
 GATES RODEI 52-63 STUDIOEITH

TEIPOR:RY INSTIUC TI ONS FOR

G.ITES TYFE 52-CS STUDIOETE LO-3388

PREFACE
The following instructions for the installation and operation of the Gates 52-CS Studioette are offered as temporary instructions until the regularly scheduled instruction book is received from the printer. The printed instruction book will be forwarded in the very near future.

The instrictions contained in this books, together with the diagrams and the caclosed brochure on the howal. 5.2-CS, should suffice in the iisstallation and operation of this u.it,

The engineer in charge will find that the oprating instructions are covered very cornpletaly in the brochure. The instaliation procedure will be outlined on the following pages:

IB-2002
9-28-49

TABLE OF CONTENTS

1B-2002Page(1) General Description
(2) Installation Procedure 5
(3) Cable Installation \& Isolation 6
(4) Electrical Characteristics 8
(5) Cuarantee(6) Functional DiagramC-16536
(7) Electrical Parts List(8) SchematicE-25125
(9) Brochure on 52-CS

Before the installation is begun it is suigested that the engine er in charge become familiar with the Studioette functional diagram C-16536. A careful study of this diagram will clearly indi cate the various major circuit components, such as amplifiers, keys and mixing circuits and the part trat these various components play in the overall operation of this unit. It is likewise suggested that a careful survey be made of the tentative location of the Studioette and a sketch drawn of the proposed wiring layout. If some attention is given to this matter before the actual wiring is started the time will be well spent for the ultimate result will be a professional installation that is relatively easy to make and extremely orderly as well as simple to maintain.

CENHRAL DESCRIPTION

The Gates Liodel 52-CS Studiotte is an entirely self-contained speech input system. While not as elaborate as the $S_{i}-50$ or the $S_{d}-40$ Console it does incorporate sufficient circuits so that it forms an exceedingly flexible speech input system.

The entire 52-CS is housed in a sheet metal cabinet of a rather unique design, The cabinet itself is streamlined by virtue of a sloping front panel and sweeping cabinet lines. The main chassis is mounted in an inverted position with the tubes projecting downward. A hinge top pro vides easy accessibility to the various components, such as the resistors, condensers and the underside of tube sockets and transformers. Under this hinged lid are also accessible the various tie points to which internal connections are made for various microphone impedance and relay combinations.

The tubes are exposed by lifting the cabinet proper, which is hinged on a base plate at the rear.
is mertioned before, the Studioette is entirely self-contained. It needs no external power supply. The 52-CS contains the following main circuit components:
a. Tro preamplifiers consisting of one $6 J 7$ and one 605 cascaded, and terminating in an additional 605 cathode follower stage. The cathode follower stage provides an extremely low distortion and low noise methods of transferring a high impedance circuit to a low impedance device, such as a mixing channel.
b. One Program amplifier employing a 657 first stage and a $6 C 5$ second stage, a 6SJ7 third stage and a 6 SN7 output stage. It is well to note that the master gain control for the program amplifier is located between the second and third stages. This provides an excellent way of maintaining a good signal to noise ratio, resulting in better overall noise characteristics in the entire unit. The position of this gain control does make it possible to overload the first stage of the program amplifier, however, wi th proper operation this will rever occur.
c. One monitor amplifier. The monitor amplifier is entirely push-pull and consists of a 6SN7 push-pull feeding a second 6SN7 push-pull, which in turn drives two 6V6's functioning as push-pull output tubes.
d. Ono Power Supply employing a type 5U4G rectifier. This power supply furnishes all the ne cessary power for the operation of all of the amplifiers in the Studioette, in addition to supplying the energy for the speaker muting relays. Voltage for the excitation of the relays is obtained from the voltage drop across a 100 ohm resistor located in the center tap of the high voltage winding on the power transformer.
e. Nixing System. The mixing system consists of a fourchannel mixer utilizing ladder type controls connected in a parallel type mixing circuit. The mixing system is extremely linear in its operation causing a minimum of frequency discrimination between the minimum and maximum rotation on the individual mixing controls. The mixing circuit is of the high level low impedance type.
f. Circuit Switches. Lever type key switches are employed in all instances where audio circuits require a switching action such as in the case of microphones, remote lines, etc.
g. WU iieter. A four-inch type Weston Illuminated $W U$ meter is employed for visual level indication. This WU meter is so arranged in the circuit that it indicates a zern reading when an audio level of $f 8 \mathrm{dbm}$ is being fed into either one of the two program lines. The VU meter is isolated from the extermal program lines by virtue of its positinn in the circuit. It is located on the high side of the 6 db isolation pad. The meter is placed in this position so that various telephone line reactances will not cause erroneous readings at various audic frequencies.
h. Relays. Two telephone type relays are employed for speaker muting and warning light operations. These relays are so arranged in the circuit that their operation is extremely flexible. They may be connected in such a fashion that they are energized in any sequence desired by the two microphone lever keys. The microphone selector keys are used to set up not only the microphones in use, but also the circuit for the excitation of any particular relay. The actual excitation of the relay is performed by a miniature switch located on each of the mixer 1 and mixer 2 controls. These relays are nomally demenergized. * ..s the mixer 1 control, for example, is moved from its infinity position the relay is: energized and thus mutes the speaker in that particular studio and also completes the warning light circuit for that particular studio. The samo application applies to mixer 2.
i. Inputs. The 52-CS provides the following inputs:

