ComputerCraft
THE PRACTICAL MAGAZINE FOR PERSONAL COMPUTERS & MICROCONTROLLERS
August 1993 $2.95
(Canada $3.95)

- New Windows Schematic & PCB Software
- Add Sound Effect To Your Projects
- "Key" Prevents Software/Hardware Piracy

How To Copy Internal BASIC-52 Into EPROM
Windows Compatibility And INI Files
Build A Quick And Dirty Data Interface
68HC11 Controller & Languages

Program it in C or
Program it in Basic or
Program it in FORTH or
Program it in Assembly

Low Cost Development Package: Controller + Languages + Manuals on disk included!

Package Price Breakthrough!

The NMIT-0020 Single Board Computer is perfect for dedicated controller with convenient interfaces for LCD displays and keypad. Intelligent LCD’s up to 2 lines by 80 characters and matrix keypads up to 4x5 can be used. The processor is the popular F68HC11 with many features, including SCI and SPI serial channels, 8-bit 8-ch. A/D, 20 available I/O lines, Watch Dog Timer, 1/2K EEPROM and Max-FORTH w/ Floating Point Package embedded in 12K internal ROM. SBC expands F68HC11 providing 3 28-pin JEDEC sockets for 8-32K RAMs, ROMs, EPROMs, EEPROMs, etc. RS-232 conversion supplied. Requires external regulated supply: 5V at ~30 mA. Based on NMIX-0020 board, so many features may be added as desired by the user (or by factory - call for details & prices).

Languages supplied on accessory disk: Small C, Basic, and Assembler. FORTH resident on chip (may be disabled). Languages come with manuals on disk. Communications utility, MAXTALK included to allow PC clone to act as terminal for download and development. WIPE utility included allows internal ROM, EEPROM, WDT to be enabled/disabled, and EEPROM to be erased. Manuals on disk: UM-MAX Max-FORTH Users Manual, HM-20 NMIX-0020 Hardware Manual, Small C manuals with examples, BASIC11E9 Manual.

NEW MICROs, INC.
1601 Chalk Hill Road
Dallas, Texas 75212
Tel: (214)-339-2204

CIRCLE NO. 73 ON FREE INFORMATION CARD

www.americanradiohistory.com
UPGRADING & ENHANCING

10 Build a Cybernetic Key
By Nick Goss
Protects your software and hardware from piracy.

34 Add "Bells and Whistles" to Your Projects
By Scott Edwards
How to spice up your projects with sound effects.

56 Adding Peripherals to Your PC
By Steven Sweet
Dealing with adding sound cards, CD-ROM drives, image scanners and other peripherals to your PC and insights on some new products you might want to add to your system.

61 Build a Quick and Dirty Data Interface
By John Kleinbauer
Uses a serial port to read into your computer analog and digital signals—without complicated and costly circuitry.

APPLICATIONS

16 Windows Compatibility and .INI Files
By Hardin Brothers
What you can do to custom-tailor the Windows environment to make it work best for you.

42 Designing Microcontroller Circuits, Part 2
By Jan Axelson
Project construction, testing and adding NV memory.

43 Special Bonus Section
By Jan Axelson
The 8086 family of microprocessors.

53 A Simple BASIC-52 Extractor
By W.K. McKellips
Copies an internal 8052AH-BASIC interpreter into EPROM for use with inexpensive 8032/8052 MPUs.

REVIEW

65 Low-Cost Video: Creative Labs' Video Blaster
By SF Sparrow

COLUMNS

68 Ted Needleman
Setting Up a Printer-Sharing Network; Playing With Chaos Theory Software; and an Image Scanner for an On-the-Road Office.

72 Joseph Desposito
Traceable Network-Ready

Microcontrollers, New Synthesizer Chip, GUI Accelerator, etc.

75 GUI Guts
By Yacco
Borland and WordPerfect Windows Suites.

88 Computer Games
By SF Sparrow
Arts and Leisure.

DEPARTMENTS

2 Editorial
By Art Salsberg
Choices.

3 Letters

4 What's Happening!
Latest PC News.

6 What's New!
By Peter R. O'Dell
A roundup of new computer and electronic products.

86 Advertisers Index

ON THE COVER: Today’s PC and software have dramatically changed how draftsmen go about drawing schematics and laying out pc-board artwork. Tsquares, templates, pens, tape and pad patterns are replaced by a lowly mouse and a PC with new programs that run under Windows that reduce steep learning curves, as reviewed in our Special Report article beginning on page 20.

Cover Photo by Larry Mulvehill
Choices

“When you have to make a choice and don’t make it, that in itself is a choice.” —William James.

Computer owners have a wide range of choices to make when either buying a machine or software and enhancing their systems. If you stick with an older model, it may well satisfy your limited needs or, perhaps, you can’t justify spending the additional money to move into the current PC world.

Upgrading isn’t necessarily cheap. For example, if you want to upgrade to a 486 system that typically would have a 120M hard drive and 8M of RAM from a 386 machine with a 40M drive and 2M of RAM, it’ll cost you around $1,100, according to the Microcomputer Managers Association. MMA further estimates that buying Windows software, the likely reason for such a change, would cost you about $835. Adding in networking hardware and software, and training, service and support if this is being done in a corporate environment, would cost another $2,000.

The Association offers a $50 64-page booklet that includes a Lotus 1-2-3 spreadsheet on-disk for anyone who wants to calculate upgrades from a DOS-based system to a Microsoft Windows one. Call MMA at 908-580-9091 in Warren, NJ for more information.

An upgrade move to OS/2 or Windows NT would cost much more, owing to their expansive memory requirements, which means a larger-storage-capacity hard drive and more user memory.

When it comes down to it, you’ll have to decide if the benefits of an upgrade warrant the expense, of course.

There are all sorts of other options for computer users to consider. Among the leading ones is the addition of a CD-ROM drive. More and more people are making this upgrade choice. Prices are expected to drop as sales volume, which hit $4-billion in 1992 for drives and titles, increases.

Once you narrow your enhancement choice to a particular function, a buying decision still isn’t easy because you hit a set of confusing options: access speed, Kodak Photo CD compatibility and data-transfer rate, among them. Then you’ll have to consider the likelihood of moving into multimedia audio, which is a natural adjunct to a CD-ROM addition. Here, you will again face a number of choices.

Then, again, maybe your work points to data acquisition, local area networking, large-screen high-resolution monitor, pen plotter, mobile notebook computer or other devices to meet your needs. The choices are wide ranging.

Work-at-home, travel and in-the-office equipment and software needs differ, too. So basically, you have to customize your requirements and make the best choices you can to obtain the most benefits from them.

It’s foolish, I think, to rush into buying new equipment and software just because it’s in vogue. After all, every time you turn around there’ll be new equipment and software that “everyone” should have because it’s the latest and greatest. I don’t. For example, I’m still waiting a while before upgrading to MS-DOS 6.0. I prefer to wait until the dust settles on reports from some people that their hard-disk data is being trashed while working with the new OS. Furthermore, I’m happy with my present software compression program (ITT), and so don’t need the one integrated into 6.0.

Windows 3.1 was another story. Version 3.0 was a dog. Still, more than half my programs are DOS versions. But all my new programs are Windows versions because the learning curve isn’t as steep with them as it is with DOS-version applications. Like most people, I weighed the benefits.
Foreign Correspondence
- Since I found ComputerCraft in a Hong Kong bookstore and think it is just the type of computer magazine I've been looking for. While other computer magazines talk about software and general issues, I believe that a lot of people like myself have more of a need for the type of hands-on information ComputerCraft provides. Therefore, please enter my subscription for three years.

N. Pratomo
People’s Republic of China

Wrong Identity
- Please note that the wrong photo accompanies the Intermatic “Side-Entry Surge Protectors” new product entry on page 84 of the February issue of ComputerCraft. Enclosed is the correct photo.

Mike Nikolich
Intermatic
Spring Grove, IL

Writer Boosters
- I have been reading Jan Axelson’s articles for about two years. I found many useful articles that help me in my daily job as Production Engineer where I work. One of my major duties on the job is to support the electronics production department, for which I design and build automatic test equipment for my company’s products.

I also read Hardin Brothers’ “Getting Started in C++” article in the July 1992 issue of ComputerCraft and found it to be very interesting and informative because I’m new to C programming and look forward to mastering it and ultimately moving on to C++. At present, I use Borland’s C++ 2.0 compiler and associated tools.

Robert D. Harris
Brownsville, TN

- I thoroughly enjoy your publication, especially Jan Axelson’s and Scott Edwards’ articles. ComputerCraft always has articles that are technically interesting and informative for do-it-yourselfers like me.

Daniel Derrow
Ft. Wayne, IN

Electronics Workbench
The electronics lab in a computer

"...you can do 10 times as many experiments with Electronics Workbench than you'd get done with the real stuff."
- Jerry Pournelle, Ph.D., Byte Magazine

Building and testing circuits is fast and easy with Electronics Workbench. Just click-and-drag with a mouse to add parts, run wires, and adjust instruments. The traces on the simulated instruments are the same as you'd get on real equipment.

DOS Professional Version – $299
DOS Personal Plus Version – $199
Macintosh Version – $199

Prices are in US dollars; Shipping $15. Offer valid in the USA and Canada only. Macintosh and DOS Personal Plus versions are in Macintosh only. All trademarks are the property of their respective owners.

Includes two independent modules:
- Analog Module with passive and active components including transistors, diodes, and op-amps; a function generator, an oscilloscope, a multimeter, and a Bode plotter.
- Digital Module with gates, flip-flops, adders, a word generator, a logic analyzer, and a unique logic converter and simulator.

Call 800-263-5552
Fax: (416) 368-5799
Interactive Image Technologies Ltd.
908 Niagara Falls Boulevard
North Tonawanda, NY 14120-2060

30-DAY MONEY BACK GUARANTEE

DOS and Macintosh versions available

Say You Saw It In ComputerCraft
LATEST OPERATING SYSTEMS. Both IBM and Microsoft announced new operating systems. IBM’s OS/2 2.1 adds enhancements that include seamless support for Microsoft Windows 3.1 such as Win 3.1 display and printer drivers, selected TrueType fonts, and launching OS/2 and DOS applications from a Windows application; 256-color SVGA device driver support; driver support for CD-ROM drives; Advanced Power Management support; PCMCIA card enabling; and MMFM/2 for multimedia applications. The long-awaited Windows NT is now at hand, too, with a May 24 debut. Let the battle be joined.

486 HAND-HELD PC WEIGHS 2.2 LB. Dauphin Technology (Lombard, IL) announced its Dauphin Desktop Replacement (DTR-1), a 486SLC-based hand-held computer with total DOS/Windows compatibility in a 2.2-lb. package. The $2,500 model has a mini keyboard, 6" back-lit VGA display, standard I/O ports, pen input and built-in communication capabilities that include an internal ethernet adapter and internal fax/modem. It measures about 9" x 5-1/2" x 1-1/4", and can be hooked up to a full-size keyboard and external SVGA monitor. An IDE port allows for use of an optional external hard drive. The unit is powered by an 8-hour battery pack.

COMPUTER LEARNING AIDS. NEC has devised a new way to teach basic principles of computer programming to children with a new system called "Algoblock." It’s a set of physical blocks that can be connected to one another manually to form a program, with each block corresponding to a program language command. Blocks are connected to a computer that executes the program, with results displayed on a monitor. Furthermore, each block has a lamp that flashes when a command is executed, enabling learners to trace programs. A debug mode allows tracing a program step by step. Popular Monarch Notes Study Guides are now available on floppy disk. They come in five volumes, covering Nineteenth and Twentieth Century literature ($49.95 each) and the complete works of Shakespeare ($59.95), which includes 25 study guides. Prices are about half that of printed book versions. The products are from the Bureau of Electronic Publishing, Parsippany, NJ., which also develops CD-ROM markets.

“TOUCHSURFACE” DEVELOPER KITS. Intelligent Music (518-434-4110) has TouchSurface developer kits available for $250 each for GUI and input control applications. Kits come as stand-alone pointing devices or as a panel-mounted pointing device components. Both draw power from a PC’s RS-232 serial port at less than 6 mA. The kit consists of a sensor that’s based on thick film resistive ink technology, a measurement circuit and a microcontroller. A Windows 3.0/3.1 device driver and control panel are included. An analog interface is optional. Position is sensed by pressure from either a finger or a stylus.

FAX FOR BBS’S. Galacticomm (Ft. Lauderdale, FL) unveiled an on-line fax add-on option for the Major BBS, providing system operators with a fax service for their users. The software is available directly from the company (800-328-1128). For an on-line demonstration, dial 305-583-7808 [N,8,1] with a modem.

NEW INK-JET PRINTER PAPER. Micro Format (Wheeling, IL) introduced a new paper product for use with ink-jet printers, named “Super Color.” It uses a special coating on one side of the sheet that captures the colored ink, preventing it from being absorbed into the paper grain. As a result, it’s said to provide a brightly colored image while using less ink. On the reverse side of each sheet, which is uncoated, is a shadow printing of the Super Color logo. Printing on this side, the image is dull with a washed-out appearance, according to the manufacturer.
There's no doubt about it: Businesses spend billions of dollars on personal computers each year, even more on PC service and support. That's why Department of Labor Statistics show skyrocketing employment opportunities for PC troubleshooters—people with the hands-on skill to diagnose system failures, replace damaged chips, retrieve lost data, or troubleshoot faulty disk drives and circuit boards.

Now with NRI, you can be one of the "in-the-know" when it comes to keeping today's PC systems running at peak performance. Only NRI gives you the computer, the software, and the PC troubleshooting skills to make a name for yourself in your present job, even start a money-making new career.

Your training includes a powerful AT-compatible computer system complete with 40 meg IDE hard drive

NRI training gives you a practical understanding of today's PCs, how they work, what can go wrong, and why. Best of all, you master state-of-the-art troubleshooting skills through hands-on training with a powerful AT-compatible computer, 40 meg IDE hard drive, and professional diagnostic hardware and software—PC Tools, R.A.C.E.R., and Quicktech—all yours to keep!

As you work with your computer and software, you learn how to localize PC problems, identify faulty components, recommend system configurations, and replace the damaged parts that cause PC system failures. Plus you get hands-on experience with the diagnostic tools used by the pros to keep systems up and running in today's PC-driven business world.

No previous experience necessary—only NRI gives you everything you need to succeed

NRI's step-by-step lessons and unique hands-on Discovery Learning projects prepare you completely for the real-world challenges of PC troubleshooting. Backed by the full support of your personal NRI instructor, you begin by covering important computer fundamentals—hardware and software essentials, system configurations, plus methods and procedures that show you how to localize PC problems to specific circuit boards or replaceable parts.

Then you move on to master vital PC system commands, using the MS-DOS software included in your course. You learn to resolve user error messages that commonly occur when working with spreadsheets, databases, word processors, and other PC applications. Then you take your skills further, discovering how to use DEBUG and assembly language programming to troubleshoot problems in PC operating systems and hardware. But that's not all...

Train with and keep today's top diagnostic and utilities software—PC Tools

With NRI training you get first-hand experience with professional diagnostic software that makes troubleshooting PCs easy and profitable. Using PC Tools—today's top utilities software package—you master skills that put you in command when it comes to retrieving lost data, handling disk drive failures, even correcting installation problems.

Quickly, you see how to use this state-of-the-art software for everything from hard disk backup to data recovery, disk and file management, even virus and memory loss protection. But that's still not all...

Get hands-on troubleshooting experience with in-demand diagnostic hardware and software from Ultra-X

With NRI, as with no other school, you get even more professional troubleshooting experience as you work with the Ultra-X R.A.C.E.R. plug-in diagnostic card and QuickTech menu-driven software. Through hands-on training with these state-of-the-art diagnostic tools, you actually discover for yourself how to test the system RAM and resolve problems that can occur with PC motherboards, parallel ports, video adapters, floppy disk drives, and more.

By the time you complete your course, you have every basic skill you need to diagnose PC system problems fast, efficiently, and economically. Plus you have the computer, the software, and the hands-on experience you need to start making money immediately as an NRI-trained PC troubleshooter.

Send for your FREE NRI catalog today

If the coupon is missing, write to NRI Schools, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

SEND TODAY FOR YOUR FREE NRI CATALOG!
New PC Diagnostic Version

Micro-Scope Version 5.0 from Micro 2000 is an operating-system-independent PC diagnostic software package that adds in excess of 125 enhancements and additions to the features that were provided in the earlier version. These include a unique ability to low-level reformat any IDE drive. It fully tests cache memory and the cache controller system. Memory testing enhancements include the ability to test system memory, even if a PC has system memory problems that make it impossible to load the program.

CIRCLE NO. 2 ON FREE CARD

Upgradeable PC With VESA Local Bus

Micro Express's MicroFLEX-VL is a powerful, low-cost VESA-standard local-bus PC that's been designed to be upgradeable from a 386DX/33 to a Pentium microprocessor. In addition to the entire range of Intel CPUs, MicroFLEX-VL accepts microprocessors from Cyrix and AMD and the 486DX/50 CPU. The system contains a local-bus video card that provides resolutions up to 1,280 x 1,024 pixels with high-color (32,768 colors) at up to 1,024 x 768, and true-color (6,416 million colors) at a resolution of 640 x 480.

A typical system contains 4M of RAM, 256K of cache RAM, a 120M hard drive, a 33-MHz 486 CPU, a VESA local-bus graphics card, 51//2" and 31//2" floppy drives, a 14" SVGA video monitor, a mouse, a keyboard, DOS 6.0 and Windows 3.1. $1,680 as described. Micro Express, 1801 Carnegie Ave., Santa Ana, CA 92705; tel.: 714-852-1400; fax: 714-852-1225.

CIRCLE NO. 3 ON FREE CARD

PC-Compatible SBC

The NMIX-0025 from New Micro is a PC-Code compatible V25-based CPU board for the 100-squared series. Features include: programmable interrupt controller; two DMA controller channels; three parallel ports; two asynchronous serial channels; eight-channel voltage comparator; timer/count; 16-bit timer; programmable wait-state generator; 1/4K RAM internal to the processor; 1M address space; 32-pin JEDEC memory sockets; flexible address decoding and socket assignments; battery backup for memory; and 44-pin JEDSTACK connector. This complete system is ready to run for dedicated applications. You need only supply an application program: $250. New Micros, Inc., 1601 Chalk Hill Rd., Dallas, TX 75212; tel.: 214-339-2204.

CIRCLE NO. 4 ON FREE CARD

PC Oscilloscope

CompuScope 1012 is a 10 mega-sample-per-second, 12-bit PC-based oscilloscope card that fits into any single available slot in an AT or better computer. Its 12-bit analog-to-digital conversion provides 16 times the vertical resolution achievable by eight-bit conversion. It comes with GageScope software that enables you to operate the card as though it were an actual oscilloscope, without writing a single line of code. The program allows you to store, analyze and print data.

Key features include 12-bit resolution, 10-MS/s sampling rate on two simultaneous channels, 65-dB dynamic range, 76K memory depth for one channel or 384K per channel for two channels, programmable gain input, self-calibration, programmable input coupling, internal or external trigger capability, software drivers and an ergonomic interface. $4,995. Gage Applied Sciences Inc., 5465 Vanden Aheele, Montreal, QB, Canada H4S 1S1; tel.: 514-337-6893; fax: 514-337-8411.

CIRCLE NO. 5 ON FREE CARD

Voice-Recognition Software

Covox's Voice Blaster is a software application that brings powerful voice-recognition capabilities to popular sound cards and keyboard-intensive applications. Designed to increase personal productivity by adding a voice-command interface that can be tied to keyboard and mouse macros, Voice Blaster operates on Intel-based personal computers running DOS and Windows 3.1 environments. The system includes a compact or newly-revised programs and utilities for recording, editing and playing back, as well as voice-annotation software that lets you add your own recorded messages to documents.

Installed as a TSR, the Voice Blaster program requires 21K of user RAM and a minimum of a 286 PC (a 386 or better PC is recommended). $120. Covox Inc. 675 Conner St., Eugene, OR 97402; tel.: 503-334-1271; fax: 503-342-1283.

CIRCLE NO. 6 ON FREE CARD

CMOS Backup

Knowsave from Tellerware reads data from your computer's power-on CMOS memory chip and stores it on a floppy disk, to be used later in an emergency. If the back-up battery in your computer goes dead, simply replace it (Knowsave even gives you instructions to do this) and restore the CMOS data from your "emergency disk." Knowsave monitors battery condition and warns you of imminent failure. $40. Tellerware, 1972 Ross Lane, Lansdale, PA 19446-5051; tel.: 215-368-5072.

CIRCLE NO. 7 ON FREE CARD

Computer-Controlled Home

Dynasty for Windows from Home Automation Laboratories (HAL) lets you create graphical pictures from a drawing program or scanned images and combine them with animated icons that represent lights, appliances and other control functions of your home's many subsystems. Special hardware...
interfaces connect your computer to the real world, using any of several communication technologies, all coordinated by the *Dynasty for Windows* software.

X-10 signals can be used to operate lights and appliances without any re-wiring because the signals travel along the ac wiring that already exists in your home. Wireless radio signals make it possible to have home security monitoring without the need to run new wires. Hard-wire connections are also available for garage doors, temperature and daylight measurement and telephone communication. $495. *Home Automation Laboratories*, 550 Highlands Pkwy. Ste. 404-438-2835.

This arcade style fitness program turns the seemingly endless minutes of exercise into a fun-filled adventure through an action-packed course. Along the way, you score points by avoiding obstacles, menacing characters and knocking over competitors. $159. *Computer Athlete Inc.*, 5193 Be Onywood Pl., Dublin, OH 43017; tel.: 614-319-6000; fax: 614-438-2835.

High-Tech Exercising

Computer Athlete’s *Exercitement!* software transforms ordinary exercise equipment into extraordinary fitness entertainment centers by simply attaching the adjustable button straps and aligning a infrared light sensor. Your exercise rate and aligning movement! Exercising High-Tech

What’s New!

Paragon’s *DarkStar* is an entirely graphics-based BBS platform for IBM/compatible computers that offers an array of features that aren’t available under current ANSI-based technology. When connected via *CommLink*, a companion communications program, *DarkStar* provides real time PCX and GIF images, icons and MOD digital audio to the terminal driven by an intuitive multimedia interface. Mouse and touchscreen support are included.

DarkStar utilizes selective caching methods on the terminal side to permit a 2,400-bps user access to unchanged screens and menus on the BBS, at speeds approaching a 115, 200-bps throughput. $149. *Paragon Technologies*, 2409 Dogwood, Rogers, AR 72756; tel.: 501-631-9806; fax: 501-631-5976.

Graphics BBS Program

Miniature Lightning Suppressor

Telebyke’s new Model 29 single-stage lightning suppressor is compatible with COM ports on all 286/386/486-based PCs that use RS-232 and RS-422 serial interfaces. It protects ports that support long cable runs that are subject to close-proximity lightning strikes. It installs between the serial data cable and DB-9 data port. The power-handling capability of each line is rated at 600 watts peak pulse.

The Model 29 uses nine avalanche diodes that react in less than 2 ns to the active suppression devices. All diodes are avalance diodes that react in less than 2 ns to the active suppression devices. All diodes are...
DOS 6.0 Books

Dan Gookin's Guide To Underground DOS 6.0
By Dan Gookin (Bantam Computer Books. Soft cover. 409 pages. $24.95)
If you're looking for a guide to DOS 6.0, forget this book. Virtually nothing in it is specific to DOS 6.0. But if you're looking for a good guide to the inner workings of any recent version of DOS, be sure to give it serious consideration. This book isn't dedicated to the undocumented aspects of DOS, just those poorly-documented ones that can turn an appliance operator into a power user.

This book is divided into three parts: Part I contains general information about how the PC works, how DOS works and how you can maximize your use of the other two. Chapter 1 provides a detailed look at what happens when a computer is booted, both a cold and warm boot. What CONFIG.SYS is and how it works is covered in the Chapter 2, while COMMAND.COM is dissected in Chapter 3 and Chapter 4 takes a detailed look at AUTOEXEC.BAT. Chapter 5 delves into the mysteries of DOS "Devices." Chapter 6 is dedicated to the keyboard, ANSI.SYS, and DOSKEY.

Part II offers an introduction to using DEBUG and gives you training on the finer points of DEBUG operations. Chapters 7 and 8 deal directly with DEBUG and the hex number system. PC memory topics are covered in Chapters 9 and 10, while chapter 11 deals with disks and DEBUG. The microprocessor is examined in Chapters 12 and 13.

Part III is an advanced course in exploring the inner workings of the PC—what was once called hacking, before that word became synonymous with telecommunications criminals. Chapters 14 and 15 are devoted to exotic memory topics. Disks and files are covered in Chapter 16, while Chapter 17 is devoted to file editing with DEBUG. Finally, Chapter 18 teaches you how to program in DEBUG.

It's unfortunate that the publisher felt the need to tie this book to the new version of DOS with a misleading title. This book will stand on its own, both technically and for a "readability." If there's any justice in the marketplace, this book should be a runaway best seller.

DOS 6.0 Handbook
By Jim Nimmersheim (Bantam Computer Books. Soft cover. 572 pages. $27.95)
In this new revision of the author's earlier series of books on DOS, Part I is a tutorial on the workings of DOS that's basic enough for the novice computer user but detailed enough to be useful to, say, the intermediate DOS user. Chapters 1 and 2 contain introductory material to DOS. Working with disks is covered in Chapter 3, while directories and files are the topics of Chapters 4 and 5, respectively. Chapter 6 covers devices and drivers. Fine tuning the system is the topic of the seventh chapter. The new MSBACKUP utility is detailed in Chapter 8, along with mention of BACKUP and RESTORE from earlier DOS versions. Chapter 9 is devoted to batch files, with emphasis on how to use and write them. Finally, Chapter 10 delves into the new features of DOS 6.0, particularly DEFRAG and DBLSpace.

Part II consists of a DOS command reference section. The author's writing style makes this section particularly clear and easy to read and understand, even for the more-obscure DOS commands. More than half of this book is taken up by this Part. Two appendices that deal with installation and the DOS Shell round out this volume.

Given the paucity of support documentation that Microsoft supplies with DOS 6.0, you'll probably want one or more DOS reference texts available. This volume should be among those you consider for your bookshelf.

What's New!

Multi-Platform WYSIWYG Publishing Package
Wiz/Word 3.0 for Windows
Version 2.0 from Atlantic Design Systems is a drawing tool that lets you add intelligence to your diagrams. Unlike simple vector images, Diagrammer's objects know how they relate to other objects, other diagrams and data generated by other applications. Diagrammer uses this knowledge to automatically maintain object connections, notes attached to shapes, hierarchical links between diagrams and OLE links to other applications. These capabilities, combined with the program's flexible drawing tools, make it easy to create flowcharts and a wide variety of other business and technical illustrations. $295. Atlantic Design Systems, 77 Sprucewood Dr., Giltford, NH 03246; tel.: 603-524-2943; fax: 603-524-3637.

CIRCLE NO. 12 ON FREE CARD

Intelligent Diagrams
ADS Diagrammer for Windows
Version 2.0 from Atlantic Design Systems is a drawing tool that lets you add intelligence to your diagrams. Unlike simple vector images, Diagrammer's objects know how they relate to other objects, other diagrams and data generated by other applications. Diagrammer uses this knowledge to automatically maintain object connections, notes attached to shapes, hierarchical links between diagrams and OLE links to other applications. These capabilities, combined with the program's flexible drawing tools, make it easy to create flowcharts and a wide variety of other business and technical illustrations. $295. Atlantic Design Systems, 77 Sprucewood Dr., Giltford, NH 03246; tel.: 603-524-2943; fax: 603-524-3637.

CIRCLE NO. 11 ON FREE CARD

Low-Cost Video Output
Print To Video from VideoLinx is a Genlock-Overlay-Encoder designed specifically for applications where conversion of computer graphics into high-quality NTSC video is essential. Animations, titles, presentations, etc., can be effortlessly converted to NTSC video because Print To Video is totally transparent to your system's hardware and software. With up to 262,000 simultaneous colors available at a resolution of 640 x 480 pixels, Print To Video exceeds the color limits imposed by feature-connector-based encoders. What sets the Print To Video apart from similar products is its 100% hardware and software compatibility and studio-quality video.

Print To Video is claimed to work with any VGA card at any color resolution. $595/ $695, bus board/stand-alone. VideoLinx, Inc., 987 University Ave., Ste. 10, Los Gatos, CA 95030; tel.: 408-395-9593; fax: 408-395-9594.

CIRCLE NO. 13 ON FREE CARD

Multi-Platform WYSIWYG Publishing Package

Wiz/Word 3.0 for Windows
Publishing Package

Wiz/Word 3.0 for Windows from MEC is a multi-platform publishing product that combines Wiz/Word document processing, Wiz/Draw object-oriented drawing, Wiz/Plot plotting, Wiz/Text equation editing and both text and graphics filters. Because Wiz/Word has identical file formats
across all supported platforms, it’s claimed to offer complete interoperability among supported platforms.

Topping the list of enhancements is WiziTeX, a powerful WYSIWYG equation, which is based on TeX the mark-up language developed by Donald Knuth. You can create equations by pointing and clicking on symbols and icons or by typing in the TeX language. Using the split-screen option, the visual equation is displayed above while the TeX language is shown below.

WiziWord 3.0 also has a full-function list processor for personal databases and mailing lists. $595. MEC, 2500 W. Higgins Rd. Ste 950, Hoffman Estates, IL 60195; tel.: 708-882-0111; fax: 708-882-8397.

CIRCLE NO. 14 ON FREE CARD

Parallel-Port Voltage Meter

The Model ADIO10 parallel-port voltage meter from B&B Electronics has eight analog inputs with a range of from -5 to +5 volts dc. Its conversion time is rated at less than 5 s per channel. Plugging into a computer via its parallel port, this unit is claimed to have the speed, resolution and flexibility required for use in lab experiments and with various sensors and potentiometers.

The ADIO10 can operate in three modes: Single Ended, Differential and Psuedo Differential. In Single-Ended mode, its eight input channels are converted with respect to a reference. In Differential mode, the inputs are grouped into pairs, and the voltages are converted with respect to each other. All inputs are converted with respect to a single input in Psuedo Differential mode.

The unit comes with a manual and program disk. It measures 3.8" x 2.4" x 0.9" and features 10-bit resolution. B&B Electronics, 4000 Baker Rd., PO Box 1040, Ottawa, IL 61350; tel.: 815-434-0846; fax: 815-434-7094.

CIRCLE NO. 15 ON FREE CARD

Windows HiJaak

HiJaak PRO 2.0 is an upgrade of Inset Systems' graphics management program for Windows. It lets you view, convert, capture, enhance and print graphic images in the Windows environment. Significant portions of the previous version of HiJaak for Windows were rewritten with performance in mind. A summary of new features includes: performance increases in the speed of file loading, zooming and scrolling; an improved user interface as a result of usability tests conducted by an independent laboratory; new graphics format support for Photo CD, JPEG, TIFF 6.0, ED5, GED and Sun raster; transparent import of more than 70 graphics formats into most major applications through compliance with the Aldus Graphics Import Filter specifications and the WordPerfect for Windows API; TWAIN support for scanner and electronic-camera image devices; a HiJaak Browser preview that automatically keeps track of image files; and free color metallic clipart from a leading clipart vendor. $169/ free upgrade for HiJaak For Windows registered users. Inset Systems, 71 Commerce Dr., Brookfield, CT 06804-3405; tel.: 203-740-2400; fax: 203-775-564.

CIRCLE NO. 16 ON FREE CARD

TouchMate Driver For DOS

Visage has a new DOS driver for its TouchMate, a computer peripheral that turns any PC monitor into a touch screen. It works with any mouse-driven DOS program. Previously.

(Continued on page 79)
Build a Cybernetic Key

Protects your software and hardware from piracy

You've just developed proprietary software or hardware. Now you want to protect it from unauthorized use. At this juncture, you have several commercial options from which to choose. However, if true security is what you're after, you need look no further than the build-it-yourself Cyber Key I'll describe in these pages. By attaching this simple, inexpensive device to a serial port on your computer, you can limit and deny access to any or all of your programs to unauthorized users. In addition to providing this "lock-and-key" function, you can use Cyber Key as a data-stream encryption/decryption device and serial protocol converter.

You might be wondering why you should choose to build a cybernetic security device like Cyber Key rather than simply purchasing one of the dozens of similar such products you may have seen advertised. If you opt for a commercially available hardware key, you're almost certain to discover in short order that it's nothing more than a ROM or EPROM that contains some programming code critical to the operation of the software or hardware it's designed to protect. Cyber Key goes far beyond this basic arrangement. Because it's intelligent, you can use a Cyber Key in several ways that aren't possible with commercial security devices. Let's look at a few of these:

- Connecting Cyber Key to a serial port on your computer in series with a serial peripheral like a modem, printer or plotter, provides security protection for your proprietary software or hardware.
- You can access Cyber Key from within BASIC, C and assembler programs, or with TSR and "hot-key" routines.
- With Cyber Key, you even get on-the-fly data-encryption functions similar to the DES (Data Encryption Standard) protocol.
- Use Cyber Key to automatically generate CRC (cyclic redundancy check) and FEC (forward error correction) codes (BCH or Reed/Solomon) for use with long-distance and wide-area data-communication networks.
- Use Cyber Key as a serial protocol converter to translate control codes originally designed to work with one printer or plotter to a different format.

As you can see from the foregoing, Cyber Key could prove to be very useful to you, whether you use it in a commercial setting or simply to experiment with around your lab.

About the Circuit

Cyber Key actually consists of two separate circuit sections, identified as the Interface and Processor cards. The schematic diagram for the complete circuitry is shown in Fig. 1. (The separate Interface and Processor sections are easier to visualize by referring momentarily to Fig. 3.)

As its name implies, the Interface Card provides direct-connect access to RS-232C data lines. The Processor Card controls the flow of data across the interface. In most instances, Cyber Key monitors the flow of data to and from the serial peripheral and monitors for certain "key" commands. Once issued by the host computer, these commands trigger Cyber Key to either intercept and modify the data stream flowing to and from the peripheral or to supply data directly to the peripheral or host computer.

My favorite application for this project is a scheme in which the control program I wish to secure receives critical portions of its execution code directly from Cyber Key on a need-to-know basis. This technique can make the software being protected extremely difficult to "hack" because the cybernetic exchange process is dynamic and depends heavily upon the execution stream of the program itself. When you couple this with the fact that Cyber Key's processor has an internal security bit that, once set, inhibits access to its internal program, you can develop a very secure execution environment for your program.

In the Fig. 1 circuit, MAX232 interface U3 is converts the RS-232C signal levels that swing between +12 and -12
Fig. 1. Complete schematic diagram of Cyber Key circuitry. Note that it consists of two parts: Interface and Processor sections.
The standard crystal associated oscillator circuitry. Processor signals are between ±5 volts into TTL levels that swing between 0 and +5 volts. As the various signals are converted from RS-232 to TTL levels, U4 intercepts them and allows processor U1 to monitor and control the flow of data.

MC68HC705C8P microcontroller U1 is crystal controlled by X1 and associated oscillator circuitry. A 4-MHz crystal is used to synchronize the standard RS-232C baud rates to and from the host computer and peripheral.

Eight position DIP switch S1, connected to pins 21 through 28 of U1 through SIP pull-up resistor pack R2, provides the means by which you input a serial number or ID code directly into U1. Power-on reset circuit operation is controlled by the RC action of R3 and C3, that have values of 10,000 ohms and 10-F, respectively. Regulated +5 volts is supplied to U1, U3 and U4 from fixed 78L05 voltage regulator U2.

Data arriving from the host computer at pin 2 of DB-25 serial connector P3 is monitored and controlled by pins 29 and 4 through 7. Throughput data is routed out via pin 2 of P4 to the peripheral device. Similarly, data received from the peripheral device is monitored and controlled by pins 8 through 11 of U1. Incoming data is routed through pin 3 of DB-25 connector P3.

