove and test them all (and sometimes more than one is bad), that I have started "shotgunning" the circuit by replacing all of these capacitors. Heat appears to hasten the failures, so I clean out the dust with a paint brush, and also clean the air-vent holes in the cabinet.
John Couter, Sr.
Roanoke, Virginia

The symptoms range from a complete loss of vertical sweep, to severe non-linearity, and a failure to lock. Also, the frequency often is half the correct rate, showing two complete pictures with one above the other.
In all of these cases, the bad part had been C403, the .0015 capacitor that couples the positive feedback to the grid of the vertical-oscillator tube.
Eddie C. Lane
Champaign, Illinois

March, 1978
Quick Radio Repairs Are Profitable

Whenever a technician knows which section or stage the defect is in, he always can save much time during repairs of any electronic product. With auto-sound equipment, this saving of time often determines whether the shop makes a profit or suffers a loss, since the low original cost limits the maximum amount that can be charged to the customer.

The practical tips and shortcuts in this article should enable you to identify more rapidly the area where the problem is located.

Comparison Methods

An excellent first step of efficient troubleshooting is to make comparisons of the performances of a malfunctioning item of equipment and another identical unit that's working correctly.

However, in the repairing of auto-sound equipment, two radios or two tape players of the same model often aren't available for testing simultaneously. Second choice for valuable comparisons is between similar models. These can be very informative, and often tell you enough.

For some symptoms, radios that have several functions (such as radio and tape player, or AM radio and FM band) permit comparisons between these functions. Examples will be given later.

Other valuable comparisons are those between the instrument being tested at the time and the performances of similar radios or tape players that are remembered by the technician. Experienced techs always know which FM stations should be received noise-free at that locality. Or, he knows how the music of his test cassette should sound on a typical tape player.

Although these remembered past performances can't allow accurate evaluations, they nevertheless serve as important guideposts to the quality of performance that should be obtained. Any significant deviation from the average indicates a need for repairs. In fact, the type and general location of many defects often can be identified.

Play The Percentages

Some defects are more likely to occur than others are. Capacitors fail more often than resistors. Bad solder joints occur most often where the current is highest, or around heavy components. Some bad components can be found by moving them physically.

Defective components tend to fail in patterns. For example, the same component fails in many individual machines of the same model. A knowledge of such repetitive or recurrent failures permits a tech to find those defective parts in quick time.

The technique of starting with the most probable component failures sometimes is called "Playing The Percentages."

Go On To The Next Level

In those cases where the comparisons, memory, and probability of defects don't locate the problem area, you should go on to more accurate and technical methods. These involve additional test equipment, coupled with logical troubleshooting.

Specific Tips

Now that we have covered the types of repair methods that are recommended for auto radios and tape players, we will give some specific examples.

Types Of Radios

Although a small percentage of present-day radios have AM band only, FM operation is very popular with the drivers and passengers. In fact, many listeners tune in FM-stereo programs because of the better tone quality and the noise-free reception.

Also, many car radios of today are combined with Stereo-8 or cassette tape machines (Figure 1). Naturally, radios with FM-stereo and tape players require more service, including the possibility of several problems when repairs are needed.

The majority of radio-service problems are no reception (radio is dead) and intermittent reception. Of course, noise and audible distortion also are common complaints.

Isolating The Problem

For the first step of troubleshooting, verify the complaint that's listed on the service ticket. Then, if the radio works at all, quickly test the operation for yourself.

Dead receiver

Total loss of sound might be caused by an open fuse, an open or intermittent connection in the "A" power lead, or a defective on/off switch.

While your ear is near the speaker, turn on the power switch, listen for a click or a thump, and look for lighted dial lamps. Any noise from the speaker proves the voltage is reaching the output transistor.

Remember that the dial lamp in some receivers is controlled by the car's light switch. If so, a lighted dial lamp is not a reliable symptom.

continued on page 16
Arrows point out the principal circuits and mechanisms of a typical auto radio.

Capacitors, ICs, and power transistors are the audio components most susceptible to failures.
Radios
continued from page 14

Intermittent reception
If the radio has intermittent volume, use another function to
determine whether both the AM and FM reception are affected, or if
the radio bands are intermittent and the tape-player volume is not.
Use these symptoms to find the basic circuit that has the intermit-
tent. For example, if both AM and FM sounds are intermittent, but
the built-in tape player works normally, the problem is in the
radio RF or IF sections. If AM, FM, and tape sounds are all intermit-
tent, the defect must be in
the audio or speaker.
Incidentally, the two identical
audio channels for FM or tape
stereo make possible a comparison
of volume, distortion, and gain
between a bad channel and a good
one.

Simple Signal Injection
A hand-held noise generator (see
Figure 2) can be used for signal
injection in the RF, IF, and audio
stages. Touch the probe to the hot
end of the volume control to prove
if the audio is operating. If no
audio tone can be heard with the
control adjusted to maximum, you
can use the probe to inject the tone
at each audio stage in turn. A dead
stage will be identified when a tone
can be heard with the probe at the
output of a certain stage, but no
tone comes through when it is in-
jected at the input of the same
stage.
Of course, a loud audio tone
when the probe is applied to the
volume control of a dead radio
proves the trouble is in a previous
IF or RF stage. The noise-generator
signal can be injected at the input
and output of those previous stages
to locate the dead one.

Signal Injection
From A Generator
Sometimes a noise generator is
not effective in certain stages. For
example, the high-frequency output
is not always sufficient to supply an
RF or mixer stage. Also, good FM
limiting tends to remove the ampli-
tude modulation, so the results
might not be definite enough for
FM IF stages.
For such conditions, a single (but

Figure 1 Many modern auto radios also have a Stereo-8 tape player.

Figure 2 A small noise generator can locate many defective stages in
minimum times.
adjustable) frequency from an RF signal generator is best for injection. With a generator, the exact AM or FM IF frequency can be used, as needed.

In the same way, an audio signal generator can be used effectively to localize the stage causing weak or distorted signals. Connect the generator through a small capacitor (perhaps a .01, or a .1 in series with 1,000 ohms) to the input and output of each audio stage. Keep the generator output level low, to avoid overload in stages that have high gain after them.

For example, an open coupling capacitor can be found by connecting the audio generator capacitor first to one end of the suspected capacitor and then to the other end. When the coupling capacitor is good, the same volume should be heard as the audio tone is injected at either end.

Connect your scope to the speaker terminals, and watch for any distortion during these tests of various stages.

Dead Stages
A dead stage is much easier to locate than one that is weak or intermittent.

The signal-injection method, described earlier, is not effective if the output audio stage is dead. For those conditions, connect an audio generator to the volume control and trace the following stages to find where the signal stops.

Experience has shown that most dead and distorted symptoms in car radios have been caused by shorted or open output transistors. Also, shorted transistors usually ruin the small-value collector or emitter resistors. So, look for burned or split resistors. Replace them and any that have changed value from the overload.

Smaller pre-amp and low-level transistors usually can be tested in-circuit with fair accuracy. However, driver transistors and output transistors require removal before leakage or gain measurements can be made accurately.

Intermittent Operation
Intermittent sound can be caused by almost any component in a car radio. In addition, poor connection in a fuse holder or an antenna jack can be mistaken for an internal radio problem.

Before you pull the radio for the bench, check the antenna and shielded lead wire. While you listen to the radio, flex the vertical antenna rod, and notice if the volume becomes intermittent. Sometimes the lead wire breaks at the bottom of the antenna or where it plugs into the radio. Check those spots first.

Occasionally, water leaks into the shielded cable, causing weak and noisy reception. In such cases, it's advisable to replace the antenna and lead wire.

Other intermittents inside the radio include cracked connections on the circuit boards, broken coil connections, and erratic transistors. Many conditions that cause intermittent operation can be found by slightly moving the suspected components. IF transformers and RF coils should be tested this way.

Intermittent transistors often can be identified by alternately applying heat (perhaps from a soldering iron) and canned coolant to each transistor.

Volume controls can become erratic, causing noise when they are turned and intermittent volume if they are stopped at a bad spot of continued on page 18
Radio continued from page 17

the internal element. Sometimes tuner spray applied to the carbon element will stop the noise temporarily. This positively identifies the defect, but the control should be replaced to avoid future problems.

Speakers also can become intermittent. Substitute a test speaker while the radio is still in the car. That test works fine, too, for suspected bad antennas. Unplug the car antenna, plug in a replacement antenna, and hold it out the car window while you notice the performance.

Weak Volume

Many of the components that cause intermittent volume also can cause weak sound. The symptoms vary according to the extent of the defect.

Open coupling and emitter-bypass capacitors can reduce the gain greatly, without always causing distortion. Open coupling capacitors produce high-pitched sound quality, or no volume at all. Open emitter capacitors often reduce the volume, but the tone quality is okay.

Cracked cores in RF or IF transformers reduce the gain seriously, without changing any of the DC-voltage or resistance readings.

Sometimes an output transistor that’s drawing too much current will reduce the supply voltage to the oscillator. The symptoms can be weak reception of all stations; or the radio might be weak below about 700 KHz and dead above that point on the dial.

Check the voltage drop across the emitter or collector-decoupling resistor to prove whether or not an RF or IF transistor is conducting. Transistors can feed a weak signal through the internal capacitance, even when the transistor is dead or biased to cutoff.

