TRERINICAL MANURL

$$
M-6573
$$

FM-1H 1KW FM TRANSMITTER

WARRANTY

Seller warrants new equipment manufactured by Gates Radio Company against defects in material or workmanship at the time for delivery thereof, that develop under normal use within a period of one year (6 months on moving parts) from the date of shipment, of which Purchaser gives Seller prompt written notice. Other manufacturers' equipment, if any, including electron tubes, and towers shall carry only such manufacturers' standard warranty.

Seller's sole responsbility for any breach of the foregoing provision of this contract, with respect to any equipment or parts not conforming to the warranty or the description herein contained, is at its option, (a) to repair or replace such equipment or parts upon the return thereof f.o.b. Seller's factory within the period aforesaid, or (b) to accept the return thereof f.o.b. Purchaser's point of installation, whereupon Seller shall either (1) issue a credit to Purchaser's account hereunder in an amount equal to an equitable portion of the total contract price, without interest, or (2) if the total contract price has been paid, refund to Purchaser an equitable portion thereof, without interest.

If the Equipment is described as used, it is sold as is and where is. If the contract covers equipment not owned by Seller at this date it is sold subject to Seller's acquisition of possession and title.

Seller assumes no responsibility for design characteristics of special equipment manufactured to specifications supplied by or on behalf of Purchaser.

Seller shall not be liable for any expense whether for repairs, replacements, material, service or otherwise, incurred by Purchaser or modifications made by Purchaser to the Equipment without prior written consent of Seller.

EXCEPT AS SET FORTH HEREIN, AND EXCEPT AS TO TITLE, THERE ARE NO WARRANTIES, or ANY AFFIRMATIONS OF FACT OR PROMISES BY SELLER, WITH REFERENCE TO THE EQUIPMENT, OR TO MERCHANTABILITY, INFRINGEMENT, OR OTHERWISE, WHICH EXTEND BEYOND THE DESCRIPTION OF THE EQUIPMENT ON THE FACE HEREOF.

RETURNS AND EXCHANGES

Do not return any merchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to circumstances and reasons when requesting return of merchandise. Custom built equipment or merchandise specially ordered for you is not returnable. Where return is at the request of, or for the convenience of the customer, a restocking fee of 15% will be charged. All returned merchandise must be sent freight prepaid and properly insured by the customer. When writing to Gates Radio Company about your order, it will be helpful if you specify the Gates Factory Order Number or Invoice Number.

WARRANTY ADJUSTMENTS

In the event of equipment failure during the warranty period, replacement or repair parts may be provided in accordance with the provisions of the Gates Warranty. In most cases you will be required to return the defective merchandise or part to Gates f.o.b. Quincy, Illinois for replacement or repair. Cost of repair parts or replacement merchandise will be billed to your account at the time of shipment and compensating credit will be issued to offset the charge when the defective items are returned.

MODIFICATIONS

Gates reserves the right to modify the design and specifications of the equipment shown in this catalog without notice or to withdraw any item from sale provided, however, that any modifications shall not adversely affect the performance of the equipment so modified.

INSTRUCTIONS FOR INSTALLING
 AND OPERATION OF
 GATES FM-lH, 1 KW TRANSMITTER

The sharp upsurge in FM broadcasting has in some instances developed unlooked for interference with local TV reception. In every instance this interference is in so-called fringe areas for TV reception and where the strength of the TV signal is weak enough that outside highly directional home TV antennas are necessary. ---- When this condition develops, the TV viewer quickly learns from his service man that the local FM station is the offender. ---- The FM broadcaster is immediately deluged with requests to eliminate the interference. In some instances CATV (Community Antenna Television) systems are also offended as they pick up weak distant TV stations. What is the FM broadcaster's responsibility? Answer: To meet FCC rules and regulations as related to harmonic radiation of his $F M$ equipment but not to guarantee perfect TV reception.

Below is a chart showing the picture and sound frequencies of TV stations between Channels 7-13 inclusive. Channels 2-6 are not shown. FM harmonics do not fall in these Channels. In fact, commercial FM station harmonics will affect only Channels 8 and above --. look at the chart.

TV Channel

7
8
9
10
11
12
13

Picture Frequency Band	- Mc-- Sound Frequency
175.25 to 179.50	197.75
181.25 to 185.50	185.75
187.25 to 191.50	191.75
193.25 to 197.50	197.75
199.25 to 203.50	203.75
205.25 to 209.50	209.75
211.25 to 215.50	215.75

The frequency range for commercial FM broadcasting is 92.1 Mc to 107.9 Mc : --- To determine the second harmonic of your FM frequency, just multiply your frequency by 2. Example: If your frequency is 99.9 Mc , multiplied by 2 would make a second harmonic of 199.8 Mc . By consulting the above chart, you will note the second harmonic falls in the picture portion of the TV Channel 11.

Correct FM Harmonic Radiation
The FCC stipulates that transmitters of 3000 watts power and over must have a harmonic attenuation of 80 db . For 1000 watts, 73 db ., and for 250 watts, 66.9 db . All reputable manufacturers design their FM transmitters to meet or exceed these specifications.

Fringe Area TV Strength Versus FM Harmonics

Let's take a typical FM station that radiates 70,000 microvolts per meter at 1 mile. At 80 db . harmonic attenuation (as called for by FCC), this station will radiate approximately 7 microvolts per meter at 1 mile on the second harmonic. In the case of our Channel 11 example, it is estimated that a fringe area TV station from 60 to 90 miles distance would have a signal strength of from 5 to 25 microvolts per meter. It can then be easily understood that a 7 microvolt signal, well within FCC specifications, would definitely interfere with the TV signal, yet with the FM broadcaster's equipment performing normally.

This is sometimes further aggravated by the FM station being located between the TV station and the TV receivers. In this instance the TV antennas are focussed not only on the TV station but your FM station as well. The home TV antennas are beamed at your legal second harmonic as well as the fringe TV station.

What To Do
When interference occurs, it will develop ragged horizontal lines on the TV picture varying with the FM program content. If the TV sound portion is interfered with (usually not the case), then the FM signal will be heard in addition to the TV sound.

1. It is not up to the FM broadcaster to go on the defensive. He did not put the TV station 75 miles away nor did he select the TV Channel. ---- In most instances the condition is a natural phenomena that neither you, the TV station, nor the FCC can correct.
2. Do not adjust the FM harmonic or "T" notch filters supplied with the FM transmitter. These are factory adjusted and most FM stations do not have the expensive equipment necessary for correct adjustment. Tampering with this calibrated adjustment will probably make the condition worse.
3. Do not rely on TV service men's types of measuring equipment. They are not built to accurately measure harmonics and invariably give erroneous readings that invite the CATV or local service men's association to say "I told you so."' Remember it is difficult to radiate harmonics if the equipment is built to suppress the harmonics and it is.
4. In many instances interference may be caused by overloading on the front exc of the TV receiver. This problem usually occurs when the receiver is located close to the FM transmitter. This problem can be overcome by installing a trap tuned to the frequency of the FM carrier. The TV service r an can and must learn how to do this. In most cases it works, while in ε, me instances, if not properly installed or tuned, it will not completely eliminate the interference. In one case where interference of this type existed, a TV station put traps for the fundamental $F M$ frequency on nearly every TV set in town. Not the FM transmitter.

Summary
The FCC is well acquainted with this nation-wide problem. If TV viewers write FCC, complaining about your FM station, remember the FCC has received a few thousand similar letters. --- It is not the obligation of the FM broadcaster to assure fringe area reception of a TV station any more than is the obligation of the TV station to assure the FM broadcaster perfect reception in his TV city.

Probably your installation will not have problems as outlined above. If they do exist, don't blame the equipment. Every transmitting device puts out a second harmonic, even the TV stations. The fact that these harmonics legally fall into the spectrum of a TV station many miles distant is coincidental, but not your fault.

FM-IH 1 KW FM TRANSMITTER

TABLE OF CONTENTS

SECTION 1 - GENERAL DESCRIPTION PAGE
1.1. Warranty and Safety Notice 1
1.2 Purpose of Book 1
1.3 Purpose of Equipment 1
1.4 Description 2
1.5 Technical Data 2
1.6 Vacuum Tube Table. 3
SECTION 2 - INSTALIATION
2.1 Inspection 3
2.2 Packing Check List. 4
2.3 Installation. 4
2.4 Handling the 4CX1000A 5
2.5 Power Connection 5
2.6 Cooling 6
SECTION 3 - OPERATION
3.1 Pre-Operation. 7
3.2 Test Data 7
3.3 Adjustment 7
3.4 Maintenance 9
SECTION 4 - CIRCUIT DESCRIPTION
4.1 Power Amplifier. 10
4.2 Exciter. 11
4.3 Power Supply. 11
4.4 Control Circuits 11
4.5 Metering 12
SECTION 5 - ADDITIONAL INFORMATION
5.1 Remote Control 12
5.2 Stereophonic Operation. 13
5.3 Spare Oven and Crystal. 13
5.4 Complete Tune-Up Procedure 14
5.5 FM-1H Parts List 1-4
SECTION 6 - M-6425 FM EXCITER
DRAWINGS - FM-1H Transmitter
Installation Outline
Low Pass Filter
2nd Harmonic Filter Block Diagram Simplified Schematic Efficiency Curve
Curve - Coarse Tuning Overall Schematic

Figure 7.10 Figure 7.11 Figure 7.12 Figure 7.13 Figure 7.14 Figure 7.15 Figure 7.16 Figure 7.17
PHOTOGRAPHS - Transmitter
Front View (Open)
Back View (Open)Control Panel (Front)Control Panel (Rear)PA Chamber
Base
Helpful General Information--A thru E

GENERAL DESCRIPTION

1.1 Warranty and Safety Notice.

This equipment is guaranteed under the liberal Gates warranty, terms and conditions of which are fully set forth in the standard Gates warranty, available upon request.

Most Gates manufactured items are guaranteed for one year, with the exception of tubes and moving parts, which are subject to specific warranties based upon hours of usage. The warranty does not extend to "no charge" service in the field.

Switch to Safety -

This equipment employs voltages which are dangerous and may prove fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment. Observe safety regulations. Do not change tubes or make adjustments inside equipment with any voltages ON. While your Gates transmitter is fully interlocked, you should not rely on the interlock switch for removing high operating voltages. It is always best to disconnect the primary power at the building wall switch and discharge all capacitors with the grounding stick provided.

1.2 Purpose of Book -

This instruction book has been prepared to assist in the installation, operation and maintenance of the Gates $F M-1 H, 1 \mathrm{KW}$ FM transmitter.

1.3 Purpose of Equipment -

The Gates FM-lH is an FM broadcast transmitter with l,000 watts output delivered to the transmission line. The operating frequency is $88-108 \mathrm{mHz}$. with characteristics exceeding those required by the FCC for standard FM broadcast service. The transmitter is designed for continuous broadcast operation and consists of the exciter and power amplifier, plus associated power supplies.

Only one cabinet is required to house the entire transmitter. This cabinet is $29^{\prime \prime}$ wide $x 78^{\prime \prime}$ high $x 33^{\prime \prime}$ deep. All necessary metering is provided by four meters located on a meter panel at the top of the cabinet. Ready access to the complete transmitter is accomplished by the removable rear door. The front door is provided to offer a pleasing and symmetrical front view appearance. The following controls are located on the front panel.
a) Filament $O N$
b) Filament OFF
c) Plate ON
d) Plate OFF
e) Filament Voltage Adjust
f) Screen Raise/Lower Voltage Adjust
g) Bias Voltage Adjust
h) VSWR Calibrate
i) Power Calibrate
j) Power/VSWR Selector
k) Remote/Local Switch

1) Grid Tuning Control
m) Plate Tuning Control
a) Output Loading Control
o) (4) Potentiometers for adjustment of PA Plate
Current Remote Reading, Recycle Adjustment,
PA Overload, PA Plate Voltage Remote Reading
p) Neutralizing Adjust
1.5 FM-1H Technical Data -

Power Output:
Frequency Range:
RF Output Impedance:
Output Termination:
Frequency Stability:
Harmonic Attenuation:
Modulation Capability:
Audio Input Impedance:
Audio Input Level:
Audio Freq. Response:
Audio Distortion:
FM Noise Level:
AM Noise Level:
Power Source:
.5 to 1 kW .
88 to 108 mHz
50 ohms.
Standard EIA l-5/8" Flange.
$\pm .001 \%$

- 80 dB .
$\pm 100 \mathrm{kHz}$.
600 ohms.
$+10 \mathrm{dBm}, \pm 2 \mathrm{~dB}$
$\pm 1 \mathrm{~dB}, 30-15,000 \mathrm{~Hz}$.
$1 / 2 \%$ or less, 30-15,000 Hz.
65 dB below 100\% FM modulation.
50 dB below equiv. $100 \% \mathrm{AM}$ modulation
$208 / 240$ V. 1 phase, $50 / 60 \mathrm{~Hz}$, 3-wire service. $115 \mathrm{~V}, 1$ phase $50 / 60 \mathrm{~Hz}$.

Input AC Power Requirement $2.6 \mathrm{KW}, 208 / 240 \mathrm{~V}$,
6 W , 115 V .
Power Line Variation (slow) Power Factor
$+5 \%$ 。
Altitude
Ambient Temp. Range
Maximum VSWR
Overall Cabinet Size
Weight
Front Door Swing
90\%.
7,500 ft.
$-20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$.
1.7 to 1.

29" W. x 78" H. x 33" D.*
600 lbs.
29"。
*33" is overall depth dimension. With rear door, front door handle, and meter trim strip removed minimum depth is 30 ".

Filter and RF plumbing extends $5^{\prime \prime}$ above cabinet top.

1.6 Vacuum Tube

The following tube is employed in the transmitter.

$$
\text { V-1 } \quad 4 \mathrm{CXI} 000 \mathrm{~A} \quad \text { Power Amplifier }
$$

SECTION 2

INSTALLATION

2.1 Inspection -

The FM-lH is carefully packed at the Gates plant to ensure safe arrival at its destination. The equipment is packed in a heavy carton and a wooden crate. Open the crate and carton carefully to avoid damaging any of the contents. Remove the packing material and search for possible loose items such as pilot lights, fuses, loose screws and bolts.

If damage should occur during shipment all claims should be filed promptly with the transportation company. If a claim is to be filed, the original packing case and material must be preserved. A damage report must be filed to collect for shipping damages. Gates Radio Company is not responsible for damage occurring during shipment. Parts or components shipped to replace those damaged in transportation will be billed to the customer plus transportation expenses, the cost of which should form a portion of your claim to the transportation company.

A complete visual inspection should be made of the equipment. Determine that there are no loose connections, loose components, broken insulators, etc., that may have been damaged in shipment. Make sure all relay contacts are free and in good mechanical condition. Make sure all mechanical connections are tight. Check with a screw driver or a wrench all mechanical and electrical connections that are
mechanically bolted tofether. All tie downs or blocking used for shipping purposes should be removed. A good overall visual inspection may save time and trouble in placing the transmitter into operating condition.

2.2 Packing Check List -

Certain components of the transmitter have been removed for shipment and are packed separately to ensure safe handling. These parts on the FM-lH have been kept to abare minimum. The following components have been removed from the transmitter for shipping purposes:

Quantity

1	700	0052	000
1	576	0029	000
1	374	0015	000
1	524	0029	000
1	992	1684	001
1	620	0055	000

Description
Portable Multimeter(VOM)
Relay, Time Delay, K7
Tube, 4cXl000A
Cap., 80 mfd, 450 V. 64
Low Pass Filter
$l-5 / 8 "$ EIA Elbow
Relay, Time Delay, K7
Tube, 4CXI000A
Cap., $80 \mathrm{mfd}, 450$ V. 64
Low Pass Filter
1-5/8" EIA Elbow

2.3 Installation -

In advance of actual placement of the equipment, certain planning should be accomplished. Holes are provided in base of transmitter for entry of power, audio and remote control wires.

Either side of the transmitter may be placed against a wall or other equipment. Complete accessibility for maintenance and installation is provided in the FM-lH by access from the rear of the transmitter cabinet.

Install the correct plug-in capacitor, C4, (80 mfd .) in the transmitter screen supply. Also, install the time delay relay, K7.

Refer to the TE-l Exciter Installation Instructions for proper module placement in the exciter cabinet.