1. Four microphone inputs, $30 / 50$ ohms or $200 / 250$ ohms. Connected for 250 ohms at the factory.
2. Two turntable inputs, 250 ohms. The turntable inputs are connected directiy to the mixing channel. The refore, turntable preamps must be provided at the turntables, or at least before the turntable inputs on the Studioette. The various Gates type turntables are usually provided with these preamps.
3. One notwork input, 250 ohms. This input is also connected directly to the mixing channel. It is, therefore, as unbalanced input and must be isolated from the incoming network line by an isolation transformer. liany ne two rk lines when installed by the telephone company are already provided with isolation transformers. It should be noted, however, that in order to take advantage of a proper impedance match the secondary of this isolation transformer must be connected for 250 ohms impedance. If an isolation transformer is not provided at your particular installation we suggest thet you employ a Gates Type MI-4900C isolation transforme r.
4. Three remote lines, impedance $500 / 600$ ohms. The se renote lines are connected to the raixing channel by me ans of three remote switches. The remote lines are isolated from the mixing chennel by a common isolation transformer contained in the Studiotte. Therefore, equalized or uhequalized remote lines may be connected directly to the remote inputs on the Studioette.
5. External Program implifier Connections. Two external program amplificr connctions are provided by means of a program input switch. This switch hes three positions, making it possible to operate the Studioctte program amplifier from either the internal mixing system or any one of two external inputs. External inputs are 250 ohms impedance. This arrangement adds to the flexibility of this unit by way of providing for additional inputs should future expansion demand this.
6. Uonitor amplifier inputs. The monitor amplifier inputs are of a high impedance bridging nature. They are controlled by means of a selector swi tch. in external monitor signal may be applied to the monitor amplifier through the air monitor connection. Such an air monitor siignal can be obtained from the dik modulation monitor, the Fli station monitor or by means of sampling diodes connected to the antenna system of tle transmitting plant. The use of the air monitor system is very advantageous for it provides a completo microphone to antenna check on the operation of the entire broadcasting plant.
7. Program line outputs. Two program line outputs are provided by means of an output key. B oth outputs are $500 / 600$ ohms impedance. If possible, it is recommended that both program outputs be connected for service during the time of installation. For example, program line 1 should be connected to the regular program loop from the studios to the transmitting plant. Program line output 2 should be connected to the emergency loop, or possibly the transmitter order line. If this procedure is followed and a similar switching arrargenent is provided at the transmitting plant it will become exceedingly easy to change program loops should an emergency arise which necessitates such an action.
8. Turritable Cue, 250 ohms. The use of a turntable cueing system is becoming increasingly popular due to the convenience and flexibility it adds to turntable cueing. It is suggested that the turntable cue output be used in conjunction with a cueing amplifier, such as the Gates Type SA-22. The signal for turntable cueing is derived from any turntable not in program service by means of a cue step on tumtable mixers 3 and 4.
9. Order Phone, impedance 500 ohms. The arder phone circuit can be connected to any remote line by means of key switches. It is exceedingly useful in lining up remote broadcasts without tying up other console facilities. It is suggested that a sound powered phone be utilized for this service.
10. Loud Speaker Outputs. Provisions are mede for three loud speaker outputs. The speaker circuits are connected in parallel across the output of the monitor amplifier. If three speakers are used, each speaker should reflect impedance of 1500 ohms. If four speakers are used, each speaker should have an impedance of 2000 ohms. Two of the spoakers are muted by the muting relays. If an additional muted speaker is required for operation on a circuit other than that controlled by the two muting relays, an additional muting relay mey be ked externally. A Gates Type 1-42105 relay should be amployed for this purpose. It is suggested that no mare than four loud weakers be ope rated from the Studioette monitor amplif\#,.er. If additionsl monitor speakers are required, use a separatc monitor amplifier for driving these additional speakers. The Gates Type SA-10 monitor amplifier will provide more than ample power for most requirements.
11. Warning Lights. Two warning light switching circuits are provided. The warning light circuits are controlled by the two speaker muting relays. Voltages, either nC or DC, not to exceed 115 V . may be used for warning light operation. Warning lights on any one ci rcuit should not exceed 60 W .

