c

World Radio History

Subj: Re: FRIDAY EVENING
Date: \quad 10/06/2000 10:39:32 PM Pacific Daylight Time
From: JPBBOT
To: Moehlhj
Hi Harvey--I remember Bessie Stratton Clancy very well. I have not heard from Ray or Donna either but thought they were lazy as myself as I don't get on the computer that often anymore. I got on tonight and had many jokes to read and a few letters from friends. Our weather has been ideal. The early AM in the 60's and the high during the day in the high 80 's or low 90 's which to us is just right. I guess living in a hot dry climate like we have does thin your blood somewhat as we take a sweater or jacked to the casino's when we go there as it is to cold for us as we think they keep the air conditioning down too low. We can tell the tourists as they are walking around in shorts. I wouldn't doubt that Ray and Donna went back to Illinois. They sounded like they wanted to go back to see the great grand child as well family there. I am surprised that Donna or Ray did not e-mail either one of us as they usually are good about doing this. I guess we will hear from them when they return. Glad they had no problem with the brush fire and that is all over with. I see where Denver has had snow already so no doubt Ray and Donna have already seen the white stuff. We will see it up in the mountains in anoter month or so Sounds like you will shortly be looking for another household project now that your windows are finished. I just look Ithe other way. Everything here seems OK. I do have some cactus to replace (very carefully) and we are going out tomorrow to a garden supply to see what we can find. We don't usually do much on the week-ends, however we are usually busy during the week. We are getting involved at present with helping our daughter pack and get ready to move. It looks like she sold her condo. It is in escrow and she is going to move into an apartment while she looks for a home. She is tired of condo living and wants a 3 bedroom home with a yard of her own and a garage. I told her to take her time and spend time looking not only at the home but the location also. I hope she listens. She does have a 3 month lease on the apartment and she then can rent from month to month until she finds what she wants. I try to advise her not to hurry but sometimes they ask for advice and then do what they want anyway. Write when you have time. I will eventually answer when I finally get on the computer.
Joe

ACKNOWLEDGEMENT

The preparation of the Electronics, Radio, and Television information which is included in this Training Program would not have been possible without the help of a large number of organizations and individuals.

In particular, United Electronics Laboratories gratefully acknowledges the cooperation and assistance of the Crosley Division of AVCO Manufacturing Company, the Radio Corporation of America (RCA), the Philcc Corporation, Motorola, Incorporated, the American Broadcasting Corporation, the Columbia Broadcasting System, the Canadian Broadcasting System, the DuMont Television Network, and the National Broadcasting Company.

Assignment 1

AN INTRODUCTION TO ELECTRONICS, RADIO, AND TELEVISION

You took possession of a key to one of the most interesting, respected, and well-paid professions in the world when you decided to enter the field of Electronics. Your key to this "now world" will be your knowledge of electronics--how electronic equipment operates, how defective parts affect this equipment, how to repair and maintain it. This knowledge will enable you to service, operate, and maintain the wide variety of electronic, television, and radio equipment which plays such a vital part in our present-day civilization.

When you meet a new person in everyday life, the first step in your becoming acquainted is an introduction. Similarly, the first step in your becoming acquainted with electronics is an introduction to it, and to its "close friends" radio and television. That is the purpose of this first assignment in the training program--to introduce you to electrorics, radio, and television.

History of Communication

Since the days of the stone age, man has tried to send messages over ever-increasing distances. The first "long distance transmission" was probably a shout. However, the primitive man soon learned that greater distances could be spanned by beating on a hollow log with a club. In some primitive tribes, even today, this system of communication is still employed.

Of course, the use of sound is not the only method of communication. The sense of sight has also been used since the time of the cave man for sending information from one point to another. As the cave man waved his hand in a greeting to his fellow creature on the other side of the valley, he was using this method of communication. As time passed, sight communication was improved through the uss of puffs of smoke, lanterns, and fires, and the waving of flags. Some of these systems, too, are still employed in modern communications-afor example, the landing signal flags used aboard aircraft carriers.

All of the methods of communication which have be日n mentioned so far have the same fault in common. The distance over which they are effective is quite limited--ranging to a few miles, at best.

Although man yearned for long distance communication for thousands of years, it was not until less than 150 years ago that a step forward of any importance was made. In l832, when Samuel F. B. Morse inverted the electric telegraph, the distance of communication was extended
"beyond the horizon." By operating a telegraph key, he controlled the flow of electrical impulses along a wirc, which, in turn, caused a telegraph "sounder" at the other end of the wire to operate, producing clicks which could be heard. By means of code, these clicks could be translated into letters and words. The growth of the telegraph was rapid, and in approximately 30 years telegraph messages were being sent from America to Europe by means of an underseas cable.

The next stride forward in communications took place in 1875, when Alexander Graham Bell invented the telephone. In this device, with which everyone is now familiar, electrical impulses were again used, but a reproduction of the speaker's voice, rather than the clicking of a sounder, was heard at the opposite end of the line. Thus, a spoken message could be sent over hundreds of miles.

Although the telegraph and the telephone could carry messages over hundreds of miles, they were both limited in the same way. They could carry these messages only where it was possible to string wires. Thus, it was not possible to communicate with remote areas, with ships at sea, with balloons, or, a little later, with airplanes. It was obvious that a means of communication was necessary which did not require the use of wires--in other words, wireless telegraph and wireless telephone.

A few years after the invention of the telephone, a young German scientist, Heinrich Hertz, experimented with the first form of wireless telegraph. He sent radio waves and picked them up across the room with a very crude receiver. Many other scientists and experimenters worked in the development of Hertz's crude "wireless" telegraph system, and shortly after the turn of the century Guglielmo Marconi succeeded in sending the first message across the Atlantic Ocean by means of radio waves. Further development of the radio system resulted in wireless telephone communication, which was then developed into radio broadcasting, as it is known today. Thus, communication over thousands of miles without wires became a reality and helped make possible many other scientific developments of the Twentieth Century.

Miraculous as it is, radio did not fully satisfy the needs of the general public. Because we are gifted with sight, it is only natural for us to desire our entertainment "dished up to us," so that we can see it as well as hear it. Consequently, while some scientists and inventors worked to improve radio, others were working just as hard to develop a system whereby pictures could be "transmitted through space." The final development of this system is, of course, TELEVISION, as we know it today.
it might be well to point out that television is not the result of any one person's work or creative genius. Instead, it represents the work of many scientists, inventors, and experimenters. The first television pictures were transmitted from Whippany, New Jersey, to New York City, by Dr. Herbert Ives, in 1927. These were very poor images, and it was not until 1946 that television transmitting equipment ard receivers were perfected to a great enough degree to make commercial black-and-white television broadcasting practical.

Color television also passed through a long period of development before its final acceptance. The first colored television pictures were transmitted by Dr. Ives and his associates in 1929. These pictures, although realistically colored, were about the size of a postage stamp. Many systems were devised to enable larger color television pictures to be telecast, but it was not until 1953 that a truly suitable color television system was available to the general public.

Thus, in a span of less than 150 years, man was able to accomplish what he had dreamed about for thousands of years--the transmission of sound and sight (in full color) over long distances. Color television is the fulfillment of that drean.

Radio, Television, and Electonic Services

Let us now look at some of the "parts," or divisions, of the Electronics field. As a starting point we'll first consider radio. When we hear someone speak of radio, we naturally think of radio broadcasting, since this field is familiar to all. Actually, the radio field includes many services in addition to radio broadcasting, as will now be explained.

Radio Broadcasting

In the ordinary usage of the term, radio broadcasting suggests the broadcasting of entertainment, news, etc., for the benefit of the general public. There are several ways in which this is done. The first of these, and the most widely known, occurs in the "Standard Broadcast Band" which is received by millions of home and auto radio receivers daily. Everyone familiar with radio is familiar with this service. Figure 1 shows one of the outstanding broadcast staticns now in operation.

There are also short-wave radio broadcast stations, which serve primarily to broadcast entertainuent from stations in this country to other points throughout the world. These stations are small in number compared to the standard broadcast stations.

Another radio broadcast service is rendered by the Frequency Modulated stations. These stations transmit entertainment and operate on the short waves, but, as they operate on an entirely different principle than the short-wave broadcast service which has been mentioned, the programs are not "carried" great distances. Instead, each staticn serves an area close around it, within a radius of approximately 50 miles.

Two-Way Police Radio

Almost all police forces now have two-way radio equipment to provide communication between the headquarters and the patrol cars out on the stroots or country highways. The patrolmen in the car are able to
talk to headquarters, and in addition most systems permit direct communication between the irdividual cars.

Two-Way Aircraft-To-Ground Communications

All commercial aircraft and many private aircraft are equipped with two-way radio commication equipment. This erables the pilot to receive weather reports, landing instructions, etc., from ground stations during flight, and it also permits the pilot to report his position at regular intervals. Figure 2 shows just a small part of the radio equipment aboard a Pan American DC-4 aircraft.

Miscellaneous Two-Way Communications

Two-way radio communications systems are now being used by hundreds of different services and industries. Amone these are: taxicabs; busses; truck lines; water, gas, and electric utility companies; railroads; garage and wrecker services; road maintenance departments; pipe lines; and delivery services.

Instrument Landing Equipment

Commercial airliners are equipped with radio devices to enable the pilot to land the plane during heavy fogs, rains, or other conditions which would make sight landing impossible. In addition, radar equipment is being used in some of the leading airports.

Radio-Telephone Communication System

There are two separate services under this heading. One of these has beer highly publicized and has had widespread use. It consists of a radio link between cars and the Bell Telephone System. By means of this system, a busy executive may conduct normal telephone corversations while in his car. This service is proving of great value to professional and business men. The other radio-telephone service is used in handing long distance overseas telephone communications. Until just a few years ago, these messages were handed entirely by undersea cables.

Radio-Beacon Equipment

This equipment is used to guide planes in the air. The radio waves are concentrated into "beams," and the airplanes fly along these beams, just as a car follows a highway. Other radio signals in the beacon system tell the aircraft pilot when he is a few miles from the airport and when to start kis landing glide.

Loran Equipment

This is a system somewhat similar to the radio-beacon. It is usod as a navigational aid for ships a^{\perp} sea.

Micro-wave Relay Systems

Micro-wave relay systems are used, in place of a coaxial cable, by the Eell Telephone System to relay television signals. They are also used by pipelines, by railroads, and by mary other industries. A micro-wave relay system is actually a radio link which can be usea to accomplish the same results as several, several dozen, or oven several hundred telephon wires. In this system the radio energy is beamed from one relay station to the next, where it is power-boosted and beamed on to the next, etc. The type of cormanication whicn is passed along depends largely on the use of the relay system. For example, such a system can be used to pass along orders from a central lacation to points hundreds, or thousands, of miles away. At the same time, the system could be used for controlling devices at remote locations. For example, in a pipeline installation a single dispatcher cen control valves at desired points along the pipeline, although it might stretch for hundreds or thousands of miles.

Government Services

Many motion pictures and plays have illustrated the use of radio communication by the Army, Navy, Marine Corps, Coast Guard, and Air Force. In modern warfare, this type of instantaneous communication is an absclute necessity. There are, however, many other types of government radio installations. Included among these are Moteorological aids, Forestry Service, and Bureau of Standards.

Facsimile

Facsimile is a form of communication which has not, as yot, developed to a great degree. It is a system whereby newspapers, photographs, or other printed material are transmitted by radio. The facsimile receiver has a device called a printer, which reproduces the transmitted copy--newspaper pages, photographs, etc.--on a roll of paper.

Radar

Radar is a specialized form of radio transmission which was developed during World War II. Its chief wartime use was in detecting and accurately determining the range of enemy aircraft. It has, however, found widespread use in the commercial field since its wartime secrecy was lifted. Radar installations aboard commercial airliners contin-
uously plot a "map" of the terrain over which the plane is flying, and can also be used to determine the extent of storms into which a plane is flying. Many of the leading airports are equipped with radar landing equipment. Practically all ocean-going passenger vessels employ it as a navigational aid. A great majority of the boats on the Great Lakes and large rivers in the United States use radar, so that they can contime their operations in spite of rain or ≤ 0. Figure 3 shows a radar installation aboard the Dutch Lines palatial passenger ship NIEUW AMGTERDAM, and Figure 4 shows a techrician adjusting radar equipment before it $\dot{\text { E }}$ to be installed on shipboard. Another widely known use of radar is as a speed checking device. Signs stating: WARNING SPEFD CHECKED BY RADAR are becoming almost as common along the nation's highways as the old familiar one - WARNING - DANGEROLS CURVE.

Televison Broadcasting

Television is, of course, the transmission and reproduction of a view, or a scene, especially a view of persons or objects in motion, by means of radio waves. In addition, the scund which is associated with the scene is transmitted. Television transmission can be of such nature that the reproduced scene appears as a black-and-white picture or as a fill-color reproduction of the original scene.

Industrial Television

Industrial television is one of the most rapidly developing branches of this fantastically expanding field. Industrial television is the use of TV cameras and receivers for purposes other than tlelvision broadcasting. For example, industrial television enables the operator of a steel mill to "see" at close range the progress of the red-hot steel as it moves through the mill, while he is seated in ar air-conditioned control booth. It permits the highway department to observe the flow of traffic throughout the entire length of the tunnels on the Pennsylvania Turnpike. It makes it possible for the scientist in an atomic energy laboratory to "watch," from a safe distance, the action of deadly radioactive materials. Through the application of industrial television, a department store may exhibit special items at many points throughout the store. Industrial TV can be used to check the operation of conveyors in industrial plants, to observe the movement of freight cars in railway switchyards, and to permit one professor, or instructor, to lecture to any number of classroom groups simultaneously. Industrial color television is proving to be of great value in teaching surgery to young M.D.'s. New uses for industrial television are being found daily. Obviously, it is impossible to list more than a fraction of its uses in this assignment.

Electronics

Electronics is a very general term which is applied to equipment using vacuum tubes and other radio parts, but which does not transmit radio waves through space. Electronics can be used to do many different
things, such as sort fruit, check the purity of drinting water, regulate the heat of ovens in industrial plants and steel mili smeltirg furnaces, cook hamburgers, compute at speeds thousands of times faster than humars (See Figure 5), operate juke boxes, check the color of dyes in cloth manufacturing plants, count the number of cars passing a point on the highway, control chemical and mechanical processes, etc. The list is almost endless, so wide is the use of electronics in our modern life. Electronics is found in the home, in industry, in goverment (electronic "brains" and electronic filing systems), in defense--even in our sleep! One of the newer electronic devices enables a perscn to learn while sleeping.

Facts and Figures

Let us look at some facts and figures. In the last year before Worla War II, there were 56 million radios of the home entertainment type in use in this country alone, and there were 9 million radio receivers installed in automobiles. There were 4,300 aviation radio ground transmitters and nearly every airplane, from the smallest to the largest, carried from l to 8 radio roceivers, as well as one or more transmitters. There were 2,217 police radio stations, and over 1,200 manufacturers of radio parts, tubes, and equipment.

Since the war, the radio, television, and electronic indus†ries are enjoying an expansion so great that even the most enthusiastic supporter would have called it fantastic just a few years ago. Jlectronic developments from wartime rosoarch have opened new fields, which are making the prewar radio industry look like small business.

In April 1952, the Federal Communications Commission made official channel allocations for 2,053 Television stations, and when they began reprocessing station construction permits, there were but 108 TV stations on the air. Within a year-and-a-half period, this number had more than tripled, and the construction of new TV stations is still expanding rapidly in all sections of the country. Coaxial cables anc associated micro-wave relay links were extended so that the nation is spanned from coast to coast. Figure 6 shows one of NBC-TV's large studios in New York City and Figure 7 shows CBS-TV's Television City in Hollywood. The increase in TV receivers has been almost unbelievable. The "mere handful" ir 1947 has increased to more than 43 miliion at this time. The current volume of radio and TV sales is one billion, two hundred miliion dollars annually, and the annual radio and $T V$ service bills total one billion, five hundred million dollars. It is estimated that by 1965 the electronics field will be an eleven-billion-dollar-a-year industry.

Don't attempt to burden yourself by learning any of the facts and figures which have been quoted in the few paragraphs above. They have been included only to give you an idea of the tremendous opportunities in this field.

Why Train For Electronics and Television?

In the early days of radio broadcasting, radio receivers were so simple that nearly everyone built his own and kept it in repair himself. In fact, for many years anyone with a good pair of eyes and the simplest of tools and test equipment could successfully set himself up in business as a radio service man. He had to know little or nothing about the "theory" or principles upon which radio worked. However, as radio receivers were improved they became more complicated. As a result, coly the technician who understands and can use his knowledge of the theoretical side of radio principles has an interesting and profitable future before him. In service work "time means money." The technician who knows the underlying principles and can get to the heart of the trouble quickly will be able to make much more money than will the man who fumbles along until he finally stumbles on the trouble.

A knowledge of technical theory is even more important in radio broadcasting where just a few seconds of silence, or being "off the air," can cost the station or network hundreds or تhousands of dollars. Eroadeasters, then, rightly insist on hiring technicians who are technically qualified and who are quick thinkers.

If technical ability and training are important in radio, they are much more important in television. The roason for this is that, althougn radio and television use many of the same fundamental principles, television is a great deal more complicated. The average radio receiver has five vacuum tubes, whereas television receivers use from 15 to 40 tubes.

Industrial electronics, too, requires thoroughly trained technicians. In industry, electronic equipment is usually used to control the most critical part of the entire process. Thus, the electronic equipment is, in effect, the supervisor which regulates the machine that, in turn, replaces the skilled worker. Quite obviously, the technician who adjusts and maintains this "supervisor", the electronic equipment, must be a completely qualified electronics technician.

This training program has been designed especially for persons who must take their training at home, usually after their regular hours of work. The Home Laboratory Experiments and the assignments covering the theoretical side of electronics, radio, and television were developed with this viewpoint in mind. Each new subject is started at its most basic point and then developed fully. This eliminates any misunderstanding that might arise, if it were assumed that anything about the subject was "common knowledge." Then a step-by-step training mothod is used to give the trainee the full information he needs about each subject. We try to anticipate all questions and give the answers in the assignments. Our Consultation Service is set up to help solve any and all radio and television problems for the Associate.

The Radio System

Electronics and television had their beginnings in radio. It will
be of benefit, therefore, to look behind the scenes of a radio broadcasting system to find out just what takes place.

Radio makes it possible for a person to speak at one particular point and be heard in hundreds or thousands of other places scattered "all over the face of the earth." This miracle has become so commonplace that everyone accepts it, yet few understand how it takes place. In our brief look at a radio broadcasting system, we ${ }^{\top} 1 \mathrm{ll}$ try to find out just how this miracle is brought about. In this first glance at the radio system, we will, of course, run across a few technical terms. Don't let these terms bother you at this time. You will obtain a full understending of them as you advance through the training.

Radio is, of course, a means of transmitting "sound" from one point to another. We all know that it is possible to transmit sound waves directly--for example, one person speaking to another. The soand waves caused by vibrations produced by the vocal cords of one person travel through the air to the ear of the other person and cause the sinsaticn known as sound. As mentioned previously, such a system would not be suitable for broadcasting because of limited range. Sirens, $b \in i l s, ~ a n d ~ w h i s t l e s ~ c a n ~ a t ~ b e s t ~ b e ~ h e a r d ~ o v e r ~ a ~ d i s t a n c e ~ o f ~ a ~ f e w ~$ miles, while the maximum range of voices and musical instruments is a few hundred feet.

Since radio is a means of transmitting "sound" from one point to another, let us pause long enough to find out a little more about sound beifore proceeding with the radio broadcasting system. We are all fan:iliar with the effects of sound because we are able to hear it, but at this time we wish to find out what sound is, and how it travels from its source to the ear.

Sound Waves

Sound waves are set up by a vibrating object. For example, as a bow is passed across the strings of a violin, the strings vibrate and produce sound waves. As a musician blows into a saxophone, the reed in the instrument vibrates. As we speak, the air passing through our vocal cords causes vibrations. All of these vibrations produce sound waves in the air. ear, we will consider the loudspeaker in a radio receiver. There is a large paper cone in an ordinary loudspeaker (as may be observed in Figure B), which vibrates back and forth when the radio is operating. This vibrating cone alternately pushes and pulls on nearby particles of air, and sets the air particles into vibration.

As the cone of the loudspeaker pushes forward, it shoves the air particles in front of it. This sets up a region of higher air pressure than normal in front of the speaker cone. One of these high pressure regions begins to travel away from the loudspeaker each time the speaker cone moves forward.

As the cone of the loudspeaker moves backward, it leaves more room
in front of it than previously for the air particles. This creates a partial vacuum in front of the speaker. This partial vacuum, or lower than normal air pressure region, travels outward from the speaker in front of a new high-pressure region each time the speaker cone moves forward.

This process repeats itself each time the loudspeaker cone moves forward and backward, which happens many times a second. The resulting regions of higher and lower air pressure, traveling away from the source, are known as sound waves. (This may be seen in the sketch of Figure 9.)

It should be mentioned that when a sound wave reaches the ear, the air particles have not traveled from the speaker cone to the ear. A sound wave is made up of vibrating air particies and might be compared to a wave moving across the surface of a lake. The wave travels across the lake but the water particles do not. They merely vibrate up and down. The water particles stay in practically the same position all of the time, and only the vibrating up and down motion travels across the lake. In a like manner, air particles in a sound wave do not move very far; they merely move back and forth in a certain area. Each particle transfers its back-and-forth motion to the next particle. This forms traveling regions of high and low pressure, which are sound waves. The sound waves travel at a speed of approxirately 1,089 fe日t per second.

As sound waves strike the ear drums, they cause the ear drums to vibrate. The vibrations of the ear drums are conducted to nerves which transmit the sensation of sound to the brain.

In addition to its limited range, there is another disadvantage to the use of sound alone for broadcasting. If several. persons are talking at the same time, we have no way of listening to any one of them and "shutting out" all of the others. Nature has not equipped us with any means of selecting or "tuning in" the particular person we wish to hear. This suggests another great advantage of the use of radio waves for broadcasting. Although there are thousands of stations broadcasting at the same time, the person operating his radio receiver can tune in one desired station and, in so doing, shut out all of the others.

The Radio Station

Now that we know a little about the nature of sound, it will be possiole to proceed with a discussion of "what happens at a radio station." The program usually originates in the studio, as shown in Figure 10, and in the sketch of Figure 11 which illustrates an entire radio broadcasting system. The performance is conducted before a microphone which receives the sound waves set up by vibrations of the vocal cords of the performers and the reeds or strings of musical instruments. The microphone operates on the same principle as the mouthpiece of a telephone. The sound waves cause a diaphragm (a thin metal or foil disc)
in the microphone to vibrate and the microphone generates electrical waves in the circuit to which it is connected. These electrical waves correspond to the sound waves striking the microphone and are called audio signals.

The audio signals are actually sound waves in an electrical form. These audio signals are very weak and must be "built up," or amplified, before they can be used further. They are carried by cable from the microphone in the studio to the control room, where they are amplified by vacuum tube circuits called audio amplifiers. The action of audio amplifiers will be explained in detail later in the training program.

A technician, called the control operator, operates the control console in the control room of the broadcasting station we are "visiting." A control operator may be seen at the control console in Figure 12. It is his job to regulate the volume of the audio signal so that it will always be betweer certain specified limits, as indicated by a meter on the control console. The operation of controlling the volume is called "riding the gain" by radio and television broadcast personnel.

If the program consists of a variety show or of music by an orchestra, where several microphones are used, the control operator blends the outputs from the various microphones to obtain the desired effect. He also cortrols the switching of programs from local studios to "chain" programs, electrical transcriptions, etc. Chain programs originate in studios located in New York, Chicago, Hollywood, etc., and are sert to the local stations all over the country through telephone lines. Electrical transcriptions are similar to phonograph records and are played on specially designed, high-quality turntables.

The amplified audio signal is next carried to the transmitter. The transmitter may be located very close to the control room or it may be located several miles outside the city. In the latter case, telephone lines are used to carry the audio signal from the control room to the transmitter. At the transmitter the audio signal is further amplified and at this point may be amplified, or built up, so much that it is a million or more times as strong as when it left the microphone: In spite of the strength of this audio signal, it cannot be applied to an antenna and transmitted through space. This is because the audic signal is not actually a radio wave. To be transmitted through space the audio signal must be combined with a radio wave called the "carrier." The carrier transports the audio signal through space to radio receivers.

Block Diagram

Figure 13 shows a simple block diagram of the radio system we have been discussing. The sound waves, microphone, and audio amplifiers which have been mentioned can be seen. Also, En Figure 13, a jlock: will be noted which is labeled Carrier Section. It is the purpose of this portion of the transmitter to generate the radio wave which serves as the carrier. Technically, this radio wave is a radio frequency wave,
and it is usually abbreviated RF wave, or RF signal. The carrier (RF signal) and the amplified audio signal are both applied to the modulated amplifier. This portion of the transmitter combines the cudio signal and the RF signal. The result is that the RF signal carries the audio signal "piggy back." This is why the RF signal is called the "carrier." The carrier is assigned to a definite frequency, or place, on your radio dial by the Federal Communications Commission. For example, WLW is assigned to a frequency of 700 kilccycles , or 70 on the dial of your radio.

Another technician is on duty at the transmitter, and it is his job to see that the transmitter is operating properly. He also records the readings of the many meters of the transmitter at regular intervals. The transmitter technician is shown recording the readings of the transritter meters in Figure l4. This is done for two reasons. In the first place, a record of the meter readings is required by the Federal Communications Commission. Second, a close check of the meters can, ir a great majority of cases, indicate that certain troubles are developing. For example, it can indicate that a particular tube is aboat to "burn out." Then the defective part, tuba, or whatever it may be, can be replaced during one of the regular "off the air" periods, rather than cause a shutdown during the time when the station is supposed to be on the air.

Now that the audio signal has been combined with the RF signal, ${ }^{t}$ he combined signal must be "broadcast" in all directions to the radio receivers in the homes of the listeners. To do this the modulated carrier, which is the name applied to the output signal from the moduZated amplifier, is carried by means of wires from the transmitter to the transmitting antenna. The transmitting antenna is usually a tall, vertical steel tower. When the modulated carrier flows into this antenna, it produces radio waves which spread out in all directions. (In certain applications, such as a radio beacon, the radio waves are \&ocused by special types of antennas into narrow "beams.") The radio waves travel through space at the speed of light, which is 186,000 miles per second. The radio waves carry the audio signal through space.

In our short trip through a radio station we have seen how sound waves are changed into audio signals, how these audio signals are combined with the carrier, and how this combined signal is broadcast. Now let us see how a radio receiver handles the problem of changing the radio waves back into sound waves.

The Radio Receiver

As the radio waves travel through space they hit radio receiver antennas. These antennas might be located outside, as they were for many years, or might be built into the cabinets of the radio receivers. As the radio waves hit arn antenna, they cause a weak Radio Frequency signal to be set up in the antenna. This weak Radio Frequency signal set up in the artenna of the receiver is exactly the same as the modu-
lated carrier signal at the transmitter except it is much weaker. It is probably less than one-millionth as strong as the modulated carrier signal at the transmitting antenna. The receiving antenna conducts the weak RF signals to the RF amplifier of the receiver as shown in the simple block diagram of Figure 15. There are a number of different methods used in receivers to handle this weak RF signal and change it into sound waves, and Figure 15 illustrates one method.

The RF amplifier in the receiver does two things. First, it thenes in the desired station and tunes out all of the undesired ones. It $\overline{\text { should }}$ be remembered that there are thousand $\overline{\mathrm{s}} \overline{\mathrm{f}} \mathrm{stations}$ broadcasting at the same time, and the radio waves from most of these transmitters are hitting the receiving antenna and setting up RF signals in it. An unintelligible jumble would result if all of these were amplified and were heard in the loudspeaker at once. The $R T$ amplifier selects the one station to which it is tuned and rejects the others. (The tuning process is one of the most interesting things in radio theory, and will be taken up in detail later in the training program.) Second, it amplifies the weak signal from the antenna so that it will be strong enough to use. After the RF signal has been amplified, it is passed along to a demodulator stage, commonly called a detector, which reclaims the audio signal from the RF carrier which brought it that far.

The action of the demodulator stage in the receiver is just the opposite of that of the modulated amplifier in the transmitter. The demodulator, or detector, separates the audio signal from the RF signal. The RF signal is discarded, since its orl y purpose was to carry the audio signal. The audio signal is then conducted into an audio amplifier stage, which builds it up to a sufficient strength for operation of a loudspeaker. When the audio signal flows through the windings of the loudspeaker, it causes the paper cone-shaped diaphragm of the loudspeaker to vibrate in exact step with the vibration of the diaphragm of the microphone in the broadcasting studic. This vibrating cone produces sound waves in the air which travel to the ears of the listeners. Thus, a perfect reproduction of the music or voices in the broadcasting studio is heard by the listeners. In other words, the listener hears the same sound he would hear if he were present in the radio studio.

Summary of the Radio System

To summarize briefly the foregoing actions: At the studio we have taken sound waves in air, changed them to audio signals, amplified them, combined them with a carrier, and broadcast radio waves having the characteristics of the original sound waves. In the receiver we have "picked up" this weak modulated RF signal, amplified it, removed the audio signa-, amplified this audio signal ard passed it through a lcudspeaker which again produces sound waves. Since radio waves travel at 186,000 miles per second, all of this happens in a split second. If a listener is sitting near his radio, he will actually hear the pro $\frac{1 f}{a}$ am a fraction of a second before a listener in the rear of the broadcasting
studio would, because sound waves in the studio will travel only l,089 feet per second.

The Television System

Since the first crude television picture was shown in 1927, television has captured the fancy of the public in a manner undreamed of by any other technical achievement. However, television--which is a transmission of both pictures and sound without the aid of wires--took almost 20 years of intensive research to develop tc the point where the quality of the transmission was good enough, and the cost low enough, to insure its popularity with the general public. Thus, it was not until 1946 that commercial television became a reality. Even after this time technical advances were being made, and the Federal Communications Commission placed a ban on new station construction after 108 TV stations had been placed on the air. This ban was lifted in 1952, and since then TV transmitting stations and their associated antemnas, as pictured in Figure 16, have been springing up so rapidly that almost every community large enough to appear on a map is now able to receive TV from one or more transmitting stations. The development of color television is adding to the impact of television. Even the Army finds application for television, as shown in Figure 17.

Most television programs originate in specially constructed \quad-V studios (See Figures 18 and 19). As TV consists of the transmission of both pictures and sound, there are two separate operations taking place at the same time. The problems of handling the sound portion of the program are quite similar to those of radio, except the microphone is usually suspended above the performers from a microphone boom, as may be se日n in Figure 19. Television cameras are used to "pick up" the picture portion of the program. Cameras and cameramen can also be observed in Figure 19. A closeup of a television camera and cameraman is given in Figure 20, a television camera in operation in the TV Studio of United Electronics is illustrated in Figure 21, and Figure 22 shows a closeup view of a TV camera with the top open.

Now that we have had a picture of the TV studio and the equipment located in it, let us see how it is possible for the television system to "pick up" a scene in the television studio, and reproduce this scene on the screens of thousands, or even millions, of TV receivers.

Probably the first ting which should be emphasized is the fact that there is no film in a TV studio camera. Instead, the TV camera contains a camera pickup tube, or picture tube, as it is often called. Located on the front of the camera is a lens turret, which normally mounts four lenses, as may be seen in Figures 20 and 21. By means of a handle on the back of the camera (See Figure 22), the cameraman can choose whichever lens he desires for use at a particular time. Through the action of the lens the scene being televised is focused on a sensitive plate in the picture tube, as illustrated in Figure 23.

Stated very briefly, then, the TV camera changes this optical image
into electrical signals somewhat similar to the audio signals produced Ly a microphone. These signals are sent to the transmitter, where they are combined with a carrier. The combined signal then goes to the transmitting antenna for broadcasting. TV receiver antennas, some of which are many miles away from the transmitter, pick up the weak TV signals. After much signal amplification, the scene is reproduced on the screen of the TV set, which, as Figure 24 illustrates, is actually the "front" part of the picture tube.

The manner in which the scene focused on the sensitive plate of the television camera pickup tube is changed irto an electrical signal, and how this olectrical signal is then changed back into a reproduction of the scene on the screen of the television receiver, is, indeed, an interesting process.

How a Picture Is Reproduced

When one watches the screen of a television receiver, he thinks he sees a "moving picture" being presented on the screen before his eyes. However, this is actually an optical illusion. No means has ever been developed for transmitting an entire picture at one time so that the television receivers can reproduce an enjire picture at one instant. All workable methods of TV consist of breaking the picture up into many thousands of parts, transmitting each of these parts one after another, and then putting these parts togethor again properly at the recoiver to obtain the complete picture. The fact that the picture must be broken down into parts for transmission and the parts then put back together at the receiver accounts mainly for the fact that television transmission is complex as compared to radio or sound broadcasting.

Perhaps it would be of interest to point out that almost ail means of reproducing pictures employ processes of breaking the picture down into small areas of light and dark. If you have a magnifying glass, or can borrow one, look at a newspaper photograph under this glass. You will discover that it is made up of small dots of ink--in other words, the original picture is broken down into the small dots of light and dark to reproduce it on the newsprint. If you were to use a good magnifying glass to examine a photograph in a magazine, you would discover that it, too, is made up of many small dots, but that the dots are smaller and closer together than in the case of the newspaper reproduction. As a result, you can see more of the fine details in the magazine picture than in the newspaper picture. Even an ordinary photograph, if you could examine it under a very powerful magnifying glass or a microscope, would be found to consist of many dots (in this case they are dots of a silver compound) which are very small ard very close together. A good photograph will contain even a greater amount of fine detail than a magazine reproduction. From this it can be understood that it is possible to break up any picture into a large number of small areas cr dots of light and dark, and that the smaller these areas are, ard the closer they are together, the more cetail will be shown in the picture.

As mentioned, television also breaks up the picture into a large number of small areas of light and dark. However, there is one major difference between the reproduction of a television scene and the reproduction of a printed picture. When a person looks at a picture in a newspaper he sees all of the picture at once, because all of the small areas of light and dark are there for him to look at as long as he desires. In television, the picture is not reproduced all at once. Instead, each successive area of light and dark is reproduced, one after another, at such a rapid rate that the eye is tricked into believing it is seeing the entire picture at cnce.

After the eye responds to a change in light intensity, it retains the impression for approximately one-tenth of a second. Thus, if all of the small areas of light and dark forming the television picture are assembled on the TV screen at a rapid enough rate (in less than onetenth of a second), this characteristic of the eye tricks the observer into thinking he is seeing the entire picture before him. Another thing which adds to this effect is the nature of the screen of the picture tube itself. The fluorescent material used for the screen is such that any spot which is caused to glow will cortinue to glow for a fraction of a second afterward.

The Television Picture

In the television system, the image to be transmitted is first broken up into narrow strips or lines, and these lines are, in turn, broken up into dots of light and dark. Figure 25 illustrates the manrer in which a picture may be broken up into lines and then reproduced. The picture at the left shows the original scene, and at the right it can be seen broker up into the individual strips, or lines. If we were to reassemble all of the individual lines at the right, by moving them close together, they would form the original picture.

The process in which a scene is divided into individual lines, and these lines reassembled at the receiver to form a reproducticn of the picture, is called scanning.

Scanning can be explained very easily by the following example. Assume that on a very dark night, a man desires to read a large sign on a wall. The only means of illumination he has is a flashlight which produces a narrow beam of light. To read the sign he would, naturally, first direct the beam at the upper left corner of the sign, and then move it across the top portion of the sign. He would then lower it slightly and again trace across the sign, this time tracing out the second line of the sign. This process would continue until the entire sign had been observed. The flashlight illuminates only a small spot, but if it is moved rapidly, a whole strip or line appears visible. If it were possible to thus scan the entire sign in less than a tenth of a second, the eye would be tricked into "seeing the whole sign at once."

In the television system, the scene to be televised is focused on the pickup tube in the camera, and the reproduced scene appears on the screen of the picture tube in the receiver. The scanning is done
entirely through the use of electricity. In the camera tube, a pencil-point-thin beam of electricity moves from the left edge of the top line, or strip (See Figure 25) progressively to the right odge of this line. Thus the beam of electricity corresponds to the flashlight beam in our example. As the beam scans across the picture, it "senses" whether it is hitting upon a white, black, or gray area. In the picture tube of the TV receiver, another pencil-point-thin beam of electricity traces a strip progressively across the top edge of the TV screen. It reproduces a white area on the receiver screen each time the beam in the camera tube is striking a white area. Similarly, a black area is reproduced on the $T V$ receiver screen when the beam in the camera tube is striking a black area, and a gray area is reproducod when the beam in the camera is striking a gray area. This ability of the beam of electricity in the camera tube to "sense" whether it is hitting upon a white, black, or gray area makes it possible for each line of the picture to be broken up into the small areas of white, black, and gray, just as was mentioned regarding a newspaper picture.

After the first line has been scanned, the scanning beam in the camera and the one in the receiver picture tube move rapidly back to the left edges of their screens, and down slightly. They ther scan another line slightly lower on the picture than the preceding line. This process is repeated, line by line, until the entire picture has been scanned. Thus the areas of light and dark forming each line of the screen appearing before the camera are reproduced on the screen of the receiver. The entire picture is reproduced on the receiver screen in such a brief period of time that the eye of the viewer is tricked into seeing the entire picture at once. This process is repeated over and over again.

In the actual television system the scene to be reproduced is broken into many more lines than those shown in the demonstration scene of Figure 25. This makes it possible for the TV system to reproduce the fine details in tho picture. Just as soon as the scere has been completely scanned, the scanning process starts over again. If the people in the scene have moved, they will appear at slightly different locations in the successive scenes, which follow each other at intervals of $1 / 30$ second, and thus the illusion of motion is established.

The scanning process is actually the "heart" of television. It makes it possible for the television system to break down its "picture" into a series of dots of light and dark, just as the picture in the printing process is composed of dots of light and dark. After this has been done at the studio, and the "picture signal" formed in the process, this "picture signal" is then combined with a "carrier" signal for transmission in a manner quite similar to the arrangement explained for radio broadcasting. The TV receiver reverses the process by taking the "picture" signal away from the "carrier." It applies the "picture" signal to the picture tube, where the scanning process in the receiver reassembles the complete picture. This, in a nutshell, is the fascinating, the challerging process of television.

Looking Ahead

This assignment gives you a simple, over-all picture of the radio system and the television system. Of course, this picture is not complete, but merely serves as an introduction to the electronics field, and gives you a "speaking knowledge" of the entire system. Each fundimental electronic and TV unit will be discussed in detail later in the training program. To illustrate this, refer again to Figure 10. This photo shows an announcer speaking into a microphone. In this assignment, you were tcld that the microphone is similar to the mouthpiece in a telephone, and that it changes sound waves into electrical waves called audio signals. This is true, but it is not the complete story of a microphone. Later in the training program, one entire assignment will give a complete explanation of the various types of microphones and the proper use of each type. You will learn, then, that there are many different types of microphones, each using a slightly different principle, to do the same job--changing sound waves into zudio signals. Similarly, you will look at audio signals more closely, so that you will learn all you need to know about them.
A.s you go along in the training program, you will see what we mean Winen we say the entire training advances in a step-by-step process. For example, in the next assignment you will learn to recognize the various electronic parts, and find out, in a basic marner, what eack doos. In the following assignments you will learn how to "road" radio and electronic wiring diagrams, or circuit diagrams, as they are called, and how to draw them yourself.

A little further in the training you will be given the latest information on just what electricity is, and its relationship to magnetism. You will then be shown how both of these very interesting natural forces are used in electronics and television. Each of these basic things you learn will add a step to the stairway you are kuilding and climbing toward becoming a thoroughly qualified electronics techrician. The remaining assignments will be just as interesting as the first, and, equally important, you will keep learning more and more from each one. Your knowledge will grow by leaps and bounds as you master the fundamertal laws and facts given in each assignment.

A thorough training in clectronics is worth every bit of the tine and $日 f f o r t$ you give to obtain it. You are qualifying yourself for a field that is "wide open" in opportunities--exceptional opportunities that are available only to those who "know what they are doing" in electronics. Each time you tackle a new idea and master it, you advance your skill and experience in this field.

Many thousands of hours of thought, preparation, and revision have gone intc this training program, so that each subject will be presented as thoroughly as possible and as simply as possible. Because of our constant touch with the industry, $r e$ aro able to include in the training all of those thees which you need to know to meet the industry's requirements and to become a thoroughly qualified techrician. Similarly,
any information which has lost its value to the over-all electronics field has been eliminated. In this manner, the training program will provide you with the information you need, without holding up your progress while you are studying unnecessary material.

In this training program, you will supply the ambition, but you're working directly with an instructor. He is right behind you, raady to give you help whenever you neeł it. To learn new material it is, of course, necessary for you to do the studying and thinking, but your instractor is eager to help you. He'll be glad to explain anytining in a different way whenever you desire. You, yourself, know whether or not you understand an explanation. Before going from one part of an assignment to the next, make sure that you do understand.

We kncw that you will do your very best to master each new idea yourself. However, we do not expect you to inderstand everything without some help. At some point in the training you may run across something that just doesn't seem to make sense to you. Be sure to remember, when and if this happens, that your instructor is eager and prepared to give you personal Enstruction and the special explanations you need. Just tell kim exactly what point you do no ${ }^{\circ}$ understand. Use the Consultation Service Blank which has been supplied for this purpose. When your instructor returns your answer to you, he'll send you another Consultation Service Blank for your future use. Do not hesitate to use the Consultation Service whenever you feel the necessity. This is a fundamental part of the over-all training program. We don't want you to have a single technical question left unanswered as you progress through the training.

After you have finished your work on this assignment, send in your answers to the test questions for grading. Then start your work on Assignment No. 2 as soon as pessible, without waiting for your graded answers for Assignment No. l to be returned to you. Tnis will make it possible for you to advance through the training program withcut delays.

Again--congratulations on your forethought in deciding to enter the electronics field--lots of luck--we're with you:

Assignment 1

TEST QUESTIONS

Be sure to number your Answer Sheet ASSIGNMENT 1. Place your Name and Associate Number on every Answer She日t. Send in your arswers to this essignment as soon as you have finishec with it. This will give you the greatest possible benefit from personal grading services.

1. Which travels faster, a sound wave or a radio wave?
2. List at least two uses of electronics. (Do not include radio, television, or radar.)
3. What is the purpose of a microphone?
4. Are microphones used in television?
5. Name at least two radio services other than standard radio broadcasting.
6. In a television system, is the entire picture transmitted at one time, or is the picture "broken up" into parts and these parts transmitted?
7. What does the control operator in the control room of a radio broadcasting station do when he is "riding the gain"?
8. The RF signal in a radio transmitter is called the carrier. Why?
9. What two things does the RF amplifier in a radio receiver do?
10. In our example, the man "scanning" the sign on the wall used the beam of light from a flashlight to do this scanning. What kind of beam is used ir scanning the image in a'television camera?

FIGUAE I
(COURTESY WTOP, WASHINGTON, D, C,)

This specially designed building houses a Standari Broadcast Radio Station, an FM Broadcast Station, and a TV station.

AIRCRAFT RADIO

FIGURE 2
(COURTESY PAN AMERICAN WORLD AIRWAYS SYSTEM)

This is just a portion of the radio and electronic equipment carried by modern airliners. World Recio $\mathrm{H} \mid$ Ifory

FIGURE 3
(COURTESY SPERRY GYROSCOPE CO.)

This piece of Radar equipment, aboard the Dutch Lines' NIEUW AMSTERDAM, is typical of the Radar installation on ocean-going vessels.
 on shipboard.

FIGURE 5
(COURTESY GENERAL ELECTRIC CO.)

This test technician is making a wiring change on an electronic brain. This particular " brain" was designed by GE for the American Gas and Electric System, and simulates, mathematically, one of the nation's largest electric power networks. Its use is expected to save AGE abcut $\$ 100,000$ yearly.

ONE OF NBC'S TV STUDIOS

CBS TELEVISION GITY

FIGURE?
(COURTESY CBS-TV)

This photo shows Lucille Ball, star of "I LOVE LUCY," the Mayor of Los Angeles, and the vice president of CBS $-T V$ throwing the master switch which inaugurated nightly illumination of CBS TELEVISION CITY while it was under construction.

FIGURE 8

The vithrating cone of the loudspeaker sets up sound waves in the air.

FIGURE 18
(COURTESY KROD-TV, EL PASO. TEXAS)

This beautiful new building houses the studios of KROD-TV in El Paso, Texas.

ARMY TV EQUIPMENT

Figure 17

ANOTHER TV ANTENNA

FIGURE 16
(COURTESY GENERAL ELECTRIC CO.)

This particular antenna, mounted atop a $573-$ foot tower, radiates $W B Z-T V ' s$ signal over a radius oi approximately 100 miles from Boston, Mass. Many similar structures are dotting the skyline from coast to coast.

(COLRTESY WAAM, BALTIMORE, MARYLANO)
Periodic reading of the equipment meters, logeing the readings, and making constant
comparisons keep the station's equipment functioning full time at maximum efficiency.
FIGURE IA

Figure is
This simple block diagram traces the path of a radio signal through a receiver, to emerge irom the loudspecker as sound waves.

CONTROL CONSOLE

FIGURE 12
(COURTESY CANADIAN BROADCASTING CORP.)

The technician at the control corsole regulates the volume of the audio signals. He also handles the switching from the various microphones, the transcription turntables, and from the network.

The scund waves travel outward from the speaker and strike the eardrums of listeners to produce the sensation of sound.

THE MIKE IN THE RADIO STATION

As the newscaster speaks, the sound waves set up by his vocal cords travel to the microphone which converts them into audio signals.

TV STUDIO SCENE

FIGURE 19

This on-the-air shot shows a program being televised. Note the lighting equipment, the "boom" microphones suspended above the heads of the performers, and the TV cameras and camermen. (two cameras are partly hidden from view, behind the first camera.) An asoistant cameraman and other production personnel may also be seen.

INSIDE VIEW

FIGURE 22

When the top of a TV camera is opened, the tủes and other electronic parts are exposed, so that the TV technician can make adjustments or rəpairs.

UEL ASSOCIATES IN ACTION

FIGURE 21

Here are shown four United Electronics Associates, operating one of the TV cameras and a boom microphone in one corner of the spacious, flilly equipped, air-conditioned studios in the UEL treining kuilding. To the loft of the Associates may be observed lighting equipment, studio monitor, scenic backdrop, etc., and behind the Associates are the soundproof windows to the control room.

A TV CAMERAMAN IN ACTION

(COURTESY CANADIAN EROADCASTING CORP.)

This close-up shot shows a cameraman in action. The four lenses on the front of the camera are mounted on a "turret," and the turret may be rotated by means of a hardle projecting from the rear of the camera (Se日 Figure 22), to place the desired lens in front of the camera pickup tube.

LOUISVILLE

KENTUCKY

ASSIGNMENT 2

THE ELEC TRONICS PARTS IN A RADIO RECEIVER

Industrial electron ic equipment and radio and television receivers have much in common. Although they may be doing a different job - the industrial electronic equipment may be controlling a production process, whereas a radio recきiver is merely reproducing entertainment - these units operate on the same basic principles. They also use tine same basic parts - colls, condensers, resistors, tubes or transistors, etc. At this time we are going to look at. some of the parts, to become familiar with them and how they are used in actual equipment.

In Ass:gnment 1 we looked at the basic principles of the transmitter and recelver of the radio and television broadcasting system. Let us now continue our study of electronics in a practical way, by using a small, table-model recelver - such as can be found in nearly every home, or can be borrowed from friends - as our firsi practicai project.

It is suggested that you read through this entire assignment at least once, to fet a mental picture of just what the assignment covers. Then, ga through it paragraph by paragraph, with the actual radio berore you. For the present, we will lock at the various component parts and examine the connections. This will give us a world of knowledge about the parts used in alz types of electronic equipment. If we understand the directions and follow them carefully - If we do not make any changes or adjustments - the radio will remain in good condition. In pact, the radio will be in better operating condition when we finish than it was when we started.

The choice of a radio to use in this assignment is not at all criticalany will do, from the smallest to the largest. However, a snall table radio, somewhat similar to that in Figure 1 , is easier to hande, and you will have less chance to become confused by connections to a phonograph, extra loudspeakers, etc.

A Word of Caution

A word of caution is in order before we begin. On some of the parts in the radio - for example, on the tuning condenser and the $I-F$ uransformers with which we will become familiar presently - there may be a number of screws or nlits, which may seem to need tightening. However, none of these should beturned or tightened under any circumstances. These screws or nuts may be for the purpose of adjusting critical circuits in the receiver, rather thar to just "hold things in plcce. "If you were to move any one of these as much as a quarter of a turn, one way or the other, it might make the radio completely inoperative.

Rough-Testina the Receiver

Having selected our radio, we should first of all "rough-test" it. This simply means to check to see if the radio is in proper operating condition. If
it is an electric model, check to see if the line cord is in good condition, the insulation is not frayed or worn through, the plug is not broken, and of course, the plug must be securely plugged into an outlet of the proper voltage and current. If it is a battery model, we should see that the batteries are good and that they are connected properly. Next, check to see that the antenna and ground wires - if used - are in good condition and properly connected. Most small table-model radios have a built-in antenna with provisions for adding an outside antenna, if necessary. Few modern table-model radios use an outside ground wire and unless there is a connection clearly marked "ground" on the radio, never use one. If a ground wire is connected to this newer type receiver, or if the metal chassis or base of the receiver comes in contact with some metal such as a waterpipe, the house fuses may be blown and the radio damaged.

The next step in our rough-test examination should be to turn the radio on and by operating the various knobs or controls, see what effect they have on the operation of the radio. Having assured ourselves that the radio is operating satisfactorily and that we know what each of the knobs does to the operation of the radio, let us turn it off again and disconnect the antenna and ground wires (1f used) and remove the a-c plug from its socket. Begin at once to practice the correct way for doing each job. For example, to remove the plug from the socket, pull on the plug itself and not on the wire. In removing the antenna and ground wires, tag them or write down their color scheme to insure being able to reconnect them properly, with the least amourit of trouble and effort. An expert electronics technician plans his every step and goes through the operation first in his mind. Then, he follows through with the actual operation.

Removing the Knobs

Now let us carefully examine the radio we are using in this assignment and see what we can learn about it. For example, 1 t probably has several knobs which must be removed 11 we want to take the radio chassis out of the cabinet. These knobs ift over a metal shaft which is a part of some component in the radio. Oftenthe knob is held inplace by a small metal "set screw". Looking at the side of the knob rather than the front, and rotating $1 t$, we may see a small opening and inside of this opening, the head of the screw. To remove this type of knob loosen this screw with a small screwdriver and pull lightly on the knob. of course, standard screws may be loosened by turning the screw to the left or counter-clockwise and tightened by turning the screw clockwise. Later on, when the knobs are replaced, the set screws should be tightened just enough to keep the knob from slipping on the shaft.

If the examination of the sides of the knob discloses no set screws, try pulling on the knob. on a great many modern radios the knobs are held in place on the shaft by a plat spring and may be removed by pulling on the knob. It may be necessary to pry it off with a small screw-driver if it fits very fightly, but care must be taken not to scratch the cabinet or break the knob. After you have removed the knob, notice how it fits on the shaft and plan to replace it in exactly the same way.

Removing the Chassis

Now we shall examine the entire radio cabinet, paying particular attention to the bottom and back in order to see how the chassis, or radio proper, is held

In place. Probably several screws or bolts hold it in place and these will have their heads coming out the botton of the cabinet. When all the necessary bolts have been removed, the chassis should slide out easily from the cabinet. Be careful not to damage the speaker and the dial assembly. If the speaker is rot a part of the chassis and does not come out with the chassis be careful not to break or damage the wires leading to $1 t$. Sometimes these wires terminate in a plug which may be pulled out; sometimes they are connecied by screws, which, when loosened, enable them to be removed. When removing them, be sure you are able to connect the proper wire to the proper point when you wish to replace $1 t$. Also, in removing the chassis from the cabinet, notice how everything fits together so that you can reassemble it quickly and easily.

If the receiver uses a speaker, which is mounted on the cabinet rather than on the chassis, let us remove it from the cabinet. We will notice that it is fastened to the cabinet by several bolts and nuts, the bolts most likely having ornamental heads without screwdriver slots.

A pair of pliers or a small wrench will enable us to remove the nuts from the back, but be careful not to allow the tool to sllp and punch a hole through the paper speaker cone, thus ruining it. Notice how the bolts are made so that they do not slip or turn, even though we cannot hold them in place with a screwdriver.

If the radio chassis has not been removed from its cabinet for some time, the chances are it will be quite dusty. The next thing that should be done is to clean it up. This will serve two purposes. First, it will make the radio play better when we have inished, since dust and dirt are two major enemies of radio and electrical circuits. Second, by cleaning it thoroughly, we will notice more things about the radio. If this radio were one we were at tempting to repair, we would be likely to notice things like burned resistors, condensers with the wax melting and dropping out of them, broken wires and poorly soldered joints, worn or chaffed insulation, etc. In cleaning the radio we should be careful not to alsturb any of the adjustments or the wiring. The best way to clean it is with a small, soft brush and pipe cleaners and by blowing occasionally to remove dust deposits. A soft cloth also may be some help. We can remove the tubes one at a time being sure to replace them in their original sockets. Since the a-c plug is pulled out of the socket we need not worry about touching any of the parts and getting a shock. However, anytime the radio is turned on, common sense should tell us to be careful where we place aur hands and fingers. All radios (except the smallest battery sets) employ voitages of 100 volts or more and under the proper conditions contact with this voltage could be very unpleasant. Even if this voltage is too low to be injurious, contact with it might cause us to jerk our hand away and break something or cut a inger.

Flgure 2 shows a typical table model recelver chassis after it has been removed from its cabinet.

After the radio has been cleaned the control knobs should be replaced on their shafts. This is a precautionary operation, since the circuit wiring of some radio recelvers is so arranged that it is possible for a person to be shocked if he touches the chassis or the control shafts at the same time he touches some grounded object, such as a radiator, if the power cordis plugged
into a receptacle. If the speaker of the set has been disconnected from the chassis, let us now reconnect it in the originai manner. Then connect the antenne and ground wires (if these were disconnected) and plug in the power cord. Now we may turn the radio on again. Notice that the radio will play without the cabinet but that the tone will not be as good. After this second operating test, pull the power cord out of its socket again.

What the Knobs Do

Now, let us see to what each knob connects and what this part does. First, notice that the knob which is used to tune in the desired radio station is connected, probably by a cord or cable, to both the dial mechanism and to a part made up of a number of fixed and movable plates. Notice that as we turn the knob the dial pointer moves and the movable plates are more or less enmeshed with the fixed plates. These two sets of plates should never touch each other or short together so we must be careful not to bend them. This part is known as a variable or tuning condenser. This condenser usually consists of two or three variable sections and we say that they are "ganged" together. Each section of the ganged tuning condenser consists of two parts, (1) a rotor and (2) a stator. The rotor of each section consists of the plates which rotate while the stator consists of those plates which remain stationary.

The stator and rotor plates of the ganged tuning condenser of a typical table model receiver are shown in Figure 3. It is the purpose of this tuning conder.ser, in conjunction with some coils, to select the desired station from the thousands which are on the air at any hour of the day or night.

Mounted on the top or the side of the ganged tuning condenser are small semi-variable condensers, called trimmer condensers. These condensers may be seen in Figure 3. These condensers usually consist of two small plates of metal separated by a sheet of mica. A slotted screw is used to adjust these condensers. At the present time, these adjusting screws should not be moved.

Examine carefully the dial cord assembly with 1 ts springs and pulleys. Quite frequently these dial cords break and the serviceman often has nothing more to go on than his experience and common sense in determining how to string a replacement cord. Figure 4 is a drawing of the dial cord arrangement of the receiver shown in Figure 2.

Also notice that the dial pointer will read "55" or beyond when the variable condenser is completely in mesh and somewhere between " 150 " and "170" when the variable condenser is completely out of mesh. The manufacturer's service instructions for this particular receiver more than likely tell exactly where to set the pointer when the condenser is completely out of mesh.

If the radio which is being examined has push-buttons for rapid tuning, try pressing them one at a time, and notice what happens in the receiver. There are iwo types of push-buttons in general use in modern receivers. one type of push-button rotates the tuning condenser when it is depressed. The other type of push-button operates a small switch when it is depressed.

The remainder of the knobs on the front of the receiver probably controi parts which are mounted under the chassis, so let us turn the chassis over. Most recelvers may be turned upside down without damage, when out of their cabinet, if we are careful with the loudspeaker and dial mechanism.

The knob which controls the volume of the radio rotates the shaft of a
variable resistor known as a potentiometer. This unit will be discussed in detall later and a typical potentiometer is illustrated in Figure 5.

If the radio has a tone control, it probably consists of another potentioreter although in some sets it may be connected to a 2 or 3 position switch.

In most radios the on-off switch is a part of the volume control. This also will be discussed with potentiometers.

If the radio has one or more short-wave bands on 1 t, the knob used to select the proper band will be fastened to the shaft of a switch similar to the one illustrated in Figure 6. Examine this switch carefully noting the number of sections or "decks" and the number of contacts on each deck. The one contact which is moved around and always connected to one of the other contacts 1 s usually referred to as the "wipe". Watching it as you operate the switch, see if you can discover why.

Connected by wires to this switch are a number of colls. Even if the radio you are using does not have a short-wave band you will be able to see at least one coll mounted somewhere on the chassis, elther above or below. This coll will consist of many turns of very ilne wire wound around a cardboard or wood form. If your radio has a short-wave band, you will notice that some colls have fewer turns and larger wire on them than others. Some short wave colls may have only 6 or 8 turns of much heavier wire on the form. In some recelvers, both the broadcast and the short-wave colls may be wound on the same form.

Parts Above the Chassis

Now let us return to the top of the chassis and observe the following parts with which we will now become familiar: Vacuum tubes and sockets, fllter condensers, cans containing colls, and the power transformer.

The vacuum tubes may be of various types and they may have elther glass or metal envelopes. Examine them closely, being careful not to break the glass loose from the bakelite or metal base. Let us remove them one at a time. They may be removed most easily with an upward motion while slightly rocking them from side to side. Notice how the tubes plug into the socket, paying particular attention to the spacing and arrangement of the prongs. The earlier types of cubes have from 4 to 7 prongs. These tubes have two prongs which are larger than the others so that they may be plugged in their sockets only one way. Later types of tubes have 8 equally spaced prongs and in the center have a keyed guide to prevent them from being plugged in incorrectly. Many newer receivers use new style, miniature tubes which are about the size of your finger and about $1 \frac{1}{2}$ inches tall. These tubes have unequal spacing of the prongs to prevent them being inserted in their sockets incorrectly. Notice the type numbers stamped on the tubes. Some tubes have a numbers only (such as 27 or 45), while still others have 1 or 2 numbers followed by a letter or two and then another number (such as $125 K 7$ or 6 V). Older radios may contain tubes numbered with three numbers (such as 224 or 484). Tube numbers followed by G or GT are glass versions of tubes also made in metal types, and are usually interchangeable with the metal versions. On a plece of paper, jot down the type number of each tube, and the number of prongs on each, in the radio you are examining.

Later on we will learn about the tube numbering system for vacuum tubes and will study in considerable detall just now tubes work. Turn the
chassis over and notice how the tube sockets make contact with the tube prongs. Also notice how the wires leading to other parts of the radio are fastened to the sockets.

Every radio has one or more fllter condensers which may be in any one of several forms or shapes. Sometimes they are enclosed in metal cans or containers and are located on top of the chassis. In other receivers they may be in cardboard boxes or tubes and located under the chassis. The fllter condenser can always be identifled by the markings on the container which will usually read something like " $50-30 \mathrm{MFD}, 150 \mathrm{VDC}, 200 \mathrm{VSP} "$, or ${ }^{16} 16 \mathrm{MFD}, 450 \mathrm{Vn}$ 。 If your radio has a fllter condenser marked as our ilrst example, it means that there are actually two condensers in the container. One of them has an electrical size of 50 MFD (50 microfarads) and the other 30 MFD . Both condensers are rated for maximum steady d-c voltage of 150 volts and they willwithstand voltages as high as 200 volts for very short periods of time without breaking down. If the container has just a single condenser in it, it will probably have two wires coming out of it. If there is just one wire, and it is in a metal container, the can itself is the other connection to the condenser. If there are three wires coming out of a cardboard container, the chances are that there are two sections and one of the wires is common to both sections. When the two condensers in a single container are of a different size, the markings will usually give the color of the wires leading to each section. The filter condensers are one of the things that most often wear out in a radio receiver. A number of different types of filter condensers are shown in Figure 7. The condensers shown in Flgure $7(\mathrm{~A})$ are the metal cased condensers and are usually mounted in an upright position on the top of the chassis with leads coming out below the chassis. Figure $7(B)$ shows two types of cardboard cased filter condensers. These types will be located below the chassis.

You will probably iind several square aluminum cans mounted in an upright position above the chassis. Keeping the location of these cans in mind, turn the chassis upside down and notice that there is a small round opening directly beneath each can. There will be connecting wires coming through this opening, and 11 we look through the opening we should be able to see a radio coll or transformer mounted inslde the can. There will probably be small holes in the top of these cans and through these holes can be seen the heads of screws. Under no conditions, at this time, should these screws be turned. The metal c ans are called shields. Figure 8 shows what is inside one of these shicld cans. The component inside of the shield can is called an "I.F. transformer". Later in the trainirg program we will learn just what this component does in the circuit.

If the radio you are using will work on a-c (alternating current) omly, you will usually find that it contains a power transformer. It can be identified by its large size and the fact that it contains a number of thin sheets of 1 ron stacked together. Around this iron core are wound many turns of fine wire. The winding may or may not be seen on the transformer in your set (if it has one) depending upon the type of case on the transformer. Figure ε shows three styles of power transformers. Figure $9(A)$ is called a universal mounting, Figure $9(B)$ is called a vertical shielded transformer, and Figure $9(C)$ is called a flush mounting transformer.

If your radio works on both $\mathrm{a}-\mathrm{c}$ and $\mathrm{d}-\mathrm{c}$, it will not have a power transformer. Sometimes these sets have a third wire in the supply cord. This wire is made of a special material and is quite similar to the heater element of an electric toaster. If the radio uses this, you will notice that the line cord becomes warm when the set is in operation. Should this type of cord become worn or frayed, it must never be cut and shortened, but must be removed and replaced by a similar complete cord.

Although not very conmon among the table model radios, some of them use a smoothing or filter choke. In appearance, this is quite similar to the power transformer, but can be distinguished from it by being smaller and having only two wires coming out of it. This fllter choke consists of a stack of iron laminations or plates around which are wound many turns of wire.

Let us look at the speaker carefully. Notice that it has a paper cone or diaphragm. Carefully touch this and notice that $1 t$ moves in and out slightly. Turn the radio on and tune in a program. Now touch the speaker 11 ghtly and notice that it is vibrating. If we wait for a pause in the program we will notice that when there is no sound coming from the radio, this paper cone will not be vibrating. Let us turn the radio off again and disconnect the line cord. Perhaps our radio has mounted on the speaker a small transformer with two wires going down into the speaker and two wires going back into the radio chassis. This is the output transformer. If this is not the case, we will always see two wires coming out of the speaiser. Follow these until you find the output transformer. Figure 10 shows a loudspeaker with 1 ts output transformer mounted on it.

Parts Under the Chassis

We will now return to the parts underneath the chassis. In addition to the sockets for the tubes and the potentiometers, switches and colls already mertioned, we will find resistors of all types and sizes, small fixed condensers and a maze of interconnecting wires. The resistors look like small round rods varying from a half an inch to an inch or more in length, having wires coming out of each end of the rod, and have several colors painted on the body of the resistor. Older resistors may have stamped on them their electrical size such as "50,000 ohms" whereas the newer ones have their electrical size marked by means of these colors. We will learn to read this code when we study resistors in greater detall.

The fixed condensers in the radio are probably of several types. A common type consists of round rods larger in diameter and longer than resistors and these usually have cardboard or paper on the outside with their electrical size and voltage rating printed on this wrapper. See if, there are any in your radio marked ". $05 \mathrm{MFD}, 400 \mathrm{VDC"}$. Like resistors, these condensers have a wire caming out of each end. This type of condenser is known as a "paper condenser". Another type of condenser most likely found in the radio is the $\mathrm{m}_{\mathrm{m}} \mathrm{ica}$ or postage stamp" type. These are about the size of a postage stamp and have a flat bakelite case with a wire coming out each end. Sometimes they have their electrical size stamped on them, such as . 0001 MFD , and sometimes this is coded by means of 3 or 4 colored dots painted on them. We will learn this color code when we study fixed condensers in greater detall.

Look carefully at all the parts on your radio, top and bottom, and be
sure that you can name them. This is what we have tried to accomplish so far, for we must know the names and the main points of appearance of every radio part before we can go on. Also, the workmanship under the chassis will tell you a great deal about the quallty of the receiver you have. The better sets have the parts neatly wired in and the parts sturdily mounted. When you do electronic maintenance work, you should plan to replace the defective parts neatly and securely.

Tools

The repair, construction and testing of electronic and television equipment will require the use of a number of hand tools, quite a few of which you no doubt already have. Before discussing some of the tools which you will be using, let us discuss briefly the care and use of our tools. All tools should be kept free of dirt, grease, rust and any foreign matter. It is difficult to clean a tool after excessive dirt or rust has been allowed to accumulate; therefore 1 ts accumulation should be prevented. A good mechanic always wipes his tools regularly with a clean or slightly olly cloth. Tools should be used only for the purpose for which they are intended. This would seem to be an obvlous statement, but the fact is that far more tools are ruined by improper use than are ever wom out thrcugh proper use. As the various tools are discussed their proper and improper use will be mentioned.

Of the tools used in electronic work, pliers are the most widely used. There are many types and sizes of pliers, each intended for some specific purpose. All types of pliers can be obtained in various sizes. The size of a pair of pliers is determined by the overall length. The most common fault of the untrained workman is to use a pair of pliers as an all purpose tool. Several types of pliers, and their uses are listed below:

1. Side-cutting pliers have square gripping surfaces on the end of the Jaws; behind these gripping surfaces are cutting blades. See Figure $11(\mathrm{~A})$. These pliers are used for gripping, splicing, wire cutting, removing insulation, etc. They are not intended to be used as a substitute for a wrench. The most useful sizes of these pliers are the six and eight inch; the larger size being used for cutting and handling larger wire.
2. Diagonal pliers have two cutting edges set at an angle of fifteen to twenty degrees with the length of the tool. See figure 11(B). They are intended for wire cutting only and also can be obtained in different sizes. Their advantage over side cutting pliers is that, due to their construction, they can cut off a wire closer to 1 ts point of attachment than the side cutting pliers. The chief misuse of diagonal pliers is forcing them to cut heavier wire than that for which they are intended. The most cormon sizes are the five and six inch type which will cut a number 16 hard steel wire. For cutting heavier wire the side-cutting pliers must be used.
3. Long-nose pliers are primarily for light gripping and holding operations and for use in small piaces. They consist of a pair of long tapering *aws, half round on the outside and flat on the inside. The long-nose pliers may or may not have cutting edges behind the gripping surfaces. See Figure $11(\mathrm{C})$. If they are forced to do heavier work than that for which they are intended, the j aws will either break or they will bend out of shape and refuse to close firmly on small objects. Five and six inches are the common sizes of long-nose pliers.
4. Needle-nose and chain-nose pliers are similar in appearance and construction to long-nose pliers except that the jaws are circular in cross section instead of semi-circular. See flgure 11 (D). They should be used only for forming small loops on the end of wires and for work on instruments.
5. Slip joint pliers have square nose gripping jaws with serrated gripping jaws behind them, close to the hinge. The method of hinging permits the faws to operate in either of two positions, thereby increasing the gripping range of the pliers. See Flgure $11(\mathrm{E})$. Slip joint pliers are used for gripping fairly large stock and are primarily a make shift tool to be used when the proper tool is not among the mechanic's equipment. They are a possible cainse of damage to any surface on which they are used and their use should be strictly limited.

The screwdriver is a tool for turning bolts and screws that are slotted to receive the screwdriver blade. It comes in several styles, the most common being, straight screwiriver, off-set screwdriver and ratchet screwdriver. Figure 12(A) shows an assortment of straight screwdrivers and Figure 12(B) shows an off-set screwdriver. The blade point is designed to fill the slot in the head of the screw. Turning the screwdriver then tightens or loosens the screw. The screwdrlver is often wrongly used for prying, opening boxes, or as a chisel.

Two faults can be found with the average man's use of screwdrivers, assuming that he uses them for no other purpose than turning screws. First, is the fallure to use a proper assortment of screwdrivers. When a screwdriver too small for a $j 0 b$ is ised, the blade of the screwdriver does not fit the slot in the screw-head properly. The force necessary to turn the screw is exerted upon too small a surface, and the result is that the head of the screw is damaged.

The other fault in the use of the screwdriver is the improper sharpening of the blade. The two faces of the screwdriver blade should be nearly parallel and the end square. The point of the blade shou-d not be sharpened to an edge like a chisel but should form a rectangle. The blade of the screwdriver should be the same width at the point as the length of the slot of the screw-head for which it is intended, and it should be ground with sufficient thickness to be a snug fit in the slot and yet reach the bottom of the slot. The ideal screwdriver should completely flll the slot for its depth, width and length. The further this ideal is departec from, the greater is the likelihood of damage to the screwdriver and the screw-head. Sharpening is best done upon a small cench grinder.

Radio men are frequent users of drills; such as the hand drill, breast drill, and portable eiectric drill.

The hand and the breast drill are somewhat allke. The breast drill has a guard plate which is held against the breast while the hand drill has a handle whicn is ordinarily held in the left hand. Both drills are operated by a hand crank driving bevel gears. The feed is obtained from pressure from the body or hand. A 3-jawed chuck is attached to the spindle and it will usually take up to 3/8 inch straight shank drills.

The portable electric drills come in a variety of sizes and power ratings and the smaller sizes are popular in all shop work. They are made as small as possible and are rated in horsepower (or fraction thereof) or the maximum size
twist drill to be used with each machine. A switch is usually so located as to give the operator complete control of the starting and stopping of the motor. Great care should be exercised in operating these machines as the motor will overheat if overloaded and soon burn-out if stalled.

The most generally used drill for boring small holes in metals is the stralght shank "twist drill". Twist drills are usually made with two flutes, or grooves, runnirg around the body. This furnishes cutting edges, and the cuttings follow the flutes out of the hole being drilled. The point or catting end of a drill should be properly shaped at all times, and this can be achieved by grinding carefully on a grinding wheel. A drill grinding tool is available to be used in conjunction with a bench grinder. The size of small twist drills is designated by numbers, and by diameter in fractions of an inch.

Drills are made of high carbon steel especially heat treated to make the cutting edges hard, and are suitable for most all classes of work if properly used and never allowed to become heated. Excessive temperatures cause the cutting edges to lose their hardness and are thus rendered useless by working them too fast (depending on substance being drilled), so that the heat cannot be dissipated. Brass and copper are good conductors of heat so may be crilled faster than iron. Bakelite is a poor heat conductor and requires slow drilling or hish speed drills. Monel metal, stainless steel, and other extremely tough materlals produce so much heat when drilled that the use of high speed drills is imperative. A drill should be lubricated as should any other metal cutting tool.

Drills made of a special alloy containing tungsten, chromium, and cobalt, are referred to as "high speed" drills. They cost more than ordinary carbon drills, but may be operated at quite high temperatures and still retain their hardness.

Screws, Bolts and Nuts

The term "machine screws" is the general commercial term for screws to be driven into drilled and tapped holes in the assembly of metal parts. When furnished with a nut the combination is referred to as a mbolt". Machine screws are regularly made of steel or brass, with a varlety of styles of heads and ilnishes. Figure 13(A) shows an assortment of round head machine screws.

Prior to the meeting of the Hoover National Screw Commission in 1925, there were no nationally recognized standards for machine screws. This commission established standards, and these standard sizes are now used by all radio manufacturers. The standards so established were subdivided into two main divisions; that 1s, (1) The American (National) Fine thread series, and (2) The American (National) Coarse thread series. The name "American" instead of "National" is coming into universal use throughout this country.

Screw size refers to the number of the stock of material from which the screw is made; that 1s, a $6 / 32$ screw means that the screw is made from number 6 stock. (The size is aiways the first number). This size is different from any other gauge, and has nothing to do with the Brown \& Sharpe wire gauge. "he 32 indicates that there are 32 threads to the inch.

The length of a screw includes that part of the screw and its head which remains below the surface when properly driven, thus, the length of a round head screw includes none of the head while a flat head screw includes all of the head.

All screw manufacturers list ilat, round and oval heads as standard stock items, and some also include fillister, binding, or other types. There are many special heads in use such as ornamental-head screws used to hold loudspeakers, and types with heads designed for special driving devices, etc.

The most common method of driving machine screws is by means of a slot nilled into the head of the screw. Such screws are referred to as "slotted head" screws. Some machine screws are made with a hexagonal head (see figure i3B). With such screws it is possible to use a hexagonal wrench for tightening; thus eliminating the possibility of slipping. Another type of screw head which is becoming increasingly popular is the Phillips head. This screw head is milled with an X-shaped slot which is deeper in the center than at the edges. This type of head requires the use of a special "Phillips" screwdriver, but can be tightened much more securely without the danger of the screwdriver slipping.

Sheet metal screws are made of hard steel, have sharp threads, and are available in the same lengths, diameters, and head styles as are machine screws. An assortment of these screws is shown in Figure 13(B). They are sometimes referred to as self-tapping screws although this is not strictly the case inasmuch as the threads are formed by embossing the work rather than actually removing chips of metals as is done when using a regular tap. It is much better to refer to these screws as "sheet metal" screws. They are driven into punched or drilled pllot holes in sheet metal, flbre, hard mubber, plastics, etc., by means of a screwdriver or hex wrench.

Set-screws are used to fasten the hub of pulleys, wheels, gears, knobs, and tuning dials, etc., to shafts, efther permanently or semi-permanently as required. Most set screws are of the "headless" type and are obtained in such lengths that they i1t flush with the race of the hub. Figure 13(C) shows an assortment of set screws. Headless set screws may te slotted so that they may be tightened with a screwdriver, they may have the Phillip's recess feature, or may be of the "hollow" type with Allen sockets.

Nuts for machine screws are made of steel or brass and are usually heragon in shape.

Wings nuts to be tightened without ald of tools, are available in all standard threads.

A thumb nut is a cylindrical nut with the outside knurled.
Wood screws are avallable with the same type of standard heads as machine screws, and are also made from the same metals, and in the same lengths, finishes, drives, etc. The threads of all wood screws are uniform, making it neither necessary nor desirable to state the number of threads per inch when orde.ing or describing the screws. They are ordered by diameter, which is specifled in gauge numbers of the American Screw Gauge, and length. Wood screws have a so-called "gimlet" point. whichis more or less self starting in wood; however, a pllot hole reduces splitting.

How Radio Parts are Mounted

With the radio in iront of us let us examine how the various radio parts are mounted. The smaller parts such as resistors and condensers are usually supported with their own leads. The tube sockets may be riveted to the chassis or small bolts may be used to hold them in place. Large condensers of the
metal cased type such as the filter condensers are mounted with bolts, or with a nut over a threaded portion of the container. Power transformers and fllter chokes are bolted in place, usually using the screws which hold the frame to the laminations. Potentiometers and switches used for volume and tone controls are mounted behind the front of the metal chassis with the shaft coming through a threaded section which is held securely in place with a nut.

Notice the manner of interconnecting the various components in your recelver. Radio parts are interconnected with hook-up wire, the wire electrically joining the various terminals. The hook-up wire should be insulated along its path, but is made bare and clean where it comes in contact with the terminals. Push-back braided cotton-covered wire in sizes 16 to 20, B \& S gauge, is easiest to handle and is the most popular. To make a connection with this wire, the insulation $1 s$ pushed back as shown in Figure14(A). When the insulation cannot be pushed back far enough with the fingers. it will be easier to grasp the bare end of the wire with a pair of long-nosed pliers. Then, holding the wire in this manner, it is a simple matter to push the insulation back with the fingers as far as required. This is illustrated in Figure 14(B). After the connection has been made, the insulation should be pushed back over the bare wire right up to the terminal.

Hook-up wire having rubber or plastic insulation is often used as the leads of radio parts such as transformers and filter condensers. To make connections to these leads the insulation is crushed with pliers and then removed with diagonal cutting pliers or a knife. Care should be taken so that the wire is not nicked or cut in removing the insulation.

Notice that when the connecting wires are connected to tube socket terminals they are not just held against the terminal and then soldered, but are "crimped* to the terminal before they are scldered. The purpose of crimping wires to a terminal is to insure a strong mechanical connection, as solder alone should never be depended upon to keep the connection secure. If the terminal has a hole it it, the hook-up wire can be bent into a half-loop with long-nose pliers, and the tip of this loop inserted through the hole. Then the wire is squeezed or crimped against the ierminal and the unused portion of the wire cut off before the solder is applied. In case the terminal is of the lug type and does not have a hole, the wire is also made into a ral f-loop and crimped against the terminal. It is even better to wrap the wire around the terminal a time or two and then crimp it from both sides. Thls is illustrated in Figure 15.