Distortion

A leaky AM-detector diode can cause distortion of the AM sound only. Failure of the AM AGC might overload the last IF transistor and produce distortion, along with excessive AM volume. Unbalanced or mistuned FM discriminators typically generate much distortion.

However, except for these individual sources of distortion, most distortion originates in the audio stages. This diagnosis is proved if both AM and FM sounds have the same amount of distortion.

When distortion is combined with weak sound, one or more leaky transistors should be suspected.

Open or shorted bias diodes (those between the bases of the output transistors) cause a moderate amount of distortion.

Motorboating

Usually, motorboating (put-put noises) originates in leaky output transistors or open A-supply decoupling capacitors. In some circuits, leaky output transistors merely drop the volume and add distortion. However, when the emitter voltage furnishes bias to a previous stage, leakage in an output transistor can cause motorboating.

Oscillation and motorboating can occur because of an open bypass capacitor in the IF circuit. Broken grounds between the circuit board and the metal cabinet might cause the same symptoms.

Mechanical Problems

Most mechanical problems of auto-radio receivers are related to the tuning and dial-drive mechanism (see Figure 3). This clutch mechanism usually disconnects the
manual-tuning knob when the push-buttons are used. Part of the clutch is a flat washer with an attached rubber washer. If the rubber becomes loose from the metal washer, the clutch slips, and the manual tuning can’t be operated. The parts usually can be fastened together by rubber cement (or phono-grip, for stubborn cases).

When the iron-core tuning assembly (Figure 4) can’t be moved, one of the cores might be “frozen” inside the coil form. Or, if the radio has been in an accident, one or more of these cores could have been broken, jamming the mechanism.

Stringing of the dial cable can be a tricky job, especially if the cable broke before you could examine the way it goes around the shafts and pulleys. I recommend that you refer to the Photofact “AR” auto-radio series for dial-stringing drawings.

Comments

Auto radios contain more dust and be more compact than comparable table models. However, they are serviced by the same methods.

When you replace any power transistors, remember to apply silicone grease to the transistor and to the heat sink (or chassis), and reinstall the mica insulator between the transistor and the heat sink. However, don’t install more than one; this mistake allows a transistor to run excessively warm.

If you specialize is just one brand, it save time to make up a cable harness to connect the radios to the power source and the test speaker. Makeshift connections can cause intermittents, or they can blow output transistors. Paint the plug of each cable harness a distinctive color to remind you to remove the harness before returning the radio to the customer.

Your equipment should include an RF generator for those alignment jobs where an unskilled tech or car mechanic has turned all of the adjustments. Also, for best sensitivity, you should tune in a station around 1400 KHz (after the radio is in the car, with its own antenna) and adjust the antenna-trimmer capacitor for maximum volume.

March, 1978
Service Management Seminar, Part 3
By Dick Glass, CET

Profit-and-loss statements are valuable for more than helping compute the income tax. Use them as a management tool to spot unprofitable areas of your operation.

What's The Score?
Can you imagine a football game between Notre Dame and Texas, with no one totaling the score? The players continue to run, pass, block, punt, and make touchdowns in brilliant displays of power and skill, while the fans cheer wildly for each successful play of their team.

However, many mistakes are made, because there's no scoreboard or time clock. A coach might take unnecessary risks, not knowing his team is safely ahead. Or, he omits a play that could bring a fast touchdown (but would not be good long-term strategy), because he doesn't know his team is behind and the clock is running out.

After a time, the enthusiasm of both fans and players begins to falter. Much of the excitement is gone when neither team wins.

The moral is obvious: games of sport must have scoreboards and time clocks. Your business, too, needs (for proper planning and good morale) a scoreboard called a “profit-and-loss” statement, covering a definite period of time. It's not enough to "play the game hard" by repairing all the machines you possibly can. You must know if you’re winning or losing the economic "game."

A few dollars in your pocket after you have paid all of the bills doesn't prove your business is profitable. Instead, you must compare total income with total expenses.

P&Ls Are Easy To Understand
If studying your profit-and-loss (P&L) statements required two or three hours of your time each week, or if you were forced to do complex mathematical computations, perhaps you would be justified for giving the work to your accountant. Fortunately, that isn't the case. P&L statements are easy to understand. After you become skilled at interpretation, you probably will spend only minutes a month in checking your "score."

Many shop owners feel uncomfortable with a P&L because they don't understand all the advantages and uses. Perhaps only one is supplied to them per year. Often it's used solely as a step in the calculation of taxes. Unfortunately, this neglects some valuable applications of P&Ls.

Instead, a P&L statement should be prepared each month (each week for large operations), and used first as a management tool to monitor your business constantly.
What Can I Learn From A P&L

A P&L statement shows you these three basic things:
- The amount of money you received (total sales).
- The amount of money you spent (total expenses).
- How much money you have left (total profit).

Figure 1 shows a condensed profit-and-loss statement. Although it might appear to be too simple, it is complete. It probably doesn't provide as much information as you need, but it's far better than evaluating your profit or loss by the thickness of your wallet.

Balance sheets

At this point, perhaps you're wondering about balance sheets, and whether or not they accomplish essentially the same things as do P&Ls. Balance sheets show what you owe and what you own at the end of an accounting period. They are important in their own right, and we will explain them thoroughly next month. For now, it's enough to know that balance sheets and P&Ls work together.

Expanding the P&L

In addition to the three items mentioned above, other helpful information which can be obtained from P&Ls includes:
1. A comparison of your present statistics with last month or last year, to prove whether you are doing better or worse.
2. You can compare your expenses with industry averages, to determine if improvements are needed in any certain areas.
3. Your gross profit can be shown (gross profit is found by subtracting "direct labor" and "direct parts costs" from income).
4. Overhead expenses can be listed individually, and totaled, thus helping you to determine efficiency.
5. It can show the actual costs, allowing you to bill labor and parts charges more accurately.

Tips for P&Ls

Even if you have a one-man operation, you should have a P&L statement each month and annually.

An inventory is not necessary for each monthly P&L. One inventory per year should be sufficient.

Small business should not handle "parts inventory" and "owner's wages" by the conventional method. Later, we'll tell you why and how.

The P&L is not an end in itself, but is merely one tool to help you answer your financial questions.

Gross profit

The term "gross profit" probably is a leading cause of confusion about P&L statements.

Perhaps gross profit would be more understandable if we thought of it as being an "intermediate frequency" of accounting. Although it's important, gross profit is not the final figure we're after.

Gross profit is the "paper" profit remaining after you subtract from the total income all the direct costs (such as wages for your techs, and the money paid for the components). Net profit is calculated by subtracting the overhead (general and administrative) expenses from the gross profit.

Figure 2 shows another P&L for Dick's TV, with figures for the gross profit included. This P&L contains the same information as the less complicated one of Figure 1; however, it shows the individual items of expense and the computation of gross profit. Perhaps your yearly P&L appears to be much more extensive, yet it contains the same basic elements as the one of Figure 2.

The greatest value of the Figure 2 P&L is that it shows how much you are spending on the three

continued on page 22
Dick's TV Shop
Profit and Loss Statement
1-1-77 to 12-31-77

INCOME
Labor Income $50,000 50%
Parts sales $50,000 50%
Total sales $100,000 100%

COST OF SALES
Labor sales $50,000
Direct wages $25,000 25%
Gross labor profit $25,000 25%
Parts sales $50,000
Parts costs $25,000 25%
Gross parts profit $25,000 25%
Total Labor and Parts costs $50,000 50%
TOTAL GROSS PROFIT $50,000 50%

OVERHEAD EXPENSES
Accounting $2,000 2%
Clerical & Administrative salaries $20,000 20%
Rent $6,000 5%
Truck expenses $4,200 7.6%
Utilities $2,000 2%
TOTAL OVERHEAD EXPENSES $40,000 40%
NET PROFIT (before taxes) $10,000 10%

Dick's TV SHOP
Profit and Loss Statement
Period ending June 30, 1978

INCOME
Labor sales $6,000 55% $30,000 55% $50,000 50%
Parts sales $5,000 45% $25,000 45% $50,000 50%
Total sales $11,000 100% $55,000 100% $100,000 100%

COST OF SALES
Labor sales $6,000 55% $30,000 55% $50,000 50%
Direct labor $2,500 42%* $14,000 50% $25,000 25%
Gross labor profit $3,500 32% $16,000 29% $25,000 25%
Parts sales $5,000 45% $25,000 45% $50,000 50%
Parts costs $3,000 60%** $15,000 27% $25,000 25%
Gross parts profit $2,000 18% $10,000 18% $25,000 25%
Total Labor and Parts costs $5,500 50% $29,000 53% $50,000 50%
TOTAL GROSS PROFIT $5,500 50% $26,000 47% $50,000 50%

OVERHEAD EXPENSES
Accounting $167 1.5% $1,000 1.8% $2,000 2%
Salaries-Clerical & Admin. $1,666 15% $10,000 18% $20,000 20%
Rent $1,000 9% $5,000 9% $6,000 6%
Truck expense $950 8% $4,200 7.6% $10,000 10%
Utilities $200 1.8% $1,300 2.4% $2,000 2%
TOTAL OVERHEAD EXPENSES $3,983 36% $21,000 39% $40,000 40%
NET PROFIT (before taxes) $1,517 13.8% $4,500 8.1% $10,000 10%

Figure 3 Adding percentages to P&Ls allows you to compare those of different months without confusion.

Figure 4 The recommended P&L combines all of the essential data and the percentage figures of several P&Ls.