The 4CX1000A must be fully inserted in the tube socket before turning to engage the socket fingers. The anode connector secures by a press fit to the tube and with a screw to the plate coil. Handling of this tube is covered in Section 2.4.

Bolt the $1-5 / 8$ elbow between the directional coupler and the low pass filter. Orient the filter in the desired position and connect to the antenna coax. Support must be provided for the transmission line and low pass filter.

2.4 Tube Handling and Operating Precautions, 4CXI000A.

Avoid bumping this tube. Due to its mass, bumping this tube will introduce resultant stresses which may cause internal damage.

Before operating this tube, please refer to the tune-up and operating procedure given in Section 3. It is recommended procedure to adjust the equipment for operation under heavy plate loading conditions, and with only sufficient $R F$ drive to provide the required power output and efficiency.

Extreme care should be taken during tune-up as well as in regular service to avoid, even momentarily operation of this tube under conditions of insufficient plate loading or excessive RF drive. These operating conditions, especially at the upper end of the VHF range, will produce excessively high seal and/or bulb temperature and will result in damage to this tube.

2.5 Power Connections -

After the transmitter is physically in place and the components removed for shipment have been re-installed, the audio and AC power should be brought to the transmitter.

The audio input line enters the base of the transmitter in front of the fuseblock and connects directly to terminal board TBl of the M-6425 exciter. Terminals l and 3 are the audio inputs and terminal 2 is ground or shield connection. If stereo is used, the lines are connected in accordance with the instructions in the M-6533 stereo generator manual, which is a part of the M6425 Exciter manual.

The power leads from the transmitter should come from a low reactance power source of either 208, 230 or 240 volts, $50 / 60 \mathrm{~Hz}$, single phase with approximately a 3 KVA capacity. The AC supply enters the transmitter in the lower right hand corner and connects to the fuseblock. The center terminal of the fuseblock is neutral or ground. The conduit or wiring of the power leads should be in agreement with local electric codes and be able to carry the power requirements of the transmitter. Power leads and program leads should not be run in the same conduit or in the same wiring duct. If, due to necessity, the program leads are in close proximity to the power leads, the program leads should be separately shielded.

Connect 115 VAC to the exciter oven terminals 9 and 10 on TBl. This supply must be energized at all times.

A good ground at these FM frequencies is mandatory in keeping RF currents in nearby audio equipment to a minimum. RF usually shows up in one of two ways-feedback or high noise, and in some cases both. It should be pointed out that even a small amount of unshielded wire makes a very efficient antenna for FM frequencies. If RF from the cabinet field is transferred to the grids of the audio equipment, it is rectified and shows up as noise or feedback. We strongly recommend a single common ground point from the transmitter base to a good grounding system such as a water pipe or actual earthing ground.

2.6 Cooling -

The transmitter is air cooled and approximately 2.5 KW of heat are developed and dissipated through the air outlet in the top of the transmitter. It may be necessary to provide a means of exhausting this air from the transmitter room or enclosure. Hear is a major enemy to electronic component deterioration. A good system of removing the heated air from the transmitter and the transmitter room, and providing cool air for the air inlet of the transmitter will greatly prolong the life of the transmitter and its components. (2.5 KW equals approximately 142 BTU/Min.)

There are many installation possibilities. Each and every installation is somewhat different. Therefore, it is not possible to give complete detailed information on the transmitter cooling. Only general information can be supplied. As a suggestion, contact a local heating and cooling contractor for a detailed analysis of the problem.

After the transmitter has operated at full output a number of hours, a temperature rise inside the transmitter must not exceed a rise of $20^{\circ} \mathrm{C}$ above the ambient measured at the air intake of the blower and must not rise above $60^{\circ} \mathrm{C}$ under any circumstances. ($20^{\circ} \mathrm{C}$ equals $68^{\circ} \mathrm{F}$; $60^{\circ} \mathrm{C}$ equals $140^{\circ} \mathrm{F}$).

SECTION 3

OPERATION

3.1 Pre-Operation -

Before placing the FM-lH into operation, check once again the points covered in Section 2. Have you mounted all components physically and made these electrical connections:

1. Primary power to the fuseblock?
2. Program line connected to the exciter?
3. 115 volts for the crystal ovens?
4. Transmitter connected to antenna or a suitable load?

If everything appears to be in order, then you may proceed.

3.2 Test Data -

Your equipment has gone through many different kinds of tests at the Gates factory and has been operated for several hours on your assigned operating frequency. This is to ensure correct adjustment and proper setting of all controls. Refer to the test data supplied with your transmitter. This data is attached to the front of the transmitter when shipped.

3.3 Adjustment -

Set the dial settings to those given on the test data sheet. Primary power may now be applied to the transmitter by pushing the Filament $O N$ button. The light behind the Filament ON button should light. Next, the blower should begin to run and come up to speed. After the blower reaches maximum operating speed, air pressure in the P.A. enclosure will operate the air switch. The air switch closing will allow the filament voltage to be applied to the 4CXIOOOA. Adjust the filament voltage for 6 volts according to filament metor. . After final tune-up the filament voltage can be lowered to approximately 5.5 volts to extend tube life. However, this should only be done without a loss of power output.

A three minute time delay prevents the plate voltage from being turned ON immediately after the filaments are turned ON. This allows the P.A. cathode to reach its operating temperature.

Be careful when checking any voltages with the transmitter filament ON.

The screen voltage motor is controlled by the Raise/Lower switch on the front panel. Set the screen voltage to the position indicated on the test data sheet.

NOTE: The Portable Multimeter (VOM) supplied by the Gates Radio. Company or an equivalent meter can be used for the tune-up procedure.

Check the bias voltage as indicated on the test data sheet.
The Grid Tuning and Plate Tuning controls have a $25: 1$ gear reduction. The scale divisions are set at the factory so proper tuning will occur on the numbered sections of the tuning knobs. Do not rotate the knobs 360° as this will not return the capacitors to their previous position.

Check the dial setting of the Plate Tuning and Output Loading with the test data information.

The rear door closes the interlock to allow the Plate Voltage to be turned ON. Use extreme caution in operating the high voltage supply with the door off.
Turn ON the Plate Voltage. Adjust the Grid Tuning for maximum power output. Adjust the Plate Tuning and Output Loading for maximum power output.

The Output Loading is generally set so a further increase in plate current does not increase the power output. Due to the operation characteristic of the amplifier, a plate current dip may or may not appear when tuned for a 1000 watt output. In a situation where plate current dip is not present the Plate Tuning should be adjusted for best efficiency at 1000 watt output. Refer to complete tune-up procedure in Section 5.4 for method used in preliminary tuning.

Check the VSWR on the transmission line. Position the VSWR-Power switch on front panel to VSWR CAI and set VSWRPower meter for full scale deflection with the VSWR CAL. control. Turn the switch to VSWR and read the reflected wave. Although the transmitter will operate into a l.7:1 mismatch, it is recommended to keep the VSWR to a minimum. If a high VSWR is noticed it is generally traced to transmission line and/or antenna problems.

Since the transmitter was checked into a 50 ohm resistive load, any system with a mismatch will probably change the tuning. Therefore, the recorded test data knob readings may not agree with actual operation.

The screen Raise/Lower control is used to compensate for any supply line voltage variation which cause power output fluctuations. The screen voltage will normally be operating between +220 to 250 VDC.

Refer to the test data sheets of your transmitter for the performance readings you can expect when the transmitter is operating at 1000 watt output.

The input coupling capacitor, C35, is pre-set at the factory and should not be adjusted under normal tune-up.

The operation of the transmitter is very simple and straightforward, and once adjusted should require only a nominal amount of touching up the tuning at regular maintenance periods

The overload is set for correct operating level at the factory. The PA plate overload is set for approximately . 8 amperes plate current. The adjustment for the overload is located under a small cover plate located on the front panel. It is referred to as symbol number Rl3 on the schematic.

OPERATION AT OUTPUT POVERS BELOW 1000 WATTS
Power output of the transmitter may be decreased by increasing the bias voltage and/or decreasing the R.F. drive from the Exciter. It is best to leave the Output Loading control and the Screen Voltage set as if the power output was 1000 watts. The reduction in power output can be accomplished in equal increments caused by the bias voltage and the R.F. drive (i.e. for 800 watts output; increase the bias for 100 watt reduction and decrease R.F. drive for another 100 watt reduction). The Grid tuning should be re-adjusted for maximum power output.

The output of the exciter is adjusted with an Output control of the 10 W. amplifier in the exciter and is covered in Exciter Manual.

The transmitter can easily be remotely controlled. Description of the connections are covered in Section 5.

3.4 Maintenance -

Maintenance of the $F M-1 H$ should consist of the following:

1. Keeping the transmitter clean.
2. Changing tubes when emission falls off.
3. Checking mechanical connections and fastenings.
4. Lubricating the blower motor.

Keeping the transmitter clean from the accumulation of dust will reduce failure resulting from arcing, dirty relay contacts, and overheating of chokes, resistors and transformers. Electrostatic fields are "dust gathers". Support insulators in the PA enclosure and other locations are the worst offenders. They must be kept clean and free of all foreign material at all times. If not, arcing may result and the insulator shattered.

The air filter should be clean at all times. Periodically, it should be discarded and replaced with a new one. The filter is a disposable type and may be obtained from Gates by Part \#448-0103-000 or any hardware or heating supply store.

Once a month the entire transmitter should be cleaned of dust. The inside of the power amplifier should be thoroughly wiped clean of dust. A small brush, soft rag, and vacuum cleaner can be used very effectively in keeping the equipment clean.

All contactors and relays should be inspected regularly for pitting and dirt. The contacts should be burnished and cleaned if required. The overload relay is a telephone type, with sealed contacts and should require little attention.

The bearings for the motor of the PA blower should normally give long trouble-free operation. Periodically, oil should be added for lubrication.

The PA tube should be removed once a month and the fins cleaned of dust. Air may be blown through the fins in the reverse direction or the anode cleaned with soap and water or denatured alcohol.

This transmitter is a precision electrical device, and as such, should be kept clean at all times and free of dust and foreign materials. Dust and moisture condensation will lead to possible arcovers and short conductive paths.

A good preventive maintenance schedule is always the best assurance for trouble-free transmitter operation.

SECTION 4

CIRCUIT DESCRIPTION

The FM-lH circuits will be described in the following sections:

Power Amplifier. Exciter. Power Supply. Control Circuits. Metering.

4.1 Power Amplifier -

The power amplifier of the FM-lH employs a single 4CX1000A tube in a common cathode amplifier circuit. The plate circuit is a modified "pi" which uses a capacitor for fine plate tuning. The plate coil inductance is made variable with the movable shorting strap to set the coarse tuning.

The Grid circuit is capacity tuned. A diode has been placed in the bias lead to prevent the control grid from drawing grid current due to R.F. excitation. R29 and R30 are used to lower the circuit Q for better stability.

Neutralizing is accomplished by plate to grid feedback. The position of the capacity plate, ClO, determines the amount of feedback. Once the neutralizing is adjusted, it should not require any adjustment under normal day-to-day operation.

The input loading capacitor, $C 35$ is used to obtain a good match between the exciter and PA. 035 is set at the factory and should not require any adjustment.

4.2 Exciter -

The FM exciter is described in detail in the exciter instruction book.

4.3 Power Supply -

The high voltage power supply furnishes 3 KV for the power amplifier. The basic configuration of the supply is single phase, full wave with a two-section choke input filter. The rectifiers consist of two separate columns mounted on the base of the cabinet. *

The bias supply is single phase full wave circuit using silicon rectifiers. Grid bias between 0 and $-l 00$ volts is supplied to the control grid. The bias control is mounted on the front panel.

The screen supply is a single phase full wave configuration. Voltage variation from 0 to +270 volts is avajlable from the motor driven control. The variations are controlled by the Raise/Lower switch on the front panel.

* The primary taps on teh plate transformer, T2, may have to be changed to compensate for input line voltage variations.

4.4 Control Circuits -

The control circuits of the $F M-1 H$ consist of the following:
Kl - Primary Contactor - applies voltage to the filaments, exciter, and energizes the blower.

K2 - Plate Contactor - applies primary voltage to the plate transformer.

K3 - Remote Screen Control Relay - permits raising and lowering the screen voltage remotely.
K4 - Auxiliary Relay - applies holding voltage to $\dot{K} 2$, if the air switch and door interlock are closed.

K5 - Recycle Relay - energizes when the PA overload relay is energized a number of times. The number of times is determined by control R24. The overload relay contacts are in parallel across the relay circuit for K5. When the 0.L. relay energizes and the contacts open, Cl9 starts to charge. If the contacts are open for a sufficient length of time for cl9 to charge to the point that the voltage will
energize K 5 , the contacts of $K 5$ will break the hold circuit of K4 and the plate voltage will be switched OFF. If K5 does not operate, the overload contacts will close after an overload and the plate contactor, K2, will again energize.

K6 - Plate Overload Relay - adjusted to interrupt the high voltage when excessive plate current is indicated.

K7 - Time Delay Relay - allows cathode of the 4CXI000A to reach operating temperature before high voltage is applied.

Sll - Air Switch - closes after the air pressure in the plenum reaches proper pressure, closing the interlocking circuits and switching primary voltage to the PA filament transformer.

4.5 Metering -

All necessary metering of the FM-1H is accomplished with four meters located on the cabinet meter panel. Filament voltage is indicated on the first meter from the left on the meter panel. The voltage is controlled by the "Filament Adjust" mounted on the front panel.

The second meter reads PA plate current and is located in the Plate $\mathrm{B}+$ lead. The meter is properly insulated and isolated behind a protective plexiglass cover.

The third meter reads plate voltage and is located on the low potential side of the meter multiplier resistor.

The fourth meter is for indicating power output and VSWR on the transmission line. This meter works in conjunction with the directional coupler mounted in the output transmission line.

SECTION 5

ADDITIONAL INFORMATION

5.1 Remote Control -

Remote control facilities are built into the FM-lH and require only connection to either the Gates RDC-10 remote control unit or the Gates RDC-200A remote control equipment. The connections to the transmitter are made at TB-2 and TB-1 located on the back of the front panel. Terminal connections for the functions are shown on the schematic.

The functions are:

1. Fail-Safe, Primary ON-OFF.
2. Momentary ON-OFF for plate voltage.
3. Raise/Lower for adjusting power output.
4. Plate voltage metering.
5. Plate current metering.
6. RF power output metering.

The controls for setting the remote plate voltage and plate current for external metering are located under the cover on the front panel and are shown by symbol number on the schematic.

The screen voltage of the power amplifier is motor controlled and is also connected to the remote control Raise/Lower function for power output adjustment.

The M4845 Remote Power Output unit will provide R.F. monitoring.

5.2 Stereophonic Operation -

Provision has been provided for the installation of the Gates M6533 Stereo Generator in the FM exciter. Instructions for audio and RF connections are given in the M6425 manual.

With the addition of the M6533 Stereo Generator, the transmitter is FCC type accepted for stereophonic operation.
5.3 Spare Oven and Crystal

Refer to $F M$ exciter instruction book.

5.4 Complete Tune-up Procedure for the FM-lH

This procedure should not be used unless absolutely necessary.
Read Section 3 again to make sure those steps were followed. Turn ON the filament voltage.

Adjust the exciter output for $2 / 3$ of its maximum clockwise position.

Insert the VOM in TP5 and TP6 and adjust the PA Grid tuning for a peak current reading (1 to 2 microampere).

Set the bias to -35 VDC.
Move the coaxial cable from J3 on the output line of the PA to J5 on the right side of the PA enclosure. Turn the control on the M4845 RF Output Metering Unit to the maximum clockwise position. Put the VOM in TPl and TP2 on the front of the control panel and set the meter on a low ampere scale (50 microampere).

Set the neutralizing capacitor, ClO, for maximum capacity ($\mathrm{\nabla}$ isual inspection) and the PA Output Loading control at 2/3 maximum capacity.

Adjust the PA Plate Tuning for a peak (5 to 15 microampere) indication on the VOM. Refer to tuning chart for position of the shorting strap on the plate inductance.

Re-adjust the NEUT. adjust for 2 to 3 microampere indication on the VOM. Adjust PA Grid Tuning and Plate Tune for a peak reading.

