20\% discount

WORLD

Denmark DKr. 65.00 Germany DM 15.00 Greece Dra. 950 Holland Dfl. 14

+ WIRELESS WORLD

December 1995 £2.10
New preamp concept

Transparent LPT i/o

Enhanced FM detection

Classic valve audio

Switch-mode power module

Matlab's DSP toolbox

Big screens for tomorrow's tv
50Ω matching
Hectroffs

4 reasons why you should sioose...

 AIIE, MIGRO-PBOTWO FREE microcontrollers
PSU, parallel cable \& data sheets nlus FREE IC extractor tool luded
(1) FAST data transfarconnegts to PC paralle! por!
(2) Field programmable hardware for FREE future devies support

(4) MICRO PRO is approved by ATMEL for programming their complete range of FLASH microconirellars

229, Greenmount Lane, Heaton, Bolton, Lancashire BL1 5JB. UK.
Tel: (01204) 492010 Fax: (01204) 494883 Int. dialling code (UK (+44 1204)
E-mail: sales@equintec.demon.co.uk
Visit our Web page at:
www.demon.co.uk/equintec

1012 AUDIO PREAMP SIMPLE BUT SOUND

Reg Williamson demonstrates how an impedance converter helps keep design simple and transparent to the audio passing through.

1015 ENGINE MANAGEMENT

Eric Russel explains how electronic engine management is evolving from the race track to the highways.

1021 A NEW SENSOR FOR MEDICINE

Developed with medical applications in mind, this new opto-electronic technique could speed up diagnosis.

1024 DISPLAYS FOR BIG TV

Large screen tv is going to need a new display technology. Peter Willis looks at two of the contenders.

1026 DEMODULATION - A NEW APPROACH

Capable of improving performance in both am and fm systems, Archie Pettigrew's new detection technique involves an amplitude-locked loop.

1034 CLASSIC VALVE POWER
Morgan Jones presents a few of the classics in valve audio power including the Williamson and Mullard 5-20.

1040 SIGNAL PROCESSING IN A TOOLBOX
Allen Brown looks at an extension to Matlab specifically designed for solving dsp problems.

1045 TRANSPARENT I/O VIA LPT
The main disadvantage of using the printer port for analogue and digital i / o is that you have to unplug the printer. Or do you?

1058 POWER MODULES FOR QUASI-RESONANCE

Relative to monolithics and discretes, power multi-chip modules represent an excellent compromise for quasiresonant switch-mode power.

1066 INTERFACING THE GPS RECEIVER

Nigel Gardner presents a low cost readout interface for Rockwell's Microtracker system.

1071 ADVANCES IN DIGITAL VIDEO
Video developments spotted at the recent broadcast and professional exhibition - Vision '95

1074 IS MATCHING EASY?

Ian Hickman looks at the pitfalls involved when matching source and load impedances.

1084 DO YOU KNOW FOSTER SEELEY?

Amazed at the widespread misunderstanding of how FosterSeeley's discriminator works, Richard Brice sets the record straight.

1087 ANALYSING AC

Owen Bishop explains how circuit simulators handle various facets of ac analysis.

REGULARS

1003 COMMENT

Waiting for the mobile data train

1004 NEWS

TVS breakthrough, Pentium power down, Pocket video.

1008 RESEARCH NOTES

Hdtv, Commercial micromotors, Chemical weapon, The sun's magnetic field, Organics breakthrough.

1050 CIRCUIT IDEAS
Static noise limiter, Fast logic isolator, Video transmission on vhf, Solid-staterelay, Pwm generator, Programmed bandpass filter.

1069 LETTERS
PhoneDay fiasco, Field hazards, Is EMC approval needed, Audio power

1079 NEW PRODUCTS
Pick of the month - classified for convenience.

Next month: Orientation via magnetic sensing, Valve power, Duncan on CMR and cable modelling. JANUARY ISSUE - ON SALE 28 DECEMBER

20\% DISCOUNT

EW readers can obtain 20% discount on an RS232 controllable i/o subsystem with 8 analogue inputs, 24 digital i/o lines, power drivers and counting and timing capabilities - page 1023.

Micromotors ready for the high street? See page 1034.

Special reader

 discount of 30\% Plug a Pico module into your LPT port and turn your pc into a spectrum analyser, scope, f-meter, dvm or data logger. Due to exceptional demand, Pico Technology is allowing us to repeat this offer - page 1023.

quickroute 3.5

Schematic \& PCB design for Windows 95 and 3.1

"moving from schematic to layout could not be easier" review of Quickroute 3.0 in Electronics World \& Wireless World Jan 95

Quickroute, the integrated electronics design solution, available with:

Schematic capture, net-list import \& export, Gerber file import \& export, WMF, DXF, SPICE \& SpiceAge export.
\square Integrated auto-routing on 1, 2 or up to 8 layers. Copper fill for creating regions of copper.
\square Engineering change allows changes on a schematic to be propogated forward onto a PCB.

Prices range from $£ 399.00$ down to just $£ 68.00$ (prices exclude post\&packing, and V.A.T).

SCAN BAR CODES FOR $£ 29.50$ HEWLETT PACKARD HP71B
As easy to use as a calculator but as powerful as a computer

- A powerful set of basic functions, statements and operators - over 230 in all - many larger computers don't have a se of basic instructions in this complete.
- Advanced statistics functions enabling computations on up to 15 independent variables.
- Recursive subprograms and user defined functions.
An advanced internal file system for storing programs and data - the HP71 has continuous memory - when you turn the computer off it retains programs and data.
A keyboard that can be easily customise for your specific application.
- HP-1L Interface pre-installed to create a system that can print, plot, store, retrieve and display information. Control or read instruments or speak to other computers 5000 bytes/sec. Built in ROM includes 46 separate commands. Interface to HP-1L, HP-1B, RS232C, GPIO or series 80. Includes connection cables.

These are second user systems ex DHSS are fully tested and working but have no programming (THAT IS UP TO YOU) HP71B Bar-code Reader AC Power Supply (Works from batteries normally) Keyboard Overlay (Limited quantities) Unknown Program Memory Modules.. (Limited quantities) Complete kit of HP71B $\quad £ 3.00$ (Prices include VAT - delivery $\mathrm{E}_{\mathrm{M}} .00$) (UK only) (Currently selling in USA for US $\$ 500$) Allow 7 days for delivery

SPECIAL OFFER

Buy 2 Kits For $£ 59.00$

Other products at give-away prices
Numeric keypad for 'AT' computer
$£ 5+£ 2$ Carrlage (Carriage FREE if ordered with above)
INTERCONNECTIONS LTD
Unil 51, InShops, Wellington Centre, Aldershot, Hants GU1I 5DB Tel: (01252) 341900 Fax: (01293) 822786

CIRCIE NO. I115 ON REPI Y CARD

COMPONENIS \& SYSTEMS FROM LOSTS

System Components from ISO9001 Source Half Size ISA Single Board Computers 386SX-40 to 486DX4-100 with PC/104, 2 Serial Ports IDE \& FDD \& Printer Port and a variety of on-board functionality's: FLASH/ROM Disc. Cache. VGA CRT/Flat Panel Controller PC/104 Modules
386 \& 486 CPUs, Solid State Disc, Isolated RS232/485
VGA CRT/Flat Panel Display \& SVGA Controllers PCMCIA types I, II \& III
System Enclosures with Passive Backplanes Colour \& Mono Flat Panel LCD Displays System Integration and Support

2c Chandos Road, Redland
Bristol, BS6 ORE
Tel: 01179730435
Fax: 01179237295

EDITOR
Martin Eccles
01816523128
EDITORIAL
ASSISTANT
Rob Allcock
01816528638
CONSULTANTS
Jonathan Campbell
Philip Darrington
Frank Ogden
DESIGN \& PRODUCTION Alan Kerr

EDITORIAL
ADMINISTRATION
Jackie Lowe
0181-652 3614
E-MAIL ORDERS
jackie.lowe@rbp.co.uk
ADVERTISEMENT
MANAGER
Richard Napier
0181-6523620
DISPLAY SALES
EXECUTIVE
Malcolm Wells
0181-652 3620
ADVERTISING
PRODUCTION
Christina Budd
0181-652 8355
PUBLISHER
Mick Elliott
EDITORIAL FAX
0181-652 8956
CLASSIFIED FAX
0181-6528956
SUBSCRIPTION
HOTLINE
01622721666
Quote ref INJ
SUBSCRIPTION
QUERIES
01444445566
FAX
01444445447
NEWSTRADE DISTRIBUTION
David G. Sanders
01816528171
BACK ISSUES
Available at $£ 2.50$
ISSN 0959-8332

REED
BUSINESS
PUBLISHIING

Waiting for the mobile data train

None would question the value of mobile communications. The mobile telephone has quickly become a commercial necessity for many business travellers and a vital security tool for the more vulnerable in society.
It is equally self-evident that the transmission of digital speech over the airwaves is little different from the transmission of data files. So why are we still waiting for the mobile phone operators to get there act together and start promoting mobile computing services?
The somewhat cynical view is that the mobile phone operators are reluctant to promote a mobile data which makes less efficient use of their networks. UK cellular phone operators Cellnet and Vodafone can already offer $9600 \mathrm{bit} / \mathrm{s}$ data transmission on their digital GSM networks. But arguably they have no real incentive to heavily promote that capability while they are so preoccupied with building up their numbers of mobile phone subscribers.
The view of most mobile phone manufacturers is that voice traffic will dominate European networks for a long time yet, and in the view of one European mobile phone manufacturer, mobile data "is still seen as a Christmas tree decoration by many service providers."
One mobile phone supplier has been selling a PCMCIA data modem for its handsets since 1993. But the operators are unimpressed by its $£ 400$ price tag to which the supplier responds "The operators are still only talking about voice."
While equipment makers blame the operators. who in turn point the finger at the developers of what they call "the necessary applications software"--whoever they might be. The growing number of laptop computer users must wait a little longer for a service which will allow them to communicate without wires.
One man who is far too astute not to recognise the absurdity of a world without mobile computing is Dr Andy Grove, who sits on top of Intel, the \$13bn microprocessor giant. But without a suitable mobile communications network in the US, poor old Dr Grove had to come to Europe and its GSM digital cellular network to demonstrate the type of mobile data services he would like to see making money for Intel in the market.
"I am overjoyed about the existence of the GSM data technology," said Dr Grove. "It is a very significant development and very important for us." Point made.
The point is that the ability to transmit data at standard modem rates of $9.6,14.4$ and even $28.8 \mathrm{kbit} / \mathrm{s}$ is available today. This isn't rocket science after all. So what is the problem?

...not having a suitable mobile communications network in the US, poor old Dr Grove had to come to Europe...

Part of the problem is the array of different radio protocols already used for mobile data services. As well as Cellnet and Vodafone the UK has around five radio data networks using at least three different protocols.
No longer is the transmission of digital data over radio a question of physics, but making it commercially attractive for programmers to sit down and compile the pages of computer code which will shape the services users want. From questions of interoperability between the various protocols to the design of graphical user interfaces, the mobile computing market is hamstrung by issues which were solved in the desktop market ten years ago.

It will take the commercial might of the PC industry to smash the logjam which has so paralysed the mobile phone community. Only now are there signs that the likes of Intel and Microsoft are looking for action in the mobile computing market.

Richard Wilson

[^0]Overseas advertising agents: France and Belgium: Pierre Mussard, 18 20 Place de la Madeleine, Paris 75008. United States of America: Ray Barnes, Reed Business Publishing Ltd, 205 E. 42 nd Street, NY 10117. Telephone (212) 867-2080.
Tlx 23827.
USA mailing agents: Mercury Airfreight International Ltd Inc, 10(b) Englehard Ave, Avenel NJ 07001. 2nd class postage paid at Rahway NJ Postmaster. Send address changes to above.
Printed by BPCC Magazines (Carlisle) Ltd, Newtown Trading Estate,
Carlisle. Cumbria, CA2 7NR
Typeset by Wace Publication Imaging 2-4 Powerscroft Road, Sidcup, Kent. DA14 5DT
©Reed Business Publishing Ltd 1995 ISSN 09598332

Will pass transistor logic make cmos obsolete?

Engineers at Hitachi have demonstrated marked savings in power, area and delay characteristics of circuits using its pass transistor logic (PTL). The firm sees PTL as an alternative to cmos for designing low power, ULSI ICs.
According to Yasuhiko Sasaki, at Hitachi's Central Research Lab in Tokyo, a PTL adder implementation is twice as fast as an equivalent cmos implementation, and yields a 40% area saving. "However, to date PTL has been limited to circuits of several hundred transistors only. For larger circuits it does not work well as it is difficult to synthesise," said Sasaki, speaking at this year's IEEE symposium on Low Power Electronics in California.
To exploit PTL for larger designs, Hitachi has extended its previous work and developed its 'multi-level pass transistor logic' (MPL). Its earlier PTL is based on single-level logic. Here source-drain inputs are connected to each other while gate
inputs are driven by the circuit's primary inputs only. "This results in a lot of unshared logic making it difficult to exploit redundancy," said Sasaki.
In Hitachi's MPL approach, gate inputs are either driven by the primary inputs or from the outputs of other pass transistor circuits. This introduces a hierarchy in logic designs enabling circuitry to be shared. Delay is also reduced due to the more parallel circuit operation that results.
In experiments, Hitachi has used MPL to synthesise 27 random logic circuits selected from a microprocessor. "The effect of multilevel optimisation is clearly confirmed for circuits with a longer delay," said Sasaki.
On average total power was reduced by 23%, the area by 15%, and delay by 12%.

- The first commercial use of Hitachi's successor to CMOS
technology - PASS Transistor Logic (PTL) - is due out next year according to Dr Tsugio Makimoto, executive managing director of Hitachi's chip business.
The first use of PTL in a commercial chip will be for the next generation of Hitachi's SH series of microprocessors - the SH4.
SH4 will show a dramatic five fold performance increase over the SH3 - an increase in power from the 60 MIPS SH3 to a 300 MIPS SH4. The SH4's designer, Toshimasa Kihara, said: "PTL is a kind of magic. It reduces transistor count, giving us a $20-30 \%$ improvement in die size, power consumption and speed.'
PTL is different from cmos in that, with cmos, transistors are charged by cmos and discharged by nmos, but in PTL they are both charged and discharged by nmos.
This reduces both the size and the number of transistors required considerably saving silicon space.

Data-rate boost for mobile computing is imminent

Developers of digital mobile phone systems on both sides of the Atlantic are proposing new standards which will increase the data rates available for mobile computing on cellular telephone networks.
Nokia Mobile Phones has proposed to the European standards group, ETSI, a new data interface specification for the GSM mobile phone system which will support a $28.8 \mathrm{kbit} / \mathrm{s}$ data rate. This is the equivalent of the V .34 wireline modem rate and three times the speed of the current $9600 \mathrm{bit} / \mathrm{s}$ GSM data

Qualcomm, developer of the CDMA digital radio protocol which will be used by mobile phone networks in the US and Korea, is planning to increase data throughput to $64 \mathrm{kbit} / \mathrm{s}$ in 1997.
Like GSM, the CDMA system uses a $13 \mathrm{kbit} / \mathrm{s}$ data rate on the radio channel supporting voice and $144 \mathrm{kbit} / \mathrm{s}$ data rates. According to Chris Simpson, Qualcomm's vice president of international sales, the same channel codec will support a $32 \mathrm{kbit} / \mathrm{s}$ data rate in the 1.25 MHz radio channel, which should be available sometime next year. Richard Wilson, Electronics Weekly sized gadget, called Silicon View as a proof-of-concept for storing MPEG-compressed video and audio on solid-state storage. With a 40 MB pc card, Silicon View can play back four minutes of video on its 312-by-230 resolution screen with the audio/video signal compressed 23 -fold to $1.4 \mathrm{Mbit} / \mathrm{s}$. Silicon View employs NEC's MPEG-1 decoder IC and weighs 295 g . However, the gadget is unlikely to be commercialised until IGbit drams become a reality early in the next century and will initially be expensive, requiring five such chips to provide 60 minutes of video playback. Silicon View follows on from a similar gadget called Silicon Audio which stored 26 minutes of audio on a flash pc-card.
rate.

Chip set for CDPD

VLSI Technology has introduced its first chipset and software drivers for the cdpd data over cellular communications technology currently gaining favour in the US.
CDPD (cellular digital packet data) provides $14.4 \mathrm{kbit} / \mathrm{s}$ data transmission
over cellular telephone networks. In the US it is being deployed as an overlay to existing AMPS analogue cellular networks. The development of digital GSM data services has effectively stifled any European market for CDPD.

B. BAMBER ELECTRONICS

Hewlett Packard Power Meter Type 435A, £550 Hewlett Packard Power Meter Type 436A, £650 Hewlett Packard RMS Voltmeter Type 3400A, £250 Hewlett Packard Modulation Analyser Type 8901A, POA Hewlett Packard Spectrum Analyser Type 8566A, POA Farnell Portable Synthesized Signal Generator $10-520 \mathrm{MHz}$ Type PSG520, £475
Farnell Synthesized Signal Generator, 0.001 Hz to 110 KHz , $£ 125$
Racal Dana Frequency Counter Type 1998, £900
Racal Dana UHF Frequency Counter Type 9916, £175
Tektronix Oscilloscope Type D755, £250
Tektronix Oscilloscope Type 475, £495
Marconi Signal Generator, 10 KHz to 510 MHz Type TF2008, £400
Marconi AM/FM Signal Generator, 10 MHz to 520 MHz , Type TF2015, £200
Marconi RF Millivoltmeter Type TF2603, $£ 75$ Marconi Spectrum Analyser Type, TF2370, $£ 950$ Wiltron Programmable Sweep Generator Type 6610S, £500 Wiltron Scalar Network Analyser Type 560A, $£ 800$

Storno Starnet Mobile Radio Trunking Control System Type RA7728/00. Complete with 21 Storno 9000 Series Fixed Stations UHFNHF. POA

All items subject to availability. Technical information by telephone only.
All prices include Carriage. No VAT. Callers by appointment only.

5 STATION ROAD, LITTLEPORT,

 CAMBS CB6 10E PHONE: ELY (01353) 860185 FAX: ELY (01353) 863245CIRCLE NO. I(\% ON REILI CARD

5Field Electric Ltd.
Tel: 01438-353781 Fax: 01438359397 Mobile: 0836-640328 Unit 2, Marymead Workshops, Willows Link, Stevenage, Herts, SG2 8 AB

102 Key IBM compatible keyboard terminated to 6 pin mini din type PS2 plug
Yuasa NP 1066 v 10ah sealed lead acid battery New
NEC CMV 123ne $12^{\prime \prime}$ colour VGASVGA 800×600
Sony $9^{\prime \prime}$ colour Trinitron KTM 1000 Ub data for RGB
$12^{\prime \prime}$ Mono VGA (paper white) chassis enclosed 240V
AT\&T $16^{\prime \prime}$ graphics colour monitor terminal 25 pin D connector with keyboard new \& boxed
Coutant DCIDC converter new 48 v in 5 v out 5 a
240 v to 110 v 80 W Toroidal transformer auto new 12 vdc Fans $90 \times 25 \mathrm{~mm}$ qty discount
Sony video cassette player VP5040 NTSC/PAL/SECAM
Star Serial (RS232) interiace IS-8XM new boxed
Calcomp 2200 digitizer (slight case damage)
CCD Barcode reader ideal for EPOS etc: reads high and Iow density barcode RS H.V Probe 610-281 now boxed
Mains conditioner and UPS please ring
HP 7470a Plotter IEEE including interface cable
HP 3551a Transmission test set
Tektronix 7a 13 DIFF: COMPARATOR
Tektronix 7A18 dual trace amp plug in
Tektronix 7853 dual time base plug in
Tektronix 7A15A amp plug in
Tektronix 7CT1N curve trace plug in
Tektronix 7012 AD converter plug in
Tektronix 5440 M/F 5a48/5a13n/5b4
Switchcratt plug new qly discounts
Chessel 301 chart recorder
Mannesman Tally 910 laser printer (needs some attention)
Astec SA 30-1306 +5@2A +15@1.8A-15@.3A new boxed
AT\&T Starlan 10 network hub model E
Racal Dana 9301 R.F millivoltmeter true R.M.S.
Stag Prom eraser SE100
Elan E9D copier/programmer EPROM/EePROM editing and interface new boxed Olivetti $386 / \mathrm{IBM}$ compatible $\mathrm{s} / \mathrm{c}, \mathrm{c} / \mathrm{w}, 1.44 \mathrm{/} / \mathrm{d}, 40 \mathrm{Mb}, \mathrm{IDC} \mathrm{h} / \mathrm{d}$ serial/parallel/mouse/ colour vga ports etc k/board, small case, 4 spare SL015/1Mb Ram upgradable to 8 Mb Wandel/Golterman IDC2 measuring set for group delay:attenuation receiver

PLEASE ADD 17.5\% VAT. TO ORDER: RING FOR C/P PRICES NOT SHOWN: OFFICIAL ORDERS AND OVERSEAS ENQUIRIES WELCOME

[^1] YOUR SURPLUS OR REDUNDANT COMPUTER HARDWARE/GOOD TEST EQUIPMENT ETC
£8.00 c/p £3. 75
£7.95 c/p $£ 4.00$
£ $2.95 \mathrm{c} / \mathrm{p} £ 4.00$
$\$ 59.00 \mathrm{cp} £ 14.00$ $£ 59.00 \mathrm{c} / \mathrm{p} £ 14.00$
$£ 50.00 \mathrm{c} / \mathrm{p} £ 12.00$ £30.00 cip $£ 15.00$
$\$ 90.00 \mathrm{c} / \mathrm{p} £ 18.00$
£6.00 c/p $£ 2.50$
$£ 7.00 \mathrm{cp} \mathrm{p} £ .00$
$£ 3.00 \mathrm{cp} £ 1.50$
£280.00
£4.00 cp 2.00
£70.00 ep $£ 6.00$ £70.00 $\mathrm{c} / \mathrm{p} £ 6.00$
$£ 95.00 \mathrm{c} / \mathrm{p} £ 17.00$
$£ 565.00$
$£ 200.00$
$£ 75.00 \mathrm{c} / \mathrm{p} £ 9.00$
$£ 75.00 \mathrm{cp} £ 9.00$
$£ 175.00 \mathrm{cp} \mathrm{p} 10.00$
£ $450.00 \mathrm{c} / \mathrm{p} £ 12.00$ £ $140.00 \mathrm{c} / \mathrm{p} £ 10.00$ £140.00 £1.50
$£ 40.00 \mathrm{c} / \mathrm{c} £ 15.00$
£ 110.00
$£ 3.50 \mathrm{cop} £ 2.00$ £150.00 c/p 916.00 £ $185.00 \mathrm{c} / \mathrm{p} \$ 15.00$ £ $110.00 \mathrm{c} / \mathrm{p}$ §16.00 £ 195.00 /p $£ 18.00$
$£ 125.00$
£130.00

CADPAK is especially suited to educational, hobby and small scale schematic and PCB design. CADPAK includes both schematic drawing and 32-bit PCB drafting tools but as an entry level product, there is no netlist link between them.

```
CADPAK FOR WINDOWS
CADPAK FOR DOS ............ £79
149
```


PROPAK has all of the features in CAPAK plus netlist based integration, automatic power plane generation and a powerful auto-router. PROPAK includes enough schematic capture and PCB design functionality for all but the most demanding applications.
PROPAK FOR WINDOWS £ 495 PROPAK FOR DOS £ 395

Call or fax today for a demo pack. Please state whether you would like a DOS or Whidows pack.