As mentioned in preceding paragraphs, the engineer in charge should become well acquainted with the basic Studioette circuit before installing this equipment. If the decision of location has been made it would be well to determine the microphone impedance to be used and also the location of the various microphone circuits in regard to the studios in which they are placed. This is suggested so that the proper connections can be made in the Studioette to effect the correct switching circuits. When received from the factory the microphone inputs have been connected for $200 / 250$ ohms. If microphones of $30 / 50$ ohms are to be used make these changes on tie point 1 and tie point 2, located directly above each input transformer. Move the shielded pair connected to terminal 5 and 6 on tie point 1 or tie point 2 to terminal 7 and 8 on tie point 1 or tie point 2. The impedance of the program amplifier input should not be changed under any conditions. A change of the impedance on the input of the program amplifier will be detrimental to the operation of this unit by way of gain and response changes. After the location of the various microphones has been determined it is suggested that relays associated with the speakers located in the various studios concerned with these microphones be adjusted for the proper muting action.

The key controlling microphone 1 and 2 also sets up the circuit for the control of muting relay El. The key associated with microphone 3 and 4 controls the circuit of relay E2. Relays E1 and E2 may be connected for operation in any sequence by means of jumpers on tie point 4. The coil of relay El is connected to terminal 2, tie point 4. The coil of relay $\mathbb{E} 2$ is connected to terminal 3, tie point 4. Microphone 1 relay circuit is connected to terminal 4, tie point 4; microphone 2 circuit to terminal 5, microphone 3 to terminal 6 and microphone 4 to terminal 7, all located on tie point 4. For example, if microphone 1 and 2 are located in Studio A, then relay El will control the speaker muting in Studio A. For this operation, on tie point 4 connect terminal 4 to terminal 2 and terminal 5 to 2. The same procedure in regard to the other terminals would apply to microphone 3 and 4. If an additional muting circuit is required add one Type Cates A-42105 Relay externally. The coil of this external relay should be connected across terminals 20 on the middle terminal strip at the base of the console. The control for this relay is connected to terminal 8 on tie point 4 . Terminal 8 should then be connected to terminals 4, 5, 6 or 7 depending upon the circuit set up. The microphone selector switches, as mentioned in preceding paragraphs, merely set up the muting circuit for its porper operation. Miniature switches located on the mixer 1 and mixer 2 attenuators control the actual operation of the muting relays. As mixer 1 or mixer 2 control is advanced from its infinity position the miniature switches will be actuated and the relay circuit will function.

