SOUND ACTIVATOR
WALKMATE
AUTOWIPE
BUILD THEM
AND USE THEM

Gallium Arsenide - The fast one

LINSLEY HOOD'S
SEASONAL YARN

BARRY PORTER TELLS
A PCB'S TALE

AUDIO... COMPUTING... MUSIC... RADIO... ROBOTICS

DISC DRIVE OFFER FROM ETI AND WATFORD
Powertran’s “Hebot II” and “MicroGrasp” kits offer unrivalled value for money to colleges, schools and individual enthusiasts.

Put the kit together, plug into your micro and off you go!

Hebot II can perform a bewildering range of actions under the control of a simple BASIC program. Features include independent control of two wheels, flashing “eyes”, two-tone horn and a retractable pen.

Complete kit £39.95 + VAT

Universal interface board kit £5.50 + VAT

MicroGrasp is a fully programmable electric robot arm with closed loop feedback for positive positioning. The robot can be driven from virtually any micro.

Robot kit with power supply £150 + VAT

Powertran kits are complete down to the last nut and bolt, with easy-to-follow assembly instructions.

TOP KITS FROM

POWERTRAN

MUSIC

Powertran’s range of quality audio products offers top quality at low, low prices. All the products are finished in rugged metal cabinets suitable for 19" rack mounting or as free-standing units.

MPA 200 100 watt mixer-amplifier
Complete kit £40 + VAT

SP2 200 2-channel 100 watt amplifier
Complete kit £50 + VAT

Chromaphone 5000
6-channel light show controller
Complete kit £80 + VAT

Digital Delay Line Studio quality effects
- 0.01 to 1.6s delay £95 + VAT

Patchbay 16 pairs of jacks - for studio or stage, £20 + VAT

Our Doppler Radar Alarm can detect intruders early enough (and loud enough) to offer your home real protection. Standard kit including two transmitters £70 + VAT

Pair of extra transmitters £23 + VAT Special offer: extended kit including four transmitters £84 + VAT

Send for demonstration tape to sample some of the sounds available £2.50 + VAT

To Powertran Cybernetics Limited, Park Road, Crowborough, Sussex.

Please send me the following kits

__

Name

__

Address

__

Access/Visa cardholders - save time - order by phone: 08926 64222

Please allow 21 days for delivery. Offers subject to availability. Prices are exclusive of V.A.T.

Most correct at time of going to press. Overseas customers - please contact our Export Department.

Access/VISA cardholders - save time - order by phone: 08926 64222
FEATURES

DIGEST 7
A news Jerusalem.

READ/WRITE 16
Dreaming of a write Christmas.

ALL ON BOARD 18
Barry Porter gets down to copper tracks.

THE PRESENT AND FUTURE MACHINE 22
JLH's Christmas gift to you.

THE FAST ONE 24
AlGaAs and gates, by Stuart Smith.

TECH TIPS 60
Ideas whose time has come.

Due to the pressure on space, we have had to hold over the scheduled parts of our series on Transistor Stage Design and Automatic Test Equipment until next month. Our apologies to readers.

PROJECTS

THE ETI ACTIVATOR 30
Lively up your sounds, says Allan Bradford.

6809 SINGLE-BOARD COMPUTER 36
Dave Rumball and G. Mills on the design principles.

WALKMATE 41
Build a pal for your Walkman and stay indoors, says Ram Chandru.

6809 SINGLE-BOARD COMPUTER 36
Dave Rumball and G. Mills on the design principles.

DIGITAL SOUND SAMPLER 47
The analogue board begins here.

AUTOWIPE 50
Andy Armstrong's dreaming of a windscreen wipe Christmas.

MODULAR TEST GEAR 54
Counting and timing made easy, thanks to Mike Meakin.

ETCETERA

OPEN CHANNEL 67
'HDTV or not HDTV?' asks Keith Brindley.

ALF'S PUZZLE 67
IC UR YYY 4 ME.

1985 BOOKS 68
Keith Brindley breaks a few spines.

SCRATCHPAD 70
Flea-byte's awards for the year.

INFORMATION

SPECIAL OFFER 17
NEXT MONTH'S ETI 17
THE PCB SERVICE RETURNS .. 59
FOIL PATTERNS 62
CLASSIFIED ADS 71
AD INDEX 74
Electrolytic Capacitors

<table>
<thead>
<tr>
<th>Value in uF</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>500V</td>
<td>10, 22, 47, 100, 150, 330, 470, 1000</td>
</tr>
<tr>
<td>250V</td>
<td>1, 10, 22, 47, 100, 150, 330, 470, 1000</td>
</tr>
</tbody>
</table>

Tantalum Bead Capacitors

<table>
<thead>
<tr>
<th>Value in nF</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>68, 100, 150, 220, 330, 470, 1000</td>
<td></td>
</tr>
</tbody>
</table>

Polystyrene Capacitors

<table>
<thead>
<tr>
<th>Value in pF</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 to 10 nF</td>
<td>6.3V, 16V, 35V, 63V, 100V, 150V</td>
</tr>
</tbody>
</table>

Silver Mica Capacitors

<table>
<thead>
<tr>
<th>Value in pF</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 to 10 nF</td>
<td>6.3V, 16V, 35V, 63V, 100V, 150V</td>
</tr>
</tbody>
</table>

Ceramic Capacitors

<table>
<thead>
<tr>
<th>Value in pF</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 to 10 nF</td>
<td>6.3V, 16V, 35V, 63V, 100V, 150V</td>
</tr>
</tbody>
</table>

Polystyrene Capacitors

<table>
<thead>
<tr>
<th>Value in nF</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 to 10 nF</td>
<td>6.3V, 16V, 35V, 63V, 100V, 150V</td>
</tr>
</tbody>
</table>

Miniature Trimmers

<table>
<thead>
<tr>
<th>Value in pF</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 to 10 nF</td>
<td>6.3V, 16V, 35V, 63V, 100V, 150V</td>
</tr>
</tbody>
</table>

Resistors

- **Carbon Film**
 - Value: 1kΩ to 30kΩ
 - Tolerance: ±10%
 - Resistance: 10Ω to 30kΩ

- **Metal Film**
 - Value: 1kΩ to 30kΩ
 - Tolerance: ±5%
 - Resistance: 10Ω to 30kΩ

Transistors

BF200
- **Power Rating:** 150mW
- **Voltage:** 85V
- **Current:** 1A

BC109
- **Power Rating:** 100mW
- **Voltage:** 70V
- **Current:** 1A

BC149C
- **Power Rating:** 100mW
- **Voltage:** 70V
- **Current:** 1A

BC142/328
- **Power Rating:** 100mW
- **Voltage:** 70V
- **Current:** 1A

Linear Devices

TL081CP
- **Power:** 1.5mW
- **Voltage:** 2.5V

TL071CP
- **Power:** 1.5mW
- **Voltage:** 2.5V

RF Chokes Miniature PCB type

<table>
<thead>
<tr>
<th>Value</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>120Ω</td>
<td>0.5mH</td>
</tr>
</tbody>
</table>

G/A/SMOKE DETECTORS

DETECTORS

SPDT or DPDT.

MINI SMOKING DETECTORS.

can be put in place of these.

A. 40 percent.

B. 270 degrees.

C. 2.29 inches.

LIGHTS.

S. 270 degrees.

D. 150 degrees.

E. 270 degrees.

F. 270 degrees.

G. 270 degrees.

H. 270 degrees.

I. 270 degrees.

J. 270 degrees.

K. 270 degrees.

L. 270 degrees.

M. 270 degrees.

N. 270 degrees.

O. 270 degrees.

P. 270 degrees.

Q. 270 degrees.

R. 270 degrees.

S. 270 degrees.

T. 270 degrees.

U. 270 degrees.

V. 270 degrees.

W. 270 degrees.

X. 270 degrees.

Y. 270 degrees.

Z. 270 degrees.

1. 270 degrees.

2. 270 degrees.

3. 270 degrees.

4. 270 degrees.

5. 270 degrees.

6. 270 degrees.

7. 270 degrees.

8. 270 degrees.

9. 270 degrees.

0. 270 degrees.

A. 270 degrees.

B. 270 degrees.

C. 270 degrees.

D. 270 degrees.

E. 270 degrees.

F. 270 degrees.

G. 270 degrees.

H. 270 degrees.

I. 270 degrees.

J. 270 degrees.

K. 270 degrees.

L. 270 degrees.

M. 270 degrees.

N. 270 degrees.

O. 270 degrees.

P. 270 degrees.

Q. 270 degrees.

R. 270 degrees.

S. 270 degrees.

T. 270 degrees.

U. 270 degrees.

V. 270 degrees.

W. 270 degrees.

X. 270 degrees.

Y. 270 degrees.

Z. 270 degrees.

1. 270 degrees.

2. 270 degrees.

3. 270 degrees.

4. 270 degrees.

5. 270 degrees.

6. 270 degrees.

7. 270 degrees.

8. 270 degrees.

9. 270 degrees.

0. 270 degrees.

A. 270 degrees.

B. 270 degrees.

C. 270 degrees.

D. 270 degrees.

E. 270 degrees.

F. 270 degrees.

G. 270 degrees.

H. 270 degrees.

I. 270 degrees.

J. 270 degrees.

K. 270 degrees.

L. 270 degrees.

M. 270 degrees.

N. 270 degrees.

O. 270 degrees.

P. 270 degrees.

Q. 270 degrees.

R. 270 degrees.

S. 270 degrees.

T. 270 degrees.

U. 270 degrees.

V. 270 degrees.

W. 270 degrees.

X. 270 degrees.

Y. 270 degrees.

Z. 270 degrees.

1. 270 degrees.

2. 270 degrees.

3. 270 degrees.

4. 270 degrees.

5. 270 degrees.

6. 270 degrees.

7. 270 degrees.

8. 270 degrees.

9. 270 degrees.

0. 270 degrees.

A. 270 degrees.

B. 270 degrees.

C. 270 degrees.

D. 270 degrees.

E. 270 degrees.

F. 270 degrees.

G. 270 degrees.

H. 270 degrees.

I. 270 degrees.

J. 270 degrees.

K. 270 degrees.

L. 270 degrees.

M. 270 degrees.

N. 270 degrees.

O. 270 degrees.

P. 270 degrees.

Q. 270 degrees.

R. 270 degrees.

S. 270 degrees.

T. 270 degrees.

U. 270 degrees.

V. 270 degrees.

W. 270 degrees.

X. 270 degrees.

Y. 270 degrees.

Z. 270 degrees.

1. 270 degrees.

2. 270 degrees.

3. 270 degrees.

4. 270 degrees.

5. 270 degrees.

6. 270 degrees.

7. 270 degrees.

8. 270 degrees.

9. 270 degrees.

0. 270 degrees.

A. 270 degrees.

B. 270 degrees.

C. 270 degrees.
Fast component distribution

The Rapid Guarantee —
• Same day despatch — Lowest prices
• Brand new components — In-depth stocks
Handheld Dual Trace DSO with DMM

Advance House of Instruments are distributing the Soar 1000, a battery operated digital storage oscilloscope which uses a liquid crystal display and has a built-in digital multimeter.

The Soar 1000 has a bandwidth of 3.2 MHz and nine ranges of sensitivity from 10 mV/division to 5 V/division. The Y-amplifier frequency characteristic is ± 3 dB or less from DC to 200 kHz. The timebase has twenty ranges from 5 s/division to 5 V/division and features continuous-sweep and single-sweep measurement modes, and positive, negative and switchable trigger slopes.

The display unit is a 128 x 160 dot-matrix LCD with a dot size of 0.55 x 0.55 mm and an effective display area of 76 x 95 mm. A graticule divides the display area into ten divisions on the horizontal axis and four vertically on each trace.

A built-in battery backed-up memory allows storage of waveforms for later analysis and a waveform alarm function ensures correct operation. The rechargeable NiCad battery pack provides six hours of operation and the unit can also be powered by means of a mains adaptor.

The Soar model 1000 includes a seven function, 27-range digital multimeter which offers both automatic and manual ranging. The unit comes complete with oscilloscope probes, multimeter probes, batteries, rechargeable battery pack and an AC adaptor and costs £90 plus VAT.

Advance House of Instruments, Raynham House, Bishop's Stortford, Hertfordshire CM23 5PE, 0279 - 55155.

32-Bit Processor Multiplies In One Cycle

Advanced Micro Devices claim their single chip 32-bit floating point processor (FPP) is the first in the world and can perform floating-point addition, subtraction and multiplication in a single 150ns clock cycle.

The Am29325 FPP features a three-bus flow-through architecture, using two 32-bit input buses and one 32-bit output bus. The cycle time is 150 ns in the flow-through mode and 135 ns in the clocked mode. It can also be used in two other I/O configurations, a 32-bit two-bus architecture and a 16-bit, three-bus format for use with 16-bit processors.

The device can perform arithmetic in either IEEE floating-point format standard P754 or DEC single-precision floating-point format. It can also perform conversions between the IEE and DEC formats and between 32-bit integer format and floating-point format.

ETI January 1986
Cirkit wishes all Electronics
Today International readers a
very happy Christmas

Ni-Cad Batteries
High quality Uni Ross nickel cadmium rechargeable batteries in sizes equivalent to the popular dry cell range; eg. HP7 = AA, HP11 = C, HP2 = D. They can replace dry cell types in applications drawing medium to high current, but not suitable for low current drain applications.

<table>
<thead>
<tr>
<th>Type</th>
<th>Size (mm)</th>
<th>Voltage (V)</th>
<th>Capacity (Ahr)</th>
<th>Max Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>45x50</td>
<td>1.2</td>
<td>0.5</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>26x49</td>
<td>1.2</td>
<td>1.2</td>
<td>120</td>
</tr>
<tr>
<td>D</td>
<td>33x51</td>
<td>1.2</td>
<td>1.2</td>
<td>120</td>
</tr>
<tr>
<td>PP3</td>
<td>50x27x16</td>
<td>8.4</td>
<td>0.11</td>
<td>11</td>
</tr>
</tbody>
</table>

WM12D
12 watt miniature lightweight pencil thin soldering iron, with a break-resistant stay cool handle. Designed for soldering where precision touch is essential, the WM12D weighs 7 ounces and measures 7" less tip. It develops tip temperature of 600°F and accommodates a choice of 3 Weller slide-in tips.

<table>
<thead>
<tr>
<th>Model</th>
<th>Stock No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-12004</td>
<td>£0.80</td>
<td></td>
</tr>
<tr>
<td>01-12024</td>
<td>£2.25</td>
<td></td>
</tr>
<tr>
<td>01-12044</td>
<td>£3.05</td>
<td></td>
</tr>
<tr>
<td>01-04054</td>
<td>£3.70</td>
<td></td>
</tr>
</tbody>
</table>

Admate DP100 NLQ dot matrix printer

<table>
<thead>
<tr>
<th>Model</th>
<th>Stock No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-84054</td>
<td>£0.80</td>
<td></td>
</tr>
<tr>
<td>01-12044</td>
<td>£3.05</td>
<td></td>
</tr>
<tr>
<td>01-12004</td>
<td>£0.80</td>
<td></td>
</tr>
</tbody>
</table>

Type CX4/Multi Battery Charger
This unit will recharge AA, C, D and PP3 size cells with automatic voltage selection; it will also recharge manual combinations of cells; 4xAA, 4x4A, 6x4C, 4x2PP3, 2x2C + 2x2D, 2x2A + 2x2D, 2x2A + 2x2C + 1xPP3, 2x2C + 1xPP3, 3xAA + 1xPP3.

Power supply 240V 50Hz; weight 0.475kg; dimensions 120x100x25mm.

<table>
<thead>
<tr>
<th>Battery</th>
<th>Output Volts</th>
<th>Charge Rate</th>
<th>Time (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>2.9</td>
<td>45</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>2.9</td>
<td>120</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>2.9</td>
<td>120</td>
<td>16</td>
</tr>
<tr>
<td>PP3</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Stock No. 01-02205 Price £7.49

Prestel Link for your Amstrad

The Modem
British designed Acoustic Modems, flexible coupling fits all standard and Herald telephones. More reliable in operation than some direct connect modem.

1200/75 baud operation access to PRESTEL, MICROSET, BT GOLD etc.

1200 baud half duplex operation to swap programs and data over the telephone network with other users. Supplied with connection details and user manual. Modem signals are RS232 compatible, allowing use with other computers and terminals.

Earphone allows call monitoring.

Power supply and all battery state monitor for trouble free portable operation.

Batteries (4xAA cells) give 40 hours of operation.

The Interface
Plugs into Disk Drive, through Bus Connector for Disk Drives and other peripherals.

Can be used to interface to other RS232 devices, such as Moderns, Plotters and Printers. Baud rates supported 75/1200/1200 and 300/300*.

INPUTS: Data, one handshake - RS232 compatible.

OUTPUTS: Data, one handshake - +5 volt positive going. Works with all TTL level inputs and most RS232 devices.

All interface features are software addressable, uses 8251 UART.

Supplied with full RSX drivers, which may be used in your own programs.

Not directly compatible with Amstrad CPC.

Exhaustive documentation about interface and RSX's supplied on the cassette.

*Cannot be used with Modern.

Link Software

Full PRESTEL support, including up to 16 onscreen colours and dynamic frames. Information is displayed in real time, allowing page exit as soon as header details have been seen.

Available on tape or disk.

Terminal Emulation Mode, allows the Amstrad computer to act as a glass Teletype.

Allows access to BT GOLD and similar services.

File transfer allows data transfer from user-to-user over the telephone network.

Internet Configmode allows changing of interface baud rate and data format.

RSX drivers for all features, can be incorporated into other programs.

Supplied with extensive documentation.

Stock No. 40-30100 Price £155.00

TI-30 III Calculator

A calculator with basic scientific functions, for general use.

Price £9.55

TI-56 Calculator

A more advanced programmable scientific calculator with 122 different scientific and statistical functions, including two-variable statistics and eight data memories or 56 I/O programming steps. Supplied with hard carrying case.

Price £24.99

Programmer II Calculator

Specifically designed for computer programmers, this versatile electronic abacus features calculations in hex, octal and decimal as well as base conversions and logical operations. Supplied with hard carrying case.

Price £38.50

HT-320 multimeter

A high quality, high specification but reasonably priced meter. The meter movement is fully protected against overloads, and has a 3-colour mirrored scale. Supplied with comprehensive instructions, test probes, transistor test leads and batteries.

Sensitivity: 20V dc, 18V ac, dc volts: 0.1, 0.5, 2.5, 10, 50, 250, 1kV, ac volts: 10, 50, 250, 1kV, dc current: 50mA, 2.5, 25, 250mA, resistance: 2.2k, 20, 200M, audio output: sine wave at 1kHz, frequency range 20Hz-20kHz, accuracy: ±0.5% + 0.3% of range, test category: are supported, and continuity and diode test.

Complete with battery and test leads.

Price £17.70

HCS010 Digital Multimeter

High quality, high accuracy digital multimeter. Accuracy on all DC Volt ranges ±0.5% + 1 digit. Ranges: DC volts 200mV to 1000V, DC current: 20mA to 10amps. AC voltage: 200V to 750V. AC current: 20mA to 10amps. Resistance 20kΩ-2MΩ. Continuity and diode test.

Please add 15% VAT to all advertised prices and 60p post and packing. Minimum order value £5 please. We reserve the right to vary prices in accordance with market fluctuations.

For our catalogue or visit one of our three outlets at:

260 North Service Road, Brentwood, Essex. CM14 4SG - (0277) 211-690.

33 Burrfields Road, Portsmouth, Hampshire, PO3 4SG - (0277) 211-690.

Cirkit, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ - (0992) 444111.
Two new signal generators from MS Components cover the frequency spectrum from 10Hz to 450MHz in overlapping ranges. The AF model generates sine waves from 10Hz to 1MHz and square waves from 10Hz to 100kHz, with a variable 0-5V, 600 ohm output. An external sync input is provided. The RF model covers 100kHz to 150MHz in fundamentals, extending to 450MHz on harmonics. The output is variable from 0 to 0.1V (RMS) and modulation is provided by an internal 1kHz tone or an external tone of 50Hz to 20kHz. Further details from MS Components, Zephyr House, Waring Street, West Norwood, London SE27 9LH, tel 01-670 4466.

The disappointing sales of microcomputers in the last year were blamed on a lack of training in applications packages at a recent seminar on the state of the UK micro market sponsored by Barclays Bank. The accusation came from Philip Virgo, the Information Technology Manager of the National Computing Centre in Manchester. Virgo pointed out the training was unevenly distributed about the country, with 69% of all public courses being held in London and the South-East. The availability of software, Virgo said, massively outstripped the availability of relevant training. For example, only two courses were run last year covering CAD packages, while 175 such packages were on the market.

The previously buoyant computer market in the UK will continue to sink, suggested Virgo, if the quality of applications training and instructional manuals did not improve.

Hitachi, who claim to be Europe’s leading supplier of memory products (with support for this contention from market researchers Dataquest), have introduced a miniature 64K CMOS PROM with a maximum response time of 2ns and power consumption of 40mW/MHz in active mode and 55µW in standby. The HN27C64FP is configured as an 8Kx8 memory, is TTL compatible in both read and write modes and is a 28-pin device. It is distinctly unlike more conventional PROMs in other respects, being a surface-mounted chip just half the size of other 64K devices in every dimension. It is plastic-packaged and lacks a window since, Hitachi argue, many manufacturers fail to utilize the eraseability of EPROMs for reasons of cost and convenience. The HN27C64FP is, therefore, one-time programmable for use with fully debugged systems.

Since 1975, 350,000 adults have been helped to read and write better. If you want help look for this sign.

For further information
Adult Literacy & Basic Skills Unit
PO Box 213 London WC1V 7ET

For help with Reading and Writing
01-405 4017

Since 1975, 350,000 adults have been helped to read and write better. If you want help look for this sign.

For further information
Adult Literacy & Basic Skills Unit
PO Box 213 London WC1V 7ET
1 MEGABYTE 80 Track Disc Drives 5.25"
Double Density Double Sided
£90.00 each plus £2.50 p+p
2 or more drives £85.00 each, p+p free

500KBbyte 40 Track Disc Drives 5.25"
Double Density Double Sided
£75.00 each plus £2.50 p+p
2 or more drives £70.00 each, p+p free

250KBbyte 40 Track Disc Drives 5.25"
Double Density Single Sided
£35.00 each plus £2.50 p+p
2 or more drives £30.00 each, p+p free

STOP PRESS

Regulated Power Supply for 5.25" Disc Drives £9.50 + £1.50 p+p
Textured black Drive Case – takes one drive as above
PSU Drive Cable £1.00
Drive Interface Cable £5.00 + £0.50 p+p

Complete Case and PSU, comprising: Illuminated Mains Switch, Fuseholder; Interface cable, PSU Cable, Rubber feet. 2m Mains Cable, Labels etc. Ready to take Half Height drive for direct link up to your disc controller board for immediate operation. Sensational price – only £29.95 + £3.00 p+p

ECHO Amplifier for Sinclair ZX Spectrum
Improve your saving, loading and sound on the Spectrum, complete with full fitting instructions
£19.95p + £1.00

Component prices:
£1.00
£3.00
£5.00
£10.00
£20.00
£30.00
£50.00
£100.00
£200.00
£300.00
£500.00
£1000.00

Send your drawings or specification
For Free Quote. Trade enquiries welcome.

Components

CABLE HARNESS FABRICATION

Centronics printer cables
1 metre long
ONLY ’5.95 + 50p p+p

For Free Quote. Trade enquiries welcome.

ECHO Amplifier for Sinclair ZX Spectrum

Improve your saving, loading and sound on the Spectrum, complete with full fitting instructions £19.95 + £1.00

Component prices: £1.00 £3.00 £5.00 £10.00 £20.00 £30.00 £50.00 £100.00 £200.00 £300.00 £500.00 £1000.00

Send your drawings or specification

For Free Quote. Trade enquiries welcome.
IEEE and IERE To Merge?

The Institution of Electrical Engineers and the Institution of Electronic and Radio Engineers may eventually be merged into one body. The proposal has been welcomed by the councils of both Institutions and their members will debate the merger at Special General Meetings to be held late in 1986.

The proposal was put forward by a joint IEE/IERE working party which felt that the combined body would speak with greater authority and would enhance the reputation of electrical and electronic engineering among the public. Other advantages include

- Rationalisation of the publishing and other services offered by the two bodies and the achievement of a common standard for Chartered Engineering status amongst electrical and electronic engineers.
- The existence of a single body would also simplify the accreditation of courses and training programmes in those fields.

For further details contact the Institution of Electrical Engineers, Savoy Place, London WC2R 0BL, tel: 01-240 1871, or the Institution of Electronic and Radio Engineers, 99 Gower Street, London WC1E 6AZ, tel: 01-388 3071.

Sealed Push-Button Switches

Diamond H Controls have introduced a range of push-button switches which are sealed against dust and moisture and which are suitable for both low-level and power switching use. The CTR 3 series are double pole and come in four different case styles. The maximum current rating is 10A and the contact resistance is 25m. The mechanical life claimed is 250 000 cycles and the minimum electrical life is 25 000 cycles at full load.

The switches are made from aluminium alloy with nylon buttons and are sealed with epoxy. A fully waterproof version is also available which can withstand up to three feet of water pressure. The terminals are suitable for both screw and solder connection.

Diamond H Controls Ltd, Vulcan Road North, Norwich NR6 6AH, tel: 0603-45291.

Intruder Alarms and Accessories

A COMPLETE SECURITY SYSTEM FOR ONLY £39.55 + VAT.

Alarm Control Unit CA 1250
Price £19.95 + VAT.

The heart of any alarm system is the control unit, and the CA 1250 is designed to be the core of your security system whether a highly sophisticated installation or a simple plug-in magnetic switch on the front door. With or without external switches, this unit will handle any number of circuits and any number of associated peripherals.

£9.95

Alarms can be hard wired or hardwired to a microprocessor. The CA 1250 is a hardwired system and is designed to be the controller of a system where the alarm output can be activated by an external switch. The CA 1250 is compatible with a wide range of peripherals. The basic unit contains a magnetically actuated switch for opening and closing of doors and windows. This is sufficient for most applications. The unit can be expanded to include additional peripherals and interconnections.

LEDs

Key Switch & 2 keys

Hardware Kit HW 1250
Price only £9.50 + VAT.

This effective unit is designed to house the complete alarm system and needs to be ordered separately. It contains a series of LED indicators which enable the user to monitor the status of the various circuits and to display any faults or problems. The unit is supplied with the necessary wiring and terminal strips and is ready for installation into any wall or panel. The unit can be connected to a wide range of modules and accessories.