TVS breakthrough handles low voltages

Anew transient-voltage suppressor know as an enhanced punchthrough diode is said to offer sharp knee voltages to well below 1 V .
Developed jointly by Semtech and
the University of California, the enhanced punch-through diode is fabricated using IC technology. It comprises a p+n+zener in series with a pin diode to cut capacitance and

Standoff Voltage M

leakage current.
The enhanced punch-through diode can be considered as a bipolar transistor with light base doping. This makes punch-through occur at a lower voltage than the conventional avalanche breakdown voltage between collector and emitter. The four layer $\mathrm{n}+\mathrm{p}+\mathrm{p}-\mathrm{n}+$ structure is responsible for the low clamping voltage, low capacitance and low leakage. The $p+$ and p layers are lightly doped to prevent the reversebiased $\mathrm{n}+\mathrm{p}+$ junction from avalanching.
The first products to appear will have clamping levels of 4.3, 4.9 and 6.5 V at 1 A .

Leakage current and capacitance of the pmop enhanced punchthrough diode are orders of magnitude lower than typical pn zener diodes.

British GaAs lags

Thenhe UK is not putting enough effort into GaAs technology despite recent work of Middlesex University's Microelectronic Centre that promises low power, high speed GaAs-based static ram cells.
Dr Ebrahim Bushehri, deputy head of the centre and leader of the vlsi design group said: "Europe is putting more emphasis and spending a lot more money than the UK on high speed GaAs digital circuits and design methodologies."
Dr Bushehri stresses that GaAs is no longer an esoteric technology confined to research labs but a commercial reality. He cites Vittesse's $0.6 \mu \mathrm{~m}$ mesfet GaAs technology capable of a million transistor devices as one example.
The centre's SRAM research work also involves collaborative work with the German Fraunhofer Institute for applied solid state physics, and uses high electron mobility transistors, hemts.

The research's motivation follows an idea of the group's for reducing power: "With existing SRAMs, the cell's cross-coupled inverters are used for storing data and driving the bit lines. For fast operation, the inverters need to be large to source and sink the bit-line's currents," said Dr Bushehri.
The centre's adopted design decouples the bit-line's driving inverters from the data storage. This enables the inverter size to be reduced, and the resulting standby current, saving on overall power dissipation.
Based on the centre's simulation work the hemt static ram cell has a standby current of $14 \mu \mathrm{~A}$ and an active current of 0.29 mA . This contrasts with the traditional six transistor direct coupled fet logic (dcft) cell currently used for GaAs that requires $570 \mu \mathrm{~A}$ and 1.14 mA currents.
Dr Bushehri said that at present the

Where are you?
London-based software company Softwair unveiled its Personal Navigator device based on global positioning systems, GPS, from Trimble - at the Motor Show in October. Suitable for use with portable computers, Navigator's software combines a cd-rom containing map data with GPS position information to pinpoint the user's location on the ordnancesurvey map display. Companies such as Panasonic, Bosch and Alpine are looking into introducing similar devices within the next two years.
hemt approach is limited to 6000 gates due to yield problems. He believes however that this will soon be solved. The most natural application area for the work is for very high speed cache memory: "We are developing a design methodology that will enable very high performance circuits."
Roy Rubenstein, EW

Pentium power down

A120MHz Pentium microprocessor aimed at portable computers with integrated power saving features to extend battery life has been released by Intel. The company is also set to unveil a new technology that brings together Internet and video communications.
At least ten major manufacturers of portable computers plan to make new models based on the new Pentium chip. The device features Intel's voltage reduction technology which reduces the inner core of the microprocessor to 2.9 V while being used in a 3.3 V environment. This can boost power savings by almost one third.
The new microprocessor costs $\$ 680$ in 1000 unit quantities. Intel will also unveil a technology it calls Intercast which combines a cable tv or antenna based video link with an Internet connection. Users of pcs will need a regular Internet connection and a new PCI digital-analogue conversion card that will translate an incoming analogue signal into digital video. Intel will sell the card for about $\$ 150$.

MICROMASTER LV PROCRAMMER

The Only True $3 V$ and $5 V$ Universal Programmers

ce Technology's universal programming solutions are designed with the future in mind. In addition to their comprehensive, ever widening device support, they are the only programmers ready to correctly programme and verify 3 volt devices NOW. Operating from battery or mains power, they are flexible enough for any programming needs.
The Speedmaster LV and Micromaster LV have been rigorously tested and approved by some of the most well known names in semiconductor manufacturing today, something that very few programmers can claim, especially at this price level!
Not only that, we give free software upgrades so you can dial up our bulletin board any time for the very latest in device support.
Speedmaster LV and Micromaster LV - they're everything you'll need for programming, chip testing and ROM emulation, now and in the future.

Speedmaster LV 4495

Programmes 3 and 5V devices including memory, programmable logic and $8748 / 5$ I series micros.
Complete with parallel port cable, software, re-charger and documentation.

Micromaster LV

4625

As above plus support for over 130 different Microcontrollers, without adaptors, including PICs, 89C51, 68HC705/7II, ST6, Z8 etc.

8 bit Emulator card $\in 125$
Expansion card for Speedmaster IV/ Micromaster LV containing 8 bit wide ROM/ RAM emulator. Emulates 3 V and 5 V devices. Includes cable and software. Configuration: $128 \mathrm{~K} \times 8$ expandable to 512 K by 8 .

16 bit Emulator card $£ 195$

As above but containing 16 bit ROM/RAM emulator. Configuration: 128 K by $16,256 \mathrm{~K}$ by 8.2 by 128 K 8 , expandable to 512 K by $16 / 1024 \mathrm{~K}$ by 8

ICE Technology Ltd. Penistone Court, Station Buildings, Penistone, South Yorkshire, UK $\$ 30$ 6HG
Tel: +44 (0) | 226767404 Fax: +44 (0) 1226370434
BBS: $+44(0) / 226761 / 81(14400,8 \mathrm{NI})$

FEATURES

- Widest ever device support including EPROMs, EEPROMs, Flash, Serial PROMs, BPROMs, PALs, MACH, MAX, MAPL, PEELs, EPLDs, Microcontrollers etc.
- Correct programming and verification of 3 volt devices.
- Approved by major manufacturers.
- High speed: programmes and verifies National 27C512 in under II seconds.
- Full range of adaptors available for up to 84 pins.
- Connects directly to parallel port no PC cards needed.
- Built in chiptester for $\mathbf{7 4 0 0}, \mathbf{4 0 0 0}$, DRAM, SRAM.
- Lightweight and mains or battery operation.
- FREE software device support upgrades via bulletin board.
- Next day delivery.

For a copy of our catalogue giving full details of programmers, emulators, erasers, adaptors and logic analysers call, fax or dial the BBS numbers below.

RESEARCH NOTES

Jonathan Campbell

Green light for hdtv?

f the making of high-definition tv programmes is ever to become the norm rather than the exception there is a desperate need for a compact high-performance camera that is much lower in cost than anything currently available. Now, researchers at the NHK Science and Technical Research Laboratories in Tokyo think they may have the answer - a completely new image acquisition system that uses four ceds instead of the standard red green blue approach. This dramatically reduces the number of pixels required.
It is cheaper, smaller and lighter than normal hdtv cameras and a prototype was used successfully for news gathering following the Hanshin earthquake.
CCD imaging is increasingly
popular for hdtv. But systems need approximately 2 million pixels to satisfy broadcast standards.
Unfortunately, using a large number of pixels means the area of each pixel has to be small, narrowing the dynamic range, causing a drop in the aperture ratio, degrading highlight characteristics and lowered yield.
The NHK design uses a 16 mm ccd camera - smaller than the usual 25 mm format - with only 1.3 million pixels. To compensate for the reduction, the researchers use a fourth ccd to boost the sensitivity of the system in the area where the eye is most sensitive
Instead of the normal rgb (Yoshihiro Fujita et al, IEEE Transactions on Broadcasting, Vol 41 , No 2, pp76-82), two of the four

Emphasising the green component allows better resolution to be obtained from a smaller camera.
ccds are assigned to green light, with other two being used for red and blue as normal. Putting more emphasis on the resolution of the green signal improves efficiency and makes the system compatible with the human eye which has a much greater sensitivity to luminance signals than chroma signals: 70% of hdtv luminance signals come from the green component.
Colour separation in the four-ccd prism is essentially the same as with an rgb prism, with the addition of a half mirror to separate the green light into two portions. The resulting system meets resolution requirements as two 1.3 million pixel ccds - 2.6 million sampling points - are allocated to the green channel containing most of the luminance information, with 1.3 million pixels for each of the red and blue channels and the chroma information.
The prototype camera is reported to have fully satisfied hdtv requirements, demonstrating a resolution of 1200 tv lines, sensitivity F5 at 2000 lux and a dynamic range of 500%. Signal-tonoise ratio is 52 dB . Size of the camera is 96 mm by 250 mm by 293 mm , including the 16 mm viewfinder, and it weighs in at 5.7 kg . Yoshihiro Fjuita, NHK Science and Technical Research Laboratories, 1-10-11 Kinuta, Setagaya-ku, Tokyo 157, Japan.

Cogs turn for commercial micromotors

Cheap and practical micromotors may soon be with us. This follows the news that researchers at Sandia National Laboratories in the US have used conventional microelectronic fabrication techniques to build a micro device that can drive external gearing.
Developing $0.5 \mu \mathrm{~W}$ of power delivered through a gear $50 \mu \mathrm{~m}$ in diameter, the motor could operate tiny micromedical pumps in drug delivery
systems inside the body. It could also act as low-cost, high-performance gyroscope, having a dramatic impact on the design of future automobiles and military systems - both motor and gearing have much less mass than their macro-world counterparts and so can survive impact better.
So far, several hundred million rotations have been demonstrated by the smaller gears. But the breakthrough is in using etching
processes and silicon materials already in use in the microelectronics industry to open up the possibility of mass production.
"We believe we are the first to demonstrate a really good silicon micromotor that can connect up with a variety of devices," says Jeff Sniegowski, the scientist who - with engineer Ernest Garcia and group leader Paul McWhorter - has led the effort to build the millimetre-square
engine and its even tinier gearing.
Sandia's construction method actually extends a technique first developed at the University of California at Berkeley. The basic batch process - which, when perfected, should leave behind thousands of fully assembled, operational microengines - begins on a silicon substrate.
Researchers deposit a layer of electrically insulating material and then a film of polycrystalline silicon, patterned to form electrically conducting lead-ins.
On top of this, a film of sacrificial silicon dioxide serves as a support layer as the remainder of the structure is built. When it is removed, by several etching processes, openings through the oxide allow the next applied layer of polysilicon to anchor to the insulating layer on the substrate. This is how the vertical axles for gears and elastic supports for the engine are formed. Other layerings and subsequent removals of the oxide free the gears and linkages.
During the process, silicon nitride is added, functioning as a grease to let the gears turn more freely.
As a final step, hydrofluoric acid is added to remove all the sacrificial supporting layers of silicon dioxide.
The final motor consists of two tiny silicon combs with a shuttle placed
between them. The edges of the shuttle also form combs with teeth that interdigitate with those of the stationary combs.

Applying an on-off voltage to energise the stationary combs alternately, pulls the shuttle by electrostatic attraction so that an attached shaft will turn a drive gear in a quarter of a circle during the shaft's power stroke.
Another comb-drive engine, at right angles to the first, is timed to turn the gear on the second quarter of its rotation. The two drives, alternating their force, turn reciprocating motion into rotary motion to drive the gear completely around.
Electronic circuits not part of the micromotor chip drive the motor.
Sandia researchers are currently working to place control circuitry next to the microengine, and to develop a single chip with circuits and machines fabricated side by side.
Paul McWhorter, Sandia National Laboratories, Albuquerque, New Mexico, 87185-0167, USA. Paul_I_McWhorter\%smtplink.mdl.s andia.gov@sass165.sandia.gov

Sandia has used microelectronic techniques to build a microengine that could be mass-produced. The output drive gear is $50 \mu \mathrm{~m}$ in diameter.

Close up of the output gear of Sandia's microengine.

Chemical weapon - or just a bad egg?

A^{n}n easy-to-use transducer and receiver system that establishes the acoustic response characteristics of a container and its contents is being used as a non-invasive alternative to normal analysis of chemical weapons.

The (ars) system, developed at the Los Alamos National Laboratory in the US, could also prove useful for much more peaceful applications such as detecting salmonella in eggs or measuring intraocular pressure.
Acoustic resonance spectroscopy is a non-invasive system that uses a sensor head with two transducers attached magnetically to the container being tested. One transducer induces minute vibrations in the container while the other detects the resonance frequencies at which the container naturally vibrates. The pattern of the vibration frequencies is affected by the physical properties of the contents and can be used as an acoustic signature.

Traditional methods of verifying the contents of chemical munitions require a hole to be drilled into the container and a sample of the fill extracted for laboratory analysis. It is time-consuming and has the potential
to contaminate the environment and expose workers to nerve gas or other chemical agents.

But, by measuring the acoustic vibrations of an object, the Los Alamos instrument quickly and safely identifies the fill content of chemical weapons or other containers holding toxic substances. To identify the chemical fill, vibration patterns can be matched with signatures in a library, and the entire procedure takes less than a minute and the operator is never exposed to the chemical contents of the container.

Measuring the vibrational modes of objects is a well-established technology. But using acoustic signatures to identify fill materials and the software algorithms that implement this identification put the instrument ahead of traditional technologies.
Originally developed with the Defense Nuclear Agency as a noninvasive inspection tool to verify compliance with treaties on chemical weapons destruction, the detector could prove suitable for any noninvasive identification of fill materials in sealed containers.

Los Alamos says the technique
could be extended to quality control applications too, in which defective parts have a different acoustic signature than their good counterparts. Paul Lewis, Los Alamos National Laboratory, California, USA. lewis@lanl.gov

Video holograms showing some of the vibrational resonance modes of a 105 mm munition. Each 'contour' corresponds to $0.5 \mu \mathrm{~m}$.

Picturing the sun's magnetic field

Physicists at Nasa have just released the first instantaneous view of the spiral structure of the solar system's magnetic field. The picture shows how the lines of magnetic force originate in the Sun and extend outward into the solar system.
Nasa's snap-shot, assembled from observations of radio waves by a USFrench radio receiver on the Ulysses spacecraft, shows the spiral magnetic field extending from the Sun past the orbit of the planet Venus toward the orbit of Earth

From its vantage point over the south pole of the Sun in 1994, Ulysses was able to track the path of the bright spot of radio waves excited by moving electrons ejected from the Sun at speeds over $62,100 \mathrm{mile} / \mathrm{h}$.
Radio emissions - caused by the fast electrons moving through with the slower solar wind - allow the magnetic lines of force to be traced out in a way similar to deducing the course of a road at night from an airplane by tracking the headlights of individual cars.
A chart of the received radio

emissions shows that they follow the expected spiral shape, even including the kinks due to variations in solar wind speed.
Previous radio observations made by space probes orbiting in or near the plane of the Earth's orbit did not provide a good vantage point for observing the spiral shape of the magnetic field. Observations in space are required because the radio frequencies of the solar wind do not get through the Earth's ionosphere. Goddard Space Flight Center, Greenbelt, MD, USA.

View from the north ecliptic pole is based on Ulysses radio measurements made as it was passing over the Sun's south pole. The white symbols represent the actual observations of the location of outward moving streams of electrons, ejected from the Sun on October 25 and October 30, 1994. The numbers indicate the frequency of radio emission, so that '940' represents emission at a radio frequency of 940 kHz .
Mercury, Venus, and Earth are shown in their approximate true positions at the time of observation - the large orange circles illustrate their orbits around the Sun. A yellow arrow points out the location of the Sun where a solar flare explosion on October 25, 1994 ejected the electrons tracked by Ulysses on that date. The spiral blue lines illustrate the shape of the magnetic field as predicted from theory for a constant solar wind speed.

Organics breakthrough into low power devices

Structure of the heterojunction TFT with alpha-6T and C_{60} active layers that could open up production of low power organic complementary circuits.
$W^{\text {ork on thin film organic }}$ transistors has produced several p-channel versions based on one combination of materials, and $n-$ channel versions based on others. But researchers at AT\&T Bell
Laboratories have now announced development of an organic transistor structure with two active materials that permits both p -channel and n -

channel operation in a single device
For the first time, fabrication of complementary circuits - with all their well-known advantages in terms of power dissipation and device lifetime - could now be possible with organic technology
First active layer of the device, adjacent to the gate dielectric (A Dodabalapur et al, 'Organic Heterostructure Field-Effect Transistors', Science, Vol 269, pp. 1560-1562) is alpha-6T, a thiophene oligomer which has been used in p-channel devices. This layer is about $10-20 \mathrm{~nm}$ thick. Second layer for n-channel operation, is C_{60} and is about $20-40 \mathrm{~nm}$ thick. A third
electrically inactive layer is deposited on top of the C_{60} to protect it.
Energy levels of the highestoccupied and lowest-occupied molecular orbitals of the two materials is such that when the gate is biased negatively with respect to the source, the p-channel material is filled with holes; and when the gate is biased negatively, the n-channel material is filled with electrons.
Other experiments have since been successfully carried out with alternatives to alpha-6T and C_{60}, the only requirement being that the materials have similar highestoccupied and lowest-occupied molecular orbitals.

PROTEUS ${ }^{\circ}$
 RUIEUS

Thee Complese Flecrioniss Deaign Syetim

Schamatic sapture

- Easy to Use Graphical Interface.
- Netlist, Parts List \& ERC reports.
- Hierarchical Design.
- Extensive component/model libraries.
- Advanced Property Management.
- Seamless integration with simulation and PCB design.

Simutation

- Non-Linear \& Linear Analogue Simulation.
- Event driven Digital Simulation with modelling language.
- Partitioned simulation of large designs with multiple analogue \& digital sections.
- Graphs displayed directly on the schematic.

PCEB DOSIMR

- Unlimited Design Capacity.
- Multi-Layer and SMT support.
- Full DRC and Connectivity Checking.
- Advanced Multi-Strategy Autorouting.
- Output to printers, plotters, Postscript, Gerber, DXF and DTP bitmaps.
- Gerber View and Import capability.

Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756753440 . Fax: 01756752857. 53-55 Main St, Grassington. BD23 5AA.

Audio preamp simple but sound

Reg Williamson's preamplifier is possibly the first to use a generalised impedance converter. This reactive block helps keep the design simple and transparent to the audio signal passing through.

Designed to be as simple as possible, this circuit is transparent and provides two basic functions - equalisation and gain control.
A universal interface for almost any programme source and following power amplifier is also provided. Inclusion of an equaliser was an attempt to disprove that even a properly designed equaliser would al ways subjectively degrade signal quality in some way.
Distortion plus noise is less than 0.05% at 1 kHz and 3.5 V rms with the gain controls at maximum - and these results are from a source with an inherent 0.03% thd+noise figure. Maximum output swing is 10 V rms.