The final results of any speech input system depend to a great extent upon the care taken in its installation. In any high gain system such as exists with the Model 52-CS Studioette it becomes increasingly important to isolate low, medium and high level circuits from each other and to employ the proper type of connecting cables and finally to install an adequate ground system. We suggest that all external connections to the Studioette, with the possible exception of the 115 V power input, be made with twisted pair shielded wire. It is likewise suggested that the inputs and outputs of the Studioette be divided into three major categories namely, low level lines; medium level lines and high level lines.

The low level lines, which are the most important of all from the consideration of crosstalk and noise, should include only the four microphone input lines and possibly the two program amplifier external inputs. Great care should be taken in routing these microphone lines so they are not run in the proximity of 115 V AC power lines. These microphone lines should be run in shielded cable for the ontire length of their circuit, and if junction boxes are necessary these junction boxes should be well shielded. If after installing these microphone lines it is noticed that any one circuit seams to contain excessive hum or noise, the line should be disconnected from the console at the console terminal board and a dummy load inserted in its place across the terminal board connections. If the noise disappears after disconnecting the line, it is apparent that the noise is being picked up somewhere in the routing of this microphone line. Steps should then be taken to change the position of this line in respect to other wiring in the building. It is also possible that hum and noise may be induced in a microppone circuit at the microphone itself. This is sometimes caused by AC wiring in the walls or floor of the studio. This condition can be checked by merely moving the microphone from one location in the studio to another and then observing the difference in hum level. On long runs of microphone lines it is sometimes necessary to ground these lines at various points. This is particularly true if the speech equipment is in the proximity of radio frequency transmitters.

The medium level lines should include turntable inputs, network, remote lines, monitor amplifier inputs and program line outputs. Care should also be exercised in the position of these lines in regard to any 115 V power source. It is recommended that all of these circuits be connected by means of twisted pair shielded cable.

The high level lines, while not subject to noise pickup themselves, may cause pickup in microphone or program line circuits by their position. It is possible to run speaker lines, warning light circuits and power circuits in the same conduit without any detrimental effects. These circuits should also be connected by means of twisted pair shielded cable in order to reduce their radiation to the more susceptible microphone and program circuits.

The subject of the proper grounding of speech equipment and various interconnecting cables cannot be stressed too strongly. On terminal board TBl, on the base of the console, terminal 9 is provided for a common ground for both the equipment and all incoming and outgoing lines. It is recommended that the shields of all external connections be bonded together after they enter the base of the Studioette and then that this bonding be brought directly to terminal 9 on terminal board TBl. As a general comment, if noise and hum seems to be peculiar to any particular circuit in the Studioette it is suggested that efforts be made to localize the trouble at some external point before the blame is placed upon the equipment itself. Our past experience has shown that equipment properly tested will perform according to specifications if careful installation is made, It is true that a noise free location is sometimes difficult to obtain, however by using the process of elimination on suspected external noise sources it is usually possible to reduce outside interference to a negligible amount. During installation should any problems arise that cause trouble in their solution, the Gates Radio Company invites inquiries along this line, and will utilize its past experience in suggesting the most practicable cure for the problem.

The various input and output terminations on the three terminal boards located on the base of the Studioette are clearly described on the wiring diagram, E-25125. Holes are provided in the base of the Studioette for the entrance of all external connections.

ELECTRICAL CHARACTERISTICS

Overall gain microphone to program line, 104 to 106 db . Remote, network and turntable inputs to program line, 62 to 65 db . Noise with minus 60 db simulated microphone input and $\not \subset 8$ simulated program output, 60 db or better below $f 8 \mathrm{dbm}$.

