$\square A-E+\infty$

GATES' BC -500K, 500 WATT BROADCAST TRANSMITTER

The Gates' $\mathrm{BC}-500 \mathrm{~K}$ Broadcast transmitter is a completely selfcontained 500 watt AM unit, designed for broadcast service within the frequency range of 1600 Kc to 540 Kc .

Refer to drawing B-13417 RDC-10 Remote Equipment
Refer to drawing B-13275 RCM-20 Remote Equipment
The Rheostat Assembly can be conveniently mounted on the cabinet base, right front, near the filament and plate contactors. Tapped 8-32 holes have been provided for machine screw mounting. Using Packard high voltage cable or equivalent, run the two rheostat leads upward through an available hole in the modulator deck to the modulation reactor. Disconnect from the modulation reactor high voltage lead which runs from Modulation Reactor terminal "B" upward to the R.F. Amplifier Deck. Connect one of the rheostat leads to the end of the lead removed, and the other rheostat lead to modulation reactor terminal "B". Set the transmitter's existing plate rheostat to maximum voltage position (minimum resistance).

Plate Voltage Extension Kit M-4719

Refer to Remote Control Instruction Book - drawing C-19233 - figure 1.
Tapped 10-32 holes have been provided adjacent to the filter components for machine screw mounting of the M-4719 Kit. Using Packard cable or a high voltage equivalent connect the M4719 "HV" terminal to the remote rheostat terminal furthermost from the power supply. Do not connect to the rheostat terminal which goes to modulation reactor terminal "B". Connect M-4719 kit terminal "G" to a good ground point within the transmitter.

Plate Current Extension Kit M-4720

Refer to Remote Control Instruction Book - drawing C-19233 - figure 3.
Tapped 10-32 holes have been provided on the cabinet base for mounting the $M_{4} 720$ kit - right side of cabinet - near the front extremity of the cable entrance cutout. The kit is connected at the ground end of the P.A. cathode circuit. Remove the jumper that connects terminal \#4 of P.A. overload relay E5 to terminal \#4 of relay E4. Do not remove the lead connected from \#4 of $E L_{4}$ to ground. The "G" terminal of the two-terminal strip of kit $\mathrm{M}_{4} 720$ should be connected to a good ground point within the transmitter. Connect the other terminal to transmitter P.A. overload relay E5 terminal \#4.

ATTENTION INSTALLATION ENGINEER

The high voltage meter multiplier, R3, and its' associated mounting assembly have been removed for shipping. These parts are securely wrapped and placed in box and shipped with the Radio Frequency Deck. The installation of this meter multiplier can be easily accomplished by following the information contained on various tags tied to the connecting wires. The multiplier mounting assembly bolts to the underside of the R.F. deck near the left edge as the deck is viewed from the rear. The approximate location has been stencilled with the nomenclature "R3".
D.C. resistance measurements taken on the modulation transformer T6, Gates Drawing AM-10464E.

Center tap to one side of primary, approximately 35 ohms. Center tap to other side of primary, approximately 100 ohms. Secondary winding approximately 168 ohms.

July 14, 1955
Gatos Radio Company, Quincy, Illinois

There has been added to the Twin Drive Audio Deck a small variable condenser (C61) located on the top of the chassis, near the input audio tube, V9. This condenser is used as a phase corrector and is very useful for minimizing high frequency distortion.

Adjusting Procedure -
The noise and distortion can be brought down to minimum readings by followin. this procedure durine test. Set the modulator bias controls (R 66 B R67) so that each modulator is drawing its correct static piate current.

$$
\begin{aligned}
& \mathrm{BC}-1 \mathrm{~J} \text { - } 40 \text { ma per tube, } 80 \text { ma total. } \\
& \mathrm{BC}-500 \mathrm{~K} \text { - } 30 \text { ma per tube, } 60 \text { ma total } \\
& \text { BC-250L - } 30 \text { ma per tube, } 60 \text { ma total. }
\end{aligned}
$$

Now with 50 cycle audio input check the distortion. Adjust for minimum distortion by use of cathode balance control R4l. This control is on left front corner of "Twin Drive" audio deck as transmitter is viewed from the back.
At this point modulate the transmitter with 7500 cycle audio input and check distortion. Adjust the small condenser (C6l) also located on the "Twin Drive" audio deck at the front right hand corner of the deck, when transmitter is viewed from the rear, to a position which gives lowest distortion reading at this 7500 cycle audio input.

Now go back to 1000 cycles, modulate the transmitter to correct levels and measure noise. Both noise and distortion readings taken under these test conditions should be satisfactory.

September 29, 1955

Gates Radio Company, Quincy, Illinois

$\underline{I} \underline{\mathrm{D}} \mathrm{E} \underline{X}$

n
Page Section I Electrical Specifications 1
Section II Mechanical Description 2
Section III Installation 2
Section IV BC-500K Transmitter Details 3-9
Section V Initial Tune-up of the Gates' BC-500K 9-12
Section VI General Operating Procedure. 12-13
A-10859 Section VII Typical Voltage Chart, Gates'BC-500K
Section VIII Summary 14
Section IX Questions and Answers 15-18
Ordering Information 1
Guarantee 1-2
Test Sheets 1
Photographs:

1. Rear View Transmitter2. Front View Meter Panel and Control Panel/R.F. Deck3. Modulator Deck
2. Relay Panel
Overall Electrical Parts List 1-7
Prints:E-25429 Overall Schematic BC-500KA-10349 Wood Base for BC-500K
B-13342 Power Supply Schematic
C-19144 Outline DimensionsC-19179 Relay Panel wiring
D-21646 Schematic Audio DriverD-21651 Main Trunk Cable Schematic for BC-500K
D-21652 Modulator Deck, BC-500K
E-25408 Schematic, R. F. Section, BC-500K
A-10957 BC-500K Tuning Chart
(1) 1. Power output, 500 watts, The BC-500K can be operated at 550 watts output, if necessary, to overcome losses in transmission lines and/or phasing equipment. On special order this transmitter can be adapted for quick change to 250 watts output.
3. 'Frequency range - 1600 Kc to 540 Kc .
4. Primary power - 230 volts, two wire single phase, $50 / 60$ cycles.
5. Input power - Transmitter draws from 2450 to 3250 watts depending upon percentage of modulation.
6. Frequency stability $-\neq 5$ cycles.
7. Type of modulation - Class "B", high level, modulation capability 100\%.
8. Audio input impedance - 150/250/600 ohms.
9. Audio input level (100% modulation) 7 DBM, $\neq 22$ DBM (100 cycle, sine wave).
10. Audio response - 30 to 10,000 cycles, $\not \leq 1-1 / 2$ DB.
11. Distortion - 3% or less, 50 cycles to 7500 cycles measured at 90% modulation.
12. Noise - Minus 60 DB below 100% modulation.
13. Carrier Shift - 4% or less, $0-100 \%$ modulation.
14. Output impedance - To match $50 / 70$ ohms at all frequencies, 5401600 Kc . Coupling unit available for other impedances.
15. Tubes Used -

One, 6aG7 Osc.
One, 6AG7, lst IPA One 833A Power Amplifier Two, 6146's, 2nd IPA Two, 6SN7, 1st Audio and Phase Inverters Four, 1622, Audio Driver Tubes Two, 833A, Modulators
Two, 800 ' $^{\prime} \mathrm{s}$, High Voltage Rectifiers
Two, 5R4GY Intermediate Voltage Rectifier
One, 5R4GY, Low Voltage Rectifier
One, 5R4GY Bias Rectifier One, 6AQ5 Clamper Tube One, OB2, Voltage Regulator
15. All frequency determining components (except crystal and oven) are included in the $\mathcal{K} . F$. section of the transmitter.

SECTION II - MECHANICAL DESCRIPTION

1. Overall dimension - 78" high, $42^{\prime \prime}$ wide and $30^{\prime \prime}$ deep. No space required for door swing, as rear door is of slip-on type.
2. Floor space - 8.7 square feet.
3. Weight unpacked - 800 pounds, approximately.
4. For shipping, the $R F$ deck and the Modulator deck have been removed, along with certain other components such as modulation transformer, modulation reactor, power transformer and filter chokes.