Siren & Power Supply Module PSL 1865
Price only £39.50 + VAT.

A complete siren and power supply module which is designed to handle 12V systems. It is suitable for use with a wide range of modules and accessories. The module is supplied with a 12V battery and is designed to provide a continuous supply to any external device that is required.

Digital Ultrasonic Detector US 5063
Price only £13.95 + VAT.

This advanced module is designed for use in security systems and is ideal for use in photographic and other professional environments. It is especially useful where high levels of sensitivity are required.

DIY HARDWARE KIT

Screw connections for ease of installation

ULTRASONIC MODULE

Operates with magnetic switches, pressure switches. This system contains in addition to the CS 1370, an ultrasonic detector type DP 3570 which provides an effective security system to protect your family and property. Should you wish to increase the level of security, the system may be expanded to include additional peripheral devices.

For further details contact the Institution of Electrical Engineers, Savoy Place, London WC2R 0BL, tel: 01-240 1871, or the Institution of Electronic and Radio Engineers, 99 Gower Street, London WC1E 6AZ, tel: 01-388 3071.

The proposal was put forward by a joint IEE/IERE working party which felt that the combined body would speak with greater authority and would enhance the reputation of electrical and electronic engineering among the public. Other advantages include

- Rationalisation of the publishing and other services offered by the two bodies and the achievement of a common standard for Chartered Engineering status amongst electrical and electronic engineers.
- The existence of a single body would also simplify the accreditation of courses and training programmes in those fields.

For further details contact the Institution of Electrical Engineers, Savoy Place, London WC2R 0BL, tel: 01-240 1871, or the Institution of Electronic and Radio Engineers, 99 Gower Street, London WC1E 6AZ, tel: 01-388 3071.

Sealed Push-Button Switches

Diamond H Controls have introduced a range of push-button switches which are sealed against dust and moisture and which are suitable for both low-level and power switching use. The CTR 3 series are double pole and come in four different case styles. The maximum current rating is 10A and the contact resistance is 25m. The mechanical life claimed is 250 000 cycles and the minimum electrical life is 25 000 cycles at full load.

The switches are made from aluminium alloy with nylon buttons and are sealed with epoxy. A fully waterproof version is also available which can withstand up to three feet of water pressure. The terminals are suitable for both screw and solder connection.

Diamond H Controls Ltd, Vulcan Road North, Norwich NR6 6AH, tel: 0603-45291.

Intruder Alarms and Accessories

A COMPLETE SECURITY SYSTEM FOR ONLY £39.55 + VAT.

Alarm Control Unit CA 1250
Price £19.95 + VAT.

The heart of any alarm system is the control unit, and the CA 1250 is designed to be the core of your security system whether a highly sophisticated installation or a simple plug-in magnetic switch on the front door. With or without external switches, this unit will handle any number of circuits and any number of associated peripherals.

£9.95

Alarms can be hard wired or hardwired to a microprocessor. The CA 1250 is a hardwired system and is designed to be the controller of a system where the alarm output can be activated by an external switch. The CA 1250 is compatible with a wide range of peripherals. The basic unit contains a magnetically actuated switch for opening and closing of doors and windows. This is sufficient for most applications. The unit can be expanded to include additional peripherals and interconnections.

LEDs

Key Switch & 2 keys

Hardware Kit HW 1250
Price only £9.50 + VAT.

This effective unit is designed to house the complete alarm system and needs to be ordered separately. It contains a series of LED indicators which enable the user to monitor the status of the various circuits and to display any faults or problems. The unit is supplied with the necessary wiring and terminal strips and is ready for installation into any wall or panel. The unit can be connected to a wide range of modules and accessories.

Siren & Power Supply Module PSL 1865
Price only £39.50 + VAT.

A complete siren and power supply module which is designed to handle 12V systems. It is suitable for use with a wide range of modules and accessories. The module is supplied with a 12V battery and is designed to provide a continuous supply to any external device that is required.

Digital Ultrasonic Detector US 5063
Price only £13.95 + VAT.

This advanced module is designed for use in security systems and is ideal for use in photographic and other professional environments. It is especially useful where high levels of sensitivity are required.

DIY HARDWARE KIT

Screw connections for ease of installation

ULTRASONIC MODULE

Operates with magnetic switches, pressure switches. This system contains in addition to the CS 1370, an ultrasonic detector type DP 3570 which provides an effective security system to protect your family and property. Should you wish to increase the level of security, the system may be expanded to include additional peripheral devices.

For further details contact the Institution of Electrical Engineers, Savoy Place, London WC2R 0BL, tel: 01-240 1871, or the Institution of Electronic and Radio Engineers, 99 Gower Street, London WC1E 6AZ, tel: 01-388 3071.
OMP POWER AMPLIFIER MODULES

OMP POWER AMPLIFIER MODULES Now enjoy a world-wide reputation for quality, reliability and performance at a realistic price. Four models available in professional, hi-fi, hobby market. i.e. Telecom, Lekuis, Instramental and Hi-Fi etc.

OMP100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms, Frequency Response 1Hz - 100KHz -3dB, Damping Factor 80, Slew Rate 54v/us. T.H.D. Typical 0.001%. Input Sensitivity 500mV, S.N.R. -130dB. Size 300 x 125 x 60mm. PRICE £26.99 + £3.60 P&P.

OMP 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Response 1Hz - 100KHz -3dB, Damping Factor 24, Slew Rate 60v/us. T.H.D. Typical 0.001%. Input Sensitivity 500mV, S.N.R. -130dB. Size 300 x 147 x 102mm. PRICE £33.99 + £4.50 P&P.

OMP 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, Frequency Response 1Hz - 100KHz -3dB, Damping Factor 50, Slew Rate 50v/us. T.H.D. Typical 0.0009%. Input Sensitivity 500mV, S.N.R. -130dB. PRICE £52.99 + £6.30 P&P.

OMP 400 Mos-Fet Output power 400 watts R.M.S. into 4 ohms, Frequency Response 1Hz - 100KHz -3dB, Damping Factor 70, Slew Rate 45v/us. T.H.D. Typical 0.0007%. Input Sensitivity 500mV, S.N.R. -130dB. PRICE £62.99 + £8.10 P&P.

BURGLAR ALARM

Better to be ‘Alarmed’ than terrified. Thandar’s famous ‘Mindset’ Burglar Alarm System, an all microcomputer controlled system, is your ultimate protection. Both ‘Out of Town’ houses and domestic alarms can be controlled up to 15 metres away. Automatic control of the system is achieved by three separate ‘一份份’ controls - off —- alarm - re-set. Sensitivity control on the outdoor alarm - Electronic swept freq. sirens. This equipment is available in four standard models (see details) and can be supplied complete with installation. PRICE £119.99 + £15.00 P&P.

Ideal for Workshops, Factories and schools, etc. Supplied ready built.

BURLIN ONNETT SPEAKERS

The very best in quality and value. Low prices to suit today’s needs for compactness with high sound output levels. Finished in hard wearing black vinyl with protective corners, grilles andcarry bags. Models 8, 9, 10, 12, 15 watts R.M.S. per cabinet. Sensitivity 1W. 1m. 4dB.

OMP 12-100 Watts 100dB. Price £149.99

OMP 12-200 Watts 102dB. Price £199.99 per pair.

Delivery - Securor (£8 per pair)

OMP 19" STEREO RACK AMPS

SPEAKERS

6" to 15" up to 400 WATTS R.M.S. Cabinet Fitting in stock. Huge selection of McIntyre Loudspeakers available including Cabinet Plans. Large S.A.E. (£2p) for free details.

SPEAKER RANGE

6" 80 WATT R.M.S. Hi-Fi/Disco. 8" 125 WATT R.M.S. Hi-Fi/Disco. 10" 200 WATT R.M.S. Hi-Fi/Disco. 12" 250 WATT R.M.S. Hi-Fi/Disco. 15" 300 WATT R.M.S. Hi-Fi/Disco.

COILS

8" 8oz. Magnet. 1" voice coil. Frequency response 35Hz - 5KHz. Sensitivity 92dB. PRICE £28.76

10" 12oz. magnet. 2" voice coil. Frequency response 30Hz - 6.5KHz. Sensitivity 98dB. PRICE £49.99

12" 16oz. magnet. 2" voice coil. Frequency response 25Hz - 8KHz. Sensitivity 92dB. PRICE £89.99

20 oz. magnet. 2y, " voice coil. Frequency response 25Hz - 10KHz. Sensitivity 92dB. PRICE £149.99

12" 250 WATT R.M.S. Disco/Sound reinforcement etc.

LOWNOISE ANALOGUE AMPS

150 WATT R.M.S. Single-Dual Power Amplifier. Two 150W. PRICE £19.99 + £3.00 P&P.

200 WATT R.M.S. Single-Dual Power Amplifier. Two 200W. PRICE £29.99 + £3.00 P&P.

300 WATT R.M.S. Single-Dual Power Amplifier. Two 300W. PRICE £39.99 + £3.00 P&P.

OMP 12-100 Watts 100dB. Price £149.99

OMP 12-200 Watts 102dB. Price £199.99 per pair.

DELIVERY - Securor (£8 per pair)

PEIZO ELECTRIC TWEETERS - MOTOROLA

Join the Peizo evolution. The low dynamic noise means the voice coil of a Peizo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a tweeter does not need special posts it can be used in existing systems (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE A (KSN0109A) 3/4" wide dispersion horn, mesh, ideal for bookshelf and medium sized Hi-Fi speakers. PRICE £8.62 + 75p P&P.

TYPE B (KSN0109A) 3/4" super horn. For general use in aerospeakers, disco and P.A. systems, etc. PRICE £5.59 each + 40p P&P.

TYPE C (KSN0109A) 2" x 6" wide dispersion horn. For quality Hi-Fi systems and quality disco etc. £9.59 each + 40p P&P.

TYPE D (KSN0125A) 2x 6" wide dispersion horn. Upper frequency response retained extending down to mid range (1KHz). Suitable for high quality Hi-Fi systems and quality disco. £12.99 each + 40p P&P.

STereo DISCO MIXER

B. K. B. unit

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572
DIARY

Satellite Communications — December 3/4th
Tara Hotel, London. See November '85 ETI or contact Online at the address below.

The History of Sound Broadcasting — December 5th
IEE, London. Lecture by Dr. G. Phillips, formerly of the BBC. For details contact the Secretary at the address below.

Robots Can See — Dec 10th & 19th
Institution of Electrical Engineers, Christmas Holiday Lecture by Professor A. Pugh of Hull University at 2.30 p.m. on each day. Free admission by ticket only, available from the IEE at the address below.

The Which Computer? Show — January 14-17th
NEC, Birmingham. Contact Cahners at the address below.

Electronics In Oil and Gas — February 4-6th
Barbian, London. See November '85 ETI or contact Cahners at the address below.

Power UK '86 — March 4-6th
Kensington Exhibition Centre, London. Exhibition and conference devoted to power supplies and alternative power sources. Organised by the Power Supply Manufacturers Association. For details contact TCM Expositions Ltd, Exchange House, 33 Station Road, Liphook, Hampshire GU30 7DN, tel 0428-724 660.

Electronic Production Efficiency Exposition — March 11-13th
Olympia, London. See November '85 ETI or contact Cahners at the address below.

Electro-Optics/Laser International — March 18-20th
Metropole Convention Centre, Brighton. Exhibition and conference on optics and lasers which includes a special focus on fibre optics. For details contact Cahners at the address below.

Low Energy Ion Beams — April 7-10th
University of Sussex, Falmer, Brighton. Conference on the production and use of ion beams, covering such areas as semiconductor processing and machining and material modification in metals and insulators. There will also be an exhibition of related equipment. For details contact the Meetings Officer, The Institute of Physics, 47 Belgrave Square, London SW1X 8QX, tel 01-233 6111.

Electrical Insulation Conference — May 19-22nd
Brighton. International conference described by the organisers as the premier event in its field. For details contact the Meetings Officer, The Institute of Physics, 47 Belgrave Square, London SW1X 8QX, tel 01-437 0678.

Advanced Infrared Detectors And Systems — June 3-5th
Institution of Electrical Engineers, London. Conference which aims to cover the developments in infrared detectors, systems and techniques and their relationship to developments in the field of millimetre waves. For details contact the IEE at the address below.

Networks '86 — June 10-12th
Wembley Conference Centre, London. Exhibition and conference devoted to all aspects of data exchange networks. For details contact Online at the address below.

Northern Computer Show — June 24-26th
G-MEX Exhibition Centre, Manchester. Exhibition aimed at professional computer users, from professionals in user departments to computing specialists. For details contact Reed Exhibitions, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ, tel 01-463 0490.

Addresses:
Cahners Exhibitions Ltd, Chatsworth House, 59 London Road, Twickenham, Middlesex TW1 3SZ, tel 01-891 5051.
Institution of Electrical Engineers, Savoy Place, London WC2R 0BL, tel 01-240 1871.
Online Conferences Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex HA5 2AE, tel 01-866 4466.

News:

Operative Systems
MDEX Professional Dev. System £295
CORTEX POWER-BASIC disc extensions: CDOS £43

MDEX Extensions
FORTH with Screen editor assembler £55
- Graphic extensions £35
PASCAL by Pre Brinch Hansen £85
QBASIC Compatible with £150
CPM CBASIC — only compiled! £150

CORTEX LISTINGS/CDOS DISCS
PENGO, BLUE-BIRD, GOLF £13
SPACE-BUGS, BREAKOUT, PONTOON, MICRope £13
CDOS WORD PROCESSOR (DISC ONLY) £13

DRAWTECH (DISC ONLY) £43

DISC DRIVES
80 Track hall height, double sided, double density JM £125
40 Track hall height, single sided, double density 256K £110

E-Bus cards
9995 Processor Board Blank + P/L'S £52
Blank £42
64/128k RAM Card Blank + P/L £42
Built £145/245
Floppy/Winchester Interface Card Blank £32
Built £135
Joystick/Centromes/Timer Board Blank £13
Part kit £36
Full kit £43

LIMITED OFFER ONLY: 9909s £10

STATE DISC FORMAT & ADD VAT TO ALL PRICES

Hardware

Software

Cortex

Microprocessor Eng Ltd
21 Hanley Road - Shirley
Southampton - SO1 6AP
Tel: 0703 780084

HAPPY MEMORIES

Part type 1 of 25 25-99 100 up
4116 200ns 1.25 1.15 1.10
4164 150ns Not Texas .99 .89 .84
42256 150ns 2.96 2.70 2.65
2114 200ns Low Power 1.75 1.65 1.60
6116 150ns 1.99 1.80 1.65
6264 150ns Low Power 3.75 3.45 3.30
2716 450ns 5 volt 3.85 3.45 3.30
2732 450ns Int type 4.75 4.25 4.10
2764 300ns Suit BBC 2.15 1.99 1.90
27128 300ns Suit BBC 2.95 2.65 2.40
27256 250ns 5.95 5.45 5.10

Low profile IC sockets: Pins
1 off 25 99 100 up
2024 28 20 24 28 40
1416 28 20 24 28 40
1824 20 24 28 40

Floppy/Winchester Interface Card Blank £32
Built £135

LIMITED OFFER ONLY: 9909s £10

STATE DISC FORMAT & ADD VAT TO ALL PRICES

Available now — The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves them as files, then reloads a file into its sideways Ram as required.

Full details on request.

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post & packing to orders under £15 and VAT to total. Access orders by 'phone or mail welcome.

£15 minimum.

HAPPY MEMORIES (ETI)
Newchurch, Kington, Herefordshire, HR5 3QR.
Tel: (0544 422) 618

NEWS: NEWS: NEWS

ETI JANUARY 1986
BBC Micro Computer System

ACORN COMPUTER SYSTEMS
- BBC Model B+ £355 (c)
- BBC Model B+£390 (a)
- BBC Model D+ £379 (d)
- BBC Model D+ £390 (c)
- BBC Adaptor Kit £238 (b)
- BBC B+ £489 (d)
- BBC B +£543 (a)

UPGRADE KITS
- DFS Kit £20 (c)
- Acorn Kit £25 (c)
- 1170 DFS Kit £49 (d)
- ADFS ROM £29 (c)

ACORN ADD-ON PRODUCTS
- Z82 Processor Addon Kit £238 (a)
- 6004 Chip £157 (a)
- Tolerant Adapter £190 (b)
- Elektro Memory £85 (d)
- Music Kit £175 (d)
- Light sensor £13 (d)

BBC FIRMWARE
- Basic II ROM £232.50 (d)
- View 12.1 Word Processor ROM £46.00 (d)
- Wordware £21.50 (d)
- Disc Drive/Controller Debug ROM £229 (d)
- DEX/MONOL Kit ROM £223 (a)
- Printer Addon Kit £223 (a)
- ULTRACALC Spreadsheet ROM £250 (d)
- VIEW STORE/VIEW SHEET £252 (d)
- GO PASCOAL/LOGO £500 (d)
- OXFORD PASCAL/LOGO/POP ROM £243 (b)
- COMMUNICATION ROM £23 (a)
- COMMUNICATION ROM Termii £23 (a)
- COMMUNICATION ROM Comm II £23 (a)
- COMMUTER £27 (a)
- DATABASE £27 (a)

TORCH UNICORN products including the IBM compatible GRADUATE in stock

PRINTERS
- EPSON RX80 + £22 (c)
- LX80 the new NLQ printer £210 (a)
- FX80 £308 (f)
- FX80 £317 (d)
- JX80 Colour Printer £449 (d)
- H80 Colour Printer £345 (a)

KAGA TAXAN
- KP80F £105 (a)
- KP81 £105 (a)

Daisy Wheels
- JUKI 1100 £295 (c)
- BROTHER HR15P £104 (d)
- HR15XL (Serial) £395 (a)

PAPER
- 2000 Sheets Fanfold: £18.50 (b)
- 2000 Sheets Fanfold: HR15LX (Serial) £365 (a)
- 27mm X 17/16" Triple row £5.00 (d)

Spare Daisy Wheel
- £14 (d)

.Library
- £14 (d)
- £5 (c)

Labeling
- £1.50 (d)

MODEMS
- All modems listed below are BT approved

MICROVITEC 14" RGB
- 1431 Standard Resolution £185 (a)
- 1431 Medium Resolution £237 (a)
- 1441 Hi Resolution £385 (a)
- 1441 Hi Res Monitor £215 (b)
- 1451 AP Med Res PAL/AUDIO £258 (a)
- 1451 AP Med Res PAL/AUDIO £258 (a)
- 1451 D3Q Med Res for QL £230 (a)
- 1456 DI IBM Compatible RGB Monitor £395 (a)
- MITSUBISHI 14" Med Res. IBM/BBC Compatible RGB Monitor £325 (a)
- KAGA Vision II £305 (b)
- Super Vision III £305 (b)

MONOCROME MOUNTS 12"
- Kaga Green KX1202 G Hi Res £97 (a)
- R90 Green DM8112CX Hi Res £99 (a)
- Sanyo Green KX1202 G HI Res £97 (a)
- Swivel Stand for Kaga Monochrome £21 (c)

SPECIAL OFFER
- 2764-25 £2.00
- 27128-25 £3.00
- 6226LP-15 £4.00

ATTENTION
- All prices in this double page advertisement subject to change without notice.
- Please add carriage £0.50 unless indicated as follows:
 - (a) £0.25
 - (b) £0.50
 - (c) £1.50
 - (d) £1.00

CONNECTION SYSTEMS

EURO CONNECTORS
- DIN 14812 Plug Socket £40 (b)
- Solder: 240V 3.6A 600W £4.5 (b)
- Male to Male £10.25 (c)
- Female to Female £10.25 (c)

DIL SWITCHES
- 4-way 500p 150p £2.00
- 8-way 1000p 250p £4.00

TECHNOLINE VIEWDATA SYSTEM
- Using 'Prestel' type protocols for information and orders
- Access by telephone: 01-630 2744 24 hours, 7 days a week.
Unbalanced

Dear Sir,

There is no way that a practical, well-balanced, rational, non-controversial answer can be given to Anna Paczuska (ETI, October 1985).

To attempt it, in detail, would take several thousand words and would lay open to every kind of accusation, from MCP to fascist. It is probably the biggest red-herring ever strewn in the path of an unsuspecting, largely male(?) readership.

Whichever way her problem is examined, a serious train of thought inevitably arrives at the starting point.

One way of achieving her aims — in part, at least, is to campaign for sexual equality. Then I can retire next year, together with all those hale and hearty sixty-year-old ladies who, the statisticians say, will be going strong when I am fertilizing the daisies.

Yours faithfully,
(Name and address withheld)

I'm not quite sure what your objection is to an article that takes a cool look at a topic of public interest — unless, that is, you're opposed to the idea that electronics and related technologies should be as open to women as they are to men. As it happens, this idea — in the form of the Equal Opportunities Act — is a matter of law and public policy in this country. While the vast majority of our readers are indeed male, that is no reason why they should not be concerned about the issues of sexual discrimination, as you yourself imply, nor is it a reason to discourage women from reading or contributing to ETI. — Ed.

Unbiased

Dear Sir,

Thank you for producing an electronics magazine that has been enjoyed for many years. However, recently articles such as "electronic weapons being used against us" — Greenham women claim’ (ETI, December 1985), 'Electronics for Peace' (ETI, April 1985), etc. were included in ETI. But note that a politician may voice his opinions such as 'Greenham women are liars,' 'The Greenham women recently visited Russia,' or 'What you said is all true — so what?' It may surprise you to know, that to be fair, whatever politicians think is equally valid and has to be published (rightly or wrongly).

Such politics has little to do with electronics. It does not tell me how to bias my transistors. It does not tell me why Gallium Arsenide works faster than silicon. It does not tell me who has developed the latest high-speed op-amp. Many hours of politics are screened on television each day. Most daily newspapers publish enormous amounts of rubbish — all of which may or may not wish to review. ETI is a safe haven from all these. Please don't turn it into a political battlefield.

Thank you,
Yours faithfully,
Joseph Michael BSc.
London.

Dear Sir,

I would like to cancel my subscription to Electronics Today International forthwith and my money's reamining owed to me to be refunded. I have enclosed the label from my last issue.

Yours faithfully,
Sgt. R. Hailstones
School of Signals
Blandford Camp
Dorset.

Nuff said! — Ed.

I Got Rhythm

Dear Sir,

I read Mr. Phillips article entitled 'The Rhythm Chip' in ETI, November 1985, with interest. Unfortunately I think that the designer has failed to fully exploit the potential of the 'look-up table' technique. His meter has a very limited range and resolution, requiring the necessity of a scale change to accommodate a modest selection of rates. In addition the power consumption of this device is probably about 250mA making battery operation of this system unsatisfactory. A mains power supply can be seen in the photographs accompanying the article although this is not described in the text. From the arguments presented it would be an advantage if a truly portable, low-power system could be designed.

Fortunately this has already been done! I have previously published such a design using the ROM look-up table conversion technique. This device was built using CMOS chips, has a three digit LCD display and a single range of 30 - 300 pulses per minute with 1% or better resolution. It was intended for battery operation and using a CMOS ROM (27C16) consumes only 20mA while having similar circuit complexity to Mr. Phillips' design but few discrete components and no presets! The only function that my rate meter fails to achieve is audible tone generation, although this is simple to add.

I am surprised that editorial review has allowed the wheel to be re-invented in an apparently inferior way.

Yours faithfully,
P.D. Coleridge Smith
Dept. of Surgical Studies
The Middlesex Hospital
London.

Suppress your surprise and produce a project for us. Our contributors are our greatest asset and our readers our greatest inspiration and safeguard. — Ed.

Back To Front

Dear Sir,

I would like to compliment and thank KIA for the special accordion amplifier AX68. The results are excellent, just as I had hoped for, and I consider it very good value for money.

I thank Mr. Lawrence at KIA for his interest and great patience in constructing my special order. May I recommend KIA to any reader with amplifier problems and wish them continuing success in the future.

Yours gratefully,
J.T. Cormack
Suffolk.

The news has finally reached me after journeying all the way from the Classifieds at the back of ETI that KIA advertise with us. My apologies to them. Their address, for anyone interested, is 8 Cunliffe Road, Ilkley, West Yorks, LS29 9DZ. — Ed.

ETI JANUARY 1986
The Microamp
The third ETI sound processor is a high-performance bridgeable amplifier giving 20W per channel stereo and 40W per channel mono output. Uniform with the compressor-noise gate in the December issue and this month’s Activator, the Microamp is the last link in a basic sound system of small proportions and great quality.

PLUS
All our regular features, circuit ideas galore, Tech Tips, Read/write, Digest and more.

THE FEBRUARY ISSUE OF ETI MEANS 1986 IS HERE. ON SALE JANUARY 3RD
RESOLVE TO GET IT NOW!

SPECIAL OFFER
Twin 3½” 80-track Disc Drives
from
Watford Electronics

For a limited period, ETI is able to offer these cased units at an astonishingly low price. Each unit contains two, high performance, double-sided, double-density 3½” drives manufactured by:

MITSUBISHI ELECTRIC

and supplied in a double-height steel case in cream finish with leads allowing immediate connection to a BBC Model B or B+ computer. The drives can, of course, be used with any suitable computer, but they come complete with a FREE UTILITY DISC INCLUDING GAME for the BBC.

Each unit offers astounding TWO MEGABYTES CAPACITY (unformatted) which represents 327KBytes per side (formatted).

EXCLUSIVE

Cut out and send to: ETI/DD, 1 Golden Square, London W1R 3AB.
Please supply .. Double Drives at £161 each.
I enclose a cheque for £ made payable to Watford Electronics.
NAME: ..
ADDRESS: ...

EXCEPT V.A.T. excl. p&p

offer valid until: 11/1/86

ETI JANUARY 1986
All On Board

The PCB has come to dominate contemporary electronics. If you still find it difficult to design your own, Barry Porter shows you how to cope with tracks and pads and all the paraphernalia. We might say, 'New readers, start here ...'

In basic terms, a printed circuit board is nothing more than a support for the component of a circuit, which happens to have built-in interconnections that enable the circuit to operate. In reality, it is something more than that. A well-designed board can have considerable aesthetic appeal, although most examples are guaranteed to send the average crow rushing out for a copy of 'The Nest Builders' Cookbook'. It also assists in keeping the blood pressure of anyone called upon to carry out repairs within tolerable limits, and provides additional boozing time by accelerating the construction of your latest masterpiece.