Fesponse, plus or minus 1.5 db from 30 to 15,000 cycles.
Distortion, less than 1% from 50 cycles to 15,000 cycles.

GATES RADIO COMPANY Ouincy, Ill. U.S.A.

Cl	.0001 mfd . Type K Capacitor Sangamo
C2	40-40 mfd., 250 V . Cond. Sangamo PLD-2540
C3	.05 mfd .400 V . Tubular C-D
C4	25 mfd., 25 V . BR-252A C-D
C5	.1 mf ., 400 V . Aerolite Aerovox
C6	.1 mfd., 400 V. Aerolite Aerovox
C7	Value Determined By, Frequency Response
C 8	$25 \mathrm{mfd}, 25 \mathrm{~V}$. BR-252A C-D
C9	20-20 mfd., 450 V . Cond. T.rpe PLD-4520 Sangamo
Cl0	rort of C9
Cll	$50 \mathrm{mfd} ., 25 \mathrm{~V}$. Cond, wh-502 C-D
C12	.0001 mfd . Type K Capacitor Sangamo
Cl3	Fart of C2
C14	$25 \mathrm{mfd}, 25 \mathrm{~V} . \mathrm{BK}-252 \mathrm{~A}$ C-D
Cic	. 1 mfd., 400 V. Aerolite Herovox
C16	. 05 mfd. 400 V., Tubular C-D
C17	. 1 mfd., 400 V. Arrolite Aerovox
C18	Vulue Determined by Freq. Kespionse
C19	25 mfd., 25 V. BR-252A C-D
C20	20-20 mfd., 450 V . Cond. Type Sangamo PLD-1520
Cil	Furt of C20
C22	$50 \mathrm{mfd} ., 25 \mathrm{~V}$. Cunc. BR-502 C-D
C2う	. 1 mfd., 400 V. Aerolite Aerovox
C24	$.5 \mathrm{mfd} ., 400 \mathrm{~V}$. Aerolite Aerovox
C25	20-20-20 mfd., 25 V. UP-222-25 C-1
C26	Part of C25
C27	Part of C25
C28	.1 mfd., 400 V. Herolite Herovox
C29	20-20 mfd., 450 V . Type Sangamo PLD-4520
C30	Part of C29
C31	. 015 mfd ., 400 V . Tubular C-D
C32	. $5 \mathrm{mfd} ., 400$ V. Aerolite Aerovox
C33	20-20 mfd., 450 V . Type Sangamo PLD-4520
C34	Part of C33
C35	. 1 mfd., 400 V. Herolite Herovox
C36	25 mfd., 25 V. BR-252A C-D
C37	20-20 mfd., 450 V. Type Sangamo ILD-4520
C38	Fart of C37
C39	. 1 mfd., 400 V . Aerolite Aerovox
C40	. 1 mfd., 400 V. Aerolite Aerovox
C.41	20-20 mfd., 450 V. Type Sangamo PLD-4520
C42	Part of C41
C43	. 1 mfd., 400 V. Aerolite Aerovox
C44	. 1 mid., 400 V. Aerolite Aerovox
C45	. 1 mfd., 400 V . Aerolite Aerovox
C46	. $1 \mathrm{mpd} ., 400$ V. Aerolite Aerovox
C47	20-20-20 mfd., 25 V . UP222-25 C-D
C48	Part of C47
C49	20-20 mfd., 450 V . Type Sangamo rLD-4520
C50	Part of C49