It’s important to keep in mind that not all RS-232C equipment is configured in the same manner. In some cases, you’ll have to reverse pins 2 and 3, depending on whether the peripheral being used is a modem or printer/plotter. To further complicate matters, computer serial cards can follow either of the two conventions. To use Cyber Key with the various formats, just remember to keep data inputs from your computer connected to pin 2 of P3 and the outputs to the peripheral connected to pin 2 of P4.

You can use Cyber Key by itself, without an external peripheral attached to it. In such “security” applications, simply connect Cyber Key via P3 and leave connector P4 open.

Construction

Begin construction by fabricating the
Collimator Pen
Output: 2.5 mW (max. 2). Current: 90-150 mA
STOCK#: 1 9 10-24 25+
918/354 49.99 49.99 43.99

Collimating Lens
Block encased aluminum ball. Glass lens with 7.5mm focal length. Fix from lens
Balloons with lens. Easy to focus, and install.
STOCK#: 1 9 10-24 25+
553/848 44.99 53.24 7 37

Dual Mode Laser Pointer
Weight less than 2 oz.; 0.5" dia. x 6.25" long
Wt. 633m. (red) Output: 0.5 mw - 3 mw (see chart)
Switch from continuous to pulse mode. Uses 2 AAA batteries (incl. 1-year warranty). STOCK#: 1 9 10-24 25+
2F235 189.99 189.99 170.70

He-Ne Laser Tube
Wt. 633m. (red) Output: 0.5 mw - 3 mw (see chart)
Switch from continuous to pulse mode. Uses 2 AAA batteries (incl. 1-year warranty).
STOCK#: 1 9 10-24 25+
1F220 65.99 65.99 59.94

He-Ne Laser Pointer
7.2" x 1/4" W x 2.2" H. Weight just 12 oz.
Wt. 632m. (red) (1-20 mw) (from beam)
Engraved on SAV: 12 VDC connections. Inc. batteries, power guide, & 1-year warranty.
STOCK#: 1 9 10-24 25+
1FL200 199.99 199.99 179.99

Laser Pointer
Just 0.75" dia. x 5.25" long. 670m. (red) 2.5 mW
Just 0.75" dia. x 5.25" long. Weight less than 3 oz.
Wt. 670m. (red) 2.5 mW. Batteries included. Inc.; 1-year warranty.
STOCK#: 1 9 10-24 25+
ESPOINTER 39.99 39.99 36.70

Protopboard Design Station
Includes expanded instruction manual, breadboard, and power supply.
For setting/diagram/microprocessor circuit. Frequency and function generators, variable outputs.
Logic indicators, speaker & more. Size: 11.5" x 16" x 6.5" H.
Weight: 7 pounds.
STOCK#: 1 9 10-24 25+
PB303 278.99 279.99 276.49

1/4-Ton IDC Bench Assembly Press
Routings双手同时并肩，手部的螺丝刀
Changing pliers/cutting accessories. Additional accessories available.
Weight: 5.5 lbs.
1/4" x 0.75" x 0.9"
STOCK#: 1 9 10-24 25+
P4655 149.99 149.99 129.24

16 More Reasons
To Believe In Unicorn

PLUS

Low Prices
Super Selection
Prompt Service
FREE Shipping*
Call Toll Free
(800) 824-3432

Economy Laser Pointer
0.75" dia. x 5.1" long. Weight less than 3 oz.
Wt. 633m. (red) 2.5 mW. Batteries included. Inc.; 1-year warranty.
STOCK#: 1 9 10-24 25+
EM100 99.99 99.99 77.14

WAO II Programmable Robotic Kit
Programmable directly via attached keyboard.
Per-assembly drive with 304x graphics. 300x4 bin RAM and PC ROM included.
Uses 3 AAA batteries (not included).
Optional Apple computer interface kit includes software, cable, card accessories.
STOCK#: 1 9 10-24 25+
30/651 79.99 79.99 68.39

Laser Diode Module
Comes with collimating curve and laser electronics.
Wt. 665-685m. (red) 1, 2, or 3 mW
Adjustable vertical length. Green: 532 P.C.
Compact size: 0.64" dia. x 2.4" long.
STOCK#: 1 9 10-24 25+
EM315 3.50 3.50 2.99
EM316 1.97 1.97 1.72
EM317 1.97 1.97 1.39
EM318 1.97 1.97 1.12

EPROMS
In stock: 155/230V
Output: Out: 5V x 25A, 12V x 1A, 12V x 0.5A
Size: 1" x 1.5" x 2 5/8" H
STOCK#: 1 9 10-24 25+
1F1003 18.99 18.99 17.04
1F1004 28.99 28.99 18.54
1F1005 38.99 38.99 32.94

AM/FM Radio Kit
Includes everything listed.
Size: 11.5" x 8.5" x 2 5/8" P.C. soundboard.
Superheterodyne receiver.
STOCK#: 1 9 10-24 25+
AM1100 29.99 29.99 25.64

Order Line — (800) 824-3432
International Orders — (818) 341-8833
Fax Orders — (818) 998-7975
Technical Support — (818) 341-8833

10010 Canoga Avenue, Unit B-8
Chatsworth, CA 91311

CIRCLE NO. 82 ON FREE INFORMATION CARD

*FREE Shipping On Pre-Paid Orders
Delivered In The Continental United States

www.americanradiohistory.com
two printed-circuit boards you need, using the actual-size etching-and-drilling guides shown in Fig. 2. If you prefer to avoid having to fabricate your own pc boards, you can purchase ready-to-wire ones from the source given in the Note at the end of the Parts List.

Assuming you do fabricate your own boards, when they're ready, drill the various holes in the jumper and IC mounting pads using a No. 68 bit, and use a No. 62 bit to drill the holes for connectors P1 through P4.

When your board is ready to be populated, refer to Fig. 3 and install and solder into place strip connectors P1 and P2, followed by connectors P3 and P4. Then install and solder into place the various resistors, capacitors, crystal X1 and regulator U2. Make certain that the electrolytic capacitors are properly polarized and that the regulator is properly based before soldering their leads and pins into place.

You may want to use sockets for the DIP ICs. If you go this route, be sure that they're high-quality gold-plated pin sockets with machined pins. These may be more expensive than commonly available stamped-out and tin-plated
sockets, but the machining and gold plating are your assurance of long-term reliability. Don't plug the DIP ICs into their respective sockets until you've performed preliminary tests and are certain that everything is okay.

Double-check your work frequently when installing the various components. Referring back to Fig. 1, note that pins 16 through 20 of P1 and pins 16 through 20 of P2 can either be jumpered together or "passed-through," depending upon the particular application you have in mind. Connecting together pins 17 through 20 of P2 forces the host computer's serial port to ignore the various handshake lines that are often used in conjunction with the RS-232C standard. Similarly, you can use pins 17 through 20 of P1 to achieve the same effect on the peripheral.

Notice in both wiring diagrams in Fig. 3 that a few jumper wires must be installed on both circuit-board assemblies. These are indicated by solid lines on the drawings. You can use any type of solid wire for these jumpers, including cut-off component leads.

Finally, connect the 9-volt dc power-supply module to the +5V and GND points indicated on the Interface Card diagram in Fig. 2. Make certain that you connect the power supply in proper polarity. Use a dc voltmeter or a multi-meter set to the dc-volts function to determine which lead of the power-supply cable is positive and which is negative before soldering them to the pc board! If you wire the power supply into the circuit in reverse polarity, you're certain to destroy one or more components when you power up the system.

With no DIP ICs plugged into the U1, U3 and U4 sockets, clip the common lead of your meter to any point in the circuit that's supposed to be at ground potential and power up. Then touch the "hot" meter probe to pin 40 of the U1 socket, pin 16 of the U3 socket and pin 14 of the U4 socket and note the reading you obtain in each location. If you don't obtain a +5-volt reading in all three cases, power down and correct the problem before proceeding.

Once you're satisfied that all is well, you can proceed to final assembly. Power down and plug the DIP ICs into their various sockets. Make sure each is properly oriented and that no pins overlap the sockets or fold under between ICs and sockets.

If you wish, you can mount Cyber Key inside a protective enclosure. You can use any type of enclosure that will conformably accommodate the circuit-board assemblies and provide means for accessing the outside world. If you wish to avoid having to machine a standard instrument or project enclosure, you can purchase a professional custom enclosure from the source given in the Note at the end of the Parts List.

Programming Considerations

When you've finished building and checking out your Cyber Key, you must program microcontroller U1 to get the system to respond properly. For programming, I recommend using the Cyber HC5 Development System detailed in the July 1992 issue of ComputerCraft. An inexpensive Development System kit is available from the source given in the Note at the end of the Parts List and is necessary to create the program you'll be using in your Cyber Key.

Begin the code-development process by determining your program requirements. Use your imagination here to take full advantage of the various features associated with the MC68HC705C8 family. With on-board SCI (serial communications interface), watchdog/timer circuits, security bits, etc., the 705C8 can be powerfully configured via proper programming.

If you plan to use Cyber Key from BASIC, simply configure your serial port as you would for any peripheral. Standard RS-232C drivers are available in the C language libraries, and many routines exist for PC-based assemblers. I use a Cyber Key in conjunction with a program called VIA 2.0, a package that's perfect for creating custom hotkey and TSR routines used with this project. (VIA 2.0 is available from Portable Computing Systems, Inc., P.O. Box 870755, Dallas, TX 75287; tel.: 800-749-4917.)

There are any number of good books dedicated to serial-communication protocols that probably be of interest to you. One of my favorite titles for RS-232C interfacing is RS-232 Made Easy by Martin D. Seyer and published by Prentice Hall publisher. Using this book, you can quickly determine which configurations will work best for your particular Cyber Key application.

If FEC codes interest you, check-out Error-Control Techniques for Digital Communications by Arnold M. Michelson and Allen H. Levesque and published by John Wiley & Sons. This book will bring you up to speed on my personal favorite, the Bose-Chaudhuri-Hocquenghem (BCH) codes that are often used in WANS. Variations on the different types of polynomial-based encode/decode schemes make excellent encryption mechanisms for Cyber Key.

Once you've structured your Cyber Key program, simply use the MC68HC705C8 assembler that comes with the Cyber HC5 Development System to create the .S19 file needed to program the '705C8. After downloading the file and programming U1, you'll be ready to use Cyber Key on any PC/compatible computer (or any other computer, SBC or microcontroller that has a standard RS-232C interface).

By carefully structuring your software/hardware "lock-and-key" system, you can keep your customers honest by locking-out unauthorized users and prevent the unauthorized copying of your program. Placing critical task-specific code for your program in the Cyber Key itself, you can foil even the best software pirates. The critical "holes" left in your application can be filled with only the code residing in Cyber Key itself. Furthermore, the Cyber Key ID number (entered via eight-position DIP switch S1) must match the serial number of the software released to a particular customer. Without the correct ID code match, Cyber Key will upload "gibberish" only and crash your application. I personally like the security-bit feature of the MC68HC705C8 family because it locks out would-be pirates at the hardware level.

If you use your imagination, you're likely to find several, if not dozens of, ways to let your new Cyber Key serve you in unique ways. If you're a software developer, this project can give you the security of knowing that would-be pirates are kept at bay.

Nick Goss

Say You Saw It In ComputerCraft August 1993 / COMPUTERCRAFT / 15
Windows Compatibility and .INI Files

What you can do to custom-tailor the Windows environment to make it work best for your equipment and computing habits

I hate to admit it, but I was ready to give up. If Microsoft Windows locked up once more, I was going to erase it and all Windows applications from my computer and just stick with DOS. Or maybe I'd buy a Macintosh and dump both DOS and Windows.

Judging from the mail and phone calls I receive, my frustration isn't at all unusual. But millions of people use Windows every day without the problems I faced. If I had been running unusual programs under either DOS or Windows, I might have accepted the lockups with a sense of humor, but millions of people are running the same programs I use and never have their computers lock up at all!

There can be little doubt that Windows is both a complex and an extremely flexible operating environment. Version 3.1 can run on AT-compatible, 386 and 486 computers; computers that are strictly IBM compatibles and those that are "pretty much" compatible. It runs on computers with ISA, EISA and MCA buses and on machines that have MFM, RLL, ESDI, IDE and SCSI hard drives. Windows can use EGA, VGA and super-VGA video adapters, local-bus and normal bus video and hard-drive interfaces; extended or expanded memory; and a wide range of DOS versions, including those developed by manufacturers other than Microsoft. In other words, Windows can adapt itself to a huge range of host environments. Once adaptation is complete, Windows applications (including Program Manager and File Manager) can generally go about their business without worrying about the particular hardware and software you happen to be using.

Setting Options

Windows' success is based, in large part, on its ability to isolate the peculiarities of the computer system from each application. It adjusts to your system in two ways. First, Windows can sense automatically some of the information it needs about your system. Some of the sensing occurs when you install Windows, and other automatic sensing occurs each time you start Windows from DOS.

Though automatic sensing is great, it isn't enough. You're also responsible for telling Windows about your system and your own preferences. After all, Windows can't sense what colors you want to use, the kinds of printers that are attached to your computer or whether you want Windows to display messages in English, French Canadian or Icelandic.

You can set many of your preferences by running the Control Panel applet that's shipped with Windows (or running CONTROL.EXE from the Windows subdirectory). Each time you select a new option with the Control Panel, it's recorded for later use. Generally speaking, any changes you make are recorded in one of three files: WIN.INI, SYSTEM.INI or CONTROL.INI. Together, these files are Windows' equivalent of your DOS CONFIG.SYS file. If you make enough changes to these files, or to the related files called PROGMAN.INI and WINFILE.INI, you can change the whole operation and feel of Windows, as well as tune it to run as efficiently as possible on your computer.

The PROGMAN.INI file controls the Windows Program Manager, while WINFILE.INI controls the File Manager shipped with Windows. You may find other .INI files in your Windows directory or scattered around your hard disk that are used by specific applications programs. My hard drive, for example, contains 58 different .INI files, with sizes that range from 0 to more than 14,000 bytes. These files select options and control the performance of both DOS and Windows applications.

There's almost no information about .INI files in the printed documentation supplied with Windows. But there are two lengthy files in the Windows directory named WIN.INI.WRI and SYSINL.WRI. If you're having any difficulties with Windows, or if you want to tune Windows to run faster, these files will get you started.

Because both WIN.INI and SYSTEM.INI are standard text files, you can view and change them with any ASCII editor. The DOS EDIT utility and

Optional Options in the CONTROL.INI file are set by the Control Panel. It has up to the nine sections shown.

- [Current] Contains the name of the current color scheme
- [Color Schemes] Lists the defined color schemes
- [Custom Colors] Lists the 16 available custom colors
- [Patterns] Lists bitmap patterns for the desktop
- [MMCP] Defines the control panel window
- [ScreenSaver] One section for each name
- [Drivers.Desc] Descriptions of multimedia drivers
- [Userinstallable.drivers] Defines multimedia drivers
- [Installed] Windows version and printers installed
Say You Saw It In ComputerCraft

August 1993 / COMPUTERCRAFT / 17

PROGMAN.INI controls the Program Manager in Windows. It has the three sections shown here.

Windows Notepad applet are good choices for changing these files, but one of the earliest editors to use is a "hidden" Windows applet called Sysedit. You can run Sysedit by selecting File and then Run from the Program Manager menus and typing Sysedit, or by simply clicking on Sysedit.exe from the File Manager. If you find you're using Sysedit often, you can add it and its icon to one of the groups in the Program Manager.

When Sysedit runs, it loads the four essential boot-up files—CONFIG.SYS, AUTOEXEC.BAT, WIN.INI, and SYSTEM.INI—into four editing windows. You can search these windows, make any changes you wish and save any changes you do make back to your hard disk. Unfortunately, Sysedit doesn't let you save backup copies of the files before you make changes. Thus, never, ever edit any of these files without making sure you have backups available. Although trouble is rare, an error in CONFIG.SYS or AUTOEXEC.BAT can lock up your computer when you boot up. Make sure you always have an emergency boot-up floppy disk before you change either file. And an error in one of the Windows .INI files can keep Windows from loading and installing itself, perhaps locking up your computer when you try to run Windows.

Once you have backups of all four files, Sysedit is perfectly safe to use. However, if you make changes to either of the .INI files, you'll have to leave Windows completely and restart it before the changes you made take effect. This process is similar to re-booting after you make changes to your DOS configuration files.

Making Changes

All text-based .INI files have the same format. Most files, including WIN.INI and SYSTEM.INI, are divided into sections. Each section begins with a section name in square brackets. Blank lines, which are ignored, can be used to separate sections and make a file easier to read. And you can add comments to the file by starting a comment line with a semicolon.

Inside each section, individual options are set with lines that have the form keyname=value. Keyname can be any combination of letters and digits and should be followed immediately by the equality sign (=) and the value without any intervening spaces. Some values in SYSTEM.INI are boolean, which means that they can be written as 1 or 0, true or false, on or off, or yes or no. You can choose whichever set of values makes the most sense to you.

If you can't find settings in the on-line documentation that overcome an incompatibility on your computer, or that let Windows run as fast as you would like it to, you can order a more-complete set of documentation for the .INI files from Microsoft. The Microsoft Windows Resource Kit costs $20 and includes a technical reference manual and a collection of utility programs.

Another way you can obtain information about the options in the Windows .INI files is by using a nifty utility program called WinSense from SoftLogic Solutions, Inc. This program keeps automatic backups of your .INI files as it makes changes and lets you revert to an earlier version from either the DOS command line or within Windows. More importantly, it has explanations of more than 350 possible entries in the .INI files and what each one does. The extensive help file that accompanies the program contains 75 essays about Windows and general computer terms, along with a detailed glossary.

The best feature of WinSense for most users is that it makes extensive suggestions about what options you should select to fit your computer and your way of working. If you want your computer to run Windows (and DOS sessions from inside Windows) as efficiently as possible, its suggestions are invaluable. WinSense may have competition from other products by the time you read this, but it's the best program I've seen so far for managing .INI files.

Changes to Make

Many .INI file settings are optional. You may or may not like how they work on your system. Others are established by SETUP when you install Windows and are seldom, if ever, changed. You can change some from the Windows Control Panel. It's safer to use the Control Panel instead of directly editing an .INI file because there's much less chance of an error rendering the file unusable.

Because the WIN.INI file generally controls the appearance of Windows, it
has few settings that affect compatibility. However, you may want to experiment with a few settings, especially in the section marked [Windows]. Many of the following items are used in only Windows 3.1 and not in earlier versions.

If you're having trouble printing from Windows, especially with an unusual printer buffer or other device, you can try setting DosePrint=Yes. This setting forces Windows to use your computer's BIOS for printer services instead of writing directly to the printer port.

Several settings in the [Windows] section of the WIN.INI file affect the mouse. DoubleClickHeight=x and DoubleClickWidth=x specify how far your mouse can move vertically or horizontally, in pixels, between the individual clicks in a double-click operation. By default, and if the setting isn't specified, both values are 4. But if your hand is a little shaky or your mouse seems to have a mind of its own, you can choose greater values. If you want your mouse to leave a shadow trail as it moves across the screen, try setting MouseTrails=x. In this case, x can be any number from 0 (no trail) to 7. This setting is especially helpful for laptop computers because it makes the mouse cursor easier to see.

Also, if you want to change the font used for icon titles, set IconTitle FaceName=font to a new font name. By default, it's set to MS Sans Serif. You can change the size of icon titles by setting IconTitleSize=x to any allowable point size for the typeface you choose. By default, it's set to 8. You can change one or both of these settings if you're using a high-resolution display and are tired of squinting to read icon names.

If your Windows/System Directory is overflowing with fonts, you can move any or all of them to a new directory. If you do so, you'll also have to make changes in the [Fonts] section of WIN.INI. Each font is listed as a separate entry in the form of [Name=filename]. The filename can include a directory name, which you'll have to set manually.

If you have problems with non-Windows applications, you may want to make some changes to the [NonWindowsApp] section of SYSTEM.INI. The entry CommandEnvSize=x sets the amount of environment space available in each DOS session and overrides the size set with the SHELL= command in CONFIG.SYS. The value x can range from 64 to 4096, and should be a multiple of 16. By default, it's 160, which may be too small for your way of working with your computer, especially if you use batch files that set and erase a lot of environment variables.

In the same section of SYSTEM.INI, the entry FontChangeEnable=1 allows you to customize the screen fonts used when a DOS application runs in a window in 386 mode. If you change the setting to 0, you won't be able to change fonts for DOS applications. Also, you can set the number of screen lines used for DOS sessions with the ScreenLines=x setting. By default, x is 25, but if you prefer to run full-screen DOS applications with 43 lines (on an EGA screen) or 50 lines (on a VGA screen), you can change this setting.

If you run Windows in Enhanced or 386 mode, the [386Enh] section of SYSTEM.INI contains more than a hundred settings you may want to change in order to solve incompatibility problems or just to speed up both Windows and DOS applications. It would take a small book to explain all of them. However, there are a few settings that I've found to be very useful.

There's probably already a line in the [386Enh] section that says local=CON, which tells Windows to create a new console device for each DOS session or application you start. On one machine that seemed to lock up only occasionally when the user left a full-screen DOS session to return to Windows, I added local=EGA$ and eliminated the problem. The new line tells Windows that

WIN.INI controls the Windows environment and display. As shown here, it has 17 or more sections. Also, some applications add their own sections and options to WIN.INI, although most now create .ini files of their own.

WINFILE.INI controls the Windows File Manager. It has just the single section shown here.

Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfirmDelete</td>
<td>Verify file deletions</td>
</tr>
<tr>
<td>ConfirmFormat</td>
<td>Verify format commands</td>
</tr>
<tr>
<td>ConfirmMouse</td>
<td>Verify drag-and-drop</td>
</tr>
<tr>
<td>ConfirmReplace</td>
<td>Verify overwriting files</td>
</tr>
<tr>
<td>ConfirmSubDel</td>
<td>Verify subdirectory erase</td>
</tr>
<tr>
<td>Dir1</td>
<td>Current drive and directory</td>
</tr>
<tr>
<td>Face</td>
<td>Font used</td>
</tr>
<tr>
<td>LowerCase</td>
<td>Use Lower case for file names</td>
</tr>
<tr>
<td>MinOnRun</td>
<td>Minimize when application runs</td>
</tr>
<tr>
<td>SaveSettings</td>
<td>Save settings on exit</td>
</tr>
<tr>
<td>Size</td>
<td>Point size of font</td>
</tr>
<tr>
<td>StatusBar</td>
<td>Should status bar be shown?</td>
</tr>
<tr>
<td>Window</td>
<td>Size and placement of window</td>
</tr>
</tbody>
</table>

If you run Windows in Enhanced or 386 mode, the [386Enh] section of SYSTEM.INI contains more than a hundred settings you may want to change in order to solve incompatibility problems or just to speed up both Windows and DOS applications. It would take a small book to explain all of them. However, there are a few settings that I've found to be very useful.

There's probably already a line in the [386Enh] section that says local=CON, which tells Windows to create a new console device for each DOS session or application you start. On one machine that seemed to lock up only occasionally when the user left a full-screen DOS session to return to Windows, I added local=EGA$ and eliminated the problem. The new line tells Windows that
every DOS session should appear to have its own video adapter.

If you want the File Manager's file list to always be up-to-date, even when you create or delete a file with another application while the File Manager is running, you can set FileSysChange=On. But Windows will run much faster if you set this option to off and simply refresh the display (or press F5) when you know or suspect that there has been a change.

One of the most important lines in the [386Enh] section for solving incompatibilities is named EMMExclude. If you have device drivers or other programs loaded into upper memory (between 640K and 1 M), Windows can normally detect them. But if it doesn't, it will crash as it tries to use the same memory space. You can force Windows to stay away from the device driver's memory space by setting EMMExclude=xxyy-yyyy. Values xxx and yyyy are the hexadecimal memory range that Windows isn't supposed to touch. For example, if you had a driver loaded from paragraph C00O to D00F and suspected that Windows was overwriting it, you could add the line EMMExclude=CC00-CDOF.

Windows tries to bypass the BIOS during disk accesses and work directly with the hard-disk hardware. But some hard-disk controllers don't work as Windows expects and others are actually slower during direct access. If you get hard-disk read errors from inside Windows, or if 386 mode is noticeably slower than standard or 286 mode, try adding the line VirtualHDlrq=off to the [386Enh] section of SYSTEM.INI.

If DOS applications complain that they don't have enough file handles when running under Windows, don't change the Files= setting in CONFIG.SYS. All this will do is give more file handles to DOS programs that run before you start Windows. Instead, set PerVMFiles=x to a larger value. The x defaults to 10, which means a DOS application will have up to 10 file handles available to it. You can set x to any number between 0 and 255, but the total of this setting and the Files= setting in CONFIG.SYS mustn't exceed 255.

One odd but fairly common problem is that Windows will sometimes hang your system when you try to read a floppy disk for the first time. You can sometimes correct this by always reading a floppy disk before you start Windows. A better and more certain way to fix the same problem is to set IRQ9Global=true in the [386Enh] section of SYSTEM.INI.

There are more than 100 possible additional settings in this one section of SYSTEM.INI. Some affect just networks, some configure Windows' built-in drivers and others change the way Windows allocates memory and runs your computer's parallel and serial ports. The best reference is Microsoft's own Windows Resource Kit. I also recommend the WinSense program I mentioned above, plus two books: Windows 3.1 Secrets by Brian Livingston (IDG Books) and Windows 3.1 Revealed by Robert Mullen, Paul Hoffman and Barrie Sosinsky (SAMS). The first book is more technically oriented than the second, but some of the explanations in the second book are much more complete.

Windows should run well with almost all DOS and Windows applications. But it's up to you to find and cure any compatibility problems by setting the correct values in the .INI files. As long as you have a backup of these files, you can't hurt anything by trying new settings and seeing how they affect your computer. With a little experimenting, you'll soon find the correct settings to make your computer work as efficiently as possible.

Complete Your Collection of ComputerCraft Order Your Back Issues Today!

$3.50 Per Issue

Mail all correspondence to:
CO Communications
76 N. Broadway, Hicksville, NY 11801
Phone: 516-681-2922 FAX: 516-681-2926

NEW 8031 FAMILY PRODUCTS from RIGEL

FUZZY-LOGIC CONTROL CODE GENERATOR

FLASH (Fuzzy-Logic Applications Software Helper) generates MCS-51 language subroutines to perform fuzzy-logic control tasks from a high-level description of fuzzy rules written with linguistic variables. An extensive tutorial and illustrative examples are provided. ($100.)

R-535J / READS TRAINER

READS (Rigel's Embedded Applications Development System) and the R-535J board constitute a complete hardware/software development and debugging system in one user-friendly menu-driven environment which runs on an IBM PC host. Programs in the MCS-51 language may be written, edited, assembled, downloaded and debugged without leaving the integrated environment. The R-535J board uses the powerful 80C535 microcontroller. R-535J / READS with User's Guide on disk and example programs is priced at $150, $130 as a kit.

8031 FAMILY MICROCONTROLLERS EXPERIMENTER'S GUIDE

This 300+ page textbook covers the MCS-51 assembly language, using the on-chip facilities of the 8031 family microcontrollers, and software/hardware experiments. Programming nuggets are given for each instruction and each operating mode of the family. Features of the SAB80C535 are highlighted. ($30.)

RIGEL CORPORATION

PO BOX 90040, GAINESVILLE FL 32607 (904)373-4629

Say You Saw It In ComputerCraft
New Windows Schematic & PCB Layout Software

Schematic-capture and PCB layout software team up with Windows to let you draw schematics and design pc boards on your PC

By TJ Byers

If you work in electronics for any length of time, you’re bound to end up drawing a schematic diagram or laying out a printed-circuit board or two. However, the traditional method of drawing schematics and pc-board layouts by hand is both time-consuming and prone to errors. So why not let your PC do the work for you? For as little as $95, you can buy a program that teaches your PC how to draw schematics. For a few hundred dollars more, a printed-circuit layout program will turn your schematics into the artwork for making working pc boards.

In this article, I’ll give you a look at four popular schematic-capture and printed-circuit-board (PCB) layout programs that run in the Windows environment. One is a low-cost entry-level system, the other a professional package that’s suitable for CAE (computer-assisted engineering) and production work. I purposely limited these reviews to Windows applications for several reasons. Because Windows is graphically based, learning any new application is a highly intuitive process. Once you’ve mastered one Windows application, learning new applications is easy. Windows also has a standardized communications link that makes transferring data between applications a snap. Plus you get to share Windows’ vast resource pool of printers and input devices.

Each of the products were evaluated for price, performance, features and ease-of-use. They include EZ-Route Pro EZ-Logic for Windows, EZ-Route Pro EZ-Board for Windows, Protel for Windows Advanced Schematic, Protel for Windows Advanced PCB, SuperCAD for Windows and SuperPCB for Windows. I’ve also included separated text boxes that tell you How Schematic Capture Programs Work and How Printed-Circuit-Board Layout Programs Work—to give you a guided tour of the software by showing you how it works and which features to look for when shopping for one of these programs.

Software Reviews

AMS EZ-Route Pro EZ-Logic Professional Schematic Editor Version 2.02

It’s almost hard to believe you can buy a Windows schematic-capture program for less than what you’d have to pay for many DOS-based schematic-capture programs. But seeing is believing. For just $129, you can buy AMS’s Windows-based EZ-Logic schematic-capture program. As a stand-alone package, EZ-Logic is a perfect entry-level tool for drawing schematics on your PC. The cost is right, and if you’ve ever spent any time using Windows at all, you’ll be drawing schematics in no time with the EZ-Logic package.

While it’s easy to learn and easy to use, EZ-Logic is surprisingly limited in its communication skills, despite being a Windows application. Unlike most Windows applications, EZ-Logic doesn’t make use of the Windows clipboard or object linking and embedding (OLE) features. The only line of communication between the EZ-Logic schematic-capture program and AMS’s EZ-Board PCB layout program is via a netlist. Fortunately, EZ-Logic has a decent back-annotate function that reflects changes made on the printed-circuit board back to the schematic.

Hierarchical drawings up to 1,024 pages deep are supported by EZ-Logic. Each sheet in the stack is stored as a separate drawing under its own file name and is linked to the sheet above and below it. You move up and down the hierarchical ladder using Hierarchy Push and Hierarchy Pop commands (you can use the + and - keys as a shortcut, if you wish). When using the Push command, for example, the current schematic is pushed aside and the schematic field that’s linked to it is loaded. Only one schematic can be active at any time. To return to a previous schematic (closer to the top of the stack), you use the Pop command.

EZ-Logic’s component library consists of 86 separate files that range in size from 1K to 1.4M each. Altogether, it takes 10.5M of hard-disk space to hold the entire library file set. The number of devices varies considerably from file to file, with 17 files dedicated to 74XXX logic chips alone, totaling thousands of individual components.

Several of the files are very specialized. For example, one file contains the complete catalog of OKI chips, while another (much smaller) file lists chips made by Sony. Overall, the selection is diverse and well represented. Only one library file can be open at a time, and that file, or its path, must be available when the schematic is loaded. Otherwise, you get an error message and a hole in the drawing. Components are placed on the drawing by typing their names into a dialog box or by clicking on them from a pull-down library menu.

The library editor is a separate Windows application called EZ-Symbol. As in most schematic-capture programs, similar parts, like logic chips, are represented by one physical description the definition of which is contained in a setup table. But unlike most, EZ-Symbol’s setup table is really a powerful
database that contains a lot more than just a part number and a descriptor. In addition to pinout information, the database includes a corporate field that holds the private part numbers used by many corporations for inventory and manufacturing control. There’s also a field for component cost. You can use this information to generate cost estimates and purchase orders right from the schematic drawing. Mechanical parts, like connectors, and device outlines are created using a proprietary programming language that employs vectors to draw the shapes on your video screen.

All the editing features are present, but they may be a bit tricky to use. For example, you can mirror an object mirrored only left to right, and rotation is limited to 90° increments in the clockwise direction. This means that if you want to mirror an object top to bottom, you must first rotate it 90°, mirrored, and then rotate it 270°.

As in most Windows applications, the most frequently used editing functions are easy to access from a toolbar that runs just above the top of the drawing. Such operations as drawing a line, adding text and zooming are but a mouse click away. You select blocks using your mouse or by enclosing the selected area. And while you can delete, change and move blocks, you can’t save a block to file or the clipboard for transfer to another drawing or application. Screen pan is of the touch-and-bump variety, in which the screen jumps up, down or sideways when the cursor touches a side of the screen. This occurs only when you’re using the keyboard’s arrow keys, not your mouse.

AMS-EZ-Board Printed-Circuit Board Editor Version 2.03

EZ-Route is an integrated family of CAD products used in design and fabrication of printed circuit boards. The EZ-Board program, which sells for $295, is used to draw the actual circuit layout for an electrical design. When used in conjunction with EZ-Logic, the parts and logical net connections are derived from the schematic drawings. All you need do is position the parts on the board and route the electrical circuit connections between them. A companion program, EZ-Router, even automates the routing process, speeding up fabrication and eliminating error. A product called EZ-Route Pro bundles together the three programs to save you money. Instead of paying the nearly $800 it would cost to buy the programs a la carte, you pay just $695, for the modules in the integrated package.

Even if you decide not to use the EZ-Route schematic-capture program, you can still use EZ-Board to create printed-circuit boards. In fact, for very simple circuits, it’s usually faster to lay out the board by hand. Simply extract the device outlines from the component library, place them on the board and wire them together using copper traces. For designs that are larger than you’d like to tackle by hand but still too small to warrant firing up EZ-Logic, you can write your own netlist using a text editor, such as the EDIT utility that comes with DOS. Once you have a working netlist, all you have to do is load it into EZ-Board using the Update From EZ-Logic command.

Parts are initially placed on the board in orderly columns along the left side of the board. The next step is to move each part to its actual position on the board and set the number of layers. Although moving parts is a manual operation, it’s assisted by the netlist’s ratsnest. Once all the devices are where they belong, the board is trimmed to size. If the board has to be a certain size or shape, as is the case if it’s to plug into a PC slot, the board’s outline should be defined in the first step.

The board is now ready for routing. The manual router included with EZ-Board is a point-to-point router. All you have to do is click on one pad, then another, to have the router draw a track between. For this chore, EZ-Board provides a ratsnest-like scheduler that shows where the tracks should go. It even knows when a via is needed, and places it on the board for you. When a scheduled track is complete, the scheduler line disap-
Schematic software for ers are designing software if you need millions. Thus, this only four layers, two signal router an ASCII listing router is a smart move. Basically, EZ-router automatically does what you would do by hand. It reads the scheduler file created by the EZ-Board program and simply connects the dots.

It's important to keep in mind that EZ-router isn't a true autorouter. It must have a routing schedule, a file generated by EZ-Board, before it can place a single track on the board. As the router runs, it saves to file an ASCII listing of its actions. Should the router fail to complete all connections, you can edit the file and use it as input for another router run. You can also interrupt the file for manual routing and restarted where it left off. When routing a board with mixed line widths, several files are used, one for each line width. In addition, you can exclude areas on the board where you don't want traces to pass through. However, EZ-Board supports only four layers, two signal and two ground planes and just two grid spacings (25 and 50 mils). Thus, this program isn't a good choice if you need to make complex or high-density boards.

Protel for Windows Advanced Schematic Version 1.0

Protel for Windows was the first circuit-design software to run under Windows and is the PC-based Windows computer-assisted engineering software against which all others are compared. Protel's Advanced Schematic software for Windows is a complete schematic-capture program that contains many drawing and editing features. It can be used by itself for drawing schematics and creating netlists. When combined with Protel's PCB or Advanced PCB layout programs, it becomes the front end of a fully automated, integrated, end-to-end design system. Protel for Windows Advanced Schematic lists for $995.

Advanced Schematic communicates with Protel for Windows PCB software through four avenues. In addition to the standard forward and back annotation supported by schematic-capture programs for a long time now, there's the added benefit of Windows' clipboard and OLE. Unique to Protel for Windows is cross-probing that lets you display physical parts on the pc board by clicking on its schematic symbol.

Whether your drawing consists of one sheet or a hundred, Advanced Schematic treats each design as a project. Each sheet of a project is stored as an individual file in a project directory. You can open any number of sheets and edit them independently of all other sheets, limited only by available memory. You can move or copy elements from one open sheet to another using the Windows clipboard. Because all the files for a project are linked together through the Windows interface, changes in one sheet are immediately recognized by the others. For some operations, such as netlist generation and printing, an entire project (which consists of a master sheet and all associated sheets) need to be opened at the same time.