The only difference between bad and good circuit board layouts is care. There is no excuse for boards in manufactured products being second rate, but there is even less reason for one-offs produced by home constructors to resemble a windy night at a spaghetti factory. Time is money to the manufacturer, but the DIY enthusiast should not suffer from this constraint. Providing you were not short changed at birth in the patience department, and with a gentle nudge in the right direction from this Pulitzer prize-worthy epistle, you will soon be producing layouts that will be the envy of your sewing circle, and you could soon find yourself giving demonstrations to your local WI and Rose Pruning Society.

The Birth Of The Board

The object of the exercise is to guide you through the design and preparation of the necessary artwork to send to a PCB manufacturer. Although it is possible to make your own boards, the expenditure of time and the amount of mess generated are unlikely to be justified by the end result, so unless you are prepared to invest a considerable amount of the folding stuff in specialised equipment, it is best to leave the difficult bit to a professional.

Circuit boards usually start their careers as circuit diagrams, and the stages necessary to translate a familiar schematic into a finished board begin as a number of very rough layouts, followed by one or more attempts to transfer these to graph paper at a defined scale. The successful graph paper layout is used as a master from which the various artwork layouts are generated. These consist of plastic drafting film masters for the copper tracks, a solder resist mask and the component identification screen. If the board is to be double sided, a separate artwork is normally provided for each side. The artwork will normally be produced at 2:1 scale with linear dimensions which are twice those of the final board — although for very large boards, it may be necessary to work 'same size', and for very small layouts, a 4:1 scale is sometimes preferable.

To illustrate the various steps in the production of a set of artworks, we will start with a circuit for a high quality tape record amplifier (Fig. 1), and attempt to design a layout which fits a circuit board with the dimensions shown in Fig. 2. Any layout is made easier if you are free to choose the overall board size and the points at

This text is an excerpt from ETI January 1986 magazine.
which connections to the outside world are made. The most difficult tasks involve fixed board dimensions, such as the design of a replacement board for an existing piece of equipment. Life is further complicated if the external connections are made via an edge connector with pre-determined locations. Just to ensure that life retains some enjoyment, this is the situation that will be tackled during the course of this article.

![Fig. 2 Circuit board dimensions and edge connections.](image)

Before getting too involved with the design of a specific board, a few basic rules may not go amiss. Circuit diagrams are usually drawn in a way that can almost be taken as a worldwide standard. Signal normally progresses from an input at the left hand side, through various transistor or op-amp stages, to emerge at the right hand side. It is usually good practice to lay out a circuit board so that it bears a close resemblance to the original schematic.

Inexperienced PCB designers usually fall into one of two main traps — running low level inputs and high level outputs too close together, so that a circuit that worked in breadboard form becomes unstable, and getting the earthed arrangements in a cobbled, which can result in so many nasty effects that there is a good chance that if alien beings ever pay this world a visit their first words will be 'Hum loop'. (My wife, who assures me that we 2½-year-old is an alien, has just pointed out that his opening statement sounded more like 'Bo Derek').

Where possible, input and output signal paths should be well separated, particularly when there is more than about 15dB difference in their levels. If the operating impedances are low, it is normally quite safe to allow the inputs and outputs of low level circuitry to be within 0.5" of each other. If an area of track at earth potential can be placed between them, it is quite possible to reduce the spacing to 0.25". Power amplifiers are a different ball game, and a minimum input to output spacing of 3.0" should be allowed, but 6.0" or even more is to be preferred.

Bad earthing practice can cause problems beyond your wildest imagination, yet perfectly good earthing can be achieved very easily by ensuring that the input to output earth path of any circuit simply follows the signal through the various stages. The impedance of all earth connections must be kept as low as possible, which means using large areas of copper track wherever space allows.

One very popular way of introducing instability is to place a continuous strip of copper track at earth potential around the outer edge of a board. This is often the most convenient place for the earth track to be positioned, but it is essential that the circle is broken at one point so that as far as possible, the earth path follows that of the signal.

In designing a printed circuit board, the aim should be to arrive at a layout where the components are neatly positioned without compromising the performance of the circuit. As far as possible, the components should be placed in rows with correct spacing between the mounting holes. Before laying out any board, it is essential to have some examples of the components which will be used or obtain accurate dimensions from a data sheet. The appearance of many a board has been ruined because of an incorrect guess at the length of a capacitor, so pay special attention to your component sizes, as plenty of eager gremlins lie in wait for the unwary.

Some complicated circuits can only be laid out by using double sided boards, but the additional cost of these — about 25% for a small quantity — is usually a sufficient incentive to extract the necessary effort to achieve a single sided layout. Whenever possible, the use of wire links should be avoided, more as a matter of designers' pride than because of their effect on circuit operation. (With Herculean effort, author fights off desire to make rude comments about people who listen to bits of wire, and can tell the direction of the molecular structure at ten paces on a foggy night in a force 9 gale.)

Getting Down To It

Instead of rambling on randomly, let's get on with the job in hand — a layout of the circuit in Fig. 1. Before starting any design work, it is wise to make sure that certain items are at hand:

1. One each of the various circuit components, or accurate details of their dimensions.
2. Lots of scrap paper for the initial rough design.
3. Supply of graph paper, slightly larger than the finished artwork, with scale markings at 1.00" and 0.1". (None of yer metric stuff here — components invariably fit a 0.1" grid.)
4. Matt surfaced plastic drafting film, same size as graph paper.
5. Drawing instruments — pencils, pens, stencils, compasses, rule scaled in tenths of an inch.
6. Talcum power (fragrance unimportant).
7. Supply of circuit layout materials (details later).
8. Roll of red transparent adhesive tape.
9. Scapel with selection of blades.
10. Pair of good quality 6" engineers tweezers with undamaged points.

Having collected together these ‘tools of the trade’, the time has arrived to leave the world for a few hours. Find somewhere where your concentration will not be disturbed, even if you have to send the family to Disneyland and gag the budgie.

It is a rewarding experience to turn out a good, well-planned circuit board...

The first step is to produce a very rough sketch of where the different parts of the circuit will fit onto the circuit board. If there are no constraints brought about by board dimensions or edge connectors, it is quite easy to arrange the circuit parts in a reasonably compact and symmetrical manner. Working to pre-determined dimensions, it is necessary to decide where various circuit elements should be placed to fit within the confines of the board, and if the external connections have been specified, these should be taken into consideration.

Figure 3 shows the first attempt to fit the Fig. 1 circuit on to the designated board. At this stage, the main consideration has been given to establishing a route for the signal input and output tracks, the placing of the three integrated circuits and connections to the multi-turn potentiometers.
At first sight, getting a direct connection from the edge connector to the wiper of RV2 is likely to be a problem, but one that can be noted and dealt with as the design progresses.

The next task is to produce some rough layouts of separate parts of the circuit, this time putting in all components and the interconnecting tracks. At this point, it should be mentioned that most PCB designers produce their layouts and artwork as it is viewed from the component side of the board. Some people prefer to work as though they are looking at the copper side, but this method can lead to problems, the most popular being reversed connections—easily identified by the emission of grey smoke if not discovered before the board is built and tested. Throughout this article it will be assumed that all views are from the component side.

As the next layout rough is prepared, account should be taken of the component sizes and spacing, especially with regard to resistors and capacitors. In order that the final result is as neat as possible, one aim should be to keep the ICs and their associated components in straight rows, and not staggered as shown in Fig. 4b. The spacing between normal 0.25 or 0.5 W resistors is likely to be 0.15" and this does not leave sufficient space between the solder pads for the passage of a piece of track without the track becoming too narrow for comfort or the pads requiring modification with a scalpel.

Without getting too involved in pad and track sizes at this stage, while doing the rough layouts, keep in mind that tracks passing between 0.15" spaced pads may cause problems at a later stage, so avoid the practice if possible without damaging the appearance of the layout.

The first rough layout of the record amplifier board is shown in Fig. 5. Although this has several areas which need correcting—for example, the input and OV tracks will have to be reversed, and the output of RV2 is in danger of being trapped by the track going to R11—it is at least a starting point, and as such it forms a foundation of sorts on which to build.

The remaining circuitry is shown in Fig. 6. Again, it contains a few problem areas, such as the non-appearance of the 'Record Cal' track and the rather tortuous path from the bottom of C9 to pin 2 of IC3, but these can be sorted out at the next stage.

Slow On The Draw

Having produced a satisfactory rough layout with sufficient accuracy to establish that it is not necessary to use a double-sided board, and that wire links will probably not be needed, it is possible to attempt a correctly scaled layout on graph paper.

In designing a printed circuit board, the aim should be to arrive at a layout where the components are neatly positioned without compromising the performance of the circuit...

From now on, everything must be related to the scale of the artwork—in our case, 2:1—so care must be taken to double every dimension. Experience has shown that this is not always as easy as it sounds. It is quite easy to draw small components with correct dimensions, simply by counting squares on the graph paper, but with larger items such as electrolytic capacitors, it is very easy to make a mistake, and the distance between mounting holes should always be checked by measuring them with a rule calibrated in tenths of an inch. The time spent doing this should not be considered as wasted, especially if you have ever suffered the sinking feeling when you realize that a component will not fit a board because of your own lack of care.

ETI JANUARY 1986
If your board dimensions are not fixed, you should be able to estimate an approximate size, which will give you an idea of the size of graph paper you need. With an established board size, an outline of the board should be drawn — in ink — to the correct scale and any fixed components, mounting holes or edge connector details added using a fine felt tipped pen or similar.

In our example, the only restraint apart from the overall board size and edge connector positions is the placing of the three pre-set potentiometers which are required to line up with similar controls on other boards in the recorder. The outlines and mounting holes of these are therefore drawn in ink, and then using a soft pencil, an attempt is made to transfer the rough layouts of Figs. 5 and 6 on to the double sized graph paper grid.

Although this may be done freehand, keep everything as neat as possible. This is the best way to ensure accuracy. It's worth repeating that, unless absolutely necessary, all components should be in neat rows and not scattered haphazardly round the board. If your circuit uses ICs, these should lie along the same line, and should be placed in the same direction — which normally happens automatically if the power rails are run between the rows of IC mounting pads, and don't approach each device from a different direction. The sign of ultimate neatness is when groups of polarized components, such as diodes or electrolytic capacitors, all have their positive ends facing the same direction. Figure 7 shows some examples of how electrolytics and diode bridges may be laid out, (d) and (f) illustrating how they should be positioned for the best appearance.

If you are having a good day, you will achieve a satis-

FEATURE: PCB Design

If your board dimensions are not fixed, you should be able to estimate an approximate size, which will give you an idea of the size of graph paper you need. With an established board size, an outline of the board should be drawn — in ink — to the correct scale and any fixed components, mounting holes or edge connector details added using a fine felt tipped pen or similar.

In our example, the only restraint apart from the overall board size and edge connector positions is the placing of the three pre-set potentiometers which are required to line up with similar controls on other boards in the recorder. The outlines and mounting holes of these are therefore drawn in ink, and then using a soft pencil, an attempt is made to transfer the rough layouts of Figs. 5 and 6 on to the double sized graph paper grid.

Although this may be done freehand, keep everything as neat as possible. This is the best way to ensure accuracy. It's worth repeating that, unless absolutely necessary, all components should be in neat rows and not scattered haphazardly round the board. If your circuit uses ICs, these should lie along the same line, and should be placed in the same direction — which normally happens automatically if the power rails are run between the rows of IC mounting pads, and don't approach each device from a different direction. The sign of ultimate neatness is when groups of polarized components, such as diodes or electrolytic capacitors, all have their positive ends facing the same direction. Figure 7 shows some examples of how electrolytics and diode bridges may be laid out, (d) and (f) illustrating how they should be positioned for the best appearance.

If you are having a good day, you will achieve a satis-

Fig. 7 Examples of diode bridge and electrolytic capacitor layout.

factory layout before your local graph paper factory has to start working overtime. Do not be surprised if it takes three or four attempts before you are happy. It can often be beneficial to get an electronically inclined colleague to give your layout the once-over, as this can often result in the discovery of glaring mistakes which would prove expensive if not corrected.

To be continued.

It's easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on posters or in the cinema. Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.

If you’re not sure about which ones they are, however, drop us a line and we’ll send you an abridged copy of the Advertising Code. Then, if an advertisement bothers you, you’ll be justified in bothering us.

The Advertising Standards Authority.

If an advertisement is wrong, we’re here to put it right.

ASA Ltd, Dept 2 Brook House, Torrington Place, London WC1E 7HN
THE PRESENT AND FUTURE MACHINE

A short story for Christmas by John Linsley Hood

In my experience, inventors all have one thing in common — they all think their latest idea is going to make them rich and famous, and that a life basking on the sands of the Bahamas or wherever is just round the corner.

Having said that, they come in two very different kinds. The first just have a bright idea in principle, and they would like someone with the right kind of technical knowledge to put their invention into practical shape, and make it work. This, they feel sure, will be quite a simple job. The other kind, and they are vastly preferable, get the idea... and then become immensely secretive while they put it into practical form.

My old friend Fred, of the electronics components shop, happily came into the latter category. I call him "my old friend", because I've known him for years, well, practically as long as I have been interested in electronics, and he lets me come behind the counter of his shop, and up to his little workshop in the attic. Also, Peggy, his kindly and long-suffering wife, has brought us up innumerable cups of coffee while we have been busy tinkering with electronics — or simply setting the world to rights.

However, I also reflect that, in all the years I've known him, he's never knowingly let me have anything in the way of electronic gear at less than the full retail price!

Still, I suppose that's just because he's a very good businessman: certainly his little shop is a treasure trove of bits and pieces of electronic kit, including quite a lot of fairly scarce components.

At the time I am thinking about, which was a very wet and dismal day in early November a few years ago, I had called at his shop on my way home from work, and Peggy had sent me up to his attic with the comment that he had hardly stirred from there all day and was busy on some project or other. The task on which he was engaged turned out to be the conversion of a rather grotty old 14 inch TV into an oscilloscope, and he'd got as far as getting a single line timebase scan across the centre of the screen, with a whopping great kink in the middle of the trace.

"You've got a problem there," I observed, "looks as though you are getting some breakthrough from your timebase into your 'Y' axis." At this Fred turned round to me, with a seraphic smile. "Your problem," he remarked, "is that you've got no imagination. What you see here is the beginning of a great technical discovery - the sort of thing which great brains have laboured to uncover for generations, and I've been the one to do it!"

That loop in the trace is due to electrons travelling backwards in time. Time is linear across the screen, so any kink in the trace across the screen must be a time going backwards." He turned back to his brainchild with a look of triumph. "Don't you see what that means?"

"Well, yes," I said, "I would agree with you if that was what was really happening, but I'd be prepared to bet that your scanning waveform has also got a kink in it."

After all, trying to get a linear timebase out of inductive deflection coils is a pretty tricky task."

"I did think of that," admitted Fred, "but I checked on my other 'scope' and he indicated his old standby, a 1940's portable job with a screen fully one inch across. 'As you can see, the waveform is perfectly OK, without a trace of kinkiness."

"Whereabouts are you looking," I asked, thinking that a good magnifying glass would be a useful accessory. 'Is that the waveform at your timebase generator or actually on the deflection coils - because these probably interact." No," said Fred, "I've checked, and the timebase waveform is quite clean. That's a real negative time effect."

'Don't you see the implications of this? When I've modified the circuit a bit, to slow everything down, I can get from a millisecond, to a second, to a minute, and maybe to hours. Then all sorts of things will be possible, from TV cameras at airports or railway stations to record accidents before they actually happen so that they can be prevented, to letting me, before I tell anyone else about it, make a few millions on the pools or the stock exchange. Meanwhile, I'm afraid that I shall have to keep the details of my actual circuit pretty confidential. After all, we wouldn't want details to get out before I'd finished the design, would we." And with that, he took me by the elbow, and gently, but firmly, piloted me out of the room.

Downstairs, over a cup of coffee, I explained Fred's latest scheme to Peggy, and apologised for my unsympathetic attitude to Fred's discoveries. 'I'm afraid," I added, 'that there are much more plausible explanations than time travel for the knots he has got in his timebase.'

ETI JANUARY 1986
'You know, he's made things much more difficult for himself by starting with an old TV with a magnetic deflection system, simply because he happened to have one in his junk pile. In any case, if he wants a better scope than that old museum piece of his, why doesn't he buy himself one. It isn't as though he can't afford it. Especially since I'm sure his accountant would allow it as a legitimate business expense.'

Peggy agreed, but gave me a thoughtful look. 'Never mind,' she said, 'it's keeping him busy, and he's happier that way.'

I called at the shop, from time to time over the next few weeks, so that Peggy could give me periodic progress reports on the development of Fred's invention. 'He's got his time advance up to several seconds now,' she observed, a week or two later. 'He's organised it so that photocells stuck on the TV screen trigger relays as the spot passes by them, and he's got them connected so that they can switch on other things, one before the other.'

'I don't really understand the technical bits, but I think that what he is now trying to do is to connect up another TV, with the same kind of electronics, so that the first will switch on the timebase of the other before it has itself started, and that then switches on the first, and so on, building up a big time advance.'

'Then,' she continued, 'you close a contact to get the first one going, and you choose whichever of the relays you want, depending on how far into the future you want to go. Fred says that if you had enough TVs you could get as big a jump into the future as you wanted.'

'Of course,' she said, 'he's only got two TVs to play with at a moment - I've refused to let him have our colour telly in the living room - and so, until he gets things organised, he can't make his time jump get very far. Do you think we could help him a bit?'

'I'm afraid that my problem here,' I commented, 'is that I think the whole scheme is just a load of eyewash, which means that I wouldn't be very enthusiastic as a collaborator. Besides which,' I added, 'I don't really think he'd let me in his workshop at the moment.'

'Neither do I,' grinned Peggy, 'that wasn't what was in my mind. I don't honestly have any more faith in Fred's latest invention than you do, after all, we've been this way before, and it keeps him happy, and I'd like it to last till Christmas.'

I next heard what he was telling me, last night, was that he was going to fix his gadget in series with the shop door bell, so that he can see on the closed circuit TV system who is going to fix his gadget in series with the shop door bell, so that we have a pressure switch under the door mat, which works when someone stands on it. What I'm wondering is whether we couldn't move it forward a bit, or perhaps have some kind of photocell system which I could move along, forwards or backwards, depending on whether Fred thinks he is making progress.'

'You know, he's made things much more difficult for himself by starting with an old TV with a magnetic deflection system, simply because he happened to have one in his junk pile. In any case, if he wants a better scope than that old museum piece of his, why doesn't he buy himself one. It isn't as though he can't afford it. Especially since I'm sure his accountant would allow it as a legitimate business expense.'

Peggy agreed, but gave me a thoughtful look. 'Never mind,' she said, 'it's keeping him busy, and he's happier that way.'

I called at the shop, from time to time over the next few weeks, so that Peggy could give me periodic progress reports on the development of Fred's invention. 'He's got his time advance up to several seconds now,' she observed, a week or two later. 'He's organised it so that photocells stuck on the TV screen trigger relays as the spot passes by them, and he's got them connected so that they can switch on other things, one before the other.'

'I don't really understand the technical bits, but I think that what he is now trying to do is to connect up another TV, with the same kind of electronics, so that the first will switch on the timebase of the other before it has itself started, and that then switches on the first, and so on, building up a big time advance.'

'Then,' she continued, 'you close a contact to get the first one going, and you choose whichever of the relays you want, depending on how far into the future you want to go. Fred says that if you had enough TVs you could get as big a jump into the future as you wanted.'

'Of course,' she said, 'he's only got two TVs to play with at a moment - I've refused to let him have our colour telly in the living room - and so, until he gets things organised, he can't make his time jump get very far. Do you think we could help him a bit?'

'I'm afraid that my problem here,' I commented, 'is that I think the whole scheme is just a load of eyewash, which means that I wouldn't be very enthusiastic as a collaborator. Besides which,' I added, 'I don't really think he'd let me in his workshop at the moment.'

'Neither do I,' grinned Peggy, 'that wasn't what was in my mind. I don't honestly have any more faith in Fred's latest invention than you do, after all, we've been this way before, and it keeps him happy, and I'd like it to last till Christmas.'

I next heard what he was telling me, last night, was that he was going to fix his gadget in series with the shop door bell, so that he can see on the closed circuit TV system who is going to fix his gadget in series with the shop door bell, so that we have a pressure switch under the door mat, which works when someone stands on it. What I'm wondering is whether we couldn't move it forward a bit, or perhaps have some kind of photocell system which I could move along, forwards or backwards, depending on whether Fred thinks he is making progress.'

I looked at Peggy with new eyes. This was a degree of skulduggery of which I had never previously thought her capable. 'All right,' I said, 'I'll help, but what's the long term intention?' — at which Peggy explained.
THE FAST ONE

It could be a GaAs, man, but we're not likely to see much gallium arsenide around outside of LEDs for quite a while yet. Stuart Smith investigates the wonder semiconductor.

To appreciate how Gallium Arsenide (GaAs) devices work, and why they are superior in many respects to silicon-based devices, it is necessary to understand some of the fundamental physical properties of semiconductors. At the risk of covering already well-known territory, the next few sections will cover some of this ground.

Energy Bonds

It's a fact of life that electrons in an atom can have only certain energies. When the atoms are bonded together to make a crystal, the electrons can have energies within certain allowed bands, which may overlap. The 'band structure' (Fig.1) of solids determines whether they are conductors, semiconductors or insulators.

Electrons with energies within the valence band are attached to particular atoms in the crystal. They cannot move through the crystal and contribute to conduction. Electrons in the conduction band have sufficient energy to escape the attraction of the nucleus and can move through the crystal under the influence of an applied electric field.

Band Gap

The basic difference between insulators, semiconductors and conductors is the size of the energy gap between the valence and conduction bands, because this governs how easy it is for an electron to enter the conduction band. In metals the bands overlap - there are always conduction band electrons available, so metals are good conductors.

In insulators the gap is so wide (over 3 or 4 eV) that virtually no electrons enter the conduction band at reasonable temperatures.

In a semiconductor the gap is about 1 eV, which leads to a resistivity midway between insulator and conductor. At absolute zero temperature (-273°C) the valence band is completely filled and the conduction band empty. At higher temperatures some electrons gain sufficient energy from the thermal vibrations of the crystal to leave the valence band and jump into the conduction band. The number of conduction band electrons is exponentially related to temperature.

Excitation And Recombination

It's possible to raise the energy of an electron in a crystal by several methods: heating it, shining a light on it or applying an electric field to it. When an electron is excited from valence to conduction band it leaves behind a vacant energy level (or state) called a hole. The hole behaves like a positive charge.

Electrons do not stay in the conduction band for ever: they naturally 'fall back' into the valence band - but they must fall into a hole. This process is called recombination, and it releases energy, the energy the electron originally gained to enter the conduction band. The energy may be released as heat, light or both, depending on the type of material.

Doping

To make useful electronic devices, it's usually necessary to control the conductivity of the materials by altering the number of holes and electrons in the material which are available for conduction. This can be done by adding small quantities of other materials called 'dopants' to the pure (intrinsic) semiconductor. If the dopant adds electrons, it is a donor and the resulting semiconductor is called n-type. If it adds holes it is an acceptor and the semiconductor is p-type.

Temperature

The relatively high bandgap of GaAs means that at normal temperatures (-20°C to 100°C or so) the amount of free carriers (electrons or holes) is minimal compared with those introduced by doping. This is still true at high temperatures. Some GaAs devices are usable at up to 400°C and most will work at temperatures between -200°C and 200°C. The range is much wider than for silicon devices.

Mobility

When subjected to an electric field, electrons accelerate towards the most positive point. In a crystal this does not continue forever, as the electrons eventually collide with the crystal atoms. Collisions may even cause the electrons to reverse direction. Overall the electrons can be said to reach a mean or drift velocity which is constant and proportional to the applied field. The ratio of electron speed to applied field is called the electron mobility, and it is much higher in GaAs than in silicon. Electron mobility governs the switching speed of transistors and GaAs devices are therefore much faster than their silicon counterparts. There is a limit to the drift...
velocity attained as the applied field is increased, but this limit is higher in GaAs than in silicon.

Photoconduction And Photoemission

A quantum of light energy (a photon) can, if it has the right frequency, transfer all its energy to an electron and cause it to jump into the conduction band. The relationship between photon frequency and energy is:

\[E = h\nu, \]

where

- \(E \) is energy in Joules (J) (1 eV = \(1.6 \times 10^{-19} \) J),
- \(h \) is Planck's constant, \(6.63 \times 10^{-34} \) s,
- \(\nu \) is light frequency in Hertz.

Below a threshold frequency, \(\nu_{th} = E_{gap}/h \), the electrons cannot gain sufficient energy to cross the band gap and will not be excited. At a frequency greater than \(\nu_{th} \), the light will cause excitation and generate electron-hole pairs, so the conductivity of the material will increase with light level. Cadmium Sulphide (CdS) has a band gap of 2.42 eV which gives it a response to light similar to that of the human eye. Other semiconductors respond well to infrared or lower frequency electromagnetic radiation.

Light Emitting Diodes

As we have seen, electrons eventually recombine with holes, giving up their energy as heat or light. Recombination in Si produces mostly heat. In GaAs, recombination gives off light in the infrared. By adding Phosphorus (P) to the GaAs the band gap is increased and the emission moves towards the blue end of the spectrum. GaP LED's emit green light.

An LED is a junction between p and n type GaAs (or GaAsP, or GaP). In the bulk of the diode, away from the junction, there are a lot of free carriers (Fig.2a). Application of a forward bias voltage (Fig.2b) makes it easy for electrons to leave the n region, cross the junction and enter the p region. Here there are many holes, which recombine with the electrons. The holes are continually replaced by fresh ones at the diode anode so the current flow, recombination and light emission continue as long as the forward bias is applied.

Semiconductor Lasers

The semiconductor laser is a device of great importance in modern communications. Fiber-optic data transmission using a semiconductor laser as the light source allows the transfer of huge quantities of information over large distances at great speed. To use an optical fiber at high speed over an appreciable distance, the light signal must be amplified. A semiconductor laser provides the necessary light amplification.
able distance (say several kilometers), a number of conditions must be satisfied:
1. The laser light must be capable of being modulated at a high rate;
2. The light must be of a single frequency to avoid spreading of pulse edges;
3. The light must be very intense to allow large spacings between repeaters (which pick up weak signals, amplify and retransmit them);
4. The light source must be very efficient, for low cost and power consumption.

Semiconductor lasers fulfil all these requirements.

The basic principle of the laser is quite simple. We have already seen that electron-hole recombination releases energy. In most cases recombination occurs randomly and spontaneously. Any photons given off in the process are in random phase with one another. The light so produced is said to be incoherent.