Continue to turn the NEUT. adjust for minimum or dip in the feedthru power from the exciter.

Remove VOM from TPl and TP2. Reconnect the coaxial cable from J5 to J3.

Set the screen voltage control (visual inspection) to approximately 8 o'clock as viewed from the arm end.

Pull the coaxial cable from the input of the 10 watt amplifier in the exciter to remove the RF drive to the PA.

Turn on the Plate Voltage and set the Bias Adjust until 200 ma plate current is drawn. Turn OFF the plate voltage.

Reconnect the coaxial jumper to the 10 watt amplifier.

Turn ON the plate voltage and alternately adjust the Output Loading (3 to 4 divisions, decreasing numbers on knob) and Plate Tuning until a point where 1000 watt or maximum power output is reached. The screen voltage on the PA may have to be changed slightly.

A Plate current dip as the Plate Tuning is adjusted is associated with RF drive from the exciter and PA bias setting. Increasing the RF drive will allow a dip to be noticed as the Plate Tuning is adjusted. Once the transmitter is tuned with excessive drive, the output from the exciter should be decreased until the plate current peaks. Re-tune the Grid for maximum output.

If 1000 watts output is not indicated, the Plate Tuning and Output Loading should be adjusted for 1000 watts output and best efficiency. At this point the plate current should be close ($\pm 30 \mathrm{ma}$) to that indicated on factory test data sheet.

Very often minimum plate current and maximum power output do not occur simultaneously in heavily loaded VHF RF power amplifiers.

The operating characteristic should reasonably compare with those on the test data sheet.

Reset the RF Output Metering Unit to the required output if remote metering is desired. Once the remote plate current adjust is set it is necessary to reset the plate overload adjust for 800 ma .

It is recommended to tune up the transmitter for 1000 watt output then reduce the output to operating level if required. Refer to Section 3.3 for power reduction procedure.

SYMiBOL NO.	GATES STOCK NO.	DESCPIPTION
Kl, K2	5700132000	Contactor, 3 pole, 20 amp.
K3	5720066000	Relay, 2C, 50 ohm coil
K4	5740099000	Relay, DPDT, 110 V .
K5	5740128000	Relay, 9K ohm
K6	5720125000	Relay, 6 V. DC w/2 Micro Switches
K7	5760029000	Relay, Time Delay, 180 Sec
L1	8143435001	Input Coupling Coil
I2	8142921001	Grid Coil
IA	4940004000	Choke, RF 7 uh.
L5	8272759701	Plate Coil
I6, L7	4760266000	Filter Choke, HV, 10 Hy .800 HA .
L8	4760007000	Filter Choke, 12 Hy . 75 MA
L9, L10	4140101000	Ferrite Bead, Suppressor
MI	6300125002	Meter, Filament, O-10 VAC Scale
M2	6320574002	Meter, Flate Current, O-1 anp. Scale
M3	6320575002	Meter, Plate•Voltage, 0-5 KV Scale
I14	6320576002	Meter, Powor Output, Visrr Scale
R8	7000052000	Portable Multimeter (VOM)
	5500029000	Control, loK ohm
R9,R24	5500067000	Control, loK ohm
R10	5420055000	Res., 15 ohm, 10 W .
Rll,R16	5500059000	Control, 500 ohm
R12,R17,R18	5400724000	Res., 47 ohm, 2.W.
R13	5500061000	Control, 1 K ohm
R14	9143424001	Meter Multiplier, 5 megohm
R15	5420346000	Res., look ohm, 160 W .
R19,R22	5520324000	Control, 5 K ohm, 25 W .
R20,R21	5400598000	Res., 300 ohm, 2 W.
R23	5400748000	Res., 4.7K ohm, 2 W.
R25	5520310000	Control, 35 ohm, 25 W .
R26	5420042000	Res., 5K ohm, 5 W .
R27	5400380000	Res., look ohm, l W.
R28	5420091000	Res., 7.5 K ohm, 10 W.
R29, 230	5400642000	Res., 20\% ohm, 2 W .
R31	5420149000	Res., 25 K ohim, 20 W.
R32	5400049000	Res., 1000 ohm, $1 / 2 \mathrm{~W} .5 \%$
R33	5400340000	Res., 2200 hm, l W.
R34	5460170000	Res., Non-inductive, 50 ohm, 100W.

* L5 Shorting Strap 814-5253701

L5 Connecting Strap 814-5255 001

FARTS LIST

SYMBOL NO.	GATES STOCK NO.			DESCRIETION
Sl	600	0162	000	Selector Switch
S2	604	0196	000	Interiock Switch
S3	604	0284	000	Push Switch, N.C. Natural Less Lanp w/l2" leads
S4	604	0283	000	Push Switch, N.O. Natural with : 25 W . Neon Lamp
S5	604	0286	000	Fush Switch N.C.R. Red, Less Lamp
S6	604	0285	000	Fush Switch, N.O.R. Red, with .25 W. Neon Lamp
S7	604	0032	000	Toggle Switch, DPDT
S8, S9	604	0052	000	Linit Switch, N.O.
S10	602	0056	000	Lever Switch, 2 pole, 3 pos.
Sll	604	0258	000	Air Switch, .3" to 1" water
T1	472	0520	000	Transformer, fil. 6.3 VAC 10 anp.
T2	472	0519	000	Transformer, H.V. Flate
T3	472	0046	000	Transforner, Screen, 300-0-300 V. 65 MA
T4	472	0208	000	Transformer, Bias
TB2	614	0102	000	Terainal Board
$\begin{aligned} & \mathrm{TPL}, 2,3,5 \\ & \mathrm{TP4}, 6,3,5 \end{aligned}$	$\begin{aligned} & 612 \\ & 612 \end{aligned}$	$\begin{aligned} & 0312 \\ & 0311 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	Test Point Jack, White Test Point Jack, Black
V1	374	0015	000	Tube, 4CX1000A
XF1, XF2	402	0015	000	Fuse Block
XF3, XF4	402	0021	000	Fuse Holder
XC4, XK7	404	0016	000	Socket MIP8-T
XV1	404	0156	000	Socket Tube
XCHI	404	0157	000	Chimney Tube
Z1, Z2	384	0159	000	Rectifier, H.V.
Z3	384	0121	000	Rectifier, SFF6G

PARTS IIST

M-4845 RF OUTPUT CURRENT EXTENSION KIT

Symbol No.	Description	Gates Part No.
Cl	Cap., 470 uuF., 1 kV .	5160043000
C2	Cap., . 001 uF., 1 kV .	5160054000
C3	Same as C2	
CRI	Diode, 2 N 914	3840195000
CR2	Same as CRl	
J1	Receptacle, UG290A/U	6120237000
R1	Res., 200 Ohm, $2 \mathrm{~W} .5 \%$	5400594000
R2	Same as Rl	
R3	Same as Rl	
R4	Same as Rl	
R5	Not Used	
R6	Potentiometer, 10k Ohm	5500067000
R7	Res., 7500 Ohm, l/2 W. 5\%	5400070000
TB1	Terminal Board	6140069000

EQUIVALENT CIRCUIT • LOW PASS FILTER
FIGURE 7.11

At frequencies below rescnance the
"Stub" appears as an inductance.
At frequencies above resonunce the "Stub" appears as a capocity.

At the second harmonic frequency, the "Stub" appears as a series resonant circuit or dead short.

Appearance of Notch Filter at Second Harmonic

FIG 7.14

FIG. 7.15

FIG 7-16
CHART-COARSE TUNING
FMI G/H
M 6483

This information, of a general nature, will be recognized by many as standard fundamental electronic information. Frequently, when problems exist, one or more of the well known fundamentals may have been overlooked. The following information, therefore, is a check list and/or a suggestion list. You will quickly note it applies to many types of installations, the fundamentals for which are all basically the same.

1. COMPUTING EFFICIENCY. The transmitter efficiency determines its satisfactory operation. If it is under-efficient, it will consume excess primary power, will work all components harder an? tube life will be shorter. If it is over-efficient, it probably indicates either an error in a computation such as tower resistance measurements or an error in a meter. To measure efficiency in an AM transmitter, multiply the plate voltage by the plate current of the final radio frequency power amplifier. For example, if plate voltage was 2500 volts and plate current was 550 MA , we have:

The above means that 1375 watts are being placed into the radio frequency power amplifier. If this power amplifier is producing 1000 watts into the antenna, it would then indicate an efficiency of 73%, or

$$
\frac{1000}{1375}=73 \%
$$

2. TRANSMITTER EFFICIENCIES. There are two types of radio frequency power amplifiers. (1) High lev.el and (2) linear amplifiers. Normal efficiency of a high level transmitter ranges from 65 to 77% for trans mitters of powers up to and including 1000 watts and 72 to 82% for trans mitters having powers of 5000 watts to 10,000 watts. --... For linear amplifiers with no modulation, the normal efficiency at any power is approximately 30%. It is important to note that in a linear amplifier the efficiency increases under modulation, therefore when defining normal efficiency it must be defined without modulation.

NOTE: Variations in efficiency such as a range of 65 to 77% are expressed for reasons of: (a) transmitter used with directional antenna, which would reduce efficiency, (b) slight but not out of tolerance meter error, and (c) possible mismatch to transmission line having slightly higher than normal standing wave ratio.

If the efficiencies are within the ranges expressed, however, the installation could be considered satis factory and of course the higher the efficiency, the better.
3. COMPUTING POWER OUTPUT. Power output is computed either into the radiating antenna or a known dummy antenna. In either case, the resistance measurements are known. Your consulting engineer will measure your antenna tower and give you the resistance measurement. In most Gates built AM trans mitters an inbuilt dummy antenna is provided, having a resistance measurement of 50 ohms. The formula $I^{2} R$ is employed. $I=$ The current reading of your antenna meter at the tower or the meter to the dummy antenna. $R=$ The resistance measurement of the tower or the dummy antenna. If the resistance measure ment is 50 ohms and your antenna current was 4.5 amperes, then $I^{2} R$ develops this result: $4.5 \mathrm{x} 4.5=$ 20.25. 20.25×50 (the antenna resistance) $=1012.5$ watts. In the foregoing you have determined that you have a direct power output reading of 1012.5 watts if your antenna current is 4.5 amperes into a 50 ohm
antenna.
4. CORRECTING LOW EFFICIENCY. Basically a broadcast transmitter by inherent design can not produce low efficiency unless, of course, it is incorrectly tuned, or the matching load to the transmitter, which is the transmission line and antenna, is incorrect. Here the use of the dummy antenna of known resistance is of great value. Light bulbs or improvised dummy antennas are of little value in computing efficiency. By using the formula in Paragraph 3 above, it is easy to determine how efficient the transmitter is operating when it is not connected to the antenna or transmission line. If the efficiency proves satisfactory into the dummy antenna, then any inefficiency is probably in the inatch of the transmitter to the radiating antenna and its associated tuning unit and transmission line.

If the efficiency of the transmitter is low into the duminy antenna, check the plate volt meter and power amplifier current meter to be sure they are accurate. In rare cases they are damaged in transit. This checking can be done with another known meter such as a good quality voltohmmeter, being very careful as the voltages are lethal.

Another cause of low efficiency is a defective RF ammeter. If you suspect this, the best way is to borrow one from a nearby station. It does not have to be the exact same range as you are only interested in a comparative reading. Here an error of only. 2 of an ampere can make a large difference in the efficiency. Using Paragraph 3 above, again you will note a meter reading example of 4.5 amperes was used to give us
1012.5 watts output. If this meter had read 4.4 amperes, the output would have been 968 watts. By the meter being off only 0.1 amperes, 44 watts of error or loss was determined, which is nearly 5% of the 1000 watts desired power output. ---- Most radio frequency ammeters are very carefully checked and should be accurate but here again on a sensitive item, transportation roughage can affect it and therefore be sure.
5. ARCING. The power developed in the transmitter must go somewhere and of course to the antenna. When it is sidetracked, frequently arcing develops. Low efficiency and arcing will often go together as all trans mitters are very well insulated against arcing. Its presence would indicate one of several things:
--- Improper tuning of antenna coupler.
--- Standing wave ratios on the transmission line, usually indicated by a different current reading at each end of the line.
--- Improper ground return from the ground radials to the transmitter.
--- Incorrect resistance measurements to the tower.
--- Improper neutralization where it is required.
--- An intermittent connection such as a loose connection in the tuning unit, a loose connection in the transmission line, poor brazing of the ground system and infrequently a grounded tower light wire.
6. TUNING ANTENNA COUPLER. Your consultant will be of invaluable assistance in tuning up your antenna coupler correctly with a radio frequency bridge at the same time he measures your tower. It will be money well spent. Where this is not possible and a bridge is not available, then the standard cut and try procedures must be followed. The desired result, of course, is the greatest antenna current without increasing the power input to the transmitter to obtain this increased antenna current.
7. STANDING WAVES. This is commonly called VSWR and high standing waves are caused by improper impedance match between the output of the transmitter to the transmission line and/or the output of the transmission line to the antenna coupler and its antenna. The result will nearly always be inefficiency as it reduces the power transfer between the transmitter and the antenna. High standing waves may also be caused by a poor or no ground to the outer shield of the transmission line. This line should be grounded to the ground radials at the tower and to the transmitter at the opposite end of the transmission line. The only exception to this might be with a directional system but in all instances the outer shield of the trans mission line must be grounded securely.
8. IMPR OPER GROUND. In an AM transmitter we place at least 120 gr ound radials into the ground but sometimes fail to connect them securely to the transmitter. In the simplest form, the antenna and the ground can be likened to the two wires of an electric light circuit. One is as important as the other. Where the ground radials are bonded together at the tower, we suggest extending a $2^{\prime \prime}$ copper strap directly to the ground of the broadcast transmitter. DO NOT attach one of the outer radials closest to the transmitter as your ground system. Don't forget to ground the cabinets of the antenna coupling unit and the tower lighting chokes, and again the outer shield of the transmission line.
9. INCORRECT TOWER MEASUREMENTS. Your consulting engineer is provided with expensive and accurate measuring equipment for tower resistance measurements. His measurements will be accurate. It would be extremely rare to find an incorrect tower measurement by a capable consulting engineer. It has happened, however, and we include this paragraph only to point out that if all else fails for proper transmitter performance, rechecking of the tower measurements would not be amiss. Several years ago one of the world's leading consultants measured a tower incorrectly and quickly admitted it. The cause was simply one of his measuring instruments falling out of his car unbeknownst to him and upsetting the calibration of his equipment.
10. FUSE BLOWING. It seldom happens if. the fuses are of adequate size. If it does happen, the first thing is to determine that the fuses are not overloaded. Usually overloaded fuses caused by a long period of over load of an hour or more have blackened fuse clips. Remember a very hot day and borderline fuses are trouble-makers. Also don't forget to compute the window fan, the well pump, the air-conditioner, or other items that are foolers as to power consumption.

If fuses are of adequate size and continue to blow, here are a few helpful hints:
If your transmitter has mercury vapor rectifiers, it is a cold morning and the heat in your building has goen down overnight, the mercury will likely cool at the bottom of the rectifier tubes and when high voltage is applied, cause an arc back. In such a condition, you are fortunate in blowing the fuses as an arc back can often destroy a filter reactor or power transformer. You can correct this condition by keeping adequate heat in the transmitter building or at least adjacent to the mercury vapor rectifier tubes. A light bulb placed near the rectifier tubes, to operate in cold weather when the transmitter is off, is helpful.

Dirt or scum is an evil with many results and fuse blowing caused by arcovers is one of them. A good maintenance program prevents this.

On new transmitters, look for cable abrasions. Sometimes in transit it is possible for a wire to rub against a metal support and wear off the insulation. This is unlikely but with such a serious problem as fuses blowing, you look for everything.

If by the time you have found the trouble you have blown a number of fuses, now investigate your fuse box to be sure the clips are clean and not charred. If they are charred, fuse blowing will continue anyway and it will be necessary to replace the clips that hold the fuses.
11. UNEXPLAINED OUTAGES. This one puzzles the best of them. A transmitter that goes off the air for no reason and can be turned back on by pushing the start button brings the query, "What caused that?" If this happens very infrequently, it is probably caused by a power line dip, a jump across the arc gap at the tower base, or other normal things that activate the protective relays in the transmitter as they should.