651	20－20 mid．，400 V．ijpe Saneaito PLD－1520
じう\％	Part of C5l
C53	25 mfd ． 50 V V．Sangamo MT－0525
－${ }^{\text {¢ }}$	． 1 mfd ，¿00 V．murolite ．turovox
じら	． 1 mfd．， 200 V．surolite Aerovox
C56	． $1 \mathrm{mfd} ., 200$ V．Aerolite Aerovox
C57	． $1 \mathrm{mfd} ., 200$ V．Aerolite Aerovox
C58	$25 \mathrm{mfd} ., 25 \mathrm{~V}$ ．BR－252A C－D
C59	$25 \mathrm{mfd} ., 25 \mathrm{~V} . \mathrm{BE}-252 \mathrm{~A}, \mathrm{C}-\mathrm{D}$
C60	． 1 mfd．， 200 V．Aerolite Aerovox
C61	． 1 mfd．， 200 V．Aerolite Aerovox
El	Felay Clare A－47078
H2	Same as El
Fl	3 Amp．Littlefuse Type 3AG
JI	\＃701 Jr．Jack Mallory
L1	R18 Choke UTC
Ml	VU Meter，Burlington，A－6398（GD－100－J11）
Pad 1	Meter Pad，A－6453－101（GA－100－S12）
Pad 2	6 DB Pad，C－16240－101
Pad 3	Cue Pad，A－5717－101
Fl	2700 ohm 1／2 W． $10 \% \mathrm{~A}-\mathrm{B}$
R2	56 K ohm 1／2 W． $10 \% \mathrm{~A}-\mathrm{B}$
K3	56 K ohm l／2 W． 10% ÁB
F4	56 K ohm 1／2 J． $10 \% \mathrm{~A}-\mathrm{B}$
K5	56 K ohm 1／2 W． $10 \% \mathrm{~A}-\mathrm{B}$
R6	56 K ohm l／2 W． $10 \% \mathrm{~A}-\mathrm{B}$
K7	100 K onm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
K8	1500 ohm l／2 W． $10 \% \mathrm{~A}-\mathrm{B}$
r9	$15 \mathrm{~K} \mathrm{ohm} 1 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
Flo	470 K ohm l／2 W． $10 \% \mathrm{~A}-\mathrm{B}$
Rll	$2700 \mathrm{ohm}, \mathrm{l}$ N． $10 \% \mathrm{~A}-\mathrm{B}$
R12	1500 ohm 1 W． 10% A－B
F13	2700 ohm 1／2 W． 10% A－B
R14	56 h ohm l／2 W． $10 \% \mathrm{~A}-\mathrm{B}$
Fl5	56 K ohm l／$/ 2 \mathrm{~W}$ ． $10 \% \mathrm{~A}-\mathrm{B}$

R16
K17
F18
R19
R20
K21
K22
R23
R24
R25
R26
R27
R28
R29
K30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41
R42
R43
R44
R45
R46
K47
R48
F49
R50
R51
R52
R53
R54
R55
R56
F57
R58
F59
R60
K61
R62
F63
R64
F65
F66
R67
K68
R69
F70
R71