Electrical connections should be soldered in order to insure a good low resistance path under all conditions. For best results, make it a rule to solder every connection you make, even if you intend it to be a temporary one. Solcer is made up of tin and lead and melts readily when heated with a hot soldering iron. Solder cannot make a permanent connection with any metal when the metal is dirty or has a layer of oxidation on $1 t$. A soldering paste or flux has been developed which, when heated, removes all dirt, grease and oxidation and allows the solder to adhere to the metal. Rosin flux rather than acid flux shovid be used in electrical wiring, and solder is avallablewhich contains a core of rosin flux. Since the rosin has a lower melting point than the solder, the rosin melts first and flows out and cleans the metal before the solder begins to flow.

To provide the necessary heat to melt the solder, electronic technicians use an electrically heated soldering iron. These irons are rated in the electrical energy they consume, with isons ranging from 60 to 100 watts being the most popular. The heatirg element of the iron is located inside a metal tarrel and the heat travels down to the copper tip which does the actual soldering.

Your first Home Latoratory assignment will provide you with the necessary equipment and complete instructions for soldering electronic equipment. Examine the soldered connections in the receiver before you. Notice that the solder is not "stacked up" on the terminals but that there is just enough to hold the connections firmly. After ycu have finished the soldering practice provided in your pirst Home Laboratory assignment, you should be able to make solder joints comparatile in quality to those in your receiver.

If you have examined your receiver thoroughly and are satisfled that you can identify all of the parts, re-install the chassis in the cabinet. Be sure to re-connect everything just as it was before removal of the chassis. Plug the power cord plug into the receptacle and again "rough check" the receiver to see that it operates as well as it did before you started working on it.

Summary

This assignment has enabled you to take a real step forward toward your goal of becoming an electronics technician. You have learned to identify the parts in a radio receiver which, as pointed out previously, are the same as those used in television equipment and in industrial electronic equipment. You have also learned the proper use of the various tools employed in electronic work.

The radio which you have examined in this assignment contains a wide variety of electronic parts. Quite obviously, however, it does not contain all of the different types of parts which are employed in the many thousands of kinds of electronic equipment in use. Just as the information you have gained in this assignment will be of great value to you as you proceed with your training, so will any additional information you can gain regarding the appearance of various electronic components be of value to you. Thus it is advisable for you to become familiar with the appearance of as many different electronic components as possible. One very practical way of obtaining this knowledge is to lock over - in fact, study - one or more electronics parts catalogs. These catalogs are issued by many electronics mall-order supply houses. If you will send a postcard to one or more of the following firms, you will receive their catalog showing pictures, descriptions and prices of many types of electronic equipment and parts:

Allied Radio Corporation Concord Radio Corporation
100 N . Western Avenue
Chicago 80, Illinols
45 Warren Street
New York 7, New York
Burste1n-Applebee Company
WaIter Ashe Radio Company
1012 McGee Street
Kansas City 6, M1ssouri

1125 Pine Street
St. Louis 1, Missourl

Another suggestion which we feel may be of great value to you is that, from time to time, ycu obtain one or more of the radio-TV-electronics magazines
on the newsstand. Look over the various electronics magazines, and decide which "suits you best." Then subscribe to this magazine, and read it regularly. You will find that the general information you obtain from technical magazines will aid you greatly in your advancement in the electronic fleld. Two magazines which are recommended for general reading are "Radio and Television News" and "RadioElectronics."

In the rext assignment you will use the information you have learried here in a very interesting way. Various symbols which can se easily drawn by hand and ecsily printed are used to represent electronic parts in circuit diagrams. In the next assignment you will learn to identify these various symbols, so that you will be able to "read" and draw electronic circuit diagrams.

FIGURE 12-B

FIGURE 13-A

FIGURE 13-B

FIGURE I3-C

Test Questions

Be sure to number your answer sheet Assignment 2. Place your Name and Associate Number on every Answer sneet. Send in your answers for this assignment, immediately after you finish them. This will give you the greatest possible benefit from our personal grading service.

1. What should the done when "Rough Testing" a radio receiver to see that it is in proper operating condition? please list the various steps briefly.
2. What is the proper name of the component that controls the volume (and sometimes the tone) of a radio recelver? fir. t.... (
3. How can it be determined which of the components in a receiver are the filter condensers? , wéd
4. What do the colors painted on a resistor indicate?
5. If there is no set screw in a knob, how should the knob be removet?
6. What are the tube type numbers in the set which you have examined? How many base pins does each tube have?
7. In radio work what are long-nosed pliers used for?
8. If you wanted to cut a large wire, should you use a pair of diagonal pliers, or a pair of side-cutting pliers?
9. If you found a tubular shaped part under the chassis of a radio receiver Iabeled . $01 \mathrm{MFD}-600 \mathrm{~V} \mathrm{DC}$, what would be the proper name for this radio part?
10. If you found a part on the top of the crassis of your radio which was in a square aluminum shield can, what would the proper name for $t h 1 s$ component be?

 LOUISVILLE

ASSI GNMENT 3
 CIRCUIT DIAGRAMS AND HOW TO READ THEM

We have now reached a point in the training where it will be necessary to learn some of the symbols which are used in electronics, radio, and television diagrams. Radio men have long emplojed a written sign language since, in this way, it is possible to show every connection in a complicated electronics circuit on a small plece of paper; whereas, if a written description were employed, it would require many pages. From our experience with the radio recefver of the last assignment we can easlly see why a photograph, or even a series of photographs would not give us the complete answer on the wiring and parts of even simple radio receivers, much less anything very complex. For example, no photograph could possibly give the electrical size of the resistors and condensers and certainly no photograph or pictortal drawing could show the component parts mounted under other parts.

The system employed in electronics diagrams is very simple, and once you get fully acquainted with $1 t$, you will appreciate 1 ts value. You cannot work on electronics and television equipment or study the ilterature without having a knowledge of this system. Therefore, it is absolutely necessary that you learn it so that you can progress smoothly in the training.

In the last assignment we got an ldea of what the various component parts of a radio recelver look like, and we saw that these component parts were electrically joined together in some definite pattern by means of hookup wire. There are hundreds and hundreds of different ways to connect these various parts together to form different circuits. obviously, no one can remember all these ways, or know in advance how the designer of the equipment is going to arrange this particular circuit. Thus, it is necessary that a universally accepted system be used in order that a plece of electronic equipment manufactured in one part of the country may be efficiently serviced in another. When gou have learned this symbol system, you can look at an electronics circuit diagram and determine at a glance just what you want to know.

In the last assignment we saw that fundamentally a radio circuit consisted of a limited number of basically different parts (condensers, coils, resistors, vacuum tubes, etc.) and that these parts were connected together by means of wre and mechanical fittings such as screws, nuts, rivets, clamps, etc. Different electrical sizes of these parts were used in the same equipment. but basically, we could count the number of really different parts on the fingers of our hands. Thus, it can be seen that learning about these parts will not be as difficult a job as it might seem.

Each of the different parts which make up a radio receiver or an electronic unit have certain characteristics which are called properties. As we progress through this training, we will study these properties, since the action of an electronics circuit is controlled by the properties of the parts used in it. For example, consider wire. Every piece of wire has length. Thus, length is a property of the wire. A wire when heated is longer than it was when cold; so another property of wire is 1 ts expansion under the influence of heat. Every wire offers resistance or opposition to the flow of an electric current through it, so its resistance is a property of the wire. Every electronics circuit uses many different sizes and kinds of parts and a number of properties are associated with each of these parts.
kinds of parts and a number of properties are associated with each of these parts.

When you are called upon to locate and repair a defect in a radio or television recelver, anplifler or transmitter, you will be required to check a number ce different properties in a systematic manner. It is difficult to do this in a confusion of wiring in actual equipment, but with the ald of a diasram, you can check off each clrcult as you test it.

Before you can check the properties of the parts used in any equipment, you must know what kind of a part is used and where this part is located electrically. An examination of the inside of the equipment will not always give you tris information. Even an experienced electronics technician may have trcuble distinguishinf between a filter choke and e condenser when it is sealed Inside a can or cortalner because in many instances their appearances may be similar. For this reason, it may be necessary to refer to a diagram to learn, first, what parts are being used, and second, how these parts are connected. Then you can start at some point which you can identify and in thls way trace the wirlng to the actual part in question.

Schematic Diagrams

The electronics and television technician almost invariably works from a schematic diagram. Such a diagram is shown in Figure 1, which is the diagram for a typical flve-tube table model broadcast receiver. Every racio set includes a model number, or name by which 1 t may be identifled. This model number should not be confused by the serial number which is a number which the manufacturer has assigned to that particular set at the time the set was mace. Often the mariufacturer will make changes in a given model, and by keeping a record of the serial numbers of the units made, both $:$ fore and after the change was made. they can tell just what parts are used in any set of any particular model.

This brings up the matter of how the serviceman or technician may obtain these schematic diagrams. Thousands of radioscts have been made in the past and diagrams are avallable for most of them. on the other hand, some manufacturers have gone out of business and no diagrams are avallable for their radios from any source. In cases of this kind the service man must rely on his general knowledge and trace out the circuits to the best of his ability. Fortunately, this $1 s$ not often the case.

There are also some radios in use which are known as "orphans" - that is, all the 1 dentifying marks and numbers on the set have been removed. Here the service man is up against a blank wall in obtaining a diagram for the set. Elther he must rely on his general knowledge of radios or draw his own schematic diagram by tracing out the actual wiring of the parts. Such sets are more expensive to repair because the service man has to spend more time on them, but fortunately, they too, are in the minority.

A complete flle of all published radio diagrams covering the many thousands of cifferent radios which have teen made will run into many volumes. They are avallable from radio parts jobbers and wholesalers and from the publishers. In tre larger cities, local public libraries keep these manuals on file for public reference. The best known group of volumes of radio recelver circuits is the
serles known as "Rider's Perpetaal Trouble Shooter's Manuals" and is published in twenty-five volumes covering nearly all radio sets which have been made. "Sapreme Publications" print a series of six manuals which they claim contain the most often needed diagrams, and being smaller, are not nearly as expensive. The Howard W. Sams Institute started a series of service folders al the end of World War II. They are more complete than either of the above manuals, but, of course, cover only postwar recelvers.

Most radio manufacturers will provide free, or will sell at a nominal cost, diagrams of all sets which they have manufactured. The service man, in writing to the manufacturer for these diagrams, should write on his own printed business stationary, which is usually supficient evidence to prove that the writer is entitled to use them. This is necessary to protect the manufacturer frcm having to send out thousands of diagrams for which there is no actual use.

Rider's, Sem's, and Wallace's Telealdes also publish schematic diagrams on practically all iV receivers. This information is of great value to the TV technician. In most instances the manufacturers of Industrial Electronic equipment provide Service Manuals to their customers. These manuals include schematic diagrams, and in addition provide adjustment procedures, and service hints for the technician.

Pictorial Diagrams

There is another type of diagram which some electronics manufacturers include in their service manuals. It is known as a plctorial diagram, and is illustrated in Figure 2. This tipe of diagram is most useful in showing the actual physical layout of parts. Beginners in radio have a tendency to rely on the plctorial rather than the schematic diagram, but this is not a good habit to get into since these pictorial or wiring diagrams are not available for all equipment. Actually, yoı can find out with a glance everything you need to know about a plece of ele:tronic equirment from the schematic diagram after you learn to read it, whereas much study is required when the wiring diagram is used alone, This pictcrial diagram should only be used in conjunction with the schematic diagram to show the laycut of the parts-neven used alone. Experienced technicians seldom refer to the pictorial diagram, but rely almost entirely on the schematic diagram.

Learning to read schematic dişrams is mostly a matter of becoming famlliar with the major symbols which are used in electronics and television. There is a large number of symbois in use, but the principal seven are: (1) res istors (both flxed and variable), (2) condensers (fixed and variable), (3) inductances (coils and transformers), (4) batteries and cells, (5) vacuum tubes, (8) microphones, pickups, ind speakers, and (7) switches of all types. Thus, by memorizing the symbols for these, you will be able to read any schematic diagram.
fesistors

Resistors are manufactured in a great number of shapes and sizes. Figure 3 fllustrates a number of resistors and the schematic symbols used for the varlous types of resistors.

The schematic symbol shown in Figure 3(A) is for a fixed resistor without taps. The illustrations, numbers 1 through 10, in Figure 3, are fixed resistors which would be illustrated in a schematic diagram by the symbol shown in Figure 3(A). A brlef description of each of these resistors follows.

Resistor 1 is a carbon resistor, avallable in wattage ratings from $1 / 4$ watt to 2 watts, depending upon the physical size. This style of resistor is of an old method of manufacturing and will be found in older models of receivers.

Resistor 2 is a carbon or metalized resistor, avallable in wat tage rating of $1 / 4$ watt to 2 watts, depending upon the physical size. This resistor is manufactured by a new process and will be found in equipment of modern design.

Resistor 3 is a precision wire wound type of resistor used for meter multipliers and shunts, and in laboratory equipnent where accuracy of the resistor value is important.

Resistors 4 and 5 are two forms of wire wound resistors which are avallable in wattages of 5 watts and above.

Resistors 6 and 7 are called wire-wound strip resistors and are usually of the low power type (less than 5 watts).

Resistor 8 is an enclosed ballast resistor, or plug-in resistor, used in some receivers to adjust automatically the power line voltage or to malntain it within narrow limits. Often this type of resistor is enclosed in a metal or glass envelope with base pins and from the outside looks exactly like a vacuum tube.

Resistor 9 is a wire wound flexible type of resistor and will be found in small receivers where space is limited.

Resistor 10 is called a power-cord, or line-cord resistor. Notice that there are three wires in the cord. Two of these are the usual two lines ised to connect electrical equipment to a receptacle. The third wire is resistance wire. This type of a resistor is used with some types of table model radios and will be discussed again later in the training program.

As was previously stated, the symbol (A) of Figure 3 is used to indicate any of these resistors gust described, in a schematic diagram.

The symbols (B) and (C) of Figure 3 are used to indicate fixed resistors with taps. The symbcl (B) represents a flxed resistor with one tap, while the symbol (C) represents a resistor with three taps. Resistors 11, 12, and 13 in Flgure 3 are tapped resistors which would be represented in a schematic diagram by symbols (B) and (C).

Resistor 11 is a center-tapped wire-wound resistor of the power type. Symbol (B) is used to represent this resistor in a schematic diagram.

Resistor 12 is a center-tapped wire-wound strip resistor. This type of resistor will be found in older models of recelvers only. Symbol (B) is used to indl cate such a resistor.

Resistor 13 is a wire-wound power type resistor with three taps. The symbol used for this resistor is shown at (C). Resistors with more than three taps would be represented by a symbol such as 1llustrated at (C) except the proper number of taps would be indicated by the lines coming off of the resistor.

The symbol shown at (D) in Fig. 3 is for a resistor with an adjustable tap. Such a resistor is illustrated by resistor 14. On this type of resistor there is a strip along the length of the resistor where the insulating material is left off during manufacturing. A metal band is provided which makes contact with the bare resistance wire when the bolt in tnis metal band is drawn tight. To adjust the tap on this resistor it is necessary to loosen the screw in the tap band, move the band to the desired point on the resistor, and then again tighten the screw. This type of resistor may have several adjastable
taps; the number of taps will be indicated dy the number of taps on the symbol shown in Figure 3 (D).

The symbol (D) in Figure 3 is also used to represent the variable resistor 15 in Figure 3. The proper name for this variable resistor is potentiometer. A potentiometer has three connections as may be noted from the illustration. The center lug connects to the variable "arm" of the potentiometer and the two outer lugs connect to the ends of the resistance. Potentiometers may be either wire-wound or carbon. (Potentlometer is pronounced: Po-ten-sh1-om-1-ter)

The symbol at (E) in Flgure 3 is used to represent the varlable resistor 16. This variable resistor is called a rheostat. A rheostat normally has only two connection lugs as may be noted in the illustration. One of these lugs connects to one end of the resistance element, and the other connects to the movable arm. Rheostats use wire-wound resistance elements.

The symbol shown at (F) in Figure 3 is sometimes used to denote a rheostat or a potentiometer when it is connected as a rheostat. That 1 s , when only the movable arm and one end of the resistance element are connected to the circuit.

Connections to resistors are made in two general ways as may be seen in Figure 3. In resistors $1,2,3,4,5,7,9,11$, and 12 , connections to the actual resistance el ement are made through wires which are commonly called "pigtalls". In resistors $6,13,14,15$, and 16 , the connections are made to terminal lugs. Resistors 8 and 10 do not fall into elther of these general categories.

Condensers

Flgure 4 shows the symbois for various types of condensers. There are two general classifications of condensers: (1) ifxed and (2) variable. For the first classification to apply, the condenser must have a definite fixed value whfch is not changeable. The second classification applies to condensers which have a changeable value between certain extreme minimum and maximum values. There are many types of condensers represented by these two classifications.
 condensers. The symbol for these is shown at (A), the same symbol velng used to denote any type or ifxed condenser. Condensers 1, 2 , and 3 of this group are mica types of fixed condensers in moulded bakelite form. The word mica refers to the type of insulation between the metal condenser plates, condensers consisting of a sandwich of two or more metal plates filled with an insulator of some kind. These mica condensers are usually used in high prequency circuits where very few losses can be allowed, and their electrical size varies from about. 1 to . 000001 mfd . (MFD. is an abbreviation for microfarad. This term will be taken up in a future assignment).

The next group of condensers, 4 and 5, are of the paper type. These range in capacity from about . 001 to 4 mf f and are used to filter low prequency circuits, since they have medium loss qualities and yet perform satisfactorily. Sometimes, two or more of these condensers are found in the same container. Condenser number 6 is a two-section paper "bathtub" type, and may be representec by a symbol such as B, where each symbol in the group represents a separate condenser.

In the next group, from 7 through 10 , the electrolytic condenser type is shown. There are two kinds: (1) the wet or liquit type, and (2) the "dry" type,
when is actually no more dry than 1 s a flashlight battery. Electrolytic condensers vary in size from about 4 to 100 mid ., and are principally used in power circuit filtering and in circuits where a large capacity in a small space is required. They always have polarity -- that is, their positive and negative terminals must be connected to the proper positive and negative points in the circuits where they are to be used. The symbols are the same for both wet and dry types and sometimes the polarity signs are omitted altogether. If the polarity signs are omitted, the negative plate is indicated by the curved ine in the symbol. Symbol (C) represents a single unit whereas (D) represen is a multisection unit consisting of two condensers in the same container.

Condenser 11 is a type of adjustable or semi-varlable condenser krown as a trimmer, padder, or a compensating condenser. The symbol for this type of condenser 4 s shown at (E). This type of condenser may range in value from about 3 to $2000 \mu \mu \mathrm{f}$ (micromicrofarads). Such condensers are usually used in conJunction with ifed condensers to enable the combination to add up to ar exact value of capacity that is required by the circult design.

Condenser 12 in Flgure 4 illustrates a variable condenser. This is the type of condenser which you adjust when you tune from one radio station to another and which was examined in the last assignment. The symbol for a single section variable condenser is the same as that for the semi-variable condenser, and is shown at E in Figure 4.

These condensers range ir. electrical size of from about 3 ic 15 pufds for the minimum range on up to about 150 to $450 \mu \mu \mathrm{f}$ ds for their maximum range. Few single-section variable condensers are usec in modern radios, the average being the two and three gang types. The symbol ior a two gang condenser is shown in Figure $4(F)$. Note that in the ilgure dotted lines are used between the two sections, indicating that both sections are controlled by one shaft.

Un fortanately (and this is especially true with condensers) there are sometimes more than one symbol which may be used to designate a certain radio component. Power engineers prefer one type of symbol, while an electronics tecinician uses a different symbol. In 1944, a standardization program was undertaken in order to standardize on a specific group of electronic symbols to be used by both power and electronics men. These standarized symbols for condensers are those shown in Figure $4(A, B, C, D, E$, and F). However, many of the diagrams which you will encounter in books and magazines were either drawn before 1944 or the author has 1 gnored the standard symbols, so you should be able to recognize the non-standard forms Figunes 4 (G, H, I, J, and K) show some of the se older non-standard symbols for ilxed eondensers and the nonstandard symbol for varlable and semi-varlable condensers is shown in Figure 4 (L) .

Inductance

The subject of the symbols used to represent various types of inductance can be divided into two general categories. These iwo categories are colls and transformers. Since transformers are merely combinations of colls, we shall consider the symbols for colls first.

Coils
Flgure $5(A)$ shows the symbol used to indicate an air cone coil. The colls number 1 and number 2 in Figure 5 are typical air core colls. Coil number 1 is a
milti-laver coil, and coil number 2 is a single layer coll. The coil number 3 in Fizure 5 is also an air core coll, but is normally used in the radio circuit in a different manner than coils nmber 1 and 2. This type coil is called an RF choke and usually has RFC printed near the symbol as shown in Figure 5 (B). As we discovered in our last assignment, a ccil is made up of a number of turns of wire on a form. The number of loops in the symbol used to represent a coil does not indicate the number of turns on the coil. There is no attempt to indicate the size or shape of the coll by the size of the symbol. Symbol size and the number of loops shown are determined by the space avallable on the diagram.

The symbol for an iron core coll is shown in Figure 5(C). Cosl number 4 in Figure 5 illustrates the appearance of a typical iron core coil. In this coil the turns of wire are wound around an 1 ron core made from sheets of 1 ron stacked together. The turns of wire are insulated from each other, and are insulated from the core by special insulating paper. Iron core colls are often called chokes.

Transformers

When two or more colls are brought close together, a transformer is formed. These two or more colls will usually be wound on the same form. Tre symbol shown in Figure $5(D)$ is used to indicate an alr core transformer. Illustration number 5 in Figure 5 is a typical air core transformer. illustration number 8 shows a cut-away view of this same transformer inside a shield car. The dotted lines shown around the symbol in Figure $5(D)$ are used to indicate that the transformer is surrounded by a shield can. In a great majority of cases, the dotted line will be omitted, although the transformer is usually shielded.

The symbol in Figure $5(E)$ is used to indicate an iron core transformer. Such a transformer is shown in illustration number 7 in Figure 5. This transformer has only two windings as indicated by the symbol. In same transformers on ϵ of the windings is tapped at its center. The symbol for such a transformer is shown in Figure $5(F)$.

Some transformers, such as the power transformers, have more than two windings. The symbol for a power transformer is shown in Figure $5(\mathrm{G})$. This symbol represents a transformer with four windings. One of these windings is center-tapped. A typical power transformer is shown in illustration number 8 of Figure 5. In the symbol shown in Figure $5(G)$, the winding to the left of the two straight lines is called the primary winding, and the windings to the right of the straight lines are called the secondary windings. The primary winding of a transformer is the winding into which electrical energy is supplied. The energy is taken from the transformer from the secondary winding or windings. The straiaht lines indicate the fact that an iron core is usec.

The symbol shown in Figure $5(\mathrm{H})$ is for a powdered 1 ron core transformer. These transformers are used when high irequencles are employed. The arrows through the straight lines indicate that the powdered iron cores are variable.

Batteries

Figure 8 shows various kinds of batteries and the symbols used to represent them. The symbol shown in figure $6(A)$ represents a single cell, such as the dry cell shown in the illustration number 2 in figure 6 . The short heavy line is used to represent the negative terminal of the cell and the long
line represents the positive terminal. The symbol shown in Figure 6(B) is used to represent a battery, which is really a group of cells. There is no f'xed rule as to the number of individual cell symbols to use to represent a battery. Furthermore, there is no relationship as to the number of infividual cell symbols and the voltage of the battery. The voltage value is usually written alongside the symbol as shown in Figure 6(B) The polarity signs are often omitted, in which case the polarity is indicated by the size of the lines as mentioned previously.

Radio batterles are usually classifled as "A", "B", and "C" batteries, which is a designation which more or less grew up with the radio industry from the days when all radio recelvers were battery operated. An "A" battery usually refers to the one used to heat the filaments of the tubes and it had a vcltage ranging from $1 \frac{1}{2}$ volts to 12 volts, depending upon the radic. A "B" battery refers to a larger battery usually having a voltage of 45 volts or mere. It was used to supply the voltage to the plates of the tubes. A "Cn battery is usually of the low voltage - low current type and was used to apply a negative voltage to the grid of the tube. It ranged in voltage fromi about $1 \frac{1}{2}$ to $7 \frac{1}{2}$ volts. The battery shown in illustration number 1 in Figure 6 is a $" \mathbb{C N}$ battery. Illustration number 3 shows a "B" battery and illustration number 4 shows a famlliar storage battery. Storage batteries were used for "A" batteries in early radios and are still used in auto radios.

Vacuum Tubes

Let us next consider some of the symbols for vacuum tubes. Like the other components mentioned in this assignment, do not become alarmed or confused atout some of the terms which we will use here - a full explanation of them will be given later on in the course.

There are many kinds of electronic and television tubes in use and to attempt to list all of them in this assignment wouid require considerable space and would involve a special study of tubes - a subject which will be taken up later on in the training. Here, we are concerned with their symbols, and from this viewpoint it is possible to show most of the tube types. Manufacturers of electronic equipment have not all adopted the standard method of drawing tubes, but all systems are so nearly alike that it is not possible to mistake a tube for some other radio part. In this training we will use the standard symbols acopted in 1944.

Most systems of drawing tubes show the tube elements enclosed within a circle, as indicated in Figure 7. This circle is supposed to represent the glass or metal envelope of the tube.

One type of vaccum tube (a triode) has in the envelope a single fliament, a grid, and a plate; these are called tra elements of the tube. The symbol for such a tube 1 s shown in Figure 7(a); (b) represents the glass envelope, (c) the filament, (d) the grid and (e) the plate. Each of these elements is provided with only a single connecting terminal which in actual practice generally leads to an indivicual prong at the base of the tube. cof course there are l:wo terminals provided for the filament).

You must bear in mind that a schematic diagram uses symbols, and these do not always show the location of the prongs and the locations of the actual parts which are connected to the prongs. The informatior which shows where
and how the tube proniss are located for a particular tube may be pound in tube inanuals, one of which will te sent to you a little later in the training. Suppose that the tube symbol shown in Figure $7(A)$ appears in a schematic diagram and is marked to indicate that this is meant to be a type 30 tube. By referring to a tube manual, under type 30 tubes we would learn that the type 30 tube nas a pour prong base and that prongs 1 and 4 are connected to the fllament, prong 2 is connected to the plate and prong 3 is connected to the grid. Looking at the bottom of the tube with the two heavier prongs closest to you, the heavy prong on the left is number 1 , the next one going clockwise around the tube is \mathcal{z}, etc. Thus, 1 and 4 are the two heavy pins and would connect to the filament. Figure $7(F)$ shows the schematic symbol for another type of tube which has no grid. This tube is called a diode. Its two elemente are the fllament and the plate.

Figure $7(G)$ represents another vacuum tube with an additional element placed ciose to the pllament, or heater as the pllament is called in this type of tube construction. This new element is known as a cathode. This tube is called a triode also, as the cathode is performing the same function as the fllament in the triode of Figure 7(A). The tube of Figure $7(\mathrm{H})$ is called a tetrode and contains still another new element - a second grid placed close to the plate and called the screer grid. The tube of Flgure $7(I)$ is called a pentode, and contains three grids in all, the third grid being placed between the screer grid and the plate. This third grid is called a suppressor grid.

Dther types ce vacuum tubes may have more grids or plates, and it is not unusual to ind two or three tubes (for example, two triodes) all located in the same glass or metal envelope. These are known as dual purpose tubes.

Electron tubes are manufactiared to perform a specific task or job and although they may have minor differences, they may all be classifled into distinct types. Thus we may see tubes listed by the use they were designed for, as amplifiers, oscillators, detectors, etc. Any one particular classification may be fllled by more than one type tube. For instance, an amplifying tube may be a triode, tetrode or pentode.

Microphones, Pick-ups and Speakers

Microphones are used in public address systems, home recorders, and broadcasting equipment, so we should be able to recognize the microphone symbol when we see it in a schematic drawing. There are many variations of the microphone symbol depending upon the type of microphone used but all these are recognizable as a microphone. The general symbol for a microphone is shown in figure 3 (A).

A large number of radio recelvers have in conjunction with them a phonograph record player. The arm which holds the needle and rests on the record is called the "pick-up. There are two types of pick ups in common use: The electromagnetic, the symbol for which is shown in Figure 8(B), and the crystal type, represented by the symbols of Figure $8(C)$ ara (D).

There are several types of loud speakers in use at the present time. The accepted symbol for a loudspeaker is shown in Figure 8(E). Variations in this symbol will be found, but a speaker symbol is easily recognized by the cone shaped part which wili always be found. The symbol for a pair of headphones is shown in Figure $8(F)$.

Switches and Miscellaneous

In Figures $9(A)$ through (D) are shown the schematic symbols for various types of switches. Symbcl (A) is for a two gang rotary type of selector switch. Symboi (B) shows a single pole single throw toggle switch. (Usually abbrev--ated SPST). Symbol (C) shows a single pole double throw (SPDT) switch and symbol (D) represents a double pole double throw switch (DPDT).

Bymbol (E) in Figure 9 indicates the accepted symbol for an antenna or aerlal. The term antenna is preferred to aerial by all knowing radio and television technicians. Symbols (F) and (G) are non-standard symbols for an entenna which are widely used. Symbol (H) is for a loop antenna such as those used in modern table nodel radios. The symbol shown in Figure 9 (I) is to indicate the ground connection. The symbol shown in Figure $9(J)$ is a non-standard ground symbol which is used quite often. In a radio the ground symbol indicates a connection to the chassis.

A crystal such as is used in a transmitter is represented by the symbol of Fisure $9(\mathrm{~K})$. Voltmeters and ammeters are indicated by Figure $9(\mathrm{~L})$ and 9 (M) respectively. Pllot lamps are shown in Figure $9(N)$ and ne on lamps are shown in Figure $9(0)$. Fuses are represented by the symbol of Figure $9(P)$.

Shielding of any component is indicated by a dotted line as was shown in Figure 5(D). The symbol for shielded wire is shown in Figure $9(Q)$.

Methods of Showing Connections

There are two general systems of indicating the actual wiring of radio circuats, as illustrated in Figures 10 and 11. These two circuits indicate wire connections from the fllament winding of a power transformer to the fllament terminals of two vacuum tube sockets. (Only a portion of the power transformer is shown). We have alsc shown part of the connection to the plate terminal of one tube. In flgure 10 notice especially that large dots appear at certain places on the wiring. These dots mean that an actual wire connection is intended at this point on the circuit. Notice that where the plate wire crosses the fllament wires there are no dots and hence we know that these wires are not connected. Figure 11 shows the method of indicating connecting, and nonconnecting wires that was .pproved in 1944. In this system, half circles or loops mean no connection. That 1 s , when two or more wires cross without these loops a connection is indicated, but where a loop is used no connection is indicated. You should study these two systems very carefully until you are sure you understand the principles of each, and the differences between the two. In some cases you will find a combination of these two systems; that 1 s , loops (or jump-overs as trey are sometimes called) are used to indicate no connections and dcts are used to indicate connections. Such a system is used in Figure 12.

Identifying Symbols in a Complete Schematic Diagram

Let us now analize the schematic diagram of the typical radio receiver shown in figure 1 of this assignment. When you first opened this page of your assignment you were probably completely mystifled by this diagram. Nowacareful examination of this circult will reveal that it is composed of a number of the circuit symbols which we have taken upinthis assignment. Let us

1dentify a few of the parts in this diagram. Starting at the upper left corner of this diagram the first symbol we encounter is the ground symbol. The next symbol we find is the component labeled C_{10}. This is the symbol for a varlable condenser. The size of this condenser is 70 mmid (micromicrofarads). Sylibols $\mathrm{L}_{1}, \mathrm{~L}_{2}$, and L_{3} are air core colls. The first symbol which we encounter that appears strange to us is the symbol labeled S_{1}. This is the symbol for a special type of rotary switch. As this switch is rotated, B and C are shorted together. (Connected together). This is called a shorting switch. Proceeding to the right in our diagram we ilnd a lead which goes to C_{1} and $C_{3} . C_{1}$ is one section of a ganged tuning condenser. (Condensers are often called capacitors). C_{3} is a semi-varlable condenser.

The next circuit component that we encounter is the type 6A7 vacuum tube. This has a heater, a cathode, 5 grids and a plate. The little protrusion through which one of the grid leads enters indicates that this tube has a grid cap on the top of the tube. The dotted line around the tube indicates that this tube has a shield can around 1 t . This shleld can 1 s grounded as indicated by the ground symbol. Directly below the $6 A 7$ tube is a resistor, labeled R_{2}, 47,000 ohms. This is the electrical size of the resistor. Notice that this resistor is connected between the grid nearest the cathode, and the cathode of the SA7 tube. The cathode of the 6A7 tube connects to ground.

Next we come to the component labelled T_{4}. This is the symbol for an air core transformer. Actually, inside the shield can, as indicated by the dotted line, there are two separate transformers. The top section consists of j_{5} and L_{7}, and the bottom section consists of L_{6} and $\mathrm{L}_{8} . \mathrm{C}_{11}$ is a variable condenser connected between the bottom end of L_{5} and ground. C_{26} is a fixed condenser which is connected between the bottom of L_{6} and ground.

Let us skip over the remainder of the diagram and identify some parts at random.

The 6D6 is a pentode type tube. It has a heater, cathode, three grids and a plate.

The 75 tube 1 s a dual purpose tube. It nas a triode section ard two diodes. The grid connection comes into the top of this tube. The leadconnecting the grid of the 75 tube to condenser C_{22} is a sh1eldedwire. Condenser C_{22} connect to the arm of a variable resistor $R_{5} . R_{5}$ is a potentiometer. In this circult it is usec for a volume control.

The transformer T_{2} is an iron core transformer. Its primary. 1 s connected to the plate of the type 41 tube. A loud-speaker is connected to the secondary of T_{2}.

Now skipping to the bottom of our diagram we ind a power transformer T_{1}. This transformer has one primary winding and three secondary windings. One 0 : the secondary windings is center-tapped. The ends of this center-tapped winding connect to the plates of a double diode, type 80 , tube. The center-tap of this winding connects to an iron core coll, or choke, L_{11}. The other end of L_{11} connects to ground. The symbol P_{1} is a non-standard symbol for a pllot or dial light.

The primary winding of T_{1} connects to the a-c line through a single pole single throw switch, S_{4}. Condenser C_{20}, a . $\dot{0} 1 \mathrm{mfd}$ (microfarad) condenser, connects from ine side of T_{1} primary winding to ground.

In this manner, continue over the entire schematic diagram, identifying each part until you can do it without referring back to the symbols in thes assignment.

Tracing a Circuit

Although, at this point in our training, we have not studied the operation of the varlous circuits in a radio, we should be able to trace some of the circuits in a schematic diagram.

For the purpose of practice in tracing a circuit, the schematic diagram of the recelver, shown in Figure 1, will be used. This is a relatively simple circuit, being conventional in every respect. Complete radios of this type can be broken down into a number of separate clrcuits, which allows easier tracing of the wiring.

First, let us irace the fllament or heater circuits, since we should now be able to recognize this el ement of each tube. Notice that in this radio one terminal of the heater of each tube (except the type 80 rectifler) is grounded and the other terminal of each heater has an arrowhead. In this case the grourd symbol represents the metal chassis. It does not, however, necessarily mean that each tube has one of 1 ts heater terminals grounded at the tube socket, nor does $1 t$ mean that the chassis acts as part of the fllament circuit. It merely means that at some point in the actual wire circuit one side of the f1lament is connected to the chassis.

In these schematic diagrans you may often have to visualize a complete circuit when a part of this circuit is shown making use of the metal chassis as one of the conductors. Notice that the two green terminals of one of the secondary windings of the power transformer are arranged the same way - that is, one terminal is grounded and the other terminal has an arrowhead.

The reason the draftsman did not use actual lines to show these connections is that this would require that there be more lines on the diagram making 1t more confusing. This is an example of the short cuts often used in radio diagrams. We have redrawn this fllament circuit as it is actaally wired in Figure 12.

Let us compare tre schematic diagram shown in Figure 12 with that section of the complete schematic in Figure 1. First examine the heater circuit of the 6A7 tube. Remember that any points connected to ground are connected together electrically. Therefore the terminal of the heater which is shown grounded is connected electrically to one terminal of the secondary winding of the transformer as shown in Figure 12. The other terminal of the $6 A 7$ heater has an arrowhead on $1 t$. This indicates that $1 t$ connects to the transformer terminal with the arrowhead. Thus we see that this tube is actually wired as shown in Figure 12. Check the other tubes heater circuits to see if they agree with Figure 12. Notice that the fllament circult of the type 80 tube connects directly to another secondary winding on the power transformer.

Continuing with our tracing of the circuit of figure 1 , in tre order or simplicity, the plate circuits are next. From the plate of the f1rst tube from the left, the 6A7, follow the wire to the primary of the tuned transformer, T_{5}. Notice that the condenser C_{6} is connected across each end of the primary, serving to tune it to the proper Prequency. Going on through the primary, we can follow this wire to a point where it connects to another wire. This junc-
tion is marked A on our diagran. Now start from the plate of the second tube from the left, the 6DB, and we see that we go through the primary of another tuned transformer, T_{8}, to the junction of the wire from the plate of the first tube. The wire from junction A continues to a horizontal line leading to the right from the fllament of the type 80 tube. Keep this horizontal line in mind - it is known as the "B+ feeder line". Now go to tube number three, a type 75, and follow the lead from the plate of the triode section of this tube (the plate at the top of the symbol) through a resistor R_{g}, which has a value of 330 K or 330,000 ohms, to the $\mathrm{B}+$ feeder line. In tracing such circuits you may come to a junction leading to a condenser; we will ignore this branch now because at this time we are tracing d-c circuits, and as we shall learn later, condensers will not pass direct current. The plate of the audio amplifier tube, a type 41 , also connects to this $B+$ feeder line through the primary of transformer T_{2}. This completes the tracing of all the plate circuits in our receiver, except the type 80 tube. If we had been drawing this circuit as we traced 1t, our drawing should look like Figure 13.

Almost without exception, the plate of every tube in a receiver connects through colls, resistors or both to the fllament or cathode of the rectifier tube (in th1s case, the type 80 tube).

Thus we find that it is not a difficult task to trace the individual circuits in a plece of radio or television equipment.

Summary

We have covered a great deal of ground in this assignment and we are already well along the way to being a competent electronics and televisiun technician. We have seen the need for schematic diagrams, we have studied the symbols for many of the components which nake up electronics and television circuits, and we have seen how these symbois are put together to make complete diagrams. We have also learned how to trace out individual circults of a complete diagram.

This is very necessary to enable us to quickly and efflciently work on such a plece of equipment and understand how these various circuits operate. You should refer to this assignment time and time again in your studies, and you should practice tracirg circuits until it comes to you very easily. Do not be discouraged, for with practice this assignment will seem quite easy to you a month from now.

In the next assignment we will review some of the arithmetic that we will use in our electronics and television work. For most of us, this will amount to just a simple, quick review.

Test Questions

Be sure to number your Answer Sheet Assignment 3. Place your Name and Associate Number on every Answer sheet.
Send in your answers for this assignment immediately after you finish ther. This will give you the greatest possible benefit from our personal grading service.

1. Why are schemailic diagrams, used?
2. How, or where, could you obtain the schematic diagram for a radioyou have been called upon to repair?
3. On your Answer Sheet, draw and label the symtols for the following electronics parts:
(a) fixed resistor
(c) potentiometer
(b) variable condenser
(d) electrolytic condenser
4. On your answer sheet draw the symbol for an iron core transformer with one center tapped secondary windirg. Connect the two ends of a potentiometer to the two ends of the secondary winding. Connect the "arm" of the potentiometer to the center-tap of the secordary winding.
5. What is another name for a condenser?

6. Draw the symbols for the following:
(a) Fuse
(c) Pllot light
(b) Antenna
(d) Single pole single throw switch
7. Draw the symbols :or the following:
(a) Alr Core transfomer
(c) 30 volt battery
(b) Power transformer
(d) Triode vacuum tube
8. What do the straight lines in the power transformer symbol indicate?
9. In Figure 1 of this assignment, what does the dotted circle around the type 75 tube indicate?
10. Draw the symbols for the follcwing:
(a) Loudspeaker
(c) Two gang variable condenser
(b) Headphones
(d) Microphone

FIGURE 3

FIGURE 9

*Woild Radio History

ASSIGNMENT 4

ARITHMETIC FOR ELECTRONICS

In our electronic and television work, problems will be encountered which will require the use of mathematics. In this assignment, and in a few others spaced throughout the training, all of the mathematics which will be needed to solve these problems and to become a competent electronics technician will be covered.

There is one point which we wish to emphasize at this time. The mathematics which is inciuded in this training program should offer no particular difficulty to you. We will assume that you know only the very basic operations of arithmetic - addition, subtraction, multiplication, and division. Each operation will be started at this most basic point and explained thoroughly from there on.

We will show you simple methods of solving problems - in other words, we will show you the easy way to do the job by applying short cuts, etc.

Before we get into the actual subject of mathematics, there are a few words of advice that might be of great value to you. For one thing, you should get in the habit of doing your work neatly, carefully, and accurately, in order to reduce the possibility of careless mistakes. Even if you know what you're doing know the mathematical operation and know the electronics work to which ycu are applying it - your answer may be worthless if you make a careless mistake in arithmetic.

None of us is perfect. We all stand a chance of making a mistake in arithmetic in even the most simple problems - even when we do the work neatly and carefully. We suggest, therefore, that you develop the habit of checking every bit of your work before you accept your answer as being correct.

Wher. you start your work on the first Home Laboratory Experiment in the training program, you may find the operation of soldering rather awkwarc. How ever, as you proceed in the trairing and thereby have the opportunity of practicing soldering as you ferform the many experiments, you' 11 soon ind that it is a very simple operation. becoming "second nature" to you. You will find trat, to a great extent, the same thing is true regarding mathematics. When you first start to use a particular operation in mathematics, you may pind your handing of it a little awkward. However, as you acquire practice in its use, you will find that you'll also become efficient in its use.

You have, of course, found this to be true in the past, both in your own experience and in the experience of others. For example, multiplication is a short cut for addition, but ycu had to learn multiplication tables (through practice) before the multiplication process became useful to you. The typist finds it easier to prepare a page with a typewriter than with a pen or pencil yet considerable practice was necessary before the typewriter became a useful tool to her. Many short cuts will be presented in connection with the mathematics in this training. Practice in their use will enable you to arrive at a simple solution to electronics problems which would be difficult without mathematics.

This advice, then, might be summed up as follows: Do your work neatly and carefully. Practice.

Definitions

In this assignment, we will deal with addition, subtraction, multiplication, and division, and we will use whole numbers, iractions, mixed numbers, and decimals. Of course, the operations of addition, subtraction, multiplication,
and division are so well known to everyone as to not require any definition. However, as it may have been a number of years since you "met" the various types of numbers we will use in this assignment, it might be well for us to "reintroduce" these numbers to you. In other words, we will give you definitions of them.

Whole Number. A whole number is a number which contains no fractions or decimals. Examples of whole numbers are: 1, 2, 13, 99, 796,843, etc.

Fraction. A fraction is one number over another, and is actually an indication of division. For example, $1 / 2$ is a fraction and means divide $:$ by 2. Some more examples of fractions are: 2/3, 4/5, 3/10, 99/1000, etc.

Mixed Number. A mixed number is a whole number and a fraction. For example: $11 / 2,37 / 8,9947 / 100$, etc.

Decimal. A decimal is ancther way of expressing a fraction. For example, the fraction $1 / 10$ may be expressed as the decimal . 1 . Other examples are: .7, .99, .78543, etc.

Simple Arithmetic

Simple arithmetic, involving the processes of addition, subtraction, multiplication and division of whole numbers, is used each day in our everyday 11 fe and is familiar to all. Examples of each process will be given here as a foundation for other arithmetic.

> Addition

For practice, work the following problems:

1. $721+432=$
2. $821+32+4312+8=$
```
3. }976+73+99+127
4. 7932 + 9732 + 2379 + 3792 =
```


Subtraction

Example 1. From 5245, subtract 492.
Solution: 5245 Check: 4753
Answer: $\frac{-492}{4753} \quad \frac{+492}{5245}$

Example 2. From 99,878, subtract 11.
Solution: 99,878 Check: 99,865
Answer: $\frac{-11}{99,865} \quad \frac{+11}{99,87 \epsilon}$

All subtraction problems should be "checked" by adding the answer obtained to the amount subtracted, and checking to see if the original number is obtained. Thus, in Example 1, 4753 should be added to 492 , as shown at the right of the solution of the problem. Since the answer to the check, 5245 in this example, is equal to the original number, we know that the subtraction is correct. The check for Example 2 is also shown. For practice, work and check the following problems:

1. $7852-623=$
2. $491-287=$
3. $688-400=$
4. $9763-27=$

Multiplication

Example 1. Multiply 77 by 61.
Solution: 77

Solution:	77		77
	56:	Check:	$6 1 \longdiv { 4 6 9 7 }$
	77		427
	462		427
Answer:	4697		427

Example 2. Multiply 4753 by 492.

Each multiplication problem should be checked by dividing the answer obcained by one of the numbers originally multiplied together. If the other original number is obtained as the answer to this check, the multiplication is correct. Thus, in the check for Example 1, the answer 4697, is divided by 61, and 77 is obtained. Since 77 is the number in the example which was multiDlied by 61, the multiplication is correct. If any other number, such as 76, or $77 \frac{13}{61}$ etc., is obtained, it indicates that there is a mistake in the arithmetic. The check for example 2 is also shown. For practice, work and check the following problems:

1. $421 \times 78=$
2. $9770 \times 420=$
3. $623 \times 796=$
4. $977 \times 23,784=$

Division

Example 1. Divide 99 by 11.
Solution: ${ }^{11} \frac{9}{99}$ (Answer)
Check: 11
$\frac{99}{0} \quad \frac{\pi 9}{99}$
Example 2. Divide 26,677 by 721.
Solution:

37	(Answer)	
$7 2 1 \longdiv { 2 6 8 7 7 }$	Check:	721
2163		$\times 37$
5047		5047
5047		2163
0		26677

Assignment 4

Erample 3. Divide 784 by 53.

Solution:	14
	$53 \sqrt{784}$
	$\frac{53}{254}$
Remainder:	$\frac{212}{42}$

> We have a remainder of 42 . The arswer may be written as $14+42 / 53$ or 14 42/53. The remainder is expressed as a fraction, 42/53.

The entire answer, $1442 / 53$, is a mixed number, because it contains a whole number and a iraction.

All division problems should be checked by multiplying the answer by the divisor (the part divided by in the problem). If the dividend (the part to be divided in the problem) is obtained from this multiplication in the check, the arithmetic is correct. In the check for Example 1 , the answer 9 is multiplied by the divisor 11, and 99 is obtained. Since 99 is the dividend in the problem, the arithmetic is correct. The check for Example 2 is also shown.

To check a division probiem where the answer is a mixed number, as in Example 3, we simply multiply the whole number of the answer by the divisor, then add the remainder. If the dividend is obtained from this operation, the arithmetic is correct. To check Example 3 we do the following:

53	(divisor)
$\times 14$	
$\frac{53}{712}$	(whole number in answer)
$+\frac{42}{784}$	(Remainder)

Since 784 is the dividend, the arithmetic is correct.
In simple arithmetic it is usually best to empress iractions as decimals. However, you will have to manipulate fractions when you work with radio formulas later on. The best way to review the rules for using iractions is tc practice with problems in simpie arithmetic.

A fraction is made up of two quantities, a top number, or numerator, and a bottom number, or denominator. In the iraction $42 / 53421 s$ the numerator and 53 is denominator. The answer to the division problem, Example 3, tells us we havp 14 whole numbers plus a fraction. The answer 1 s between 14 and $: 5$. If we take one and divide it into 53 parts and take 42 of these 53 parts, we will have the correct amount to add to the 14.

The denominator tells us into how many parts we have divided the whole unit. The numerator tells us how many of these parts we have taken.

It will often be necessary to combine fractions. Addition and subtraction are opposite and the same general rules will apply for either operation.

Addition and Subtraction of Fractions

Example 1. Add $3 / 8$ and $2 / 8$.
Answer: $\quad 3 / 8+2 / 8=5 / 8$.
Example 3. Subtract $2 / 8$ from $3 / 8$.
Answer: $3 / 8-2 / 8=1 / 8$.

Example 2. Add $5 / 13$ and $6 / 13$.
Answer: $\quad 5 / 13+6 / 13=11 / 13$.
Example 4. From 6/13 subtract 2/13.
Answer: $6 / 13-2 / 13=4 / 13$.

In each of these examples the denominators were the same for both fractions. We used that same denominator in our answer. The numerators in the answers were obtained by adding or subtracting (as instructed in the problem) the numerators

of the two fractions.

This is a very simple process if both of the fractions have the same denominator. If the iractions do not have the same denominator, we will have to change ore or more of the fractions in the problem to obtain a common denominator. Common denominator means that all of the fractions have the same denominator.

If we were asked to add $5 / 8$ and $1 / 8$ it could be done simply by the process outlined above, but 11 we were asked to add $1 / 2$ and $3 / 51 t$ could not be done by this process. We would have to ilnd a common denominator ilrst.

We can always obtain a common denominator by multiplying the two denominators together. Thus, to ind a common denominator in the problem $1 / 2+3 / 5$ we multiply $2 \pi 5$ and obtain 10. Thus, 10 is the common denominator. We now want each of our fractions to have 10 for a denominator. We want to change $1 / 2$ into an unknown number of tenths. This we can do easily. We had to multiply the denominator 2 of the ilrst iraction by 5 to get 10 . We must multipiy the numerator by 5 also. Thus, to change $1 / 2$ to tenths, we multiply both the numerator and the denominator by 5. This gives us 5/10. To convert $3 / 5$ to tenths we multiply both the numerator and the denominator by 2 . This gives us 6/10. Now to solve the problem, we apply the same rule as in Example 1 and 2 since both of the iractions now have the same denominator. This is showil in Example 5.

Example 5. Add $1 / 2$ and $3 / 5$.
$1 / 2+3 / 5=$
$5 / 10+6 / 10=11 / 10$

Example 7. Subtract 2/3 from 7/8. $7 / 8-2 / 3=$ 21/24-16/24 = 5/24
Note: 24 will be a common denominator.

> Example 6. Add $1 / 3$ and $1 / 4$. $1 / 3+1 / 4=$ $4 / 12+3 / 12=7 / 12$

Note: 12 will be a cormon denominator.
Example 8. Subtract $1 / 8$ from $1 / 7$. $1 / 7-1 / 8=$ $8 / 56-7 / 56=1 / 56$
Note: 56 will be a common denominator.

In each of these examples, we obtained the common denominator by multiplying the denominator of each of the fractions together. Sometimes it is possible to use a common denominator that is smaller than the product of the denominators in the problem.

Example 9 . Add $1 / 6$ and $3 / 8$.
$1 / 6+3 / 8=$
Using 48 as the common denominator;
$8 / 48+18 / 48=26 / 48$
In this case we could use 24 as the common denominator of the problem. Then to solve this same problem we proceed as follows:
$1 / 6+3 / 8=$
Using 24 as the common denominator;
$4 / 24+8 / 24=13 / 24$
$13 / 24$ is equal to $26 / 48$, so we have solved the problem and used smaller numbers than before.

You may wonder where the 24 was obtalred as the common denominator in the preceeding example. It is the smallest number into which the 8 and the 6 can
each be divided into evenly. In a great majority of the cases this number can be found by inspection. Another way the lowest common denominator can be found is shown by Example 10.

Example 10. Add 5/8, 7/12, and 11/18.
To find the lowest common denominator (abbreviated LCD), we proceed as follows:
(1) $2 \mid 8,12,18$ Explanation: To obtain the LCD of these numbers, write
(2) $24,6,6$
(3)
(4) $31,3,9$

(5) 3 | 1, | 1, | 3 | |
| :--- | :--- | :--- | :--- |
| | 1, | 1, | 1 |

shown in line (2). their denominators, 8,12 , and 18 in a line as showr and divide by the smallest number that will go into one or more of the numbers without a remainder. Thus, 2 will go into 8 four times, into 12 six times and into 18 nine times. Write the 4 under the 8,6 under the 12 and 9 under the 18 as We now divide each of these numbers in line (2) by 2 , and where one or these numbers in the lines can not be divided evenly by the divisor, we bring down the number itself. Thus 2 goes into 4 twice, so we put the 2 under the 4. The number 2 goes into 6 three times, so we put the 3 under the 6 , but since the 2 does not go into the 9 evenly, we bring down the 9 . In this way we obtain line (3). Dividing the numbers in line (3), by 2 we obtain for line (4), 1, 3, 9. Dividing line (4) by 3, we obtain 1, 1, 3, for line (5). Again dividing by 3 , we obtain $1,1,1$, for line (8). Now we obtain the lowest common denominator by multiplying the divisors together. In this case, $2 \times 2 \times 2 \times 3$ x $3=72$. Therefore, 72 is the lowest common denominator of these fractions. We then use the LCD to ind the solution to the example. Therefore:
$5 / 8+7 / 12+11 / 18=$
$45 / 72+42 / 72+44 / 72=131 / 72$
To apply this same method to solve Example 9, we proceed as follows:
$1 / 6+3 / 8=$

2	6 ,	8
2	3,	4
2	3,	2
3	3,	1
	1,	1

In all cases, notice that when we changed to common denominators, we multiplied both the denominator and numerator by the same number. This is always necessary in order that we do not change the value of our fraction.

For practice, work the following problems:

1. $5 / 8+3 / 8=$	5. $7 / 8+1 / 6+1 / 3=$
2. $9 / 16+3 / 16=$	6. $9 / 16+7 / 24+7 / 32=$
3. $1 / 8+1 / 5=$	7. $13 / 18-7 / 27=$
4. $3 / 5-1 / 6=$	8. $1 / 3+1 / 4+1 / 5+1 / 6=$

Multiplication and Division of Fractions

Multiplication and Division of fractions is much easier than addition and subtraction for two reasons. In the ilrst place, we do not have to bother with common denominators. In the second place, we find we can often redrice the size of the numbers we are working with, by means of cancellation.

In multiplication of fractions, we multiply all the numerators together to obtain the numerator of the answer, and we multiply all of the denominators
together to obtain the denominator in the answer.
Example 1. Multiply $2 / 7$ by $3 / 5$.
Solution: $2 / 7 \times 3 / 5=6 / 35$
The two numerators, 2 and 3, are multiplied togather to obtain the numerator (6) of the answer. The two denominators, 7 and 5 , are multiplied together to obtain 35 for the denominator of the answer.

Example 2. Multiply $3 / 7$ by $6 / 7$.
Solution: $3 / 7 \times 6 / 7=18 / 49$
Example 3. Multiply together, $1 / 2,2 / 3$, and $3 / 4$.
Solution: $1 / 2 \times 2 / 3 \times 3 / 4=\frac{1 \times 2 \times 3}{2 \times 3 \times 4}=\frac{8}{24}$
Example 4. Multiply these fractions together, $3 / 8,1 / 3$, and $5 / 9$.
Solution: $3 / 8 \times 1 / 3 \times 5 / 9=\frac{3 \times 1 \times 5}{8 \times 3 \times 9}=\frac{15}{216}$
For practice, work the following problems:

1. $3 / 4 \times 3 / 4=$
2. $7 / 8 \times 19 / 16=$
3. $5 / 12 \times 1 / 9=$
4. $3 / 4 \times 5 / 6 \times 11 / 12=$

Division of ractions is also a simple process. To do this we invert the divisor (turn it upside down) and change the division sign to a multiplication sign, and then multiply the fractions.

Example 5. Divide $1 / 2$ by $1 / 4$.
Solution: $1 / 2 \div 1 / 4=$
$1 / 2 \times 4 / 1=4 / 2$
Note that we inverted the divisor (the $1 / 4$ in this example), then we multiplied.

Example 6. Divide $2 / 3$ by $3 / 4$.
Solution: $2 / 3 \div 3 / 4=$
$2 / 3 \times 4 / 3=8 / 9$
Example 7. Divide 7/12 by 5/8.
Solution: $7 / 12 \div 5 / 8=$
$7 / 12 \times 8 / 5=56 / 60$
For practice, work the following problems:

1. $9 / 10 \div 3 / 4=$
2. $1 / 7 \div 5 / 8=$
3. $19 / 21 \div 21 / 37=$
4. $7 / 8 \div 2=$

Note: Any whole number such as 2 may be written as that number over 1 , or in this case $2 / 1$.
We mentioned previously that the multiplication and division of fractions could be simplifled by using cancellation. Let us see how this is accomplished.

When we were ilnding the common denominatcr, we sald that it was permissible to multiply both the numerator and the denominator of a fraction by the same number, and that this did not change the value of the fraction.

It is also permissible to divide both the numerator and denominator by the same number.

The following example will demonstrate this:
 The fraction is now $3 / 5$ which is equal to $6 / 10$. It is found simpler to do this by the process called cancellation. To employ cancellation, examine the fraction to see if there is some number which can be divided into both the numerator and
the denominator. In this iraction, $6 / 10$ we see that 2 can be divided into each. Then we proceed in this manner. Without bothering to write the 2 down, we say to ourself, 2 goes into 8 three times and into 10 five times. We then cross out or cancel, the 6 and put a 3 above $1 t$; and cancel the 10 and put a 5 below it.

3
$\frac{8}{10}$ The new isaction is $3 / 5$.
5
We have reduced this iraction to 1 ts lowest terms. We can find no number which will go evenly into both 3 and 5.

Exanple 2 Realice $12 / 80$ to its lowest terms.
6
12 Here we divided by 2. This fraction is still not in its lowest terms, 69 for we can still divide 2 into each of the terms. Let us do this.
30

3 Now we have $3 / 15$, but this fraction is not in its lowest terms since 3 $\overline{30}$ and 15 can both be divided by 3 . Let us do this.
15

1
$\frac{3}{7 \$}$ We now have reduced this fraction to 1 ts lowest terms by cancellation.
5

1
B
6
12 All of these steps would nomally be performed without rewriting the 40 iraction each time. This is shown at the left.
39
17
5
There is no set rule as to what number you should divide inta both the numerator and the denominator. Fewer steps will result if the largest number possible is used. For example, In the fraction $12 / 60$, if we had divided both parts by 12 in the first place, we would have had only one step. There are a nuber of ways that we could have arrived at this same answer. Some of these are lllustrated below:

	1		1		1
Dividing	12	Dividing by	2	Dividing by	4
by 12.	60	6 and then	12	3 and then	12
	5	$\text { by } 2 .$	60	$\text { by } 4 .$	60
			19		20
			5		5

A fraction should always be reduced to its lowest terms to be in its proper form. If the answer to a problem contains a iraction, this fraction should be reduced to its lowest tems.

For practice, look back over the preceeding problems on fractions and reduce each answer to its lowest terms.

Cancellation can be used when multiplying fractions. In division of fractions, first invert the divisor and then cancel. Cancellation cannot be used in addition and subtraction of fractions.

Let us work a longer problem to show how much work can be saved. by cancellation.

Example 1.

$\frac{625}{35} \times \frac{64}{40} \times \frac{49}{56}$ can be written as | $625 \times 64 \times 49$ |
| :--- |
| $35 \times 40 \times 56$ |

Naturally, in actual work it will not be necessary to rewrite your problem as you perform each step in cancellation.

The simplicity of this process wlll be further demonstrated by Examples 2 , 3. 4, and 5.

Example 2. Multiply $15 / 16 \times 4 / 5 \times 2 / 3$.
Solution: $\frac{15}{16} \times \frac{4}{5} \times \frac{2}{3}=\frac{15 \times 4 \times 2}{16 \times 5 \times 3}$
1 Cancel 4 into 4 and 16.
$8 \quad 1 \quad 1$
$\frac{15 \times 4 \times R}{16 \times \$ \times 7}=\frac{1}{2}$ Cancel 5 into 15 and 5.
Cancel 3 into 3 and 3 .
41 Cancel 2 into 2 and 4.
2
Example 3. Multiply $\frac{300}{500} \times \frac{7}{8} \times \frac{45}{63}$

Example 4. Divide $4 / 25$ by $2 / 5$.
Solution: $\quad \frac{4}{25} \div \frac{2}{5}=\frac{4^{2}}{2 \$_{5}} \times \frac{B^{1}}{21}=\frac{2}{5}$

Example 5. Divide 750/54 by 25/9.

For practice, work the following problems:

1. $\frac{9}{10} \times \frac{5}{3}=$
2. $\frac{650}{20} \times \frac{80}{15} \times \frac{75}{40}=$
3. $\frac{77}{90} \div \frac{22}{60}=$
4. $\frac{96}{99} \times \frac{77}{27} \times \frac{18}{32}=$
5. $\frac{3}{4} \times \frac{96}{100} \times \frac{16}{21}=$

Improper Fractions and Mixed Numbers

In some of the problems, we had fractions in which the rumerator was larger than the cenominator, $\frac{11}{10}$ for example. Such a fraction 1 s called an improper iraction. When improper fractions appear in an answer, they should be changed to mixed numbers. We stated previously that a $\pi 1$ ixed number was a whole number and a praction. The number $\frac{11}{10}$ should be changed to the mixed number $1 \frac{1}{10}$. The value of the mized number can be obtained readly by dividing the rumerator by the denominator.

Example 1: Change $11 / 10$ to a mixed number.
Solution: $\quad 10 \begin{aligned} & \frac{1}{11} \\ & \frac{10}{1}\end{aligned}=1 \frac{1}{10}$
Other examples of changing improper fractions to mized numbers follow.
Example 1. Change $17 / 2$ to a mixed number.
Solution: $\quad 2 \sqrt{17}=8 \frac{1}{2}, \frac{17}{2}=8 \frac{1}{2}$

$$
\frac{16}{1}
$$

Example 2. Change $131 / 72$ into a mixed number.

Solution: $\quad 72 \sqrt{131}, \quad \frac{131}{72}=1 \frac{59}{72}$ $\frac{72}{59}$

Example 3. Change $413 / 22$ =0 a mixed number.
Solution: $\quad 22 \sqrt{\frac{18}{\frac{42}{213}}}, \frac{413}{22}=18 \frac{17}{22}$

$$
\frac{178}{: 7}
$$

Mixed numbers cannot be used conveniently in solving problems involving multiplication and alvision, so if a mixed number appears in a problem, it should be changed to an improper iraction before proceeding.

Example 1. Multiply $1 / 3$ times $1 / 4$.
We wish to multiply the mixed number $11 / 3$ by a fraction. First we change $11 / 3$ to an improper iraction. The number, $11 / 3$ means one plus one third, so let us write it that way.
$1+\frac{1}{3} \quad 1$ may te written as $\frac{1}{1}$, so we may agaln re-write the mixed number. $\frac{1}{1}+\frac{1}{3}$ by using a common denominator, 3 in this case. The improper fraction is $\frac{4}{3}$ which is equal to $\frac{1}{3}$. The problem may easily be $\frac{3}{3}+\frac{1}{3}=\frac{4}{3} \quad$ solved now.

Solution to Example $1: \quad 1 \frac{1}{3} \times \frac{1}{4}$

$$
\frac{4}{3} \times \frac{1}{4}=\frac{4}{12}=\frac{1}{3}
$$

3
Example 2. Change $43 / 5$ to an improper iraction.

$$
4 \frac{3}{5}=\frac{4}{1}+\frac{3}{5}=\frac{20}{5}+\frac{3}{5}=\frac{23}{5}
$$

A simpler way to write this 1s:

$$
4 \frac{3}{5}=\frac{(4 \times 5)+3}{5}=\frac{23}{5}
$$

Example 3. Change $79 / 11$ to an improper iraction.

$$
7 \frac{9}{11}=\frac{(7 \times 11)+9}{11}=\frac{86}{11}
$$

Example 4. Change $67 / 8$ to an improper fraction.

$$
\theta \frac{7}{8}=\frac{(6 \times 8)+7}{8}=\frac{55}{8}
$$

For practice, work the problems on the following page:

Change to mixed numbers.

1. $\frac{9}{7}$
2. $\frac{98}{62}$
3. $\frac{163}{23}$

In multiplication and division involving mixed numbers, first change the mixed numbers to improper iractions.

Example 1. Multiply $3 \frac{5}{8}$ by $7 \frac{1}{8}$.
Solution: $\quad 3 \frac{6}{8} \times 7 \frac{1}{9}$

$$
\frac{29}{9_{1}} \times \frac{64^{8}}{9}=\frac{232}{9}=\quad 25 \frac{7}{9}
$$

Example 2. Divide $4 \frac{3}{5}$ by $9 \frac{2}{3}$.
Solution: $\quad 4 \frac{3}{5} \div 9 \frac{2}{3}=\frac{23}{5} \div \frac{29}{3}=\frac{23}{5} \times \frac{3}{29}=\frac{69}{145}$
In adding and subtracting mixed numbers, we can group all the whole numbers and then group all of the fractions. This is usually the easiest way to handle this type of problem.

Example 1. $37 \frac{5}{8}+4 \frac{1}{2}-18 \frac{2}{3}=$
Solution: $\quad 37+4-18=23, \frac{5}{8}+\frac{1}{2}-\frac{2}{3}=\frac{15}{24}+\frac{12}{24}-\frac{16}{24}=\frac{11}{24}$
Final answer: $\quad 23+\frac{11}{24}=23 \frac{11}{24}$
Example 2. $21 \frac{1}{4}+8 \frac{1}{2}+6 \frac{2}{3}=$
Solution: $21+8+6=35, \frac{1}{4}+\frac{1}{2}+\frac{2}{3}=\frac{3}{12}+\frac{6}{12}+\frac{8}{12}=\frac{17}{12}=1 \frac{5}{12}$
Final Answer: $\quad 35+1 \frac{5}{12}=36 \frac{5}{12}$
For practice, solve the following problems:

1. $1 \frac{7}{8} \times 6 \frac{1}{4}=$
2. $2 \frac{1}{4} \div 1 \frac{1}{3}=$
3. $16 \frac{1}{5}+17 \frac{1}{3}+3 \frac{1}{10}=$
4. $6 \frac{1}{4} \div 2 \frac{3}{5}=$

Declmals

A decimal fraction, commonly called a decimal, is a fraction whose denominator is $10,100,1000,10,000$, etc. Thus $3 / 10,95 / 100$ and $625 / 1000$ are all decimal fractions. Since the denominator of a decimal iraction is always 10 or some power of 10 , that 1 s , since 1 t 1 s always 1 followed by zeros, we write a decimal iraction more compactly by omitting the denominator entirely. Thus, $3 / 10$ is written . 3, 95/100 1s written . 95, and 625/1000 1s written .625. To distinguish the decimal fraction. 3 from the whole number 3 , we place a period (.) In front of the number. This period is called the decimal point. Any number
therefore, with a decimal point in front of $1 t$, is a fraction whose numerator is the number after the decimal point, and whose denominator is a lollowed by as many zeros as there are ilgures in the number to the right of the point. Thus, .1 means $1 / 10, .75$ means $75 / 100$, and .2754321 means $2,764,321 / 10,000,000$. The fraction $2 / 100$ is expressed as a decimal as . 02 , 2/1000 as . 002, and 2/10, 000 as . 0002.

The decimal fraction. 3 is read three-tenths. .75 is read 75 hundredths, and .975 is read 975 thousandths etc. For practice, state the following fractions as decinals:

1. $\frac{9}{10}=$
2. $\frac{41}{100}=$
3. $\frac{.795}{1000}=$
4. $\frac{29,373}{100,000}=$

Let us suppose that you are fortunate enough to have the following money in your pocket: 3 ore hundred dollar bllls, 7 ten lollar bllls, 4 one dollar bllls, 8 dimes and 6 pennies. At a moments nozice you could tell someone exactly how much money you have. iet us review the rules you would instinctively use in adding up the different amounts.
\$300. In making the addition, every decimal point we used was kept in
70. the same vertical column. This rule will always hold true for
4. both Addition and Subtraction with decimal quantities. Also no-
. 8 tice the position of each figure in the answer. The 3 is in the
. O6 mundreds place", the 7 is in the "tens place", and the 4 is in
$\$ \overline{374.86}$ the ones or units place". All these figures to the left of the decimal represent numbers of whole dollars. Trose to the right of the decimal point represent decimal fractions of a dollar. The 8 (for 8 dimes) is in the "tenths place", and represents $8 / 10$ of a dollar. The 8 is in the mundredths placen, and represents $8 / 100$ of a dollar.

Addition and Subtraction of Decimals

Example 1. Add $983.3,77.06,90.234$ and 17.4234.
Solution: 983.3 Notice that the decimal points are arranged in a ver77.06 tical column. The decimal point in the answer is in 80. 234 this same vertical column.

Answer: $\frac{17.4234}{1148.0174}$
Example 2. Add $9.0006,40.01,777.777$ and . 000009.
Solution: 9.0006
40.01
777.777

Answer: $\quad \frac{.000009}{826.787609}$
Example 3. From 673.0909 subtract 423.762.
Solution: 673.0909 Notice that in this case we may add zeros to the -423.7620 right of the decinal since this is equivalent to
249.3289 multiplying both the numerator and denominator of the iraction by 10. The number 762/1000, is equal to $7620 / 10,000$.

Example 4. Fram 9.08 subtract 4.1321.
Solution: 9.0900
nswer: $\frac{-4.1321}{4.9579}$
For practice, solve the following problems:

1. Add. 976.23, 7.707, 841.0302, . 000007 .
2. Add. 7432.001, 963.1, 724.0001, 91.69.
3. From 879.69 subtract 432.78 .
4. From 900 subtract 899.9999.

Multiplication and Division of Declmals

Multiplication and division of decimals are performed in the same way as with whole numbers. The only difference is in locating the decimal point in the answer. The proper location of the decimal point is very important.

In multiplication, we locate the decimal point in the answer after we have performed the multiplication. We merely count up the number of algits, or places, we have to the right of the decimal place in the two numbers we are multiplying together, then place the decimal point that many places from the right in the answer.

Example 1. 432.1 There $1 s$ one place to the right of the decimal $x .07$ place in 432.1 and there are two places to the $\overline{30.247}$ right of the decimal place in.07. This makes a total of three places. After multiplying the numbers together, we count three places from right to left in the answer and locate the decimal place at that point.

Example 2. 7.204 Example 3. . 0007 Example 4. 6701 Example 5. 200.001
$\frac{12.1}{7204} \frac{1.03}{.000021} \quad \frac{\text { I .7 }}{4690.7}$

In division we locate tre decimal point in the answer by moving the decimal in the divisor to the right as many places as necessary to make the divisor a whole number. Then move the decimal point in the dividend to the right the same number of places. The decimal point in the answer will be immediately above the new decimal location in the dividend.

Example 1. Divide 166.298 by 4.92.
Solution: $4 . 9 2 \longdiv { 1 6 8 . 2 9 8 } \quad$ There are two decimal places in the divisor, so we move the decimal place two places to the right to make the divisor a whole number (492). Then we move the decimal place in the dividend an equal number of places to the right, making it 18628.6.
$4 9 2 \longdiv { 1 6 8 2 9 . 6 } \quad$ The decimal place in the answer will te immediately above this new decimal point in the alvidend. Now we divide, being sure to place each number in the answer immediately above the last number of the part of the dividend we are using in that
step. In this example, the first 3 in the answer is plazed immediately above the 2 in the dividend, since the 2 is the last number in the part $o f$ the dividend we are using in this step (1862). The next 3 in the answer goes above the 9 , and the 8 in the answer goes above the 6 .

The answer 1s 33.8. To check, multiply the answer 33.8 by the original divisor 4.82.

Check: $\quad 33.8$ Since the onswer to the check 4.82 is the original dividend, the 676 arithmetic is correct.
3042
1352
186.298

Example 2. Divide 32 by . 016.

$. 0 1 8 \longdiv { 3 2 }$	The divisor decimal point is moved three
	places to the right. Three zeros are
016. $\longdiv { 3 2 0 0 0 }$	added to the dividend so that the decimal
2000.	point can be moved three places to the
$0 1 6 \longdiv { 3 2 0 0 0 }$	right.
32	
000	Check: $2000 \times .016=32$

Example 3. Divide 96.18 by. 16.
Solution: $\quad 1 6 \longdiv { 9 6 . 1 6 }$
Check:
601
$\frac{.19}{3806}$
$\frac{601}{96.18}$
$1 6 \longdiv { 8 0 1 6 }$
$\frac{96}{016}$
$\frac{16}{0}$
Example 4. D1vide 2468.9 by 7.23.
Solution: $\quad 7 . 2 3 \longdiv { 2 4 6 8 . 9 }$

723. $\sqrt{246890}$	Notice that when we carried out
341.	the divisor the answer did not
$7 2 3 \longdiv { 2 4 8 8 9 0 }$	come out even, but that there is
2189	a remainder. In this case we
2989	may add zeros at the right of the
2892	decimal place in the dividend.
1070	We may continue this process as
723	far as we wish.

$$
\begin{array}{r}
7 2 3 \longdiv { 2 4 1 . 4 7 } \\
\frac{216890.00}{2999} \\
\frac{2892}{1070} \\
\frac{723}{3470} \\
\frac{2892}{5780} \\
\frac{5081}{719}
\end{array}
$$

For practice, solve the following problems:

1. $6.702 \times 90.6031=$
2. $15.1284 \div 2.1=$
3. $4321.001 \times .008=$
4. $625 \div: 125=$
5. $9.70101 \times .000006=$
6. $823.01 \div .0007=$
Changing Fractions to Declmals

In solving arithetic problems in practical radio work, it will often be best to work out problems in iractions by means of decimals. It is an easy matter to convert any iraction to a decimal. It will be recalled that, near the first of this assignment, it was stated that a fraction was an indication of division. Thus $3 / 4$ means, three divided by four. To convert this fraction into a decimal, all we have to do is to carry out this indicated division.

Example 1. Convert $3 / 4$ to a decimal.
Solution: $\begin{gathered}\frac{.75}{3.00} \\ \frac{28}{20}\end{gathered} \quad \frac{3}{4}=.75$
$\frac{20}{0}$
Example 2. Convert $1 / 8$ to a decimal.
Solution: $\quad 8 \longdiv { 1 . 0 0 0 }$
$\frac{1}{8}=.125$
$-\frac{8}{20}$
$\frac{16}{40}$
40
Example 3. Convert $3 / 25$ to a decimal.
Solution: $\begin{array}{r}\frac{.12}{3.00} \\ \frac{25}{50}\end{array} \quad \frac{3}{25}=.12$
$\frac{50}{0}$

Example 4. Convert $1 / 3$ to a decimal.

Solution: $\quad 3 \longdiv { 1 . 0 0 0 }$

$\frac{1}{3}=.333+$
The + indicates that this decimal did not come out even, but had a remalnder. The number, 333 ,
is accurate enough for all
practical radio work.

Example 5. Add $7 / 8,3 / 25,2 / 5$.
Solution: $\quad \frac{7}{8}=7 \div 8=.875$

$$
\frac{3}{25}=3 \div 25=.12
$$

$$
\frac{2}{5}=2 \div 5=\frac{.4}{1.395}
$$

Example 6. Acd $173 / 4,223 / 16,53 / 8$.
Solution: $\frac{3}{4}=3 \div 4=.75$

$$
\begin{array}{ll}
\frac{3}{16}=3 \div 15=.1875 & \\
\begin{array}{ll}
3 \\
\frac{3}{8}=3 \div 8=.375 & \text { Answer: }
\end{array} & \begin{array}{c}
2.75 \\
45.3125
\end{array}
\end{array}
$$

For practice solve the following problems using decimals:

1. Add $1 / 4,1 / 5,1 / 8$.
2. Add $3 / 10,5 / 8,1 / 3$.
3. From $3 / 4$ subtract $1 / 3$.

Percentaqe

Percentage is merely a useful way of comparing different quantizies. The word percent (sometimes shown by the symboly) means hundredth. Thus, 1 percent means $1 / 100$ part.

Example 1. What is 1% or $\$ 500$?
Solutior: $\quad 18=\frac{1}{100}$

$$
\frac{1}{100} \times 500=\$ 5 \text { (answer) }
$$

In this example, 1% is called the "rate", and 500 is called the "base".
Example 2. What is 2% of 1000 Volts?
Solution: $\quad 28=\frac{2}{100}$

$$
\frac{2}{100} \times 1000=20 \text { Volts }
$$

As we have learned previously, any fraction with 100 as a denominator may be written as a decimal. Therefore, since $18=1 / 100$, 1 t also equals.01. A simple way to solve percentage problems is to convert the percentage to a decimal and then multiply this decimal by the base. To solve Example 1 by this method, we follow the procedure below:

What is 1% of $\$ 500$?
$18=.01$

$$
500
$$

Answer: $\frac{\mathrm{x} .01}{\$ 5.00}$
Example 3. What is 58 or 75?
Solut ion: $\quad 5 \%=\frac{5}{100}=.05$
Answer:

$$
\frac{x .05}{3.75}
$$

Example 4. A certain voltmeter is guaranteed by the manufacturer to be accurate within plus or minus 28 . If the meter is indicating 8 volts, how much error may there be?