Service Management
continued from page 21

largest expense categories: wages; parts or components; and overhead. Efficient operation demands that you keep these in balance for the type of store you have.

Notice that the direct wage cost is 50% of the total labor produced. Usually, in this business, 50% wage costs is too high. The owner should increase the labor income or reduce the wage costs. The parts costs are 50% of the parts sales. This is about right for shops not doing much warranty work. Shops having a high rate of warranty repairs might only realize 20% to 30% of parts profits. Lastly, we see that the overhead expenses are 40% of total sales. Because the boss (who's not a technician) has included his own salary in the "clerical and administrative salaries" section of overhead expense, the 40% overhead figure probably is normal for this shop.

Percentages
While the Figure 2 P&L is quite informative, it lacks one thing: percentages. Otherwise, when you want to compare the figures for each month and year, you will be lost in a maze of figures. Using percentages provides a common denominator that makes comparisons easy and fast. Figure 3 is the same P&L, but with percentages added.

There is no limit on the time period of a P&L. It can be daily, weekly, monthly, quarterly, yearly, or whatever is needed.

Exceptions For Service Businesses
Two important differences in accounting methods are necessary for small service businesses: the method of handling parts costs and inventory; and the owner's salary.

Inventory
I advise that a parts inventory be taken only once per year. Owners of small service shops ordinarily are so involved in the details of the business that they are aware of inventory changes at all times. Also, the proliferation of small parts makes an inventory a difficult and expensive task. Of course, a monthly inventory is desirable, but the benefits are less than the effort
required. And the year-end inventory eventually will provide the adjustment.

Here is an example of a year-end parts inventory adjustment:

- Parts inventory value 1-1-77 $6,000
- Parts purchases 1-1-77 to 12-31-77 $60,000
- Total .. $66,000
- Less inventory 12-31-77 $16,000
- Actual parts cost for 12 months $50,000

Owner's salary

If the owner does no work of any kind (neither technical nor management), his salary must come from the net profits of the business. Therefore, a non-working owner's salary should not be included in the single- proprietorship or partnership P&L. It is advisable to have a notation of the "Owner's Drawing Account" added at the bottom of the P&L to show the amount the owner has withdrawn during the accounting period. (Incidentally, a non-working owner will pay taxes only on the net profit shown by the year-end P&L, regardless of the amount he "draws.")

However, if the owner performs technical or management functions, his salary properly belongs on the P&L under the correct expense category.

For example, if you as the owner spend 75% of your time working as a technician and the other 25% in managing the business, you should list 75% of your salary as "Direct Wage Cost," and the other 25% under the "Clerical And Administrative Salaries."

Comparisons

Now that gross profit and percentages have been included, one more step is needed: comparison of the latest P&L with the previous one. Although there are many possible comparisons, the method I like is shown in Figure 4, which contains all the data listed before.

Analysis of the Figure 4 P&L can spot trends and identify any unusual changes before they become more dangerous. Notice that the net profit for the first six months is down by 19%. It's likely a problem is indicated, but the analysis to determine the source of the loss should be continued.

The overhead percentage is 39%, which is down slightly from last year, despite the big rent increase; and the gross labor profit is higher. However, the gross parts profit dropped from 25% to 18%. Evidently, the lower parts sales (50% went down to 45%) and the rising parts costs (from 25% to 27%) combined to make the parts sales less profitable.

Also, notice the two percentages marked * and **. The first is the June percentage of labor costs to labor sales, which has decreased from 50% last year down to 42%. The other is the June percentage of parts costs to parts sales, and it increased from last year's 50% up to 60%. Some shop owners are more concerned about those two percentages than about any others. Certainly, they are very important.

Not all the percentages discussed were listed in Figure 4, but they were calculated from the figures given there.

In the example, both the total parts sales and the profitability of those sales are exposed as the problem that needs to be solved first.

The ability to pinpoint individual increases or decreases is the great value of the gross-profit listings, particularly when there are several entries.

Comments

Your P&Ls undoubtedly have other income categories (perhaps "merchandise sales," rentals, or others). Also, under General and Administrative I have shown only a few items instead of the long list most P&Ls have. Later in this series, we will return to Profit-And-Loss statements and explain how to split your P&L, separating the service and sales departments. Also, we will clear up that old nemesis called depreciation.

However, if you now are comfortable with P&Ls and understand how to use them, it's likely you won't have trouble with more complicated ones.

Use these suggestions about P&Ls to help make profitable decisions for your business operation. □

HICKOK

INSTRUMENTATION & CONTROLS DIVISION

THE HICKOK ELECTRICAL INSTRUMENT CO.

10514 Dupont Avenue • Cleveland, Ohio 44108
(216) 541-8060 • TWX: 810-421-8286

THE COUNTERS

YOU REALLY WANT

AT AFFORDABLE PRICES.

A Model for every need.

MODEL 380.
1 Hz to 80 MHz, 10 ppm
$209

MODEL 380X.
1 Hz to 80 MHz, 1 ppm
$269

MODEL 385.
1 Hz to 512 MHz, 10 ppm
$419

MODEL 385X.
1 Hz to 512 MHz, 1 ppm
$499

Perfect for communications, CB, audio, TV and digital work, servicing and laboratory applications.

All 4 field-proven models feature full 7-digit display with automatic decimal and full autoranging. Our exclusive SPEED READ mode provides fast update (5/sec) time for easy tuning and adjusting.

Handsome, rugged metal case with brushed aluminum panel including all-angle tilt stand. (Low cost rack mounting kits for standard 19" rack also available.) All models are packaged in a plastic carrying case that protects the unit in shipment and in use.

Why settle for less than the best. See these hard-working counters at your distributor now.
The Basics of Industrial Electronics, Part 9
By J. A. "Sam" Wilson, CET

NOR gates, EXCLUSIVE OR gates, six troubleshooting questions, and two digital experiments are covered this month. Also, details are given about using NAND and NOR gates to produce NOT gates.

NOR Gate

With NOR gates (Figure 1), the only way of obtaining a logic 1 output is to have logic 0 at both inputs. All other combinations of inputs produce a logic 0 at the output. The NOR formula is derived from: NOT A OR B EQUALS L.

NOR gate symbols are the same as those for OR gates, except for an indication that the output is inverted. In the MIL symbol, the small circle at the output shows inversion.

This is an important point, because it hints that a NOR gate can be constructed from an OR gate followed by an inverter (NOT gate).

In the basic industrial circuit, the normally-closed relay contact is energized (logic 1 at the load) only when both switches are open (logic 0). When either or both switches are closed, the relay opens the contact, producing a logic 0 at the load. This is in agreement with the truth table.

The math formula is read: NOT A OR B EQUALS L. The overbar must be across both the A and B, or the equation is written incorrectly.

Changing A NAND To A NOT

In the February article, I said that any of the basic logic gates could be constructed, if a sufficient number of NANDs (or NORs) is used. In other words, specific wirings of the NAND gates can produce any of the basic gates that we have described so far. The same is true of NOR gates.

It's easy to wire a NAND gate so it performs as a NOT (inverter), as shown in Figure 2. The two inputs are connected together; therefore, both inputs always have the same logic level. A conventional truth table is used, except the two conditions when the inputs have different logic levels are not possible. In Figure 2, these entries are removed from the truth table, leaving only the one with both inputs at logic level 0 (producing a high output) and the other with both inputs at logic level 1 (for a logic 0 output). Whenever the output always is reversed from the
input, the circuit is an inverter (or a NOT gate).

Changing A NOR To A NOT
A NOR gate also can be wired to operate as an inverter. Figure 3 shows the two entries of the truth table that are impossible when the two inputs are connected together. The only valid inputs are logic levels 0 and 0, which produce a level 1 output, and logic levels 1 and 1, producing a logic level 0 output. These characteristics fulfill the requirements for a NOT gate (inverter).

These last two illustrations prove that NOT gates can be constructed by connecting together the inputs of either NAND or NOR gates.

continued on page 26
Industrial
continued from page 25

Troubleshooting Question #1
Figure 4 asks a question about a series of NAND gates that are connected as NOTs. What is your answer?

Troubleshooting Question #2
Answer the troubleshooting question of Figure 5, concerning two NOR gates connected as NOTs that feed the two inputs of another NOR gate.

Exclusive OR Gate
The symbols, truth table, basic circuit, and math symbols for an EXCLUSIVE OR gate are shown in Figure 6.

During a previous discussion of INCLUSIVE OR gates, we mentioned the two different meanings of the English word “or.” When someone says, “John or Mary may go to the store,” it could mean, “John or Mary or both may go to the store.” This is the inclusive form. On the other hand, the intent might be to say, “John or Mary, but not both, may go to the store.” This is the exclusive form of “or.”

The OR gate discussed in the January issue was the inclusive type where either or both of the inputs having a logic 1 produces an output of logic 1.

From the truth table in Figure 6, we learn that a logic 1 at either (but not both) input produces a logic 1 at the output. Another way of defining an EXCLUSIVE OR gate is that the inputs must be at opposite levels to obtain a logic 1 output. Notice that a plus sign is used both in the NEMA symbol and the first formula. In logic symbols, the plus sign indicates OR.

The basic industrial circuit needs some explanation. Two relays are provided, each with one normally-open and one normally-closed set of contacts. The normally-open contact of M is in series with the normally-closed N contact. Also, the normally-closed contact of M is in series with the normally-open N contact.