Your transmitter always looks like the offender. It is the device with meters and it is the device that complains or quits if there is a failure anywhere in the entire system. An open or short circ"it in a transmission line only reacts at the transmitter. A faulty insulator in an antenna guy wire or a bad connection in the tuning unit or ground system reacts only at the transmitter. Here again the dummy antenna is of great value. If these unexplained outages do not appear in operating into a dummy antenna, then you must look elsewhere for the problem. It is always well to remember that the transmission line tuning units and associated connections, including the tower chokes, are somewhat like the drive shaft between the automobile motor and the rear wheels. If the drive shaft fails, it does not mean that the motor is defective.
12. STEP BY STEP TROUBLE SHOOTING. Never trouble-shoot on the basis of "it might be this or that". Instead, start from the beginning. If the transmitter was satisfactory on the dummy antenna, then the question becomes "Where is the trouble?" If a transmission line connects the transmitter to the antenna coupler, then disconnect the antenna coupler and provide a dummy antenna at the far end of the transmission line and repeat the test. If you noticed the outage at this point, then the trouble is in the transmission line. If not, reconnect it to the antenna coupler unit and put the dummy antenna at the output of the coupling unit. This is known as step by step checking to locate problems.

The same process is used in trouble-shooting the transmitter. In checking voltages, you start with the oscillator and go through to the power amplifier and with the first audio stage to the final audio stage. Other outage conditions not affecting the transmitter are listed below for your checking:

Under certain conditions, especially at higher altitudes, the guy insulators will arc, usually caused by static conditions. This will nearly always cause an outage as it changes the antenna characteristics. This is hard to find as it is hard to see. Use of field glasses at night is the best way. If it happens, the insulator should be shunted with a resistor. Write our Engineering Department for advice, giving full antenna detail when writing.

At times the arc gap at the base of the tower is set too close or has accumulated dirt. This causes an arc to ground under high modulation.

A crack in the tower base insulator is very unlikely but it should be inspected and keeping the base insulator clean is necessary. A low resistance path at this point is highly undesirable.

Look at the tower chokes. Though they are husky, they are in a vulnerable position for lightning. You might find a charred point that is causing the trouble.

Shunt fed towers or those with no base insulator are usually more sensitive to static bursts than series fed towers. The best method is to try and make the feed line to the tower equal the impedance of the transmission line. Talk to your consultant about this.

One side of the tower lighting circuit shorted to the tower itself, either permanently or intermittently, can cause trouble even though the lights may function perfectly.
13. OTHER OUTAGES. If the transmitter is the offender, sucu as acting improperly on a dummy antenna, the process of elimination by starting at the first and following through is preferred, unless of course the cause is actually known. The following may be helpful:
(FALL OUT) The transmitter turns off at high modulation. Possibly the overload relay is set too sensitive. The transmitter may not be properly neutralized where neutralization is rerin.red.
(HARD TO MODULATE) Cause can be extuer improper impedance match between transmitter and the transmission line or low grid drive to the final power amplifier. Consult the instruction book for correct grid drive. The correct match of the transmitter to load is covered in the instruction book. Usually an antenna current meter that does not move up freely with modulation indicates a mismatch between the transmitter and its loading equipment.
(BAD REGULATION) The size of the primary lines between the meter box and the transmitter is extremely important. If they are too small, bad regulation will exist. In some instances the power line has bad regulation too. This
may be caused by a too small pole transformer, overload of the power lines in the entire neighborhood, or insufficient line capacity between the pole transformer and the transmitter building. In some instances voltage regulators, if employed, must be inspected for good wave form and good regulation. The best way to check regulation is to check the primary line voltage when the transmitter is not modulating. Then modulate the transmitter with a constant tone to 100% and note the change, if any, in the primary voltage between zero and full modulation. If the change was substantial, then investigate the reason and correctit.
14. SHORT TUBE LIFE. It is usually not the fault of the tubes. Instead, it is caused by overloading the tubes. See Paragraphs 1 and 2 on Efficiency.
15. POOR QUALITY. The reasons for poor transmission quality could be many as between the microphone or transcription turntable and the transmitter there are many items of equipment. In a listening test, it would seem foolish to even suggest that a poor stylus on a transcription turntable could be the cause but as we are discussing elementary things, let's checkit. Every station must take proof of performance measurements. Proof of performance equipment should be owned by each radio station as it is difficult to keep a radio station in top performance through the years without one. With this equipment, each major equipment item may be checked for frequency response, noise and distortion, to determine good or bad quality where it exists. The Gates SA13l proof of performance package, listed in all Gates catalogs and selling for under $\$ 700.00$, is an excellent investment.

These items could cause poor quality:
A poor microphone, don't forget those that are dropped on the floor are seldom reported.

Radio frequency leakage or a small amount of RF getting into other equipment such as the limiting amplifier, audio cables, and the speech input equipment, which can be corrected by proper grounding and shielding.

Lack of grounding in important places of the system and in some instances actually use of too many grounds. The common ground is usually preferred to grounding both ends of audio cables and other similar shielded circuits.

The use of too small a ground. Cabinets of equipment, speech input consoles, etc., should be grounded with copper strap, particularly if they are closely associated with the transmitter.

Do not run RF cables, such as frequency and modulation monitor cables, in the same conduit as audio cables.

Do not run a high level audio circuit in the same conduit or cable package as a low level circuit. For example, do not run a loudspeaker line in the same cable package as a microphone.

Watch overloading. Most equipment is rated for minimum input and maximum output levels. Do not exceed these. Sometimes they are exceeded unknowingly, so check again.

Review any short-cuts or throwing of precaution to the wind that might have existed in trying to get the equipment on the air fast. The answer here, of course, is don't take short-cuts.
16. PREVENTIVE MAINTENANCE. Few of us would fly in commercial airplanes if we felt that planes were not carefully checked and subject to a most rigid regular maintenance program. We even check our automobile tires before taking a long trip. The wife cleans to prevent moths. In broadcasting equipment, preventive maintenance is mandatory. Most offages can be eliminated before they happen by maintaining a regular weekly maintenance program, which should take from two to six hours a week, depending upon the size of the station. This maintenance program should include:

Complete cleaning. Dirt is the first cause of all trouble.
Clean air filters as heat is the number two cause of all problems. With the advent of unattended operation, commonly known as remote control, often the locked building has also locked out regular maintenance. Keep the transmitter and its associated building as clean as if you were in it 18 hours a day. Keep windows closed in the summer months and provide ventilation by filtered suction and exhaust fans.

Air exhaust. Exhausting hot air is vitally important as cool air is a trouble-free transmitter and long lasting tubes.

Tube checking. Check tubes at least monthly and it is just as easy to do it each week during the periodic maintenance program. Certain tubes will become gaseous if left on the spare tube shelf too long. This type of tube should be rotated into the transmitter to prevent an emergency change to the spare tube, only to find it blowing out because of a gaseous condition.

Oiling. If the transmitter has blowers, oil them as required, but do not over-oil. Some types of turntables require oiling the motors.

Relay contacts. Burnish the contacts with an approved burnishing tool. This should be done about every six to eight weeks.

Other preventive ideas. Clean mixing attenuators if they are not the sealed type, with carbon tetrachloride, about once monthly. Every station should have a small suction type cleaner. Even your wife's Hoover with the suction attachments will do an excellent job of pulling dust from the inside of the hard to get corners of a transmitter. Take a leaf from the Navy book which says everything must at all times be sparkling clean or what is know as shipshape.
17. ADEQUATE TEST EQUIPMENT. To have a maintenance program, certain capital equipment is necessary. Do not be ashamed to tell your Manager about this because he will recognize that proper maintenance is saving money and not spending money. As a minimum, you should have this equipment:

Dummy antenna (frequently supplied in Gates transmitters).
Proof of performance equipment, which includes an audio oscillator, distortion meter, gain set; and RF pickup coil or rectifier, known as the Gates SAl31 proof performance package.

A good grade of voltohmmeter.
A spare antenna current meter.
An inexpensive oscillos cope.
All of the above will cost less than $\$ 1000.00$ and will pay for itself many times through the years.
18. THE CHIEF ENGINEER. He has the job of keeping everybody happy - listeners, Manager, and stockholders. When trouble comes, he is under pressure. He will do his best to correct the problem as fast as he can. It is well to remember that electronic equipment has many circuits and many avenues of travel. Where problems are known, the solution is usually quick. Where the problem must be found, the solution will take time. It is well to remember that if equipment did not need maintenance, it would not need a Chief Engineer. The greatest service he renders is the insistence on a regular preventive maintenance program, which he knows will prevent most problems. If the unusual problem does arrive, causing an outage, everyone in the broadcasting should be understanding and tolerant as the problem can be solved quickest by not breathing over the Chief Engineer's shoulder.
19. GATES ASSISTANCE TO HELP. Gates sincerely believes that the best type of assistance it can render to the technical personnel in the radio broadcasting industry is in providing full cooperation, day or night, in solving any problem no matter how small. Gates technical people recognize that sometimes the biggest problem is solved in the most simple manner. This is part of electronics and never is fun poked at a simple solution because this is the happiest kind. It is only by asking questions of any calibre, simple or complex, of Gates people and mutually working together that the finest degree of broadcast programming is possible in your broadcasting station and the industry.

Service avenues. Unless the problem is of an emergency nature, Gates suggests that you write to the Gates Service Department about problems that you are experiencing. If you have a problem that can not wait, call the Gates Service Department during daylight hours at Area Code 217, 222-8202. Gates daylight hours are from $8 \mathrm{~A} . \mathrm{M}$. to 5 P. M., Monday thru Friday, Central Standard Time or Central Daylight Time, depending upon the period of the year. Gates nighttime service can be obtained by calling Area Code 217, 222-8202.

INSTRUCTION воок

M-6425 FM EXCITER AS USED WITH M-6533 STEREO GENERATOR AND

M-6507 SCA GENERATOR (S)

INDEX

Page
SPECIFICATIONS 1
EQUIPMENT DESCRIPTION 2
INSPECTION 2
INSTALLAATION 2
OPERATION 2
MAINTENANCE 4
TROUBLESHOOTING 4
COMPLETE CIRCUIT DESCRIPTION \& ADJUSTMENT 5
ELECTRICAL PARTS LIST 10
SCHEMATICS \& DRAWINGS
8424885001 Functional Block Diagram
8382064001 Interconnecting Diagram
83819550018382157001 Schematic, Modulated Oscillator
8271630001 Schematic, 10 Watt Amplifier
8424693001 Schematic, AFC Unit
8382575001 Schematic, Audio Unit
8382026001 Schematic, Sub-Carrier Generator
8424887001 Schematic, Stereo Signal Unit
8149571001 Schematic, AT1 Isolation Pad

ADDENDUM

TE-1 FM EXCITER

The main 120 V A.C. input to the exciter has been connected in parallel with the oven A.C. input.

This will permit the exciter to remain $O N$ continuously for improvement in stability.

The exciter may be turned ON or OFF with the power switch located on the power supply for any test purposes.

Parts List Change - 9946533001 Stereo Generator, Page 13. Change C45 from 5220322001 Cap., 100 uF. 50V. To C45 5220391001 Cap., 1000 uF., 16V. ECN-12620

Gates Radio Company Quincy, Illinois

INSTALLATION INSTRUCTIONS

TE-1 EXCITER

The individual modules have been removed from the exciter cabinet and separately packaged for shipment. The cabinet should be installed into the transmitter or rack cabinet before installing the modules into the cabinet. Please refer to the attached photograph (8000811001) for proper module placement in the cabinet.
A. Modulated Oscillator Module - 9921772001

Insert the module into the foam lined section of the exciter chassis with the small coax fitting (RF Output) positioned below and to the left of P10. Attach the cover plate. Connect P10 to J10. Connect P13 (RF Output - color coded black) to J13.
B. Power Amplifier Module - 9921715001

Connect coax cable from Jl (RF Output of Exciter) to J 12 (RF Output of Amplifier module) located at rear of the Amplifier module. Insert module into chassis. Connect P2 to J2. Connect P4 (RF Sample - color coded white) to J4. Connect P3 (RF Input - color coded black) to J3.
C. Audio Module - 9921830001

Insert module into cabinet and connect P11 to Jll.
D. Automatic Frequency Control Module - 9921716001

Insert module into cabinet. Connect P8 to J8. Connect P9 (RF Input - color coded white) to J9.
E. Power Supply Module - 9921726001

Insert module into cabinet. Connect P1 to JI.
F. Stereo Generator Module (If Used) - 9946533001

Insert module into cabinet. Connect P7 to J 7 .
G. Sub Carrier Generator Modules (If Used) 9946507001

Insert modules into cabinet. Connect P5 to J5.
The a.c. power input to the exciter has been connected in parallel with the oven a.c. input. This will permit the exciter to remain ON continuously for improvement in stability. The exciter may be turned ON or OFF with the power switch located on the power supply.

SPECIFICATIONS
 M-6425 EXCITER AS USED WITH M-65(17 SCA AND M-653:3 STEREO GENERATOR

MECHANICAL:

Width:	$19 "$
Height:	$14^{\prime \prime}$
Depth:	$12-1 / 4^{\prime \prime}$
Weight:	
(Uncrated)	52 lbs. (monaural only).
	3 Ibs. (Sc:A gencrator).
	(ilhs. (sterer) generator).

Finish: Beige
Semiconductors used throughout.
All sections of exciter shipped in proper position ready to use. Remote Control Facilities Included: (sec explanation on page 3).

ELSECTRICAL: (Monaural Operation).

requency Range:	88 to 108 MHz .
Power Output:	10 Watts
RF Itarmonics:	Suppression meets or exceeds all FCC requirements.
RF Output Impedance:	50 ohms (BNC connector).
Oscillator:	AFC controlled.
Frequency Stability:	. 001% or better.
Modulation Capability:	Capable of $\pm 100 \mathrm{kHz}(\pm 75$ $\mathrm{kHz}=100 \%$ modulation).
Audio Input Impedance:	600 ohms balanced.
Audio Input I evel:	$+10 \mathrm{dBm} \pm 2 \mathrm{~dB}$ for 100% modulation at 400 Hz .
Audio Frequency	
Response:	Standard 75 microsecond FCC pre-emphasis curve $\pm 1 \mathrm{~dB}, 3(0)-15,000 \mathrm{~Hz}$.
Distortion:	. $5 \%, 30$ to $15,000 \mathrm{~Hz}$.
FM Noise:	65 dB below 100% modulation (ref. 400 Hz).
AM Noise:	70 db below reference carrier AM modulated 100%
Temperature:	-20° to $+50^{\circ} \mathrm{C}$.
Atitude:	7,500 ft.
Power Requirements:	117 VAC, single phase, (6) $\mathrm{Hz}, 85$ watts.

EL F (TTRICAL: (Stereophonic Operation).

	Crystal controlled.
Pilot Stability:	$19 \mathrm{kIIz} \pm 1 \mathrm{~Hz}, 0^{\circ}$ to 5
Audio Input Impedance (lft \& rgt):	(60) ohms balanced.
Audio laput level (ift \& rgt):	$+10 \mathrm{dBm} \pm 1 \mathrm{~dB}$ for 100%

Audio Frequency
Resp. (lft \& rgt):

Distortion (lft or rgt):
Fal Noise (lft or rgt):
Stereo Separation (lft to rgt or rgt to lit channel):
modulation at 400 IIz.
Standard 75 microsecond, FCC pre-emphases curve $\pm 1 \mathrm{~dB}, 30-1 \overline{5}, 000 \mathrm{~Hz}$. $1 \because \%$ or less. $30-15,000 \mathrm{~Hz}$. $60 \mathrm{~dB}(\mathrm{~min})$ below 100% modulation (ref. 400 Hz).
$35 \mathrm{~dB}(\mathrm{~min}) 30$ to $15,000 \mathrm{~Hz}$.

```
Sub-Carrier Suppression
    (with or without
    modulation present:
                        \(42 \mathrm{db}(\mathrm{min})\) below \(90 \%\)
                        modulation.
*Crosstalk (main channel
    to sub-channel or
    sub-channel to main
    (hannel):
    \(42 \mathrm{~dB}(\mathrm{~min})\) below \(90 \%\)
    modulation, \(3(0-15,000\) IIz.
    Sub-Carrier 2nd Har-
    monic Suppression
    ( 76 kllz ):
    Power Input:
    (6) dB or better below \(100 \%\)
        modulation.
                            24 V DC at 50 ma . ( 1.2 watts).
```

NOTE: Stereophonic measurements to be made from an FCC approved monitor or an equally dependable method used such as waveform measurements from a wideband, linear discriminator. A spectrum analyzer may be used in conjunction with a wideband discriminator to measure coosstalk and distortion.