Equalisation and gain control
Despite its apparent simplicity, the design is wholly innovative in concept. It offers flexibility of overall gain, modest equalisation of high and low ends of the audio spectrum around a central point of 1 kHz , and gain control.
The whole system is transparent, with no phase inversion - the bête noir of the purists. When set to the electrical centres of their respective controls, the reactive elements of the equalisers are virtually out of circuit. With these settings, the circuit behaves as a unity gain amplifier with 100% negative feedback.
Even so, reactive elements can be switched out altogether with a single double pole on/off

Does component price make a difference?

Listening tests were carried out involving 31 people with a high quality programme source of varied music material. Some of these were music enthusiasts from the Recorded Music Society, but a few were 'professional listeners'.
The idea was to make two identical preamplifiers. One was built using off-thepeg components and the other had highly expensive alternative components such as super-capacitors and resistors, and even gold plated sockets.
A comparative switching system was also provided to allow the listener to switch randomly between the original programme source and either of the two preamplifier outputs. High quality electrostatic headphones provided the audio output.
In all cases, individual gains were matched at 1 kHz within 0.2 dB and any equalisation controls set to a measured linear position. The listener did not know which output was which
The tests demonstrated what we expected - that hardly anyone could tell any difference between all three sources. Of the 341 steps in the test, there were 248 opportunities to detect the inclusion of the preamplifier in the audio chain. Only 24 of these were noticed, and even then, the differences were described as 'slight' or 'doubtful'.
Besides confirming the amplifier's transparency, these tests also indicate that exotic components - whether passive and active - are a waste of money.
switch. In either the midband nominally linear setting or the switched-out position, overall gain of the pre-amplifier is as originally selected by the constructor and is totally flat. Reactive elements for the low end include for the first time, a generalised impedance converter, which simulates an inductor in series with a resistor.
The whole is flexible in design, allowing for variation. However in this instance, circuit parameters selected result in the controls having a shelving action, limiting equalisation to 6 dB . Because the same reactive elements are used for both attenuate and accentuate functions, there is absolute symmetry of the two respective curves.

Negative feedback gain control

Gain control adopted is also unusual, being a negative feedback type. For high gain settings, and low signal level inputs, feedback is reduced - for low gain and high level signal
inputs, it is increased. While using a linear control, the action is sensibly logarithmic and unlike some other versions, has a genuine zero gain position fully anticlockwise. It contributes a maximum gain of 20 dB and has a very low output impedance of 600Ω.
It could be argued that a balance control is redundant these days, but one can be fitted. However, it is easier to fit a concentric gain control which is, fortunately, still available.
To complete the flexible interface requirements, the input is a unity gain buffer stage without phase inversion and 100% negative feedback. Input signals of differing mean levels can be accommodated by a passive L pad at the input. Distortion and noise are negligible and maximum peak-to-peak voltage swing is far in excess of normal requirements.

Further reading

Watling, Alan, 'Golden Ears?', Hi-Fi News, May 1994.

Response of the preamplifier subjected to a 5 kHz squarewave at 6 V pk-pk amplitude. Output loading was the quasi-standard of $50 \mathrm{k} \Omega$.

A tribute to Peter Baxandall

This article is offered in tribute to the late Peter Baxandall, my friend and technical mentor for almost 40 years. His observations and evaluation of my design ideas I appreciated highly.
This design was the last valuable service he did for me. With modest deference, I thought my equaliser an ideal replacement for his own 43 year old brain-child that rightly bears his name worldwide. It was with characteristic generosity that he gave my alternative his warm and unstinting approval - accompanied by three A4 pages of detailed analysis.
Peter never failed to find some useful facet of the design procedure that I had overlooked. For virtually half a century, his unique abilities contributed to the art and science of audio engineering.
He will be greatly missed.

Simulation of boost and cut curves with the preamplifier's tone controls set flat and at maximum and minimum. Centre curves show phase shift. Measured results tally.

有 Cooke International Services wishes you a

Santa's storehouse for all your Test Equipment needs Also
Operating and service manuals plus accessories
S.Preen Dis. Spectrum Analyzer. $0.01-21 \mathrm{GHz}$ Direct. Complete with; 182T. Large Tek. 7 LL . Spectrum Analyzer. $20-5 \mathrm{MHz}$, Complete with: Opt: 25 Tracking Generator $20 \mathrm{~Hz}-5 \mathrm{MHz}$; L3 Module 1M2, $50 \Omega, 600 \Omega$ and 7603 Readout Display 1650 Gould Os300, DC-20M Hz Portabie Dual Trace General Purpose Scope............170 H.P. 1715A. DC.200MHz Porsble Dual Trace Scope with; Deita Time, Time Interval and Delayed Sweep Plus Opt: 035; Built in DMM (50Hz) ACDC Volte, Hames 203. DC-20MHz Portable Dual Trace General Purpose Scope s135 Philips. PM3056. DC.50MHz Portable Dual Trace Scope with; LCD panel for direct Readout of settings, Microcomputer control and Autoset Function. Philips PM3262. DC-100MHz Portable Dual Trace Scope with Delay. $£ 350$ Tek. 2215. DC-60MHz Portable Dual Trace Scope with delay. Tek. 7504. DC-90MHz Four Slot (Main Frame). Tek. 7704. DC-150MHz Four Slot (Main Frame), with Read Out. Tek. 5A15N. Single Trace Amp Plug In. DC-2MHz
Tek. 5A21N. Differential Amp Plug In. DC- 1 MHz
Tek. 5B10N. Single Sweep Time Base Plug In. 1nOns-58/div
Tek. 7 B12N. Dual Time Base Plug in. 100 ns -5s/div
Tek. 7A12. DC. 105MHz. Dual Trace Amplifier Plug $1 n$, with Offset
Tek. 7A18. DC.75MHz, Dual Trace Amp Plug In.
Tek. 7A26. DC. 200 MHz . Dus Trace Amp Plug In.
Tek. 7B53A. Dual Time Base. 5 ns .5sidiv. Trig to 100 MHz .
Tek. 7B53AN. Plug In. As above but without CRT read out.
Tekk. 7B71. Delaying Time Base. Plug In.
Tek. 7D10. Digital Events Delay. One to 10.7 events.
Tek. 7S11. Sampling Unit. 2 mV /div to 200 mV Vdiv
Tek. S-2. Sampling Head. DC-4. 6 GHz \qquad Tek. S.3A. Sampling Head. DC. 1 GHz \qquad Avo. 8. Universal A vometer. (needs batteries).
AVO. 8. MK Il. Universal Avometer. (needs batteries).
Avo. 8. MK III. Universal Avometer. (needs batteries)
 Midwest Microwave, 294.9. Minipad Attenuator. 9dB. DC-2GHz SMA............. $£ 25$ Fluke. 1953A. Counter Timer. DC-520MHz, 9 Digit Display; Frequency, Frequency Ratio, Period, Time Interval; with Opt: "C" $50-520 \mathrm{MHz}$ and Opt: 16 LEEE 488 Interface. H.P. 5328A, Performance DVM.

SEND LARGE S A E FOR LISTS O

Alterty Amas

Farnell. H60/25. 0-60 Volt. 0-25 Amp. Metered, Variable P.S.U. 5300 Thurlhy. PLa10. Digital Display P.S.U. 0-30 Volt 0-1 Amp; Variable Current Limit And Damping.
 Weir. 761.1. 0-30V/0-2A. or 0-15V/0-4A. Metered. Variable P.S.U. Farnell. LF 1. Sine/Square Oscillator. $10 \mathrm{~Hz}-1 \mathrm{MHz}$. $1 \mathrm{mV} \cdot 12$ Volt. $\mathbf{f 1 2 5}$ General Radio. 1383. Noise Generator, 20 Hz -20MHz. $30 \mu \mathrm{~V}-1 \mathrm{~V} .50 \Omega$. H.P. 3200 B. V.H.F. Oscillator. $10-500 \mathrm{MHz} .0-200 \mathrm{~mW}$. 50Ω.. 185 LeCroy. 9210. Programmable Touch Screen Pulse Generator; Complete with 2 X $9211 \mathrm{DC} \cdot 250 \mathrm{MHz}$ Output Modules, GPIB etc. ... 5750 Marconi. TF2828 PCM Digital Simulator $£ 450$
 Marconi. 2913. IV Test Line Generawor and Inserter; Opt $311 \mathrm{C}=$ Standard $£ 60$ Philips, PM5771. Pulse Generator. 1Hz-100MHz 80 mV -10V 500 Phal 50 . 51 Ferrograph. RTS-2. Recorder Test Set. Combines, Oscillator, Millivaltmeter, Wow Ferrograph. RTS-2. Recorder Test Set. Combines, Oscillator, Millivoltmeter, Wow Fluke 760A Meter Calibrator
AC and DC Voltmeters, Ammeters, Ohms, Multimeters etc: $0.001 \mathrm{~V}-1000 \mathrm{~V} .100 \mu \mathrm{~V}$ Resolution. DC. $1 \mu \mathrm{~A}-10 \mathrm{Amp} .0 .001 \mathrm{~V} \cdot 1000 \mathrm{~V} .60 \mathrm{~Hz}$ and $400 \mathrm{~Hz} .100 \mu \mathrm{~V}$ Resolution. AC.
$1 \mu \mathrm{~A}-10 \mathrm{Amp}$. 60 Hz and 400 Hz . $1 \mu \mathrm{~A}$ Resolution AC Amp. $0-10 \mathrm{M} \Omega$. 1Ω Resolution. Ohms. .. $£ 300$ Gould. K1. Le 5050 Huntron. 1000. Tracker. (HTR1005B-1S)... Keithley. 706. 100 Channel Scanner. 7 Digit Display Complete; with 7x 7066 Relay Switch Cards 10 Channels per card. .. Racal. 9009 . Modulation Meter. $8 \mathrm{MHz}-1.5 \mathrm{GHz}$ AMFM. \qquad ROTEK. 3980A. Precision AC/DC Calibrator; AC/DC Voltage and Resistance ROTEK. 3980A. Precision ACDC
Currents to 50 Amps ; High Accuracy: 0.005% DC and $0.05 \% \mathrm{AC}$, IEEE Interface Complete with ROTEK 350A. High Current Amplifier Adator; AC/DC Currents 1.10 Amps and AC current to 50 Amps; Both units in current Calibration "Aug 95 expires Aug 96", .. 4875
Stag. PP41. Gang Programmer. 2 Mb RAM, RS232 Interface. Complete with 41M101A. Gang Module. 1 Master and 8 Slaves, 24, 28, 32 Pin IP. 475 Tek. TM501. One Slot Mainframe Power Supply. .. 164 Tek. TM504. Four Slot Mainframe Power Supply. ... 197 Thurlby. CM200. Digital Capacitance Meter. $4^{2} / 2$ Digit LCD display; 1pF-2500 μ F,
 Trend 19.1 Data Tranmision Potal
£285
W\&G SPM-30. Selective Level Meter. $200 \mathrm{~Hz}-1.62 \mathrm{MHz}-100 \mathrm{~dB}$ to +20 dB $\boldsymbol{£ 1 8 5 0}$
Wayne Kerr. B605. Automatic L.C.R Component Bridge....................................... 175

Our Elves await your calls on
(+44) 01243545111 or 545112
or Fax: (+44) 01243542457 ALL PRICES EXCLUDE VAT AND CARRIAGE DISCOUNT FOR BULK ORDERS. SHIPPING ARRANGED OPEN MONDAY TO FRIDAY, 9.00 am to 5.00 pm

Cooke International

 ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham Bognor Regis, West Sussex, PO22 0EBU.K.

Engine management developments

Abstract

Eric Russel looks at how electronic engine management systems developed for the race track are affecting performance in the latest cars intended for the nation's highways.

Computerised engine management systems for cars are becoming more and more popular, and as the number on the road rises so do the horror stories. There is no doubt that such systems are effective, but when problems arise, the support leaves a lot to be desired. Stories are already emerging of out-of-warranty charges of $£ 600$ for a replacement control unit which, in one case, left the car with its original problem.
Components are comparatively inexpensive and there could be an opportunity for electronics entrepreneurs to look at repairs while garages remain mechanically orientated and equipment manufacturers do not want to repair units.

Increased engine efficiency

Although the principal driving force behind the increased popularity of EMS is pollution legislation, there are other reasons for its use. While noxious emissions can be cut by 10% and fuel consumption improved, driveability is also improved by minimising engine speed oscillations during acceleration, for example.

Idle quality is also enhanced because tickover is more tightly controlled. The Lucas Epic engine management system, for example, has a special software routine called adaptive cylinder balancing which compensates for mechanical tolerance variations and wear to ensure smooth running.

Three dimensional profiling

Computerisation has added an extra dimension to engine control. Whereas mechanical linkages can be regarded as two dimensional, with a direct relationship between throttle position and fuel demand, electronic systems have a three dimensional mapping ability which gives a greater range of options. Instead of following points on a flat graph, engine control follows a contoured 3D profile, illustrations of which shown are on page 1019.
Because the 3D map is more detailed it has to be created individually to suit driver, engine and the driving environment. This takes several hours while engine settings are noted, on a rolling road, for example, for a set number of engine speeds. These points are stored in

As this racing car cutout from Zytek shows, above, there are many electronic links between engine and the rest of the car. This is also the trend in road cars, which will soon have more electronics than mechanical systems. Ride, road holding and performance are now all coming under electronic control and it is the current breed of low cost processors which makes this possible. Microprocessor speeds far exceed mechanical response times so it is easy to control suspension, braking and engine in less time than it takes a wheel partially to rotate or for an engine to complete one revolution.

memory and accessed during a journey, with modifications to the engine controls from sensors around the engine.

With the Bosch Motronic EMS, engine load determines how the electronic control unit, ECU, reacts and is computed from air mass flow and throttle position. Air flow sensors are fitted in the air inlet and consist of a flap attached to a potentiometer. As air flow increases the flap rotates and the changing resistance in the potentiometer is measured by the ECU. An air temperature sensor is also connected to the ECU which can then calculate the volume of air entering the engine.
Hot wire or hot film meters can be used to provide an index for mass air flow. A heated element in the air stream is cooled by the air and the heating current needed to return the element temperature to a pre-set value, as measured by an integral sensor, provides the data. The system automatically compensates for variations in air density, a factor that determines the amount of warmth the air absorbs from the heated element.
A 'knock' sensor can also be fitted to an engine to cut pre-ignition problems. Knocking occurs when fresh mixture in the cylinder

Aided by comprehensive and interactive electronic systems, this 4.21 V8 engine - the TVR A/P 8 - can develop 350bhp at $6500 \mathrm{rev} / \mathrm{min}$.
ignites spontaneously before the controlled flame front arrives from the spark plug. This creates a flame velocity some seventy times faster than normal andthe resulting high pressure shock wave is picked up by a knock sensor which again feeds back to the ECU. Pre-ignition causes thermal stresses which can result in mechanical damage.
In the exhaust system a lambda oxygen sensor monitors excess air in the exhaust and feeds back to the ECU which then controls the air to fuel ratio. To complete the monitoring, battery voltage has to be sensed as it affects the operating times of devices such as electromagnetic fuel injectors.

Integrating injection

After a century or so of mechanically operated carburettors, electronically controlled fuel injection seems set to take over as part of a complete concept - computerised engine management. The accent is on software. The engine department is comprehensively monitored and the computerised control of air, fuel flow and ignition timing means optimum combustion.
Optimisation provides the best combination of power, fuel consumption and exhaust emission for any given driving situation. It also means the smoothest idling and maximum engine efficiency during cold running. Systems respond to varying driving and atmospheric conditions as a journey progresses in contrast to mechanical adjustments which are fixed beforehand.
Engine management is the latest development in a trend which began with transistorised ignition in the early 1970s and has been helped by the lower costs of fuel injection due to volume sales. Motor sport's con-

Weber's engine-management system takes into account a wide variety of engine parameters from fuel flow to water temperature. The result is faster engine response, more efficient combustion and fewer noxious emissions.

Zytek's EMS3 has a 32bit Motorola processor allowing dynamic modifications to engine maps. Watertight housing is critical to successful microprocessor operation. Damp, dirt, dust, condensation and extremes of temperature are all enemies of electronics but are the standard environment for car computers. Vibration can also affect in time, pcb mountings, connectors and soldered joints. But car manufacturers demand lightweight control units - an additional problem for designers.

CONSUMER ELECTRONICS

tinual quest to shave fractions of a second off lap times has helped drive development and that harsh environment has ensured robust products. The result has been a radical rethink of engine control, which is now spinning-off into volume cars.

Yet higher integration

One of the leading companies in the field, Weber Concessionaires, has taken EMS a step further with a system that has even greater flexibility and versatility - Alpha Plus. It is a development of the Alpha Engine Management System that is specified, amongst others, by Opel Racing on all their Class 2 touring cars, including the Vauxhall Dealer Sport team, Aston Martin and Caterham for their JE special. John Clelland has just won the British Touring Car championship for Vauxhall using an Alpha system. He clinched the title with two races in hand which indicates how far ahead the Vauxhall was.

A complete Alpha Plus kit can include fuel injectors, engine speed sensor and trigger disc, high-resolution throttle position sensor, inlet air temperature sensor, barometric pres-

John Clelland's Vauxhall Dealer Sport team car-featuring Alpha Plus engine management - wins the British Touring Car Championship 1995.
sure sensor, water temperature sensor, lambda sensor, electronic control unit with integrated ignition amplifier and option of static or capacitive ignition system, cold start extra air valve, fuel pressure regulator, high pressure fuel pump, throttle bodies, wiring harness, inertia safety switch, ignition coil, fuel filter and connector unions, fuel hoses, manifolds, inlet air trunking, air filter mounting flanges and adjustable throttle linkage.
It can monitor external air temperature, turbo-boosted or barometric air pressure, water temperature, throttle angle, engine speed, camshaft timing, gear selection, idle setting and battery voltage. The on-board computer in the ECU processes all these inputs and can control injector opening, spark position, camshaft timing and variable inlet track length. The result is faster engine response, more efficient combustion and less noxious emissions.
To convey engine speed, the trigger disc is bolted to either flywheel or pulley. It is a flat ring with teeth on the outside, one per cylinder and one to indicate top dead centre, and has to be fitted with a concentricity of $\pm 0.1 \mathrm{~mm}$. This accuracy, combined with the ring's low mass in comparison to crankshaft mass, means that no re-balancing is required. The speed sensor is a proximity type and generates a pulse every time a tooth passes. A similar sensor is required on the camshaft to identify cylinder status.
A potentiometer fixed to the end of the throttle spindle conveys driver action on the
accelerator immediately to the ECU which controls engine devices through robust power transistors. These buffer the pcb components from such problems as transient spikes on the vehicle electrics.

Memory for more torque

The microprocessor board also holds a memory chip which contains the calibration settings. These are the optimum settings for a range of driving conditions - up to 256 different combinations of engine speed and throttle position in the case of Alpha Plus. The result is a wider power curve, which provides more torque at low and high revs, and an increase in mid-range performance.
Alpha senses engine load from the throttle position sensor rather than monitoring air flow. This means an immediate response to changed throttle settings because there is no delay while air pressure changes. It is also felt that sensors in the air flow create turbulence and affect volumetric efficiency of the engine, reducing the benefits of EMS.
There is no one combination of settings to suit all drivers so an ECU has to be trained for the vehicle it works with. First, in a calibration session that takes several hours, an engineer feeds into a portable computer up to 256 settings of ignition, air and fuel against a range of throttle positions and engine speeds.
For calibration, either the engine is mounted on a test bed or the car is run on a rolling road where wheel speed, torque, bhp and exhaust emissions are monitored. The application

engineer runs the engine at a series of set speeds and tunes ignition timing and fuel injection using Weber Concessionaires' own software to store settings in a portable computer. These settings are logged against throttle positions and engine speeds.

Once the overall engine performance meets the customer's requirements, the settings are transferred to a memory chip, generally erasable-prom. This is then plugged into the EMS computer on the car. The electronic control unit now knows the precise settings for every expected driving situation and can accurately calculate and adjust fuel, air and ignition timing according to the driver's demands and outside conditions.

Computerised engine management has to monitor and control in real time. This means that the microprocessor has to act immediately on any input. Generally, computers store instructions while the central processor is busy, which then implements them after a short delay. While this may not be noticed in an office application, for example, it could be critical in open-loop engine management, where the computer uses information from combustion in one cylinder to amend within a few milliseconds the calibration of the next cylinder.
Further features the new system include monitoring and self learning of exhaust gas mixture. This helps catalytic converters perform more efficiently and maximises life expectancy.