SECTION III - INSTALLATION

This instruction book affords valuable information for persons who are installing and operating the Gates' BC-500K Transmitter. The following mentioned points should be studied so that the unpacking and setting up procedure will be well in mind when doing the actual work.

1. Check all packing lists for materials.
2. Read this instruction book completely before attempting to set up the equipment.
3. Have the transmitter location clean so that the various parts can be safely placed out of harms way when they are unpacked.
4. It is preferable to have a mounting base, in place, upon which the transmitter can be set. This base can be made out of 2×4 lumber, preferably painted black. See Gates' Drawing A-10349, a part of this instruction book. This base should be lagged to the floor, and measures taken to make sure the top side of the frame is perfectly level. This will give a good solid, level base upon which the transmitter can set.
5. Use heavy primary wire from the switch box to the $A C$ input terminals on the transmitter. Number four or six wire will be very suitable.
6. Be sure the power company has installed large enough service for all of the equipment, lights, water pump, etc., which will be in use at the transmitter site.
7. Do a good job of installing the equipment. Time spent in making your installation as good electrically and mechanically as possible will pay off in the future. You will have less loss of valuable air time if this idea is followed to the best of the installation engineers ability.
8. Acquaint yourself with this equipment by studying this instruction book and all of the schematics herein.

SECTION IV - BC-500K TRANSITITTER

For shipping purposes, the following has been removed from the transmitter.

1. The Radio Frequency Deck.
2. The Modulator Deck. Taken off this deck has been the modulation transformer, T6, and the modulation reactor, L2l.
3. Main High Voltage Power Transformer, Tll.
4. Input Swinging Choke, L22.)

One Assembly
5. Output Smoothing Choke,L23)
6. All Tubes and Crystals if supplied.
7. Output Feedthru Insulator.
8. Time Delay Relays, E7 and E8.

The removed items have been separately boxed to help insure safe delivery of the transmitter. Be sure to check the packing lists for any discrepancies. The various parts are all marked with their schematic symbol and replacement within the cabinet should be easily accomplished by checking with the various photographs that are provided as a part of this instruction book.
The output feedthru insulator that has been removed for packing, can easi ly be replaced in the top of the cabinet. The coil, Ll5, (Modulation monitor pickup) and the two parasitic suppressor assemblies have also been removed and packed in a carton secured to the R.F. Deck. The copper tubing connection between coils, Ll3 and Ll4, has been removed and secured to the R.F. deck.
The following information on the Gates' $B C-500 \mathrm{~K}$ transmitter pertains to the general construction and operation of the unit. It is highly desirable to study the transmitter through its' various sections in order to completely understand and comprehend its operation.
The oscillator is an independent unit mounted on the Radio Frequency Deck at the rear (right side as transmitter is viewed from the rear). This oscillator circuit is the so-called grid-plate and the oscillator output circuit is electron coupled to the grid circuit. This gives good isolation to the crystal and makes for very stable operation. The output of the 6AG7 oscillator tube drives the grid of the first IPA stage, another 6AG7. This stage is tuned. Provision is made for padding this stage for low frequency operation, the condenser terminals are close to the second 6AG7. No padding is required from 1600 Kc to approximately 850 Kc ., from this frequency to 540 Kc a 270 mmfd mica condenser is used. This condenser is furnished as a part of the transmitter and will be found in a bag tied to the ground connection on the oscillator unit. The oscillator cathode current, the 6AG7, lst IPA cathode current and the grid current to the parallel 6146's, are measure by the first three positions on the multi-meter switch, located on the front control panel. These positions are marked Osc. plate, lst IPA
plate and 2nd IPA grid. For typical readings obtained in these circuits refer to Gates' Drawing A-10957, which is a part of this instruction book.

The crystal ovens operate on 6.3 volts $A C$. This voltage is supplied by a small step-down transformer, Tl. The crystal holders supplied are of the variable gap type. Be sure to read the directions supplied with each holder. Follow these directions to adjust the air gap which governs the frequency of operation. For very slight changes in frequency, the variable condensers, C 3 and C 4 , can be used. These condensers are in shunt with the crystals and can vary the frequency from 5 to 10 cycles depending on fundamental frequency. Also, at the rear of the oscillator unit is a variable control (Rl3) which varies the screen voltage of the lst IPA, 6AG7. This controls the output of this stage. For normal operation, the grid current to the parallel 6146's should be from 2 to 4 ma . This figure can be obtained by adjustment of screen control, R13.

Provision has been made in the lst IPA stage (6AG7) to supply voltage to operate any standard Frequency Monitor, such as the Gates' M0-2890. This output voltage is available at terminal $\ddagger 6$ on TB3. A ground is conveniently located at terminal \#7. By connecting a suitable length of Co-ax cable to these terminals and the Frequency Monitor. The installation of the monitor is easily completed.

The oscillator unit is supplied with 550 volts from the Intermediate Voltage Power Supply, located on the Modulator Deck. This supply uses a pair of 5R4GY rectifiers (V19 and V20).

The second IPA stage uses two 6146's operating in parallel. These tubes have approximately 550/600 volts applied to their plates. Full protection is afforded these tubes by use of a screen clamper tube, the 6AQ5(V6). The cathode current of the two 6146's will run between 150 and 200 ma depending upon frequency and loading. This current is indicated by the multi-meter, when the selector switch is set to "2nd IPA plate". The 6146 driver stage is tuned from the front panel by control Knob designated "2nd IPA tune". This stage will tune with no padding from 1600 Kc to approximately 800 Kc . From 800 Kc to 540 Kc . Padding condenser, C23, a 500 mmfd . mica must be paralleled across the tuning condenser, C24. This padding condenser is supplied as standard equipment on all transmitters. If the frequency of operation is such that C23 is not used, remove both jumpers from the variable condenser, C24. Also, take the jumpers off of C23, doing this will preclude any possibility of accidental shorts.

The 6146 RF driver will supply adequate drive to the 833A P.A. tube. The normal grid current, as indicated on the multi-meter, when selected, will run between 80 and 140 ma .

Neutralization of the power amplifier is accomplished by the "Rice" method, the out of phase voltage being obtained from the 6146 tank coil. There are several taps around the mid point on this coil (L9), these taps allow neutralization adjustment.

One plate of the neutralizing condenser, C26, has mounting slots provided which will enable the operator to slightly adjust this plate to change the spacing of the condenser. This condenser is normally adjusted at the factory and should require no further attention. Neutralization can be further varied by means of the five taps mentioned above.

The power amplifier makes use of one 833A. The output circuit is a combination "pi" and "T", a circuit proved over the years as one which is flexible and also very effective in attenuation of undesirable harmonics. The coil and capacitor values as supplied in the transmitter are effective in loading this transmitter into a $50 / 70$ ohm load.
The output circuit of the transmitter includes a pick-up coil (Ll5) which supplies sufficient RF voltage to operate a modulation monitor, such as the Gates' MO-2639. This voltage is available at a terminal board located in the top of the cabinet.

This amplifier is rather novel, in that no variable, air dielectric condensers are used for tuning. The tank circuit is tuned by a rolling contact inductor, Ll2. This method of tuning is helpful in preventing arcs or flash-overs that may occur in variable condensers, especially if there is dust accumulation.

The P.A. tank circuit includes two 250 mmfd . mica condensers, C31 and C32, connected in parallel. These condensers are used for frequencies of 1600 to approximately 850 Kc .

For lower frequencies, 850 Kc to 540 Kc , another mica condenser, C33, 500 mmfd must be paralleled with C31 and C32. This is shown on Gates' schematic, E-25408 which is a part of this instruction book, and tuning chart A-10957.

The power amplifier plate current is read on P.A. plate meter, M4, a $0-500$ ma meter. This current will generally run from 320 to 350 ma. depending upon the efficiency and the applied plate voltage. The normal plate voltage as read on Plate Voltmeter, M5, will be around 2000 volts. As mentioned previously, the P.A. Grid Current is indicated on the multimeter will be 80 ma to 140 ma depending upon frequency, tuning, etc.