When neither relay is energized, no path exists through either pair of contacts (one normally-open is in each path). When both are energized, all of the contacts reverse, but still there is no path through the series contacts. The only way to light the lamp (logic 1) is to energize relay coil M or N, but not both.

Three-way switch
Let’s analyze the operation of the so-called three-way lamp circuit of Figure 7A. It’s used often to operate a hall lamp from the top or bottom of the stairs, or to control a garage light from the house or the garage.

With the light switches flipped as shown, the circuit is completed, and the lamp will light. Also, if both switches are flipped to the opposite positions, the circuit again has continuity (although through a different path) and the lamp is energized.

However, if just one of the switches is flipped, the power source and the lamp are connected to different wires. Therefore, the lamp does not light.

The logic of the circuit can be understood more easily, if the
The circuit is redrawn (Figure 7B) in industrial style similar to the basic circuit of Figure 6. The results agree with the truth table of Figure 6.

Troubleshooting

Question #3

In Figure 8, given the B input level and the output level of the EXCLUSIVE OR gate, what must be the logic level at the A input?

Combinational Logic

Many logic circuits are made by combining gates. These are called **combined-logic gates** or **combinational-logic gates**. One example is shown in Figure 9. The two inputs of a NOR gate are tied together, making it function as a NOT gate, and it is located between the A input and one input of an OR gate. The B input goes direct to the OR gate.

It’s important that you determine what the output level should be, so you can know if it is operating properly or not.

There are several ways of determining the output logic level (one is by Boolean algebra, but it will not be explained now). Perhaps the easiest method is to draw up a truth table (see Figure 9). Write in all combinations of logic levels for the two inputs.

We know that a NOT gate inverts the state, so we can fill in the NOT A column, as shown in Figure 10. The original A column is not used anymore, because the NOT A and the B logic levels are the input of the OR gate. Next, knowing that the only way to obtain logic level 0 at the output is to apply level 0 to both inputs, we can complete the truth table (Figure 11). The last step is to ignore the column, and to use the A and B logic levels plus the output level.

Notice that the inputs and outputs were taken a step at a time starting with the NOR which is wired as a NOT, continuing on to the two inputs of the OR gate.
Industrial
continued from page 27

(allowing us to know the output, and finishing by going back to the original A and B inputs.)

Troubleshooting
Question #4
Figure 12 shows the logic circuit of Figure 9, but both inputs are supplied with logic level 0. What level should the probe indicate at the output?

Troubleshooting
Question #5
In the circuit with three NAND gates of Figure 13, what should be written in the blank spaces of the truth table?

Experiment #1
This experiment is in two parts. The circuit of Figure 14 shows a 7400-series IC containing four NAND gates that have been wired to make them perform as NOT gates. First, use your knowledge of digital circuits, by completing the truth table at the left, both for an input of logic 0 and for logic 1.

Second, wire the circuit as shown. Apply a ground (logic 0) to input A and use a logic probe to test each of the four points, writing down the logic states. Repeat the test with the A input connected to +5 volts (logic 1), and write down the other four logic levels, as measured by the probe, in the spaces of the truth table at the right.

Of course, the experimental results should be identical with the predicted performance.

Figure 7 This "three-way" lamp wiring (A) has been used for years. It is a practical example of an EXCLUSIVE OR gate. (B) Drawn in industrial style, the circuit is almost identical to that in Figure 6.

Figure 8

Figure 9 Logic circuits composed of two or more logic gates are called "combination logic." A NOR gate is wired as a NOT, and it feeds one input of an OR gate. From this information, complete the truth table.

28 ELECTRONIC SERVICING
Troubleshooting
Question #6
When you have completed the truth tables in Figure 14 (and both are the same), have you completely checked all of the NAND gates?

Experiment #2
Construct the circuit of Figure 9. Using a logic probe, measure the output when the inputs have the logic levels shown there. Obtain a logic 1 by connecting the input to +5 volts of the power supply. Simulate a logic 0 by connecting the gate to common of the power supply. Complete the truth table, trying each combination of inputs separately. The finished truth table should be identical to the one in Figure 11.

Answers To The Troubleshooting Questions
Answer #1. The switch of Figure 4 must be in the "B" position to produce a logic 1 at output 1. The NANDs are wired as NOTs, so a logic 0 at point 1 produces a logic 1 at point 4 for the LED.

Answer #2. The probe of Figure 5 should indicate a logic level 0. NOR gates #1 and #2 are wired as NOTs, which places a logic 0 at "A" and a logic 1 at "B" of NOR gate #3. With inputs of 0 and 1, the output must be logic 0, which can be confirmed by the truth table of Figure 1.

Answer #3. The logic level at input "A" in Figure 8 must be 0, if the gate is operating properly. The output is level 1, and the inputs of an EXCLUSIVE OR gate must be opposite to obtain that result. Input "B" has logic 1; therefore, input "A" must be logic 0.

Answer #4. In Figure 12, the logic probe should show a logic 1 output. The NOR gate has been wired as a NOT, making the inputs of the OR gate a logic 1 and a logic 0. This calls for a logic 1 output level, which can be verified by the truth table of Figure 11.

Answer #5. The completed truth table of Figure 13 is shown in Figure 15. That answers the question, but there's more. Eliminate the NOT A and NOT B columns, and the truth table that remains...
(Figure 16) is for an INCLUSIVE OR gate. An OR has been constructed from three NANDs! Other examples of gates made from combinations of other gates will be given next month.

Answer #6. No, you have not completely checked all of the NAND gates. You have proved correct operation when both gates are switched together, but not with inputs of opposite logic levels.

However, it's likely that NANDs which pass this test actually are okay. Quick tests have value, but keep in mind that additional testing might be required (for example, to determine the propagation delay). □

Figure 14 Calculate the truth table at the left. Then, construct the experimental circuit and use a logic probe to determine the logic states at each point, filling in the truth table at the right. If the four NAND gates are not defective, the two truth tables should be identical.

TEST THE IC CIRCUIT YOU HAVE WIRED, AND RECORD THE RESULTS IN THIS TRUTH TABLE. CONNECT "A" TO +5 VOLTS FOR A LOGIC 1, OR TO GROUND FOR A LOGIC 0.

TROUBLESHOOTING QUESTION #6: HAVE THESE TESTS COMPLETELY CHECKED THE NAND GATES?

Figure 15 This is the truth table of Figure 13, after it is completed.

Figure 16 (far right) After the NOT A and NOT B columns of Figure 15 have been eliminated, the truth table that remains is the one for an INCLUSIVE OR gate. Therefore, three NAND gates have been wired to produce an INCLUSIVE OR gate.
"It's been there since they showed a rerun of 'Jaws' last week."

"I was trying to modify the stereo component to give it four-channel sound."

"Mr. Alpert and Mr. Yukon will each conduct half of the meeting. You might call them semiconductors."

"Turn the rotor off! Turn it off!"
The E44 chassis Sylvania does not have a vertical oscillator, and the horizontal oscillator operates at 31,468 Hz. A countdown digital circuit in an IC develops both vertical and horizontal frequencies. Also explained are the horizontal sweep/HV circuits and the side pincushion correction.

Horizontal-Sweep System

Horizontal-sweep stages of the Sylvania E44 chassis before the horizontal driver are quite unique, and the following stages are more conventional. Two ICs and one driver power transistor are the only active solid-state horizontal-sweep devices on the 02-41656-1 deflection module, which is at your right when you face the rear of the chassis (Figure 1).

IC400 is a 16-pin IC that performs the functions of noise inverter, video amplifier, IF AGC, sync separator, sawtooth source for the phase detector, and 31,468-Hz oscillator. (IC400 is shown in the picture of Figure 2.)

The other IC (14-pin IC300) accepts the 31,468-Hz signal from IC400 and divides by two to produce the horizontal frequency. Another divider chain in IC300 supplies the vertical frequency.

Perhaps you wonder why such a roundabout method is used to obtain the horizontal frequency. The answer involves an understanding of composite video and interlaced scanning. If the horizontal frequency of 15,734 Hz (for colorcasts) could be divided by 262.5 (the number of horizontal lines in one vertical field), this would produce the correct 59.94-Hz vertical frequency. However, dividers can’t divide by fractional ratios. Therefore, the oscillator works at twice the horizontal frequency (31,468 Hz), and the desired 59.94-Hz vertical frequency is obtained after a division by 525.

Perfect locking?

Because both sweep frequencies are obtained by dividers from just one oscillator, it seems reasonable to expect perfect horizontal and vertical locking. (After all, that is the method used at the TV stations to generate the sync pulses.) However, this is only partially true. After the oscillator is locked to the station sync, the sweep frequencies will be correct. But, remember that the sweeps must start and stop in step with the TV picture. Of course, normal locking of the 31,468-Hz oscillator synchronizes the horizontal sweep with the picture. However, the phase of the vertical-sweep frequency must be varied by the IC circuitry to insure perfect vertical synchronism.

Because IC300 is a “proprietary” IC, no one outside of the OEM manufacturer seems to know exactly how the system works. We are told that IC300 contains logic circuitry which examines the sync and decides whether or not it is good quality NTSC sync. Then the logic switches to one of two possible methods of locking the vertical sweep to the station signal.

Symptoms and tests

In an effort to understand the sweep dividers, we collected visual symptoms, analyzed waveforms, and performed some experiments. But without total success.