EL ECTRICAL: (SCA Operation).

Frequency:
Frequency Stability:
Oscillator Type:

Modulation:
Modulation Capability: Capable of $\pm 7.5 \mathrm{kHz}(\pm 5$ kHz considered 100% modulation).
Audio Input
Impedance:
Audio Input I evel:
Audio Frequency
Response:

Distortion:
F.M Noise (main chamel not modulated):

Crosstalk (sub-channel to main chamel and stereophonic sub-channel):
** (Yosstalk (main channel to sub-channel):

600 ohms balanced. $+8 \mathrm{dBm}, \pm 3 \mathrm{~dB}$ for 100% modulation at 400 Hz .

41 kHz and 67 kHz , 50 microsecond, modified preemphasis. 67 kHz response modified for proper operat tion when used with stereo to conform to FCC spees. 1.5% (or better) $30-15,000 \mathrm{~Hz}$. 1 55 dB min. (ref. 100% modulation $4(0)(H z)$.
-60 db or better.
50 db below 100% modula- tion (ref. 400 Hz) with main channel modulated 70% by frequencies $3(0-15,000) \mathrm{Hz}$.

* measurement to be made using an $L,=R$ signal for sub-channel crosstalk and an $L=-R$ signal for main channel crosstalk.

[^0]If FCC model not available, an equally dependable method or instrument to be used.
Power Input: $\quad 24 \mathrm{~V} \mathrm{DC} \mathrm{at} 40$ ma. (. 96 watt).
Automatic Mute Level:
Variable from () to -40 dB below 100% modulation.
Remote Control: Exciter is internally equipped to manually or remotely switch from monaural to stereo operation. On monaural operation, normal right audio input connections are switched to the 41 kHz SCA position, if used. Remote functions are accomplished by a single set of external relay contacts (closure required for stereo operation. External relay should provide a holding function.)

EQUIPMENT DESCRIPTION

The M-6425 exciter unit is completely self-contained. Attach it to the 117 V . AC line, connect audio input wires, and you have a complete 10 Watt FM Transmitter.

These same features are also very desirable in building up power level to the kilowatt(s) level. The exciter easily connects into the control circuitry of high power transmitters.

Silicon transistors and diodes are used throughout all circuitry, (exception Q7 and CR1, CR2 in the SCA unit only). These are greatly superior to the older germanium types because they are less sensitive to heat. Considerable transistorized equipment placed in service 15 years ago, is still running. It is felt that silicon devices will greatly increase life expectancy of transistorized equipment. This exciter is air cooled and after several hours of operation, it is difficult to detect any heat whatsoever on any part of the exciter enclosure.

INSPECTION

All portions of the exciter are shipped in place and ready to turn on. When the unit is received, immediately inspect it for damage that may have occurred in transit. Look for loose screws and tighten them. If real damage, either concealed or obvious is determined, immediately call the transportation company that delivered the material to you and go over the damages with them. They will either note the shipping waybill which you have or give you a damage report, indicating that you may proceed with repairs. Order the necessary parts from Gates. Gates will bill these parts to you, and you in turn can bill the parts to the transportation company under the damage claim.

Remember most transportation companies like to tell you that the equipment was damaged beyond their control. All Gates equipment is shipped in approved packing containers and you are not obliged to pay for anything broken in transit, but the transportation company is.

INSTALLATION

You will receive this equipment in one of two ways: Already mounted in a high power transmitter, or as a separate unit which may be mounted separately in a rack cabinet or as a replacement in a transmitter
for an older type of exciter. Refer to the packing check list for modules removed for shipping. If the unit is already in a transmitter, interconnections to the exciter have already been made. If you receive the unit separately, refer to interconnecting diagram 8382064001 for proper connection to the unit. Be sure the audio iuput wires are shielded.

A 3 dB isolation pad, A'T1 (992 2241001) is supplied with the TE-1 FM Exciter. This should be installed between the RF output of the exciter and the input of following amplifier stages.

When the TE-1 Exciter is supplied in a Gates transmitter, the pad is already installed. If the exciter is supplied alone, the pad can be installed at any convenient point in the transmission line between the exciter output and following amplifier stage. Coaxial RF fittings are mounted on the pad for ease of installation.

The a.c. power input to the exciter has been comected in parallel with the oven a.c. input. This will permit the exciter to remain ON continuously for improvement in stability. The exciter may be turned ON or OFF with the power switch located on the power supply.

OPERATION

Capabilities of this equipment are far in excess of minimum FCC specifications. In addition, each exciter unit is tested on customer frequency. This insures that the unit was operating properly when it left the Gates plant. Unless the unit has been shaken up considerably in transit you should be operational by merely applying 117 volts to the proper terminals as shown on the interconnecting diagram.

Output of the exciter should be connected into either a dummy load, antenna, or a following amplifier stage. After connecting 117 V . AC to proper temminals on the exciter, power switch located on the power supply may be turned on. Observe the output frequency on a standard FM frequency monitor or by using a frequency counter. Make sure that the AFC ON-OFF' switch (S1) is in the ON position.
CAUTION - Do not attempt to fine adjust the output frequency unless the oven heaters have been on for approximately 30 minutes. The overall exciter unit should be on for at least ten minutes before attempting to fine adjust the fine or center frequency control.
If the exciter has been turned on for the prescribed length of time the center frequency may be adjusted by center frequency adjust control R59. This should be done with no modulation applied.

Setting to obtain the proper output frequency should correspond very closely to the figure recorded by the Gates test lab when the unit was tested on customer frequency.

Output frequency should stay well within FCC specifications over long periods of time without any readjustment.

Reset drive control (R11) on the 10 watt amplifier section for the desired output level if this is necessary. A large change in this setting may affect the center frequency setting.

Apply sine wave signals to the audio input terminals for initial observation of programming if so desired. Set the proper audio input levels by observing modulation percentage on a standard FCC approved monitor. Proof of performance data using sine wave signals may then be made by proper connections of a distortion analyzer to the FM monitor.

The unit is now ready to be used as an FM transmitter or as a driver for higher power stages. Fidelity may be checked on any high quality FM receiver by listening checks.

SCA OPERATION

Each exciter unit has provisions for two SCA units (M-6507). The exciter may come equipped with them or these may be added at a later date without changing any cabling or wiring whatsoever. Normally the SCA generators will be on either 41 or 67 kHz . The units should be placed in the slots shown on the interconnecting diagram 8382064001 . Audio input terminal s on the rear of the exciter unit will then correspond to the proper SCA unit.

With no main channel modulation on the carrier turn on the SCA time constant switch (S1) to the defeat (D) position. This will turn the SCA generator ON. Set the output level of the SCA generator (R30) to modulate the main carrier as desired. Usually 10 to 15% modulation of the main carrier is sufficient. Do not exceed 30% modulation of the main carrier by the SCA generators. This figure is the total of all SCA generators that may be employed.

Check frequency of the SCA on FCC approved monitor or by a frequency standard. If frequency needs to be re-adjusted retune L3 or L4 slightly with non-metallic tool provided. Use narrow screwdriver blade. SCA unit must be removed from cabinet to do this. SCA unit mav be reconnected to proper cable plug while setting outside of cabinet.
Program the SCA generator to the proper level as read on a multiplex monitor. Set the mute switch to the desired time constant. This determines how soon after the programming stops that the sub-carrier will turn off.

Set the mute level control (R32) to the muting or quieting level as desired. This will generally be at a level approximately 30 dB below the normal 100% modulation point.

Test procedure for initial tune-up of SCA Generator or retuning to a different frequency:

1. Connect sensitive scope to junction of L 8 and R30. Connect signal generator to junction of C17 \& C18.
2. Do not turn power on to SCA. Determine if unit being tested is to be tuned to 41 or 67 kHz .
3. If desired frequency is 41 kHz , set signal generator to 82 kHz and tune L 6 and L8 for minimum scope indication.

Alternately change generator frequency be-
tween 41 and 56 kHz . Adjust L7 so output level is same at either 41 or 56 kHz .

Return generator to 82 kHz and again tune L6 and L8 for minimum indication. Dip should be about 50 dB down.
4. If desired frequency is 67 kHz , set signal generator to 134 kHz and tune L6 and L8 for minimum indication on scope.

Alternately change generator frequency between 67 and 82 kHz and adjust L7 so that same output level is obtained at both 67 and 82 kHz . Try adjusting L. 7 for peak with generator set at 97 kHz .

Retune generator to 134 kHz and again tune L6 and L. 8 for minimum indication. Dip should be about 50 dB down.
5. Disconnect signal generator from junction of C 17 and C18. Connect frequency counter on other dependable counting device to junction of C111 and C12 through 500 ohm resistor. Do not apply audio modulation.
6. Attach P5 or P6 of exciter to SCA Generator. Turn power to SCA unit ON. Momentarily short the collector of Q2 (case) to chassis with a clip lead. Adjust L3 so that frequency read on counter is approximately 900 kHz .
7. Remove chassis to Q2 short and momentarily short the collector of Q1 (case) to chassis. Tune L4 to 941 kHz if SCA frequency is 41 kHz , or 967 kHz if desired SCA frequency is 67 kHz .
8. Remove clip leads from Q1 and Q2 and disconnect frequency counter from junction of C 11 and Cl 2 .
9. Tum mute to "D". Connect frequency counter to output of SCA generator J1. Adjust L4 so that SCA generator output frequency is exactly 41 or 67 kHz , whichever is appropriate.

NOTE: Final "fine" adjustment of L4 should be accomplished with covers of the SCA generator in place. It is also advisable to remove pre-emphasis from the SCA generator when a 67 kHz generator is to be used simultaneously with stereo. Refer to interconnecting diagram 8382064001 for proper placement of SCA generator. Audio to the 41 kHz generator is switched off when exciter is placed in stereo mode.

STEREO OPERATION

This exciter has provisions for using an M-6533 composite stereo gencrator. This may be received with the generator mounted in position or added at a later date without changing any cabling or wiring whatsoever.

The stereo generator may be used in conjunction with either one or two SCA generators. Automatic switching is provided that allows the normal right stereo program to be changed to the second SCA generator when not in a stereo transmission mode.

A total of 16 variable adjustments are provided on the stereo generator. Eleven of these are located internally on the printed wiring board. These twelve adjustments are considered to be one time factory adjustments requiring special equipment. They should not be re-adjusted except in cases of severe trouble. Contact the Gates Service Department first.

Four controls are provided on the front panel of the stereo generator. Pilot gain, pilot phase, output level and $\mathrm{L}+\mathrm{R}$ gain. Those adjustments located internally on the printed wiring board have a double underline underneath the description of control on the stereo generator schematic. Front Panel adjustments have a box drawn around them on the schematic
In addition, a pilot defeat switch is provided on the front panel of the stereo generator for test purposes only. This must be placed in the "composite" position for normal programming.
Adjustments located on the front panel of the stereo generator will rarely, if ever, need adjusting. Adjustment should generally not be attempted unless an FCC type approved stereo monitor is available.

All of these controls were properly adjusted at the factory and do not normally drift. Set pilot gain control for 8 to 10% modulation of main carrier with no audio input applied and without any SCA modulation of main carrier.

Set output level so normal programming modulates main channel at prescribed level. 90% ($+10 \%$ pilot) or if a 67 kHz SCA is being transmitted, $80 \%(+10 \%$ pilot $+10 \%$ SCA). These are maxim.m figures allowed.

Set $L+R$ gain control for equal $L+R$ and $L-R$ amplitude. This may be done by observing the output of the generator. The zero axis of the composite signal should have a straight line dividing the upper and lower half.
Set pilot phase control for best separation as read on stereo moniwring equipment. If none is available, connect an $L=-R$ signal to the audio inputs on rear of exciter. Set the signal generator to about 50 Hz and observe waveform on an oscilloscope connected to stereo generator output. Set pilot phase so that the comers of the "eyes" of the pattem are pointing directly at one another.

A "mono", "stereo", "remote" switch located on the audio unit picks the mode of transmission. The right stereo audio input connections are switched to the 41 kHz SCA input when not in the stereo mode. The stereo generator is then completely removed from the circuit.

Remote control equipment may be connected to appropriate terminals on back of the exciter enclosure and the stereo-mono functions performed remotely.

MAINTENANCE

General maintenance should consist of merely keeping excessive dust out of the exciter unit. This ap-
plies particularly to the perforated metal screen over the exhaust fan. Make certain that this does not become clogged with dust and dirt.

It is not deemed necessary or advisable to remove covers from individual modules to clean them. They are well shielded and protected.

Exhaust fan (B1) should be lubricated annually. This may be done by removing plug button on ventilation screen.

TROUBL ESHOOTING

Since each individual unit is checked on customer frequency before shipment, the exciter should operate properly with a minimum amount of effort. If unit fails to operate properly, re-check to see that all plugs fit tightly into the receptacles on each individual module.

The finest of equipment will, of course, occasionally fail as there is no such thing as 100% infallibility.

If problems develop they can usually be isolated by referring to the appropriate block diagrams. Once the problem has been isolated to an individual module. That module may be checked by referring to the appropriate schematic for that particular module. Each schematic has a series of voltage or waveform measurements made on it to assist in troubleshooting.

A word of caution though, the voltage and waveform measurements are subject to some normal variation. Al so, if different types of instruments are used to measure the voltages and waveforms a slightly different reading can be expected.

Complete circuit description and adjustment procedure has been included in this manual to assist in troubleshooting. A complete tune-up should not be attempted unless proper test equipment is available.

A "Cause-and-Effect" table is included in pages following to speed up the isolation of problems.

NO CARRIER OUTPUT

Check that power supply is providing 24 Volts DC. If pilot lamp of power supply does not light check that S1 on power supply is "ON". Check that 117 V AC is supplied to proper terminals on rear of exciter. Check 117 V fuse, F3, on power supply. Check F1 of cabinet intercabling. This is located on shield box behind power supply. (Refer to interconnecting diagram).

If pilot lamp on power supply lights, check 24 V . and 150 V . fuse.

If power supply is providing proper voltages, check output coax of exciter for short or open circuit.

Determine if modulated oscillator is providing output by listening to FM receiver tuned to operating frequency. Measure output level of modulated oscillator if equipment is available. This should be on the order of .5 to 1 V. RMS open circuit.

If modulated oscillator is providing power output to the 10 watt amplifier, trace the RF signal through the ampli-
fier stages and compare AC and DC voltages with those values given on the schematic.

CARRIER OFF FREQUENCY

Check "locked" and "unlocked" frequency. If frequency is further away from the correct value when AFC defeat switch is on than off, fault probably lies in AFC unit. Check if fine frequency control knob has been misadjusted. Check power supply voltages.

Check that modulated oscillator oven is warm and if crystal oven of AFC unit is warm. If only the crystal oven becomes cold, total drift will only amount to a few kHz and is easily compensated for by re-adjustment of the fine frequency control. Loss of heat on the modulated oscillator circuit will cause a considerable drift of frequency. If the cause of loss of heat can not be immediately determined, modulated oscillator may be retuned to carrier frequency and operated temporarily without an oven heater. Center frequency drift must then be observed more often and the problem should be solved swiftly.

Some types of frequency monitors will provide a nearly "on frequency" reading even though the carrier is actually several hundred kHz off frequency. The right frequency is the one where the AFC unit locks instead of kicking the frequency monitor off scale. In particular, care should be taken not to tune the modulated oscillator very far below the correct frequency or the AFC unit may lock the carrier to its image frequency which is 400 kHz below the proper frequency.

EXCESSIVE CARRIER SHIFT WHEN MODULATION IS APPLIED

This problem is usually caused by a defect in the AFC unit but is generally of a minor nature if the carrier stays on frequency without modulation. Check that a sufficient amount of RF sample is being fed to the input of the AFC unit. A few hundred Hz of drift is really not objectionable and may be considered normal. Also, some frequency monitors will show a carrier shift when none is present.