Two P.A. tuning controls are located on the R.F. deck front panel, toward the top. The Veeder Counter Control on the right tunes the power amplifier plate coil, the counter control on the left adjusts the loading coil, Ll4.

The modulator deck contains the complete audic system, the bias power supply, 380 volt power supply and 600 volt power supply.

The complete audio driver unit comprised of the audio input transformer the first audio stage and phase inverters (6SN7's) and audio driver taibes ($4-1622 / 5881$) and the audio driver transformers is built up as a complote unit. This chassis is so mounted, that by disconnecting
the input wiring from TB6, TB7, and TB9 it can be removed for servicing, if needed.

The output of this audio driver is connected to the grids of a pair of 833A modulators, V15 and V16. Also, on this modulator deck is the modulation transformer, T6, modulation reactor, L21, and coupling capacitor, C58.

The first audio stage makes use of two 6SN7 tubes (V9 and V10) serving a dual purpose, first as a push-pull audio stage and also as phase inverters to drive the push-pull "Twin Drive" audio driver tubes, Vll, V12, V13 and V14.

A balance control, R4l is located on the left front top of the audio driver chassis as viewed from the back. This control is in the cathode circuit of the two tubes in the input circuit. It is suggested that this control be used to adjust for lowest distortion at 7500 cycles. If this is done, the balance will hold over the audio range.

The filaments of these tubes are all energized from a 6.3 volt winding on Filament Transformer, TlO. This Transformer supplies the two 833A modulator tubes, as well as the 6SN7's and 1622 tubes.

There are two separate feedback loops in the audio system. One makes use of separate tertiary windings on the driver transformers, T4 and T5, producing about 26 db of feedback around the audio drivers. The second feedback loop is taken from the plates of the modulators back to the input audio stage. This loop develops approximately 6 db of feedback. By the use of this feedback the distortion is kept at a l ow figure. The amount of internal feedback varies as the modulator drive varies. The above figures are based on average modulation of approximately 75%.

The modulators of the BC-500K Transmitter are a pair of 833 A tubes operating as class "B" audio amplifiers. These tubes are driven by the "Twin Drive" audio drivers, the four 1622/5881 tubes. The modulators are biased by a separate power supply, the bias voltage is adjustable from the front of the modulator deck panel. These controls are R66 and R67. These controls are adequately marked on the front panel. The static plate current of the modulators will run approximately $60-80$ ma as read on meter M2. The plate current will rise to approximately $150-300 \mathrm{ma}$ depending on the percentage of modulation. The modulators are protected by overload relay, E4, located on the relay panel in the base of the transmitter. This relay has its throw out point raised or lowered by a shunt resistor across the relay coil. Normally this relay is adjusted to kick out at about 400 ma. This will allow unavoidable over modulation peaks to occasionally go through and not cut off the transmitter.

The relay panel is located on the right side of the transmitter base, when viewed from the rear. On this relay panel are mounted the following relays:
(a) Relay El, filament contadtor.
(b) Relay E2, plate contactor.
(c) Relay, E3, master relay.
(d) Relay, E4, modulator overload
(e) Relay E5, P.A. overload
(f) Relay E6, P.A. grid undercurrent
(g) Relay E7, Time Delay Relay

Relay El, the filament contactor, when energized by depressing the filament start switch located on the front panel, causes all of the filaments in the transmitter to be heated. Also, at the same time the modulator and audio driver bias supply has become operative, putting correct operating bias on these tubes. At this same time, the time delay relay, E7, is also heating and at the end of its ' heat cycle, its Normally Open Contacts are closed. Simultaneously the Intermediate voltage time delay relay, E8, is heating and after its operating cycle of from 5 to 10 seconds has passed, 380 volts D.C. is applied to the four audio driver tubes and approximately 550/600 volts is applied to the pair of 6146 RF driver tubes. This intermediate voltage supply is adequately protected by a door interlock S8 which operates in the primary of the intermediate plate transformer, T7. If the back door is off, door interlocks, $S 6$ and $S 8$ mentioned above, will make it impossible to apply high DC voltage of any sort to the transmitter (remember that approximately 100 volts of bias is on and in operation within the transmitter whenever the filaments are lighted). If door interlock switch, S6, is closed it will be possible to apply high voltage to the transmitter. This is accomplished by depressing the plate start switch, located on the front control panel. When this plate start switch is depressed, the coil of relay, E2, the plate relay, is energized applying primary power to high voltage plate transformer, Tll, in the transmitter.
Also, on the relay panel are two overload relays, modulator overiadid E4 and P.A. overload, E5. These relays are in the filament center tap return. By means of shunt resistance across the coils of these relays their tripping point is adjusted for satisfactory operation. Both relays, E4 and E5, are set at the factory to kick out at about 400 ma. This gives satisfactory protection to the modulator and P.A. stage. These relays can be re-adjusted by the station engineer to suit his requirements, as desired.

Of interest, also, is relay E6, the P.A. grid undercurrent relay. This relay closes when rectified grid current flows through it, as long as there is sufficient drive the relay will be closed. If for any reason, the grid excitation fails, this relay will de-energize and cause the plate relay, E2, to open up, thus removing high voltage plate power from the transmitter.

The Gates' BC-500K incorporates four D.C. power supplies. The 380 volt supply, using one 5R4GY rectifier (V18) supplies plate and screen voltage to the audio input stage and audio driver stage. This supply becomes operative when the fil. start button is depressed. After the time delay relay ES has closed and if the door interlock S8 is also closed. This supply has its high voltage winding as a part of T 7 , its filament voltage is derived from a winding on transformer, T8.

The filter system for this low voltage supply is made up of choke, Ll9 and filter condenser, C56.

The RF output terminal of the transmitter is located at the top of the transmitter toward the left front as viewed from the front. A ground stud is provided close to the output insulator for grounding the transmission line. This ground also carries on down to the R.F. section. At the base of the cabinet near the cut-out, is a stud to be used to ground the cabinet to the ground system of the station. The station ground system should be as good as can be made, all connections solid and preferably brazed together. It is wise to bond all electrical conduits, metal frame work of build dings, etc. to the common ground system. Less trouble will be had in years to come if this suggestion is followed, as aging of the ground system will cause no trouble, if it is installed well.

SECTION V - INITIAL TUNE-UP OF GATES' BC-500K
Before proceeding with the initial tune-up of this transmitter, let us recheck the necessary things to be done, before any voltage is applied to the transmitter. Briefly check the following list.
(a) Proper line voltage to terminals 24 and 25 on relay panel. This should be 230 volts, $50 / 60$ cycles.
(b) Proper location of all tubes in sockets. These tube locations can be checked by reference to the stencilling on the unit and to this instruction book.
(c) Check to see that all tie-down twine and other shipping material has been removed from the various componcnts, especially the relays.
(d) Recheck on all components that were installed. Be sure they are connected correctly. The parts have been tagged to help in the correct installation.
(e) Go over the complete transmitter, checking the tightness of all nuts and bolts, terminal board connection, etc.
(f) Give all soldered connections a brief looking over. The equipment has passed several rigid inspections during its course of manufacture, but something could have been overlooked that might give trouble in the future.
(g) Make certain the transmitter and associated equipment is well grounded.
(h) It is suggested that all audio input wiring be shielded and placed in conduit or wiring troughs, away from a.c. wiring.
(i) Be sure the crystal and oven assemblies are in their sockets, they should be heating as soon as the main primary wires are connected to the relay panel. The ovens should be warm to the touch, if not, check fuse, F3, for continuity.
(j) All tubes should be in their correct sockets, all relays free.

It is suggested at this point, that the transformer leads to the plates of the high voltage rectifiers, $8008^{\prime \prime} \mathrm{s}, \mathrm{V} 21$ and V22, be removed from these tubes. This will insure no high voltage D.C. being applied to the transmitter.

Let us tune this transmitter to 1400 Kc . The crystals should be for 1400 Kc operation, the $\mathrm{ov} \in \mathrm{ns}$ should be heating. Remove plate caps from high voltage rectifiers, V21 and V22, Short out door interlocks S6 and S8.