Solution: $2 \%=.02$. 02
Answer: $\quad \frac{\mathrm{X} 8}{.16}$ Volt error
Since the guarantee stated plus or minus 28 the actual voltage may be as high as $8+.16$ Volts, or 8.16 Volts; or $1 t$ may be as $10 w$ as $8-.18$ volts, or 7.84 Volts.

Example 5. What is . 5% of 50 Volts?
Solution: $.5 \%=\frac{.5}{100}=\frac{5}{1000}=.005$

$$
50
$$

Answer: $\frac{.005}{.250}$ Volts
Example 8. A certain radio transmitter is 20% efficient. That is, its output is 20% of its input. If the input power of this transmitter is one kilowatt (1000 watts), what is the output power?

Solution: $20 \%=.20$
1000
An swer: $\frac{\mathrm{x} .20}{200.0}$ Watts
In radio work a diflerent type of percent problem may be encountered.
Example 7. What percent of 8 is 7 ?
Solution: 7 is $\frac{7}{8}$ of 8 , and $\frac{7}{8}=.875=87.5 \%$
To solve this type of problem then, we divide the 7 by the 8 and then change this decimal to percentage. To shange a decimal to percentage, move cecimal point two places to right. Thus . $875=87.5 \%$.

Example 8. A certain radio transinitter has 600 watts output and 900 watts input. What percentage of the input is the output?

Solution: $\frac{\text { Output }}{\text { Input }}=\frac{\phi 9 \phi^{9^{2}}}{999_{3}}=\frac{2}{3}=.666=66.6 \%$
For practice, solve the following problems:

1. 2% of 8 Volts $=$
2. . 2% of 8 Volts $=$
3. 10.2% of 14 Volts $=$
4. 63% of 700 Watts $=$
5. What \% of 700 is 400 ?

Sionificant Fiaures

In pure mathematics, a number is generally considered to be exact. For example, 110 would mean 110.000 , etc., for as many zeros as we wish to add after the decimal point. In electronics work this is not always the case. For example, a certain switch board meter might read 110 volts, but a reading made with an expensive precision meter might indicate 110.2 volts. A series of precise readings might indicate the voltage to be 110.24 volts. Thus we can see that. the 110 volt reading of the switch board meter was not an exact reading, but was an approximate reading. The 110 volts was approximately 110 volts, and not 110.000000 volts as in pure matheratics.

Any number representing a measurement, or the amount of some quantity, expresses the accuracy of the measurement. The flgures required are known as the significant figures.

The signiflcant ilgures of any number are the figures $1,2,3,4,5,6$, 7 , 8 and 9 , in addition to all zeros that occur between them.

Thus, . 00368 volt has 3 s1gniflcant figures.
. 20007 amperes has 5 significant figures.
The zeros in. 20007 fall in between the 2 and 7 and are significant figares.
73.25 has 4 signiflcant figures.
47321.4 has 6 signiflcant figures.

The number of sigrificant figures in a meter reading, or in the answer to a problem, is a measure of the accuracy of the reading or answer.

Thus, one man worked out a simple electrical problem and calculated that 2.36 amperes flowed through a certain resistor and another man calculated 2.362 z amperes through the same resistor. The second man evidently worked the problem out more accurately.

In general, then, the greater the number of significant figures in an answer, the more accurate is the answer. A little common sense will ga a long way in working with significant figures.

If you took a reading with a voltmeter and read 47.87 volts, you have four significant flgures to work with. It might be better to call your reading 47.9 volts, or even 48 volts in many cases for the following three reasons:
A. Certainly, your eye 1 sn't so good that you can read the average meter to four significant figures.
B. You might need only two significant figures, in which case the .87 volt is a needless display of accuracy.
C. The meter might only be accurate to within $\pm .5$ volt in which case you have no assurance that the .87 volt has much significance. Therefore the .07 volt could not be relled on.

In electronics and television work, an accuracy of three significant pigures is sufficient.

Rounding Humbers

In "rounding off" the 47.87 volts to 3 significant figures (47.9 volts) and to 2 significant figures (48 volts), we follow a simple rule.

As you drop figures when rounding off numbers, try to make the remaining significant figures show values as close as possible to the original number.

Examples.
.00737373 to four significant ifgures $=.007374$. We increased the last 3 to a 4 since the next number was a 7 (larger than 5).
375.4381 to three significant figures $=375$
49.371 to three significant ilgures $=49.4$

80,750 to two significant ifgures $=81,000$
.0303 to one significant figures $=.03$
3.3333 to four significant figures $=3.333$
6.6686 to four signif:cant figures $=6.687$

If the number we drop is exactly 5 we can elther increase or decrease the previous number.
37.5 to two significant pigures $=37$ or 38
.18250 to three significant figures $=.182$ or .183 ,
but . 18253 to three significant figures equals only. 183 since we know that the 5 is followed by a 2 , and .53 is greater than one half.

For practice, round these numbers of to three significant figures:

1. $2,7382=$
2. $.00047213=$
3. $9,777,700=$
4. $6.2914=$
5. . $00300821=$

In this assignment we have covered the basic operations of arithmetic. These are: Addition, subtraction, multiplication and division. We have applied these operations to whole numbers, mixed numbers, fractions and decimals. We have also discussed percentage and rounding of numbers.

We suggest that you "work through" this assignment several times, concentrating particularly on any part of it that you find at all strange, or infamiliar. As suggested at the pirst of the assignment practice on the se parts until everything in the assigment is quite clear to you.

Test Questions

Be sure to number your Answer Sheet, Assignment 4.
PIace your Name and Assoc late number on every Answer Sheet.
Send in your Answers for this assignment immediately after you finish them. This will give you the greatest possible benefit from our personal grading service.

In answering these arithmetic problems, show all of your work. Draw a circle around your ansuer. Do your work neatly and legibly.

1. Multiply 378 x 226.
2. Add 21, 728, 84, 9643.
3. Divide 777 by 21.
4. Divide $\frac{5}{12}$ by $\frac{1}{3}$.
5. Multiply $\frac{294}{98} \times \frac{126}{56} \times \frac{112}{4}$.
6. Multiply 973.01 by .0083 .
7. Divide 973.01 by . 0063 .
8. If a meter has an error of plus or minus 1%, how high and how low might the voltage actually be if the meter indicates 110 volts?
9. Multiply $7 \frac{1}{7}$ by $4 \frac{3}{4}$.
10. Convert these iractions to decimals, and add $\frac{7}{8}, \frac{9}{10}, \frac{3}{4}, \frac{1}{2}$.

 $+$
 Radio Television

 UNITED ELECTRONICS LABORATORIES

ASSIGNMENT 5

an introduction to electricity and the electron theory

No one can learn a great deal about the theory and practice of electronics and television who does not also know a few of the fundamental facts about electricity and magnetism, for all electronics and television theory is bullt around these basic facts, and every circuit depends upon electricity for $1 t s$ operatior.

A list of names of persons who have helped to develop the sclence of electricity would sound like a roll call in a league of nations. From italy we have Luigi Galvani, and Alexandro Volta, the men who developed the voltalc cell. We nonor Volta, when we use the term volt as the unlt of electrical pressure. Everyone knows the name Gullelmo Karconl, who bullt up the transmission of radio signals and made it a commercial success.

Georg Simon Ohm was a Germar physicist who gave us one of the fundamental laws of electricity. In his hon or we call the unit of electrical resistance the ohm. One of the later Germans, Heinrlch Hertz, was the discoverer oi Hertzian waves, or radio waves. His countryman, Wllhelm Conrad Roentgen, learned how to dse electricity to produce X-rays.

From France we have Andre Ampere, for whom the unit of current strength is named; and also Charles de Coulomt, who made extensive researches in eiectricity and magnetism and took part in the development of the metric systein. The unit of quantity of electricity, the Coulomb, is named in his honor.

Hans Christian Oersted, a Danish physicist, paved the way for the later researches of Michael Faraday; and his discoverles showed the close relationship between magnetism and electricity.

Crossing the English Channel to Scotland, we ind such names as James Clerk Maxwell, the physicist, whose treatise or magnetism is still the foundation upon which our magnetic theory is bullt. England contributed J. J. Thompson, the man Who proposed the electr on the ory, and M1chael Faraday. Wlthout Faraslay's work we might still be depenilng upon voltalc cells for our comercial electricity.

In the United States, our own Bengamin Franklin proved that lightning was a form of electricity. Joseph Henry was a ploneer on self-inductior, and was a leader in the practical development of the electromagnet. In his ronor, the $\frac{\text { unlt of inductance is called the henry. }}{\text { We could go on anc on mentioning the }}$

We could go on and on mentioning the names of the men who have been instrumental in the development of electricity. In the practical flelc, we have Thomas A. Edison, inventor of the phonograph, the incandescent electris lamp and a storage battery. He was also a ploneer in the introduction of dynamo-electric machinery. Cyrus field was an American who laid the first submarine Aclantic cable. In the field of communication, we find such names as Samuel Morse, Lee De Forest and Alexander Graham Bell. This list is by no means compleve. It gives us only a glimpse of the many men who have helped to develop a :leld that zan hardly be surpassed in interest or usefulness.

Electricity is certainly not a new discovery. As long ago as the year 800 B.C., the Greek phllosopher Thales is said to have discovered that a plece of a substarce called amber, which had been rubbed with flannel, would attract small pleces of paper. Nothing of value came from his discovery, however, and it seems to have been about 2200 years later that it was discovered that many
subtances have this same property.
About 1600 A. D., William Gllbert made the discovery that different kinds of material can be excited by means of iriction just as amber can. He gave the name electricity (from the Greek word for amber, "electron") to the phenomenon produced in this manner. He showed, too, that electricity and magnetism are not identical, although they have some properties in common.

In 1672, Otto Von Guericke constructed a crude electrical machine for producing static (or "at rest") electricity. This machine consisted of a ball of sulphur mounted on an axis. When the ball was turned, a hand held against its surface was electrified. An improved form of static electricity generator, as used in laboratories and for demonstration purposes, is shown in figure 1.

In 1752, Benjamin Frankl in performed his well-known experiment of flying a kite in a thunderstorm. He proved for us that ilgntning and electricity are identical, and that lightning is caused by atmospheric electricity. He also introduced the names of positive and negative for the two kinds of electricity.
(Incidentally, Franklin was a very lucky man in performing his experiments. Recent experiments, from the top of the Empire State Building, have shown that the current in a single bolt of lightning will range from one hundred thousand to two hundred thousand amperes.)

No doubt, you have noticed the crackling sound produced by rubbing a cat's backin dry, cold weather. In winter, a person sliding across a car seat can develop enough electricity by iriction to get quite a shock when he touches the door handle. If your hair is dry, it illes out in all directions when you use a rubber comb, and the electrified comb will pick up bits of paper. All of these phenomena are due to "static electricity".

Some Experiments with Electricity

To detect the presence of a charge of electricity, we may use a pith-ball "electroscope". It consists of a ball of pith suspended from a support by means of a sllk thread. If we electrify a glass rod by rubbing it with silk and hold this electrified rod near the pith-ball, we find that the pith-ball is ilist attracted to the rod and then repelled. This is illustrated in Figure 2. This same effect is produced if we rub a rod of hard rubber with flannel or cat fur and then hold it near the electroscope. It is interesting, too, to find that the silk, flannel, and cat fur also show signs of electrification when tested with the electroscope.

Let us charge a glass rod by rubbing it with silk and then suspend it by a silk thread, as shown in Figure 3. If we bring it near a second glass rod charged in the same manner, the rods repel each other. If we bring near the suspended glass rod a plece of hard rubber which has been electrifled by rubbing it with cat fur, we find that the two rods are attracted to each other. By the same method, it can be shown that a charged rubber rod, suspended in the same manner, is repelled by a similarly charged rubber rod, but attracted by a glass rod electrifled by rubbing it with silk. Thus, it seems obvious that there are two kinds of electricity.

An electric charge produced on a glass rod by rubbing the rod with silk is called a positive charge, and that kind of an electric charge produced on a hard rubber rod by rubbing it with a plece of cat fur is called a negative charge. Sometimes they are called plus and minus charges. These experiments have also
demonstrated a basic law which can be stated as follows: Like electrical charges repel; unlike electrical charges attract.

We saw that, when a charged rod $1 s$ brought near a p1th-ball electroscope, the pith-ball is first attracted to the rod, and then repelled. The charge from the rod spreads out over the pith ball until both are charged equally with electricity of the same sign. Then repulsion occurs. A more sensitive electroscope is shown in figure 4. It consists of a brass rod terminating at one end in a brass ball or disc. The rod is thrust through a rubber stopper and suspended in a glass flask. To the lower end of the rod two strips of gold lear, or aluminum foil, are attached. An electric charge applied to the ball, or disc, spreads down over the rod to the leaves, or foll, and since both leaves are thus charged with electricity of the same polarity, they repel each other. An efficlent electroscope may be used to detect the presence of an electric charge, to determine 1 ts sign, or to measure its intensity.

It was pointed out in several of the examples, that the effect of the electric charge was felt before the charged object came in contact with the uncharged object. For example, if a charged rod is held near, but not touching, bits of paper, the b1ts of paper will be attracted and will jump to the charged rod. We see that the electric charge is exerting a force on these bits of paper, in spite of the fact that they are not touching. This force rust be exerted through the alr. The charged particle is sald to be surrounded by a field of force.

Th1s field of force is called an electric fleld of force, or more commonly an electric field. The term electric ileld merely means the region surrounding a charged body, wherein the charged body exerts force on other obiects. If two bodies carrying the same charge are brought close together, their electric flelds repel, and if two bodies with unlike charges are brought close together, their electric flelds attract.

There are other flelds of force besides the electric fleld. Gravity is an example of a fleld of force. When an object is dropped, it falls to the earth. This is because a fleld of gravitational force surrounds the earth. This fleld of gravitational force draws objects to the earth. Another fleld of force is the fleld of magnetic force that surrounds a magnet. This fleld will be studied in a later assignment.

Each of these fields, gravity, electric and magnetic, are different types of flelds. They are not the same things. The only thing in common between them is the fact that they all exert force through the air. There is much that the scientists do not know about how these three flelds are able to exert force through air.

Let us support the ball B, of Figure 5, by silk thread and then join the ball to the knob of an electroscope by means of a copper wire. If the ball B is then charged electrically, the charge is conducted or led along the copper wire to the electroscope, whose leaves diverge. If we were to repeat the experiment, but connect the ball to the knob of the electroscope by means of a silk thread, any change applled to the ball B does not travel to the electroscope, and there is no divergence of its leaves.

Materials which readily transmit an electric charge are called conductors.
Materials which do not readily conduct añ electric charge are called insulators.

The Theory of Electricity

This force which we call electricity has caused many philosophers to wonder. We know electricity best by the effects which it can produce. It supplies us with light, it rings bells, it sweeps our rugs, it can be used for cooking and heating, and $1 t$ even helps us to keep time. We shall learn in this course that radio waves are merely a form of electricity.

In his theory of electricity, Benjamin Franklin assumed that electricity is a fluid. He assumed that any object which is positively charged has an excess of this electrical fluid; if an object has less electrical fluid thar normal, he considered it as negatively charged. Just as heat is belleved to flow from objects of high temperature to those of a lower temperature, so Franklin assumed that electricity flows from positive (Dlus) to negative (minus). Although Franklin's theory is out-of-date and certainly incorrect, yet it was used so long that a large number of books and texts still use diagrams that represent electric current as flowing from the positive to the negative terminal. We know now that the electric current consists of a stream of electrons, instead of a fluid as Franklin supposed, and that it flows from the negative terminal to the positive.

The electron theory has superseded Franklin's theory and has come to be considered as the correct theory. To understand the electron theory, we must know something of the nature of matter.

Suppose that a plece of some solld object - a plece of copper wire, for instance - is examined beneath a very powerful microscope. It will be seen that the copper appears to be composed of small particles or grains held together in some mysterious manner. These grains are called "crystals" of copper, and through the use of an electrically controlled instrument, the Electron microscope, a single crystal can be made to appear quite large.

It is well known that ordinary light will not pass through a retal, but a beam of X-rays will penetrate thin sheets of metal very easily. X-rays are fundsmentally of the same nature as visible light, but their frequency is much higher and they contain much more energy. If a beam of $X-r a y s$ were directed on one of these single crystals of a metal, the x-rays will pass through $1 t$, coming out on the other side. By photographicaily studying the directions from which these rays emerge, it can be determined that the crystal of the metal is composed of rows upon rows of small particles arranged in the form of a lattice structure. An example of this is shown in Figure 6. Each of these little submicroscopic particles is thought to be an atom of the metal.

In the crystals of the copper, the atoms are considered to be held in fixed positions within the crystal. However, in a gas, the atoms are not fixed in position, but move about freely within the container holding the gas. But whether in a solid or a gas, the individual atoms themselves are made up in a very definite way.

Until the intensive research on the construction of the atom which took place during the war, it was belleved that there were 92 separate and distinc: types of atoms. The atomic research of the war revealed at least three more types of atoms. Each type of atom accounts for a different element. An element is defined as a substance which cannot be separated into substances different
than itself by ordinary chemical means. Examples of elements are: Oxygen, $t \ln$, gold, copper, etc.

An atom is considered to be made up of three kinds of particles. These three particles or "atomic building blocks" are:

1. The electron which has a negative charge.
2. The proton which has a positive charge. Its charge is just equal in magnitude to the charge of the electron, but of course, opposite in polarity.
3. The neutron which has mass, or welght, but no charge.

The proton and neutron are equal in weight, being 1849 times as heavy as an electron.

All atoms are composed of these three "building blocks". The thing that determines the characteristics of the different elements, iron and oxygen for example, is the number of each of these "atomic building blocks" in each atom and the arrangement of these particles. For example, an atom of hydrogen contains only one proton, one electron and no neutrons. This atom is the lightest in weight of all atoms. An atom of hellum contains two protons, two electrons, and two neutrons. An atom of hellum is shown in Figure 7.

All electrons are 1 dentical regardless of what element they are 1 n . For example, the electrons in an atom of in are the same as the electrons in an atom of helfum. Also, all protons are identical regardless of the element, in which they are located. This is also true of the neutrons.

All atoms, in their normal state, are neutral. That 1 s , they have no charge. This is because they contain an equal number of electrons and protons.

The electrons, protons and neutrons are not uniformly distributed throughout the space occupled by an atom. The protons and neutrons are grouped together in the center of the atom, as shown in Figure 7. This center portion, consisting of the protons and the neutrans, is called the nucleus. Since all of the protons, or positive charges, are contained in the nucleus, the net charge of the nucleus is positive. circulating around the nucleus in orbits are the negatively charged electrons. This rotation of the electrons around the nucleus is very similar to the rotation of the planets about the sun in the solar system. The negatively charged electrons are attracted to the nucleus due to the fact that unlike charges attract. Why these electrons do not go directly into the nucieus is as difficult to explain as why the earth doesn't go directly to the sun.

This theory of the construction of matter is called the electron theory, and was proposed by the English scientist, J. J. Thomson.

While the neutrors are fundamental "atomic bullding blocks", they contain no electrical charge; so we can neglect them in our discussion of the action of an atom as far as the electrical charges are concerned.

Applying this electron theory to the glass rod of our earller experiments, we see that the glass rod would be made up entirely of electrons, protons and neutrons. The protons are believed to be f1xed in the atoms, but the electrons are loosely held and are transferable. When the number of protons and electrons are equal, the rod has no electrical charge. But when we rubbed tre glass rod with a plece of sllk, some of the electrons were brushed off the glass and became a part of the sllk. This caused the glass to have a deficiency of electrons, or to put $1 t$ another way, an excess of protons, giving $1 t$ a resultant
net charge which was positive. This was shown by the electroscope. The silk had an excess of electrons, giving it a negative charge, and this could also be shown on the electroscope. Therefore we can conclude, that to have electrification, there must be elther an excess of electrons or a deficiency of electrons. An excess of electrons produces a negative charge, and a deficiency of electrons produces a positive charge.

The Electric Current

In many ways, the action of electricity can be compared to water. Water at rest is not doing any work. Similarly, electricity at rest (static electric1ty) does no work. When water flows fram one point to another, it can be ased to do work--turn dynamos, mill wheels, etc. When an electrical charge moves from one point to another, it, too, can do work--turn a motor, heat a toaster, etc. The movement of an electric charge along a conductor is called an electric current.

Thus, static electricity is produced by electrons at rest, and current electricity is electrons in motion. Electrons streaming along a conductor form an electric current, but we cannot have an electric current unless we build ut a difference in potential between two points on a conductor, or in a circuit. Then we shall have an excess of electrons in one part of the circuit and a deilciency in another part. If the difference of potential is maintained, a continuous current will flow through the circuit.

To compare these statements to an easily understood example let us assume that we have two vertical cylinders connected near the bottom with a pipe in which there is a stopcock. Such an arrangement is lllustrated in figure 8. Cylinder A is filled with water to the line C, and cylinder B is filled to the line D. If we open the stopcock, water will flow from A to B, but the flow will stod as soon as the water level is the same in both cylinders. The current stops flowing when there is no longer a difference of pressure. It is possible to put a pump into the circuit and keep pumping water from B into A, just fast enough to maintain the same difference of pressure as we had in the beginning. As long as a constant difference in pressure is maintained by the pump, a constant amount of current will flow fram cylinder A to cylinder B.

Suppose that we have two bodies conrected by a copper wire such as shown in Figure 9. One of these bodies is positively charged (that is, has too few electrons), the other is negatively charged (an excess of electrons), and the two are connected by a copper wire which has a free interchange of electrons.

At the instant the two bodies are connected, the positive body will attract electrons associated with the atons at the end of the copper wire, and will pull some of them out. Tils will provide the positive body with the electrons it needs, and this body will become neutral, or have an equal number of positive and negative charges. Pulling electrons from the end of the copper wire will however tend to leave this section of the wire positive and it will attract electrons from the next section of the wire. This portion of the copper wire will, therefore, pull electrons from the next section, and so on until the distant end is reached. Here this last portion of the wire can take electrons from the negative body since the negative body has an excess of them. Through this action, wtich occurs very rapidly, the two charged bodies become neutral; that is they each now contain equal numbers of positive and negative charges.

A review of this action shows this: At the instant the copper wire was attached between the two unequally charged bodies (and probably for a brief
instant afterwards) electrons moved within the copper wire. The direction of their motion was from the negative body to the Dositive body. Also, it was seen that the motion of electrons soon ceased, because when the charges on the bodies became equalized, there was no attracting force left to cause the electrons to flow. This llow of electrons is considered an electric current. Thus, an electric current may be defined as a progressive flow of electrons.

In an ordinary plece of codper wire the electrons are moving about in a haphazard fashion at the rate of about 35 miles per second. If there is a difference of electrical potential between the two ends of the wire, or in other words, if the ends or the wire are connected to a battery, In addition to this to and fro motion, there is a comparatively slow drift of electrons from one end of the wire to the other. It is this slow drift of electrons in a given direction that we ordinarily call the electric current. Because each electron can carry an extremely small quantity of electricity, it is only movements of large numbers of them in which we are interested. It has been estimated that it would take all the inhabitants of the earth, counting night and day at the highest rate of speed possicle, two years to count the number of electrons which pass through an ordinary $4 C$ watt electric lamp bulb in a second. This is about the same number of electrons necessary to operate a miodern ac-dc table model radio.

At this point it will be well to clear up one misunderstanding which has existed for some time. This is the matter of the direction of current flow. It was pointed out in the explanation of the electron theory, that the current flows from the negatively charged body to the positively charged body. This has been definitely proved to be true. Prior to the eiectron theory, Benjamin Franklin's "fluid" theory was used and current was assumed to flow fram positive to negative. A great number of books have been written employing this incorrect 1dea. These books are still in existence. Also some modern texts are still being written using this idea of current flow. This is particularly true of books for "power men" rather than electronics men. For this reason you may find other texts which will state that current flows from positive to negative, but do not let this confuse you. Current, which is a slow drift of electrons, flows from negative to positive. In this training program the flow of currert will always be assumed to flow from the negatively charged body to the positively charged body.

The unit which is used to measure the amount of electricity flowing in a circuit, is the "ampere". When 6,280,000,000,000,000,000 electrons are flowing past a point in one second, one ampere of current is llowing. This term ampere, and fractions cf it, will be encountered very oiten in elecircnics, so remember, it is a measure of the current flowng in a circuit. The abbreviation used to represent ampere is (a or A). Thus, 3 a means 3 amperes, and $10 A$ means 10 amperes.

Of course, we can't count the electrons flowing in a circuit, to find out how mach current is flowing. Instead, the amount of current flowing in a circuit is measured with a reter called an ammeter.

Insulators and Conductors

It is common knowledge that current does not flow through the non-metallic parts of a radio set and that it does flow through the metallic parts (wires etc.). We see the wires on the power line poles supported by insulators. We
may wonder why some materials will carry an electric current and others will not. The answer to this is found in the electron theory of matter.

In the materials which are good conductors, some of the electrons are not held tightly in their orbits. When these atoms are subjected to a difference in potential, these loosely-held electrons are free to move from one ator to another. These electrons, which are free to move from one atom to another, are called "free electrons". This movement of free electrons is the flow of current which we have been discussing. In the materials which are called insulators, all of the eiectrons are held tightly in their orbits. When these atoms are subjected to a difference in potential, very few free electrons are present, so only a very, very small current flows. Some good insulators are glass, rubber porcelain, quartz, silk and dry afr. The best electrical conductor is silver. It is seldom used due to 1 ts expense. Copper is the next best conductor and is widely used. Aluminum is the next best commonly used conductor. There is no such thing as a perfect insulator or a perfect conductor. The best insulators will have a few free electrons and will allow a small electric current to flow 11 subjected to a difference in potential. Also, even the best conductor, sllver, offers some opposition to the flow of an electric current.

Between these two extremes (insulators and conductors) will be found a large number of materials which are neither good insulatons nor good conductors. These materials are sometimes called semi-conductors, but are more often called resistors. A resistor, then, is a material which opposes the flow of an electric current. The unit of electrical resistance is the "ohm". Some commonly used resistance materials are carton and iron.

The unit of resistance, the "ohm", was named in honor of George simon ohm. It is arbitrarily defined by international agreement, as the resistance of a column of mercury weighing 14.4521 grams, having a uniform cross section, and a height of 106.3 centimeters at 0° centigrade. The norm" will become a more practical term when you consider the fact that a 9.35 foot length of rumber 30 copper wire will have one ohm resistance. There is approximately one ohm of resistance in 1000 feet of number 10 copper wire. In electronics circuits, resistors will be found in the range from a few ohms te about 10 million ohms. The Greek symbol omega (Ω) is often used to indicate ohms.

The property of a resistor, that of opposing the flow of an electric current, is called resistance. This property is just the opposite of the property of a conductor. The property of a conductor is to allow the flow of an electric current. This property is called conductance. The unit of conductance is just the opposite of the unit of resistance, that is, it is the same word spelled backwards. The unit of conductance is the "mho".

Potential Difference

We have seen that an instantaneous electric current composed of electrons flows from one electrically charged body to another if their electric charges were different. Now, instead of always speaking of differences in electric charges, we commonly call it a difference of potential. The word "poteritial" has several meanings, but the best one to use here is "inherent ability". Thus, when two bodies have unequal charges-as we have been considering--they have a difierence of potential: that 1 s , they have the inherent electrical ability to cause a current to flow through the copper wire. In cther words, a potential
difference may be defined as the electrical condition, or force, that causes or tends to cause an electric current to flow.

In measuring altitudes, sea level is usually used as a reference, and certain localities are referred to as being above or below sea level. Similarly, in electrical and electronic work, a body (such as the earth or the metal chassis) may be taken as a reference and electrically charged bodies may be specifled as being so many volts above or below this zero potential.

Electromotive Force

We have seen that an electric current would flow through a conductor such as a copper wire if the two ends of the wire were at a difference of potiential. In the circult of Figure 9 , the potential difference was providedbytwo unequally charged bodies, and as soon as the unequal charges were neutrallzed, the current ceased to flow. of course, this was because after neutralization no difference of potential was present to force the electrons along the wire.

Let us add a third element to Figure 9, making it appear as Figure 10. This new element has been connected to the positive and negative bodies, and since this new elemen: has the property of maintaining these bodies posivive and negative, a constant difference of potential will exist and a continuors current will flow.

When a device such as shown in Figure 10 maintains one body positive and another negative, it is the common practice to say that the two bodies are maintained at a difference of potential because of the "electromotive force" that the device generates. In electronics, we often abbreviate the words "eiectromotive force" as "emr". An electromotive force may be defined as the electric force generated by a device (such as a battery or generator) that causes a difference of potential to exist between the terminals of the device. Thus, the emf that is produced by batteries and electric generators is the force that pushes or forces an electric clirrent through the external circuit connected to the battery or generator, and it does this by establishing a difference of potential between its terminals.

The emr is measured in volts. Thus, if we have a 45 volt battery, this means that the battery will maintain a difference of potential of 45 volts between 1 ts terminals. You will ifind the terms voltage, difference in potential, potential difference, and emf all used interchangeably. The abbreviation used to represent voltage is V . Thus, 45 V means 45 Volts. Voltage is measured by a meter called a Voltmeter.

Types of Current

The type of current which flows in a circuit when a constant difference in potential, such as that produced by a battery, is maintained is called a direct current. This current is always flowing in the same direction throigh the conauctor and is substantially constant in magnitude. Trus, if there is one ampere of current flowing at one instant, there will still be ore ampere of current flowing at some later instant.

Later in the training we shall encounter other types of current. One of these types is called pulsating direct current. This is a current which is always flowing in one direction, but varies in magnitude. Thus, if there is one ampere at one instant, at some later instant there may be 5 amperes or 1/10 amperes of current flowing in the circuit.

Still another type of current is the alternating current. This type of current is periodically changing in direction, and always changing in magnitude. This is the type of current supplied to the house lighting circuits of most communties. We will study this type of current in great detail in future assignments.

Units of Current, Voltage and Resistance

The fundamental units used to measure current, voitage and resistance are sometimes rather unwieldy to use when discussing electronics circuits. For example, it is very common to ind currents in the neighborhood of one one-thousandth of an ampere ilowing in a radio circuit. We will also encounter resistances of several mililon ohms. To eliminate the use of these large numbers and fractions, a number of sub-units or multiple units are used. The table of these units is given below. The last column gives the abbreviation used for these units.

Un1 t	Stands For		Abbreviation
	Fraction	Decimal	
M1111	$\frac{1}{1000}$. 001	T
M1cro	$\frac{1}{1,000,000}$. 000001	μ (Greek letter mu)
M1cro-M1cro	$\frac{1}{1,000,000,000,000}$.000, 000,000,001	H2L
K110			K (sometimes iarge M)
Mer	1,0	000	

Let us see how we would use these units to represer.t the one-one thousandth of an ampere mentioned previcusly. Looking at the tasle we find that milli stands for one-one thousandth, so this value of current is commonly called one milliampere, and is abbreviated 1 ma . To represent a value of 10 mlll m ohms we would use 10 megohms. To represent one millionth part of a unit we would use the term micro. For example, the current flowing in the "picture tuben in a television recelver might be 1 micrompere. This would be written, 1μ a. Some television receivers use voltages of 15 thousand volts. This would be 1ndicated by 15 KV .

Let us re-emphasize these facts. Current is the flow of electrons in a conducting medium. Voltage is a measure of the force that causes the current to flow. Resistance is the opposition offered to the flow of an electric current.

A summary of the material covered in this assignment follows:
Atoms are composed of electrons, protons and neutrons.
Electrons have a negative charge.
Protons have a positive charge.
Neutrons have no charge.
Protons and neutrons form the nucleus of the atom.
Electrons revolve around the nucleus in flxed orbits.
The normal atom is "balanced" electrically; that is, it has an equal number of electrons and protons.
Assignment 5

Some materials, called conductors, have "free electrons"; that 1 s , electrons which are not tightly held in their orbits.

Insulators have all of their electrons tightly held in their orbits. An electric current is the flow of iree electrons along a conductor. An electric current will flow through a conductor if a difference in potential exists across that conductor.

An electric current is measured in amperes. (Abbreviated A)
Difference in potential is measured in volts. (Abbreviated V)
Resistance is the opposition offered to the flow of electric current. It is measured in ohms.

Current flows from the negative terminal of a battery, through the circuit to tre positive terminal.

We saw earller how the electrons making up the current are driven through the wires and other elements making up a circuit by a force which is known as an electromotive force. The unit of this force is known as the "volt". A polt is the electrical force that will cause 1 ampere of current to flow through a wire which has 1 ohm of resistance.

Thus, it is possible to know three things about every circuit carrying a current. These are:(1) the strength of the current, (2) the voltage in or across the circuit and, (3) the resistance in the circuit. In a future assignment we will learn how to find the thifd of these when any two of the three are known.

From this assignment the crainee should attempt to get a clear picture in his mind of what the construction of an atom is like. Then remember these facts:
(1) The positively narged protons do not move from atom to atom.
(2) Some atoms do not hold their negatively charged electrons very tightly. These loosely held, or free electrons, may move from one atom to another. The movement of thes ree electrons in some definite direction constitutes the flow of an electric current. Electric current is measured in amperes.
(3) If any body has more than its normal amount of electrons, that body will have a negative charge.
(4) If a body has fewer electrons than normal, that body will have a positive charge.
(5) The difference in electrical charge of bodies is called the difference in potential.
(6) Difference in potential is measured in volts.

These statements have been repeated for but one purpose. That 1 s , to enable the tralnee to understand the difference between voltage and current. Remember, voltage is the electrical pressure, and current is the movement of electrons which result when electrical pressure is applied.

Test questions

Be sure to number your Answer sheet Assignment 5. Place your Name and Associate Number on every Answer sheet.
Send in your answers for this assignment immediately after you finish them. This will give you the greatest possible benefit from our personal grading service.

1. State the basic law for electrical charges.
2. What is the essential difference between a conductor and an insulator?
3. In the electron theory, does an electric current flow from positive to negative or from negative to positive?
4. What is an electron?
5. What is an electric current?
6. (a) How many ohms are there in a megohm? |
(b) How many milliamperes are there in an ampere?
7. What is the unit of resistarice?

8. (a) List three good conductors.
(b) List three good insulators.
9. What is the name of the force which causes electrons to move in a circuit?
10. Is current measured with an anmeter or a voltmeter?

FIGURE 3

FIQURE 5

Pith ball attracted, made posit ive, and repelled by the posit ive charges on both rod and ball.

FIGURE 2

FIGURE 4

Elecrronics

Television

UNITED ELECTRONICS LABORATORIES LOU15 VILLE

ASS IGNMENT 6
 DIRECT-CURRENT CIRCUITS-- - OHM'S LAW

In the preceding assignment which dealt with the fundamentals of electricity it was pointed out that there are three basic factors which are present in $d-c$ circuits. These three factors are; (1) Voltage, (2) Current, and (3) Resistance. To have a thorough understanding of the operation of the circuits in electronic and television equipment the Associate will have to understand just what voltage, current, and resistance are and will have to understand the relationship which exists between these three factors. The relationship between voltage, current and resistance is commonly called Ohm's Law and will be considered in greater detail later in this assignment. Before proceeding with Ohm's Law, however, it will be well to further illustrate the basic factors of voltage, current and resistance so that the Associate will have a clear understanding of what each of these factors actually means in a circuit, the units in which these factors are measured, the range of values of these units which will normally be enccuntered in electrcnics and tolevision equipment, and the abbreviations and symbols used to represert these factors. These points were considered in the preceding assignment but will be takon up again at this time to provide greater clarity for the Associate.

Voltage

Voltage is the term used to indicate the amount of electromotive force present. Let us consider this term, electromotive force, in more detail before proceeding. The electro- portion of this term means; having to do with electricity. The -motive force portion of this term means; a force capable of producing motion. Thus the entire term means the force capable of producing a motion of the electricity in a circuit, or in other words, the force capable of causing the electrons to move within an electrical circuit. The electromotive force (abbreviated emf) is, therefore, the amount of electrical pressure in a circuit. In a water system, the pressure is measured in pounds per square inch; in an electrical system the pressure (emf) is measured in volts, and the electrical pressure is generally referred to as the voltage in the circuit. There are three types of voltage; d-c voltage, pulsating d-c voltage and a-c voltage. In this assignment we will devote our attention to circuits employing d-c voltages. A d-c voltage is one which remains constant.

D-C voltages may be generated, or produced, in a number of different ways, Figures 1 and 2 illustrate a number of common voltage sources. Figure l illustrates several types of cells ard batieries. (The term battery actually means a battery of cells, or in other words a group of cells.) Figure $1(A)$ shows a penlight cell, Figure $l(B)$ shows a flashlight cell and Fizure l(C) shows a size No. 6 c̀ry cell. Fach of these cells produces an emf of approximately 1.5 volts. In cther words, the voltage of each of these cells is approximately 1.5 volts. Everyone is familiar with the use of the penlight cell and the flashlight cell. Size No. 6
dry cells are used in some doorbell circuits, in rural telephone circuits and in the old style battery operated radios.

The battery illustrated in Figure $1(D)$ is commonly referred to as a "B" jattery. This battery produces an emf of approximately 45 vclts. This type of battery was used very widely in the older types of battery radio receivers ard smaller versions of this battery are used in the modern portable battery type radio receivers. The storage battery illustrated in Figure $1\left(\begin{array}{l}\text {) }\end{array}\right.$ produces an emf of approximately 6.3 volts. This type of battery, of course has been used very widely in automobiles.

Figure 2 illustrates two other sources of $d-c$ voltage. These are the $d-c$ generator shown in Figure 2(A) and the power supply shown in Figure 2(B). D-C generators may be constructed to produce output voltages ranging from a few volts to 1000 or more volts depending upon the application for which the generator is intended. A power supply arrangement somewhat as illustrated in Figure $2(B)$ is the most common $d-c$ voltage source which will be encountered in electronic and television ecuipment. In practically all localities the voltage delivered by the power companies to the homes for lighting, heating, etc., is a-c voltage. However, the correct operation of the major portion of the circuits in electronic and television equipment requires $d-c$ voltages. A power supply circuit is able to convert the a-c voltage into a d-c voltage for use in this equipment. In industrial electronic equipment, the power supply is often built on a separate chassis in an arrangement similar to that of Figure 2(B). However, it is much more common in radio and television equipment to find the fower supply built on the same chassis as the remaining portion of the equipment. The power supply shown in Figure 2(B) is one which you will construct in Home Laboratory Experiment No. 3.

The amount of voltage produced by the power supplies in electronic and television equipment is dependent largely upon the design of the unit. For example, the power supply in a small a-c, d-c portabile radio receiver usually delivers an emf of approximately 90 volts. In the larger types of radio receivers the power supplies normally produce voltages rar.ging botween 250 volts and 300 volts. Television receivers normally employ at least two power supplies, one of which produces a voltage of approximately 300 volts while the other power supply delivers a very high d-c voltage ranging from 9,000 volts in black-and-white receivers to 27,000 volさs in color TV receivers.

As mentioned, the cells and batteries illustrated ir. Figure l deliver voltages of 1.5 volts, 6.3 volts and 45 volts. However, it is sometimes inconvenient to spell out the entire word volts and the abbreviation V is of ten used to indicate the word volts. For example, a battery symbol is a schematic diagram may appear as shown in Figure 3. The 6.3 V alongside this battery symbol indicates that it produces an emf of 6.3 volts.

In addition to the battery voltages and power supply voltages in electronic and television receivers other voltages are present. These voltages range from a value of several millionths of a volt to several
volts. Thus it can be seen that a very wide range of voltages may be encountered in electronic and television equipment when it is considered that the high-voltage power supply in a television receiver delivers many thousands of volts. While the various voltage values encountered could be expressed as so many thousandths of a volt or so many millionths of a volt or so many thousands of volts it is more convenient to use prefixes with the term volt to indicate the size. The prefix used to indicate one thousandth of a volt is the prefix milli, the prefix used to indicate one millionth of a volt is micro, and the prefix used to indicate thousands of volts is kilo.

Thes: 32 thousandths of a volt, or . 032 volt, is normally expressed as 32 millivolts.
$14 / 1,000,000$ volt, or .000014 volt, is expressed as 14 microvolts. 8,000 volts is expressed as 8 kilovolts.
As pointed out the abbreviation V is of ten used to indicate the term volts. Likewise abbreviations are used for the prefixes milli, micro, and kilo, These are:

milli	m
micro	μ
kilo	k

Thus the figures stated above might be abbreviated as follows:
32 millivolts abbreviated 32 mv
14 microvolts abbreviated $14 \mu \mathrm{v}$
8 kilovolts abbreviated 8 kv
Two other jerms which are often used to indicate that an electromotive force is present in a circuit are: (l) difference in potential and (2) potential difference. Remember, howsver, that each of these terms is merely another way of saying electromotive force, and each is measured in volts. Thus, an emf of 18 volts, a voltage o 18 volts, a difference in potential of 18 volts, or a potential difference of 18 volts all mean the same thing.

Since the abbreviation V may be used in place of the longer term volts it would seem logical that in an electronic formula dealing with voltage, V would be employed. Unfortunately however, this practice is not followed. Instead, the symbol E is used to represent voltage in radio formulas. In this case, the E is an abbreviatior of the term electromotive force. To illustrate this fact, let us suppose that you saw the electronics formula $E=I \mathrm{x}$ R. In this case, the E stands for the electromotive force in volts. electromotive force is measured with a voltmeter. The arrancement employed is illustrated in Figure 4. Figure 4(A) shows a pictorial diagram in which a voltmeter is connected to the dry cell to measure the amount of voltage produced. Figure $4(B)$ shows a schematic diagram of this same circuit. Notice that there are two leads on a voltmeter and to use a voltmeter to measure the voltage output of a dry cell, one of these leads is
connected to the positive terminal of the cell and the other lead is connected to the negative terminal of the cell. Voltmeters are manufactured in a wide variety of ranges so that a suitable meter can be used for measuring most any voltage value. For example, in measuring a cell as in Figure 4 which delivers approximately l.5 volts a voltmeter having a full scale reading in excess of 1.5 volts would be employed. For example, a meter with a full scale reading of $21 / 2$ volts, 3 volts, 5 volts or possibly 10 volts would be employed. If a voltmeter is to be used to measure the output of the power supply which is illustrated in Figure 2(B) the full scale reading must be equal to or in excess of the vcltage output of the supply. In this case a voltmeter with a full scale reading of 300,400 or perhaps 500 volts would normally be employed. Voltmeters are also_available for use in measuring values of voltage in the thousands of volts. These méters are commonly called kilovoltmeters. Voltmeters may also be obtained for measuring very small values of voltage. For example, a millivoltmeter would be employed if it were desired to measure voltages in the range of a few thousandths of a volt. Some typical voivmeters are shown in Figure 4(C).

To summarize this discussion on voltage it can be stated that the electromotive force in a circuit is measured in volts. It is this electromotive force or voltage which is the force in an electric circuit which can cause the various actions of the circuit to take place. It is the voltage which causes the current to flow in an electric circuit. Notice, however, that voltage and current are two entirely different things. The voltage is the force which causes current to flow in a circuit.

Current

When an emf is applied to a complete electrical circuit there is a motion of the electrical energy through the circuit. As explained ir the previous assignment the cordition which actually occurs is that the free electrons move through the circuit from the negative terminal of the voltage source toward the positive terminal. In other words, the electrons flow through the circuit. This motion of free electrons in an electrical circuit is called the current. The motion of the electrons in the circuit, or in other words, the current flowing through the circuit, cannot be seen. However, the effects of this current can be noted. It is the current flowing through the circuit which enables an electric motor to operate, which causes an electric stove to heat, which enables a loudspeaker to produce sound waves when it is connected to a radio receiver and which makes it possible for a television receiver to produce a picture of a scene taking place many miles away.

In a water system the flow of water, or in other words the current of water, is measured in gallons per minute. In an electrical circuit, current is measured in amperes.

The ampere is a rather large unit of current. To illustrate, when an electric iron is connected to an ordinary house wiring circuit only 6
to 10 amperes of current will flow through the iron, approximately one ampere of current will flow through a 100 watt light bulb when connected to the normal lighting circuit, and approximately $2 / 10$ ampere flaws through the bulb ir a normal two-cell flashlight when the flashlight is turned on. The current which flows from the power supply to the various circuits in a normal radio receiver will range between . 015 of an ampere and . 075 of an ampere, and the current supplied by the power supply in a televisicn receiver will range from approximately. 075 of an ampere to - 300 of an ampere. From this it can be seen that current in the order of amperes will seldom be encountered in radio and television circuits. For this reason the prefixes milli and micro are used in conjunction with the term ampere quite often. As mentioned previously the prefix milli means "one thousandth parł of," and micro means "one millionth part oミ." To illustrate the use of these terms let us suppose that one thousandth of an ampere (. 001 ampere) of current flows from the power supply in a radio receiver through a particular vacuum tube circuit. In this case a technician would normally state that 1 milliampere of current is flowing in the circuit. Similarly if 15/1000 of an ampere of current flows through the circuit connected to an industrial electronic power supply a technician would normally state that 15 milliamperes of current flows in the circuit. Similarly, if $10 / 1,000,000$ of an ampere of current flows through the circuit connected to the nigh-voltage power supply in a television receiver a technician would state that 10 microamperes of current flows in the circuit.

Thus $5 / 1000$ ampere or .005 ampere $=5$ milliamperes (5 ma). $30 / 1000$ ampere or .03 ampere $=30$ milliamperes (30 ma). $20 / 1,000,000$ ampere or .000020 ampere $=26$ microamperes $(20 \mu \mathrm{a})$. It will be noted in the above, that to eliminate the necessity of writing out the word ampere in full, the abbroviation a is commonly used for the longer term ampere.

When current is to be used in an electronic formula the letter I is used to indicate it. Thus, in the formula $E=I x R$, the I stands for current in amperes. The letter I is used for current since current is a measure of the intensity of the electron flow in a circuit.

The current which flows in a circuit can be measured by means of an ammeter or milliameter. Figure 5 shows the manner in which this could be done- Notice that it is desired to determine how much current is flowing in the circuit. Thus the ammeter or milliammeter must be connected so that the current from the battery flows through the neter at the same time it is flowing through the remaining portion of the circuit. Notice in the circuit of-Figure 5 that the current would flow from the negative terminal of the dry cell, through the resistor, through the meter and return to the positive terminal of the dry cell. Thus, the current which flows through the resistor will also flow through the meter, and the meter will indicate the amount of current flowing in the circuit.

Current measuring meters are manufactured in a wide variety of ranges so that a suitable meter can be used with most any circuit. For example, if it is desired to measure the exact amount of the current flowing in a circuit in which the current is in the order of several amperes, an ammeter which has a higher full scale reading than that which is flowing in the circuit would be employed. If, however, the circuit consists of a radio or television circuit in which a few milliamperes of current are flowing the current indicating meter employed will normally be a milliammeter. To illustrate; if approximately 3 milliamperes of current were flowing in the circuit, a milliammeter with a full scale reading of 5 milliamperes or perhaps 10 milliamperes would be used, and a partial deflection would be obtained on the meter. The calibrated scale on the meter would then be read to determine the exact amount of current flowing in the circuit.

To briefly summarize this portion of the discussion it can be said that current is the progressive flow of the free electrons around a circuit. Current wiil flow only when the electrons are being pushed, or forced, around the circuit. by the electromotive force (voltage) which is applied to the circuit. Current is measured in amperes, milliamperes or microamperes.

Resistance

Resistance is a measure of the oppositior the electrons encounter in flowing through a circuit. If a voltage is applied to the two ends of a piece of wire, current will flow through the wire. This current is made up of many free electrons bounding from one atom to another in a steady procession as explained prev̇ously. Instead of skipping neatly from one atom to the next, however, the electrons follow irregular paths as they "drift" along a piece of wire. If a piece of wire with a very small diameter is used the electrons encounter a "congested traffic condition" within the small wire. In other words, a considerable amount of opposition is offered to the flow of the free electrons. If a piece of special resistance material, carbon for example, is connected in the circuit, the opposition offered to the free electron flow (current) is high beceuse most of the atoms in the carbon are holding their electrons tightly in their orbits and there are faw free electrons present. In this case, we might consider our "congestec traffic conditions" due to so many "parked" electrons.

Another analogy which illustrates the subject of resistance quite well is a bucket brigade fighting a fire. A person at the head of the line in the bucket brigade dips buckets of water out of a well and starts passing them along the line. The man at the other end of the line, of course, throws the water on the fire. If the line is working efficiently, the buckets of water are passed down the line rapidly and easily and the volume of water thrown on the fire is considerable. This might be compared in an electrical sense to a circuit with very low resistarce since
the current is passed through the circuit very efficiently. To illustrate an analogy similar to a circuit containing resistance, let us assume that the fire had been set by a mob which, after the bucket brigade had been set up, did not wish the fire to be extinguished. In this case the rioters would interfere with the persons attempting to pass the buckets of water down the line, and the result would be that only a small amount of water would ever be applied to the fire. In other words, the passage of the water along the bucket brigade enccunters a lot of opposition. This is equivalent in an electrical circuit to resistance which opposes the flow of electrons.

It should be borne in mind at all times when considering d-c circuits that resistance is the opposition of fered to the flow of current. Notice that voltage causes current to flow, whereas resistance opposes the flow of current. It might seem that it would always be desirable to have a circuit with as low a value of resistance in it as possible. However, this is nct the case. In the great majority of the circuits used in radio and televisior equipment, resistors are inserted in the circuit for the particular purpose of opposing current flow. In other words when properly used, resistances are very necessary circuit components. Figure 6 illustrates some typical fixed resistors used in radio and television receivers.

The unit of resistance is the ohm. Resistors normally encountered in electronic circuits range in value from e few ohms to several million ohms. To make it possible to handle the large values of resistance more日asily the terms kilohm and megohm are employed. The term kilohm is seldom used to show a value of resistance although its abbreviation is often used. For example a schematic diagram might show a l0K resistor, this is of course ten kilohms, but would normally be read "ten thousand." The term megohm is often encountered in radio and television circuits. One megonm is equal to one million ohms.

The Greek letter omega (Ω) is very often used in place of the word ohms. To illustrate: 100Ω means 100 ohms; 5,000 Ω means 5,000 ohms, $5 \mathrm{~K} \Omega$ means 5,000 orms; and $100 \mathrm{~K} \Omega$ means $100,000 \mathrm{chms}$.

There is one thing which may cause some confusion when considering ohms in the value of thousands. As mentioned previously, the symbol K is normally used to indicate 1,000 ohms. However, in some cases the symbol M is used to indicate 1,000 when dealing with ohms. When M is used in this case it is usually a capitol M. Thus, 10 M means 10,000 ohms.

In electronic formulas the letter R is used to indicate resistance. Thus, in the equation $E=I \times R$, the R stands for resistance.

To briefly summarize this portion of the discussion it can be said that resistance is the opposition offered to the flow of an electric current in a circuit. The unit of resistance is the ohm, and the values encountered in electronics equipment range from a few ohms to several million ohms. The अreek letter omega (Ω) is often used as an abbreviation for the term ohm, the prefix K (or M) indicates 1000 and the term megohm indicates one million ohms. The letter R stands for resistance in electronic formulas.

Ohm's Law

In his experiments dealing with simple electrical circuits, atout 120 years ago, the German scientist, George Simon Ohm discovered that a definite relationship exists between the voltage applied to a circuit, and the resistance in the circuit. This relations'ip is now called Ohm's Law. Since the understanding of all d-c circuits requires the intelligent use of Ohm's Law, the remaining portion of this assignment will consist of an explanation of this law and its uses. The Associate will use Ohm's Law from time to time as he progresses in the training program and will soon have a thorough understanding of it.

Before actually considering Ohm's Law let us consider a simple d-c circuit once more. As pointed out, the voltage applied to the circuit exerts a force on the electrons present in the circuit and will cause a movement of free electrons around the circuit if a complete circuit exists. In other words, the voltage causes current to flow in the circuit. However, the resistance present in the circuit opposes the flow of the current. Thus, the voltage attempts to calse the current to flow while the resistance attempts to keep it from flowing. It should be obvious that there is some relationship which exists between the amount of current which flows, the applied voltage, and the resistance present in the circuit. This simple relationship is Ohm's Law.

To illustrate the use of Ohm's Law a number of circuits will be shown in this assignment and problems associated with these circuits will be worked. It should be emphesized however, that the answers to the problems in this assignment are not important in themselves. The important thing ir this assignment is that each and every answer must seem reasonable to you. The entire value of this assignment lies in the interest you take in finding out what happens and why it happens in an electrical circuit.

To illustrate Ohm's Lav let us consider the simple circuiさs shown in Figure 7. George Ohm found that if he connected a simple circuit as shown in Figure 7(A), with a l volt battery and a l ohm resistor, 1 ampere of current would flow through the circuit. (Note that a calibrated scale is shown on the current meters in the various circuits of Figure 7 and the pointer on the meter indicates the current flowing in the circuit under the various conditions.) The schematic diagram of each of the various circuits is illustrated directly below the circuit. Notice in the circuit of Figure 7(A) that the l volt battery furnishes the electromotive force, or voltage, for the circuit. This emf exerts an electrical prossure on the electrons causing a current flow to occur. The path of this current flow is from the negative terminal of the battery, through the resistor, through the ammeter back to the positive terminal of the battery. Under the conditions illustrated in Figure 7(A) l \&mpere of current flows.

Now examine the circuit of Figure 7(B). Notice that the only difference between this circuit and the circuit of Figure $7(A)$ is the fact
that a $1 / 2$ ohm resistor has been installed in place of the one ohm resistor of the previous circuit. Notice, however, that changing the resistor in the circuit has changed the current which flows in the circuit. With the $1 / 2$ ohm resistor in the circuit more current (2 amperes) flows in the circuit. Notice that the current flowing in the circuit is increased when the resistor is made smaller. Doesn't this seem logical to you when it is recalled that the resistance is the opposition of fered to the current flow? With less opposition one would expect more current to flow in the circuit and that is exactly what happens. If this particular point is not clear to the Associate he should stop at this point and review the previous material befcre proceeding.

Figure 7(C) shows the condition which occurs when a 2 ohm resistor is used in the circuit, and the voltage is being produced by the same l volt battery as was done previously. Under these conditions only $1 / 2$ ampare of current flows as illustrated by the calibrated scale on the meter shown in this figure.

Examine the circuits of Figure 7(A), (B) and (C) very carefully and then see if you agree with the following summary of the action taking place. For a given voltage applied to the circuit, the larger the resistance present in the circuit the smaller will be the amount of current flowing and, convers?y, the smaller the resistance present in the circuit, the larger will be the current which flows.

Figure 7(A), (B) and (C) illustrate the action which occurs in a simple circuit wher the value of resistance in the circuit is changed. To determine the effect produced by changing the value of voltage applied to the circuit compare Figure 7(A) and (D). The circuit of Figure 7(A) consists of a l volt battery and a 1 ohm resistor. However, in Figure $7(D)$ a 2 volt battery has been installed in the circuit in place of the 1 volt battery of the previous circuit. Notice that under these conditions a current of 2 amperes flows as illustrated by the meter in Figure 7(D). Note particularly, in comparing Figure 7(A) and (D), that the same resistance is amployed in each case, but that a larger voltage is applied to the circuit of Figure 7(D). Under these conditions notice also that more current flows. Let us briefly summarize this action. For a given resistance in a circuit, more current will flow if the voltage is increased. This also seems quite logical when we recall that voltage is the electrical force or pressure in the circuit. If the pressure is increased with a constant opposition, (resistance) the current flow should, logically, increase.

Ohm wrote these conclusions in a simple mathematical formula which is written below.

$$
\text { Current }=\frac{\text { Applied voltage }}{\text { Resistance }}
$$

Let us now write this formula using the symbols mentioned previously. The formula would then appear as follows:

$$
I=\frac{E}{R} \quad \text { (Formula A) } \quad \begin{aligned}
& \text { I stands for current in amperes } \\
& \text { E stands for electromotive force in volts } \\
& \text { R stands for resistance in ohms }
\end{aligned}
$$

This formula may be used in radio and electrical circuits to determine the amount of current fiowing in a circuit if the voltage and the resistance are known. By applying this formula the current which flows in a circuit can be determined without using a milliammeter or anmeter.

It is sometimes desirable to determine the amount of resistance present in a circuit if the voltage and the currert are known. In this case the following formula, which we shall call Formula B, may be employed.

$$
R=\frac{E}{\bar{I}} \quad \text { (Formula B) }
$$

The symbols of this formula have the same meaning as in (Formula A).

Under certain circumstances it is desirable to be able to determine the amount of voltage applied to a circuit if the current flowing in the circuit and the resistance of the circuit are known. In this case the following formula may be employed.

$$
E=I \times R \quad \text { (Formula } C \text {). }
$$

It should be emphasized that these three formulas are not three separate formulas but are merely the same formuia rearranged in three dif ferent manners so that the quantity which it is desired to determine is on the left side of the equation. Formula A may be used to find the amount of current flowing when the voltage and amount of resistance of the circuit are known and the value of current. is unknown. Formula B may be used to find the amcunt of resistance in a circuit when the voltage and current are known, and Formula C may be used to find the applied voltage when the current and resistance are known.

Let us apply these formulas to some specific circuits to iliustrate their use. For example let us apply Formula A to the circuits of Figure ?(A), (B) and (C) assuming in each that the amount of voltage produced by the battery is known and the size of the resistor is as shown, but that for some reason or other the ammeter in each circuit could not be read.

In Figure 7(A) we have 1 ohm of resistance and a 1 volt battery. Let us solve to find the amount of current which would be flowing in this circuit. Remember:

```
I stands for current in amperes
E stands for electromotive force in volts
R stands for resistance in ohms
```

To solve this problem, we first write down the correct formula, then we substitute the known quantities in the aquation and solve for the unknowr. Since we cesire to determine the current which flows in the circuit we will use Formula A.

$$
I=\frac{E}{\bar{R}} \quad \text { (Ir this case } E \text { equals } 1 \text { volt and } R \text { equals } 1 \Omega . \text {) }
$$

Putting these values in our formula we have:

$$
I=\frac{1}{I}
$$

$$
I=1 \text { ampere } \quad \text { (Answer) }
$$

Notice how simple it is to determine the amcunt of current flowing in the circuit if the applied voltage and the resistance are known, merely by applying Ohn's Law.

Assuming that the meter of Figure $7(B)$ could not be read let us solve the problem presented by this figure in the same manner.

$$
\begin{array}{lc}
I=\frac{E}{R} & (E \text { equals } I \text { volt, } R \text { equals } 1 / 2 \Omega \text { or } .5 \Omega .) \\
I=\frac{1}{.5} & \left(.5 \frac{2}{1.0}\right) \\
I=2 \text { amperes } & \text { (Answer) }
\end{array}
$$

Applying this same method of the circui= of Figure 7(C) we have:

$$
\begin{array}{ll}
I=\frac{E}{R} & \text { (E equals } 1 \text { volt, } R \text { equals } 2 \Omega .) \\
I=\frac{1}{2} \\
I & =1 / 2 \text { ampere (Ariswer) }
\end{array}
$$

Now let us consider a circuit involving a 2 volt battery, an ammeter, and a resistor, connected as shown in Figure 7(D). However, let us as sume that the value of the resistor is unknown. Remember: The battery voltage is known to be 2 volts and the current is lnown to be 2 amperes. Formula B can be applied to determine the value of the resistance in the circuit.

$$
\begin{array}{lr}
R=\frac{E}{I} \\
R=\frac{2}{2}=1 \Omega & \text { (E equ } \\
\text { (Answer) }
\end{array}
$$

Let us again make an assumotion. In this case, let us assume that a circuit as shown in Figure $7(C)$ is arranged and a 2Ω resistor is used. The armeter indicates that $1 / 2$ ampere of current flows in the circuit but the value of the battery voltage is assumed to be inknown. Formula C can be applied to determine the battery voltage.

```
E = I m R (I equals 1/2 ampere, R equals 2 \Omega)
E = 1/2 x 2
E = l volt (Answer)
```

You are strongly advised to work several more problems for jourself using the circuits shown in Figure 7(A), (B), (C) and (D). For example, assume that the voltage is unknown in the circuit of Figure 7(D) and determine the value oi this voltage by applying the appropriate Ohm's Law formula when the values of resistance and current are known. Check your answer against the value of voltage indicated in the circuit of Figure 7(D). By making similar assumptions work several problems corcerning these four circuits until you are certain that you urderstand the use of the various Ohm's Law formulas. To provide you with added practice in the application of Ohm's Law, three circuits are shown in Figure 8. Apply the appropriate Ohm's Law formula to each one of these circuits to find the unknown quantity. Be sure and work these problems to the best of your ability before checking your answers with those given at the erd of the assignment.

Circuit Terminology

We will find as we progress in the subject of circuits that a number of different arrangements may be employed. There are three general circuit arrangements and these are called; series circuits, parallel circuits, and series-parallel circuits. However, before considering the various types of circuits, let us consider just what a circuit is, and what is meant by the terms closed circuit, open circuit, and short circuit.

By definition, a closed circuit or complete circuit is a complete path over which electrons can flow from the negative terminal of the voltage source through the parts and wires to the positive terminal of the same voltage source. Thus, any of the arrangements of Figures 7 or 8 would form a closed circuit or complete circuit. Note that for the circuit to be closed, or complete, a path must be provided for the electrons to flow from the negative terminal of the voltage source to the positive terminal of the same source.

An open circuit is a circuit which does not provide a continuous path for the electrons. Such a circuit is shown in Figure 9. Notice that the switch in this circuit is open. Under these conditicns a complete path from the negative terminal of the voltage source is not provided through the parts and components to the positive terminal of the voltage source because the open switch will not pass electrons. Since a complete path is not provided in the circuit of Figure 9, no curren= will flow in the circuit. It is for this purpose that switches are connected in circuits. For example, in a normal house wiring circuit, switches are connected in series with the various lights. Thus in the day time the switch
is turned off, or in other words, theswitch is placed in an open position, and the electric light is not illuminated. However, when it is cesired to have the light illuminated it is only necessary to close the switch which completes the circuit, thereby enabling the electric current to flow through the filament of the light bulb and produce the desired illuminátion.

There is one point which should be made clear concerning an open circuit. If a switch is connected in the circuit and is in the open position, an open circuit will be formed, However, open circuits may be formed by other means, for anything which will cause the path of the electrons to be broken, will form an open circuit. For example, in the simple circuit of Figure 5, if one of the leads were to become disconnected from the terminal on the dry cell an open circuit would be formed. Similarly an onen circuit might be formed in the circuit of Figure 5 by a defective ammeter, or perhaps by a lead breaking off the resistor. Thus, it should be borne in mind that an open circuit may result from a number of different causes.

The third circuit characteristic mentioned previously is the short circuit. By definition, a short circuit is a low resistance connection across a voltage source or between both sides of a circuit, usually accidental, which in most cases, results in excessive current fiow that may cause damage. A short circuit is illustrated in Figure 10. Notice that in this case the lead coming from the positive terminal and the one from the negative terminal of the battery are accidentally touching. Thus a low resistance path is provided from the negative terminal of the battery around to the positive terminal and the current may follow this path instead of flowing through the resistor and meter as it should. The touchEng of the two wires is called a short circuit, or in some cases just a "Bhort". Such a condition would in this case ruin the battery in very short order. In other circuits a short circuit may ruin other components such as meters, etc. Since short circuits are very undersirable, insulated wire is employed in most electrical circuits. For example, insulated wire is used in radio and television receivers, insulated wire is used in house wiring circuits, in automobile ignition circuits, etc.

Now that the characteristics of circuits have been considered let us analyze the three fundamental types of circuits, the series circlit, the parallel circuit and series-parallel circuit.

Series Circuits

A series circuit is a circuit which is so arranged thet all of the current which flows from the negative terminal of the voltage source pessos through each component in the circuit and returns to the positive terrairai of the voltage source. Two simple series circuits are illustrated in Figure ll. The path followed by the current in each case is illustrated by the dotted lins. Fintice in Figure li (A) that the current leaves the
negative terminal of the battery, flows through the resistor, through the meter, and finally returns to the positive terminal of the battery. The schematic diagram of the circuit is also shown. Thus, in the circuit of Figure $11(A)$ the resistor and meter are connected in series across the battery as all of the current flows through each of these components. Similarly in Figure ll(B) the current path indicates that the electrons flow through the meter and then through the resistor to return to the battery. Thus, the meter and the resistor are in series in this case. These circuits also illustrate the proper way to use a milliammeter to measure current in a circuit. The milliammeter is connected in series with the circuit.

Another factor which is illustrated by the circuits of Figure 11 is the fact that the milliammeter can be connected at any point in a series circuit. If the same size'battery and resistor are employed in the circuits of Figure ll(A) and (B) the current flow as indicated by the meter in the two cases will be the same. The reason for this is that the current is the same at all points in a series circuit. The same amount of current that leaves the negative terminal of the battery re-enters the positive terminal of the battery. In the circuits of Figure ll the same amount of current flows through the conductor connecting the negative terminal of the battery to the resistor as flows through the resistor. This current is also equal to the current flowing through the meter. B.y following this line of reasoning it should become clear to the Associate that the meter can be connected either as shown in Figure ll(A) or (B) to indicate the amount of current flowing in the circuit.

To further illustrate the action of a series circuit consider the circuit illustrated in Figure 12(A). This circuit consists of a $1 / 2$ volt battery, a switch, a 500 ohm resistor and a milliammeter. In this circuit four meters are illustrated. The milliammeter is connected in series with the circuit to indicate the current which flows. In addition, a voltmeter is shown connected across the battery, another voltmeter is shown connected across the switch and a third voltereter is connected across the resistor.

This circuit illustrates several points. One of the points illustrated is the proper way to connect meters. As may be noted the mililiammeter is connected in series with the circuit as illustrated in Figure 11 and should require no further explanation. The manner in wiich the three voltmeters are connected illustrates the proper way to use such an instrument. One voltmeter is connected across the battery. That is, one lead of the voltmeter is connected to the positive terminal of the battery and the other lead of the voltmeter is connected to the negative terminal. When connected in this manner the voltmeter will indicate the emf of the battery in volts. The voltmeter to measure the voltage applied to the switch is connected across the switch, and the voltmeter to measure the voltage applied to the resistor is connected across the resistor.

The following summarizes the proper manner in which meters should be connected: An ammeter or milliammeter should be connected in series with the circuit; Voltmeters should be connected across a component.

Let us look at the circuit of Figure l2(A) carefully, noting particularly the reading on the meters. The voltmeter connected across the battery reads the emf produced by this battery which is 1.5 volts. Notice also that although the milliammeter is connected properly, (in series with the circuit), there is no current flow indicated by the meter. The reason for this is the fact that the switch is open. As mentioned previously the open switch forms an open circuit and there is no complete path from the negative terminal of the battery around to the positive terminal. Since there is no complete path, current cannot flow.

Now notice the readings of the voltmeters at the various points in the circuit of Figure l2(A). The voltmeter connected across the battery indicates $1 / / 2$ vclさs which is the emf produced by the battery. The voltmeter connected across the switch also indicates $1 / 2$ volts whereas the voltmeter across the resistor indicates zero. As mentioned the switch forms an open circuit and the ertire voltage present in the circuit is apelied across this switch attempting to force current through the switch. This accounts for the $l / 2$ volt reading obtained on the voltmeter connected across the switch. However, since no current flows in the circuit there will be zero voltage across the resistor in the circuit.

Now examine Figure 12(B). It will be noted that this is the same as the circuit of Figure 12(A) except that the switch has been closed. When the switch is closed a complete circuit is formed, current flows in the circuit, and an ertirely different condition exists than that of Figure 12(A). In the circuit of Figure $12(B)$ the milliammeter tells us that 3 milliamperes (. 003 amperes) of current is flowing through the circuit. The voltmeter across the 500 ohm resistor now reads $1 / 2$ voits. This meter tells us that $] \quad 1 / 2$ volts of electrical pressure are being used to force the 3 milliamperes of current through the 500 ohm resistor.

The voltmeter connected across the switch now reads zerc. There is practically no resistance between the two terminals of the switch when the blade is closed. No voltage is needed to force the 3 milliamperes of current through the closed switch.

The voltmeter at the cell still reads $1 / 2$ volts, and the voltmeter connected across the resistor now reads $1 / 2$ volts also. The question naturally arises: Do we now have 3 volts in the circuit? The answer is a very definite: No: The voltage of the dry cell is the source voltage and the voltage appearing across the resistor is commonly called a voltage drop. Woltage drop is the term applied to the voltage which is applied across a particular component, such as a resistor, which causes current to flow through that particular component. In this particular case, the voltage drop across the 500 ohm resistor is equal to the voltage source as all of the voltage in the circuit apoears across the 500 hm
resistor causing the current of 3 milliamperes to flow through this resistor. The subject of voltage drops will be taken up in greater detail presently in this assignment.

In the circuit of Figure $12(B)$ the value of the resistance is known and the current and voltage present in the circuit are indicated by the meters in the circujt. In this circuit, as in many others however, we would not need the large number of meters indicated to determine voltage and current. We can use Ohm's Law.

The cell develops $1 \mathrm{l} / 2$ volts of electrical pressure. E therefore is $1 \mathrm{l} / 2$ volts. The total resistance in the circuit is 500 ohms; Therefore, R is 500 ohms.

To determine how much current would flow in the circuit of Figure 12(B) without the use of a miliammeter, we can use the formula that tells us:

$$
\begin{aligned}
& I \text { (current in amperes) }=\frac{E \text { (Voltage in volts) }}{R(\text { Resistance in ohms) }} \\
& I=\frac{E}{R} \\
& I=\frac{1.5}{500} \\
& I=.003 \text { ampere or } 3 \text { milliamperes. }
\end{aligned}
$$

Thus it can be seen that in the circuit of Figure 12(B) Ohm's Law can be used to determine the current which would flow if a 500 ohm resistor were connected across a $1 \mathrm{l} / 2$ volt battery.

To further demonstrate the use of Ohm's Law in series circuits consider the circuits of Figure 13. In Figure 13(A) is shown a circuit consisting of a $7 \mathrm{l} / 2$ volt battery, a milliammeter, a 5,000 ohm resistor and a switch. It will be noted that this is also a series circuit as only one path is provided for the current. The milliameter in the circuit indicates that 1.5 milliamperes of current flows under these conditions. However, the amount of current flowing in this circuit could be determined without the use of a milliammeter merely by the proper application of Ohm's Law. The voltage is $7 \mathrm{l} / 2$ volts in the circuit and the resistance is 5,000 ohms. The current can be determined as follows:
$I=\frac{E}{R}$
$I=\frac{7.5}{5000}$
$I=.0015$ ampere or 1.5 ma .
In Figure 13(B) we have a circuit consisting of a 100 volt battery, a milliammeter, a 50,000 ohm resistor, and a switch. The mililiarmeter indicates that 2 milliamperes of current will.flow in the circuit. Let us check this by the application of Ohm's Law.

$$
\begin{aligned}
& I=\frac{E}{\bar{R}} \\
& I=\frac{100}{50,000} \\
& I=.002 \text { empere or } 2 \mathrm{ma} .
\end{aligned}
$$

Notice that in our Ohm's Law problems we must always use the whole units; volts, ohms and amperes. If we care to we nay change our answers to smaller units, as we did in this example, but in the solution of the problem we must use the fundamental units.

Figure l3(C) shows a circuit consisting of a 50 volt battery, an unknown value of resistance, and the milliammeter in the circuit irdicates that 10 milliamperes of current is flowing. Let us apply Ohm's Law and find the unknown value of this resistance. The formula we will use in this case is: $R=\frac{E}{\bar{I}}$ since we desire to determine the resistance in the circuit. Note: we must change the milliamperes to amperes before using the value of current in our formula. If 1 milliampere of current equals . 001 ampere then 10 milliamperes equals 10 x. 001 or . 010 ampere.

$$
\begin{aligned}
& R=\frac{50}{.010} \\
& R=5,000 \text { ohms }
\end{aligned}
$$

Notice that in this example Ohm's Law demonsirates the fact that if 10 milliamperes of current flows in a circuit connected to a 50 volt battery, the value of resistance present in the circuit must be 5,000 ohms.

To further illustrate the use of Ohm's Law consider the circuit of Figure l3(D) which consists of a battery, a 20,000 ohm resistor and a milliammeter which indicates a current of 2 milliamperes flowing in the circuit. Although the value of the battery voltage is unknown, Ohm's Law can be applied to determine the voltage. Since the voltage is the unknown in this case we will use the formula $E=I \times R$.

$$
\begin{aligned}
& E=I \times R \quad \text { (2 milliamperes equals } .002 \text { amperes) } \\
& E=.002 \pm 20,000 \\
& E=40 \text { volts }
\end{aligned}
$$

The Ohm's Law calculation just completed incicates that if 2 milliamperes of current flow through a circuit containing $20,000 \mathrm{chms}$ of resistance, the applied voltage must be 40 volts.

The circuits we have been discussing so far are series circuits. A series circuit is one in which there is only one path for the current to follow through the circuit. However, the circuits which we have been discussing have had orly one resistor present although it is possible for a
series circuit to contain several resistors. Figure 14 shows a circuit consisting of a 40 volt battery, a milliammeter and two 10,000 ohm resistors, all connected in series. The current path is indicated in this circuit and it can be seen that after leaving the negative terminal of the battery the electrons must flow through the milliammeter, then through the resistor labeled R_{1}, then through the resistor labeled R_{2}, then through the switch, finally returning to the positive terminal of the battery. Thus it can be seen that the resistors are in series since the current must flow through each of them. If each of these resistors offers 10,000 ohms of resistance, the current first encounters an opposition equal to 10,000 ohms and then encounters another opposition equal to 10,000 ohms. The total resistance is then 10,000 plus 10,000 or 20,000 ohms. The current flowing in the circuit is indicated to be 2 milliamperes by the milliameter but could be determined if the milliammeter were not available. To do this we would apply Ohm's Law.
$I=\frac{E}{R}$
$I=\frac{40}{20,000}$
$I=.002$ amperes or 2 ma
(Remember the total resistance
in the circuit is 20,000 ohms.)

Now let us consider the voltage drops in this circuit. As the current follows the path indicated by the dotted line in Figure 14, it flows first from the negative terminal of the battery through the milliammeter, then through $\mathrm{R}_{\mathrm{I}}, \mathrm{R}_{2}$, the switch, and finally returns to the positive pole of the battery. As the current flows through the various components in the circuit, voltage drops are produced across the components. However, since the resistance of the milliammeter and the closed switch are so small, they can be neglected for this discussion and we will consider the two voltage drops across R_{1} and R_{2}. The polarity of the voltage present across each of these resistors is indicated in Figure 14. There is a very simple way in which the polarity of voltage drops in a series circuit can be determined. This can be done in tracing the current path from the negative terminal of the battery around through the circuit and back to the positive terminal of the battery. The polarity of the voltage drops across each resistor will be such that the end of the resistor that the current enters will be the negative end. Check the polarity of the voltage drops in Figure 14 to make sure that you understand this point.

Let us determine the value of the voltage drop across each resistor in the circuit of Figure l4. Our previous calculations have indicated that the current flowing in the circuit is 2 milliamperes, or . 002 ampere. This current flows through R_{l} which is a 10,000 ohm resistor. We may then apply Ohm's Law to determine the amount of voltage present across R_{1}.

$$
\begin{aligned}
& E=I \times R \\
& E=.002 \times 10,000 \\
& E=20 \text { volts }
\end{aligned}
$$

This is the amount of voltage dron present across R_{1}. Since R_{2} is also a 10,000 ohm resistor through which 2 milliamperes of current is flowing there will be a 20 volt drop across this resistor also. This circuit illustrates another important point concerning voltage drops. In àny series circuit the sum of the voltage drops is equal to the source voltage. In this particular case the source voltage is $4 \overline{0}$ volts and the sum Of the voltage drops is equal to the voltage drop across R_{l} plus the voltage drop across R_{2}, or 20 plus 20 equals 40 volts.

Let, us now connect several resistors in series in a similar circuit. Let us assume that we have the filaments of four tubes connected in series. (The filament of a tube is actually a special type of resistor.) Such a circuit is illustrated in Figure 15. Each filament has a resistance of 21 ohms. Checking the current path in the circuit of Figure 15 will indicate that after leaving the negative terrinal of the battery and passing through the ammeter the current flows first through filament No. 1, then filament No. 2, then filament No. 3, and finally through filament No. 4 to the positive terminal of the battery. Thus if each of the filaments offers an opposition to the flow of current equal to 21 ohms , we have a total of 4×21 or 84 ohms of resistance in this circuit.