Advanced Schematic's component library contains about 15,000 chips and devices, spread among 76 library modules, all of which can be open at the same time. Sufficient memory permitting. You place components on your drawing by typing their names into a dialog box or clicking on them from the on-screen library directory. Advanced Schematic supports ANSI, DeMorgan and IEEE symbols.

Once you place a part on a drawing, its definition is copied to a separate library file attached to the drawing. The original libraries don't have to be accessed again to re-draw the schematic because the devices are retrieved from the drawing's library file. The size, font style, orientation and location of its designator text can be changed or deleted as desired.

The library editor is a separate program you start from an Advanced Schematic pull-down menu. Since many components share the same package, they have identical graphical depictions but exist as individual parts in the libraries. For example, a 74LS01 is identical to a SN54LS243, with the exception of the pin descriptions in the setup table. Using this method, Protel is able to store thousands of chips in a small file. So creating a new chip is as simple as filling out a new setup table and giving the part a name you wish. You build mechanical devices like connectors using such primitives as arcs, circles, etc.

Advanced Schematic boasts a large library of editing tools, including the standard copy, move, delete and find commands. Components can be rotated either direction in 1° increments. Block editing is supported, and you can save blocks to the clipboard for insertion in other Windows applications, such as WordPerfect. Screen panning is smooth and continuous when placing a part, which allows you to continue a wire beyond the screen's boundaries, but you'll have to
use the scroll bars to move around the drawing when you're just looking.

The preference menu lets you set the default values for screen and grid colors, cursor shape, grid type, grid snap and number of undo. Undo can restore up to 16,000 deletes (50 is the default). And there's a printer setup and preview that shows you what the printed page will look like before you print an actual hard copy.

Both schematic files and libraries created in OrCAD can be used with Advanced Schematic. When you open an OrCAD STD 3 or STD 4 file, all the STD's drawing objects and text are available for editing, which can then be saved back to OrCAD STD 4 format.

You can also save Advanced Schematic drawings and objects in OrCAD format. However, a number of Advanced Schematic's attributes, such as color and fonts, aren't recognized by OrCAD. This information won't be recognized, and the attributes will revert to an OrCAD equivalent.

Protel for Windows Advanced PCB Version 1.5

Protel for Windows PCB is an entry-level package that lists for a modest $995. Though the program loads the board components from a schematic netlist, you have to place them manually. Thankfully, the autorouter is a little more automated. Clicking on one pad and then another forces the autorouter to find a way to connect the two. It's also intelligent enough to detect when you've clicked on the incorrect pads by comparing your selection to the netlist.

To add automation to Protel for Windows, you have to buy the Advanced PCB layout program, which lists for a healthy $1,795. It contains all the elements of the PCB module, plus an auto-placement tool and two self-running autorouters. When you add in the cost of the two optional auto-place and autoroute modules, the price of a fully-outfitted Protel for Windows system comes to $3,995. A hardware protection key is required for both programs.

Thanks to cross-probing and good back-annotation, transfer from schematic-capture to PCB layout is smooth and nearly seamless. Cross-probing is a result of operating in Windows, where the schematic-capture and PCB layout programs can be running at the same time. With cross-probing, clicking on a part in the schematic automatically brings up that part on the PCB board for inspection or modification. Back-annotation automatically updates the schematic with changes made at the board level. You can start Advanced Schematic from within the PCB layout programs.

Parts are initially placed on the board in one big heap, making it difficult to pick out specific ones for placement. Fortunately, the auto-place tool that comes with Advanced PCB does a good job of un-piling them so that you can locate and move them more easily. Before using auto-place, you must define the board perimeter and any forbidden zones, using a special reference layer called the Keep Out layer. Auto-place won't place components inside forbidden areas, nor will tracks be routed through these areas.

For really big jobs, you'll want to buy Protel's $995 Advanced Place program. While $995 may seem steep, for the Advanced Place module, you get three levels of automatic component placement with it. In addition to the local-placement tool found in Advanced PCB, you get a global-placement tool that looks at the board as a whole and works out a strategy that gives the autorouter its best chance of completing an autoroute to completion. You can run global placement after you use local placement to move and lock connectors, controls and indicators in place. However, since you have to use a lot trial-and-error to find the optimal layout, it takes quite a while for it which can be several hours on large layouts.

The third auto-place mode is advanced global. It differs from the others in that it runs in the background, freeing your PC for other Windows work, and it lets you define the placement parameters. With the exception of grid spacing and component clearance, the other two modes' strategies are pretty much carved in stone. Both global placement modes support bypass capacitor placement that puts decoupling capacitors across the top of their associated ICs.

Protel for Windows Advanced PCB comes with both a heuristic and a line-probe autorouter. Line-probe routers are similar to Heuristic routers, except that, instead of looking for repeated pin patterns, they look for the shortest distance between two points. Though they're quite fast, they're not too smart, achieving a completion rate of 80% or less in most cases. The $995 optional Advanced Router adds a maze and a rip-up router to the system, plus an via optimizing routine. Protel calls smoothing. Advanced Router can also do curved tracks, making it ideal for analog and high-frequency work.

Altogether, the routers support up to 16 signal layers, plus four middle power layers. They also support blind/buried vias and surface-mounted device (SMD) stringers (short track segments that connect the SMD to the inner ground planes).

Mental Automation SuperCAD for Windows Version 1.1 and SuperPCB for Windows Version 1.01

SuperCAD for Windows from Mental Automation is a low-cost schematic-capture program that's versatile, easy to learn, and extremely easy to use. You can use it as a stand-alone program or as a front-end processor for PCB layout. An optional netlist-conversion program ($69) lets SuperCAD for Windows read and import netlists from other schematic-capture programs, including OrCAD and Schema.

SuperCAD for Windows comes in two versions. The $149 introductory version includes a component library with about 350 parts, parts builder, netlist-creation program and support for digital and analog simulat-
tion (the simulation programs are sold separately). SuperCAD+ for Windows is a combination package that includes SuperCAD for Windows and a 1,600-device component library, the netlist conversion program, and an auto wiring program and sells for $249.

Although SuperCAD for Windows supports the Windows Clipboard, you can't run multiple SuperCAD sessions or use OLE to update changes made to a master page. To move objects from one drawing to another, you must quit the current drawing and load the destination drawing. However, you can combine drawings using the Macro command. Macro works exactly like File Load, except that it doesn't overwrite the current drawing. Instead, it merges individual drawings into one drawing.

You create hierarchical schematics by saving the different pages with a common root filename and the number of the page (for example, XRAYP01). The maximum number of pages you can use for a hierarchical drawing is limited by the seven filename characters—the shorter the filename, the more room for page numbers. The files are linked by the netlist program, which reads in each page and generates one netlist. Physical descriptions of the components are contained in a separate file. Both files are used by the SuperPCB for Windows layout program.

The expanded component library that comes with SuperCAD+ for Windows holds 1,666 devices in 24 directories and can be purchased separately for $39 as an upgrade for the SuperCAD introductory schematic editor. Most of the 1,600 parts are semiconductor devices from a wide variety of vendors, including integrated circuits from Intel, AMD and Zilog.

You place components on your drawing from a pull-down menu, which has a small built-in viewer that shows what each part looks like as you scroll through the list. Although only one library module can be open at a time, it's so easy to jump from one module to the next that it won't bother you.

Lines are just as easy to draw using the familiar click-and-drag Windows method. However, there's no autopan feature in this program. You have to use the scroll bars or cursor keys to move around your drawing. Thankfully, you can suspend parts placement to scroll the screen without having to quit the Place command.

SuperCAD+ for Windows comes with auto-wiring that draws the wire for you when you click on the points of origin and destination. It even places junctions automatically. If auto-wiring can't find a direct path for the wire because other devices are in the way, it simply draws around them.

You can add new devices to the component library by modifying an existing part or building one from scratch. There are two ways to create new library components. One method has you use a DOS program to generate parts from ASCII text files. The other way is to simply make a drawing using the SuperCAD drawing editor. However, you can't create new devices on the fly. Both of these methods require you to quit the current drawing.

The Format command converts the drawing from schematic format to library format and stores it in the library of your choice. Each library can hold up to 256 devices, but no more than this number.

Despite its low price, SuperCAD's editing features are quite powerful and easy to use. Most commonly used are easily accessed from the toolbar. In the pull-down menus you find automatic incremental annotate, rubberband and a font editor that lets you change font style and size up to 38 points. But like AMS' EZ-Logic drawing editor, some edits take a combination of moves, such as the mirror command that mirrors objects only left to right, not top to bottom. To do a top-to-bottom mirror, you have to first rotate the component 90° and then return it to its proper orientation.

Some functions in the setup menu let you change only one parameter at a time, such as background color. For example, changing line or text colors requires a separate step. And the undo command removes only devices, lines and text, not the mirror command that was used to rotate the component in the first place.

If the component library were larger, I'd recommend SuperCAD for Windows as a better buy than EZ-Logic for entry-level use—despite its costing $20—because it's easier to use. But, the larger library costs another $60, pushing the price of EZ-Logic to $260, and it still falls short of EZ-Logic's huge component library. Nonetheless, it's a good entry-level program that's well worth your consideration, especially if you're considering SuperPCB.

Mental Automation SuperPCB for Windows Version 1.01

Mental Automation's SuperPCB for Windows is a dynamite PCB layout program that sells for a slim $495. The program interfaces seamlessly with netlists created by SuperCAD for Windows and comes with automatic placement and an autorouter. Like SuperPCB for Windows, Mental Automation sells an entry-level version of the SuperPCB for Windows for just $149. But this trimmed-down version lacks automatic placement, its autorouter is an incremental point-to-point type, its component library contains just 50 devices and the program

Mental Automation SuperCAD for Windows.
supports only two layers on an 8" x 8" board. SuperPCB’s interface is identical to that in SuperCAD for Windows. The pull-down menus are exactly the same in number and order, and their commands are similarly structured. Even the toolbar looks and works the same, so the learning curve is very short.

SuperPCB for Windows requires two netlists from the schematic-capture program: one for the net names and their connections and the other containing physical descriptions of the devices. The component library contains outlines for about 200 devices, including some popular connectors. You can add new parts to the library using SuperPCB for Windows drawing editor and the Format command.

You place parts on the circuit board using the automatic-placement utility, which places parts that have a large number of mutual connections next to each other. If you define a board size, the placement utility spreads out the parts to fill the space. Or you can have the placement utility define by producing a stuffing diagram board the size of which depends on the sizes of the individual packages. Most likely, you’ll have to make changes to automatic placement, especially if the design contains connectors. Once you’re satisfied with the layout, you save it in a file.

The next step is to route the board. The autorouter contains a combination heuristic/probe router that can route up to 16 signal layers. You can specify one- or two-layer (pair) routing. The router always draws traces vertically on the starting plane and horizontally on the next plane. You can toggle between planes using the + and - keys on your PC’s keyboard. You can create ground planes using the fill command. You define areas that need to be blocked from fill using the rectangle, circle, and ellipses buttons located on the toolbar.

The router seems to be well-optimized and is very fast, but it seldom routes to completion. There’s always a trace or two that needs manual help, but it’s not that big a deal. You can also manually delete traces to make way for boxed-in tracks, manually route them and then run the autorouter again. The incrementalator used by the entry-level version is also supported by the $499 package, which is great for small hard-drawn layouts.

Grid size can be set to 10, 25 or 50 mils, and buried vias are supported. The optimize function minimizes the number of vias on a previously-routed circuit board. A moving barograph keeps you informed as to both the progress of the autorouter and the optimizer. The final step, should you decide to use it, is a smooth operation that replaces 90° trace bends with either arcs or 45° bends.

Mental Automation sells complete circuit-design packages. A starter kit, called Introductory CAE Package for Windows, sells for $149 and includes introductory versions of SuperCAD, SuperPCB and a digital-simulation program called SuperSIM. It permits multi-page designs and can produce one- or two-layer PCBs ranging in size up to 8" x 4" using incremental autorouting.

The intermediate and advanced circuit design products are sold under the SuperTools for Windows brand name. The intermediate package includes the $149 versions of SuperCAD and SuperPCB and applications that add a netlist converter and schematic-capture auto-routing. Cost of the package is $299, which is $28 less than the separate programs. This is a good deal if you do occasional PCB work and don’t want to sink a lot of money into software.

For the more advanced PCB system designer, the $695 SuperTOOLS+ for Windows combines the top-of-the-line versions of SuperCAD and SuperPCB with a 1,600-part component library and the netlist converter/auto-wiring utility program. This is the best bang for your buck because it can produce denser boards than EZ-Route Pro and it’s not limited to four signal layers. Oddly, it sells for $46 less.

In Closing
As you can see from the foregoing, a desktop PC can, indeed, be turned into a productive tool for drawing schematic diagrams of electronic circuits and developing appropriate artwork for fabricating printed-circuit boards. The particular package(s) you select will be determined by your needs and budget. But one thing is certain, using any of the packages reviewed here in the Windows environment greatly eases how you work and interact with and among the various programs and their basic elements.

How Schematic-Capture Programs Work
Basic to any electronic design or project is a schematic diagram of the circuitry being used. A schematic is an electronic blueprint by which information is communicated to the user, other persons—and the PCB layout software.

Software that draws schematics is commonly called a schematic-capture program. Schematic-capture programs are basically CAD programs that, over the years, have evolved into special-purpose drawing applications. What sets a schematic-capture program apart from a general-purpose drawing program AutoCAD and Generic CAD is a component library that consists of a collection of commonly-used symbols that represent electrical components. Let’s take a closer look at the elements that make up the typical schematic-capture package.

Component Library
Central to every schematic-capture program is a component library that’s generally made up of smaller, specialized library modules that are linked together. For example, one module might contain nothing but analog ICs, while another might hold the patterns for CMOS devices. Modular libraries are more versatile than a single large library because the structure lets you easily expand...
the size of the library by simply adding new modules. Modular architecture is also a great way to save disk space because you have to load only the modules you normally use and leave the remainder on floppy disks.

Each schematic-capture program has its own way of identifying parts in the component library. Most programs try to name components by their generic names, such as 74LS02. But this isn’t always possible. For example, a 15-lead resistor package may be tagged as DR6PAC16, a name few would people associate with this device. Fortunately, all programs have either an on-screen device catalog or a hard-copy components catalog that shows the library symbols and their names, and many programs even have both.

Most schematic-capture programs support both ANSI and DeMorgan logic symbols. A few support the new IEEE symbols. DeMorgan logic differs from ANSI logic only in the way the input logic relates to the output. ANSI inputs are true when they’re positive, but DeMorgan inputs are true when their inputs are negative. Although an ANSI 74LS02 behaves just like a DeMorgan 74LS02, use of DeMorgan logic often gives the designer insight that may ultimately result in a simpler circuit. Some programs let you toggle between ANSI and DeMorgan from the screen, while others store the symbols in the component library under separate names.

For special-purpose devices and parts that aren’t included in a library, the schematic-capture program provides a component editor that lets you add your own. You can create new devices either from scratch or by modifying an existing part. Most libraries use bitmaps for component outlines, which lets you fill in a matrix one dot at a time to draw a new component’s shape. There are a few programs with more-advanced library editors that let you build components from such primitives as circles and squares.

Drawing Features

Schematic components are placed on the screen using a display editor. You select a part highlighting its name from a pull-down menu or by entering its name from the keyboard. With some programs, the selection process can be automated using macros (user-defined keystrokes and/or mouse clicks that are saved to memory so that they can be run again as needed) that reduces a complex retrieval process to a single keystroke. Some programs have a macro recorder that remembers the sequence as you step through it, while others have you type to create the macro file in a macros programming language.

After you select a component from the library, the editor places it on the drawing. Common to all schematic-capture programs is a grid (which may be visible or invisible) that overlays the drawing page and is used to position the cursor at exactly spaced intervals on the screen. If you try placing the cursor in a position that isn’t allowed by the grid, the program moves the cursor to the nearest grid position, a move called “grid snap.” Grid snap ensures that the component attaches precisely to wires and other components on the schematic with no misalignment. The density of the grid determines the resolution of the drawing. The finer the mesh, the smoother the cursor movement and the more latitude you have over placement of wires and devices. Some schematic capture programs allow you to set the granularity of the grid, while others have a fixed grid. And while most programs let you turn off the grid snap, the software may refuse to recognize two wires as being connected in this mode, even though they appear to be properly aligned.

After you place components on the page, they’re interconnected using lines that represent wires. For clarity, wires are usually drawn horizontally and vertically. In the parlance of CAD, these perpendicular lines are called “orthol” (short for orthographic) lines. If you try to take a diagonal path, the drawing editor automatically converts it to one direction or the other. To draw a diagonal, ortho mode must be disabled. Most programs represent buses that consist of cables that contain several conductors as a single, heavy line with breakpoints.

Because schematic-capture programs are designed to imitate hand-drawn schematics, several parameters are permanently fixed. For example, the size of the parts are predefined, as they would be if drawn on paper using a template. The size of the sheet is also limited to the standard drafting sizes, which range from size A (8 1/2" x 11") up to size E (34" x 44"). Standard drafting borders and title blocks are usually included, but this isn’t always the case. When a schematic is too large to fit on a single sheet, the drawings can be stacked in hierarchical fashion under a single file name.

Some programs also support a linked hierarchy that lets you draw a circuit as a block diagram on a cover sheet. Each block is then drawn in detail using a stack of sheets that define the circuits within the blocks. While each block has its own independent stack of drawings, the drawings are linked together so that you can move from one block to another without having to change files.

Editing Features

While it’s nice to have a software program that takes the drudgery out of drawing schematics, the real advantage of schematic capture is its ability to modify a circuit from the screen on the fly. Several editing tools are used for the task. Delete and repeat are probably the most-used tools, and the two are often used together so that you can delete a number of objects without having to go back to the pull-down menu for each line or device to be deleted. If you delete something in error, you can usually replace it by using the undo command. Some undo routines retain only the last object deleted, while others remember the deletion path and can reconstruct an entire drawing, no matter how many times you used delete.

Moving components is another popular editing recreation. You move components for a number of reasons, but you usually do so to make room for new parts or make a diagram more intuitive. When you move a part, you can retain all its original connections using an editing feature called “rubberbanding.” As the name implies, rubberbanding is a technique by which the wires connecting to components stretch to accommodate the new positions of a device. However, rubberband lines aren’t ortho, which means you have to route them with a cleanup editor that puts skewed lines back into ortho perspective. If you wish to move a part without retaining its previous connections, you can turn off the rubberband feature, in which case, you end up with a collection of dangling wires that have to be dealt with individually.

One of the more-powerful schematic-editing tools is the block editor, which is a user-defined area on a drawing that the software treats as a single entity, no matter how many elements it may contain. Blocks may be moved, deleted, or replicated. Some programs let you save blocks to a file, from which they can be called for use in another drawing. Block editing is a handy way of dealing with schematic elements that are often used in more than one drawing, such as memory banks and standard clock oscillators.

A find or search command locates parts on a schematic by name. It’s most helpful when you’re trying to find a part in a complex hierarchical drawing. You can also use the find function to tag key spots on the drawing for quick panning to a desired area.

Printing A Schematic

While editing a schematic on-screen is what schematic capture is all about, it’s often easier to troubleshoot a design when working
Before You Blow Thousands of Dollars on Tango, Or-Cad or Protel Try

EZ-ROUTE

The Most Complete Schematic-PCB Layout-Auto-Router System

EZ-ROUTE system from AMS for IBM PC, PS/2 and compatibles is an integrated system and includes Schematic Capture, PCB Layout, Automatic Router, Design Rule Checker, Gerber Plot View and Gerber file import capability. EZ-ROUTE system is complete and easy to use. Before you spend thousands of dollars on our competitor's package listen to these words from our customers.

"Easy to set up and use. Fast, flexible, thorough good man-machine interface"

Bell Northern Research
Napean, Canada

"A well documented package that is of very good value."

R.M. Gray
Ensoco, Inc., Texas

"Very complete for the price."

David Brainerd
Naval Weapons Center
California

"A very nice program--well worth the money."

Lyle Hatten
Foxboro, California

- 18,000+ parts library
- A through E sheet sizes
- On-Line Design Rule Checker
- 256 board layers
- Imports files from Gerber, Tango, Protel and Or-Cad and 8 other formats
- SMD on both sides of board
- Netlist output compatible to: Futurenet, Pcad, Edif and 16 other formats
- Output to penplotter, Gerber photoplotter, dot-matrix and laser printers

EZ-ROUTE Pro™ $995 **EZ-ROUTE Std™** $249

For a FREE Evaluation call:

1-800-972-3733

30 DAY NO-HASSLE MONEY BACK GUARANTEE

Advanced Microcomputer Systems, Inc.
1460 SW 3rd Street.Suite B-8
Pompano Beach, FL 33069
Phone (305) 784-0900 Fax (305) 784-0904
from hard copy. This is especially true when a schematic is very large or has several hierarchal pages. Here's another place where Windows greatly enhances schematic-capture software with its long list of printer and plotter support. Not only does this eliminate the need to include printer drivers with schematic-capture software, you can also be assured that the Windows driver will be bug-free and work as advertised.

Generally, you'll be working with two types of hard-copy printout, draft quality and finished product. Draft-quality schematics are used during the drafting of the schematic because they can be quickly generated on just about dot-matrix or laser printer. The draft document diagram is then checked for errors before they become a permanent part of the design.

Schematics done on a printer are limited in size, simply because no printer made is big enough to handle an E-size sheet of paper. Consequently, the software divides the drawing into pages of 8½" × 11" that you have to tape together to get the full picture. Sometimes you fit a fit schematic to the paper size by reducing the size of the drawing. But there's a limit to how small you can reduce an object before it becomes indistinguishable, and an E-size drawing printed on standard letter-size paper isn't acceptable.

Printers, on the other hand, are available in sizes from A through E. So no splicing of pages is involved. Moreover, drawings made using a pen plotter are much sharper than those done on a printer. But be prepared to pay the piper if you opt for a pen plotter because these devices are both very slow and very expensive.

How Printed-Circuit-Board Layout Programs Work

Until the advent of schematic-capture software, design and fabrication of a printed-circuit board was done totally by hand. Thankfully, that's no longer the case. The schematic-capture drawing includes information about the physical size and shape of the circuit devices and their electrical connections, which the pc-board software converts into traces and pads on the printed-circuit board.

Software that produces printed-circuit boards is called a “printed-circuit-board layout” program. It takes four computer steps to make a pc board, beginning with the physical placement of the components on the board. After the parts are in place, the copper traces that electrically connect together the devices are laid down. Either or both of these processes can be automated or performed manually.

The pc board is then inspected for conformity with mechanical and electrical specifications, using design-rule-checking software that's built into the pc-board layout program. Violations are corrected using editing tools supplied by the layout program. After the layout is verified, the final artwork that's used to make the actual printed-circuit board is generated by a printer, pen plotter or photoplotter.

Let's look at what's in the typical printed-circuit-board layout software package.

Netlists

The data needed to display a schematic on the screen of a video monitor and ultimately create the printed-circuit board is contained in a disk file called a "netlist." Each schematic-capture program has its own way of organizing and formatting its netlists and lays down rules that must be strictly adhered to if the pc-board software is to correctly interpret the netlist data.

Component Library

As in schematic-capture programs, the component library is central to the operation of the PCB layout program. The PCB software has no idea of the function of the part it calls from the library. It's simply a mechanical device with pre-defined size and shape. For example, the outline for a 74LS00 and a 74LS02 are the same, and the PCB software treats both parts identically. It's up to the netlist to tell the program how to wire the devices.

Sometimes, the component outlines are contained in specialized library modules, such as DIP devices or connectors. At other times, the outlines are stuffed into one or two large library files. Additional components, particularly surface-mounted device (SMD) outlines, can often be purchased separately as stand-alone libraries or as upgrades to the main library, depending on the program.

A library editor lets you create your own outlines and add them to the library. You can create new parts from scratch or modify an existing outline. Connectors are particularly problematic because of the many different types on the market.

Component Placement

Placing components on a printed-circuit board can be tricky. Parts have to be positioned so that the copper traces can be made between each and every component without crossing each other. What seems like a functional layout can turn out to be a dead end, which usually you find out after you've invested a considerable amount of time routing traces. Fortunately, there are automatic placement tools that can aid in the layout process.

Much of the layout work is done manually by dragging a part from one place to another. Sometimes, you can perform hand placement interactively with automatic placement, in which case, the computer gives suggestions for the best location of the parts. You have the option of accepting or rejecting the advice on a part-by-part basis.

To assist you in placing components, PCB software provides an interconnectivity pattern on-screen, called a "ratsnest," which is a jumble of skewed lines that show how each part is wired to every other part. As a part is moved, its attached ratsnest expands and contracts in length like rubber bands. The objective is to place parts so that the ratsnest lines are as short as possible. But as one part is moved to minimize its ratsnest, another part's ratsnest is lengthened to accommodate the part's new position. One way PCB layout programs enhance the use of the ratsnest is with a force vector display that tells you in which direction a part should be moved for shortest traces.

A few PCB layout programs have a placement-improvement routine that fine-tunes the pc-board layout after the parts are initially placed. The two most-popular improvement techniques are pair swapping and logic-gate reassignment.

Pair swapping seeks to improve parts placement through the interchange of neighboring components. If the exchange improves the placement value (reduces the trace lengths), the change is made. Otherwise, the components are returned to their original positions and a different pair is tried.

An excellent way to improve a PCB layout is by swapping logic gates. Considerable improvement can be made in parts placement if gates with common connectivity are put in the same IC. Some of the better swapping routines also permit pin swapping, which trades pins with the same function. For example, all four input pins of a quad NOR gate are the same and can be interchanged for best routing.

Trace Routing

The next step is trace routing, which is the laying down of copper tracks on the pc board to achieve electrical connections among the various components in a circuit. Although you can route the traces manually, most PCB layout programs have an autorouter that does the job for you by automatic means. The autorouter uses the netlist for its routing information. It matches the parts on the board to the netlist connections and then decides which traces go where.
Lee cost functions as a strategy, with names like normal, flexible and extensive. Lee routers have a very high completion rate, generally 90% or better, and are the least expensive. But they’re slower than other routers. It’s not uncommon for a maze router to spend hours or days wiring one pc board.

Another popular router is the Hightower or heuristic router. Some vendors call it a pattern or memory router because it’s commonly used to route traces with commonly occurring pin patterns, as is the case with memory chips. It uses a simpler algorithm than a Lee router and runs much faster. What takes a Lee router an hour to do, the Hightower router can do in less than a minute. However, the completion rate is also less, particularly on complex designs.

A few PCB layout programs support both routers. Typically, you run the Hightower router first to get the bulk of the work done in a short time and follow up with the Lee router to place the traces missed by the Hightower router.

Rip-Up Routers

Unfortunately, autorouters tend to paint themselves into a corner. Without the foresight to see that placing one trace will block the path of another, the program grinds to a halt. The solution is to get the offending trace(s) out of the way. The two solutions to this problem are rip-up and shove-aside.

Rip-up, sometimes called rip-up-and-retry, routers are cheaper and easier to use than shove-aside routers. The rip-up router identifies unconnected traces and looks for a single track that can be removed to make way for the blocked traces. The offending track is first ripped up, and the blocked trace is routed. The program then tries to find a new path for the erased track. Rip-up routers achieve very high completion rates, with a good one achieving 100% completion nearly every time.

Shove-aside routers move traces, rather than destroying them. They’re most useful when a trace has a path to its destination, but the path isn’t wide enough for the track. The path is made wider by shoving aside traces on either side of the canal.

Trace Editing

After all automatic trace routing avenues are exhausted, you must resort to manual routing and editing. Several trace editing tools are available for you to do this.

The route command lets you lay down a track with your mouse. Although the trace is usually made up of straight segments with angular turns, a few PCB layout programs also support curved tracks, such as the kind used in analog circuit layouts.

Delete is most often used during the final stages of routing to remove a trace that’s blocking the way of another trace. Some PCB layout programs can modify traces without deleting them. This editor lets you push and shove the trace, place and delete vias and move segments from one layer to another while maintaining the validity of the original connection. You can also adjust the width of single traces to make them wider or narrower, as the situation demands. A useful width function is necking, which lets you narrow a short portion of a trace so that it can squeak between the pads of an IC without creating a short circuit.

Design Rule Checking

Design verification is a very important step because errors that pass through here end up as errors on the printed-circuit board for a designed circuit. At this final stage, errors are easily correct. The process is known as “design-rule checking. The verification process checks to see that the tracks, vias and pads are all present and accounted for. It also looks for traces and pads that are too close together or touch each other.

Producing PCB Layout Artwork

The ultimate goal of a PCB layout program is to produce artwork than you can use to make a functional printed-circuit board. Other artwork generated by the PCB layout software includes a solder mask, silk-screen nomenclature and a drilling template.

You can print out artwork with a dot-matrix or laser printer, pen plotter or photoplotter. Photoplotters, which are similar to phototypesetters, are the preferred choice because of their high resolution and accuracy, but they’re very expensive to own and operate. Fortunately, you can save your work in a Gerber file that any PCB fabrication house can turn into negatives for a small fee.

If your PCB layout is a small enough to fit on standard paper stock, you can create a suitable negative by printing the PCB layout on a sheet of clear plastic film, like the kind used for overhead projectors, using a laser printer. While dot-matrix copier will work for some designs, their resolution (or lack thereof) forces you to watch your spacing.

Sources

EZ Route Pro for Windows
Advanced Microcomputer Systems
1460 SW 3 St., Ste. B-8
Pompano Beach, FL 33069
Tel.: 305-784-0900; fax: 305-784-0904
CIRCLE NO. 148 ON FREE INFORMATION CARD

Prolot for Windows
Prolot Technology
4675 Stevens Creek Blvd., Ste. 200
Santa Clara, CA 95051
Tel.: 800-541-4186; fax: 408-243-8544
CIRCLE NO. 149 ON FREE INFORMATION CARD

SuperCAD for Windows
Mental Automation
5415 136 Pl. SE
Bellevue, WA 98006
Tel: 206-641-2141
CIRCLE NO. 150 ON FREE INFORMATION CARD
SUPER BUYS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4752</td>
<td>6500 n. p.</td>
<td>$48.25</td>
</tr>
<tr>
<td>4870</td>
<td>6500 n. p.</td>
<td>$50.75</td>
</tr>
<tr>
<td>5089</td>
<td>6500 n. p.</td>
<td>$61.00</td>
</tr>
</tbody>
</table>

THE $25 NETWORK

Low Cost ISDN per LAN, not per node!
- *Hardware Independent Network*
- *ANEKT 7 Parallel and Serial port support on True Release*
- *Serial Speed: 8500-6800-8500 (8) bytes per second*
- *Parallel Speed: 12500-7500-12500 (8) bytes per second*
- Uses PC XT/AT 58 micros, minivans and PS/2 machines
- Connects without computer, no mixer connection methods (Serial, Parallel, etc.)
- *DOS File and Readon lookup support*
- Share any device, any file, any program
- *Runs in the background, totally transparent*
- *Low memory overhead*

Typically only 28K is needed, but will work with various setups.

Works with most software, including DEBASE II, Microsoft Word, LOTUS 1-2-3, Windows 3

WORD PERFECT: of complete GEM/SBC, and in fact, most anything!

Works well with DOS 2.2 to DOS 5.0 and DR DOS

3.1 or greater is preferred

Open network, programmer API provided

Example for low level is modules you can support special hardware full speed provided on packet level protocols

TEXT TO SPEECH BOARD

PC/XT COMPATIBLE. MAKE YOUR COMPUTER TALK!

$69.95

ASSEMBLED & TESTED

ADD $5.50 SHIPPING & HANDLING

STATIC RAM

$199.99

EPROM SPECIALS

We bought a large quantity of 2706s, 2716s, 2725s, 2725s, 2726s, 2725s and 27512s from a computer manufacturer who redesigned their boards. We removed them from sockets, erased and verified them, and now we offer the savings to you. Complete satisfaction guaranteed.

$800/8000

THREE CHIP SET

B.G. SPECIAL

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>156450</td>
<td>1488, 1489</td>
<td>$65.95</td>
</tr>
<tr>
<td>156550</td>
<td>1488, 1489</td>
<td>$11.95</td>
</tr>
</tbody>
</table>

SEND FOR FREE CATALOG! OVER 150 NEW ITEMS!
Add "Bells and Whistles" to Your Projects

How to spice up your projects with sound effects

Adding "bells and whistles" to your projects needn't be difficult or expensive to do. In this article, I'll introduce you to an easy-to-use audio chip that produces four sound effects in a range of eight frequencies and two durations. With it, you can trigger effects singly or continuously to produce anything from an acknowledging bleep to a chirp to a space-war laser salvo. The chip requires only a power-supply, resistor, two capacitors and a speaker to operate. With its eight-bit interface, it's also simple to connect to a single-board computer or the parallel port on a PC.

So that you get a firm understanding of how the system works, I'll discuss first the software and hardware aspects. Then I'll detail how to build the project and, finally, how to use it.

Software

The four-function audio chip you'll be using is a programmed single-chip microcontroller that produces sound effects made up of sequences of 1s and 0s sent to its output. To make sound, all a program has to do is turn on and off an output bit at an audible rate. Generally speaking, this rate is somewhere between 50 Hz and 10 kHz.

The outline for such a routine goes something like this:

begin:
 Turn speaker bit on
 Wait 1 ms
 Turn speaker bit off
 Wait 1 ms

Go to begin

Short as it is, you can further simplify the above routine by replacing the instructions that turn on and off the speaker with one that inverts the state of the speaker. That is, if the speaker bit is on, turn it off, and vice-versa. An exclusive-OR (XOR) operation will do the trick. The XOR of two bits works out as follows:

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Let's concentrate on the cases in which Bit 2 holds a 1. In the first case, when Bit 1 holds 0, XORing it with 1 produces a 1. In the second, when Bit 1 holds 1, XORing it with 1 produces a 0.

So, the new sound routine could be:

begin:
 Put (speaker XOR 1) into speaker
 wait 1 ms

Go to begin

XOR offers other interesting wrinkles for sound generation. Consider that most piezoelectric transducers are rated for signals of 30 volts peak-to-peak (V_{pp}) or more. The signal from your output bit, however, is limited to 5 V_{pp}, since it swings between ground (0 volt) and the positive supply (+5 volts). Before you run off to design additional hardware, however, consider the signal boost you can obtain in software.

If you connect your speaker between

Fig. 1. Flow chart for tone-generating routine with independent control of frequency and duration.
two output bits, you can double the voltage swing using XOR. Begin by loading a 1 into the first speaker bit and 0 in to the second. Look what happens when you XOR them both with 1s.

Bit 1: 0 XOR 1 = 1 (change in voltage = +5)
Bit 2: 1 XOR 1 = 0 (change in voltage = -5)

The changes in voltage represent the new state minus the old state. Since the new state of Bit 1 is +5 volts and its old state was 0, the change is 5 volts - 0 volt = +5 volts. Since the new state of Bit 2 is 0 and its old state was +5 volts, the change is 0 volt - 5 volts = -5 volts. Now, look at it from the speaker's perspective. The overall voltage swing is Bit 1's change minus Bit 2's change, or 5 volts - (-5 volts) = 5 volts + 5 volts = 10 volts.

In analog electronics, this kind of alchemy is commonplace. It's similar to the way a push-pull amplifier works. Other digital applications include differential signaling for serial communication, such as RS-422, and directional control of dc motors. In each case, you benefit by eliminating the need for higher power-supply voltages or split supplies with connections for +V, -V and ground.

There's another way that the unique qualities of XOR can help generate sounds. Look back at the cases in which Bit 2 holds 0. When it's XORed with Bit 1, there's no change, such that 1 remains 1 and 0 remains 0. This offers a convenient way to stop generation of the tone, either to silence the speaker or to control frequency. Since it's obvious how it would silence the speaker, let's look at the problem of frequency control.