Depress filament start button on front control panel. This will cause filament relay, El, to energize which lights all filaments and causes the bias suppiy to produce bias voltage. This bias voltage should be approximately $\dot{1} 00$ volts and can be measured as follows. Turn the bias controls, R66 and R67, fully counter-clockwise. This puts maximum bias voltage on the 833A modulators. By use of a good D.C. voltmeter this voltage can be measured from grid of modulator tube Vl5 to ground. This will be approximately 100 volts. At this time, the fixed bias on the four 1622/5881 audio driver tubes can be checked. Measuring from terminal 3 on TB6 to ground, a voltage of approximately 21 volts should be found. The voltage will be negative on the grids of the modulators and on the terminal board. Adjust lst IPA screen control on rear of oscillator unit to maximum clockwise rotation. When the filament button was depressed and all filaments energized, the intermediate voltage time delay relay, E8, also becomes actuated and after a short interval of time (5 to 10 seconds) the intermediate voltages were applied to the audio input and driver tubes and the oscillator, lst IPA and 2nd IPA stages.

Move around in front of the transmitter and tune up. First set Multimeter switch on oscillator plate, multimeter should read approximately 6 to 8 ma oscillator cathode current, change multimeter switch to lst IPA plate, then adjust lst IPA control for minimum reading (resonance) on multimeter this will be approximately 8 to 20 ma depending upon setting of screen control, Rl3. Note that on frequency of 1400 Kc no padder condenser is required at Cl7. See tuning chart A-10957. Now set multimeter switch to 2nd IPA plate.

Adjust 2nd IPA tuning control to show minimum plate current on multimeter. Note that on frequency of 1400 Kc no padder condenser is required at C23. See tuning chart A-10957. This current will read somewhere between 100 and 150 ma depending upon frequency of operation load, etc. Now set multimeter switch to P.A. Grid, the multimeter should indicate between 80 and 140 ma grid current to the power amplifier. At this time, go back over the complete five settings of the multimeter switch to check the tuning. These readings are typical -
"Oscillator Plate" - 6 to 8 ma.
$\frac{\text { "Ist IPA Plate" }-4 \text { to } 15 \mathrm{ma} \text { depends on adjustment of screen }}{\text { control Ri3. }}$
"2nd IPA Grid" - 2 to 4 ma (if this reading is too high, it can be reduced by adjusting the screen control RI3, of the lst IPA Amplifier)
"2nd IPA Plate" - 100 to 150 ma.
"P.A. Grid" - 80 to 140 ma .
At this time the filament voltage should be checked, the meter, M1, should read loV. This actually measures the filament voltage of the Power Amplifier Tubes, V7 and V8. All filament primaries are controlled by filament rheostat, R2. When the voltage is ad justed to 10 volts on the PA tube, it is also adjusted simultaneously on all of the other filaments within the transmitter.

Shut down the Transmitter.
Now we are ready to check neutralization of the final power amplifier. Disconnect the transmission line from the transmitter. Perhaps this can be done easier by taking the lead from coil Ll5 off of variable output coil Ll4. From the Frequency Tuning Chart we notice that the power amplifier will use the two 250 mmfd. mica condensers in parallel. (The 500 mmfd mica condenser supplied with the transmitter is not used on this frequency). Also, note from the chart that Ll2 should have approximately 19 turns for frequency of 1400 Kc .

Connect the correct loading condensers C34 and C36 into the output circuit as shown on the tuning chart for frequency of 1400 Kc . For $1400 \mathrm{Kc}, \mathrm{C} 34 \mathrm{a} .003 \mathrm{mica}$ is used, as is C36 another . 003 mica . C34 is input load condenser and C36 is output load capacitor. C35 and C37 are not used on this frequency. Some sort of RF indicator must be coupled up to the power amplifier tuning coil. This can be a neon bulb mounted on a long rod of bakelite, or a flash lamp connected to a 2 or 3 loop of wire. Either of these make a satisfactory RF indicator. If the amplifier is neutralized, no RF will be indicated in the main tank coil when the variable coil is tuned through resonance. If an indication is shown when amplifier is tuned to resonance, the amplifier is out of neutralization. The amplifier is neutralized by the so-called "Rice" method, that of feeding out-of-phase voltage back to the plate from the input grid circuit. This neutralizing voltage can be varied by adjusting the center tap on the RF driver plate coil L9. There are several taps on this coil adjacent to the electrical center and neutralization can be accomplished by the use of one. If not, de-energize the transmitter, then put the lead on the center tap of coil L9 and adjust the right hand (as viewed from rear plate of the neutralizing condenser, C26. This plate has its mounting flange slotted, making possible a slight adjustment of the spacing of C26. Some setting of this plate will be found which causes the power amplifier to become neutralized when one of the 5 taps on L9 is used. When the resonance tuning point of the power amplifier can be passed through without an indication on the neon bulb or lamp, you can assume the P.A. is satisfactorily neutralized. Another good check is to set the multimeter switch on P.A. grid, then watch this
grid current while tuning Ll2 through resonance. If the P.A. grid current remains steady while the amplifier is tuned through resonance it is satisfactorily neutralized. Remove any neutralization indicators. Take short off of door interlock switches S6 and S8.

Be sure the plate voltages are off.
Now place one high voltage lead on one 8008 rectifier. Also replace the output wire from Ll5 back on output coil Ll4. Now apply high voltage by depressing Plate Start Button. Tune the Power Amplifier to resonance. Adjust the loading until the plate current meter, M4, reads approximately 150 ma and the plate voltmeter reads about 800 volts. With loading adjusted so that these figures are obtained, shut down the transmitter, be sure it is off. Plate the other cap on the second 8008 rectifier. Again start up the transmitter by applying plate voltage. Rapidiy retune to resonance. When properly tuned the plate current will run approximately 320 to 350 ma at 2000 volts. With this input the output should be 500 watts. Efficiency of the BC-500K Transmitter will approximate 72%. The R.F. end of the transmitter should be operating satisfactorily now.

It will be remembered that previously we had turned the modulator bias controls completely counter-clockwise. This applied maximum bias to the two 833A modulator tubes. We will now adjust the modulators. With the transmitter operating and producing power into the load, adjust one bias control until its associated modulator tube draws approximately 30 ma, as indicated on Modulator meter (M2). Now adjust the second bias control until the modulator plate current as indicated on M2 reads 60 ma . This is the normal operating condition.

The meter readings on the transmitter should be somewhat close to those shown on "Typical Meter Readings", a chart in this instruction book. Readings within 10% can be tolerated. The operator is given a slight control over the high voltage applied to the Power Amplifier tubes by adding or decreasing resistance in the high voltage lead to the power amplifier. This is done by varying the P.A. plate rheostat, Rl, located on the front control panel.

SECTION VI - GENERAL OPERATING PROCEDURE

(a) The crystal ovens should have been heating for approximately four hours before final frequency adjustments are to be made.

The ovens of the crystal holders should be warm to the touch. The ovens are heated by 6.3 volts as obtained from the secondary of oven heater transformer, Tl. The primary of this transformer is connected permanently to the transmitter side of primary fuses, F1 and F2. There is a secondary fuse, F3, also. This gives adequate protection to the oven heater power circuits.

After the heaters have been heating for about four hours, the orystal frequencies should be adjusted to exact operating point. Normally this prucedure is as follows.

If the adjustments are being done at a completely new station, there will be no accurate way of adjusting the transmitter frequency. The transmitter will be checked for correct operating frequency by an external monitoring source. By this method one crystal can be brought to exact frequency. The first adjustment can be made by operation of the air gap. It is possible to set the frequency very close to zero cycles deviation by this adjustment. Then any slight adjustment can be accomplished by varying the crystal shunt condensers, C3 and C4. After the number one crystal has been adjusted to zero deviation from the assigned frequency, then it would be wise to adjust the stations' frequency monitor to coincide with the checked \#l crystal. (Of course the frequency monitor should be in operation in so far as oven temperature is concerned, preferably at least 48 hours). Once the stations' frequency monitor has been calibrated and is working satisfactorily, the station engineer has a reliable source of frequency measurement and can from this point go ahead and adjust the second crystal to frequency by observing the frequency meter while making adjustments of the air gap of the number two crystal.