Alternative management systems

Zytek also supplies sports car engine management systems and its EMS3 system is now 32bit, using the Motorola 68332 processor. Different set-ups can be stored on disk to suit individual drivers or racetracks. There are facilities to switch from one to two injectors per cylinder at a pre-determined engine con-
dition and to transmit engine data over a telemetry link. Carbon fibre also has a place, in a lightweight housing for the ECU. The company also supplies Aston Martin and Rolls Royce.
MBE Systems designs, develops and manufactures engine management systems. Its 941 ECU is a fuel injection and distributorless engine management system for use at serious club and works level motor sport on engines with up to 12 cylinders. Here reliability can win championships as well as speed because regularly collected points can beat irregular first places. For this reason MBE Systems EMS allows users to retain the manufacturer's original parts for reliability and this also helps with availability of spares.
The main ignition and fuel injection maps on the 941 system are arranged with map points every $250 \mathrm{rev} / \mathrm{min}$ with up to 16 programmable throttle points. There are also maps with up to 16 programmable pressure points. Cold start and warm up maps are available and alterable by the user. The system can compensate for inlet air temperature variations.
Fuel is cut off during overtun and a gearshift light acts as a driver prompt. Weight of the unit has been trimmed to 750 g . MBE has developed all its software and hardware inhouse and the management systems need a PC installed with the company's Easimap software, which runs under Windows, and a mapping console. MBE says that using a proven system such as theirs enables vehicles to be certified for road use first time.

16-bit control

A 16-bit microcontroller controls all ECU functions including communication with the company's 933 Traction Control System. This was developed in conjunction with Vauxhall Dealer Sport for the Astra F2 Rally Car. It
measures all four wheelspeeds, lateral G forces and can also accept footbrake and handbrake positions. Twelve levels of traction control can be selected from ice through gravel to tarmac. A serial link connects it to the ECU which then controls engine power output. It differs from many traction control systems by finely adjusting engine characteristics rather than simply cutting ignition or fuel.
Cars manufactured by TVR use EMS from MBE Systems. The current range includes Cerbera, Griffith 500 and Chimaera. All can reach $60 \mathrm{mile} / \mathrm{h}$ in a fraction over four seconds with engines between 4 and 5 litres developing some 340 bhp and providing a top speed about $160 \mathrm{mile} / \mathrm{h}$. TVR Engineering has just developed its own engine, the AJP 8. This is an all aluminium 4.2 litre V8 which develops 350bhp at $6500 \mathrm{rev} / \mathrm{min}$.
Rover Group has developed its own EMS but sells it with an engine. This combination powers Morgans, the Lotus Elite and Reliant Scimitar.

A smooth ride has low priority in racing cars but this is not the case for luxury cars. In the latest Jaguar models, the automatic transmission can control ignition through the engine management system. Ignition timing is retarded during gear shifts to give seamless gear changes and to increase transmission life by smoothing the load on the gearbox components.

Vehicle security is also enhanced because fuel, ignition and cranking are inhibited when the ignition key is removed and computers cannot be hot wired. A coded transponder in the ignition key has over 1000 billion combinations to ensure a robust system.

Exhaust emissions are continuously monitored by sensors in the exhaust system. These communicate with the management system and the mixture to the engine is automatically adjusted to compensate.

CONSUMER ELECTRONICS

Another problem for the ECU to solve in a Jaguar is the extra load from air conditioning compressors. When these switch on during idling, for example, engine speed has to increase to compensate for the extra load.

Wiring it up

Interconnection between ECU, sensors and engine devices increasingly uses serial transmission. Although the principle is the same as the long established RS232 standard, signals have to be much more robust to withstand the harsh electrical environment in cars. Controller Area Network, CAN, is the accepted standard in the automotive industry.
With 8 km of cable harness in some cars at the moment, replacement by twisted pair will mean a great weight saving. Power is wired separately to the command wiring but because it runs as a ring main to all devices there is further weight saving over conventional harnesses. The communications protocol is complex to eliminate the problem of collisions of data on the network and the system can distinguish between permanent hardware failure and occasional soft errors. Defective nodes are automatically switched off the bus, implementing a fail-safe procedure.
Electronic management systems are in turn
breeding advanced mechanical devices. Siemens Automotive has just announced one of the fastest acting injection valves and a lambda probe which fits into an exhaust to monitor emissions. The injector valve has been developed because engine management systems demand faster response from the engine to make most use of the available increased efficiency.
Siemens has achieved a response time of 0.1 ms compared with 0.6 ms of electromechanically operated counterparts. A multilayer stack of piezoelectric material expands to provide mechanical motion from an applied voltage. The amount of movement is measured in micrometres.

And the future?

Once engine control systems are fully established, interest will turn to vehicle handling and the ECU will process inputs from additional sensors. The most advanced system yet proposed comes from Mercedes.
This company's ECU is linked to engine, automatic transmission, brakes, accelerator, steering and a yaw sensor through a CANbus. The accelerator is electronically linked to the engine management system, bringing the Mercedes close to drive-by-wire. A variable
resistor is rotated as the accelerator is depressed to give a much finer control than with mechanical linkage.
Mercedes' system prevents skidding by applying brakes to individual wheels to maintain the car's balance. Control signals to the brakes derive from a computer which compares steering wheel position with the car's direction of travel. When under- or over-steer is detected, the appropriate brakes are momentarily applied and engine torque is reduced. This brings the car back on line.
Key to the system is a solid-state gyro which acts as a yaw detector. Housed under the rear seat of a car it gives an output signal proportional to the rate of rotation about a vertical axis. A database holds all the parameters for optimum handling stability.
Engine management could also work in conjunction with anti-collision radar to reduce engine speed when a vehicle is too close to one in front. It already interacts with intelligent cruise-control systems.
Whether it is through direct involvement or through general interest there is more and more in today's cars to attract the electronics enthusiast.

RF MODULAR EOUIPMENT

TUNED LINEAR POWER AMPLIFIERS

Tuned to your specified frequency in the range $20-250 \mathrm{MHz}$. 10 mW input, 1 watt output . $£ 302$
500 mW input, 10 watts output...
3 watts input, 30 watts output...
5 watts input, 50 watts output..
UHF TUNED LINEAR POWER AMPLIFIERS
Tuned to your specified frequency in the range $250-470 \mathrm{MHz}$.
500 mW input, 5 watts output...
2-3 watts input, 25 watts output ... 545
8 watts input, 50 watts output. £1645

WIDEBAND LINEAR POWER AMPLIFIERS
1 watt output. 100KHz-175MHz. 13dB gain ... $£ 240$
1 watt output. $100 \mathrm{MHz}-300 \mathrm{MHz}$. 10dB gain... 260
1 watt output. 10MHz-16Hz. 15dB gain ...

4 watts output. 1-50MHz. 13dB gain .. 260
4 watts output. 20-200MHz. 13dB gain .. 260

4 watts output. 20-200MHz. 26dB gain .. 450
10 watts output. 1-50MHz. 13dB gain .. 385
10 watts output. 20-200MHz. 10dB gain .. 385
20 watts output. 1-50MHz. 17dB gain ... 550

40 watts output. 1-50MHz. 16dB gain .. 950
40 watts output. 20-200MHz. 10dB gain ... 950

Prices are ex-p\&p and ex-VAT.

PHASE LOCK LOOP FREQUENCY CONVERTER
Up/down converter. $1 / p$ \& o/p frequencies 20 MHz to 2 GHz . $\mathrm{B} W$ up to 50 MHz . NF 0.7 dB . Gain 60 dB variable. $0 / \mathrm{p}$ up to $10 \mathrm{~mW},+10 \mathrm{dBm}$. AGC.. $£ 750$

NARROW AND BROADBAND GASFET LNA's 5MHz-2GHz
$5-250 \mathrm{MHz}$. BN up to 40% of CF. Gain $10-40 \mathrm{~dB}$ variable. NF0. 6 dB .
50 ohms..
$250-1000 \mathrm{MHz}$. NF 0.7dB. Gain 25dB. 50 ohms... $£ 50$

1-2GHz. NF 0.7dB. Gain 20dB. 50 ohms..
As above with active stripline filter. B/W 1\% to 10% of CF.. 395
Iransient protected mains power supply for above preamps.. 65
Masthead weatherproof unit for preamps .. 18
PHASE LOCK SIGNAL SOURCES

Freq. as spec. in the range $250-1000 \mathrm{MHz}$. $0 / \mathrm{p} 10 \mathrm{~mW} . ~ £ 350 ~$
Freq. as spec. in the range $1-2 \mathrm{GHz}$. 10 mW ..
FM up to $\pm 75 \mathrm{KHz}$ max. Freq. as spec. in the range $30-2000 \mathrm{MHz}$.
$0 / \mathrm{p} 10 \mathrm{~mW}$
. $£ 465$
WIDEBAND AMPLIFIERS
$100 \mathrm{KHz}-500 \mathrm{MHz}$. NF 2 dB at 500 MHz . Gain 30 dB . Output 12.5 dBm , 10 mW .50 ohms ...

50 ohms .
Gastet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 2.5 dB at 1 GHz . Gain 10 dB . Output 18 dBm ,
Gasfet. $10 \mathrm{MHz}-2 \mathrm{GHz}$. NF 3.8dB at 1GHz. Gain 20dB. Output 20 dBm ,
100 mW . 50 ohms
$£ 175$
£195
Prices are ex-p\&p and ex-VAT.

RESEARCH COMMUNICATIONS LTD

Unit 1, Aerodrome Industrial Complex, Aerodrome Road; Hawkinge, Folkestone, Kent CT18 7AG, UK Tel: +4401303893631

A new sensor for medicine

Developed with medical applications in mind, Chris Lavers' new opto-electronic technique could make diagnosis quicker, equipment cheaper and sensors smaller.

Currently, there is a need for simple and rapid techniques to detect antigens of medical and veterinary importance. The immune system reacts to attack by producing specific antibodies which will only react with one intruding antigen. They will not react with structurally related compounds, in the same way that only a single key amongst many will fit a given lock. This is the central process of antibody immunoassay.
In the past, immunoassay has involved the use of radionuclides or sensitive detection of fluorescently labelled molecules. However, these methods are now considered unfavourable. They are also slow. As a result, the use of non-labelled molecules has both
practical and psychological advantages over traditional techniques.

An optoelectronic solution

Optoelectronics is taking a leading role in the field of optical sensors, where changes in optical intensity - due to variations in sample environment such as refractive index or absorption - offer the opportunity of on-line sensors for clinical and industrial applications. Semiconductor technology has allowed the fabrication of monolithic integrated chips to be combined with total internal reflection within glass waveguides.
Total internal reflection sensors utilise the existence of the so-called evanescent wave. At

SENSORS

Fig. 2. Transmitted output power of the waveguide (TM/TE) is recorded as a function of time for the following sequence of antibodies bound to the waveguide - a) anti-human raised in goat, b) anti-goat raised in rabbit, c) anti-rabbit raised in goat and d) anti-goat raised in rabbit. As each subsequent layer binds to the preceding layer the transmitted output power is observed to rise in each case.
the boundary between two dielectric media, light incident from a denser medium may be reflected from a rarer medium if the incident light approaches at an angle greater than the critical angle. This angle is $\Theta \mathrm{c}$, where $\sin \Theta \mathrm{c}$ is n_{2} / n_{1}. Values n_{1} and n_{2} are refractive indices of the denser and rarer medium respectively.
In an evanescent wave, the electromagnetic
field decays exponentially with distance from the reflecting boundary. It then probes above the glass surface to about a wavelength's depth into the surrounding medium. This medium may be, for example, a sample of body fluid.
Intensity of the surface wave may be amplified significantly via surface plasmon reso-
nance - an electromagnetic wave travelling along a metal/dielectric surface.
Optical excitation of a surface plasmon resonance is achieved when radiation undergoes total internal reflection at the interface between the glass waveguide and a thin metal film deposited on top.
In the case of a planar waveguide, resonant coupling depends critically on the refractive index of the fluid adjacent to the metal. This technique can monitor small changes in index caused by either deposition of charged ions in an electric field, Fig. 1 or by antibody-antigen binding near the surface of a waveguide, Fig. 2. The deposition technique was reported at OFS9 in Florence 1993 while the binding method is more recent.

Summary

Several advantages can be gained from using sensitive surface plasmon resonance optical sensors. These are small size, optical fibre compatibility, cheap production costs, and disposability.
Use of such multifunctional integrated optical sensors for rapid medical sensing - with monitoring of real-time antibodybinding and detection in minutes - is thus a realistic expectation before the end of this millennium. However, psychological aspects of rapid diagnosis of HIV, pregnancy and indeed any other immune response has not yet been considered fully.

NORTHOF
 CATALOGUE WAS $£ 2.50$ NOW FREE Only the cost of a stamp

THINK COMPONENTS - THINK CRICKLEWOOD

- TELEVISION \& VIDEO SPARES • RESISTORS \& CAPACITORS • HI-FI GADGETS \& SPEAKERS
- TRANSISTORS \& I.C. 's \& AUDIOPHILE CAPACITORS - IN CAR AUDIO • COMPUTER BOARDS • TOOLS \& TEST EQUIPMENT • PLUGS SOCKETS \& LEADS

Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 0181-450 0995 Fax: 0181-208 1441

HSPS - Filter Designer

Windows based, designs Analog $\| R$ and Digital IIRFIR filters. Includes the standard designs plus first and second order parametric filters. Analog filters can be mapped to the digital Domain by a choice of transforms.
Easy filter specification, screen prompts change appropriately for the filler design View filler Amplitude, Phase, Transient Response, Group Delay, Pole-Zero Map. View more than one filter at the same time. Direct manipulation of Poles and Zeros with the mouse. Graphical Interface allows zooming in on response and map detail. Converts Analog Designs to component values for active filters giving E12 resistor and capacitor combinations.
Convents Digital Designs to Filter Coefficients.
Interfaces directly with PC-DSP1, for instantly running digital designs or analog designs mapped to digital domain. $\| \mathbb{R}$ filters can be cascaded within one channel. Supports multiple card systems.

PC-DSP1 signal processing card

DSP card for PC. Occupies 8 bit ISA slot, link selectable PC I/O address. Software control from Filter Designer. Two 16 bit Analog channels. Sample Rates from 5.125 to 48 KHz , including 44.1 and 32 Khz . Uses two 13 MIPs 16 bit DSPs.

Benefits

Speed the design process with last prototyping of analog and digital fitters. Windows graphical interface gives results that are directly usable in documentation. Investigate and implement non-slandard filters by direct placement of poles and zeros. Interactive interface provides a practical approach to understanding pole-zero maps, their responses and the effects of mapping from analog to digital domain.

HSPS Ltd, 53 Mill Road, Over, Cambridge CB4 5PY Tel/Fax: 01954230057

Special offer - pc i/o subsystem for $£ 119$ ex vat
 Suitable for data acquisition and computer

control, projects, Experimenter can form the basis of ATE, automation or process-control applications.

For a limited period, Milford Instruments is offering the Experimenter i/o subsystem to EW+WW readers for 20% discount on the normal list price of $£ 149$.

Compatible with any PC or Mac with an RS232 interface, Experimenter has in-built intelligence and operates from simple ascii commands. It provides -
eight 10bit analogue inputs, $0-5 \mathrm{~V}$

- 24 digital input/output lines
- pulse counting
- pulse-width modulation
-8A, 30V SPDT relay
- Eight 1A power drivers

Programming Via a standard RS232C link operating at 300 to 38.4 kbaud , the Experimenter is controlled by simple ascii codes via comms packages, terminal emulators, or any program that can produce ascii commands via RS232, e.g Qbasic or Pascal. Keying A 0 for example reports the voltage on analogue port zero.

Power input and output Eight drivers source and sink up to IA each. These use an external 4.5 to 36 V dc power source. All eight incorporate output clamping diodes and thermal overload protection. The unit also has an SPDT relay with $8 \mathrm{~A}, 30 \mathrm{~V}$ capability.

Low-level i/o Eight analogue inputs sense signals between 0 and 5.115 V with a resolution of 5 mV . Each of the 24 digital lines are programmable as inputs or outputs with cmos drive and level compatibility.

Counting and timing Four counter timers, each with $10 \mu \mathrm{~s}$ resolution, are settable for durations between $250 \mu \mathrm{~s}$ and 655.35 ms . These can be used to measure period, pulse width and channel-to-channel delay. Counting capability is 65,535 counts between 0 and 1 kHz .

Supplies Experimenter's on-board regulator provides 5 V for the logic from an external 5.5 to 15 V de supply. This is a low drop-out regulator. Board space is provided to allow additional a quiet, precise 5.12 V reference and power supply for analogue measurements and circuits.

Mechanical Measuring 160 by 135 mm , Experimenter is supplied without case and power supply, but including an extensive 76 page manual and sample software.

PC i/o ordering details

Experimenter - built \& tested,
normal price $£ 199,20 \%$ off price Experimenter - kit
normal price $£ 149,20 \%$ off price Case
12 V dc power plug RS232 cable

Please state whether you need DOS, Windows or Mac software on your order and add £3pp, plus VAT to the total price if ordering from the UK.
Order via credit card, postal order or cheque payable to Milford Instruments. Ordering by credit card please state card type, card number, expiry date and address of card holder.
Please post your order to Milford Instruments at Milford House, 120 High Street, South Milford, Leeds LS25 5AQ. For enquiries ring 01977683665 or fax 01977681465.

Exclusive EW+WW reader special

30% discount on printer-port data loggers and virtual instruments

The Pico Technology $A D C-11$ and $A D C-100$ are versatile a-to-d converters for the PC - outlined in this issue. These printer-port plug-ins are supplied complete with software and have a normal list price of $£ 95$ and $£ 219$ respectively, exclusive of VAT and postage. While stocks last, $E W+W W$ readers can obtain the $A D C-11$ for only $£ 66.50$, and the $A D C-100$ for $£ 153.30$, excluding VAT and postage.

$A D C-100$ is a high-performance 100 kHz sampling a-to-d converter that plugs into the pc printer port via its supplied lead. Resolution is 12 bits and nine input ranges cover 50 mV to 20 V full-scale. Each unit is shipped complete with virtual instrument software for turning your pc into a spectrum analyser, frequency counter, dvm or storage oscilloscope. Data-logging software is also included.

For current domestic tv sets, cathode-ray tubes still have no competitors. But crt technology will have to be replaced when large-screen tv comes on line. Peter Willis looks at a few of the options.

High-definition television needs large screens to display it larger than is practical or feasible with cathode ray tubes. Flat panel displays using liquid-crystal displays have been in development for years, but have so far not been produced in sizes much above 20 in , i.e. 50 cm .
Now though, a variety of approaches appears capable of producing large flat panels - the commonly agreed target diagonal is 50 in or 127 cm - in the very near future. Several prototypes were on show at the Berlin IFA during August and September.
Some use plasma discharge, the result of passing high voltage through gas. Thomson showed a plasma screen deploying this phenomenon in the traditional way, as a light source, exciting further light from phosphors. Several Japanese companies are working on similar technologies.
Sony's Plasmatron however, uses plasma discharge as an electronic switch similar to a transistor, to control icds in front of
an independent source of light. The plasma switch takes the form of a channel across the screen, equivalent to a single scanning line, and inputs image signals for that line instantaneously into the liquid crystal.
The system, called PALC, - plasma addressed liquid crystal was developed by Sony in conjunction with Tektronix. According to Sony it has the advantage of relative simplicity and relatively low-cost production. Sony was showing three 30in prototypes in Berlin, and aims to have the first Plasmatron sets in production next year. However, the eventual size of these displays is not yet defined and the name not confirmed.

Each pixel is a rotating mirror
An entirely different technique developed by Texas Instruments has been adopted by Nokia who demonstrated it in Berlin. It uses an array of tiny movable mirrors, one for each pixel, which when

tilted, reflect light onto a back-projection screen. The mirrors, numbering around 500,000 and making up a panel measuring only 1.5 by 1 cm , are part of a semiconductor device. They are created by an etching process, and aithough seemingly microscopic - 900 fit under a grain of salt - they are large in semiconductor terms with a $16 \mu \mathrm{~m}$ cell size. Each mirror is square, and mounted on a pair of torsion hinges at diagonally opposite corners. Output of the chip, instead of going to pins, is taken to electrodes beneath the array, which electrostatically attract individual micromirrors.
For each frame of the television picture, the image is built up by tilting the required mirrors to reflect high-intensity light source onto the screen. Brightness of each pixel is controlied by an 8 bit command which can instruct the mirror to be on for the whoie or part - down to $1 / 256^{\text {th }}-$ of the operation. Three such operations make up each frame, one each for red, green and blue, with the results passed through a synchronised colour filter wheel.
Despite the small size of the picture source, there is no observable line structure on the screen. Developed by Texas Instruments under the tities digital light processing and digital micromirror device, the system can provide a picture of over 50 in or 127 cm diagonal in a cabinet only 15 in or 38 cm deep and weighing a relatively modest 35 kg . The normal array of 440,000 pixels equates to standard definition television, and produces such a startling improvement in image quality as to call into question the need for high definition television. If it were required, a two million micromirror chip could be supplied.
Digital light processing also provides a number of other advantages, including uniform picture geometry, high resolution across the screen area, high contrast over a wide dynamic brightness range and an almost complete freedom from flicker. It also offers the possibility of end-to-end digital video with the ability to address each pixel individually and freedom from noise.