Earlier you saw a tone-generation routine that toggled the speaker bit, waited a fixed period of time and then looped back to toggle the speaker bit. While simple, this approach isn't very flexible because it offers no control over the length (duration) nor the frequency of the tone. I'll address the duration problem first.

In its present form, the tone-generation routine is an infinite loop. It won't stop until the controller is reset or power is removed. An easy fix would be to limit the number of trips through the loop to some fixed number. Better yet, assign a variable to hold the desired number of loops and call it "duration."

Put 100 into duration
begin:
Put (speaker XOR 1) into speaker
wait 1 ms
Subtract 1 from duration
If duration is not 0, then go to begin, else end

By putting various values into duration, you can get tones of various lengths ranging from 0.5 to 128 cycles. (Each trip through the loop produces only half a cycle.)

Now that the problem of controlling duration is apparently solved, I'll tackle frequency. You must provide a way to change the length of time the "wait 1 ms" line actually waits. Assuming you do, however, what happens to the duration? The longer "wait" is, the longer the overall duration.

Here's where XOR comes to the rescue again. Shown in Fig. 1 is a flowchart of a complete routine in which duration and frequency are independent of each other. Duration is controlled by a 16-bit counter, frequency by an eight-bit counter. Counter 1 (frequency) and Counter 2 (duration) each count down in a loop. If Counter 1 isn't 0, the routine loads a 0 into the toggle pattern (tgl_pat) to be XORed with the speaker. Since a value XORed with 0 remains the same, nothing occurs. When Counter 1 reaches 0, tgl_pat is loaded with 1s that flip the value of the speaker bit. Counter 1 is reloaded with the frequency value, and the process repeats. It continues until Counter 2 reaches 0.

With some minor embellishments, this is the routine at work inside the four-function audio chip. You could certain-

Parts List

<table>
<thead>
<tr>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1—Programmed PIC 16C54-RC</td>
</tr>
<tr>
<td>IC2—78L05 fixed 45-volt, 100-mA voltage regulator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1—4.7-pF ceramic disc</td>
</tr>
<tr>
<td>C2—0.047-pF ceramic disc</td>
</tr>
<tr>
<td>C3—0.33-pF tantalum</td>
</tr>
<tr>
<td>C4—10-pF tantalum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1—10,000-ohm, 1/2-watt, 5%-tolerance resistor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPKR—Motorola KSN1005A recommended; see Note below</td>
</tr>
</tbody>
</table>

Note: PICs programmed with the software described in this article are available for $10 each (check or money order) prepaid from Scott Edwards, 964 Cactus Wren Lane, Sierra Vista, AZ 85635. Send comments and questions via E-mail to CompuServe mailbox 72037,2612. You can obtain blank PICs and the tools to program them from Parallax, Inc., 6359 Auburn, Ste. C, Citrus Heights, CA 95621; tel. 916-721-8217. A package that includes an assembler and programmer costs $199. The Motorola KSN1005A speaker is available at a cost of $1.95 from Hostel Electronics 2700 Sunset Blvd., Ste. 410, OH 43952-1158; tel. 800-524-6461.
* These components are in the Fig. 1 power supply (see text)
ly use this approach to create sounds in software, but you might like to consider this chip an easy-to-use subroutine in silicon.

Hardware

Shown in Fig. 2 is the schematic diagram for the audio interface. It operates from any eight-bit port or bank of switches, as shown. PIC 16C54-RC/P microcontroller IC1 is programmed with the software given in Listing 1. This type of controller is inexpensive and easy to program. (For more information on the PIC, see "Build a Miniature Scrolling Marquee" in the November 1992 issue of Computer Craft.) A source from which the programmed PIC described here can be obtained is given in the Note at the end of the Parts List.

Most of the task of generating sound is performed by IC1. Resistor R1 and capacitor C1 set the frequency of IC1's internal clock. Using a larger value for C1 slows down the clock, reducing the frequency of the sounds and lengthening their duration. Reducing the value, or even eliminating C1 raises frequency and shortens duration. The circuit still works with C1 removed because some stray capacitance always exists between
IC1’s pins and ground. However, it isn’t a good idea to rely on this “phantom capacitor” because its value can vary widely with temperature and individual batches of the IC.

In operation, the audio interface chip continuously watches (polls) the trigger line, waiting for the 0 that will start it up. While it’s waiting, the chip keeps a 1 on the busy line. Once triggered, the chip puts a 0 on the busy line, grabs a six-bit value from the data lines and interprets the data to determine what kind of sound to make. The meanings of the data bits are given in Table 1.

If you’d like to audition the audio chip with your PC before incorporating it into a project, Fig. 2 details how to connect it to your PC’s parallel port. Listing 2 is a QBASIC or QuickBASIC program that allows you to try the various combinations of effects, frequencies and durations.

Notice in Fig. 2 that the busy line on the audio chip is left unconnected. This is because this line is needed only when the chip is controlled by a relatively fast device. Then it might be necessary for the controller to check to make sure that the audio chip isn’t busy before trying to trigger it. If the controller is really fast, it might also check to make sure that the busy line has gone low before letting the trigger go high again to ensure that the audio chip gets the message. None of this handshaking is needed with the relatively slow QBASIC control program.

Construction

The first step in building this project is to either purchase or program your own four-function audio chip. (See the Note at the end of the Parts List for sources of components and programming tools.) Be sure to avoid zapping the PIC 16C54 sound chip with static electrici-

ty. Avoid wearing synthetic fabrics, leather- or rubber-soled shoes and working in a carpeted area. If you live in an area where the air is particularly dry or your workplace is carpeted, consider wearing a grounded wrist strap when working with and handling static-sensitive devices.

Getting the audio chip connected and running is simplicity itself. A small piece of prototyping board should do the trick. Just connect the chip as shown in Fig. 2. If you don’t have a 5-volt dc power supply handy, you can use the arrangement shown in Fig. 3 to convert a 9-volt battery to a regulated 5-volt supply. Whatever you do, don’t apply more than 5 volts to the audio chip, which has a maximum rating of 5.5 volts. Any more than this is guaranteed to damage the chip. Since you can’t be too careful, you should measure the output of your power supply before connecting the integrated circuit.

Don’t omit capacitor C2. It blocks dc current that would flow when the circuit is off. It also helps limit the load on the chip when the circuit is on.

While you can use almost any speaker or piezoelectric transducer with this circuit, I recommend using the unit specified in the Parts List. It’s small and efficient (loud), and it delivers the full range of sound available from the chip. Although it has a somewhat bulky horn attached to it, you can detach the speak-

Table 1. Data-Bit Definitions

<table>
<thead>
<tr>
<th>Bits</th>
<th>Type of Sound</th>
<th>Frequency</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/4</td>
<td>3/2/1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>tone</td>
<td>000</td>
<td>high</td>
</tr>
<tr>
<td>01</td>
<td>chip</td>
<td>111</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>long</td>
</tr>
</tbody>
</table>

(chirps are rising tones, bloop is a falling tone, taps are complex noises that sound like a sharp rap on a hard surface.)

![Fig. 3. Schematic details for a simple regulator you can use to power the audio chip.](image-url)
Computer Systems

Alex makes it easy to choose the system that best fits your needs. With four different case styles and six different motherboard options to choose from:

- Each system comes equipped with 9.1/2" and 5.25" drives.
- IDE hard drive controller, 2 serial, 1 parallel, and 1 game port.
- External and internal 5.25" drives and 3 external and internal 3.5" drives.
- To complete your system, choose the amount of memory you need, the size of hard drive, and the kind of monitor and controller card. Computer Systems designed with Monitor M60-03 not included.

System I

System I is designed into the STC 16 case. This deluxe vertical system measures 24" high x 7 1/2" wide and 17 deep. With 6 external 5 1/4" drive bays and 2 external and 2 internal 3.5" drive bays, it makes this the perfect system for the desktop area or where heavy expansion capabilities are required.

- Controller Board
- 40X50.16
- 1MB Memory $109

System II

System II is designed into the STC 19 case. This is our most popular system measuring 15 1/2" high x 7 1/2" wide and 15 1/2" deep and comes with 3 external 5 1/4" drive bays and 2 external and internal 3.5" drive bays. This is the perfect system for the power user who wants it all space.

System III

System III is designed into the STC 08 case. This mini-vertical system measures 13 1/2" high x 7 1/2" wide and 10 3/4" deep and comes with 2 external 5 1/4" drive bays and 1 internal 3.5" drive bay. This is our most expensive system to perform for family users and also networking stations.

System IV

System IV is designed into the STC 06 case. This slimline system measures 4 1/2" high x 17 1/2" Wide x 10 3/4" deep and comes with 2 external 5 1/4" drive bays and 1 internal 3.5" drive bay. A few new features make it the perfect desktop system.

Memory Modules

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Each</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>256X50</td>
<td>256X 4 90 NS SDRAM</td>
<td>$1220</td>
<td></td>
</tr>
<tr>
<td>256X80</td>
<td>256X 8 90 NS SDRAM</td>
<td>$1300</td>
<td></td>
</tr>
<tr>
<td>512X80</td>
<td>512X 8 90 NS SDRAM</td>
<td>$2500</td>
<td></td>
</tr>
<tr>
<td>1MBX60</td>
<td>1MB 60 N.S. SDRAM</td>
<td>$4000</td>
<td></td>
</tr>
<tr>
<td>2MBX60</td>
<td>2MB 60 N.S. SDRAM</td>
<td>$5000</td>
<td></td>
</tr>
<tr>
<td>4MBX150</td>
<td>4MB 150 N.S. SDRAM</td>
<td>$6500</td>
<td></td>
</tr>
<tr>
<td>8MBX150</td>
<td>8MB 150 N.S. SDRAM</td>
<td>$8000</td>
<td></td>
</tr>
</tbody>
</table>

Video Boards

Ethernet

- For C.O.D. orders add $5 per package. Minimum $25. Cash or Checkers Only. For orders under $25 add $1 handling charge. Orders over $25 or more no handling fee. All shipping is F.O.B. Dallas, Texas, and will be billed to your invoice. Terms are Net 30. Additional 14% or 15% select tax. All returns require RMA# and must be returned in original condition. A 15% restocking fee will be assessed on merchandise returned in non-re salable condition. No returns on books, video tapes, batteries, monitors, memory, cable or computer case assemblies. Prices subject to change without notice. We are not responsible for typographical errors.

EPSON

Canon

Panasonic

**Federal Express your order: 20% discount: Minimum $50. Overnight Priority $15.50 to 20 lbs.

Call Today for the 1989 Catalogue! 1-800-531-5698
Complete Battery Back-up Systems

Never lose data again with TrippLite's BC series of stand-by power systems. Features 30-60 minutes of back-up time allowing a safe, comfortable shut down of your valuable equipment. Complete with Get-Car batteries and a 2 year warranty. 2 minutes or under switch-over time. UL Approved.

<table>
<thead>
<tr>
<th>Part#</th>
<th>Description</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC-250</td>
<td>2 outlet, 150VA</td>
<td>$105</td>
</tr>
<tr>
<td>BC-400</td>
<td>4 outlet, 400VA</td>
<td>$165</td>
</tr>
<tr>
<td>BC-500</td>
<td>4 outlet, 500VA</td>
<td>$194</td>
</tr>
</tbody>
</table>

LAN Battery Back-up Systems

Same reliability as the BC Series but designed specifically for LAN's. Features remote channel output for the server shutdown. Proper cabling is available for any LAN system (not included). UL Approved.

<table>
<thead>
<tr>
<th>Part#</th>
<th>Description</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC-500LAN</td>
<td>500 VA</td>
<td>$195</td>
</tr>
<tr>
<td>BC-600LAN</td>
<td>600 VA</td>
<td>$200</td>
</tr>
<tr>
<td>BC-750LAN</td>
<td>750 VA</td>
<td>$309</td>
</tr>
<tr>
<td>BC-900LAN</td>
<td>900 VA</td>
<td>$379</td>
</tr>
<tr>
<td>BC-1250LAN</td>
<td>1250 VA</td>
<td>$529</td>
</tr>
<tr>
<td>BC-4000LAN</td>
<td>4000 VA</td>
<td>$259</td>
</tr>
</tbody>
</table>

Isobars come with a safeguard against any interaction between your electronic equipment. Suppresses up to 13,000 amp spikes. All Isobars come with a lifetime warranty and UL listing.

<table>
<thead>
<tr>
<th>Part#</th>
<th>Description</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB2-0</td>
<td>2 outlet, 20 amp, direct plug-in</td>
<td>$73</td>
</tr>
<tr>
<td>IB2-020</td>
<td>2 outlet, 20 amp, direct plug-in</td>
<td>$39</td>
</tr>
<tr>
<td>IB-6</td>
<td>6 outlet, 10A, direct plug-in</td>
<td>$95</td>
</tr>
<tr>
<td>IB-4</td>
<td>4 outlet, 8A, direct plug-in</td>
<td>$50</td>
</tr>
<tr>
<td>IB4020</td>
<td>2 outlet, 20 amp, 18' cord, 120VA</td>
<td>$43</td>
</tr>
<tr>
<td>IB8</td>
<td>8 outlet, 12A, direct plug-in</td>
<td>$73</td>
</tr>
<tr>
<td>IB8RM</td>
<td>8 outlet, 12A, direct plug-in</td>
<td>$69</td>
</tr>
<tr>
<td>EUROBAR</td>
<td>6 outlet, 10A, 220V/240V Volt, 20A</td>
<td>$52</td>
</tr>
<tr>
<td>BRI-12</td>
<td>12 outlet, 15A, rack mountable</td>
<td>$43</td>
</tr>
</tbody>
</table>

TrippLite Isobars®

Isobars provide superior surge, RFI and EMI noise suppression and injection with individual filter banks to safeguard against any interaction between your electronic equipment. Suppresses up to 13,000 amp spikes. All Isobars come with a lifetime warranty and UL listing.

<table>
<thead>
<tr>
<th>Part#</th>
<th>Description</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB2U-TRA</td>
<td>4 outlet, 6A, Advanced diagnostics</td>
<td>$50</td>
</tr>
<tr>
<td>IB6U-TRA</td>
<td>6 Outlet, 6A, Advanced diagnostics</td>
<td>$56</td>
</tr>
<tr>
<td>IB8U-TRA</td>
<td>8 Outlet, 12A, Advanced diagnostics</td>
<td>$65</td>
</tr>
<tr>
<td>IB8ULTRA</td>
<td>8 Outlet, 12A, Advanced diagnostics</td>
<td>$55</td>
</tr>
<tr>
<td>ISOBULTRA</td>
<td>8 Outlet, 12A, Advanced diagnostics</td>
<td>$12</td>
</tr>
<tr>
<td>ISOBULTRA</td>
<td>8 Outlet, 12A, Advanced diagnostics</td>
<td>$74</td>
</tr>
<tr>
<td>ISOBULTRA</td>
<td>8 Outlet, 12A, Advanced diagnostics</td>
<td>$32</td>
</tr>
<tr>
<td>IB2240B</td>
<td>2 outlet, direct plug-in, 15A</td>
<td>$44</td>
</tr>
<tr>
<td>IB2240B</td>
<td>2 outlet, direct plug-in, 15A</td>
<td>$39</td>
</tr>
</tbody>
</table>

Isobars Ultra Diagnostic Surge Suppressors

Direct plug-in premium spike and noise suppressors with sine wave tracking. Unique diagnostic circuitry advises of improper outlet wiring, damage to surge circuitry, loss of AC power. Ultimate Warranty.

<table>
<thead>
<tr>
<th>Part#</th>
<th>Description</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISOBULTRA</td>
<td>4 outlet, 6A, Advanced diagnostics</td>
<td>$50</td>
</tr>
<tr>
<td>ISOBULTRA</td>
<td>6 outlet, 6A, Advanced diagnostics</td>
<td>$56</td>
</tr>
<tr>
<td>ISOBULTRA</td>
<td>8 outlet, 12A, Advanced diagnostics</td>
<td>$65</td>
</tr>
<tr>
<td>ISOBULTRA</td>
<td>8 outlet, 12A, Advanced diagnostics</td>
<td>$55</td>
</tr>
<tr>
<td>ISOBULTRA</td>
<td>6 outlet, 6A, Advanced diagnostics</td>
<td>$12</td>
</tr>
<tr>
<td>ISOBULTRA</td>
<td>8 outlet, 12A, Advanced diagnostics</td>
<td>$74</td>
</tr>
<tr>
<td>ISOBULTRA</td>
<td>8 outlet, 12A, Advanced diagnostics</td>
<td>$32</td>
</tr>
<tr>
<td>IB2U-TRA</td>
<td>2 Outlet, Direct plug-in, 15A</td>
<td>$44</td>
</tr>
<tr>
<td>IB2U-TRA</td>
<td>2 Outlet, Direct plug-in, 15A</td>
<td>$39</td>
</tr>
</tbody>
</table>

Modem Fax Protectors

Protect your modems, telephone systems, and fax machines from telephone line spikes that damage equipment. All units exceed telephone standard with a response time of less than 5 nanoseconds. 2 year warranty.

<table>
<thead>
<tr>
<th>Part#</th>
<th>Description</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISOTEL</td>
<td>4 outlet, 6A, Direct plug-in, and modem protector</td>
<td>$59</td>
</tr>
<tr>
<td>ISOTEL</td>
<td>8 outlet, 6A, Direct plug-in, and modem protector</td>
<td>$75</td>
</tr>
<tr>
<td>ISOFAX</td>
<td>12 outlet, 12A, Direct plug-in, and modem protector</td>
<td>$36</td>
</tr>
<tr>
<td>TSB</td>
<td>3 stage modem protector</td>
<td>$38</td>
</tr>
<tr>
<td>MP</td>
<td>Economy modem protector</td>
<td>$14</td>
</tr>
<tr>
<td>SMP</td>
<td>Economy modem protector</td>
<td>$29</td>
</tr>
<tr>
<td>SMP</td>
<td>Economy modem protector</td>
<td>$35</td>
</tr>
</tbody>
</table>

Prices, product descriptions and illustrations are subject to change without notice. While Supplies Last. Altex Electronics is not liable for typographical errors. Products are trademarks of their respective companies.

Order By Phone: 1 (800) 531-5369

CIRCLE NO. 54 ON FREE INFORMATION CARD

www.americanradiohistory.com
Listing 2. QBASIC Program For Driving Sound Chip Through LPT1 Port

DECLARE FUNCTION Bit.String$ (Number AS INTEGER)
DECLARE SUB Update.Trig ()
DECLARE SUB Update.Effect ()
DECLARE SUB Update.Dur ()
DECLARE SUB Update.Freq ()
DEFINT A-Z:
DEF SEG = 64
port = PEEK(9) + 256 + PEEK(8) "Automatically locates LPT1
Row = 5: Col = 25
Frequency = 0: Duration = 0: Effect = 0: Trigger = 1
PRINT: PRINT TAB(Col); "--------SOUND CHIP
DEMO--------"
LOCATE Row, Col: PRINT "Effect Frequency Duration"
LOCATE Row + 8, Col: PRINT "INSTRUCTIONS:"
PRINT TAB(Col): "Connect the sound chip as described"
PRINT TAB(Col): "in the article. Press the spacebar"
PRINT TAB(Col): "to trigger a beep tone. Press the"
PRINT TAB(Col): "first letter of the values you want"
PRINT TAB(Col): "to change (e.g., F for frequency)."
PRINT TAB(Col): "Press Q to quit."
Update.Freq
Update.Dur
Update.Effect
Update.Trig
Again:
DO
Press$ = INKEY$
LOOP WHILE Press$ = "";
SELECT CASE Press$
CASE "F", "f"
 Frequency = Frequency + 1
 IF Frequency > 7 THEN Frequency = 0
 Update.Freq
 GOTO Again
CASE "d", "D"
 Duration = Duration + 1
 IF Duration > 1 THEN Duration = 0
 Update.Dur
 GOTO Again
CASE "e", "e"
 Effect = Effect + 1
 IF Effect > 3 THEN Effect = 0
 Update.Effect
 GOTO Again
CASE "t", "T"
 Trigger = Trigger - 1
 IF Trigger < 0 THEN Trigger = 1
 Update.Trig
 GOTO Again
CASE "q", "Q"
 IF Trigger = 0 THEN
 GOTO Again
 ELSE
 temp = INP(port): temp = temp AND 255
 temp$ = ""
 Mask = 128
 DO
 IF Number AND Mask THEN temp$ = temp$ + "1" ELSE
 temp$ = temp$ + "0"
 Mask = Mask \ 2
 LOOP WHILE Mask >= 1
 Bit.String$ = temp$
 END FUNCTION
SUB Update.Dur
 SHARED Duration, Row, Col, port
 Dur$ = Bit.String$(Duration)
 LOCATE Row + 1, Col + 25
 PRINT RIGHTS(Dur$, 1)
 temp = INP(port)
 IF Duration THEN temp = temp OR 1 ELSE temp = temp AND 254
 OUT port, temp
END SUB
SUB Update.Effect
 SHARED Effect, Row, Col, port
 Effect$ = Bit.String$(Effect)
 LOCATE Row + 1, Col + 2
 PRINT RIGHTS(Effect$, 1)
 temp = INP(port) AND 255
 temp = temp OR (16 * Effect)
 OUT port, temp
END SUB
SUB Update.Freq
 SHARED Frequency, Row, Col, port
 Freq$ = Bit.String$(Frequency)
 LOCATE Row + 1, Col + 12
 PRINT RIGHTS(Freq$, 3)
 temp = INP(port) AND 254
 temp = temp OR (Frequency * 2)
 OUT port, temp
END SUB
SUB Update.Trig
 SHARED Trigger, Row, Col, port
 LOCATE Row + 3, Col
 IF Trigger = 0 THEN
 PRINT "Trigger: Continuous"
 temp = INP(port): temp = temp AND 63
 OUT port, temp
 ELSE
 PRINT "Trigger: Single (press spacebar)"
 temp = INP(port): temp = temp OR 64
 OUT port, temp
 END IF
END SUB
SSN 265-11-1116
964 Cactus Wren Lane
Sierra Vista, AZ 85635
(602) 459-3038 (H) 533-8066 (W)
CompuServe 72037,2612

40 / COMPUTERCRAFT / August 1993 Say You Saw It In ComputerCraft
er element by removing the three screws on the back, leaving you with a flat, 2"-diameter speaker. If the small metal grille comes off the speaker as you're removing the horn, simply cement it back into place.

I don't recommend using one of those piezoelectric transducers that are about the size of a watch battery. These have a very sharp resonant response, making them efficient within only a small range of frequencies, outside of which, they sound downright puny. The sound chip, on the other hand, produces a relatively wide range of frequencies.

Assemble the circuit but don't connect it to your PC or controller until you've first checked it out and are certain that your construction is absolutely on the money. To test the circuit, first supply power to it. Then move the trigger connection between ground and +5 volts. The speaker should sound when the connection is grounded and fall silent when it's connected to +5 volts. (Actually, it will probably be silenced simply by disconnecting it from ground because the inputs of the audio chip tend to float high. They "see" a 1 when they're disconnected.)

If your circuit misbehaves as you're testing it, power down and check your wiring. Make sure that R1, C1 and C2 are connected properly, and check the connections to the speaker.

Once the circuit is making some kind of noise, power down and connect its interface to LPT1 on your PC. (You must use LPT1 for the connection point because the demonstration program automatically configures itself for this port to save you from searching your computer's documentation for port addresses.)

Checkout & Use

Once you connect the circuit to your PC's parallel port (LPT1), enter and run the QBASIC program given in Listing 2. Although this program may appear to be somewhat long, it's the user interface—that makes it so. It isn't driving the sound chip. The program also illustrates one of BASIC's weaknesses—dealing with individual bits.

All lines in Listing 2 that contain logic operators—AND, OR and NOT—are there for the sole purpose of turning on and off particular bits. If you connect the sound chip to a controller and program in assembly language, you will have a much easier time writing software to get things running.

Run the program and then turn on the sound-chip circuit. It won't hurt if you reverse this order, but your circuit may begin "squeaking," based on whatever random bits are on LPT1. Also, don't worry if your circuit starts beeping before you apply power. It's receiving power from high bits in LPT1 through its signal inputs. The manufacturer builds static-protection diodes into the inputs of these chips to divert static electricity to the power-supply connections, where they're less likely to do damage. When power is disconnected, these diodes can divert signals to the power-supply rails, where they may supply sufficient current to power the circuit. Don't rely on this effect, however, because an input of all Os is valid and would turn off the free power.

The program is basically self-explanatory. Just press the first letter of the parameter you want to adjust (such as "F" for frequency) and tap the spacebar to hear the result. For continuous sounds, press "T" (triggering). Pressing "T" again takes you back to the spacebar-triggered mode.

In addition to allowing you to test the circuit, the software shows you the data required to produce a given effect. This should prove useful when writing programs to use the sound chip. In serious applications, you might use a short tone (effect 00) to acknowledge properly-entered data and a series of taps (effect 11) to signal when an error has occurred. For fun, continuous chirps, bloops and taps (effects 01, 10 and 11) of different duration make great space-war effects. An unbroken stream of chirps sounds like alien spacecraft. A string of taps sounds like machine-gun fire. Once you feel you've exhausted all of the possibilities of the 64 preprogrammed combinations of sounds, maybe you're ready to program some of your own.
Designing Microcontroller Circuits

Part 2: Project construction, testing and adding NV memory

Last month, I introduced a development system using the 8052 BASIC microcontroller. This month, I continue with building and testing the circuit, adding permanent program storage and performing a few simple I/O tests and experiments. I’ll also include reviews of some new books for those of you who want to bone up on microcontrollers and single-board computers.

Circuit Construction

This project is intended to be a flexible system for testing and experimenting with new ideas, rather than to be used as a rigid, unchanging design for a single application. For this reason, I recommend building it using the Wire Wrap or another construction technique that lets you alter your work, so that you can easily change or add to the basic circuits. (For more on construction methods, see my article in the April 1993 issue of ComputerCraft.)

These are some things to be aware of as you build the circuit from last month’s schematic diagram:

Choose a circuit board with extra room. I used a Vector No. 3677 plug board, which measures 4.5" x 9.6" and has interleaved etched buses for easy connections to power and ground. Fig. 1 shows the circuits built on this board. The No. 3677-6 version of the board leaves off the gold-plated edge connector and is much less expensive than the No. 3677 plug board. Digi-Key is one source.

If your board has power and ground buses, solder IC power and ground connections directly to the buses. Be sure to wire U5’s (a MAX232 RS-232 converter chip) ground connection correctly, at pin 15 (not the expected pin 8). For connections to the power supply, solder thick, AWG 22 or lower-number, wires to the buses. You can solder the other ends of the wires to banana plugs or screw terminals, or clip your power-supply leads directly to the wires.

The schematic doesn’t show an on/off switch for the circuit, but you can add an spst toggle or slide switch in series with the +5-volt line if you wish.

Space decoupling capacitors C9 through C13 evenly along the board.

To minimize noise in the oscillator circuits, place XTAL1, C2 and C3 close to pins 18 and 19 of U1. Connect them with short wires. Wire the ground terminals of C2 and C3 directly to pin 20 of U1.

When you wire D1, C4 through C8, LED1 and U1 through U6, correct orientation is required. Notice that C7’s positive terminal connects to ground, since its negative terminal connects to the MAX232’s -10-volt output. As you wire the circuits, remember that everything is a mirror image of the way it looks on the component side of the board. If pin 1 is in the upper-left corner on the component side of the board, it’s in the upper-right corner on the wiring side. Labels are helpful reminders for keeping track of the layout.

Figure 1 shows a couple of different techniques to represent connections. For example, in the reset circuit, connections are drawn as direct point-to-point lines. For address and data lines, I used buses for a neater, more-compact schematic. When you wire these connections, use the signal labels as a guide. For example, the label 10 does tells you to interconnect pin 39 of U1, pin 3 of U3, pin 11 of U6 and one side of R2. Other connections are also indicated by labels instead of point-to-point connections. For example, the WRITE label shows that pin 16 of U1 and pin 27 of U6 are to be connected together.

Two gates on U2 aren’t used. To prevent these unused CMOS inputs from floating and possibly drawing excessive currents, wire pins 9, 10, 12 and 13 to ground or +5 volts.

Don’t plug the ICs into their sockets until you’ve completed wiring all of the circuits.

Connections to RS-232 OUT and RS-232 IN depend on the type of serial connector you have on your personal computer or its serial cable. Connectors vary, but the most common configurations

(Continued on page 47)
In this seventh installment of our continuing series of pull-out data guides for PCs and microcontrollers, Our focus here is on the 80x86 family of microprocessors are the brains inside the millions of personal computers described as “IBM-compatible.”

From the original 8086, the family has grown to include chips that are faster, use less power or have other added features or/and improvements. This month’s quick-reference guide introduces the 8086/8 and 80186/8.

Prepared by Jan Axelson. Copyright 1993 CQ Communications, Inc. 76 North Broadway, Hicksville, NY 11801

Intel 8086/8

Summary

The 8086 was Intel’s first microprocessor with a 16-bit internal and external data bus, which gave it faster performance than existing eight-bit microprocessors. The 8088 is nearly identical, but it has an eight-bit external data bus. You can find 8088s inside original IBM PCs and XTs and many compatibles. Some modern hand-held computers also use 8086/8 chips.

Features

Up to 10-MHz clock
Eight and 16-bit signed and unsigned arithmetic
Binary and decimal operations
Multiply and divide instructions
89 instructions
1M addressing ability
Minimum mode for small embedded systems
Maximum mode for PCs and multiprocessor systems

Signal	**Pin(s)**	**Type**	**Function**
AD0-AD7 | 9-16 | I/O | Low Address/Data Bus
AD8-AD15 | 2-8.39 | I/O | High Address/Data Bus (8086 Only)
A8-A15 | 2-8.39 | Output | High Address Bus (8088 Only)
A16/S3 | 38 | Output | Address/Status 3
A17/S4 | 37 | Output | Address/Status 4
A18/S5 | 36 | Output | Address/Status 5
A19/S6 | 35 | Output | Address/Status 6
-BHE/S7 | 34 | Output | Bus High Enable/Status 7 (8086 Only)
CLK | 19 | Input | Clock
GND | 1.20 | Input | Ground
HIGH-/SS0 | 34 | Output | High/Status Line (8088 Only)
INTR | 18 | Input | Interrupt Request
LOCK (-WR) | 29 | Output | Bus Lock (Write Memory or I/O)
MN/-MX | 33 | Input | Minimum/Maximum Mode Select
NMI | 17 | Input | Nonmaskable Interrupt Request

8088 DIFFERENCES

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin(s)</th>
<th>Type</th>
<th>Function*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A14</td>
<td>AD14</td>
<td>6</td>
<td>A15</td>
</tr>
<tr>
<td>A13</td>
<td>AD13</td>
<td>5</td>
<td>A16/S3</td>
</tr>
<tr>
<td>A12</td>
<td>AD12</td>
<td>4</td>
<td>A17/S4</td>
</tr>
<tr>
<td>A11</td>
<td>AD11</td>
<td>3</td>
<td>A18/S5</td>
</tr>
<tr>
<td>A10</td>
<td>AD10</td>
<td>2</td>
<td>A19/S6</td>
</tr>
<tr>
<td>A9</td>
<td>AD9</td>
<td>1</td>
<td>BHE/S7</td>
</tr>
<tr>
<td>A8</td>
<td>AD8</td>
<td>0</td>
<td>MN/-MX</td>
</tr>
<tr>
<td>A7</td>
<td>AD7</td>
<td>32</td>
<td>RD</td>
</tr>
<tr>
<td>A6</td>
<td>AD6</td>
<td>31</td>
<td>RQ/GT0 (HOLD)</td>
</tr>
<tr>
<td>A5</td>
<td>AD5</td>
<td>30</td>
<td>RQ/GT1 (HOLD)</td>
</tr>
<tr>
<td>A4</td>
<td>AD4</td>
<td>29</td>
<td>LOCK (WR)</td>
</tr>
<tr>
<td>A3</td>
<td>AD3</td>
<td>28</td>
<td>S2 (H/L) S2 (10/M)</td>
</tr>
<tr>
<td>A2</td>
<td>AD2</td>
<td>27</td>
<td>ST (DT/RI)</td>
</tr>
<tr>
<td>A1</td>
<td>AD1</td>
<td>26</td>
<td>S0 (DEN)</td>
</tr>
<tr>
<td>A0</td>
<td>AD0</td>
<td>25</td>
<td>OS0 (ALE)</td>
</tr>
<tr>
<td>NMI</td>
<td>17</td>
<td>24</td>
<td>QS1 (INTA)</td>
</tr>
</tbody>
</table>

8086 DIP

<table>
<thead>
<tr>
<th>Pin(s)</th>
<th>Type</th>
<th>Function*</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS0 (ALE)</td>
<td>25</td>
<td>Output Queue Status 0 (Address Latch Enable)</td>
</tr>
<tr>
<td>QS1 (INTA)</td>
<td>24</td>
<td>Output Queue Status 1 (Interrupt Acknowledge)</td>
</tr>
<tr>
<td>RESET</td>
<td>21</td>
<td>Input System Reset</td>
</tr>
<tr>
<td>-RD</td>
<td>32</td>
<td>Output Read Memory or I/O</td>
</tr>
<tr>
<td>READY</td>
<td>22</td>
<td>Input Ready Acknowledge</td>
</tr>
<tr>
<td>-RQ/GT0</td>
<td>31</td>
<td>I/O Bus Request/Grant 0 (Hold)</td>
</tr>
<tr>
<td>-RQ/GT1 (HLDA)</td>
<td>30</td>
<td>I/O Bus Request/Grant 1 (Hold Acknowledge)</td>
</tr>
</tbody>
</table>
Summary
The 80186 contains an 8086 microprocessor and several peripherals on a single chip. It’s intended for use in controllers, instrumentation and other embedded applications. The 80188 is identical to the 80186 except for its eight-bit external data bus.

Features
Enhanced 8086
Up to 20-MHz clock
1M addressing ability
Clock generator
Two DMA channels
Programmable interrupt controller
Three programmable 16-bit timers
Programmable memory and chip-select logic
Programmable wait-state generator
Local-bus controller
Object-code-compatible with 8086/8
Ten added instruction types

Related chips
80C186XL is low power, 20-MHz clock
80C186EA has power-save modes, 20-MHz clock.
80C186EB has two serial channels, power-save modes, 16 port pins, 20-MHz clock.
80C186EC has two serial channels, power-save modes, four DMA channels, watchdog timer, 24 port pins, 16-MHz clock.