For the station that has been on the air and has a calibrated frequency monitor in operation, the station engineer can simply adjust the two new crystals to frequency by observing the already operating frequency monitor.
(b) Modulation Monitor Connections. The BC-500K transmitter has a small pick-up coil (Ll5) connected between output loading coil, Ll4, and the ceramic feedthru insulator to be used for excitation of a modulation monitor. The connections are made to a small barricr strip terminal board located in the top of the cabinet. The modulation monitor should be connected to this terminal board with a suitable length of co-ax cable, similar to RG-62U.
(c) Frequency Monitor Connections. The frequency monitor R.F. connections are made to terminals 6 and 7 on TB3, number 6 is the hot side, number 7 the ground. The frequency monitor can be connected to this terminal board by means of a suitable length of co-ax cable, such as RG-62U. A word of caution at this point. Be sure to terminate the co-ax on the frequency monitor, otherwise the open circuited co-ax could cause a loading effect on the lst IPA stage which could cause this stage not to tune.
(d) The Gates' BC-500K Transmitter is cooled by means of a top-of cabinet ventilating fan which draws the heated air out of the cabinet. The transmitter has a large decorative open type grill in the front, at the bottom, through which cool air is drawn in, then is pulled up through the perforated audio and R.F. decks and out the top. The heated air also rises, so by convection the cabinet air is also changed.

SECTION VII, TYPICAL VOLTAGE CHARTS

 (No Signal in, measured with Simpson $\# 260$ Volt-ohmmeter)First Audio (1/2 6SN7) V9, Vlo
Plate volts - 110
Filament volts - 6.3 A.C.
Phase inverter ($1 / 2$ 6SN7) V9, V10
Plate Volts - 110
Cathode volts - 3.5
Filament volts - 6.3 A.C.
Audio Drivers, Vll, V12, V13, V14
Plate volts - 360
Screen volts -270
Screen volts -2
Grid volts --20
Filament volts - 6.3 A.C.
833 A Modulators (3C-1J)
Plate volts - 2600 V . DC
Plate Current (Static) per tute - 39 ma
Bias volts - aporoximately 65 negative
833 A Modulators, (5C-500K)
Plate volts - 2600 V. DC
Plate Current (Static) per tube, 20 ma.
Bias volts - approximately 70V. negative
Filament volts - 10 V.A.C.
810's Modulators (BC-250L)
Plate volts - 1400 V. DC.
Plate current (Static) Der tube - 25 ma .
Bias volts, aoproxisately 32 nerative
Filament volts - 10 V. A.C.
6AG7 Oscillator
Plate volts - 125 (Checised at bottom of choke, Lá)
Screen volts - 75
Filament volts - 6.3 A.C.
6 AS7, 1st IPA
Plate volts - 400 (Variable by means of R13)
Screen volts - 115 V (Varia
Filament volts - 6.3 A.C.
6146's 2nd IPA
Plate volts - 553/600
Plate volts - $550 / 600$
Filament volts - 6.3 A.C.

833A Power Amplifiers (Two Tubes) BC-1J
Plate volts - 2500
Plate Current - $530 / 550 \mathrm{ma}$.
Filament Volts - 10 A.C.
833A Power Amplifier (One Tube) 3C-500K Plate volts - 2500
Plate current 270 MA (Approximately)
Bias volts - Grid leak, 250 V.
Filament volts 10 V. A.C.
810's Power Amolifier (Two Tubes) BC-250L Plate volts $1300-1350$ DC
Plate current - 250 ma , approximately
Fias volts, grid leak, 250 V .
Filament volts, 10 V. A.C.
High voltaze rectifier output of filter V-2600 for BC-lJ and BC-500K. Aporoximately 1400 volts for BC-250L.

Intermediate Voltage rectifier output of filter 550/600V.
Low Voltage rectifier, output of filter, 380 V .
Sias rectifier, outout of filter lOOV. Negative.
Crystal heater voltage, 6.3 V. A.C.

A radio broadcast transmitter, regardless of its size, cannot be fully described, and/or all the operating problems that arise cannot be fully anticipated and information given in any instruction book. Information has been given in this book that will cover most installations. There has been provided in this book, schematics of all pertinent circuits of the Gates' $\mathrm{BC}-500 \mathrm{~K}$, photographs with symbols that tie into the various schematics and a complete electrical parts list.

In preparing the instruction book it has been recognized that the installation engineer undoubtedly is very familiar with the general broadcast installation and operation procedures, and that many of the things referred to are well known to him. It is suggested therefore that the installation engineer, and likewise, the personnel who will operate the transmitter, not only familiarize themselves with the instruction book, as provided, but more important, with the transmitting equipment itself.

The Gates Radio Company, in designing the BC-500K Transmitter, has done everything possible to provide for you, the finest equipment. It is not possible for us to provide the location, the ground system and in some instances the other accessories that will be used with this equipment. Because of this, certain things must be left for the instaliing engineer to do, and certain analysis of problems must be made. In every instance the use of good engineering practices and sound fundamental reasoning will develop the desired high quality results possible from this equipment.

It is repeated again, make a good installation, eliminate hasty methods, in doing so you will keep future outages to a minimum. Also, remember that cleanliness and good maintenance of your broadcast equipment will pay big dividends. Set aside a certain period of time each week for cleaning the inside and outside of the equipment, for testing tubes, making sure all connections are tight and the many other things that can be titled "Good Maintenance". In case of problems that arise in the use of this equipment, please feel free to contact the Engineering Department of Gates Radio Company, who will gladly cooperate with you in every way to obtain the most satisfactory operation of your Gates equipment for the present and in the future.

It is realized by the Gates Radio Company that when installing a new transmitter and especially a completely new radio station, that certain problems arise that at times become perplexing. As the radio transmitter is the only device that can indicate trouble, of ten times troubles in transmission lines, tower tune-up, etc., will be incorrectly attributed to the transmitter. The following questions are a digest of those most often heard and corrected for our customers. They may help you if you have one or more similar problems.

1. My transmitter arrived with a broken part. How do I handle this?

Ans.- Your equipment has been shipped in approved shipping boxes and by recognized transportation carriers. Call the delivering carrier at once. He will inspect and note your bill of lading as to the damage. You may then order the needed part and bill the delivering carrier for it when you receive the Gates' invoice.
2. Is breakage covered by the guarantee?

Ans.- Only when breakage results from actual operating conditions. Breakage in transportation is the transportation company's liability.
3. The equipment works well but the voltage regulation of the power supply exceeds the 5% allowed by F.C.C. Is this a faulty power supply?

Ans.- No indeed. We suggest placing an A.C. voltmeter across the main power lines. Check the voltage with no modulation. Then recheck with 90% (sine wave) modulation. You will find a lower line voltage under modulation than with no modulation which simply indicates the power source to the transmitter is the offender. This may mean too small wires, too small a pole transformer supplied by the utilities company, or in rare instances, both. Poor regulation can be caused by other things too. Improper tuning of the antenna load is one. Improper neutralization another.
4. I have an intermittant in the transmitter at times it will act normal, other times output power will drop off, plate current will go high and cause transmitter to kick off.

Ans.- The process of elimination is important here. Check all connections to terminal boards. Make sure all tubes are O.K. Watch the PA grid current. If it fails, the transmitter will autom matically go off due to operation of under-current
grid relay, E6. This would indicate trouble in the oscillator, lst IPA or 2nd IPA. Is crystal working satisfactory?
5. The power amplifier cannot be tuned to resonance.

Ans.- The power amplifier tank padding condenser, C31, C32 and C33, are mica and very infrequently partially open or short due to their inner construction. The condenser capacity could change in such a way as to make the P.A. untunable, with the original amount of inductance.

The load has changed considerably making it impossible to find P.A. resonance.
The rolling contact on Ll2, main P.A. inductor, is defective.
6. Plate contactor, E2, closes but no high voltage to P.A. or modulators.

Check connections to power transformer, Tll. Should show approximately 230 V .

Check main rectifier, filaments should be lighted and plate caps on. If bad, replace.

Open filter choke.
7. Everytime the plate start button is depressed, a main fuse will blow.