Is mechanical breakdown a problem?s

The reliance on what are in effect a great number of mechanical components might give some concern. One stuck mirror could create a dark, or more obtrusively, a bright spot on the screen. But according to Texas Instruments digital light processing manager, Adam Kunzman, the torsion hinge on which the micromirror's operation depends has been extensively tested and has "never failed". Nor is it expensive. Applicability of the system to a wide
range of uses, including cinema projection, means that the volume and yield of production can be quickly increased, and costs brought down. Eventuaily consumer products costing under $£ 1000$ are thought to be feasible.
Nokia is the first consumer manufacturer to publicly adopt the system, and plans to launch a big-screen set in early 1997. Other partners of Texas Instruments so far announced include cinema, home cinema and business equipment firms but, interestingly Sony is also included. The system is particularly kind to large-scale vdu screens and ohp's. Taiks are understood to be in progress with a number of other companies.
In the contest to produce the definitive flat-panel large-screen display - or even a reliable, affordabie one - digital light processing may prove to have one clinching advantage over plasma-based systems. It does not rely on high-voltage pulses which could contravene regulations on electromagnetic interference.

Conventional projector, left, and a projection system incorporating the digital micromirror device, right. In the DMD system, light from the source passes through a colour wheel and is reflected to both the projection lens and to the light absorber on the right. Picture courtesy Texas Instruments.

Details of the digital micromirror device. 500,000 mirrors - each hinged and capable of rotating independently under digital control - make up a display measuring just 1.5 by 1 cm . Pictures courtesy $T I$.

Abstract

Archie Pettigrew's new demodulator concept uses amplitude-locked loop techniques to produce significant improvements in the quality of fm and am reception.

T=he amplitude-locked loop was developed to overcome a number of fundamental difficulties which have existed since the inception of both amplitude and frequency modulation - am and fm.
With the radio spectrum becoming more crowded each year, and carrier frequencies moving inexorably higher, two basic problems with am and fmansmission become more obvious. Amplitude modulation becomes highly distorted when the carrier fades - or in certain cases, vanishes altogether. Frequency modulation becomes highly distorted and
unintelligible when another fm signal arrives at the antenna at the same time as the wanted signal which is equal in amplitude and of a similar frequency.
Both these breakdown processes are caused by interference in the form of multi-path ${ }^{1}$ Doppler or quasi-synchronous ${ }^{2}$ reception. All these forms become worse as frequency of the carrier is increased i.e. as wavelength is shortened and/or as transmission becomes mobile ${ }^{3}$. By using an amplitude-locked loop and associated circuitry, many of these interruptions can be avoided, and more reliable communications achieved.
This article describes in detail the operation of two demodulators, one for am and the other for fm , using the amplitude-locked loop.

Amplitude-locked loop

The amplitude-locked loop, ALL, is the dual of the phase-locked loop, PLL. It works in the magnitude domain rather than the phase or frequency domain. It consists of a linear multiplier contained inside a high gain, high bandwidth servo loop. ${ }^{4,5,6}$
A phased-lock loop is similar in that it consists of a voltage controlled oscillator contained in a high gain, high bandwidth servo
loop. Figure 1 shows a diagram of the ampli-tude-locked loop ${ }^{7}$.
Carrier from the intermediate frequency stage of the radio enters the ALL at the first port of the linear multiplier. The second port of the multiplier is set to a nominal value of unity. The modulated carrier passes through the multiplier to the modulus detector which accurately detects the modulus of the carrier down to white noise levels.
A dc reference voltage compares and subtracts the incoming modulus voltage and a difference or error voltage is generated, $e(t)$. This voltage is integrated and reversed in sign. Output of the integrator is added to the restoration voltage which sets up the operating conditions - or bias conditions - of the loop.
When no carrier amplitude is present, the loop is out of lock. The integrator drifts to its maximum voltage and the multiplier is at maximum gain awaiting an input. When the carrier appears, an initial transient occurs as the loop pulls into lock. Servo feedback causes the carrier amplitude at the output of the multiplier to be fixed or locked to an amplitude defined by the loop reference voltage.
Let a simple amplitude modulated carrier $v_{1}(t)$ be described as,

Fig. 1. Amplitude-locked loop consists of a linear multiplier, modulus detector and a high gain integrator. When the loop is closed, envelope variations of the carrier are reduced to insignificant proportions due to servo action and an error signal called the inverse modulus is produced.

$v_{1}(t)=[1+m(t)] \sin \omega t$
where $m(t)$ represents the modulating function of time and $\sin \omega t$ is the normalised carrier amplitude of ω radians per second.

After some mathematical analyses, a number of amplitude-locked loop identities become evident. Assuming that open-loop gain is sufficiently high that servo theory is valid, ie the value of K in the integrator is greater than 100 at the maximum frequency of interest, the stabilised carrier, vsc(t), becomes,

$v_{s c}(t)=[1+e(t)] \sin \omega t$

where $e(t)$ is the loop error voltage which becomes insignificant due to the high open loop gain. That is, $v_{s c}(t)=[10] \sin \omega t$
Voltage $v_{s c}(t)$ represents a stabilised carrier with no envelope variations. Voltage at the second input to the multiplier must therefore be the reciprocal of the input modulation. As a result, $v_{2}(t)$ is $1 /[1+m(t)]$ and $v_{3}(t)$ is $-m(t) /[1+m(t) \mid$ by subtracting unity.
Three signals have been obtained - the unmodulated carrier, the inverse of the modulus and the inverse modulus with the dc term removed. Unfortunately, there is no requirement to recover the unmodulated carrier in amplitude modulation. The demodulated signal is the reciprocal of the modulation which is a highly distorted version of the original signal. The signal at the integrator output is simply the reciprocal of the modulation but with an average value of zero. At first sight, nothing seems to have been achieved by this circuit so why investigate further?
Much the same arguments were used for the PLL when it was first suggested. For example, the PLL could easily have been replaced by a piece of wire and at a much lower cost etc.

Perhaps for the above reasons the concept of the ALL has never been investigated, even in the valve or tube era of electronics. If the ALL is not directly suitable for demodulation of am, can it be used to replace the limiter-filter in the demodulation process? Indeed it can as will be explained.

Application to fm demodulation

When two fm carriers of equal amplitude are added, their envelope increases to twice the individual size and reduces to zero at the instantaneous difference frequency. This envelope variation will be eliminated by the servo action of the ALL. This is similar to the action of a hard limiter and a filter and fulfils the first requirement in fm demodulation - that am variations must be removed before demodulation.

A second signal is also available which is the inverse of the modulus of the two carriers. Could this second error signal be used constructively to improve fm demodulation?

Operating limits

Before continuing, it would be sensible to define the limits of operation of the first ALL unit. Starting with an intermediate frequency of 455 kHz , amplitude and phase information

Fig. 2. ALL-PLL amplitude demodulator. The amplitude-locked loop alternates between in-lock and out-of-lock for strong and weak carrier signals. The PLL captures the carrier phase quickly but releases it slowly. A highly stable carrier is generated.

Fig. 3. Amplitude demodulator for double side-hand suppressed carrier. The amplitude-locked loop generates a constant envelope from the input carrier. As the carrier approaches zero the amplitudelocked loop loses lock and the gain changes by 80 dB . Phase-locked loop bandwidth is reduced by the same amount and synchronous demodulation is now feasible even in conditions of high noise:
is updated at twice the carrier frequency or 910 kHz .
In a closed-loop feedback system, instability starts to occur at about one tenth of this frequency or 91 kHz . So the ALL unity gain bandwidth was set to 91 kHz giving an open loop gain at say 1 kHz of 91 or 39 dB . This was improved later by using a double integrator.
The dynamic range of the ALL was determined by the offsets and the characteristics of the linear multiplier, the Exar 2208. This was found to be to $+20 \mathrm{~dB}(10)$ to $-6 \mathrm{~dB}(0.5)$ or a linear lock range of 26 dB .
In practice, the ALL will track 26 dB of amplitude variation up to a frequency of about

20 kHz without significant error. This was found to be more than adequate for all narrowband fm speech channels. The lock-in transient is very short since the ALL is more linear than a PLL. Typically it was measured at about 4μ s, i.e. the time required to reach 95% of the steady state value of stabilised amplitude.
Using a simulation package called MATRIXX, optimum circuit operation was established before any hardware was constructed. A much improved loop was designed using a double integrator with suitable phase advance for stability. This is described further in reference 8.

Applying the amplitude-locked loop

The first application of the ALL is to improve the amplitude modulated double side-band suppressed carrier. This represents the ultimate in carrier - or Rayleigh - fading since the carrier vanishes at every silence of the speech waveform, by definition.
The core of this problem is the recovery of a stable carrier. There is no carrier present during the silence between speech. The worst case occurs at the lowest modulating frequency and lowest amplitude of the signal
Doppler effects may cause the carrier to be shifted by say 100 Hz so that high-Q filters are not permitted due to their rapid phase changes at resonance. Should the system lose lock, then reliable re-lock must occur within say one cycle of the lowest operating frequency, say 300 Hz , or in about 3 ms .
The carrier recovery circuit must also be able to track frequency variations up to 100 Hz to an absolute phase accuracy of less than say 45° error between the modulated carrier and reference carrier. Assuming that a PLL is available to regenerate the carrier at 455 kHz , then two conflicting conditions need to be met simultaneously.
Since amplitude of the DSSC signal is continuously varying, the envelope must first be

Peak carrier to ms noise at 300 Hz modulating frequency
made constant. The PLL must have a wide capture and track range for fast lock-in and frequency tracking, yet it must have an extremely narrow noise bandwidth for stability during every speech silence.
The solution to these seemingly conflicting requirements is shown in Figs 2 and 3 in block diagram form and in circuit form in Fig. 4. This could be could be done by limiting and filtering which would be successful at high instantaneous amplitudes. A major problem occurs at low amplitude and low frequencies with noise. Noise captures the limiter, the voltage controlled oscillator becomes unstable and the phased-locked loop loses lock. System failure ensues. If the limiter is replaced by an ALL, a different process takes place.

At high instantaneous amplitudes, the large negative feedback of the loop flattens the amplitude variations giving a constant envelope at the output of the linear multiplier. At low instantaneous amplitudes, the ALL diops out of lock since its track range has been exceeded.
Gain of the 'loop' drops to the gain of the multiplier alone and not the combined gains of the multiplier, modulus detector and the integrator. At 300 Hz , this represents a change from 80 dB to 20 dB . The noise level is not amplified, and in effect, the system closes itself down.

White noise is not permitted to overtake the signal, as would happen in a limiter. This is the advantage of the in-out action of servo feedback.

Carrier generation

A pure squaring device follows the analoguelocked loop to generate a coherent carrier at 2ω. When the ALL is out of lock, the PLL is being driven by a zero level carrier. Since the bandwidth of any linear PLL is a direct function of the input amplitude, its closed loop bandwidth drops to zero.
The voltage controlled oscillator free wheels on the long open-loop time constant of the PLL since there is no significant noise energy to cause perturbations. After a divide-bytwo circuit, normal demodulation takes place.
Thus the PLL has effectively two bandwidths. The first is with signal present and the ALL in lock. With values suggested in Fig. 3 this bandwidth measures about 500 Hz . When no carrier is present, i.e. with the ALL out of lock, there is no signal present at the input to the PLL.
The effective open loop gain of the PLL is reduced to zero assuming a linear phase detector.

Fig. 8. Complete FM201 demodulator using an amplitude-locked loop, a phase-locked loop and an analogue signal processor. Inverse modulus from the amplitude-locked signal is multiplied by the phaselocked loop output to produce the impulse alone signal which is scaled and subtracted from the original phase-locked loop signal.

Fig. 6. Oscilloscope measurement of demodulated output showing a 300 Hz signal gated on and off at 6 and $4 m s$ intervals ata carrier-to-noise ratio of 0 dB . Note stability of the noise during the period of zero level carrier. This is due to the amplitudelocked loop and the phase-locked loop both shutting down and awaiting the resumption of the signal.

Fig. 7. The FM201 demodulator. Unsaturated output from the IF stage is stabilised in a slow acting automatic gain control, block 1. Block 2 removes the instantaneous envelope variations and generates the inverse modulus signal. Block 3 is the phased-locked loop and block 4 detects and subtracts the pulses.

$V_{1}(t)$
v_{2} (t)
$v_{3}(t)$
v_{4} (t)

Time
(a) Normal FM demodulation with additive carrier interference.
(b) The inverse modulus from the ALL with no d.c. content
(c)Product of (a) and (b), the "Impulse alone" signal.
(d) Waveform (a) minus waveform (c).
The Ampsys Output signal.

Fig. 9. Waveforms in the FM201 demodulator. The inverse modulus $v_{2}(t)$ is multiplied by $v_{1}(t)$ and subtracted from the phase-locked loop output to give $v_{4}(t)$. Fig. 9a). Normal FM demodulation with additive carrier interference - phase-locked loop output. Fig. 9b) inverse modulus from the amplitude-locked loop with zero average ie no dc content. Fig. 9c) shows the 'impulse alone' signal product of the signals 9a) and 9b). Fig. 9d) final demodulated output where all harsh impulses or spikes have been removed.

Stability of the voltage controlled oscillator is then determined solely by the time constant of the filter following the phase detector. This can be made large ie of the order of one second.
Carrier stability is thus maintained due to this very long time constant. By use of the ALL, phase-capture transients are very short when signal is present and phase loss transients are long when the signal is absent. By this technique, the coherent carrier can be recovered reliably even during periods of poor carrier-to-noise ratio. The circuit diagram of this system is shown in Fig. 4
The ALL is contained in the hybrid block U_{1}. The circuits which follow the ALL represent the normal synchronous AM demodulation technique, namely, a pure squaring device $\left(\mathrm{U}_{2}\right)$ followed by a narrow track range PLL $\left(\mathrm{U}_{3}\right)$, a divide-by-two, $\left(\mathrm{U}_{4}\right)$ and finally a synchronous multiplier $\left(\mathrm{U}_{5}\right)$.
Results obtained for this demodulator are presented in Fig 5. Figure 5 shows the comparison between a demodulator using a limiter and filter in place of the ALL. Whereas the limiter-filter ceased to operate effectively at about 3 dB carrier-to-noise ratio, the ALL circuit still maintained synchronism until well into noise. Cycle slipping occurs in both demodulators at about the same relative position but does not result in complete loss of intelligibility.
It is interesting to note that there is no threshold effect present as would be the case in fm or angle demodulation. The output sig-
nal-to-noise ratio tracks the input carrier-tonoise ratio in a linear manner.

Results obtained from the above demodulator exceeded the performance of the normal synchronous demodulator in that carrier recovery could be achieved down to and below unity carrier-to-noise ratios. Figure 6 shows an oscilloscope trace of a 300 Hz sine wave signal which is being gated on and off at 6 and 4 ms intervals. Carrier-to-noise ratio with signal present was 0 dB . Noise and carrier amplitudes were equal.
Due to carrier stability, system white noise is demodulated in a coherent manner. The PLL has an effective phase capture bandwidth of 500 Hz and a phase release bandwidth of 0.1 Hz . This phase capture-release phenomenon is a direct consequence of utilising the two in-lock and out-of-lock characteristics of the ALL and PLL simultaneously to make a near perfect am demodulator. This represents a major improvement in the state of the art on am demodulation.
This demodulator operates reliably and completely independently of the presence or absence of carrier. It is therefore ideal for the reception of am during multipath or quasisync. conditions.

FM demodulation

Frequency modulation is transmitted at constant amplitude. Any amplitude variation at the point of reception must be due to interference or noise acquired en route.
According to perceived wisdom, amplitude
variations must be removed by hard limiting and filtering of the carrier on reception. If not, two forms of degradation will occur at the demodulator output. The first is due to envelope variation and the second to phase variation.
In reality, the fm carrier is degraded not only by naturally occurring phase noise but also by amplitude noise. This is converted to phase noise in the limiting process. These two processes combine as the input carrier-to-noise ratio approaches a low value of typically 12 dB .
The catastrophic fm threshold effect begins and rapid deterioration of the output signal-tonoise ratio then follows.
This same effect causes fm reception to be rendered unintelligible if two fm transmissions arrive at the antenna at equal or near equal strength to each other - assuming co-channel frequencies.

The corrupting carrier may be another transmission - co-channel - or a delayed version of the wanted carrier - multipath. It could even be a version of the same broadcast from an equidistant transmitter - simulcast or quasisync reception. Harsh acoustic spikes are demodulated which are inband and cannot be filtered.

Capture effect

In the past, much has been made of the 'capture effect' in fm. Generally, this means that if one carrier is say 10% stronger than the other, say 1 dB , then capture takes place and the weaker station is completely suppressed. This was the argument put forward by Edwin Armstrong the inventor of fm . It is true - but it is not the whole story.
The unwanted carrier is suppressed but not into silence, which would be ideal. On the contrary, the co-channel interference is demodulated into strident noise, or large impulses which are intolerable to the ear and destructive of all intelligible communication. So destructive is this interference that all fm transmissions start to break down in the region where either carrier is within 6 dB of the other. This is sometimes called the 'distortion zone' - when its existence is admitted. The 'capture effect' is not an advantage but is in fact a major disadvantage of fm in a crowded radio spectrum.
Frequency modulation works well when;

- carrier strength is high,
- there is only one single carrier,
- there is no co-channel interference,
- there is only one direct signal path,
- modulation depth is virtually unlimited
- transmission power is virtually unlimited.

These conditions prevailed some fifty years ago, but unfortunately not in today's overcrowded spectrum.
Ideal requirements of the modern demodulator would be a circuit technique which would make fm demodulation linear at low carrier-to-interference ratios but still have the co-channel rejection properties at high carrier-
to-interference ratios. Quasi-sync and multipath reception would then be improved by the addition of the intelligence in the carriers and co-channel reception would be equivalent to crossed lines in telephones.

The Ampsys FM201 demodulator

Using an amplitude-locked loop for the first time, an fm demodulator has been designed and tested which demonstrates the above requirements. It is designated the Ampsys FM201. Its block diagram is illustrated in Fig. 7 and a system diagram in Fig. 8.
In the FM 201 demodulator there are four separate processes or stages. The first process, after the normal intermediate frequency filtering, is to stabilise the wanted carrier and the interfering carrier to a fixed average value using a slow automatic gain control circuit. This process is necessary in order to present the ALL with a fixed average signal level.
The fm was originally transmitted as a fixed amplitude and the automatic gain control restores this long term average. Saturating limiting is always avoided. The automatic gain control block has a bandwidth of 10 Hz .
In the second stage, block 2, the ALL removes all short term variations leaving the carrier similar to the output of a hard limiter and filter. This stabilised carrier is then applied to the input of the PLL, block 3, which is regarded as normal demodulation.
A second output from the ALL, the modulus reciprocal less the dc term, is applied to a multiplier in the analogue signal processing stage, block 4, Fig. 7. Output of the PLL is applied to the second port of this multiplier. A product is formed at the output of this circuit - the 'impulse alone' signal. 'Impulse' refers to spikes superimposed onto the baseband signal by the demodulation process.
This new baseband signal is scaled in size and subtracted from the original PLL output. Care must be taken to ensure that any phase delays through the ALL and the PLL are equal otherwise subtraction will not be possible.
A demodulated signal is created which is free of harsh spikes and is now perfectly intelligible even when the carrier and interference are identical in magnitude. A simplified version of the relevant waveforms is shown in Fig. 9a-d. Voltages $v_{1}(t)$ to $v_{4}(t)$ correspond to those marked on Fig. 8.

Worst-case fm reception

Figure $\mathbf{1 0}$ is an oscillograph of the demodulator output when the interfering carrier is located at the centre of the the intermediate frequency passband and is of equal amplitude to the wanted carrier. This represents one of the worst case conditions in fm reception. It would result in the carrier vanishing and doubling alternately at the instantaneous difference frequency. It is equivalent to a fade of infinite depth.
The normal output signal-to-noise figure is much less than zero and is unmeasurable by normal instrumentation. Acoustically, all intelligence is lost and the channel would be muted. With the FM201 demodulator, signal-
to-noise ratio rises to about 14 dB unweighted. This is acceptable in a communication channel and represents 100% intelligibility.
The link has been preserved, so avoiding the call being dropped. In normal demodulation when Gaussian white noise is added or when both carriers become weaker, distortion and noise effects become even more severe and generally intelligibility is lost just after the fm threshold point. This means that there can be a 'distortion zone' or failure gap as wide as 12 dB . In simple terms this means that if one carrier is more than one quarter the size of the other at the antenna, failure ensues rapidly.
With the FM20I demodulator however, the spikes are removed, as are the 'Rician' spikes due to Gaussian white noise. The net result is a much improved communication channel with almost 100% intelligibility well below threshold. Further testing has given the following observations.

- When the interfering frequency is offset from the centre of the passband, similar subtraction can be achieved by inserting an offset voltage at the input to the final multiplier. The interfering frequency however must be fixed.
- When quasi-synchronous reception occurs, baseband signals combine and an improvement in the signal-to-noise ratio of approximately 26 dB is measured at the equal amplitude reception point. Multipath distortion causes a small reduction in signal-to-noise ratio.
- When two modulated carriers are present, the result is similar to that of a crossed line in a telephone. Although this is not ideal, it is preferable to complete loss of intelligence.
- With a very weak carrier, harsh spikes are removed and noise subjectively more acceptable. White noise can never be removed since there is never enough unique information.
- When the carrier-to-interference ratio is high, the 'impulse-alone' product diminishes rapidly since there are no envelope variations. The weaker transmission is suppressed as in normal demodulation and all beneficial characteristics of fm are retained, for example, quieting and co-channel suppression.