HIGH DISTORTION

Most apt to occur in the consoles or audio lines connected to the exciter. No active elements such as transistors are present in the exciter at audio frequencies. Unless there are other symptoms of improper operation, the fault will usually be somewhere else than the exciter itself.

HIGH NOISE

Attempt to identify noise as to type. If 120 Hz ripple, check power supply. If 60 Hz , momentarily disconnect power from oven heaters to see if it is coming from that source. Disconnect audio input wires. If noise is coming from that source, see that center tap of audio output transformer of audio console is not grounded. Check for problems with any type of isolation devices that may be present in a remote controlled system.

Disconnect plug from audio unit and any SCA generators that are used. This should isolate problem as to whether it is in the modulated oscillator or not.

EXCESSIVE CROSSTALK - MAIN \& STEREO CHANNEL TO SCA CHANNEL

This most often is the fault of the detector and IF strip of the SCA monitor or SCA receiver. Determine if high crosstalk is present on more than one receiver. Check that crosstalk is not actually present on audio input wires.

Crosstalk may occur in improperly tuned states of either transmitter or receiver. The tuned stages of the exciter amplifier are very broad and not apt to cause trouble.

POOR STEREO SEPARATION

Check for proper waveform appearance at output of stereo generator and at output of monitor or receiver detector. Check if pilot is on and is modulating main carrier 8 to 10%. Check pilot phase.

COMPLETE CIRCUIT DESCRIPTION AND ADJUSTMENT FOR EACH MODULE

(Refer to block diagram and appropriate schematic).

POWER SUPPLY

The power supply consists of a two section unit which supplies a regulated 24 DC volts and a regulated 150 DC volts. Both sections of this supply receive AC voltage from a common power transformer. With regard to the 150 volt supply, diodes CR1 through CR4 rectify the AC voltage and the pulsating DC voltage is then applied to a filter section consisting of C1, C2, R1 and R2.

Q1 is the series regulator for this supply. A portion of the output of Q1 is sampled by reference diodes CR5 and CR13 which are temperature compensated. Transistor Q3 compares the output voltage with that supplied by reference diodes CR5 and CR13 and adjusts the gain of Q1 by means of amplifier Q2 so that the output voltage remains at a constant value as determined by voltage control R4.

With respect to the 24 volt supply, diodes CR6 through CR9 rectify the AC voltage supplied by transformer T1. This rectified voltage is applied to filter section C3, C4 and R7. Q4 is the series control transistor that actually regulates the 24 volt supply. A sample of the output voltage is compared in Q7 with a reference voltage supplied by temperature compensated diodes CR10 and CR11.

Any change in the output voltage is amplified by Q6 and Q5 which then causes series control Q4 to return the output voltage to the value set by control R11.

The output voltages will remain relatively constant over a temperature range of from -20 to $+70^{\circ} \mathrm{C}$. The output voltages will also remain constant as the line voltage is varied from 85 to 115% of normal 117 volt AC supply. Normal load variations will also cause no voltage change in these supplies.

For a normal AC input voltage of 110 to 125 volts, the AC input should be connected to the black and the green/blk primary leads of T1. If normal AC line voltage is very low, say 105 volts or less, the black and the white/blk primary leads of T1 should be used. If normal AC line voltage is

125 volts or more, use the black and the white primary leads.

An AC line voltage change of from 85 to 115% of normal should cause a change of no more than .05 volts on the 24 volt section. The 150 volt section should change no more than .5 volts with this same line voltage change.

Normal adjustment of this power supply is to set R4 for an output voltage of 150 volts and R11 for an output voltage of 24 volts. Power supply is then checked to see that line voltage variations or load variations do not cause a voltage variation beyond normal limits.

MODULATED OSCIILATOR

Carrier frequency of exciter unit is generated by an emitter coupled oscillator circuit. This consists of transistors Q1 and Q2 in the modulated oscillator unit. This circuit will oscillate anywhere in the standard FM broadcast band by adjustment of tuned transformer T 1 . Transistor Q3 isolates the oscillator circuit proper from any output variations occurring in the load that may be connected to J 13 .

Normal monaural modulation or signals from a composite stereo generator will modulate the oscillator circuit when connected to pin 2 of J 10 . Modulation is accomplished by varying base bias voltages of transistors Q1 and Q2.

Frequency drift of the modulated oscill ator is controlled to well within FCC specifications by first placing the entire circuit in a chamber held at a temperature of $70^{\circ} \mathrm{C}$. Secondly, any drift from assigned frequency is corrected by error voltages from an automatic frequency control unit. These error signals are applied to diodes CR1 and CR2 in such a manner that they return the output frequency of the modulated oscillator to the correct frequency. CR1 and CR2 are silicon diodes biased in the reverse direction. As such, they appear as voltage variable capacitors and are directly connected into the tuned tank circuit of Q1 and Q2.

If SCA modulation is being used, it is applied to the opposite side of the voltage variable capacitors CR1 and CR2 in such a manner that it does not interfere with the frequency control characteristics or with audio or stereo modulation being applied to Q1 and Q2. By isolating the three modulation inputs as explained above, crosstalk is held to a minimum.

Power output at J13 of the modulated oscillator circuit is on the order of 15 to 20 milliwatts.

Normal adjustment of the modulated oscillator is to set it exactly on frequency with the oven warmed up and AFC defeat switch on AFC unit off. AFC defeat switch is then tumed on. T1 is the only variable adjustment of the modulated oscillator and when "freerunning" will tune the modulated oscillator from 88 to 108 MHz .

Normal "pull in" range of the AFC/modulated oscillator combination is about 1 kHz for every 50 to 75 kHz drift of the modulated oscillator. In other words, assume that both the "free-running" and "locked" frequency are exactly the same and no deviation from correct center frequency exists. If the \cdot "free-running"
frequency of the modulated oscillator changes 50 to 75 kHz , the AFC control should return the locked frequency to within about 1 kHz .

Normal pull in is somewhat better when the modulated oscillator has drifted below normal center frequency.

10 WATT AMPLIFIER

The 10 watt amplifier consists of a four stage amplifier. Transistors Q1, Q2 and Q3 are single stage amplifiers while Q4 and Q5 are paralleled to obtain the desired output level.

Maximum power output of this amplifier is 10 to 15 watts. Actual power output is determined by the setting of R11 an input drive control.
Transformers T1, T2 along with associated capacitor C4 and C7 match the output impedance of these stages to the input impedance of the following stages which is very low. Inductor L1, L2 and capacitor C14 and C15 match the output impedance of Q3 to the low impedance of transistors Q4 and Q5.

The output circuit of Q4 and Q5 is a modified Pi type of circuit consisting of L5, L6 and C19 and C20.

An RF sample for the AFC unit is obtained from J 12 through capacitor C22 which sets the level of the desired RF sample. This sample appears at J4 on the 10 Watt amp.
Normal adjustment of the 10 watt amplifier is to tune all adjustments for maximum power output. R11 the drive control is then set for the desired power output.

C22 is adjusted for 4 volts RMS across a 50 ohm load (located in AFC unit). This should be done with the amplifier supplying the desired power output. If the power output of the amplifier is substantially changed, C22 must be re-adjusted.

AFC UNIT

Output frequency of the exciter is maintained exactly on frequency by the AFC unit. A sample of the RF output is fed into J 9 of the AF , unit and compared to another RF sample 200 kHz lower in frequency.

An internal RF sample is generated by a crystal controlled oscillator Q1 operating at approximately $1 / 3$ the output frequency. Crystal Y 1 is mounted in a $70^{\circ} \mathrm{C}$. oven for maximum stability. Q2 triples the oscillator frequency so that the RF sample obtained from L2 is 200 kHz below the operating frequency.

These two RF samples are then mixed by diodes CR1 and CR2. Low pass filter L.5 and C14 and C15 filters out all but the difference of the two RF samples. Transistors Q3, Q4 and Q5 successively clip and amplify the 200 kHz signal applied to the base of Q3. This signal is further limited by transistor circuitry Q6 and Q7.

Width of the pulses obtained from limiter circuit Q6 and Q 7 will vary as the 200 kHz intermediate frequency drifts upward and downward. It is the purpose of the gate circuit Q8 and Q9 to limit the width of these pulses to a pre-determined value regardless of the frequency.

The AC-DC converter circuit Q10 obtains its operating voltage from an isolated 150 volt regulated supply. Neither output terminal of the 150 volt supply is at chassis ground potential. As the duty cycle (conduction time) of Q10 is varied the average voltage appearing at the collector of Q10 will vary accordingly. This transistor is driven into conduction and saturation by the constant width pulses applied to the base of Q10 from the gate circuit. The duty cycle of Q10 is thus solely determined by the number of pulses arriving at the base of Q10. The number of pulses per second is, of course, determined by the intermediate frequency as one pulse is generated for every complete cycle of the intermediate frequency.
A reference point for the error voltage is set with respect to chassis ground by center frequency adjust control R59. The filtered DC error voltage appears at terminal 4 of J8 after being filtered by resistor R54, and capacitor C38. This DC error voltage will be exactly zero when the intermediate frequency is 200 kHz .

When the output frequency of the exciter drifts upward, the intermediate frequency will drift upward and change the duty cycle of Q10 so that a positive DC error voltage is obtained for application to the voltage variable capacitors in the modulated oscillator circuit. This error voltage causes the capacity of these diodes to increase thereby lowering the output frequency to its assigned value.

If the output frequency of the exciter attempts to drift lower in frequency the opposite action occurs.

The purpose of CR13 is to prevent a positive error voltage of over approximately 1 volt from appearing at the AFC output terminal $\mathrm{J8}$ terminal 4 . If this were not done a sudden positive surge such as when the exciter is initially tumed on, would cause the modulated oscillator circuit to seek its image frequency because of the sudden application of a positive voltage.

Adjustment of the AFC unit consists of tuning L1 to the crystal frequency. L2 is adjusted to three times the crystal frequency. Approximately 4 VRMS is then sampled from the output of the exciter at J 9 and mixed with the internally generated standard frequency to produce a 200 kHz IF frequency.

R59 is finally set in comparison with a frequency standard so that the output frequency of the exciter is correct.

R62 is sometimes varied in value to compensate for an average shift of carrier frequency when modulation is applied.

AUDIO UNIT

The audio unit supplies the modulated oscill ator with all main channel modulation (excluding SCA). When the function switch is in the "mono" position, left audio input is filtered and pre-emphasized and applied directly to the modulated oscillator unit. The composite stereo signal including the pilot is completely removed from the modulation input of the modulated oscill ator.

If the function switch is in the "stereo" position, left and right audio inputs are filtered, pre-emphasized and applied to a resistive matrix. They then connect to the stereo generator. The composite stereo signal including pilot returns through the audio unit for application to the modulation input of the modulated oscillator.

Left audio input circuitry consists of three fundamental types of circuits. First, is a 19 kHz notch filter consisting of L1 and C1.

Resistors R1 through R5 and capacitors C2, C3, C4 along with inductor L 2 is a 75 microsecond pre-emphasis section.

The primary and secondary impedance of T 1 is 600 ohms. Right audio input circuitry is exactly indential to left audio input circuitry.

When selector switch S1 is in the stereo position, output of the left pre-emphasis section is connected to the primary of T1. The secondary of T1 comnects into the matrix consisting of R13 through R18. At the same time, right audio input signals are routed through the right 19 kHz filter, pre-emphasis network and T2. 'The secondary of T 2 is also connected into the resistive matrix.

Output of the matrix then produces the $\mathrm{L}-\mathrm{R}$ and $\mathrm{L}+\mathrm{R}$ signals for application to the signal unit of the stereo generator. At the same time the composite signal along with the 19 kHz pilot is connected through the relay to the input terminals of the modulated oscillator. The 41 kHz SCA (if used) is muted when audio is not applied.
When S1 is placed in the mono position, audio input signals connected to the left audio input, again pass through a 19 kHz notch filter and the left pre-emphasis network. There the signal terminates in R11. R11 may be adjusted to produce the desired modulation level for a given level of audio input.

Also, with S 1 in the mono position the normal right stereo input terminals are connected through relay contacts K 1 for application to the input of a 41 kHz sub)carrier generator unit if it is used.

The stereo generator is completely bypassed when S1 is in the mono position and no stereo signals (or pilot) can modulate the main carrier.
When S 1 is in the remote position the mono to stereo functions may be performed by the contacts of a remote control relay. This relay must perform a holding function.
To adjust the audio unit, S1 is placed in the mono position. A 400 Hz signal at a level of +10 dBm is connected to the left audio input. R11 is then adjusted so the carrier is modulated 100%.

A "Left=Right" signal of 400 Hz is then comnected into the left and right audio inputs and S1 is placed in the stereo mode. R18 is then adjusted for minimum 400 Hz signal level at J11-10 (L-R out).

A "Left = minus Right" signal of 400 Hz is then connected into the left and right audio inputs. With S1 in the stereo mode, R 17 is adjusted for minimum 400 Hz signal level at J11-6 ($\mathrm{L}+\mathrm{R}$ out).

A 19 kHz audio signal is fed into the exciter left audio input terminals and L1 is set for minimum output of 19 kHz signal at Jl1-6 ($\mathrm{L}+\mathrm{R}$ out). The 19 kHz is then fed into the right audio input terminals and L3 is adjusted for minimum 19 kHz signal at $\mathrm{J} 11-6$ ($\mathrm{L}+\mathrm{R}$ out).

L 2 and L 4 are adjusted for a 16.8 dB rise in output level at 15 kHz as compared to a 400 Hz signal. This is al so measured at J11-6 (L+R out).

Finally, coils L1 through L4 are retouched slightly for minimum $\mathrm{L}+\mathrm{R}$ to $\mathrm{L}-\mathrm{R}$ crosstalk at 15 kHz . This is accomplished by connecting $\mathrm{L}=\mathrm{R}$ and $\mathrm{L}=-\mathrm{R}$ signals into the exciter input terminals and measuring output levels at the $L-R$ and $L+R$ terminals of the matrix.

SUB-CARRIER GENERATOR

This unit generates the desired sub-carrier frequencies (usually 41 or 67 kHz) by utilizing two separate selfexcited oscillators operating in the vicinity of 900 to 975 kHz .

Q1 and Q2 are the individual oscillators and are of a type normally known as Colpitts oscillators. Q1 is set to oscillate at 900 kHz and Q2 is set to oscillate at 941 or 967 kHz .

These two outputs are then mixed by diodes CR1 and CR 2 and all but the difference frequency is filtered out by L5 and C13 and C14.

The sub-carrier frequency is then amplified by Q3 and applied to a tunable low pass filter consisting of L6, L7, L8 and C19, C20, C21 and C22. This filter removes all harmonics of the sub-carrier frequency.

Audio modulation is applied to the individual oscillators Q1 and Q2 by push-pull audio transformer T 1. The audio is modulated onto the oscillators by variation of base bias voltage.

An audio shaping network is connected aliead of the primary of Tl. When connected as shown the audio response will rise up several dB at 5000 cycles with respect to 400 cycles reference. Above 5000 cycles the response will then tend to roll off.

When this generator is used as a 67 kHz sub-carrier unit for use with stereo capacitor C 1 and C 2 are disconnected. This then functions as a sort of de-emphasis circuit rolling off frequencies above 3000 cycles so that sidebands are not generated which would interfere with the stereo signal.

A portion of the audio input is applied to a muting circuit consisting of transistor Q4, Q5, Q6 and Q7. Transistors Q4 and Q5 amplify the input audio to practically a square wave. This is then rectified by diodes CR3 and CR4 for application to transistor Q6.

When audio is applied, the DC level at the base of Q6 is such that Q 6 is not conductingl This holds the bias at the base of Q 7 in such a manner that Q 7 is also not conducting.

When audio is removed from the input, bias from the base of Q6 disappears causing Q6 to conduct. This changes the bias at the base of Q7 causing it to con-
duct heavily. When this happens, the impedance from the junction of C17 and C18 to chassis ground drops to a level on the order of a few ohms. This causes the sub-carrier output to be attenuated approximately 50 or 60 dB .

The base of $Q 6$ is comected to various capacitors through mute time constant switch S1. The value of the capacitor connected determines how long after audio disappears from the input of Q4 that the sub-carrier will shut off.

Mute level control R32 determines what level the audio must drop to before the sub-carrier is turned off.

Adjustment of the SCA generator consists first of setting the output filter properly so that there are essentially no harmonics of the sub-carrier present in the output of the SCA generator.