Ans. - Fuse rating too small, use 30 amp .
Arc-back in 8008 rectifier tubes. Best solution, replace tubes.

Look for frayed wires.
Shorted power component, or filter unit. All chokes and condensers should be checked chokes for shorts to ground, condenser for shorts. Replace defective unit.
8. Transmission is not up to standard, sounds bad.

Ans.- This can be caused by many things.
Over-modulation is a cause of poor quality. Watch the levels. Be sure modulation monitor is adjusted correctly.

Defective tubes, showing up particularly in the audio section.

Improper voltages in the audio systom, caused either by defective compcaent or bad rectifi:ar . tubes.

Power amplifier out of neutraiization.
Bad audio signal being fed into transmitter.
One side of push-pull audio system becoming in-operative through any cause:

Feedback resistor opening up.
R.F. getting into the audio system.

Loss of filter, causing A.C. hum to rise.
9. The transmitter plate relay will not hold in.

Ans.- The plate relay, E2, coil is in series with the door interlock switch, S6, the master relay, E3, time delay relay, E7, and the bias undercurrent relay, E6. If any of these relays are not properly: closed, it will be impossible to energize this plate relay.

If the contactor can be energized but drops out immediately, this indicates an overload, possibly in the modulator or power amplifier. If such is the case, the overload relay involved will energize causing the master relay to operate, which opens the holding contacts of the plate start relay.
10. Have extremely high plate voltage from the main rectificr.

Ans.- Check the D.C. resistance of the input swinging choke, L22. This will measure in the neighborhood of 55 ohms. If this choke is shorted, terminal to terminal, the filter system would have condenser input and voltage would be extremely high.

1l. The modulator overload relay, E4, energizes each time the plate start button is depressed.

Ans.- This would indicate trouble in the modulator or in its bias supply.

Check bias voltage on each grid of 833 A modulator. This should read approximately 65 volts negative. If no voltage, check bias rectifier tube, V17.

Check 833A modulator tubes for possible short.
Check bias adjustment resistors, R66 and R67, for open arm.
12. The efficiency of the transmitter is low.

Ans.- The normal efficiency of the Gates' BC-500K runs approx, 72%. If the apparent efficiency is low first check the indicating plate meters. They can be reading high. The antenna meter can be reading low. Check by substitution.

If the efficiency is actually low, possibly the antenna resistance has gone up. This happens slowly over a period of time. A recheck of the antenna resistance is suggested.

Check grid drive, should be between 80 and 140 ma. Check the tubes, substitute known good ones.

Check the P.A. tuning. One side of rescnance will give more output than the other. Tune in this manner.

ORDERING REPLACEMENT PARTS

When ordering a replacement component please refer to the parts list in this Instruction Book. Identify the component by its' symbol number and if possible its Gates Drawing number. The type of equipment in which the part is used is also necessary.

This procedure will insure the customer receiving the correct component and at the earliest possible date.

Gates Radio Company,
July 11, 1955

Quincy, Illinois

GUARANTEE

This equipment is fully guaranteed by the Gates Radio Company of Quincy, Illinois, to be free from all defects in materials and workmanship and will be repaired, replaced or adjusted in accordance with the manufacturer's option and terms as outlined below.

1 - Gates believes the purchaser has every right to expect first-class quality materials and workmanship and has created rigid inspection and test procedures plus excellent packing methods to assure good arrival at destination.

2 - Gates agrees to supply daily factory service, and will make emergency shipments at any time where possible.

3-Gates fully guarantees, under normal and proper usage, all component parts in Gates equipment, except as noted. These parts will be replaced or repaired at the option of Gates as follows:

Transmitter Parts: main power or plate transformer, modulation transformer, modulation reactor, main tank condensers.
(replacements or repairs) - where less than 1 year old...no charge, between 1 and 2 years old 50% or new price

Moving Parts: Guaranteed for six months.
Electron Tubes: Subject to manufacturor's warranty at the time of shipment. Adjustment will be made to the customer as given to Gates Radio Company by the tube manufacturer.

All other component parts: (Except as listed above or belou) Guaranteed for one year.

Abuse: Damage resulting from an lct of God, or by fire, wind, rain, hail, or any other condition other than normal usage is not covered by the guarantee.

4 - Date of invoice to original user-purchaser and date of receipt by Gates Radio Company of notification from the customer will determine the age of equipment or parts.

5 - In case of adjustment, as on certain transmitter parts listed above "new price" is Gates' current price at time of replacement and/or adjustment.

6 - This guarantee covers only Gates manufactured parts and complete Gates equipments including all parts therein, with exceptions as noted. Any purchased part not manufactured by Gates will be subject to the manufacturer's guarantee, unless such part is a unit incorporated in Gates manufactured equipment.

7 - Transcription pickups, regardless of make, are guaranteed for ninety days - said guarantee including every associated part of the pickup except the stylus, which because of its fragility is not guaranteed by Gates.

8 - Where the replacement part in question must be supplied under the guarantee before the defective part can be returned for inspection, as might sometimes be required, the customer will be billed in full and credit or adjustment will be given on receipt of the defective part in accordance with this guarantee and the terms herein. In order for credit adjustment to be received in line with this guarantee the defective or replaced part must be shipped prepaid to Gates Radio Company or to any other destination requested by Gates within two weeks of the date of the invoice covering the replacement part. Any item alleged defective shall not be returned to Gates until after written permission has been first obtained from Gates' home office at your request.

9 - All shipments under this guarantee will be made f.o.b. Quincy, Illinois and all materials returned will be shipped prepaid by the customer f.o.b. Quincy, Illinois

10 - As a material part of this guarantee the customer agrees to employ capable technical personnel to maintain all equipment under this guarantee in good, normal condition, properly serviced and cleaned and to use said equipment as and for the purpose intended by seller. This guarantee does not extend to the supply by Gates of any personnel to make any replacement, repair or adjustment.

11 - Gates shall not be responsible for damages to items in transportation or careless handling; or injuries to persons or damage to property arising out of the use or operation of Gates equipment or parts, but Gates will supply repair or replacement items speedily, which will be billed to the customer who, in turn, will place claim with the carrier, with assistance from Gates if necessary and when so requested.

12 - Delays in fulfilling any part of this guarantee because of depleted stock, floods, war, strikes, power failures, transportation delays, or failure of suppliers to deliver, or because of Acts of God or any other conditions beyond the control of Gates, does not in any way render Gates liable under this guarantee; however, every effort will be made to render prompt service.

13 - Gates agrees that this equipment sold is manufactured, where need be, under Royalty License Agreements with Western Electric Company and Radio Corporation of America.

14 - This Guarantee is not transferable from the original user-purchaser, and no right of subrogation is given herein.

15 - This Guarantee is effective on all standard Gates cataloged items sold after June 11, 1951.

Gates Radio Company

Symbol No.
Dwg. No.

Description

Crystal \& Oven
Crystal \& Oven
Fuseholder
Capacitor, .1 mid.
Capacitor, . 1 mfd .
Variable Capacitor, 20 mmfd .
Variable Capacitor, 20 mmfd .
Capacitor, 150 mmfd .
Capacitor, 680 mmfd .
Capacitor, . 005 mfd .
Capacitor, . 005 mfd .
Capacitor, 47 mmfd.
Capacitor, . 01 mfd .
Capacitor, . 01 mfd .
Capacitor, . 0022 mfd .
Capacitor, . 0001 mfd .
Variable Capacitor, 300 mmfd .
Capacitor, 270 mmfd .
Capacitor, . 005 mfd .
Capacitor, . 005 mfd .
Capacitor, . 01 mfd .
Capacitor, 1 mfd.
Capacitor, . 01 mfd .
Capacitor, . 0005 mfd .
Variable Capacitor, 470 mmfd .
Capacitor, . 0022 mfd .
Neutralizing Capacitor Assembly
(BC-1J and BC-250L)
Neutralizing Capacitor Ass'y ($\mathrm{BC}-500 \mathrm{~K}$)
Capzcitor, . 03 mfd .
Capacitor, . 03 mfd .
Capacitor, . 001 mfd .
Capacitor, . 002 mfd .
P.A. Tank Capacitor, . 00025 mfd .
P.A. Tank Capacitor, . 00025 mfd .
P.A. Tank Capacitor, .0005 mfd .