The presence of photons of the wavelength corresponding to the band gap energy can cause recombination, accompanied by emission of light. This 'stimulated emission' is in phase with the photon which caused the emission. The light amplitudes add in phase and the resulting light is very intense and coherent (Fig. 3).

The first requirement is met by creating an optical resonant cavity — simply a bar of material with mirrored faces so that the light intensity builds up within the cavity by repeated reflections.

Population inversion occurs in the semiconductor junction's depletion layer. It is called the depletion layer because it usually lacks carriers (holes or electrons). At high currents, however, it is far from depleted. There is a continual stream of high-energy carriers being injected into the junction and swept away. Over a short distance in the junction there can be more conduction than valence band electrons.

The basic structure of a GaAs/GaAlAs injection diode laser is shown in Fig. 4. The laser action takes place at the junction between the p-GaAs and the n-GaAlAs (gallium aluminium arsenide). The regions immediately adjacent to these perform two functions:
1. They confine the light to a narrow region because they have different refractive indices to the junction material;
2. They keep the volume within which population inversion takes place small, so reducing the threshold current at which laser action begins. The effect occurs because the band structure of the materials forces the carriers to recombine in the narrow region near the junction.

Fig. 3 Spontaneous and stimulated emission of radiation.

The Gunn Diode

The Gunn diode is a two-terminal device used in microwave oscillator circuits. It has a variety of different modes of operation, but its basic principles can be understood with reference to resonant circuits.

A common LC circuit, when stimulated by step input voltage, will oscillate at a frequency \(f = 1/(2\pi \sqrt{LC}) \). The oscillations will die away exponentially, however, because of resistive losses (damping) in the circuit, (Fig. 5a).

For optical fiber communications the GaAs/GaAlAs laser is being replaced by a GaInAsp (gallium-indium-arsenic-phosphide) diode on an InP substrate. By adjusting the relative quantities of Ga, In, As and P in the diode it is possible to adjust the band gap so that the emitted light has the wavelength at which the fiber is most transparent. By the same means the lattice constant (the distance by which atoms are separated) can be adjusted independently of the band gap. This allows the growth of diodes directly matched to the InP substrate.

The present aim is for systems using 1.5 to 1.65 \(\mu \)m radiation modulated at 2 Gigabits/sec. With the latest optical fibers signals may be sent up to 100km without repeaters.

Fig. 4 Simplified diagram of GaAs/GaAlAs diode laser.

Fig. 5 LC oscillator with damping (a) and with negative resistance applied (b).
In most oscillators, these resistive losses are compensated for by feeding back an amplified version of the output to the input in such a way as to sustain the oscillation. Another approach is to use a device which exhibits negative resistance over part of its I-V characteristic (Fig. 5b). A real negative resistance would be very valuable! In practice, we find some devices for which a small increase in applied voltage causes a small decrease in current flow (Fig. 6). Strictly speaking, they have negative differential resistance and a suitably doped piece of GaAs exhibits this property due to its band structure.

Electrons in GaAs can be excited into the conduction band by an applied field. Up to a certain threshold field (about 3 kV/cm) the electron drift velocity increases with field strength, since the mobility is constant. Above the threshold field the electrons gain sufficient energy to reach part of the conduction band where their mobility is much smaller because of the increased probability of collisions. The conductivity of the GaAs drops. Small increases in field cause more electrons to enter the low-mobility region and the current falls — this is the negative-resistance region. This property is utilised in Gunn diodes and makes the devices useful for circuits of the form shown in Fig. 5.

The Gunn diode (named after J.B. Gunn who discovered the principle of producing microwaves by the application of a steady voltage in 1963) is formed from a single section of n-type GaAs. The GaAs is unevenly doped so that, with the application of a suitable voltage, both high and low mobility electrons are liberated. The crystal becomes partitioned into areas of different-intensity electric field. In the negative-resistance region of operation, the existence of a highest-intensity area, in which electron density is greatest, will cause an increase in current flowing into the area and a decrease flowing out of it. The domain of high-intensity charge builds-up and is eventually attracted to the anode end of the GaAs crystal. It travels through the crystal, a packet of charge not altogether unlike a spark bridging two electrodes in the air, producing a spike of current at the anode. The process repeats itself, generating a microwave output which has reached 65 mw at 2 GHz continuous and up to 200 mw pulsed.

Transistors And ICs

Although GaAs transistors for microwave applications have been available for some time, the development and production of integrated circuits is still in its infancy — commercial ICs have only been on the market since early 1984. GaAs integrated circuits are difficult to make: the raw material cost is high, defect-free wafers (circular slices of single-crystal semiconductor) are hard to obtain and the processing of them is difficult (Fig. 7). To take full advantage of the speed of GaAs, the devices need to be very small, stretching the limits of current technology. In addition, the wafers are brittle and have to be handled more carefully than silicon.

On the other hand, GaAs devices promise higher speed than silicon at lower power levels, which should allow higher levels of integration before heat dissipation becomes a problem. As yet only MSI devices have been produced in commercial quantities.

Most of the work currently being done on GaAs integrated circuits concentrates on ultra-high speed digital circuitry. Results so far indicate that GaAs devices may rival superconductor Josephson junction devices for speed — and, more importantly, they are available now and developing quickly. Current commercially available logic circuits feature gate delays of around 300 ps and maximum counter clock rates of around 2 to 3 GHz.
It is useful to look at what makes an ideal transistor switch for digital integrated circuits. It should be small, so that large circuits can be fabricated in a small space. This reduces the likelihood of encountering a wafer defect and so increases the yield. It should consume very little power, so that heat dissipation at high circuit densities does not become a problem. It should require very little voltage change between the on and off condition. This reduces the switching time as less charge has to be put on to or removed from internal capacitances during switching. Finally, its control input should have low capacitance, again to reduce switching time.

This is a definite advantage for high speed and low power circuits, but requires very tight control over processing in order to keep the threshold voltages within a very narrow range, or else the devices become overly susceptible to noise. E-MESFETs are also difficult to fabricate as the channel is very lightly doped and surface defects can easily pinch off the channel—various structures and geometries are being tried to avoid this.

Fig. 8 Cross-section of D-MESFET (not to scale).

Most current GaAs integrated circuits use depletion-mode metal-semiconductor field effect transistors (D-MESFETs), as these are the easiest devices to produce (Fig. 8). Unfortunately a negative gate voltage is required to turn these devices off, while the output is positive (Fig. 9). They require two power supplies (plus earth), and level shifting circuitry between circuits (Figs. 11, 12 and 13).

Fig. 9 Id against Vgs for a D-MESFET.

Enhancement-mode FETs (E-MESFETs) have been produced, but they are not yet at the mass production stage. Their construction is similar to that of the D-MESFET but the channel is very shallow and lightly doped so that the built-in potential of the metal-semiconductor junction keeps the channel pinched off with no external gate bias. Thus the E-MESFET is normally off. It requires only about 0.1V gate potential to turn on.

Other devices under development include the high-electron mobility transistor (HEMT) (Fig. 10) and the heterojunction bipolar transistor (HJBT). Up till now I have only mentioned field effect (unipolar) transistors. An NPN sandwich made entirely from GaAs does not work well as a transistor, partly because holes, which are the dominant carriers between base contact and active base region, travel rather slowly in GaAs. A much better transistor can be made with an n-GaAs emitter and a p-GaAs base. Work on the HJBT is not as far advanced as on the various FETs, but it could be the best device for very high speed VLSI. Single-transistor switching speeds of 1ps and logic swings of 250mV have been predicted.

The current dominant technology is the D-MESFET. Several logic structures are in use, just as silicon bipolar circuits are available in TTL, LSTL,12L and ECL. Buffered FET Logic, Schottky-Diode FET Logic and Capacitor-Diode FET logic gates are illustrated in Figs. 11, 12 and 13.

Even after a GaAs circuit has been produced, the problems are not yet over. To preserve reasonable pulse-shapes at, say, 1GHz, circuits have to deal with frequency...
components up to 3GHz. The digital designer will have to utilise microwave design techniques such as impedance matching of chips to interconnections to avoid pulse reflections. Supply decoupling becomes vastly important, and the capacitors used have to behave properly at GHz frequencies. Testing is likely to become another large (and expensive) headache.

Harris Semiconductors and Gigabit Logic. Both have a range of small scale integrated circuits (NOR gates, D-types, dividers and, for example, shift registers), which work at around 1 to 4GHz clock rates. Harris also markets a range of discrete GaAs FETs for use at up to about 18GHz. They have also released preliminary data on a 170-gate array. Both companies sell an evaluation kit for their ICs.

The Market

The major semiconductor manufacturers have, on the whole, stood back and waited to see where GaAs is going — after all, the market for high speed bipolar and MOS devices is not going to go away just yet. Also, there is a world shortage of engineers qualified to develop GaAs devices. This is probably a good reason for not spreading them too thin on the ground.

In this country there are only a few suppliers of commercial GaAs integrated circuits. GEC’s Hirst Research Centre has produced several microwave amplifier chips with DC-12GHz response, and they are developing higher frequency and higher power circuits.

The two major UK suppliers of GaAs logic circuits are ETI and Harris Semiconductors. Both have a range of small scale integrated circuits (NOR gates, D-types, dividers and, for example, shift registers), which work at around 1 to 4GHz clock rates. Harris also markets a range of discrete GaAs FETs for use at up to about 18GHz. They have also released preliminary data on a 170-gate array. Both companies sell an evaluation kit for their ICs.

The Future

Future markets for GaAs integrated circuit include the Direct Broadcast by Satellite system, very high speed computers, optical communication and phased array radar. As for the future of the technology itself, researchers at Glasgow University have produced tiny MSEFTs with only 75nm wide gates, while Sheffield University has demonstrated an all-optical switch in GaAs/GaAlAs which holds promise for all-optical logic (which may be very fast, indeed). Inevitably GaAs development will be largely determined by the military value attached to high-speed temperature and radiation resilient devices. The rest of us will have to wait to savour the benefits of this remarkable material.
Ultra-fi buffs should be prepared to have their illusions if not their best crystal glass-ware shattered as the second in our series of sound-processing units excites the airwaves and the eardrums, courtesy of Allan Bradford of Time Machine Sound Engineering.

Aural 'Exciters' have been around for some ten years. They have been used almost universally by up-market recording studios to improve the perceived clarity of recordings, giving an extra edge to their products. Since the idea of aural enhancement was first promoted by Aphex, much mystique has grown to shroud the technique—not surprisingly, because the promoters knew they were on to a good thing. In fact, this technique, which 'miraculously' cleans up dodgy recordings and adds sparkle to good ones, is astonishingly simple.

The Sound In Your Head

Psychoacoustics is the study of the perception of sound. The brain seems to rely on high order harmonics for much of our perception of detail in complex sound structures. These harmonics, being of low amplitude, are the first to be lost in recording due to noise and poor high frequency response.

If there was a way of restoring these low level, high order harmonics, then much of the original clarity and detail of the recorded sounds would be recaptured. Improbable? Right. So let's cheat, and — surprise, surprise — we have the technology!

Harmonic Generation

Imagine that the sine wave of Fig. 1a is mixed with a small amount of third order harmonic (Fig. 1b). The result is shown in Fig. 1c. Fourier symmetry tells us (as we physicists say) that we could bend a pure sine wave using some non-linear network to resemble the waveform of Fig. 1c, in effect creating a third order harmonic component added to the fundamental. There is no theoretical problem with complex sounds, since any waveform can in principle be reduced by Fourier analysis to component sine waves.

Now, we can bend a sine wave quite easily. Simply clipping it as in Fig. 1d will generate harmonics—the heavier the clipping, the more harmonics are produced (the more it approximates a square wave). The amount of clipping and consequent harmonic generation are very much dependent on signal level. In the Activator, a sophisticated system is used so that the 'bending' is like that of Fig. 1c and is independent of signal amplitude.

Doing it With Frequency

But wait a minute. What we are talking about is severe distortion, isn't it? And distortion is the last thing we want in quality audio. Well, yes and no. The difference between aural enhancement and mere distortion is one of degree and frequency, to coin a phrase. Firstly, clipping a sine wave is rather severe and generates very large amounts of harmonics. Secondly, the effect we seek only works at high frequencies. Thus the signal must be high pass filtered so that only frequencies above a few kilohertz are 'bent'. If you apply harmonic generation to the whole spectrum, the result just sounds like distortion. Also, the amount of harmonic generation must be kept low. Only then does the whole effect come to life.

This may all sound very strange on paper and if you aren't convinced, the only answer is to hear a unit in action. When an Activator is switched out, the result of suddenly hearing the original recording in an unmodified state is like putting a bag over your head. Once you've heard the difference you won't be able to live without it. It will do wonders for all your records and tapes, revealing details you never knew existed.

When recording individual instruments or voices the Activator will create a sense of presence in a way that old fashioned presence controls never could. The frequencies which are 'activated' also happen to be those which carry most stereo information—so a stereo unit like the Activator enhances the stereo effect, too.

Dolby And Son

It's worth mentioning the beneficial effects the Activator will have on muddy sounding cassette tapes. If there is no treble in the
recording, then boosting the treble band with a graphic equaliser will achieve nothing but the amplification of tape hiss. Aural enhancement, however, does not require treble to be present since it uses upper mid-frequencies to synthesize new high frequencies. This basic difference sets aural enhancement apart from any simple form of equalisation.

Dolby B was invented when the quality of cassette tape was very poor. The noise reduction it afforded made listening acceptable. Now cassette tapes are very good indeed and Dolby is (arguably) redundant since all it seems to do is kill the top treble end of your recordings. In fact, many people record tapes with the Dolby on to act as a treble boost and then play them back with the Dolby switched off. If you play tapes back through the Activator you can leave the Dolby on, taking advantage of the noise reduction without sacrificing prized high frequencies.

Active Design

A practical system is shown in block diagram form in Fig. 2. Notice that after the harmonic generator the resulting signal is mixed in antiphase with the signal emerging from the filter so as to cancel out the fundamental, leaving only the newly synthesized harmonics to be added in the desired proportion to the output. There is very little change in overall signal amplitude when the harmonics are added. In the Activator, there is also a very slight reduction in high frequency level as the PROCESS control is advanced, which keeps the subjective volume constant.

The high pass filter used in the ACTIVATOR is voltage controlled with a 12dB per octave roll off below a centre frequency which is variable between 2kHz and 8kHz. It also has variable resonance or SELECTIVITY. It is possible to tune and emphasize particular frequencies within the signal to be processed.

The Activator is designed so that whatever size signal you put in, the same size signal is output. Harmonic enrichment maintains the correct proportions. The relative level of different order harmonics is determined by a time constant rather than by signal amplitude, avoiding the use of separate ‘Drive’ and ‘Mix’ controls as on most existing designs. These interact and their combined effect is largely to make the display function correctly.

The Activator display is designed to indicate the proportion of harmonics added to the original signal, independent of overall signal level. The display will not respond very much to signals peaking much below –10dBm but, since –10dBm is the standard domestic recording level, no problems are envisaged. The unit is equally happy with 0dBm signals.

The Ins and Outs

Line level, balanced and unbalanced inputs and outputs are standard in this family of units. Phono sockets have been added to the Activator with the domestic hi-fi owner in mind. The unit will handle signals well in excess of +10dBm before clipping, unlike some of its more prestigious and expensive cousins.

Construction

Few problems should be encountered in using the double sided PCB. The most important thing is to ensure that all the tracking linking pins are soldered on both sides of the board! Enough said. Assemble components in order of height, ensuring correct orientation of diodes, LEDs and, where appropriate, capacitors. It is a good idea to bench-test the completed board prior to bolting it into the case and wiring it to the sockets (Fig. 3).

Use

With the Activator processing a signal (left-hand LED green) adjust the PROCESS LEVEL control so that the display peaks at about half full scale. The ultimate decision must be based on your listening judgement, but remember that excessive high frequency is very easy to get used to and you only find out about it when you come back to your recordings after a break. Suffice to say that if the display is constantly in the red, you are overdoing it!

The Activator will impart an up-market, up-front quality to live sounds. In recording almost anything will benefit — dull guitars, lifeless pianos, drums and, in particular, vocals can be given a breathy and intimate quality.

The unit will also be found indispensable for cassette duplication, helping overcome the inevitable loss of quality.

![Fig. 2 Block diagram of practical enhancement arrangement.](image)

![Fig. 3 Rear-panel connections.](image)
Fig. 4 Complete circuit diagram of the Activator.
Figure 4 is the complete diagram of the stereo circuit. Balanced, line level inputs are debalanced by IC1c and d, while unbalanced inputs are buffered by IC2c and d. The resulting signals are mixed by IC2b and a. From this point the signal is split, and is fed directly to the output drivers, IC8, and the harmonics-generating side chain circuitry.

IC3a and b are dual operational transconductance amplifiers (OTAs), IC4 and IC5, form a voltage controlled high pass filter with a 12dB per octave roll off below the centre frequency, which can be swept between 2kHz and 8kHz by the TUNE control, RV2. The SELECTIVITY control, RV3, enables the negative feedback from the bandpass output at IC4 and IC5 pin 8 to be reduced, thus peaking up the response by about 12dB around the centre frequency.

The high pass filter output at IC3 pins 1 and 7 pass to the non-linear harmonic generation circuitry. In this design the harmonics are generated by abusing a 571 compandor chip, IC6. It is provided with time constant capacitors C11 and C23 which are ten times too small. This method provides symmetrical 'bending' of the waveform which is fairly independent of signal level and is superior to other methods employing diode networks or the non-linear characteristics of OTAs, say.

The output of IC6 is inverted. Mixing it back with the filter output in the correct proportions (set by R25 and R27 and by R65 and R67) through IC7 cancels out the fundamental and leaves the harmonics which have been generated. It is these which are added to the original, unprocessed signal via the PROCESS LEVEL pot RV1.

SW1a, R80, C25, Q1 and Q2 provide silent switching to prevent clicks when the effect is switched in and out, which it will be frequently in order to make 'before and after' comparisons. The other half of SW1 switches the bottom led of the bargraph (LED6) from red (bypass) to green (process).

The rest of the circuitry concerns the display. The object of the exercise is to make the bargraph respond only to the level of the generated harmonics, rather than to the overall signal level.

To achieve this an analogue divider is built around IC9a and OTA IC10. The left and right harmonics signals emerging from Q1 and Q2 are summed by IC9a but the gain of IC9a is controlled by IC10, which is in turn controlled by the level of the input signal. In other words as the input signal level increases the gain applied to the harmonics signal is reduced. The input signal is rectified by IC1a, D3, C26 and R96 and level shifted by IC1b in order to produce the control voltage which sets the gain of the OTA. The output of IC9a is amplified and rectified by IC9b, D4, C30 and R90 and the resulting DC control voltage is fed to the bar driver chip, IC11.
A complete kit of parts including the fully finished steel case and associated hardware is available from TIME MACHINE Sound Engineering for £74.00 including VAT, postage and packing. The double sided, legended PCB is available separately at £14.00. All prices include VAT, postage and packing. Contact TIME MACHINE Sound Engineering, Abbotsford, Deer Park Avenue, Teignmouth, Devon TQ14 9LJ. Telephone 06267 2353.

Fig. 5 Component overlay of the activator.

BUYLINES

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all 1% metal oxide)</th>
<th>RV1</th>
<th>4k7 log pot dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, 2, 3, 4, 8, 36, 10k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R25, 26, 29, 30, 32, 41, 42, 43, 44, 48, 64, 65, 68, 69, 70, 72, 73, 79, 86 R5, 6, 38, 78 1M0 R9, 10, 11, 39, 49, 100k S0, 51, 85, 89, 95 99, 100 R12, 13, 14, 15, 16, 39k 2B, 52, 53, 54, 55, 56, 60 R17, 18, 21, 22, 57, 1k0 3B, 61, 62, 86, 87 R19, 23, 59, 83 4k7 R27, 67 14k R26, 66, 68 15k R31, 71, 82, 83, 92 2k7 R34, 35, 36, 37, 74, 100k 75, 76, 77 R81 2k2 R84 180k R91 470R R97 82k R98 120k</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RV2</th>
<th>100k lin pot</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV3</td>
<td>22k lin pot dual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
<th>RV1 4k7 log pot dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, 2, 5, 13, 14, 4u7 40V minirelect</td>
<td></td>
</tr>
<tr>
<td>C3, 11, 15, 23, 25, 470n polycarb</td>
<td></td>
</tr>
<tr>
<td>C4, 16, 100n ceramic</td>
<td></td>
</tr>
<tr>
<td>C6, 7, 18, 19, 22k lin pot dual</td>
<td></td>
</tr>
<tr>
<td>C8, 9, 20, 21, 1k0</td>
<td></td>
</tr>
<tr>
<td>C10, 12, 22, 24, 10u 40V minirelect</td>
<td></td>
</tr>
<tr>
<td>C27 10n polyester</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
<th>RV2 100k lin pot</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1, 2 7414</td>
<td></td>
</tr>
<tr>
<td>IC3, 7 TL074</td>
<td></td>
</tr>
<tr>
<td>IC4, 5 LM13600N</td>
<td></td>
</tr>
<tr>
<td>IC5 NE571</td>
<td></td>
</tr>
<tr>
<td>IC9 1458</td>
<td></td>
</tr>
<tr>
<td>IC10 CA3080E</td>
<td></td>
</tr>
<tr>
<td>IC11 U267B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>RV3 22k lin pot dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1, 2, 3, 4 1N914</td>
<td></td>
</tr>
<tr>
<td>Q1, 2 2N3819</td>
<td></td>
</tr>
<tr>
<td>LED1, 2, 3 Green LED</td>
<td></td>
</tr>
<tr>
<td>LED4, 5 Red LED</td>
<td></td>
</tr>
<tr>
<td>LED6 Tricolour LED</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SK1, 2</th>
<th>female panel mounting XLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK3, 4, 9, 10</td>
<td>Mono 3/4" jack socket</td>
</tr>
<tr>
<td>SK5, 6, 7, 8</td>
<td>Panel mounting phono sockets</td>
</tr>
<tr>
<td>SK11, 12</td>
<td>Male panel mounting XLR</td>
</tr>
<tr>
<td>SK13</td>
<td>Prof 3-pin DIN panel socket</td>
</tr>
</tbody>
</table>

Knobs (collet or grub-screw, 3 off); PCB; case; PC pillars (tapped and stud-ded plus nuts bolts and locking washers, 4 off); PCB linking pins (61 off); veropins (19 off); 6BA nuts, bolts and locking washers (4 off); power supply ± 15V @ 100mA per rail regulated.
This is the RAF Tornado GR1, one of the world's most sophisticated fighting machines. And, naturally, it's packed with computer hardware and software. Everything from the weapons-aiming systems to the low-level, terrain-following radar and the advanced fly-by-wire control techniques relies on on-board computers to deliver an accurate response at 1,400 mph.

If you have a talent for electronics, you could soon be working with technology as impressive as this.

The three-year RAF Apprenticeship will earn you internationally recognised qualifications and an RAF career in mechanical or electronic engineering.

RAF technical training is regarded by industry as the finest this country has to offer. So, naturally, we have high hopes for our Apprentices, many of whom will go on to become Officers.

Places are offered in spring and autumn to young men and women aged 16-18½ (with a minimum four 'O' levels at Grade C or above, including Maths and an appropriate Science). But competition is fierce, so apply as soon as possible.

Don't let the thought of leaving school put you off, remember this isn't a typical apprenticeship. It pays well and you'll learn as much as you would at a college, with friends of your own age.

Cut the coupon for more details. Or call in at your local RAF Careers Information Office. (The address is in the phone book under Royal Air Force.)

APPLY NOW FOR ONE OF THE 120 PLACES NEXT SPRING.

To: RAF (AH) CAREERS (1001/01/01), LONDON ROAD, STANMORE, MIDDLESEX HA7 4PZ. Please send me details.

Name: ____________________________
Address: __________________________
Date of birth: ______________________

RAF Apprentice
ENGINEERING TECHNICIAN
The CPU, Memory, Buffers And Decoding

The 'core' of the Microbox II is formed by the processor IC1, the SAM chip IC2 and the memory IC3-IC12. IC2 has several functions. First, it takes the master 16MHz clock from IC15 and generates the 1-2MHz processor clocks. The processor address is converted to the multiplexed eight-bit buss and control strobes necessary for the eight 64K DRAMs, IC5-IC12. 22 ohm resistors in these lines damp any signal reflections or undershoots which would disturb the DRAM operation. It also defines a three-bit decoding buss which is used by the decoding logic. An 8K EPROM, IC3 holds the monitor program and system service. IC4 buffers the DRAM read data onto the processor data buss, whilst IC13 is a bi-directional buffer between the processor and the peripheral data busses.

The low order address lines, the control strobes E and R/W, and the reset signal are buffered by IC18, which has its two enable signals grounded. The reset signal from SW2 triggers two time constants, the shorter of which resets the SAM chip by pulling VCLK low, whilst the longer resets the processor so that the SAM chip comes out of reset before the processor. Note that no use is made of the SAM chip's video capabilities in this design.

The HS pin is tied low on the SAM chip. This frees up an extra RAM cycle per CPU cycle allowing operation at 2MHz. However the SAM chip stops refreshing the DRAM at 2MHz, so operation at this speed can only be for periods of less than 2ms, or longer if the operation itself refreshes the memory as would a transfer of 256 bytes during a disc operation.

The memory system map is defined by IC65 and parts of IC14 and IC16. The memory map is filled with the 64K RAM, except for the top 8K section which is the monitor EPROM. This 8K section is split into two, and the bottom 4K may be switched between EPROM and RAM with the MAP signal from the system PIA. This is used in the current software to
Fig. 1 Circuit diagram of the CPU and memory stages.

Fig. 2 Circuit diagram of the decoding, buffers and master clock.
The System I/O And Serial Ports

The keyboard and printer ports, together with a number of control signals, connect to the two parallel ports of a single 6821 type PIA, IC19. The centronics printer and parallel keyboard share the first port via two tristate buffers IC67 and IC68. The PIA port is normally set for input from the keyboard, with the keyboard strobe going to the CA1 line. When printing is in progress, the port is turned from input to output and a strobe signal is sent on the CB2 line. This operation is performed for each character sent to the printer — in between each character, the keyboard is examined so that keyboard characters are not lost whilst printing is in progress.

The other port of the PIA is given over to various system signals. There are four inputs from four switches which the software uses to set certain parameters when the computer is first switched on. The remaining four lines are four outputs, the MAP line for the decode section, the DRV select bit and DDEN line for the floppy disc interface, and a signal which enables a sounder to give a ‘beep’.