The ammeter in the circuit will read . 3 ampere. This can be determined by the application of Ohm's Law.

$$
\begin{aligned}
& I=\frac{E}{R} \\
& I=\frac{25.2}{84} \\
& I=.3 \text { عmpere }
\end{aligned}
$$

Since there are four resistors in the circuit of Figure 15 there will be four voltage drops. The polarity of each of these voltage drops is indicated in Figure 15 and you are advised to check the direction of the current flow and determine whether or not you agree with the polarity of each voltage drop indicated.

Let us now determine the amount of voltage across each filament. The current flowing through the circuit is .3 ampere and the resistance of each filament is 21 ohms. Thus Ohm^{\prime} s Law can be applied to dotermire the amount cf voltage present across each resistor as follows:

```
E = I x R
E = .3 x 21
E = 6.3 Volts Per Filament
```

Since the filaments have equal resistance there will be 6.3 volts across each filament. Thus, the voltmeters shown connected across each of the filaments in the circuit of Figure 15 would each read 6.3 volts.

In Figure 15 we have one voltmeter connected so as to indicate the voltage applied across two of the filaments--filament No. 3 and filament No. 4. This voltmeter would read 12.6 volts. We can check this reading by Ohm's Law. The total resistance of two of the 21 ohm :ilaments is $2 \times 21=42$ ohms. The current flowing through the circuit is .3 ampere. Thus:

$$
\begin{aligned}
& E=I \times R \\
& E=.3 \times 42 \\
& E=12.6 \mathrm{volts}
\end{aligned}
$$

A point which has been mentioned previously which can be illustrated clearly by the circuit of Figure 15 is the fact that the current is the same at all points of a series circuit. This is true because the same current flows through each component in the circuit. Thus in the circuit of Figure 16, (You will recognize this circuit as being the same as Pigure 15), the ammeter will indicate .3 ampere with the meter connected at the points indicated in any of the circuits shown in this Figure. Similarly the ammeter could be connected between the negative terminal of the battery and the "string" of filaments.

In Figure 15 the total resistance of the 4 filaments, or resistances, in series was the sum of these 4 resistances, or $21+21+21+21=84$ ohms. These four resistors could be replaced by one 84 ohm resistor which would cause the same amount of current to flow as the four series filaments cause. The value of resistance which could be used to replace several resistors, and still have the same current flow in the circuit, is called the equivalent resistance. In this example the equivalent resistance, of the four filaments in series, is 84 ohms. The equivalent resistance of series resistors is the sum of the various resistors. Stated mathematically this is:

$$
R_{t}=R_{1}+R_{2}+R_{3}+R_{4}+\theta t c
$$

In this formula R_{t} stands for the equivalent or $\ddagger o t a l$ resistarce.
Applying this formula to Figure 15 we would heve:

$$
\begin{aligned}
& R_{t}=R_{1}+R_{2}+R_{3}+R_{4} \\
& R_{t}=21+21+21+21 \\
& R_{t}=84 \text { ohms } .
\end{aligned}
$$

Figure 17 shows a circuit consisting of three resistors connected in series across a 30 volt battery. Let us determine the equivalent resistance, or in other words the total resistance, of these three resistors. This can be dcne by applying the formula used in the preceding exarmple.

$$
\begin{aligned}
& R_{t}=R_{1}+R_{2}+R_{3} \\
& R_{t}=5,000+10,000+15,000 \\
& R_{t}=30,000 \Omega
\end{aligned}
$$

Thus the total opposition offered by the three resistors in the circuit of Figure 17 is 30,000 ohms. The amount of applied voltage is 30 volts as indicated in the schematic diagram. Thus Ohm's Law can be used to determine the amount of current which will flow in the circuit. We will use the formula:

$$
\begin{aligned}
& I=\frac{E}{R} \\
& I=\frac{30}{30,000} \\
& I=.001 \text { amnere or } 1 \mathrm{ma} .
\end{aligned}
$$

Thus our computations have indicated that l milliampere of current flows from the negative terminal of the battery through the $5,000 \mathrm{ohm}$ resistor, through the 10,000 ohm resistor, through the 15,000 ohm resistor, then through the milliammeter to the positive terminal of the battery. As mentioned previously, the current flowing through the series circuit will cause voltage drops to appear in the circuit and since we know the current which flows through each resistor and the ohmic value of the resistor, the value of each voltage drop can be computed. Before proce日ding with the following calculaticns see if you can determine the amount of voltage drop across each resistor.

Ohm's Law stetes: E = I R. The voltage drop across a particular resistor is equal to the current through that resistor times the ohmic value of that resistor. To find the voltage drop across R_{1} :

```
E = I x R (The current is l milliampore and
                                the resistance of Rl, is 5,000 ohms.)
E = . 001 x 5000
E = 5 voIts
Note: This is the voltage drep across resistor \(R_{1}\).
```

To find the voltage drop across R_{2} :

```
\(E=I \times R\)
\(\Phi=.001 \times 10,000\)
\(\mathrm{E}=10 \mathrm{volts}\)
```

(The current is still 1 milliampere and the resistance of R_{2} is 10,000 ohms.)

Note: This is the voltage drop across resistor R_{2}.

To find the voltage drop across R_{3} :

$$
\begin{array}{lr}
\mathrm{E}=\mathrm{I} \times \mathrm{R} & \begin{array}{c}
\text { (The current is still } 1 \text { milliampere and } \\
\text { the resistance of } R_{3} \text { is } 15,000 \text { ohms.) }
\end{array} \\
E=.001 \times 15,000 & \text { Note: } \begin{aligned}
& \text { This is the voltage drop } \\
& \text { across resistor } R_{3} .
\end{aligned}
\end{array}
$$

The preceding calculations have indicated the amount of voltage drop present across each of the three resistors in the circuit of Figure 17. By tracing the current path as indicated in this figure the polarity cf the voltage droos can also be determined. This is shown by the plus and minus signs associated with each resistor in the circuit. (Remember the end of a resistor which the current enters is the negative end of the voltage drop produced across that resistor.)

The total of the voltage drops in the circuit of Figure 17 can be Eound by addirg the three individual voltage drops or, 5 volts +10 volts +15 volts $=30$ volts. Thus it, can be seen thet the total of the voltage drops in the circuit equals the voltage source as mentioned previously.

Many of the circuits in electronic and television equipmert consist of series circuits similar in nature to the one shown in Fighre 17. Of course, the voltage may be supplied by a power supply instead of the battery indicated in this figure, but for practical purposes, the operation of the circuits are similar. For this reason, the Associate sho:uld have a thorough understanding of series circuits. Although this understanding can be obtained by merely reading the assignment material, it is advisable for the Associate to carry the process further by analyzing series circuits very carefully and workirg Ohm's Law problems. It is for this purpose that Figure 18(A) and (B) are shown. Notice that in each case a series circuit is illustrated and the things which should be found out about the circuit are indicated. Work the problems presented by each of these circuits very carefully applying the procedures which have been cutlined previously. Then, after you have worked these problems to the best of your ability, refer to the solutions giver at the end of this assignment to check your work. In this way you will be able to obtain a complete understanding of the operation of series circuits and Ohm's Law.

Parallel Circuits

Up to this point we have considered series circuits only. These are circuits in which there is only one path for the current. Another type of circuit is the parallel circuit. A parallel circuit is a circuit that frovides two or more paths for the current.

Figure 19 illustrates a simple parallel circuit. Notice that two resistors are connected to the battery but these resistors are not in series since the seme current which flows through one does not flow through the other. In the schematic diagram of this circuit, alsc illustrated in Figure 19, the two current paths provided by the parallel circuit are indicated. Notice that one path is provided for the current from the negative terminal of the battery through resistor R_{1} back to the positive terminal of the battery. Likewise another path is provided from the negative terminal of the battery through resistor R_{2} and baci to the positive terminal. Thus this circuit provides two paths for the current. Such a circuit is called a parallel circuit.

Figure 20 illustrates another parallel circuit in which there are four parallel resistors. That is resistors R_{1}, R_{2}, R_{3}, and R_{4} provide four paths for the current as illustrated in the schematic diagram of Figure 20. As would be expected from the fact that the current paths in the parallel circuit are entirely different from the current path in a series circuit, the operation of a parallel circuit is entirely different from the operation of a series circuit. The manner in which a parallel circuit operates will be considered in detail in a later assignment. This type of circuit is shown at the present time only to illustrate the various types of arrangements possible.

The Series-Parallel Circuit

The third general type of circuit is the series-narallel circuit. As indicated by the name of this type of circuit, a series-parallel circuit consists of a combination of series and parallel circuits. Such a circuit is illustrated in Figure 21. Notice in this figure that the current leaving the negative terminal of the battery flows through resistor R_{2} until it reaches the point at which resistors R_{2} and R_{3} are connected together. At this point two paths are provided for the current, part of the current flowing through R_{2} and the remaining portion of the current flowing through resistor R_{3}. The two portions of the current then combine once more at the junction of resistors R_{2} and R_{3} and the total current returns to the battery. In this circuit the combination formed by resistors R_{2} and R_{3} forms a parallel circuit as two paths are provided for the current. However, this parallel circuit is in series with the resistor R_{l}. After analyzing the circuit of Figure $2 l$ it can be seen that a thorough understanding of a series-parallel circuit requires the understanding of the operation of a parallel circuit. Since paral.el circuits will not be taken up at this time, the series-parallel circuit cannot be explained in detail. However, the series-parallel circuit shown in Figure 21 should illustrate to the Associate a number of possible ways in which a circuit can be arranged.

Summary

This assignmen \ddagger has demonstrated the manner in which d-c circuits operate. The relationship between voltage, current and resistance is a definite factor and conforms to the operations known as Ohm's Law. When two of these factors are known, the third can be found by applying Ohm's Law. The three Ohm's Law formulas are:

For finding the current:
$I=\frac{E}{R}$
For finding the resistance:
$R=\frac{E}{I}$
For finding the voltage:
$E=I \times R$
In these formulas I stands for current in amperes, E stands for voltage in volts, R stands for resistance in ohms.

There are three types of circuit arrangements which will be encountered. These are: series circuits, parallel circuits, and seriesparallel circuits. The manner in which a circuit arrangement can be identified is by checking the current path. If the same current flows through each component in the circuit the arrangement is a series circuit. If two or more paths, or branches, are provided for the current, the circuit is a parallel circuit. If the current flows through one or more components and then branches before completing its path the circuit arrangement is a series-parallel circuit.

In a series circuit the term equivalert resistance is used to indicate a resistance which could be inserted in the circuit in place of the various series resistors and cause the same current flow in the circuit. The equivalent resistance of series resistors can be found by applying the formula:

$$
R_{t}=R_{1}+R_{2}+R_{3}+R_{4}+\text { etc }
$$

In other words, the equivalent resistance of series resistors is equal to the sum of the individual resistors.

The importance of having a thorough understanding of the operation of $d-c$ circuits and the application of Ohm's Law cannot be overemphasized. All electronic circuits contain sources of voltage, and resistances; therefore, current flows. In many actual electronic and television circuits, two of these electrical quantities will be known and it will be recessary to apply Ohm's Law to find the third. For this reason, you are advised to review this assignment several times as you progress ir the training program. Also, when you encounter the applicatior of Ohm's Law in the future assigrments and any question arises in your mind, you should refer to this assigrment to clarify the condition. It is also a very good plan to practice drawing the various types of circuits as yor: enccunter them.

For example, after you have completed your work on the portion of the assignment dealing with series circuits, draw several series circuits on a sheet of scratch paper and then compare your drawings with those of the series circuits in the assignment. In this manner you will become more familiar with the various types of circuits as you encounter them.

Answers To Exercise Problems

Problems Presented By Circuits Of Figure 8
Problum 8(A) $\quad I=5$ amperes. This answer is obtained as follows:

$$
\begin{aligned}
& I=\frac{E}{\mathrm{R}} \\
& I=\frac{10}{2} \\
& I=5 \text { amperes }
\end{aligned}
$$

Problem $8(B) \quad R=20$ ohms as found by the follcwing calculations:

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{E}}{\overline{\mathrm{I}}} \\
& \mathrm{R}=\frac{100}{5} \\
& \mathrm{R}=20 \Omega
\end{aligned}
$$

Problem 8(C) $E=40$ volts as found by the following calculations:

$$
\begin{aligned}
& E=I \times R \\
& E=4 \times 10 \\
& E=40 \mathrm{volts}
\end{aligned}
$$

Problems Presented By Circuits of Figure 18 Problem 18(A)

$$
100 \Omega
$$

R Equiv. $=R_{1}+R_{2}=70+30$
R Equiv. $=100 \Omega$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{R}_{1}}=I \times \mathrm{R}_{1}=1 \times 70 \\
& E_{R_{1}}=70 \mathrm{volts}
\end{aligned}
$$

$I=\frac{E}{R \text { Equiv. }}=\frac{100}{100}=1$ ampere

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{R}_{2}}=I \times \mathrm{R}_{2}=1 \times 3 \mathrm{C} \\
& \mathrm{E}_{\mathrm{R}_{2}}=30 \mathrm{volts}
\end{aligned}
$$

$I=\frac{E}{R \text { Equiv. }}=\frac{100}{5000}$
$I=.02$ ampere
$\mathrm{E}_{\mathrm{R}_{1}}=\mathrm{I} \times \mathrm{R}_{1}=.02 \times 1000$
$\mathbb{E}_{R_{1}}=20$ volts
$\mathrm{E}_{\mathrm{R}_{2}}=\mathrm{I} \times \mathrm{R}_{2}=.02 \times 2000$
$\Psi_{R_{2}}=40$ volts
$E_{R_{3}}=40$ volts since R_{3} is the same value as R_{2}.

Four Ways of Connecting Milliameter In Circuit

Test Questions

Be sure to number your Answer Sheet Assignment 6. Place your Name and Associate Number on every Answer Sheet. Send in your answers for this assignment immediately after you finish grading service.

1. Is the current flowing in a circuit measured in: (a) amperes, (h) volts, or (c) ohms?
2. (a) What factor in an electrical circuit causes current to flow: (b) In an electrical circuit what factor opposes the flow of the current?
3. (a) What term is used to indicate one million ohms?
(b) What term is used to represent one thousandth ampere?
4. List the three forms of Ohm's Law.
5. In the accompanying diagram how much current would be indicated by the ammeter? (Solve by Ohm's Law and show your work.)

6. Explain the difference between an open circuit, and a closed circuit or complete circuit.
7. If an Ohm's Law problem gave a current value of 5 ma. to what should it be changed before working the problem?
8. In a series circuit is the current tho same in all parts of the cirsuit?
9. (a) In the accompanying circuit diagram what is the equivalent resistance of the two resistors in series?
(b) How much current would be indicated by the ammeter in this circuit?

10. (a) On your Answer Sheet redraw the circuit of question 9 indicating by means of a dotted line with arrow heads the direction of the current flow in the circuit. Also indicate by means of (+) and (-) signs the polarity of the voltage drop across each resistor. Also. indicate the amount of voltage present across each resistor and show how a voltmeter would be connected to measure the voltage drop across the 4 ohm resistor.

Hectronics
$+>+$ + Radio

UNITED ELECTRONICS LABORATORIES

LOUISVILLE

KENTUCKY

FOREWORD

When you glanced at the title ci this assignmert you may have sald to yourself, "I want to te an electronics tecmician. Why are trey teaching me matnî' We think this is a very good question and deserves a logical answer. After all, if a person knows just Why he is doins somethlng, he'll do a better job. You are eager to become a competent electror.1cs tech-1cian, and if you can see where you Will realiy need math, then it is 0.7ly nasural thas yeu wlll apply yourself better to the task of learning it.

A linited arrount of mathematics has been includæd in the training program because math is a very iseful "tojl" to an electronics t.ezhnizian. In otner woras, it will help him to do his jab better, quicker, and easier.

There will be many times when you, as ar electronics technician, will apply this tcol - mathematics - to the problem of trouble shocting. This doesn't nean trat you will necessarlly stop your trouble-shooting operation, take out a pencil ard parer and solve a problem. It does mean that you will apply the prinzirles of nathematics to your trouble shoo:ing. Remember, electronics deals in physical quantit.1es. For example, amounts of current, amounts of voltage amounts of resistance. Only through an understandirg of besic math zan ycu understand, in your own mind, the relationshif between these physical quantities.

Let us empiasize one point. The math included $-n$ the training program - and only a very small amount is included - is for the purpose of helping you in zour future work in the electronics fleld. A UEL technician is far more then a "zcrewirlver mechanic," The UEL tecrnician knows what he is do:ng, because he understands the principles of elecironics. To do this, he must also unders and the principles of mathemazics.

Remenber, we are golng to give you only the math you need; we're going to give it in such a way that you can learn it if you did nct have it in schcol, or i? you didn't "like 1 "" when you were in school. All we ask is trat you arpraach 1t, with the proper attitude. If you will decide that since you need this math you are going to learn it, then we can guarantee that you will. In lact, we as三ure you that you are going to be pleasantly surprised at just how easy the sujject o? matr: 1s!

ASSIGMENT 7

POWERS AND ROOTS; POWERS OF TEN

In Assignment 4, we studied the arithmetic which will be used in solving the problems encountered in electronics. In this assignment we will deal with a slightly different form of mathematics. This the the subject of Powers and Roots.

In some electronics formulas we might be instructed to square a number or to cube a number; or we might be required to find the "square root" of a number. In this assignment we will learn how to perform these operations.

At ifrst glance it might appear that some of the information in this assignment is difficult, but this is definitely not the case. There isn't a thing which you will do in this assignment which is more involved than simple arithmetic. The purpose of this assignment is to show you simple ways to do problems that might otherwise ce difficult. In other words, this assignment gives you simple short cuts to use in electronics problems. Just study through this assignment a step at a time and you will be surprised at just how simple it is. Here we go . . .

Powers

The phrase "squaring a number" comes from the fact that if we take a number and multiply it by itself we obtair the area of a square having that number as the length of each side. Thus, a square room that is 12 leet on each side has a floor area of $12 \times 12=144$ square feet.

The phrase "cubing a number" comes from the fact that if we have a cube, its volume will be equal to the length of one side multipl:ed by itself two times. Thus, a packing crate that is 4 feet on a side nas a volume of $4 \times 4 \times 4=64$ cublc feet.

We all know that $12 \times 12=144$.
We "squared" the 12 to get 144 .
dother way of writing $12 \times 12=144$ would be $12^{2}=144$.
12^{2} can be read either "12 squared", or "12 to the second power".
The 12 is the base.
The 2 is the exponent. It is written as a small nunber to the right of and slightly higher than the base.

The exponent merely tells us how rany times we are to use the base in multiplication.

Trus, if we cube tio number 4 , we could write it as 4^{3} (which means $4 \times 4 \times$ $4)=64$.

Examples:
2^{2} means $2 \times 2=4$.
4^{5} means $4 \times 4 \times 4 \times 4 \times 4=1024\left(4^{5}\right.$ is read as " 4 to the fifth power").
6^{2} means $6 \times 6 \times 6=216$ (6^{3} may be read as ${ }^{\prime} 6$ cubed", or ${ }^{n} 6$ tc the third oowern).
10^{2} reans $10 \times 10=100\left(10^{2}\right.$ may be read as "10 squared" or " 10 to the second power").

Numbers to be ralsed to a power may be written in rarentheses, as $(4)^{2}$ or $(25)^{3} ;(4)^{2}$ means the same thing as 4^{2}, and $(25)^{3}$ means the same 2525^{3}.

If the exponent is 1 , we take the base one time. In other words, $4^{1}=4$, $10^{1}=10,3^{1}=3$, etc. Any number ther has ar exponent of 11 no other exponent is indicated. Thus $4=4^{1}, 10=10^{1}, 3=3^{1}$, etc.

For practice, solve the following problems:

1. $5^{2}=$
2. $7^{1}=$
3. $25^{2}=$
4. $75^{3}=$
5. $9^{4}=$
6. $r^{7}=$
e. $10^{3}=$
7. $2^{9}=$

$$
\begin{array}{r}
901+b=000600 \text { b (P) } \\
001=1(0)=01+b=\operatorname{coccoc}(0) \\
9-01+\varepsilon=000 \varepsilon(0)
\end{array}
$$

$$
\begin{aligned}
& \text { E58 月.8 } \\
& \text { (1201=n+952 }
\end{aligned}
$$

$\frac{6 \cdot 1}{h 1}$

$$
\frac{0.5}{h i x}=2 \pi 1-1
$$

Roots

The opposite of raising a number to a power is called finding the root of a number.

Thus: 3 cubed $=? \times 3 \times 3=2$.
The cube roct of 27 is .
$4^{2}=15$.
The square root of 1ε is 1 .

We used exponents to indicate the power to which a numter is to be ralsed. We use a radical sign ($\sqrt{ }$) to indicate roots.
The cube root of 27 is written $\sqrt[3]{2 \%}$.
The square root of 16 is writter. $\sqrt{16}$.
Hotice trat for square roots it is not necessary to indicate which root is teing taken. In other words, if no particular root is shown, it is understood that we mean square roct.

Thus: $\sqrt{81}=9$ because we know that $s \quad 9=R 1$.
$\sqrt{64}=8$ because we know that 8 y $8=64$.
$\sqrt{144}=12$ because we know that $12 \times 12=144$.
$\sqrt[3]{27}=3$ becarse $3 \times 3 \times 3=27$. ($\sqrt[3]{67}$ is read as the cube roct of 27)
$\sqrt[4]{16}=2$ because $2 \times 2 \times ? \times 2=16$.
($\sqrt[4]{16}$ is read as the fourth root of 16)
In electronics problems you will find very feu cases where the cube root of a rumber or any higher root than the second will be required, but you will find many problems in electronics work where the square root of a number will have to be deternined. When you have \sqrt{a}, you ask yourself, "what number nultiplied by 1 tself gives $\ell 1$?" The answer 9, is obvious. There are a preat inany cases where the roots are not obvious.

EInce $\sqrt{81}=9$, and $\sqrt{64}=8 ; \sqrt{70}$ must be some odd decimal quantity between ε and 3. Numbers, like 81, whose square root is a whole number, are called perfect squares. Thus, 64 is a perfect square fince its square root is the whole number \&. Seventy is not a perfect square since 1 ts square root is not a whole maber. cuch a number is called an imperfect square.

There are three common methods of obtaining the square root of a nurter. one or these is by using a slide rule. You may be familiar with the operalion of a slide rule; if not, do not fetl concerned since the operation of a sllde rule will not be required in this training frogram. The slide rule wolld tell you that the square rool of 70 is approximately 8.37 . Another method is to use mathematical tables. A matherratical table would tell you that the square roct of :C (tc 5 significant figures) is 8.3666 . You can also tetermine the square root of 70 (or any other rumber) by a "long-harid" method. A mowledge of this "longhand" method is necessary before you can make intelligent use of the slide rule ar a mathematical table. W'e will work out several square roots. Use these colutions as a quide when you start to work the problems at the end of the assignment. Let us first take the square root of 70 . You will find that the same set cf rules w 111 apply no matter what number we work with.
EXAMPLE $1 \sqrt{70}=$? or what number times itself equals 70 ?
> - First step. Locate the decimal point in the 70 and place a decimal point directly above the decimal point in the 70. We have now located the decimal point, in our answer.
$\sqrt{70 . \overline{00} \overline{00} \overline{00}}$
$\frac{8 .}{\sqrt{70 . \overline{00}} \overline{00} \overline{00}}$
$\underline{64}$

Second step. Use brackets to "pair off" the digits, or numbers. Start at the decimal and move to the left, placing the 0 and 7 under one bracket. Add zeros to the right of the decimal point. Start at the decimai point and move to the right, placing one bracket over each fair of digits. Notice that we never have a bracket crossing over the decimal point.

Third step. Look under the first bracket. We find the quantity 70. The largest perfect square that will ift in 70 is 8×8 or 64 . The next largest perfect square, 9×9 or 81 , is larger than 70 . Place the 64 under the 70 and the 8 as the first digit in the answer.
8. Fourth step. Subtract the 54 from the 70 and brine $\sqrt{70 . \overline{00} \overline{00} \overline{00}}$ $\frac{64}{6} \%$ down both digits under the next bracket.

Fifth stet. Obtain a trial divisor for the eos. To do this double the f in the answer. Place the trial divisor $(2 \times 8)=1 \in$ to the left of the $\subset \infty$. We are going to place another fipure afjer tre 16 in a monent. We had better save a place for 1 t . Kentally or actually cover up the last zero in the 600. This gives us 60 . 16 goes into 60 three times ($R \times 1 \in$ equals $48 ; 4 \times 16$ equals E4).

Sixth step. Place the 3 after the 16 and also enter 3 as the next diglt in the answer. Motice triat, each bracket (pair of digits: gives us a place for one diglt in our answer.

Seventh step. Enter 3 times $1 \in 3$ or 489 under the 600 and subtract $1 t$, leaving 1i1. Bring down the next fair of digits.

Eighth step. Obtain a trial divisor for the $i 1100$. Simply double the 93 in the answer $i 2 \times 8 z=16 E$. Covering the last zero in 11100 we see that $: \in \varepsilon$ goes into 1110 six times $(\epsilon \times 1 \varepsilon 6=996 ; 7 \times 1 \varepsilon \in=1162)$.

Ninth step. Enter the 6 after the 166 and also in the answer. Enter 6 times 1666 or 9996 under the $1110 C$ and subtract. Bring down the next pair of digit.s.

Tenth step. Our next trial divisor is $2 \times 836=1672$. Our trial divisor goes into 11040 six times. Enter the 5 after the 1672 and also as the next digit in our answer. Multiply the 16726 by 5 and subtract it from the 110400.

If we wanted to carry our answe ${ }^{\text {I }}$ out to more signiflcant flgares, we could add pore palrs of zeros whloh could give us more brackets and more places in our answer. Each additional bracket would glve us one more place in our ansuer.

If we are satisfled with four signiflcant ilgures, our work is complete. Notice that we have a remainder of 10044. Tracing the path of the decimal in cur 70 stralght down, we see that our remainder $1 s$ really .010044.

Let us check our answer.

8.366 8.366	Adding our remainder:
50196	69.989956
$\frac{.010044}{25098}$	70.000000
$\frac{56928}{69.989956}$	

EXAMPLE 2. What is the square root of. 0000044 to four significant flgures?

Locate the decimal point in the answer. Mark off palrs of digits with brackets, adding enough zeros to provide brackets for four signlflcant flgures.

All we find under the first two brackets are zeros. The first two digits in our answer will be zeros.

Under the next bracket we 11nd a 4. The largest square In 4 is $(2)^{2}$. Enter the 2 and 4 as shown. Subiract the 4 from 4 and bring down the palr of digits under the next bracket.
our trial divisor is double the 2 in our answer or 4. Covering up the zero in 40 we have 4 . We have 4 divided into 4 which gees once. Entering the 1 in our

0 0 2 1 $\overline{00}$ $\overline{00}$ $\overline{04}$ $\overline{40}$ 4 41 41 40 41	

arswer and after the 4 we place 1×41 or 41 urder the 4) for subtraction. 41 is too large to be subtracted from 40. Therefore 1 is too large a number for the next digit in our answer. The next smaller number is zero.

In place of the 1 's enter zeros in the answer and after the 4. Bring doun the next two digits. Our trial divisor of 40 goes into 400 ten times. 9 is the largest diglt we can use so place 9 as the next digit in the answer and in the divisor.

Subtract 9×409 from the 4000 and bring down the next palr of diglts.

Our next irlal divisor is twice 209 or 418. Our trial divisor 418 goes into 3190 seven times. Fnter the 7 in the answer ard after the 418 . Subtract 4197 times 7 from 31900 .

Check. .002097 Adding the remainder:

$\frac{.002097}{14679}$.000004397409
18873	.00000002591
4194	.000004400000

. .000000002591

Follow the work carefully in these next square root problens. You will soon reallze that there are really very few rules to remember. Using these problems as agulde, you should be able to work out the five square root problems. that are given. You will have to use square roots again in some of the "Powers of Ten" problems at the end of this assignment.
FXAMFLE 3. Find the square root of 732.8 to 4 significant figures. In marking brackets to the le ft of the decimal you will

151 have one flgure by itself under a bracket if there are an odd number of digits to the left of the decimal. In this case the largest perfect square in 7 is 2×2 or 4. Putting the two in the first place in our answer, we proceed as in the other examples. In our first trial divisor step, 4 divided into 33 goes eight times. Since $8 \times 48=384$ 'more than 332), we have to use 7. Our second trial divisor (E4) was too large for 38 so the third digit in our answer is zero. When the next pair of digits is brought down, we find that our new trial divisor, 540, poes int.o 3800 , 7 times. This gives 7 ior the fourth figure in our answer.

Check.
27.07
$\frac{27.07}{18949}$
18945
5414
$732.7849=$
732.7849
$\begin{array}{r}+.0151 \\ \hline 732.8000\end{array}$
EYAMPLE 4. Fird the square root of $827,564,581$ to 4 slgni:1cant ilgures.

2	8	7	6	0.
8	27	56	45	81.

We put a zero in our answer for our last digit since we were asked for only 4 significant flgures.

EXAMFLE 5. Find the square root of 58.9 to 3 significant figures.

EXAMPLE 6. Find the square root of . 021 to 3 significant figures.

For practice, solve the following problems. Find the square roots to 4 signiflcant flgures.

$$
\sqrt{.0021} \sqrt{.00021} \quad \sqrt{59730} \quad \sqrt{2} \quad \sqrt{3.75}
$$

Powers of Ten
In electronics and television work we will quite often encounter very large numbers and very small decimal iractions. For example, we wlll have numbers l1ke 40 megacycles, wh1ch means $40,000,000$ cycles; 1000 kllocycles , which means
$1,000,000$ cycles; and 10 mlcromicrofarads , which means . 000,000,000, 10 farads. Handing these large numbers in solving problems is very inconvenient, and leads to a large number of errors. Example 1 gives a sample of this type of problem.
Fxample 1. This problem can be completed, and the correct answer obtained as

159
 .159
$F=\sqrt{.000000000000000 \varepsilon}$ long as we are careful in using the decimal point. Since the decimal quantities are so long, a considerable amount of careful work is necessary if the decimal point is to be properly placed in the aiswer.
You will be dealing with these very large and very small quantities throughout your entire electronics and television work, io you should welcome any method that conveniently takes care of these quantities.

The Powers of Ten will do Just that. Powers of ten are often referred to as Fingineer's Shorthand.

In the section on Powers and Roots you found that in the expression 3^{4} we had a base (3) and exponent (${ }^{4}$). The expression means $3 \times 3 \times 3 \times 3=81$. Similarly:

$$
\begin{aligned}
& 4^{3} \text { means } 4 \times 4 \times 4 \text { or } 64 \\
& 2^{5} \text { means } 2 \times 2 \times 2 \times 2 \times 2 \text { or } 32 \\
& 7^{2} \text { means } 7 \times 7 \text { or } 49 \\
& 10^{2} \text { means } 10 \times 10 \text { or } 100 \\
& 10^{4} \text { means } 10 \times 10 \times 10 \times 10 \text { or } 10,000
\end{aligned}
$$

We can see then that number 10 is easier to worik with as a base thar 3, 4, 2,7 , or most any other number.

Also, the number 10 ties in perfectly with our decimal system. Thus: The number 20 is ten times as large as the number 2 , the only difference between the two numbers is the position of the decimal point with respect to the 2.

Let us make up a table of powers of ten. This table will be used as a reference in explaining how powers of ten work. Examine this table carefully to learn just. how it is made up. It will not be necessary for you to memorize the values given on the table.

10^{6}	means $10 \times 10 \times 10 \times 10 \times 10 \times 10$		1,000,000
10^{5}	means $10 \times 10 \times 10 \times 10 \times 10$	$=$	10c,000
10^{4}.	means $10 \times 10 \times 10 \times 10$		10,000
10^{3}	means $10 \times 10 \times 10$	$=$	$\therefore, 000$
10^{2}	means 10×10	=	100
10^{1}	means 16	=	10
10^{0}	means $10 \div 10$		1
10^{-1}	means $\frac{1}{10}$	=	. 1
10^{-2}	$\text { means } \frac{1}{10 \times 10}$	=	. 01
10^{-3}	means $\frac{1}{10 \times 10 \times 10}$	$=$. 001
10^{-4}	means 1	$=$. 0001

$$
\begin{array}{lll}
10^{-5} \text { means } \frac{1}{10 \times 10 \times 10 \times 10 \times 10}= & .00001 \\
10^{-6} \text { means } \frac{1}{10 \times 10 \times 10 \times 10 \times 10 \times 10}= & .000001
\end{array}
$$

From 10^{6} on down to 10^{2} you could have made up the table yourself. From 10^{1} on down we can make a few general statements. Then we can begin to see how the whole thing works out.

If you have the number 10 in a problem, it actually has an exponent of 1 . You should remember then that $10=10^{1}$ whether the exponent is actually shown or not.
10^{0} is definitely equal to 1 . This is usually the hardest thing for students to see in the entire table. Just rememter that 10° means $\frac{10}{10}$ which is, of course, equal to 1. Any base with an exponent of 01 s equal to 1 . Thus 2^{0} equals 1 , since it means $\frac{2}{2}$. Also, $465^{\circ}=1,10^{\circ}=1$.

The lo's with negative exponents ($-1,-2$, etc.) indicate that io is to be taken a certain number of times in the denominator of a fraction whose mumerator is 1. Thus, 10^{-1} means $\frac{1}{10} ; 10^{-2}=\frac{1}{10 \times 10}=\frac{1}{100} ;$ ard $10^{-3}=\frac{1}{10 \times 10 \times 10}=\frac{1}{1000}$. Not 1 ce that 10^{3} means 1000 and 10^{-3} means $\frac{1}{1000}$. Also 10^{6} equals $1,000,000$ and 10^{-6} equals $\frac{1}{1,000,000}$.

Multiplication With Powers of Ten

We will work out a few simple multiplication problems by arithmetic, and see what the results would be in powers of ten.

Example l. $100 \times 1000=100,000$
Let us glance at the Powers of Ten Table, and change each of the ilgares in the problem to powers of 10 .

$$
\begin{aligned}
100 \times 1000 & =100,000 \\
10^{2} \times 10^{3} & =10^{5}
\end{aligned}
$$

Example 2. $10 \times 100=1000$ In powers of ten, $10^{1} \times 10^{2}=10^{3}$

Example 3. $100 \times .001=.1$ In fowers of ten, $10^{2} \times 10^{-3}=10^{-1}$

Fxample 4. . $01 \times .001=.00001$
In powers of ten, $10^{-2} \times 10^{-3}=20^{-5}$
Now let us examine Example l closely. We worked this problem out by the long method of multiplication and are sure that the answer (100,000) is correct. Now look at the powers of ten used to represent each number in the example. The number 10^{2} is equal to $100 ; 10^{3}$ is equal to 1000 , and $10^{5} 1 \mathrm{~s}$ equal to 100,000 . Notice that in multiplying the two numbers together, 10^{Σ} and 10^{3}, we did not multiply the exponerts together, but we added the exponents. We might write it in this manner: $10^{2} \times 10^{3}=10^{2}+3=10^{5}$.

This lllustrates one rule for using powers of 10. Then nultiflying with pouers of 10 , add the exponents.

Let us check this rule in Examples 2,3 and 4.

Exaruple 2 could be rewritten $10^{1} \times 10^{2}=10^{1+2}=10^{3}$. The step of writing $10^{1}+2$ is unnecessary in actual work and is merely shown here for clarity.

In Example 3 we have $10^{2} \times 10^{-3}$. To solve this by powers of 10 we have $10^{2-3}=1 C^{-1}$. Here we add $a+2$ and $a-3$. If the addition of negative nurbers confuses you, an easy thing to do 1 s to think cf the positive numbers as riorley you have and the nemative mumbers as money you owe. Ir this case, if you had 2 dollars and owed 3, when you pay the two dollars on your debt, you silll owe one dollar. $2-3=-1$.

In Example 4 we have $10^{-2} \times 10^{-3}$. This would be $10^{-2-3}=10^{-5}$. Here we are adding two negative numbers, -2 and -3 . If you owed one person two dollars and another person 3 dollars, you would owe a total of 5 dollars.

Let. us solve a few multiplication problems with powers of 10.
Example 5. $100 \times 10,000=$?
When we look up 100 and 10,000 in $10^{2} \times 104$ our table, we may rewrite the problem: $10^{2} \times 10^{4}$.
$10^{2} \times 10^{4}=10^{2+4}=10^{6}=1,000,000$
Adding our exponents, we ottain the answer.
Work this probiem by the long method of multiplication, and check to see if the answer is the sane as that obtained with powers of 10.

Fxample c. $1,000,000 \times \frac{1}{1,000}=$?
Changirg to powers of $10,10^{6} \times 10^{-3}=10^{6-3}=103=1,000$ Check this by the long nethod.
Ezample 7.

$$
\begin{aligned}
& \frac{1}{10,000} \times \frac{1}{1,000} \\
& 10^{-4} \times: 0^{-3}=10^{-7}
\end{aligned}
$$

The answer, 10^{-7}, means $\frac{1}{10,0100,000}$. This was rot shown on our orifinal table. This is because our table is not complete. The powers of 10 do not start at 6 and enc at -5 . Actually they can be continued on to any value. A very simple way to remmber this is: To change a power of 10 to a number, write 1 and add as many zercs after the 1 as the exponent of the power of ten. Then, 10^{1} would be 1 followed by one zero or 10 . 10^{6} would be 1 followed by 6 zeros, or $1,000,000$. 10^{12} would be 1 followed by twelve zeros, or $1,000,000,000,000$. 10^{-7} would be \qquad $\frac{1}{10,000,000}$.

It is just as simple to change numbers into powers of 10 . Just use for the exponent of 10 the number of zeros after the one in the number. Thus, tc change 10,000, which is 1 followed by four zeros, to powers of 10 , we write 10^{4}. 100 is 10^{2} and 1000 is $10^{3} \frac{1}{100}$ is 10^{-2} and $\frac{1}{10,000,000}=10^{-7}$.

For practice, solve the following problems using powers of ten. If in doubt, check your answer using, tre long method.

1. $10^{4} \times 10^{6} \cdot 16^{1+4}$
2. $1000 \times 1,000,000$
3. $10^{3} \times 10^{-2}$
4. $10,000 \times \frac{1}{1,000}=$
5. $100 \times \frac{1}{100}^{1,00 C}$

Assimment 7
Page 9

Division With Powers of Ten

Let us find how to use powers of ten in division.
Example. Suppose we wish to divide 1000 by $100 . \frac{1000}{100}=10$.
We ind by mathematics that the answer is 10 or 10^{1}.
Let us write this in powers of ten.

$$
\frac{10^{3}}{10^{2}}=10^{1}
$$

We can obtain the 10^{1} by changing the sign of the exponent of the denominator (bottom number in the fraction) and then adding exponents.

In this exampie,

$$
\frac{10^{3}}{10^{2}}=10^{3-2}=10^{1}
$$

We changed the exponent? to $\mathrm{a}-2$ since 1 t is in the denominator.
Let us apply this method to a few more examples.
Example 2. Divide 10,000 by 10.

$$
\frac{10^{4}}{10^{1}}=10^{4-1}=10^{3} \cdot 10^{3} \text { is equal to } 1000
$$

Example 3. Divide 100 by .00001.

$$
\frac{10^{2}}{10^{-5}}=10^{2+5}=10^{7} \text {. Check this probl em by the long method. }
$$

Frample 4. $\frac{10^{-2}}{10^{-3}}=10^{-2+z}=10^{1}=10$.
For practice, solve the following problems with powers of ten.

$$
\text { 1. } \frac{10^{6}}{10^{-5}} \text { 2. } \frac{10^{-2}}{10^{-4}} \quad \text { 3. } \frac{10^{3}}{10^{6}} \quad \text { 4. } \frac{10^{-4}}{10^{-12}}
$$

It is permissible to change a power of ten from the top to the bottom, or from the bottom to the top of a fraction merely by changing the sign of the exponent. We have actually been doing this in the division problems just solved.

Example 1. $\frac{10^{3}}{10^{2}}=\frac{10^{3-2}}{1}=\frac{10^{1}}{1}=10$.

$$
\text { This could have been written } \frac{10^{3} \times 10^{-2}}{1}=10^{1}
$$

In this case we moved the 10^{2} from the denominator to the numerator of the fraction, and changed the sign of the exponent so that our power of ten is now 10^{-2}. Then we multiplied by powers of ten to obtain our answer.

This problem could be solved in the following manner:

$$
\frac{10^{3}}{10^{2}}=\frac{1}{10^{2} \times 10^{-3}}=\frac{1}{10^{-1}}=\frac{1}{\cdot 1}=10
$$

In this case we moved the 10^{3} from the numerator to the denominator, and changed the exponent's sign so that we had 10^{-3}. Then we multiplied, using powers of 10 .

This may seem to be a rather useless operatior with the simple probiem in Example 1, but will be very handy in the solution of more complex protiems.

Let us apply this principle t.o a few more problems.
Example 2. $\frac{10^{2}}{10^{6}}=\frac{10^{2} \times 10^{-6}}{1}=10^{-4}$
Example 3. $\frac{10^{2}}{10^{6}}=\frac{1}{10^{6} \times 10^{-2}}=\frac{1}{10^{4}}=\frac{10^{-4}}{1}$
Example 4. $\frac{10^{3} \times 104}{10^{6} \times 10^{-5}}=\frac{10^{7}}{10^{1}}=\frac{10^{7} \times 10^{-1}}{1}=10^{6}$
Changing Numbers into Powers of 10
Any number, large or small, can be broken up into a workable figure times a power of ten.

Thus:

$$
\begin{array}{ll}
\text { hus: } & 200=2 \times 100=2 \times 10^{2} \\
& 270000=27 \times 10000=27^{\prime} \times 10^{4} \\
\text { or } \quad & 270000=2.7 \times 100000=2.7 \times 10^{5} \\
& 3600000000=36 \times 10^{8}=3.6 \times 10^{9} \\
& .2=2 \times 1=2 \times 10^{-1} \\
& .003=3 \times .001=3 \times 10^{-3} \\
& .00000085=8.5 \times .0000001=8.5 \times 10^{-7} \\
\text { or } \quad & .00000085=8.5 \times .00000001=85 \times 10^{-8}
\end{array}
$$

Check the above 1 gures until you are satisfied that they are correct. Notice that in each case the number of the exponent tells us the number of places we have moved our decimal point. The + or - sign ir front of the exponent tells us whether we have moved our decimal to the left or right.
(a) $27 \times 0000 .=27 \times 10^{4}$
(c) . $\underbrace{0000} 80.5=8.5 \times 10^{-7}$
(b) $\underbrace{00} \underbrace{00} 27=27 \times 10^{-2}$
(d) $630000000.3 \times 10^{7}$

Moving the decimal to the left gives us a positive exponent. Moving the decimal to the right gives us a negative exponent.

For practice, express the following as whole numbers times a power of 10.

1. 36000 5. 930000 5. . 00000081
2. . 0004 4. 72100 6. . 000000000043

Except for a few helpful hints we have covered the subject of powers of ten. The four simple rules (which you should be careful to understard rather than memorize) are:

1. In multiplication of powers of ten, add exponents.
2. A power of ten can be moved from denominator to numerator of a iracilon (and vice versa) providing the sign of the exponent is changed.
3. The numerical value of the exponent tells us how many places we nave noved the decimal point.
4. The sign of the exponent tells us in what direction we have moved the decimal point.

Now let us use the powers of 10 to solve some more complex problems.
Example 1. $\frac{.000014 \times .00016}{.00000056 \times 2000}=\frac{14 \times 10^{-6} \times 16 \times 10^{-5}}{56 \times 10^{-8} \times 2 \times 10^{3}}$
The next thing to do is to combine the powers of 10 in the numerator and dencminator. Remember $2 \times 5 \mathrm{x} 8$ is the same as 8 x 6 x 2 , or 6 z 2 x . In
multiplication, it makes no difference in what order we proceed, so it is permissible for us to re-write the fraction as follows:
$\frac{14 \times 16 \times 10^{-6} \times 10^{-5}}{56 \times 2 \times 10^{-8} \times 10^{3}}$
$\frac{14 \times 1 € \times 10^{-11}}{56 \times 2 \times 10^{-5}}$

1
22
$\frac{1 A \times 16 \times 10^{-11}}{5 B \times 2 \times 10^{-5}}=\frac{2 \times 10^{-11}}{10^{-5}}=\frac{2 \times 10^{-11} \times 10^{+5}}{1}=2 \times 10^{-6}=.000002$. 8
1

Apply the long method to obtain the answer to this problem to check the answer. Do you now see how the powers of 10 will save time ard effort?

$$
\begin{aligned}
& \text { Example 2. } \frac{6000}{.00,009 \times \cdot 01 \times 400 \times \cdot 00,01}=\frac{6 \times 10^{3}}{9 \times 10^{-5} \times 10^{-2} \times 4 \times 10^{2} \times 10^{-5}}= \\
& \begin{array}{l}
\frac{6 \times 10^{3}}{9 \times 4 \times 10^{-5} \times 10^{-2} \times 10^{-5} \times 10^{2}}= \\
1 \\
6 \\
\frac{6 \times 10^{3}}{8 \times 10^{-10}}=\frac{10^{3}}{6 \times 10^{-10}}=\frac{10^{3} \times 10^{10}}{6}=\frac{10^{13}}{6} \\
3 \times 2
\end{array}
\end{aligned}
$$

We have our answer $\frac{10^{13}}{6}$; but we may convert it in the form of a decimal. We could of course divide 6 into $10,000,000,000,000$ but this would be using big numbers again. The simplest method is to change 10^{13} to $10^{1} \mathrm{x} 10^{1 \%}$. Then rewrite the praction.
$\frac{10^{1} \times 10^{12}}{6}$ Nuw all we have to do is to divide einto $10\left(10^{1}\right.$ is 10$)$. our answer can be re-written to be:
1.67×10^{12} It is a good idea to leave the answer in this form, since we are familiar enough with powers of 10 to know just what 1012 means. If we wanted to write our answer for someone not famillar with powers of 10 it would be $1,670,000,000,000$.

$$
\begin{aligned}
& \text { Example 3. } \frac{.000012 \times .01 \times .003}{2400 \times 40000}=\frac{12 \times 10^{-6} \times 10^{-2} \times 3 \times 10^{-3}}{24 \times 10^{2} \times 4 \times 10^{4}} \\
& \frac{1 R \times 3 \times 10^{-11}}{2\left\{\times 4 \times 10^{6}\right.}=\frac{3 \times 10^{-11}}{8 \times 10^{6}}=\frac{3 \times 10^{-11} \times 10^{-6}}{8}=\frac{3 \times 10^{-17}}{8}= \\
& \frac{3 \times 10^{1} \times 10^{-18}}{8}=\frac{30 \times 10^{-18}}{8}=3.75 \times 10^{-18}
\end{aligned}
$$

Study this example carefully making sure you understand each step. Do you see why the 10^{-17} was changed to $10^{1} \times 10^{-18}$?

For practice, solve the following problems. Fxpress your answers in a number between one and ten. times a power of ten.

1. $\begin{array}{r}.0000008 \\ .002\end{array}$
2. $\frac{.00009}{6000}$
3. $\frac{45,000 \times 10^{3}}{.0005 \times .003}$
4. $\frac{625,000 \times 9800 \times 10^{-3} \times .0036}{350 \times 6.3 \times 10^{4} \times .004 \times 10^{6}}$

Square Roots With Powers of Ten

Powers of 10 give a very convenient method of extracting square roots. Let us use some examp? es to demonstrate the process.

Example 1. $\sqrt{10,000}=100$ since $100 \times 100=10,000$
Let us put this in powers of ten: $\sqrt{104}=10^{2}$ since $10^{2} \times 10^{2}=10^{4}$
Example 2. $\sqrt{.00000001}=.0001$ since $.0001 \mathrm{x} .0001=.00000001$
Stated in powers of ten: $\sqrt{10^{-8}}=10^{-4}$ since $10^{-4} \times 10^{-4}=10^{-8}$
These examples 111 ustrate that to take the square root of a power of 10 we merely divide the exponent by two. In example 1 the square root cif io4 is 10^{2} since the exponert 21 s one hal f of 4.

In example 2 , the square root of 10^{-8} is 10^{-4} since the exponent -4 is one half of -8 .

Example 3. $\sqrt{1,000,000}=\sqrt{10^{6}}=10^{3}$
Example 4. $\sqrt{\frac{1}{100}}=\sqrt{10^{-2}}=10^{-1}$
Now let us use this method for numbers consisting of whole numbers and powers of 10.

Example 5. $\sqrt{.0008 \times .00009}=\sqrt{8 \times 10^{-4} \times .9 \times 10^{-4}}$

$$
=\sqrt{7.2 \times 10^{-8}}=2.68 \times 10^{-4}(\sqrt{7.2} \text { is } 2.68)
$$

Note: We were careful to move our decimal point so that the power of ten under the radica was an even number. You can see that if we had an odd exponent under the radical sign we would have ended up with a fractional exponent. (There is nothing wrong with a fractional exponent except that they are much harder to handle in a problem.)

Example 6 .

$$
\begin{aligned}
& \frac{1}{\sqrt{.0008 \times \cdot 00009}}=\frac{1}{\sqrt{8 \times 10^{-4} \times \cdot 9 \times 10^{-4}}} \\
& =\sqrt{\frac{1}{7.2 \times 10^{-8}}}=\frac{1}{2.68 \times 10^{-4}}=\frac{10^{4}}{2.68}=\frac{10 \times 10^{3}}{2.68}=3.73 \times 10^{3}
\end{aligned}
$$

Fxample 7. $\sqrt{7 \times 10^{9}}$

$$
\begin{aligned}
& \quad \sqrt{7 \times 10^{9}}=\sqrt{70 \times 10^{8}}=8.37 \times 10^{4} \text { iNote: Square root of } 70= \\
& \text { Example s. } \sqrt{.07 \times .00009}=\sqrt{.7 \times 10^{-1} \times 8 \times 10^{-5}} \\
& =\sqrt{5.6 \times 10^{-6}}=2.37 \times 10^{-3}(2.371 \text { s the square root of } 5.6)
\end{aligned}
$$

For practice, use the powers of ten to soive the following problems:

1. $\sqrt{.0009}$
2. $\sqrt{.00000004}$ 4. $\sqrt{36 \times 10^{3} \times 4 \times 10^{7}}$
3. $\sqrt{.009 \times .0008}$
4. $\sqrt{37 \times 10^{6} \cdot \times \cdot 12 \times 10^{8}}$

In the above examples where we had several numbers multiplied together inside the radical sign, we could have taken the square roots of the different numbers individually and multiplled our answers together. The same thing hoids true for division insice the radical sign. Let us solve Example 8 using this method.

$$
\begin{array}{ll}
\text { Example 8. } & \sqrt{.07 \times .00008}=\sqrt{7 \times 10^{-2} \times .8 \times 10^{-4}} \\
& 2.65 \times 10^{-1} \times .894 \times 10^{-2}=2.37 \times 10^{-3}
\end{array}
$$

If we have addition or subtraction inside the radical sign, the addition or subtraction must be performed before the square root is taken.

For example: $\sqrt{7+8}=\sqrt{15}=3.87$

Addition and Subtraction with Powers of Ten

Fowers $D i$ ten are particularly benelicial in the operations already explained. They are of little beneflt when adding or subtracting.

In all addition or subtraction we are "tied down" when using powers of ten. Remember that in our work on decimals we were always careful to keep the decimal points in a vertical column. Since the exponent in our power of ten locates the decimal point, the powers of ten of all numbers must be identical before they can be added or subtracted.

Example 1. Add $7 \times 10^{-6}, 86 \times 10^{-4}, 33 \times 10^{-6}$
Answer: $\quad 70 \times 10^{-8}$
8800×10^{-8}

33×10^{-8}

8703×10^{-6} (or 8.703×10^{-3})
Example 2. Add $3.7 \times 10^{3}, 4.3 \times 10^{6}, 37 \times 10^{5}$
Answer: $\quad 3.7 \times 10^{3}$

$$
\begin{aligned}
& 4300 . \times 10^{3} \\
& 3700 . \times 10^{3} \\
& 8003.7 \times 10^{3} \quad\left(\text { or } 8.0037 \times 10^{6}\right)
\end{aligned}
$$

You will see and use the words mega, kilo, milli, and micro throughout. your radio and television work. Powers of ten provide an easy means of dealing with these terms.

Simply remember that:
Mega means million or $1,000,000$ or 10^{6}
kilo means thousand or 1000 or 10^{3}
Milli means, thousandth or . 001 or 10^{-3}
Micro means millionths or . 000001 or 10^{-6}
Micromicro means millifuth part of a millionth part or .000000000001 or 10^{-12}.
Thus: 3 megohms $=3 \times 10^{6}$ ohms.
413 kilocycles $\quad=413 \times 10^{3}$ cycles.
.3 mill iamperes $\quad=.3 \times 10^{-3}$ amperes.
8 microfarads $\quad=8 \times 10^{-6}$ farads.
10 micro-microfarads $=10 \times 10^{-6} \times 10^{-6}=10 \times 10^{-12}$ iarads.
Also 700000 ohms $=.7 \times 10^{6}$ ohms or .7 megoums.
4700 volts $=4.7 \times 10^{3}$ volts or 4.7 kllovolts.
$.0000472 \mathrm{amps}=47.2 \times 10^{-6} \mathrm{amps}$ or 47.2 mlcroamps .

We will now apply powers of ten to solve the problem given in Example 1 under powers of 10.

This problem 1s:

$$
\begin{aligned}
F & =\frac{.159}{\sqrt{.00015 \times .000000000004}} \\
& =\frac{.159}{\sqrt{1.5 \times 10^{-4} \times 4 \times 10^{-12}}}=\frac{.159}{\sqrt{6 \times 10^{-16}}} \\
& =\frac{.159}{\sqrt{6 \times 10^{-16}}=\frac{.159}{2.45 \times 10^{-8}}=\frac{.159 \times 10^{8}}{2.45}} \\
& =\frac{15.9 \times 10^{6}}{2.45}=6.5 \times 10^{6}
\end{aligned}
$$

The powers of 10 will save many minutes in the solution of most electronics froblems. You are strongly advised to study th1s assigment several times until you are completely famillar w1th the use of these powers of ten.

Mathematical Tables

For your convenience, we are including a mathematical table at the end of this assignment. This table glves the square, and square root of all numbers from 1 to 100 .

By changing larger, or smaller numbers to numbers in this range, times a power of ten, this table can be used for a great many numbers. For example, if we wished to f1nd the square root of 700 , it could be changed to 7×10^{2}. The table tells us that the square root of 71 s 2.6458 and we know that the square root of $10^{2} 1 \mathrm{~s} 10$. The square root of 7001 s then $2.64 .58 \times 10$ or 26.458 .

To find the square root of 990,000 we change 1 t to 99×10^{4}. The square root of 49 , from the table 1 s 9.9499 , and of course the square root of 10^{4} is 10^{2} or 100. The square root of 990,0001 s then 9.9499×100 or 994.99.

To find the square root oi. 0069 we woulc change 1 t to 69×10^{-4}. The square root of 691 s 8.3066 and the square root of $10^{-4} 1 \mathrm{~s} 10^{-2}$. The square root of .00691 s then 8.3066×10^{-2} or .083066 .

To find the value of 760 squared we would change $1 t$ to 76×10^{1}. (76) ${ }^{2}$ is 5776 and ten squared is 10^{2} or 100.760 squared 1 s then $5776 \times 100=577,600$.

For practice, use the table and powers of ten to solve the foliowing problems:

1. $\sqrt{17}$
2. $(170)^{2}$
3. $\sqrt{8700}$
4. $(19)^{2}$
5. $\sqrt{.000043}$
6. $\sqrt{910000}$

Test Questions

Be sure to number your answer sheet Assignment 7. Flace your Name and Associate number on every Answer sheet.
Send in your answers for this assignment immediately after you finish them. This will give you the greatest possible benefit from our personal grading service.
in answering these mathematical problems show all of your work. Draw a circle around your answer.
Do your work neatly and legibly.

1. $14^{2}=$
2. $\sqrt{121}=$ (use long-hand method)
3. $4^{5}=$
4. $\sqrt{72}=$ (use mathematical table)
5. State in powers of 10 .
(a) 3000
(b) .000009
(c) 1
(d) 8,000000
6. What does the expression 10^{3} mean?
7. Solve by using powers of 10:
$10,000 \times 1,000=$
8. $\frac{1}{27000 \times 3 \times 10^{-5}}$
9. Write in powers of ten.
(a) 17 megohms $=11112$
(b) $3 \mathrm{milliamperes} \quad$, $10 \quad 3, \ldots$
(c) 72 mic (omicrofarads 7 .
(d) 270 Kllovolts $27, \times 10^{3}$
10. $98^{2}=$
(use mathematical table)

MATHEMATICAL TABLE Of SQUARES and SQUARE ROOTS

No.	Square	Sq. Root	No.	Square	Sa. Root
1	Squar	1.0000	51	2, col	7.1414
2	4	1. 4142	52	2,704	7.2111
3	9	1.7321	53	2,809	7.2801
4	16	2.0000	54	2,916	7.3485
5	25	2.2361	55	3,025	7.4162
6	36	2.4495	56	3,136	$7.483{ }^{2}$
7	49	2.6458	57	3,249	7.5498
8	64	2. 8284	58	3,364	76158
9	81	3.0000	59	3,481	7.6811
10	100	3.1623	60	3,600	77460
11	121	3.3166	61	3,721	7.8102
12	144	3.4641	62	3,844	7.8740
13	169	3.6056	63	3,969	7.9373
14	196	3.7417	64	4,096	3.0000
15	225	3.8730	65	4,225	3.0623
16	256	4.0000	66	4,356	3.1240
17	289	4.1231	67	4,489	3.1854
18	324	4.2426	68	4,624	8.2462
19	361	4.3589	69	4,761	8.3066
20	400	4.4721	70	4,900	8.3666
21	441	4.5826	71	5,041	8.4261
22	484	4.6904	72	5,184	8.4853
23	529	4.7958	73	5,329	8.5440
24	576	4.8990	74	5,476	8.6023
25	¢25	5.0000	75	5,625	8.6603
26	676	5.0990	76	5,776	6. 7178
27	729	5.1962	77	5,929	ع. 7750
28	784	5.2915	78	6,084	\&. 8318
29	841	5.3852	79	6,241	ع. 8882
30	900	5.4772	80	6,400	8.9443
31	951	5.5678	81	6,561	9.0000
32	1,024	5.6569	82	6,724	9.0554
33	1,089	5.7446	83	6,889	9.1104
34	1,156	5.8310	84	7,056	9.1652
35	1,225	5.9161	85	7,225	9.2195
36	1,296	6.0000	86	7,396	9.2736
37	i, 369	6.0828	87	7,569	9.3274
38	1,444	6.1644	88	7,744	9.3808
39	1,521	6. 2450	89	7,921	9.4340
40	1, $6 C 0$	6.3246	90	8,100	9.4868
41	1,681	6,4031	91	8,281	9.5394
42	1,7e4	6.4807	92	8,464	9.5917
43	1,849	6. 5574	93	B, 649	9.6437
44	1,936	6. 6332	34	¢,836	9. 6954
45	2.025	6.7082	95	9,025	9.7468
46	2.116	6.7823	96	9,216	9.7980
47	2,209	¢. 8557	97	9,409	9.8489
48	2,304	6.9282	98	9,604	9.8995
49	2,401	7.0000	99	9,801	9.9499
	2.500	7.0711	100	10,000	10.0000

 N +
 UNITED ELECTRONICS LABORATORIES
 LOUISVILLE

ASSIGNMENT 8

MAGNETS and ELECTROMAGNETS

In Assignment 5 we studied the eflects produced by an electric ileld. We found that a charged body was surrounded by a region wherein other objects were attracted. We sald that an electric field of force existed in this region. The law corcerning electric charges, and of course the electric ileld surrounding the charged bodies, is that like charges repel and unlike charges attrait.

In this assignment we are going to study the magnetic field of force.
Everyone is famillar to a certaln extent with the magnetic field of force, or as it is commonly called, magnetism. Most of us have at some time or other experimented with small magnets, used them to pick up nalls, small bits of iron, etc. Magnetism makes a faseinating plaything, but it is also very important in our everyday life. It is used in the compasses which guide the ships at sea, in the electrical generators which supply the electrical power for our homes, in our radio and television recelvers and in countless other applications.

Many centuries ago, the Greeks learned that certaln pleces of ore possessed the abllity to attract particles of iron. Since this was a very mysterious happering, pieces of this ore were carried as good luck charms. No practical application was made of magnetism for several centurles until it was found that if an elongated plece of this ore was suspended on a string, it would always align itself in a northerly direction. For this reason the ore was called "lodestone", meaning "leading stone". The first compasses were made in this fashion. It was later discovered that pleces of iron could be magnetized by "stroking" a lodestone with the plece of iron. These pieces of 1ron, after being magnetized, woild act as magnets themselves, and could be used for compasses. A piece of iron (or steel) which holds its magnetism for a long period of time is called a permanent magnet.

Let us find some of the characteristics of a permanent magnet. A permanent magnet, in the form of a bar, has two ends. These ends are called the poles of the magnet. The end which will point in a northerly direction, if the magnet is allowed to rotate, is called the North-seeking pole, or North pole. The other end of the magnet is called the South-seeking pole, or South pole.

If a small plece of iron is brought close to a permanent magnet, the magnet will attract the plece of iron, and "draw" the iron to it. This happens while the magnet and piece of iron are still separated. The force $1=0 \mathrm{~m}$ the magnet extends into the alr surrounding the magnet. This region in which the magnetic force acts is called the magnetic field of force, or more often the magnetic field. This magnetic ileld is usually considered to exist in the rorm of lines of force which leave the magnet at the north pole and return at the south pole. This is illustrated in Figure 1. Notice in this figure that the lines cf force are concentrated at the ends of the magnet and spread out near the center of the magnet. The north pole on this magnet is marked N, and the south pole is marked S. If a bar magnet is placed under a plece of paper, and iron fillings are sprinkled on the paper, the iron fllings will arrange themsel es in a pattern as showr in Figure 1 (without the arrowheads of course).

There are two general classifications of materlals as far as magnetism is concerned; magnetic and non-magnetic. A magnetic material is one which will be attracted by a magnet. Iron and steel are the best known magnetic materials.

Nickel and cobalt are also attracted by magnet, but to a lesser degree. All other materials are non-magnetic. For example, a plece of copper or silver is unaffected if brought close to a magnet. There are a few materials which are actually slightly repelled by a magnetic fleld. This action, however, is so weak, that it is of no practical value.

The fundamental law of magnetism 1s: Like poles repel and unlike poles attract. This is the phenomenon which makes the magnet act as a compass, or "point to the north". The earth itself is a magnet. The two magnetic poles of the earth are located within a few hundred miles of geographic poies. The ertire earth is surrounded by the magnetic fleld of this giant magnet. When another magnet is pivoted so that 1 i is free to rotate, the north seeking pole of the magnet will be attracted by the earth's magnetic pole near the north geographic pole. The magnet or compass will point to the earth'smagnetic pole. The law of magnetism states that the unlike poles attract, therefore the magnetic pole located near the north geographic pole is actually a sowth magnetic pole since the north poles of all the compasses are attracted by this magnetic pole.

To further demonstrate the laws of magnetism, let us look at Flgure 2 . At (a) in this figure we see a small compass. The north pole of this campass is shown darkened so that it can be determined which pole of the campass is the north pole. In (a) the compass is acted upon by the earth's magnetic ileld, and the north pole of the compass points north. In (b) of this figure the campass is shown close to the north pole of a permanent magnet. The fleld of this permanent magnet is much stronger than the earth's magnetic lield, so the campass rotates on 1ts axis and the south pole of the compass points to the north pole of the magnet. In (c) of this figure the campass is brought close to the south pole of a magnet. Now the north pole of the campass is attracted by the sourh pole of the magnet.

The attraction of unlike poles and repulsion of like poles is due to the action of the magnetic llelds. In Flgure 1 we saw the pattern of the magnetic fleld around a bar magnet. In Figure 3 we see the pattern of the magnetic fleld 11 two bar magnets are held with their north poles adjacent. Notice how the flelds oppose each other, trying to force the magnets apart.

Figure $4(a)$ shows the fleld of force around the ends of two bar magnets with their opposite poles adjacent. Notice that in this case the lines of force do not repel each other, but ald each other. The magnetic ileld betweer these two unlike poles $1 s$ much stronger than it would be around the poles of elther of the bar magnets, if they were not close together. One way then of obtaining a strong magnetic lield is to bring two unlike poles close together. This can be done with two bar magnets as illustrated, but can be accomplished more simply'by bending a single bar magnet in the middle, and making it in the shape of a horseshoe. This shape of magnet is used in most meters which are used to measure d-c current and voltage. A typical horseshoe magnet, and a diagram of the fleld of force around it, is shown in Figure 4 (b).

A strong magnetic fleld is desirable since it is a lleld of force and if we have a stronger ileld we can do more work with it. We could pick up heavier pleces of iron, etc., than we could with a weak lield. When a magnet is used in a meter, a stronger fleld will make the meter more sensitive. That is, for the same amount of current, the meter deflection will be greater.

A number of theorles have been advanced to explain magnetism. The latest theory, and the one which appears most logical, ilts in very well with the electron theory. According to this theory, the atams or molecules in all matter are small magnets. In an unmagnetized piece of material the molecular magnets are arranged in a randon manner. This is shown in Figure $5(a)$. The net result of these small magnet 10 plelds is zero. When this bar becomes magnetized, the molecular magnets are lined-up as shown in Figure 5(b). The magnets are now alding each othen, and their fields all add up to produce a strorg magnetic field about the bar.

Most permanent magnets are made from hard steel. In such a material, it is difficult to magnetize the bar, or line-up the molecular magnets, but after they are lined-up they will hold this position for long periods of time. If a plece of soft steel or iron is magnetized, it is a simple matter to align the molecular magnets, but when the magnetizing force is removed, the molecular magnets return readily to their original position and the bar does not retain its magnetism. It is possible to magnetize a plece of 1 ron or steel by stroking it with another nagnet. We will soon discuss a much simpler and more effective way of doing this.

Up to this point we havediscussed only permanent magnets, Permanent magnets are used in meters, but very few applications of permanent magnets will be found in electronics or television circuits. There is another form of magnetism which plays an important part in electronicsand television. This is the electromagnet. An electromagnet is a magnetic lield which is produced by electric current.

Figure 6 shows a large electromagnet which is used for handing scrap iron. The operator lowers the large disc on the end of the boam over the scrap metal and closes a switch on his control panel. The disc becames a very powerful magnet and attracts the scrap iron, holding it securely. Then the operator moves the vehicle to the desired location and opens the switch on his control panel. The electromagnet loses its magnetism and drops the scrap iron.

Figure 7 shows a very common form of electromagnet. It is a doorbell. When you press the doorbell switch, current flows through the circuit from D, through the colls of wire, and through the contact screw to B. This current flow causes the coils to become magnets and they attract the soft iron armature. This armature is held away from the magnets by spring tension, but when the colls become electromagnets the armature moves to the right, toward the magnets, and the hammer strikes the bell. If the colls remained electromagnets the hammer would remain against the beil, but this does not happen because as the armature moves to the right, the circuit is broken and current no longer flows throughthe colls. The circuit is broken because, as the armature moves to the right, the movable contact which is fastened to the armature also moves to the right, and is no longer touching the contact screw. This opens the circuit, current no longer passes through the colls, and they were no longer magnetized. The spring tension returns the armature to its original position. After the armature returns to its original position, the entire cycle repeats itself. Study figure 7 to satisfy yourself that you see just how this action takes place.

These two examples were shown to give an Idea of what happens, before we find ous how it happens. We ind from these two examples that magnetism can be produced by passing an electric current through a coll of wire. When thecurrent stops flowing, the electromagnetic fleld no longer exists.

Now let us find out how this electramagnetic field is produced. If a piece of wire isconnected to a battery as shown in Figure 8, current will flow through the wire in the direction indicated. This wire will be encircled by a magnetic field. If a small campass is passed around the wire as indicated in Figure. 8 , the compass needie will take the positions indicated. If the connecilons to the battery are reversed, the current will be flowing through the wire in the opposite direction, and the compass will point in the opposite directions to those indicated in Figure 8. In each case the compass indicates the direction of the surrounding magnetic pield. The magnetic field around the wire is in the form of concentric circles.

If a Dlece of wire is thrust through a sheet of Dader as shown in Figure 9, and is then connected to a battery, a magnetic fleld will encircle the wire. If iron fllings are sprinkled on the sheet of paper, they will align themselves in a pattern as shown in Figure 0.

If we know the direction of electron flow through a wire, we do not need compasses to determine the direction of the magnetic fleld. Check the following rule with direction of magnetic field indicated by the compass needles in Figure 8. If we grasp the conductor with our left hand so that our thumb points in the direction of electron flow, the remaining four fingers of our left hand will curl in the direction of the magnetic field around the conductor. This is called the Left Hand Rule. Remember, the magnetic field is considered nto ilown fram north to south outside of the magnet.

In Figure 10 we used the Left Hand Rule to determine the direction of the fleld around the conductor at flve different locations. Check the position of arrowheads on the tiny loops until you are satisfled that they are correct.

If we double the amount of current flowing through the wire, the magnetic fleld will be twice as strong. The best way to obtain a strong fleid, however, is to wind the wire in the form of a spiral or coil.

In Figure 11 we have made a coll with the wire. Check each lood around the wire. Has every loop been shown with its arrowhead in the correct direction? Notice, that inside the coll the fleld direction is from right. to left at every point. If we wind the "turns" of our coll more closely together (Figure i2), we have most of the magnetic field passing straight through the center of the coil and out the left hand end. The left end of the coll acts like the North pole of a permanent magnet because the fleld is leaving that end. If we reverse the direction of current in the coil, the left end of the coll will be a South pole.

It is easy to see what happens when we wind the wire in the form of a coll. Some of the magnetic fleld will still encircle individual wires inthe coll. However, the ileld produced by adjacent wires are in opposite directions between the wires and tend to cancel each other. Most of the field then will encircle the coll, end to end, as shown in Figure 12.

Another application of the Left Hand Rule makes it easy to determine which end of a coll will have a north magnetic pole.

If the coil is grasped with the left hand so that the fingers point in the direction of the current flow, the thumb will point to the nortr pole of the electromagnet. Apply this rule to the coll in Figure 12, and see if you agree with the marking of the poles of the electramagnet in the diagram.

The strength of the magnet fleld about a coll may be increased by adding more turns to the coll, or by increasing the amount of current flowing through it.

The coll or copper wire in an electramagnet is used to produce a magnetic pleld. This magnetic fleld, by itself, will not be strong enough to operate the doorbell buzzer, to say nothing of the steel yard electromagnet. We have to add iron for a magnetic core in order to obtain very strong magnetic ifelds. The addition of an iron core to an electramagnet may increase the magnetic ileld as mach as 100 or more times.

As was pointed out in the discussion of permanent magnets, each molecule of a material has its own magnetic field. If a plece of soft iron is inserted in the coll of an electromagnet and current is caused to flow through the coll, the magnetic field of the coll will pass through the soft iron core. This magnetic fleld will cause the molecular magnets in the soft iron core to "line-up" as shown in Figure 13(b). The "Ining-up" of these molecular magnets in the core material will produce a magnetic fleld much greater than that produced by the coil alone.

Soft iron is used as the core of electromagnets because it is easy to lineup the molecular magnets in a plece of soft iron. Also, when the electrical circuit is broken by opening the switch, as shown in Figure 13(a), the molecular nagnets return to their original positions, and the electromagnet loses its magnetism. Thus, in the steel yard electramagnet, the scrap iron will be dropped when the operator opens the switch on his control panel, and in the doorbell the armature will return to its original position when the contact is opened.

It was mentioned previously, that there is a simple method of producing permanent magnets. This is done by placing a piece of hard steel inside a coil of wire and passing a very strong current through the coil. A very strong current is needed because a strong magnetic ileld is required to line up the molecular magnets in the hard steel. After this hard steel has been magnetized, it will retain its magnetism aiter the current in the electromagnet is stopped.

We will sum up the fundamental principles we have covered so far:

1. A magnetic fleld is the ileld of force which surrounds a magnet.
2. A magnet has two poles, North and South.
3. Like magnetic poles repel each other.
4. Unlike magnetic poles attract each other.
5. Permanent magnets are made with hard steel and retain their magnetism.
6. Any piece of wire carrying an electric current has a magnetic field around it.
7. We can increase the magnetic effect of an electric current by increasing the amount of current or by winding the wire in the form of a coll, and, in this case, the magnet so produced is called an electromagnet.
8. If we place a saft iron core in the coll of wire carrying current, we can obtain very strong magnetic ifelds. The soit iron core becanes magnetized and adds its sirong magnetic pleld to the magnetic ileld of the coll.
9. The Left Hand Rule can be used if we need to know which end of a coll is the North Pole and which is the South Pole.

Units of Measurement of Magnetism

We have seen that the magnetic line of force is a closed loop or path, passing from the north pole to the south pole of a magnet. The space through which these lines of force act is called the magnetic field.

To a great extent, the action of a magnetic circuit can be comparec to the action of an electric circuit. We learned in Assignment 6 that in an electric
circuit, the current flowing was dependent upon two things, the e.m.f., or voltage and the resistance. To state this as a formula we may write:

$$
\text { Current }=\frac{\text { Voltage }}{\text { Resistance }}
$$

Notice that this means that the amount of effect produced (current flow) is equal to the force applied (volts or em.r.) divided by the opposition (resistance).

In a magnetic circuit, the effect produced is the magnetic lines of force, or flux as it is cammonly called. The magnetic force, that is, the force which tends to produce magnetism, is called the magnetomotive force (abbreviated mmp). The opposition to the passage of magnetic lines of force, or flux, through a material is called the reluctance of the material.

The formula for magnetic circuits 1s:

$$
\text { Flux }=\frac{\text { Magnetomotive Force }}{\text { Reluctance }}
$$

Notice that in this formula, the effect produced is equal to the force applied, divided by the opposition.

The unit of magnetic ilux is the maxwell.
The unit of magnet anotive force is the gilbert.
Reluctance is measured in gilberts per maxwell.
These units were named for famous scientists who devoted a great deal of time to the study of magnet1sm.

If we examine the formula for magnetic circuits carefully we are able to see the reason for several things that have beer mentioned. For example, it was stated that the magnetic fleid (flux) around a coll could be increased, if the current flowing through the coll were increased. The formula shows that this would be true, for with an increased current through the coll the mmp would be greater, and consequently the flux would be increased. It was also stated that more flux would exist if an iron core were placed in a coll of wire carrying a current. The iron core offers less opposition to the magnetic lines of force, or in other words, has a smaller reluctance, than air. It can be seen that ip the reluctance is made smaller in the formula, that the flux will increase.

There are two other terms which are used when considering magnetic materials. These are permeability and retentivity.

Permeability is just the opposite of reluctance. Reluctance is a measure of the opposition offered to magnetic lines of force. Permeability is a measure of the ease with which lines of force can be set up in a materlal. The more permeable a material 1 s , the better $1 t$ will "conduct" magnetic lines of force, and consequently the better core $1 t$ will make for an electromagnet. The permeabllity of air and all non-magnetic materials is 1 . The permeability of iron is about 50. Silicon steel has a permeability of about 3000, and some special magnetic materials have permeabilities of as high as 10,000 . This means that if a core of this special magnetic material is added to a coil of wire which is carrying current, the magnetic ileld will be increased 10,000 times.

Retentivity is a measure of the ability of a plece of material to retain its magnetism, after the magnetizing force is removed. For some applications, high retentivity is desirable, and for some applications, low retentivity is desirable. The material used for permanent magnets should have high retentivity. After these pleces of material have been magnetized, it is highly cesirable for
them to retain their magnetism for many years. The cores of most electramagnets are made of material with low retentitity. This is because in most cases, it is desirable for the electromagnet to lose all of its magnetism when the current flow to the coll is stopped. For example, when the operator of the steelyard crane shown in Figure 6, opens the switch on his control panel, the current to the coll is stopped, and the electramagnet should became demagnetized, so that the scrap iron can be dropped.

Let us now study a few applications of the electromagnetic principles. one application of electramagnets is in relays.

Relays

Relays are switches which may be controlled irom some remote position. They consist of an electromagnet and one or more sets of contacts. Three typical relays are shown in Figure 14. Examine these pictures and identify these parts on the relays.
(1). Electromagnet. This is the circular shaped part near the center of each. These electramagnets are wound with a large number of turns of wire and have soft iron cores.
(2). Armature. This is the movable part of the relay which is held away fram the electromagnet by spring tension.
(3). Contacts. There are two parts to each contact, the movable contact and the fixed contact.