When the tuner is changed from a channel without a signal to a normal TV carrier, usually the vertical-blanking bar is visible near the top of the picture. Then, with a movement too fast for the eye to follow, the picture speeds into perfect vertical lock.

While attempting to determine the function of the two kinds of sync that are applied to the dividers in IC300, I bypassed the composite sync at pin 4 with a 0.22 microfarad capacitor. This nearly eliminated the sync, leaving only a small amplitude of integrated vertical sync. No large change of the vertical locking was noticed, but a small amount of vertical shimmy could be seen during some scenes.

One more unusual situation was not so apparent. While checking the DC voltages and waveforms at each pin of IC300, we found strange symptoms when attaching test equipment to pins 8 and 9.
Figure 1 Components of the Sylvania E44 horizontal-sweep system are located at the right (as you face the rear of the TV receiver). The module has the sweep-oscillator, vertical-countdown, horizontal-countdown, horizontal-driver, vertical-drivers, and vertical-output circuits. The flyback is mounted on the chassis at the right of the module, while the tripler, safety capacitor, and horizontal-output transistor are mounted on the upright metal panel that serves as shield and heat sink.

These pins apparently are used in the vertical count-down circuit to supply a capacitor that is too large to include inside the IC (C318—.027). The symptoms varied somewhat depending on which instrument was attached. One measurement produced a fast vertical roll, along with a decrease of height. Another test connection caused a loss of the raster.

These results do not indicate any shortcomings of the circuit. They just warn you of some nonconventional effects of attempting measurements in sensitive circuits.

Comments

Although failures of the dividers, ICs, or the comparison circuit can cause loss of vertical sweep or a rolling picture, this is not very likely.

The factory states that the 31,468-Hz oscillator is stable and has a large pull-in range of about ±6 bars (normally, more than enough to compensate for the usual amount of drift from aging components). So, chances of the horizontal oscillator needing a frequency adjustment are negligible. The oscillator coil does have an adjustable core, and it can be retuned, if necessary. (Ground testpoint “W”—which removes the sync—and adjust the

continued on page 34

March, 1978

Figure 2 Locations of several horizontal-sweep components are shown by arrows on the 02-41656-1 deflection module.
Servicing Sylvania
continued from page 33
Figure 3 Here is the schematic of IC400 and IC300, including circuits for AGC, sync, sweep oscillator, vertical countdown, and horizontal divider.

Figure 4 These waveforms are for the circuits of Figure 3.
core of L420 until the picture moves upright and slowly across the screen. Remove the ground from "W". That's all.)

This completes the preliminary explanations, so let's continue with an examination of circuit functions.

Horizontal-Phase Detector

As we discuss the phase detector, oscillator, and divider circuits, refer to Figure 3 for the schematic, and to Figure 4 for the waveforms. Remember that the DC voltages were measured accurately with a digital voltmeter, and the results often are shown to two decimal places. This does not mean that the voltages must be maintained within such critical tolerances to insure proper operation. Undoubtedly, other individual chassis will vary the usual amount from these readings.

Two signals are required for all horizontal-phase detectors. In this case, the horizontal-sweep pulses from the blanker circuit enter IC400 at pin 7. An internal circuit changes the pulses to sawteeth, which exit the IC at pin 8 before they pass through C423 and reach the anode of phase-detector diode SC426.

The other signal is negative-going horizontal sync that comes from IC400 pin 6, is shaped by R413 and C421 before reaching the common cathodes of SC426 and SC424. These diodes rectify the two wave-
forms, producing a small positive voltage at the common cathodes. Therefore, the DC voltage between the two anodes is about zero, when the horizontal is locked properly. Any drifting of the phase between the two signals unbalances the rectifiers, and the DC voltage between the two anodes no longer is zero. Notice that the anode of SC424 is not grounded (as it probably would be with tube circuits), instead this point is supplied with slightly less than +11 volts by pin 11 of IC400.

The correction DC voltage at the anode of SC426 is filtered by R421 and C424 before it is applied to pin 10 of the IC. Evidently, the DC voltage reaches the oscillator transistor inside the IC, varying the frequency when needed.

This phase detector is nearly conventional, and it is supplied with 15,734-Hz signals, although the oscillator operates at 31,468 Hz.

Sync And AGC

Negative-going composite video enters IC400 at pin 3. Inside the IC, automatic noise inversion removes most noise pulses before the video goes to the AGC keyer and to the sync separator.

Sync separation appears to be conventional, with the components between pins 4 and 5 shaping the video for proper clipping. Notice that testpoint "W", that's used for removing the sync during oscillator frequency adjustments, is located in that path. Pin 5 measures about +0.8 volt when the IF cable is unplugged to remove all snow and signals, about -0.1 volt for snow without a station, and varies around -2.5 volts with a normal signal and picture. These readings are nearly identical to those in transistorized sync-separator circuits.

A single AGC voltage comes out at pin 1. This is a positive voltage that becomes more positive with a stronger station signal. A transistor on the IF module amplifies and inverts the AGC voltage before sending it to the tuner RF stage and to the IF transistor. Details of those circuits will be presented when we analyze the IF section.

continued on page 38
Oscillator

Transistors for the 31,468-Hz oscillator are inside IC400, making a thorough analysis impossible. C418 and L420 (hold control) comprise the oscillator tuned circuit.

Incidentally, dual-trace waveforms allow us to prove that C418 is part of the tuned circuit, and not just a DC-blocking capacitor (see Figure 5). The phase shift across a capacitor in a series-tuned circuit always is 90°. The near-sine wave at the L420 end of C418 has larger amplitude and lags 90° the more distorted waveform at the pin 14 end of C418. Also, the two ends of the series-tuned circuit (pins 13 and 14) are in phase. This proves that an equal and opposite phase shift exists across L420. Therefore, L420 and C418 make up the tuned circuit that determines the free-running 31,468-Hz oscillator frequency.

Output of the oscillator at pin 1 is a squarewave signal, which is connected to pin 1 of IC300, the IC with the dividers and digital logic.

Sweep Dividers

Vertical and horizontal sync from IC400 is reduced in amplitude and filtered slightly by R302, R304, and C304 before it enters IC300 at pin 4. It is believed this feeds the logic circuitry that selects the type of vertical locking, according to the type of signal.

Also, the same sync is integrated by R306 and C306, leaving vertical sync pulses. These pass through C301 and R308 to pin 14 of IC300. It seems likely that the vertical sync pulses are used by the logic circuitry to establish the correct starting point of the vertical-frequency signal that's sent to the vertical sweep circuit. In any event, loss of sync at pin 14 allows the vertical to roll sometimes.

Many of the other IC300 pins bring in proper DC voltages. Four pins are used to filter waveforms or connect large external capacitors to the internal circuits. Pins 12 and 13 have vertical waveforms (see Figure 4). Pins 8 and 9 also have DC voltages and waveforms, but they are very sensitive to the addition of external capacitances, such as scope and meter leads. This was explained in the preliminary discussion.

Narrow negative-going vertical-rate pulses emerge from IC300 at pin 7. In Figure 4, the pulses are shown in the conventional way, and then expanded. Small-amplitude horizontal pulses broaden the base line and the pulse tips of the vertical waveform.

Horizontal Driver And Output

Refer to Figure 6 for the driver and output schematic, and to Figure 7 for the waveforms.

Horizontal square waves (of 50% duty cycle) come out of IC300 at pin 2, and they go through R440 to the base of Q404, the horizontal...

After a couple of screws are removed, the metal panel can be moved or laid down at an angle, allowing access to the flyback.

Q406 (at left), the horizontal-output transistor, is mounted in a socket on the outside of the metal panel.
driver transistor. C432 is connected from base to ground to filter the waveform slightly.

DC waveforms show that the square waves from IC300 are the only forward bias for Q404. Zero voltage is at the bottom of the square waves; therefore, the peak-to-peak amplitude is exactly the same as the maximum instantaneous forward bias (about 0.8 VPP). Square waves at the base produce square waves at the collector of Q404 (which is a plastic-type TO-22 intermediate-power transistor). C432 is connected to -22 intermediate-power transistor Q404 (which was VPP).

taneous forward bias for Q404. Zero conduction, permitting a small square wave amplitude decreases thus charging C436. When the SC440. The diode conducts at the driver transformer (T440) by diode damp the ringing more effectively. T440 more, and therefore of C436 will be lower at the start of amount of ringing by T440. Actu-SC440 is reverse biased, and stops when SC440

voltage is +25 volts (because the cut off). This means square-wave voltage drop across filter. Therefore, the maximum square-wave amplitude decreases across C436 than at the power supply! Look at C436 than is available at the power supply. It's better than a choke wire to act as though it

end of the base winding, and at the 0406 base waveform, at the cold y pulses in the edges of the square waves. The beam causes pulses in the Q406 base waveform, at the cold end of the base winding, and at the emitter. In fact, I was surprised to find negative 30-volt pulses at the Q406 emitter, even though the emitter path goes only through the bead/wire and the foil of the safety capacitor before reaching ground. It does illustrate that perfect continued on page 40

Horizontal Output Circuits

The horizontal output and flyback circuits of the E44 are similar to those of some other models, so troubleshooting will be about the same.

However, a few of the waveforms are slightly different. L438 is added at the low end of the T440 secondary winding, and this changes the base waveform of Q406. Other waveform variations occur because of the two ferrite beads that are added to the wire between the emitter of Q406 and C444 (the four-legged safety capacitor); Q406, the horizontal-output transistor is mounted on the right side (as you face the rear of the receiver) of the chassis. The metal panel can be loosened and moved out at an angle to provide added room for diagnosis or parts replacements.