The serial ports are provided by a single IC, a WD2123 DUART (IC20). The internal baud rate generators derive their timing from a 1.84 MHz crystal oscillator. The data and handshaking lines are buffered from TTL to RS-232 levels and back again by the obligatory 75187/75189 pair.

switch out the diagnostics section of the monitor when Flex is loaded, freeing up an extra block of memory which is used for text drivers and character sets.

The top 256 bytes of memory (as defined by the SAM chip) are given over to three 32 byte I/O slots and the addresses used to set the SAM chip control registers. The first of these I/O slots is used for on-board devices, and is further decoded to eight, four-byte slots by IC17. IC16a generates the RDS and WDS control strobes used by the non-Motorola peripheral devices. Because the NEC720 graphics controller does not have a separate CE line, there are separate strobe signals for this device. Finally, IC15 forms a standard crystal oscillator which generates the master 16MHz clock.

The top 256 bytes of memory (as defined by the SAM chip) are given over to three 32 byte I/O slots and the addresses used to set the SAM chip control registers. The first of these I/O slots is used for on-board devices, and is further decoded to eight, four-byte slots by IC17. IC16a generates the RDS and WDS control strobes used by the non-Motorola peripheral devices. Because the NEC720 graphics controller does not have a separate CE line, there are separate strobe signals for this device. Finally, IC15 forms a standard crystal oscillator which generates the master 16MHz clock.

The System I/O And Serial Ports

The keyboard and printer ports, together with a number of control signals, connect to the two parallel ports of a single 6821 type PIA, IC19. The centronics printer and parallel keyboard share the first port via two tristate buffers IC67 and IC68. The PIA port is normally set for input from the keyboard, with the keyboard strobe going to the CA1 line. When printing is in progress, the port is turned from input to output and a strobe signal is sent on the CB2 line. This operation is performed for each character sent to the printer — in between each character, the keyboard is examined so that keyboard characters are not lost whilst printing is in progress.

The other port of the PIA is given over to various system signals. There are four inputs from four switches which the software uses to set certain parameters when the computer is first switched on. The remaining four lines are four outputs, the MAP line for the decode section, the DRV select bit and DDEN line for the floppy disc interface, and a signal which enables a sounder to give a ‘beep’.

The serial ports are provided by a single IC, a WD2123 DUART (IC20). The internal baud rate generators derive their timing from a 1.84 MHz crystal oscillator. The data and handshaking lines are buffered from TTL to RS-232 levels and back again by the obligatory 75187/75189 pair.
The Floppy Disc Interface and PROMdisc

The floppy disc controller is refreshingly simple: it consists of just three ICs, two of which are SSI buffers! The work is done by IC24, a WD1770 floppy disc controller, which connects directly to the peripheral data buss. Input signals from the drives are buffered by IC25, whilst output signals are buffered by IC26. The two drive select lines are derived from a single signal. This means that one drive or the other will be selected all of the time, and its drive select light will be on. This causes no harm if the drive is set up to load its head with the MOTOR ON signal. The drive motor timing is set by the 1770 by counting index pulses. It will stop the drive nine index pulses after the last operation, and will delay any operation until six index pulses have occurred.

The EPROM disc is formed from an 8255 PIA, four EPROMs and an eight bit counter. The data lines from the EPROMs are connected to one of the ports of the PIA, IC28, and the high eight address lines for the EPROMs to another. Chip enables for the four EPROMs, the program line for one of them, and clear and count lines for the counter are connected to the last port. Because Flex only reads data from discs in chunks of 256 bytes, not every address line is needed and the low eight address lines can come from an eight bit counter. To read a 'sector', the processor selects the correct EPROM as a function of the 'track' and 'sector' numbers, then clears the counter and clocks it 256 times, moving each byte for the port to RAM as it goes.

EPROMS may be programmed by applying 21V to the VPP pin, setting the address lines and data, and then pulsing the program line for 50ms.

The operation of the remainder of the board will be described next month, when we also hope to bring you complete constructional details including board overlay and parts list. If you’d rather not wait that long, a kit of parts complete with full constructional details is available from Micro Concepts, 2 St. Stephens Road, Cheltenham, Gloucestershire GL51 5AA, tel 0242-510 525.

ETI JANUARY 1986
CONSTRUCTOR SERIES SPEAKER KITS
Based on the famous Kef Reference Series, these three DIY designs give the home constructor the opportunity to own an upmarket pair of loudspeakers at a very down-to-earth price.

With a Wilmslow Audio Total Kit it’s so easy—no electronic or woodworking skill is necessary. Each kit contains all the cabinet components (accurately machined from smooth MDF for easy assembly), speaker drive units, crossover networks, 4Ω/adding, grille fabric, terminals, nuts, bolts etc.

Model CS1 is based on the Reference 101, CS3 is equivalent to the Ref. 103.2 and CS9 is based on the Reference 105.2 (but in a conventionally styled enclosure).

CS1 £116 pair inc. VAT plus carr/ins £6
CS3 £138 pair inc. VAT plus carr/ins £10
CS9 £383 pair inc. VAT plus carr/ins £18

We also offer a kit (less cabinet) for Elector PL301

C 9 £383 pair inc. VAT plus carr/ins £18

Lightning service on telephoned credit card orders!

WILMSLOW AUDIO LTD. 35/39 Church Street, Wilmslow, Cheshire SK9 1AS Tel: 0625 529599

DIY Speaker catalogue Call and see us for a great deal on HiFi. (Closed all day Mondays)
Do you have a personal (hi-fi) problem? Ram Chandru has a battery of suggestions to help you overcome it.

In recent years, a new generation of miniature tape players and radios has appeared on the market. Popularly known as Walkmans, they are battery operated, have miniature headphones rather than loudspeakers and are designed for use anywhere at any time. The quality of the sound reproduction is usually pretty good and they have proved immensely popular. They are not without their drawbacks, however. As anyone who has used one of these machines will know, the current consumption tends to be fairly high and a set of batteries doesn't last very long. Also, whilst at first sight they may seem ideal for use as the basis of a 'second' music system in the bedroom or elsewhere, in practice it is not easy to use them in this way. The output level is not suited to the inputs on most amplifiers, the problem of battery consumption remains, and while purpose-built miniature amplifiers and loudspeakers are available these too are battery-operated, pushing the overall running costs very high indeed.

The Walkmate has been designed to overcome these problems and allows a miniature tape player or radio to be used indoors with standard loudspeakers at minimum cost. It consists of a regulated DC supply, a constant current battery charger and a stereo amplifier with tone controls. The regulated supply is overload protected and offers 500mA at between 1.5 and 9 volts, a range which accommodates every type of personal stereo we have come across. The constant current charger can only be used with rechargeable batteries, of course, but offers the convenience of recharging whilst the unit is being used, ready for later use elsewhere. The stereo amplifier delivers up to 2 watts RMS per channel into 8R, and the complete system operates either from the mains or from a 12v car battery.

The Circuit

The circuit of the Walkmate is shown in block form in Fig. 1. The incoming mains is passed through the transformer and rectifier to produce an output with an average value of about 18V. This is passed to the smoothing network via a switch on the 12V DC input socket. Inserting a 2.5mm power jack into this socket will disconnect the transformer and rectifier from the rest of the circuit.

A reference voltage is derived from the main smoothed supply to feed the regulator and the constant current generator. The reference is provided by a 1.22V band-gap IC, but several stages of dropping and filtering are used to ensure as ripple-free an output as possible. This is important because

SPECIFICATIONS

AMPLIFIER
- Output power: 2W RMS per channel into 8R (mains operation)
- Input sensitivity: 1W RMS per channel into 8R (12V DC operation)
- THD: 1.5W RMS per channel into 4R (12V DC operation)
- Bass control: 80mV RMS for full output
- Treble control: typically 0.2% (from IC manufacturers data — not measured)

DC SUPPLY
- Output voltage: adjustable over the range 1.5-9V
- Overload protection: current limiting at 500mA (at 25°C heatsink temperature; reduces by 2mA/°C above 25°C)
- LED indication of overload condition

BATTERY CHARGER
- Constant current output: 50mA
- Overcharge protection: charging ceases when terminal voltage exceeds a preset figure, adjustable between 1.5 and 9V
- LED indication of charging

Fig. 1 Block diagram of the Walkmate circuit.
HOW IT WORKS

IC2b, Q6 and Q8 form the basic power supply circuit. Q6 and Q8 are connected as a darlington pair in order to supply a relatively large load current (500mA) with only a small voltage drop. The short circuit protection consists of R13, Q5 and Q7. When the load current through R13 reaches a value such that their product results in a diode drop, (in the case of 500mA), Q5 conducts and turns Q7 on to divert the base current of Q6 to earth, thus limiting the power dissipated in Q6. Q4 turns on LED2 indicating a current limiting condition. The output voltage can be adjusted by varying RV2. C8 is included to reduce the ripple present at the output. The impedance through C8 is very small compared to the value of R16 so the ripple is bypassed to the op-amp input. C9 reduces the high frequency impedance of the power supply and C6 and C7 are there to suppress any loop instability.

One point to notice is that Q8 and Q4 are thermally coupled. This ensures that the short circuit current will decrease as Q8's junction temperature increases so that thermal runaway will never occur. As

\[
1 \text{ short circuit} = \frac{V_{be} \text{ (of Q4)}}{R13}
\]

and \(V_{be}\) is approximately 0.6V at room temperature. The short circuit current will be about 500mA. However \(V_{be}\) has a temperature coefficient of -2.1mv/°C, (the negative sign indicates that it decreases with temperature), so the short circuit current will decrease with increasing heatsink temperature at about

\[
2 \text{mA/°C} \times (-2.1 \text{ mA}) = 1.2
\]

The maximum power dissipation in Q8 is roughly 9.0W (0.5A x 18V). In order to maintain a junction temperature below 150°C a 7.8°C/W heatsink is required giving a safely margin of about 60°C ambient temperature.

The IC used in this circuit is an LM358N dual op-amp. Other common dual op-amps such as LM1458 will not do the job because the reference voltage is too near to the earth potential. The common-mode input voltage range of the LM1458 is typically ±12V with ±2.5V supply. That means the input voltage must be 3V above the negative supply. In this case, the negative supply to the op-amp is 0V and the reference must therefore be a minimum of 3V in order for the op-amp to function correctly. However, since the amplifier's design strategy is to provide voltages as low as 1.5V, a small reference voltage must be used. The LM358N has a common-mode input voltage range including the negative supply which suits our design.

The battery charger is basically a constant current sink. IC2a, Q3, Q7 and R0 forms the basic constant current sink circuit with the addition of Q1 and Q2 as the cut-off monitor circuit. The charging current is determined by the value of R7 and R8 in series. Since the reference voltage is 1.2V2, the current is therefore 1.22/24 which is approximately 50mA. Q1 and ZD2 monitor the voltage across the battery under charge. When the battery voltage brings the potential at the wiper of RV1 to the zener voltage of ZD2 plus a diode drop below the supply voltage, Q1 will conduct and turn Q2 on to divert the base current of Q3 to earth. The cutoff is 'soft' since the zener voltage is current dependent, and this will enable the batteries to maintain their fully charged state. In practice, there will be a small current of around 4-5mA still flowing through batteries when the cut-off circuitry is in action. D6 prevents the battery discharging into the circuit if a Wallmate is disconnected from the mains. The circuit loop formed by Q1 and Q2 will tend to oscillate when the battery terminal is left open circuit, and C3 and C4 are there to prevent this and maintain unconditional stability.

The charger has been designed to charge four AA size rechargeable batteries. However, the charging current can be altered by varying the values of R7 and R8. At 50mA charging current, no heatsink is required by Q3. Its power dissipation will be at a maximum when the battery terminal is short circuit, which is 50mA x 0.90W. If the charging current is increased to 100mA or above, a small heatsink should be fitted to Q3. The cut-off circuitry can be adjusted to monitor from a minimum of one battery up to a maximum of six batteries. If less than three batteries are being charged ZD2 should be replaced by a single diode (installed so that it has the opposite polarity to ZD2, of course).

LED1 will light up when the batteries are placed in the charger and will switch off when the batteries are fully charged, indicating that the process is complete. With the cut-off circuit correctly adjusted, batteries could be left in the charger indefinitely without being damaged.

In order to generate a constant current sink and a constant voltage supply, a reference source is needed. The easiest way of generating a reference voltage is by means of a zener diode. The arrangement is adequate provided there is not much ripple in the supply voltage, but in our case the rectifier output will contain 100Hz ripple of up to 4V.

An improvement is to use a diode and capacitor as a peak detector which captures the peak value of the ripple according to the current drawn by the diode. Since the zener current is very small, typically 5mA, the ripple seen across the capacitor is very small. Another improvement is to use two zener diodes. The output of the first zener contains a small amount of ripple voltage which is then further reduced by the second zener.

The circuit used in this project is a combination of both improvements. The average current into ZD1 is limited by 4mA and the current into IC1 is about 1mA. The circuit provides a reference voltage of 1.22V. The dynamic resistance of ZD1 is a maximum of 30R and the bandgap reference IC1 has a maximum dynamic resistance of 2R.

The ripple seen across C2 is approximately 0.25V (with i=5mA, neglecting the leakage of D5). The ripple appearing on the V ref line is therefore estimated to be about 2uV, C3 is present to reduce the high frequency impedance of V ref.

The first stage in the audio section is the tone control. There are two basic types of control, the negative feedback type and the RC passive type. The RC passive type has been used here because it introduces less distortion. However, because of the insertion loss of this type of control, a voltage amplifier is needed to provide a gain equal to the maximum boost, in this case 20dB (10 times). The amplifier is usually placed before the tone control if the input signal is small, so that the signal is amplified before being attenuated and is less likely to pick up noise. Looking at the right channel (the left channel is identical, of course), IC3a is connected as an inverting amplifier with an input impedance of 100k. Since the op-amp is powered from a single supply, the non-inverting input is biased to the mid-point of the supply by C13, R20 and R27. D7 and C12 form a peak detector to filter most of the ripple present at the supply voltage. C10 and C14 isolate the DC level at the input and output of the op-amp.

The power amplifiers use LM380N ICs which have a fixed voltage gain of 50. The output DC voltage is set internally to approximately half the supply voltage. C28 and R34 by-pass any high frequency oscillation which might occur. C26 is included to improve the PSRR (Power Supply Rejection Ratio) of the amplifier. RV7 provides the trimmer for the output DC voltage in order to obtain the maximum symmetric voltage swings. C30 is the output capacitor, and its value determines the low frequency roll-off of the circuit. With an 8R load and a 2200µf capacitor, the -3dB low frequency point occurs at about 9Hz.

The two LM380N amplifiers are high power devices. With a 10.5°C/W heatsink. When the wallplate is powered from the mains, a 4R load is not recommended because the ICs will be operating in the current limiting mode and power dissipation will become excessive.

ETI JANUARY 1986
any imperfections in the reference supply will be amplified in the regulator.

The constant current charger provides an output of 50mA which is suitable for the AA-size cells used in most personal stereos. A circuit is included which monitors the voltage across the batteries under charge and removes the current when a pre-set terminal voltage is reached. An LED indicates when charging is taking place.

When the audio output of a tape player is connected to the Walkmate, the signal is first passed to a tone control stage built around an LF353 dual op-amp. One half of the LF353 is used in each channel. Separate bass and treble controls are provided along with balance and volume controls. The outputs from this stage feed two LM380 power amplifier ICs each capable of delivering 2 watts RMS into an 8R load when the unit is being operated from the mains. When operated from a 12V DC supply, the outputs can deliver 1W RMS into 8R or 1.5W RMS into 4R.

Construction

All of the major components mount directly onto the printed circuit board including the mains transformer, the heatsinks, the potentiometers and most of the sockets. The fuse in the DC line (FS2) is mounted on the board but the mains fuse and socket are mounted into the back panel of the case along with the loudspeaker connectors, SK6-9. Connections to these and to the battery charging socket can be taken directly from the board or via standard 0.1” pitch PCB connectors if preferred.

Before soldering anything to the board, Q5 has to be glued to the 7.8°C/W heatsink. Attach Q8 to the heatsink with an M3.5 nut and bolt and then position the heatsink on the PCB with the transistor pins inserted through the appropriate holes. Secure the heatsink temporarily with two self-tapping screws, then place Q5 into position with its flat side towards the heatsink. Put a dab of Superglue or something similar on the transistor and hold it against the heatsink for a few moments until the glue dries.
The glue should be allowed an hour or so to develop its full strength, so carefully dismantle the assembly from the board and put it to one side while the rest of the components are installed. Begin with the resistors, the preset potentiometers and the sockets and also the smaller capacitors. The large smoothing and output capacitors should not be installed at this stage. The fuse holder should also be soldered into place now, along with the PCB connectors if these are to be used for the mains, loudspeaker and charging output connections.

Next install the diodes and the transistors (except Q5 and Q8, of course) and then IC2 1, 2 and 3. Sockets should not be used for any of the ICs because there is very little room on such a densely-populated board. The LEDs can be installed at this stage if desired but you may prefer to wait until the board is ready for installation in the case so that they can be lined up with the front panel holes.

Solder the potentiometers into place, taking care that they do not interfere with any of the components already installed.

Loosely re-assemble the 7.8°C/W heatsink on the board, placing nylon insulating washers on the two self-tapping screws so that there is no connection to the copper track. This removes the need for a mica washer on Q8, although a smear of thermal compound here will not go amiss. Position the transformer and C1 on the board and make sure they clear one another and the heatsink. Tighten down the self-tapping screws, solder the transformer pins and the transistor and capacitor leads and then install C34 and C35.

Loosely insert ICs 4 and 5 into the holes provided and place the 10.5°C/W heatsink on top of them. Secure the heatsink with an M3.5 nut, bolt and shakeproof washer taking care not to overtighten the bolt so as not to damage anything. The pins of the ICs can now be soldered on the underside of the board. With the heatsink in place, capacitors C30, C31 and C33 can be installed and the board is then complete.

The prototype was built into a 203 x 127 x 51mm vinyl-covered steel box and the PCB dimensions were chosen to suit it. This is important since the edges of the PCB must be very close to the
front and back panels if the onboard sockets and controls are to be accessible. This would have to be taken into account if a different size of case were used for any reason.

Drilling details are given in Fig. 6. The battery compartment, mains fuse, mains socket and loudspeaker terminals are not too critical in their positioning, and the potentiometer holes will be hidden by the knobs so it won't matter if they are a fraction off centre. The holes for the sockets, on the other hand, must be accurately positioned if they are to be accessible and the unit is to look good. If you have any doubts about your metalworking skills, try drilling a small hole first and then place the board in position to check it. If necessary, the hole can be centred with a small round file before final drilling out to the correct diameter.

Before installing the PCB in the case, carefully check it against the overlay diagram (Fig. 4) and pay particular attention to the orientation of transistors, ICs, diodes and electrolytic capacitors. Check carefully too that there are no breaks in the PCB tracks or solder bridges between adjacent tracks. In my experience, it is usually a good idea to go away and do something completely different for some time after a board has been completed. The mind is then much clearer when it comes to checking the board and potentially expensive mistakes are easier to spot.

When you are convinced that all is well, loosely install the board in the case and then bend and fit the LEDs so that they line up with the front panel holes. Remove the PCB, solder the LEDs into place and attach any flying lead connections to the underside of the board. These will not be needed if you have chosen to use PCB transition connectors for the mains, output and battery charger.

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all (\frac{1}{4} \text{W, 5%}))</th>
<th>CAPACITORS</th>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, 9, 10, 14, 16, 17</td>
<td>C1, 33, 34, 35</td>
<td>C9, 14, 15, 24, 25</td>
</tr>
<tr>
<td>R2, 5, 11</td>
<td>C2, 12</td>
<td>10u 16V tantalum</td>
</tr>
<tr>
<td>R4, 13, 25, 27</td>
<td>C3, 4, 5, 6, 10, 11</td>
<td>or radial</td>
</tr>
<tr>
<td>R6</td>
<td>C7</td>
<td>electrolytic</td>
</tr>
<tr>
<td>R7, 8</td>
<td></td>
<td>C13</td>
</tr>
<tr>
<td>R13</td>
<td></td>
<td>220u 16V radial</td>
</tr>
<tr>
<td>R15, 24, 26, 28, 29</td>
<td></td>
<td>electrolytic</td>
</tr>
<tr>
<td>R16, 19, 20, 21</td>
<td></td>
<td>330n polyester</td>
</tr>
<tr>
<td>R22, 23</td>
<td></td>
<td>C16, 18</td>
</tr>
<tr>
<td>R30, 32</td>
<td></td>
<td>220u 16V radial</td>
</tr>
<tr>
<td>R31, 33</td>
<td></td>
<td>electrolytic</td>
</tr>
<tr>
<td>R34, 35</td>
<td></td>
<td>100k polyester</td>
</tr>
<tr>
<td>R1</td>
<td>1/4W, 1n0 ceramic</td>
<td>C13</td>
</tr>
<tr>
<td>R2, 3</td>
<td>10u 16V tantalum</td>
<td>220u 16V radial</td>
</tr>
<tr>
<td>R4</td>
<td>electrolytic</td>
<td>electrolytic</td>
</tr>
<tr>
<td>R5</td>
<td>330n polyester</td>
<td>100n polyester</td>
</tr>
<tr>
<td>R6</td>
<td>100n polyester</td>
<td>100n polyester</td>
</tr>
<tr>
<td>R7</td>
<td>220u 16V radial</td>
<td>220u 16V radial</td>
</tr>
<tr>
<td>R8</td>
<td>electrolytic</td>
<td>electrolytic</td>
</tr>
<tr>
<td>R9</td>
<td>100k polyester</td>
<td>electrolytic</td>
</tr>
<tr>
<td>R10</td>
<td>220u 16V radial</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R11</td>
<td>electrolytic</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R12</td>
<td>100k polyester</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R13</td>
<td>220u 16V radial</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R14</td>
<td>electrolytic</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R15</td>
<td>100k polyester</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R16</td>
<td>220u 16V radial</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R17</td>
<td>electrolytic</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R18</td>
<td>100k polyester</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R19</td>
<td>220u 16V radial</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R20</td>
<td>electrolytic</td>
<td>100k polyester</td>
</tr>
<tr>
<td>R21</td>
<td>100k polyester</td>
<td>100k polyester</td>
</tr>
</tbody>
</table>

SEMICONDUCTORS

<table>
<thead>
<tr>
<th>IC</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>9491 (1V22 bandgap ref.)</td>
</tr>
<tr>
<td>IC2</td>
<td>LM358</td>
</tr>
<tr>
<td>IC3</td>
<td>LF353</td>
</tr>
<tr>
<td>IC4, 5</td>
<td>LM380</td>
</tr>
<tr>
<td>Q1, 6, 7</td>
<td>BC184L</td>
</tr>
<tr>
<td>Q2, 6, 7</td>
<td>BC184L</td>
</tr>
<tr>
<td>Q3</td>
<td>BD135</td>
</tr>
<tr>
<td>Q4</td>
<td>BD230</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

| PS1 | 200ma fuse and panel-mounting holder |

Fig. 6 Drilling details for the metal case.
connections. When all soldering is complete, install the board in the case using four 10mm metal pillars and connect the mains socket and fuse, the loudspeaker output sockets and the battery connector. Don’t forget to earth the metal case.

Testing And Setting-Up

Carefully check all the connections to the PCB, especially the mains wiring, and then set all the presets to their mid positions. Connect a voltmeter between FS2 and ground and plug in the mains. The voltmeter should show around 18-20 volts. If the voltage is significantly lower than this, check the polarity of the rectifiers and the smoothing capacitors. If either of the fuses blows, switch off immediately and check everything again.

When the voltage on FS2 is correct, remove the voltmeter and connect it across pins 4 and 5 of IC2 or some other point where the reference voltage is available. The reading here should be between 1.2 and 1.26V. If the voltage lies outside of this range, check the orientation of IC1 and ZD1 and the components around them.

Connect a milliammeter across the battery charging terminals. LED1 should light up as soon as the meter is connected and a reading of 48-50mA should be obtained. Remove the milliammeter and connect in its place a set of fully-charged or nearly fully-charged Nickel Cadmium cells and a voltmeter. The voltage across the cells should rise slowly. When it reaches the full terminal voltage (1.45V for each cell), carefully turn RV1 until LED1 extinguishes. Remove the cells, discharge them slightly and then connect them as before along with the voltmeter. Check that LED1 goes out when the intended voltage is reached, and if not, re-adjust RV1. This exercise may take a little time but you can leave the batteries charging or discharging while you carry on with the rest of the setting-up.

Connect a voltmeter across the regulated DC Output. A reading of about 2.5 should be obtained and this should increase and decrease if RV2 is rotated. Set the voltage to suit the personal stereo you plan to use and then connect an ammeter directly across the output. LED2 should light up and the ammeter should show a current which slowly decreases from an initial value of around 500mA. If a much larger current is present, disconnect the ammeter immediately and check the circuit carefully, paying particular attention to the circuitry around Q5 and R13. Check also that there is no connection between the heatsink and the copper earth track via one of the fixing screws. With the power supply and charger circuitry working correctly, all that remains is to test and set-up the audio stages. Check that the DC level across R21/C13 is around 9V and that a similar voltage is present on the outputs of the two halves of IC3 (pins 1 and 7). Next, check that about 8V DC is present on the output pins of ICs 4 and 5 (pin 8). Connect an 8R dummy load across one of the loudspeaker outputs and inject a 1kHz signal into the corresponding input. Connect an oscilloscope across the dummy load and adjust RV7 or RV8 as appropriate until the output swings are symmetrical above and below 0V. It is advisable to turn the preset very slowly whilst making this adjustment. When the output symmetry is correctly set, transfer the dummy load, oscilloscope and signal generator to the other channel and repeat the procedure.

If you want to be particularly thorough you can check the operation of the bass and treble controls using signal frequencies of 50Hz and 10kHz. Those who do not have an oscilloscope will have to be content with setting the output DC level at 8.5V as described above and using their ears to evaluate the operation of the tone controls.
In this (slightly delayed) article in our series on the construction of a sound sampler for use with the Spectrum, Paul Chappell finally gets around to describing the analogue circuitry.

The analogue signal path is the critical area in determining the quality of sound reproduction that a sampler will achieve. Although it is possible to sample sounds with little more than an ADC, a DAC and a home computer, for reasons discussed in an earlier issue (ETI, September 1985) the sound will not be very pleasant. Refinements such as a sample and hold circuit before the ADC will help, but the most spectacular improvements are achieved by the inclusion of suitable low-pass filters before and after the conversion.