L6 and $L 8$ are adjusted for maximum attemuation at the second harmonic f the SCA frequency. L7 is adjusted so that minimu... ...tenuation or ripple exists over the subcarrier passband. This passband is considered to be subcarrier frequency $\pm 15 \mathrm{kHz}$.
L.3 is adjusted for an approximate output frequency of 900 kHz and L4 is adjusted to approximately 900 kHz plus the sub-carier frequency. This is generally 941 or $967 \mathrm{kHz} . \mathrm{L} 3$ or L 4 is then "fine" tuned for the exact proper SCA frequency in comparison with a frequency standard. A non-metallic tool with narrow screwdriver type blade is necessary for this adjustment.

Output level control R30 is set to modulate the main carrier the required level.

Mute level control R32 is adjusted so the sub-carrier output turns off if the audio input signal disappears. Optimum setting is about 30 to 40 dB below 100% modulation of the sub-carrier. This is done by connecting an audio signal at 400 Hz to the proper SCA input terminals of the exciter and modulating the sub-carrier 100%. The level of audio input is then reduced 30 or 40 dB and mute level is then adjusted so that the sub-carrier output disappears.

Sl the mute delay is adjusted to whatever muting speed is desired after audio disappears from the input.

STEREO GENERATOR

A 19 kHz pilot signal for the composite stereo signal is generated by crystal controlled oscillator Q1. Q2 isolates this signal and from the rotor of R 79 a 19 kHz signal is applied to 19 kHz tuned amplifier stage Q3. The secondary of T 1 is connected to a push-push doubler circuit consisting of transistors Q4 and Q5.

This stage in conjunction with transformer T2 generates a very clean 38 kHz signal.

The 38 kHz signal is applied to the balanced subcarrier modulator circuit consisting of transformers T3, T4 and diodes CR1 through CR4.

An $L-R$ input signal from the audio unit is al so applied to the balanced sub-carrier modulator.

An $L-R$ double sideband suppressed carrier signal appears at the output of T 4 . Harmonics of this signal are reduced by forwarding biasing of diodes CR1 through CR4 and by adjustment of harmonic null control R37. Sub-carrier null control R48 balances out the residual 38 kHz sub-carrier to a level of approximately - 45 dB .

The $L+R$ input signal coming from the audio unit is combined with the $L-R$ double sideband signal at the junction of C22 R53 and R60.

The time delay of the $L+R$ input is adjusted to agree with that experienced by the $L-R$ circuitry. This is accomplished by a time delay consisting of L3 through L6 and capacitor C29 and C30.

Thus a composite stereo signal appears at the junction of C22, R53 and R60 and is applied to emitter follower circuit Q12 from the rotor of R53 which is the output level control.

This signal is then amplified in transistor Q13 and applied to the base of emitter follower circuit Q14. The total composite signal along with $10 \% 19 \mathrm{kHz}$ pilot signal appears at the emitter of Q14.

A pilot signal is obtained from terminal 4 of transformer T1 and is applied to emitter follower Q6. A phase control connected between Q6 and emitter follower Q7 allows adjustment of pilot phase for maximum separation. A pilot gain control is connected into the emitter of transistor Q7 and the pilot signal is added to the composite output by connecting the rotor of R27 to the emitter resistor of transistor Q14.

Second harmonics of the double sideband signal fall into the pass band of a normal 67 kHz SCA signal. If these second harmonic signals are not severely attenuated, crosstalk from the stereo signal will interfere or get into the sub-carrier channel.

Second harmonic signal is then amplified and inverted 180° by transistor Q9, this is obtained from R53 via Q8.

From the collector of Q9 the signal is applied to emitter follower Q10 and then back into the base circuit of amplifier Q13.

Cancellation causes any remaining crosstalk at the base of Q13 to be removed. This can be set precisely by crosstalk null control R33.

Adjustment of the stereo generator consists of setting C2 so the pilot signal is within specifications. This must be done in comparison with a frequency standard.

T1 and T2 are tuned for maximum output. Doubler balance control R20 is adjusted for minimum 19 kHz ripple on the composite output signal without a pilot signal. R79 the 19 kHz gain control is set for the desired amount of 38 kHz level to drive the balanced modulator properly. R65, L-R gain control is adjusted for the desired level of audio to drive the balanced modulator circuit.

Harmonic null control R37 is adjusted for minimum second harmonic output from the balanced modulator with R33 (crosstalk null) turned for minimum output of second harmonic signal.

Sub-carrier null control R48 is adjusted for minimum 38 kHz output. This may be observed on a type approved stereo monitor, wave analyzer or ultrasonic display. Adjustment of harmonic null control R37 is al so best accomplished by observing an ultrasonic display
$L+R$ gain control is adjusted for correct gain relationship between the $L+R$ and $L-R$ portions of the composite stereo signal. L4 and L5 are adjusted for best phase relationship between the $L+R$ and $L-R$ portions. This is best accomplished at 15 kHz .

R53, output level control, is adjusted to modulate the main carrier 90% with a 400 Hz left or right audio input signal of +10 dBm . This level excludes the pilot.

L 1 is tuned to the second harmonic of the 38 kHz double sideband signal and R33 the crosstalk null control is then turned up so it cancels out any remaining 76 kHz component remaining at the output of the stereo generator.

Pilot gain R 27 is adjusted to modulate the main carrier 10%. Pilot phase R24 is adjusted for best separation as read on a stereo monitor provided all other aspects of the composite signal are proper. An alternate method involves using an $L=-R$ composite waveform and is described on page 8.

PARTS LIST

CABINET ASSEMBLY - 992-1773-001

Symbol No.	Gates Part No.	Description
B1	4300030000	Fan, 115 V., AC, 115 CFM
C1 thru C20	5160319000	Cap., . $001 \mathrm{uF}, 500 \mathrm{~V}$.
	Feedthru	
F1	3980021000	Fuse, 4A., 250 V.
F2	3980015000	Fuse, 5 A, 250 V.
J1	6120418000	Panel Jack, BNC, UG291/U

L1 thru L6,
L11 thru L20 4940110000 Choke, 3.3 uH.
L7 thru L10 8144837001 Gates Assembly
P3, P4, P9, P13 6200379000 Plug, Female

P12

6100238000 Plug, BNC, UG88/U
P1, P2,
P5 thru P8,
P10, P11
TB1
TS1 6140148000 Tie Strip
XF1, XF2 4020024000 Fuseholder

A1	3960163000	Lamp, $3 \mathrm{~W}, 120 \mathrm{~V}$.
C1, C2	5240125000	Cap., $200 \mathrm{uF}, 250 \mathrm{~V}$.
C3, C4	5240104000	Cap., 1000 uF, 50 V .
C5	5240094000	Capl, $500 \mathrm{uF}, 50 \mathrm{~V}$.
C6, C7	5160043000	Cap., $470 \mathrm{pF}, 1 \mathrm{kV}, 10 \%$
C8, C9, C10, 111 ,		
C12, C13, C14	5160375000	Cap., . 01 uF, 50 V .
C15	5060085000	Cap., 2 uF, 200 V .
C16, C17	5160082000	Cap., . 01 uF .1 kV .
CR1, CR2,		
CR3, CR4	3840019000 3860043000	Diode 1N2070 Zener Diode 1N2767

CR6, CR7,
CR8, CR9
CR10
CR11, CR13
CR12
$\begin{array}{lll}\text { F1 } & 3980012000 & \text { Fuse, } 3 / 10 \mathrm{~A}, 250 \mathrm{~V} . \\ \text { F2 } & 3980020000 & \text { Fuse, 3A., } 250 \mathrm{~V} . \\ \text { F3 } & 3980019000 & \text { Fuse, 2A, } 250 \mathrm{~V} . \\ & & \\ \text { J1 } & 6100419000 & \text { Panel Connector } \\ & & \\ \text { Q1, Q5 } & 3800041000 & \text { Transistor, } 2 \mathrm{~N} 3054 \\ \text { Q2 } & 3800045000 & \text { Transistor, 2N4036 } \\ \text { Q3 } & 3800058000 & \text { Transistor, 2N3440 } \\ \text { Q4 } & 3800043000 & \text { Transistor, 2N3055 } \\ \text { Q6 } & 3800044000 & \text { Transistor, } 40319 \\ \text { Q7 } & 3800098000 & \text { Transistor, 2N697 } \\ \text { R1 } & 5400284000 & \text { Res., } 10 \text { ohm, } 1 \mathrm{~W}, 5 \%\end{array}$

Symbol No.	Gates Part No.	Description
R2	5400574000	Res., 30 ohm, $2 \mathrm{~W}, 5 \%$
R3	5480189000	Res., 2200 ohm, $3 \mathrm{~W}, 1 \%$
R4	5520775000	Pot., 1000 ohm, $1 / 2 \mathrm{~W}$.
R5, R6	5480190000	Res., $17.5 \mathrm{~K} \mathrm{ohm}, 3 \mathrm{~W}, 1 \%$
R7	5420438000	Res., 2 ohm, 25 W.
R8, R15	5480192000	Res., 1000 ohm, $3 \mathrm{~W}, 1 \%$
R9	5400583000	Res., 68 ohm, $2 \mathrm{~W}, 5 \%$
R14	5480197000	Res., 1600 ohm, $3 \mathrm{~W} .1 \%$
R11A/B	5400042000	Res., 510 ohm. $1 / 2 \mathrm{~W} .5 \%$
R16, R17, R18	5400936000	Res., 10 K ohm $1 / 4 \mathrm{~W} .5 \%$
S1	6040005000	Toggle Switch, SPST
T1	4720536000	Power Transformer

XA1 4060367000 Lamp Socket

XQ2, XQ3,
XQ6, XQ7
XF1, XF2, XF3 4020013000 Fuseholder
10 WATT AMPLIFIER - 992-1715-001

$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 5$, C6, С9, C10, C18, C21, C25	5160054000	Cap., . $001 \mathrm{uF}, 1 \mathrm{kV}, 10 \%$
$\begin{aligned} & \text { C4, C7, } \\ & \text { C14, C15 } \end{aligned}$	5200116000	Cap., Variable, 3.9-50 pF.
C8, C12, C17	5160082000	Cap., . $01 \mathrm{uF}, 1 \mathrm{kV}, \mathrm{GMV}$
C11	5060085000	Cap., $2 \mathrm{uF}, 200 \mathrm{~V}$.
C13, C16	5000809000	Cap., $22 \mathrm{pF}, 500 \mathrm{~V}, 5 \%$
C19	5000823000	Cap., $82 \mathrm{pF}, 500$ V., 5%
C20	5000812000	Cap., $30 \mathrm{pF}, 500 \mathrm{~V}, 5 \%$
C 22	5200341000	Cap., Variable, 1.5-9.1 pF.
CR1	3840134000	Diode IN914
J2	6100419000	Panel Connector
J3, J4	6200355000	Panel Receptacle
J12	6120403000	Right Angle Receptacle UG1098/U
FL1, FL2	4840065000	Filter
L1	8149577001	Inductor
L2	8149578001	Inductor
L3, L4	4940164000	RF Choke, . 68 uH
L5, L6	8143244001	Inductor
L.7	814.9583001	Coil, choke
Q1	3800036000	Transistor
Q2	3800037000	Transistor
Q3	3800038000	Transistor
Q4, Q5	3800039000	Transistor (Matched Pair)
	3800040000	Transistor Kit (containing Q1 thru Q5)
R1	5400050000	Res., $1100 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
R2	5400074000	Res., 11 K ohm, 1/2 W, 5%
R3	5400019000	Res., 56 ohm, 1/2 W, 5\%
R4, R7	5400174000	Res., 470 ohm, $1 / 2 \mathrm{~W}, 10 \%$
R5	5400183000	Res., 2700 ohm, 1/2 W, 10\%
R6	5400296000	Res., 33 ohm, 1 W, 5\%
R8	5400182000	Res., 2200 ohm, $1 / 2 \mathrm{~W}, 10 \%$
R9, R10	5400011000	Res., 27 ohm, 1/2 W, 5\%
R11	5500001000	Pot., 100 ohm, 1/2 W.
R12	5400049000	Res., 1K ohm, 1/2 W. 5\%
R13	5400065000	Res., 4.7K ohm, 1/2 W. 5\%
R14	5400089000	Res., 47K ohm, 1/2 W. 5\%
T1	9143246001	Transformer
T2	9143247001	Transformer
XQ1, XQ2	4040196000	Heat Sink