Ferrite beads on a wire force the wire to act as though it is a small inductance. It's better than a choke wire to act as though it

one peculiarity of the circuit is that the "rectification" of SC440 produces a higher DC voltage at C436 than is available at the power supply! Look at it this way: if the collector load of Q404 was a resistor (rather than a transformer), the collector voltage would change from zero (during saturated conduction) to the supply voltage (when cut off). In this case, the supply voltage is +25 volts (because the square-wave voltage drop across R444 is averaged-out by C438, the filter. Therefore, the maximum peak-to-peak voltage at Q404's collector would be 25 volts. With the transformer operating as the collector load, the measured collector voltage was 57 volts peak-to-peak. This proves that transformer ringing is supplying the extra 32 volts! When SC440 is open, the collector waveform has a huge amount of ringing (Figure 8), although the picture is not affected.
grounds are not possible. When the beads were removed from the lead of C444, the amplitude of the pulses went down to 2 VPP.

Of course, these unusual pulses are normal for the circuit, and they are not harmful to the transistors. I mention the situation only to explain about the beads, and so you will not believe the pulses indicate a defect, when you see them during troubleshooting.

Boost supply

Only one voltage supply comes from rectification of the horizontal-sweep pulses. Diode SC445 and C448 perform peak-reading rectification of the positive pulses of horizontal sweep, producing about 1050 VDC that is reduced to +850 volts for the screen (G2) controls.

Flyback operation

In addition to the primary, the T400 horizontal-output transformer has only two more windings. One is for the high-voltage tripler (which also supplies the focus voltage), and the other is a 330 VPP source of horizontal (for the convergence circuit) and blanking (for the service switch during set-up adjustments).

The yoke current does not come from the flyback, but the yoke is connected to the collector of the horizontal-output transistor, and it returns to ground through the side-pincushioning transformer and C348.

Technical question

While measuring the DC voltages around the horizontal-output stage, I was amazed to find the DC voltage at the collector of Q406 (output transistor) measuring higher than the supply voltage. After making a few more measurements and looking at an unusual waveform, I found where the extra voltage came from.

Can you explain how the Q406 collector DC voltage can measure higher than the voltage source?

Yoke And Pincushion Circuits

Figure 9 shows the schematic of the horizontal yoke and the side-pincushioning circuits.

Excessive width of the picture near the top and bottom of the raster is corrected by varying an inductance that's in series with the cold side of the horizontal yoke.

Specifically, the hot end of the yoke is connected to the collector of Q406 (after C444). The cold end of the yoke goes through windings of T350 before being bypassed to ground by C348.

Vertical-sweep voltage from the cold end of the vertical-convergence system is filtered by R370 and C352. (See the waveforms in Figure 10.) At C352, the waveform is roughly a sawtooth, which causes a parabola of current through the center winding of T350. A small DC current from R366 provides the core magnetism that's necessary for proper operation of the saturable-reactor transformer (T350).

The vertical-sweep current through T350 changes the inductance of the windings carrying yoke current, so the inductance increases during times the sweep is at the top and bottom of the raster. This reduces the width more at the top and bottom than it does near the vertical center of the raster. Therefore, the side pincushioning is eliminated.

Next Month

Vertical-sweep circuits and the operation of the IF stages (including the IF AGC) will be the subjects of our Sylvania analysis next month.

Figure 9 The side-pincushioning circuit has this schematic.

Figure 10 These are the waveforms of the pincushioning circuit of Figure 9.
Measuring Resistors "In Situ"

My dictionary defines "in situ" as "in position" or "in its original place." Therefore, this discussion is about the measurement of resistances in-circuit, without disconnecting them first.

Diode resistance varies with voltage

Regardless of the equipment or the method used, all resistance measurements involve application of a voltage to the circuit under test. This voltage changes with the resistance value, and it is different for each resistance range.

Those changing voltages are the reason why the resistance of a diode (or a transistor junction) depends on the type of meter circuit and on the range selected. For example, the base/emitter junction of a

continued on page 42
germanium transistor might measure 5 ohms when the X1 range of a VTVM was used, 29 ohms for X10, 170 ohms for X100, and 1,000 ohms with the X1000 range. The ohmmeter is not producing wrong resistances. Instead, the diode is changing forward resistance according to the actual voltage applied to it.

Not all ohmmeters apply the same voltage. Therefore, diodes and transistor junctions will measure many different resistances according to the type of meter.

Circuit paths through diodes
Problems begin when a tech tries to measure the value of a resistor that's in a circuit along with a diode or a transistor junction (Figure 1). Because diode resistance varies with the applied voltage, it's not possible to assign a definite resistance to each diode. As shown, the base resistor and the B/E junction of the transistor are in parallel. So, the ohmmeter current flows through both. The diode conduction causes an erroneous reading, which varies with the range and with the type of meter.

Low-power ohmmeter readings
Some late-model meters (particularly multimeters) offer "low-power" ohms functions. The maximum voltage is kept below the conduction point of silicon diodes and transistors. Therefore, "in situ" resistance measurements can be made without many errors from the silicon diode-or-junction resistances.

Circuit paths through diodes
Problems begin when a tech tries to measure the value of a resistor that's in a circuit along with a diode or a transistor junction (Figure 1). Because diode resistance varies with the applied voltage, it's not possible to assign a definite resistance to each diode. As shown, the base resistor and the B/E junction of the transistor are in parallel. So, the ohmmeter current flows through both. The diode conduction causes an erroneous reading, which varies with the range and with the type of meter.

Low-power ohmmeter readings
Some late-model meters (particularly multimeters) offer "low-power" ohms functions. The maximum voltage is kept below the conduction point of silicon diodes and transistors. Therefore, "in situ" resistance measurements can be made without many errors from the silicon diode-or-junction resistances.

Combining the low-power ohms feature with the reversed-voltage measurements should eliminate most diode-conduction resistance errors.

Resistances in parallel
Neither of the previous methods can measure the individual resistors of Figure 2. Any ohmmeter will read the resistance of R1 in parallel with the sum of R2 and R3.

One solution is to determine the proper resistances (from a schematic or the color codes of the resistors), calculate the total resistance, and measure the actual resistance with your ohmmeter. If the calculated and actual resistances are equal, it's likely all three resistors have the correct values. (Of course, that's assuming the resistors do not have widely different values. For example, if one resistor is supposed to have more than 10 times the resistance of the other two, an open in the large resistor would not change the total resistance reading enough to be significant.)

If the measured resistance is incorrect according to the calculated value, one of the three resistors must have a wrong value.

To calculate the resistance of the combination, use this formula:

\[
R = \frac{R_1 \times R_2 + R_1 \times R_3}{R_1 + R_2 + R_3}
\]

If you have an electronic calculator, it's easy to do the math. An alternate method is to add the resistances of R2 and R3. Then use

The same measurement again. If the two resistance readings are identical, there's little chance of errors from diode conduction. When the two readings are very different, the higher reading will be more accurate.

This method has some limitations. For example, circuits having two or more semiconductor devices might have leakage through a diode during the test with one polarity, and leakage through a transistor junction when the polarity is reversed.

Reversed voltages
Another effective method of eliminating nearly all of the errors from diode and junction conduction is to take a reading, and then reverse the test leads before making the same measurement again. If the two resistance readings are identical, there's little chance of errors from diode conduction. When the two readings are very different, the higher reading will be more accurate.

This method has some limitations. For example, circuits having two or more semiconductor devices might have leakage through a diode during the test with one polarity, and leakage through a transistor junction when the polarity is reversed.

Combining the low-power ohms feature with the reversed-voltage measurements should eliminate most diode-conduction resistance errors.

Resistances in parallel
Neither of the previous methods can measure the individual resistors of Figure 2. Any ohmmeter will read the resistance of R1 in parallel with the sum of R2 and R3.

One solution is to determine the proper resistances (from a schematic or the color codes of the resistors), calculate the total resistance, and measure the actual resistance with your ohmmeter. If the calculated and actual resistances are equal, it's likely all three resistors have the correct values. (Of course, that's assuming the resistors do not have widely different values. For example, if one resistor is supposed to have more than 10 times the resistance of the other two, an open in the large resistor would not change the total resistance reading enough to be significant.)

If the measured resistance is incorrect according to the calculated value, one of the three resistors must have a wrong value.

To calculate the resistance of the combination, use this formula:

\[
R = \frac{R_1 \times R_2 + R_1 \times R_3}{R_1 + R_2 + R_3}
\]

If you have an electronic calculator, it's easy to do the math. An alternate method is to add the resistances of R2 and R3. Then use

As a last resort, R2 and R3 can be disconnected at point A. This allows testing of all three resistors with a minimum of unsoldering.
that value and the resistance of R1 in the formula for two resistors in parallel.

If these tests indicate a wrong resistor value, open the circuit at point A, and test each resistor separately.

Use a bucking voltage

Figure 3 shows a way of measuring R1, without errors from R2 and R3. Connect a variable-voltage source to the junction of R2 and R3, and adjust the voltage until it is exactly equal to the ohmmeter voltage that's at the R2 end of R1. This places equal voltages at both ends of R2, thus eliminating all current through R2. The zero R2 current gives the same effect as an open R2, which breaks the R2/R3 path that parallels R1. The ohmmeter now reads only the resistance of R1.