Figures 1 and 2 show the complete audio path of the project. The input filtering is incorporated in the circuitry around IC2 and IC5 and the output filtering is carried out by IC12, IC13 and IC16. It seems, at first sight, that the filtering should be the most precise and academic part of the circuit design: apply the correct formulae, use the right set of design tables and you’ve got a filter. As is often the case with circuit design, it’s far from being so clear cut, and some of the considerations involved are worth a closer look.

Filter Considerations

Let’s suppose that we are sampling at 30kHz and so would like to remove any components of the input signal above 15kHz. The most obvious compromise is that we can’t have a filter that passes everything up to 15kHz and nothing thereafter, so let’s choose the -3dB point to be 12kHz and see where it leads us. We could live with a bandwidth of 12kHz — it may not be quite hi-fi but, in comparison with TV sets, radios and walkpersons it’s not too bad. We will also recognise that the signal above 15kHz will not be zero, but if it was below -50dB it would be pretty well inaudible, so we’ll take that as a starting point.

The first shock comes when we see the size of filter needed to meet this specification. For a Butterworth filter response (one without ripple in the passband) we are going to need 11 Sallen and Key type filter sections (like the circuitry around IC2) all cascaded together. That is, 11 op-amps, 22 capacitors and 44 resistors. Some filter! With a Chebyshev response we are a bit better off — with a little over 1 dB passband ripple, we could manage with only 5 sections and still get to -50dB at 15kHz; with a little more ripple, we could get it down to four sections, but for reasons I’ll come back to later we can’t allow too much ripple.

Switching To Capacitors

Because we want the filters to track the sampling and playback frequencies, switched capacitor types have been chosen (IC5 and IC13). These, in effect, sample the signal and hand it back at the output in the form of discrete steps. For this reason they are just as prone to ‘alias’ distortion as the A-D, D-A conversion process. It may sound odd, but we need to filter the input and output of the filters! As the clock rate, or sampling frequency, of the mobile filters is 50 times the cut-off frequency, the filtering requirements are not too stringent. If the filters are set for 12kHz, this means a sample rate of 600kHz, and if we only attempt to remove signals that could give rise to beat products falling within the range up to 40kHz, we are only asking that the fixed frequency filter should produce an insignificant output above 560kHz. As it can begin to roll off anywhere above 12kHz without interfering with the bandwidth of the sampler, a steep slope is not called for. Even allowing for the fact that we may wish to sample at rates below 30kHz — maybe even as low as 10kHz — we are still looking for a good attenuation at 160kHz.

As we are expecting the best performance at a sample rate of 30kHz, it makes sense to choose a cut-off frequency for the fixed filters that will assist in attenuating frequencies of 15kHz and above. On the other hand, they can’t have a cut-off frequency of 12kHz to match the mobile filters at this sample rate. If they were all independently designed to cut off at 12kHz, that is to say the -3dB point for each was 12kHz, the consequence of cascading all five would be that the attenuation at 12kHz would be -3dB x 5 = -15dB. Not quite what we are aiming for! A similar consideration applies to the passband ripple that can be tolerated — it can add from one filter to the next and there could be a good deal more at the output than was intended.

A third consideration is the desirability of applying a certain...
The input signal from the microphone is first amplified by IC1. From the output of IC1 the amplified signal passes to IC2 and to IC3. Taking the main signal path first, IC2 and IC3 are low-pass filters included to prevent 'alias' distortion in the sampling process. IC5 is a switched capacitor filter with a cutoff frequency determined by the frequency of FCCLK. FCCLK is generated by the sample rate circuit (to appear in a later issue) and is proportional to the selected sampling frequency, so the cutoff frequency of IC5 tracks the sample rate. IC2 is a lowpass filter with a fixed cut-off frequency to prevent signals with a frequency above 0.5FCCLK from reaching IC3.

The output from IC1 is also fed to IC3 where it is further amplified by an amount set by RV2. The function of IC4 is to provide a signal SOUND to the control circuit when an input of a suitable level is detected. When no input is present the +ve input of IC4 is held at 0.7V by R19 and D3, the -ve input is at +0.7V by the action of R20 and D4, so the open collector output of IC4 will be held high by R22. If the output of IC3 goes low, the +ve input of IC4 will be pulled low by D1 but the -ve input will remain at -0.7V, and allowing for the drop across D1 this means the output of IC3 must go below -1.4V. If IC3 output goes high, IC4 will similarly be switched by D2 at +1.4V or above. A signal of 2.8V p-p at the output of IC3 will begin to switch IC4 on and off. LED2 indicates that this is happening and means that an audio signal large enough to trigger the sampler is present at the input. Adjustment of the signal level needed to trigger the sampler is made by RV2.

Overload indication is provided by LED1. If the output of IC3 goes high enough, current will eventually flow through D2, R18, LED1 and D3. If it goes low enough, current will flow through D1, LED1, R18 and D4. The voltage level needed to begin to light LED1 is roughly 0.7V (for D2) plus 2V (for LED1) plus 1V (for R2, assuming that LED1 will just become visible at 1mA) plus 0.7V (for D3), equals 4.4V. Similarly, -4.4V will be needed to begin to illuminate LED1 on negative peaks, so a signal of around 8.8V p-p will begin to give an indication. The LED will get brighter as the signal increases above this level, and can thus be used to give a rough measure of higher signal levels.

To return to the main signal path, the output of IC5 is fed to the ADC circuit consisting of ICs 6, 7, 8, 9, 10. The action of this circuit has been described in ETI, November 1985. The output of the ADC will be in a complemented sign and magnitude format. IC11 buffers the output of the converter and drives the data lines D7 to D0 when STM is low.

There is no need for a sample and hold circuit prior to the ADC because this function is one of the duties of IC5. If the clock of IC5 is stopped, its internal state will effectively be frozen and the output will remain steady for several ms before the leakage of internal charges cause it to droop. The conversion time of only a few µs is more than enough for a very effective sample and hold. When the control circuit issues the START CONVERSION signal (SCS) to the ADC, it simultaneously turns off the clock to IC5 and will not re-start it until the conversion has finished.

The circuitry to retrieve the sound
The Final Circuit

In the circuit presented here, the two mobile filters, IC5 and IC13, are considered as part of the same filter and component values chosen accordingly. This avoids the adding of the -3dB attenuation, at least as far as these filters are concerned, and has one or two other advantages. The two high-Q sections are placed before the ADC which means that there will be a rise in the gain at frequencies approaching the cutoff point: pre-emphasis. The two-Q sections after the DAC, besides completing the filter profile, in effect provide de-emphasis. The hypothetical requirement for very steep filter slopes has been relaxed since it was based on the implicit assumption that the spectrum of an audio signal is flat, whereas the amplitude of higher frequency components will generally be very much less than that of lower frequencies. The filter requirements to achieve good sound quality are therefore not as strict as it would seem.

There is the additional factor that filters with very steep cut-off slopes tend to have poor transient response and are prone to ringing, so it's a matter of choosing the best compromise.

To complete the sound sampler, the articles to follow will describe the keyboard interface and the digital control circuit.

amount of pre-emphasis to the higher frequency components of the signal before sampling and de-emphasising it afterwards. It's not good enough to tack an RC circuit to one of the op-amps to give a 6dB per octave lift at the input and corresponding circuit for a 6dB per octave cut at the output. Considerations of making life more difficult for the input LP filters aside, the more important point is that when the sampled sound is played back at a different pitch, the entire frequency spectrum will be shifted. The result is that the emphasised part no longer matches the de-emphasis profile, so the upper frequencies will be amplified or attenuated in a way that was not intended. On the other hand, it does seem rather extravagant to use extra tracking filters just for the emphasis.

The Final Circuit

In the circuit presented here, the two mobile filters, IC5 and IC13, are considered as part of the same filter and component values chosen accordingly. This avoids the adding of the -3dB attenuation, at least as far as these filters are concerned, and has one or two other advantages. The two high-Q sections are placed before the ADC which means that there will be a rise in the gain at frequencies approaching the cut-off point: pre-emphasis. The two-Q sections after the DAC, besides completing the filter profile, in effect provide de-emphasis. The hypothetical requirement for very steep filter slopes has been relaxed since it was based on the implicit assumption that the spectrum of an audio signal is flat, whereas the amplitude of higher frequency components will generally be very much less than that of lower frequencies. The filter requirements to achieve good sound quality are therefore not as strict as it would seem.

There is the additional factor that filters with very steep cut-off slopes tend to have poor transient response and are prone to ringing, so it's a matter of choosing the best compromise.

To complete the sound sampler, the articles to follow will describe the keyboard interface and the digital control circuit.

amount of pre-emphasis to the higher frequency components of the signal before sampling and de-emphasising it afterwards. It's not good enough to tack an RC circuit to one of the op-amps to give a 6dB per octave lift at the input and corresponding circuit for a 6dB per octave cut at the output. Considerations of making life more difficult for the input LP filters aside, the more important point is that when the sampled sound is played back at a different pitch, the entire frequency spectrum will be shifted. The result is that the emphasised part no longer matches the de-emphasis profile, so the upper frequencies will be amplified or attenuated in a way that was not intended. On the other hand, it does seem rather extravagant to use extra tracking filters just for the emphasis.

The Final Circuit

In the circuit presented here, the two mobile filters, IC5 and IC13, are considered as part of the same filter and component values chosen accordingly. This avoids the adding of the -3dB attenuation, at least as far as these filters are concerned, and has one or two other advantages. The two high-Q sections are placed before the ADC which means that there will be a rise in the gain at frequencies approaching the cut-off point: pre-emphasis. The two-Q sections after the DAC, besides completing the filter profile, in effect provide de-emphasis. The hypothetical requirement for very steep filter slopes has been relaxed since it was based on the implicit assumption that the spectrum of an audio signal is flat, whereas the amplitude of higher frequency components will generally be very much less than that of lower frequencies. The filter requirements to achieve good sound quality are therefore not as strict as it would seem.

There is the additional factor that filters with very steep cut-off slopes tend to have poor transient response and are prone to ringing, so it's a matter of choosing the best compromise.

To complete the sound sampler, the articles to follow will describe the keyboard interface and the digital control circuit.
Andrew Armstrong sets the pace with a digitally-controlled variable delay unit for windscreen wipers.

You are trundling along the road in your car. A light drizzle starts. You switch on the windscreen wipers. SCRAPE-SCRAPE-SCRAPE. The rain is heavy enough to obscure your vision but not heavy enough to lubricate the wipers. You switch on the fixed rate intermittent wipe. SCRAPE-SCRAPE-SCRAPE. Not slow enough! Until now, your only solution was to turn up the radio very loud to drown out the sound of wipers on (almost) dry glass. Now you have an alternative.

The Autowipe is quick and simple to install. It requires just four connections to the motor wiring and no bodged holes in the dash — especially useful on the rear wiper of estate cars and hatchbacks. Installation typically takes 15 minutes. The connections are 0V, the +12V motor supply, and the normal speed motor wire, cut in two with both ends joined to the gadget.

The time period is set by triggering a single wipe of the screen, and another after the desired interval has elapsed. The unit remembers the interval and keeps on working at this rhythm (give or take 10%) until cancelled or reset.

The circuit described here is suitable only for negative earth cars, in which the switching to the wiper motor is in the supply side rather than the ground side. This includes the vast majority of cars on the road now. The circuit may be modified to cope with other arrangements, and some notes are supplied to help the experienced constructor who may wish to modify the design for different applications.

Principles

A timer starts when the switch is turned on briefly for the first time, and its state is stored on the second switch operation. The timer is then cycled repeatedly — the windscreen wipers being operated once in each cycle. A third switch operation, if it occurs when the wipers are stationary, resets and restarts the timer. A fourth operation of the wiper switch stores the new time period (between third and fourth switch operations). If no fourth operation is received, the unit times out after about 30 seconds.

The timing is digital in nature, and uses a four bit binary counter. This provides 14 usable time periods, since both zero and terminal count are not valid time settings. In order that this quantisation of available timings is not a nuisance, the speed of the clock oscillator is controlled by the state of the counter. The clock starts off fast when the time period is being set and slows as the period lengthens. In this way, the accuracy of the timer (expressed as a percentage of the required time period) remains constant. A limit is placed on the oscillator speed so that it does not use up too many possible states while the wipers are crossing the screen the first time the switch is operated.

Earlier designs used an analogue timer, but in damp weather leakage currents caused a significant timing drift over a period of five minutes. The digital design is much less susceptible to this, though condensation on bare tracks can cause problems.

Construction

The first job is to link the top and bottom sets of tracks on the PCB. The board is laid out so that none of the pads on the top of the board connect to components — they are all simply links to the bottom. This simplifies both assembly and repair. The preferred method of joining the two sides is to use track pins. If these are unavailable, wire links may be used.

It's a good idea to spray the component side of the PCB with lacquer once the track pins are soldered on both sides. This will ensure that even the tracks which run underneath components are coated. This can prove to be
When the wiper switch is switched on, a logic 1 is applied to the input of IC6a via R17 (which is there to protect the input). The inequality of the time constants of R15/C6 and R16/C5 ensures that there is a brief period when both of the inputs of IC5c are at logic 1. This results in a brief negative going output pulse, which is inverted by IC6b and which then clocks the flip-flop, IC1a. The inequality of the time constants ensures that a transition from logic 1 to logic 0 on R17 will not cause a clock pulse.

The fact that both inputs to IC5c have RC time constants means that electrical noise is rejected to a large extent. Should electrical noise or switch bounce prove to be a problem in use, then both time constants may be increased in proportion.

The first clock pulse switches IC1a so its Q output goes to logic 1. This enables the relay drive, via IC5d. The Q output goes to the reset inputs of IC1b, and the counter, IC2, via R10. The counter is therefore allowed to start counting up as soon as C7 has discharged to logic 0 via R10. We shall come to the purpose of C7 later.

The oscillator which clocks the binary counter is derived from a standard configuration, but it has been designed so that the discharge path of C1 is separate from the charge path, and is connected externally to the oscillator part of the circuit. This means that the cycle time of the oscillator can be controlled by the voltages applied to the discharge resistors.

These resistors, R5 to R8, are approximately binary weighted, and connected to the outputs of the binary counter. To limit the maximum oscillator speed to something useful, while leaving the slower speeds almost the same, an extra fixed discharge resistor, R3, is placed in series with the discharge path.

Clearly, if the counter is allowed to reach state 15 (1111) then there will be no discharge path for C1, and the oscillator will stop. This does not matter because when the counter reaches this state, the terminal (or carry) output, IC2, pin 17, switches to logic 0. This resets the first flip-flop, IC1a, via IC6c, IC5b, and IC5a, which means that the unit has timed out.

There is only one further point to make about the oscillator and counter. IC3 must have a sufficient slew rate to clock the CMOS counter used. A 741, for example, will not work. Having tried one, out of curiosity, I can report that the counter will count up for a while, but normally stops when it is time for the third most significant bit to switch. TL081s and LF351s with a 13V/microsecond slew rate are perfectly adequate.

Back to the main sequence of operation. If a second clock pulse is applied (the wiper switch is operated again) before the counter reaches terminal count, then IC1b is clocked. This has the effect of latching the counter output in the transparent latch, IC4. The counter up/down input is switched to down, and the counter now counts down from whatever number it has reached until the terminal counter bar output switches over. This now occurs at zero, because the counter is in the down mode. The down count takes the same period of real time as the up count took, since the oscillator is progressively speeding up rather than slowing down. When terminal count is reached, the relay is energised for a period set by the time constant of R19 and C3. This starts a wipe of the windscreen, which is then completed by the park switch in the motor.

While the relay is energised, the counter is parallel loaded with the latched count data, so that a new down count can be started from the same number. Any clock pulse generated on the output of IC5c as a result of the wipe, is prevented from resetting the flip flops by IC6b during this period.

The terminal count output is prevented from resetting the flip flops by IC6b as long as IC1b is set.

If the wiper switch is operated when the wipers are stationary, the resulting clock pulse from IC5c is allowed through to the flip-flops, and it switches over IC1b. A reset pulse is applied to IC2 via C7, with R11 in series to limit the peak current in the input protection diodes when it switches back the other way. IC2 is now allowed to count up, and the circuit is in the state it was in after the first operation of the wiper switch. It is waiting for a new time setting.
PARTS LIST

RESISTORS (all 1/4W 5%)
R1, 8 39k
R2, 4 100k
R3 47k
R5 330k
R6 150k
R7 82k
R9 47R
R10 1M
R11, 17, 18, 20 10k
R12 2k
R13, 14, 15, 16 470k
R19 10M

CAPACITORS
C1, 2, 4 10µ, 16V
C3, 7 100n
C5 22n
C6 22n

SEMICONDUCTORS
IC1 4013
IC2 4516
IC3 TL081
IC4 4042
IC5 4093
IC6 4001
DT-8 1N4148
ZD1 BZ18BC 15V
Q1 BC212

MISCELLANEOUS
RLA OUD 12V RELAY
PCB; 4 way 0.2"-pitch screw connector block; track pins for through-board connections (see text).

Fig. 2 Component overlay for the Autowipe PCB.

Fig. 3 Test harness circuit.

important if the PCB is to be mounted in the engine compartment of a car, because condensation can sometimes occur under these circumstances. The components may then be difficult to clean and the pins may not be clean. If the PCB is to be mounted in the engine compartment of a car, because condensation can sometimes occur under these circumstances, it is important to clean them up with a glass fibre brush. Another solution which has worked is to pre-tin the pins with the aid of a corrosive flux. The flux must then be cleaned off the pins very thoroughly, or else the board will fail due to the tracks being eaten through after a few months.

When all the components are fitted, a bench test is in order. The best way to do this is with a test harness (Fig. 3). Switch on the supply, and wait ten seconds for C4 to charge up. With the aid of a digital watch operate the switch twice, at a ten second interval. Time the flashing of the LED, and check that its period is between nine and eleven seconds. If it is far out, then check that R5 to R8 and D2 to D5 are properly fitted. If nothing happens, or if the relay just switched on, check that both parts of the flip-flop switch over as appropriate, and then move on to checking that the clock oscillator works, and that a pulse appears on IC5 pin 10 when the switch is turned on. It might also be worth checking whether Q1 is switching but failing to operate the relay — such faults have been known.

Once the board is shown to be in good working order, a liberal coat of lacquer should be applied to the underside, and allowed to dry thoroughly.

Installation

There are two points requiring careful consideration. The first is to find a place to mount the PCB, within reach of the wiring of the windscreen wiper motor. The second is to discover which of the wires going to the motor is which.

The first of these depends on the individual car, so only general advice can be given. Any flat surface, at whatever angle, near to the motor, may be suitable. It should not be in direct line with any spray which may come in through the radiator grill, nor should it be somewhere where corrosion is obviously occurring. If there is a convenient access to the wiring inside the car, then this is a preferable mounting place, especially if there is also a convenient plastic panel to fix the PCB to.

The photographs of the board in situ show it on a removable plastic panel inside a Maestro, close to the position of the fixed slow wipe unit supplied with the car. I found the place by listening to the clicking when the slow wipe was in operation.

The only way to identify the wires non-destructively is to find a connector somewhere in the windscreen wiper motor wiring.
The positive connection can be found with the aid of a meter first of all, and then it should be possible to identify the standard speed connection to the motor by finding which one receives a continuous supply only when the wiper switch is in the standard speed position. This wire should be cut and connected to the unit (Fig. 4).

The positive supply may be obtained via a tap-in connector, and the OV connection may be taken to any convenient bolt which passes through the metallic structure of the car. A quick final test is now all that is needed before the unit is ready for use.

It has been used on a number of different cars, including an Austin Maxi, Austin Maestro, Morris Marina, Morris Ital, Jaguar XJS, Hillman Hunter and Triumph Herald. This last one was positive earth, and the design was modified accordingly.

Should the unit be used on any car in which the switch wire is not grounded by the park switch in the motor, then an external pulldown resistor may have to be connected to the terminals, as shown in the test circuit (Fig. 3).

The operation sequence is:
1. Operate wiper switch to wipe screen once. Repeat after a delay of x. The intermittent switch will now operate at a period of x (±10%), with the switch in the off position, until a third manual wipe is carried out or the switch is turned on for several seconds continuously, or the ignition is turned off. It is always possible to switch the wipers on continuously (even if the accessory should malfunction), so there is no safety hazard.

Sniggles And Contrivances

There is one more important detail to mention. It is possible that, by mistake, a time period may be set which leaves the wiper stationary for only a small fraction of a second. If this happens, it is very difficult to flick the wiper switch during the stationary period to reset the circuit. If the circuit is allowed to run for a few seconds C4 will, on average, discharge rather than charge, and after a while IC1a will be reset via IC5a. This part of the device has been nicknamed the ‘anti-knickers-in-a-twist’ circuit.

To improve reliability, the power supply connections to the ICs are protected from spikes and reverse polarity connection by K9, ZD1, and C2. If the circuit should accidentally be connected to the power the wrong way round, the only damage likely is that R9 may smoke mightily.

If the unit is to be used on a positive earth car, the circuit can be modified to work, provided that the wiper switch is in the power rather than ground side of the motor. Here are the steps required:

1) Exchange C5 and C6.
2) Replace R9 with a wire link.
3) Cut the negative track (labelled 0V) and insert a 47R resistor.
4) Cut the track connecting the relay NO contact to +ve and reconnect it to the –ve where it enters the board before the 47R resistor.
5) Make sure that the power is connected so that the +ve is connected to chassis, and the OV board connection to the –12V supply.

ETI JANUARY 1986
Continuing his series on low-cost test equipment modules, Mike Meakin describes an un-enclosed counter of the 8-digit kind.

This module measures frequency, period and time intervals and can also be used as a totalizing event counter. In common with the other instruments in our Modular Test Equipment series, it is designed for use as a free-standing board and thus avoids the hardware costs associated with cased equipment. To further reduce costs, the module is not equipped with a power supply but draws its current from the bench power supply module described in our October issue. Readers who do not wish to construct the bench supply should be able to find an alternative power source without too much difficulty.

The basic module has a sensitivity of 250mV RMS and a maximum input frequency of 10MHz. A plug-in prescalar module extends frequency measurements up to 150MHz. Gate times of 10ms, 100ms, 1s and 10s can be selected in the frequency mode and either 1, 10, 100 or 1000 cycles can be averaged in the period and time interval modes. The reading displayed is in kilohertz in the frequency mode and in microseconds for period and time interval modes. With a 10s gate time, the frequency can be measured to 0.1Hz resolution whilst in period and time interval mode the resolution is 0.1us. Leading zero blanking and decimal points are automatically selected and overflow is indicated by the left-most decimal point being illuminated. Simplicity is the keynote of this design and not all of the available functions of the IC are utilized. No provision has been made for frequency ratio measurements and the circuitry requires that time interval measurements are repetitive. Single shot events can only be measured by resetting the counter and initiating the event twice. The first pulse 'primes' the counter and the second pulse is measured and displayed. The polarity of the measured pulse can be selected by SW1 so that either negative or positive going pulses can be measured. In the event-counting mode this switch determines the polarity of the edge on which the counter is incremented.

Both AC and DC coupled inputs are provided. The DC input...
Fig. 1 Circuit diagram of the universal counter/timer.

HOW IT WORKS

The clever bits are taken care of by IC2. The Intersil application note provides comprehensive information on this device and readers who wish to know more about its operation are advised to obtain a copy. IC1 amplifies and squares the input signal to provide the necessary digital signals for IC2.

It is unusual to use a digital CMOS IC as a linear amplifier and it is important that a National 74HCUO4N is used in this position. This is an unbuffered high speed CMOS hex inverter and no other type will function correctly in this position. It is biased by RV1 and R4 to its linear operating region giving an input impedance of 100k. R3 together with the internal clamp diodes of IC1a protect the input up to ±25V. If input signals greater than this are anticipated then a suitable input attenuator should be constructed. IC1e amplifies the signal and IC1a and b form a Schmitt trigger to square it. IC1c and SW1 select the polarity of the pulse to be measured in time interval mode and the edge on which the counter is incremented is programmed.

The position of SW1 is unimportant for the other modes. SW2 is used in the event-totalizing mode to reset the counter.

Fig. 2 Circuit diagram of the prescalar.

is mainly used for frequencies below 20Hz and measurements of pulses from logic circuitry. The logic threshold levels and AC sensitivity are controlled by a bias preset allowing inputs from both TTL and CMOS circuitry to be accepted. An SP8629 is used as a high frequency prescalar. It operates with input frequencies between 10MHz and 150MHz and has a typical sensitivity of 100mV RMS. The prescalar plugs into the main board from which it derives its power via the top pin of SK1. The manufacturer's standard application circuitry has been used with extra input protection provided by R1, D1 and D2. As the device operates at high frequencies, the prescalar PCB has a ground plane on the upper side which is connected to 0V via a track pin.

Because it is intended that the module be used without a case, all labelling of switch functions, sockets and so on will have to be done on the PCB itself. Various methods were described in the Modular Test Equipment article in the November issue, including the...
use of rub-down lettering which can give a very neat end result. Another method which has since been suggested is to mark the necessary legends on by hand using drawing ink. The board would have to be thoroughly cleaned before starting, preferably with a suitable solvent, and when finished the lettering could be protected with a coat of clear lacquer. Whichever method you use, the lettering will almost certainly need to be completed before you assemble any of the components onto the board.

Construction
The board is double sided and for reasons of economy the holes are not plated through. The connections are made by track connections

PARTS LIST — COUNTER

<table>
<thead>
<tr>
<th>RESISTORS (all 1/4W, ±5%)</th>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R5, R6</td>
<td>10k</td>
</tr>
<tr>
<td>R2, R3</td>
<td>1k</td>
</tr>
<tr>
<td>R4</td>
<td>100k</td>
</tr>
<tr>
<td>R7</td>
<td>10M</td>
</tr>
<tr>
<td>RV1</td>
<td>1k0 enclosed horizontal preset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3, C9</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C5, C6</td>
</tr>
<tr>
<td>C7</td>
</tr>
<tr>
<td>C8</td>
</tr>
<tr>
<td>C10</td>
</tr>
</tbody>
</table>

PARTS LIST — PRESCALAR

<table>
<thead>
<tr>
<th>RESISTORS (all 1/4W, ±5%)</th>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1k</td>
</tr>
<tr>
<td>R2, R3</td>
<td>100k</td>
</tr>
<tr>
<td>R4</td>
<td>10R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3, C4, C5</td>
</tr>
<tr>
<td>C6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
</tr>
<tr>
<td>IC2</td>
</tr>
<tr>
<td>LED1, 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK1, 2</td>
</tr>
<tr>
<td>SW1</td>
</tr>
<tr>
<td>SW2</td>
</tr>
<tr>
<td>SW3, 4</td>
</tr>
<tr>
<td>XTAL1, XTAL1</td>
</tr>
</tbody>
</table>
pins. These should be inserted in the board and carefully soldered on both sides.