Input Loading Capacitor, . 003 mfd .
Input Loading Capacitor, . 003 mfd .
Output Loading Capacitor, . 003 mfd .
Output Loading Capacitor, . 003 mfd .
Cap., . 01 mfd .
Fuse, 3 amp.
RF Choke, 2.5 MH
RF Choke, 2.5 MH
RF Choke, 2.5 MH
$6 / 28 / 55$

L4	A-10381-101
L5	
(L6 \& L7)	A-10486-101
L8	A-10387-101
L9	C-19188-101
L10	C-16466-102
L11	
L12	105VB3735
L13	26 FB2843
L14	$30 V B 2344$
L15	A-10391-101
L16	C-19182-101
L17	C-19182-102

R3
R4
R5
R6
R7
R8
R9
RlO
R11
Rl2
0
R13
fill
Rl 5
R16
R17
Rl8
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R90
S7

T1	AF-10461K
T2	AF-10460K

TB3
TB8

6/28/55

First IPA Plate Coil, Gates
RF Choke, 5 MH
Parasitic Suppressor Assembly
RF Choke (6146 Plate Assembly) Gates
Second IPA Plate Coil Assembly
PA RF Choke Assembly, Gates
RF Choke (MiんLER)
PA Tank Variable Coil, Gates
Output Coil, Gates
Output Variablc Coil, Gates
Mod. Mon, Pickup Coil, Gatcs
PA Parasitic Suppressor Assembly
PA Parasitic Suppressor Assembly
(BC-1J, BC-250L)
Meter Multiplier Assembly
Resistor, 51 K ohm
Resistor, 470 ohm
Resistor, 10 ohm
Resistor, 33 K ohm
Resistor, 27 K ohm
Resistor, 35 K ohm
Resistor, 33 K ohm
Resistor, 330 ohm
Resistor, 10 ohm
Control, 50 K ohm
Resistor, 51 K ohm
Resistor, 8000 ohm
Resistor, 27 K ohm
Resistor, 10 ohm
Resistor, 47 ohm (Part of L6 Parasitic)
Resistor, 47 ohm (Part of L7 Parasitio)
Resistor, 1 ohm
Resistor, 100 K ohm
Resistor, 56 ohm
Resistor, 20 K ohm
Resistor, 5000 ohm
Resistor, 1 ohm
Resistor, 51 K ohm
Resistor, 27 K ohm
Resistor, 5000 ohm
P.A. Parasitic Resistor
P.A. Parasitic Resistor

Resistor, 47 ohm
Crystal Selector Switch, D.P.D.T.
Crystal Filament Transformer
Filament Transformer
Terminal Board
Terminal Board

	Symbol No.	Dwg. No.	Description
	V1		Oscillator Tube, 6AG7
	V2		First IPA Tube, 6AG7
	V3		Second IPA Tube, 6146
	V4		Second IPA Tube, 6146
	V5		Regulator Tube, 082
	V6		Clamper Tube, 6AQ5
	V7)		833 A Tubes used in BC-1J
	V8)		
	V7 (only)		833 A Tube used in $\mathrm{BC}-500 \mathrm{~K}$
	V7)		810 Tubes used in BC-250L
	XI		Oscillator Socket
	X 2		First IPA Socket
	$\times 3$		Second IPA Socket
	X4		Second IPA Socket
	X5		Regulator Socket
			Clamper Socket
	(X 7 \& X8)	D-21627-101	Dual PA Tube Socket Assembly, Gates (BClJ)
	X7	D-21627-103	PA Tube Socket Ass'y Gates (BC-500K)
	($\mathrm{X} 788 \mathrm{X8}$)	C-19201-101	Dual PA Tube Socket Ass'y Gates (BC-250L)
	$\times 24$		Crystal Socket
	X25		Crystal Socket
			MODULATOR DECK
	A6		Fuseholder
	A7		Fuseholder
	C38		Capacitor, 5 mfd.
	C39		Capacitor, .5 mfd .
	C40		Capacitor, 5 mfd.
	C41		Capacitor, .5 mfd .
	C42		Capacitor, .5 mfd .
	C43		Capacitor, 5 mfd.
	Cl_{4}		Capacitor, 5 mfd.
	$\mathrm{C}_{4} 5$		Capacitor, 20 mfd .
	$\mathrm{C}_{4} 6$		Capacitor, .5 mfd .
	$\mathrm{C}_{4} 7$		Capacitor, $20-20 \mathrm{mfd}$.
	C48		Capacitor, $20-20 \mathrm{mfd}$.
	C49		Capacitor, . 0025 mfd .
	C50		Capacitor, . 0025 mfd .
	C51		Capacitor, . 0025 mfd .
	C52		Capacitor, . 0025 mfd .
	C53		Capacitor, 20 mfd .
	C54		Capacitor, 20 mfd .
	C55		Capacitor, $20-20 \mathrm{mfd}$.
	C56		Capacitor, 20-20 mfd.
	6/2\%/55		-3- $\quad \mathrm{BC}-1 \mathrm{~J} / \mathrm{BC}-500 \mathrm{~K} / \mathrm{BC}-250 \mathrm{~L}$

	Symbol No.	Dwg. No.	Description
	C57		Capacitor, 10 mfd .
	C58		Audio Coupling Capacitor, 1 mfd .
	C61		Variable Trimmer Capacitor 20-125 mmfd.
	C62, C63		Capacitor, . 01 mfd .
	E8		Time Delay Relay
	F4		Fuse, 5 Amp.
	F5		Fuse, 5 Amp.
	L18		Bias Supply Filter Reactor
	L19		350 V. Supply Filter Reactor
	L20		550 V. Supply Filter Reactor
	L21	AC-10465E	Modulation Reactor ($\mathrm{BC}-1 \mathrm{~J}$)
	L21	AC-10650E	Modulation Reactor ($\mathrm{BC}-500 \mathrm{~K}$)
	L21		Modulation Reactor (BC-250L)
	R31		Resistor, 75 K ohm
	R32		Resistor, 75 K ohm
	R33		Resistor, 75 K ohm
	R34		Resistor, 75 K ohm
	R35		Resistor, 75 K ohm
	R36		Resistor, 75 K ohm
	R37		Resistor, 75 K ohm
	R38		Resistor, 75 K ohm
	R39		Resistor, 10K ohm
	R40		Resistor, 820 ohm
	R41	A-3404-8	Control, 1000 ohms
	R42		Resistor, 1300 ohm
©	R43		Resistor, 1300 ohm
4	R44		Resistor, 820 ohm
	R45		Resistor, 10K ohm
	$\mathrm{RL}_{4} 6$		Resistor, 51 K ohm
	R47		Resistor, 51 K ohm
	R48		Resistor, 51K ohm
	R49		Resistor, 51 K ohm
	R50		Resistor, 62 K ohm
	R51		Resistor, 8200 ohm
	R52		Resistor, 75 K ohm
	R53		Resistor, 10K ohm
	R54		Resistor, 10K ohm
	R55		Resistor, 75 K ohm
	R56		Resistor, 8200 ohm
	R57		Resistor, 62 K ohm
	R58		Resistor, 4700 ohm
	R59		Resistor, 4700 ohm
	R60		Resistor, 8000 ohm
	R61		Resistor, 8000 ohm
	R62		Resistor, 4700 ohm
	R63		Resistor, 4700 ohm
	R64		Resistor, 20 ohm
	R65		Resistor, 20 ohm
	R66		Rheostat, 1000 ohm
	R67		Rheostat, 1000 ohm
	R68		Resistor, 250 ohm