Notice the contact on the relay shown in Figure $14(\mathrm{a})$. The fixed contact is mounted rigidly on the insulated mounting block. When the electramagnet on this relay is not turned on, the movable contact is held away fram the fixed contact by the spring tension on the armature. When the electramagnet is turned on, or energized, as the ast of turning on an electramagnet is canmonly called, the movable contact is pulled down with the armature and is held against the fixed contact. Such a set of contacts is called a normally open set of contacts. It is dossible to have a relay with contacts which are held closed by the spring tension, and then are opened by the action of the electramagnet. These contacts are called normally closed contacts. The relay shown in Figure 14 (D) has a cambination of these two types of contacts. Let us see how it would work The movable contact is on the armature. When the electromagnet is not energized, the spring tension holds the movable contact against the top fired contact. This contact is normally closed. When the relay coll becomes energized, the armature pulls down and opens this top contact circuit, but at the same time the movable contact is pulled against the lower contact and closes this circuit. The relay in Figure $14(c)$ has two sets of contacts (only one set is completely visible in the picture). Each of these sets has one normally open and one normally closed contact.

Relays may be purchased with almost any arrangement and number of contacts. They are used very widely in transmitters and in electronic equipment.

Figures $15(\mathrm{a})$ and $15(\mathrm{~b})$ shows a very simple circuit using a relay. In Figure $15(\mathrm{a})$ the switch in the control circuit, in series with the electramagnet coll and the battery, is open. Therefore, there is no current flowing through the coll and it is not magnetized. The contacts in the controlled circuit are mopen" and no current flows through the lamp.

In Figure $15(\mathrm{~b})$ the switch in the control circuit is closed. Current flows through the electramagnet coll. When the electromagnet becames magnetized, it
draws the armature toward $1 t$, to the left in the drawing, and closes the contact in the controlled circuit. (Current flows from the battery in the controlled circuit, through the closed contact and the lamp, lighting the lamp.) To turn the lamp off it is only necessary to open the switch in the control circuit.

The question might arise, why not just put a switch in the lamp circuit and not use a relay. The answer to this is that the switch in the control circuit is a small switch and will handle only a small current. If the lamp in the circuit is a large lamp it will have a large current flowing through it, and this large current would ruin the small switch. There is also the matter of convienence to be considered. The switch may be located remotely iram the relay, thus a few small switches on a control panel may control a group of large relays at some remote Doint.

Let us show another example where a relay would be used. In a two-way radio installation in a police car there is a receiver and a transmitter. They are each drawing current from the battery, and will discharge the battery rapidly 11 they are both turned on at the same time. There is no reascn for having them both on at the same time, since it is not possible to transmit and recelve at the same time. This problem could be solved by having separate switches on the transmitter and recelver and turning one on and the other off each time, but this is very inconvienent, and sooner or later the operator will fall to turn one off while the other 1 s on and will discharge the battery. This could be solved very simply by using a relay and a circuit as shown in figure 16. The switch in the control circuit is mounted on the microphone. The B+ (this is the positive high voltage) iran the power supply is connected to the movable contact on a relay. The normally closed contact is connected to the receiver, and the normally open contact is connected to the transmitter. When the switch on the microphone is not closed, the recelver is operating. When the operator wants to transmit he merely closes the switch on the microphone, usually by pressing a button, and the receiver will be turned off and the transmitter turned on. The relay does the job convienently and will never "forget" and leave both units on at the same time.

Motor and Generator Action

Motors, generators and most electric meters depend on magnetic ilelds for their operation. In Flgure 17 we have shown a core that 1 s being magnetized by a coll which is carrying current. We have shown the North and South poles. In an actual case we might have several hundred (rather than 3) turns in the coll. We know that there is a magnetic fleld in the air between the North and South Poles. We say that the ileld is irom North to South in inis "alr-gap". If we dip our hands in salt water to make good electrical contact we can perform the following experiment.

Take a plece of heavy copper wire (about $1 / 4$ inch in diameter) and grasp one end in each rand. Push the wire through the magnetic fleld as shown. If the magnetic fleld is strong enough you can get quite a "shock". When you withdraw the wire you wil: again get a shock. The faster you move the wire through the magnetic ileld, the stronger the shock. Moving the wire through the fleld has caused a voltage to be induced in the wire. Let us repeat this statement. Any time a conduct or is moved through a magnetic ifeld, a voltage will be induced (or developed) in the conductor.

We can perform the same experiment in a safer and more accurate fashion. In Figure 18 we have a small horseshoe permanent magnet. (We could use a weak electromagnet.) We have connected the two test leads of a sensitive galvanareter to the ends of a loop of wire. (A galvanometer is a sensitive voltmeter.) The galvanometer needle will kick in one direction when we pass the loop "down through the magnetic ileld. The needle will kick in the opposite direction as we bring the loop back up through the fleld. The speed with which we move the wire loop through the fleld will determine how strong a kick we give the needle in the galvanometer.

Huge generators in power-houses operate on this one simple principle. In most large generators the wire "stands still" and the magnetic ileld is made $=0$ move. The effect is the same however. All we need is a conductor, a magnetic fleld and motion. The galvanometer in Figure 18 would register 11 we held the wire in one position and moved the magnet up and down.

In Figures 17 and 18 we have examined the fundamentals of generator action. A wire has been moved through a magnetic ileld and a voltage has been induced in 1 t.

Figure 19 illustrates motor action. Here again we have a magnetic ileld. We can use either a permanent magnet or an electromagnet to obtain the magnetic ileld. We use a battery to force an electric current through the wire. We will not have to move the wire this time. The wire will move itself. It isn't difficult to see why. Why did the canpass needle move when we placed it near one of the poles of a magnet in Figure 2 ? It was the action of two magnetic fields.

In Figure 19 we have two magnetic flelds. We have a strong fleld from the North to South pole of the large magnet. We also have a magnetic ileld arcund the wire which is carrying a current. In Figure 20 we have an enlarged view of the wire in the magnetic ileld. The arrows indicate the direction of the magnetic fields. Assume that the current in the wire is "into the paper". By the Left Hand Rule then, the fleld around the wire is counter-clockwise as shown. The interaction of the two flelds causes the lines of force between the North and South poles of the magnet to be distorted, or bent, as shown in Figure $20(a)$. one property of magnetic lines of force is that they attempt to establish themselves in as short a path as possible. They are often considered to be elastic. Visualize the lines of force between the poles of the magnet as stretched rubber bands. If they were stretched out of shape as shown, they would force the wire to the right in the diagram. That is just what the magnetic lines of force do. They attempt to shorten their length and in so doing, force the conductor to the right. This movement to the right will contimue until the conduct or is forced to the extreme right edge of the magnetic fleld as shown in Figure $20(B)$.

Figures 19 and 20 have demonstrated fundamental motor action. A wire carrying current is placed in a magnetic fleld, and is caused to move by the interaction of two magnetic ilelds.

Action of D-C Meter

In previous assignments we spoke of meters which are used to measure d-c current. These instruments operate on the principle of the interaction of two magnetic llelds. The principle of the operation of meters is shown in Figure $2 l$.

A permanent magnet is used to obtain one magnetic ileld. A coll of wire is mounted on pivots and is located in the fleld of the permanent magnet. Small spiral springs on the pivot shaft hold the coll at right angles to the magnetic fleld when no current is flowing through the coll. When current is passed through the coll, it becomes an electromagnet and its magnetic field attempts to line up with the fleld of the permanent magnet. This causes the coil to rotate. A pointer on the plvot shaft indicates the amount of current flowing through the coll. With no current flowing, the meter reads zero, and as the amount of current is increased the pointer moves up the scale of the meter. The more current flowing through the coil, the farther the coll will rotate against the spiral springs. When as much current as the meter is designed to handle flows through the coll, the coll will be lined up across the air gap in the permanent magnet so that the magnetic flelds will be lined up. Remember that the magnetic pleld of a coll is through the entire coil as shown in figure 12.

These explanations of generator action, motor action, and action of d-c meters show only the fundamentals of the actions. Each of these subjects will be studied in detail later in the training program.

In this assingment we have learned the basic principles of maknetism. In our progress through the training period we shall learn to apply these basic principles in the study of various electronics circuits. We will learn that these magnetic effects make possible the selection of the desired radio station from the thousand on the alr, make possible the operation of electronics equipment from the 110 V a-c Dower lines, and in fact, make electronics possible.

Test Questions

Be sure to number your Answer Sheet Assignment 8.
Place your Name and Associate Number on every Answer Sheet.
Send in your answers for this assignment immediately after you finish them. This will give you the greatest possible benefit from our personal grading service.

1. Is the magnetic field strongest or weakest at the poles of a permanent magnet?
2. Will like magnetic poles repel or attract each other?
3. Will the magnetic field of an electromagnet became stronger or weaker if more current is passed through the coll?
4. How can we increase the magnetic field of a coll of wire without changing the number of turns on the coll or the current?
5. (a) What happens if a piece of iron is brought close to a permanent magnet? (b) What happens if a piece of aluminum is brought close to a magnet?
6. In the circuit shown in Figure 22, will the right end of the coil be the North or the South pole of the electromagnet?
7. What is a relay?
8. Does a straight piece of wire carrying a current have a magnetic ileld?
9. What happens when we move a copper wire through a magnetic field?
10. What happens when we pass a current through a copper wire which is located In a magnetic field?

indexed

(

iOUISVILLE

KENTUCKY

ASSIGNMENT 8B

OHM'S LAW--PARALLEL CIRCUITS

Of course, the primary aim of this tralring program is tc provide you with a thorough understandirg of the complete circuits of electronic equipment. For these complete circuits to be understcod, however, it is first necessary to learn about basic circuit arrangements. That is the purpose of this assignment, which consists of a continuaticn of the inf crmation concerning Ohm's Law as applied to d-c circuits. It will be recalled that this subject was first discussed in Assignment No. 6 wherein the basic concepts of Orm's Law and the applications of Chm's Law tc series circuits were discussed in detail. The Associate is advised to review Assignmert Nc. 6 carofully so that the infcrmation in that assigment will be well in mird before proceeding with this assignment.

There are three fundamental factors in a d-c circuit which must he considered. These are; (1) the electromotive force or voltage, (2) the current, and (3) the resistance. The current is the motion of the free electrons around an electrical circuit, the electromotive force is the electrical force which is applied to the circuit which causes current to flow, and resistance is the measure of cpposition offered to the flow of the current. There is a definite relationship betweer the amourt of voltage applied to a circuit, the resistance present in a circuit, ard the current which flows in that circuit. This relatiorship is called Chm's Law. This relationship is ordinarily writter in the form of Ohm's Law equations as follows:

$$
I=\frac{E}{R} \quad R=\frac{E}{\bar{I}} \quad E=I \times R
$$

Where I equals current in amperes, R equals resistance in ohms, ard E equals voltage in volts.

There are three circuit arrangements which may be employed. These are; series, parallel, and series-parallel. Figure 1 illustrates a battery and three resistors connected in these three circuit arrangements. Figure l(A) illustrates a series circuit in both the pictorial and schematic form. Figure l(B) illustrates the parallel circuit and Figure l(C) illustrates the series-parallel circuit.

The current paths should be traced in a circuit to determine whether the arrangemert employed is series, parallel, or series-parallel. If cnly one path is provided for the current from the negative terminal of the voltage source through the circuit to the positive terminal of the voltage source, the arrangement is a series circuit. For example, note in Figure $l(A)$ that the current leaves the negative terminal of the battery, flows through R_{1}, then through R_{2}, then through R_{3}, and returns to the positive terminal of the voltage source. Since all of the current flows through each. component of the circuit this arrangement is a series circuit.

The current paths illustrated by the dotted lines in Figure 1(B) show that this circuit represents an entirely different arrangement than that of Figure 1(A). Notice that a portion of the current leaves the negative terminal of the battery, flows through R_{l} and returns to the positive terminal of the battery. Another portion of the current leaves the negative terminal of the battery, flows through R_{2} and returns to the positive terminal of the battery. At the same time a third portion of current leaves
the negative terminal of the battery, flows through r_{3} and returns to the positive terminal of the battery. It is evident therefore, that more than one path is provided for the current in the circuit of Figure $1(B)$ and this arrangement is called a parallel circuit.

The arrangement illustrated in Figure $l(C)$ is called a series-paralZel circuì, as a portion of this circuit consists of a parallel circuit, but this parallel circuit is in series with the ramainder of the circuit. As illustrated by the current paths in Figure $1(C)$, a portion of the current leaves the negative terminal of the battery and. flows through. R_{l}. At this same time a portion of the current flows from the negative terminal of the batjery through R_{2} joining the current that flows through R_{1} at the junction of these two resistors and R_{3}. The combined current then flows through R_{3} and returns to the positive terminal of the battery. Thus, the parallel combination of R_{1} and R_{2} is in series with R_{3}. These three figures should illustrate the manner in which the current path, or paths, should be traced to determine whether a circuit is a series, parallel, or series-parallel arrangement.

In the discussion to follow, a number of parallel circuits will be considered. In order to demonstrate clearly the manner in which these circuits function, numerical examples will be used. It should be emphasized however, that the important consideration, in each case, is not the mathematics involved, but is, instead, the thorough understanding of the operation of each electrical circuit. The Associate should bear this fact in mind as he proceeds with the assignment.

Parallel Circuits

By definition, a parallel circuit is a circuit which provides two or more paths for the current. To understand how such a circuit functions, let lis first analyze the operation of the three simple series circuits illustrated in Figure 2. Figure 2(A) shows a 12 ohm resistor connected to a 12 volt battery, Figure $2(B)$ shows a 6 ohm resistor connected to a 12 volt battery and Figure $2(\mathrm{C})$ shows a 4 ohm resistor connected to a 12 volt battery. Let us apply Ohm's Law to find the current flowing in each circuit.

In Figure 2(A)	In Figure 2(B)	In Figure 2(C)
$I=\frac{E}{R}$	$I=\frac{E}{R}$	$I=\frac{E}{R}$
$I=\frac{12}{12}=1$ ampere	$I=\frac{12}{6}=2$ amperes	$I=\frac{12}{4}=3$ amperes

The foregoing celculations are examples of the application of 0 hm 's Law to series circuits as discussed in Assignment No. 6. In the circuits of Figure 2 a 12 volt battery was used in each instarce. Let
us now arrange a circuit as illustrated in Figure $3(A)$ so that the 3 resistors used in the circuits of Figure 2 are conrected to a single 12 volt battery. It will be noticed that this forms a circuit similar to the one shown in Figure $1(B)$ and, since three paths are provided for the current, this forms a parallel circuit.

In the parallel circuit of Figure 3(A) the emf applied to each of the three resistors is 12 volts, just as in Figures $2(A),(B)$ and (C). For this reason the current which flows through each of the resistors in Figure 3(A) is the same as the current which flows through the corresponding resistor in Figure 2 - in other words, one ampere of currer.t flows through the 12 ohm resistor, 2 amperes of currert flows through the 6 ohm resistor and 3 amperes of current flows thrcugh the 4 ohm resistor.

Figure $3(B)$ illustrates a schematic diagram of the circuit of Figure 3(A) and the connecting, leads heve been shown in different sizes according to the current each is carrying. That is, one ampere of current flows through the 12 ohm resistor, two amperes of current flows through the 6 ohm resistor and 3 amperes of current flows through the 4 ohm resistor. Notice that the total current flowing from the battery, is the sum of the individual currents. The total battery current is $1+2+3=6$ amperes. Study this schematic diagram carefully until it seems logical to you that the 40 hm resistor (smallest of the three resistors) passes the largest current. Remember that the resistance is the measure of opposition offered to the flow of electric current and therefore the smallest resistor offers less opposition than the others. The electrons moving up to point X find three possible paths to follow from X to Y. Part of the current flows through the 12 ohm resistor, part through the 6 ohm resistor and part through the 4 ohm resistor. Since the 4 ohm resistor offers the least opposition, the amount of current which flows through it is greater than that which flows through the 6 ohm resistor or the 12 ohm resistor.

In Figure 3 we have a 12 volt battery, and therefore have 12 volts of electrical pressure available for the circuit. The only resistors in the circuit are between points X and Y. All of the 12 volts will be applied to each of the three resistors; it should be emphasized, however, that we do not have 36 volts in the circuit. The same 12 volts is being applied across each of the three resistors. This will seem reasonable to you if you stop to consider the electrical wiring in your home. You can operate light bulbs, toasters, radios and electrical fans at the same time by connecting them to different outlets in the various rooms. Each appliance operates at 110 volts. The power company supplies the 110 volts at the fuse box. You are able to use that 110 volts in a variety of locations in the house because all of the outlets and receptacles are connected in parallel. This illustrates an important characteristic of parallel circuits. The same voltage is applied to the various branches of a parallel circuit.

In Figure 3(B) it will be noted that we have placed the value of current and voltage of each resistor in the circuit in a table. This is a corvenient method of tabulating the conditions present in the various circuits to be analyzed in this assignment. This chart indicates that the emf applied to the 12 ohm resistor is 12 volts and the current that flows through this resistor is one ampere. Similarly the table indicates that 12 volts are applied to the 6 ohm resistor and a current of 2 amperes flows.

Figure 4 illustrates another parallel circuit. In this case, the emf applied to the circuit from the battery is 6 volts and four parallel paths are provided. Each of thase paths consists of an 8 ohm resistor. As indicated in the accompanying table . 75 ampere of current flows thraugh each resistor. This can be checked by applying Ohm's Law as foliows: $I=\frac{E}{R}, I=\frac{6}{8}=.75$ ampere. How is it that the same amount of current flows through each of the four arms of Figure 4? This may be explained very easily. The current flowing between points A and B distributes itself evenly in the four arms because the four paths between points A and B are alike and thus all offer the same amount of opposition to the current. The total current from the battery, or the line current as it is ofter called, may be found by adding up the individual currents. Thus the line current is $.75+.75+.75+.75=3$ amperes.

Figure 5 illustrates a parsllel circuit in wich three resistors are connected across the 100 volt power supply of a radio receiver. The three resistors have ohmic values of 10,000 ohms, 20,000 ohms and 50,000 ohms. To find the current flowing through the 10,000 ohm resistor Ohm's Law will be applied as follows:

$$
\begin{aligned}
& I=\frac{E}{R} \\
& I=\frac{100}{10,000} \\
& I=. \dot{0 l} \text { ampere or } 10 \text { milliamperes }
\end{aligned}
$$

Apply a similar method to determine the current flowing through resistor R_{2} and resistor R_{3} in the circuit of Figure 5 and check your arswers against the values shown in the table accompanying this figure. Now find the tatal current which flows from the power supply and check your answer against the solution given at the end of the assignment.

There is one point which should be noted when examining Figures 3, 4 and 5. Notice particularly that since the line current is equal to the sum of the currents of the individual branches, it is always greater than the current of any of the parallel branches. This indicates that the resistance of the entire parallel network is always less than the resistance of any of the branches of that network. This point will egain be emphasized presently.

Equivalent Resistance

In Assignment S it was mentioned that the equivalent resistarice of ε group of series resistors was a value of resistance which, when substituted for the group of resistors, would cause the same current to flow
in the circuit. In a similar manner the equivalent resistarce of a group pf parallel resistors is that value of resistance which, if substituted for the group of parallel resistors, would cause the same current to flow in the circuit. Since the current paths in a parallel circuit are entirely diferent thar those ir a series circuit it should be evident that the manner in which the equivalent resistance of parallel resistors is computed is different than the manner in which the equivalent resistance of series resistors is computed.

There are two ways of finding the equivalent resistance of parallel resistors. One of these methods is sometimes called the "total current method" and the other involves the application of an equivalent resistance formula. Let us first use the total current method and employ the circuit of Figure 3 to demonstrate its use. In finding the equivalent resistance by the total current method the first step is to find the current through each resistor as we did in Figure 3. Then the individual branch currents are added to obtain the total current, or line current. This has already been done in Figure 3 and the total current was found to be 6 amperes. The equivalent resistance of the parallel circuit of Figure 3 is that resistance which would cause the same amount of current to flow in the circuit. This value of current is 6 amperes in this case. To find the equivalent resistance we merely apply Ohm's Law using the total current as the value of I in the formula.

$$
\begin{aligned}
& R=\frac{E}{\bar{I}} \\
& R=\frac{12}{6} \\
& R=2 \mathrm{ohms}
\end{aligned}
$$

If we were to place a 2 ohm resistor across the 12 volt battery, 6 amperes of current would flow so 2 ohms is the equivalent resistance of the parallel circuit of Figure 3. Notice particularly that the equivalent resistance of the group of parallel resistors is less than any of the resistors forming the circuit.

Let us apply the total current method to the circuits of Figures 4 and 5 to determine the equivalent resistance. The current flowing in each resistance in the circuit of Figure 4 is .75 ampere and the total current is 3 amperes. To find the equivalent resistance Ohm's Law is applied as follows:

$$
\begin{aligned}
& R=\frac{E}{\bar{I}} \\
& R=\frac{6}{3}
\end{aligned}
$$

$R=2$ ohms
Once again note that the equivalent resistance of the parallel circuit is less than the resistance of any of the branches of the circuit.

The individual currents in Figure 5 have been computed and also the total current. Apply the method outlined above to determine the equivalent resistance of these three resistors and check your answer against the soltuion given at the end of the assignment.
the solution given at the end of the assignment.
In some cases it is desirable to redraw a parallel circuit and substitute the equivalent resistance in the circuit in place of the original parallel network. This is illustrated in Figure 6. The original circuit consists of two parallel 2 ohm resistors connected to a 4 volt battery. The REI table shown in this figure illustrates the fact that the current which flows through each of the resistors is 2 amperes. You are advised to apply Ohm's Law to the circuit to verify the amount of current illustrated in the REI table. Since the current which flows through each resistor is 2 amperes the total current drawn from the battery is 4 amperes. This total current can be used to determine the equivalent resistance of the parallel circuit as follows:

$$
\begin{aligned}
& R=\frac{E}{I} \\
& R=\frac{4}{4}
\end{aligned}
$$

$R=1$ ohm
Figure $\overline{\text { b }}$ (B) shows the equivalent circuit of Figure 6(A). In this case the equivalent resistance of 1 ohm has been substituted for the two parailel 2 chm resistors. Notice in the circuit of Figure 6(B) that the current flowing from the battery, or as it is often referred to, the current drawn from the battery, would be identical with the current drawn from the battery of Figure 6(A), or 4 amperes. Thus the circuit of Figure 6(B) is said to be the equivalent circuit of Figure 6(A).

Figure 7(A) illustrates another simple parallel circuit in which a 4 ohm resistor and a 6 orm resistor are connected in parallel across a 24 volt source of potential. Ohm's Law can be applied to the two branches to determine the current which flows in each and the results obtained may be tabulated in a REI tatle as shown. Check these figures to verify the fact that 6 amperes of current flows through the 4 ohm resistor and 4 amperes of current-flows through the 6 ohm resistor. This would result in a total current of 10 amperes flowing from the battery. This value of total current mey be used to determine the equivalent resistance of the 4 ohm and the the 6 ohm parallel resistors as follows:

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}} \\
& \mathrm{R}=\frac{24}{10}
\end{aligned}
$$

$$
R=2.40 \mathrm{hms}
$$

Thus the equivalent circuit of Figure $7(B)$ can be drawn and a 2.4 oim resistor substituted for the paralleled 4 ohm and 6 ohm resistors of Figure 7(A), since the current flowing from the battery in the circuit of Figure 7 (B) would be the same as that flowing from the battery in the circuit of Figure $7(A)$. Notice once again in this circuit that the equivalent resistance of the two parallel resistors is smaller than the smallest parallel resistor. In other words, the of fect of the parallel combination in
the circuit of Figure $7(A)$ is to offer less resistance than that which would be offered by either of the resistors individually.

Finding Equivalent Resistance By Means of Formulas

Tha means of determining the equivalent resistance of parallel resistors outlined above is very satisfactory. One advantage of this arrangement is that no new formulas are employed. All of the calculations involve the use of Ohm's Law only, which should by this time, be quite familiar to the Associate. There are, however, several formulas which may be used to determine the equivalent resistance of parallel resistors. The first of these formulas is the simplest and may be used only when the resistors which are connected in parallel are of equal ohmic value. This formula states that when parallel resistors are of the same ohmic value, the equivalent resistance is found by dividing the ohmic value of one of the resistors by the nunber of parallel resistors. Stated mathematically this becomes:

$$
R_{e}=\frac{R}{N}
$$

Where R_{θ} is equal to the equivalent resistance, R is equal to the chmic value of one resistor and N is the number of parallel resistors.

To illustrate the use of this formula refer again to Figure 4 which shows four 8 ohm resistors in parallel. Let us apply the formula to this circuit to determine the equivalent resistance of the four parallel resistors.

$$
\begin{aligned}
& R_{\theta}=\frac{R}{N} \\
& R_{\theta}=\frac{8}{4} \\
& R_{\theta}=2 \text { ohms }
\end{aligned}
$$

It will be recalled that the findings of the total current method which were performed previously also indicated that the equivalent resistance of the four 8 ohm resistors in paraliel was 2 ohms.

Apply this formula to the parallel network of Figure 6 to determine the equivalent resistance and see if your computed equivalent resistance agrees with that of the equivalent circuit of Figure 6(B).

Figure 8 shows a parallel circuit with five 100,000 ohr resistors connected to a 100 volt source. The equivalent resistance of these resistors is 20,000 ohms as indicated by the following calculations:

$$
\begin{aligned}
& R_{\Theta}=\frac{R}{N} \\
& R_{\theta}=\frac{100,000}{5} \\
& R_{\theta}=20,000 \circ \mathrm{hms}
\end{aligned}
$$

To check these calculations apply the total current method of determining the əquivalent rasistance of the circuit of Figure 8. Do these calculations also indicate that the equivalent resistance of the parallel network is 20,000 ohms?

When the parallel circuit in question consists of only two resistors cf unequal ohmic value another formula sometimes called the Product over Sum formula may be employed. This formula is:

$$
R_{e}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}
$$

Let us apply this formula to the circuit of Figure 7 to demonstrate its use.

$$
\begin{aligned}
& R_{\theta}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}} \\
& R_{\Theta}=\frac{4 \times 6}{4+6} \\
& R_{\theta}=\frac{24}{10} \\
& R_{\theta}=2.4 \text { ohms }
\end{aligned}
$$

A check of the equivalert circuit of Figure 7(B) will illustrate that this is the same value of equivalent resistance as computed by the total current method.

Figure 9 illustretes a circuit such as may be encountered in a radio or television receiver. A 100,000 ohm and a 50,000 ohm resistor are connected in parallel across a loo volt source. We wish to determine the equivalent resistance of these two resistors in parallel, or ir other words, we wish to determine the amount of opposition offered by this parallel combination. Before working the problem there are at least two things which can be determined by inspection. In the first place we know that since the two resistors are in parallel the same voltage is applied across each, which is in this case 100 volts. We also know frore the previous discussion the total opposition offered by the two parallel resistors is less than the smallest resistor and will, therefore, be less than 50,000 ohms. Let us apply the formula to determine just how much less than 50,000 ohms this value will be.

$$
\begin{aligned}
R_{e} & =\frac{R_{1} \times R_{2}}{R_{1}+R_{2}} \\
R_{e} & =\frac{100,000 \times 50,000}{100,000+50,000} \\
R_{\mathrm{e}} & =\frac{5,000,000,000}{150,000} \\
R_{\mathrm{e}} & =33,333 \text { ohms }
\end{aligned}
$$

The foregoing calculations require the use of a large number of zeros and the possibility of error from this source is present. For this reason it is advisable to apply powers of ten to this problem as follows:

$$
\begin{aligned}
& R_{\theta}=\frac{R_{1} \times R_{2}}{R_{1} \times R_{2}} \\
& R_{\theta}=\frac{100 \times 10^{3} \times 50 \times 10^{3}}{100 \times 10^{3} \times 50 \times 10^{3}} \\
& R_{\Theta}=\frac{5,000 \times 106}{150 \times 10^{3}} \\
& R_{\ominus}=33.3 \times 10^{3} \\
& R_{\theta}=33,300 \text { ohms }
\end{aligned}
$$

It can be seen that this answer is practically the same as that obtained previously, the slight difference being due to the fact that the division of 5,000 by 150 is only carried to three significant figures. This answer is sufficiently accurate for all radio and television work.

It should be mentioned that the Product over Sum formula may be used to determine the equivalent resistance of two parallel resistors, ever if they are of equal ohmic value. When the resistors are of equal size, kowever, it is a simpler process to determine the equivalent resistance by means of the formula stated previously for use with parallel resistors of equal value. To demonstrate this fact determine the equivalent resistance of the parallel circuit of Figure 6(A) by the Product over Sum method.

There is a formula which can be used to determine the equivalent resistance of any number of parallel resistors. This formula is often called the reciprocal formula and is as follows:

$$
\frac{1}{\bar{R}_{\theta}}=\frac{1}{\bar{R}_{1}}+\frac{1}{R_{2}}+\frac{1}{\bar{R}_{3}}+\frac{1}{\bar{R}_{4}} \text { өtc. }
$$

To demonstrate the use of this formula let us find the equivalent resistance of the circuit shown in Figure 10.

$$
\begin{aligned}
& \frac{1}{R_{\theta}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
& \frac{1}{R_{\theta}}=\frac{1}{12}+\frac{1}{6}+\frac{1}{4} \\
& \frac{1}{R_{e}}=\frac{1+2+3}{12} \\
& \frac{1}{R_{\theta}}=\frac{6}{12} \\
& \frac{R_{\theta}}{1}=\frac{12}{6} \\
& R_{\theta}=\frac{12}{6} \\
& R_{e}=2 \text { ohms }
\end{aligned}
$$

The circuit of Figure 10 is identical with the circuit of Figure 3(B) and a check of the computations concerning that problem will indicate that the equivalent resistance was found to be 2 ohms by the total current method. This should demonstrate that the new formula is valid.

To further demonstrate the use of the reciprocal formula let us find equivalent resistance of the parallel circuit shown in Figure 11.
$\frac{1}{R_{\theta}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
$\frac{1}{R_{\theta}}=\frac{1}{10,000}+\frac{1}{20,000}+\frac{1}{100,000}$
$\frac{1}{\bar{R}_{e}}=\frac{10+5+1}{100,000}$
$\frac{1}{R_{\theta}}=\frac{16}{100,000}$
$\frac{R_{\theta}}{I}=\frac{100,000}{16}$
$R_{\theta}=\frac{100,000}{16}$
$r_{\mathrm{e}}=6,250 \mathrm{ohms}$
Once again note that the equivalent resistance of the parallel network is smaller than the smallest resistor in the network. To verify the fact that the above solution is correct the Associate is advised to work the problem represented by the circuit of Figure 11 by means of the total current method to check the results shown.

It will be noted in finding the equivalent resistance of parallel resistors by means of the reciprocal formula that it is necessary to use the lowest common dencminator in the solution. Since it is sometimes a rather involved process to do this, particularly if the values of resistance are uneven amounts such as 27,000 ohms or 330,000 ohms, some prefer to work this type of problem using the Product over Sum formula. This formula can be used for only two branches at a time but can be used for finding the equivalent resistance of more than two branches by solving first to find the equivalent resistance of two of the parallel branches and then using this equivalent resistance and the resistance of the third branch, to find the equivalent resistance of the entire circuit. This is illustrated in Figure 12.

Let us first fird the equivalent resistance of the 12 ohm resistor and the 6 ohm resistor in the circuit of Figure 12. To do this we substitute these values of resistance in the Product over Sum formula.

$$
\begin{aligned}
& R_{\theta}=\frac{12 \times 6}{12+6} \\
& R_{\theta}=\frac{72}{18} \\
& R_{\theta}=40 \mathrm{hms}
\end{aligned}
$$

By means of this calculation we have found the equiValent resistance of the 12 ohm and the 6 ohm resistors to be 4 ohms. In Figure 12(3) the circuit of Figire $12(\mathrm{~A})$ has been redrawn and a 4 ohm equivalent resistance has been substituted for the 12 chm and 6 ohm resistors. Substituting the values of Figure 12(B) in the equation we solve for the equivalent resistance of the entire network.

$$
\begin{aligned}
& R_{e}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}} \\
& R_{\theta}=\frac{4 \times 4}{4+4} \\
& R_{\theta}=\frac{16}{8} \\
& R_{\theta}=2 \text { ohms }
\end{aligned}
$$

While this method is in two steps and is a little longer, it eliminates the need for using a lowest common denominator which, as mentioned previously, can be very troublesome when involving odd values of resistors.

The Associate is advised to use the Product over Sum formula to solve the problem presented by Figure 11. First use this formula to determine the equivalert resistance of the $10,000 \mathrm{ohm}$ and the $20,000 \mathrm{ohm}$ resistor in parallel. Substitute the equivalent resistance of these two branches in the circuit and again apnly the formula using this equivalent resistance ard the 100,000 ohm resistor. Your answer should be practically the same as that computed previously for the equivalent resistance of this network. (6250 ohms)

Sumery

The parallel circuit is a circuit in which two or more paths are prorided for the current. The parallel paths are sometimes referred to as the branches or arms of the parallel circuit.

There are two important facts which should be borne in mind concerning parallel circuits. One of these is the fact that the voltage applied to all branches of a parallel circuit is equal since it is actually the same voltage applied to the various branches. The second important fact concerning parallel circuits is: the equivalent resistance of a parallel
network is always less than the smallest resistance in the network. This should be an apparent fact to the Associate when he recalls that resistance is the opposition offered to current flow and, if two or more paths are provided, the opposition is naturally less than that offered by any of the paths.

The ohmic value of the equivalent resistance of parallel resistors can be computed in a number of manners. One method is to determine the amount of current flowing through each branch of the circuit by Onm's Law and then to add the brarch currents to find the total current flowing in the circuit. This total current and the applied voltage may then be used to determine the equivalent resistance by means of Ohm's Law. There are, likewise, several formulas which may be employed to determine the equivalent resistance of parallel circuits. The formula which is used is determined largely by the choice of the Associate and the type of circuit arrangement employed. If the parallel branches are of equal ohmic resistance the following formula may most conveniently be employed.

$$
R_{\Theta}=\frac{R}{N}
$$

If the parallel circuit consists of two branches the following formula mey be used very conveniently.

$$
R_{\theta}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}
$$

The equivalent resistance of any parallel circuit can be solved by using the following formula:

$$
\frac{1}{R_{e}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}} \text { etc. }
$$

To become fully acquainted with the solution of circuits cortaining parallel resistors the Associate is advised to draw a number of such circilits and solve the circuits for the various unknown factors. To aid in this exercise tnree circuits are presented in Figure l3. Work each of these circuits carefully before checking your results against the proper solutions indicated at the end of the assignment.

Answers To Exercise Problems

Problems Presented By Circuits of Figure 5

Problem 5. Total Current
The current drawn from the battery in this case will be 17 milliamperes or .017 ampere as determined in the following manner. The current from the battery is equal to the sum of the currents passed through the individual resistors or:
. 010
. 005
.002 ampere or 17 milliamperes
Problem 5. Equivalent Resistance
The total current has been computed to be 17 milliamperes or .017 ampere. To find the equivalent resistance Ohm's Law formula should be arplied as follows:
$R=\frac{E}{\bar{I}}$
$K=\frac{100}{.017}$
$\mathrm{F}=5,882 \mathrm{ohms}$
Notice once again that the equivalent resistance of the parallel circuitin this case the circuit of Figure 5- is smaller than the resistance of any branch of that circuit.

Problems Presented By Circuits of Figure 13

Problem 13(A).
The equivalent resistance of R_{1}, R_{2} and R_{3} is $l, 000$ ohms as determined by the following calculations.

$$
\begin{aligned}
& R_{\theta}=\frac{R}{N} \\
& R_{\theta}=\frac{3000}{3}
\end{aligned}
$$

$R_{\theta}=1000$ ohms
The current flowing through each resistor can be determined by Ohm's Law since the applied voltage is 100 volts.

$$
\begin{aligned}
& I=\frac{\mathrm{E}}{\bar{R}} \\
& I=\frac{100}{3000}
\end{aligned}
$$

$I=.0333 \mathrm{amp}$ or 33.3 ma
The total current drawn from the battery can be determined in two ways. In the first place it has been established that the equivalent resistance of the parallel network is 1,000 ohms. This value can be used to determine the total current.
$I=\frac{E}{R}$
$I=\frac{100}{1000}$
$I=.1 \mathrm{amp}$ or 100 ma
The total current can also be found to be 100 milliamperes by adding the three individual currents which, as computed previousiy, are 33.3 milliamperes each.
.0333
.0333
.0333 ampere or 100 ma
The current paths are indicated in the accompanying diagram.

Problem 13(B).
The equivalent resistance of R_{1} and R_{2} can be most easily determined in this case by applying the Product over Sum formula.

$$
\begin{aligned}
& R_{\theta}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}} \\
& R_{\theta}=\frac{27,000 \times 33,000}{27,000+33,000} \\
& R_{\theta}=\frac{891,000,000}{60,000} \\
& R_{\theta}=14,850 \text { ohms }
\end{aligned}
$$

The total current flowing in the circuit can be computed by applying Ohm's Law using the battery voltage as indicated, and the equivalent resistance which has just been computed.

$$
\begin{aligned}
& I=\frac{E}{\bar{R}} \\
& I=\frac{50}{14,850} \\
& I=.0034 \text { ampere or } 3.4 \mathrm{ma}
\end{aligned}
$$

Problem 13(C).
The reciprocal formula is applied to determine the equivalent resistance of the three resistors as follows:

$$
\frac{1}{\bar{R}_{e}}=\frac{1}{\bar{R}_{1}}+\frac{1}{\bar{R}_{2}}+\frac{1}{\bar{R}_{3}}
$$

$$
\frac{1}{\mathrm{R}_{\theta}}=\frac{1}{2}+\frac{1}{5}+\frac{1}{10}
$$

$$
\frac{1}{\bar{R}_{\theta}}=\frac{5+2+1}{10}
$$

$$
\frac{1}{\bar{R}_{\theta}}=\frac{8}{10}
$$

$$
R_{\theta}=\frac{10}{8}
$$

$\mathrm{R}_{\mathrm{e}}=1.25$ ohms
The current flowing through each resistor can be determined by the application of Ohm's Law to the three individual resistors since the resistance of each is known and the applied voltage is 10 volts in each case.
2 ohm resistor
$I=\frac{E}{R}$
5 ohm resistor
10 ohm resistor
$I=\frac{10}{2}$
$I=\frac{E}{R}$
$I=\frac{E}{R}$
$I=5 \mathrm{amps}$
$I=\frac{10}{5}$
$I=\frac{10}{10}$
$I=2 \mathrm{amps} \quad I=1 \mathrm{amp}$

The total current can be computed by applying Ohm's Law using the battery voltage indicated and the equivalent resistance which has just been computed.
$I=\frac{E}{R}$
$I=\frac{10}{1.25}$
$I=8 \mathrm{amps}$

Test Questions

Eye sure to number your Answer Sheet Assignment 8B. Place your Name and Associate Number on every Answer Sheet. Send in your answers for this assignment immediately after you finish them. This will give you the greatest possible benefit from our personal grading services.

1. Is the electromotive force applied to a circuit measured in; (a) amperes, (b) volts, or (c) ohms?
2. (A) If the value of a resistor in a radio diagram is indicated as being 13 K , what is the value of that resistor in ohms? 13,900
(B) If a resistor in a schematic diagram is labeled 2 megohms, how many ohms of resistance are there in the resistor? $Z, 000,000$
3. Is the equivalent resistance of a parallel network, (a) equal to the value of the smallest resistor forming the network, (b) equal to the value of the largest resistance forming the network, (c) larger than the largest resistor in the network, (d) smaller than the smallest resistance forming the notwork?
4. What general statement can be made concerning the value of voltage applied to the various resistors in a parallel, arrangement? fit the
5. If a parallel network consists of three resistors and the current flowing through the first resistor is 1 ampere, that through the second resistor is 2 amperes and that through the third resistor is 3 amperes, what is the total current drawn from the battery? = Comp.
6. On your Answer Sheet redraw the circuit of Figure 6(A). Indicate by means of a dotted line with arrowhead the direction of the current flow through each resistor in the circuit.
7. In the accompanying diagram what is the equivalent resistance of the lour resistors?

8. In the accompanying diagram find the equivalent resistance of the two resistors by application of the Product over Sum formula, show your work.

9. In the circuit of Question 8; (a) what is the current through the 500 ohm resistor; (b) what is the total current drawn from the battory?
10. In the accompanying diagram find the equivalent resistance of the four resistors. Show your work. 102

FIGURE 13-A

FIGURE 13-8

FIGURE I 3-C

R	E	I
8	6	.75
8	6	.75
8	6	.75
8	6	.75

FIGURE 4
Parallel circuit

FIGURE 5
PARALLEL CIRCUIT

parallel circuit

FIGURE 1
THREE SIMPLE SERIES CIRCUITS

FIGERE 2
Parallel circuit

**orld Radió History

ASSI GNMENT 9

CELLS AND BATTERIES - POWER AND ENERGY

In circuits and drawings we have been dealing with in the preceding assignments, we have shown batteries and cells as the source of the emf, but no explanation of the operation of the batterles or cells has been given.

In this assignment we shall discuss a number of different types of cells and batteries and shall compare the characteristics of the various types.

The purpose of a cell, or battery, is to produce an emr or voltage. The emf so produced will cause electrons to flow through a closed circuit. Cells produce an emf by changing chemical energy into electrical energy.

It will be both interesting and useful to know something of the operation of batteries. Most modern home radio recelvers are operated from a 110 volt alternating current receptacle, but portable sets and much specialized electronic equipment operate from batteries. Tytical types of electronic and radio equipment operating from batteries are: Auto radios, two-way radio systems in police cars and taxicabs, receivers and transmitters on ships and in aircraft, and portable radio equipment of the armed forces, portable receivers for entertainment, radiation meters, traffic radar devices, and many others. Thus, it is necessary for a qualified electronics technician to understand the operating principles of cells and batteries.

The Voltaic Cell

In the 18 th century, an Italian physician (Galvani) made a very crude form of electric ceil. He discovered that two pleces of differens metals touching the nerves of the leg of a freshly-skinned dead frog would cause muscular contractions, or jerks, provided the other ends of the metal were in contact. He thought this electrical effect was caused by the frog.

Another Italian (Volta) proved that it was possible to produce electrical effects apart from any living creature. We take this for granted now, but it was a very important discovery at the time. Volta built a simple electric cell consisting of two rods of different materials in a weak solution of sulphuric acid. The two rods he used were carbon and zinc. Such a cell is illustrated in Figure $1(\mathrm{a})$. The rods or plates used in cells are called the plates or poles of the cell, and the solution used is called the electrolyte. (pronounced e-1ec'tro-11te).
 shown in Figure $1(a)$, the wire became warm due to the flow of electrons througr: the wire. If we were to perform the experiment, we could place a voltmeter across the two terminals of the cell and measure the voltage rroduced. This is shown in Figure $1(\mathrm{~b})$. If we preferred, we could place an ammeter in series with the copper wire connecting the termirals of the cell, in order to measure the flow of current in the wire. The cell we have just discussed is called a Noltaic Celln. The zinc rod is the negative plate of the cell, and the carbon rod is the positive plate.

In this ceil, voltage is produced due to chemical action within the cell. The weak solution of sulphuric acid enters into a chemical reaction with the zinc plate. This action would go on at a slow rate, if there were no complete circuit outside the cell, from the zinc to the carbon plate. When a complete circuit is established outside the cell, such as the copper wire between the two terminals in Figure $1(a)$, the chemical action increases, and the zinc plate will be "eaten" by the acid at a much [aster rate. After this type of cell has
been in operation for some time, the zinc plate will be "eaten away" by the acld, and will have to be replaced. Also, the acid solution will have to be replaced, since it has changed chemical composition and is no longer a weak solution of pure acid, but contalns part of the zinc from the negative plate.

While this type of cell is not used in any present day radio installation, there are several actions which occur in it that also occur in modern cells, so we will discuss the action in this cell.

Let us trace the current path in the circult of Figure $1(\mathrm{a})$. The current flows from the negative terminal of the cell, through the external circuit to the positive terminal of the cell, and through the cell from the positive.plate to the negative plate. This current flow from the positive to negative pole inside the cell is actually carried out by the chemical action of the cell. There is some opposition offered by the electrolyte in conducting the current inside the cell, and this resistance is called the internal resistance of the cell. It is advantageous to have as low an internal resistance in a cell as possible.

If a Voltalc Cell is operated for any considerable length of time, bubbles of hydrogen gas collect on the carbon rod. This is illustrated in Figure $1(\mathrm{~b})$. These hydrogen bubbles are produced by the chemical action taking place in the cell. Hydrogen is not a conductor of electricity, so when a sheath of hydrogen gas forms around the carbon plate, this plate becomes insulated from the electrolyte. More opposition is offered to the flow of current through the battery, or to state it another way, the interal resistance of the cell is increased. The result of increasing the internal resistance of a cell is that the output voltage will become lower. In Flgure $1(b)$, the voltage output of the cell, as indicated by the voltmeter, would gradually decrease as the hydrogen bubbles form on the carbon plate. The formation of hydrogen bubbles on the positive plate is called Polarization.

Polarization is undesirable, since it increases internal resistance of the cell, and must be minimized if a cell is to be operated for a considerable length of time. It can be eliminated by adding a depolarizer to the cell. This depolarizer is a chemical which will not interfere with the chemical action taking place in the cell, but which will combine with the hydrogen bubbles and produce water. This removes the insulating sheath of hydrogen from the positive pole of the cell, and thereby reduces the internal resistance.

Another undestrable action which takes place in a cell is called Local Action, and results from impurities in the zinc plate. Zinc is one of the most difficult of metals to obtain in a pure state. Carbon is used in the process of purifying zinc, and some of this carbon remains in the form of tiny particles in the zinc plate. These small particles of carbon, the electrolyte, and the zinc pole set ip small cells on the surface of the zinc plate. This is shown in Figure 1(a). The result of having these tiny cells on the surface of the zinc plate is that the zinc plate will be "eaten away" much more rapidly at these spots than on the remainder of the plate. This will require that the zinc plate and the electrolyte be replaced sooner than they would have if the zinc had been pure. No cheap method has been developed to eliminate local action.

A cell is sald to be charged when the chemicals in it are in such a state that the cell is able to dellver its rated voltage and current to the external circuit.

There are two general types of cells. These are the primary cell and the secondary cell. The Voltaic Cell which we have discussed is one of the many primary cells. A primary cell is a cell which can not be recharged when it is once discharged. When a Voltaic Cell is discharged it must be rebuilt. A secondary cell may be recharged when it is discharged. We shall discuss some secondary cells and methods of charging these later in this assignment.

When an external circuit is connected to a cell, the cell is sald to be discharging. A cell is completely discharged when it produces no voltage across the terminals.

The Dry Cell

A form of primary cell which is used very widely is the Dry Cell. The name Dry Cell is somewhat misleading because the cell is not dry, the chemicals being in the form of moist paste. Figure 2 shows the construction of a dry cell.

The negative plate of a dry cell 1 s a zinc cylinder which forms the walls and bottom of the cell. The positive plate is a carbon rod placed in the center of the cylinder. The space between the carbon rod and the zinc container is filled with a paste of ammonium chloride, manganese dioxide, and powdered graphite. The top is covered with pitch or wax to prevent the loss of water by evaporation. A pin-hole in the pitch or wax permits the gas, which results from cremical action in the cell, to escape.

The ammonium chioride is the chemical which acts upon the zinc to supply the chemical energy which is converted into electrical energy. The manganese dloxide acts as the depolarizer to remove gas bubbles from the positive pole. The graphite is to reduce the intemal resistance.

The emf of a new dry cell is about 1.5 volts. As the cell is discharged the output voltage will gradually decrease. In this cell the zinc is "eaten away" by the chemical action, and holes will usually be eaten through the zinc cylinder before the cell is completely discharged. Also the internal resistance 0 : the cell increases greatly when the cell is partially discharged, due to the drying out of the paste electrolyte.

Dry cells are made in several sizes. The smallest practical cell is the "pen-liten cell, which is about $\frac{1}{2}$ inch in diameter and about 2 inches long. Another dry cell is the flashlight cell which is $1 \frac{1}{4}$ inches in diameter and $2 \frac{1}{2}$ 1nches long. The Iargest dry cell in use today is the 16 cell which is $2 \frac{1}{2}$ inches in diameter and 6 inches long. Each of these cells has an emp of 1.5 valts. The larger the cell, the greater the current it can dellver.

You may be wondering what the difference is between a cell and a battery. A battery is merely a group of cells connected together and usaally piaced in the same container. The cells may be connected in series, in parallel, or in serles-parallel.

A type of battery which is used quite often in portable electronic equipment is the 45 volt "B" battery. The internal construction of such a battery is shown in Figure 3. In this battery, thirty small dry cells are connected in serles. When the cells are connected in series, their voltages will add, so the fill output voltage of this battery is 30 times 1.5 or 45 volts. On most of these batteries, there is a $22 \frac{1}{2}$ volt tap brought out to a terminal on the outside of the battery. This is shown in Figure 3. Notice how the individual cells are
connected together to form a battery. The positive terminal of the battery is connected to the positive pole of one of the cells. The negative pole of this cell is connected to the positive pole of the next cell. This continues for the entire thirty cells, and the nezative pole of the last cell connects to the negative terminal of the battery. Check to see if you agree that the $22 \frac{1}{2}$ volt tap is actually $22 \frac{1}{2}$ volts more positive than the negative terminal of the battery.

Since the individual cells used in the 45 volt batteries are smail, the maximum current that such a battery can provide is small. Twenty to 40 mill1amperes is considered a reasonable current drain for these batteries. The large $\neq 6$ dry cells can supply as much as 500 milliamperes or $\frac{1}{2}$ ampere for a reasonable length of time.

We have seen how it is possible to connect a number of dry cells to get an increased voltage. Thirty $1 \frac{1}{2}$ volt dry cells connected in series produced a total voltage of 45 volts.

The total current which can be safely drawn irom the series arrangement is the safe current of one of the individual cells, since the total current flows through each of the cells. In the 45 volt battery, each of the cells can safely supply $1 \frac{1}{2}$ volts at 40 ma ., so the entire battery can supply 45 volts at 40 ma .

It is possible to increase the current which can be safely supplied by cells by connecting them in parallel. This is shown in Figure $4(a)$. Four $i \frac{1}{2}$ volt dry cells are connected in parallel. To do this, the negative terminals o^{2} all of the cells are connected together, and this is the negative terminal of the battery. The positive terminals of all of the cells are connected together and this is the positive terminal of the battery. The output voltage of the battery is equal to the output voltage of one of the cells, $1 \frac{1}{2}$ volts, but the total current drawn from the battery can be equal to the sum of the individual allowable currents of the cells. For example, if the four cells are $f 6$ dry cells, which can supply $1 \frac{1}{2}$ volts at $\frac{1}{2}$ ampere, then the battery can supply $1 \frac{1}{2}$ voits at 2 amperes. The reason for this is shown in schematic diagram Figure 4 (b). Each cell is supplying its allowable current of $\frac{1}{2}$ ampere, and the current through the resistor is the sum of the currents from eãch of the four cells, or 2 amperes.

Figure 5 shows a series-parallel arrangement, which is used when the battery current and voltage will be greater than that for each cell. Let us look at the row of cells nearest the resistor. These four cells are connected in series since the positive of the first is connected to the negative of the second, etc. The total voltage of this row of cells is, therefore, 4 times $1 \frac{1}{2}$ volts or 6 volts. If these are 6 dry cells, each may safely deliver $\frac{1}{2}$ ampere, so this row can deliver 6 volts at $\frac{1}{2}$ ampere. The other ilve rows of cells are Identical with the row nearest the resistor. Each of these rows has 6 volts and can supply $\frac{1}{2}$ ampere. These rows are connected in parallel. The battery voltage will be 8 volts, and the total current which may be drawn from this battery is the sum of the current which may be supplied by the individual rows, or 6 times $\frac{1}{2}$ ampere or 3 amperes. Notice that the resistor in the diagram is called the load. This term is used very widely in radio work. The resistor or other alrcuit component (it could be a coil) which is connected to the source of emf is called the load. In this case, our battery supplies 6 volts at 3 araperes to the load.

Tc summarize the connection of cells, we could say 11 cells are connected in series, more voltage is avallable and if cells are connected in parallel, more current is avallable.

Dry cells are primary cells, and the zinc contalners are "eaten" away during their discharge so that they can not be recharged. When the output voltage drops below a satisfactory level, dry cells and batterles made from dry cells, must be discarded, and new batterles installed. As dry cells discharge, the internal resistance increases, and when the output voltage has fallen about $1 / 5$ of the original voltage, the internal resistance of the cells becomes so high that the operation of the cell is unsatisfactory. Thus, a 45 volt battery should be replaced when the output voltage drops to about 36 volts. $45-(1 / 5 \times 45)=$ 45-9 = 36 .

Or. the outside of most dry cells and batterles will be found a notation, telling by what date the battery should be placed in operation. This is because these batterles have a definite shelf life. If they are stored for too long a time they will become unsatisiactory. This is due mainly to the local action which takes place within the cell.

Most portable radios operate from "packs" of dry cell batterles. These packs contaln two or three dry cell batterles. A typical pack may have one battery, which supplies 90 volts at about 30 ma. , and a $1 \frac{1}{2}$ volt battery which supplies 30 c ma.

The Air Cell

Another type of battery, which has proved quite popular in the rural communities for supplying fllament voltages for battery operated radio receivers, is known as the air cell battery. It consists of two air cells assembled in a hard rubber container and permanently connected in serles.

The negative pole of this cell is zinc, and the positive dole is carbon, as in the dry cell, but the carbon pole is in the form of a rod of porous carbon. The electrolyte is a solution of sodium hydroxide and water. This battery gets its nane from the fact that alr is the depolarizer. When this battery is operated, air is absorbed by the porous carbon rod, and combines with the gas bubbles. The output voltage of each of the cells of an air cell battery is 1.25 volts, and the output voltage of an air cell battery is 2.5 volts, since $1 t$ contains two alr cells connected in serles. These batterles have a long life, and their output voltage remains practically constant over their useful 11 fe .

The air cell is a primary cell and cannot be recharged. It must be discarded when 1 ts useful life is over.

Lead - Acid Storage Cell

In the explanation on primary cells, we saw how electricity was produced by chemical action, and you will remember that the cells were made up with two plates and a chemical solution called the electrolyte.

When an electrical circuit is completed between the plates outside the cell, a chemical action "eats away" some of the parts, but it produces an emf which causes a current to flow in the circuit.

The lead-acid storage cell has two plates or sets of plates and an electrolyte, but it differs from the primary cell in that its plates are not eaten away during discharge, but are just changed to another chemical composition. After
being discharged, this cell can be recharged by forcing an electric current through it in the opposite direction to the discharge current. This charging process changes the plates back to their original chemical composition, and the cell is ready to be used again. We shall deal with the charging process shortiy. but let us examine the construction of the cell.

A typical storage battery is shown in Figure 8. This type of battery was used in automobiles for many years and consists of three lead-acid cells connected in series.

The positive plates of a lead-acid cell are composed of lead peroxide, and the negative plates are spongy lead. To secure more surface area, the plates of a lead-acid cell are actually several plates connected together. This may be seen in Figure 8 . All of the positive plates of one cell are connected together, and all of the negative plates of one cell are connected together. These sets of positive and negative plates are sandwiched together, so that there is first a negative plate and then a positive plate, then a negative plate etc. The plates are held apart by pleces of insulating material called separators. Separators are made of rubber, glass rods, or corrigated wood. The electrolyte is a dilute or weak solution of sulphuric acid. When this cell is connected to a load and discharged, the chemical composition of both plates will change to lead sulphate, which is a chemical combination of lead and sulphuric aczd. The electrolyte changes from sulphuric acid to water. Neither of the plates are "eaten away" by the acid. After this cell has been discharged, or partially discharged, it can be changed back to its original chemical composition by forcing current through the cell in the opposite direction to the discharge current. This is known as charging the cell, and is done by a charger.

When the cell has been charged, the positive plate is again lead peroxide, the negative plate is again spongy lead, and the electrolyte is a weak solution of sulphuric acid. Now we see why this type of battery is in such wide use. Its cherical action is reversable. Once it has been discharged, all that has to be done to recharge it is to connect it to a charger. This is much cheaper than replacing it with a new battery.

The voltage of a lead-acid cell is 2.1 volts. This voltage remains practically constant until the cell is almost completely discharged, at wifch time the voltage drops to zero. The amount of current which can be delivered by this ceil gradually drops as the cell is discharged. Since the voltage is practically constant, when no current is being drawn, regardless of the state of charge, a voltmeter is of little value in checking a lead-acid cell.

A very simple method of checking the state of charge of a lead-acid cell is by checking the specific gravity of the electrolyte.

As you perhaps know, the same amount, or volume, of different liquids have different weights. For example, one gallon of sulphur:c acid welghs more than one gallon of water, while one gallon of gasoline welghs less. We call this the speciflc gravity of the liquid, which means the ratio of its weight compared to the welght of an equal voiume of water. As water is the most common fluld, we say sulphuric acid weighs about twice as much as water, or 1.835 t imes as much, to be ezact. As we mix the two for the electrolyte, the specific gravity of the solution will be somewhere between 1 and 1.835 .

In the explanation of the lead cell, you remember, it was stated that when
the cell was charged, the electrolyte was acid, and when the cell was discharged the electrolyte was water. In practical work, however, we never reach the condition of absolute discharge and no matter what state of charge the cell may have, there is always both acid and water in the electrolyte. As the cell charges, the chemical action takes place , and the amount of acid increases, giving us a very handy method of testing the state of charge of the battery.

It can be seen that we could pour out the electrolyte, weigh it and compare its weight to an equal amount of water. This would give us the specific gravity of the electrolyte, but this method would be far from handy.

The handy way to check the specific gravity of the electrolyte is through the use of a hydrometer. The hydrometer is shown in a drawing in Figure 7. The nydrometer consists of a large glass tube that has a rubber bulb at the top, and a small rubber tube at the bot tom. Inside the large glass tube is a little iloat, which is welghted at the lower end with shot and has a scale in the upper part of the tube. Since the float is made of glass, the scale may be placed on the inside of the small tube, and we can read it from the outside.

To use a hydrometer to measure the specific gravity of the electrolyte, the small rubber tube is placed in the electrolyte, and the bulb on top of the nydrometer is squeezed. When the rubber bulb is released, electrolyte will be draw up into the large glass tube, and the float will float in the electrolyte. The more acid that is in the electrolyte, the heavier, or denser, it will be. The float will sink only as far as the density of the liquid will let it. The more dense the 11 quid, the less the float will sink in the liquid.

By properly marking the scale, we can read the specific gravity of the electrolyte cirectly from the scale. The point on the scale that comes level with the surface of the liquid shows the specific gravity.

The scale in the hydrometer used to check the specific gravity of the electrolyte in a lead-acid storage cell is marked of in graduations from 1300 to 1100 . The number 1300 means a specific gravity of 1.3 and .1100 means 11 , but as it is much easier to say eleven fifty or twelve hundrec than one and fifteen hundredths, or one and two tenths, the decimal point is left out.

The range of this scale, 1.1 to 1.3 is much less than the 1 to 18835 that we mentioned before, but it covers the ordinary working range of the cell. If the acid gets so strong that its specific gravity is over $1.3,1 t$ will injure the plates and separators. If it gets so weak that it is below 1.1, the chemical action is so slow that the cell is of no use. A specific gravity reading of 1300 is considered a full charge, and 1100 a complete discharge.

A battery should never be allowed to stand for a long perfod of time in a discharged condition, since it may be ruined. This is because the plates, which are lead sulphate when the cell is discharged, may become so hard that the charging process cannot be performed. When this has happened to a battery it is said to be sulphated.

The lead-acid battery is often called a storage battery. For gears the storage batteries in cars consisted of three cells in serles; as shown in F1gure 6. (3 x 2.1 V . per cell $=6.3 \mathrm{~V}$.) Since 1955 most car batterles contain 6 cells in series, producing 12.8 Volts.

The amount of electricity, or current, that a cell can produce is called 1 ts capacity. From the chemical actions just explained, it can be seen that the greater amount of active plate material we have, the more electrical energy the cell will be able to produce.

The capacity of a storage battery is measured by the amount of current in amperes multiplied by the time it is produced in hours. This makes the unit for measuring the capacity of a battery the Ampere-Hour.

However, this is not quite as simple as it sounds, for a cell that will deliver 10 amperes for 10 hours will not necessarily deliver 100 amperes for 1 hour. In general, the higher the current, or rate of discharge, the smaller the capacity will be. Since capacity is a variable factor, when the time of discharge is variable, the time for discharging is generally set at 8 hours. Thus, a 100 ampere-hour battery will dellver $12 \frac{1}{2}$ amperes for 8 hours, and a 300 ampere-hour battery will deliver $37 \frac{1}{2}$ amperes for 8 hours.

Edison Cell
Another secondary cell, or cell that can be charged, is the Edison Cell. This cell is not used in automobiles, because it is rather costly, but it is usきd in many commercial applications, since it will stand much abuse and has a very long life.

In this cell, the active materials are nickel peroxide for the positive plate and inely divided iron for the negative plate. The electrolyte is a 26 per cent solution of potassium hydroxide.

Lixe the lead-acid cell, the plates are assembled in groups, and plates are held apart by spacers. The container for these cells, or batteries, is usually made of nickel-plated steel.

The chemical reactions which take place in this cell are very complex and have nct been explained to the satisfaction of all chemists. The cell has an average voltage of 1.2 volts, which is lower than other lead-acid types, but it is not injured by discharging to zero voltage, by standing idle, or by over chargirg. The specific gravity of the electrolyte does not change during the charging and discharging processes. The state of charge of this battery should be determined by measuring its output voltage while it is delivering its rated current. The voltage of ε fully chaiged Edison cell is 1.3 ? volts.

Charging Batterios

To charge a battery it is only necessary to connect the battery to a source of emf higher than the tattery voltage. Thus, to charge a 12.6 volt storage battery, it should be cornected to a source of emp of about 18 volts. The proper way of connecting a charger to a battery is shown in flgure 8. Since the voltage of the charger is higher than the battery voltage, it will force current through the battery from the negative terminal to the positive terminal. This current flow through the battery is in the opposite cirection to the discharge current which, you will recall, flows from the positive to the negative plates. The flow of current from the negative to the positive plates in the storage cell reverses its chemical process, restoring the battery to its original charged state.

Few precautions need be observed in charging an Edison Cell, since it is not affected by overcharging, too fast a charging rate, etc., but several precautions should be observed in charging a lead-acid battery.

As a lead-acid battery is charged, hydrogen gas bubbles up from the plates. Hydrogen is an explosive gas, so charging should be done in a well ventilated room.

The charging rate should be adjusted, by adjusting the charger voltage, so
that only a small arount of bubbling occurs around the plates. The amount of bubbling is proportional to the amount of heat produced in the battery, since all shemical processes produce heat. If the charging rate is too high, too much heat will be produced in the battery, and the plates of the battery will warp and adjacent positive and negative plates are likely to touch together, raining the jattery. When a battery has reached a specific gravity of 1300 , it should be disconnected fran the charger, as overcharging a battery will cause the plate material to be washed away by the bubbling action of the electrolyte. Normally, a battery can be charged at a high rate when its charge is low, and the rate should be reduced as the battery approaches full charge. During charging, part of the water in the electrolyte will boll away. The level of the electrolyte should be brought up to slightly above the tod of the plate by adding distilled water. Ordinary drinking water should not be added, since it contains a lot of chemicals.

Battery chargers may be motor driven generators, or they may be rectifier circuits which change the 110 volts $a-c$ to the proper value of $a-c$ voltage. In either case, provision is made for regulating the rate of charge.

Power and Energy

Let us examine a few fundamental concepts of physics and apply them to electrical circuits.

In physics, force is defined as that which produces, or tends to produce motion Thus, if we push an automobile, we are applying force to the autamobile. In an electrical circuit, the force is the electromotive force, and is, of course, measured in volts. The emf is the force in an electrical circuit which produces motion of the free electrons, or current llow. Current is the motion in an electrical circuit. In physics, force produces motion against an opposing force, such as irlction or gravity. In an electrical circuit, the opposition is the resistance of the circuit.

Work is defined as the production of motion against an opposing force. Power is a measure of the rate at which work is done. Thus, if a certain amount of work is to be done, a large powerful motor woulc do the job more quickly than a small, less powerful motor. Power in electrical circuits is measured in Watts.

Another term which is used quite often in physics is Energy. Energy is the ability to do work. One of the fundamental laws of nature is that energy can be neither created or destroyed. The batterles which we Just studied did not create electrical energy. They changed chemical energy to electrical energy. In resistors, electrical energy is changed to heat energy. In an eleciric motor, electrical energy is converted into the energy of mechanical motion.
electrical energy is measured in watt-hours. Before dealing with this term, Let us take up the watt.

To repeat: The watt is the unit of electrical power.
There are three formulas which are used in ifnding the electrical power in an electrical circuit, or component of a circuit.

These formulas arec
(ع) $P=E \times I$
(b) $P=I^{2} \times R$
(c) $P=\frac{E^{2}}{R}$

> P equals power in watts.
> E equals the emf in voits.
> R equals the resistance in orms.
> I equals the current in amperes.

Assignment 9

Formula (a) is used when we wish to know the power, with the voltage and the current known.

Let us apply this formula to the circuit shown in Figure 4 (b) to find the amount of power being delivered by the battery. The voltage is $1 \frac{1}{2}$ volts, and the total current is 2 amperes. Putting these values in the formula we have:
$P=E \mathbf{I}$
$P=1 \frac{1}{2} \mathbf{x} 2$
$P=3$ watts
The total power being delivered by the battery (3 watts), is being supplied to the resistor. Since this power represents electrical energy, it cannot be destroyed. You are probably wondering what happens to it. The answer is that it is given off by the resistor in the form of heat. Electronics men generally say that this power is dissipated by the resistor. When a resistor carries current, it becomes warm. This is due to the power being dissipated in the resistor.

Resistors are rated according to the amount of power they can dissipate without overheating. In the circuit shown in Figure $4(b)$, the resistor would have to be at least a 3 watt resistor. If a smaller wattage rating than 3 watts is used in this case, the resistor will over-heat and be ruined.

Let us ind the amount of power being delivered by each cell. Each cell has $i \frac{1}{2}$ volts and $1 s$ passing $\frac{1}{2}$ ampere of current.
$P=E \times I$
$P=1 \frac{1}{2} \times \frac{1}{2}$
$P=\frac{3}{2} \times \frac{1}{2}$
$P=\frac{3}{4}$ watt (This is the power being delivered by each cell.)
In Figure 5, we see a 6 volt battery passing 3 amperes through a resistor. To find the amount of power being dissipated by the resistor, we apply the same formula:
$P=E \times I$
$P=6 \times 3$
$P=18$ watts

This same formula may be used to find the amount of heat given off by the resiator in Figure 9.
$P=E \times I$
$P=45 \times .001$ (Note: 1 ma. was changed to. © 01 , since the equation calls
$P=.045$ watt for amperes.)
Formula (b) is used when the current and the resistance are known, and the amount of power is desired. We can apply this formula to find the power dissipated by the 6 ohm resistor in Figure 10.
$P=I^{2} \times R$
$P=(2)^{2} \times 6$
$P=4 \times 6$
$?=24$ watts
Jsing this some formula, we could find the power dissipated by the resistor in Figure 11.
$P=I^{2} \times R$
$P=(.003)^{2} \times 2000$ (Note: Current is changed from 3 ma to .003 amps)
$P=\left(3 \times 10^{-3}\right) \times\left(3 \times 10^{-3}\right) \times 2 \times 10^{3}$
$P=\theta \times 2 \times 10^{-6} \times 10^{3}$
$P=18 \times 10^{-3}$
$P=.018$ watt
Formula (c) is usec when the voltage and resistance are known.
Figure 12 shows such a problem. Substituting our known values in the equation, we can find the power dissipated.
$?=E^{2} / R$
$P=\frac{(20)^{2}}{200}$
$?=\frac{400}{200}$
$P=2$ watts
Figure 13 presents a similar problem.
$P=E^{2} / R$
$P=\frac{(100)^{2}}{10^{8}}$
$p=\frac{10^{2} \times 10^{2}}{10^{6}}=\frac{10^{4}}{10^{6}}=10^{4} \times 10^{-6}$
$P=10^{-2}$ watts or .01 watt.
In Figure 14, it is desired to know the necessary wattage rating of each resistyor. To solve this problem, we are going to have to apply ohm's laws. First let us find the total resistance of the circuit. The two resistors are in series, so we will apply the series resistance formula:
$R_{t}=R_{1}+R_{2}$
$R_{t}=80,000+20,000$
$R_{t}=100,000$ ohms. This is the total resistarce of the two resistors.
Now to find the current flowing in the circuit, we use the ohm's Law formula:
$I=E / R$
$I=\frac{100}{100,000}$
$I=\frac{10^{2}}{10^{5}}$
$I=10^{2} \times 10^{-5}$
$I=10^{-3}$ or 1 ma .
The power dissipated by the 80 K ohm resistor can be found by the formula:
$F=I^{2} \times R$
$F=(.001)^{2} \times 80,000$
$P=10^{-3} \times 10^{-3} \times 8 \times 10^{4}$
$P=10^{-6} \times 8 \times 10^{4}$
$P=8 \times 10^{-2}$
$\mathrm{P}=.08$ watt.
The power dissipated by the 20,000 ohm resistor is:
$\mathrm{P}=\mathrm{I}^{2} \times \mathrm{R}$
$P=(.001)^{2} \times 20.000$
$P=10^{-3} \times 10^{-3} \times 2 \times 10^{4}$
$P=2 \times 10^{-2}$
$\mathrm{P}=.02$ watt
Figure 15 illustrates a typical radio circuit. The milliampere meter indicates that there is a current of 5 ma . flowing through the $100,000 \mathrm{hm}$ resistor. How much power will be dissipated by the resisior?
$P=I^{2} \times R$
$P=(.005)^{2} \times 100,000$
$P=5 \times 10^{-3} \times 5 \times 10^{-3} \times 10^{5}$
$P=25 \times 10^{-6} \times 10^{5}$
$P=25 \times 10^{-1}$
$P=2.5$ watts.
In Figure 18, we see a circuit consisting of a 100 volt battery anc three parallel resistors. Let us find the power dissipated in each resistor.

These resistors are connected in parallel, therefore, they have the same voltage across them. There is an emf of 100 volts across eack resistor. Since we know the voltage across each resistor, and the ohmic value of each resistor, we can use the formula $P=\frac{E^{2}}{R}$ tc find the Dower delivered to each resistor.

To find the power dissipated by the 200 ohm resistor:
$P=E^{2} / R$
$P=\frac{(100)^{2}}{200}$
$P=\frac{10^{2} \times 10^{2}}{2 \times 10^{2}}$
$P=\frac{10^{2} \times 10^{2} \times 10^{-2}}{2}$
$F=\frac{10^{2}}{2}$
$F=\frac{100}{2}$
$\mathrm{F}=50$ watts.
To find the Dower dissipated in the 10,000 ohm resistor:
$P=E^{2} / R$

$$
\begin{aligned}
& P=\frac{(100)^{2}}{10,000} \\
& P=\frac{10^{2} \times 10^{2}}{10^{4}} \\
& P=\frac{10^{4}}{10^{4}} \\
& P=1 \text { watt. }
\end{aligned}
$$

To ind the power dissipated in the 1 megorm resistor:
$P=E^{2} / R$
$P=\frac{(100)^{2}}{10^{6}}$
$P=\frac{10^{2} \times 10^{2}}{10^{6}}$
$P=\frac{10^{4}}{10^{8}}$
$P=10^{4} \times 10^{-6}$
$\mathrm{P}=10^{-2}$
$\mathrm{P}=.01$ watt.
Would you have suspected that there would be such a big difference in the Dower dissipated (or ancunt of heat generated) by the three resistors in figure 16?

To check the arithmetic in the example, apply ohm's law and find the current flowing in each resistor. Then apply the dower formula $P=I^{2} \times R$ to ind the power dissipated in each resistor.

Suppose an electric iron were drawing 11 amperes from a 110 volt source. How much power would be drawn from the source? We know the voltage and current. We will use the formula $P=E \times I$.
$P=E X I$
$\mathrm{P}=110 \times 11$
$P=1210$ watts or 1.21 kllowatts.
Energy
As mentioned previously, watt-hour is the measure of electrical energy. One watt-hour of electricai energy is consumed when l watt of power continues in action for 1 hour. Similarly, 1000 watt-hours of energy is consumed when the Dower is 1000 watts and continues for 1 hour, or when 100 watts of power continues for 10 hours. We see that the amount of energy depends on both power and time.

If the iron in the preceding example were operated for one hour, then 1210 watt-hours of electrical energy has been supplied by the power company. The term kilowatt-hour is 0:ten used for large amounts of energy. 1210 watt-hours is equal to 1.21 kilowatt-hours, (abbreviated 1.21 KWH). If this same $1 r o n$ were operated for 5 hours, 5×1.21 or 6.05 KWH of energy would have to be supplied to 1 t .

The consumer of electrical energy pays for the amount of energy used by his apparatus. If your home is served by a public utility company, you will find a silowatt-hour meter near the fuse-box. This meter is read regularly by the utility company, and you are billed for the amount of electrical energy, in KWH , which was supplied to your home.

Let us summarize the material covered in this assignment.
All cells convert chemical energy into electrical energy. There are two general classifications of cells, these are Primary cells and Seconda:y cells.

Primary cells cannot be charged.
Secondary cells can be charged.
Voltaic cells, Dry cells and Air cells are primary cells.
Lead-acid cells and Edison cells are secondary cells.
Batterles are groups of cells.
Cells are connected in series to obtain higher voltage.
Cells are connected in parallel to obtain higher current.
Formation of hydrozen bubbles on the positive plate of a cell is called polarization.

The chemical put in cells to minimize polarization is called the depolarizer. local action in a cell results from impurities in the zinc.
Internal resistance is the name given the opposition offered by the electrolyte of a cell in carrying the current inside of the cell.

Fower is the rate of doing work.
Fower is measured in watts.
There are three formulas for finding power:
$F=E \times I, \quad P=I^{2} \times R, \quad P=\frac{E^{2}}{R}$
Energy is the ablility to do work.
Energy is measured in watt-hours.
Energy can be neither created nor destroyed. It can be converted from one form to another. For example, fram chemical energy to electrical energy, as in tatteries, or fram electrical to heat as in an electric stove.

In this assignment, we have learned a great deal about batteries. There are two other widely used sources of d-c voltage; the d-c generator, and the rectifier, which changes a-c into $d-c$. These will be studied in detail in futare assignments.

Test Questions

Be sure to number your Answer Sheet Assignment 9. Place your Name and Associate Number on every Answer Sheet.
Send in your answers for this assignment immediately after you finish them. This will give you the greatest possible benefit from our personal grading service.

1. What is the difference between a primary cell and a secondary cell?
2. What is the difference between a cell and a battery?
3. If three dry cells were avallable and you desired a voltage of 4.5 volts, in what manner should the cells be connected?
4. The specific gravity of a lead-acid storage cell is 1300. Is this cell fully charged, completely discharged, or partly discharged?
5. Suppose you had a battery connected to a charger and noticed that there were a great deal of bubbles rising around the plates. What should you do?
6. If you were charging a battery and noticed that the level gi the electrolyte was below the top of the plates, what should you do?
7. What is the un1t of power? puatue
8. An electric iron draws 20 amperes of current from a 100 volt source. How much energy must be supplied by the utility company to operate this iron for 5 hours?
9. Energy cannot be destroyed. What happens to the energy which. is supplied to a resistor carrying current?
10. Name three primary cells.

Fig. 8

F/6.19

FIG. 13

FIG. II

FIG. 14

Fig. 16

FIG. 18

Fig. 9

FiG. 12

fig. 15

FIG. 17

FIG. 19

FIG. 2

FIG. 1

ELEMENTARY ALGEBRA FOR ELECTRONICS

In the mathematics studied in the previous assignments, we have dealt with the solution of arithmetic prodems. These are problems involving addition, substraction, multiplication and division of positive numbers. We have also studied roots and powers.

In algebra, we will apply these same operations to two new types of problems. These algebra probleras will have negative numbers and they will use letters to represent numbers.

Actually, we have been using both of these things in our everyday life, but when we see them in a mathematical problem, they look as if they would be very difficult to hardle. We shall see that there is nothing difficult about algebra, and that it shall be a very great help on our progress through electronics. If it so happens that you have not studied algebra previously, or if you have "forgotten all you knew" about algebra, do not become discourged at this point. If you will just study through this assigment, a step at a time, you have a very pleasant surprise in store for you. You will find that algebra is a relatively simple subject and that you will maste: it easily:

Negative Numbers

In our study of algebra, let us first consider negative numbers. Negative numbers are numbers which are less ther zero, wile positive mumbers are numbers which are more than zero. Negative numbers are distinguished from positive numbers by the minus sign. Thus, -10 means 10 below zero, while +10 means 10 above zero. In most cases, +10 is written just 10. The plus sign is understood. Any number with no sign indicated is a positive number. So 17 means +17 , 3 means +3 , and 19.28 means +19.28. Negative numbers are used in everyday life. For example, a weather report lists a temperature of 10° below zero as -10°. An airplane pilot might think of a ten mile ar hour tail wind as +10 miles an hour, and a ten mile an hour headwind as -10 miles an hour. A mechanical engineer working with steam and water pressure at a power plant might list a suction force of 2 pounds as -2 pounds per square inch of pressure.