Molex PCB plugs are used to mount the display and provide some of the throughboard connections. Prepare two sets of 16-way connectors made up from one ten way and another ten way cut down to six ways. Insert the longer side of the connectors into the board so that about 2mm of each pin protrudes from the underside of the board. Turn the board over and solder the top connections. Use plenty of heat and allow the solder to flow around the pad.

Inspect the board for solder splashes and good clean joints. The two displays should then be mounted on the pins and gently connected. Use plenty of heat and solder the top connections. The remaining components can now be soldered onto the board. Note that one end of R5 is used as a throughboard connection and make sure that it is soldered on both sides. A socket should be used for IC2 and although the device is static protected the usual precautions should be taken. The crystal is attached to the board by a double sided adhesive foam pad. With any PCB it is a good idea to clean the board with a suitable organic solvent to remove the flux residue. Do remember that these solvents can attack the plastic of the DIL switches and the displays.

Construction of the prescalar module is very straightforward. A track pin must be inserted in the position indicated on the overlay and soldered on both sides so as to connect the ground plane to 0V. The only other point to note is that no IC socket should be used for the SP8629. Using a socket would probably upset the high frequency performance.

Testing
This module requires only a single 5V supply capable of providing up to 250mA. Adjust RV1 and CV1 to their mid-positions, select the frequency mode and the 1s gate time, then switch on the power. The right most LED should display zero. Apply an input signal of about 1V peak to peak to the AC input and check that you get sensible readings on the display. CV1 should be adjusted to give a display of 10000.000 kHz when connected to a 10MHz frequency standard, but for most uses can be left in its mid-position. The other functions and ranges should then be checked. A 555 connected as an astable can provide a signal suitable for checking the period, time interval and event totalizing modes. RV1 can be set to its optimum position by gradually reducing the amplitude of an AC input signal and adjusting the position of RV1 to obtain consistent readings.

The prescalar module is tested by simply plugging it into the main board and connecting a suitable input signal. A short wire aerial can often pick up sufficient signal from low power transmitters or even the stray radiation from FM tuner local oscillators. Don't forget to multiply the display readings by one hundred to obtain the correct frequency!
A METAL Z80A COMPUTER

Colleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from £10.95 to £17.75 + VAT; manuals £1 - £5.)

The Interak User Group has 14K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete - now in its fifth successful year! Send us your name and address with 40 pages of details and we will send a plastic computer for playing games, and proud of it). If you can get your own parts (but we can supply if you can't) all you need

New Ferry, Wirral, Merseyside L62 5AG
Telephone: 051-645 3391

Tel. Orders: 01-567 8910

STEWARD OF READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: 0734 68041

Callers welcome 9am to 5.30pm Monday to Saturday inclusive

This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for List.

Please check availability before ordering, CARRIAGE only £12. VAT to be added to Total of Goods & Carriage, Please allow 21 days for delivery.
Due to the recent change of manufacturer, a large number of boards have not yet been priced. The code can also be used to identify the year and month in which a particular project appeared: the first two numbers are the year, the third and fourth are the month and the number after the hyphen indicates the particular project.

Our terms are strictly cash with order — we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until after we receive payment.

How to order:
Indicate the boards required by ticking the boxes and send this page, together with your payment, to: ASP Readers' Services, PO Box 35, Wolsey Road, Hemel Hempstead, Hertfordshire HP2 4SS. Payment in sterling only please. Prices subject to change without notice.

How to order:
Indicate the boards required by ticking the boxes and send this page, together with your payment, to: ASP Readers' Services, PO Box 35, Wolsey Road, Hemel Hempstead, Hertfordshire HP2 4SS. Payment in sterling only please. Prices subject to change without notice.

<table>
<thead>
<tr>
<th>Year</th>
<th>Board</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>E/8402-1 Speech Board</td>
<td>POA</td>
</tr>
<tr>
<td>1984</td>
<td>E/8402-2 MP (Modular Preamp) Disc input</td>
<td>11.47</td>
</tr>
<tr>
<td>1984</td>
<td>E/8402-3 MP Output stage (stereo)</td>
<td>3.80</td>
</tr>
<tr>
<td>1984</td>
<td>E/8402-4 MP Delay/PSU</td>
<td>3.80</td>
</tr>
<tr>
<td>1984</td>
<td>E/8402-5 MP Tone, main (mono)</td>
<td>3.80</td>
</tr>
<tr>
<td>1984</td>
<td>E/8402-6 MP Tone, filter (stereo)</td>
<td>3.80</td>
</tr>
<tr>
<td>1984</td>
<td>E/8402-7 MP Balanced output (stereo)</td>
<td>3.80</td>
</tr>
<tr>
<td>1984</td>
<td>E/8402-8 MP Headphone amp (stereo)</td>
<td>3.80</td>
</tr>
<tr>
<td>1984</td>
<td>E/8402-9 MP Roland</td>
<td>POA</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-1 Power Meters</td>
<td>6.93</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-2 Z80 DRAM</td>
<td>10.24</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-3 Auto Light Switch</td>
<td>4.11</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-4 ZX81 EPROM Prog</td>
<td>11.00</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-5 Mains Borne RC Xmer</td>
<td>3.70</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-6 Centronics Interface</td>
<td>4.86</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-7 Variol</td>
<td>7.95</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-8 Midi Drum Synth</td>
<td>3.63</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-9 Oric EPROM Bd</td>
<td>20.47</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-10 Spectrum Joystick</td>
<td>3.52</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-11 Alarm Clock</td>
<td>9.45</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-12 EPROM Emulator</td>
<td>12.42</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-13 Infrared Transmitter</td>
<td>3.96</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-14 Infrared Receiver</td>
<td>3.96</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-15 EX42 Kbd, Interface</td>
<td>3.93</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-16 Dry Cell Charger</td>
<td>2.04</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-17 Echo Unit</td>
<td>5.95</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-18 Digital Cassette</td>
<td>10.25</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-19 Disco/Party Strobe</td>
<td>5.31</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-20 DTMF/AM/FM Radio</td>
<td>3.80</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-21 Control Port-controlboard</td>
<td>12.70</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-22 Control Port-controlboard</td>
<td>12.70</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-23 Control Port-controlboard</td>
<td>12.70</td>
</tr>
<tr>
<td>1984</td>
<td>E/8403-24 Capacitance Meter</td>
<td>3.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Board</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>E/8501-2 DRAM Card Update</td>
<td>3.61</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-3 Digital Delay</td>
<td>27.78</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-4 Data Logger</td>
<td>12.28</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-5 Combo preamplifier</td>
<td>4.74</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-6 THTD meter mains PSU</td>
<td>17.26</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-7 Paraphrase Equaliser</td>
<td>10.42</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-8 Paraphrase Equaliser</td>
<td>4.93</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-9 Paraphrase Equaliser</td>
<td>12.05</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-10 Paraphrase Equaliser</td>
<td>6.21</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-11 Paraphrase Equaliser</td>
<td>17.26</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-12 Paraphrase Equaliser</td>
<td>3.56</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-13 Paraphrase Equaliser</td>
<td>3.82</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-14 Paraphrase Equaliser</td>
<td>8.22</td>
</tr>
<tr>
<td>1985</td>
<td>E/8501-15 Paraphrase Equaliser</td>
<td>5.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Board</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>E/8501-10 Paraphrase Equaliser</td>
<td>POA</td>
</tr>
<tr>
<td>1986</td>
<td>E/8501-11 Paraphrase Equaliser</td>
<td>POA</td>
</tr>
<tr>
<td>1986</td>
<td>E/8501-12 Paraphrase Equaliser</td>
<td>POA</td>
</tr>
<tr>
<td>1986</td>
<td>E/8501-13 Paraphrase Equaliser</td>
<td>POA</td>
</tr>
</tbody>
</table>

Please allow 28 days for delivery.

Due to the recent change of manufacturer, a large number of boards have not yet been priced. The above list does not include any boards from projects published before the beginning of 1984, although a number of these are still available. All queries as to price and availability should be directed by letter only please to the address shown on this order form.
Analogue Opto-Isolator

P. Cuthbertson, Inverurie.

This circuit accepts an analogue input and transfers it to the output faithfully without any electrical connection, the link being optical. It is more usual to see V to F converters being used for this, but they demand more cumbersome circuitry and unless a train of pulses is required, the linear approach should be considered. Additionally, V to F converters integrate or smooth out the incoming waveform, which may or may not be desirable. With slight modifications (changing a few resistor values) this circuit will feed the A/D converters of, for example, a BBC without introducing loops.

Linearity is maintained by using two optoisolators; these are both non-linear, but equally so, and the effect can be made to cancel out. Although not done on the original, a dual type could be used to obtain the benefits of equal temperatures. I don’t think this is as important as it

Multi-Channel Electronic Signal Switching

A. Armstrong, Leighton Buzzard

This tech-tip shows how to use electronically latched switching of up to 8 signals. It is intended for use in home audio systems. Unlike many electronically latched systems, it can be made to remember which position it was in when last used. Indicator driving is no problem either.

The NAND gates shown in the first figure are arranged so that, as any switch is pressed, the outputs of the latches take up the binary number corresponding to the switch pressed. Five-input NAND gates are used for eight switch driving, so one can either use 4068s and connect the extra inputs to logic 1, or five-input gates can be constructed from inverters and diodes as shown in the lower figure. In this case, the only pull-up resistors required will

Touch Switch

All Toalf
Ringwood

This is a reliable touch switch design with wide application, which uses only common or garden components. In the basic circuit, the output is normally at logic 0. When the contact is touched, the output smartly switches to logic 1.

IC1a is used in an oscillator circuit which produces a frequency of approximately 200kHz. All the time that the contact is not being touched this high frequency signal passes via CV1 and C2 to the input of IC1b. This Schmitt inverter switches at the signal frequency and keeps C4 charged.

When a finger is placed on the touch plate, the signal reaching the input of IC1b is substantially reduced by the potential divider action of CV1 and the capacitance of the finger. This in turn causes the output of IC1b to stop switching and remain at logic 0. C4 discharges through R3 and the output of IC1c switches to logic 1.

CV1 should be adjusted for optimum sensitivity. Some units may require a different value of C1 from that shown owing to the tolerance on the Schmitt levels of the 74C14 - the approximate operating frequency is

\[f = \frac{2}{R1 \times C1} \]

C2 prevents hum pickup from causing IC1b to switch. If preferred, 4093s wired as inverters may be used instead of the 74C14s.

The second figure shows two touch switches used to set and reset a latch. Obviously the principle could be extended to many more ways, but still only one oscillator would be needed.
would be on a V to f circuit, and besides, the isolators are dissipating approximately equal power.

The two halves of the circuit are powered from separate supplies. The network R1, 2, 3, 4 attenuates the incoming voltage and offsets it. This ensures that the LEDs always have a certain amount of current flowing in them. IC1 drives both LEDs and the voltages on its inputs are nearly equal. Current flows in R9, the offset is removed and the gain adjusted in the output circuit, IC4.

To get the best linearity, adjust RV1 to the centre of its travel and take two pairs of measurements of output versus input, one pair near the more positive end of the range of interest, the other pair near the more negative end of the range. Divide the differences between the adjacent pairs of inputs by the difference between the adjacent pairs of output values, giving two ratios which should be approximately equal. Adjust RV1, making a note of how far it has been adjusted, and repeat the measurements and calculation. Compare this new set of ratios with the previous lot. There are three possibilities: the error will have diminished, in which case adjust further in that direction; it will have increased, in which case reverse the adjustment direction; or you may have adjusted past the point of linearity in which case you will note that the ratio which was the larger is now the smaller. In this last case reverse the direction of adjustment but don't adjust too far back again. Repeat until the linearity is acceptable.

In fact, the linearity is only a few percent out with a 330 ohm resistor in place of R7 and RV1. If you can stand a certain amount of non-linearity substitute the resistor. If you possess a ramp generator and scope capable of XY display then you will be able to adjust the linearity by eye.

Adjust the gain and offset once the linearity is satisfactory. Do not be afraid to alter resistor values to suit other input values. C1 is not usually necessary but I have included it as it stops any tendency to oscillation. The power supplies are simple 3 terminal regulators. The original circuit runs IC1 at ±15V but one may get away with just plus 15V, connecting pin 4 to ground. D1 would no longer be needed then since it only serves to protect the optoisolator LEDs from polarity reversal.

be the ones directly connected to the gates, a total of six instead of eight.

This scheme can be carried out using one hex inverter rather than six 4068s, but it is untidy with all those diodes hanging on the board. If you only want four way switching, two triple, three-input gates can be used, leaving two gates spare. A 4052 would then be used to switch both channels of the stereo source.

Only one 4051 is shown in the diagram here, but in practice three would be used, with the address lines in parallel. Two of them would switch the signal and the third the indicator LEDs. It is quite safe to put 5mA through this type of device, so the common input/output pin is connected to ±7.5V via about 1kΩ and the LEDs are connected to the switched terminals. Then one LED will illuminate at a time, corresponding with the channel selected.

Battery backup can easily be added. The positive connections to all the CMOS gates and pullup resistors should be connected to the battery supply, but nothing else should be. The only thing to remember is that it is possible to change the state of the latch while only the battery supply is present. This circuit has been tested and is in use.
The foil pattern for the Wallmate board.
The top and bottom foils for the Sound Activator board.
The foil patterns for the Modular Test Equipment Universal Counter: above and above right, the top and bottom foils for the main board and below, the underside foil and the upper side groundplane foil for the prescaler module.
The top and bottom foils for the Autowipe board.
The ORIGINAL FREE OF CHARGE dial up data base.

DISTEL

The ORIGINAL FREE OF CHARGE dial up data base.

Buy, browse or place YOUR OWN AD for.

THE ALADDIN' S CAVE OF COMPUTER AND ELECTRONIC EQUIPMENT

**PRICE GUARANTEE you will be delighted with this product, the quality for the price, quality found only on monitors costing 3 TIMES OUR PRICE. In fact, this is only half the price of hundreds of pounds each, the 28 has all the standard requirements for data base, business or hobby communications. All in one unit.

300 baud FULL雙連接 move to FULL

- Full remote control
- Fully double density floppy standards
- Supplied with full data
- Modular construction
- Fully double density floppy standards
- Fits 2 wires to comm line
- 150 Jack plug and cable £2.25
- Carriage and Ins. £10.00

SPECIAL 300 BAUD MODEM OFFER

Another GIGANTIC purchase of these EX BRITISH TELECOM MDM1, 300 baud MODEMS allows us to make the FINAL REDUCTION, and for YOU to join the exciting world of data communications at an UNHEARD OF PRICE OF ONLY £29.95. Made to the last POST-300 standards at a cost of hundreds of pounds each, the 28 has all the standard requirements for data base, business or hobby communications. All in one unit.

- 300 baud FULL雙連接 move to FULL***
- Full remote control
- Fully double density floppy standards
- Supplied with full data
- Modular construction
- Fully double density floppy standards
- Fits 2 wires to comm line
- 150 Jack plug and cable £2.25
- Carriage and Ins. £10.00

D.C. POWER SUPPLY SPECIALS

GOULD OF443 enclosed compact switch mode supply with regulated outputs of +5v @ 5a, -5v @ 1.5a and -12v @ 2a. Dim 17 x 11 x 8cm. 110 or 240v AC input. £145.00 Carriage £15.00.

AMBER 48-0 V supplied with PSU for £49.50. Fits into a 48-0 V EURO Niger Delta system.

TWIN MAGTAPE CASSETTE unit for data capture, data storage, bridge to mainframe, etc etc. Only £24.95.

BUCKET handle MARK 1 modem, 300 baud, 1000's of stock items, cable, connectors, etc etc. Only £150.00.

PRESTEL modem, 300 baud, 1000's of stock items, cable, connectors, etc etc. Only £150.00.

NEW or little used condition ONLY £115.00 + Carr.

HEATSINK CENTAUR standard 4" x 4" x 1.25" high powered solid state heat sink. Price only £8.95.

COOLING FANS

- ETRI 128A 120 v 5 blade equipment fan £6.25 or 110v £4.95.
- NEW £145.00 Carriage £15.00.

CENTAUR standard 4" x 4" x 1.25" high powered solid state heat sink. Price only £8.95.

COOLING FANS

- ETRI 128A 120 v 5 blade equipment fan £6.25 or 110v £4.95.
- NEW £145.00 Carriage £15.00.

CENTAUR standard 4" x 4" x 1.25" high powered solid state heat sink. Price only £8.95.

COOLING FANS

- ETRI 128A 120 v 5 blade equipment fan £6.25 or 110v £4.95.
- NEW £145.00 Carriage £15.00.

CENTAUR standard 4" x 4" x 1.25" high powered solid state heat sink. Price only £8.95.

COOLING FANS

- ETRI 128A 120 v 5 blade equipment fan £6.25 or 110v £4.95.
- NEW £145.00 Carriage £15.00.

CENTAUR standard 4" x 4" x 1.25" high powered solid state heat sink. Price only £8.95.

COOLING FANS

- ETRI 128A 120 v 5 blade equipment fan £6.25 or 110v £4.95.
- NEW £145.00 Carriage £15.00.

CENTAUR standard 4" x 4" x 1.25" high powered solid state heat sink. Price only £8.95.

COOLING FANS

- ETRI 128A 120 v 5 blade equipment fan £6.25 or 110v £4.95.
- NEW £145.00 Carriage £15.00.

CENTAUR standard 4" x 4" x 1.25" high powered solid state heat sink. Price only £8.95.

COOLING FANS

- ETRI 128A 120 v 5 blade equipment fan £6.25 or 110v £4.95.
- NEW £145.00 Carriage £15.00.

CENTAUR standard 4" x 4" x 1.25" high powered solid state heat sink. Price only £8.95.

COOLING FANS

- ETRI 128A 120 v 5 blade equipment fan £6.25 or 110v £4.95.
- NEW £145.00 Carriage £15.00.
OPEN CHANNEL

There have been many developments in the telecommunications arena since I last wrote. First, it looks as though British Telecom's bid to buy a stake in Mitel is to be cleared by the Monopolies and Mergers Commission. The original £180 million bid — yes £180 million — was made in May of this year, and consequently referred to the Commission as many telephone equipment manufacturers like Plessey and GEC believe the acquisition would be harmful to them. And would it?

Let's think of the possibilities. If BT is allowed to buy the controlling share of Mitel, it can then push ahead with the manufacturer of small private automatic branch exchanges (PABXs) of the sort Mitel already makes. It currently buys these exchanges from Mikel, of course, as well as buying similar exchanges from other manufacturers (such as Plessey and GEC) — the difference being that as BT will, in effect, be manufacturing its own exchanges, a greater profit will be made from the equipment than that from other manufacturer's equipment. In the long term, BT is bound to increase its manufacturing capabilities to reduce the intake from other manufacturers — that is an inescapable fact. So on the face of it, yes, the other manufacturers have the right to grumble.

On the other hand, BT is now committed, since privatisation, to providing the best service for its customers (theoretically, it was before privatisation, too, but that's another issue). It stands to reason, therefore, that BT would be entering the manufacturing side of the industry, anyway. And if it doesn't purchase the capabilities in one swoop, by buying a controlling stake in a company such as Mitel, it will inevitably set up its own manufacturing organisation in stages over the coming years. The difference between these two alternatives is that BT can extend its timespan, of course. Plessey, GEC et al, have no reason to assume they are the rightful suppliers of equipment to BT — if they can supply suitable equipment to BT at an economic price then I am sure BT will not wish to make the equipment itself.

The best outcome of the affair must be a recommendation from the Monopolies and Mergers Commission that BT can buy Mitel if it wants, but that for a limited timespan it cannot increase its market share because of the manufacturing advantage. This will give other manufacturers a chance to get their houses in order.

Wire We Waiting

In an unprecedented attempt to awaken public interest in the possibilities of cable television systems, the Department of Trade and Industry is allocating £5 million in the form of grants, to companies involved in interactive cable television demonstrations. Since the first rumblings of the cable television revolution were first heard, back in 1982, less than £2 million has been given in support — so the new sum represents quite a step forward.

Through the Support for Innovation scheme run by the DTI, those eligible will receive up to 50% of the costs of providing the demonstration equipment. Equipment funded from this magnificent sum will, I am sure, persuade Joe Public that interactive cable television is all that it originally cracked up to be and better! In reality, Mr Public probably feels, and still will feel, that interactive cable television is just another gimmick to make him part with his money.

Wire-less Are We Waiting

The selection procedure to determine the organisers of proposed community radio stations is now underway. Community radio is planned to go on-air in the Spring, initially as part of an experiment lasting two years but eventually, it is hoped, on a full-time basis. If concluded and introduced satisfactorily, community radio will provide an important new service not performed by existing radio broadcasters — ie, the BBC and the IBA. Rumours abound, however, that there are still personnel on the advisory selection panel who (having very close links with these very same existing radio broadcasters) would not want community radio to take off without problems, or more importantly, would not want community radio to take off at all. I am convinced that the Home Office will look at all viewpoints most sympathetically and weigh up the situation thoroughly before allocating the franchises for the community radio station. Watch this space...

Why ARE We Waiting?

At the time of writing I've had no news from the CCIR meeting regarding the future of European television — ie, whether we're to go to the Japanese HDTV route, or the European extended C-MAC route. These things take time, I'm sure. It's taken us 50 years to get this far — we'll be damned if a few Japs can get us into a flap over what's best for our telly.

Keith Brindley

To save a few pennies on our projects at ETI, we often buy cheap bags of mixed components. Last week we received a pack of assorted CMOS ICs from B1-A-BAG and set about testing and sorting them out. All went well until we came across an IC with no markings on at all. 'Don't throw it away,' said Alf. 'It's just what I need to test my new IC, identifying machine.' He trotted off to his workshop and returned a few minutes later, proudly showing us the printout from his machine. This is what it said:

IC TYPE: MASK PROGRAMMED
ROM: 256 x 1

PIN 1 NC
PIN 2 Address line
PIN 3 Address line
PIN 4 Address line
PIN 5 Address line
PIN 6 NC
PIN 7 OV
PIN 8 NC
PIN 9 Address line
PIN 10 Address line

PIN 12 Address line
PIN 13 Data out
PIN 14 +V

CONTENTS:
Locations 0 to 254 contain 1
Location 255 contains 0

We were most impressed until it occurred to us that there was a much more likely identity for the IC.

To test our idea, we gave Alf a certain 4000-series CMOS IC to test on his machine. He soon returned with a puzzled look on his face and a printout exactly the same as the one above. Which IC did we give him?
The answer to last month's puzzle.

Let's suppose you actually tried to build an infinite resistor network. You could start off with a single section of two 4R resistors and a 5R, giving a resistance for the first section of 13R. Working from left to right, you could then add another pair of 4R resistors and a 5R. The resistance at the terminals would have dropped slightly because the 4R resistor of the first section is now in parallel with the second section. Adding a third section would reduce the resistance yet again, but by a much smaller amount than before.

By the time you had 100 or so sections connected, you'd be hard pressed to measure any change in resistance at all from adding another section, and when you reached a billion sections, even your ultra sensitive meter with one single electron resolution would have given up long ago. For an infinitely long resistor network, you would not have any change in resistance at all by adding another section, not even in theory.

Instead of adding another section to the right hand side, I want you to add one to the left. I know that means an infinitely long walk to the other end of the resistor chain, but it's all in a good cause. Let's call the resistance of the infinitely long resistor chain R, after its inventor. Adding another section at the left hand side gives a resistance at the new terminal of:

(9R + 4R)/All

Since the resistance of the new chain will be the same as that of the old one, we have:

All = (9R+4R)/All

This is an equation that we can easily solve for All, and we find that the resistance of the network is 12R.
We should remember that most of American books on electronic projects I have seen. There are a handful of Americanese, what readers want from do-it-yourself electronic projects, and although the book is written in Americanese, even British readers may find it a good read. Finally, although I wouldn't particularly recommend the book as being the best example of electronics project books (it is American, remember), you should remember that most of the projects described are designed with computer interfacing in mind, so those readers with potential for interface projects should find the book useful, if only for the ideas discussed. It is certainly one of the best written American books on electronic projects I have seen.

Electronic And Microprocessor-Controlled Security Projects

This book is all about home security systems — burglar alarms and such like — so it's specific in nature, which of course limits its own potential market. Some of the principles discussed, however, are general ones, so readers shouldn't rule it out before looking at it. Indeed, although specific security projects are discussed, a large part of the book is given to discussing general security principles. In content, the information is not particularly in-depth, but it does present an overview which may interest those readers who have never built security projects before and who require an easy introduction.

The first part of the book deals with security projects which are not microprocessor-controlled, while the second part describes those which are. Rather than using a home-computer-and-interface-type of arrangement for the microprocessor-controlled projects (which other writers would have done) the authors have designed and built their own dedicated microprocessor controller, details of which are given in chapter 4.

Each project (bar one) is designed on a printed circuit board (all patterns are given in the same size), although this won't prevent the dedicated electronics enthusiast from designing his own or even building the project on breadboard. Some of the more complex projects in the book are accompanied by board layout diagrams, timing diagrams and fault-finding charts.
Build a Personal Earth Station

Chapter 1 of this book starts (and I quote) "Most of us on planet Earth have several things in common. One of these is the television set," and from then on the book gets worse. Despite its title, the book gives no information at all on building your own satellite television receiving station, so it's a pity the UK's Trades Description Act doesn't apply to American books. The book only gives details on sitting commercially available receiving equipment. In this respect it's a bit like a 'Blue Peter' guide to making your own interplanetary spaceship!

The Experimenters' Guide to Integrated Circuits

Another book from the pen of Robert J Traister, this one provides much more meat for the electronics builder, albeit a little basic in parts. Mr Traister describes the fundamentals of integrated circuits how they are made, how they are packaged, how they are used, as well as some simple information regarding other components. General circuit and project building practices are also discussed, along with some of the author's views on safety in the electronics lab.

The differences between analogue and digital ICs are adequately covered and some of the many types of digital families are described. One area which is sadly lacking, however, is a description of CMOS ICs. The author doesn't even mention that he uses them in circuits! All regular ETI readers will know that CMOS ICs are an integral part of the electronics scene nowadays so no electronics book of this nature should dare ignore them. However, this is an American book, and from it we can only presume that CMOS devices have not achieved the popularity in America which they have here.