To summarise

A new circuit concept has been proposed called the amplitude-locked loop which can be used in conjunction with a phase-locked loop to improve the quality of fm demodulation.
By using the fundamental property that fm is transmitted at fixed amplitude, and that a unique relationship exists between the reciprocal of the modulus and the fm phase perturbations, a new signal has been derived called the 'impulse-alone' signal
By a simple subtraction process this new signal can be used to eliminate spikes generated in fm demodulation. A fundamentally improved method of fm demodulation has been proposed which meets the criteria set out

Fig. 10. These spikes could not be removed by any form of baseband filtering. At the interference-to-carrier ratio of unity the spike size is reduced by a factor of 20 fold, 26 dB . Normally all intelligibility is lost. With Ampsys, demodulation is $\mathbf{1 0 0 \%}$ intelligibility.
above for fm demodulation in today's overcrowded radio spectrum.
Two demodulators using the ALL have been built and tested and are available for evaluation purposes, from Ampsys, one for am demodulation and the other for fm .

Acknowledgments

I would like to thank Dr T. J. Moir of the Department of Electrical and Electronic Engineering at the University of Paisley for his help in the preparation of this paper and to the Governors of the University of Paisley for their support in the development.

References

1. Corrington M. S., 'FM Distortion Caused by Multipath Transmission' Proc of the IRE Dec 1945.
2. Gray G. D., 'The Simulcasting Technique: An Approach to Total-Area Radio Coverage' IEEE Transactions on Vehicular Technology, Vol VT28, No 2, May 1979.
3. French R. C., 'The Effect of Fading and Shadowing on Channel Reuse in Mobile Radio.' IEEE Transactions on Vehicular Techinology Vol VT-28, No 3, Aug 1979.
4. Pettigrew A.M. and Moir T. J., 'Reduction of FM threshold effect by in-band noise cancelling', Electronics Letters, 1991, 27 (12) pp 1082-84. 5. Moir T. J. and Pettigrew A. M., 'In-band noise cancelling in FM systems: The white noise case.', Electronics Letters, Vol 28, No 9, Apr 1992, pp 814-815.
5. Pettigrew A. M. and Moir T. J., 'Coherent Demodulation DSSC without Pilot Tone Using the Amplitude-Locked Loop.' Journal Audio Eng Soc Vol 41 No 121993 Dec.
6. Amplitude-Locked Loop Circuits: British Patent Application No. PCT 91/00101, Ampsys Ltd.
7. Moir T. J. 'Simulation of an Amplitude-Locked Loop using MATRIXx', Electronic Engineering, July 1995, pp 27-32.

Microelectric Training and Development Systems PIC and 51 Series

Systems comprise of the following: In-Circuit Emulator, Integrated windowed Full Function Editor, Assembler, Simulator, Down-loader, programmers calculator and tools. Plus leads, power supply, logic probe etc. contained in a custom-case.
Training systems contain a full set of modules and a complete set of coursework (to BTEC/GNVQ Level 3). TEC Funding Available to offset purchase costs.
Development systems include programmers and full speed in-circuit emulators.

Please call or fax for a full datapack
Kanda Systems, Lisburne House, Pontrhydygroes, Dyfed SY25 6DX.
Telephone: 01974 282670. Fax: 01974282356
Distributors Wanted!

New Mini Camera \& Special Offers	
	 Iuf $50 v$ bipolar electrolytic axtal leads 500 pf compresson timmer... 40 uf 370 vac motor start capacitor (dialectrol type Containing no pobs)......... $£ 5.95$ or $£ 49.50$ for 10 Solid carbon resistors very low inductance ideal for RF circuits -27 ohm $2 \mathrm{~W}, 680 \mathrm{~mm} 2 \mathrm{w}$ We bave a range of $0.25 \mathrm{w}, 0.5 \mathrm{w}$, I w and peach $100+$ 2w solid carbon resistors, please send SAE for list P.C. 400 PSU (lncel part $201035-001$ with stan- dard motherboand and 5 disk drive connectors, fan and mains inlevfoutlet connectors on back and switch on the side (top for tower case) dims $212 \times 149 \times 149 \mathrm{~mm}$ excluding switch... 526.00 cach $£ 138.00$ for 6 MX 180 Digital multirneter 17 ranges 1000 vdc 750 vac 2 Mohm 200 mA transistor Hfe 9 v an $1.5 v$ battery test.. 12.95 AMD $27256-3$ Eproms 2.00 each $£ 1.25100+$ Inmac delux anti-glare static control panal wind size $228 x 161$ mm, overall size 264 mma 200 mm held to the monitor with hook 8 log DIP ${ }^{\text {switch }} 3$ PCO 12 pin (ERG SDC-3-023) 60 each Disk drive boxes for 5.25 disk drive with room for a power supply, light grey plastic, $67 \times 268 \times 247 \mathrm{~mm}$ Hand held ultrasonic........... $\mathbf{£ 7 . 9 5}$ or $£ 49.50$ for 10 CV 2486 gas relay, $30 \times 10 \mathrm{~mm}$ dia with 3 wire termi- 2486 gas relay, $30 x 10 \mathrm{~mm}$ dia with nals, will also work as a neon light
.	
JPG Electronics, 276-278 Chatsworth Road, Chesterfield S40 2BH Access/Visa Orders (01246) 211202 Fax: 550959 Callers welcome	

CIRCIE NO IIB ON REPLYCARD

KESTREL ELECTRONIC COMPONENTS LTD

\& All items guaranteed to manufacturers' spec. $*$ Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$100+$		$1+$	$100+$
27C64-15	2.60	1.80	628128LP-85	8.30	7.20
27C128-15	2.40	1.80	62256LP10	3.60	2.80
27C256-15	2.20	1.70	6264LP-10	2.60	1.75
27C512-15	2.20	1.70	MM58274CN	4.90	3.75
27C010-15	3.95	2.80	ULN2003A	0.43	0.30
27C020-15	6.00	4.25	7805	0.32	0.25
27C040-15	8.60	6.45	MAX232	1.35	0.88
80C31-12	2.10	1.95	7406	0.35	0.23
8255AC-2	2.00	1.45	7407	0.35	0.23
Z80A CPU	1.80	1.00	74HC244	0.35	0.24
LM317T	0.50	0.40	74HC245	0.35	0.24
75176BP	1.35	0.85	74HC373	0.35	0.25
68w PLCC skt	0.90	0.70	74HC374	0.32	0.25

74LS, $74 \mathrm{HC}, 74 \mathrm{HCT}$ Series available
Phone for full price list
All memory prices are fluctuating daily, please phone to confirm prices

178 Brighton Road, Purley, Surrey, England CR8 4HA
Tel: 0181-668 7522. Fax: 0181-6684190.

MIXED-MODE SIMULATON. THE POWER OF VERSION 4.

Analog, Digital \& Mixed Circuits

Electronics Workbench ${ }^{\circledR}$ Version 4 is a fully integrated schematic capture, simulator and graphical waveform generator. It is simple to mix analog and digital parts in any combination.

Design and Verify

 Circuits... Fast! Electronics Workbench's simple, direct interface helps you build circuits in a fraction of the time. Try what if' scenarios and fine tune your designs painlessly.
Electronics Workbench The electronics lab in a computer

More Power

Simulate bigger and more complex circuits. Faster. On average, Electronics Workbench Version 4 is more than 5 times faster than Version 3.

More Parts

Multiple parts bins contain over twice the components of Version 3.

More Models

Over 350 real world analog and digital models are included free with Electronics Workbench And, if you need more, an additional 2,000 models are available.

Incredibly Powerful. Incredibly Affordable.

If you need mixed-mode power at a price you can afford, take a look at this simulator and graphical waveform generator that mixes analog and digital with ease.

True mixed-mode simulation: Simultaneous AM transmission, digitization and pulse-code modulation of a signal.

With over 20,000 users world-wide, Electronics Workbench has already been tried, tested and accepted as an invaluable tool to design and verify analog and digital circuits. With Version 4 true mixed-mode simulation is now a reality with incredible simplicity.

Electronics Workbench ${ }^{\text {TM }}$

The electronics lab in a computer ${ }^{\text {тМ }}$

Order Now! Just £199* 44-(0)1203-233-216

Rg Robinson Marshall (Europe) Plc

Nadella Building, Progress Close, Leofric Business Park, Coventry, Warwickshire CV3 2TF
Fax: 44 (0) 1203 233-210
E-mail: rme@cityscape.co.uk
Shipping charges UK £5.99. All prices are plus VAT. 2
All trade marks are the property of their respective owners. Electronics Workbench is a trademark of Interactive Image Technologies Ltd., Toronto, Canada.
- 30 Day money-back guarantee.

Classic valve power

Williamson's valve power amplifier was published in Wireless Word in 1947, and set a standard of performance that was years ahead of its time.
The input stage is the standard common cathode triode with 20 dB of global negative feedback applied from the loudspeaker output to the cathode. The phase splitter is a concertina circuit, direct coupled from the input stage. It feeds a differential pair using both halves of a $6 S N 7$, Fig. 1.

Operating in Class-A

The output stage is a push-pull pair of KT66 beam tetrodes operated as triodes. These provide 15 W output in Class AB1, operating mostly in Class A. In Fig. 1, the left hand potentiometer adjusts the dc balance of the output valves in order to minimise distortion due to the transformer core. The second potentiometer sets quiescent current to 125 mA for the entire stage.
Rather than breaking a wire to insert an ammeter, quiescent current can be set by adjusting the

> In this extract from his new book 'Valve Amplifiers', Morgan Jones looks at some of the classics in valve power amplifier design - including the Williamson.

Fig. 1. Williamson's amplifier set a standard of performance that was years ahead of its time.
mately $1 \mathrm{k} \Omega$ from the cathode and $22 \mathrm{k} \Omega$ from the anode. As a result, there is an imbalance of high-frequency cutoffs in driving the 60 pF input capacitance of the driver stage. This is because the anode cut-off is around 120 kHz , while the cathode cut-off is 2.6 MHz .
In practice. since the driver stage is a differential pair, as opposed to a cathode-coupled phase splitter, its gain will only fall by 6 dB from 120 kHz to 2.6 MHz . At this point, it will fall at the normal $6 \mathrm{~dB} / \mathrm{octave}$. The net result is very similar to the step compensation in the input stage. In this amplifier, adding a buildout resistor to the cathode will probably cause oscillation, and is not recommended.
The driver slage has an output resistance of $\approx 8.7 \mathrm{k} \Omega$; with 55 pF of input capacitance from the output stage, cut-off is $\approx 330 \mathrm{kHz}$, and the output transformer is specified to have a cutoff of 60 kHz .

Step networks

The number of hf cut-offs within the feedback loop have not been minimised, and the dominant hf cut-off is too close to the next most dominant. The only remaining way to achieve stability at hf is to adjust the phase response independently of amplitude response by means of step networks.
At low frequencies it is more useful to consider time constants rather than -3 dB points. Since the input stage is direct coupled to the concertina this can be ignored. The concertina feeds the driver stage with a $C R$ of around 22 ms , as does the driver to output stage.
The output transformer is set to 48 ms . In view of this, it is not surprising that low-frequency stability is questionable - as was conceded in the original Wireless World article. A little of this may also be due to the fact that the input stage is not operated from the same ht as the concertina; in my experience, this
fact alone can induce motorboating.
Remember that in 1947, circuits were designed using long multiplication, \log tables, and even slide rules. Computer aided ac analysis was not an option. Most amplifiers were designed as carefully as possible, and then adjusted on test for best response.

Mullard's 5-20 power amplifier

This is a 20 W 'ultra-linear' design from Mullard in 1955. It was introduced to sell the company's EL 34 pentode. There is a great deal of similarity between this design, the Mullard 5-10 (10W EL84) and some Leak amplifiers, Fig. 2.
The input stage is an EF86 pentode. This device is responsible for the high sensitivity, but poor noise performance, of these amplifiers. Most of the cathode bias resistor is bypassed, since it would otherwise reduce gain from around 120 to 33 . This would be a waste of open loop gain that could be used to correct distortion from the output stage.
Unadorned, the pentode has an output resistance of $100 \mathrm{k} \Omega$, and drives around 50 pF of input capacitance from the phase splitter. This would give a cut off of 32 kHz but it is modified by the usual compensation components across its anode load.
A slightly unusual feature is that the g_{2} decoupling capacitor is connected between g_{2} and cathode, rather than g_{2} and ground. In most circuits, the cathode is at ac ground. As a result, there is no reason why the g_{2} decoupling capacitor should not go to ground. In this circuit there is appreciable negative feedback to the cathode. Therefore g_{2} has to be connected to the cathode in order to hold $g_{2}-k$ (ac) volts at zero, otherwise there would be positive feedback to g_{2}.
The cathode coupled phase splitter is combined with the driver circuit using an ECC83;
when loaded by the output stage, A_{V} is 54 for the $E C C 83$, but overall gain is half this at 27 .
The anode load resistors have not been modified to give perfect balance. With the $470 \mathrm{k} \Omega$ grid leak resistors of the output stage in parallel with the $180 \mathrm{k} \Omega$ anode loads, the effective anode load is $130 \mathrm{k} \Omega$. This means that the right-hand triode should have an ac anode load 3% higher, and R_{L} would then be $187 \mathrm{k} \Omega$. Mullard did actually state this, but probably assumed that most constructors would not have access to sufficiently high precision resistors to use the information.
A better solution is to use the $180 \mathrm{k} \Omega$ value of anode load with the unloaded gain of 71 . This then results in a value of $185.6 \mathrm{k} \Omega$, which still leaves the output resistances out of balance. Output resistance of left-hand triode is approximately $52.19 \mathrm{k} \Omega$, while the right-hand one is approximately $52.66 \mathrm{k} \Omega$, requiring a 470Ω build-out resistor.
The output stage has an input capacitance of about 30 pF , combined with $53 \mathrm{k} \Omega$ output resistance of the driver stage. This gives a poor cut-off at 100 kHz .

Differential pair

Looking at the stage as a driver, investigate whether it is capable of driving the output stage. A total of 85 V will be wasted across the $82 \mathrm{k} \Omega$ tail resistor, but with 410 V of supply rail, this still leaves you with 325 V .
With component values given, this puts the operating point at 240 V on the $180 \mathrm{k} \Omega$ dc load line. Drawing the ac $130 \mathrm{k} \Omega$ load line through this point shows that the stage would generate about 4% second harmonic distortion at full drive. This would result in an output of 18 V rms, if it were not operated as a differential pair. Mullard claimed 0.4% distortion for the entire driver circuitry.
Although distortion appears satisfactory, the

Fig. 2. Mullard's 5-20 was an ultra-linear design with high sensitivity but poor noise performance due to the input being pentode, rather than triode, based. Circuit courtesy Philips Components Ltd.
driver stage has only 10 dB of overload capability. When output stage gain begins to fall due to cathode feedback or input capacitance of the EL34 loading the driver - global feedback will try to correct this by supplying greater drive to the output stage. This margin will quickly be eroded.
Driver circuitry was designed to produce an amplifier of high sensitivity - even after 30 dB of feedback had been applied. This has forced other factors to be compromised. Whereas the Williamson sacrificed stability for linearity, the Mullard 5-20 achieves stability at the expense of linearity.

Ultra-linear output

The output stage is a pair of $E L 34$ in 'ultra-linear' configuration, with 43% taps for minimum distortion. Unlike the Williamson, there is no provision for adjusting or balancing bias, and this might seem to be a backward step.
Bias adjustment implies connecting the cathodes together and using a proportion of grid bias to provide balance adjustment. Because
biasing is firmly set by the potentiometers, there is no self-regulation of bias current. As the valves age, balance will need to be reset.
In short, providing this adjustment ensures that it has to be used regularly. By contrast, the Mullard 5-20 has separate cathode bias resistors and relies on automatic bias to hold the anode currents at their correct, and therefore equal, levels.
In practice, this works quite well, although it does not quite achieve the low transformer core distortion of a freshly balanced adjustable system.

System drawbacks

A disadvantage of this system is that the individual cathode bias resistors applies series negative feedback to the output valves, raising their output impedance.
The output transformer could be redesigned to maintain the match to the load, but this is undesirable as it would require a higher pri-mary-to-secondary turns ratio. This makes a high quality design more difficult to achieve.

Fig. 3. Principles of the output bias servo. Although this circuit was designed to provide -11 V bias, it can easily be changed by returning the transistor's collector load to a more negative supply, as necessary.

Because of this, the cathode bias resistors are usually bypassed by capacitors, resulting in several problems.
The capacitor is a short circuit to ac and so prevents feedback. But, as in the simple common cathode triode amplifier, at very low frequencies it will no longer be a short circuit, and will allow feedback.
Because the output stage is load matched, feedback causes an immediate rise in distortion and reduction of output power due to the mismatch. The obvious solution to this is to fit a large enough capacitor to ensure that the low frequency cut-off for this combination is below all frequencies of interest, say 1 Hz .
Remembering that the resistance that the capacitor sees is R_{k} in parallel with $/ \mathrm{k}$, you can calculate the value required. For a pentode, r_{k} is $1 / g_{m}$; a typical output pentode has a g_{m} of $10 \mathrm{mAV}^{-1}$ at its working point, so r_{k} of around 100Ω. This is in parallel with a bias resistor of 300Ω, giving a total resistance of 75Ω. For 1 Hz , a capacitance of $2000 \mu \mathrm{~F}$ is needed.
Capacitors rated at $2000 \mu \mathrm{~F}, 50 \mathrm{~V}$ were simply not available at the time, and were not fitted. They are readily available now, but there are two reasons why you might wish to use a smaller value.

- A $2000 \mu \mathrm{~F}$ capacitor will have considerable inductance, allowing feedback at high frequencies. By using low inductance electrolytics designed for use in switch-mode power supplies, and/or by bypassing with smaller values, this problem can be overcome.
- If the output stage is driven into Class B by overload, each cathode then tries to move more positively than negatively. It cannot turn off any further, but it can certainly turn on harder. The capacitor smooths these changes into a gently rising dc bias voltage, which biases the valve further into Class B, and the problem continues.
The effect of this is that a momentary overload can cause distortion of the following sig-
nals - even though they would normally have been within the capabilities of the amplifier. As the cathode bias capacitor becomes larger; this recovery time from overload lengthens. Theoretically, one never overloads amplifiers, and this would not be a problem, but occasional overload is inevitable, and should be considered.

The ideal way to deal with all of these problems is to reduce the cathode bias resistor to an ohm or less such that it no longer causes noticeable feedback, and measure the current through it using an op-amp. This signal then feeds an asymmetrical clipper. When the valve strays into Class B and clips one half-cycle, the clipper removes an equal amount from the other half-cycle before feeding the processed signal to an integrator. The integrator can have an $R C$ time constant of almost any value - 10 s is not unusual.
Output of the integrator is a smoothed dc voltage proportional to anode current. This can then be compared to a fixed reference. The difference between the two levels drives an amplifier whose output feeds negative grid bias to the output valve.
If anode current of one valve is set as a reference, then other valves can share this reference, forcing the anode currents into balance. Increased complexity of this scheme is partly offset by its improved performance and reduction in ht voltage required, since the cathode bias scheme wastes ht, Fig. 3.

Sensing anode current

Figure 3 was designed to sense a 40 mA anode current by developing 40 mV across the 1Ω resistor. As this circuit is based on the 40 mV signal, the sense resistor should be changed to suit if a different current is to be sensed.
The 5534 has a gain of 100 , and amplifies
the mean dc level to 4 V , with ac peaks rising to 8 V . Any peak above 8 V is clipped by the diode/transistor clamp; the other half-cycle will already have been clipped by the valve.
The clipped signal is integrated by the $2.2 \mathrm{M} \Omega$ resistor in combination with the 470 nF capacitor, giving $\tau=6.5 \mathrm{~s}$. The $07 /$ compares this smoothed de with a reference derived from the potential divider chain, and uses this to control the bias transistor. Reference and clamp voltages are made adjustable by the $2 \mathrm{k} \Omega$ variable resistor in order to allow for fine adjustment of anode current.
Although this circuit was designed to provide -1 V bias, this can easily be changed by returning the bias transistor's collector load to a more negative supply as necessary; no other changes are required.

Quad II power amplifier

The Quad II is an unusual design, which at first sight does not look too promising, but works because the design is synergetic. In this design, the phase splitter has been combined with both the driver stage and input stage.
In order to achieve the necessary gain, pentodes have been used. Output impedance is therefore high. as is input noise. To make matters worse, a variation of the see-saw phase splitter has been used. The output stage has local feedback, which increases the voltage swing required to drive it, Fig. 4.