Editor's Note: I tried this test by using the ohmmeter function of a VTVM and found the method to be valid. However, the balancing of the two voltages was so critical that a digital meter was required to determine when the two voltages were equal. This matching of voltages is made difficult also by the ohmmeter voltage changing as the variable voltage is adjusted. For example, as the variable DC voltage was increased from zero, the ohmmeter voltage across R1 increased, along with the resistance reading. When the variable voltage is less than the ohmmeter voltage, the R1 resistance reading is too low. At the other extreme, a variable voltage that is higher than the ohmmeter voltage produces R1 resistance readings that are too high.

Tuning By Resistance Change

Last year, I was in Indianapolis at an ISCEET board meeting. I had discussed the resistance-tuned circuit of Figure 4 in a previous issue of my Technical Notebook, and several technician friends were giving me a hard time about it. In the article, I pointed out that varying either the resistance in series with the capacitor or the resistance in series with the inductance would change the resonant frequency of the tuned circuit.

The first question from a "friend" was, "So what?" A question like that is nearly impossible to answer!

Another tech asked if the circuit had any practical uses. I could answer that question. It has been used in automatic frequency-control circuits. Also, it is useful for adjusting low-frequency filters where the capacitance value is so high that a varactor diode won't work.

But the next comment stopped me cold. One man said that the change of frequency is too small to merit any discussion.

Although I knew the basic theory was correct, I never had calculated the amount of change before. Now was the time to use my calculator.

The equation for the resonant frequency of parallel capacitance and inductance when there's resistance in the circuit is shown in Figure 4, along with the schematic and values of the circuit.

In schools, there is an unfortunate tendency to ignore the general (complete) equation. Instead this partial equation is given for parallel resonance:

$$Fr = \frac{1}{2\pi \sqrt{LC}}$$

Actually, this is a special-case equation that is correct only when the resistances of the inductor and the capacitor are equal, or when the two resistances are small enough to be ignored.

The general equation is important because it shows that the value of a resistance in series with either the inductor or the capacitor of a parallel-tuned circuit will affect the resonant frequency.

Incidentally, there are two resistant conditions that completely eliminate all resonance. In the general equation for parallel resonance, if the inductor resistance squared times the capacitance equals the inductance, the numerator...
How do the values of R_L and R_C affect the resonant frequency?

Figure 4 A resistance added in series with the inductance of a parallel-tuned circuit reduces the frequency of the resonance point. A resistance added in series with the tuning capacitor increases the resonant frequency.

<table>
<thead>
<tr>
<th>Inductor Ohms</th>
<th>Frequency in KHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>83.40</td>
</tr>
<tr>
<td>5</td>
<td>82.34</td>
</tr>
<tr>
<td>10</td>
<td>79.08</td>
</tr>
<tr>
<td>15</td>
<td>73.30</td>
</tr>
<tr>
<td>20</td>
<td>64.37</td>
</tr>
<tr>
<td>25</td>
<td>50.60</td>
</tr>
</tbody>
</table>

A graph of these values is shown in Figure 5. Notice that 25 ohms reduces the frequency from 83.4 KHz to 50.6 KHz, a decrease of 32.8 KHz (or 39%).

Caution About Strobe Lights

Repeating strobe lights can trigger an epileptic seizure. For example, a Colorado electronics teacher had his students build a simple electronic strobe light. While they were testing it, the rapid flashing started an epileptic seizure in one of the students.

To cause the problem, the repetitive frequency must be slow enough to be seen as individual flashes of light.

After I heard of this incident, I researched the subject and found that almost any repetitive low-frequency energy seems to do the same thing. Other triggers are...
windshield wipers (especially under certain kinds of street lights), shower sprays, and rapidly-flashing neon signs.

Advise any epileptics to avoid looking at flashing lights or repeated movements of any kind.

Sound Sickness
Very low-frequency sounds can cause fatigue or nausea. The sound level must be high, and the frequency should be around 10 Hz, although the critical frequency depends on the individual person.

Could the constant thumping noise of car wheels passing over the tar strips of a pavement be the real cause of "car sickness"?

Also, think about the low-frequency beats caused by intermodulation distortion in a hi-fi system that is operated at loud sound levels. Could they be the cause of fatigue, which is the first stage of nausea?

Inserting IC Pins
Have you ever had trouble inserting all of the pins of DIP ICs into a socket at the same time? Well, it can be an exasperating job, that often results in bent pins.

Try this tip: insert all the pins in one side of the socket; then, use a stiff rectangle of plastic or cardboard to gently bend the other row of pins into line with the socket holes (see Figure 6). Usually this last row of pins will slip easily into place, when they are all moved at once. Finally, press down gently with your fingers on top of the IC, to seat all of the pins tightly.

Protect CMOS ICs
The manufacturers of CMOS ICs have nearly solved the problem of gates being destroyed by static voltage charges. Zener diodes are connected from the leads and common inside each IC. Voltages that are higher than the zener rating cause the zener to conduct, thus reducing the transient high voltage to a harmless value.

Caution: If you build or repair a digital clock that has CMOS ICs, be very careful and use all of the usual MOSFET precautions. Many (perhaps most) CMOS clock chips are NOT protected.

Mystery Of The Magnetic Poles
If you give me the slightest encouragement, I'll readily launch into stories about the brilliant students I've taught, and the clever solutions they have found for difficult electronic problems.

But one problem has defied their best efforts so far, although it appears to be very easy. Here are the conditions: magnetize a 3-foot length of steel welding rod so one end has a north pole and the other end has a south pole, but there are no other poles in between.

After you have magnetized the rod, check your result by using a small pocket compass. My students have tried to do this for so many times that I'm beginning to believe it can't be done. Figure 7 shows what usually happens to the magnetic poles.

Technician Shortage?
You sometimes are told there are too many electronic technicians. At other times you hear about the shortage of technicians. (Or, is it too many short technicians?) I heard of one who was really "short," and I'm not referring to his height, but to his brain power.

This next event actually happened in a Youngstown, Ohio, "Ma and Pa" store. They needed a good outside technician, and advertised in the local paper. Out of several applicants, they selected a man who claimed 27 years of experience.

The new employee had a couple of unusual characteristics. He was built like a gorilla (about 260 pounds), and he even looked a bit like one in the face. But, who's to say that large ugly people can't be

Figure 6 To make installation of ICs easy, insert all of the IC pins of one side into the socket. Then, slightly bend all pins of the other row toward the body of the IC, using a rectangle made of plastic or stiff cardboard. These pins should slide easily into the socket.

Figure 7 Can you magnetize a 3-foot length of steel welding rod so the north pole is at one end, and a south pole is at the other end, but without any extra poles in between? Sam's students always obtained several poles, as shown.

March, 1978

continued on page 48
competent technicians? Also, it's not smart to become unpopular with the ugly-lib people.

Out of the eight calls he made the first day, he brought in eight TV sets. He didn't pull the chassis, but brought in cabinets with all the works. Now, these were huge consoles that usually require two strong men to lift them, but he carried one under each arm!

The "Pa" end of the business sat down with him and explained that it wasn't a good practice to bring in complete machines, especially since many of them suffered dings and scratches in the process.

"Fix them in the home. If the TV must be brought in for shop work, bring only the chassis," Pa said.

The new man went out on calls the next day, with "Fix them in the home" ringing in his ears. But, within an hour the first customer was on the phone, and she was MAD. "What kind of a fool outfit have you got there, you idiot?"

"Ma" got to field this problem. "Is something wrong?" "Well, that turkey you sent out to fix my set took out all of the tubes, put them in a paper bag, and told me to go down to the drug store and test them!"

After "Ma" calmed the customer, she turned to "Pa." "You get out there and stop that nut, while we still have a business. Here's a list of his calls."

"Pa" (who probably weighed 140 pounds, soaking wet) didn't dash for the door. "Maybe we could just call the customers..."

"Get him!"

As he started out the door, "Ma" called after him, "Pa!"

"Yeah?"

"And don't hurt him."

Alternator Question

This request for information was received from Brian Cook, CET: "Is it possible to cheaply rewire an automobile alternator for use at low RPMs?"

My answer

Mr. Cook, thanks for the letter, and a special thanks for the self-addressed stamped envelope.

The original battery-charging device in cars was a DC generator. However, it had two inherent problems. The first problem was excessive maintenance (brush replacements and repairing the commutator). Secondly, generators could not produce a charging current when the engine was idled.

After the auto makers added more and more electrically-powered equipment, better battery charging was necessary. Then came the changeover to alternators, which basically are AC generators. Solid-state diodes are built inside the case to rectify the AC power.

Alternators will produce some charging power at idling speeds, without requiring any modification. Perhaps you need increased charging current at slower-than-idle RPMs (your letter didn't say how you wanted to use the modified alternator). If only slightly more charging current is needed, you could install a pulley of a smaller diameter on the alternator itself.

Give me more details about what result you want, and the uses for the increased current, and I'll try to give other answers. Or, perhaps another reader of Technical Notebook can supply a better answer. Write to me in care of Electronic Servicing.

Is The LED Lit?

Many optical couplers have an LED to furnish light and a light-sensitive transistor to detect the light. These couplers are installed inside light-tight enclosures. Therefore, you can't look at the LED to determine if it's lit.