In electronic work, we will have a great need for negative numbers. In Figure 1, for example, the wire lead connected to the battery may be either 6 volts above (+6 V) or 6 volts below (-6 V) ground potential depending on the way the battery is connected. In Figure $1(A)$, the wire lead is 6 volts more positive than ground potential, so the voltage in respect to ground would be +6 V . In Figure $1(\mathrm{~B})$, the voltage would be -6 V . In each case we have 6 volts of electrical pressure. The + or sign in front of the 6 volts tells us the direction of the electrical force or pressure. We know that the direction of the 6 volts is important. In all electrical circuits, the direction of the voltage determines the direction of current flow. Vacuum tube circuits will not function at all if the voltages applied to the different elements of the tube are not in the proper direction. There are many other instances when we will have to distinguish between plus (+) and minus (-) in radio work.

The absolute value of a number is its value without reference to its sign. Thus, the absolute value of +6 is 6 , and tre absolute value of -6 is 6 .

Now that we have found out what a' negative number is and why we need be concerned with negative numbers, let us procead to find out how to perform the mathematical operations of adcition, subtraction, multiplication and division using these numbers.

Algebralc Addition

Let us consider the temperature reading of 10° below zero mentioned preriously. This could be written algebralcally as -10°. What would the thermometer read if the temperature dropped 5° more? of course, we know that ihe thermometer would read 15° below zero or -15°. Notice that -5 added to -10 gives -15 .

We already know how to add two positive numbers; +15 added to +10 gives +25. This cemonstrates how we should add numbers with the sane sign.

To add numbers with the same sign, add the absolute value of the numbers. and place the common sign in front of the answer. Thus, to add -70 and -30 , and 70 and 30 . This gives 100 for an answer. Then put the sign of both numbers (-) in front of the answer. The complete answer, then, is -100 .

Examples of addition of numbers with the same sign are given below:
1.

$$
\begin{array}{r}
46 \\
+2388
\end{array}
$$

$$
\text { 2. } \begin{array}{r}
-71 \\
-19 \\
\hline-90
\end{array}
$$

3. - 6.3
$\frac{-18.2}{-24.5}$
4. -1603.1
$\begin{array}{r}-\quad 21.4 \\ \hline-1624.5\end{array}$
5. 17.2
$\frac{9.6}{+26.8}$
6. -14.7
$\frac{-6.07}{-20.77}$
7. -43.08
$\frac{-7.02}{-50.08}$
8. 15.20
$\frac{40.08}{+55.28}$
9. -43.15
$\frac{-26.09}{-69.24}$
10. 55.55
44.45
+100.00

Again referring back to the thermometer which is reading 10° below zerc, let us ind what temperature would be indicated if the weather warmed up 5 degrees. We know from general knowledge that it would now be 5 below zero. To state this mathematically, $-10+5=-5$.

Also if the weather warmed up 15 degrees, fram the 10° below zero point, we know that the thermometer would indicate +5 degrees. Stated mathematically this is $-10+15=+5$.

Let us state this mathematical operation in the form of a rule.
To add numbers of unlike sign, subtract the smaller absolute number from the larger absolute number, and place the sign of the larger number in front of the answer.

To add -10 and +5 we write $10-5=5$, then since 10 is the larger absolute number, we put $(-)$ before the answer $(-10+5=-5)$. Also, to add -10 and +15 we write $15-10=5$. Since the 15 is the larger number, we have a +5 for the answer. Several examples of adding numbers with unlike signs follow.

1. -10
$+25$
2. \(\begin{array}{lll}+5 \& 3. \& -90

-8\end{array} ~\)| -8 | |
| :--- | :--- |
| -80 | |

4. $\begin{array}{r}+16 \\ \frac{-17}{-1}\end{array}$
5. $\begin{array}{r}+72 \\ -72 \\ \hline 0\end{array}$
6. -66.6
7. -30
+73.4
+6.8 $\frac{+12}{-18}$

These mathematical rules can be applied directly to radio circuits. In Figure 2, we have two batteries, one an 8 volt, battery, and the other a 6 volt battery. We wish to know the potential difference between point x and ground. In adding voltages in a circuit such as Figure 2, we start at the point whose potential we wish to know, and list the voltages as we go around the circuit.

In Figure 2A, from point x to ground, we have +6 and +8 volts. In $2 A$, point x is 14 volts positive in respect to ground, or 14 volts above ground. In Figure $: B$, from x to ground, we have -6 V and -8 V .

$$
-6
$$

$\frac{-8}{-14}$
Point x is -14 volts in respect to ground in Figure $2 B$.

In Figure 2C, from point x to ground, we have -6 and +8 volts.
-6
$\frac{+8}{+2}$
Point x is 2 volts positive in respect to ground.
In Figure 2D, from point x to ground we have +6 ard -8 volts.
$+6$
$\frac{-8}{-2}$ point x is -2 volts in respect to ground.
This same process has been applied to the circuits in Figure 3. Crieck each of these by adding the battery voltages, and see if you agree that the voltage indicated across each resistor is correct.

If more than two numbers are to be added, first add all of the numbers cf like signs and then add the two sums. For ezample, 11 we wish to add $-2,4,-8$, 7 and 10. First we add the numbers with like sign.

-2	4	Now ald the two sums:
$\frac{-8}{-10}$	7	21
	$\frac{10}{21}$	$\frac{-10}{11}$
	(answer)	

Add: $42,-16,33,14,-18$
Add: $-73,44,-21,16,-51$

-16	42	89	-73	44	-145
$\frac{-18}{-34}$	33	$\frac{-34}{55}$ (answer)	$\frac{-21}{-51}$	$\frac{16}{60}$	-80
	$\frac{14}{88}$			-85	

Fo: practice, add the following numbers"

1. $-7,-12$
2. $16,-5,4$
3. $27,-3$
4. 14, $-5,-9$
5. $-9,17$
6. $-25,-10$
7. $-17,8,-10$
8. $-2,14,-5$
9. $4,8,12$
10. $72,-66,-18,23,-9$

Al gebraic Subtraction

The rule for algebraic subtraction is:
To subtract one number from another, change the sign of the number tc be subtracted and then proceed as in addition.

Examples:
Subtract -8 from 8 Subtract
8 Change -6 to $+\epsilon$ and add.

$$
-6
$$

Subtract -6 from -8

Subtract
$-8 \quad$ Change -6 to +6 and add. -6

-8
$\frac{+\varepsilon}{-2}$ (answer)

Subtract 6 irom -8	$\begin{gathered} \text { Subtract } \\ -8 \\ +6 \\ \hline \end{gathered}$	Change +6 to -6 and add.	-8 -6 -14
			-14
Subtract 6 from 12	12		
	-6	(Note: sign changed)	
	6	(answer)	
Subtract-6 from 14	14		
	+6		
	20	(answer)	
Subtract 3 from -12	-12		
	-3		
	-15	(answer)	
Subtract -7 from -12	-12		
	+7		
	-5	(answer)	
Subtract -12 fran -7	-7		
	+12		
	5	(answer)	

For practice, solve the following problems. subtract the lower number irorr the upper number. You should be able to mentally" change the sign of the lower number and add.

1. 25
2. 4 3. -19
3. -6
4. -8
5. -927
6. .006
7. -18.7
$\frac{-7}{+1}$
$\frac{-6}{-2}$
$\frac{-427}{-500^{2}}$
$\frac{. .93}{-.924}$
$=\frac{4.27}{22.97}$
Multiplication and Division

Multiplication and Division with positive and negative numbers is very simple. One easy rule tells us whether the answer is plus (+) or minus (-).

In multiplication and division, if both rumbers have the same sign (either: positive or negative), the answer will be positive, and if the two numbers have opposite signs, Cone positive and one negative), the answer will be negative.

For purpose of illustration, let us divide this into four parts. First let us consider multiplication of numbers with like signs. If two numbers have the same sign (both positive or both negative) their product will be positive.
Examples: (1) 8 स $6=48$
(2) $\quad(-8) \times(-6)=48$

If two numbers have different signs (one positive and one negative) therr product will be negative.
Examples:
(3) $(-8) \times 5=-48$
(4) $8 \times(-8)=-48$

These four examples are easy to understand. Multiplication is a short-cut for addition. In example 1 , we have added 8 six times. In example 2 , we have subtracted -8 six times. In example 3 , we have added -8 six times. In erample 4, we have subtracted 8 six times.

Ten more examples of multiplication of numbers are shown below.
(5) $16 \times-2=-32$
(8) $-4 \times 3=-12$
(12) $-72 \times 2=-144$
(6) $-9 \times-5=45$
(9) $4 \times-3=-12$
(13) $-72 x-2=144$
(7) $7 \times 5=35$
(10) $-6 x-4=24$
(14) $72 \times 2=144$
(11) $72 \times-2=-144$

The rule for division is identical. If the two numbers we start with are both of the same sign, the answer will be positive.
Examples:
(1) $\frac{48}{8}=8$
(2) $\frac{-48}{-6}=8$

If the two numbers we start with have different signs, the answer will be negative.
Examples:
(3) $\frac{-48}{6}=-8$.
(4) $\frac{48}{-6}=-8$

These examples are easy to understand it we consider the division problems as "check work" for our four previous multiplications.

Some more examples of division are given below:
(5) $\frac{16}{4}=4$
(8) $\frac{-72}{24}=-3$
(6) $\frac{-16}{-4}=4$
(9) $\frac{-72}{-24}=3$
(7) $\frac{72}{-24}=-3$
(10) $\frac{100}{-10}=-10$

For practice, solve the following problems:
(1) $12 \times-3=-36$
(8) $\frac{12}{3}=4$
(7) $\frac{-6}{3}=-2$
(2) $-6.4 \times 3=-182$
(8) $\frac{-36}{-6}=6$
(8) $\frac{300}{-15}=-20$
(3) $-9 \times-.03=.27$
(4) $12 \times-14=-168$
(5) $-.08 \times .02=-.0016$
(10) $\frac{-2}{-8}=.25$

Algebraic Terms

An algebraic term is made up of three definite conponents.
a. Sign. The sign of the term may be (+) or (-). We have already covered the rules for obtaining the correct sign in a problem
b. Coefficient. The coeflicient is merely a number that tells us how many units we have in the term. We worked with both signs and coefficients in the preceeding examples.
c. Ifteral factors. The literal factors are usually letters from the alphabet used to represent certain numbers whose value may be unknown.
In the term -3 ABC , the sign is $(-)$, the coefflcient is 3 and theliteral factors are A, B, and C. We can read this term $-3 A B C$, as minus three $A B C$. The term actually means -3 times A times B times C.

In the term RP, the sign is (+), the coefflcient is 1 , and the literal factors are R and P. When no other coefficient is shown, it is understood to be one (1). This term is read $R P$, and means F times P.

In the term -XYZ the sign is $(-)$, the coeficient is 1 , and literal factors ere X, Y and Z The term means, -1 times X times Y times Z.

In the term 77XYP, the sign is (+), the coefflcient is 77 , and the liseral ractors are X, Y and P.

In the term $\frac{2 X}{3 Y}$, the sign is (t), the coefficient is $\frac{2}{3}$, and the literal :actors are X and Y. This term could be read as two X divided by three Y, or as two X over three Y, or as $\frac{2}{3} X$ over Y. The term actually means 2 times X all

divided by 3 times Y .

Thus, we see that $3 A$ means 3 times A, and $A B$ means A times B.
In algebra, the letters or literal factors, are generally used in place of numbers. Sometimes the numbers for which these letters are used are know, and sometimes they are unknown. Let us ilind the value of some terms when we know the value of the literal terms.

Assume, $\mathrm{a}=6, \mathrm{~b}=2, \mathrm{c}=3$
Example 1. $3 a b c=3 \times a \times b \times c$. Now sabstituting the numbers which each letter is equal to in the problem we have: $3 a t c=3 \times a \times b \times c=3 \times 6 \times 2 \times 3=$ 108.

Example $20 \frac{2 b c}{5 a}=\frac{2 \times 2 \times 3}{5 \times 8}=\frac{\frac{1}{2}}{\frac{6 \theta}{5}}=\frac{2}{5}$ or .4
Example 3. $-8 \mathrm{bc}=-6 \times 2 \times 3=-36$
Example 4. $\frac{-3 a b}{-a c}=\frac{-3 \times 6 \times 2}{-6 \times 3}=\frac{-36}{-18}=2$
Using the same values for a, b, and c as in the Example 1, 2, 3, and 4, ind the value of the terms in the four problems below.

1. $7 \mathrm{ac}=126 \quad$ 2- $\frac{72}{-\mathrm{abc}}=-2 \quad$ 3. $\frac{-6 \mathrm{a}}{\mathrm{bc}}=-6 \quad$ 4. $-5 \mathrm{bc}=-30$

In the next four probiems, assume that $1=2, g=-3, h=7, k=-4$ Find the numerical value of each of these terms.
5. $\frac{\mathrm{gk}}{\mathrm{f}}=6$
6. $\frac{49 \mathrm{f}}{\mathrm{gk}}=8.16$
7. $3 \mathrm{kghh}=5048 \cdot \frac{-2 k}{g}=-2 \frac{2}{3}$

Kinds of Algebralc Expressions

The algebraic expressions we have dealt with so far have been Monomials. Monomial is a farcy way of saying one term. Any number of numbers and literal factors may be multiplied together, or divided and still remain a monomial, but any time addition or subtraction occurs in an algebraic expression, the expression is no longer a monomial. For example, $6 X Y Z Q$ is a monomial and 7BCDEF is also a monomial, but 7BC + DEF and 7BC - DEF are not monomials. In the expression $7 B C+D E F$, we have two terms. The two terms are 7BC and DEF. This algebralc expression is called a Binomial.

In the expression $5 c-3 a b+27$, we have three terms. This expression is a Trincmial.

All expressions having more than one term may be called Polynomials. Polynomial means many terms.

Algebraic terms frequently have exponents in them. We worked with exponents when we studied Powers of Ten. Remember, 106 meant $10 \times 10 \times 10 \times 10 \times 10$. In the term, 10^{5}, the base is 10 and the exponent is 5 . The exponent indicates the number of times the base is to be multiplied by itself. In the term, A^{5}, A is the base and 5 is the exponent. This term means $A \times A \times A \times A \times A$. Likewise, B^{6} means $B \times B \times B \times B \times B \times B$. The term C has an exponent of 1 understood, and c an be written C^{1}. The term a^{2} means $a \times b \times b$, and the term $m^{2} n^{2} y^{3}$ means $m \times \pi$ xnxnyyxyy.

When we were studying powers of 10 , we :ound that to multiply terms, we added the exponents. Thus $10^{3} \times 10^{2}=10^{3+2}=10^{5}$. L1kewl se, the terms $a^{3} I$ $a^{2}=a^{3}+2=a^{5}$. This is logical when we consider what a^{3} and a^{2} means. The
term a^{3} means a $x a x a$, and a^{2} means a $x a$. Then $a^{3} x a^{2}$ means a $x a x$ a times $a x a$, or axaxaxaxa or a^{5}. To stage this in the form of a mathematical law we could say, when the bases are the same (the base is the number which is to be multiplied by itself), we add exponents in multiplication. Then $D^{5} \mathrm{x}^{2}$ $=b^{7}$ and $y^{2} x y^{8}=y^{8}$. But a^{2} times b^{3} has to be written as $a^{2} b^{3}$. since the bases are not the same, we cannot combine exponents.

In division, literal factors of the same base are combined by subtracting their exponents. Thus $x^{3} \div x^{2}=x^{3-2}=x^{1}$ or X. Remember we did the same thing when dealing with powers of 10 . For example, $10^{3} \div 10^{2}=\frac{10^{3}}{10^{2}}=10^{3-2}=10^{1}$ or 10. Also, $\frac{X^{4} Y 3}{X^{2} Y}=X^{4-2} Y^{3-1}=X^{2} Y^{2}$.

Several examples involving the multiplication and division of terms containing exponents follow:

Examples: 1. $C^{2} \times C=C^{2}+1=C^{3}$
2. $2 D^{5} \times D^{2}=2 \times D^{5}+2=2 D^{7}$
3. $a b x a^{2} b^{2}=a^{1+2} b^{1+2}=a^{3} b^{3}$
4. $a b c \times a^{2} b^{2} d=a^{1}+2 b^{1+2} c d=a^{3} b^{3} c d$
5. $D^{5} \div D^{2}=\frac{D^{6}}{D^{2}}=D^{5-2}=D^{3}$
6. $X^{2} Y^{2} \div X Y=\frac{X^{2} Y^{2}}{X Y}=X^{2-1} Y^{2}-1=X Y$
7. $\frac{a^{2} b^{2} c^{2}}{a b}=a^{2-1} b^{2-1} c^{2}=a b c^{2}$
8. $\frac{x^{2} y^{2} z^{2} c}{y^{2}}=x^{2} y^{2}-2 z^{2} c=z^{2} z^{2} c$

For practice, solve the following problems:

1. $b \times b=h^{2}$
2. $\quad a^{2} b^{2} \div b=a^{2} \ell$
3. $b \times b^{2}=$
4. $X Y^{2} Z^{2} \div X Y Z=y z$
5. $c^{2} \times c^{8}=2^{10}$
6. $c^{3} d^{2} e \div c^{2} e=c d^{2}$
7. $X Y Z \times 2 X Y=2 x^{2} y Z$
8. $y^{5} x^{3} \div y^{3} x^{3}=y^{2}$

The term $2 y^{2}$ means $2 \mathrm{xy} x \mathrm{y}$. Notice that only the literal factor (y in this example) is squared. The term (2 y$)^{2}$, means to square the entire term ay. This is equal to $2 \mathrm{y} x$ रु $=2 \mathrm{x} 2 \mathrm{xyxy}$ or $4 \mathrm{y}^{2}$.

In addition and subtraction we can only combine terms whose literal factors are icentical (the same letter and the same exponent).

Examples: (1) $2 X+3 X=5 X$
(2) $4 \mathrm{~A}-7 \mathrm{~A}=-3 \mathrm{~A}$
(3) $2 B+5 C-8 C=2 B-C$
(4) $3 A+5 A^{2}-1 A^{2}=3 A+4 A^{2}$

The process of combining the like terms in an algebraic expression is called combining terms.

Eramples of combining terms are given below.
(1) Add $3 X Y, 4 a b c, 2 X Y,-2 a b c, 10$

The $3 X Y$ and the $2 X Y$ can be combined since they have identical literal factors. $\quad 3 X Y+2 X Y=5 X Y$. The $4 a b c$ and the $-2 a b c$ can be ccmbined. $4 a b c-2 a b c$ $=2 a b c$. The entire expression is then equal to $5 X Y+2 a b c+10$.
(2) Add -8E, 14R, 3E, -6R

The easlest way to combine such terms is to place them in columns, placing terms with identical literal factors in the same column, and then adding. Solution: -6E

3E
14R
$\frac{-5 R}{-3 E+9 R}$ (answer)
(3) Add $3 A+5 B, 2 A-7 B, B+C$
$3 A+5 B$
$2 A-7 B$
$\frac{B+C}{5 A-B+C}$ (answer)
(4) Add $13 X Y Z-2 X Y^{2} Z, 5 X Y^{2} Z-27 X Y Z$

Solution: $\quad 13 X Y Z-2 X Y^{2} Z$

$$
\frac{-27 X Y Z+5 X Y^{2} Z}{-14 X Y Z+3 X Y^{2} Z} \text { (answer) }
$$

(5) Subtract $3 A+5 B$, fran $2 A-7 B+C$

Solution: $\quad 2 A-7 B+C$
Subtract: $3 A+5 B$
Remember that algebraic subtraction is performed by changing the sign of the lower quantity in the problem and then adding.

Changing the sign of the lower quantity we have:
$2 A-7 B+C$ (note we had to change the sign of
$\frac{-Z A-5 B}{-A-12 B+C}$ (answer)
(6) Subtract $6 X Y$ from $3 X Y$

3XY
$\frac{-6 X Y}{-3 X Y}$ (answer)
(7) Subtract $17 a-4 b$ from $3 a-b$

Solution: $\quad 3 a-b$

$$
\frac{-17 a+4 b}{-14 a+3 b} \quad \text { (answer) }
$$

(8) Subtract $3 a \%-d$ from $7 x y+d$

Solutईon: $\quad 7 x y+d$

$$
\frac{-3 a^{2} b+d}{-3 a^{2} b+7 x y+2 d \quad \text { (answer) }}
$$

For practice, solve the following problems:

1. Add $8 \mathrm{~A}, 9 \mathrm{~B},-3 \mathrm{~A}, 3 \mathrm{~B}=5 a+12 h$
2. Add $13 a+5 b,-7 a-10 b, a-4 b=$

3 Add $16 \mathrm{XY}+3 \mathrm{ab}, 6 \mathrm{ab}-4 \mathrm{XY} / 27$
4. Subtract 7 X from $19 \mathrm{I}=12 \times$
5. Subtract $6 a^{2} b+3 a b^{2}$, $\operatorname{tran} 11 a^{2} b+a b^{2}$
B. Subtract $16 y x$ - $3 m n$ from 13yx - $4 m n$ Slgns of Operation
Beiore we can conveniently use binomials, trinomials and polynomials, Assignment 10
certain symbols or Signs of Operation are needed. These Signs of Operation are used merely to reduce the amount of written work in the solution of algebraic problems.

The most commonly used signs of operations are:
a. Parentheses ()
b. Brackets []
c. Braces $\{$ \}

Notice that we always use these symbols in pairs. Parentheses, Brackets and Braces all have the same meaning. They indicate tiat all the terms inside are to be considered as one quantity.

Thus: (7A) means 7A, and $4 B+(2 C)$ means $4 B+2 C$.
$-(3 A+4 B-C)$ indicates that we are to subtract $3 A+4 B-C$ from some other quantity, or fram zero. Remember our rule for subtraction: "Change the sign and add". If we remove this set of parentheses we change each sign.

Thus: $-(3 A+4 B-C)=-3 A-4 B+C$
Also: $3(3 A+4 B-C)$ indicates that we are to multiply $3 A+4 B-C$ by 3
Thus: $.3(3 A+4 B-C)=9 A+12 B-3 C$.
Likewise, $-2(4 \mathrm{~A}-8 \mathrm{C}+2)=-8 \mathrm{~A}+12 \mathrm{C}-4$. Notice that all we really did in this last case was to multiply the three terms inside the parentheses by -2

If we have $-8(A-3 B+4 A+B-C+2 A)$ it is best to collect termswithin the parentheses before we multiply by -8 .

Thus: $-8(A-3 B+4 A+B-C+2 A)=-8(7 A-2 B-C)=-56 A+16 B+B C$.
In the algebraic expression: $2+3(4-2 a+b-3 a)$ we flrst collect terms inside the parentheses and wie have $2+3(4-5 a+b)$. Next multiply the terms within the parentheses by 3 . This gives $2 .+12-15 a+30$. Again collecting terms, the final answer is 14-15a +30 .

Notice that the 2 was not involved with the parentheses.
another example indicating the use of parentheses follows.
$6 B+7 C-(4 B+5 C-L+C)=F 1 r s t$ collect terms within the parentheses.
$6 B+7 C-(4 B+6 C-D)=$ Removing the parentheses, we have to change the signs of each term in the parentheses due to the minus sign before the parentheses. $6 B+7 C-4 B-6 C+D=$ Then collect terms; $2 B+C+D$ (Answer.)

We will now work a longer problem containing parentheses and brackets. Notice that in removing signs of operation we start with the innermost signs.

Example: $2[3 a+2(a+b)]=$
First we start with terms in parentheses.
$2[3 a+2 a+2 b]=$
Now we collect terms.
$2[5 a+\infty]=$
Now we remove the brackets.
$10 \mathrm{a}+4 \mathrm{~b} \quad$ (answer)
Example: $3+2 \mathrm{a}\{5-\mathrm{b}+2[3-2(\mathrm{a}+\mathrm{b})-4+3(\mathrm{a}+\mathrm{b}-3 \mathrm{a})+2]-3 \mathrm{a}\}$.
Collecting terms: $3+2 a\{5-b+2[3-2(a+b)-4+3(-2 a+b)+2]-3 a\}$
Removing parentheses: $3+2 a\{5-b+2[3-2 a-2 b-4-6 a+3 b+2]-3 a\}$
Collecting terms: $3+2 a\{5-b+2[1-8 a+b]-3 a\}$
Removing brackets: $3+2 a\{5-b+2-18 a+2 b-3 a\}$
Collecting terms: $3+2 a\{7+b-19 a\}$
Removing braces: $3+14 a+2 a b-38 a^{2}$ (answer)

For practice solve probiems 1 through 10. Simplify the expressions by removing signs of operation. Answers have been given for the first three problems. Check the answers before proceeding with the remaining 7 problems. The terms in your answers need not appear in the same sequence as shown in Problems 1.2 and 3. Thus $5 a+30-13 c$ could also be written as $30+5 a-13 c$ or $-13 c+5 a+30$ etc.

1. $4 a+5 b-10 c-(3 c+2 b-a)=5 a+3 b-13 c$
2. $3(a-b-4 a+5)+2-6 a(b+3)=-27 a-3 b-6 a b+17$
3. $4+3[b-2 a(a+b-3 a+3)+2 b]=12 a^{2}-18 a-6 a b+9 b+4$
4. $7(2 a)+5(30)=14 a+15 b$
5. $3(a+c)-4(a-b-c)=-7 c+4 b-a$
6. $5+2(10-6 a+5-4 b+3-a)=41-14 a-8 b$.
7. $3[a+2(b+c)]=3 a+6 k+6 c$
8. $2(a+b)+6(b+c)-4(a-c)=-2 a+8 b+102$
9. $0-4[5-3(a-8)+2(8-a-10)+2]=-1 a-86$
10. $7 a-4[4-(a-3)+2(b+3)+4 a]=-52-5 a-8 \ln$

Multiplication of Polynomials

The terms $2 a b c$ mean $2 x a x b x c$. Also the term (2) (a) means $2 x$ a or $2 a$. (30) (4c) means $30 \times 4 \mathrm{c}$ or 120 c .

It follows that $(3+4)(6-2)$ means $(3+4) \pm(6-2) . \quad(3+4)=7$, and $(6-2)$ equals 4 , so the term $(3+4)(6-2)$ is equal to $(7)(4)=28$.

We cculd also obtain the answer, 28 , in the following manner:
Multiply the 3 by the 6 and then by -2.
Multiply the 4 by the 6 and then by -2 .
Surt up the four products.
Thus: $(3+4)(6-2)=18-6+24-8=28$
Notice that we multiply the first number in the first term by each of the numbers in the second term. Then we multiply the second number in the first term by each number in the sec ond term. Then we sum up the four products.

This will be demonstrated in the examples below.
Example 1. $(4-3)(7-2)=28-8-21+3=5$
Example 2. $(6+2)(3-4)=18-24+6-8=-8$
We will use this same method in multiplying algebra expressions containing more than one term.

Thus: $(a+6)(a-3)=a x a-3 x a+6 x a-18 a a^{2}-3 a+6 a-18=a^{2}$ $+3 a-18$.
Also: $\left(a^{2}-3\right)(7-b)=7 a^{2}-a^{2} b-21+30$
In these examples we have used the same method outlined above.
Addiたional problems of this nature are given below:
Ezample 1. $(4 C-b)(7-2 d)=28 C-8 C d-7 b+2 b d$
Example 2. $\left(3 a^{2}-b\right)(2 a-b)=6 a^{3}-3 a^{2} b-2 a b+b^{2}$
Erample 3. $(9 X+7 Y)(X+Y)=9 X^{2}+9 X Y+7 X Y+7 Y^{2}=9 X^{2}+16 X Y+7 Y^{2}$
Erample 4. $(a+7)\left(10-a^{2}+a\right)=10 a-a^{3}+a^{2}+70-7 a^{2}+7 a=17 a-a^{3}-6 a^{2}+70$

Notice that in this problem there were three terms in the second parentheses, but we applied the same rule and multiplied each term in the first parentheses times each term in the second parentheses. Example 5 shows another such problem.

Example 5. $(3-M)\left(10+M^{2}+M^{3}\right)=30+3 M^{2}+3 M^{3}-10 M-M^{3}-M^{4}=$

$$
30+3 M^{2}+2 M^{3}-M^{4}-10 M
$$

Note in Example 4 and 5 , the answers are correct, but are not considered to be in the best form. To state the answers to Example 4, $17 a-a^{3}-6 a^{2}+70$, we should write $1 t-a^{3}-8_{6}{ }^{2}+17 a+70$. This has the literal factors arranged with Dowers in descending order. The $-a^{3}$ is the highest power in the term so should be written list. The $-6 a^{2}$ is the next highest power so should come next. The next highest power is the 17 a and last of all is the +70 .

The answer to Example 5 should be written $-M^{4}+2 M^{3}+3 M^{4}-10 M+30$.
Example 6. $(a+b)(a-b)=a^{2}-a b+a b-b^{2}=a^{2}-b^{2}$
For practice solve the following problems:

```
1. \((8+b)(a+3)=6 a+18+a b+3 b=c^{2}+9 c-20\)
2. \((c-4)(5-c)=\)
```



```
3. \(\left(a^{2}+3\right)(a+8)=a^{3}+6 a^{2}++3 a+18\)
4. \((X+Y)(X-Y)=x^{2}-x y+x y-y^{2}=x^{2}-y_{2}\)
5. \((a+8)\left(a^{2}+a+1\right)=a^{3}+a a^{2}+a+6 u^{2}+6 a+b=a^{3}+7 a^{2}+7 a+6\)
```


Division of Polynomials

A method quite similar to long division in arithemeilc may be used when dividing expressions containing several terms.

For example, let us divide $\left(a^{2}+2 a b+b^{2}\right)$ by $(a+b)$.
Write the problem in the form of a long division problem.
Example 1. $a + b \longdiv { a ^ { 2 } + 2 a b + b ^ { 2 } }$ Then we see how many times the first term in the divisor will go into the fist term in the dividend.
In this case, a will go into a^{2}, a times, so a is the first term in the answer.

```
\(a+b\)
\[
\begin{aligned}
& \frac{a+b}{a^{2}+2 a b+b^{2}} \\
& \frac{a^{2}+a b}{a b}+b^{2}
\end{aligned}
\]
\[
a b+b^{2} \quad \text { The answer is } a+b .
\]
```

To check the answer, multiply the answer by the divisor, and the dividend should be the product.

$$
\text { Check: }(a+b)(a+b)=a^{2}+a b+a b+b^{2}=a^{2}+2 a b+b^{2} \text {. }
$$

Example 2. Divide $\left(14+x^{3}-2 X^{2}+4 X\right)$ by $(X-3)$
$x - 3 \longdiv { x ^ { 3 } - 2 x ^ { 2 } + 4 X + 1 4 }$
Notice that we rearranged the terms and placed X^{3}, the highest power of X first, and so on down to 14, the term containing no powers of

$$
\begin{aligned}
& x-3 \frac{x^{2}}{\sqrt{x^{3}-2 x^{2}+4 x+14}} \\
& \frac{x^{2}-3 x^{2}}{x^{2}+4 x+14}
\end{aligned}
$$

X. This greatly simplifies our work.

The first term in the answer is X^{2}, since X will go into X^{3}, X^{2} times. We multiply X^{2} times $X-3$, and subtract the product.

$$
\begin{gathered}
x^{2}+x \\
x-3 \sqrt{x^{3}-2 x^{2}+4 x+14}
\end{gathered}
$$

$$
\begin{array}{r}
\frac{x^{3}-3 x^{2}}{x^{2}+4 x+14} \\
\frac{x^{2}-3 x}{7 x+14}
\end{array}
$$

The next term in the answer is X. We multiDly $X-3$ times X and subtract the product.

$$
x - 3 \longdiv { x ^ { 2 } + x + 7 }
$$

$$
\frac{x^{3}-3 x^{2}}{x^{2}}+4 x+14
$$

The next term in the answer is +7 . We multiDly (X - 3) times 7, and subtract the product.

$$
\frac{x^{2}-3 x}{7 x+14}
$$

There is a remainder. It is the same as a

$$
\frac{7 X-21}{35}
$$ remainder in long division and can be shown by a eraction.

Answer: $\quad x^{2}+x+7+\frac{35}{x-3}$
Example 3. Divide $\left(x^{3}-y^{3}\right)$ by $(x-y)$
$x - y \longdiv { x ^ { 2 } + x y + y ^ { 2 } } \sqrt { x ^ { 3 } - y ^ { 3 } }$

We have an x^{2} and x term missing. We leave blank spaces for the missing terms. Check the answer by multiplying $\left(x^{2}+x y+y^{2}\right)(x-y)$.

Example 4. Divide (12x $\left.{ }^{2}-36 y^{2}+11 x y\right)$ by ($-4 x-9 y$)
Do not be discouraged if you find these long division problens difficult. Study them carefully to learn the proper method of working them, and you will discover that they are much easier than they appear at a glance. Try solving Example 4 without looking at the solution given, and compare your work with the example. Do this also for a couple of the other examples.

$$
\begin{aligned}
& -4 x-9 y \sqrt{-3 x+4 y} \quad \begin{array}{c}
\text { Notice the }-3 x \text { in tne answer. }
\end{array} \\
& \begin{array}{r}
\frac{12 x^{2}+27 x y-36 y^{2}}{} \\
\begin{array}{l}
-16 x y-36 y^{2} \\
-16 x y-36 y^{2}
\end{array} \\
0
\end{array} \\
& \text { Notice the }-3 x \text { in the answer. } \\
& \text { We have to multiply }-4 x \text { by } \\
& \text { minus } 3 x \text { ir order to obtain } \\
& \text { plus } 12 x^{2} \text {. Check the answer } \\
& \text { by multiplying } \\
& (-4 x-9 y)(-3 x+4 y)
\end{aligned}
$$

For practice, solve the following problems:

1. Divide $\left(m^{2}-2 m n+n^{2}\right)$ by $(m-n)$ Ans. (m $\left.-n\right)$
2. Divide $\left(X^{2}-Y^{2}\right)$ by $(X+Y)-\mathbb{C}$
3. Divide $\left(X^{3}-Y^{3}\right)$ by $(X-Y) \psi^{2}+\psi j+y^{2}$
4. Divide $\left(a^{2}+2 a b+b^{2}\right) b y(a+b)$

In this assignment, we have learned how to perform the fundamental cperations of algebra. We have learned what negative numbers are and how to use them. We learned how to add, subtract, multiply and divide algebraic terms containing letters in place of numbers. Perhaps you have roticed that most of the problems in this assignment were exercises in handling algebraic quantities. Most of them cannot be applied directly to electronic circuits, but were presented in this assignment for the purpose of familiarizing you with the various operations of algetra.

We have now mastered all of the fundamental operations of algebra, and in a future assignment, we will apply these fundamentals in solving some very practical electronic problems.

Test Questions

Be sure to number your Answer sheet Assignment 10.
Place your Name and Associate Number on every Answer Sheet.
Send in your answers for this assignment immediately after you finish them. This uill give you the greatest possible benefit from our personal grading service.

In answering these algebra problems, show all of your work. Draw a circle around your answer. Do your work neatly and legibly.

1. Add 70, $-41,23,-21$.
2. Multipiy -63 by -27 .
3. Divide 144 by -12 .
4. If $a=2, b=3$, and $c=4$, what 1 s the numerical value of $4 a b c$?
5. Add $8 c+7 d, 9 c-3 d$.
6. Subtract $8 a+7 b$ from $17 a+17 b$.
7. Simpllfy $3(a+b+c)+4 b$.
8. Multiply $(a+3)(a-3)$.
9. $B^{3} \times B^{7}=$
10. $B^{7} \div B^{3}$

Electronics
 $+\%$ + + Radio
 Radio

 UNITED ELECTRONICS LABORATORIES
 LOUISVILLE
 KENTUCKY

ASSIGMENT II

DIRECT CURRENT MEASURING INSTRUMENTS

In 1883 Lord Kelvin wrote these words -
I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind. It may be the beginning of knowledge but you have scarcely, in your thoughts, advanced to the stage of science, whatever the matter may be.

These are certainly appropriate words for the electronics and television industry, for a great deal of the progress in the development of this industry can be traced directly to the avallability of sultable measurirg instruments.

Striking perhaps closer to home, the electronic and television technician is completely dependent upon h:s measuring instrunents, for oniy by measuring various currents, voltages, and resistances, can he determine any source of trouble. The automobile mechanic, for example, can see or feel that a certain part is worn or broken and needs replacing, but it is impossitie to tell by looking or feeling whether or not an electronfc component, such as a resistor, is acting properly. Consequently, we must measare the current 00 voltage drof in such a resistor. and perhaps its resistance value, to definitely establish the source of trouble,

There is some confusion among electronic and television technicians as to the proper name for electrical measuring equipment. An instrument has been cepined by the American Institute of Electrical Engineers as "a device for measuring the present value of the quantity under observation", whereas, a meter has been defined as "a device for measuring and registering the total sum of an electrical quant: ty with respect to time. Thus, by these delinitions, milifammeters, ammeters, voltmeters, watmeters, and similar devices measuring the current, voltage, or power at a given instant are properly called instruments, whereas, the familiar watt-hour meter, which measures the quantity of electric energy jaken over a period of time, is properly called a meter. the average electronic and television technician, however, frequently refers to any of his instrument-type test equipment as a meter, and this procedure will be followed here.

The Effects of Electricity

We have learned that an electric current is a slow progression of electrons passing a point in a circuit, with 6.28×10^{18} electrons per second constituting a current of one ampere. However, rather than count these electrons in order to measure the current, we take the easy way out and measure the effects of an electric current or voltage rather than the curreat or voltage itself.

There are a number of different eflects that an electric charge or an electric current can produce. For example, we learned in our study of dry cells and batteries that when certain chemicals were brought together, electricity was produced. Consequently, there is a connection between chemical action and electricity.

We also learned in our study of magnetism, that an electric current will produce a magnetic field; thls would be a magnetic effect.

The ordinary electric toaster or flat iron is an example which shows that electricity can produce a heating effect.

In our study of static electricity, we learned that like electric charges have a repelling effect; whereas, unlike electric charges have an attracting effect. These effects are called the electrostatic effects.

Electricity, then, under the proper conditions, will produce four entirely different effects; chemical, magnetic, heating, and electrostatic. If we measure the amount, or value, of any one of these effects, for all practical purposes we will have the same information as though we had measured the electric current or charge itself.

There are, in common use today, two basic kinds of electricity known as direct current and alternating current. In this assignment we will stucy only the instriments and meters designed to measure direct current, and then we wlll adapt some of these for alternating current in a later assignment.

Direct Current Instruments

Almost without exception, every instrument for measuring an electric charge or current consists of two parts, one movable and one stationary. The :orce which determines the amount of motion of the movable pa:t is determined by the size or amount of the electric current being measured, and, in most cases, this force is the result of a magnetic effect. Most instruments have two magnetic members, one of which must be varlable in strergth. Either of these members may take the form of a permanent magnet, a temporary or induced magnet, or a wire carrying a current.

In certain other types of instruments, the moving member is caused to move by the expansion of a plecs of wire heated by an electric current. In still another type, the moving force is brought abour, by the electrostatic attraction of two oppositely charged Dlates, one of which is free to move toward the other. But in every case, the moving member drives a pointer across a scale which can be callbrated in terms of volts or amperes.

In 1820 , Hans Christian Oersted discovered the phenomenon upon which the modern meters, which are used to measure currents, operate. He noticed that a compass needle, when placed near a wire carrying an electric current, moved from its original direction, as ahown in Figure 1. The larger the current, the greater was the deflection and large currents made the compass needle stop at nearly right angles to the wire. Also, if the current were reversed, the neadle deflection would be in the opposite direction.

The underlying principle of this instrument is the fundamental law of magnetism which we have already studied. Like magnetic poles repel. The current flowing through the wire sets up a magnetic ileld around the wire. mis magnetic field interacts with the magnetic fleld of the compass needle. Since the compass needle is free to rotate, the repulsion between its magnetic fleld and the magnetic fleld of the wire causes the compass to be dellected from north.

This was the skeleton of an instrument mechanism, but a great many improvements have been made on $1 t$.

In our atudy of magnetism, we learned that we could increase the magnetic field arourd a wire, with a given amount of current flowirg through the wire, if we wound the wire in the form of a coll. Such an instrument is shown in Figure 2. The advantage of this instrument over the crude one of Oersted's is that a smaller amcunt of current is required to produce a certaln amount of deflection of the compass needle. To illustrate this, let us assume that in 0ersted's
instrunent, a current of 10 amperes would have to be flowing through the wire to produce a 15 degree deflection of the compass needle. In the instrument of Figure 2 , one ampere of current flowing through the coil might produce this same 15 degree deflection of the compass needle. The instrument in Figure 2 is said to be more sensitive than the one in Figure 1.

The instrument illustrated in Figure 2 which is called a "tangent galvanometer", can be quite accurate when used proverly but has the disadvantage that its performance involves the earth's magnetic fleld, which varles from place to place, in both direction and magnitude. The use of this instrument is a zather complicated process, and for this reason it is used for demonstration purposes only.

The D'Arsonval Mavement

In 1888, Arsine D'Arsonval, a Frenchman, applied these same principles to a slightly different instrument. This type of instrument is called a D'Arsonval movement, and is used in almost all modern electrical instruments.

A working sketch of the D'Arsonval movement is shown in Figure 3 and a phantow-type photograph of such an instrument is shown in Figure 4. A permanent magnet of an alloy, such as tungsten steel, cobalt steel, or aluminum-nickelcobalt (alnico), produces a strong magnetic ileld, and there is mounted in this field, a coll of ine wire which is pivoted and free to move. Thus, in this instrument, the coll moves while the magnet is stationary, permitting the use $0:$ a much stronger magnetic lield than that of the earth. Again, it can be seen that the instrument operates because an electric current is passed through the turns of wire. The relative positions of the permanent magnet and the movide coll may be seen in Figures 3 and 40

Polarity of the permanent magnet is shown in Figure 3. When no current is being passed through the coil, it is held in the position shown by the two small spiral springs, one at either end of the coll. These springs also serve to conduc: the current to and from the coll.

When current is passed through the coll it becomes an electromagnet, the polarity of its field being indicated by the dotted arrow in Figure 3. The repulsion by the two N -poles and also by the two s-poles produces a rotation of the coll in a clockwise direction. The coll rotates until the actuating force of magnetic repulsi on is balanced by the restoring force of the two springs. As the coll rotates, a pointer attached to it moves up a seale. This scale may be calibrated to indicate the amount of current ilowing through the coil.

The phantom-view photograph of Figure illustrates some of the improvements in the modern instrument, compared th the basic unit illustrated in Figure 3. In Figure 4, we see that soft iron pole pleces have been added to the magnet to concentrate the magnetic ileld in the region zurrounding the coil. To increase this eifect, a cylfndrical plece of magnetic raterial has been placed inside the moving coil. This magnetic core is stationary, and does not rotate with the moring coll. The coil rotates in the small circular gap between, the pole $31 e c e s$ of the magnet and the cylindrical core. The magnetic field in this region is very strong. This makes the instrument more sensitive.

The moving coil is wound on a small aluminum frame. In addition to providing a light form on which to wind the coll, this aluminun frame acts to dampen the meter movement. Without this dampening action, the meter will
oscillate. That 1s, when a current is passed through the meter, the pointer will swing up-scale and pass the proper point. Then it will come to a stop and swing down-scale past the proder Doint, come to a stod and swing up-scale again. This back and forth action will continue, with the pointer stopping closer to the correct reading each time, until ilnally it stops on the proper point. Ariyone wishing to make a reading with the undamped meter will have to wait for it to stop "swinging around" the proder point (oscillating) before making the reading. In the damped meter, the pointer will swing more slowly and come to rest at the proper point without oscillation. This damping action occurs because the aluminum frame forms a complete loop or turn. As it moves through the magr.etic ileld, a current will be set up in the irame, and the magnetic ileld set up by this surrent will oppose the motion. This makes the pointer move mor u slcwly, and it will not swing past the proper point.

The V-shaped part which may be seen in Figure 4, directly in front of the moving coil, is the zero adjustment of the meter. As this part is moved it varies the pressure produced by the spirai sprang seen in the front of the coll in Figure 4. This will cause the pointer to move slightly about its zero position. This adjustment is made by turning the small screw which may be seen directly below the meter face in Figure 5. By turning this zero adjusting screw, the meter pointer may be made to fall exactly on zero when no current is flowing through the instrument.

Figure 5 shows a typical panel mounting meter which will measure currents ad to one milliampere.

The D'Arsonval 1nstrument can be made extremely accurate, very sensitive and reasonably rugged. Tests made at the National Bureau of Standards have shown that, aiter a hall-century of constant use and no redalrs, they still gield results within the 0.5 percent accuracy guaranteed by the manufacturer.

The sensitivity of such an instrument depends on the strength of the permanient magnet and the number of turns of wire which are put on the moving coll. Instruments have been made using more than 2000 turns of copper wire having a diameter less than one third the diameter of a human hair. Sensitivity is a measure of how small a current produces full scale reading on the mejer. Thus, a meter that gives a full scale reading when one milliampere of current is ilowing through it is ten times as sensitive as one which requires 10 milliamperes of current for full scale deflection.

So sersitive can the modern permanent-magnet moving-coll type of instrunent be made, that, in one portable type, a current of only five millionths of an ampere produces full-scale deflection on a scale approximately 6 inches in length. Ordinarily, a person with moist ilngers can drive the pointer across the scale nerely by touching the terminals. Yet, sensitive as this instrument is, it can te constructed to be very portable. Such instruments are often made in small cases with a carrying handle, and can be carrled to the equipment to be tested without damage to the instrument as long as reascnable precaution is observed in handling.

D-c meters are made with a wide varlety of sensitivities. A great majority of them are made with a sensitivity of one millampere for full scale deflection. He shall see later in this assignment that it is Dosside to use a meter to indicate a higher value of current than that for which is is designed by using shunt resistors.

The full-scale current sensitivity of other popular meters are $10 \mathrm{ma}, 500$ $\mu \mathrm{a}$. and $50 \mu \mathrm{a}$.

The moving coll in all meters is made of wire (usually copper) and, of course, has some resistance. The resistance of the coll is called the intemal resistance of the meter.

Meter Accuracy

All meters lack perfection, but for the average practical work extreme accuracy is not required, and 5% accuracy is usually satisfactory. Meter inaccuracles may be due to several causes. For one thing, the meter cannot be calibrated perfectly. The scales are printed from a drawing which is based on a typical meter of the type considered. However, not all bearings, springs, magnets, and colls are exactly alike and slight varlations in responding to the same current will result. The same current, thereiore, may give slightly different readings on several similar meters. The meter accuracy elso cepends upon errors due to the associated resistors used with the meter, and to the width of the pointer. Most responsible meter manufacturers will guarantee their products to be accurate to within plus or minus 2% when it leaves the factory, and to hold its accuracy to within plus or minus 5% with reasonable care in the pleld.

Now that we have seen how direct-current meters operate, let us learn the proper way to read a meter.

Reading a Meter

In order to obtain as accurate a reading as possible from a meter, we must be careful to place our eje directly in front of, or above the pointer. Figure 8 shows what might happen if we do not do this. Since the meter pointer is normally between one slxteenth and one eighth of an inch away from the scale, an inaccurate reading will result if we look at the meter from an angle, as 1llustrated.

Expensive, highly-accurate laboratory type measuring instruments usually have a mirror built into the scale; and to properly use such an instrument, we place our eye so that the image of the pointer in the fofror is directiy behind the pointer itself, or until we can no longer see the image of the fointer because the pointer itself is in the way.

Study the enlarged meter scale shown in Figure 7. The 0, 1, 2, 3, 4 and 5 are the numbers which would appear on the meter scale. The numbers pinted above the scale do not appear on an ordinary meter scale, but are included in the figure to ald in learning to read a meter. If various readings on this scale can be correctly read, you should have no difficulty with other meter readings.

When the pointer stops on any or the marked divisions, 1, 2, 3, 4, or 5 , the reading will simply be the printed number for that division line.

When the pointer stops on one of the small unmarked divisions, note the value of the marked divisions on either side, then figure out the value of the mark under the pointer just as you would figure out the value of one of the mariss between the inch marks on a ruler.

In Figure 7, note that there are 5 small divisions between each marked division, therefore each small division is equal to 2 tenths of one milliampere. Thus, if the pointer were to stop on the ifrst small division above the 2 , the
correct reading would be 22 ma . If the pointer were to stod on the third division above the 4 , the correct reading would be 46 ma .

If the pointer stops hall way between two small division marks, figure cut the value of the two small alvisions, then read a value half way between then. For example, if the pointer were to stop half way between the first and second smalldivisions above 1 on the meter scale shown in Figure 7, the correct reading would be 1.3 ma., since the first mark above 1 is 1.2 ma . and the second mark above 1 is 1.4 ma .

If a pointer does not fall directly on a division mark, it is entireiy adequate, in electronic work, to estimate the reading. Study the meter scale show in Figure 7 until you are satisiled that you can read the meter correctiy with the pointer at any given position on the scale.

How to Use Current Meter

If we wish to measure the current flowing in a circuit, the current meter (ammeter or milliammeter) should be connected in series with the circuit. This is illustrated in Flgure 8 . If we wish to reasure the surrent flowing in the circuit consisting of the battery and resistor shown in Flgure $B(a)$, the circuil should be broken and the meter inserted in series with the circuit. Two methods of doing this are illustrated in Figure $8(b)$ and $\theta(c)$. In either case we would obtain the same reading on the meter. Figure 8 also indicates the proper way to connect a meter regarding polarity. The (+) terminal of the meter should de connected to the side of the circuit which connects to the (+) of the source, and the (-) terminal of the meter should be connected to the side of the circui: which connects to the (-) of the supply.

Two procautions must be observed in using current indicating meters. Current indicating meters (ammeters and milliammeters) should never be connected across the source of potential. Currents higher than that for which the meter is designed should never be passed through a meter. The coll of a meter is made of small wire, and if a current greatly in excess of that for which the meter is desigred is passed through the coil, it will become hot and the wire will melt, ruining the instrument. Also, a current greatly in erress of the proper full scale current will cause the pointer to swing so hard against the right hend stop (see Figure 4) that the pointer will be bent or broken.

The ideal ammeter should have little or ro internal resistance, since it is inserted into the circuit in series, and any resistance it might have will be added to the circuit resistance, reducing the series current flowing in the circuit. For instance, let us take a practical example. Suppose we have a 2 ohm resistor connected across a 2 volt battery, as in Figure $9(a)$. orm's Law tells us that 1 ampere of current will flow in this circuit. $I=\frac{\dot{E}}{R}=\frac{2}{2}=1 \mathrm{amp}$. Now suppose we try to measure this current by inserting in the circlit an ammeter which has an internal resistance of 40 hm , as shown in Figure $\theta(\mathrm{b})$. The two resistances (the 2 ohm resistor and the 4 ohm mever) are in series anc would add up, giving us a total resistance of 6 ohms in the circuit. This would 11 mit the current flow to $1 / 3$ ampere. $R_{T}=R_{1}+R_{2}=6 \Omega \quad I=\frac{E}{R}=\frac{2}{6}=\frac{1}{3}$ amp.

The meter would indicate only $1 / 3$ ampere of current flowing in the circuit, when, without the meter in the circuit, as in Figure $\theta(a)$, there was 1 ampere of
current. This error resulted from the internal resistance of the meter. To eliminate this error, the internal resistance of the meter should be very low. A typlcal 0 to 5 ampere ammeter has an internal resistance of 0.03588 ohms. If this meter were used to measure the current in the circuit in Figure 9, the current would be just slightly less than one ampere, and as far as the reading on the meter could be determined would be one ampere.

The internal resistance of ammeters is usually only a fraction of an ohm, since ammeters are used in low resistance circuits. milliammeters and misroammeters rave higher internal resistance because the moving coll is wound of wery small wire. The higher internal resistance of these low current meters does not cause an appreciable error in the amount of current which will flow in a circuit when they are added in series, because they are usually used in circuits containing high values of resistance. To lllustrate this point, let us assume that we have a circuit similar to the one shown in Flgure $\theta(A)$, except a 2000 ohm resistor is used in place of the 2 chm one. The current which would flow would be 1 ma. ($I=\frac{E}{R}=\frac{2}{2000}=.001 \mathrm{~A}$ or 1 ma.). Now let us assume taat, as in Figure $\theta(B)$, a current meter, for example a $0-1$ ma. meter, with internal resistance of 100 ohms is added in this circuit. Under these conditions the total circuit resistance will be 2100 ohms. $\quad\left(R_{T}=R_{1}+R_{2}=2000+100=2100\right)$. The current which would flow after the meter was added would be . 00095 or .95 ma. ($I=\frac{E}{R}=\frac{2}{2100}=.00085$ a or .95 ma.). This value of current, $.85 \mathrm{ma} ., 1 \mathrm{~s}$ very close to the 1 ma. which would have been flowing in the circuit if the meter had not been added. Thus, we can say that the addition of the meter to the circuit has not upset the circuit conditions. If this same meter were to be connecied in a circuit with a 200 volt supply and a 200,000 ohm resistor, the error which results will be even less.

The internal resistance of some typical current meters are, for a $0-1$ ma. meter, 100 orms, for a $0-500$ microamneter, 200 olms. The invernal resistance of meters made by different manufacturers will not be the same. For example, the Internal resistance of a $0-1 \mathrm{ma}$. meter by one manufacturer is 100 ohms, while the Internal resistance of a $0-1 \mathrm{ma}$ meter made by another manufacturer is 70 ohms. Direct-Current Milliammetars
Direct current milliamreters are of very great importarce in electronics and television, because in this fleld the currents to be measured are often very small. This is particularly true in vacuum-tube circuits.

The ordinary cirect-current milliammeter consists essentially of a perman-ent-magret moving-coil instrument of the D'Arsonval type. In the more sensitive of these meters (those having full-scale readings of 30 milliamperes or less), the entlre current to be measured passes througn the moving-co11, and the sensitivity is controlled by the size of the wire and the number of turns. In the larger sizes of these meters (those measuring more than 30 milliamperes), only a part of the current is passed through the movement and the remainder of the current is "shunted", or by-passed, around 1t. A shunt is merely a resistor of the proper low value placed in parallel with the meter novement. The proper design of these shunts is very important to the radio and television technician, for this knowledge will enable him to use the same basic instrument to measure à
wide range of currents.
To understand the action of a shunt resistor, study Figure 10(a).
This circuit consists of a battery, resistor R, two milliameters H_{1} and M_{2}, and a shunt resistor R_{s}. Resistor R_{S} is called a shunt resistor since it is connected in parallel with the meter $M_{Z^{\prime}}$ and shunts Dant of the current arounc M_{2}. In the circuit, notice that the total current flowing is 10 ma as indicatec by M_{1}. Bowever, only 1 ma. of current is passing through M_{2}. The other 9 ma.of current is being shunted around M_{2} by the resistor R_{s}. To state this in another way; nine times as much current flows through the shunt resistor as through the meter M_{2}

Notice that the current flowing through M_{1} is 10 man while the current flowing through M_{2} is only 1 ma . If the combination of R_{s} and M_{2} were to be connected in another circuit, as shown in Figure 10 (b), and one ma of current is indicated on the meter, then we would know that the total current flowing in the circuit is 10 ma . (One ma.through M_{2} and nine times as much or θ ma. through the shunt resistor.) M_{2} could be a 0 to 1 ma.meter, and used in this fashion, it indicates that 10 ma . of current is flowing in the circuit when it reads 1 ma . The range of the 0 to 1 ma.meter, when used with the shunt resistor R_{S}, is 0 to 10 ma . If the meter indicates .5 ma . of current, then the total current would be $.5 \times 10$ or 5 ma . Likewise, a reading of 2 ma .indicates a total current of 2 ma . in the circuit under test. A current of .2 ma.flows through the meter and 1.8 ma.flows through R_{s}.

Let us appls our knowledge of Ohn's Law to find the ohmic walue of R_{s} requirec to increase the range of the 0 to 1 ma.meter in Fisure 10 to a 0 to 10 ma . meter. Let us assume that we know that the internal resistance of M_{2} is 100 ohms. Examine Figure $10(a)$ again. R_{s} and M_{2} are in Darallel. The cursent flowing through M_{2} is 1 ma . Its internal resistance is 100 ohms. We can apply Ohn's Law and ind the voltage drod across M_{2}

```
E = I x R
E=.001\times100 (the current through the meter times
    the meter resistance.)
```

E = . 1 volt

The voltage across the neter is.1 volt. The meter and the shurt resistor are in Darallel, therefore, they have the same voltage drod across them. Thus, there is a . 1 volt drod across the shunt resistor R_{s}. Figure 10(a) shows that the current through R_{s} is 9 ma. when the current through M_{2} is 1 ma., so we have all we need to ind the resistance of R_{S}. We know the voltage across it, and the current through it. Let us put these values in Ohm's Law.

$$
R_{S}=\frac{E_{S}}{I_{S}}=\frac{.1}{.009} \quad \begin{aligned}
& \text { (Remember current must be in amperes, so } \\
& \text { we change } 9 \text { ma to } .009 \text { amperes.) }
\end{aligned}
$$

$R_{s}=11.1$ ohms.
Thus, we find that if we connect a shunt resistor of $1 . .1$ ohms across the 0 to 1 ma . meter with internal resistance of 100 ofms, we will increase the rarge of the meter to 0 to 10 ma .

As an esample lllustrating the practicality of shunt resistors, suppose we find that we cannot afford to purchase a wide assortment of meters, but decide to purchase a 0 to 1 milliammeter movement and shunt it for the varlous currents we want to measure. We decide that if we have a meter which, by means of a Assignment 11
switching arrangement, has full-scale ranges of $1 \mathrm{ma},. 5 \mathrm{ma}$. and $25 \mathrm{ma.}$, will be sufficient. Since the greatest sensitivity needed is 1 ma., we should buy a 1 ma. movement and shunt $1 t$ for the larger current ranges. The milliamme ier which we obtain has an internal resistance of 105 ohns, so the problem is to design shunts for the 5 ma . and the 25 ma . ranges.

The first thing to do in any problem of this type is to draw a diagram of the circuit, and indicate on it all the known quantities. This has been done in Figure 11, where I_{T} is the total full-scale current to be measured, I_{M} is the full-scale current through the meter (1 ma . for a 1 ma . meter, etc.), and I_{S} is the current to be by-passed by the shunt. R_{M} is the meter resistance (in this case, 105 ohms) and R_{8} is the resistance of the shunt which we want to find. We see that our circuit is a simple parallel resistance circuit, and, for the E ma. range, I_{T} (the total current) would be $5 \mathrm{ma}, I_{M}$ (the carrent through the meter) would be 1 ma , and I_{S} (the current through the shunt) would be the difference between the total current and the current through the meter. In this case I_{g} would be 4 ma . (5-1 = 4).

Since the voltages are the same across each branch of a parallel circuit, if we find the voltage across the meter branch, we will have the voltage across the shunt branch. Ohm's Law says that the voltage is equal to the current (In amperes) times the resistance (in okms). To find the voltage across the weter, we substitute the known vaiues in this formula.
$\mathrm{E}_{\mathrm{m}}=\mathrm{Im}_{\mathrm{m}} \times \mathrm{R}_{\mathrm{m}}$
$\mathrm{E}_{\mathrm{pa}=}=.001 \times 105$ (Remember that only 1 ma. flows through the meter.)
$E_{m}=0.105$
The voltage drop across the meter is .105 volt when a full scale current of 1 ma. is flowing through it. The shunt resistor is connected in parallel with the neter, so it has the same voltage drod across it, or . 105 volt. We know that the current through the shunt should be 4 me , or . 004 amp .

Since we know the voltage and the current, we can find the resistence.
$R_{s}=\frac{E_{s}}{I_{8}}$
$R_{s}=\frac{.105}{.004}=20,250$ hans.
Therefore, if we Dlaced a resistance of 26. 2 ohns in parallel with our 106 ohm, 1 ma. meter, and caused 5 ma . to go through the combination, 1 ma . would go through the meter and 4 ma . would be shunted around 1 t . Likewise, if we caused only half as much current to go through the combination, only half as much current would go through each branch and the meter would read only half-scale. This could be marked 2.5 ma. on the meter scale. If we caused one-fifth as much current to go through the cambination, only one-fifth as much current would go through each branch and the meter would read onefifth scale. This could be marked $1 / 5$ of 5 or 1 ma . on the meter scale, and so on.

We can determine the resistance of the shunt for the 25 ma . range in the same manner. In this case I_{T} (the total current) would equal 25 ma . and I_{S} (the current through the shunt) would be 24 ma . since, with the same 1 ma. meter, I_{M} (the full scale current through the meter) would remain 1 ma . The voltage drod across the meter when full scale current of 1 ma. flows through the meter
is the same as in the previous example, since the current and resistance are the same (.105V). The voltage drop across the shunt would still be 0.105 volt. since the current through the shunt 1 s now 24 ma . or 0.024 ampere, the resistance of the shunt will be $R_{8}=\frac{E_{8}}{I_{s}}=\frac{0.105}{0.024}=4.376$ ohms

If we connect a 4.375 orms resistor in parallel with the meter, there will be a total of 25 ma of current flowing in the circuit when 1 ma ie passing through the meter. Therefore, we could dut a scale on the meter which reads 25 ma. For full scale deflection; 12.5 ma. for $\frac{1}{2}$ acale deflection, otc.

Of course we do not need a ahunt for the 1 ma.range of our meter since we are using a $0-1$ ma teter.

By using a switch to connect the shunts across the meter as desired, we have a mill lammeter with three ranges; $1 \mathrm{ma} ., 5 \mathrm{na}$. and 25 ma . The complate circuit is shown in Figure 12

Hith the switch in Figure 12 in the position shown, the 86.25 ohm shunt is connected in parallel with the meter, anc a full scale reading on the meter wouid indicate 5 ma of current flowing in the external circuit. then the switch is turned to the 25 ma position, the 4.375 ohm shunt is connected across the meter, and a full scale deflection on the meter indicates 25 ma of cursent flowing in the external circuit. Whan the switch is turned to the 1 ma position, there is no shunt across the meter and a full scale reading of the meter would indicate 1 ma. of current flowing in the external circuit. This same method may be used to find the value of the shunt resistors for any meter.

To find the value of shunt resistors, it is only necessary to know the internal realstance of the meter, the full scale current of the meter, and the desired full scale indication.

It is not possible to increase the sensitivity of a meter. For example, it is not possible to shunt a 0 to 1 ma meter so that a full scale deflection can be obtained with less than one ma. of current flowing in the external circuit. This is because 1 ma. of current must flow through the moving coll to produce the necessary magnetic ileld to move the pointar to full scale.

We have seen how we could use one milliermeter, and by employing the proper value of shunt resistors use this one meter to read a wide range of currents. It is also possible to use a milliammeter to indicate a wide range of roltage values.

-C Voltmeters

If had a to 1 ma milliammeter with an internal resistance of 100 ohms, the voltage drod across it for full-scale deflection would be $E=I R=0.0 C 1$ $x 100=0.100$ volt, or 100 millivolts. Such being the case, the scale of the milliammeter could be divided into millivolts instead of milliamperes, and the milliammeter would then become a millivoltmeter. Thus, mechanically and electrically, thereis no difference between a milifoltweter and a milliameter.

Pull scale reading on this meter would be 100 mx , half scale reading 50 파, one fourth acale reading 25 mv , etc.

We have just seen how a milliammeter could be used to measure small voltages, and was then called a millivoltmeter. In the example given, a voltage of 100 millivolts applied to the meter would cause exactly one millampere of
current to flow through the 100 ohm internal resistance of the instrument. This current meter may be used to measure voltages up to 100 mv . or $1 / 10$ of a volt. An applied voltage of 50 mb . or $1 / 20$ of a volt will cause the current to be only 1/2 of a milliampere, and the meter pointer will only move to the center of the scale. However, the voltages we will wish to measure in most radio and television circuits will be between 1 volt and several thcusand volts, so we will need some way to extend the range of this millivoltmeter.

We will first consider how to make this meter read up to 10 volts at maximun deflection. If the meter can be made to do this, we will also be able to read other voltages which are less than 10 volts. Suppose we now connect a resistor in series with the meter as shown in Figure 13 . Notice that we connect the resistor in series with the meter, rather than in parallel with it as we did in the case of the ammeter. How large should this resistor be, so that when we are measuring a voltage of 10 volts, the meter pointer will move only to 1 ts extreme right hand position, but not beyond? For a full scale deflection of the meter, there must be a . 1 volt drop across the meter. since we have 20 volta, the difference, or $9 . \theta$ volts, must be dropped in the resistor. Since we are using a 0 to 1 ma instrument, the current in the circuit must be 1 ma , when the needle shows full-scale deflection. Since the resistor and meter are in series, this lma. of current will also flow through the resistor. The serles resistence, R_{s}, is equal to the voltage aropped in $1 t$, divided by the current through it, or $R_{s}=\frac{I_{s}}{I_{s}}=9.9 / 0.001=9,900$ ohns. The series'resistor used with a milliammeter to make a voltmeter is called a multiplier resistor.

By connecting a resistor of 9800 ohms in series with the millianmeter, we have made a voltmeter which will indicate that the total voltage applied to the circuit is 10 volts, when the meter pointer noves to a full scale position. Also, a half scale reading of the meter indicates 5 volts applied, and a $1 / 10$ scale reading indicates 1 volt applied. Since a 10,000 ohm resistor will represent an error of only one percent, we would use this size multiplier resistor in a practical circuit.

To provide a group of voltage scales, the same procedure of calculation would be employed. For exsmple, for a 50 volt range, the multiplier resiator will be found to be 49,900 oms. This is calculated in the following manner. The voltage drop across the meter would be l/no volt for full-scale deflection. This leaves 49.9 volts to be dropped across the multiplier resistor. The current through the resistor will be 1 ma.

Applying Onm's Law we have: $R_{S}=\frac{E_{S}}{I_{S}}=\frac{49.9}{0.001}=49,800$ ohms. In a practical circuit we would use a 50,000 ohn resistor.

For a 100 volt range, the voltage drop across the multiplier resistor would be 99.9 volts. The resistance would be found to be 99,000 ohms $\left(R=\frac{E}{I}=\frac{99 . E}{.001}=\right.$ 98 900).

For a 500 volt range, we could employ the same method, and ind that the proper vaiue of multiplier resistor would be 499,900 ohms. (500,000 would be used.) A selector switch could be used to choose between these various ranges, giving us a circuit as illustrated in Figure 14.

Using the procedure followed above, it is possible to convert any milllammeter to a voltmeter of any desired range higher than that of the instrument alone. We do not have to conifine ourselves to a 0 to 1 ma. meter to do this. $A O$ to 2 ma or 0 to 10 ma meter could be used just es easily as far as our computations are concerned. To illustrate this point, let us find the value of the multiplier resistor required to convert a 2 ma . meter with an internal resistance of 70 ohms into a voltmeter with a full scale reading of 15 volts.

When 2 ma . is flowing through the meter, the pointer will be deflected full acale. The voltage drod across the meter with this current can be found by Ohn's law. $\mathrm{F}_{\mathrm{m}}=\mathrm{I}_{\mathrm{m}} \times \mathrm{R}_{\text {m }}=.002 \times 70=0.140$ volt. This leaves 14.86 volts to be dropped across the multiplier resistor (15-.14-14.86). We know the voltage drod across the multiplier resistor (14.88 V) and the current through it
(2 ma.). To find the resistance we apply ohm's Law. $R=\frac{E}{I}=\frac{14.88}{.002}=7430 \mathrm{omms}$.
The circuit is shown in Figure 16 .
The sensitivity of a voltmeter is expressed in "ohms per volt" and is squal to the total resistance of the meter and series resistor divided by the number of volts indicated at full-scale dellection. For example, if a 0 to 10 volt voltmeter has a combined resistance of 10,000 ohms, the sensitivity would be 1000 ohnes per volt, $\left(\frac{10,000}{10}\right)$. From Ohm's Law we would ind that the instrument requires 1 ma. of current for full scale deflection ($I=\frac{\Sigma}{R}=\frac{10}{10,000}=.001$ a.). In a similar manner, if a 0 to 10 volt voltmeter hac a total resistance of but 1,000 ohms, the sensitivity would be 100 ohms der volt and it would require 10 me . to move the needle to full scale deflection. This shows that the higher the resistance of the voltmeter for any given range, the greater the sensitivity. For measuring voltages of circults where very small currents only can be taken from the circuit, voltmaters having a sensitivity of 20,000 ohms per volt are popular.

In all cases, a volmeter should beconnected across the source of potential. one precaution should be observed in using a voltmeter, and that is to make sure that a voltage is never applied which is higher than the full scale voltage of the range in use. For exampie, if an unknown voltage is to be meastred, it is advisable to ilrst use the highest volmeter scale to ind the approximate voltage, and then to use a range which will give a reading near the center of the scale.

When using a volmeter, the + terminal of the meter should be connected to the + side of the voltage uncer test, and the - side of the meter to the - side of the appled voltage.

The HIgh Reslstance Ohmmeter

A milliameter may also be used to measure the value in omms of a resistance. If we were to take the 0 to 1 pa., 100 ohm, mlllianmeter we have been ueing and connect it in series with a $4 \frac{1}{2}$ volt battery and a 4400 ohm resistance, we would heve the circuit shown in Figure 16. If we ignore the resistance of the wires and the internal resistance of the battery, the total resistance of the circuit will be 4,500 ohms, which is the sum of the meter resistance and tian ilred resistor. A $4 \frac{1}{2}$ volt battery in this circuit would make the current in this circuit equal to 0.001 ampere or 1 ma ., and this current would cause the meter pointer to stop at the extreme right hand position of the scale. ($I=\frac{\mathrm{e}}{\mathrm{R}}=$ $\frac{4.5}{4500}=.001$ ampere.)

If we were to change the circuit of Figure 16 by breaking the serles circuit at some doint and putting terminals at each and of the wire at this break,
we would have the circuit of Figure 17. We can connect two wires known as "test leads" at these two terminals. If these two terminals were shorted, that is, connected together with a short plece of wire having almost no resistance, the meter pointer will swing to the right end of the scale. Since, for all practical purposes, the wire which is connected between the test lead terminals, has zero resistance, we could mark this point on the extreme right hand end of the scale 0\%. An ohmeter scale is shown in Figure 18. Now let us leave these terminals open by removing the shorting plece of wire. Under these conditions we are actually measuring the resistance of the alr between the terminals, but since this resistance is very high, running into many millions of ohms, we may consider it infinite (the greatest possible yawn). The symbol ∞ (an eight lying on 1 tis side) represents inflalty, and since the pointer in this case will be all the way to the left, its normal position, we can mark this point infinity. (See Figure 18). If, now, we were to measure a resistor having a resistance or exactly 4,500 ohms by connecting it between the terminals of Figure 17, the total serles resistance of the circuit would be 9000 ohms. $\quad(4500+100+4400=$ 9000). The current would be reduced to Just half of its full scale value, or $\frac{1}{2}$ ma. Thus, the . 5 ma point on the meter scale could be marked "4, 500 ohms", since the resistance connected between the test leads is 4500 ohms. Likewise, if we were to measure the resistance of a 1,000 ohm resistor by placing it between the test leads or terminals, we would have a total circuit series resistance of 5,500 ohns. (The 4,500 ohms of the meter and serles resistor plus the 1000 okm resistor under test.) Since the battery has a voltage of $4 \frac{1}{2}$ volts, the current in the circuit and through the meter will be $\frac{4.5}{5,500}$ or 0.00002^{2} amperes or 0.82 ma . We can, therefore, mark 1000 ohms on our meter scale at this point. (Notice that the scale is callbrated in resistance between the test leads.) any number of other points can be obtained in the same way. Several more points are shown in Figure 18.

An ohmeter scale is spread out at the right for low resistance values and is very congested at the left for extremely high resistance values. An ohmmeter, such as that of Figure 18 , can be used to measure resistances up to about 500,000 okns; after that the total space of the scale remaining before the infinity mark, is so small that no accurate reading is possible. To read higher resistance values with some degree of accuracy, the meter movement must be very sensitive or else a nigher voltage (series battery and ilied serles resistor) must be used. For example, an ohnmeter of the type of Figure 17 can be made to read 46,000 ohms in the center (with correspondingly higher readings at the left) if the series resistance is nade equal to 45,000 ohms and a 45 -volt Dattery is used.

In most practical ommeters, the meter resistance is so low compared to the series resistor, that its value is ignored. Besides, this series resistor is usually made variable in order to permit adjustment to be made for the varying output voltage of the battery due to its age, and then it is easy enough to compensate for the meter resistance.

After the scale of a meter has been calibrated in ohms, it is a very simple matter to read the obmic value of a resistor directly from the meter scale. All that has to be done is to connect the resistor between the test leads and read
the resistance value directly on the calibrated scale. In commercial onmmeters, the battery, and series resistor (part of which is variable) are located inslide the wooden or plastic case.

Multimeters

Since it is possibie to use a single milliammeter in conjunction with sultable resistors and batteries, to read current, voltage, and resistance, most test instruments are manuiactured as multimeters.

In these multi-meters, some sort of switching arrangement is ppovided so that the single milliameter can be used to read several values of current, voltage, and resistance.

Figure 19 shows a multimeter circult which uses three current ranges similar to Figure 12, the voltmeter section shown in Figure 14, and the ohmmeter shown in Figure 17.

To use this meter to read current, one 0 : the test leads would be connected to the terminal marked "common" and the other test lead connected to the te-minal marked Ma". The desired current range can be selected by turning the current range switch to the desired position.

To use the voltmeter section of this meter, one of the test leads should ba connectec to the terminal marked "common", and the other to the terminal rarked volts". The voltage range selector switch is rotated to obtain the desired range. The ma. switch would have to be in the 1 ma . position to use either the voltage or resistance ranges of the meter.

To measure resistance with this meter, one of the test leads should be con* nected to the terminal marked "cammon", and the other to the terminal marked "Oims".

In the meter shown in Figure 19, two rotary selector switches are shown. In many meters, these two switches will be combined, and controlled by one shaft. Typlcal Comercial Multimeters
Flgure 20 is a photograph of a typical pocket-sized volt-ohm-millianmeter Which is almost a necessity for electronic and television service work. A unit similar tc this will be supplied jou, to build and use throughout this training program. Notice in the illustration, that the meter incorporates scales for readiag varlous values of voltage, current in milliamperes, and resistance in ohms. This meter scale has been re-drawn in Figure 21 for greater clarity. The rotary switch, used for the selection of the scale to be emplojed, is marked with the multiplication factor and an indication as to whether it is related to voltage, current, or resistance. Let us suppose that we are measuring voltage and our knowledge of the circuit and our previous experience leads us to belleve that we might expect to find a d-c voltage of about 45 volts. We would turn the rotary switch to the 75 V. D. C. "position and connect the test leads from the two terminals in the meter to the source of voltage. If there is a d-c voltage present which has a value between 0 and 75 valts, the pointer will indicate somewhere on the scale. Cur next problem is to read this exact voltage.

The first thing to do is to look at the extreme right row of numbers of the scales of the meter and ind the number which goes into 75 , once, or ten times, or a hundred times. The number in this case is 76. Read the values indicated by the pointer, by making reference to this middle lower scale (the one that has numbers $0,25,50$ and 75). Since we have assumed that the voltage we are regding is 45 volts, the meter pointer will stop just to the left of the "b0" on the scale. Since this is between "25" and "60", we know that our unknown voltage

11 es between 25 volts and 50 volts, and also closer to 50 volts than to 25 volts. Notice that there are 10 small marks between 25 and 50 . Since this part of the scale represents 25 volts, each of these marks would represent $25 / 10$ or 2.5 volts. If our pointer were to rest on the second mark to the left of the 50 volt mark, we would read this as 45 volts; if it were to rest an the lirse mark to the left of the 50 volt mark, we would read it as $47 \frac{1}{2}$, if it were to rest on the ilrst mark to the right of the 50 volt mark, we would read it as $52 \frac{1}{2}$ volts; and so on.

Suppose we wanted to use this meter to check a voltage which was supposed to be about 350 volts d.c. Looking over the positions and ranges available on the rotor switch, we see one marked ${ }^{300}$ V. D.C." and one marked " 1500 V. E.C.". Obviously the one marked " 300 V. D.C." will not be satisfactory, so we turn the switch to the 1500 volt range and connect our test leads to the voltage source. Nert we look for the proper set of numbers on the scale, but we do not find a set ending in 1500. However, we do ind a set ending in it and it is a simple matter to mentally add two zeros to whatever reading we obtain on this scale. Notice that there is a basic difference of 5 volts for each ten divisions, so each division would represent a reading of . 5 volts on the 15 volt range and 50 volts on the 1500 volt range. If our unknown voltage source has a voltage of 350 volts, the pointer will stod 3 divisions to the left of the 5 volt mark on the scale, and we would read this as 350 volts.