A good selection of circuits for experimentation and project building are included in the book, but they are a little biased in favour of analogue ICs. The Experimenters' Guide to Solid-State Diodes

What Robert J Traister did for ICs in the previous book, he now does for diodes in this book. The same major areas: manufacture, packaging, use, safety, construction techniques etc, are covered, this time in relation to the various forms of semiconductor diodes available to the electronics enthusiast.

With the ICs of the previous book, discussions of these areas can only be general because there are so many different types. But with diodes, on the other hand, much more specific information can be given. There are, after all, only a limited number of available types of diode. Mr Traister takes advantage of this and supplies some high quality and in-depth information. For example, Chapter 2 gives all the important specifications which will be needed by the average builder when choosing a diode for a particular circuit. It's not possible to give this type of information in a similar book on ICs.

A wide variety of projects is given in the book, ranging from simple diode protection and power supply rectification circuits to thyristor and triac control and LED meter applications.

This really is a most unusual book. It is packed with information about many aspects of electronic communications and transducers, but it's written in such a way as to confuse the reader into thinking that this is not what it's really all about! And if you're not confused by that description of the book, then you'd better read the book itself.

The bulk of the book is about electromagnetic and sound phenomena. Via experiments the author takes the reader through some fascinating ideas that would normally be presented in more orthodox ways.

For instance, the reader is told how to use transducers and amplifiers to listen to a variety of things including LEDs and LCDs, heart pacemakers, and various sounds not normally heard from car engines such as the alternator turning, the distributor and the fuel gauge. Thunderstorms, aircraft vibration and fish are also covered.

Along the way, however, the principles involved in these experiments and projects are described, so that just by working through the book from start to finish you should pick-up (excuse the pun) a great deal of knowledge. It's an unusual book, and it's only a pity more can't be written like it. Other authors take note!

Easy Add-on Projects

At last, I feel I'm on home ground with the first British book written in English. There's bit of a difference in price, too, from the American offerings. Owen Bishop, as you may know, is a respected author in the electronics world, and has written many other books of projects as well as several magazine articles. Recently, his attention has turned, like that of many electronics writers, to projects which interface to home computers. The home computer market has taken off nowhere as strongly as it has in the UK, so it seems only natural that UK authors could write about it well. Owen tackles the problem with his book in an authoritative way, describing projects which can be used with any of the home computers listed in the title.

The projects include a pulse detector, picture digitiser, model controller, bleeper, lamp flasher, light pen, magnetic catch, photo-flash and a weather station. All the projects are fairly simple and inexpensive to build, so beginners as well as the more experienced constructors will find the book a useful source of ideas. Sample programmes are included to get the projects up and running.

Cost-Effective Electronic Construction

Where the American books I have reviewed so far fell down was in their presentation of the projects to be built by the reader. The Americans view the construction of the project as being a boring, almost secondary concern; they are mainly concerned with blowing their own trumpets and singing the project's praises. The better books deal as much with the nitty-gritty topics such as how to actually build the projects in the first place.

This book is one of the best. It describes some simple but effective and useful projects in a step-by-step manner. Like those in Owen Bishop's book, reviewed above, each project's operation is described together with methods of construction and use. Photographs and illustrations are used to advantage. Where Bishop gives a considerable amount of background information on the principles involved in his projects, however, John Watson doesn't. This is the only area which could possibly be expanded.

Projects include an automatic porch light, a drill-speed controller, a stereo simulator, an xenon strobe, a freezer temperature alarm, a computer input/output port and a model radio-control system.
SCRATCHPAD
by Flea-Byte

The trick with this puzzle is not in doing the sums, but in deciding which sums to do in the first place. It would no doubt be possible to form a series of parallel sums beginning with the first resistor section and progressively adding more sections, and to show that the series tends to a limit. Alf is much too lazy for the task of drawing all the necessary threads together.

Here in the gloomy recesses of ETI Towers it dawned on us suddenly with the force of revelation that what the world really needed at this time of the year was another award ceremony. Well, all of us made mistakes.

Undaunted, Flea-byte set about the task of doing all the necessary threads together with a will. Sir Richard Attenborough was engaged to weep volubly; Princess Alexandra (or maybe it was Princess Michael of Kent, or even Princess David of SW7) was engaged to smile condescendingly; even David Puttnam agreed to come and tell the guests how British Electronics is the best electronics in the world. We booked the Cafe Royale and invited everyone we could think of. Only at this point did it occur to Flea-byte or any of the toiling minions working on the project that nobody had been considered to receive an award.

Let me tell you, there was panic. A team of expert judges was hastily recruited and supplied with a year's back-copies of ETI Electronics News and the Beano. They were locked in a room and told not to come out until the awards had all been agreed or they had all killed each other. In the event, only our very own Alf emerged unscathed to present what he said was a unanimously agreed list of award-winner.s. Of course Flea-byte had no way of knowing whether Alf was bending the truth a little or not, since all the other judges were by now assuming postures of extreme stillness and silence, Alf said they were practising a new form of Korean meditation called Be-Ing-Ded, but Flea-byte was not convinced.

As it turned out, we really needn't have bothered since due to a proof-reading error the invi-
tations had all gone out inviting people to attend 'An Away Cer-
emony. To Present The ETI Draws for 1985, to be held at the Cafe Royale, Bremerhaven, on December 31st, 1984. Needless to say, nobody accepted.

However, Flea-byte couldn't let all his hard work go to waste, to say nothing of the efforts made by Alf, the minions and the judges. So Scratchpad is proud to present the first annual ETI awards for 1985 on this page.

The Walt Disney award for contributions to artificial intelligence: Ronald Reagan.

The Clive Sinclair award for optimism in the face of overwhelming odds: Sir Clive Sinclair.

The Motor industry award for progress: Halley's Comet.

The Isaac Newton award for contributions to the study of gravitational effects: Boeing Aircraft.

The Most Promising Newcomer award (for the third year running): Gallium Arsenide.

The TINA (an award instituted by Margaret Thatcher to encourage resistance to change): TTL.

The Input-Output award for services to amplification: Sara Keys.

The General Motors award for services to the British Economy: jointly awarded to Olivetti, IBM, Ian McGregor and Japan.

The Clark Kent award for the most original idea about telephone boxes: Cellnet.

Phone Phun

Some of the more amusing stories of 1985 centre on the new telephone services designed to create a demand-fuelled expansion in the current vogue arena of electronic development: computers. One may dispute the rights and wrongs of deregulation, privatisation and the break-up of monopolies like BT and AT&T in America, but there is no arguing that we are not prepared for the new freedoms we are being offered. In Bristol, for example, an experiment inleased telephone accounts ran into near disaster when bills started arriving at private households featuring numerous calls to telephone numbers unrecognised by one or other member of the household. Curious wives or husbands were not slow in discovering that their partners were, often as not, hiding illicit relationships behind the unemotional front of a simple six-digit number. As a result, it was said that for the duration of the experiment divorce and separation statistics in the Bristol area rocketed.
POWER SUPPLIES

NWOKOYE ELECTRONICS

Power supplies with thermal, short circuit and reverse output voltage protection plus improved ripple rejection.

NP-01
- Miniature stabilised variable p.s.u.
- (2.5 - 12V) at up to 500mA. £10.85 + £1.50 VAT.

NP-03
- 2.5 - 30V (or switched 5V) at over 1A with separate selectable constant current source (10MA, 100MA, 1A). Also fused 40V unregulated output. £26.95. VAT.

NP-04
- A ±1.25 to ±5V dual power supply with switched ±5V, excellent tracking qualities even with unbalanced loads and an unregulated 30V output. £36.85.

T162
- Quality function generator with separated sine, square and triangular outputs. 10kHz to 5MHz, 5 independent amplitude controls independently variable sine, square and triangular frequencies. £239.95. VAT.

515
- Analogue frequency meter, 100kHz ±1kHz, in 5 ranges variable sensitivity, £28.95. Cheques/P.O.'s + £2 pap to: NWOKOYE ELECTRONICS 22 Knole Road, Ellbrook, London NW6 8DG.

NEW ADJUSTABLE 1 AMP DC PSU

3 to 8V or 0 to 15V current limited, battery circuit, high quality, built and tested, £14.50. Remote switching option £1.50, extra £2.50. Please add 15% VAT.

RYD DESIGN LTD

Railway Station

Rye. E. Sussex TN31 7AB

CLEARANCE

BARGAIN THOUSANDS

of components in stock. Led 7 Segment Display, Brand new. £14 Pin DIL Red Wide, 43 inch, common anode display 0-9 with right and left decimal point. 9 pieces £1.50(30p each); 10 pieces £2.50(25p each); 50 pieces £10.00 (20p each); 100 pieces £15.00 (15p each); 1000 pieces £100.00 (10p each). TELEPHONE YOUR ORDER TO 0296 613816.

FREE MEMBERSHIP to a new national electronics club. For details and a free gift of components worth over £10 send only £1 P&P to WOODSIDE, DOWSETT LANE, RAMSDEN LANE, ESSEX CM11 1HL.

TOP PRICES PAID for surplus electronic test equipment. Always a good selection of SIG-GENS, METERS and SCOPES for sale. Phone (0438) 353828.

SPECIAL OFFERS

SPECIAL OFFERS

SCIENCE

LINEAGE: THROUGH THE MIND, a remarkable book today.

In this book, "DIABETICS: The Modern Science of Mental Health", L. Ron Hubbard's discoveries in the field of the mind prove today that Einstein was right.

More and more people from all walks of life including scientists, artists, writers, and scientists alike have been amazed by the revelations contained in this book. These have started to see the mind as a key to the secrets of the universe.

Order your copy of this remarkable book today.

Order your copy of this remarkable book today. Cheques/P.O.'s + £2 pap to: NWOKOYE ELECTRONICS 22 Knole Road, Ellbrook, London NW6 8DG.

COMPONENTS

RESISTORS, CAPACATORS. 1,000 mixed carbon film 1/4W, 1/2W, 2%, 3%, 5%, 10% resistors £2.95 + 50p P&P. SAE for details to: D.J. Hoole, Romney Marsh, Electronics, Clark Road, Gravesend, New Romney, Kent TN28 8PB.

VAST RANGE of science products, components, lasers, optics, computer supplies, chemicals, hardware and many hard to find or rare items. Unstocked items purchasing service. SAE with details of your specific requirements or for catalogue. Science & Technology Products CET3, PO Box 192, Poole, Dorset BH15 4AL.

COMPREHENSIVE PLANS to build an electric shock machine, contains full explanatory text, diagrams, stickers and 0.68 of capacitors. £1.55 including post. P. Bartie, 3 Wood Nook, Norland, Sowerby Bridge, Yorkshire HX6 3RZ.

NEW AND SURPLUS components in stock. Spectrum Radio & Electronics Ltd, 56 Slater St, Liverpool L1 4BX. Tel. 051-709 4628.

THE HUNT ELECTRONICS COMPONENTS CATALOGUE

FREE. Its full of top-quality components at competitive prices. Phone 0283 703071. P.O. Box 57, Derby DE6 6SN.

CHEAP, CHEAP!

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS138</td>
<td>60p</td>
<td>£1.20</td>
</tr>
<tr>
<td>LS141</td>
<td>50p</td>
<td>£1.20</td>
</tr>
<tr>
<td>LS142</td>
<td>40p</td>
<td>£1.20</td>
</tr>
<tr>
<td>LS143</td>
<td>30p</td>
<td>£1.20</td>
</tr>
<tr>
<td>LS145</td>
<td>25p</td>
<td>£1.20</td>
</tr>
<tr>
<td>LS146</td>
<td>15p</td>
<td>£1.20</td>
</tr>
<tr>
<td>LS139</td>
<td>50p</td>
<td>£1.20</td>
</tr>
<tr>
<td>LS147</td>
<td>40p</td>
<td>£1.20</td>
</tr>
<tr>
<td>LS148</td>
<td>30p</td>
<td>£1.20</td>
</tr>
<tr>
<td>LS149</td>
<td>25p</td>
<td>£1.20</td>
</tr>
</tbody>
</table>

LIQUIDATOR STOCK, Test Equipment, must clear MDS 800, MDS 231, MDS DDR, MDS DDF, IC 51C, ICE 85, Nijo Properties, Charnwood House, Quorn, Leics. Tel: Quorn 415060.

TOP PRICES PAID for surplus electronic test equipment. Always a good selection of SIG-GENS, METERS and SCOPES for sale. Phone (0438) 353828.

-rare items. Unstocked items specialty hardware and many hard to find or computer supplies, VAST RANGE of science products.

-50p P&P. SAE for details to: D.J. Hoole, Romney Marsh, Electronics, Clark Road, Gravesend, New Romney, Kent TN28 8PB.

AIRLINK TRANSFORMERS manufacturer of Toroidal and standard transformers. Phone Mike Dorrain, Newmarket 0638 662983 for details.

TRANSISTORS

Guaranteed top spec devices

BC207, NPN 15S, 40V, 1A, 50pc £7

BC109, NPN 120V, 60V, 80pc £9

BC842, PNP 45V, 400mA, 20pc £9

(For 100pc deduct 15%)

All orders add 10% P&P + 15% VAT. Connection Services, P.O. Box 1 Retty, Leicester LE6 6JU.
EQUIPMENT

13a Station Road
Cullercoats - North Shields
Tyne & Wear - NE30 4PQ
Telephone 091 2514363

WRITE OR PHONE FOR FREE PRICE LIST.

GRIPMATE
NEW! ELECTRONIC ENGINEERS NEED 'EXTRA HANDS' FOR SOLDERING GLUEING AND ASSEMBLING

This essential compact tool comes complete with 4 croc-clip flexi-arms to hold components positively and rapidly with infinite positioning.

ONLY £4.85

USES ACCESSORIES:

- 2.5 MAGNIFIER FLEXI-ARM £2.50
- MAGNET FLEXI-ARM £1.50

ALL PRICES INCLUDE VAT - POST-_PKG

SEND NOW! CHOOSE OR TAKE DETAILS DIRECT FROM THE MAKERS:

KEMPPLANT LTD (DEPT 2)
DURFOLD WOOD. PLAISTOW, BILLINGSHURST, WEST SUSSEX RH14 0PN

EPROMS

<table>
<thead>
<tr>
<th>EPROM</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2716</td>
<td>£ 1.50</td>
</tr>
<tr>
<td>2725</td>
<td>£ 2.00</td>
</tr>
<tr>
<td>2728</td>
<td>£ 3.50</td>
</tr>
<tr>
<td>2730</td>
<td>£ 5.00</td>
</tr>
<tr>
<td>2764</td>
<td>£ 5.00</td>
</tr>
<tr>
<td>2766</td>
<td>£ 5.00</td>
</tr>
<tr>
<td>2768</td>
<td>£ 5.00</td>
</tr>
<tr>
<td>2774</td>
<td>£ 5.00</td>
</tr>
<tr>
<td>2780</td>
<td>£ 5.00</td>
</tr>
<tr>
<td>2792</td>
<td>£ 5.00</td>
</tr>
<tr>
<td>2794</td>
<td>£ 5.00</td>
</tr>
<tr>
<td>2796</td>
<td>£ 5.00</td>
</tr>
<tr>
<td>2798</td>
<td>£ 5.00</td>
</tr>
</tbody>
</table>

For cleared promo please add 50p per chip.

MEMORY STORE

THE MEMORY STORE: Eproms, Drums, Drams, Sarams, available at very low prices. Send for list to K-Squared Electronics, Brecoon House, Sherrington, Bucks NK18 8NW.

JBA ELECTRONICS

Specialists in manufacture and design of:
- Microprocessor, Telemetry, and Audio-based systems
- UNIT 8
- BRECON INDUSTRIAL ESTATE, BRECON, POWYS, S. WALES
- Tel: (0876) 25583

DESIGN SERVICES

- Microprocessor, special interfaces, analogue, digital, signalling, alarm systems, PCB design and artwork, Prototype and small batch production.
- ALAB ELECTRONICS
- Grantham (0476) 860089

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. Halstead Designs Limited. Tel: halstead (0787) 477406.

P.C.B. DESIGN

- and Layout.
- Manually taped artwork professionally produced at competitive prices.
- James Gledhill, 01-674-8511.

TO ADVERTISE IN ETI

RING 01-437-0699

ALARMS

FREE BOOKLET on BURGLAR ALARMS with LOWEST U.K. DIY PUBLISHED PRICES

PHONE OR WRITE FOR YOUR COPY

051-523 8440

AD ELECTRONICS
217 WARRECK MOOR AINTREE, LIVERPOOL L9 0HU

MISC.

HEATHKIT U.K. Spares and service centre. Cedar Electronics, Unit 12, Station Drive, Breden, Tewksbury, Glos. Tel: 0684 73127.

INSTRUMENT CASES

in structural foam, Made to order in small lots. Write to Minnow Electronics, 21 Station Rd., Industrial Estate, Hallisham, E. Sussex BN27 2EW.
CRICKLEWOOD ELECTRONICS LTD
FREE catalogue

It's no secret...

That there is a real difference at Cricklewood Electronics.
That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety, competitive prices and service from the U.K.'s number one 100% component shop. No gimmicks, no gadgets or computers, just components, millions of them, all easily available by mail order, calling or credit card telephone orders. Just pick up the phone or a pen to get your FREE copy now (no SAE required). You have nothing to lose.

CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway, London NW2 3ET
Tel: 01-450 0995/01-452 0161
Telex: 91 4977

ELECTRONICS TODAY INTERNATIONAL
ADVERTISERS INDEX
JANUARY 1986

Armon Electronics..50
Audio Electronics...70
B.K. Electronics...12
B.N.R.E.S..50
Cirkit Holdings.. 8
Cricklewood...74
Display Electronics......................................66
Electromech Industries.................................10
Electrovalue.. 74
Greenbank Electronics.................................58
Happy Memories...13
ICS..23
Maplin.. OBC

Micro Processor Engineering.........................13
Powertran Cybernetics..................................IFC
RAK Amplifications......................................50
Rapid Electronics..8
Riscomp...11
Royal Air Force...35
S.M.E...50
Stewart of Reading......................................58
Technical Book Service.................................IBC
Technomatic...14 & 15
T.K. Electronics...58
Universal Semiconductor Devices.....................69
Watford Electronics......................................4 & 5
Wilmslow Audio...50
Please send me the books indicated.

Encyclopedia of Electronics Stan Gibilisco
A huge, comprehensive encyclopedia of essential electrical and electronics concepts and applications. The result of 4 years of research, it contains over 3000 key topics, each fully illustrated and includes all relevant formulas, charts, and tables. Provides extensive information on each topic. Complete index and cross referencing. More than 1300 photographs and illustrations.
1985 983 pages Hardcover £43.95

The Illustrated Dictionary of Electronics — 3rd Edition
Rufus Turner, Stan Gibilisco
Nearly 1300 useful and versatile circuit designs, alphabetically arranged in 96 basic circuit categories. Ideas and answers for project builders: quick reference for professionals for answers to specific design problems.
1985 760 pages 1782 Illustrations £77.55

Master Handbook of Electronic Tables and Formulas — 4th Edition Marin Clifford
Provides instant answers for professionals and hobbyists alike.
1984 392 pages 246 Illustrations £13.20

Interfacing Your Computer To Virtually Anything Joseph Carr
Contains invaluable design data and covers a wide range of IC devices. An ideas book with many projects.
1984 336 pages 224 Illustrations £13.20

Disk Basic for Microcomputers Michael Chadwick, John Hannah
Explains the principles of using disks and applies them via example programs in Microsoft, Applesoft, Commodore and BBC. Use this book to liberate your micro.
1984 143 pages £7.95

The Micro Cloak and Dagger Book Gareth Greenwood
Experiment directly with codes and ciphers to send and decode secret messages; an introduction to cryptography for anyone who revels in puzzles. Programs written in Sinclair Basic.
1984 175 pages £7.95

Build Your Own Expert System Chris Naylor
Artificial intelligence for the aspiring microcomputer. With listings for Apple II and Sinclair Spectrum. "This is an excellent book on a forbidding subject. Even if you don’t build an expert system from it, your money won’t have been wasted." Personal Computer News
1983 258 pages £7.95

Expert Systems and Micros Geoff Simons
Explores the proliferation of expert systems and associated software with particular attention to microcomputer trends. Explores implications of micro-based expert systems.
1984 247 pages £11.50

REFERENCE

ELECTRONICS, PROJECTS, DATA COMMUNICATIONS

Handbook of Remote Control and Automation Techniques
2nd Edition John Cunningham, Dalton Horn
Includes all new material on op-ampolators, sensors, motor controllers, and analog to digital and digital to analog converters.
1984 350 pages 306 Illustrations £13.20

Basic Integrated Circuit Theory and Projects
Charles Adams
Well explained details of IC manufacture, functions: emphasises hands-on applications, 20 step-by-step projects.
1984 288 pages 250 Illustrations £11.35

Robotics
Anna Cardoza
A well explained and informative look at robotics from legend and fiction to factory worker with everyday robotics.
1985 100 pages £10.45

Handbook of Data Communications — 2nd Edition NCC
A comprehensive, and British, introduction to data communications principles and concepts. Covers telephony, transmission, switching, protocols, and network design.
1982 560 pages £20.50

The First Primer of Microcomputer Telecommunications
Jim Cambron
Aims to help you access database services, commercial companies and user group bulletin boards. Contains the hows, whys, and whats.
1984 180 pages 100 Illustrations £10.80

Basic Radio Electronics
Sam Kelly
A solid intro to radio and radio project construction. The history from the early days up to space probe radio communications; explains fundamental radio electronics laws; details many fascinating projects.
1985 352 pages 300 Illustrations £14.10

Making Music with Microprocessors
B.A. Paturo
A hands-on guide to creating and producing electronic music. It’s a source of electronic music circuits, computer experiments, a study of instrument synthesis, and a complete guide to making a music synthesizer.
1984 294 pages 190 Illustrations £13.35

Basic Transistor Course — 2nd Edition Stan Gibilisco
Fundamental concepts and trends in transistors in modern electronic equipment. Devoted entirely to semiconductors, diodes, and transistors.
1984 288 pages 105 Illustrations £12.95

Electronic and Microprocessor-Controlled Security Projects
Vaughn Martin
For the experienced kit-builder who wants to really understand and build a home, office or business security system. Ten security projects, all proven in actual use, can be built using standard, available parts.
1985 228 pages 120 Illustrations £14.10

Build a Personal Earth Station for World Wide Satellite TV Reception — 2nd Edition Robert Travers
Thorough revised and up-to-date, Safest, assemble and install your own Earth Station — capture global television.
1985 370 pages 300 Illustrations £14.90

Exploring Light, Radio and Sound Energy, with Projects
Calvin Graf
For example, listen to a candle burning, or wing vibrations of a jet flying miles away. Describes scientific phenomena which can or cannot be seen, which have or don’t have sound. Follow the project instructions to hear sounds few people have heard. Simple electronics skills to make antennas, solar cell units, hydrophones, a rain microphone and much more, to give a unique and fascinating record of the otherwise commonplace.
1985 194 pages 106 Illustrations £10.45

Second Book of Easy-to-Build Electronics Projects
Editors of Elementary Electronics
New project ideas for completion in a few hours using low cost components. Complete with parts list and circuit layouts.
1984 192 pages £13.75

DATA COMMUNICATIONS
ELECTRONICS, PROJECTS, DATA COMMUNICATIONS

The Encyclopedia of Electronic Circuits Rudolf Graf
Nearly 1300 useful and versatile circuit designs, alphabetically arranged in 96 basic circuit categories. Ideas and answers for project builders: quick reference for professionals for answers to specific design problems.
1985 760 pages 1782 Illustrations £77.55

Master Handbook of Electronic Tables and Formulas — 4th Edition Marin Clifford
Provides instant answers for professionals and hobbyists alike.
1984 392 pages 246 Illustrations £13.20

MICROCOMPUTERS

Interfacing Your Computer To Virtually Anything Joseph Carr
Contains invaluable design data and covers a wide range of IC devices. An ideas book with many projects.
1984 336 pages 224 Illustrations £13.20

Disk Basic for Microcomputers Michael Chadwick, John Hannah
Explains the principles of using disks and applies them via example programs in Microsoft, Applesoft, Commodore and BBC. Use this book to liberate your micro.
1984 143 pages £7.95

The Micro Cloak and Dagger Book Gareth Greenwood
Experiment directly with codes and ciphers to send and decode secret messages; an introduction to cryptography for anyone who revels in puzzles. Programs written in Sinclair Basic.
1984 175 pages £7.95

Build Your Own Expert System Chris Naylor
Artificial intelligence for the aspiring microcomputer. With listings for Apple II and Sinclair Spectrum. "This is an excellent book on a forbidding subject. Even if you don’t build an expert system from it, your money won’t have been wasted." Personal Computer News
1983 258 pages £7.95

Expert Systems and Micros Geoff Simons
Explores the proliferation of expert systems and associated software with particular attention to microcomputer trends. Explores implications of micro-based expert systems.
1984 247 pages £11.50

Please send me the books indicated.

Enclosed is my personal or order for £

Prices include postage and packing.

I wish to pay by Access/Bankcard. Please debit my account

Signed

Name

Address
The new Maplin catalogue for 1986 is a real adventureland for the electronics enthusiast. With hundreds of new lines and details of Maplin’s new low prices, it’s the one event in the electronics year that no-one should miss. Packed with data and information on all the latest electronic products. Pick up a copy from any branch of W.H. Smith for just £1.45. Alternatively you can order your copy by post for just £1.85. For overseas customers the prices are as follows: Europe surface mail £2.50; Europe air mail £3.75. Outside Europe surface mail £2.50; Outside Europe air mail depending on distance £4.25/£5.50/£6.25. For surface mail anywhere in the world you may send eleven International Reply Coupons for payment in full.

Post this coupon now for your copy of the 1986 catalogue. Price £1.45 + 40p post and packing. If you live outside the U.K. send £2.50 or 11 International Reply Coupons. I enclose £1.85.

Name ...
Address ..
..

MAPLIN ELECTRONIC SUPPLIES LTD.
Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911
SHOP
• BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
• LONDON 159-161 King Street, Hammersmith, W6. Tel: 01-748 0026.
• MANCHESTER 8 Oxford Road, Tel: 061-236 0281.
• SOUTHAMPTON 46-48 Boves Valley Road, Tel: 0703 225631.
• SOUTHEND 282-284 London Rd, Westcliff-on-Sea, Essex. Tel: 0702-554000

Shops closed all day Monday.