Related chips
CMOS versions are available (80C86/8).
The NEC V20 and V30 are drop-in replacements for the 8088 and 8086, respectively, that faster performance.
Chips & Technologies' F8680 is an entire PC/XT motherboard on a chip.
<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin(s)</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD0-AD7</td>
<td>2,4,6,8,11,13,15,17</td>
<td>I/O</td>
<td>Low Address/Data Bus</td>
</tr>
<tr>
<td>AD8-AD15</td>
<td>1,3,5,7,10,12,14,16</td>
<td>I/O</td>
<td>High Address/Data Bus (80186 Only)</td>
</tr>
<tr>
<td>A8-A15</td>
<td>1,3,5,7,10,12,14,16</td>
<td>Output</td>
<td>High Address Bus (80188 Only)</td>
</tr>
<tr>
<td>A16/S3</td>
<td>68</td>
<td>Output</td>
<td>Address Bit 16/Bus Cycle Status 3</td>
</tr>
<tr>
<td>A17/S4</td>
<td>67</td>
<td>Output</td>
<td>Address Bit 17/Bus Cycle Status 4</td>
</tr>
<tr>
<td>A18/S5</td>
<td>66</td>
<td>Output</td>
<td>Address Bit 18/Bus Cycle status 5</td>
</tr>
<tr>
<td>A19/S6</td>
<td>65</td>
<td>Output</td>
<td>Address Bit 19/Bus Cycle status 6</td>
</tr>
<tr>
<td>ALE/QS0</td>
<td>61</td>
<td>Output</td>
<td>Address Latch Enable/Queue Status 0</td>
</tr>
<tr>
<td>ARDY</td>
<td>55</td>
<td>Input</td>
<td>Asynchronous Ready</td>
</tr>
<tr>
<td>-BHE/S7</td>
<td>64</td>
<td>Output</td>
<td>Bus High Enable/Bus Cycle Status 7</td>
</tr>
<tr>
<td>CLKOUT</td>
<td>56</td>
<td>Output</td>
<td>Clock Output</td>
</tr>
<tr>
<td>-DEN</td>
<td>39</td>
<td>Output</td>
<td>Data Enable</td>
</tr>
<tr>
<td>DRQ0</td>
<td>18</td>
<td>Input</td>
<td>DMA Request Channel 0</td>
</tr>
<tr>
<td>DRQ1</td>
<td>19</td>
<td>Input</td>
<td>DMA Request Channel 1</td>
</tr>
<tr>
<td>DT/R</td>
<td>40</td>
<td>Output</td>
<td>Data Transmit/Receive</td>
</tr>
<tr>
<td>HOLD</td>
<td>50</td>
<td>Input</td>
<td>Bus Hold</td>
</tr>
<tr>
<td>HOLDA</td>
<td>51</td>
<td>Output</td>
<td>Bus Hold Acknowledge</td>
</tr>
<tr>
<td>INT0</td>
<td>45</td>
<td>Input</td>
<td>Interrupt request 0</td>
</tr>
<tr>
<td>INT1/SELECT</td>
<td>44</td>
<td>Input</td>
<td>Interrupt Request 1/Save Select</td>
</tr>
<tr>
<td>INT2/-INTA0</td>
<td>42</td>
<td>I/O</td>
<td>Interrupt Request 2/Acknowledge 0</td>
</tr>
<tr>
<td>INT3/-INTA1/IRQ</td>
<td>41</td>
<td>I/O</td>
<td>Interrupt Request 3/Acknowledge 1/Slave Request</td>
</tr>
<tr>
<td>-LCS</td>
<td>33</td>
<td>Output</td>
<td>Lower Memory Chip Select</td>
</tr>
<tr>
<td>-LOCK</td>
<td>48</td>
<td>Output</td>
<td>Bus Lock</td>
</tr>
<tr>
<td>-MCS0</td>
<td>38</td>
<td>Output</td>
<td>Midrange Memory Chip Select 0</td>
</tr>
<tr>
<td>-MCS1</td>
<td>37</td>
<td>Output</td>
<td>Midrange Memory Chip Select 1</td>
</tr>
<tr>
<td>-MCS2</td>
<td>36</td>
<td>Output</td>
<td>Midrange Memory Chip Select 2</td>
</tr>
<tr>
<td>-MCS3</td>
<td>35</td>
<td>Output</td>
<td>Midrange Memory Chip Select 3</td>
</tr>
<tr>
<td>NMI</td>
<td>46</td>
<td>Input</td>
<td>Nonmaskable Interrupt request</td>
</tr>
<tr>
<td>-PCS0</td>
<td>25</td>
<td>Output</td>
<td>Peripheral Chip Select 0</td>
</tr>
<tr>
<td>-PCS1</td>
<td>27</td>
<td>Output</td>
<td>Peripheral Chip Select 1</td>
</tr>
<tr>
<td>-PCS2</td>
<td>28</td>
<td>Output</td>
<td>Peripheral Chip Select 2</td>
</tr>
<tr>
<td>-PCS3</td>
<td>29</td>
<td>Output</td>
<td>Peripheral Chip Select 3</td>
</tr>
<tr>
<td>-PCS4</td>
<td>30</td>
<td>Output</td>
<td>Peripheral Chip Select 4</td>
</tr>
<tr>
<td>-PCS5/A1</td>
<td>31</td>
<td>Output</td>
<td>Peripheral Chip Select 5/Latched A1</td>
</tr>
<tr>
<td>-PCS6/A2</td>
<td>32</td>
<td>Output</td>
<td>Peripheral Chip Select 6/Latched A2</td>
</tr>
<tr>
<td>-RD/-QSMD</td>
<td>62</td>
<td>I/O</td>
<td>Read Strobe/Queue Status Mode</td>
</tr>
<tr>
<td>-RES</td>
<td>24</td>
<td>Input</td>
<td>CPU Reset</td>
</tr>
<tr>
<td>RESET</td>
<td>57</td>
<td>Output</td>
<td>Reset Output</td>
</tr>
<tr>
<td>-S0</td>
<td>52</td>
<td>Output</td>
<td>Bus Cycle Status 0</td>
</tr>
<tr>
<td>-S1</td>
<td>53</td>
<td>Output</td>
<td>Bus Cycle Status 1</td>
</tr>
<tr>
<td>-S2</td>
<td>54</td>
<td>Output</td>
<td>Bus Cycle Status 2</td>
</tr>
<tr>
<td>SRDY</td>
<td>49</td>
<td>Input</td>
<td>Synchronous Ready</td>
</tr>
<tr>
<td>-TEST</td>
<td>47</td>
<td>I/O</td>
<td>Wait Instruction Continues if Low</td>
</tr>
<tr>
<td>TMR IN 0</td>
<td>20</td>
<td>Input</td>
<td>Timer Input 0</td>
</tr>
<tr>
<td>TMR IN 1</td>
<td>21</td>
<td>Input</td>
<td>Timer Input 1</td>
</tr>
<tr>
<td>TMR OUT 0</td>
<td>22</td>
<td>Output</td>
<td>Timer Output 0</td>
</tr>
<tr>
<td>TMR OUT 1</td>
<td>23</td>
<td>Output</td>
<td>Timer Output 1</td>
</tr>
<tr>
<td>-UCS</td>
<td>34</td>
<td>Output</td>
<td>Upper Memory Chip Select</td>
</tr>
<tr>
<td>-WR/QS1</td>
<td>63</td>
<td>Output</td>
<td>Write Strobe/Queue Status 1</td>
</tr>
<tr>
<td>Vcc</td>
<td>9.43</td>
<td>Input</td>
<td>Power Supply (+5V)</td>
</tr>
<tr>
<td>Vss</td>
<td>26.60</td>
<td>Input</td>
<td>System Ground</td>
</tr>
<tr>
<td>X1</td>
<td>59</td>
<td>Input</td>
<td>Crystal 1</td>
</tr>
<tr>
<td>X2</td>
<td>58</td>
<td>Output</td>
<td>Crystal 2</td>
</tr>
</tbody>
</table>

Cumulative Index

Adapters
- Nine-Pin EGA/VGA to 15-Pin VGA .. Apr
- Nine-Pin to 25-Pin RS-232C .. Apr
- Nine-Pin to RS-232C Null Modem (25-Pin D-Shell Connector) Apr
- RJ-11 Telephone Jack ... Apr
- 25-Pin RS-232C Null Modem (25-Pin D-Shell Connector) Apr
- 25-Pin Null Printer (25-Pin D-Shell Connector) Apr

Microcontrollers
- Intel 8051/52 (eight-bit) .. May
- Intel 8X9X (16-bit) ... Jun
Microchip PIC16C5X (eight-bit) ... Jun
Motorola 68HC05 (eight-bit) .. May
Motorola 68HC11 (eight-bit) ... May
Motorola 68HC16 (16-bit) .. Jun
Zilog Z8 (eight-bit) .. May

Microprocessors
Harris CDP1802 (eight-bit) .. Jul
Intel 8039 (eight-bit) ... Jun
Intel 8085 (eight-bit) ... Jul
Intel 8086/8 & 80186/8 .. Aug
Rockwell CDP1802 (eight-bit) ... Jul
Zilog 8085 (eight-bit) ... Jul

Floppy-Disk Interfaces
Floppy-Disk Drive A Interface (34-Pin Edge Connector) Mar
Floppy-Disk Drive B Interface (34-Pin Edge Connector) Mar

Hard-Disk Interfaces
ESDI Hard-Disk Drive Interface (34-Pin Control-Cable Edge Connector) .. Mar
ESDI Hard-Disk Drive Interface (20-Pin Data-Cable Edge Connector) .. Mar
IDE Hard-Disk Drive Interface (For PC/XT) (40-Pin Dual In-Line Berg Connector) ... Mar
ST-506/412 Hard-Disk Drive Interface (34-Pin Control-Cable Edge Connector) ... Mar
ST-5-6/412 Hard-Disk Drive Interface (20-Pin Data-Cable Edge Connector) ... Mar

Local-Area Network
Ethernet Twisted Pair (Hub to Hub) (Eight-In RJ-45 Phone Plug) .. Apr
Thin Ethernet AUI Connector (15-Pin D-Shell Connector) Apr

MIDI Interface
MIDI Input (Five-Pin DIN Connector) ... Apr
MIDI Output (Five-Pin DIN Connector) ... Apr
MIDI Through (Five-Pin DIN Connector) .. Apr

Mouse Ports
Nine-Pin D-Shell Connector .. Feb
Six-Pin Miniature DIN Connector .. Feb

Power-Supply Connectors
Backup Battery Connector (Four-Pin In-Line Berg Connector) Apr
Disk-Drive Power Source (Polarized Four-Pin Connector, Both Large and Small) ... Apr
Motherboard Power Source (Dual Six-Pin In-Line Connector) Apr

Printer Ports
Centronics Printer Connector (36-Pin Amphenol Connector) Feb
Parallel Printer Port (25-Pin D-Shell Connector) Feb
Serial Printer Port (25-Pin D-Shell Connector) Feb

SCSI Interfaces
SCSI Single-Ended Interface (50-Pin Connector, All Versions) Mar
SCSI Differential Interface (50-Pin Connector, All Versions) Mar

Serial Ports
RS-232C Serial PC Modem Port (9-Pin D-Shell Connector) Feb
RS-232C Serial PC Modem Port (25-Pin D-Shell Connector) Feb
RS-232C Serial Port (25-Pin D-Shell Connector) Feb
RS-422 Serial Port (377-Pin D-Shell Connector) Feb
RS-423 Serial Port (25-Pin D-Shell Connector) Feb

Video Interfaces
EGA/CGA Color (9-Pin D-Shell Connector) Feb
VGA Color (15-Pin Miniature D-Shell Connector) Feb
VGA Monochrome (9-Pin D-Shell Connector) Feb

Corrections
March 1993 Disk Drive Interfaces section transpose the two cable drawings on the first page with those on the second page.
A solder-cup-type connector permits easy soldering of the wires.

Figure 2 shows the wiring details for nine- and 25-pin connectors. Keep in mind that some computers may require additional handshaking signals.

Fig. 2. Wiring diagram for serial connections to the 8052-BASIC system.

BASIC-52 doesn't support these, but you can simulate them by connecting together pins 5, 6, 8 and 20 at the personal-computer end of the link. (These pin numbers are for a 25-pin connector.)

Powering Up

To power up and test your circuit, you need a regulated +5-volt power supply that's capable of delivering at least 0.5 ampere, multimeter capable of reading volts, ohms and amperes (just about any basic meter will do for this), and a logic probe for convenient for monitoring logic levels (or use an oscilloscope if one is available). You also need a computer with terminal-emulation software and a serial port. For terminal emulation, you can use the same software you use for modem communication with a BBS. I usually use Datastorm Technologies' ProComm Plus, but any good software vendor or shareware catalog will have several options. If you have Windows, you can use its Terminal accessory. An IBM/compatible 80x86 computer isn't required. Any computer or even a computer terminal that has a serial port and communications software will do.

The first time you power up an untested circuit, it pays to be cautious. I recommend that you exercise the following steps:

- Visually inspect the circuit. You don't have to spend a lot of time on this, but an obvious missing or mis-wired wire or component or another problem will sometimes jump out at you.
- Install U1 through U6 in their respective sockets on the board, making sure that pin 1 on each is oriented correctly.
- Set J1 to BASIC-52 (+5 volts), and set J2 and J3 to match the size of your RAM at U6.
- With an ohmmeter, measure the resistance from +5 volts to ground, to make certain that you haven't shorted together the two by mistake. My board measured 4,700 ohms with an HSMOS 8052 at U1, and 13,000 ohms with a CMOS 80C52. The exact value isn't critical, but if you get a reading that's close to 0 ohm, you've connected +5 volts to ground, in which case, you must find and correct the problem before you continue.

If you suspect a problem, check the wiring of the power and ground connections, comparing the connections to those on the schematic. Be sure all components are oriented correctly. When all

Fig. 3. You can use the Windows terminal accessory to communicate with the 8052-BASIC system.
checks out, you're ready to boot up to BASIC-52.

For the initial check, begin with everything powered down. I'll use the terms host computer or host system to refer to the personal computer, and target computer or target system, to refer to the 8052-BASIC board.

Interconnect the serial ports of the host and target systems with a properly configured cable. Connect, but don't turn on, the target system's power supply.

Turn on your host computer and run your communication software. Configure it for eight data bits, no parity and one stop bit. Select the appropriate serial, or COM, port, if necessary. The baud rate you select isn't critical, since BASIC-52 automatically adjusts to what you're using. To start, use a rate of 9,600 or less. Select no handshaking or flow-control options.

In Procomm Plus, use the line/port setup menu (ALT+P) to configure. In the Windows terminal, use the Settings menu.

You're now ready to power up the target system. Turn on the power supply and then press the space bar at the host's keyboard. You should see the following BASIC-52 sign-on message and prompt on your video monitor:

```
*MCS-51(tm) BASIC V1.1*
READY
```

Figure 3 shows the sign-on message as it appears on the Windows terminal screen. If you don't see the prompt, it's time to troubleshoot. Getting the system to boot up the first time can be the most challenging part of a project, especially when serial communication is involved.

Here are some things that can help you isolate the cause of such a problem:

Try again by pressing and releasing SI and the space bar. If you're using a 32K RAM for U6, BASIC-52 requires about a second to perform its memory check after a reset occurs to respond to the space bar. With an 8K RAM, the delay is a few tenths of a second.

Double-check the easy things. Are the communications parameters correct? Did you select the correct serial port? Are all ICs plugged into their appropriate sockets, properly oriented and seated, with no pins hanging over the sockets or folded under between ICs and sockets?

Verify that pin 9 of U1 goes high and then low when you press and release SI.

Check the power and ground pins of all ICs for proper voltages.

Connect a logic probe to pin 10 of U1. When you press the space bar, you should see the logic level toggle as U1 receives the ASCII code for "space" (20h). If you don't obtain this response, you probably have a problem in the setup of your communications software or in the serial cabling.

Verify that pin 30 of U1 is toggling (at 1/6 the crystal frequency if you have an oscilloscope). This indicates that the oscillator circuit is functioning.

Verify that pins 21 through 28 and 32 through 39 of U1 toggle as BASIC-52 performs its memory check immediately after powering up or rebooting.

If all else fails, recheck your wiring for missing or mis-routed wires. Sometimes there's no alternative but to go through the schematic connection by connection, checking each with an ohmmeter or audible continuity checker. When I built my prototype of this circuit, I transposed the inputs and outputs of U3, and it took a while to discover where the problem was.

Basic Tests

When your system boots up, you're ready for some basic tests. You'll want to have your BASIC-52 programming manual handy as a reference as you do this.

In some ways, BASIC-52 is similar to BASIC compilers like QuickBASIC. Many of the keywords and syntax rules are similar. But BASIC-52 is closer to older interpreted BASICs like GW-BASIC and BASICA. You can key in a statement or command and execute it immediately when you hit ENTER, or you can type a series of statements and run them later as a program. If a statement begins with a line number, BASIC-52 treats it as a program line, rather than as a statement to execute immediately.

Type PRINT MTOP to find out how much external data memory BASIC-52 detected on boot-up. With an 8K RAM, MTOP is 8191, and with 32K, it's 32,767. If you prefer hex notation, type PH0.MTOP.

Special operator XTAL represents the value of the timing crystal that clocks U1. The default value is 11059200, or 11.0592 MHz. You can verify this by typing PRINT XTAL. Most BASIC-52 functions don't use the XTAL operator. Exceptions are the real-time clock, programming commands, PWM output and LPT serial output at pin 8. For these, XTAL should match your crystal's frequency. To set XTAL for a 12-MHz crystal, type XTAL=12000000.

After typing a few commands, you may discover some of BASIC-52's line-editing abilities. While typing a line, you can correct errors by deleting back to the error and retyping. In Procomm Plus, if you select VT100 terminal emulation (Setup menu, Terminal Options), you can use either the delete or backspace key to delete. With the Windows terminal, you must use the delete key (not backspace). Many communication programs allow you to remap the keyboard so that you can select whatever delete key you wish.

Once you press ENTER, you can't edit a line you've typed unless you retype it from the beginning.

BASIC-52 treats upper- and lowercase characters the same. As a rule, spaces are ignored. Therefore, you can include spaces or not as you wish.
Here's a very simple program to try:

`10 PRINT "Hello, world"
20 END`

Enter each of the lines, including the line numbers. BASIC-52 stores the program in RAM. To run the program, type RUN and hit ENTER. You should see this:

Hello, world

To view the program, type LIST and hit ENTER. To erase the current program, type NEW and hit ENTER. You can change individual program lines by typing the line number, followed by a new statement. To erase a line, type the line number and press ENTER.

Now let's try some basic I/O. Connect a logic probe to monitor pin 1 of U1, or connecting the “hit” of lead a voltmeter to pin 1 and the common lead to ground. Pin 1 is Bit 0 of Port 1, or P1.0 for short. The following statement brings P1.0 low:

```
PORT1=PORT1.AND.0FEH
```

The following statement brings P1.0 high:

```
PORT1=PORT1.OR.01H
```

Your logic probe or voltmeter readings should verify these.

As the above statements suggest, BASIC-52 has no instructions for setting or clearing individual bits, as 8052 assembly language does. Instead, you can use the logical operators AND and OR, along with a mask byte, to change one bit in a byte without affecting the others.

To clear a bit, AND the byte with a mask byte consisting of all 1s except for the bit or bits to be cleared. For example, to clear Bit 0, the mask byte is 1111 0000, or FF in hexadecimal. The result is that Bits 1 through 7 are unchanged and bit 0 is 0, no matter what it was originally.

To set a bit, OR the byte with a mask byte consisting of all 0s except for the bit or bits to be set. To set Bit 0, the mask byte is 0000 0001, or 01h, which again leaves Bits 1 through 7 unchanged but forces Bit 0 to be 1.

Listing 1 shows statements that set and clear each of the bits in a byte. Don't clear Bit 3 of Port 1 (P1.3), since BASIC-52 uses this bit in accessing external memory. If you clear it accidentally, press S/ to reset the system. You must add a leading 0 to hex numbers that begin with A through F.

You can read Port 1 as well as write to it. To display the value of the entire port, type PRINT PORT for decimal or PH0.PRT1 for hexadecimal.

If a port pin is open, or unconnected, its internal pull-up resistor will cause it to read as 1. If you jumper a port pin to ground or bring it low by connecting it to a logic low output, it should read 0.

The logical operators and mask bytes also enable you to read individual bits. To read bit 0 only, type

```
PRINT PORT1.AND.01H
```

Listing 1 shows statements that will display the values of the other bits in a byte.

Adding Nonvolatile Memory

One of the handiest features of BASIC-52 is its programming commands for storing programs in EPROM, EEPROM or battery-backed RAM. These commands are designed to meet the programming requirements for EPROMs, with a choice of Intel's 50-millisecond or Quick-Pulse programming algorithms. But you can use the same commands to store programs in battery-backed RAM (NVRAM) or EEPROM.
Like EPROMs, these devices provide nonvolatile storage. That is, their contents don’t disappear when power is removed. Additionally, they have two advantages over EPROMs: they don’t need special programming voltages, and they don’t need ultraviolet light for erasure. This makes them much more convenient to use.

For these reasons, your circuit offers a choice of NVRAM or EEPROM for nonvolatile storage, with EPROM left as an option for later, if the need for it should arise. Whether you choose EEPROM or NVRAM, be sure to ask for a data sheet for the device you buy.

Figure 4 shows the added circuits for the NVRAM/EEPROM. Pinout and wiring are similar to that used for the RAM at U6. The data and 13 address lines are wired exactly the same as for U6. The chip-select input at pin 20 connects to pin 11 of U4, which is low only when addresses from 8000h to 9FFFh are selected.

Connecting output-enable of U7 to RDANY allows it to be accessed as data or program memory. This enables U7 to store assembly-language routines, as well as BASIC-52 programs. For writing to U7, and gate U2C gives you a choice of two signals. Write is the conventional signal used to write to data memory. In addition, BASIC-52 uses a special Pgm Pulse signal when it stores BASIC-52 programs in NV memory beginning at 8000h. Either of these signals will bring low WE on U7.

Dallas Semiconductor offers NVRAM chips that you can use at U7. These work exactly like static RAM, except that they contain a lithium cell and backup circuits that retain the RAM’s contents when the main power supply is removed. The backup is guaranteed for at least 10 years. Alternatively, you can use one of Dallas’s SmartSockets, which contain only the lithium cell and backup circuits and require you to plug in your own static RAM.

For U7, you can use the DS1225 NVRAM or a DS1213B or DS1213C SmartSocket with a 6264 static RAM. The -AB version of the NVRAM operates at power supply potentials that are greater than 4.75 volts and write-protects when the supply delivers less than 4.5 volts. SmartSockets employ the same write-protect voltages. -AD and -Y NVRAMs operate when the supply is delivering greater than 4.5 volts and write-protect when it’s less than 4.25 volts. Any of these should work in this circuit. Access times of 250 ns or less are fine.

Don’t be confused by the fact that Dallas describes its devices by the number of bits they store, rather than the number of bytes. For example, the company calls the 8K-byte DS1225 a 64K device.

You can order NVRAMs directly from Dallas Semiconductor (no minimum order required) or from JDR Microdevices and other distributors.

Your other option is EEPROM. A typical EEPROM is guaranteed for 10,000 write cycles, which is sufficient for most applications. EEPROMs do not have the nonvolatile memory of a RAM. For the majority of EEPROMs, you have to wait 2 to 10 ms after writing to them before you can access them again. In spite of the drawbacks, I’ve included EEPROM as an option because an 8K EEPROM is cost less than an 8K RAM (all for EEPROM, compared to $1 for NVRAM from one vendor). Typical numbers for an 8K EEPROM are 2664 and 2NC4.

EEPROMs have two common ways of indicating that they’re busy performing a write operation and so are unable to be accessed. In one type, when the EEPROM is busy, the data outputs hold the last-written data, but with one or more bits inverted. Because BASIC-52’s programming commands verify each byte after programming it, the inverted data automatically keeps BASIC-52 from programming another byte until the EEPROM is ready to receive it.

Other EEPROMs have a busy output, usually at pin 1, that goes low when the EEPROM is busy. For this type, you can tie the busy output to pin 12 of U1, which BASIC-52 checks after programming each byte.

Wire U7 in your circuit, using Fig. 4 as a guide. Use an IC socket. If you previously tied pins 9 and 10 of U2 to ground or +5 volts, be sure to remove these connections before you wire the ones shown in Fig. 4.

When you’ve added the circuit, you’re ready to power up and try the programming commands. Begin by entering any simple BASIC-52 program or use the example given earlier.

If you used a 32K RAM at U6, you must perform an additional step before you can store a program in U7. On boot-up, BASIC-52 tests contiguous memory and sets MTOP to the highest value it finds below E000h. But BASIC-52’s programming commands won’t work unless MTOP is below 8000h. To enable program storage, type MTOP=7FFFh. This ensures that BASIC-52 won’t try to store RAM programs, variables or strings in the area you’ve reserved for permanent program storage (although it doesn’t prevent you from writing to the area with BASIC-52’s XBY operator). If U6 is 8K, MTOP is 1FFFh, which is well below 8000h. Hence, you don’t have to worry about changing MTOP.

To copy the current program from U6 to U7, type FPROG and hit ENTER. You’ll see the number 1, indicating that this is the first BASIC-52 program to be stored in the device. Following a short delay, the Ready prompt should return. PROG is an alternate command that uses a slower programming algorithm, and should work also.

If BASIC-52 is unable to program the chip, you’ll see an ERROR: PROGRAMMING message displayed on-screen. If you get an error, double-check your wiring. When the programming command executes, pins 20, 22 and 27
Listing 2. BASIC-52 Program for Erasing U7 by Writing 0FFh to Locations 8000h-9FFFh

10 FOR I=8000H TO 9FFFH
20 XBY(I)=OFFH
30 IF XBY(I)=OFFH THEN GOTO 30
40 NEXT I
50 END

should toggle, along with the address and data lines.

To run a program from NV memory, you must switch from RAM mode, where BASIC-52 runs the program stored in U6, to ROM mode, where it looks in U7 for programs to run. RAM and ROM commands select the modes. When you've programmed successfully, run your program by typing RUN and hitting ENTER and then RUN and ENTER or RROM and then hitting ENTER.

You can store multiple programs, space permitting, and run each by specifying its number. For example, to run the second program stored, type RROM2. To return to editing programs in RAM, type RAM.

Another useful command is XFER. In ROM mode, type XFER to copy the current program from ROM into RAM, where you can edit it, and then use FPROG to store the revised version in U7 if you wish.

The commands FPROG1 through FPROG6 let you to store additional information besides programs. Especially handy is FPROG2, which saves the current baud rate and also tells BASIC-52 to automatically run the first program in NV memory on boot-up. This is what allows you to disconnect the system from its host and run it as a stand-alone system.

You can also permanently store a value for MTOP in U7. If U6 is 32K, set MTOP to 7FFFh and type FPROG3. Now, when your system boots, MTOP will automatically be set to 7FFFh, and you can use the FPROG commands without problems. FPROG3 also saves the baud rate and boots to the READY prompt without requiring you to press the space bar.
Sources

Dallas Semiconductor
4350 South Beltwood Pkwy.
Dallas, TX 75244-3292
Tel: 214-450-0400 or 1-800-336-6933
CIRCLE NO. 124 ON FREE INFORMATION CARD

Digi-Key Corp.
701 Brooks Ave. S.
P.O. Box 677
 Thief River Falls, MN 56701-0677
Tel: 1-800-344-4539
CIRCLE NO. 124 ON FREE INFORMATION CARD

JDR Microdevices
2233 Samaritan Dr.
San Jose, CA 95124
Tel.: 1-800-538-5000 or 408-559-1200;
fax: 1-800-538-5005
CIRCLE NO. 125 ON FREE INFORMATION CARD

If you do use FPROG2 or FPROG3, BASIC-52 will no longer automatically detect your host's baud rate. You must use the baud rate that was in use when you used the FPROG command.

Eventually, your NVRAM or EEPROM will fill with programs, or you may just want to erase what you've stored and start fresh. Listing 2 is a BASIC-52 program that erases U7 by writing OFFh to all locations. To use the program, key in the listing and then type \RUN, following with ENTER. The READY prompt will return when erasure is complete.

If you want to add an additional 8K of NV RAM, wire another circuit exactly as shown in Fig. 4, but connect pin 20 of the new NVRAM or EEPROM to A000h (pin 10 of U4) so that it will be accessed from A000h to BFFFFh.

Storing Programs on Disk

With BASIC-52's programming commands, you really don't need to store programs on disk. Even so, disk storage is convenient, since you can save as many programs as you want without worrying about running out of NV memory. Since the programs are stored as ASCII text, you can write and edit them with any text editor and then simply upload them as needed to the target system.

Most communication software allows you to upload and download files. In Procomm Plus, you use the PgUp and PgDn keys. In the Windows terminal, use the Transfers menu.

If possible, set up your software so that it waits for the BASIC-52 ">" prompt (ASCII 62) after each uploaded line. This ensures that BASIC-52 will have enough time to process each line before the next one arrives. If there isn't enough time, you'll have missing characters or lines in uploaded programs.

To do this in Procomm Plus (V2.01), from the Setup menu, select Terminal Options then Protocol Options, ASCII Options and set the pace character to 62. Character and line spacing can be 0.

Also, under Protocol Options, General Options, set Abort Transfer if CD Lost to NO, since the three-conductor serial cable doesn't include the CD line.

In the Windows terminal, select Settings, then Text Transfers, One Line at a Time, and enter ">" under Wait for Prompt String. Other software should have similar abilities. If not, look for options that add delays after each line or character and experiment with values for these, or use a slower baud rate if necessary.

To download a BASIC-52 program from the target's RAM to the host's disk, type LIST to list the current program, but before you press ENTER, set up your host's software to download, or receive, an ASCII file. When prompted, specify a filename. When the transfer is set up, press ENTER to send your program to the host. When you see the Ready prompt, end the transfer. You should now have a file on disk containing the program you just listed.

To erase the current program from RAM, type NEW. Now when you type LIST, no program is listed.

To restore your program by uploading it from disk, set up your host's software to upload, or send, an ASCII file, and enter the name of your previously downloaded file. As the file loads, you'll see each program line on-screen. The file will contain a READY prompt after the program listing. This causes BASIC-52 to display an error message, which you can ignore. Type LIST to view the uploaded program, and type RUN to run it.

That about does it for this time. Next month, you'll expand and experiment with more I/O applications.

New Books

Turning to a different topic, here are some new books I've recently looked at that you might want to consider adding to your library.

For HC11 fans, there's the comprehensive Microcontroller Technology: The 68HC11, by Peter Spasov (1993, Regents/Prentice Hall, $61.33, 622 pages). Designed as a text for engineers or technicians, it covers everything from basic explanations of how a computer works to examples of how to use the HC11's indexed addressing to copy a block of data or access a look-up table. This book includes much of the same material as Motorola's 68HC11 Reference Manual, but I often find it helpful to read two different sources, since each has its own perspective. There are many short code listings in assembly language and a chapter on C. You won't find a lot of schematics or hardware examples, however, and most of the ones there don't include specific component designations. One interesting chapter describes three real-world HC11 applications: in cars, engines, cameras and printers.

Finally, computers are digital devices, but they often control and monitor analog circuits. Troubleshooting Analog Circuits, by Robert A. Pease (1991, Butterworth-Heinemann, $32.95, 217 pages) has useful and practical tips for designing and fixing analog circuits, including circuits containing operational amplifiers, voltage and current references, regulators and transistors. The author is a senior scientist at National Semiconductor; so there's no question that he's qualified to write on this topic. The style is very informal and often humorous. There are even a few projects, including a sensitive short-circuit detector for pc boards and an active oscilloscope probe with low input capacitance.

If you can't find any of these books on the shelves of your bookstores, the stores should be able to order them.

Jan Axelson
A Simple Intel BASIC-52 Extractor

Copies an internal 8052AH-BASIC interpreter into EPROM for use with inexpensive 8032/8052 MPUs

For casual users and novices, the easiest way to program a microcontroller project is with BASIC, and for simplest layout, a project can use an Intel 8052AH-BASIC MPU with an EPROM and little else. The only drawback to this arrangement is that for every project, you must buy another $25 or so 8052AH-BASIC chip. The 8032 series of embedded microcontrollers are considerably less expensive than their 8052AH-BASIC cousins because it lacks an internal BASIC interpreter. Otherwise, the 8032 is identical to the 8052AH-BASIC, except that requires BASIC in external ROM to function. Getting the EPROM with BASIC already loaded into it is what this article is all about. Surprisingly, this isn’t as difficult as you may think.

In the January 1993 issue of ComputerCraft, Jan Axelos discussed copying the BASIC interpreter from Intel’s 8052AH-BASIC chip into EPROM. After buying and copying the first 8052AH-BASIC chip to EPROM, you can put safely away the expensive chip and use a less-expensive non-BASIC 8032/8052 chip with the EPROM into which you programmed BASIC for all future projects.

There isn’t much difference between an EPROM and the ROM inside the 8052AH-BASIC microcontroller chip. The only significant difference is in the pinouts for the two devices. In this article, I’ll show you how to build a small socket adapter to match the pinout of the 8052 to a 2764/A EPROM and plug this into a commercial EPROM copier. With this adapter, you can then be read and copy the EPROM as a standard 2764 device, without the need to take any intermediate steps or have on hand additional equipment.

Building the Project

Referring to Fig. 1, you read an EPROM by feeding it an address on address bus A0 through A12 and read what comes out on data bus D0 through D7. According to the Intel embedded-microcontrollers handbook, you can verify the internal program by supplying power and ground, putting a high or low on certain pins and then verifying what comes out on the eight-line Port 0 bus.

To make the adapter, you use a 40-pin machined-contact solder-tail IC socket and two 14-pin machined-contact Wire Wrap SIP strips. The SIP strips take the place of a 28-pin Wire Wrap socket to provide room to bundle the connecting wire between the two rows.

To make the adapter as compact as possible, you’ll mount these sockets on two halves of a Radio Shack or similar experimenter printed-circuit board (see Parts List). You must also mount the small C1 and C2 silver-mica capacitors and a 4- or 6-MHz crystal (XTAL) for the 8052’s oscillator. The chip needs its oscillator to be active to be able to move the ROM data around internally.

Use a sharp hacksaw to cut the PCB board in half lengthwise, as shown in Fig. 2, and smooth the cut edges with a file. Then mark the centers of the strips and drill a small hole at each end of both strips, as shown. Later, when you’re ready for final assembly, you’ll use 4-32 "M" machine screws and nuts and "N" spacers to fasten together the two strips, as shown in the bottom drawing in Fig. 2 and the lead photo.

Plug two 14-contact Wire Wrap SIP strips into one of the pc-board strips as shown, spacing the SIP strips 0.6" apart and parallel to each other, as shown in the top drawing in Fig. 2. As you solder the pins of the SIP strips to the pads on the pc board, make sure they’re perfectly square with the pc board so that they plug into a commercial EPROM copier without difficulty.

Plug the pins of the 40-pin solder-tail socket into the holes in the other pc-board strip, offsetting as is shown in the upper drawing in Fig. 2 to make room for mounting the crystal and capacitors at the end opposite pin 1 of the socket. Solder the socket pins to the copper pads on the bottom of the pc board and install and solder into place the crystal and capacitors.

Using small-gauge solid hookup wire and referring back to Fig. I, wire the capacitors and crystal into the circuit at the appropriate points. Then wire together the two sockets, soldering prepared lengths of wire to the pins on the

Say You Saw It In ComputerCraft

August 1993 / COMPUTERCRAFT / 53

www.americanradiohistory.com
Do not connect to 8052

PARTS LIST
C1, C2—30-pF silver-mica capacitor
XTAL—6.0-MHz crystal
Misc.—Experimenters’ printed-circuit card (Radio Shack Cat. No. 276-150 or similar); 40-pin machined-contact solder-tail IC socket; snap-able 30-position SIP Wire Wrap header; \(\frac{\pi}{16} \)" spacers (2); 4-32 x \(\frac{3}{4} \)" machine screws and nuts; hookup wire; solder; etc.

40-pin socket on underside of the board and the appropriate pads on the SIP-stripe board. Make these wires long enough to span the distance between the socket and SIP strips, with enough slack in them to permit you to fold them neatly as you bring together the two subassemblies during final assembly. Be sure to leave a little extra length on each wire so that when you fold them, you can route them neatly without stretching or pressing against any sharp-edged soldered points. Make absolutely certain that you haven’t made a connection.
to pin 1 on the 28-pin SIP-strip socket. If you do and the 21-volt programming \(V_{PP} \) potential is applied to the circuit, you'll almost certainly destroy the 8052AH-BASIC chip.

When you're done wiring the project, bending the interconnecting wiring between the two boards as needed to make a neat assembly. Then secure the boards together with the machine hardware and spacers, as shown in the bottom drawing in Fig. 2. Neatly “dress” the wires between the two subassemblies, routing them between the plastic blocks on the SIP strips (see lead photo).

Before putting the adapter into service, completely check out your wiring with an ohmmeter or audible continuity tester. Also, double-check to make sure that no connection has been made to the pin-1 position of the SIP-strip socket arrangement.

Using the Adapter

When you're absolutely certain that all your wiring is correct, plug an 8052AH-BASIC chip into the 28-pin socket at the top of the assembly, orienting pin 1 at the end opposite to that on which the crystal and capacitors are mounted. Plug the adapter into an EPROM copier, orienting it according to the manufacturer’s instructions.

Read the 8052 in its adapter as a “2764” EPROM. This puts the 8052AH-BASIC program into the programmer’s memory. Verify that the program in memory is the same as that in the 8051/2764 adapter. If all's well, remove the adapter and set it aside. Then plug a new or erased 2764 EPROM into the programmer's socket and write the program into it.