Driving the loudspeakers

A pair of $K T 66$ beam tetrodes with anode and cathode loads split in the ratio $9.375: 1$ comprise the output stage. The cathode therefore provides little drive to the loudspeaker. This may be considered to be series feedback from the output transformer. Cathode current in the output transformer however is the sum of the anode and g_{2} currents. It has been found that
this summation reduces third harmonic distortion by a further 8 dB over that due to the negative feedback.
The effect of this feedback on output resistance is the opposite to what might be expected (Williamson and Walker, 1954). If a cathode resistor is left unbypassed it will generate series feedback which increases r_{a}, whereas the transformer coupled feedback reduces r_{a}. This can easily be explained by assuming a short circuit as a load.
Clearly, the output stage will be unable to drive any voltage into this load, but conversely, there will be no feedback signal applied to the cathodes. The grids are then driven by the full input signal, rather than the input signal minus the feedback. Therefore the output stage is driven harder as it attempts to maintain its output into a short circuit. This action is directly equivalent to reducing output resistance. The new value of output resistance can be found using the normal feedback equation.
Transformer primaries are equivalent to $3 \mathrm{k} \Omega$ anode to anode. With tetrodes, this low value of anode load results in a reduction of third harmonic distortion, and an increase in second harmonic. This is then cancelled by the output transformer.
There is no provision for balancing anode current, and the automatic bias is shared. As a result, you can expect an increase in distortion at low frequencies due to saturation of the transformer core. Curiously, the cathode resistor was only rated at 3 W , yet it dissipates 3.8 W . If your Quad II is distorting, a burnt out cathode bias resistor may well be the cause.
Even with pentodes, there is not a great deal of gain from the driver circuitry, and input sensitivity is low, at 1.4 V for full output. This is an excellent choice of input sensitivity for a power amplifier. It not only guarantees impeccable noise performance - even from a pen-

Fig. 4. The Quad II is different. Not only is the phase splitter combined with the driver, but it is also combined with the input stage. Circuit courtesy Quad Electroacoustics.

AUDIO

tode - but it also means that the input is far less susceptible to hum and noise from input cables or heater circuitry.
The Quad II was only beaten in signal-tonoise performance by the Williamson, which was quieter because it had a triode input stage.

Balanced output

Although the phase splitter is a variation of the see-saw phase splitter, it does not rely on feedback for balance, and its operation is quite elegant. Output valves must each have a grid leak resistor, so instead of applying additional loading to the driver valves, a tapping is taken from one of these to provide the input for V_{2}.
In theory, if this tapping had an attenuation equal to the gain of V_{2}, then the output of the phase splitter would be balanced. Because of component variation, this will not always be true, and so the cathodes of the two valves are tied together to improve balance.
This has been further modified by applying global feedback to the other end of this potential divider, which is why the gain of V_{2} is not equal to $680 \mathrm{k} \Omega / 2.7 \mathrm{k} \Omega$.

Pentode over triode

Pentode stages have output resistance approximately equal to R_{L}. Since R_{L} for the Quad is $180 \mathrm{k} \Omega$, this would appear to be very poor at driving the 30 pF input capacitance of the output stage, resulting in a cut-off of around 30kHz.
Apart from the output transformer, this is the only high-frequency cut-off in the circuit, and
is therefore not a problem. Each output valve requires a swing of around 80 V pk-pk. This is easily provided, because pentodes can approach 0 V more closely than triodes. Also, $L C$ filtering is used on the ht line, rather than $R C$ filtering, which would reduce available ht.
This $L C$ filtered supply also feeds g_{2} of the output valves. This has the valuable advantage of reducing hum, since the anode current of a tetrode or pentode is dependent on g_{2} voltage rather than anode voltage.
In the input stage, pentodes need to have g_{2} decoupled to ground. Instead of each valve having a capacitor to ground, one capacitor is connected between each g_{2}. This has three advantages:

- If you had two individual capacitors, they would effectively be in series with a centre tap to ground. Since each valve is supplying an equal but opposite output, the centre tap would be at ground potential even if it were to be disconnected from ground. Disconnecting the centre tap from ground results in two capacitors in series. These can be replaced by a single capacitor whose value is equal to half that of one of them.
- Since this one capacitor is connected between two points of equal potential, it need not necessarily have the full voltage rating to ground. However, it is as well to consider the effect of fault conditions when determining the voltage rating. as a result, this is not a great advantage.
- Connecting g_{2} of each valve together at ac helps maintain balance in the same way as commoning the cathodes.

Although substituting one stage that combines the functions of input, phase splitter and driver does not achieve the linearity of purpose designed stages, it achieves better linearity than the Mullard circuit. This is because less gain is demanded from it.
With only a simple driver circuit and output stage within the feedback loop, the Quad II has no stability problems.

Further reading

Colloms, M, 'High performance loudspeakers', 3rd edn. Pentech Press, London, pp. 188-206, 1985.

Futterman, J, 'A practical commercial output transformerless amplifier', Journal of the Audio Engineering Society October 1956.
Hedge, L B, 'Cascade AF amplifier', Wireless World, 283-87, June 1956.
Mullard, 'Tube Circuits for Audio Amplifiers', reprinted by Audio Amateur Press, Peterborough, New Hampshire, 1993.
Williamson, D T N and Walker, P J, ‘Amplifiers and superlatives', Journal of the Audio Engineering Society, 2(2), 75-80, 1954.

Valve amplifiers

Classic power amplifiers is just one of the subjects covered in a new book entitled Valve amplifiers, from which the above article is extracted. With over 370 pages, Valve amplifiers is written by Morgan Jones and covers,

- Circuit analysis
- Basic building blocks
- Components
- Power supplies
- Power and preamplifiers
- Construction
- Safety

Valve amplifiers is priced at $£ 25$. Please add postage at $£ 2.50$ UK, $£ 5$ Europe or $£ 7.50$ worldwide. Send your request with a cheque or postal order made payable to Reed Business Publishing Group Ltd, to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS. If ordering by credit card, please quote card type, number and expiry date together with card-holder address. Post your order, fax on 01816528956 or e-mail it to jackie.lowe@rbp.co.uk.

ULTIboard, one of the leading PC based design systems, is supplied worldwide via a network of ULTImate Technology offices \& distributors. ULTIb oard's success with pr ofessional designers is primarily due to its superior interactive functionality.
REAL TIME Placement Help, REAL TIME Design Rule Check, Reroute-While-Move and Trace shoving, are all features wich will dramatically reduce your design time.
Integration with ULTIcap guarantees smooth data flow between Schematic and PCB editing. The inclusion of third party netlist interfaces ensures ULTIboard will fit into any design environment.

Another of ULTImate Technology's strengths is our flexible growth path. Users may start with a low cost ULTIboard Challenger and grow, step by step, to a 32 -bit Advanced Design system including Ripup and Retry Autorouting.
ULTImate Technology also looks after existing users. With valid maintenance they will be upgraded to a new system based on their original investment. For instance, a 1987 ULTIboard-DOS system has now been upgraded to a 32 -bit Advanced system with 2 Autorouters. Regular User Meetings and -Surveys result in 2 major Updates per year.

ULTImate Technology not only adds value to your investment in a ULTIboard system but backs it up with the highest quality support from our distributors and offices.

SPECLAL OFFER
 ULTIboard Entry Designer* UK: £ 795
 A complete, professional Design System with 1400 pin Design Capacity:ULTIcap Schematic Capture + ULTIboard Printed Circuit Board Design, including 2 autorouters, introduction \& tutorial manuals, user manual, extensive Shape documentation in binder.
 FREE UPGRADE TO WINDOWS-95 VERSION 5 AND EMC-EXPERT*।
 FOR THE UNDECIDED
 "List Price at release: UK: $£ 1.890$

HOW INTERACTIVE IS YOUR BOARD STRATEGY

Your design ideas are quickly captured using the ULTIcap schematic de sign Tool. ULTIcap uses REAL-TIME checks to prevent togic errors. Schematic editing is painless; simply click your start and end points and ULTIc ap automatically wires them for you. ULTIcap's auto snap to pin and auto junction features ensure your netist is complete, thereby relieving you of tedious netlist checking.
If you need partial ground planes, then with the Dos axtended board systems you can automatically create copper polygons simply by drawing the outline. The polygon is then filled with copper of the desired net all correct pins are connected to net, all correct pins are connect the polygon with thermal relief connections and user defined gaps are respected around all other pads and tracks.

ULTIshell, the integrated user interface, makes sure all your design information is transferred correctly from ULTIcap to ULTIboard. Good manual placement tools are vital to the progress of your design, therefore ULTIboard gives you a design, therefore ULTiboard gives you a
powerful suite of REAL-TMME functions powerful suite of REAL-R
such as, FORCE VECTORS, RATS NEST such as, FORCE VECTORS,
RECONNECT and DENSITY RECONNECT and DENSITY HISTOGRAMS. Pin and gate swapping allows you to further optimise your layout.

ULTIboard's autorouter allows you to control which parts of your board are autorouted, either selected nets, or a component, or a window of the board, or the whole board. ULTthoard's intelligent router uses copper sharing techniques to minimise route lengths. Automatic via minimisation reduces the number of vias to decrease the number of vias to decrease
production costs. The autorouter will production costs. The autorouter win
handle up to 32 layers, as well as single sided routing.

Now you can quickly route your critical tracks. ULTIboard's AEAL-TIME DESIGN RULE CHECK will not allow you to make illegal connections or violate your design rules. ULTlboard's powerful TRACE SHOVE, and REROUTE-WHILE-MOVE algorithms guarantee that any manual track editing is flawless. Blind and buried vias and surface mount
 automatically updates your ULTIca schematic with any pin and gate swaps or component renumbering. Finally, your design is post processed to generate pen/ photo plots, dot matrix/laser or postscript prints and custom drill files.

PC ENGINEERING

Signal processing in a toolbox

> Allen Brown reviews an extension to the maths modelling package Matlab, which is intended for designers of dsp circuitry.

PC software package Matlab - reviewed in $E W+W W$, March 1995 - is a product designed, amongst other things, for the modelling and simulation of physical processes. Whether solving electrical, biological, mechanical or economical problems, Matlab is a versatile tool for tackling a whole range of modelling requirements.
To support the package, its makers, Math Works, provide a range of 'Toolboxes' designed for specific applications. A number of these - one of which is the signal processing toolbox - are likely to be of interest to electronics engineers
Over the past ten years, signal processing has aroused a considerable amount of interest, due in part to the availability of high-performance digital signal processors, both fixed and floating point. Also, the pc is playing a significant role in realising signal processing operations. The wealth of high speed data acquisition expansion cards and the availability of high quality software is contributing to the continuing interest in signal processing.
Normal engineering practice involves the modelling of electronic circuitry before it is constructed and it is customary to use such software packages as PSpice or Electronics Workbench for this purpose. For signal processing modelling the designer, who is familiar with Matlab, has the option of using the signal processing tool-

Fig. 1. Using the signal processing toolbox, a transfer function in the Laplace S domain can be easily realised in a plot.
box. This comprises a library of prewritten signal processing functions that can be evoked from the command line within the Matlab environment.
The toolbox has over one hundred functions whose operations cover the spectrum of commonly used processes. Groups of processes include filter analysis, linear systems transformations, digital filter design, transforms, statistical processing, windowing and parametric modelling. In fact, the range is as extensive as you are likely to find in any pc signal processing software.

Analysing filters

There is a number of interesting tools in the filter analysis group for analysing systems. It should be emphasised that the toolbox is not constrained to digital operations only - it is also possible to model system behaviour in the analogue Laplace S domain. For example, determining frequency response of the following transfer function,

$$
H(s)=\frac{0.2 s^{2}+0.3 s+1}{s^{2}+0.4 s+1}
$$

The command line code for this task is,
$\mathrm{b}=\left[\begin{array}{lll}0.2 & 0.3 & 1\end{array}\right] ; \mathrm{a}=\left[\begin{array}{lll}1 & 0.4 & 1\end{array}\right] ;$
$w=$ logspace $(-1,1)$;
freqs($\mathrm{b}, \mathrm{a}, \mathrm{w}$)

Fig. 2. Transfer function generated graphically in the digital z domain.

The graphical result, Fig. 1, shows the magnitude of the response and the phase in degrees. Coefficients of the transfer function are defined in the first line and log spacing for the plot in the second line. The freas function in the third line performs plotting in the frequency domain.
Plotting the response of a digital filter is just as easy, consider a sixth-order lowpass elliptical filter with a cut-off frequency of 300 Hz and a 3 dB ripple sampling at 500 Hz . The command line code would be,
[b, a]=ellip $(6,3,50,300 / 500)$;
freqz(b, a, 512, 1000)
The first line defines the specifications of the filter, and freqz in the second line performs transfer and plotting in the z domain. The graphical result is shown in Fig. 2. You will also notice that a pleasing feature of the phase plots of the signal processing toolbox is the absence of fly-backs at the 360° boundary.
Fly-backs are customary on almost all signal processing software and confuse the information in the phase plot. It is good to see that this product eliminates this problem. The user may be interested to see the impulse response of the filter. This can be accomplished via the impz function. For example,
$[\mathrm{b}, \mathrm{a}]=$ ellip(10, .05, 80, .4);
impz(b, a, 50)
The command line code defines a tenth-order elliptical filter with a 0.05 ripple in the pass band, a 80 dB attenuation in the stop band with a normalised cut off frequency of 0.4 . A normalised frequency of 0.5 is equivalent to half the sampling frequency. The graphical result of the above instructions is shown in Fig. 3. Including the instruction zplane(a, b) produces the pole/zero plot of Fig. 4.
Alternatively within the linear systems transformations group of instructions there are some powerful operations for changing one system representation into another. These can be evoked with relative ease. For example, state-space to transfer function, ss2tt, or zero-pole to state-space, zp2ss. All in all some useful features for analysing system responses in both analogue and digital domains.

Designing digital filters

Functions for designing finite impulse response and infinite impulse response digital filters are included in the sig-nal-processing toolbox. Infinite impulse response filters comprise the well known Bessel, Butterworth, Chebychev, elliptical and the not so well known Yule-Walker. There are also instructions for determining the order of the filters.
This example illustrates how the instructions are used. Consider designing a bandpass Chebychev II filter (ripple in the stop band), transmission from $100-200 \mathrm{~Hz}$ with 3 dB ripple and a stop band attenuation of 100 dB . Given a sampling frequency of 1000 Hz , the instructions are shown with comments in Table 1 and graphical output for the filter in Fig. 5.
Once the user has learned the command line syntax, it is a relatively straight forward task to design filters. However, there does not appear to be any function for quantising coefficients - usually to 16 bit - and converting them for use with a fixed point format for digital signal processing. It is sometimes necessary to model the performance of the filter once the coefficients have been quantised - there appears to be no function in the signal processing toolbox for performing this operation directly.
The option of designing finite impulse response filters using the Parks-McClellan method, based on the Remez Exchange Algorithm, is not as clean as it could be. There

Fig. 3. When subjected to a single impulse, the impz function allows the response of the system to be visualised with ease.

Fig. 4. Determining the positions of the poles and zeros in the z plane unit circle gives information on possible problems that may occur for poles lying close to the perimeter. If through quantisation effects they should stray outside the unit circle the system becomes unstable.

Fig. 5. Graphical results from the design of a digital filter using the instructions in Table 1. This example shows that Elliptical filters are unsuitable for systems which require linear phase response.

Table 1. Instructions required to design a bandpass Chebychev infinite impulse response digital filter.
\% Specify the passband and the stopband corner frequency ranges, $W p=[100200] / 500 ; W s=[50250] / 500$
\% Specify the attenuations in decibels $R p=3 ; R s=100 ;$
\% Calculate the filter order n and the actual corner frequencies $[\mathrm{n}, \mathrm{Wn}]=$ cheby2ord(Wp,Ws, Rp, Rs);
\% Perform the design and calculate the raw coefficients [b,a]=cheby2(n, Rs, Wn);
\% Calculate the coefficients in terms of poles and zeros $[z, p, k]=$ cheby2($n, R s, W n$);
\% Convert the pole zero values into second order coefficients sos=zp2sos (z, p, k);
\% Plot the frequency characteristics of the filter freqz(b, $a, 512,1000)$

Fig. 6. Spectrogram of the word matlab. The function specgram can be used with great effect to analyse speech signals.

Fig. 7. A frequent requirement for analysing rapidly changing signals is dissecting a signal into several equal segments. This is achieved using a strip plot.
is now a well established method of specifying the required filter characteristics. However the two functions remez and remzord in the toolbox have to be set up in a manner which departs from conventional wisdom thus rendering them less amiable than they could be.

Analysis of spectra

The toolbox has a number of useful functions for investigating the spectral content of signals, both periodic and signals contaminated by noise. In addition to the usual FFT, DFT there is a choice of the Chirp z-transform and a reasonable array of window functions to pre-process the data before performing spectral analysis.
An interesting function also included is specgram ie
spectrogram for analysing speech signals. It displays frequency and magnitude information versus time. Figure 6 is an example of the spoken word matlab. Magnitude is colour coded - red for the largest magnitude and blue for the smallest. For noise contaminated signals, the user can first perform auto-correlation, xcorr, on the data before subjecting to the Fourier transform. In many instances this improves performance of the spectral analysis.
Generally the toolbox has a reasonable array of spectral analysis tools, however one deficiency is the waterfall function. This function would partition a signal into several segments, perform a FFT on each segment and display a three dimensional plot - magnitude versus frequency versus time. There is however a feature for partitioning a signal into segments only and displaying them as a strip plot, strips. An example of its output is shown in Fig. 7.
The signal processing toolbox possesses a number of alternative tools for deriving spectral information. These are categorised as parametric modelling and are useful for analysing non-stationary signals - for example speech.

User manual

The manual accompanying Toolbox is well written, beginning with a tutorial section covering each group of the signal processing toolbox's functions. In the reference section of the manual there are the all important examples which can save an enormous amount of time when trying to master their use. The manual is quite indispensable when using this package.

Conclusion

Most functions in the signal processing toolbox can be accessed with relative ease and incorporated into a user's Matlab model. They are not as comprehensive as I would like and there are some noticeable omissions such as adaptive filters.
There could also be more functions for implementing lattice filters. However, in general this package will prove a very useful tool for the electronics engineers involved in digital signal processing and systems design.

Availability

Toolbox is available from Rapid Data, Crescent House, Crescent Road, Worthing, West Sussex BN11 5RW. Tel. 01903-202819, fax. 01903820762. Price of Matlab package is currently $£ 1376$ and Signal Processing Toolbox is $£ 325$, both excluding VAT. These prices include documentation and technical support. Add $£ 25$ for delivery of Matlab with the signal processing Toolbox or $£ 15$ for the Toolbox alone.