6\{28/5.5 -4- BC-1J/BC-500K/BC-250L

Symbol No. Dwg. No.
R69
R70
R71
R72
R73
R74
R75
R76
R77
R78
R79
R80
R81
R.32

R91

T3	AI-3002
T4	
T5	
T6	AMi-10464E
T6	AM-10649E
T6	AP-10462K
T7	AF-10463K
T8	AF-10460K

TB2
TB6
TB7
TB9
V9
V10
V11
V12
V13
V14
V15)
V16)
V15)
V16)
V17
V18
V19
V20
$6 / 28 / 55$

Description

Resistor, 62 K ohm
Resistor, 100K ohm
Resistor, 75 K ohm
Resistor, 27 K ohm
Resistor, 2.2 megohm
Resistor, 2.2 megohm
Resistor, 2.2 megohm
Resistor, 2.2 megohm
Resistor, 47 K ohm
Resistor, 2.2 megohm
Resistor, 2.2 megohm
Resistor, 2.2 megohm
Resistor, 2.2 megohm
Resistor, 47 K ohm
Resistor, 3000 ohm

Input Transformer
Driver Transformer
Driver Transformer
Modulation Transformer (BC-lJ)
Modulation Transformer ($\mathrm{BC}-500 \mathrm{~K})$
Modulation Transformer
$(\mathrm{BC}-250 \mathrm{~L})$
Power Transformer
Dual Filamont Transformer
Bias Transformer
Filament Transformer
Terminal Board
Input Terminal Board
Output Terminal Board
Terminal Board
Tube, 6SN7GTA
Tube, 6SN7GTA
Audio Driver Tube, 1622/5881
Audio Driver Tube, 1622/5881
Audio Driver Tube 1622/5881
Audio Driver Tube, 1622/5881
Modulator Tube, 833A used in BC-1J/BC500K

810 Tubes used in BC-250L
Bias Supply Tube, 5R4GY
350V. Supply Tube, 5R4GY
550V. Supply Tube, 5R4GY
550V. Supply Tube, 5R4GY
-5- $\quad B C-1 J / B C-500 K / B C-250 L$

Symbol No. Dwg. No. Description

X9
X10
X11
Xl2
XI 3
X14
(X15\& X16)
D-21627-102
(X15\& X16)
C-19201-102
X17
X18
X19
$X 20$
X26

Turret Socket
Turret Socket
Socket
Socket
Socket
Socket
Dual Modulator Tube Socket Assembly (BC-1J/BC-500K)
Dual Modulator Tube Socket Assembly (BC-250L)
Socket
Socket
H.V. Socket
H.V. Socket

Socket, (For Time Delay, E8).

CONTROL PANEL

Filament Pilot Light Assembly (Green) Plate Pilot Light Assembly (Red)
Pilot Lamp
Pilot Lamp
Power Rheostat, 400 ohms (BC-1J/BC-500K)
Filament Rheostat, 7.5 ohms
($\mathrm{BC}-1 \mathrm{~J}, \mathrm{BC}-500 \mathrm{~K}$)
Power Rheostat, 1000 ohms (BC-250L)
Filament Rheostat, 16 ohms (BC-250L)
Resist.jr, 3000 ohms
Filament Start Pushbutton Switch (Black)
Filament Stop Pushbutton Switch (Red)
Plate Start Pushbutton Switch, (Black)
Plate Stop Pushbutton Switch (Red)
Multi-Meter Switch

METER PANEL

Filament Voltmeter, 0-15 V. A.C.
Modulator Plate Meter, $0-1$ amp. in $\mathrm{BC}-1 \mathrm{~J}, 0-500 \mathrm{MA}$ in $\mathrm{BC}-500 \mathrm{~K}$ and $\mathrm{BC}-250 \mathrm{~L}$ Multi-meter, O-1 MA D.C. Movement with $0-30,0-300 \mathrm{MA}$ D.C. Scale
P.A. Plate Meter, $0-1$ amp. in $B C-1 J$
$0-500 \mathrm{MA}$ in $\mathrm{BC}-500 \mathrm{~K}$ and $\mathrm{BC}-250 \mathrm{~L}$ P.A. Plate Voltmeter, 0-3000 V. D.C. in $B C-1 J$ and $B C-500 \mathrm{~K}, 0-2500$ V. D.C. in $\mathrm{BC}-250 \mathrm{~L}$

R89 A-10534-101
$6 / 28 / 55$
Multimeter Series Resistor Assembly

RELAY PANEL

	Symbol No.	Dwg. No.	Descriotion
	El		Filament Contactor
	E2		Plate Contactor
	E3		Master Overload Relay
	E4		Modulator Overload Kelay
	E5		P.A. Overload Relay
	E6		Grid Undercurrent Relay
	E7		Time Delay Relay
	Fl		Cartridge Fuse, 30 amp .
	F2		Cartridge Fuse, 30 amp .
	R83		Adjustable Resistor, 5 ohm
	R84		Adjustable Resistor, 5 ohm
	R85		Resistor, 3000 ohm
	TB1		Terminal Studs (Part of Mechanical Ass'y)
	X23		Time Delay Relay Socket
			INET ASSEMBLY
	B1		Ventilating Fan
3	$\begin{aligned} & \text { C59 } \\ & \text { C60 } \end{aligned}$		Input Filter Capacitor, 8 mfd . Output Filter Capacitor, 2 mfd.
	L22	AC-10458E	Input Swinging Choke ($\mathrm{BC}-1 \mathrm{~J}$)
	L23	AC-10457E	Output Smoothing Choke ($\mathrm{BC}-1 \mathrm{~J}$)
	(L22 \& L23)	C-19199-101	Filter Choke Ass'y (BC-500K, BC-250L)
	R86		Fan Dropping Resistor, 500 ohm
	R87		Fan Dropping Resistor, 750 ohm
	R88		Blecder Resistor, 100K ohm
	R89, R90		PA Dropping Resistor, 3500 ohm, 160W.
			Door Interlock Switch Door Interlock Switch
	T11	AP-10459E	Power Transformer (BC-lJ)
	TII	AP-10651E	Power Transformer ($\mathrm{BC}^{\text {-500K }}$)
	Tll	AP-7235E	Power Transformer (BC-250L)
	T12	AF-10456K	Rectifier Filament Transformer
	TB4		Meter Terminal Board
	TB5		Control Panel Terminal Board
	TB10		Modulation Monitor Terminal Board
	V21		Rectifier Tube, 8008
	V22		Rectifier Tube, 8008
1	X21		Rectifier Socket
	X22		Rectifier Socket
	6/28/55		-7- $\quad \mathrm{BC}-1 \mathrm{~J} / \mathrm{BC}-500 \mathrm{~K} / \mathrm{BC}-250 \mathrm{~L}$

$$
\begin{aligned}
& \text { NOTE: - FUSE LOCATED IN RhEOSTAT ON BOTTOM OF XMITTEP. } \\
& \text { (IF BLOWN NO PLATE VOLTAGE) }
\end{aligned}
$$

FROINT VIEW

SIDE VIEW

REAR VIEW

Vmeneran			OUTLINE DIMENSIONS$3 C .1 J / 3 C 500 \mathrm{~K} / \mathrm{BC} 250 \mathrm{~L} / \mathrm{HF}$	
-	m-1	mivir	matl.	part mo.
Optox	$\pm 1 / 10$	± 0		
20070 4100	$\pm 1 / 4$	$\pm \infty$		DwG. No.
ADCOT is x	$\pm 1 / 9$	$\pm \pm 20$	GAG GATES RADHO COMPANY	C.19144
ADore $\%$	$\pm 1 / 6$	\pm	gumat, muat	C-19144

World Rediohistory

NOTE -
nA" - C17, A . 00027 Mica used only on Frequencies of 850 KC to 540 KC
"Bn - C23, A. 0005 Mica used only on Frequencies of 800 KC to 540KC (Change-Over Broadcasting)
"C" - C31, A . 00025 Mica and C32, A. 00025 Mica always connected in parallel and used on all Frequencies. C33, A. 0005 Mica paralleled with C31 and C32 on Frequencies from 850KC to 540 KC .
"D" - C34, . 003 Mica and C36, . 003 Mica used as Load Condensers, 1600KC to 860 KC .
"E" - C34, .003 and C35, . 003 used in parallel for Frequencies, 850 KC to 540 KC .
"F" - C36, . 003 and C37, . 003 used in parallel for frequencies, 850 KC to 540 KC .
"G" - Short Out RF Choke LII on Freq. 1200 KC to 1600 KC between 1200 KC and 540 KC , use both LIO and Lll in series.