You can now store your expensive 8052AH-BASIC MPU and make as many 2764 EPROM-BASIC copies as you need.

In Closing

With the adapter presented here, you should be able to copy the program of any other 80xx/87xx MPU. Just be sure that you wire the adapter to match the family you intend to copy. Of course, some MPU chips can't be copied. According to the Intel handbook, a part whose number ends in a “-P” suffix means that the internal program is protected and can’t be verified using this adapter.

ORGANIZE AND PROTECT YOUR COPIES OF ComputerCraft

Now there's an easy way to organize and keep copies of your favorite magazine readily available for future reference.

Designed exclusively for ComputerCraft by Jesse Jones Industries, these custom-made titled cases and binders provide the luxury look that makes them attractive additions to your bookshelf, desk or any location in your home or office.

Whether you choose cases or binders, you'll have a storage system that's durable and well organized to help protect your valuable copies from damage.

- Cases and binders designed to hold a year's issues (may vary with issue sizes).
- Constructed of reinforced board, covered with durable green leather-like material.
- Free personalization foil for indexing year.
- Title hot - stamped in gold.

ComputerCraft

Jesse Jones Industries, Dept. COM-C
499 East Erie Avenue,
Philadelphia, PA 19134

Please send ____ cases; ____ binders

Enclosed is $ __________

☐ Charge my: (Minimum $15)
 ☐ American Express ☐ Visa
 ☐ Mastercard ☐ Diners Club

Card # ___________________________ Exp. Date ______

Signature _______________________

Print Name ______________________

Address _________________________

City/State/Zip ________________

No P.O. Box Numbers Please

PA Residents add 7% sales tax

Call TOLL FREE 7 days,
24 hours 1-800-825-6690
Adding Peripherals to Your PC

Dealing with the woes of adding sound cards, CD-ROM drives, image scanners and other peripherals to your PC and insights on some affordable nifty new products you might want to add to your system.

As computer technology moves forward, more and more peripherals to enhance the use of the desktop PC are becoming not only available but affordable as well for the average user. A good example of this is the current crop of multimedia computers now on the market that introduce new purchasers of this equipment to sound cards and CD-ROM drives that as little as a year ago might have been considered to be expensive exotica for the average user.

Now you can also get flatbed and hand scanners and high-resolution graphics cards capable of displaying up to 16.7 million colors for working with photo-realistic images, not to mention a bevy of sophisticated and powerful software.

Most computers come with a more or less “standard” set of peripherals that include a keyboard, a video monitor and color graphics card combo, a mouse attached to a serial port and maybe even a modem for convenient communication with other computers, BBSs and other on-line services. Most, if not all, new computers also come with bundled software to get them up and running right out of the carton. And quite a number of suppliers are offering “special” configurations that include a wide variety of hardware and software to meet specific needs, not to mention a bevy of relatively inexpensive optional add-ins and add-ons. The bottom line, though, is that it’s the computer that manages whatever may be attached to it and software that’s run in it. And therein lies a pitfall to the user who wants to add to his system.

In this article, I’ll address the pitfalls and how you can overcome them. Then I’ll outline the new products—hardware and software alike—you can add to your system to make it multimedia-capable.

The Pitfalls

Few things are more frustrating than to install a new peripheral, turn on your system and have nothing happen. Compounding the problem, a screen of error messages that have no meaning to you may be displayed on your video screen. In most cases, the problem is caused by a newly-installed peripheral creating a conflict with another device already installed in your computer.

Four factors determine whether a new peripheral will peacefully coexist in an ISA (Industry Standard Architecture) PC. These are the base memory address, input/output (I/O) port, interrupt request number (IRQ) and direct-memory access (DMA) channel. When you install a new device in your PC and its card settings are the same as those used for a previously-installed device, one or both peripherals may not work. The result is a system that comes to an abrupt halt.

EISA (Extended Industry Standard Architecture) and MCI (IBM’s Micro Channel Interface) PCs usually take care of conflicts automatically by electronically re-configuring controller cards at the time they’re installed. Because the AT-compatible ISA-bus desktop can’t resolve these conflicts, it’s up to you to properly configure whatever you add to your PC to avoid creating conflicts.

If your computer uses an SCSI (small computer system interface) devices, another potential conflict problem exists. Each SCSI device must be assigned a separate ID number, up to 7, manually or through software.

Most conflict problems are handled by manually re-configuring a peripheral controller card or via device-driver software setup to respond to the correct memory block, I/O port, IRQ number and DMA channel. Peripheral controller cards usually provide a DIP switching block or jumper headers that permit you to make such choices. This being the
case, it’s important that you shop for whatever peripheral devices you plan on adding to your system with an eye for those that give you as many choices as possible within the four potential conflict areas. When shopping for software, the same choices should be available when configuring it for use with the peripherals you’ll be using.

You can write conflict-correction routines with a text editor like the EDIT utility included in MS-DOS 5.0 or 6.0 to update the CONFIG.SYS file and AUTOEXEC.BAT files that start up your PC and get it ready for using your applications software. The installation programs for CorelSCSI, Advanced SCSI Programming Interface (ASPI) DOS Manager and most applications software sense needed changes and give you the option of re-configuring your CONFIG.SYS and AUTOEXEC.BAT files, making a backup copy of the current files. If things don’t work out, you revert back to the original files and start your installation over again.

Dealing With Conflicts

Before installing a new peripheral, take an inventory of your system to determine how your PC currently makes use of the four potential conflict areas. Consult the manual supplied with each installed peripheral and note the base addresses, I/O ports, IRQ numbers and DMA channels you currently use. If you don’t have the manuals or can’t be bothered looking up the required information, you can use diagnostic software like Quarterdeck’s Manifest and the System Info and Diagnostics utilities in Symantec’s Norton Utilities 7.0 to test your system and obtain a video display and/or hard copy of your PC’s current use in these sensitive areas.

A common conflict with base-memory addresses will come into play when you upgrade your video system to display high-resolution graphics (640 x 480 with 256 colors and up). Your computer will have to be instructed via its CONFIG.SYS file that certain segments of upper memory aren’t to be used, making them available to the software driver of the high-resolution graphics card you select.

Use of device-driver software and TSR (terminate-and-stay-resident) programs can quickly use up precious memory. By carefully locating this software in either lower or upper memory blocks, you can avoid creating memo-

A flatbed full-page scanner.

Hand scanner package with image-manipulation and optical-character-recognition software.
inventory of DMA channels, note that Channel 0 is used for memory refresh, and Channel 3 may be used for the hard drive.

Unlike a memory area that holds data, an IRQ isn't always in use. Therefore, it's possible for more than one device to share the same IRQ number without causing problems. The caveat here, though, is that conflict-free operation can be obtained only provided both devices aren't used at the same time. The same characteristic is true for a DMA channel.

Now that you know what to look for and how to avoid creating conflicts in your PC, let's look at a few popular peripherals, some bundled with attractive software packages, that illustrate the range of choices available to ease an installation process.

Enhancing Your System

I'll preface this capsule summary by defining the base system in which I installed the products I'll be covering in this section. I installed the peripherals on a 486 PC that has 5M of RAM, a 130M IDE hard drive, 1.2M and 1.44M floppy drives, a serial Microsoft mouse and an Optiquest 1000 video monitor driven by a STB Powergraph X-24 accelerator card. The system operates under MS-DOS 5.0 and Windows 3.1 and uses QEMM 386 memory management. Creative Labs offers the Sound Blaster series of sound cards that, when connected to speakers and a microphone, can be the first step to making a Multimedia PC Marketing Council (MPC) compliant computer system. The Sound Blaster Pro ($199) includes a proprietary controller for a Panasonic CD-

Answers! Answers! Answers!

CQ's New 1993 Guide to Amateur Radio

New hams—Novices, Techs, Generals or whatever ticket you start with—have questions. What do I look for in an HT? How should I operate on the local repeaters? What's it like to get on HF? How do I set up a station? How do I use an SWR bridge? These questions and a hundred more. As important as these questions are, there's one other question that's more important: Where can I go to find the answers?

CQ's 1993 Guide To Amateur Radio will answer these questions and hundreds of others. This new guide is check-full of articles written strictly for the newcomer by some of the best writers in Ham Radio. Bill Orr, W6SAI, shows you how to efficiently set up your first station. Lew McCoy, W1ICP, takes you on a tour of repeater operating practices and etiquette. McCoy also tells you what an SWR bridge is and how to use it, as well as recommending the best type of SWR indicator for newcomers. Ed Juge, W5TOO, gives you a concise guide to the common and not-so-common functions and capabilities found in today's handhelds. Famous ham educator Gordon West, WB6NOA, guides you through the licensing and upgrading maze. John Dorr, K1AR, shows you how to set up your first packet station and make that first connect. There's even an article that gives you the secrets of successfully installing PL-259s—no small task even for old timers. You'll find many, many more articles that you'll want to refer to often. Also, you'll find detailed information on many of the most popular rigs plus an explanation of what everything means—a mini buyer's guide of sorts. Plus, you'll find an up-to-date listing of all the Ham Radio manufacturers and dealers. You'll want to keep this book handy for day-in-day-out operation. It will pay for itself with every article you read.

YES, please send me ______ copies of CQ's 1993 Guide To Amateur Radio at $1.95 each:

Call 415 882 6262 FAX 415 882 6295

CQ Communications, Inc., 76 North Broadway, Hicksville, NY 11801 Phone: 516 882 3222 FAX: 516 881 2926

Mail to: CQ Communications, Inc.

Call 415 882 6262 FAX 415 882 6295

Mail to: CQ Communications, Inc.

Say You Saw It In ComputerCraft
The CD-ROM drive that has a 390-ms average seek time and 150Kb/s data-transfer rate. The card for this CD-ROM drive offers a choice of DMA0, DMA1 or DMA3; I/O port address of 220h or 240h, and IRQ2, IRQ5, IRQ7 or IRQ10 value.

A voice to .VOC file program, several sample sound files, a software controllable mixer and Windows 3.1 audio wave, MIDI and device drivers are included. Eight-bit stereo (22.05 kHz) and eight-bit mono (44.1 kHz), audio input and output, a game port, an on-board FM synthesizer and MIDI interface are also supported.

MediaVision’s the Pro AudioStudio 16 ($499) sound card offers record and playback of 16-bit stereo (44.1 kHz), an on-board FM synthesizer, MIDI support and a standard SCSI CD-ROM controller interface.

Installation of a MPC-compliant CD-ROM drive will make your multimedia system complete. Sony’s CDU-7205 CD-ROM Laser Library package ($595) that includes CD-ROM discs containing Compton’s Family Encyclopedia, Microsoft Bookshelf, Languages of the World, National Geographic Mammals, Mixed-up Mother Goose, Software Toolworks World Atlas and the Microsoft CD-ROM Extension driver (MSCDEX, Version 2.2). The CD-ROM drive has a rated average seek time of 530 ms and a data-transfer rate of 150Kb/s and a 64K data buffer. The proprietary host adapter card supplied in this package makes available 19 base memory addresses, three SCSI ID numbers, IRQ2 through IRQ5 and three DMA channels from which to choose.

The MPC-compliant Toshiba TXM-3301E CD-ROM drive (S695) drive offers an average seek rate of 325 ms and a data-transfer rate of 150Kb/s, with a 64K data buffer and includes the Future Domain TMC-850 SCSI adapter card and MSCDEX Version 2.2 driver. The Future Domain adapter card permits you to select I/O port address CA00h, CB00h, CE00h or DE00h and IRQ3 or IRQ5.

Toshiba now also offers the TXM3401E CD-ROM drive (S955), which has an average seek rate of 200 ms, a data-transfer rate of 330Kb/s and a 256K data buffer. This drive is also CD-ROM XA (eXtended Architecture) compatible.

The SCSI standard allows installation of up to seven daisy-chained SCSI devices that could include a CD-ROM, scanner, tape backup, hard drive and/or floptical drive attached to the one

Sources

Scanners
- ENV 256 Bundle
- Envision, Inc.
- 822 Mahler Rd.
- B指引杰, 目任94010
- Tel.: 415-692-9061
 - CIRCLE NO. 126 ON FREE INFORMATION CARD
 - ES-600C (parallel bidirectional or SCSI); ES-800C (parallel- and SCSI-ready)

Sound Cards
- Sound Blaster Pro
- Creative Labs, Inc.
- 2050 Duane Ave.
- Santa Clara, CA 95054
- Tel.: 408-428-6622
 - CIRCLE NO. 128 ON FREE INFORMATION CARD

CD-ROM Drives
- CDU-7205 CD-ROM Laser Library
- CDU-7211

Software
- OmniPage Direct
- OmniPage Pro
- Corel Corp.
- 100 Cooper Ct.
- Los Gatos, CA 95030
- Tel.: 800-535-7226 or 408-395-7000
 - CIRCLE NO. 133 ON FREE INFORMATION CARD

CorelSCI
- Corel Systems, Inc.
- 1600 Curly Ave.
- Ottawa, Ontario, Canada K1Z 8R7
- Tel.: 613-728-8200
 - CIRCLE NO. 134 ON FREE INFORMATION CARD

HALO Desktop Image
- Media Cybernetics, Inc.
- 8484 Georgia Ave.
- Silver Spring, MD 20910
- Tel.: 301-495-3305
 - CIRCLE NO. 135 ON FREE INFORMATION CARD

Picture Publisher 3.1
- Micrografx Corp.
- 1303 Arapaho Rd.
- Richardson, TX 75081
- Tel.: 214-234-1769
 - CIRCLE NO. 136 ON FREE INFORMATION CARD

QEMM 386
- Manifest
- QuarterDeck Office Systems
- 150 Pico Blvd.
- Santa Monica, CA 90405
- Tel.: 213-392-9701
 - CIRCLE NO. 137 ON FREE INFORMATION CARD

SCSI Controllers
- GO-OCR
- Recognita Corp. of America
- 1156 Alstor Ave., Ste. F
- Sunnyvale, CA 94086
- Tel.: 408-241-5722
 - CIRCLE NO. 138 ON FREE INFORMATION CARD

Symantec Corp.
- 10211 Torre Ave.
- Cupertino, CA 95014-2132
- Tel.: 408-253-9600
 - CIRCLE NO. 139 ON FREE INFORMATION CARD

Adaptec Corp.
- 691 S. Milpitas Blvd.
- Milpitas, CA 95035
- Tel.: 408-945-8600
 - CIRCLE NO. 140 ON FREE INFORMATION CARD

Future Domain, Inc.
- 2801 McGraw Ave.
- Irvine, CA 92714
- Tel.: 714-253-0400
 - CIRCLE NO. 141 ON FREE INFORMATION CARD

Sound Cards
- Sound Blaster Pro
- Creative Labs, Inc.
- 2050 Duane Ave.
- Santa Clara, CA 95054
- Tel.: 408-428-6622
 - CIRCLE NO. 142 ON FREE INFORMATION CARD

Suy You Saw It In ComputerCraft

August 1993 / COMPUTERCRAFT / 59
adapter card. The ASPI DOS Manager, CorelSCSI ($99), Future Domain's SCSIWorks software makes installation of SCSI devices a relatively conflict-free and painless operation.

Epson America has its Models ES-600C and ES-800C flatbed color/monochrome scanners for the PC/compatible and Mac computers. The ES-600C has a resolution of 600 x 600 with output from 50 to 600 dpi in 23 increments, while the ES-800C has a resolution of 800 x 800 with output of 50 to 800 dpi. Both scanners support a document size of up to 8.5" x 11.7" and permit you to zoom from 50% to 200% in 1% increments. You can scan an image at one to eight bits per pixel at 256 levels of gray or one to 24 bits in 16.7-million colors. The scanners support two methods of color scanning: Color Line (one pass) and Color Page (three passes).

The ES-600C comes ready for bidirectional parallel ($1,049) or SCSI ($1,129) interface. The ES-800C ($1,499) is ready for both interfaces. The interface kit ($399) contains the required connector board and cable. Caere OmniPage Direct OCR Try Pak, a full version of Micrografx Picture Publisher 3.1 for IBM/compatible computers or Adobe Photoshop for the Mac and the Epson Apple or TWAIN-compliant (IBM) scanner driver. (TWAIN is the application program interface imaging standard that enables scanning and input of images without leaving an application.) The Adaptec ANA-1510 16-bit SCSI adapter with ASPI DOS Manager software provides two I/O addresses (140h or 340h) and a choice of IRQ9 through IRQ12.

If you enjoy radio communications you'll love....

Popular Communications

The World's largest, most authoritative monthly magazine for Shortwave Listening and Scanner Monitoring. Read by more active listeners than all other listening publications combined!

POPULAR COMMUNICATIONS

76 North Broadway, Hicksville, NY 11801

Get fast home delivery of Popular Communications and save $15.45 a year over the newsstand price. Save even more on 2 or 3 year subs.

☐ 1 year - 12 issues $19.95
☐ 2 years - 24 issues $38.00
☐ 3 years - 36 issues $57.00

SUBSCRIBE TODAY!

Canada/Mexico- One year $22.00, two years $42.00, three years $63.00, Foreign - one year $24.00, two years $48.00, three years $69.00, Foreign Air Mail - one year $77.00, two years $152.00, three years $229.00

(Please print clearly)

Name
Street
City
State
Zip

Bill to Mastercard • VISA • AMEX • Discover

Account number: Exp date:

Note: Allow 6-8 weeks for delivery of first issue.

Caere's OmniPage Direct OCR Try Pak works directly with Write (included with Windows 3.1), Wordperfect for Windows, Ami Pro for Windows, Word for Windows and Excel for Windows. It has a 25 page document scan limit, enticing you to purchase the full version for $295. OmniPage Direct 1.0 can read omnifont typefaces ranging from 6 to 72 point at speeds of up to 2,000 words per minute and .TIF and PCX graphics file formats at a maximum of 400 dpi and Windows Dynamic Data Exchange (DDE) support. OmniPage Pro ($995) contains a spell checker, foreign-character recognition and user-definable character recognition.

Micrografx Picture Publisher 3.1 for Windows offers professional-quality image editing and full-featured paint tools and includes device-specific drivers for non-TWAIN- and TWAIN-compliant hardware. Once you scan an image, you save it as a .BMP, .GIF, .PCX or .TIF graphic file.

Envisions has a hand scanner bundle for $199 that includes a 256 GrayScale Hand Scanner, Recognita's GO-OCR software, clipart samples, a scanner pad and Media Cybernetics' HALO Desktop Imager. Scanning width is 4.13" (105 mm), resolution is 100 to 400 dpi at eight bits per pixel with 256 gray levels using a yellow-green lamp. The included scanner adapter card supports eight I/O addresses. DMA1 and DMA3 and IRQ3, IRQ5 and IRQ10.

GO-OCR translates scanned text of 6- through 24-point size at a speed of up to 1,500 words per minute into ASCII format for import to any word processor and features automatic merging of two text scans to make a full-size page scan.

HALO Desktop Imager is a full featured 24-bit Windows 3.1 image editor that saves files in the .TIF, .IMG, .MSP, HALO.CUT and TWAIN-compliant formats and Windows 3.1 Object Linking and Embedding (OLE) and the JPEG image-compression format.

Mustek's PrinScan 105 adapter plugs into a PC's parallel port and, thus, provides hand scanning without having to install an adapter card. Its $299 package includes the Mustek Matador 105 halftone hand scanner that offers up to 400-dpi resolution at 64 levels of gray. Bundled with PrinScan 105 is ScanKit Gray, a gray scale image editor that supports .TIF, .PCX, .TGA, .MSP, .IMG and .CUT files and Perceive Personal Omnifont OCR software.
Have you ever wanted to read voltage, temperature or other data into your computer but shied away from the idea because of the expensive or complicated hardware or both needed to do this? If so, you no longer have a reason to think this way. I'll describe how to build a Quick-and-Dirty Data Interface—or "QADDI" for short—that makes it possible for you to read analog or digital signals into your computer via the UART socket on its serial card.

What makes this circuit so easy and inexpensive to implement is the fact that most of the wiring you need has already been done for you on your existing serial card. To get up and running, all you have to do is remove the UART chip from your serial card to obtain an eight-bit buffered parallel input. You read right, it's a parallel input on your serial card. Furthermore, it doesn't require a separate power supply.

To give you an idea of how versatile this Interface can be, I'll cite some applications in which you can use it. A small sampling includes security systems, electric-train controllers, weather stations and robotics. In fact, suitable applications for QADDI are limited...

Fig. 1. Schematic diagram of Quick-and-Dirty Data Interface circuitry.
only by your imagination and technical expertise. Coupling this input method with the parallel port on your computer, you can have a very versatile controller system for automated operations, with the Interface telling your computer when an action must be taken and your computer sending a signal through its parallel port to initiate action via suitable actuators.

Software programming for this project is a study in simplicity. In fact, it's so elementary that you'll be able to make immediate use of the system because all you need is one BASIC routine to read in data, using QuickBasic or GWBASIC. You can use other programming languages as well, as long as you know how to make it read and display COM-port memory locations.

About the Circuit

Owing to the fact that most of the circuitry you'll need already exists on your serial card, the circuitry for this Interface is extremely simple, as shown in Fig. 1. It provides a single eight-bit parallel input at data lines D0 through D7 of U3 and a single 0-to-5-volt analog input at pin 20 of analog-to-digital converter U1.

If you need only analog inputs, you can have up to four with the arrangement shown simply by adding as many A/D converters in the arrangement shown for U1, connecting their pin-1 outputs to Ch 2, Ch 3 and Ch 4. Alternatively, if you wanted only multiple digital inputs, you'd expand upon the input circuit by adding more octal buffer/line drivers to the system in the same manner as shown for U3, this time using Ch 2, Ch 3 and Ch 4 to process digital inputs.

This circuit substitutes for the UART that currently occupies a socket on your serial card. As you can see, only 14 pins of the 40-pin UART socket are needed to implement the Interface.

Digital inputs can be through at whatever type of connector you choose to use. Analog inputs can be through phono jacks or BNC connectors. If you want an arrangement with one each digital and analog inputs, you could run conductors from U3 to a DB-9 connector for digital input and another conductor from pin 6 of U1 to a phono jack or BNC connector. One pin of the DB-9 connector and the common lug of the phono jack or BNC connector would be used as signal-return paths. If you wanted, say, three digital and one analog inputs, you could use a DB-25 for the digital inputs and a phono jack for the analog input. Simply choose the arrangement you think best for your applications.

Building It

The best way to build this project is to run the conductors from the UART socket to a connector, perhaps a DB-15 type, you mount on the rear panel of your computer to which you can connect the Interface. Alternatively, you can build the circuit on a piece of perforated board that has holes on 0.1" centers and connect and disconnect it from the UART socket as needed. If you plan

(Continued on page 80)
Low-Cost Video: Creative Labs' Video Blaster

A nice thing about the computer field is that succeeding technology is usually faster, smaller and, ultimately, less expensive. Each technological improvement is connected to previous technology. I call this phenomena the technology chain. Video and computer imaging, like personal computers, experience the technology chain. Computer imaging and 24-bit color used to be for only business. Now home computer users can begin to reach for image capture and true color.

Creative Labs, Inc., widely known for producing the Sound Blaster series of add-in audio cards, now offers low-cost video and image capture in its Video Blaster, a full-slot card that displays real-time video, freezes it and captures it to disk. The computer market needs a device like Video Blaster. The question, though is: Does Video Blaster meet market needs? (Although we reviewed Video Blaster in the July issue, this is a more indepth view of the product to assist you in making a buying decision—Ed.)

Considerations
Planning is advised before buying any product. You should be certain that your computer has the ability to support the product. Video Blaster has its own considerations. One of them is its size. Since it is a full-size card, taking up the entire length of a slot, careful thought should be given to which slot to use in your PC.

In their efforts to make smaller products, some motherboard designers place memory sockets in potentially awkward places. One motherboard I've seen has its memory sockets situated so that the last three or four expansion slots can get in the way of full-size add-in cards. Therefore, make sure your motherboard has a clear full-size slot before purchasing Video Blaster or any other full-size board.

A second consideration regards the video card and monitor you'll be using. Video Blaster is designed to work with nothing less than VGA and Super-VGA video cards and monitors. Be aware that, though the product will probably work with most video cards, it hasn't been tested with many of them. At the time I received the Video Blaster card, I purchased it, and it was tested as compatible with Video Seven VRAM, Tseng Labs ET4000, Trident 8900CS and 9900CS, Western Digital WD900C00 and S3 controllers, which are currently used in many brands of video cards.

You can find out which controller your video card uses by checking the user manual that came with the card. If you can't find this information in the manual, remove your video card from your PC and examine its chips. If you're still uncertain, call the manufacturer of your video card. Finally, you can call Creative Labs to see if your video card is supported. I used the ATI VGA Wonder XL24 video card for this evaluation.

A third, very important, consideration is how much user memory is installed in your PC. One might initially think that a video imaging product requires a great deal of memory. Accordingly, you may be wondering if 8M or 16M of RAM in your PC is going to be enough. Surprisingly, the problem isn't one of having enough memory, but of having too much memory.

If your computer has more than 15M of RAM, Video Blaster simply won't work in it—period.

In explanation of the foregoing enigma, Video Blaster has a video frame buffer resolution of 1M x 512K bytes. It can use any 1M address space from 1 to 15. The address space it uses logically can't be taken up by something else, including computer memory. Since the card can't address anything beyond 15M, it literally forces users to limit memory to this value. This limitation has potential that might prove fatal to its use. Computer RAM continues to drop in price. Because of generally lower RAM prices, user perception about computer systems has changed.

A couple of years ago, having 8M of RAM in a computer was considered to be a luxury. Now 8M is about entry level, especially if you plan to run Microsoft Windows, OS/2 or other graphics-oriented products. Because of the gradual increase in software sophistication and steady decrease in the price of RAM, finding 16M in a home or business computer isn't unusual nowadays. Are users expected to actually remove memory from their computers to accommodate Video Blaster? The answer is a resounding "yes."

My own experience illustrates another potential problem with using Video Blaster. I upgraded to a new motherboard before I received Video Blaster. I'd stretched my bank account and purchased eight 4M memory modules, making a total of 32 proud megabytes of compact, screaming memory. My previous motherboard used 1M memory modules. After realizing Video Blaster's memory limitation, I discovered that my new motherboard wouldn't support 4M modules at anything less than 16M of total RAM. This kind of memory configuration isn't uncommon in motherboards. In short, I had to remove all eight of my 4M modules and replace them with 1M modules, which was the only way my computer could work with Video Blaster. If I had sold the 1M modules as intended, it would have been impossible for me to evaluate the product.
You might well ask, "Why the memory limitation? Is it an error in design? Is it a method to reduce cost?" Whatever the answer may be, Video Blaster's reverse memory limitation is difficult to work with and sorely disappointing. If you're thinking about purchasing Video Blaster, its reverse memory limitation is cause for second and even third thoughts.

Installation

The foregoing criticism aside, Video Blaster is easier to install than any of Creative Labs' previous add-in cards. After installing the device in any full-length expansion slot, I/O address and interrupt are completely software configurable. Thankfully, this eliminates jumpers and DIP switches. To its credit, Video Blaster can be set to any of several different I/O addresses, instead of just the couple offered by Sound Blaster and Sound Blaster Pro. Likewise, available interrupt settings have gotten away from the usual values reserved for serial ports and printer ports. You now have a choice of using interrupt 10, 11 or 12 instead of the over-used 3, 4, 5 or 7.

Final installation consists of making proper connections between Video Blaster and your video card. Video Blaster comes with two cables. One serves dual jobs for video/audio input and partial control of your present video card. The other is for VGA pass-through. It uses your video card's feature connector to pass along normal VGA signals to Video Blaster, without having to take up another expansion slot just for that.

When installation is complete, a software routine copies Video Blaster software to your hard drive. You can then configure the card and run its comprehensive confidence tests, which cover all aspects of operation, like I/O address, data acquisition and buffer addressing. Once the card passes all tests, you're on your way to real-time imaging.

DOS Utilities

Video Blaster has two different sets of operating software and utilities. One is for DOS and command-line usage, the other for use with Microsoft Windows. The DOS utilities are complete in that there's a command to activate video, adjust parameters like brightness and contrast, and scale the video from full screen to a small box. The problem with the DOS utilities is that you must use a trial-and-error approach to get the video image the way you want it. Once done, though, you can build a library of batch files to produce and manipulate video and audio.

A pleasant feature of Video Blaster is that it has three video inputs and can switch from one to the other on command. When switching, it doesn't lose sync or image quality, and switching is done immediately. Thus, you can attach a VCR, TV receiver, video camera or any three video sources at the same time and jump from one to the other.

Under DOS, Video Blaster's live TV image is impressively sharp, with contrast that's as good as or better than conventional television. Scaled images appear more detailed than full-screen images, though this apparent effect may be just a trick on the human vision system.

You may encounter some problems when running live TV from the DOS prompt. First, the displayed image is overwritten when another computer program writes to the video screen. As an example, when calling WordPerfect from the DOS prompt, WordPerfect paints the computer
screen a characteristic rich blue. Parts of the TV image are visible behind the WordPerfect logo until the word processor begins operation in earnest. Then the video image is gone, although audio is intact.

The image is still where it belongs, only it's invisible, which can be proven by shelling from WordPerfect to DOS, whereupon the image reappears. Returning to WordPerfect again erases the video image. This problem was consistent with all my DOS applications. The way to get around it is to first start Windows and then run WordPerfect or another application from the Windows DOS prompt, after which you can hot key back and forth.

A second problem is that Video Blaster has trouble with video modes any greater than 640 × 480. The manual indicated that, in some cases, Video Blaster might work at 800 × 600, but it does so only under Windows. An addendum to the manual warned not to expect reliable operation, since 800 × 600 isn't fully supported.

With some tinkering, I got Video Blaster to run at that resolution under Windows, but I had much difficulty getting the image into normal aspect ratio. The 800 × 600 mode never worked reliably and doesn't work at all under DOS.

Windows Utilities

A faster and easier way to manipulate Video Blaster images is to use the accompanying Windows utilities. These are copied to your hard drive along with the other Video Blaster software, but they must be installed manually under the Windows environment. Granted, this isn't hard to do. But Creative Labs might have spared users some trouble by performing an auto-Windows installation, complete with the creation of a Video Blaster Program Group.

Three utilities are for use with Windows. One, VBSound, lets adjust volume of Video Blaster's master volume, microphone input and audio line levels. Once set, you can lock audio levels at desired settings.

Another utility, VBWSetup, controls settings for video format (NTSC or PAL) and polarity of both horizontal and vertical sync. It also lets you select one of its three video inputs as default. Video alignment and size and position of image are also selected with VBWSetup. You can save your preferences to a configuration file so that Video Blaster starts up in a preferred state.

VideoKit, the main Windows utility, is where most real-time image control takes place. Under the control of VideoKit, you capture images, process them and save them to disk. You can adjust brightness, contrast, hue, saturation and aspect ratio to enhance displayed images. You dynamically choose I/O address, frame-buffer address and video source. VideoKit can even invoke the VBSound utility.

Image Capturing

Despite any fancy features and perhaps numerous bells and whistles, the main purpose of a device like Video Blaster is to capture images and save them to disk. If it does this in an acceptable manner, it becomes a tool for getting virtually any image into digital format. Video Blaster does a fair job of image capturing, taken well within the constraints of its limits. It's DOS utilities for image capturing are nonexistent, a fact not explained in the manual.

My uncertainty about the lack of DOS capturing as I was evaluating Video Blaster prompted me to place a call to Creative Labs technical support. I was assured that there's really no way to save an image under DOS, which is an unfortunate development because users who don't run Windows won't be able to capture images. Without image capture, Video Blaster is just an expensive TV receiver.

The first part of capturing an image is having the image presented on the screen of your PC's video monitor. Video Blaster does an excellent job at image presentation. Oftentimes, one reason for this is that it supports as many as 2-million colors. This isn't the same as 24- or 32-bit color, which sport 16.7-million different colors. But 2-million colors can look almost as good. Maybe it's difficult for the human eye and brain to see and interpret the difference between 16-million and 2-million colors when displayed in the two-dimensional format of a color video monitor.

At any reckoning, one can easily become accustomed to watching television with Video Blaster. Viewing TV this way lets you do other computer work while having a scaled TV screen neatly tucked into a corner of your monitor. If an interesting item comes up, you can quickly mouse-click on the TV image and expand it to full-screen. Furthermore, you can press a combination of keys to freeze a TV image and save it to disk in a variety of formats.

Saving an image requires that it be frozen in time, or be "captured." When Video Blaster freezes an image, an immediate degradation occurs in the quality of presentation. It appears that some color resolution is lost. VideoKit's Smooth function gets rid of scanning lines and some signal noise, but it can't make up for the significant image degradation.

Why does degradation occur? A Creative Labs technical-support person told me that Video Blaster can save images in as many as 2-million colors. During a different call to technical support, a different

(Continued on page 78)

YOU! Be the Judge

TEC's microcontroller development tools for the 6805, 68HC05 and 68HC11 are flexible, powerful and suited to a wide range of tasks. We believe that in a fair comparison, our products show their virtues clearly. Using them makes their true colors stand out.

6805 Primer for Beginners S19.50
6805/68HC05/68HC11 Cross Assemblers S99
6805/68HC05 Simulator/Debugger S99
6870 P3, P5, US, RS, RS Programmers from S349
68HC05/68HC05 Programmers from S395
Complete PC Based Development Systems from S449
68RC05/68HC11 Real-Time Emulator from S665
68HC05/68HC11 Programmer & Emulator (Special Price) S999
68HC11 Emulator (Special Price) S5849

800-336-8321

CIRCLE NO. 79 ON FREE INFORMATION CARD

Analog & Digital Circuit Design & Simulation for the Macintosh & PC with Windows

Beige Bag Software Ph. (313) 663-4309
Fax (313) 663-0725
115 Barclay Ct. Ann Arbor, MI 48105
VISA/MAE/Access

THE POCKET PROGRAMMER $129.95

The portable Eprom programmer that uses the parallel port of your PC instead of an internal card. The software has 24 functions and programs 27/28/29/68764, Cmos, EEPROMs & Flash from 16K - 4Meg (2K-256K x 8) with a 32 pin socket. Adapters available for 874X MUC's, 40-Pin Eproms, 5-Gang, 16 Pin X4 & X8 Prom, Serial Eproms and Eprom Programmer to 32K x 8.

Intronics, Inc.
Box 13723
Edwardsville, KS 66113
(913) 422-2094
Add $4.00 for shipping
Add $4.50 for COD
VISA/Master Charge

CIRCLE NO. 65 ON FREE INFORMATION CARD

www.americanradiohistory.com
This month, I've decided to give you a look at a diverse lineup of different products that can enhance your computer system. One of these makes it possible for you to inexpensively network up to six printers and 16 PCs, another can make your time at the keyboard just plain fun (hint: it isn't a game, though the effect you obtain from it may give you as much or more satisfaction as an action game) and the last can make you more productive while on the road.

Printer-Sharing Network

A couple of months ago, I networked the kid's PCs using Windows for Workgroups. As I reported back then in these pages, the installation procedure was quick and easy, and my kids (ages 8, 7, 6 and 5) have had no trouble with the concept that some of the files and programs might actually reside on "Marc's" PC or "Scott's" PC, rather than on their own systems. My primary reason for establishing a network was to give each of the kids the ability to share the two printers I have in their workroom. Most of the time, they use an Epson LQ-870 color dot-matrix printer, but my eldest occasionally likes to print out his school reports on an old LaserJet II-compatible laser printer I also have hooked up to their network.

The foregoing works fine, as long as the kids are using a Windows application like Word for Windows, Micrografx Windows DRAW! or Computer Support's terrific Picture Wizard and Arts & Letters Apprentice graphics programs. It gets a bit sticky, though, when they want to print from a DOS application, like the Kids Cuts package from Broderbund I reviewed a few months back in this column. It's possible to try a PC running DOS into a Windows for Workgroups network by using Microsoft's Workgroup Connection software, but configuring the network and DOS workstation isn't something even my bright eight-year-old can do by himself.