Notice that if we wish to measure a-c voltages with this multimeter, we would read them on the center scale rather than the lower scale, but everytning else would remain the same.

There are two ranges of resistance on this meter, an "R \mathbf{x} " range, and an "R 100 range. If we were measuring a 50 ohm resistor, we would turn the switch to the "R I 1" range and touch the test leads together. If the test leads are shorted together, we would, of course, be maasuring zero resistance and the meter pointer should read on or near a, at the extreme right hand side of the top or ohms scale. If the pointer does not stop at exactly zero, we can turn the "adj. orms" knob below the selector switch until it does, and then our meter will be properly adjusted for resistance readings on this scale. In doing this, we vary the size of the series resistor to compensate for the aging of the battery. We can now connect the test. leads across the unknown resistor, and if this resistor has a resistance value between 0 and 10,000 ohms, the pointer will indicate this value directly. Notice how hard it is to accurately read the values at the extreme left end of the scale. To read resistances higier than 1.000 ohms (1M), we would probably go to the ${ }^{2} \mathrm{R} 900 \mathrm{Mcale}$ sagain, we would have to "zero" the meter by the "adj. ohms" knob with the test leads shortec before making a reading. Suppose we want to measure a 4,500 ohm resistor. We would zero the meter with the switch in the "R 100 " position and connect the test leads to the resistor. The pointer will stop at the 45 chm line on the ohms scale of the instrument, and we would multiply this 45 ohms reading by 100 . to get the 4,500 ohm, correct reading.

This meter has two d-c milliampere ranges, 0 to 15 ma . and 0 to 150 ma . To read current, the selector switch should be rotated to the desired range and the reading taken using the bottom scale on the meter.

Figure 22 shows the schematic diagram of the meter shown in Figure 20. The
symbol marked "rectifier" is the symbol for a device which has the property of changing a-c current to d-c current. We have said that the d'Arsonval instmment will operate only on direct current, so to measure a-c voltages we must change the a-c to d-c. We will study a-c meters in another assignment in this tmaining program.

Summary

This assignment has presented a large amount of information about © C meters. It has explained the fundamentals of operation of the almost universally
 the principle of the opposing forces of two magnetic flelds. One of these flelds is produced by a permanent magnet and the other fleld $1 s$ produced by the current flowing through the turns of wire in a coll which is pivoted between the poles of the permanent magnet.

It has also pointed out that it is possible to use a current meter to indicate higher values of current than that for which it is desinged by using shunt resistors of the proper value connected in parallel with the meter. Likewise, it is possible to use a current meter to read voltage by using a multiplier resistor in series with the meter. Resistance values can be read by using a battery and series resistance in conjunction with the meter.

It has been demonstrated that it is possible to use one meter, in conjunction with a suitable switching arrangement, resistances, and batteries to form a muitimeter. Multimeters are sometimes called volt-ohm-milliammeters, since they will perform the functions of each of these meters. Since only one meter movement is used in a multimeter, such an instrument is much cheaper than Individual meters for each use would be.

We heve also learned to read the scales of a meter and how to estimate the reading if the pointer does not fall directly on a calibrated division, and What scale to use on a multimeter.

Multimeters are used very widely in the testing and repairing of electronic and television equipment, and for this reason, a technician should have a thorough knowledge of the principles of the operation of a multimeter.

In the next assignment, we will study the subject of resistance in detail, and will learn other ways of measuring resistance.

Tost Questions

Be sure to number your Answer sheet Assignment 11. Place your Name and Associate Number on every Answer Sheet. Send in your answers for this assignment immediately after you finish them. This will give you the greatest possible benefit from our persanal grading service.

1. What are three effects of electricity?

2 What two things do the sDiral springs in a D'Arsonval meter do?
3. Should a milliammeter be connected in series with a circuit, or across the voltage source?
4. What will happen if too large a current is passed through the coll of a D'Arsonval type meter?
5. The movement of the pointer in a D'Arsonval meter depends upan the action or two magnetic ilelds. Where are these two ilelds obtained?
8. Is the shunt resistor, which is used to increase the current range of a milliammeter, connected in series with the meter, or in parallel with the neter?
7. Is the voltmeter multiplier resistor, which is used to increase the rarge of a c-c millivoltmeter, conrected in series or in parallel with the meter?
8. On the type of ohmmeter discussed in this assignment, is the 0 ohms point an the scale at the left end or the right end?
9. If one is to obtain a correct resistance reading, there must be a variable series resistor (zero adjust) in the ohmmeter circuit. Why?
10. Draw the schematic diagrams for the following meters:
(a) Millianmeter with shunt resistor.
(b) Voltmeter with multidiler resistor.
(c) ormmeter.

FIGNRE 14

FIGPE 20

FIOURE 19

FIGURE 21

LOUISVILLE
 KENTUCKY

ASSIGMENT 12

COMOUCTORS AND RESISTORS

We have seen in the preceeding assignments that even the best elecirical conductors, such as silver and copper, have some opposition to the flow of an electric current. This odposition is termed the resistance of the componer.t or circuit. It was also pointed out, that there is no clear dividing line between conductors, resistors, and insulators. of ccurse, conductors wili usualiy be found to have very low resistance; but what might be classed as a resistance in one circuit, might be an insulator in another. For example, it is not at all unusual to ind resistors in vacuum tube circuits having a resistance of 10 million ohms; whereas, a component with that $h 1 g h$ a resistance value would be considered to be an insulator in the commercial power circuits supplying electricity to homes. Thus, conductors, resistors, and insulators differ in degree onily; the same basic laws of electric current flow apply to each. It is thought that the atoms of good conductors hold on to their electrons more loosely than the atoms of resistors hold on to their electrons; and the atoms of gooc insulators hold on to their electrons very tightly. This will account, at least in an elamentary way, for the low resistance of conductors, the ligher resistance of resistors, and the very high resistance of insulators.

Resistance of WIre Conductors
There are several iactors which will effect the resistance of a wire conductor. The ilrst of these factors, which we will discuss, is the material ci which the wire is camposed.

If we wished to use a wire with the smallest possible amount of resistance for a given size and length of wire, we would use wire made of silver. This is because sllver is the best conductor of electelcity known, and therefore, has the least resistarce. Bince sllver is a rare metal, it is expensive and therefore is rarely used as a conductor. Instead, a compromise between conductivity and expense is affected, and copper is used. Copper is almost as good a conductor as sllver, and of course is much cheaper. CoDper has other destrable features as far as wire manufacturing is concerned, since it can be "arawn" into the proper size and shape quite easily.

Another material which is sometimes used as a conductor is aluminum. This material is sometimes used because of its lightness in woight.

To compare the conductivity of these three materials, let us assume that we have a plece of silver wire, a plece of copper wire, and a plece of aluminum wire, all of identical size and length. If the plece of silver wire thas 1 hm resistance, we will find that the plece of codper wire will have apprcximately 1.06 ohms of resistence, and the plece of aluminum wire will have 1.75 ohms of resistance.

Another factor which effects the resistance of a plece of wire is the length of the wire.

If a plece of wire has some definite resistance, it stands to reason that a plece of the same wire twice as long, should have twice as much resistance. A plece of wire may be compared to a water pipe. Any pipe has opposition to the passage of water, but if the dipe should be twice as long, this opposition will be doubled. If a plece of wire one foot long has one ohm resistance, then 1000
feet of this same wire will have 1000 ohms of resistance.
Another factor which afiects the resistance of a wire is 1 ts crcss-sectional area. If you cut a plece of wire with a shard tool, and looked at it "end-on", you would see a cross-section of the wire. Since most wire is round, the crosssection of the wire will be a circle. It can be seen easily, that if the area of this cross-section is increased, a larger path will be provided for the movement of the electrons which make up the electric current. In other wards, the larger the wire, the less the resistance. The cross-sectional area is siodortional to the square of the diameter of the wire. Thus, if we double the liameter of a wire, the cross-sectional area will be increased four times, and the resistance will be one fourth.

Another factor which affects the resistance of a conductor is the temperature. All pure metals will increase in resistance as the temperature of the netal increases. This property is called positive temperature coefficient. In metals, this increase in resistance is about . 4% per degree centigrade increase in temperature. For example, if the resistance of the fllament of a light bulb is 20 ohms, when the bulb is not lighted, this resistance will inerease to jerhaps as much as 40 ohms, when this illament is connected to an electrical circuit and heated to incandescence.

Carbon, which is not a metal, has a negative temperature coefficient. That is, as the temperature increases, its resistance decreases.

Thus, we see that there are four factors which affect the resistance of a conductor, namely; material, length, cross-sectional area, and temperature. Wire sizes
We would find it rather inconvenient to say that we were using a wire with a diameter of 403 ten thousandths of an inch, or 3198 hundred thousandths of an inch. For this reason, wire sizes have been assigned numbers.

There have been quite a few different systems for numbering wire, but the Brown and Shard (B \& S) Gauge is the most common one in use in this country and will be the one discussed here.

The Copper Wire Table at the end of this assignment will give you all the information you will ever need about the various sizes of wire which are in common use. Notice that there are eight columns, the first one at the left being marked "Qauge No." This is the number we mean when we talk about a number 20 or a number 38 wire. These numbers start at 0000 and end at 40 , the larger the number, the smaller the wire. The second column from the left is the diameter in mils, which is the diameter of the wire in thousandths of an inch. This term "mils" is easy to remember, since it stands for milli-inch, which we know would mean thousandths of an inch. It is much simpler to say tha: a wire, No. 20 for example, has a dlameter of 31.98 mlls , than to say it 1 s 31.96 thousandths of an inch in diameter.

The next column gives the cross-sectional area of the wire in circular mils. This is obtained by merely squaring the diameter in mils.

The fourth column shows the weight in pounds per 1,000 feet of the wire, without insulation.

The fifth column is very much like the fourth, but is turned around and gives the number of feet in a pound of the bare wire.

The last three columns ilst the resistance of the various sizes of pure
codper wire in number of "Ohms per Foot", number of "Feet per ohm", and number of "Ohms per pound".

To use the wire table, you read down the left hand column to the size or geuge number you are interested 1 n , and then read across to the right to determine the proper value. For example, suppose we wanted to find the resistance per foot 0 i B \& S Gaige No. 18 hook up wire. This is usually called "mmber 18 ". Gcing down the left hand column to 18, and reading across to the proper column, we learn that it has a resistance of 0.006374 ohms per foot. We could also determine that this wire has a diameter of 40.3 mils , a cross-sectional area of 1824 circular mills, welghs 4.92 pounds per 1000 feet, and it would take nearly 157 feet of it to have a resistance of 1 ohm . A table of this type eliminates all calculations and makes available all of the conmonly used information for the ordinary sizes of copper wire.

There are many different uses for such a table. For example, suppose you had a roll of wire and wanted to know how many feet of wire it contained. It would be quite a job to unroll it and measure 1 t . Instead, you could weight it, and then, turning to the table, determine the number of feet per pound for this size wire. All you need do then, is to multiply this number by the weight of the roll of wire, and you would have a very close approximation of its length.

Suppose someone asked you how many number 24 wires it takes to equal one number 9 wire. You can use the table to determine the circular mil crosssectional area of the number 9 wire, which $1 \mathrm{~s} 13,000$. Then doing the same thing for the number 24 wire, we have 404. Dividing 13,090 by 404 gives 32 and a fracticn. Thus, approximately thir:y two No. 24 wires would be needed to replace one No. 8 wire.

Possibly, you are wondering how wire can be measured accurately when there is but a few thousandths of an inch difference in the diameter of various sizes. This is usually done with a wire gauge. These wire gauges are made in two popular designs. One is circular in shape and has a ring of holes drilled around the outside. The size of each hole corresponds to a wire gauge number. To measure a. Diece of wire with this gauge, you remove the insulation, ard then ind the smallest hole the wire will go through. The number corresponding to this hole is the wire size.

The other type of wire gauge has a "V" shaped slot in it and at the prope: place on the "V", the sizes are marked. With this gauge, the bare wire is pulled down in the slot as far as it will go without forcing $1 t$, and the mark nearest it will give the size of the wire.

Stranded Wires

The B \& S Wire Gauge applies to solid copper wires which, ingeneral, are usec for all permanent circuits. Solid copper, especially in the larger sizes, is not very ilezible, so when it is desired to use the conductor in portable or moveable circuits, some other type of wire must be used. In order to obtain the necessary flexibility, yet have a proper size wire to carry the current, it is customary to make up a conductor of a number of smaller sol id copper wires. These smaller size wires are more flexible and by combining a sufficient number of them into a cable, the resistance will be low. This is known as a stranded wire.

These smaller wires are twisted together, somewhat like the threads in a plece of string, and therefore, eachwill carry a part of the total current in the
circuit in which they are connected. For example, the attachment cord for the average radio receiver is called a No . 18 stranded wire, although it is actually made of sixteen N. 30 copper wires to provide the necessary flexibility.

By referring to the wire table, you will see that a No. 30 wire has a cross-sectional area of 100.5 circular mils, and that a No. 18 wire has an area of 1824 circular mils. To find the total cross-sectional area of the sixteen No. 30 wires, we multiply 16 times 100.5 and obtalri 1608 circular mils. This is very nearly equal to the 1624 circular mil area of the No. 18 wire. Most strended conductors employ No. 30 wires, and their number is varied to approximate the area of differert sizes of solld wire. For ezample, No. 14 stranded wire $1 s$ made up of 41 , No. 30 wires, and No. 20 stranded wire is made up of 10 , No. 30 wires.

For some uses, wire with greater flexibility than that of standard stranded wire is desirable. An example of this would be the wire used for test leads on most test instruments. It is desirable to have this wire very flezible. For this purpose, special flexible wire, Gauge No. 20 is made. This wire is composed of 41 strands of No. 38 wire. Flexible wire $1 s$ made in several sizes fon different uses.

Insulation for Wire

In many electronics and television applications, copper wire is wound on forms and spools, to form colls of various sizes and shapes. In most cases, the turrs of the colls are wound tightly together and therefore the wire must be insulated. If the different turns actually touch, or make contact with each other, the electrical current would follow the shorter path from one turn to the next Instead of passing through the entire length of the wire. Because a concition of this kind provides a shorter path for the current, we call it a "short circuit" or "short"; and to prevent this from happening, we put insulation on the wire.

The insulation on the type of wire used for coll windings is mainly of three materials: Enamel, silk, and cotton. For the first of these, the bare copper wire is run through a bath of special varn:sh, to apply a thin coat o: insulation on lis outer surface. This coating is known as "Enamel", and the finished wire as "enameled wire". Enameled wire is used widely in the winding of dower transformers, output transformers, etc.

Cotton is a fairly good insulator when dry, and therefore, cotton threads, wound on the outside of a copper wire closely enough to completely cover the outer surrace, form a layer of insulation. Wire of this type is known es single cotton covered and often abbreviated as S.C.C. When more insulation is needed, a second layer of cotton is wound over the first layer to produce dodble cotton covered (D.C.C.) wire. In addition to its own inisulating qualities, the cotton helps to keep adjacent wires apart, and thus prevents them from touching.

On the smaller sizes of wire, silk is often used instead of cotton, as it can provide the same insulation in less space. Like the cotton covered wire, we have single silk covered (S.S.C.) and double silk covered (D.S.C.) wire. Cotton or silk covered wire is used in winding R-F Colls, I-F Transformers, etc.

In addition to these three basic types, we often find wire with a coating of cotton or sllk over enamel. These are called cotton enamel (C.e.) or silk enamel (S.E.), whichever the case might be. The enamel is a better insulator than the cotton or silk, but the cotton, or silk, provides the wire with more
protection against mechanical injury, and this coating also acts as a spacer between adjacent turns. In general, the insulation of wire used for coll winding is comparativeiy thin; and, because the wire is usually permanently mounted (as in a co11), the conductors are solid. Wire used for winding colls is often called magnet wire.

With the exception of the various types of magnet wire, used in the colls and transformers, most electronics and televis:on work is with conductors that are used to interconnect various circuit components. Agreat varlety of insulation is found on these wires. A few of the more common types will be discussed here.

Perhaps the most widely used type of insulated wire, employed for interconnections in modern electronics and television equipment, is plastic coated wire. This wire is covered with a layer of plastic which has excellent insulating properties.

The type of insulation used often in hook-up wire is push back type. The insulation of this wire is made with a woven cloth which is often eitrer waxed or varnished and which will not unravel. This insulation flis rather locsely and can be pushed back from one end to expose the conductor. Push-back Insulation is avallable on elther stranded or solld conductors.

Another type of wire, which is sometines used for interconnections, uses rubber insulation. This insuiation will not push back. Rubber insulated wire will be found on some circult components, such as fllter condensers. In some cases a single layer of cottor. Insulation is placed directly over the conductor, and the rubber insulation placed on top of this.

Another type of wire, which is used in certain applications in radio and television work, is shlelded wire. This wire consists of a conductor, usually stranded, covered with a rubber insulation. The rubber insulation is covered with a woven metallic sleeve which forms a metallic shield. Shielding of this type is used to prevent the conductor from plcking up unwanted interierence. In some cases, there is a woven cloth, or rubber, covering over the shield to protect it from mechanical damage. Wire of this type is used for the flexible conductor which connects to a microphone and, because it is insulated on both the inside and the outside, the shielding can act as a second conductor as well as a shield.

There are many applications, such as lamps and appliances, when it is nesessary to run two conductors from the source of electricity to the unit using 1t. To take care of the many varlations of circuits of this type, a large number of double conductor wires and cables are avallable. Most of these use rusber insulation, or a combination of cloth and rubber insulation. Double conductor wire can also be obteined in a metallic shield.

In certain cases, such as connections from a radio chassis to a loudspeaker, or between two sections in a transmitter, it is often desirable to have three or more wires in one cable. Cables are obtainable with almost any number of conductors and with or without a metallic shield. In these cables, the insulation of the various wires is of different colors, to identify the individual conductors.

There are hundreds of different types of wires, insulations, and cables, but the types discussed will familiarize you with the majorlty of those found in electronics and television work.

Reslistors

Looking at the underside 0 : an electronics or elevision chassis will quickly convince us that resiscors of all types ind extensive and extremely important applications in these circuits. As we shall learn later, they may be employed as current limiters, for obtaining bias voltages, for voltage-dropping, for controlling the volume and tone, and for many other uses. They are made in resistance values ranging from a fraction of an ohm to many million orms, and have an accuracy ranging from less than $\frac{1}{2}$ to as much as plus or minus 20\%.

Nearly all resistors in use today may be classlfled as "wire-wound" or "carbon-composition" type, with the composition type being the cheaper and more common. Carbon is a fair conductor and, therefore, has low resistance. Bakellte and some of the other plastics have a very high resistance. If we were to take Doweered carbon and mold it into the shape of the resistors you saw when you examined a radio, we would ind that this resistor would have a very low resistance. On the other hand, if we were to do the same thing with powdered cakelite, we would find that this resistor would have a very high resistance. We could mix the two powders in any proportion we wish, and by this means, produce any value of resistance that we vanted. The carbon-composition resistors used 17 electronics and television are actually made in this fashion, and connectinf leads are attached to each end, as shown in Figure 1.

A cross-sectional view of a more modern type of construction oi a carboncomposition resistor is shown in Figure 2. In this type of resistor, the carboncomposition element is located insice an insuiated tube. By insulating the resistor, it is possible to mount it near metal parts without danger of a short circuit occuring.

Another type of composition resistor $1 s$ manufactured by the international Reslstor Corporation (IRCl, and is known as the "metalized" type. The resistors have the carbon mixture baked on a small glass rod which is enclosed in a ceramic insulating material.

Resistor Color Code

In our examination of a radio chassis, we saw that nearly all of the resistors in it had their value indicated by means of a special color coding, rather than by having the actual number of ohms marked on the resistor. This color code has becone standard with all the res:stor manufacturers and $1 s$ known as the RETMA Resistor Color Code; RETMA standing for Radio Electronics Television Manulacturer's Association.

The present method of coding resistors consists of painting 3 or 4 bands around the resistor, and closer to one end of $1 t$ than the other, as shown in Figure 3. Each of these bancs represents a number, as shown in the tabie accompanying figure 3. To obtain the ohmic value of the resistor, we should first look at the color nearest the end of the resistor - which in this case is Red. We refer to our table and learn that Red represents the number 2 , so we write down 2. Next, we go to the second color which is Green, and by referring to the table, we Ind that this represents live. This gives us 25 so laz. Finally, we go to the third color (Yellow) and, by referring to the table, we see that Yellow represents foun. However, for the third color we do not add 4 to the other two numbers but, rather, we add four zeros. This would make our resistor have the value 250,000 ohms. If there is a fourth color it will be

Sllver or Gold and will always represent the tolerance, which will be discussed later.

As another example to illustrate the use of the resistance color code, suppose we have a resistor which has these three bands on $1 t$: Orange, Black, and Red. (In each of these examples, the colored band nearest the end will be mentioned first, then the and band and then the third band.) The resistance color code table shows us that the orange band stands for three, the Black band :or zero and the Red band for two, or two zeros in this example, since it. is the third color. Combining these figures, we have avalue of 3,000 ohms resistance.

Let us take another example. Suppose, we wish to ind the ohmic value of a nesistor color coded, Gray, Blue, Green, and Gold. From the chart we find:

Gray stands for 8
Blue stands for 6
Green stands for 00000 (not 5 , but 5 zeros since 1 t is the third color).
Gold - Tolerance - will be discussed later.
Combining these values, we ind the value of the resistor to be $8,600,000$ ohms, or 8.6 megohms.

To further demonstrate the use of the resistor color code, we will list the colors of several resistors and the ohmic value directly below each. Check each example against the color code to make sure you understand each.

	$\begin{gathered} \text { Green - Black }- \text { Orange }:=0, \ldots, \\ 5.00000 \end{gathered}$	
(3)	$\begin{gathered} \text { Fellow - Green - Yellow } \cdot 450,000 \\ 4 \\ 5 \end{gathered}$	
(5).	$\begin{array}{cc} \text { Brown }- \text { Black } & \text { Brown }-10+~ \\ 1 & 0 \end{array}$	
(7).	$\begin{array}{ccc} \text { Oreen - Oray } & \text { Red } \\ 5 & 8 & 00 \end{array}$	(8). Brown-Black - $\underset{1}{\text { Green }} 1.0$,
(8)	$\begin{gathered} \text { Red - Red - Red. } \\ 2 \quad 2 \quad 00 \end{gathered}$	$\text { (10). Yellow }-\underset{4}{\text { Violet }}-\text { Black }\left.\right\|^{\prime} i$

Notice the onmic value for the resistor in Example 10. The Yellow and the Violet gave us the 47. The third color is Black Since the third color tells us how many zeros to add, Black tells us to add 0 zeros or no zeros. Thus, the ohmic value of this resistor is 47 ohms.

For very small values of resistance, the third band may be either stlver or Gold. In this case, it represents a decimal multiplier, as shown in the chart. For example, suppose we wish to find the value of a resistor color coded, Orange, Green, Gold.

This orange and Green, of course, stand for 35 , and the Gold as the third band stands for a multiplier of .1. Thus, the ohmic value of this resistance is $35 \times .1=3.5$ ohms.

As another exmple, suppose we wish to ind the ohmic value of a resistor color coded Red, Violet, and Silver. The Red and Violet would give us 27, and the silver, as the third band, indicates a multiplier of .01. Thus, the onmic value of the resistor is $27 \times .01=.27$ ohms.

An older method of color-coding carbon resistors did not mark the colors in bands, but rather had the entire resistor body painted one color, asecond color splashed on one end, and the third color in the form of a dot somewhere on the
resistor. This is shown in Figure 4. These resistors are read in exactly the same way, except that the Body color is read first, the End color second, and the Dot tells us the number of zeros to add. This $1 s$ easy to remember because the first letter of each word in order spells "BED". The resistor of Figure 4 would heve a rated value of 500 ohms.

Suppose you needed to know the value of a resistor which wes painted entirely Red. It has a Red body, so the first number is 2 ; a Red end, so the second number is 2; and a Red dot on a Red body would still look Red, so we would acd 2 zeros, making it 2200 ohms.

At this Doint, it is worth while to go back to the radio we used in Assilenment 2, and find the size of each resistor in it. While it is not absolutely necessary to become completely familiar with the Resistor Color Code, all good electronics ard television technicians know it by heart, and it is possible that, by not being completely familiar with $1 t$, you might brand yourself as an inexperienced or careless worker. If you will practice using this color code, you will soon find that you have memorized the code.

Accuracy of Resistors or Tolerance
one percent of any amount is one one-hunareth of this amount. Ten percent is $10 / 100$ of the amount being considered, and so on. Most commercial carbon resistors are accurate to within plus or minus 10% of the marked or coded value; which means that the resistor may have a resistance value $10 x$ higher or lower tran its indicated value and still be within the manufacturers's guarantee. Such resistors have a fourth color painted on them which is silver. If the fourth color is Gold, the manufacturer has guaranteed that the resistor has an actual value within 5% higher or lower than its marked value. If there is no fourth color on the resistor - that is, there are only three colors - the manufacturer has guaranteed that the resistor will be within plus or mirus 20% of its indicated value. Thus, a resistor marked 50,000 ohms with an accuracy of 1 co (this is usually called 10% tolerance), may have a value anywhere between 45,000 ohms and 55,000 ohms. However, since the manufacturer has guaranteed that it is between these two values, there is a good chance that it will be quite close to the indicated value. The resistor shown in Figure 3 is within Dlus or minus 10% of $250,0 n 0$ onrs, or between 225,000 ohms and 275,000 ohms.

Perhaps you are somewhat surdrised that electronics parts can be this much off the required value and yet glve good results. Not all electronicsequipment circuits permit such variation of resistance values, but carbon resistorsare usially employed in those circuits where the resistance value is not so critical. The fact that a plece of equipment is intricate or expensive does not indicate that very accurate resistors are needed. The application of the part itself determines this. For example, if we wished to make a meter accurate to within $\frac{1}{2}$ b, the shunts and miltipliers would have to be that accurate, whereas, the same instrument using the same circuit, could be made 5% accurate if this accuracy were sufficient for the application. Most ordinary radio equipment is so designed that the resistor values are not critical to within plus or minus 20%.

Carbon-composition resistors are made in several wattage ratings. onequarter watt, one-half watt, one watt and two watt resistors are the types generally used. The larger the wattage rating, the larger the resistor will be physically. Figure 5 shows the actual size of resistors with these four wattage ratings.

WIre-Wound Resistors

When resistors must handle greater Dower, or have better accuracy, they are made of a high resistance wire such as nichrome. Commercially, these resistors are made by winding the resistance wire on strips of flber, or on porcelain tubes. The turns are separated from each other, and the type of resistance wire used, its diameter and total length, determine the resistance of the resistor. These resistors are usually enclosed in a protective coating of baked enamel or special coment which serves to protect the fine resistance wire and prevent resistance change which might occur due to molsture. The majorlty of these resistors have a metal band around them on which the resistance value is stamped. Figure 6 shows a wire-wound resistor.

Usually, the resistance wire isstarted and terminated in suitable connector lugs, and sometimes extra connections are made in the middle of the resistor by means of extre terminal lugs. Semi-varlable wire-wound resistors have a bare strid along the length, which is not covered with the insulating cement, and permits contact with the resistance wire. Sliding lugs are used to make contact With the wire, and the connections may be adjusted for the resistance value nesded. Such a resistor is shown in Figure 7.

Wire-wound resistors are made in resistance values from a fraction of an ohm to about 100,000 ohms, but it is not practical to make these resistors in higher resistance values. They are made in various physical sizes to serve different heat or power dissipating requirements. Wattage ratings from three waits to one hundred watts are common.

Variable Resistors

In many electronics applications, the value of a resistor must be changed for the purpose of adjusting the circuit. We saw in Assignment 2 , that when you turn the knob to control the volume of a radio, you are really adjusting a resistor. Some variable resistors are made so that a sliding contact, easily controlled by means of a knob, permits the changing of the resistance value between zero ohms and the maximum resistance incorporated in the resistor. Such units have but two terminals. One terminal is the end connection; the other is the sliding contact. When the slider is near the fixed terminal, the resistance is at a minimum, and as the slide moves away, the amount of resistance between the two terminals increases. These units are called rheostats and are usually made in low resistance values; from a few ohms minimum to several thousand onms maximum. Figure ε shows a typical rheostat.
potentlometers are very similar to rheostats, but have three connecting terminals; both end terminals being used and the arm connected to the third teminal. As the resistance between the arm and one of the ilxed terminals is increased, the resistance between the arm and the other ilxed terminal is decreased. These two sections of resistance always add up to the total resistance of the potentiometer.

Most potentiometers are mounted on the side of the chassis and require a single $1 / 2$ or $3 / 8$ inch hole. Several makes of potentiometers have an extra rib which requires a small hole beside the larger one. This protruding rib prevents the entire unit from revolving as the shaft is turned. The shafts of potentiometers are supplied quite long and must be cut to size, but since they
are made of soft metal, this is easily done with a hack-saw. Sometimes the shaft cones notched in sections, permitting breaking off the extra length with a pair of pliers. More recently, several manufacturers are marketing their potentiometers without shafts; separate shafts of all descriptions being avallable and quickly installed.

Potentiometers are often called volume controls, since they are used for this purpose in radio receivers. However, this is not a particularily good name, since potentiometers are also used in many other applications such as tone control circuits, oscilloscope, test instruments, etc.

Bome potentiometers are made with resistance wire in a manner similar to Wire-wound resistors. Wire-wound potentiometers are used primarlly where low value resistance units are needed and electrical power is handled by the circuit. A wire-wound potentiometer, with the dust cover removed, is shown in Figure 9.

The maximum values of wire-wound potentiometers are between several ohms and about 20,000 ohms. potentiometers using a carbon deposit as the resistance ejement are used more commonly, and are obtainable in resistance values between 1000 ohms and 20 megohms.

In some potentiometers, the arm having the center terminal for 1 ts connection is grounded to the shaft and the metal framework of the unit, but in most cases, the elements of the poientiometer are entirely insulated iror the metal iramework.

It is possible to install an "on-off" switch on the back of most potentiometers, so that the ilist rotation of the shaft will operate this switch. Figure 10 shows a potentiometer with the switch mounted on $1 t$. In most cases, to install the switch, it is only necessary to remove the dust cover, as shown in Figure 8 , and install the switch assembly in the place. There is no electrical connection between the switch and the resistance element of the potentiometer.

Connecting the Potentlometer

We have seen that a potentiometer has three terminals, the center terminal being connected to the movabie arm. When a potentiometer is to be connected into a circuit, the manner in which the other two terminals are connected in the circuit is important. Let us assume that you are nolding a potentiometer in your left hand with the shaft pointing directly at your face, and the connecting terminals at the bottom of the unit. This would appear as in Figure 1l. Now turn the shaft all the way to the left; counter-clockwise. There is now almost no resistance between the terminal on the left and the center terminal; but between the right hand terminal and the center terminal there is a maximum resistance. Now as you rotate the shaft to the right, or clockwise, you increase the resistance between the left and the center terminals, and decrease the resistance between the right terminal and the center terminal.

Usually the output of any radio equipment is increased as the control knob (on the shaft of the potentlometer) is turned to the right or clockwise. Consequently, the potentiometer must be connected so that the circuit will be changed to produce an increased outdut by a clockwise rotation of the slider. You will be able to apply this knowledge when you begin to study actual radio circuits.

Let us now consider what resistance we will get between the left-hand terminal and the center terminal for different positions of rotating arm. If
we start with the rotating arm in the extreme counter-clockwise position, we should have about zero resistance. Actually, in high-resistance potentiometers, this minimum resistance may be as much as several hundred ohms, but this is so small compared to the total resistance of tre unit, that we may ignore it. Since we have not zurned the shaft, we can call this position of the rotating arm 0% of the effective rotation from left to right.

If the potentiometer, we are using for our example, is made up of auniform deposit of resistance-carbon material, at the mid-doint of the rotation (correspond ing to 50% of the effective rotation) we would have one-half of the total resistance of the unit. We say, then, that this potentiometer has a "linear taper", which means that the resistance between the terminals we are considering
 three-quarters of the way around to the right, we would have three-quarters of the total resistance. Thus, if we are using a dotentiometer having a total resistance of $1,000,000$ ohms, we would have 750,000 ohms between these terminals.

For most control applications, non-linear taper types of potentiometers are needed. These potentiometers do not have equal resistance changes for equal changes of rotatior. In some of these units, the elrst 50% of rotatior. brings only a very small chenge in resistance between a set of terminals, and the bulk of the resistance change occurs at the end of the rotation. In other units, a great deal of resistance change occurs as the rotation is started, but then the change becomes gradual. Figure 11 shows the tapers for a series of potentiometers made by the P.R. Mallory Company. Taper No. 1 has very little resistance change for the first half of the effective rotation, whereas, taper No. 2 has very little resistance change for the last half of the effective rotation. Taper No. 4 is a linear taper.

Servicing Potentiometers

Since the variable resistor used as volume and tone controls receive considerable mechanical wear in addition to the normal component electrical heating, they often wear out or become quite no1sy, and thus require replacing or reconditioning.

Of course, there is little that can be done to repair a potentiometer that has become worn out, since this usually means that the resistance element is worn through. It is possible to repair this breakage in a wire-wound control by soldering a small strid of copper or brass foll across the open section, tut this procedure is not recommenced except in a case of absolute necessizy, since, the wearing througn of any section indicates that the whole strid is probably badly worn and likely to break in other places. In cases of emergency, it is sometimes possible to patch up a carbon control, until a replacement can be obtained, by rubbing a plece of pencil lead on the worn spot. However, it is never possible to obtain the same taper and total resistance by this metiod, end the control should be replaced as soon as possible.

One of the most frequent symptoms of trcuble in potentiometers, used as volume controls and tone controls, is "noise". When a "noisy" control is turned, a crackling-scratching sound will be heard in the loudspeaker. The cause of the noise is usually an accumilation of oxidized grease or oil on the wiper arm. At the time of assembly of the potentiometer, the manufacturer usually coats the wiper with a type of grease which prevents oxidation of the
contact areas. As a rule, this grease coating will maintain its original condition for a period of one or two years, but it eventually becomes hardened and, being a non-conductor, causes the wiper to make a nolsy contact. To properly clean the control, the dust cover or switch, whichever is used, should be removed; and, with the control immersed in a grease solvent such as carbon ietrachloride, the control shaft should be rotated through its range several t1mes.

The measurement of Resistance

In the discussion of the miltimeter in Assignment ll, we saw how it is possidle to measure resistances with a fair degree of accuracy by properly connecting a milliarmeter, a battery, and a resistor in series.

If we attempt to design an ohrmeter, so that a wide range of resistance can be read, we find that the instrument will not be very accurate at the extreme low end or the extreme high end of the scale. The error on the extreme low end is due to the meter movement inaccuracy; the error on the high end of the scale is due to the crowding of the scale. For these reasons, ohmmeters are usually made with more than one range and in several main types. The principai types are: (1) The series ohmmeter, (2) the shunt ohmmeter, and (3) the combination series-shunt onmmeter. In the series type, the resistance to be measured is connected in series with the meter and the battery; in the shunt type, it is connected in parallel with them; and in the combination type, the circuit is so arrarged that it is connected as a series type for the high resistance ranges and as a shunt type for the low resistance ranges - thus using each type of circuit for the resistance range it is best suited to measure.

Figure 12 is the basic circuit of the series type ohrmeter which we studied in the last assignment. R is the zero-resistance current limiting resistor and is made variable, so that when the battery ages and its voltage drops, this resistance can be decreased in order to make the instrument read zero when the test leads are shorted. In many cases, this resistor is composed of a ilxed and a variable resistor in series, for in this way, a ilne adjustment is obtained With the variable resistor, inasmuch as a given movement of 1 ts shaft changes the resistance of the entire circuit by only a small percentage.

Another arrangement for the "zero-ohms" adjusting resistor (R) is shown in Figure 13. Here it is connected in series with a fixed resistor (N) of low resistance, and the two of them together are connected in paralle; with the meter. A current limiting resistor (P) is connectec in series with the meter and battery. In this case, when the battery ages, the value of R must be increased so that $1 t$ shunts less current away from the meter, thereby, making it Dossible to bring the reading up to full-scale value when the test leads are touched together. This latter arrangement is the one most irequently used ir commercial instruments, since it provides a greater degree of accuracy, when several resistance ranges are used, than does the arrangement shown in Figure 12.

Let us suppose that the series ohrmeter of Figure 13 will accurately indicate resistances over the range of from 100 to 100,000 ohms. If we wished to use this same instrument to measure resistances over the range of from 1.0 to 1000 ohms, we could connect a shunt resistor (S) of the proper value to strunt the proper amount of current away from the meter circuit as shown in Figure 14.

With this arrangement, when asmall unknown value of resistance is connected betweon the test leads, the meter deflection will be much less than in the circuit shown in Figure 13. (Remember that in the circuit shown in Figure 13, if a small resistance is connected between the test leads, the meter deflection will be nearly full scale). Thus, by choosing the correct value of 8 , it is possible to calibrate a scale for the meter which will accurately indicate small values of resistance. This circuit is an adaptation of the series type of onumeter, since the unknown value of resistance is connected in series with the battery and meter.

The Shunt-Type Ohmmeter

The basic circuit of the shunt-type ormmeter is simply one containing two parallel resistors and having. constant applied voltage. one of these parallel resistors is the meter itself, which will measure the current in that branch. The other branch, which is the unknown resistor, carries the remaincer of the full-scale current. Again, in this type of instrument, the meter scale can be calibrated in ohms of resistance rather than in current.

An examination of Figure 15 should held you understand the shumt ohmeter. Suppose a milliammeter and a battery are connected in series with a current ilmiting resistor as in (A). Let the internal resistance of the meter be 50 ohms and the battery voltage 3 volts. If the meter has a full-scale reading of 1 me. (0.001 empere), then the resistance of the complete circuit must be $\mathbf{8 , 0 0 0}$ ohms, and the resistance of the variable current-limiting resistor is 2,950 0tm 3. $\left(R=\frac{E}{I}=\frac{3}{.001}=3000 \mathrm{S}\right.$.)

The unknown value of resistance, R_{X}, is connected in parallel with the meter as shown in Figure $15(\mathrm{~B})$.

Now, suppose that the meter is shunted by a resistor, R_{x}, of 50 ohms, as in (B) of Figure 16; then if R is 2950 ohms, the total circuit resistance becomes 2950 Dlus 25 (the equivalent of the 50 ohm resistor and 50 ohm internal resistance of the meter in parallel), or 2975 ohms. The current flowing from the battery will be given by ohn's Law, or $I=E / R=3 / 2975$, or $0.001 C 08$ ampere, or 1.008 ma . This is very nearly the same current as before we added the 50 ohm resistor in parallel with the meter, but the important point is that now onis half or this current is flowing through the meter, and the other half is flowing through the 50 ohm resistor. Consequently, since the meter will aiways raad $1 / 2 \mathrm{ma}$. With a 50 ohm resistor connected between the test leads, we could mark the hall-scale point on the scale "50 ohms".

If we replace the 50 onn resistor at R_{x} by a 25 onm resistor, the meter will only take $1 / 3$ of the total series current and will, therefore, read 0.333 ma. This point on the scale could be marked "25 ohms".

If the external resistor, R_{x}, is made 75 ohms, the current through the meter would be 0.8 na . and this point on the scale could be marked "75 ohms".

Figure 16 shows a diagram of the scale for this meter. Additional ohms radings have been added to make the scale complete. Examination of figure 15 Will show that when the test leads on this type of ohmeter are shorted together, there will be a short circuited path directly around the meter, and therefore, no current will flow through the meter. Zero ohms on this meter will be on the left end of the scale, as shown in Figure 18.

If there is no resistor connected between the test leads, as in Figure 15 (A), there will be one ma., or full scale current, through the meter This is when the only resistance between the test leads is the resistance or the air. Thus, infinity on this ohmueter is at the right end of the scale. Therefore, the scale on this type of meter has the low resistance values at the left and the high resistance values at the right. Compare this meter scale to the scale for the series type ohmmeter in Assignment ll. Notice that this shunt-type ohnmeter will read lower values of resistance, and also, that its scale increases fram left to right, which is opposite to the series type of ohmmeter scale.

If Figure 15 is examined, it will be noticed that the meter in the shunt type of ohmmeter is always in series with the battery, whether or not an unknown resistance is being measured. Consequently, we would always have a drain on the battery. To avoid this, this type of ohmeter should have a switch in series with the meter and the battery, and this switch should be opened when the instrument is not in use.

A number of commercial multimeters use an arrangement whereby a series type ohmmeter is used for high resistance measurements, and a shunt type for low resistance measurements.

The Wheatstone Bridge

The ohmmeters we have described provide a quick easy method of checking resistors, but it is exceedingly difficult to design and build an ohmieter which will have a consistent accuracy of 5% or better. Consequently, laboratory technicians and engineers, who wish to measure resistances with a high degree of accuracy, resort to a circuit known as the wheatstone Bridge. Fundamentally, the Wheatstone bridge is a method by which an unknown resistor is compared to a known resistor, and in its simplest form, is shown in Figure 17. The meter of Figure 17 is known as a galvanometer. A galvanometer is nothing more than a very sensitive milliameter with the pointer so arranged that it indicates in the center of the scale when there is no current through the instrument; it reads to the left when a current passes through the instrument in one direction; and it reads to the right when a current passes through the instrument in the other direction.

Three known resistances (R_{1}, R_{2}, R_{3}), and the unknown resistance (R_{x}) are connected in the form of a dianond, with a battery connected across the opposite corners of the diamond and a galvanometer connected between the remaining corners. Each resistor is known as an "arm" of the bridge.

To make a measurement, the two "ratio arms !, R_{1} and R_{2}, are set at some flixed ratio, usually $1: 1,10: 1,100: 1$ or $1000: 1$, and allowed to remain that way. The arm, R_{3}, is adjustable and is ordinarily callbrated directly in ohms. R_{x} is the unknown resistor to be measured. If we examine figure 17 carefully, we see that as far as the battery is concerned, the circuit is nothing more than two groups of resistors in Darallel, and so if we follow the current from the negative side of the battery through the circuit and back to the pasitive side, we see that as the current reaches doint a, it will branchout or split up. Some current will flow through the $R_{2} R_{1}$ branch, and the rest of the current will flow through the $R_{3} R_{X}$ branch. These two currents will unite again at the point c, and flow back to the battery together.

In order to get a clear plcture of how the Wheatstone bridge circuit works,
let us draw an analogg from the stream of water shown in Figure 18. We will let $a b c$ and $a d c$ be the branches of a stream flowing around an lsland, I_{s}. Further, let us imagine that, beginning at the point d, a ditch, g, is dug across the island. Evidently, if this ditch is joined to the upper branch of the stream at the proper point, there would be no tendency for water to flow in it in elther direction. Let us see why this is so. If the end of the ditch merked b is connected too far unstream, water would flow in the ditch in the direction from b to d. If, on the other hand, we were to comect it too far downstream, water would flow in it in the direction from d to b. There must be, therefore, some point across which we can dig the ditch, so that this point would be neither too far upstream nor downstream, and there would be no flow of water in the ditch in efther direction. We all know that water flows from a higher to a lower level, so if we dig the dich in such a way that both points d and b are on the same level, no water will ilow through it.

This is exactly what happens to the electron current in the wheatstone bridge. Looking again at Figure 17, let us concern ourself with the adjustable resistor R_{3}. This arm of the bridge is adjusted until, at some point, there will be no current $110 w i n g$ through the galvanometer. At any other point, the galvanometer will indicate a flow of current in one direction or the other. When there is no current flow in either direction through the galvanometer, we can say that each end of the galvanometer is at the same level of voltage or at the same potential, and at inis point, the bricige is said to be mbalanced" and the galvanometer is at the mull" point.

If we had chosen R_{1} and R_{2} to have exactly the same values, then we could immediately tell the value of the unknown resietor by adjusting the bricge for a balance and reading the scale giving the value of R_{3}. This is so, because when R_{1} equals R_{2}, R_{2} equals R_{3}. However, most of the time the values of R_{1} and R_{2} are not the same, and R_{2} would therefore, not equal R_{3} when the tridge is balanced. In such cases, the ratio of R_{1} to R_{2} will be the same as the ratio of R_{x} to R_{3}. This can be expressed in the formula:
$\frac{R_{1}}{R_{2}}=\frac{R_{x}}{R_{3}}$ or $R_{x}=\frac{R_{1} \times R_{3}}{R_{2}}$
To illustrate the use of a Wheatstone bridge, let us assume that R_{1} is 10,000 onms, R_{2} is 100,000 ohms, and when the bridge is balanced (when R_{8} is adjusted for a zero reading on the galvanameter), R_{3} reads 3378.2 ohms. We wish to know the value of the unknown resiscance $F_{\mathbf{z}}$.

Bubstituting the known values in the formula, we have:
$R_{2}=\frac{R_{1} \times R_{3}}{R_{2}}$
$R_{z}=\frac{10,000 \times 3378.2}{100,000}$
$R_{\mathbf{Z}}=\frac{1 \times 3878.2}{10}$
$\mathrm{R}_{\mathrm{x}}=337.02$ ohms.
As another example, let us asaume that R_{1} is 1,000 ohms, R_{2} is 100,000 ohms, R_{3} is 734.8 ohms when the bridge is palanced. We wish to know the value of the unknown resistance R_{x}. Substituting the known values in the formula, and solving,
we find $R_{z}=7.343$ otms.

$$
R_{x}=\frac{R_{1} \times R_{3}}{R_{2}}
$$

$R_{x}=\frac{1,000 \times 734.3}{100,000}$
$R_{X}=\frac{1 \times 734.3}{100}$
$R_{X}=7.343$ ohms.
Figure 18 is a photograph of a good commercial wheatstone bridge. This Wheatstone bridge, with its self-contained galvenometer and battery, can be used to read resistances from 0.001 to $1,000,000$ ohms with an accuracy of $12 x$.

In this assignment, we have learned a great deal about conductors and resistors. Resistors are perhaps the most numerous of all the components in electronics or television equipment, and resistance is one of the three main properties of any electrical or electronic circuit. For the se reasons therefore, this subject will be encountered time and time again in all of our cuture work. Consequently, you should study this assignment until you are familiar with it, and then review it as often as necessary.

TEST QUESTIONS

Use the enclosed answer sheet to send in your answers to this assignment.

The questions on this test are of the multiple-choice type. In each case four answers will be given, one of which is the correct enswer. To indicate your choice of the correct answer, mark out the letter opposite the question number on the answer sheet which corresponds to the correct answer. For example, if you feel that the answer (A) is correct for Question No. l, indicate your preference on the answer sheet as follows:

$$
\text { 1. }(\boldsymbol{\pi})(B)(C)(D)
$$

Send in your answers to this assignment immediately after you finish them. This will give you the greatest possibie benefit from our personal grading service.

1. The bands on a carbon resistor are painted Red - Grear - Yellow Silver, in that order. Its chmic resistance and tolerance is:
(A) 25,000 ohms, 5%
(C) $250,000 \mathrm{ohms}, 5 \%$
(B) $25,0000 \mathrm{hms}, 20 \%$
(D) 250,000 onics, 10%
2. The bands on a carbon resistor are painted Yellow - Viclet - Crange Gold, in that crder. Its ohmic resistance and tolerance is:
(A) $47,000 \mathrm{ohms}, 5 \%$
(C) 470,000 ohms, 5%
(B) $47,000 \mathrm{ohms}, 10 \%$
(D) 470,000 onms, 10%
3. The body of a carbon resistor is Green, the end of the resistor is Black, and the dot on the resistor is Red. Its ohmic resistance is:
(A) 100 ohms
(C) $2,000 \mathrm{ohms}$
(B) 1,000 ohms
(D) 5,000 ohms
4. The symbol for a variable resistor is:
(A)

(B)
(D)

5. A No. 8 wire is:
(A) Larger than a No. . 18 wire
(C) Twice as large as a No. 16 wire
(I) Smaller thar a No. 28 wire
(D) Half as large as a No. 20 wire
6. Copper is:
(A) A poorer conductor than aluminum
(C) Ecual in conduction to
aluminum
(B) A better conductor than aluminum
(D) A good insulator
7. A spool of wire is marked: No. 22 S.C.C. The S.C.G. means:
(A) Silk and Cctton Covered
(C) Sincle Cotton Covered
(B) Silk and double Cotor Covered
(D) Silk Covered with Cottoon
8. The best wire with which to make ordinary connections between components in a piece of electronic equipment is:
(A) Shielded wire
(C) Enameled wire
(B) Rubber inswlated wire
(D) Push-back wire
9. Wire A has a diameter of 1 mil and Wire B has a diameter of 2 mils. Both are copper. The resistance of a lo-foot length of Wire B is:
(A) Greater than the resistance of a lo-foot length of Wire A.
(B) Greater than the resistance oí a l5-foot length of Wire A.
(C) The same as the resistance of a lo-foot length of Wire A.
(D) Less than the resistance of a 10-noot length of Wire A.
10. If 500 feet of wire has 2 ohns resistance, what will be the resistance of 250 feet of this same wire?
(A) 10 hm
(C) 40 hms
(B) 20 hms
(D) 250 ohms

8 \& S GAUGE COPPER WIRE TABLE

Gauge No.	Diam. in. Mils.	Area in Cir cular Mils.	W/CINSuLA Weight in bso par 1000 feet	atriun Feet per	Resistance of Pure Copper tis Ohma at $68^{\circ} \mathrm{F}$.		
				Pound	Ohms per FL.	Feet per Ohm\|	Ohme per lib.
0000	460.0	211600.	640.5	1.56	. 0000489	20440.	. 00007639
000	409.8	167800.	508.0	1.97	. 0000617	18210.	. 0001215
00	364.8	133100.	402.8	2.49	. 0000778	12850.	. 0001931
0	324.8	105800.	319.5	3.13	. 0000981	10190.	. 0003071
1	289.3	83690.	253.3	3.95	. 0001237	8083.	. 0004883
2	257.6	68370.	200.9	4.98	. 0001580	8410.	. 0007763
3	229.4	52830.	159.3	6.28	. 0001987	5084.	. 001235
4	204.3	41740.	128.4	7.91	. 0002480	4031.	. 001963
5	181.9	33100.	100.2	9.98	. 0003128	3197.	. 003122
6	162.0	26250.	79.46	12.58	. 0003944	2535	. 004963
7	144.3	20820.	63.02	15.87	. 0004973	2011.	. 007892
8	128.5	16510.	49.98	20.01	. 0006271	1595.	. 01255
9	114.4	13090.	39.63	25.23	. 0007908	1265.	. 01998
10	101.9	10380.	31.43	31.85	. 0009972	1003.	. 03173
11	90.74	8234.	24.93	40.12	. 001257	795.5	. 05045
12	80.81	6530.	19.77	50.58	. 001586	630.5	. 08022
13	71.98	8178.	18.88	63.78	. 001999	500.1	. 1276
14	64.08	4107.	12.43	80.45	. 002521	396.6	. 2028
15	57.07	3257.	9.88	101.4	. 003179	314.8	. 3225
16	50.82	2583.	7.82	127.9	. 004009	249.4	. 5128
17	45.28	2048.	6.20	161.3	. 005055	197.8	. 8183
18	40.30	1624.	4.92	203.4	. 008374	156.9	1.296
19	35.89	1288.	3.90	256.5	. 008038	124.4	2.081
20	31.98	1022.	3.09	323.4	. 01014	96.62	3.278
21	28.48	810.1	2.48	407.8	. 01278	78.24	8.212
22	25.35	642.6	1.95	514.2	. 01612	62.08	8.287
23	22.87	509.5	1.54	648.4	. 02032	49.21	13.18
24	20.10	404.0	1.22	617.8	. 02583	39.02	20.95
25	17.90	320.4	. 97	1031.	. 03231	30.98	33.32
26	15.94	254.1	. 77	1300.	. 04075	24.54	82.97
27	14.20	201.5	. 61	1639.	. 05138	19.46	84.23
28	12.64	159.8	. 48	2067.	. 08479	15.43	133.9
29	11.26	128.7	. 38	2607.	. 08170	12.24	213.0
30	10.03	100.8	. 30	3287.	. 1030	9.707	338.6
31	8.928	79.71	. 24	4145.	. 1299	7.698	538.4
32	7.950	63.20	. 19	5227.	. 1638	6.108	856.2
33	7.080	50.13	. 18	6591.	. 2086	4.841	1361.
34	6.308	39.78	. 12	8311.	. 2608	3.839	2168.
35	5.818	31.82	.10	10480.	. 3284	3.046	3441.
38	8.000	25.00	. 08	13210.	. 4142	2.414	5473.
37	4.483	19.83	. 08	16660.	. 5222	1.918	8702.
38	3.985	18.72	. 08	21010.	. 6585	1.819	13870.
39	3.531	12.47	. 04	28500.	. 8304	1.204	22000.12
40	3.148	9.89	. 03	33410.	1.047	. 955	34980.

Fiaure 16

Figure 18

Figure 11

Figure 13

Figure 12

Figure 14

INSULATED

-CROSS-SECTION-

Figure 4

2 WATT

1 WATT

$1 / 2$ WATT

1/4 WATT
Figure 5

Figure 10

Fioure 9

LOUISVILLE KENTUCKY

ASSIGNMENT 13
TWO BASIC FORMS OF ELECTRICITY
Thus far, in all our discussion of current and voltage, we have dealt with direct currents and voltages, that is, the kind obtained from a battery. The chemical action of a battery is capable of keeping the terminals of the battery at a ilxed potential difference, and when a load is connected to it, a steady current flows irom the negative terminal of the battery through the load and back to the positive terminal of the battery. This steady current is known as direct current. (There are several abbreviations used to indicatedirect current. Some of these are: $D-C, D . C ., D C, d-c$, and d.c.)

The type of $d-c$ circuit which we have been studying, is shown in figure 1. The battery has a constant emp of 100 volts. The load consists of a 20 ohm resistor. To find the current flowing in tris circuit, we may apply onm's Law. $I=E / R=100 / 20=5$ amperes.

Figure $1(B)$ is a graph of this current flow, in respect to time. The vertical axis of the graph represents current in amperes, and the horizontal axis represents time in minutes. We see irom the graph, that at one minute the current is 5 amperes, at 2 minutes the current is 5 amperes, also at 3 or 4 minutes the current is 5 amperes. This current is, then, a steady, constant value.

Pulsating Direct Current

Strictly speaking, however, a direct current or voltage merely has to act in one direction and may change somewhat in magnitude (amount). It has become common practice to apply the terms direct current and direct voltage (sometimes $d-c$ voltage) to currents and voltages that are essentially constant, and the tem pulsating direct current to a direct current that acts in one direction but varles somewhat in magnitude over a period of time.

As an example of pulsating direct current, consider the circuit of figure 2(A). This circuit consists of a 100-volt battery connected to a 20 ohm resistor in series with a rheostat which can have its resistance varied irom 0 ohms to 80 ohms. When the resistance of the rheostat 1 s 0 ohms, the current from the battery will bedetermined by the 20 ohm resistor and will be 5 amperes. With the resistance of the rheostat completely in the circuit, the current from the battery will be determined by the resistance of the fixed resistor, (20 ohms) plus the resistance of the rheostat (80 ohms), or a total resistance of 100 ohms. One ampere of current will llow, as determined by ohm's Law. $I=E / R=$ $100 / 100=1$ ampere.

Now suppose that we were to manually adjust this rheostat so that its resistance varles smoothly irom 0 to 80 ohms in just one minute, then immediately begin to reduce this resistance back towards zero, again taking just one minute, then increase the resistance towards its maximum of 80 ohms, and so on. While we are doing this, let us see what is happening to the current flowing from the battery. When the rheostat is set for 0 ohms there will be 5 amperes flowing, and as we start to adjust the rheostat, this current will start to fall off, to 1 ampere, reaching this value one minute later. It will immediately begin to increase again as we decrease the resistance, reaching 5 amperes at the end of the second minute. Then it will begin to decrease to 1 ampere, and so on.

We can plot this information on a graph, putting the current on the vertical axis and time on the horizontal axis, as shown in Figure $2(B)$. Let us examine this graph. At 0 time, the current is 5 amperes. This decreases to 1 ampere at one minute of time, when the entire rheostat resistance is in the circuit. At 2 minutes the current is 5 amperes again since the rheostat is 0 ohms. At 3 minutes the current has again decreased to 1 ampere, etc. The graph is merely a pictorial representation of the manner in which the current varles over a period of time.

A study of Figure $2(B)$ will reveal several things: (1) The current does not remain constant, (2) the current never stops or reaches zero, and (3) the current never reverses 1^{+s} direction, but always flows in the same direction. This is a direct current because it always flows in the same direction, but since it varies appreciably in magnitude, it is called a pulsating direct current or pulsating $d-c$.

In the early days of commercial electricity, direct currents and voltages were used exclusively because nearly all the electrical power came from storage batterles, which were recharged at intervals by direct current generators. However, it soon became quite evident that it was impossible to send this d-c Dower over long lines without excessive losses occuring in the lines, especially with more and more electrical current being used. As you know, one formula for electrical Dower 1s, $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$, making the power loss in the wires increase as the square of the current. Another formula for Dower is, $P=E \times I$. From this formula we can see, that for a given amount of power, less currert will be required if the voltage is increased. To illustrate this, let us assume that 1 kllowatt, or 1000 watts, of electrical Dower is being used and the voltage is 100 volts. The current will be 10 amperes.

$$
\begin{aligned}
P & =E \times I \\
1000 & =100 \mathrm{xI} \\
100 \mathrm{I} & =1000 \\
\mathrm{I} & =10 \text { amperes }
\end{aligned}
$$

Now, let us assume that 1 kilowatt of power is to be used, but that the voltage is 1000 volts. The current is 1 ampere.

$$
\begin{aligned}
P & =E \mathrm{XI} \\
1000 & =1000 \mathrm{xI} \\
1000 \mathrm{I} & =1000 \\
\mathrm{I} & =1 \text { ampere }
\end{aligned}
$$

If the load, in the two preceeding examples, is located at some distance from the source, so that the resistance of the lines is appreciable, say 5 ohms, there will be losses occuring in the lines. The power loss in the lines can be found by the formula, $P=I^{2} R$.

In the first example the power loss in the lines will be 500 wat ts as shown by the following problem:

$$
\begin{aligned}
& P=I^{2} R \\
& P=(10)^{2} \times 5
\end{aligned}
$$

```
P = 100 x 5 = 500 watts
```

In the second example the power loss in the lines will be only 5 watts as shown by the following problem:

$$
\begin{aligned}
& P=I^{2} R_{R} \\
& P=(1)^{2} \times 5 \\
& P=1 \times 5=5 \text { watts }
\end{aligned}
$$

From these examples we see that the same amount of power (1 kw in this case) can be transmitted from the source to the load with much lower losses occuring, if the voltage 1 sh high. Unfortunately, however, there is no simple way to change low d-c voltages into high d-c voltages. For this reason, a different type of electrical current and voltage, known as alternating current and alternating voltage, was developed. Alternating current 1 s abbreviated several ways. Some of these are: $A-C, A C, A . C ., a-c, a . c$.

Alternating Current

Alternating-current systems began commercially in the United States in 1886. Continued experimentation, investigation, and theoretical analysis have disclosed many merits of a-c systems. The outstanding advantage of the a-c system 1 s the relative ease with which alternating voltages can be generated and transformed in magnitude. For example, it is a very simple matter to change 100 volts a-c into 1000 volts a-c. The result is that, at the present time, approximately 95 per cent of the electrical energy consumed in the United States is generated, transmitted, and actually utilized in the form of alternating current.

In the normal a-c power distribution system, the a-c voltage is developed by huge a-c generators or dynamos, which are driven by waterpower or steam. The output, voltage of these generators is high, about 13,000 volts or greater, but if the electrical energy was transmitted at this voltage, the line losses would be high due to the large amount of power handled. For this reason, this high a-c voltage is fec to large transformers. These transformers increase the voltage to a much greater value, in the order of 150,000 volts. This high a-c voltage is then transmitted over the high-tension transmission lines, for distances ranging up to hundreds of miles in some cases. At this very high voltage, the current will be low for a given amount of power, so that the line losses are low.
of course, this extremely high voltage can not be used safely in homes, so it must be lowered to some safer value, usually 110 volts before it is brought to the homes of the consumers. This is also done by transformers. Transformers perform this operation, changing low values of a-c voltage into high values of a-c voltage, or vice versa, very efficiently, and for this reason, cost very little to operate. Transformers cannot be used with d-c, and no other means of transforming the low values of d-c voltage into high values, in an efficient manner has been developed. For this reason a-c is used almost exclusively as mentioned previously.

In future assignments, we will learn that we must change the a-c voltage from the Dower line into d-c voltage for operation of the vacuum tubes of electronic and television circuits. This is performed by circuits known as rectifler
circuits. We shall also learn that when we apply this d-c voltage to certain types of vacuum tute circuits, these circuits will generate an a-c voltage. This type of circuit is called an oscillator. Each of these circuits will be studled in detall at a later date.

By delinition, alternating current $(a-c)$ is a current that periodically changes in magnitude and direction. Figure $3(\mathrm{~A})$ shows a diagram of a circuit that can be used to produce an alternating current. When switch (S) is in position 1, point X will be $45 V$ positive with respect to point Y. When the switch is in position 2, point X will be $45 V$ negative with respect to point Y. Study the circuit of Figure $3(A)$ and visualize these results. Figure $3(B)$ is a graph with the voltage at point X with respect to point Y plotted on the vertical axis. The voltage (E) will have the square wave form shown on the graph if the double throw switch is alternately held in each position for one second. This is an alternating voltage (abbreviated a-c voltage). An alternating current will flow through the resistor connected between points X and Y. This current fits the definition or a-c. It periodically changes in magnitude and direction.

Let us study flgure $3(A)$ carerully to see just what happens. When the switch is in position 1, current will flow from the negative terminal of the battery to point Y, through the load resistor from point Y to Doint X, baik to the battery. When the switch is thrown from position 1 to position 2 , the current flow in this direction stops and now the current flows through the load resistor from point X to point Y. If we continue throwing the switch from position 1 to position 2 and then from 2 to 1 at one second intervals, there will be an alternating voltage across the load resistor. This is shown by the graph in Figure $3(B)$. The current through the load resistor will be reversing itself at one second intervals.

The a-c voltage which is generated commercially differs considerably from the a-c voltage illustrated in Figure $3(B)$. The most cormon type of a-c and the type most practical to generate is called a sine wave voltage.

The Sine Wave

The graph of a sine wave is shown in Figure 4. The voltage is plotted on the vertical axis and the time in seconds is plotted on the horizontal axis. This voltage is changing in magnitude and direction soitits the definition of $a-c$, but its change is more gradual than that of Flgure 3(B). Let us examine the graph of the a-c voltage shown in Figure 4 very carefully and see what we can learn from this graph. At 0 time, the voltage is 0 . At a short time later ($1 / 240$ second) the voltage has increased to +100 volts. Ther it gradually decreases until, at $1 / 120$ or a second, the voltage has again reached zero. Now the voltage begins to build up in the negative direction, until at $1 / 80$ of a second, the voltage has reached a maximum value of -100 volts. In the interval of time from $1 / 80$ to $1 / 80$ of a second, the voltage decreases to 0 volts. This is one cycle cf the a-c voltage. By defintion, a cycle is one complete succession of events. A cycle of the seasons, for example, would be from spring to summer, summer to fall, fall to winter, and winter back to spring again. Applled to a-c, thls means a voltage or current starts at one value, and goes through all of its variation and returns to that value to complete one cycle. In Figure 4, in the $1 / 60$ of a second, from time $1 / 80$ to $1 / 30$ or a second on the time axis, another complete cycle occurs. Notice that each of the cyclesoccure

In $1 / 60$ of a second. This a-c voltage is called a 80 cycle $a-c$ voltage, meaning 60 cycles per second. Notice that when we defined a cycle, we did not say when that cycle should begin. Going back to the seasons we could have started our cycle with fall just as easily, and in this case the complete cycle would end with the following summer. In an a-c wave, we can start our cycle anywhere on the sine wave, in which case it would end the next time a similar point on the curve appears.

Another term which is used in connection with a-c is alternation. An alternation is one half of a cycle. In the graph of the sine wave in Figure 4, that portion of the sine wave from 0 to $1 / 120$ of a second is one alternation, and is called the positive alternation, since the voltage is positive during this period. The portion of the wave fram $1 / 120$ of a second to $1 / 60$ of a second is the negative alternation.

Another term which is used in connection with a-c voltages is frequency. Frequency means the number of times anything happens in a given period of time. For example, if a wheel is rotating at a speed of 100 revolutions per second, its frequency is 100 rotations per second. Applied to an a-c voltage, the frequency represents the number of cycles which occur in one second. The frequency of the wave shown in Figure 41580 cycles per second. In quite a few cases, the frequency will be called just 60 cycles. The per second is understood when dealing with electrical waves.

The alternating current supplied to most of the houses in this country has a frequency of 60 cycles per second. This means that the current and voltage go through 60 complete cycles (remember that this is actually 120 reversals or "alternations") in each second. Those frequencies which are used on power or lighting circuits (25, 50 and 60 cycles per second) are often called the "commercial frequencies".

The frequency of an a-c voltage is very important. To illustrate this, consider Figure 5. The symbol at the left of Figure 5 represents a sine wave generator. This generator could be an a-c generator in a power plant or in a vacuum tube oscillator circult. The generator is connected to a loudspeaker. If the frequency of the a-c voltage is 60 cycles, the sound waves coming from the loudspeaker will be a very low pitched humming sound. As the frequency of the a-c voltage is increased, (the number of cycles per second becomes higher) the pitch of the note heard in the loudspeaker will become higher. At a frequency of 1000 cycles per second, the note will be a pleasant, low pltched Whistle. As the frequency 1 s increased more and more, the note will become h1gher and higher in pitch, unt11 at about 20,000 cycles per second it has become so h1gh pitched that it cannot be heard. The normal human ear can hear notes ranging from about 20 cycles per second (abbreviated 20 cps) to about 20,000 cps. These frequencles (20-20,000 cps) are called the Audio Frequencies, since they are audible to the human ear.

Electrical voltages, corresponding in frequency to the Audio Frequencies are called Audio Frequency voltages, or Audio Frequency signals. The abbreviation for Audio Frequency is AF.

Electrical voltages, whose frequencies are higher than 20,000 cps are called Radio Frequencies (abbreviated RF). Since these signals range in the thousands and millions of cycles, they are usually expressed in kilocycles or megacycles. Radio waves range from 20kc (kilocycles) to several thousand regacycles.

The Radio Frequency signals are generated by vacuum tube oscillators, since the rotary generators, such as used in power plants, cannot be made to produce these high frequencies. The RF signals generated by the oscillator circuit in a broadcast transmitter will be somewhere between 500 kc and 1500 kc , the exact frequency beirg specified by the Federal Comminications Commission. A short wave transmitter may have the frequency of $14,000 \mathrm{kc}$ or 14 mc . It is the fact that different radio stations use RF signals of different frequencies that makes "tuning" of a desired station possible.

The "Deriod" of the wave is defined as the time required for one cycle to occur. For example, if the frequency of an alternating current is 60 cycles per second, each individual cycle would last for a period of one one-sixtieth of a second. We can say that the period is always equal to one divided by the frequency, and we can write this as:

$$
t=\frac{1}{t}
$$

where t represents the period and f represents the frequency. If the frequency is measured in cycles per second, the period will be measured in seconds; if the frequency is measured in cycles per minute the period will be measured in minutes, and so on.

The Alternating Current

In our stidy of direct current theory we learned that potential difference, or a voltage, causes a current to flow through the circuit. This also holds true for alterrating current circuits, such as Figure 6(A). During the time the lower terminal of the generator oscillator is negative, an electron current will flow to the rigit in the lower wire, up through the fesistor, and to the left in the upper wire back to the oscillator. A moment later, when the voltage or cne oscillator reverses its polarity, the lower terminal will become positive (making the upper terminal negative) and the electron current will be reversed. That 1s, the current will flow to the right in the upper wire, down through the resistor, and to the left in the lower wire back to the oscillator.

In direct current circuits, an individual electron does not necessarily have to travel completely around the circuit. You will remember that an electron current consists of a large number of electrons slowly drifting around the circuit. Of course, if we were to walt long enough, an electron leaving the battery will return to $1 t$, but suppose that there was a switch in the circuit and we were able to close this switch for only one one-millionth of a second. An electron current would flow for this one one-millionth of a second, but this current would not last nearly long enough for an electron to leave the battery and return to $1 t$. In considering alternating current theory, it is obvious that an electron will seldom, if ever, have sufficient time to travel completely around the circuit, especially if the voltage alternations of the cscillator occur rather frequently. The flow of an alternating current in a wire may be pletured as follows: The current flow consists of an electron current just as in a direct current circuit, but these electrons are more or less confined to a particular portion of the wire. First, they slowly drift one way; then as the voltage reverses, they will drift the other way, but they will never get more
than a short distance away from their original position. In other words, they "alternately" Ilow back and forth, forming an "alternating current".

Perhaps you are wondering whether or not an electric current that is continually reversing itseif - never getting anywhere, so to speak - is of any use. Consider a paddle wheel in a stream of water, and to the paddle wheel are attached a number of millstones. We can grind grain between these stones ${ }^{\circ} \mathrm{f}$ the stones are rubbing together. It does not matter whether the water flows continuously, turning the millstones in a certain direction, or whether the water flows ilrst one way and then the other. Just as long as the millstones turn against each other, the grain will be ground and we will be doing work. In this same manner, electrons flowing through a resistor generate heat regardless of whether they flow steadily in one direction, or whether they reverse their direction periodically. If an alternating current flows througn an electric light bulb, the bulb will be illminated, and if the erequency of the alternating current is high enough, above 30 cps , the bulb will appear to be giving off a steady light. Actually, the lamp illament cools off somewhat as the alternating current goes through zero, but the eye does not detect this. Alternating current c an be made to run a motor just as well as a direct current. If a condition is presented, wherein a-c cannot be used, it is a simple matter to change the $a-c$ to $d-c$. An example of this is the voltage applied to the plate circuit of vacium tubes, as mentioned previously.

Figure $6(B)$ is a graph of the voltage applied to the resistor in figure $6(A)$ and the current which flows through this resistor. In the figire, notice that the points where the voltage passes through zero, and the points where the current passes through zero coincide, and that the voltage and current reach their maximum values at the same instant. This is true for a circiit containing resistance, but is not true if the circuit contains a coll or a condenser, or both, as we shall learn in a later assignment. When the two curves coincide as they do in Figure 6, they are sald to be "in phase"; when they do nct coincide, they are said to be "out of phase".

The Characteristics of Sine Waves
Suppose we plot a sine wave voltage with vertical lines at equel time intervals, as shown in Figure 7.

The time axis is marked off in degrees instead of seconds, as in figure 4. This is possible because a cycle represents one complete succession of events, such as one tirn of a wheel. In the rotation of a wheel, we could say that one complete rotaition, or cycle, was 360°, since there are 360 degrees in a sircle. One half of a revolution could be represented by 180° rotation, one fourth of a rotation by 90°, etc. Ir. a llke manner, the cycle of an $a-c$ wave may be broken Into degrees.

The maximum value of the sine wave is indicated in Figure $\%$. It is the greatest value to which the current or voltage rises. The notations, "Imax" and "E max" are used to represent maximum values in radio formulas. The term peak value is sometimes used in place of maximum value, and means the same thing.

In Figure 7, it will be apparent that if the vertical ines are drawn long enough to inversect with the sine-wave curve, each of these lines will have a different length and eacs will represent the voltage at some particular instant of time. The voltage at that instant of time is known as the instantaneous
value of voltage, or more commonly, the instantaneous voltage of the wave form. From this ifgure it is evident that the instantaneous voltage for a sine wave depends on the particular instant at which the voltage is measured.

Table 1 lists the instantaneous value of a sine wave, at 10° intervals, assuming that the maximum value is 1.

Table I

Degrees	Sine	Degrees	Sine	Degrees	Sire
0	0	130	.766	260	-.985
10	.174	140	.843	270	-1.
20	.34	150	.5	280	-.985
30	.5	160	.34	290	-.94
40	.643	170	.174	300	-.866
50	.766	180	.0	310	-.766
60	.886	190	-.174	320	-.643
70	.94	200	-.34	330	-.5
80	.985	210	-.5	340	-.34
90	1.0	220	-.843	350	-.174
100	.985	230	-.766	360	0
110	.94	240	-.866		
120	.886	250	-.94		

By referring to this table, we can find the value of a sine wave, at any instant, if we know the maximum value of the sine wave. For example, if the maximum value of a sine wave of a-c is 1 volt, what is the value at 300 p By looking at the table we find that it is .5 volt. If the maximum value is any value other than one, the value of the sine wave at any instant may be found by multiplying the ifgures in the table oy the maximum value. For example, suppose we are considering a sine wave which has a maximum value of 100 volts, and we wish to know its instantaneous value at 80°. By referring to the table, we find the value of a sine wave with a maximum of 1 volt to be . 866 volt at 600 . To find the instantaneous value of this 100 V maximum wave at 80° we merely multiply .866 by 100 and find that the value of the 100 volt maximum wave, at 600 is 86.6 volts. Using this same principle we could find the following:

Sine wave of 100 volts max. at $300=50$ volts
Sine wave of 100 volts max. at $200=34$ volts
Sine wave cf 100 volts max. at $1800=0$ volts
Sine wave of 100 volts max. at $2700=-100$ volts
Sine wave of 200 volts max. at $190^{0}=-34.8$ volts
Sine wave of 155 volts max. at $700=145 . ?$ volts

Check the instantaneous values given in the examples above, and see if you agree with each.

Another term which is sometimes used in connection with a sine wave is average value. The average value of a sine wave is the average height of the curve of one alternation of a sine wave. Thus, if the height of all the vertical ilnes of an alternation in Flgure 7 were measured, and the average of them taken, this average would be found to be 0.637 , or 63.7% of the maximum value. We could write this as:

$$
\begin{aligned}
\mathbf{E}_{\text {av }} & =0.637 \mathrm{I}_{\max } \\
\text { and } I_{\text {av }} & =0.637 I_{\max }
\end{aligned}
$$

To apply this formula, let us use a few examples.
Example 1. What is the average value of a sine wave with a maximum value of 100 volts?
$\mathrm{E}_{\mathrm{av}}=0.637 \times \mathrm{E}_{\text {nax }}$
$=0.637 \times 100$
$E_{a v}=63.7$ volts
Erample 2. What is the average value of a sine wave whose maximum value is 155 volts?
$\mathrm{E}_{\mathrm{av}}=0.637 \times \mathrm{E}_{\max }$
$=0.637 \times 155$
$E_{a v}=88.7$ volts
fumple 3. What is the average value of a sine wave which has a maximum of 900 volts?

$$
\begin{aligned}
\mathrm{E}_{\mathrm{av}} & =0.637 \times \mathrm{E}_{\max } \\
& =0.637 \times 900 \\
\mathrm{E}_{\mathrm{av}} & =573.3 \mathrm{volts}
\end{aligned}
$$

By algebraic means, this formula can be rearranged as:
$E_{\text {max }}=\frac{E_{a v}}{0.637}$
To ind the maximum value, if the average value is know, this formula should be used.

Example 1. What is the maximum value of a sine wave which has an average value of 1000 volts?

$$
\begin{aligned}
E_{\max } & =\frac{E_{a v}}{0.637} \\
& =\frac{1000}{.637} \\
E_{\max } & =1669.9 \text { volts }
\end{aligned}
$$

The fourth term which is often used when considering an a-c voltage or current is the effective value.

The term "average value" seems fairly obvious. Although there is nothing particularly difflcult about the effective values, it cannot be sald that they are obvious. The effective value of an alternating voltage or current (which you must remember is varying in magnitude at each instant) must be the same as a corresponding direct current value. If this were not true, then 1 volt of alternating voltage would not produce the same effect on a resistor as would 1 volt of direct voltage. Also, 1 ampere of alternating current would not produce the same heating effect in a given resistor as would 1 ampere of direct current,
and you can see that this would never do.
The effective value of a sine wave of current or voltage is defined as that value which will produce the same heating effect in a resistor as will be produced by a given value of direct current or voltage. It can be shown mathematically that the effective value of a sine wave of current or voltage is the square root of the average of the instantaneous values squared. By applying this involved procedure, it can be found that the effective value of a sine wave is .707 times the maximum value.

Stated mathematically this 1s:
$E=0.707 E_{\max } \quad$ Where E is the effective voltage and
$I=0.707 I_{\text {max }} \quad I$ is the effective currert..
To apply these formulas let us consider a few examples.
Example 1. What is the effective value of a sine wave which has a maximum value of 200 volts?
$E=0.707 E_{\text {max }}$
$=0.707 \times 200$
$\mathrm{E}=141.4$ volts
This means that this sine wave of a-c voltage, which reaches a maximum of 200 volts, will do the same amount of work as a d-c voltage o: 141.4 volts.