Symbol No.	Gates Part No.	Description	Symbol No.	Gates Part No.	Description
CR13	3860073000	Diode, 6046	R63	5400071000	Res., $8200 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$
CR14	3840166000	Diode, Silicon 1N643	R61	5400017000	Res., 47 ohms, 1/2W. 5%
CR15	3860047000	Diode, Zener 1N3582	RT1	5590006000	Thermistor, IGW ohm
HR1	5580024000	Oven, Printed Circuit,	S1	6040320000	Switch, Toggle, DPDT
		$115 \mathrm{~V}, \mathrm{RMS}, 70^{\circ} \mathrm{C}$.	TJ1	6120312000	Test Point Jack, white
				612031200	
J8	6100419000	Receptacle	XQ7, XQ8, XQ9	4040197000	Transipad for TO-18 Case
J9	6200355000	Panel Receptacle			
			XQ3, XQ4, XQ5	4040198000	Transipad for TO-5 Case
L1	9143282001	Osc. Coil Assy, (yel. dot)	XQ10	4040066000	Socket, Transistor
L2	9143283001	Trip Coil Assy, (yel. dot.)			
L3, L5	4940112000	RF Choke, 8.2 uH	Y1	444 XXXX 000	Crystal (Freq. Det. by
L4	4940151000	RF Choke, 2.7 uH			Customer Order)
L6	4940165000	Choke, 2.2 mH			
L7, L8	4940153000	RF Choke, 300 uH		CA UNIT - 994-6	6507-001
Q1, Q2, Q6,			C1, C2	5080286000	Cap., $.15 \mathrm{uF}, \pm 10 \%$
Q7, Q8, Q9	3800046000	Transistor, 2N708			Mylar 100 WVDC
			C3, C4, C5, C8	5000844000	Cap., $1000 \mathrm{pF}, \pm 5 \%, 100 \mathrm{~V}$
Q3, Q4, Q5	3800098000	Transistor, 2N697	C6, C9	5000873000	Cap., $220 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
Q10	3800047000	Transistor, 2N3500	C7, C10	5000818000	Cap., $50 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
	3800047000		C11, C12	5000759000	Cap., $100 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
R1, R6	5400079000	Res., 18K ohm, 1/2W, 5\%	C13, C14	5000878000	Cap., $1500 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
R2, R7	5400071000	Res., $8200 \mathrm{ohm}, 1 / 2$ W, 5%		5080278000	Cap.,.1uF, $\pm 10 \%$ Mylar 100 WVDC
R3	5400045000	Res., 680 ohm, $1 / 2 \mathrm{~W}, 5 \%$			
R4	5400066000	Res., 5100 ohm, 1/2W, 5\%	C16, C27, C29	5220240000	Cap., 15 uF, 25 V ,
R5, R8	5400049000	Res., $1000 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$	C17, C18	5080298000	Cap., $01 \mathrm{uF}, 100 \mathrm{~V}$, Mylar
R9, R11	5400025000	Res., $100 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$	C19, C22	5000831000	Cap., $250 \mathrm{pF}, \pm 5 \%, 500 \mathrm{~V}$
R10	5400301000	Res., 51 ohm, 1 W, 5\%	C20, C 21	5000874000	Cap., $330 \mathrm{pF}, \pm 5 \%, 100 \mathrm{~V}$
R12, R13	5400055000	Res., 1800 ohm, 1/2 W, 5\%	C23	5080298000	Cap., . $01 \mathrm{uF}, 100 \mathrm{~V}$, Mylar
R14	5400096000	Res., 91 K ohm, 1 / $2 \mathrm{~W}, 5 \%$	C24, C25	5220178000	Cap., 25 uF, 6 VDC
R15	5400056000	Res., $2000 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$	C26	5220210000	Cap., $100 \mathrm{uF}, 12 \mathrm{VDC}$
R16	5400068000	Res., 6.2 K ohm, $1 / 2 \mathrm{~W}, 5 \%$	C28	5220233000	Cap., 2 uF, 25 V
R18, R22	5400071000	Res., $8200 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$	C30	5220242000	Cap., 25 uF, 25 VDC
R19	5400077000	Res., 15 K ohm, $1 / 2 \mathrm{~W}, \pm 5 \%$	C31, C32	5220244000	Cap., $50 \mathrm{uF}, 25 \mathrm{~V}$
R17 R20 R24	5400049000	Res., 1000 ohm, 1/2W, 5\%	C33	5220256000	Cap., 20 uF, 50 V
R21, R25	5400041000	Res., $470 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$			
R23	5400079000	Res., 18K ohm, 1/2 W, 5\%	CR1, CR2	3840006000	Diode, Signal 1N54AS
R26	5400085000	Res., 33K ohm, 1/2W, 5%	CR3, CR4	3840018000	Rectifier 1N2069
R27	5400065000	Res., 4700 ohm, $1 / 2 \mathrm{~W}, 5 \%$			
R28	5400322000	Res., 390 ohm, 1 W, 5\%	J5	6100419000	Receptacle
R29	5400053000	Res., 1500ohm, 1/2W,5\%			
R30	5400462000	Res., 330 ohm, 1 W, 10\%	L1, L2	4940175000	Choke 4.7 uH
R31	5400050000	Res., 1100 ohm, $1 / 2 \mathrm{~W}, 5 \%$	L3, L4	4920321000	Coil, Adj. . 28 to . 65 uH
R32	5400073000	Res., 10K ohm, 1/2W, 5%	L5	4940165000	Choke, 2.2 uH
R33	5400057000	Res., $2200 \mathrm{ohm}, 1 / 2 \mathrm{~W}, 5 \%$	L6, L8	4920322000	Coil, Adj. 8-20 uH
R34	5400587000	Res., 100 ohm, 2 W, 5\%	L7	4920323000	Coil, Adj. 15-40 uH
R35, R36	5400053000	Res., 1500 ohm, 1/2 W, 5\%			
R37	5400054000	Res., 1600 ohm, 1/2 W, 5\%	Q1, Q2, Q3,		
R38, R47, R49	5400055000	Res, , 1800 ohm, $1 / 2 \mathrm{~W}, 5 \%$	Q4, Q5, Q6	3800098 (100	Transistor 2N697
R39, R50	5400061000	Res., 3300 ohm, 1/2 W, 5\%			
R40	5400059000	Res., 2700 ohm, 1/2W, 5%	Q7	3800016000	Transistor 2N1539
R41, R44	5400052000	Res., 1300 ohm, $1 / 2 \mathrm{~W}, 5 \%$			
R42	5400041000	Res., 470 ohm, $1 / 2 \mathrm{~W}, 5 \%$.	R1	5400055000	Resistor, 1.8 K ohm, $1 / 2 \mathrm{~W}$,
R43	5400037000	Res., $330 \mathrm{ohm} ,1 / 2 \mathrm{~W}, 5 \%$			5%.
R45, R46	5400048000	Res., 910 ohm, $1 / 2 \mathrm{~W}, 5 \%$	R2	5400053000	Resistor, 1.5 K ohm, $1 / 2 \mathrm{~W}$,
R48	5400064000	Res., 4300 ohm, $1 / 2 \mathrm{~W}, 5 \%$			
R51	5400053000	Res., 1500 ohm, $1 / 2 \mathrm{~W}, 5 \%$	R3, R4	5400035000	Resistor, 270 ohm, 1/2 W,
R54	5400113000	Res., 470K ohm, 1/2W, 5%			5\%
R55	5480195000	Res., 2000 ohm, 25 W, 1\%			
R57	5400646.000	Res., 30K ohm, 2 W, 5\%			
R58	5400655000	Res., 68K ohm, 2 W, 5\%	R5, R6,		
R59	5520781000	Pot., 20K ohm, 1-1/2 W, Clock Face	R7, R8	5400017000	Resistor, 47 ohm, 1/2 W, 5\%
R60	5400635000	Res., 10K ohm, $2 \mathrm{~W}, 5 \%$	R9	5400092000	Resistor, 62K ohm, 1/2 W, 5\%
R62	5400025000	Res., 100 ohm, $1 / 2 \mathrm{~W}, 5 \%$	R10, R11,		
R64	5400936000	Res. 10K ohm, 1/4W, 5%	R17, R18	5400097000	Res., 100K ohm, 1/2 W, 5\%

Symbol No.	Gates Part No.	. Description	Symbol No.	Gates Part No.	. Description					
R12, R19, R40	5400095000	Res., 82K ohm, $1 / 2 \mathrm{~W}, 5 \%$	CR1, CR2,							
R13, R20	5400065000	Res., 4.7 K ohm, $1 / 2 \mathrm{~W}, 5 \%$	CR3, CR4	9150064001	Diode Quad Assy.					
$\begin{aligned} & \text { R14, R21, R24, } \\ & \text { R25, R45 } \end{aligned}$	5400073000	Res., 10K ohm, 1/2 W, 5\%	J7	6100419000	Panel Connector					
			L1, L5	4920331000	Adj. R.F. Coil, 1.3-3 uH					
R15, R22	5400049000	Res., 1000 ohm, $1 / 2 \mathrm{~W}, 5 \%$	L3, L6	4940153000	RF Choke, 300 uH					
R16, R23	5400025000	Res., 100 ohm, $1 / 2 \mathrm{~W}, 5 \%$	L4	4920332000	Adj. R.F. Coil, .65-1.3uH					
R26, R27, R41	5400085000	Res., 33K ohm, 1/2 W, 5\%	Q1	3800060000	Transistor FET					
$\begin{aligned} & \mathrm{R} 28, \mathrm{R} 29, \\ & \mathrm{R} 35, \mathrm{R} 43 \end{aligned}$	5400056000	Res., 2000 ohm, $1 / 2 \mathrm{~W}, 5 \%$	Q2 thru Q16	3800098000	Transistor, 2N697					
R30, R32	5500007000	Min, Pot., 10 K ohm, $1 / 2 \mathrm{~W}$: Linear Taper	R1	5401001000	Res., 5.1 Megohm, 1/4W, 5\%					
R31	5400069000	Res., 6.8K ohm, 1/2 W, 5\%	$\underset{\mathrm{D} 61}{\mathrm{R} 2, \mathrm{R} 10, \mathrm{R} 11,}$							
R33	5400099000	Res., $120 \mathrm{Kohm}, \mathrm{1/2W,5} \mathrm{\%}$	R61, R72	5400936000	Res., 10K ohm, 1/4W, 5%					
R34	5400066000	Res., 5.1 K ohm, $1 / 2 \mathrm{~W}, 5 \%$	R3, R58	5400940000	Res., 15K ohm, 1/4W, 5\%					
R36	5400050000	Res., 1.1K ohm, 1/2 W, 5\%	R3, R.8	540 0.40	Res., 15K ohm, 1/4W, 5\%					
R37	5400045000	Res., 680 ohm, $1 / 2 \mathrm{~W}, 5 \%$	R4, R30, R50,							
R38	5400042000	Res., 510 ohm, $1 / 2 \mathrm{~W}, 5 \%$	R67, R70, R73,							
R39	5400078000	Res., 16K ohm, 1/2 W, 5\%	R76	5400976000	Res., 470 K ohm, 1/4W, 5%					
R42	5400075000	Res., 12Kohm, 1/2 W, 5%								
R44	5400061000	Res., 3.3K ohm, 1/2 W, 5\%	R5	5400902000	Res., 390 ohm, 1/4W, 5\%					
			R6	5400907000	Res., 620 ohm, 1/4W, 5\%					
S1	6000421000	Switch, Type BA, 4 Pos., 1 Sect. per Gates	R7	5400934000	Res., 8200 ohm, $1 / 4 \mathrm{~W}, 5 \%$					
		8142977001	$\begin{aligned} & \mathrm{R} 8, \mathrm{R} 13, \mathrm{R} 21, \\ & \mathrm{R} 25, \mathrm{R} 28, \mathrm{R} 31, \end{aligned}$							
T1	4780145000	Input Transformer AI-10426	R34, R54, R64	5400960000	Res., $100 \mathrm{Kohm}, \mathrm{1/4W,5} \mathrm{\%}$					
TJ1	6120312000	Test Point Jack, White	R9, R49, R66,							
TJ2	6120311000	Test Point Jack, Black	R69, R71	5400912000	Res., 1000 ohm, 1/4W, 5\%					
XQ1, XQ2	4040066000	Transistor Socket	R12, R75, R77	5400920000	Res., 2200 ohm, 1/4W, 5\%					
			R14, R15	5400888000	Res., 100 ohm, $1 / 4 \mathrm{~W}, 5 \%$					
XQ3, XQ4, $\mathrm{XQ5}, \mathrm{XQ6}$			R16	5400928000	Res., 4700 ohm, $1 / 4 \mathrm{~W}, 5 \%$					
XQ5, XQ6	404019800	ansipad for TO-5	R17	5480211000	Res., 2400 ohm, $1 / 2 \mathrm{~W}, 1 \%$					
STEREO	GENERATOR -	-994-6533-001	R18	5400964000	Res., 150 K ohm, $1 / 4 \mathrm{~W}, 5 \%$					
C1, C37, C45	5220322000	Cap., 100 uF 50V	R19, R86, R87	5400953000	Res., 51 K ohm, $1 / 4 \mathrm{~W}, 5 \%$					
C2	5200342000	Cap., Var., 2-27 pF	R20	5520795000	., 10K ohm, 1 W					
C3	5080291000	Cap., . $008 \mathrm{uF}, 600 \mathrm{~V}, 10 \%$	R22, R29, R35,							
$\begin{aligned} & \mathrm{C} 4, \mathrm{C} 6, \mathrm{C} 8, \\ & \mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 12, \end{aligned}$			R51, R57	5400919000	Res., 2000 ohm, $1 / 4 \mathrm{~W}, 5 \%$					
C13, C28, C38,			R23, R52,							
C 47	5060088000	Cap., . 1 uF 200 V	R60, R62	5400905000	Res., 510 ohm, 1/4W,5\%					
C5	5000877000	Cap., $100 \mathrm{pF}, 500 \mathrm{~V}, 5 \%$	R24	5500009000	Pot., 50K ohm, 1/2W					
C7	5220251000	Cap., 5 uF 50 V	R26	5400924000	Res., 3300 ohm, $1 / 4 \mathrm{~W}, 5 \%$					
C9	5000845000	Cap., $2000 \mathrm{pF}, 500 \mathrm{~V}, 5 \%$	R27, R53	5500006000	Pot., 5000 ohm, $1 / 2 \mathrm{~W}$					
C14	5000879000	Cap., 2500 pF, $500 \mathrm{~V}, 5 \%$	R32	5400944000 5520796000	Res., 22 K ohm, 1/4W,5\% Pot., 5K ohm, 1 W					
			R36, R38	55207960000	Pot., 5 K ohm, 1 W Res., 200 ohm, $1 / 4 \mathrm{~W}, 5 \%$					
$\begin{aligned} & \text { C16, С23, С35, } \\ & \text { С36, С39, С40, } \end{aligned}$			R37, R48	5520797000	Pot., 100 ohm, 1 W					
C41, C44	5220240000	Cap., 15 uF 25 V	R40	5400935000	Res., $9100 \mathrm{ohm}, \mathrm{1/4W} 5 \$, \hline & & Cap., 15 uF 25 V & R39 & 5400929000 & Res., 5100 ohm, 1/4W, 5\% \hline ${ }_{C} 17, \mathrm{C} 18$,			R41, R42,		
C19, C20	5260058000	Cap., 1000 uF, 6V.	R43, R44	$548 \cdot 0199000$	Res., 4750 ohm, 1/2W, 1\%					
C21	5220256000	Cap., 20 uF 50 V								
C22	5220336000	Cap., 250 uF 15V	R46, R47	5400864000	Res., 10 ohm, 1/4W, 5\%					
C24, C42, C43	5220244000	Cap., 50 uF 25 V	R55, R63	5400916000	Res., 1500 ohm, $1 / 4 \mathrm{~W}, 5 \%$					
C25	5220243000	Cap., 35 uF 25 V	R56	5400897000	Res., 240 ohm, $1 / 4 \mathrm{~W}, 5 \%$					
C27	5060087000	Cap., 1 uF, 200V	R59, R74	5400962000	Res., 120K ohm, $1 / 4 \mathrm{~W}, 5 \%$					
C29, C30, C46	5000835000	Cap., $470 \mathrm{pF}, 300 \mathrm{~V}, 5 \%$	R65	5520802000	Trim Pot., 1K ohm, 1W					
C31	5220306000	Cap., 1000 uF 25 V	R68	5500004000	Pot., 1K ohm, 1/2 W					
C32	5160054000	Cap., 1000 pF, 1 KV 10\%	R78	5401008000	Res., 10 megohm, 1/4W, 5\%					

Symbol No.	Gates Pat No.	Description	Symbol No.	Gates Part No.	Description
R79	5520800000	Pot., 500 ohm, 1 W	XQ1	4040197000	Transipad
R80	5400918000	Res., 1800 ohm. 1/4W, 5\%	XQ2 thru XQ16	4040198000	Transipad
R81	5400936000	Res., 10K ohm, 1/4W, 5\%	XY1	4040132000	Crystal Socket
R82, R83,				404013200	Crystal Socket
$\begin{aligned} & \text { R84, R85 } \\ & \text { R88 } \end{aligned}$	$\begin{aligned} & 5480049000 \\ & 5400025000 \end{aligned}$	$\begin{aligned} & \text { Res., } 100 \text { ohm, } 1 / 2 \mathrm{~W}, 1 \% \\ & \text { Res., } 100 \text { ohm, } 1 / 2 \mathrm{~W}, 5 \% \end{aligned}$	Y1	4441129000	Crystal, $19 \mathrm{KC}, 30^{\circ} \mathrm{C}$, Circuit 8143270001
RT1	5590006000	Thermistor, 1000 ohm	AT1 ISOLATION PAD, 3 dB - 9922241001		
		Switch, Subminiature Toggle, SPDT			
S1	6040366000			6120233000	Receptacle, Type "N"
				6120237000	Receptacle, Type "BNC"
T1	4780269000	Transformer, 19 kHz			
T2	4780270000	Transformer, 38 kHz	R35, R36	5400598000	Res., 300 ohm, 2 W.
T3	4780026000	Transformer			
T4	4780220000	Transformer	R37, R38,		
TJ1, TJ3	6120312000	Test Point Jack, White	R39, R40	5400584000	Res., 75 ohm, 2 W.
TJ2	6120311000	Test Point Jack, Black			

LOO SS6l 8E8

 (RMS READINGS MAY VARY WIDELY.)
5. JUMPER CONNECTIONS MAY VARY PER UNIT. most desirable connections are
7. * Values may vary in final test

$$
\begin{aligned}
& \text { (8) (7) (6) (5) (4) (3) (2) (1) } \\
& \text { (15) (14) (B) (1) (1) (1) (9) }
\end{aligned}
$$

JIO (back VIEW)

SCHEMATIC, 10 WATT RF AMP. SOLID

HOME OFFICE AND MANUFACTURING FACILITIES

QUINCY, ILLINOIS 62301
123 Hampshire Street
Phone: 222-8200, Area 217

SOUTHWEST SERVICE CENTER

HOUSTON, TEXAS 77027
4019 Richmond Avenue
Phone: 666-4333, Area 713

DISTRICT OFFICES

NEW YORK, NEW YORK 10017
800 Second Avenue
Phone: 687-7971, Area 212
WASHINGTON, D. C. 20005 730 Federal Building 1522 K Street, N.W.
Phone: 223-5508, Area 202

LOS ANGELES, CALIFORNIA 90007
1945 South Figueroa
Phone: 747-7129, Area 213

CANADIAN SALES

GATES RADIO COMPANY (CANADA)
Division of Harris-Intertype (Canada) Lłd.
Montreal Office
212 Brunswick Boulevard Pointe-Claire, Quebec, Canada Phone: 695-3751, Area 514

Toronto Office
19 Lesmill Road
Don Mills, Ontario, Canada Phone: 447-7234, Area 416

GATES

 CORPORATION
[^0]: ** crosstalk measurements to be made from an FC C approved monitor using 75 microsecond de-emphasis.