With the additional pressure of an anticipated move to a new house, where the kids will each have his PC in his own room, I decided to bring down the Windows for Workgroups network and take a step backward to a somewhat simpler scheme for sharing printers. Looking at the various hardware and software boxes that have piled up lately, I settled on Printer-NET from Primax. I installed it and can

Here are two stunning examples of artwork produced with James Gleick's CHAOS, the Software package from AutoDesk Retail Products. They typify what you can do with the mathematical discipline known as Chaos theory.
As an interesting aside, while there’s plenty of information on installing Windows for Workgroups, there’s absolutely no information on reinstalling it, either in the documentation that accompanies the software or in the Windows for Workgroups Resource Kit that Microsoft sells. WFW still runs in a single-user mode, even though the network has been disconnected. But it’s annoying (and sometimes confusing) to see lots of error messages appear on-screen as the software tries to find other users and resources that were formerly shared among network users.

I eventually solved this problem with a brute-force approach by reinstalling plain-vanilla Windows 3.1 on each of the PCs. However, it would be nice if all software suppliers would take into consideration that users occasionally have to remove their products from their systems and provide an easy, painless means for doing this automatically.

Even though the company has been around for quite a while, Primax isn’t a particularly well-known brand name in the consumer marketplace. The reason for this is simple: most of the company’s products carry other vendors’ labels. PrinterNET is one of the company’s first products to actually carry the Primax brand name. Though it doesn’t provide the file- and program-sharing capabilities that a true network, like WFW, LANtastic and NetWare offer, PrinterNET does allow you to share up to six printers among as many as 16 PCs. Setup takes just a few minutes, and even my kids have no problem using PrinterNET.

The PrinterNET package consists of two different kinds of units, both of which are about half of the size of a pack of cigarettes. The Computer Transmitter Unit plugs into the parallel port on each of the PCs that will share the printers. The Printer Receiver Units plug into the printers’ parallel ports. This done, you just connect everything together with the cables supplied in the package.

The supplied cables are of-the-shelf four-conductor twisted-pair telephone type that use standard RJ-11 connectors that are wired straight-through with pin 1 going to pin 1, pin 2 to pin 2 and so on. If you need longer cables (you can use up to about 1,200 feet of cable for the entire network), a quick visit to your local Radio Shack store will get you cable, RJ-11 connectors and even a crimping tool to secure the connectors to the cables for a few dollars.

PrinterNET’s user interface is very simple. Most users will simply daisy-chain PCs and printers, running a cable from one unit to the next. You can also use a bus topology with PrinterNET, running a backbone cable that you interconnect individual users and printer with standard modular couplers you can find in Radio Shack stores and most home centers. Even my local supermarket carries these standard modular telephone supplies.

Usually, no outboard power supply is needed to power PrinterNET because the voltage that most parallel ports deliver is usually sufficient to drive the network. However, if you’re using very long cable runs or an odd PC that has an under-powered parallel port, a 6-to-9-volt 100-mA cube-type power supply is available from Primax as an extra-cost option, though any supply in this voltage range should work, as long as the shell and tip of the connector are polarized so that they’re at positive and negative, respectively.

After physical setup is finished (it took me about 3 minutes to hook up three PCs and two printers), you set up the software that’s used to select a particular printer to which to print. This software can be installed as a pop-up TSR or be run as a stand-alone utility. I installed it as a TSR that’s accessed by pressing the Ctrl and Tab keys simultaneously.

Another utility, PNW.EXE, installs in Windows, where it’s accessed by clicking on its icon. Both the DOS pop-up and Windows PrinterNET programs let you assign logical names to the printers and select the printer to which a print job is to be sent. Printer Receiver Units have a small rotary switch that must be set so that each printer has a different identification number (from 1 to 6).

PrinterNET is neither fancy nor particularly sophisticated. It’s a first-come, first-served kind of printer network in which printers are assigned to jobs in the order in which they arrive at a particular printer.

You can attach an optional small hand-held controller to each PC’s Transmitter Unit if you’d rather not use software to make a printer assignment. I didn’t receive one of these controllers to test with the review package I used. This was no tragedy because I don’t think such a device is particularly desirable.

A network offers more functionality than a simple printer-sharing scheme like the PrinterNET system. It lets you share most other resources, not just printers, in the system. But there are times when a full-blown network would be overkill, such as when you need to share just printers. If this is the case, buying PrinterNET doesn’t lock you into paying for features you won’t use.

The Primax PrinterNET works well and is reasonably priced and very simple to set up and use. If you don’t need a full-blown network, PrinterNET may be just what you leave in mind.

A PrintNET starter kit that contains two transmitters and one printer receiver, 25 foot cables and software lists $249. Extra transmitters and printer receivers are optionally available as well.

A Chaotic Existence

Years ago, when I was younger, smarter and more ambitious, I thought I’d like to
pursue a career in operations research, a mathematical discipline that applies advanced techniques to solving real-world problems. Operations-research techniques are used in manufacturing to determine a factory's best product mix, scheduling (PERT and critical path are both operations-research techniques) and even in the design of toll plazas on highways (using Monte Carlo simulations to determine the probability of different traffic loads). This area of applied mathematics is fascinating and useful, and I always enjoyed the limited exposure I received to it in the other math courses I took during my years at college.

There was only one problem with pursuing my mathematics career: I had no particular gift in this area. Yet, even though I still have difficulty in understanding the theory behind many areas of applied mathematics, I'm no less fascinated by how much can be accomplished with it.

One of the newest areas in mathematics is the science of Chaos theory. While I don't claim to have more than a superficial understanding of it, Chaos theory holds that many of the things we consider to be random occurrences have an underlying structure that can, at some level, be expressed mathematically, at least in general terms. Chaos theory has developed as computers that are capable of making vast numbers of computations have become inexpensive and commonly available.

One of the more-interesting aspects of Chaos theory is that a small change in one or more of the variables that takes place during an iterative process can have a very significant effect on the final outcome.

One of the best books on this somewhat arcane area of mathematics is Chaos: Making a New Science by James Gleick. But reading about Mandelbrot sets, fractals and strange attractors doesn't begin to let you understand what this mathematical experience actually describes. As with so many areas of mathematics, you really need to graph expressions to really understand them.

AutoDesk, the AutoCAD folks, has brought out a software package that lets you do just this. James Gleick's Chaos, The Software, lets you "play" with many of the mathematical components of Chaos theory right on the screen of your PC's video monitor. All you need to take advantage of this package is EGA or VGA video, though the higher resolution, color and 256-color displays are used to good advantage, if available. The software will even run on a plain-vanilla PC with just floppy-disk drives, albeit slowly.

Installing the software takes just a few minutes and is nicely automated. Then you run it simply by typing CHAOS. When you hit Enter and the program loads, you're presented with a menu that lets you choose between the various areas the program offers. Instead of just reading about Mandelbrot sets, Strange Attractors and Fractals, you can generate knock-your-socks-off graphics that demonstrate the ultimate effect of changing individual variables. The manual is outstanding, both from the viewpoint of explaining how to use the different areas of the program and the mathematics of what's going on.

I have to admit that my brain turned off very quickly trying to understand the mathematics of Chaos. Perhaps, with four young kids running around my house, I have just too much real-world chaos to deal with to be able to concentrate that deeply anymore. But you don't have to be a mathematics genius to appreciate the Chaos software. With a retail price of $59.95, and a mail-order price that should be much less, the graphics this software generates on-screen will keep you entertained for hours.

Start up a Mandelbrot set and let your PC run through iteration after iteration.
Taking Your Office On the Road

I do a fair amount of traveling every year—in fact, more than I’d really like to. However, my position requires that I attend quite a few shows and conferences. So I pack my bags and hit the road. When I can’t avoid this chore, I even take along a notebook computer or, if I’m fortunate enough to think of it, express ship it to whatever hotel I’ll be staying at.

One of the reasons I take a notebook PC on many of my business trips is that it lets me better stay in touch with what’s happening back at the office. Lots of trips involve traveling far enough from home base that there’s a time zone difference, which can occasionally make it rough to coordinate with my staff. And it always seems that whenever I travel, there are files and papers back in my office that require my attention.

With my notebook PC, MCImail and a portable modem, I can easily transfer files between where I’m staying while on the road and my office, and I can even fax documents created with my word processor from my hotel room. Until recently, though, if I had to fax a paper document, I had to find other facilities to accomplish this. A while back, I reviewed a device that lets you interface a hand scanner through a PC’s or notebook’s parallel port. But I really don’t have the patience to stitch together multiple passes with a hand scanner to create a full page to get it ready for fax transmission.

Fortunately, Niscan, one of the largest OEM suppliers of hand and page scanner components, just solved this problem with its Niscan Page Portable Grayscale Scanner. An almost featureless black box that measures just 2 3/4” x 2 3/4” x 12”, the Niscan Page Portable is a portable battery-powered sheet-fed scanner that interfaces to a PC via its parallel printer port. There’s a pass-through feature that doesn’t require you to give up being able to print hardcopy documents the way you normally do.

The Page Portable is capable of generating up to 400-dpi resolution and 256 shades of gray. When used in sheet-fed mode, this handy scanner can scan pages 8 1/2” wide and up to 14” long. Scanning a standard letter-size page takes about 45 seconds, and while it comes with an ac power supply/recharger that you can connect to it for continuous use, the scanner can scan up to 30 pages on its fully charged internal Ni-Cd battery.

Weighing in at just under 3 pounds, including battery, the Niscan scanner weighs almost as much as some of the subnotebook PCs that are currently available. Even so, it gives you a great deal of capability for its size and weight. If necessary, you can even convert it into a motorized full-page hand scanner by snapping off the bottom panel. When used in this manner, the scanner drives itself down a page. You just need to “steer” it to make sure that it doesn’t make a left turn somewhere while it’s performing a scan.

The Page Portable comes with a TWAIN-compatible driver. (TWAIN is the emerging standard for image acquisition devices like scanners and frame grabbers.) Once you install the driver, the Niscan unit will be recognized by a variety of software packages like WinFAX Pro 3.0, Picture Publisher 3.1, PhotoFinish, OmniPage Professional and others.

The scanner also has its own software, Words & Pictures, that provides scanner control and image editing, as well as OCR (optical character recognition). Once you’ve installed Words & Pictures, which requires Windows and takes just a few minutes, you can use these programs in stand-alone mode or access their features from the File... menu in many of your other Windows applications.

I found Words & Pictures to be easy to use and the equal of the software that frequently accompanies other scanners. The OCR engine, licensed from Recognia, delivers good accuracy, in the 90%-plus range, depending on the typeface, page layout and quality of the original document being scanned.

At $799, the Niscan Page Portable is a little expensive for a grayscale scanner. But its ability to be used while on the road and included software make it a good buy for busy travelers and anyone who needs full-page scanning capability and doesn’t want to use (or can’t spare) a peripheral slot in your PC.
Traceable Microcontroller

Matra MHS Electronics Corp.'s (Santa Clara, CA) value-added version of the 80C51 microcontroller, the 80C50T incorporates, 4K of factory-programmable ROM and 64 bits of internal tag identification space that permits a user to identify the specific chip or system and to whom it was sold. According to the company, this feature gives the chip traceability, which is needed by banks, credit-card companies and telephone companies.

The main ID number is incorporated into a special-function register in the microcontroller, and the number is "laser-trimmed" onto the chip during the manufacturing process. Once etched, the number can't be erased or altered in any way. The 80C50T costs about $9 each in quantities of 5,000.

Network-Ready Microcontroller

Standard Microsystems Corp. (Component Products Div., Hauppauge, NY) is now offering its COM20051 eight-bit microcontroller. Designed for networking embedded-control systems, the chip integrates a 16-MHz 80C32 microcontroller and a network interface based on ARC- NET and supports data rates from 5M bits/second to 156K bits/s and data-packet sizes from 1 to 508 bytes. The controller also has real-time networking capability built into it.

This chip is targeted primarily at embedded applications, such as automobile navigation systems, factory automation systems, medical instrumentation, building automation (including security and energy management) and point-of-sale applications.

The device is packaged in a 44-pin PLCC that's compatible with the 80C32 ROM-less version of Intel's 8051 microcontroller. Pricing for the COM20051 in 100-piece quantities is $15.31 each.

SMC is also marketing its own software package called ControlLink for $495. The package includes object and source codes.

FM & Wave-Synthesis Chip

Yamaha Systems Technology's (981 Rider Park Dr., San Jose, CA 95131) latest sound synthesizer chip, the YMF278 (OPL4), combines wave-table and FM synthesis on a single chip and is fully backward compatible with the company's previous generation industry-standard OPL2 and OPL3 synthesizers.

Wave-table synthesis provides more-realistic sound in some situations, and FM synthesis is preferable in others. By combining the two techniques, the new OPL4 is said to deliver the best of both worlds, at a very competitive cost.

Available in a standard 80-pin plastic quad flat-pack, the OPL4 chip is claimed to be the first wave-table synthesizer to provide professional-quality sound on a footprint small enough to fit on the motherboard of a multimedia personal computer. This will give motherboard manufacturers who have designed with the OPL3 a strategic evolutionary path to the highly integrated OPL4. Other solutions require three to five components, in addition to memory, and often require an external CPU or controller. The OPL4 is a self-contained, single-package device (Fig. 1).

Waveform data for the OPL4 can be eight-, 12- or 16-bit samples or a combination of all, depending on the instrument sound being generated. The waveform data can be stored in ROM or downloaded to memory, as needed. The standard ROM supplied by Yamaha is 2M, in a single standard 44-pin plastic SOP package.

Simultaneous generation of 44 voices is possible with the OPL4—20 FM and 24 wave. The two outputs can be digitally mixed as a single digital data stream or output separately as two individual streams.

When combined with other Yamaha Multimedia audio LSIs, such as the MMA chip, a complete MPC and Gold Sound Standard solution can be easily configured. The MMA chip is a stereo record and playback device that provides a sampling frequency of up to 44.1kHz and has built-in ADPCM compression, MIDI port, game port, DMAinterface and bus decode logic.

The FM synthesizer section is a four-operator device that can be used in both
Fig. 2. Maxim's MAX717 through MAX721 dual-output switching regulators provide Vcc supply voltage and a 5- or 12-volt supply for programming 1.8-volt flash memories.

two- and four-operator modes. It's capable of providing up to 20 voices and percussion sounds.

The wave-table section of the OPL4 is self-contained and requires only the addition of external wave memory to complement the system. Stereo output of up to 24 voices with 16 levels of pan can be specified for each voice. Voice output data sampling frequency is 44.1 kHz.

Waveform data length is eight, 12 or 16 bits. External memory of up to 4M can be ROM or SRAM or a combination of both. If SRAM is used, wave data can be downloaded from the CPU. A standard general MIDI voice bank can be supplied by Yamaha in 2M mask-programmed ROM. A full complement of 4M can deliver up to 52 voices.

The YSS225 Effect Processor is an optional device that provides even better-quality sound, with the addition of such effects as echo, reverberation, flanging, distortion, panning and surround processing. The OPL4 can connect directly to the effect processor, which is available in a 100-pin plastic quad flat pack.

Yamaha provides a complete design package, including a demo board with the OPL4 and Effect Processor on a PC half-card, schematics and parts list. Price of the OPL4 in quantities of 10,000 is less than $29. Price of the effect Processor in the same quantities is less than $19.

New GUI Accelerator

Trident Microsystems, Inc. (205 Raven- dale Dr., Mountain View, CA 94043) has a new TGUI9420 graphics accelerator for the personal-computer graphical user interface (GUI) market. The accelerator offers a combination of ISA and VL-bus support and is DRAM-based for a high-speed, yet low-cost, system design.

Trident also announced that it's bundling the TDK8001, a companion chip of the TGUI9420. The TDK8001 is a mixed signal 24-bit true-color DAC (digital-to-analog converter) combined with a dual-loop clock synthesizer.

The performance of the TGUI9420 accelerator is achieved through hardware-implemented GUI functions, zero-wait-state direct-memory write ISA bus performance, a 16/32-bit 386/486 VLbus interface, improved memory data transfer and line araddrressing. The chip's graphics engine offers such advanced graphics drawing operations as Pixel Bit, Line Draw, ShortStroke Vector Draw, Area Fill and Image Transfer.

The TGUI9420's micro-coded graphics engine allows developers to write software drivers optimized for their applications. Trident supports accelerated drivers for Windows 3.1, Windows NT and AutoCAD 12. Many other SVGA drivers are available based on Trident's extensive extended-resolution driver list.

Extended graphics mode support includes 640 x 480 in 32K, 64K and 16.8-million colors and 1024 x 768 non-interlaced 256 colors. Extended text modes offer 80-column text with 30, 43 and 60 rows and 132-column text with 25, 30, 43 and 60 rows.
Trident offers complete development support, including design and manufacturing kits, for ISA and VL systems. The TGU9420 uses Trident’s 0.8-µm CMOS technology. The chips are priced around $25 for high-volume production orders.

Micro power Dc-to-Dc Converter

Linear Technology’s (1630 McCarthy Blvd., Milpitas, CA 95035) LT1107 dc-to-dc converter works in either step-up or step-down mode and has a quiescent current of only 320 A, making it well-suited for power-conscious battery-operated systems. Applications for the LT1107 include palmtop computers, LCD bias generators, add-on cards and peripherals, battery back-up supplies, cellular telephones and portable instruments. Supply potential ranges from 2 to 12 volts in step-up mode and up to 30 volts in step-down mode. The LT1107 is claimed to function equally well in step-up, step-down and inverting applications.

The LT1107 is pin-compatible with Linear’s LT1111, but it has a duty cycle of 70%, which enables greater output current in many applications. It can deliver 150 mA at 5 volts from two AA cells and 5 volts at 300 mA from a 9-volt battery in step-down mode.

The LT1107 has a 63-kHz internal oscillator optimized for use with surface-mount inductors and capacitors. It has a 1-ampere switch-on-chip. Switch current limit can be set with a single resistor. An auxiliary on-chip gain block can be configured as a low-battery detector, linear post-regulator, under-voltage lockout circuit or as an error amplifier.

The LT1107 is available in three versions: adjustable, fixed 5-volt and fixed 12-volt designs. All are available in either eight-pin narrow DIP packages and eight-lead SO surface-mount packages. Both military and commercial temperature devices are available. Pricing in 1,000 and up quantities in DIP is $2.33.

1.8-Volt Flash-Memory Power

Maxim Integrated Products’ (120 San Gabriel Dr., Sunnyvale, CA 94086) MAX717 through MAX721 dual-output switching regulators start and operate with inputs as low as 1.8 volts (two or three battery cells) and provide microprocessor systems with a Vcc supply voltage and a 5- or 12-volt supply for programming flash memories (Fig. 3). Their small size, high efficiency and low supply current makes them unbeatable for use in palmtop computers, hand terminals and other low-voltage, battery-operated and portable equipment.

These devices have the following preset main-output voltages: 3.3 or 5 volts for MAX718/MAX720, 3.0 or 5 volts for MAX719/MAX721 and 3.3 volts only for MAX717. These outputs have internal power switches that deliver as much as 200 mA of current at 87% efficiency. For the auxiliary output, selected as 5 or 12 volts, an external MOSFET can deliver more than 120 mA.

As a result of their CMOS-technology design and a unique, constant-off-time, pulse-skipping control scheme, these regulators conserve battery life and occupy less circuit-board space. The internal power MOSFETs permit switching frequencies of up to 500 kHz and use of smaller external capacitors and smaller (<0.5-mm diameter) surface-mount 22-μF inductors. Efficiencies range from 80% to 87% for outputs from 2 to 200 mA. Low 60 μA quiescent current helps extend battery life.

These regulators accept inputs from the main battery, a lithium backup battery or an unregulated dc voltage from a plug-in wall adapter. Space-saving integrated features let the regulators detect the applied dc, signal the microprocessor and switch automatically from battery to plug-in adapter. The adapter power is linearly regulated by an internal controller and external transistor.

Other standard features include power-fail warning and a miniature step-up switching controller that regulates the backup-battery voltage. Logic-compatible inputs allow the microprocessor to control each output independently.

A complete, preassembled surface-mount kit that features a standard MAX718 application permits evaluation of the MAX717, MAX718 and MAX719 devices. The MAX718EVKIT-SO kits are priced at $30 each. MAX717 through MAX721 devices come in 16-pin narrow-SO packages and are screened for the commercial or extended-industrial temperature range. Prices for these devices start at $5.95 for quantities of 1,000 and up.

Looking to challenge your building skills?

Want to explore beyond Amateur communications?

Well here's the publication for YOU!

COMMUNICATIONS QUARTERLY, the journal of communications technology. You are invited to become part of an elite group of Radio Amateurs and technical professionals as a subscriber. Circulation will be strictly limited.

This new quarterly publication has been put together with YOU in mind. Articles will explore, in-depth, areas that no Amateur Magazine is currently covering.

State-of-the-art electronics like direct synthesis, digital signal processing, and computer control are fully investigated and explained so that you can take advantage of these new technologies. COMMUNICATIONS QUARTERLY articles cover high-speed data communications, the latest in antennas using computer-designed models, plus much more. Articles examine many areas of professional electronics in a way that trade publications can't. Insights into areas that are only whispered about are normal fare. A major effort is made to show how applications can be translated into Amateur Radio operations.

Each quarterly has approximately 100 pages of technical material; advertising is limited. Articles flow from page to page, without the interruption of ads placed in the middle. The open layout accentuates each author’s work and lets you make notes, calculations, or comments for future reference. Graphs, photos, computer program listings, and charts are presented in an easily-use format. COMMUNICATIONS QUARTERLY is printed on a high-quality stock and “perfect bound” (square backed). It is such a valuable resource, you'll want to file each copy away in your technical archives for future reference. In fact over time, you'll find much of what is presented in COMMUNICATIONS QUARTERLY will become the standard in the Amateur and professional communications field.

Act now. Subscribe today!

<table>
<thead>
<tr>
<th>1 year-$29.95</th>
<th>Foreign—1 year $39.95</th>
<th>Foreign Air Mail—1 year $60.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 years 56.95</td>
<td>2 years 76.95</td>
<td>2 years 118.95</td>
</tr>
</tbody>
</table>

Name
Address
City State Zip

☐ Check ☐ Money Order ☐ MasterCard ☐ VISA ☐ AMEX

Card No. Expiry

Mail to: CQ Communications, Inc.
76 North Broadway, Hicksville, NY 11801
Phone: 516-681-2922/ FAX: 516-681-2926

Say You Saw It In ComputerCraft
Borland and WordPerfect have formed a strategic alliance to deliver office-automation applications for Windows. They say they’ll collaborate as independent companies by sharing technology and other resources to meet market opportunities. What this actually means is that they’re going to offer complementary product suites. I say it’s about time. Both Microsoft and Lotus have product suites they can offer as complete solutions to corporate customers who prefer single-vendor suites as opposed to a conglomerate of best-of-breed products.

According to desktop computing’s gang of two, their relationship is a direct response to customer suggestions that the companies form a team. It’s probably also due to each of them asking how they could compete for the business of Fortune 1,000 companies that are seeking an integrated answer to whatever personal-productivity needs they have. IDC has reported that Microsoft sold 700,000 and Lotus 100,000 suites in 1992.

This isn’t the first time Borland and WordPerfect have worked together to get a slice of the national-account pie. Borland and WordPerfect have had several successful joint deals with individual customers—even with the Canadian government. It may just help the duo survive the juggernaut from Redmond, too.

The deal is a smart move. Integrated, single-vendor solutions are more attractive these days. Price is one factor. Bundles offer more value. At a manufacturer’s suggested retail price of $595, for instance, Borland’s joint suite with WordPerfect will include software with a combined MSRP of $1,785.

However, the abundance of integrated packages isn’t just due to their price—especially under Windows. Applications tend to be more equally matched under the coordinating influence of a GUI environment or operating system. Lotus Ami Pro and Microsoft Word for Windows, for example, are going to have differences in their features sets, but valuable innovations are rapidly duplicated. Look how quickly tool bars have permeated nearly every major application.

Furthermore, many of the strongest capabilities these applications have—things like printer support, graphics handling, DDE and OLE links, etc.—are a consequence of Windows services that are available to all applications. Likewise, the Windows interface is shared by applications. There isn’t likely to be a Lotus-vs.-Paperback Software-type suit over a spreadsheet’s look-and-feel, and it’s equally unlikely that any application will be perceived as having a vastly superior interface. All of this lends credence to the idea that the demand for best-of-breed is giving way to market acceptance of several better-of-breed products. Under DOS, users would universally have groaned over a decision to replace 1-2-3. If someone says the company is going to use Quattro Pro instead of 1-2-3 for Windows or MS Excel, though, many users are likely to simply shrug.

The first integrated product resulting from the long-term strategic alliance of this pair is Borland Office for Windows. It will include Borland’s own Quattro Pro for Windows 1.0 and Paradox for Windows 1.0, as well as WordPerfect’s WordPerfect 5.2 for Windows. The alliance claims that it’s the first time two major software companies have combined their individual offerings into a single product. Borland boss Philippe Kahn calls it a “no compromise” solution and says it’s the first software suite to combine top contenders in word-processing, spreadsheet and database—the three best-selling categories of PC software. Only WordPerfect 5.2’s lack of true WYSIWYG makes me uneasy about this argument. I think the need to preview is an important feature in a GUI environment. Otherwise, Office probably does have as much claim to being a better-of-breed solution as the Microsoft and Lotus suites.

Neither Borland nor WordPerfect Corp. will have an equity interest in the other as a result of this collaboration. Their agreement is based on common technology and market goals only. But Borland and WordPerfect are sharing more than a single product. Their joint announcement listed common research and development (to provide tighter integration between the companies’ software products); combined support of the Independent Database Application Programming Interface (an...
industry standard for accessing corporate data on multiple platforms and operating systems; and coordinated marketing, sales and support programs. They’ve already enhanced interoperability among products in the suite. When the first version of Borland Office for Windows ships, you’ll be able to import rich text and data into WordPerfect directly from Quattro Pro for Windows spreadsheet notebooks.

Yet, I wonder. Is this venture really all that joint. Borland Office for Windows is, after all, available from only Borland. For its part, WordPerfect will offer the Workgroup Extension Pack for the Borland Office. It will include electronic mail, scheduling, a calendar, forms, and presentation graphics—all WordPerfect products. Notice that presentation graphics are duplicated in Quattro Pro, which Philippe Kahn takes great pains to use for all his own presentations. Some forms applications may also create a dilemma between Paradox and WordPerfect’s InForms technology. Call a spade a spade. It’s a suite of workgroup applications as much as it’s an extension to Office.

The companies make the claim that, together, the two suites provide the only complete offering of office products. But hold it! There are two suites, not one. They, not only contain duplications, they’re from two different vendors, and combining them amounts to a conglomeration (albeit one with very high-level modules). Borland and WordPerfect might resolve conflicts in functionality. This seems unlikely. It would require their joint research and development efforts to surmount both the selfish interests imposed by the need to market the individual products, and intercompany policies.

I’m not all that convinced that WordPerfect is totally committed to Windows, either, for several reasons. Firstly, it’s difficult for an institution that’s achieved spectacular success with one great idea to change its mindset. When I attended the announcement of WordPerfect 6.0—it ships on June 28—the focus was almost exclusively on DOS. In a way, DOS is more responsible for the success of WordPerfect than the company’s eponymous word processor. Without the struggles inherent in that operating system and its kith, customer support might have never been important enough for its users to lift the former Satellite Software into orbit.

I also think it will be difficult for WordPerfect to overcome the inertia of its corporate culture, as well as DOS culture, and change direction. One insider put it to me that WordPerfect realizes Windows is the future but can’t give loyal DOS users the impression they’re being abandoned. But hold it, again! I thought Microsoft was scheduled to abandon plain old DOS itself around release seven. And even if DOS isn’t exactly abandoned, how may other developers are still writing primarily for DOS? How many will be left in two years when Pentium is a common platform, and NT is firmly established? WordPerfect isn’t going to break with its DOS heritage any time soon. As that same insider also points out, WordPerfect for DOS is going to remain a wonderful cash cow for years to come.

Finally, however good it is in the next release, WordPerfect for Windows won’t be as good as it would be if the company was risking everything on its success. Take Microsoft Windows and NT as examples. Windows never could have risen to its present heights without the break between Microsoft and IBM. Before that, the two companies had an agreement that served to carve out and protect separate niches for Windows and OS/2. Would Windows be its best if Microsoft was concerned with the success of OS/2?

Nevertheless, the ability of these two companies to provide a solution with all of the core productivity applications you need—plus email, scheduling and a calendar to coordinate workgroups—is encouraging. If you really want integration, and minimal (if not single) vendor support, these guys do have the most complete offering of office products in town.

Borland Office is scheduled to arrive in the second half of June. The Workgroup Extension Pack is scheduled to be available in the third quarter. Incidentally, “long-term” means Borland Office will be offered indefinitely, as long as there’s customer demand, and future versions will be upgraded to remain consistent with the most recent stand-alone versions of each product.

Higher Education

If Harvard gets an eponymous graphics package, why not Stanford? After all, it’s often referred to as the Harvard of the West. Apparently, this is the reasoning that the folks at 3-D Vision's version of Grafoool, their market-leading technical charting and presentation package for DOS. So, Stanford is the company’s technical (as well as business) 3-D charting and graphing tool for Windows.

Stanford has the same types of charts you find in programs like Freelance, PowerPoint and DeltaGraph—only it has more of them. It has 167 graph types based on 45 business, statistics and technical categories. They range from simple pies to six-dimensional vector plots. Six dimensions? The program displays them by substituting arrows for data points. In a storm cloud, for instance, you could show such things as velocity with the length of the arrow, direction with the direction of the arrow, and temperature with the color of the arrow.

Where the competition has a good design, 3-D isn’t afraid to pay homage to it. Its style sheets and templates, for example, are quite reminiscent of those in Freelance. "We were well-aware of Freelance's capabilities in this area," says marketing vice president Dave Ulmer, "and felt that was important in our package as well." It supports nearly every graphics file format, includes line-drawing tools and formats fonts. Stanford doesn’t yet support multimedia, sound effects or video. But there are a slide show and most of the other things you expect from a high-end presentation product.

Stanford has its own built-in, multiple-model, four-dimensional spreadsheet engine. It can simultaneously open and interact with multiple 3-D spreadsheets. Seventy spreadsheet functions cover everything from simple math to advanced scientific and statistical calculations, such as Bessel, Gamma, Students-T, Chi-Square and Kolmogorov-Smirnov tests. Spreadsheets are essentially limited only by your system’s memory. They can have up to 70-trillion cells!

If you want to use your favorite spreadsheet with Stanford, the program has filters for DOS and Windows file imports that let it get your data where it is. You don’t have to create intermediate files or spreadsheets. Ulmer cites two of his graphs that have between them seven links to three 1-2-3 for Windows files. The data are hot linked to all three by Stanford’s DDE and OLE capabilities. These include both OLE and DLL server, as well as client, functions. Moreover, Stanford’s own proprietary DIL (dynamic import link) works like a
Dynamic Data Exchange for DOS. (DIL differs from Windows links in that you must open a file to update it.)

Stanford's technical-charting features go well beyond its competitors. Its three-dimensional surface plots, for example, are proportional to the underlying data values. It uses visibility algorithms and hidden line removal to plot actual data points. It can also generate a surface plot from random x,y,z triplets by interpolating mathematically correct points between them. And it has an inverse weighted distance algorithm that works like a 3-D version of a cubic spline to plot an approximation of your data's underlying function.

Similar-looking surface plots from desktop competitors, such as PowerPoint and DeltaGraph, aren't able to plot accurate 3-D surfaces based on real data. If you were to look at a small neighborhood on one of their three-dimensional surface plots, you'd find that it was covered by regularly-spaced, uniform areas. That's to say, the areas would be uniform, regardless of the data values by which they're bounded. This is because the programs ignore the x and y values. If the points go in uneven increments, or on a logarithmic scale, those programs can't accurately plot them. The x and y values are plotted as labels (that is, on a nominal scale), evenly across the data range, regardless of the actual values. This limits the program's usefulness for plotting real-world data that doesn't come in an evenly-spaced grid. Such a plot can accurately represent only contoured data that are from a regular linear series like 1, 2, 3, 4, 6, 8, or 17, 34, 51. Real data aren't like this, though, and when the distances between underlying data are irregular and the areas bounded by them are regular, the graph is distorted.

The on-screen data-analysis tools in this product are formidable, too. When you rotate a plot, Stanford doesn't just re-draw your data at different coordinates. You can watch the data turn and catch intervening details you might otherwise miss. An Analyze menu allows you to do analysis, such as a polynomial regression through 3-D data, and plot the new smoothed data.

Stanford's visual data-analysis ability lets you analyze the data on the graph, instead of through a spreadsheet. Click on any point with the Intelligent Data Cursor, and you get a reading of the x,y,z data value in a little window. You can change values in this window by stretching the plot with a mouse. Changing the graph in this way changes the data only if you tell it to do so. Therefore, you can do what-if's, in 2-D or 3-D, in any graph type.

Ulmer gave me two examples of how customers are using Stanford. Nestle is controlling the life of its products on the grocer's shelf with Stanford. It first plots optimum shelf life based on humidity and temperature. It then uses the program's regression tool to create a model that the data tends to follow. When it introduces a new packaging material or product type, Nestle plots test data and compares them to the model to see if the new product is within its guidelines.

Financial analysts are also using the product. They prepare presentations that compare the performance of multiple investment funds over long periods of time. It's too bad 3-D hasn't included some financial functions, like discounted cash flows, into the spreadsheet. I suspect that there's a lot more that could be done with Stanford in this area.

This is a fairly impressive statistical tool, as well as a powerful charting and presentation package. It requires 12M of storage, 4M of RAM memory and at least a 25-MHz 80386 processor.

NEC 5FG

If you need a new video monitor to display Stanford's charts and graphs, consider NEC's 5FG. It can plot at noninterlaced resolutions up to 1,280 x 1,024. Its 0.28-mm dot pitch makes images sharp, even when there's lots of little windows filled with plots and spreadsheets squeezed onto its big 17" screen.

In today's monitor market, the 17" display is one of the faster-growing segments. You can fit it in places where a 20" or larger display won't go, and it's just the right size for graphical business applications like running Windows. A 17" diagonal measurement is even large enough to display high-resolution images for desktop publishing and low-end CAD applications. Yet, it doesn't cost much more than a high-quality 14" monitor.

Larger displays also generally come with additional features, and the NEC 5FG is no exception. It has built-in pincushion control, manual and auto degaussing, a digital control system with frequency memories that let you customize centering and sizing for the frequencies of any adapter and an RGB-gun intensity control for color calibration (NEC's AccuColor). It also has one fixed and two programmable color settings. You can adjust white balance to reduce the fatigue that's sometimes induced by the bluish cast of whites. (Under ordinary circumstances, the bluish cast helps you to see contrast better, but for some individuals, it also causes fatigue over time.) The monitor's input capabilities include BNC, Mac, and standard VGA connectors.

NEC engineered quality into this monitor. The 5FG's CRT has an Ivar (alloy) shadow mask that makes it less sensitive to the doming distortion that can spoil a monitor's focus. Heat usually causes doming when you turn up the brightness. Ivar distorts less than a comparable steel mask, keeps the electron beam better aligned and has a sharper focus as a result. So, Ivar makes the 5FG's picture sharper for a given level of brightness or brighter for a given sharpness. It's much more competitive with the Trinitron design, which, because it uses suspended cross-wires instead of an aperture mask, has always been insensitive to heat.

The 5FG CRT also features a flat-square design to give you a flatter image and let you use more of the active screen area without pincushioning or barrel effects. The electronics have also been changed to make the picture as wide as the new screen permits. It doesn't make sense to pay a premium price for a large monitor if it yields a no more active display area than a smaller one does. Yet cheaper monitors may not use the screen as fully, even though the CRT may be the same size and has the same flat-square design. This is because the electronics of a flat CRT are stressed more to reach its wide angle.

Low emf radiation is integral in this monitor, and it follows the MPR2 guidelines for ELF. NEC also offers an optional OCLI (Optical Coating Laboratories Inc.) lens that slides over the front of the monitor and looks completely an integral part of it. Unlike the etched screens and granite silicate coatings they replace, OCLI coatings applied to a polished-glass lens doesn't degrade focus. The lens has several coatings that reduce reflected glare and increase contrast. It also has an antistatic coating and grounding strap to reduce the effects of radiation, magnetic fields and static (such as shock, dust and dirty filters). Sony offers this calibcr of lens only on its high-end 20" and larger monitors.