Example 2. What is the effective value of a sine wave whice has a maximum value of 60 amperes?
$I=0.707 \times I_{\max }$
$=0.707 \mathrm{x} 60$
$I=42042$ amperes.
Thus we see that a sine wave of current which reaches a maximum of 60 amperes would produce as much heat in a resistor as 42.42 anperes of direct current.

Example 3. What is the effective value of a sine wave which has a maximum of 155 volts?
$E=0.707 \times E_{\max }$
$E=0.707 \times 155$
$E=109.6$ volts.
We could rewrite tris formula as:
$E_{\max }=\frac{E}{0.707}=1.414 \mathrm{E}$
$I_{\max }=\frac{I}{0.707}=1.414 \mathrm{I}$
We would use this formula to ind the maximum value of a sine wave, when the effective value is known.

Example 1. What is the maximum value of a sine wave whose effective value is 6.3 volts?

$$
\begin{aligned}
E_{\max } & =1.414 \mathrm{x} \mathrm{E} \\
& =1.414 \mathrm{x} 6.3 \\
\mathrm{E}_{\max } & =8.91 \text { volts. }
\end{aligned}
$$

Example 2. What is the maximum value of a sine wave which has an effective value of 20 amperes?
$I_{\text {max }}=1.414 \mathrm{x} \mathrm{I}$
$=1.414 \times 20$
$I_{\text {max }}=28.28$ amperes.
Example 3. What is the maximum value of a sine wave which has an effective value of 110 volts?
$E_{\text {max }}=1.414 \mathrm{xE}$
$=1.414 \times 110$
$F_{\max }=155.6$ volts.
This last example illustrates the voltage which is supplied to most homes by the electric power companies. The voltage is called 110 volts a-c. This voltage is actually a sine wave voltage with an effective value of 110 volts. The peak value of this voltage 1 s 155.5 volts. All a-c voltmeters and current meters read effective values.

Because of the way in which they are obtained, effective values of current or voltage are frequently referred to as "root mean squared" vaiues. This is often abbreviated "rms".

The average values of an alternating current or voltage are seldom used in ordinary radio and electronics work. Unless the current or voltage is specifically indicated otherwise, whenever we steak of an altermating current or voltage we mean its effective value.

Frequency and Wavelength

The wavelength of an alternating current sine wave is the actual physical length of ane cycle in space. The relation between frequency and wavelength is a simple one. The wavelength is equal to the speed at which the electric waves travel divided by the frequency in cycles. This speed is equal to 186,000 miles per second or $300,000,000$ meters per second (a meter is slightly longer than a yard). To get the wavelength of the wave in meters we divide $300,000,000$ by the frequency or: Wavelength in meters $=\frac{300 \times 10^{6}}{1}$.

The customary symbol for wavelength in meters is the Greek letter lambda, written λ.

Let us take several numerical examples.
Example 1. Suppose we wish to find the wavelength of a broadcast station which operates on a carrier frequency of 1000 kc . Using the formula, we have $\lambda=\frac{300,000,000}{1,000,000}=\frac{300 \times 10^{6}}{1 \times 108}=\frac{300}{1}=300$ meters.

This tells us that the actual length in space of this radio wave is 300 meters. This is about 985 feet.

Example 2. What is the wavelength of the radio wave from a short-wave station operating on 20 megacycles?
$\lambda=\frac{300 \times 10^{6}}{20 \times 10^{6}}=\frac{300}{20}=15$ meters.
Example 3. What is the wavelength of a television station operating on 80 m.c. ?
$\lambda=\frac{300 \times 10^{6}}{80 \times 10^{6}}=\frac{300}{80}=3.75$ meters.
Some radio receiver dials are marked both in irequency and in wavelength. In some countries, (particularly in Eurode), the wavelength and never the frequency of the station is shown on radio dials. Even in this country, the short waves are usually referred to by wavelength rather than by frequency, as for example the 4θ meter band, the 18 meter band, etc.

A few examples will show that the lower the irequency the longer the wavelength, or to say the same thing another way, the higher the frequency the shorter the wavelength. Our 80 cycle a-c powar has a wavelength of $5,000,000$ meters (approximately $3,000 \mathrm{mlles}$) whereas the wavelength of centain television carrier irequencies is about 1 meter.

Phase Relations of Sine Waves

Perhaps you have suspected, or have been told, that alternating currents are much more difficult to understand than are direct currents. This is not true. However, alternating currents are more complex and there are more different possibilities to consider. For these reasons, the explanations must be generalized.

One factor which riakes the study of a-c more complex is the matter of phase. This has been mentioned previously, but will be discussed in more detall now. Phase is a measure or time. It shows how one sine wave is varying in respect to another sine wave of the same irequency.

When two or more sine waves, either currents or voltages, are in phase, they pass through corresponding values at the same instant. That is, they both reain their maximum positive values at the same time, they both pass through zero at the same time. they both reach their maximum negative values at the same time, and so on. Two currents that are in phase are shown in Figure $8(A)$. Notice that the two waves are exactly "in-step" as far as time is concerned. They are of different amplitudes, but are in phase. (Amplitude means height of the wave, or magnitude.)

When two sine waves are out of phase they do not pass through corresponding values at the same time. Figure 8 (B) shows two sine waves which are 80° out of phase. These waves are 90° out of phase because they pass through corresponding values 90° apart on the time axis. Notice that the sine wave of current, I_{1}, has reached a maximum (completed $\frac{1}{4}$ of a cycle) at the time I_{2} is at zero. The current I_{1}, is said to be leading I_{2} by 90°.

Flgure $8(0)$ shows two sine wave currents which are 90° out of phase; but in this case, I_{2} reaches its maximum 90°, berore I_{1} does, so I_{2} is leading I_{1} by 90°. It is just as correct to say that I_{1} is lagging I_{2} by 90°.

In these examples we have seen the phase relationship of two sine waves of current. Figure θ 1llustrates the phase relationship of two sine waves of voltage. In Figure $9(A)$ the two voltages are in phase, in Figure $\theta(B) E_{1}$ is leading E_{2} by 80°, and in Figure $\theta(C) E_{2}$ is lagging E_{2} by 90°.

In Figure $10(\mathrm{~A})$ we see two sine waves 45° out of phase. E_{1} is leading E_{2} by 45° since E_{1} is reaching its maximum 45° before E_{2} reaches its maximum.

Figure $10(\bar{B})$ lllustrates two sine waves which are 180° out of phase. These two waves go trrough their zero values at the same instant, but one is increasing in a positive direction while the other is increasing in a negative direction.

Figure $10(C)$ shows two sine waves out of Dhase approximately 15°. The voltage E_{1} is leading $E_{\mathcal{L}}$ by approximately 15°.

In Figure 11 we see the phase relationship of a sine wave of voltage and a sine wave of current. The voltage wave, E , leads the current wave, I , by 900 in Figure $11(\mathrm{~A})$. In Figure $11(\mathrm{~B})$, the current wave I leads the vcltage wave E by 90°. Figure $11(\mathrm{C})$ shows the voltage wave E , leading the current I by approx $1-$ mately 13°.

These examples illustrate the wide varlety of phase relations which will be encountered in the use of a-c in electronic circuits. You are probably wondering under what conditions these out of phase conditions occur. The answer to that question is an easy one. Any time a circuit with a-c voltage applied has either inductance (co1ls), or capacitance (condensers), there will be an out of phase conditions between the voltage and the current, and between the voltages at different points in the circuit.

Figure 12(A) shows an a-c generator connected to a condenser, and Figure $12(B)$ shows the phase relationship which results between the voltage and the current. The current is leading the voltage by 900 . The reason why this occurs will be discussed in the assigrment on condensers.

Figure $13(\mathrm{~A})$ shows an a-c generator connected to a coll, and the phase relationsh1p of the voltage and current are shown in Figure 13(B). Notice that in this case, the current is lagging the voltage by 900.

In Figure 8 we have already seen the phase relationship of the vcltage and current in an a-c circuit containing resistance alone.

If an a-c circuit contains a combination of resistance and capacitance, resistance and inductance, or resistance, capacitance, and inductance, a wide variety of phase relationshid may result. The amount of phase difference will be determined by the value of the individual components. This wilj be taken up in detall in future assignments.

The Addition of Sine Waves

In direct current circuits, we can readily ind the resultant value of two voltages or currents in the same circuit since all we have to do 1 s add their individual values. Figure 14 illustrates this. In Figure 14 (A) the resultant of E_{1} and E_{2} is 150 volts. We find this by adding +100 and +50 . In Figure 14 (B) the two voltage sources are so connected that the two emess are odposing each other, or "bucking". To find the resultant voltage of these two in series, we add the individual values algebraically. The number, +100 added to -50 gives +50 as an answer. The resultant voltage is 50 volts as indicated in the ifgure.

The resuliant of two or more a-c waves can be found by adding their instantaneous values. This is shown graphically in Figure 15 and Figure 16.

In Figure 15 we have two sine wave generators connected in series. These two generators are delivering a-c voltages which are of the same frequency, and are in phase. The maximum value of E_{1} is 100 volts, and the maximum value of E_{2} is 50 volts. We wish to know the resultant value of these two voltages in series. In the graph on Figure 15, we have plotted these two voltages, and the resultant of them in series. The resultant voltage is labeled $E_{1}+E_{2}$. To obtain this curve we add the instantaneous values of each wave. At zero on the time axis E_{1} is 0 and E_{2} is 0 . Adding these two we obtain 0 for $E_{1}+E_{2}$. At 90° on the time axis, E_{1} is +100 volts and E_{2} is +50 volts. This gives us +150 volts
for $\mathrm{E}_{1}+\mathrm{E}_{2}$ at this point. At 180° both E_{1} and E_{2} are 0 , so $\mathrm{E}_{2}+\mathrm{E}_{2}$ is also zero. At $270^{\circ}, \mathrm{E}_{1}$ is -100 volts, E_{2} is -50 volts, so the resultent $\mathrm{E}_{1}+\mathrm{E}_{2}$ is -150 volts. At 860° the resultant is again 0 .

In Figure 16 we have two a-c generators, each delivering 100 volts maximum. The two voltages are 90° out of phase. (E_{2} is leading Σ_{1} by 80°). We wish to find the resultant of these two roltages. This is done graphically by plotting the two waves E_{1} and E_{2}, and adding their instantaneous values. We il ind that the resultant of these two voltages is not 200 volts. The marimum of the resultant of these two voltages 1 s only 141 volts. Furthernore the resultant voltage, $H_{1}+E^{2}$ is out of phase with each of the original voltages. If Figure 16 is studied carefully, the reason the resultant voltage is not equal to the sum of E_{1} and E_{2} will be apparent. It is because these voltages are not acting together. In Figure 15 the two voltages were acting together, since they were in phase, but in Figure 10, the two voltages are out of phase and do not reach their maximum values at the same t ime. When $E_{2} 1 s$ maximun, E_{1} is at zero, and when E_{7} is maximum E_{2} is at zero. When E_{1} is at 45° it.s instantaneous value is 70.7 volts, and at this same time the instantaneous value of E 1 s alsc 70.7 volts. This gives a resultant value of 141 volts at this time. If all other points are plotted it will be found that the sum of the two instantaneous values is never greater than 141 volts. The graph of the resultant of the two voltages shows that the resultant voltage reaches a maximum positive at 45° a maximum negative at 225°, and goes through zero at 135° and 315°. The resultant wave is 46° out Of phase with Σ_{2} and $\mathbb{E}_{\mathcal{L}}$

As an examination of pigures 15 and 16 shows, it is considerable trouble to combine alternating currents or voltages by plotting their instantaneous values, point by point, in this fashion.

These difficulties have led to the adoption of "uectors" for combining currents and voltages in alternating current circuits, since the use oi vectors greatly simplifies the solution of many of the a-c problems encountered in radio and televiston work

Vectors

Suppose that the line $I_{\text {max }}$ in Figure 17 is revolving counterclockwise at some constant speed. This speed could be measured easily in "degrees per second" since there are 360° in a complete circle or in one revolution of the ine.

As the ine $I_{\text {max }}$ revolves, let us stop it at 30° intervals (points 2,3,4, etc. in Figure 17) and measure its height above its starting horizontal ine If this height is plotted on the vertical axis of a graph, and the horizontal axis is plotted in degrees representing the angle through which the ilne has turned, we would obtain the sine wave shown at the right in figure 17.

This shows us that it is possible to develop a sine wave by a ilne whose length represents the magnitude of the current or voltage, and which is rotating at a rate equal to one revolution per cycie. since it is possible to develop a sine wave, by plotting the height of the rotating line ($I_{m a x}$) above the horizontal line, it is permissible to use such a rotating line to represent a sine wave. A longer line would represent a greater current, and one which is rotating faster represents a higher irequency. In this example, $I_{\text {max }}$ is equal to maximum value of an alternating current. Likewise we could represent a sine wave voltage by a counterclockwise rotating line having a length $\mathrm{max}_{\text {max }}$

In Figure 17 the 11 ne $I_{\text {max }}$ has a certain definite length. It also has an arrowhead on one end it, indicating that it has cirection. We call such a quantity, one that has magnitude (length) and direction, a nvector quantity".

Using Vectors to Show Phase Relationship
The phase relationship between two sine waves of the same frequency may be indicated by vectors. Remember that a vector is a line which is rotating one revolution for each cycle. Suppose we had two sine waves and represented each by a vector. If the frequency of the two sine waves were the same, these two vectors would be rotating at the same speed. It might be compared to the spokes on a wagon wheel. As the wheel turns, each of the spokes rotaie at the same rate. The angle between the two spokes remains the same. Thus, if we are comparing two sine waves of the same frequency, their phase reiationship may be indicated by the angle between the two vectors. This is shown in Figure 10 (B). The vector I_{1} represents a sine wave current, and the vector I_{2} represents another sine wave current of the same frequency. The two currents are 45° out of Dhase. They are both rotating at a rate of one revolution per cycle and thus the two vectors rotate "in step" fust as the spokes of a wheel. The 45° angle wlll be maintained between these two vectors (spokes).

Remember these things concerning vectors. 1. A vector may be used to represent a sine wave of voltage or current. 2. A vector is considered to be rotating one revolution per cycle, in a counter-clockwise direction. 3. The length of a vector represents the amplitude of the voltage or current. 4. A vector has direction as indicated by the arrow. 5. Phase relationships between two or more sine waves can be indicated by the angle between the vectors used to represent these waves.

The Addition of Vector Quantities

We represent alternating sine wave currents or voltages by vectors since it is much simpler to add together two vectors which represent the two currents or voltages, than it is to add the two sine waves, point by point. Fecause of this, the solution of most alternating current problems involves vector adcition, so let us see how this is done.

An ordinary unit, such as an ohm, expresses oniy a quantity, and so we can add chms directly. A vector, however, has both magnitude and direction, so they must be added in such a manner that these two things (magnituce and direction) are considered.

In Figure $18(\mathrm{~A})$ we have shown a small portion of a radio circuit. We have a junction where two alternating currents combine and flow in one cormon wire. The amount of current in two of the wires is known. The phase angle between the two currents is also known. The current in the common wire is to be determined.

If practical, you would merely insert an ammeter in the cormon wire to measure the combined current I_{t}. In studying a circuit diagram, or in a good many actual circults, it will not be possible to insert an ammeter in the common wire to measure I_{t}, the sum of I_{1} and I_{2}.

The known currents I_{1} and I_{2} are each 3 amperes and I_{2} is known to be leading I_{1} by 45 degrees. The tiwo currents are sald to be 45 degrees out of phase. We can plot the waveforms of I_{1} and I_{2} on the same axis and add their instantaneous values to cbtain the waveform of I_{t}. See Flgure 18(B) Notice that we are careful to plot the waveforms of I_{1} and $I_{2}, 45$ degrees out of phase. The waveform of I_{t} has a maximum value of approximately 5.5 amps. Tre waveform of I_{t} lags I_{2}
by 22.5 degrees and leads I_{1} by 22.5 degrees. The only favit we can find in this solution $1 s$ that $1 t$ takes a lot of time and careful work.

In Figure $18(C)$ we have added I_{1} and I_{2} and determined I_{t} by means of vectors. You can see at a glance that the vector solution doesn't involve much work. The vector solution gives us the same answer as the more tedious addition of wave forms.

It does not take a mathematician to set up and add I_{1} and I_{2} using vectors. Choose a convenient scale, say $1 / 4$ inch equals 1 ampere. The lengths of the arrows indicate the amounts of each current in amperes. The vectors representing I_{1} and I_{2} should each be $3 / 4$ inches long since I_{1} and I_{2} are each 3 amperes.

First draw a line $3 / 4$ inches long as shown in figure $19(\mathrm{~A})$. Label this vector I_{1}. The vector representing I_{2} will also be $3 / 4$ inches long. I_{2} is known to be leading I_{1} by 45 degrees. We will have to have a 45 degree angle between the vectors representing I_{2} and I_{1}. To indicate that one sine wave 15 leading another, the leading vector is drawn on the counterclockwise side of the other vector. In F1gure $19(B)$ we see the vector I_{2} drawn on the counterclockwise side of I_{1} and the angle between the two lines 1545°. Now we have drawn the vectors representing the two sine waves. The length of each vector indicates the amplitude of each sine wave, and the angle between them (45) indicates the phase relatioriship between them. As mentioned previously, each of these vectors is rotating, but since their speed of rotation is equal, they will maintain the 45° angle between them. For all practical purposes, we could "stop" the rotating vectors in some convenient position and analize them.

There are several ways of adding vectors, but the most simple method is shown in figure $19(\mathrm{C})$. To find the resultant (the sum of the two) cf I_{1}, and I_{2}, we "complete the parallelogram". To do this, from the tif of the arrow I_{2}, we draw a line which is parallel with I_{1}. This is the dotted line (a) in Figure 19(C). Then from the tip of I_{1} draw a line which $1 s$ parallel $w 1$ th I_{2}. The sum of the two or the resultant, then, is represented by the line drawn from the "tall" of I_{1} and I_{2}, to the point where these two dotted lines cross. This is the solid line I_{t} in Figure $19(C)$. The angle that this line has in respect to the two other vectors indicates the phase angle, and the lergth of the line represents the magnitude of the voltage. If we were to measure the angle of I_{t}, in respect to I_{1} and I_{2}, with a protractor, (a device for measuring angles), we would 1 ind that I_{t} leads I_{1} by 22.5^{0} and that 1 t lags I_{2} by 22.5°. I 5 s length is $13 / 8$ inches. Since we have used $1 / 4$ inch to represent one ampere, the $13 / 8$ inch long resultant would indicate 5.5 amps. This is the same information as obtained in Figure $18(B)$, but is found much more simply by using vectors.

To further $111 u s t r a t e$ the use of vectors, let us consider F1gure 20. In th1s flgure we have two cscillators (a-c generators) connected in serites across a resistor. One oscillator is putting out 2 volts. We call this voltage E_{1}. The second oscillator 1 s putting out 1 voit. We call this voltage \mathbb{E}_{2}. The second oscillator voltage E_{2}, 1 s lagging E_{1} by 60 degrees. How much voltage do we have across the resistor? We could plot the wave forms of the two voltages and add the instantaneous values as shown in Figure $20(B)$. The easy method will involve just a few strokes of a pencil for rapid vector addition. This is shown in Figure 20 (C). Draw the ilrst osclliator voltage to a convenient scale representing 2 volts. (E_{2} of Figure $\left.20(C)\right]$. Draw the second oscillator voltage vector half as long (1 volt) and of such direction that it indicates a lag of 60
degrees. [E_{2} of Figure $20(C)$]. Add the two vectors by the method shown in Figure $19(C)$, and the combined voltage across the resistor E_{L} can be quickly scaled and founc to be approximately 2.65 volts. A Drotractor will show that E_{t} "lags" E_{1} by about 19 degrees and "leads" E_{2} by about 41 degrees.

Figure $21(A)$ shows the vectors for the wave forms shown in Figure 18. Study this vector diagram and see $1 f$ it doesn't convey the same information as the wave shapes shown in Figure 16(B).

Figure $21(B)$ shows the vectors for the voltages shown in Figure 15. Notice that since the two voltages are in phase, they are laid out on the same line, ntall to head". The resultant voltage is equal to the total length of the line, or 150 volts in this case.

Flgure 21 (C) shows a vector representation of the voltage and current associated with a condenser. Compare this with the wave forms shown in Figure 12.

Figure 21 (D) shows a vector diagram of the voltage and current of a coll. Compare this with Figure 13 (B).

These examples will serve to introduce the subject of vectors. Other applications of vectors will be made from time to time in the training program. We shall make use of this simple way of representing sine waves in the explanation of a great deal of a-c circuits.

A-C Waves, Other than SIne Waves

$\mathrm{A}-\mathrm{C}$ voltages and currents which have sine-wave shapes are encountered to a great extent in electronic and television circuits, but there are some cases where a-c voitages and currents will be found which have wave shapes differing from sine waves. In flgure 3 we have seen one of these wave shapes, that of a square wave. Figure 22 shows another wave shape that is sometimes encountered in radio equipment, especially certain types of test equipment, and is frequently encountered in television equipment. This wave is an a-c wave, since it is Deriodically changing in magnitude and direction. This wave shape is called a saw-tooth wave due to 1 its resemblance to a tooth on a saw. Another wave shape which differs from a sine wave is the audio signal which we have mentioned previously. The wave shape of a typical audio signal is shown in Figure 23. Before discussing this wave shape let us review briefly now this signal is developed.

Any vibrating body will set up sound waves in the air. For example, when a key is struck on a plano, the hammer strikes the string, setting it into a state of vibration. The vibrating string sets up sound waves in the air, by causing regions of higher than normal, and lower than normal air pressure to travel away from the string. When these sound waves strike the diaphragm of a microphone, they cause the diaphragm to vibrate. The microphone then changes these vibrations into audio slgnals, which are sound waves in an electrical form.

You may have wondered why different musical instruments have a different sound when playing the same note. For example, if middle C is played on a plano, and on a horn, it does not sound the same. Actually, both or these notes are of the same frequency, (the number of times per second that the vibrations are occuring), but the difference in sound is due to the difference in wave shape. As the sound waves strike the diaphragm of a microphone, the vibration of the diaphragm is directly "in step" with the sound wave. It procuces audio signals
which correspond to the sound waves, not only in frequency, but also in amplitude. The amplitude of the audio signal will vary in step with any irregularities in the sound waves. In this way, aud 10 signals are not pure sine waves, but are closer to the wave form shown in Figure 23. The wave shape of an audio signal produced by the sound waves from a vibrating string may be closer to a pure sine wave than that in Figure 23, but the audio signal produced by a human voice is much more irregular than the wave shape shown in Figure 23. The characteristic sounds of different instruments and voices is due to the wave shape of the sound waves produced. As was pointed out previously, the frequency of audio signals range from 20 cycles to approximately 20,000 cycles.

Harmonics

Aarmonic is the term which is used to define some multiple of a fundamental irequency. For example, the second harmonic of a 60 cycle signal is 120 cycles, the third hamonic is 180 cycles, the fourth harmonic is 240 cycles, etc.

Figure 24 shows a fundamental and its third harmonic plotted on the same graph.

This assignment has presented a large amount of information about alternating current and voltages. To summarize, let us put some of this in the form of definitions.

Definitions

Pulsating $d-c-A$ current which is always in one direction, but which is varying in amplitude.
Alternating Current or Voltage - A current or voltage that periodically changes in magnitude and direction.
Cycle - one complete succession of events. ADplied to a sine wave; from zero to a maximum, Dack to zero, to a maximum of opposite Dolarity and back to zero again. It is equal to 360 electrical degrees.
Frequency - Number of cycles per second.
Power Frequencies or Commercial Frequencies - The frequencles of the a-c power delivered to nomes. In most locallties the a-c frequency is 60 cycles per second. In some cases 25 cycles and 50 cycles are used.
Audio Frequencies - The frequencles which are in the range of the human earapproximately $20-20,000$ cycles.
Radio-Frequencies - Frequencies higher than 20,000 cycles.
Period - Length of time required for one cycle.
Instantaneous Value - The value of voltage or current for any given instant.
Peak Value of a Sine Wave - The maximum value of voltage or current during one cycle. It is equal to 1.414 times the ef fective value.
Effective or RMS Value of a Sine Wave - That value of the sine wave which will produce the same heating effect as the same amount of d-c voltage or current. Numerically it equals. 707 t imes the maximum value of the sine wave. This is the value which is read by a-c meters.
Average Value of a Sine Wave - The average of all the instantaneous values for one alternation. It is equal to. 637 times the peak value.

Harmonics - Multidies of a fundamentai frequency.
Phase Relationship - A measure of the time difference in degrees of two sine waves of the same frequency, in reaching corresponding points on the same time axis.
Vectors - Rotating lines which may be used to represent sine waves. The length of each vector 1 s determined by the magnitude of the sine wave, and the angle between vectors is determined by the amount of phase difference.
Wave Shape - Sine waves are the one mosi commonly encountered. others which may be found in radio circuits are square waves, saw-tooth waves, and audio signals which are irregular in shape.

In future assignments, we shall apply our knowledge of a-c to the subject of colls and condensers, and find out how each of these circuit components react to alternating currents and voltages. We will then be in a position to study one of the most fascinating subjects in radio - the action of colls and condensers in combination.

Test Questions

Be sure to number your Answer Sheet Assignment 13. Place your Name and Assoclate Number on every Answer Sheet.
Send in your answers for this assignment immediately after you finish them. This will give you the greatest possible benefit from our personal grading service.

1. What is a direct current which is changing in magnitude, called? puta tang
2. What is the frequency of the a-c voltage supplied to most homes in the United States? (n) eypla

3 Does an a-c meter read; peak, effective, or average values of a-c?:
4. If the peak value of an a-c voltage is 300 volts, what is the effective value? 212.1
5. An a-c voltage has a frequency of 10,000 cycles per second. Is th1s called an Audio Frequency or a Rad 10 Frequency?
6. What is the frequency of the third harmonic of a 100 cycle a-c voltage? 3 -
7. Draw the vectors for the following:

Two a-c roitages, each of 100 volts maximum, and 90° out of phase.
3. Use the values given in Table I on page 8 and draw a sine wave.
9. Which can be changed irom a low value to a righ value easier, a-c or d-c?
90. The effective value of voltage dellvered to most homes 1 s 110 volts. What is the peak value of th1s voltage? $/ 55.5$


```
A C K HNONWLE D G E M E N T
United Flectronics Laboratories
qratefully acknowledqe the aid
and assistance of the Sperey
Gyroscope Company in the prep-
aration of this material.
```


ASSIGNMENT 13B

RADAR PRIMCIPLES

The present international situation is such that it is thought necessary to provide the Associate with information which will be valuable in defense industries and in the Armed Forces. In regard to this matter it should be mentioned that there are many civilian positions available in connection with the Armed Forces. Civilians are used very widely in the maintenance and repair of electronic equipment of the Armed Forces as well as in the design and manufacture of this equipment. For this reason special assignments will be included in the training program at appropriate points dealing with the subject of radar. This is the first of these special assignments dealing with this subject.

Introduction and History of Radar

The best definition of radar is obtained by analyzing the actual meaning of this term. The word Radar is an abbreviation of the following: Radio Detection and Ranging. The term radar is, then, an abbreviation $\overline{o f}$ the longer phrase, radio detection and ranging, which indicates the actual purpose of radar equipment. In military usage the term range means a measure of distance between some object such as a gun, or a radar set in this case, and some objective. Thus radar is used to detect the presence of objects and to determine the distance of the object from the radar set. Not only does radar indicate the distance to an object but it also indicates the direction of that object.

To acheive the desired results, radar sets employ radio waves. Consequently, the history of radar dates back to the beginning of radio experiments. . Thus Heinrich Hertz's crude radio experiments in the year 1888 and Marconi's experiments which followed in the year 1896 actually laid the cornerstone for the complex radar installations of today.

The major developments in radar equipment occurred during the years between 1935 and 1945-that is, prior to and during World War II. However, radar was not entirely unknown before that time as Marconi predicted it in the year 1922.

It is interesting to note that nature has been employing a principle quite similar to radar projably since the beginning of time. One thing which mystified biologists for many years was the fact that bats are able to fly in absolute darisness, for example, in a cave far below ground, and still they do not strike the walls or other objects. However, since the derkness is absolute, it is not possible for them to "see" the objects. Thus it remained a mystery for many jears just how the bats "achieved the impossible". It has been found that the system employed by these animals to achieve the impossible is quite similar to radar.

The bats produce very high pitched sounds, so high pitched in sact that they are not audible to the human ear. These high pitched sounds
are reflected from the walls of the caves or other objects ard returned to the bat. When these returned "echos" are received by its sensitive ears the bat is able to determine the position of the object producing the echo and make the necessary corrections in the line of flight to prevent collision. This is illustrated in Figure l.

Before considering the subject of radar in more detail let us consider \& little further "nature's radar system" as employed by the bat. Notice that in the first place the bat must produce or radiate, some sort of sound or signal which can be heard by its ears. As this signal trevels away from the bat it strikes the walls of the cave and other obstacles nearby. Part of the energy striking the walls of the cave or other objects, is reflected back toward the bat, forming an echo. Thus the second requirement in the natural radar system is the reflection of the energy. The energy which is reflected to the bat must be picked up, or "received", by the bat's ears. This illustrates the third requirement of the radar system; namely a receiver. However, this entire process would be useless if the bat did not possess some means of interpreting the echo and indicating the direction and position of the object causing the echo. This, in the case of the bat, is accomplished through its brain or instinct. We might for simplicity, call this portion of the natural radar system an indicating device. To summarize this action it can be stated that the fundamental requirements of the natural yadar system are: (1) a means of generating and radiating a signal, (2) an echo from the object to $b \in$ detected, (3) a means of receiving this signal and (4) a means of interpreting the signal and indicating the position and distance of the object.

As we shall soon see, the same fundamental components are required in a radar system. It should be emphasized that there is one fundamental difference between the radar system of the bat and the radar system which is used to practical advantage in military and civilian applications. This is the fact that the signal radiated in radar systems is a radio frequency wave, whereas, the bat employs high frequency sound waves.

Radar Applications

The first radar systems were designed for use in detecting the presence of aircraft while they were still at a sufficiently great distance so they could be intercepted by fighter aircraft. This is still one 0 : the major applications of radar. However, otker types of radar systems have been developed for use in many other situations. For example, modern radar equipment is available for locating exactly the position of an aircraft, which is nearby, so that this information car be used in directing anti-aircraft fire. This equipment has been developed to the point where the radar device actually controls the position of the anti-aircraft guns thereby greatly increasing their accuracy. These applications of radar are normally referred to as ground radar, since the equipment is located on the ground.

Another important application of radar is airborne radar. There are a number of different types of radar equipment which are airborne. One type, which is used primarily by fighter planes, enables the pilot to "see" an enemy aircraft at night and thereby enable interception. Arother type of radar which is used largely by bombers, enables the crew to "see" the terrain over which the plane is flying at night or in the case of heavy fog or bad weather conditions. This is particularly important in locating a target for high level pin-point bombing.

A third application of radar to aircraft is the radar altimeter. This device is far more accurate than the customary altimeter and is very important in connection with bombing missions as the exact altitude is an important factor in determining the proper time to release the bombs.

Another radar application which is used in conjunction with aircraft is the radar landing system. Strictly speaking, this is a ground radar application since the equipment is located on the ground. During World War II, when targets in Germany were being bombed by aircraft stationed in England, the facts indicated that the number of planes lost during landing operations were nearly as great as those lost by enemy action over the target. Thus it was obvious that a landing method must be devised for use in case of bad weather conditions. Special radar equipment was designed for this purpose which enables an operator on the ground to determine very accurately the position of a plane approaching an airport. Directions can be given to the pilot by radio"telling him the necessary corrections to make in his glide path and direction of flight so that he is able to make a perfect landing. This equipment has also been adapted for use in commercial airlines and is called Ground Controlled Approach (GCA).

Radar is also used widely on naval vessels. This equipment is quite similar to ground radar except it is, of course, adapted for use at sea. The equipment used includes radar units for detecting and indicating the range of other surface vessels, or long range detection of aircraft, for position indication of close-flying aircraft and for anti-aircraft gan direction. Another marine application of radar is in navigation, particularly in the case of bad weather or darkness when a ship is close to shore. When a ship is approaching port etc., radar may be used to determine the distance to the shoreline, bouys, other ships, etc., to assist in the navigation of the vessel.

While the foregoing does not constitute a complete list of the uses of radar it does outline its major uses. It should be very evident to the Associate that the types of radar equipment used to perform the various types of operations differ rather widely. For this reason tie detailed study of particular units is impossible in the training program. However, since all radar equipment operates on similar principles, the basic radar circuits and principles which will be ircluded in the training program should enable the Associate to intelligently analyze any radar equipment with which he may have association in the future.

A Fundamental Radar system

Figure 2 illustrates the fundamentals of a radar system. A radar transmitter generates very short radio waves which are radiated by the radar antenna. The transmitter is turned on and of automatically in such a manner that the radio waves transmitted are in the form of pulses, somewhat similar to a sucession of dots being sent by code (radio telegraph) station, except the radar pulses occur for shorter intervals of time. As the radio waves travel through space they will strike objects which reflect a portion of the radio wave back toward the radar antenna. A receiver is connected to the antenna in such a manner that the replected waves are picked up and amplified and are then passed on to the visual indicator. The indicator consiats of electronic circuits and a cathoderay tube similar to those used in television receivers. The effect of the returning pulse is to produce an indication on the indicator which can in turn be used to determine the distance from the radar set to the object which caused the reflected radio wave to occur. In addition directional antennas are emplojed with radar equipment so that the radio waves which are transmitted are sent out in a narrow beam somewhat similar to the beam from a flashlight. Thus the reflection occurs from a particular object only when the antenna is aimed at that object and the direction the antenna is pointing may be used to indicate the direction of the object. Thus an object can be detected and its range and direction can be determined by radar.

The fact that radar employs a radio wave instead of other means of indicating the presence of objects, enables it to offer a decided advantage over other detection methods. For example the presence of approaching planes can be detected by constantly searching the sky with a pair of powerful binoculars. However, the range of detection in this case is very limited and in case of fog or other adverse weather conditions this method of detection is almost useless. Another method of detection, which was employed previous to radar, was a sensitive listening device, which could be used to detect the sound of the motors of the approaching plane. This method too, is very limited in range and is very inaccurate. The radio waves used by a radar system are, however, unaffected by fog or other similar weather conditions and the useful range of the instrument can be extended in excess of one hundred miles. Also, radar can be used to detect objects which are dark and silent and therefore could not be seen nor heard. An aircraft flying at a very high altitude can determine the location of a target area even though that target area is blanked out and silent. This importance is so obvious that no additional discussion is required.

Almost any object can be detected by means of radar since practically all materials reflect the short radio waves used by radar. For erample ships, aircraft, land, water, trees, buildings, birds, etc., will cause radar reflections to occur. It should be emphasized however that different objects reflect the radar waves to a different degree, thereby enabling detection to occur. It was mentioned that a radar wave is reflected
from water and also that it was reflected from a ship; consequently, it might appear that a ship in the water could not be detected. This, however, is not the case since the metal of a ship reflects the radar waves and returns them to the radar antenna to a greater degree than does the water. Thus the presence of the ship will be indicated by the fact that its reflection is greater than the reflection of the water.

To state this in a general manner it can be said that the radar reflection which occurs is dependent upon the material of the object which is being struck by the radar beam and upon the size and shape of that objəct. Metal is one of the best reflectors; consequently, metal ships, airplanes, etc., produce better reflected waves than do wooden ships or plywood aircraft.

The fact, that a large object causes a greater echo to oecur than a small object, should be readily understood. Thus a radar set is capable of detecting the presence 0 : a large object at a greater distance than it can detect a smaller object. In this respect the radar antenna compares with the eye since a laree object can be seen at a greater distance than the small cbject.

As mentioned in Assignment No. l radio waves travel at the speed of light which is approximately 186,000 miles per second. Not only do radio waves travel with the speed of light but, their reflection characteristics are in many respects, similar to the reflection characteristics of light. This effect is illustrated in Figures 3 and 4. Everyone is, of course, familiar with the effect produced when a beam of light shines upon a sheet of smooth metal. As illustrated in Figure 3(A), if the metal has a flat smooth surface, the light rays are reflected. In a similar manner radio waves are reflected from the sheet of metal as shown in Figure 3(B). The amount of light reflected toward the source from the sheet of metal is determined by the position of the sheet of metal. This condition can be seen by comparing the illustrations in Figures 3(A) and 4(A). When the position of the sheet of metal is such that the surface is turned toward the source of the light, a strong reflection is returned toward the scurce as illustrated in Figure 4(A). Similarly the reflected radar waves returned to the source is far greater when the surface of the sheet of metal is turned toward the radar antenna as illustrated in Figure 4(B).

In most insjances an object which is to be detected by radar does not consist of a single flat surface (for example, the sheet of metal in Figures 3 or 4), but has instead an irregular shape. However, for most any position of an irregular surface there will be some portions of the surface which are turned directly toward the source. This is illustrajed in Figure 5. It will be noted that the waves reflected toward the source from the irregular surface, shown in Figure 5, are less than those returned from the flat surface, as shown in Figure 4, because a great deal of the energy is reflected in other directions. However, it should be obvious that a portion of the energy is reflected back toward the sourcョ. This effect can be summarized by stating that although reflection occurs from the irregular surface, only those portions of the surface
which are facing the source produce reflections which are returned to the source. In other words, only the portions of the surface of an object which are at right angles to the line of approach of the waves produce reflections which are returned to the source. However, any object to be detected by a radar set has portions of its surface at right angles to the radar set and will thereby produce reflections which return t.o the radar set. Figures 6 and 7 illustrate the manner in which this effect enables a radar set to distinguish between objects. Notice for example in Figure 6 that some of the metal surfaces of the ship face directly toward the radar set and thereby produce strong reflections in the direction of the radar set. It can be seen moreover that the radio waves strike the surface of the water at a glancing angle and the major portion of the reflected waves from the surface of the water go off at various ancles and do not return to the radar set. Since the surface of the water is not entirely smooth, a small amount of reflection toward the radar set will occur, but, because this reflection is very small in comparison to the reflections from the ship, the ship is easily identified.

Figure 7 illustrates the similar effect produced when the radar set is carried by a plane. The glancing angle at which the waves strike the flat surface of the earth or the water cause reflections, very few of which return to the radar set, but a strong echo is returned to the radar set from the surfaces of the buildings in the city. It can be seen also that the reflections returned to the radar set from the hillside عre greater than those from the flat countryside.

The maximur range at which an object can be detected by radar depends lipon two factors; the amount of reflected signal obtained from that object, and the sensitivity of the radar receiver. As long as the $r \in f l e c t e d$ energy is suificiently great to produce the required indication on the indicator screen, the object can be detected. There are, however, a number of factors which determines the amount of reflection ottainəd Arom ar object. Foremost among these are: (l) the size, shape ard composition of the object, (2) the power of the signal radiated from the radar transmitter, (3) the distance of the object from the radar transmitter, (4) the width of the radar beam and (5) the terrain.

Let us now consider how these various factors effect the amount of radar signal which is reflected from an object.

The manner in which the size, shape and composition of an object affects the reflected wave was dealt with previously and needs no further explanation. The manner in which the power radiated from the radar transmitter affects the reflected signal should also be rather obvious. Compare this effect with a searchlight. If it is desired to see an object at a relatively great distance a powerful searchlight must be used. Similarly the greater the power transmitted from the radar antenna the greater will be the distance at which a particular object can be detected. In connection with this point it should be emphasized that all the power radiated by the transmitter does not strike an object. In fact only a very small portion of the power radiated ever strikes the object. This condition arises because the beam from the radar antenna is a divergent
beam. In other words this beam becomes gradually wider as the distance from the antenna increases. Thus the strength of the signal striking a given object.is much less than the transmitted power.

The diverging or "fanning" of the radar beam also accounts for the fact that the amount of reflection received from an object is dependent upon the distance of the object from the antenna. This effect can be compared to the effect produced by a flashlight with a divergent beam as illustrated ir Figure $8(\mathbb{A})$. Practical experience will tell the Associate that the object held at position No. l in Figure 8(A) will be iiluminated to a greater degree than it would if held at position No. 2 in the beam of the flashlight. (When reading this assignment material, if at night, you move relatively close to the light because the illumination is greater there. The fartiner you move away from the light the lesser is the illumination on the page.) Figure $8(B)$ illustrates the similar effect which occurs in a radar system. If the object, as represented by the plane in Figure $8(B)$ is at position No. 1 which is close to the radar antenna, the radio energy which strikes the plane will be strong, consequently the reflected signal will be strong. If the plane is in the position illustrated as No. 2 on Figure $8(B)$ the radio energy striking the plane is less and the reflected signal is reduced a proportional amount.

The fact that the width of the radar beam affects the amount of radio signal reflected from ar object at a \&iven distance is illustrated in Figure 9. Once again comparison is made to a similar situation with a flashlight. It was pointed out previously that the energy transmitted from the radar antenna is in the form of a beam. In different types of radar installations which are serving different purposes the width of the beam varies. If one of the prime objectives is to detect objects at a שreat distance a narrow beam will be employed. To understand why this is true, examine Figure 9 carefully. Notice in.Figures 9(A) and (B) the same flashlight is used. However, in Figure 9(A), the lens is so adjusted that a wide-angle beam is produced and the object is only dimly illuminated. Contrast this with the condition shown in Figure $9(B)$ where the lens is adjusted to produce a narrow bear. Note particularly that in each case the actual amount of light produced is the same. Due to the narrow beam used in Figure 9(B) a greater amount of illumination is produced at the object, although the object is at the same distance from the flashlight. Similarly in Figure 9(C) the radar antenna produces a wide-angle beam and only a small portion of this energy strikes the ship which represents the object in this case. However in Figure 9(D) the angle of the beam has been reduced and a greater amount of energy strikes the ship. Consequently a greater reflected signal would result in Figure 9(D) than in the case of Figure 9(C). From this explanation it should be arparent that the same object, for example the ship in Figure 9(C) or (D), can be detected at a greater distance if the radar beam has a narrow angle.

The ability to detect an object by a radar system requires that the reflected signal from that object be picked up by an antenna and
amplified by the radar receiver before application to the indicating device. For a given amount of echo signal a more pronounced indication will be secured if the radar receiver is sensitive. (Sensitivity is a measure of the ability of a receiver to produce a satisfactory output from a weak input signal.) Thus, increasing the sensitivity of the radar receiver increases the ability of the receiver to handle weak reflected signals. Consequently the more sensitive the receiver is the greater will be the distance at which an object can be identified.

The maximum range at which a particular object can be detected is also affacted by the terrain between the radar set and the object, and the terrain close to the object. To illustrate this point consider once more Figure 6. If the ship were close to a shore having, for example, rather steep cliffs there is a possibility that the reflection from the shoreline would mask the reflections from the ship to such an eatent that the ship could not be identified.

In the case of long-range radar the curvature of the earth is the factor which limits the maximum range. Since the high frequency radic waves used in radar are reflected by the earth's surface they cannot penetrata through the earth. Also these waves travel in straight paths similar to light rays thus producing an effect referred to as a "radar horizon". This effect is illustrated in Figure 10. The illustration shows the path of the beam from the radar antenna on a ship. Any object of sufficient size located on the surface of the water or, for that matter, in the air above the surface of the water between the radar antenna and the radar horizcn could be detected in this case. However, an object located at a point further from the radar antenna than the radar horizon can be detected only if a portion of the object extends above the radar horizon. For example notice that the ship at point A in Figure 10 is entirely below the radar horizon and would not be detected since the radar beam would not strike this ship. The ship at point B of Figure 10 is farther from the radar antenna then the horizon but a portion of the superstructure of this ship extends above the horizon and would be struck by the radar beam producing the reflection necessary to produce detection. The plane at point C in Figure 10 is far beyond the radar horizon but its altitude is sufficient so that the line-ofsight radar beam can strike it, thereby producing reflections.

Careful analysis of Figure 10 should reveal that there are two factors which affect the maximum range of radar installation as far as the curvature of the earth is concerned. These two factors are: (l) the height of the radar transmitting antenna and (2) the height of the object to be detected. Before proceeding with illustrations showing the manner in which the height of the antenna and objects affect the maximum range it should be mentioned that although the radio beam from a radar antenna is normally considered to follow a straight line there is a slight downward bending of the beam which occurs. This causes the radar horizon to be slightly farther away than would otherwise be expected. Under certain, very rare, conditions the bending of the beam is quite great and objects at unusually great distances can be detected.

However, this phenomenon is so rare it is of little practical value.
The actual line-of-sight distance from an elevated point to the horizon can be determined easily by the application of the forma given in Figure ll(A). It should be emphasized that due to the slight bending that normally occurs the maximum radar range under these conditions will be slightly greater. To illustrate the use of this formula let us consider an example in which the height of the radar antenna is 100 fe日t. The distance from the antenna to the horizon can be determined as follows:

$$
\begin{aligned}
& D=1.23 \times \sqrt{H} \\
& D=1.23 \times \sqrt{100} \\
& D=1.23 \times 10 \\
& D=12.3 \text { miles. }
\end{aligned}
$$

The distance, which a radar installation could detect an object on the surface of the earth, in this case, would be slightly in excess of 12.3 miles ranging to perhaps 15 miles.

A similar computation would show that if the radar antenna ware located 200 feet above the earth the distance to the horizon would be approximately 17 miles. Thus, an object on the surface of the earth could be detected by a radar set under these conditions at a maximum distance of approximately 20 miles.

Let us apply this same efeect to determine the raximum distance at which a radar installation aboard an aircraft flying at 20,000 feet could detect an object on the surface of the earth.

$$
\begin{aligned}
& D=1.23 \times \sqrt{H} \\
& D=1.23 \times \sqrt{20,000} \\
& D=1.23 \times 102 \times \sqrt{2} \\
& D=1.23 \times 100 \times 1.4 \\
& D=170 \text { miles (approximately). }
\end{aligned}
$$

Due to the bending of the radar beam the plare could actually detect an object on the surface of the earth at a distance of approximately 200 miles.

Now let us consider a situation as illustrated in Figure ll(B) where the object is located some distance above the surfacs of the earth. For example, the object might be an airplane. Let us assume for the sake of illustration that the height of the radar antenna is $50 \mathrm{fe} \mathrm{\theta t}$ and that the aircraft is flying at an altitude of 5000 feet. The formula which is used in this case is:

$$
\begin{aligned}
& D=1.23 \times(\sqrt{\mathrm{H}}+\sqrt{\mathrm{A}}) \\
& D=1.23 \times(\sqrt{50}+\sqrt{5000}) \\
& D=1.23 \times(7.1+71) \\
& D=1.23 \times 78.1 \\
& D=97 \text { miles. }
\end{aligned}
$$

The curvature of the radar beam would permit detection of a plane at the slightly greater distance of epproximately 110 miles .

Let us consider one more example to illustrate the use of this formula. Suppose the radar antenna is located at an altitude of 200 feet and the plane is flying at an altitude of 10,000 feet. The formula would then be:

$$
\begin{aligned}
& D=1.23 \times(\sqrt{\mathrm{H}}+\sqrt{\mathrm{A}}) \\
& D=1.23 \times(\sqrt{200}+\sqrt{10,000}) \\
& D=1.23 \times(14.1+100) \\
& D=1.23 \times 114.1 \\
& D=140 \text { miles (approximately). }
\end{aligned}
$$

The above figure gives the actual maximum line-of-sight distance in this case but the radar distance would be slightly higher ranging to approximately 150 miles.

The foregoing computations should indicate the fact that the higher a radar antenna is located the greater will be the distance which can be covered by the radar set. It should also be evident that the higher the object is above the surface of the earth the greater is the distance at which it can be detected. For this reason planes can be detected at a much greater distance than can ships, for in very few instances does the superstructure of a ship extend more than 50 feet above the level of the ocean.

Determination of Direction and Distance

Now that we have determined the factors which offect the maximum distance at which an object can be detected by a radar set, let us determine the manner in which the direction and distance of the object can be determined. To clearly explain this phenomenon let us consider an example where sound waves can be used to determine distance and direction, as almost everyone is familiar with the echo effect produced by sound waves.

Consider Figure 12. Assume that the man shouts through the megaphone as he turns in various directions. Sound waves travel from the megaphons in the form of a beam and will strike objects in their path. In the erample shown in Figure 12, when the sound waves strike the cliff they are reflected back very strongly toward the person who is shouting. Thus the person will hear an echo. The strongest echo will be heard when the megaphone is pointing directly at the cliff. If the persor doing the shouting has a compass he can determine the direction of the cliff by noting the compass bearing when the echo is the strongest, or if the spot at which the person is standing has the compass bearings marked on it as illustrated in Figure 13 the direction of the cliff can easily be determined. In a similar manner the direction of the barn shown in Figure 13 could be determined by facing the megaphone in that direction, noting the point at which the maximum echo is returned and observing the calibrated compass readings for that direction. In a similar manner the direction of an object can be determined in a radar system by noticing the direction of the antenna which produces a maximum indication. In most cases the base of the antenna is calibrated in compass direction or in some cases a remote compass is employed. In either case, however, the direction of the object is irdicated by maximum reflection from the object.

In the case of the situation as illustrated in Figure 12, not only can the direction of the cliff be determined but the distance from the
person who is shouting to the cliff can be determined fairly accurately. This can be done by measuring the interval of time between the instant when the shout is uttered and the echo is heard. As mentioned in Assignment l, sound travels at the rate of 1089 feet per second at sea level. However, this speed varies slightly under different altitude conditions and weather conditions and we will use the figure of 1100 feet per second for simplicity. Let us assume that two seconds of time elapse between the instant the shout occurs and the echo is heard. From the figures at hand the distance traveled by the sound waves can be easily determined. This can be done by applying the following very simple formula. Distance $=$ Speed \times Time. In this particular example:

$$
\begin{aligned}
& D=1100 \times 2 \\
& D=2200 \mathrm{feet} .
\end{aligned}
$$

Thus in the two second interval which elapses between the time of the shout and the echo, the sound waves travel a total of 2200 feet. Since the sound waves travel from the person who is shouting to the cliff and return to the "shouter", the actual distance between the person and the cliff is half this value, or 1100 feet.

To further illustrate this point let us assume that an interval of five seconds occurs between the time of the shout and the time the echo is heard. Applying the formula this becomes:

$$
\begin{aligned}
& D=S \times T \\
& D=1100 \times 5 \\
& D=5500 \text { feet. }
\end{aligned}
$$

Note that the above figure, 5500 feet, is the actual distance covered by the sound wave (from the shouter to the cliff and back to the shouter). However, our primary concern is the distance from the shouter to the clisf which is only half of the distance traveled by the sound wave. Thus the distance to the cliff in this case is 2750 fe日t.

In a radar system the radar wave travels from the antenna to the object where it is reflected and returned to the antenna. The speed at which the radio wave travels is known to be 186,000 miles per second and if the time of travel can be measured the distance to the object can be determined as in the preceding example. It should be obvious, however, that the time of travel from the radar set to an object and back by the radio wave will be very small due to the extremely high speed at which the radio waves travel. For this reason the time of travel of the radio waves is normally measured in millionths of a second, or as millionths of a second are normally called, microseconds, abbreviated usec. (One microsecond equals one millionth of a second.) Since radio waves travel 186,000 miles in one second it should be obvious that in one microsecond they would travel one millionth of 186,000 miles or .186 miles.

A very convenient way of using this information is to determine how many microseconds are required for a radio wave to travel one mile. This may be accomplished by dividing one by the distance traveled by the radio wave per millionth of a second. If this is done it will be found that it requires 5.375 microseconds for a radio wave to travel
one mile. Similarly 10.75 microseconds of time elapse as a radio wave travels two miles, three times 5.375 or 16.125 microseconds elapse as a redio wave travels three miles, etc. This is illustrated in Figure 14. Analyze this figure carefully to make sure that you understand the relationship between the time of travel and the distance covered by the radar wave.

The primary concern in a radar system is not, however, how long it takes the radio waves to trave? from the radar set to an object. Instead it is the round-trip time required for the radio wave to travel from the radar set to the object and for the reflected wave to return from the object to the radar set. This condition is illustrated in Figure 15. The rate of travel of a radio wave is the same regardless of the power present in the radio wave. The reflected wave from the objective travels back toward the radar transmitter at the same speed as the wave travels when leaving the radar transmitter or 186,000 miles per second. Thus if the object is one mile from the transmitter the round-trip time will be 5.375 microseconds (time traveling to the object) plus 5.375 microseconds (time for echo to return to radar set), or a total of 10.75 microseconds. Similariy if the object is two miles from the radas transmitter the round-trip time will be 2×10.75 microseconds or 21.5 microseconds. Notice that the round-trip time is the important time interval to remember in connection with the radar system and the figure of $10.75 \mathrm{micro-}$ seconds per mile round-trip time should be remembered. For example, if the object is a plane ten miles away the rcund-trip time for the radar wave would be 107.5 microseconds and if the objective were a high-flying plane one hundred miles away, the time between the transmitted pulse and the return echo wouid be 1075 microseconds.

Why the Radar Signal is Transmitted in the Form of Pulses

Past experience with sound should illustrate to the Associate that the best results are obtained when dealing with echos if the brief sound is used rather than a long sound. For example, if the system illustreted in Figure 12 or 13 were being used to determine the direction of a cliff the best results would be obtained if a very brief hello were shouted rather than a long drawn-out hello. The reason for this is the fact that if a long drawn-out heilo is called, the echo may return before the shout is completed. Thus the shout would cover up the echo and it could not be distinguished. However, if the call is very brief, it will be finished before the echo returns and the direction can be determined very simply. The same condition is true in a radar system. If the energy were transmitted from the radar antenna constantly, the weak reflected signal could not be detected when it returned and the radar system would be useless. Instead, the energy is transmitted for a very brief period and then a period of non-transmission results. During this period when no energy is being transmitted, the radio wave has sufficient time to travel to an objective and be reflected, returning to the radar antenna. Since the transmitter is not operating and the receiver is quite sensitive, this returning pulse can be detected, thus indicating that an object
has been struck by the radar wave. For this reason the radar waves are always transmitted in the form of pulses. The length of the pulses varies with the different types of radar sets which are designed for different applications and also the number of pulses transmitted per second varies. In the different types of radar installations the length of the pulses range from $1 / 4$ microsecond to 30 microseconds and the number of pulses transmitted per second range from 200 to approximately 5000 pulses per second.

There are three factors which remain to be explained in this basic explanation of a radar system. These are: (1) The offects of the pulse length on a radar system and the reason why different pulse lengths are used in different types of radar installations. (NOTE: Pulse width is often used in place of the term pulse length.) (2) The importance o. the number of pulses per second in a radar system. (3) The manner in which a radar indicator is able to measure the time interval between the transmitted pulse and the echo pulse, considering the fact that this is only in the order of a few millionths of a second. The first two of these items will be dealt with in detail at this time. The third will be explained briefly. Later in the training program after cathode-ray tubes have been considered in detail, this subject can be explained more thoroughly.

In the previous explanation, the various factors which affect the maximum range of a radar set were outlined. The minimum range of a radar set is determined by the pulse length. The shorter the pulse the closer will be the minimum range of a radar system. The term mirimum rance means the minimum cistance at which an object can be correctly located. For this reason it should be apparent that in a radar installation designed for use in locating objects at great distances, a relatively long pulse (several microseconds) may be used. However, in radar systems which are used to locate objects which are close, for example, in a radar installation used to aid in the navigation of a ship, a very short pulse length will be used so that objects close to the ship can be accurately located.

Since the radio wave requires 5.375 microseconds to travel one mile, in one microsecond the radar wave will travel $1 / 5$ of a mile, or approximately 1000 feet. Bearing this fact in minc analyze the series of events depicted in Figure 16. Illustration A of this figure shows a radar equipped ship one mile from an object which is shown to be a rock in this particular case. At this instant the radar transmitter is just beginning to send out a pulse of radio frequency energy which travels away from the antenna at the speed of light, approximately 1000 feet per microsecond. Illustration B of this figure shows the conditions which exist if the pulse length is one microsecond. In this case the first energy transmitted during the pulse has traveled 1000 feet and this "ounch" or packet of radio frequency energy occupies a space 1000 feet in length. Since it is assumed that the pulse length in this particular case is one microsecond, the transmitter is turned of f at this instant. However, the radio frequency energy which has been transmitted continues to move away from the
ship at the speed of light and after an additional one microsecond has elapsed a condition as illustrated in Ficure $16(\mathrm{C})$ is produced. The "packet" of radar energy has now moved approximately 1000 feet from the antenna, but since the transmitter is now turned off no further energy is being transmitted.

Figure 16 (D) illustrates the fact that after a total of 5.375 microseconds has elapsed from the time of the start of the pulse the "front edge" of the packet of radio waves just reaches the obstacle. A portion of the energy is reflected back toward the radar antenna and the remaining portion of the radio frequency energy continues on as illustrated in Figure l6(E). The reflected energy is still in the form of a bunch or packet of radio waves and returns toward the ship at the speed of light as illustrated in Figure l6(F). Since the distance to be covered is one mile, 5.375 microseconds of time elapses between the instant the reflection occurs and the instant the returning wave reaches the radar antenna on the ship. Thus a total of 10.75 microsec 0 nds of time elapses during the entire process depicted in Figure 16. Since the transmitter was not again turned on after the initial pulse was transmitted, the receiver would be able to detect the echo signal and the time which elapsed between the time of the transmitted pulse and the echo pulse could be measured on the indicating device. This could, in turn, be converted into distance, indicating that the rock was one mile from the ship. This would be a very satisfactory radar system and the presence of the rock would be indicated in sufficient time to permit correct navigation.

Let us now use the same radar installation to illustrate the fact that the one microsecond pulse duration is too great if the radar installation is to indicate the presence of close obstacles, for example, an obstacle 400 feet from the ship such as might be encountered wher. navigating a narrow channe?. This condition is illustrated in Figure 17. As in Figure 16, the illustration labeled A shows the condition at the start of the transmitted pulse. Figure 17(B) illustrates a condition $1 / 4$ microsecond after the start of the pulse. Notice that in this case the "front edge" of the wave packet has progressed to a point more than half-way to the obstacle. In Figure l7(C) the condition which occurs $1 / 2$ microsecond after the start of the pulse is illustrated and it can be seen that reflection is occurring from the rocis and that the transmitter is still generating a pulse. Since a pulse length of one microsecond is employed the condition which is illustrated in Figure 17(D) occurs when the time is still slightly less than one microsecond from the start of the pulse. Notice that although the pulse is still being transmitted the echo has arrived at the transmitter. Under these conditions the signal arriving at the receiver from the transmitter is so strong that the pulse will not be detected at this time at all. Even at the time of one microsecond as illustrated in Figure 17(E) a similar condition is still occurring. After this instant the transmitter is cut off and a very small portion of the reflected pulse follows. However, this portion of the energy is quite small and since a small amourt of time is required for the receiver to recover from the effect of the strong pulse applied to it during transmission of the radar signal, no indication of the reflected signal will be received on the indicator.

After analyzing Figure 17 the question may arise, how is it possible for a radar system to indicate objects which are close at hand. The answer to this question is: Close objects can be detected through the use of very short radar pulses. For example, if radar pulses of $1 / 4$ of a microsecond in length are employed in an instance as shown in Figure 17, the presence of the object can be detected since the transmitter will have been turned of for an appreciable time before the reflected pulse returns to the radar set. Expanding this reasoning it should be apparent that pulse lengths of several microseconds can be emplojed when objects are to be detected at great distances.

From the foregoing a general conclusion can be drewn. If the radar installation is to indicate objects close at hand short pulses will be employed whereas longer pulses may be employed in indicating objects at great distances.

The use of a short pulse has one other advantage. This is the fact that adjacent objects can be separated to a better degree with a short pulse. If the radar transmitter uses pulses of one microsecond duration, objects must be at least 500 feet apart to give separate indications. Thus if a radar installation is being used to detect the presence of aircraft, and a group of aircraft is approaching, a single indication will be given if a one microsecond pulse is employed and the planes are less thar 500 feet apart. However, if the planes are more than 500 feet apart separate indications will be given and the number of planes can be determined. If, however, a shcrter length pulse is employed separate indications will be obtained if the planes are cioser together. For example if a $1 / 4$ microsecond pulse is used separate indications can be obtained if the objects are more than 125 feet apart. With this arrangement the number of planes or other objects such as ships in a group can be more easily determined by means of radar.

Let us now consider the puise repetition rate or in other words the number of pulses transmitted per second in a radar installation. If only one radar pulse strikes an object and is reflected back to the radar set, the energy returned will be a very minute value of energy and will not be sufficient to produce an indication on the radar indicator. Consequently the transmitted pulses in a radar installation are repeated at regular intervals, that is, the pulse is transmitted and then a period of nontransmission occurs. (The period of "silence" must be sufficiently long for the echo to return to the transmitter.) Then another pulse is transmitted and followed by a period of nori-transmission. A careful analysis of the foregoing explanation concerning the time required for the roundtrip travel of the radar signal should indicate that the time interval between pulses, or in other words the number of pulses per second, is determined by the maximum distance to be covered by a radar set. For example let us assume that a radar set is being used to detect planes at the maximum distance of 200 miles. (Of course the planes would have to be flying at altitudes in excess of 20,000 feet to be detected at this distance.) Under these conditions the round-trip time of the radar wave
would be 200×10.75 or 2150 microseconds. As illustrated previously the nest pulse should not be transmitted until this echo has returned, thus an interval of at least 2150 microseconds should occur between pulses. To determine the number of pulses and intervals of the required length which can be produced in a second it is only necessary to divide $1,000,000$ by 2150 which gives a figure of 465 pulses per second. Note that this is the maximum number of pulses that could be employed and most radar installations do not use the maximum pulse repetition rate. Instead, in such instance, a pulse repetition rate of approrimately 250 pulses per second would probably be employed. In radar installations which are intended primarily for detecting objects at claser ranges, the rourdtrip time of the signal will be smaller, therefore the interval between pulses can be less, and higher pulse repetition rates may be employed.

It should be emphasized that aside from the fact that one reflected radar pulse produces only a very minute amount of energy as mentioned previously there is another decided advantage to the use of many pulses per sacond in a radar installation. This is the fact that such an arrangement permits the indication of the radar set to "follow" a moving object. For example, as an object approaches the radar installation the indicator will reveal the fact that the distance to the object is beccming gradually less. There are two advantages gained by this. Not only does this arrangement permit the radar operator to determine at all times the eract position of the object, but it also enables him to identify the object to a certain degree. To illustrate: the indication secured for a low flying aircraft or a ship might be practically identical on the radar indicator. However, be observing the speed at which the object is moving as indicated on the radar indicator, the operator can determine whether the object is a plane or a ship.

The Radar Beam Elevation and Rotation
If a person were sitting in a boat in the middle of a lake at night and wished to determine whether or not there were any islands located nearby, he could do so by shining a powerful searchlight along the surface of the lake and swing the beam of the light around a complete circle or 360 degrees. A similar arrangement may be used in a radar set if it is desired to detect objects on the surface of the earth. Such an arrangement is employed for example in the case of naval vessels with the radar equipment designed to detect other surface vessels. If however the person sitting in the boat wished to determine whether or not there were any bats ilying around he wculd not only have to swing the searchlight beam in a 360 degree arc around the boat but would also have to elevate the beam. That is the air near the surface of the water would have to be searched as would the air at higher angles of elevation. In the case of a radar installation there are two ways in which this can be done. One of these is to use a beam which is very broad in the vertical direction so that altitudes ranging from slightly above the earth to approximately 50,000 feet are covered by this beam at a distance of

100 to 150 miles. If such a wide beam is used however the radar set carnot indicate the altitude of the plane. Figure 18 shows a method which can be used to search the desired altitudes with a narrow radar beam. The mechanical mechanism which rotates the radar beam around the 360 degree circle also gradually increases the tilt of the antenna as the antenna is rotated. The result is that the beam at any particular distance from the transmitter is slightly higher on each revolution, or in other words, effectively the tip of the beam is spiraling upward. In this manner the air surrounding the radar set can be scanned completely and any object present can be indicated.

In scme installations it is not necessary for the radar equipment to search all of the area around the urit. For example a radar installation along the seashore may be used only for the purpose of searching for planes approaching from the sea. In this case the antenna equipment is modified so that the antenna moves back and forth through the desired angle of rotation to search a required sector. Such an arrangement is often called sector scarning.

The width of the beam used by the different types of radar sets varies. In general it car be statad that the wider the radar beam, the greater is the area covered by the beam and therefore the more easy it is to detect an object. However, the more narrow the beam is, the more accurate a particular object can be located. This can be understood very easily by comparing the effect obtained with a flashlight. If there is an object to be located with the light it can be located much more easily if the angle of the flashlight beam is wide, provided of course the beam intensity under these conditions is still sufficient to illumimate the object. However if the flashlight were to be used to "locate" the object, that is, indicate its direction in degrees and its elevation, it should be apparent that a narrow beam would provide a much more accurate irdication. The same is true in radar installations.

Figure 19 shows a radar antenna installation on the pilot boat New Jersey which operates out of New York harbor. This antenna can be rotated so thet the radar beam covers the required area.

In connection with the rotation of the radar beam and its vertical movement, there are two terms which are used. These are azimuth and elevation. The term azimuth indicates the angular measurement of the object from North. For example if an object is located due east of the radar set the azimuth would be 90 degrees. The term elevation indicates the angle at which the radar antenna is "tipped" from it's normal position. For example in the case of ground radar installation, if an object is located when the radar beam is at an angle oः 30 degrees with the earth surface, the elevation is 30 degrees. In many radar installations automatic computers are incorporated so that when the distance to an object is known and the elevation is obtained, the altitude at which a plane is flying may be automatically computed.

Measuring the Distance to an Object by Measuring the Time Interval Between the Transmitted Pulse and Returned Echo.

As pointed out, the time between a transmitted radar pulse and echo pulse is a very minute quantity; so minute, in fact, that it would seem impossible to measure this small interval. In any mechanical clock arrangement it is inde日d impossible to measure these intervals of a $f \theta w$ millionths of a second. However, electronic circuits in conjunction with cathode-ray tubes can be used very conveniently to measure such time intervals. To understand exactly how this is possible will require an understanding of the operation of cathode-ray tubes which will be dealt with at a later point in the training program. However, a very basic explanation will suffice at this point.

The cathode-ray tubes which are used in radar indicators are quite similar to the picture tubes which are used in television receivers. The inside surface of the face of the cathode-ray tube (The face of the tube is the end with the large diameter.) is coated with a fluorescent material and when the electronic circuits associated with the cathoderay tube cause a beam of electrons to strike this surface, a glowing spot will appear. As other electronic circuits cause the electron beam to move, this spot will trace a visible line across the screen of the cathode-ray tube as illustrated in Figure 20(A). This glowing line, called the trace, is moved across the screen of the cathode-ray tube at a uniform rate by the associated electronic circuits. That is, if ten microseconds are required for the beam to move from the left edge of the screen one inch toward the right, ten more microseconds will be required for the next one inch motion of the beam and so forth. When the cathoderay tube and its associated circuits are used in conjunction with a radar transmitter the trace obtained on the screen is somewhat as illustrated in Figure 20(B). When the pulse from the transmitter occurs the rectangular pulse is produced on the glowing line. Notice that this is a large pulse as the high powered transmitter is very close to the receiver ard the r-f energy which enters the receiver under this condition is quite high. After the transmitter is turned of f the glowing line continues across the screen at a uniform rate as illustrated in Figure 20(A). When the echo pulse returns to the radar set another smaller rectangular pulse or "pip", as it is often called, is produced in the trace.

As nentioned previously a time of l0.75.microseconds corresponds to one mile round-trip between the occurrence of the transmitted pulse and echo. Let us assume in the example of Figure 20(B) that was determined by checking a calibrated dial on the indicator that it took exactIy 215 microseconds for the trace of Figure $20(B)$ to be produced on the indicator cathode-ray tube. It would be possible under these conditions to lay a scale across the face of the tube as shown and thereby measure the position of "pips" on the trace in terms of time. In Figure 20(B), since 215 microseconds are required for the entire trace to be produced only half of this value of 107.5 microseconds elapse as the spot moves from the left edge of the trace to the center. For sake of convenience
the echo pulse is shown at this point. Through this means it can be determined that the echo pulse occurs 107.5 microseconds after the transmitted pulse. Since the round-trip time of a radar pulse is 10.75 microseconds per mile, the 107.5 microseconds delay between the transmitted pulse and the echo in Figure 20 indicates that the object is ten miles from the radar transmitter. It would be simpler therefore to mark the scale in miles as shown rather than in time and read the distance direct?y in miles.

Although a scale could be used to measure this distance as illustrated in Figure 20(B), in normal cases such a system is not used because variations in voltage in the radar circuits may cause the glowing line or trace, to move about on the screen of the cathode-ray tube。 Consequently the scale cannot be maintained in a fixed position. Instead of using an external scale, marker pulses or range pulses are normally used in conjunction with the trace. This condition is illustrated in Figure 21. The electronic circuits associated with the indicator time these range pulses very accurately so that they are spaced at a definite distance or range from each other. For example in Figure 21 the electronic circuits time these pulses at intervals of 107.5 microseconds apart on the trace. This time is equal to the round-trip time for the radar waves if the object is ten miles from the radar set. Thus these pulses are effectively "lo miles apart" on the trace. It is only necessary tc observe the relationship of the echo pulses with respect to the range pulses to determine the distance of the object or objects producing the deflection. For example in Figure 21 the first echo shown would indicate an object at about 25 miles (note a range pulse occurs at the start of the transmitted pulse but cannot be seen). Similarly the second echo occirs from an object approximately 42 miles from the radar set whereas the third echo is produced by an obiect approximately 57 miles from the radar set. Thus it can be seen that the presence of the range pulses enables the radar operator to determine the position of objects to a fairly high degree of accuracy.

Most radar installations incorporate a range selector switch so that the length of time required to produce the line across the face of the cathoderay tube (this line is of ten callec the time base) can be set at several values. When this switch is changed the marker pulses are usually changed also. For erample in the illustration shown in Figure 21 the switch would be in such a position that the time base would represent 70 miles with 10 mile markers or range pulses. If it were desirable to obtain the accurate range on an object less than 10 miles from the transmitter the radar set would probably incorporate a 10 mile range position. When the switch is placed in this position the time required to produce the entire time base would be 107.5 microseconds and 10.75 microsecond range pulses would be inserted as shown in Figure 22. Thus each one of these range pulses would represent a distance of one mile and if the display as indicated in Figure 22 were obtained it would indicate that one ojject was approximately $31 / 2$ miles from the transmitter and another was approximately 7.7 miles from the transmitter. Thus by shortening the time base the accuracy at which close objects can be located is improved.

Assignment 13B
Page 19

In radar installations where a large number of echo pulses would be received from objects it is very difificult to identify each of the objects and to keep track of them. In such instances the indicator arrangemont is such that a map of the surrounding area is plotted. Such ar indicator is normally called a plan-position-indicator (abbreviated P-P-I). Plan-position-indicators are normally emplojed in radar installations aboard ship for use when navigating near shore. Figure 23 shows a plan-position-indicator installed aboard a commercial liner. Flan-position-indicators are also employed in airborne radar installations used for bombing as well as in commercial aircraft to enable the observation of the terrain over which the plane is flying.

In a commercial application, a radar set may be installed at a port. In this case a plan-position-indicator is employed and the radar installation may be used as an aid to piloting ships approaching or leaving the harbor when visibility is limited. The position of incomins ships can be determined and the pilot boats can be guided to the incoming ships by means of radio instructions. Figure 24 illustrates such an application of radar. At the left of this figure is shown a chart of the harbor at the port of Long Beach, Califorria. The radar site is indicated and the shoreline, breakwater, etc., can be seen. At the right of this figure is shown the plan-position-indicator view of the same area. Notice that the position of the breakwater is again clearly discernable, as is the shoreline. The small white dots appearing in the harbor are ships or buoys.

Summary

In a radar system pulses of high frequency radio energy are produced by the transmitter and radiated into space by a special, highly directional antenna. These pulses of radio energy travel away from the antenna at the spe日d of light, in a straight path. As the radio waves strike various objects, part of the energy is roflected, and a portion of this reflected energy travels back to the radar antenna. At this point the reflected sigral, or echo, is "picked up" and applied to the radar receiver which amplifies it many times. The signal is then applied to the radar indicator. Since the radio waves travel at a constent rate, it is possible to determine the distance, which the objects causing the echo, is from the radar antenna by measuring the total time between the instant the pilse is transmitted and when the echo returns. This action is accomplished in the radar indicator. The direction of the object producing the reflection can be determined by the antenna position because the maximum reflected signal results when the antenna is aimed directly at an object.

The foregoing discussion should provide the Associate with an understanding of the underlying principles of radar. This discussion is of course, in no way complete since the nanner in which the various circuits operate has not been considered. As the Associate advances through the training program, however, special assignments will be included at appropriate points explaining the operation of the various radar circuits.

Use the enclosed answer sheet to send in your answers to this assignment.

The questions on this test are of the multiple-choice type. In each case four answers will be given, one of which is the correct ans?er, except in cases where two answers are required, as indicated. To indicate your choice of the correct answer, mark out the letter opposite the question number or the answer sheet which corresponds to the correct answer. For example, if you feel that answer (A) is correct for question No. l, indicate your preference on the answer sheet as follows:

$$
\text { 1. } \quad X(B)(C)(D)
$$

Send in your answers to this assignment immediately after you finish them. This will give you the greatest possible benefit from our perscnal grading service。

1. The strongest radar echo would te obtained from:
(A) An object underground.
(B) An object near the surface of the sea.

- (C) An object near the transmitter.
(D) An object far away from the transmitter.

2. The maximum range of a radar set is: (CHECK TWO)

* (A) Increased by raising the antenna height.
(B) Greater if the object to be detected is at a high altitude.
(C) Increased by lowering the antenna height.
(D) Greater if the object to be detected is at a low altitude.

3. What is the line-of-sight distance between a radar antenna 200 feet above the ground and a plane traveling at an altitude of 5000 feet?
(A) $1,000,000 \mathrm{feet}$
(C) Approximately 25 miles
(B) Approximately 104 mi (es
(D) Approximately 85 miles
4. One microsecond is:
(A) 1000 seconds
(C) one thousandth of a second
(B) $1,000,000$ seconds
(D) one millionth of a second
5. What is the total time in microseconds required for a radar wave to travel from the antenna to an object one mile away, and for the reflected wave to travel back to the radar antenna?
(A) 1 microsecond
(C) 53.75 microseconds
(B) 10.75 microseconds
(D) 2 microseconds
6. If a radar installation is to identify objects close to the radar set:
(A) The pulse length makes no difference.
(B) The pulse length should be long.
(C) The pulse length should be short.
(D) The pulse should be on the order of 10 microseconds in length.
7. The term azimuth means:
(A) The argular measurement of the object from North.
(B) The angle at which the radar antenna is "tipped," with respect to the earth's surface.
(C) The number of pulses per second.
(D) The pulse length.
8. The nurpose of range pulses is to:
(A) Enable the radar operator to determine the distance of objects to a fairly kigh degree of accuracy.
(B) Enable the radar operator to determine the azimuth of an object.
(C) Enable the radar operator to determine the elevation of an object.
(D) Enable the radar operator to determine the pulse length.
9. A radar indicator which effectively plots a map or chart of the area surrounding the radar set is called:
(A) Round-about-indicetor.

X (B) Plan-position-indicator.
(C) Map-chart-indicator.
(D) Azimuth-range-indicator.
10. Basically, radar "orks upon the principle that:
(A) Almost every object radiates radio waves which can be picked up by a radar receiver.
(B) Almost every object reflects radio waves, and these reflected waves can be picked up by a radar receiver.
(C) Almost every object radiates high frequency sound waves which can be picked up by an electronic "ear."
(D) Any television receiver can be used as a radar indicator.

PLAM POSITION IMDICATOR ON QRACE LIMES, SANTA PAULA

(Courtesy SPGRRI GYROSCOPE GO.J
Figure 23
CHART AND PPI RADAR YIEW OF PORT OF LOHG BEACH, CAL.

FIGURE 13
RELATIONSHIP BETWEEN TIME AND DISTANCE TRAVELED BY A RADAR WAVE

TIME Interval between instamt RADAR WAVE IS TRAMSMITYED AMD IMSTANT ECHO RETURNS TO RADAR SET IS EQUAL TO TIME REQUIRED FOR WAVE TO TRAVEL FROM RADAR ANTENMA TO OBJECTIVE, PLUUS TIME REQUIRED FOR ECHO TO RETURN TO RADAR SET. IN THIS
EXAMPLE THIS IS $5.375 \mu S E C .+$ $5.375 \mu S E C . ; O R, 10.75 \mu S E C$.

MATLRE'S RADAR SYSTEM

Figure i
FUNDAMENTALS OF A RADAR SYSTEM

FIGURE 2

FIGURE 3