56 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
56 K ohm $1 / 2$ W. $10 \% \mathrm{~A}-\mathrm{B}$
56 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
100 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
$1500 \mathrm{ohm} \mathrm{1/2} \mathrm{W} 10 \$.$% A-B$
15 K ohm $1 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
470 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
2700 ohm 1 W. $10 \% \mathrm{~A}-\mathrm{B}$
1500 ohm 1 W. 10% A-B
100 K ohm $1 / 2$ W. $10 \% \mathrm{~A}-\mathrm{B}$
$1500 \mathrm{ohm} 1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
100 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
56 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
$56 \mathrm{~K} \mathrm{ohm} \mathrm{l} / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
56 K ohm 1/2 W. $10 \% \mathrm{~A}-\mathrm{B}$
100 K ohm $1 / 2$ W. $10 \% \mathrm{~A}-\mathrm{B}$
1500 ohm $1 / 2$ W. $10 \% \mathrm{~A}-\mathrm{B}$
56 K ohm 1 W. $10 \% \mathrm{~A}-\mathrm{B}$
470 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
2000 ohm $1 / 2$ w. 5% A-B
750 ohm 1 W. $5 \% \mathrm{~A}-\mathrm{B}$
100 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
470 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
470 ohm 1 W. $10 \% \mathrm{~A}-\mathrm{B}$
4700 ohm 1 W. $10 \% \mathrm{~A}-\mathrm{B}$
10 K ohm 1 W. $10 \% \mathrm{~A}-\mathrm{B}$
2700 ohm 1 W. 10% A-B
2700 ohm 1 W. $10 \% \mathrm{~A}-\mathrm{B}$
82 K ohm 1 W. 10% A-B
82 K ohm 1 W. $10 \% \mathrm{~A}-\mathrm{B}$
12 K ohm $1 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
82 K ohm 1 W. $10 \% \mathrm{~A}-\mathrm{B}$ 270 K ohm $1 / 2$ W. $10 \% \mathrm{~A}-\mathrm{B}$
3300 ohm 1 W. 5% A-B
3300 ohm 1 W. $5 \% \mathrm{~A}-\mathrm{B}$
$270 \mathrm{~K} \mathrm{ohm} 1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
82 K ohm 1 W. $10 \% \mathrm{~A}-\mathrm{B}$
270 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
270 K ohm $1 / 2 \mathrm{~W} .10 \% \mathrm{~A}-\mathrm{B}$
$390 \mathrm{~K} \mathrm{ohm} \mathrm{1/2} \mathrm{W} 10 \% \mathrm{~A}-$.
390 K ohm $1 / 2 \mathrm{~N} .10 \% \mathrm{~A}-\mathrm{B}$
470 ohm 2 W. $10 \% \mathrm{~A}-\mathrm{B}$
470 ohm 2 W. 10% A-B
B-21170 Resistor
100 ohm 10 W. Wirewound P.T.
1-3404-8 1000 ohm Control
Spec. \#2574-w Control 250/500 Daven $360 \mathrm{omm} \mathrm{1/2}$ W. $5 \% \mathrm{~A}-\mathrm{B}$
Spec. \#2574-EF Control 250/500 Daven
360 ohm 1/2 i. $5 \% \mathrm{~A}-\mathrm{B}$
LAQ 350 IFF Control 250/500 Daven
360 ohm $1 / 2 \mathrm{~W} .5 \% \mathrm{~A}-\mathrm{B}$
LAQ 350 NTF Control 250/500 Daven 360 ohm 1/2 W. $5 \% \mathrm{H}-\mathrm{B}$ CP354-X, 250,000 ohm Control Daven $100 \mathrm{Ml}, 100,000$ ohm Dual Control

Lever Action Switch N9735 Centralab

Input Transformer Triad, AI-3006
Input Transformer Triad, AI-3006
Input Transformer Triad, AI-3006
CG710 Transformer UTC
CG710 Transformer U'IC
Power Transformer UTC, AP-3065 Kepeater Transformer UTC, AS-3154

TB1	Terminal Board, B-10130-2
TB2	Terminal Board, B-10130-1
TB3	$5-142 Y$ Terminal Board

TIsil	Tie Point, A-2751-13
TIE2	Tie Point, A-2751-13
TIES	Tie Point, A-2751-13
TIE4	Tie Point, A-2751-13

6J7 Tube lietal
6C5 Tube Metal
fO5 Tube Metal
6J7 Tube Metal
6 C5 Tube Metal
6C5 Tube Metal
6 J7 Tube Metal
6C5 Tube Metal
6SJ7 Tube Metal
6SN7GT Tube
6SNTGT Tube
GSN7GT Tube
6V6 Tube Metal
6V6 Tube Metal
$5 \mathrm{U}_{4} \mathrm{G}$ Tube

MIP8T Socket Amphenol
Same as XI
pame as XI
Same as Xl
Same as Xl
Same as XI
Same as $X 1$

This equipment is fully guaranteed by the Gates Radio Company of ?uincy, Illinois, to be free from all defects in materials and workmanship and will be repaired, replaced or adjusted in accordance with the manufacturer's option and terms as outlined below.