Say You Saw It In ComputerCraft August 1993 / COMPUTERCRAFT / 77

Products Mentioned

Graftool, $495, Stanford Graphics, $495
3-D Visions
2780 Skypark Cr.
Torrance, CA 90605
Tel: 310-325-1339

Circle No. 151 on Free Information Card

NEC 5FG, $1,599; OCLI lens, $115
NEC Technologies, Inc.
1255 Michael Dr.
Wood Dale, IL 60191-1094
Tel: 800-NEC-INFO

Circle No. 152 on Free Information Card
ent representative said that Video Blaster saves images in no more than 256 colors. Now I wonder which answer is correct.

The fact that Video Blaster has a real-time image display that rivals that of a TV receiver or monitor would indicate that it really does support 2-million colors, at least while playing real-time imagery. However, the instant image degradation caused by simply freezing an image indicates that color resolution drops when preparing to capture.

I saved images in eight bits (256 colors) and 24 bits (16.7 million colors) as offered by Video Blaster's Windows utilities. In each case, I ran the Smooth function to filter out scanning lines. Then I examined each image using two different quality image-processing packages. One was Microcraft's Picture Publisher, the other Aldus PhotoStyler.

Viewed from both packages the eight-bit images looked very much like the 24-bit images, which shouldn’t happen. Anyone who works with images knows that a real 24-bit image will rank far superior in appearance to an eight-bit image. So, does Video Blaster save all 2-million of its colors in a false 24-bit format, or does it perform the same trick with only 256 colors?

Experimenting with ordinary eight-bit images reveals that images can be manipulated and saved in formats with greater color resolution. PhotoStyler, for example, can read a 256-color GIF image and translate it into a format that can be read as 24-bit. But can such manipulation produce a new image with essentially more resolution than the original? My experiments, using PhotoStyler and Picture Publisher with several kinds of image formats, showed that 256-color images translated into 24-bit images still looked like 256-color images even when displayed by 24-bit software and hardware.

Perhaps Video Blaster saves images in fewer colors than it displays, even though making the images compatible with higher-resolution formats. I can’t be certain of this because my questions to Creative Labs technical support have gone unacknowledged.

Something else may bear on the question of Video Blaster's image resolution. The board is supposed to be transparent when not in use, like any other gadget in your computer. It shouldn’t interfere with normal operations. In the case of Video Blaster, the only time it should be known by your computer system is when you run Video Blaster software.

In my computer system, Video Blaster wasn’t completely transparent. My video card is capable of 24-bit color in 16.7-million colors. Taking advantage of 24-bit color requires resetting Windows to run in 24-bit mode, using software drivers designed for the video card. As soon as Windows comes up in 24-bit mode, the computer screen gets cluttered with signal noise, snow, and blurred text. The display is so much disrupted that it isn’t usable.

When I disconnect Video Blaster, normal undisturbed video is restored. Technical support responded to my query about this by saying that Video Blaster works in only 256-color modes or less. The problem with this answer is that I wasn’t running Video Blaster at the time. I was simply running Windows when Video Blaster was properly installed in my PC.

Further experiments revealed similar results when running Windows in 16-bit Hi-Color mode that handles about 32,000 colors. Again, I wasn’t attempting to run Video Blaster, only Windows in 16-bit mode.

It seems that Video Blaster lacks total transparency, as indicated by my experiments. This resulted in another problem during the evaluation. Anytime I wanted to examine an image on a 16- or 24-bit basis, I had to shut down my computer, disconnect Video Blaster and reconnect my video card in normal fashion. Evaluation of Video Blaster sometimes required parallel comparisons of eight-bit versus 24-bit results. Thus, I’ve connected and disconnected Video Blaster many times, which requires power cycling.

Summary

Video Blaster is one of the competitors for low-cost computer video. Its real-time presentation is excellent when compared to its price, making it a nifty tool for watching scaled TV under Windows. Its DOS utilities are more of a high-level programming language than anything else and are difficult to use. They can view images but not capture them. Thus, the DOS utilities are mostly useless. The Windows utilities are very good and easy to use, but they’re offset by limited resolution, lack of transparency and of true 24-bit support.

If you want something to view TV programs on your computer, Video Blaster works well enough, but you might consider the cheaper, more-practical route of buying a small color TV receiver. If you want image capture and don’t mind being limited in color and resolution, Video Blaster will probably fill your needs.

Above all, remember that your computer can’t have any more than 15M of RAM or Video Blaster won’t work.

Finally, if you’re looking for something that will grow with your computer system, maybe you should wait for Creative Labs to make a better version of Video Blaster.
TouchMate worked only with Windows applications and DOS applications that are designed specifically for the TouchMate product. The new driver provides an intuitive interface to virtually any kind of database, making it ideal for information-access applications. $895, TouchMate upgrades available. Visage, Inc., 1881 Worcester Rd., Framingham, MA 01701; tel.: 508-620-7100; fax: 508-620-0273.

Small-Size, Big-Capacity Hard Drive

Toshiba’s MK-1522FCV is a 2½" hard drive with 120M storage capacity and a mere ⅛" height. This diminutive drive is ideal for use in today’s sub-laptop computers. It offers a fast 15-msec average access time, a data-transfer rate and a 128K cache buffer. Using a single disk platter, this new 2½" Toshiba drive weighs only 4.9 ounces, consumes about 1 watt of power from a single 5-volt supply and spins up to operational speed in a fast 3 seconds. The MK-1522FCV is designed to withstand up to 100G of non-operational shock and has a rated MTBF of 150,000 power-on hours. Toshiba America Information Systems, Inc., 9740 Irvine Blvd., Irvine, CA 92718; tel.: 714-583-3000.

Development Board

The eBoard from Highlands Electronics has a 6502 microprocessor at its heart and is supported by a development system that consists of a cross-assembler, assembly-language debugger and board-resident forth language. Because the cross-assembler and debugger run on a PC, development is extremely fast, compared to working with these tools directly on the 6502. The cross-assembler is written to compile 4K of object code in 1 second. With the debugger running while the 6502 has been stopped, you’re able to read, write and modify eBoard’s memory and devices, without disturbing your application environment. It has a central input and output kernel to simplify attaching your application to the system. Highlands Electronics, 13720 Lake Shore Dr., Clear Lake, CA 95422; tel.: 707-994-1024.

New Golden RETRIEVER

Above Software’s Golden RETRIEVER is a document manager that helps you create, store, track and search for documents and data files. The software organizes electronic documents and data files into six on-screen file drawers and an unlimited number of file folders. This replicates the way a paper document would be filed in Windows.

With Golden RETRIEVER, you collect in one file drawer or file folder all related letters, spreadsheets, memos, proposals, reports, presentations, database records and other files generated by any Windows or DOS application. The program supports user-friendly filenames of up to 256 characters in length, complete with full punctuation.

Enhancements include file-save and file-open intercepts that bring up Golden RETRIEVER when another application attempts one of these operations; file record, which adds a “version” field; the ability to customize Windows desktop and accessories; the ability...
on doing multiple experiments at different times, the preferable approach is to use the interconnection arrangement so that you don’t have to open your system unit for each new experiment.

Begin by checking your serial card to see if its UART is socketed or soldered into place. If you have a card with an empty socket for a second serial port, you’re ahead of the game because you can use it as a dedicated experimenter-port Interface. If the UART is soldered into place, your best bet is to replace the card with one that has a socketed UART. Purchasing a new serial card costs for $20 or so is a lot cheaper than trying to build the Interface from scratch when you consider that it would cost you about $30 for just a blank prototyping card and would have to add in the cost of the buffering and address-decoder chips you’d have to buy to implement the circuit.

You need a 40-pin socket header or a piece of perforated board that’s two or more rows larger than the size of a 40-pin UART chip. If you use a header, you can wire directly to it. Alternatively, if you use perforated board, you’ll have to plug prototyping pins into the hole locations that will align with pins 1 through 8, 19, 20, 26, 27, 28 and 40 of the UART socket and pass some thick bus wire down through them to plug into the positions on the UART socket or solder directly to the serial card.

Referring to Fig. 1, use Wire Wrap or other small-diameter prototyping wire to point-to-point wire the circuit on a separate perforated board. Don’t forget to provide wiring for the ground returns of any input signals you’ll be using. Use ribbon cables for any digital data signals and any two-conductor cable for analog signals you’ll have as inputs. Don’t plug the ICs into the sockets on your Interface board until after you’ve conducted voltage checks and are certain that your wiring is okay.

If you wish, house the circuit-board assembly inside an enclosure that has sufficient panel space on which to mount the input connectors you’ll be using. RESET switch SW1 and an entry point for routing the cable that goes to the connector on your computer that carries the lines to the UART socket on your serial card.

After mounting the connectors, use ribbon cable to interconnect the digital input signal lines to their connectors(s) and two-conductor cable for any analog inputs you’ll be using. Line the hole you drilled for the cable that goes back to your computer and feed the free end of the cable through it. Connect and solder the conductors of the computer cable to the appropriate points on the circuit board. Then use 1” spacers and suitable machine hardware to mount the circuit-board assembly into place.

With the project wired and ready for testing, build a simple tester to use during the setup procedure to verify that your circuit is operating properly. You can wire the test circuitry, shown in Fig. 2, on a piece of perforated board. When you wire this circuitry, keep in mind that the only things that will be on the tester board will be potentiometer R10, resistors R2 through R9 and switches S1 through S8. The remainder of the circuitry is shown simply to show you where to temporarily connect these components to those in the Fig. 1 circuit.

Checkout & Use

With no ICs in the sockets on the circuit-board assembly, plug the cable that goes back to your computer into the connector that goes to the UART socket on your serial card. Clip the common lead of a dc voltmeter or multimeter set to the dc-volts function to any convenient point that’s supposed to be at ground potential on the Interface board. Power up your computer and, after it has booted, touch the “hot” meter probe to pin 20 of the U1 and U2 sockets and pins 6 and 16 of the U3 socket. If you don’t obtain a +5-volt reading at any of these points, power down your computer and correct the problem.

If everything appears to be okay, power down your computer and plug the ICs into their respective sockets on the Interface board, making certain you orient them properly. Then temporarily connect your test circuit to the circuit-board assembly, as detailed in Fig. 2, and power up your computer.

You must prepare your system to accommodate the Interface by setting the COM port for proper operation. Table 1 lists the decimal locations of a serial card in memory. If you use the Interface on a port other than COM1, change 1016 (in the software) to one of the numbers listed in Table 1. Setting your serial card so that your computer can see it is the same as if you where going to use it for a modem or a mouse.

Consult the information that came with the serial card.

Next, key in and run the BASIC program given in Listing 1 to ensure proper operation. To stop the program, hit Ctrl-Break. Make sure you have your serial card set for the same COM port as the program. If you’re using COM1 or COM2, make sure your mouse software isn’t active.

After keying in Listing 1 (omit the comments given in the second column during entry), save it with the filename TEST.BAS. If you’re using DOS 3.1, make sure GWBASIC is in the PATH statement in your AUTOEXEC.BAT file. Then type: GWBASIC TEST.BAS and hit Enter. If you’re using DOS 5, use the QBASIC that came with it. Hit RESET switch S1 on the Interface and adjust the potentiometer on your test-circuit board until you see numbers in the upper-left corner of the screen.

Listing 1. BASIC QADDI Test Program

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>CLS</td>
</tr>
<tr>
<td>20</td>
<td>V = INP(1016)</td>
</tr>
<tr>
<td>30</td>
<td>PRINT V</td>
</tr>
<tr>
<td>35</td>
<td>FOR I = 1 TO 1000 PRINT the value to the screen</td>
</tr>
<tr>
<td>40</td>
<td>NEXT I</td>
</tr>
<tr>
<td>50</td>
<td>GOTO 10</td>
</tr>
</tbody>
</table>

Start again.
of your video monitor that vary from 0 to 255. If fail to obtain this response from the system, something is wrong. Power down and correct the problem.

Test the parallel (digital) data input by changing the ON/OFF combination of switches S1 through S8 on the test-circuit board. If the numbers displayed on your video monitor change when you change switch settings, the project is operating properly and you can proceed to putting it into service. Power down your system and remove the test-circuit board.

If you're using more than the one parallel or/and one serial inputs, each additional channel you use must have the same address plus 1, as detailed in Table 2. To test out such a system, you'll have to key in and run the BASIC program given in Listing 2. I know this is very crude programming, but it takes little time to enter and understand it. If you run this program with a single-channel Interface installed in your system, all four outputs will be the same.

Finally, if you wish to read a 0-to-5-volt analog input, key in and run the BASIC program given in Listing 3. With a little programming, you can use the linear analog input to monitor many things.

What's New!

Double Graphics Board

Nth Double Edge from Nth Graphics is a high-performance graphics board that turns two video monitors into one virtual desktop with up to 1,024 x 768-pixel resolution on each monitor and a color depth up to 16.7-million colors. The Nth Double Edge is extends high-performance acceleration to two side-by-side monitors to allow Windows, CAD and other graphics users to double their work areas without doubling cost.

With the Nth Double Edge, you can view two full-screen applications simultaneously or obtain a large overview of one application. Drivers are supplied for most popular graphics packages. The ISA-bus-compatible card is powered by an optimized graphics coprocessor and includes 2M of onboard video RAM. $1,295. Nth Graphics, 1908-A Kramer Lane, Austin, TX 78758; tel.: 800-624-7552; fax: 512-832-5954.

Low-Cost Video Director

Video Director from Gold Disk permits you to do complete video editing from Windows with the aid of a camcorder or VCR. Features include VCR control from the computer screen, point-and-click marking, automatic logging, re-use clips, video-in-a-window that supports displaying video in a re-sizable window using an MCI-compatible card, genlock support for overlay of titles and graphics and time-code and manual modes.

A Gold Disk "Smart Cable" is included for controlling most popular VCRs and camcorders. This cable plugs into the serial port of a PC. Requirements include Windows 3.1, 386 or better; PC, 1M of RAM or more and 2M of free hard-disk space. Gold Disk, PO Box 789 Streetsville, Mississauga, ONT, Canada L5M 2C2.

WordStar Included

By Tom Rugg & Werner Feibel

(Barnes Books, Soft cover/3 1/2" disk, WordStar for DOS Version 7.0. 416 Pages. $39.95.)

This is an unusual package. It's actually a starter kit for the latest version (7.0) of WordStar for DOS. As such, it includes a 3 1/2" disk that contains the full word-processing program, minus some advanced capabilities, such as a thesaurus, page previewing, graphics integration and more-extensive printer support. (An upgrade to include these features is available for $89.)

This book teaches you the basics of using this popular DOS word processor, which features drop-down menus and mouse-use capabilities. It's crisply written and nicely illustrated. At it's price, the package is certainly worth while getting if you're not already locked into a higher power word processor or wish to explore working with a fine DOS one.
SuperMart

This new advertising section highlights products in an easy-to-locate format for reader convenience. Call Margaret Milanese today for deadlines and additional details at 516-681-2922 (FAX 516-681-2926).
PC BASED CONTROL

MOTION CONTROL
- 2 AXIS PID SERVO CONTROLLER $350.00
- 2 AXIS OPTO-ISOL STEPPER DRIVER $115.00
- STEPPING MOTORS SIZE 23 35 oz/in $20.00

I/O CARDS & ACCESS.
- 24 LINE I/O CARD W/ TEST CARDS $65.00
- 8 RELAY DPDT RELAY CARD $95.00
- 8 INPUT LIMIT SW. INPUT CARD $35.00
- OPTO-ISOLATED LIMIT SW. INPUT CARD $50.00

JRA
(313) 973-0928 VOICE/FAX
3602-1 PARTRIDGE PATH
ANN ARBOR, MI 48108

KELVIN
(800) 649-9212
(313) 756-1750, (516) 756-1763

TRUE RMS PLUS
12 INSTRUMENTS IN ONE
AC & DC VOLTMESSRS,
AC & DC CURRENT,
OHMMETER, digm.
DIODE TESTER, LOGIC PROBE
CAPACITANCE METER,
AUDIBLE CONTINUITY TEST,
20 MHZ FREQUENCY COUNTER,
INDUCTANCE METER
The Ultimate Meter
The only meter w/ Built-in True RMS
6.1% Accuracy on DC Voltages
Freq Counter: 200KHz Res: 10 Hz
LCR/Inductance Tester Res: 15 uA
DC/AC Voltage Res: 0.1 mV.
Ohm Meter Res: 0.1 ohms

$39.95

COMPUTER SCHEMATICS
IBM PC Jr
IBM XT
IBM AT
IBM PS/2 30
IBM PS/2 50

Tandy 1000EX
Tandy 1000SX
Tandy 1000TX
Radio Shack TRS 80 III
Commodore C128D
Amiga 500
Atari 520ST

Also selected printers, monitors, and drives
Howard W. Sams & Company
1-800-428-7267

CIRCLE NO. 56 ON FREE INFORMATION CARD
CIRCLE NO. 48 ON FREE INFORMATION CARD
CIRCLE NO. 76 ON FREE INFORMATION CARD

ComputerCraft

How to upgrade!
Full construction plans
Enhancement techniques

How does it work?
Why do I need it?
How can I fix it?

How can I build it?
Where can I buy it?
Who has the parts?

Find out the answers to all these questions in ComputerCraft

Get fast home delivery of ComputerCraft and save 50% on the newsstand price!

☐ 1 year – 12 issues: $18.97
☐ 2 years – 24 issues: $36.00
☐ 3 years – 36 issues: $53.00
(Save $16.43) (Save $34.80) (Save $53.20)

Canada/Mexico—One year $21.00, two years $40.00, three years $59.00
Foreign—one year $23.00, two years $44.00, three years $65.00.

U.S. Dollars Only.

SUBSCRIBE TODAY!
ComputerCraft, 76 North Broadway, Hicksville, NY 11801
Phone: 516-681-2922 FAX: 516-681-2956

Note: Allow 6-8 weeks for delivery of first issue.
the Italian Renaissance. *Renaissance Masters* Volume 1 concentrates mainly on late gothic to early Renaissance periods. Volume 2 covers the High Renaissance, Manierist and Baroque periods. Both volumes display paintings, sculpture and architecture by artists like Da Vinci, Botticelli, Michelangelo, Raphael and Titian. Each CD stores more than 1,300 images, with detailed data cards about each artist and a little background music that puts you into the mood of the time.

Reviewing *Renaissance Masters* is made easy due to its Microsoft Windows interface. You can walk through the entire database of art keyed to the artist who created it, the media of creation, a particular object, the title of a specific work, the date of a work or an event the school someone attended. Browsing is controlled by data cards that present a concise textual identification of the work or, according to user choice, display a panel of images from which to choose.

If you didn't get much exposure to the arts during your school years, as many of us experienced, Ebook provides an essay on each volume of the *Renaissance Masters*. The essay acquaints you with the significance of the Italian Renaissance, helping you to understand and perhaps appreciate what you're looking at.

Besides acting as informative tools for personal education, *Renaissance Masters* Volumes I and II are superb reference source. One can simply study the art and artist for many hours and is bound to retain some of the information. Both reference works are easy to use and can be very entertaining.

Music Mentor

The Italian Masters had no monopoly on innovation. Music, part of every cultural art, has spawned compositions of such power, grace and majesty that they're labeled nothing less than genius. If you're interested in music, whether it's baroque or modern, *Music Mentor* can help you attach musical reins to your computer and drive it into the world of musical art. Published by Midisoft, *Music Mentor* is a music learning and entertainment environment that combines graphics and MIDI-generated sound with interactive activities to ease the sometimes daunting task of learning music. This product offers an entertaining introduction to basic music concepts, along with a short look at Western music history.

Music Mentor begins with a step-by-step tutorial of music basics: melody, rhythm, harmony, timbre, texture and form. It does so in a way that's simple to grasp, even for someone like me who can play a few licks on a guitar but can't make much sense of music notation. An example of *Music Mentor*'s effective elementary approach is shown by its definition of the musical melody, "...a succession of pitches that is perceived by the mind as a unity." It goes on to explain that a melody, therefore, is more than just a series of pitches one strings together, but that the pitches must create an overall impression in the listener's mind. This kind of talk gets you thinking in the right direction and prepares you for the hands-on approach used by *Music Mentor*.

As you progress through music basics, you can hear what's being taught through an MPC-compliant sound card or MIDI keyboard. You can see what's being taught by following visual movement of musical notes on your computer screen in standard musical notation. The software acts like a guiding instructor, laying a foundation on the history and evolution of music and notation, and then moving to the more complex considerations of scale.

Playing a significant role in the learning process is the documentation supplied with the program. It's well-written and easy to follow. Even when setting up the software, one finds a rare explanation of MIDI mapping and how to set your own sound card to work perfectly with *Music Mentor*. Evidently well-considered in its preparation, the documentation and software can't and doesn't replace dedicated time and thoughtful reason given to the tutorials. *Music Mentor* is the kind of subject that takes intelligent study sessions over a period of time. So it is when learning with *Music Mentor*. If you want the system to work for you, you have to work for it.

After some time, you'll probably want to start making attempts at composition or, at least, do some experimentation. Midisoft has something for this, too. *Recording Session* is the companion to *Music Mentor*. It integrates with *Music Mentor* in the Microsoft Windows environment so that you can study and create music without a lot of MIDI software and hardware readjustments. *Recording Session* lets you play and edit all 262 songs in *Music Mentor*'s tutorials. Together, *Music Mentor* and *Recording Session* comprise a learning combination that's cost-effective and useful.

Bible-Study Software

Literature is another form of art. As intense as any other kind, it offers a fascinating opportunity to create a world of people and places, all within the confines of the printed page. An example of great literature is the written work that claims to be the inspired word of God, the Holy Bible. Logos Research Systems has produced an electronic version of the ancient writings. The product is called Logos Bible Study Software. Bible study programs aren't at all new since the advent of the personal computer. But few of them have migrated to the Microsoft Windows platform. Computer users who like to study the Bible now have a powerful search-and-retrieve system, fast access to various Bible translations, clear marking of Strong's numbers, English definitions to Greek and Hebrew words and more than a half-million cross-references. Besides the potential for more Bible versions, other additions include four Greek texts, a Hebrew text and Nave's *Topical Bible*.

Logos takes advantage of Dynamic Data Exchange feature in Windows, the ability to transfer information from one document to another without actually opening the other application. DDE works with only Windows applications, though. For non-Window word processors, Logos can export its wealth of information to an ASCII file. Then any word processor or generic application can make use of it.

Logos has a flexible search system that accepts plain English-like statements. For example, the entry "Jesus or Christ within Paul" retrieves every reference of Jesus Christ within 4 verses of Paul. The text search system can help you find even vague references to scripture that have faded from memory and makes allowances for spelling.

Bird's Eye View

Renaissance Masters Volumes I and II, $99.95 each

Electronic Arts

1450 Fashion Island Blvd.
San Mateo, CA 94404

Tel.: 800-245-4525

Requirements

<table>
<thead>
<tr>
<th>Memory</th>
<th>2M of RAM, Windows 3.0, CD-ROM Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphics</td>
<td>Windows SVGA</td>
</tr>
<tr>
<td>Sound</td>
<td>Windows MPC</td>
</tr>
<tr>
<td>Controllers</td>
<td>Mouse, Keyboard</td>
</tr>
</tbody>
</table>

Evaluation

Documentation	Good
Graphics	Good
Learning Curve	Short
Complexity	Easy
Playability	N/A

In Brief: In-depth look at the varied works of the Italian Renaissance Masters. Recommend Windows 3.1, fast 386 or 486 computer, 4M of RAM and sound card for better performance. Make sure CD-ROM drive is MPC-compliant.

84 / COMPUTERCRAFT / August 1993
errors. Too, it can search on Strong’s numbers. The ability to see and search Strong’s numbers is particularly useful. Strong’s numbers greatly facilitate the task of tracing down original words and phrases. You can then use the Greek and Hebrew lexicons to get the original import of a particular biblical rendering. Then, if you need to make notes, you can do so within Logos, attaching your notes to particular references.

Computer Bible students will enjoy the tools provided by Logos. Without a large investment in time, they can organize personal Bible study and get more done in the same amount of study time. Whether you’re a Bible scholar, Christian fundamentalist or curious observer, you can use Logos. In honor of the Holy Scriptures, Hebrews chapter 4 verse 12 says, “For the word of God is quick, and powerful, and sharper than any two-edged sword...” Maybe a joining of computer technology, Microsoft Windows and Logos Bible Study Software can make studying the word of God a little quicker.
BARCODES BARCODES BARCODES

they’re everywhere you look! Now you can cash in on an industry that is growing by 20% each year with THE BARCODE COURSE. This course comes complete with a detailed barcode textbook, portable barcode reader, RS232 interface and barcode printing software for only $149.95 +$7.00 S&H. OBR Inc., RR3 Box 47-7

Carbondale, IL 62901. (618) 549-7100.

68HC11A1 32Kbytes EEPROM 8 A/D, 20 I/O. NO (configuration jumpers, EEPROM programmer/eraser) REQUIRED. Power supply, serial cable, and all software included. Just plug into PC-COMIX port. Expand to your exact requirements with our EXPAND-BOARD and PC104 style connector through our UCTBUS64. NO (motherboard, flat cable) REQUIRED.RF-232 (Division of

2968-6177 QUEBEC Inc) 1404 rue Galt, Montreal, Qc. H4E 1H9. (514)761-9201.

VIDEO

MISCELLANEOUS

Advertisers' Index

51 AMC Sales

52 Ace Communications

53 Advanced Micro Comp.

55 Advanced Systems Design

56 Altix Electronics

57 Andromeda Research

58 B.G. Micro

59 BSoft Software

62 Beige Bag Software

63 Binary Technology, Inc.

64 Bull Frog Creations

65 Coactive Aesthetics

66 DSA

67 Design Computations

68 EMAC

69 Interactive Image Tech

70 Intronics

71 JRA Enterprises

72 Jasmine Multimedia

73 Kelvin Electronics

74 Merrimack Valley Sys

75 Micro House

76 Midwest Micro Tec, Inc.

79 Mouser Electronics

80 NRI Schools

81 New Microns Inc.

82 Prairie Digital

83 Prologic Designs

84 PseudoCorp

85 Riget Corporation

87 SESCOM

88 SMS, Howard Electronics

89 Software Science

90 Sytronix

91 TECI

92 URDA

93 U.S. Cyberlabs

94 Unicorn Electronics

95 Vanguard Labs

96 Wheatstone MacroSystems

97 Z-World Engineering

86 / COMPUTER CRAFT / August 1993

Say You Saw It In ComputerCraft

www.americanradiohistory.com
Imagine being able to machine three dimensional parts in wood, plastic and light metals! This easy to assemble kit CNC X, Y & Z drilling/milling machine turns your PC computer into a Desktop Manufacturing System! The patent-pending 24" by 24" by 6" NEURACTOR Linear Actuators translate CAD generated files into actual working parts! Machine three dimensional prototype or production parts automatically! Cash-in on this new revolution in micro-manufacturing. Make signs & plaques, do wood carvings, create 3-D "lost wax" mold masters, drill printed circuit boards, etc. Unit comes complete with 5 amp power supply, four CNC-CYMOTOR controllers, four .0005" linear-accuracy stepper motors, pre-machined steel & UHMW actuator mechanisms, pre-painted aluminum enclosure and all hardware! Solder-in a few parts, tighten a few screws and you're in business! BASIC "host" program reads ASCII "plotter" files. If you want a full-featured CAD-CAM environment, we bundle a FREE shareware 3D CAD/CAM! Use your Neuractor CNC-III with a standard DREMEL tool or flex-shaft router (not included). You build it, you calibrate it, you can customize it! Act now while we hold-down the price on this break-through technology! Complete kit $595! Add $22.95 UPS S/H. Please allow four to six weeks for delivery. Rush service also available! (501) 839-8293

ONLY $595!

U.S. Cyberlab 14786 Slate Gap Rd. West Fork AR 72774

MOVE INTO THE CYANCE CHASSIS!

THE CYANCE CHASSIS AND CYANCE EXPANDER OFFER THE SERIOUS PC COMPUTER USER AN UPGRADE PATH LIKE NO OTHER. SEE FOR YOURSELF!

ONLY $99.95

Get a break-through! Now you can put your PC to work developing new microcontroller based products! Why not use your spare time constructively by developing a new product based on the Motorola MC68HC705C8 microcontroller. Using your PC computer and the Cyber HC5 as a development system, you can now develop your own micro-controller products more easily than ever before! Self contained in a professional enclosure with integral power supply, the Cyber HC5 is fun and easy to build and use. Even if you have never programmed in Assembler before, the Cyber HC5 will have you "up and running" before you know it! Completely supported with an official Motorola documentation package, membership on their BBS and FREWARE Assembler and Programmer software, the Cyber HC5 will serve you for years to come. Join thousands of others who are busy building and using the remarkable MC68HC705C8. With on-board parallel, SCI and SPI interfaces, the '705C8 can turn your new product into a power-house! The Cyber HC5 comes in a complete, easy to build kit with all components included (MC68HC705C8 sold separately) for $89.95. Motorola MC68HC705C8S (EPROM version) $35.25, MC68HC705C8P (OTP version) $14.95. Please allow two to four weeks for delivery. Rush service also available! (501) 839-8293

ONLY $89.95

U.S. Cyberlab 14786 Slate Gap Rd. West Fork AR 72774

CIRCLE NO. 81 ON FREE INFORMATION CARD
An undeniable part of civilization is the aspect that addresses human non-materialistic yearnings. Call them spiritual values, if you like. It seems that every civilization, no matter how ancient or remote, has some kind of artistic pursuit. Let’s look at three productive intersections of computer technology and the arts.

Renaissance Masters
The term “Renaissance,” adopted from the French equivalent of the Italian word “Rinascimento,” literally meaning “rebirth,” describes the radical and comprehensive changes that took place in European culture during the Fifteenth and Sixteenth Centuries, bringing about the demise of the Middle Ages and embodying, for the first time, the values of the modern world. The consciousness of cultural rebirth was itself a characteristic of the Renaissance. Italian scholars and critics of this period proclaimed that their age had progressed beyond the barbarism of the past and had found its inspiration, and its closest parallel, in the civilizations of ancient Greece and Rome.

The “rebirth” of art in Italy was connected with the rediscovery of ancient philosophy, literature and science and the evolution of empirical methods for study in these fields. Increased awareness of classical knowledge created a new resolve to learn by direct observation and study of the natural world. Consequently, secular themes became increasingly more important to artists. With the revived interest in antiquity came a new repertoire of subjects drawn from Greek and Roman history and mythology.

The models provided by ancient buildings and works of art also inspired the development of new artistic techniques and a desire to recreate the forms and styles of classical art. As the social role of the artist charged, so did attitudes toward art. Art was valued, not merely as a vehicle for religious and social didacticism, but also as a mode of personal expression to be judged on aesthetic grounds. Although the evolution of Italian Renaissance art was a continuous process, it’s traditionally divided into three major phases: Early, High and Late Renaissance.

Ebook, a publisher of CD-ROM software, makes two compact-disc volumes that explain and explore the explosion in art, innovation and individualism that characterized Renaissance art.

(Continued on page 84)
VIDEOS WITH MUSIC
Four CD-ROMs packed with hundreds of professionally shot videos and orchestrated music. All clips come bundled with Aldus Fetch—the powerful multimedia cataloging, browsing, and retrieval software. Each video and music CD-ROM covers a different popular topic. AMERICA IN MOTION features videos of the American Dream including events, holidays, places and landmarks, with music ranging from Ragtime to Rock 'n Roll. BUSINESS IN MOTION contains great videos of workers of every kind making a difference in manufacturing, agriculture, aerospace and construction. This CD also includes popular business themes perfect for any presentation. NATURE IN MOTION contains videos of the plant and animal kingdoms combined with classical orchestrated music. SPACE IN MOTION has the best U.S. & Soviet videos and NASA animations, along with music. Best of all Jasmine's CD-ROMs of clip media can be used royalty-free in any computer application you create.

VIDEOS WITH TEXT
FAMOUS FACES: Meet the 100 most prominent people of the 20th century. The inventors, politicians, celebrities, artists, business and religious leaders who made history. Combined with the exceptional historic footage are educational biographies and famous quotes. This interactive CD-ROM includes Churchill, Sadat, Gandhi, Disney, Ford, Edison, Einstein, Thorpe, Hirohito, De Gaulle, Wright Brothers, Ruth, Houdini, Bing, Chaplin, and so many more. As with all Jasmine titles, the clips can be used royalty-free in any computer application.

FAMOUS PLACES: Explore the wonders of the modern world. Discover the Earth's greatest landmarks from the grandeur of the Great Pyramids of Egypt, through the romantic canals of Venice, to the Great Wall of China and beyond. Breathtaking videos complete with fascinating histories. Experience the Colosseum, Jerusalem, Hollywood, the Vatican, Red Square, the Eiffel Tower, Sears Tower, Taj Mahal, Australia, New York City, Tokyo, Big Ben, the Acropolis, and much more. All clips can be used royalty-free in any computer application you create.

STILLS WITH MUSIC
Our photographers have canvassed the globe to capture the world's most exotic animals, fascinating people, and spectacular settings. From far off locations to close-up textures, these three CD-ROMs encompass the most diverse collection of stills ever gathered. WILDERNESS STILLS featuring extraordinary photos of nature and animals; SCENIC STILLS with striking photographic backgrounds, textures, and famous locations; and WORKING STILLS with stunning photos of business and industry. All include over 300 color photos, magnificent music and Conversion Artist Software for changing TIFFs into other formats. Also included is Aldus Fetch—the powerful multimedia cataloging, browsing and retrieval software. And all this content can be used royalty-free in any computer application you create.

JASMINE MULTIMEDIA PUBLISHING
6746 VALJEAN AVE, STE. 100, VAN NUYS, CA 91406
CIRCLE NO. 67 ON FREE INFORMATION CARD

Interested Dealers Contact: Ingram Micro or Software Resources

CALL NOW TO ORDER 1-800-798-7535 EXT. 2208
Finally!

Technical Support at your Fingertips

Micro House carries a full line of technical books which include:

- Complete illustrations of boards and components
- Jumper & switch settings
- Easy to understand tables
- Complete glossaries
- Detailed explanations of all related chips, processors and other components
- Setup and installation procedures
- Complete lists of all pertinent specifications

Rave reviews:

...a priceless reference for anyone who needs to configure a hard disk.
—Alfred Poor, PC Magazine

January 12, 1993

The experts at Micro House have a treat for you with DrivePro, a program that makes the process practically foolproof.
—Steve Bass, PC World

December, 1992

...a real time-saver for anyone who regularly configures systems.
—John McCormick, Computer Monthly

November, 1992

This is definitely an important tool for hands-on setup.
—Mark Ferelli, Computer Technology Review

March, 1992

Micro House has all the answers.
—Comdex Daily, November 19, 1992

The Micro House Encyclopedia of Hard Drives is a techie's playground...
—PCM, August, 1992

Orders: 1-800-926-8299

Some of our satisfied users:

Addstor • AMI • ArtiSoft • AST Research, Inc. • AT&T • Austin Computer Systems • Award BIOS • Bell Atlantic • CompUSA • ComputerLand • Conner • DEICO Electronics Inc. • DELL Computer Corp. • DTC • DTK Computer Inc. • Epson America, Inc. • Everex Systems • Gateway 2000 • Hewlett-Packard • Hitachi • Hyundai Electronics America • IBM • INTEL • Maxtor • Memorex • Micronics Computers • Micropolis • Miniscribe • MIT • NCR • Northgate Computer Systems, Inc. • Novell • Packard Bell • Phoenix BIOS • Seagate Technologies • Tech Data Corporation • Thomas Conrad • Ziff Davis

30-day money back guarantee

© 1993 Micro House. All brand or product names are trademarks of their respective builders. Micro House, 9840 East Centennial, Suite 101, Boulder, Colorado 80301.

CIRCLE NO. 70 ON FREE INFORMATION CARD

www.americanradiohistory.com