As shown in Figure 8, each LED is operated through a current-limiting resistor from a voltage supply that has several times more voltage than is needed by the LED. The LED can be tested by the tendency toward regulation of the voltage across itself. Many LEDs are rated at 1.6 volts; therefore, a measurement of 1.4 to 1.7 volts across the LED leads proves the LED is emitting light.
Portable Digital Multimeter
The Leader Instrument Corporation's model LDM-851 digital multimeter features pushbutton selection of AC volts, DC volts, K-ohms, megohms, and DC milliamperes, plus a range button that provides semi-automatic high-range or low-range switching of the 16 ranges. Polarity indication for DC measurements is automatic.

A separate overrange indication is located near the 3½-digit LED display. Overload protection operates for all ranges. Power is provided by four internal "C" cells for portable operation, plus an optional AC adapter that's available at extra cost. Test leads are included, and model LDM-851 sells for less than $200.

Function Generator
B&K-Precision's model 3010 low-distortion function generator offers wide frequency coverage spanning 0.1 Hz to 1 MHz in six ranges, with each range providing a linear 100:1 frequency control. The unit generates sine, square, TTL square, and triangle waveforms.

A built-in TV-sync separator allows easier troubleshooting of video waveforms. Frame or line triggering is selected automatically by the scope in conjunction with the sweep speed setting. The calibrated time base helps to identify unknown frequencies. A fully regulated power supply provides stable voltages regardless of line and load fluctuations.

Price of the factory-assembled scope is $425.

Scope
EICO's new model 480 solid-state triggered-sweep oscilloscope was designed for testing TV receivers, and other electronic equipment. Model 480 has DC to 10 MHz vertical bandwidth, AC and DC coupling, 11-position calibrated attenuator, 10 mV/cm sensitivity, and pushbutton operation.

Features of these products were supplied by the manufacturers, and are listed at no charge to them. If you want factory bulletins, circle the corresponding number on the Reply Card, affix a stamp, list the required information, and mail the card.

WE'RE GROWING!

to better represent YOU
the successful service business operator.

*Over 2500 firms belong
*39 State Affiliates
*167 Local Associations

YOU CAN JOIN!
and learn how to make money and work less hours.

Write today for a membership application and more information.

1715 Expo Lane
Indianapolis, Indiana 46224
Phone (317) 241-8172
It's the one and only flat-rate increment system that gives you the great feeling of pricing every job right. A system that treats both customer and shop owner fairly. Fast finger-tabs in both editions: 6x9 Hard Cover, steel ring-bound - $19.95 ea. post pd.

New Computerized Parts Pricing manual lists over 3,500 most-used parts - $75 initial set-up plus $10 per copy.

P.O. Box 5234
Lincoln, NE 68505

My check enclosed

BankAmericard

Master Charge

Exp.

Exp.

Name

Co.

Address

City

State

71p

For More Details Circle (13) on Reply Card

ELECTRONIC SERVICING
Fuse Holder
A new coil-spring fuse holder by Oneida minimizes the need for the more expensive pig-tail fuses and the cutting and resoldering of pig-tail leads. The permanent device also does away with the need to pull a chassis or tuner for fuse replacement.

The fuse holder is constructed of tempered spring steel with dip-soldered leads. It comes five-pair package on dealer cards; it also is available in bulk for OEM use.

For More Details Circle (24) on Reply Card

Rectifiers
Electronic Devices has added a series of half-wave, high-voltage rectifiers designed for B&K and small-screen color television sets. The diodes are available with ratings of 22 KV, 30 KV and 35 KV. Average forward current is 2.2 milliamperes.

For More Details Circle (26) on Reply Card

Bolt Cutter
An improved bolt-and-rod cutter that will cut threaded fasteners to any desired length (down to 3/16") under the head is available from Sentinel Tool Works.

Bolts of sizes from #4 to 3/8" diameter can be cut off, for the cutter is said to be made of hardened tool steel which can be resharpened.

For More Details Circle (25) on Reply Card

Two mounting styles are available. Series TVS has end caps, and series TVSL has wire leads.

For More Details Circle (25) on Reply Card

Features of these products were supplied by the manufacturers, and are listed at no charge to them. If you want factory bulletins, circle the corresponding number on the Reply Card, affix a stamp, list the required information, and mail the card.
For Sale

TUNER SUB ONLY $19.95, wired, tested, complete with batteries and ready to use on tube or transistor sets. This unit is without knobs or cabinet but very compact with no wires or controls dangling. Easy to use, simply hook set's coax to sub and view picture (instructions provided). Only $19.95, we pay the shipping. This is not a gimmick. If not completely satisfied, return within 10 days for full refund. TEXAS TUNER SERVICE, 4210 N.E. 28th Street, Fort Worth, Texas 817/834-8201. 3-78-21

Business Opportunity

TELEVISION SALES SERVICE established twenty years major brands mid Ohio growing community. Modern store, central location, gross exceeds $100,000, Owner retiring, Principals Only, Electronic Servicing, Dept. 515, P.O. Box 12001, Overland Park, Kansas 66212 3-78-21

Education-Instruction

REPAIR TV TUNERS—High Earnings. Complete Course Details, 12 Repair Tricks, Many Plans, Two Lessons, all for $2 Refundable Frank Bocek, Box 3236 Enterprise, Redding, Calif. 96001 6-11-78

FCC 1st-2nd-3rd questions and answers. "Explanations" compiled from technical schools, colleges and avionics companies. $11.00, S. Magee, Box 26151, Los Angeles, California 90026 3-78-11
Test semiconductors without testing your patience.

The real value of using a semiconductor tester should be time savings. B&K-PRECISION semiconductor testers are designed for maximum speed and reliability to save you more time than any other testers. B&K-PRECISION semiconductor testers are proved as highly cost effective answers to the needs of testing discrete semiconductor devices. Recently, they were evaluated by America's best known manufacturer of expensive test instruments and the $310 Model 530 compared favorably with a $30,000 custom test system! B&K-PRECISION has a model for most every application.

The B&K-PRECISION Model 530 is one of the most versatile semiconductor testers available and can actually perform more tests on more devices than any instrument in its price class. Features include: Exclusive patented fT measurement circuit... Non-destructive breakdown voltage testing... Automatic lead and polarity identification, in- or out-of circuit... Measurement of beta and gm... Aural and visual test indications... Testing of new power FET's. CSA listed. $310

For value, the Model 520 industrial semiconductor tester is tough to beat. Dynapeak circuitry with high/low drive allows the 520B to work in-circuit where others won't... A complete test takes about 9 seconds... Identifies all leads of transistors and SCR's and polarity... CSA-listed version available... "Good device" indicated visualy and aurally. $175

At only $97, the Model 510 offers Dynapeak test method reliability with pocket-size portability... LED test result indicators... Tests all types of transistors, FET's and SCR's... Digital stability never needs calibration... Complete with case and leads. $97

When applications demand analysis of the characteristic curves of semiconductor devices, the B&K-PRECISION Model 501A is the cost-effective answer... Displays characteristic curves for all semiconductor devices on most any scope... Non-destructive breakdown voltage tests... Simulates actual operating conditions... Internal calibration source... Current limiting protects device under test. $198

Start testing semiconductors faster now. See your local distributor for immediate delivery.
Zenith's full line of antennas, featuring CHROMATENNA II with 18 ways you can count on for optimum picture quality!

Transmission Line Termination blends off static charges thru antenna system ground. Terminal stub improves front to back ratio on lower channels.

Aluminum Construction of all key metal parts works to eliminate rusting — provides long life. Golden-Color Alodine Finish is conductive—helps improve electrical performance?

High Impact Plastic Insulators double-lock each element to the boom for extra bracing and durability.

Corner Reflector Bracket improved with larger tabs. (Combination models only.)

Zenith Dipole on UHF. (Combination models only.)

VHF Cylindrical Directors provide extra signal boost on both low and high band VHF.

Loading Straps — metal plates close to first VHF element insulators provide compensation for Lo and Hi bands by tuning the first driven element with extra capacity.

Corner Reflector Bracket improved with larger tabs.

Wide-Spaced, Heavy-Duty Feed Lines help prevent snow from building up on lower elements.

Sleeved Elements of heavy-duty construction afford extra bracing and protection.

Hi-Bracket with angled ends for added strength.

Dual Isolator Bars insure no loss of UHF to VHF signal transfer. (Combination models only.)

Proximity Spaced Signal Balancer (7 elements) provides automatic impedance balancing and signal leveling on both Lo and high band channels. Improves Channel 7 pattern.

Electrically Matched Terminals With Stainless Steel Screws eliminates mismatch... protects against rusting, and provides positive electrical contact with improved no-strip stainless steel serrated washers for the take off terminals.

Strain Relief Insulator accommodates either 300-Ohm twin lead, Fonn lead or Coax downlead.

U-Bolt Mounting provides a larger clamping area, larger locking nut with teeth, an integral part assures a more rugged U-BOLT arrangement.

Optional Break-away UHF Wing Directors provide maximum gain of standard UHF channels with optional re-use of Hi UHF channels and translator frequencies when broken off. (Combination models only.)

Loading Straps — metal plates close to first VHF element insulators provide compensation for Lo and Hi bands by tuning the first driven element with extra capacity.

Zenith has quality do-it-yourself antenna kits — UHF only, VHF YAGI and Stereo FM antennas as well as a complete line of reception aid equipment. See your Zenith distributor for news of his exciting, money-making Spring programs and Catalog No. 902-1760!