1 - Gates believes the purchaser has every right to expect firstclass quality materials and workmanship and has created rigid inspection and test procedures plus excellent packing methods to assure good arrival at destination.

2 - Gates agrecs to supply daily service, and will make emergency shipments at any time wherc possible.

3 - Gates fully guarantees the following transmitter parts for the life of the equipment, said life to be considered five (5) years. These parts will be replaced or repaired at the option of Gates as follows:

Where less than one year old Between 1 and 2 years of age Between 2 and 3 years of age Between 3 and 4 years of age Between 4 and 5 years of age
no charge
30% of new price
50% of 1 price
65% of $n \in w$ price
75% of new price

Date of invoice to original user-purchaser and date of receipt of notification by Gates will determine the agl. "New price" is Gates current price at time of replacement and/or adjustment.

Transmitter parts referred to in this section (item 3) are as follows:
Main Power or Plate Transformer
Modulation Transformer
Main Filter Choke or Chokes in
highest voltage circuit
Modulation Reactor
Main Tank Condenser or Condensers
Main Tank Coil

Abusc: damage resulting from an Act of God or by fire, wind, rain, hail or any other condition other than normal usage is not covered by the guarantee.

4 - All other components with exception of vacuum tubes and moving parts are guaranteed for one year from invoice date to original
user-purchaser, said guarantee unconditional regardless of part, except where evidence of abuse or damage, etc., as stated in item 3 above.

5 - Vacuum tubes are subject to the manufacturer's guarantee and adjustment will be passed on as made to Gates by the tube manufacturer. Moving parts will be adjusted where it is agreed that they have not given proper service, and in case of dispute arbitration will be acceptable to both parties by mutual agrecment on a third disinterested party to decide on the basis of facts submitted by both parties.

6 - This guarantec covers only Gates manufactured parts and complete Gates equipments including all parts therein. Any purchased part not manufactured by Gates will be subicit io the manufacturer's guarartec, unless such part was a unit in Gates manufactured equipment.

7 - Transcription pickups, regarcless of make, arc guaranteed for ninety days - said guarantee including every associated part of the pickup except the stylus, which because of its fragility is not guarantecd by Gates.

8 - Where the replacement part in question must be supplied under the guarantee before the defective part can be returned for inspection, as might sometimes be required, the customer will be billed in full axd credit or adjustment will be given on receipt of defective part in accordance with this guarantee and the terms herein.

9 - All shipments under this guarantee will be made f.o.b. Quincy, Illinois and all materials returned will be shipped prepaid by the customer f.o.b. Quiney, Illinois. This guarantee does not extend to the supply by Gates of any personnel to make said replacement, repair or adjustment. Any item alleged defective shall not be returned to Gates until after permission has been first obtained from Gates.

10 - As a material part of this guarantee the customer agrees to employ capable technical personnel to maintain all equipment under this guarantee in good, normal repair, properly serviced and cleaned, and to use said equipment as ard for the purpose intended by seller.

11 - Gates shall not be respensible fcr ciameges to items in transportation or carcless handing; or injuries to persons or damage to property arising out of the use or operation of Gates equipment or parts, but Gates will supply repair or replacement items speedily, which will be billed to the customer who, in turn, will place claim with the carrier, with assistance from Gates if necessary, and when so requested.

12 - Delays in fulfilling any part of this guarantee because of depleted stock, floods, war, strikes, power failures, transportation delays, or failure of suppliers to deliver, or because of Acts of God or any other conditions beyond the control of Gates, does not in any way render Gates liable under this guarantee, however, every effort will be made to render prompt service.

13 - Gates agrees that this equipment sold is manufactured, where need be, under Royalty License Agreements with Western Electric Company and Radio Corporation of America.

14 - This guarantee is effective only in the United States and Canada, and is not transferable from the original user-purchaser, and no right of subrogation is given herein.

GATES RADIO COMPANY QUINCY, ILLINOIS