OMPUTERICS

S9900 NEW AMD EQUI
MC6802 PROCESSOR
c20ea
AM27CO20-125L1 SURFACE MOUNT TMSROM USEOWIPED... 1.50
MX16C450 UEART.
2317 20 (2K
D41256C-15 256kxl PULS
${ }^{\text {BOCC31 MICRO }}$
P87751-8 NEW
MK 48Z02-20 ZERO POWER RAM EQUIV 6116 LP
USED 41256-15
BBC VIDEOULA
FLOPPY DISC CONTROLLER CHIPS 1771
FLOPPY DISC CONTROLLER CHIPS 1772.
68000-8 PROCESSOR NEW.
ALL USED EPROMS ERASED ANO BLANK CHECKED
$2716-45$ USED.
$2764-30$ USED.
27 C 256 -30 USED
1702 EPROM EX EOPT
6264-15 8k STATIC RAM
Z80A SIOO
2816 A. 20 HO LCD DRIVER CHIP
HM6167LP-8
$88255-5$
2114 CMOS (RCA 5114
M27C4001-12 USED WIPED 4M EPROM
REGULATORS
LM3323K 5V 3A PLASTIC
LM350K (VARIABLE 3 A
7BH12ASC 12 V 5 A
LM31TT PLASTIC TO220 vanable
LM317 METAL
7812 METAL 12 V
7805/12/15/24
CA3085 TO99 vartable reg
LM123 ST93 5V 3 A TO3 REG
UC324ANSWICHNE

CRYSTAL OSCILLATORS

2M4576 ЗM6864 5MO 5M76 6 M144 7MOOO 7M3728 8MO00 12M000 14M3181 17M6256 16 M 257 18MOOO 20MOOO 23M587 24M000 25M17

CRYSTALS

4M0256 10M368 17M6256 18M432 25M000 28M4694 31M4696
 4M000 4M19304 4M433619 4M608 4M9152 5M000 5M0688 6M0000 6M400 BMOOO 8M488 9M8304 10M240 10M245 10M70000 11M000 12M00 13M000 13M270 14M000 14M381818 15M000 16MOO
 36 M 8312536 M 433753 M 90049 M 0454 M 1916554 M 7416 57 M 7583360 M 00069 M 545 69M550 BN 26M995 RD27M045 OR27M095 VW27M145 GN27M195 BL27M245 3M225E1 ea
TRANSISTORS

MPSA92

BC477, BC488 10/2 BCYTO PREFORMED LEA
full spec................................ $£ 1$ £4/100 £30/1000 BC557, BC238C, BC308B £1/30 £3.50/101/15 £4/100

POWER TRANSISTORS

P POWER FET IRF9531 8A 60 V 2SC1520 sim BF259............ SE 9301100 V IDA DARL SIM TIP PLASTIC 3055 OR 2955 equiv 50 p. \qquad

TEXTOOL ZIF SOCKETS

 28 PIN USED........... $£ 340$ PIN NEW...................... $£ 10$ DUAL IN LINE DEVICES. . COUPLING SUPPLIED $2 / 1.50$
MISCELLANEOUS

XENON STROBE TUBE ... $£ 1.60$ $22^{\circ} \times 7^{\prime \prime}$. WEIGHT 48 AK each, RUBBERISED CASE, GAULTLETED TUBULAR PLATE CONSTRUCTION, FOR DEEP CYCLE, HIGH CURRENT USE, MADE FOR BRITISH NAVY, 800 CELLS AVALLABLE, PHONE FOR PRICING ALSO AVAILABLE FILLED \& CHARGE

PIO 7000 available $£ 1$ each, gly. price

TEL. 01279-505543
FAX. 01279-757656
ро вох 634 BISHOPS STORTFORD HERTFORDSHIRE CM23 2RX

BA158 1A 400V fast recovery.	100/E3
BY254 800V 3A.	881
BY255 1300V 3A.	681
6A 100V SIMILAR MR751.	$4 / 81$
1 A G00V BRIDGE RECTIFIER.	$4 / 1$
4A 100V BRIDGE.	3 E 1
6A 100V BRIDGE.	2¢1
10A 200V BRIDGE.	11.50
25A 200 V BRIDGE E2	101518
25 A 400 V BRIDGE $£ 2.50$	101522
2KBP02 IN LINE 2A 200V BRIDGE REC	8/81
BY297.	10/81

SCRS

ICV106D 800 mA 400 C SCR $3 / \mathrm{E} 1$
MEU21 PROG. UNIJUNCTION

TRIACS

DIACS 4/\&1 5/C2 1000 C30
NEC TRIAC ACOBF BA 600 V TOZ2O. TXAL 2258 A 500 V 5 mA GATE............
BTA 08-400 ISO TAB 4OOV 5mA GATE.
TRAL2230D 30A 4OOV ISOLATED STUD
TRIAC TA B00V TLC 381 T 16k AVAILABLE 5 FOR es

CONNECTORS

D25 IDC PLUG OR SOCKET...........................
CENTRONICS 36 WAY IDC PLUG
CENTRONICS 36 WAY IDC SKT,
BBC TO CENTRONICS PRINTER LEAD 1.5 M
CENTRONICS 36 WAY PLUG SOLDER TYPE
USED CENTRONICS 36W PLUG + SKT
USED CENTRONICS 36W PLUG+SK
PHOTO DEVICES

2N5777....................
TIL38 INFRA RED LED
4N25, OP12252 OPTO ISOLATOR
HOTO DIODE 50P
MEL 12 (PHOTO DARLINGTON BASE r / c)
ED's RED 3 or 5 mm 12ヶI.
LED'S GREEN OR YELLOW 10
FLASHING RED LED 5 mm 50p
HIGH SPEED MEDIUM AREA PHOT

STC NTC BEAD THERMISTORS

G22 220R, G13 IK, G23 2K. G24 20K, G54 50K, G25 200K. RES $20^{\circ} \mathrm{C}$
DIRECTL HEATED TYPE..................................... ${ }^{\circ} 1$ ea FS22BW NTC BEAD INSIDE END OF $1^{\prime \prime}$ GLASS PROBE RES $20^{\circ} \mathrm{C}$

CERMET MULTI TURN PRESETS $3 / 4 "$
10R 20R 100R 200R 250P 500R 2K 2K2 2 K 55 K 10 K 47 K 50 K 100 K

C SOCKETS

POLYESTER/POLYCARB CAPS

$330 \mathrm{nF} 10 \% 250 \mathrm{~V}$ AC

0N/ $5 \mathrm{n} / 22 \mathrm{n} / 33 \mathrm{~N} / 47 \mathrm{~N} / 66 \mathrm{n} 10 \mathrm{~mm}$ rac
00 n 250 V radial 10 mm
2160 V Sprague axial $10 / \mathrm{e} 1$
$\mu 2160 \mathrm{~V}$ rad $22 \mathrm{~mm}, 2 \mu 2100 \mathrm{~V}$ rad 15 mm
$10 \mathrm{r} / 33 \mathrm{~N} / 47 \mathrm{n} 250 \mathrm{~V}$ AC \times rated
$1 \mu 600 \mathrm{~V}$ MIXED DIELECTRIC
$1 \mu 0100 \mathrm{~V}$ rad $15 \mathrm{~mm}, 1 \mu 022 \mathrm{~mm}$ ra
$0.22 \mu 250 \mathrm{~V}$ AC X2 RATING
$0.22 \mu 900 \mathrm{~V}$

RF BITS

AW FILTERS SW662SW661 PLESSEY SIGNAL TECHNOLOGY
 ASTEC UM1233 UHF VIDEO MODULATORS (NO SOUND) 1250 STOCK MARCONI MIC
DC4229F1/F2.

```
C4229F1/F2
```

TAL FILTERS 21M4 55M0
ALL TRIMMERS .. 3 for 50 p
-.-......-. 5-105pF
RED 10-110pF GREY 5-25pF SMALL MULLARD 3 FOR 50p £10/100
TAANSISTORS 2N4427, 2N3866... 80p ea
CERAMIC FILTERS 4M5/6M/9M 10M7
FEED THRU CERAMIC CAPS 1000D
6 VOLT TELEDYNE RELAYS 2 POLE CHANGEOVER.
BFY51 TRANSISTORCAN SIZE)
2N2222 METAL
P2N2222A PLASTIC
2N2369A.
MONOLITHIC CERAMIC CAPACITORS

n 50 V 5 mi

10 n 50 V 2.5 mm . $\ldots \ldots$.
100 n 50 V 2.5 mm or 5 mm
100/E4.50

QUARTZ HALOGEN LAMPS
12V 50watt LAMP TYPE M312......................... 11 ea HOLDERS 60 p as
6V 50watt.

Issue 13 of $\mathcal{D i s p l a y ~ N e w s ~ n o w ~ a v a i l a b l e ~ - ~ s e n d ~ l a r g e ~ S A E ~ - ~ P A C K E D ~ w i t h ~ b a r g a i n s ! ~}$

Transpc the printer port for analogue and digital i/o is that you have to unplug the printer. Or do you? Alan Bradley explains.

The usual way of expanding a pc is via an internal card. This has the disadvantage of requiring an accurately made double-sided pcb with gold-plated edge connectors, and the designer needs to understand the pc's $8 / 16 \mathrm{bit}$ expansion bus signals.
An easier way is to use the Centronics parallel printer port. This port is standard, whereas internal expansion buses vary from ISA, PCI, MCA, to none at all. Extra Centronics printer cards are very cheap - between $£ 9$ and $£ 18$, and a pc can support up to three such ports if required.
In this design, a printer pass through facility is included, allowing a printer to share the same port. This obviates the need to open the pc to insert an extra LPT expansion card, and prevents the possibility of address clashes.
The printer port has eight data output lines. Since most pcs don't have bidirectional data lines, the printer port's status lines are used as input lines instead. For example, 8bit data can be read as four bits at a time using four of the port's five input status lines.
The LPT port also has four control output lines. These can be used as digital output lines and for selecting either the upper or lower input nibble.

The pc's LPT port

Each LPT parallel printer port has three 8bit registers - the data latch, the status register and the control register.
Writing to the data register, d_{7-0}, causes the byte sent, to be latched and to appear on the parallel port's 25 way D connector, pins 2-9. In this design, this data is then sent to either the d-to-a converter or digital output port.
Normally, reading this register returns the contents of the latch. The status register, b_{7-0}, is a read-only register holding the state of BUSY, /ACK, PE, SLCT and /ERROR input lines from the printer. These are on lines b_{7-3} respectively. Input busy is inverted between the D-connector, pin 11, and the register. Bits b_{2-0} are unused.
The control register is an output latch holding the four printer control signals - /sLCT-INP, /INIT, /AUTOFEED and /STROBE. These are bits b_{3-0} respectively. Interrupt bit b_{4} determines whether an interrupt is generated by a falling /ACK input - 0 represents interrupt disabled. I always disable this bit as it is rarely used by printer software. This leaves IRQ channels 5 and 7 available for other expansion cards.
Bits 0,1 and 3 , ie /STROBE, /AUTOFEED and /SLCT-INP, are inverted between register and the D-connector output pins. This inversion is corrected again when the control register is read. Parallel port signals are at ttl levels and are presented on

via LPT i/o

a 25 -way D connector, shown on the circuit diagram.
The pc parallel port is specified as having open collector outputs, but the pc/at version uses standard ls -ttl devices. The three sets of addresses that can be assigned to parallel ports LPT1, LPT2 and LPT3 are,
Groups of pc i/o addresses reserved for LPT use.

Port	Data	Status	Control
$\operatorname{LPT}(n)$	378_{16}	379_{16}	$37 A_{16}$
$\operatorname{LPT}(n)$	278_{16}	279_{16}	$27 A_{16}$
$\operatorname{LPT}(n)$	$3 B C_{16}$	$3 B D_{16}$	$3 B E_{16}$

Note that register addresses assigned to each parallel port vary depending on the pc type.
Information on parallel port addresses and the number of ports fitted can be found in the Bios data area,
Bios addresses containing information on pc parallel port
address locations.
Address Description
$0: 408_{16} \quad$ Base address of parallel port 1 (LPT1), low byte
$0: 409_{16}$ High byte for above
$0: 40 \mathrm{~A}_{16} \quad$ Base address of parallel port 2 (LPT2)
$0: 40 \mathrm{~B}_{16}$ High byte for above
$0: 40 \mathrm{C}_{16}$ Base address of parallel port 3 (LPT3)
$0: 40 D_{16}$ High byte for above
$0: 410_{16}$ Hardware info., bits $15-14=$ No of LPT ports
$0: 411_{16}$ High byte for above

Useful ICs

While designing the interface, I have found the following 74 series ICs useful. Each is available in a variety of forms, including LS, ALS and HCT. The type chosen will depend on a number of criteria, including budget, speed and power consumption.
The ' 139 is a $2-4$ line decoder useful for selecting between four interface i/o ports while the ' 138 decodes three lines to eight and is useful for applications with eight ports. Selection between the upper and lower nibbles of the input byte can be carried out by a ' 157 quad 2-1-line multiplexer. Alternatively, a '241 dual or '244 quad tristate buffer can select the upper or lower nibble.
A '573 or '373 octal transparent latch can form an 8 bit digital output port. With its enable pin high, the outputs follow the inputs; when it is low outputs are held latched. For 8bit digital input, a '245 octal transceiver can be used. A

Pin-out of the 25 way female D connector used on the pc for LPT i/o.

Pin(s)	Bit	Status
1	STROBE	output
$2-9$	d0-d7	output
10	ACK	input
11	BUSY	input
12	PE	input
13	SLCT	input
14	AUTOFEED	output
15	ERROR	input
16	INIT	output
17	SLCTINP	output
$18-25$	GND	

' 541 or ' 244 buffer can also be used here, depending on which produces the most convenient pcb layout.
When reading data through the status port, the BusY bit must be inverted, for example by exclusive-or-ing it with 1000000_{2}. On fast machines, the interface-controlling program may need software delays to allow the parallel port control lines to settle after a change.

Design details

This design provides a fast 8 bit a-to-d converter with integral sample and hold, a fast 8 bit d-to-a converter and a pair of 8bit digital i/o ports. The a-to-d and d-to-a converter are both capable of audio sampling and playback.
In my prototype, the lower D-type plug shown in the drawing was pcb mounted. This plug connects to the pc printer port. The upper Dtype, also pcb-mounted, connects to the printer, providing the 'pass through' facility.
Note that $/ C_{6}$ - a $74 L S 157$ quad 2 to 1 line multiplexer - must be a ttl type as its inputs are left floating when neither the a-to-d converter nor digital input port are selected. In addition, $I C_{1-4}$, and $I C_{9}$ should be ls-ttl types, as cmos ICs would require input static protection circuits.
The remaining pcb-mounted D-type socket brings out both 8bit digital ports, the digital ground rail and +5 V into the real world.
Analog Devices $A D 7569 J N, I C_{10}$, is an 8 bit a-to-d converter with integral sample and hold facilities and configured for mode 2 operation and for an input range of $0-2.5 \mathrm{~V}$. Bringing the read line low when chip select is active low selects the a-to-d converter, starting the conversion. The converter's busy line is not used so a software delay is needed to determine when the conversion will be complete. Conversion time should be less than $2.6 \mu \mathrm{~s}$.
Eight-bit a-to-d converter $/ C_{11}$, a $2 N 558$, has an integral transparent latch and a range of $0-2.5 \mathrm{~V}$. Single supply op-amp $I C_{12}$, an LM358, buffers the d-to-a converter output and its 2.5 V reference.
Resistors $R_{25,26}$ help prevent the op-amp from oscillating due to cable capacitance and also protect it from short circuits. A dc path to ground to prevent cross-over distortion is provided by R_{24}.
A further $L M 358, I C_{13}$, is configured as a unity gain buffer to protect the $A D 7569$ voltage input. The 7569's input pin sources approximately $10 \mu \mathrm{~A}$ and R_{27} helps the op-amp sink this near 0 V .
A ready built $1 \mathrm{~A}, 12 \mathrm{~V}$ regulated power supply is ideal. Diode D_{1} provides reverse polarity protection. A $7805, I C_{14}$, produces a +5 V rail. An analogue 11.3 V power rail was provided with a separate ground rail, which is also used for all the interface's analogue ICs.

Bit	Contral	Description
7	*	unused
6	*	unused
5	*	unused
4	IRQ DISABLE	0 disables when a \& di/o is selected
3	SLCTINP	0 selects a \& di/o, 1 selects printing
2	INIT	0 selects lower nibble 1 selects upper nibble
$\begin{aligned} & 1 \\ & 0 \end{aligned}$	AUTOFEED STROBE	${ }_{0}^{0} \text { d-to-a } 1_{1}^{0} \text { a-to-d } 1_{0}^{1} \text { dig o/p } 1_{1}^{1} \text { dig i/p }$
Bit	Status	Description
7	BUSY	bit 3 from LS157 mpx
6	ACK	bit 2 from LS157 mpx
5	PE	bit 1 from LS157 mpx
4	SLCT	bit 0 from LS157 mpx
3	ERROR	not used by i/o card
2	*	unused
1	*	unused
0	*	unused

Within the pc, these control and status bits manage data transfer to and from the LPT analogue and digital i/o circuitry.

Description
unused

* unused

IRQ DISABLE $\quad 0$ disables when a \& di/o is selected
SLCTINP 0 selects a \& di/o,
1 selects printing
0 selects lower nibble
${ }_{0}^{0}$ d-to-a ${ }_{1}^{0}$ a-to-d ${ }_{0}^{1}$ dig o/p ${ }_{1}^{1}$ dig i / p

Description

from LS157 mpx
bit 2 from LS157 mpx
bit 0 from LS157 mpx 157 mp unused unused

12 V DC in

I/O interface key components

$I C_{1-4}$	$74(A) L S 244$
$I C_{5}$	$74(A) L S 139$
$I C_{6}$	$74(A) L S 157$
$I C_{7}$	$74(A) L S 04$
$I C_{8}$	$74(A) L S 373$
$I C_{9}$	$74(A) L S 244$

For easier pcb layout, broadside ICs could be used - for example
${ }^{\prime} C_{2}$ 74LS541, C_{3} 74LS245,
$I_{8} 74 L S 573, I_{9} 74 L S 245$.
$I_{10} \quad A D 7569 / \mathrm{N}$ a-to-d
$\mathcal{I C}_{11} \quad$ ZN558 d-to-a
${ }^{\prime} C_{12,13} \quad$ LM358
${ }^{\prime} \mathrm{C}_{14} \quad 7805,1 \mathrm{~A}$ version
$D_{1} \quad 1 \mathrm{~N} 4001$
$D_{2} \quad$ led 5 mm green
$D_{3} \quad$ led 5 mm red
$C_{1,3,4} \quad 100 \mu \mathrm{~F}$
$C_{2,5,8-15} \quad 0.1 \mu \mathrm{~F}$ cer.
$C_{17,19-22} 0.1 \mu \mathrm{~F}$ cer.
$C_{16} \quad 22 \mu \mathrm{~F} 25 \mathrm{~V}$
$C_{18} \quad 68 \mathrm{pF}$ polystyrene 2%
$C_{23} \quad 4.7 \mu \mathrm{~F}$ tant.
$R_{1-8,}, R_{10-13}, R_{13 \mathrm{~A}-18}, R_{32-39}, 4 \mathrm{k} 7$ SIL8
$R_{9}, R_{19}, R_{20}, R_{21} \quad 4 \mathrm{k} 7$
$R_{22} \quad 390 \mathrm{R}$
$\begin{array}{ll}R_{23,24} & 6 \mathrm{k} 2\end{array}$
$R_{25,26,28} 100 \mathrm{R}$
$R_{27} \quad 330 \mathrm{R}$
$R_{29} \quad 10 \mathrm{M}$
$R_{30,31}$ led resistor 2 k 2
$R_{\text {slctinp }} 220 \mathrm{R}$
$R_{40-51} 33 \Omega$ resistors required by printer pass through circuit when printer is switched off.

Fuses shown are 100 mA a s.

Interface board register usage

Data lines d_{0-7} are used for the d-to-a converter and digital output port. The four status input lines, buSY, ACK, PE and SLCT, b_{7-4}, are used to read the upper or lower nibble of the input byte. The four control output lines are used to select either the upper or lower input nibble. They also control printer pass through, analogue input or output and digital input or output.
In the control register, bits 0,1 , and 3 are inverted between the control register and corresponding D-connector output pins. The stctinp line is normally used to select or deselect the printer, a low level signifying selection. It has therefore been used to switch between the analogue and digital i / o circuitry and the printer pass-through facility, selected when SLCT-INP is low as normal. Analogue and digital i / o circuitry is selected when SLCTINP is high, and the printer is deselected.
Consequently, when b_{3} of the control register is high, the corresponding pin 17 on the D connector is low and $/ C_{3,4}$ are selected. At the same time, the four status line buffers of $I C_{1}, \mathrm{~b}_{7-4}$, are tri-stated and $I C_{5}$'s enable pin is held high.
The pc parallel port is now connected via buffers to the printer thus allowing normal use of the printer. Resistors R_{40-51} in series with the output buffers driving the printer need to be 33Ω.
Alternatively, when line b_{3} of the control register is low, the corresponding pin 17 of the D connector is high and $I C_{3,4}$ are tri-stated, isolating the printer Resistor $R_{13 \mathrm{~A}}$ pulls the Strobe line high when $I C_{3,4}$ are tri-stated. The four status buffers of $I C_{1}$ are selected and R_{9} pulls the error status pin high. This pin is not used by the analogue and digital i/o sections. In addition, $I C_{5}$ is enabled.
Resistor $R_{\text {SLCTINP }}$ pulls the printer SLCTINP pin low, ie printer selected. Leds $D_{2,3}$ indicate whether printer pass-through or analogue and digital i / o is selected Line b_{2} of the control register, the INIT control line selects between upper and lower nibbles of the input byte from the a-to-d converter or digital input port.
Control lines strobe and autofeed are used to
select one of the four i/o ICs - a-to-d, d-to-a, digital input or digital output - using the '139 decoder. When printer pass-through is selected, the '139's enable pin is pulled inactive high and all four i/o ICs are deselected. The d-to-a converter and digital output port retain their last value during printing. To prevent spurious intermediate values due to one of the AUTOFEED/STROBE pair changing state before the other, it is best if only one is changed at a time.
The a-to-d converter starts conversion when it is selected, ie the read line is pulled low. During conversion the a-to-d converter places data from the previous conversion on its data pins. An attempt to start a new conversion while the a-to-d converter is in the middle of a conversion results in an incorrect result.
If a switch is made directly from one output port to the other, the old port's value may briefly appear on the new port's outputs. To prevent this happening, an input port must be selected and the new port's output byte sent to the data register before the new port is selected.

Applying the design

The LM358 input and output buffers have a slew rate of $0.5 \mathrm{~V} / \mu$ s so limiting the analogue input and output frequencies to approximately 50 kHz . Maximum frequency is given by,

$$
f_{\max }=\frac{\text { slew rate }}{2 \pi \times \text { sinewave amplitude }}
$$

where slew rate is in volts/s.
The $A D 7569 . J N$ a-to-d converter is configured for mode 2 operation. Bringing read low while chip-select is low selects the device and starts conversion.
Since the converter's busy line is not used a software delay is needed to determine when the conversion will be complete. Conversion time should be less than $2.6 \mu \mathrm{~s}$.

Control software example

This Qbasic program demonstrates how the analogue and digital i/o circuit can be controlled. It reads the a-to-d converter, prints the value on the screen then sends it to the d-to-a converter.

```
DEFINT A-Z
`string chs
'int uppernibble, advalue, dloop
'int d is used in dummy INP loads
*int pDATA, PSTATUS, PCONTROL hold
LPT1 reg addresses
DEF SEG = 0
    FIND ADDRESSES OF lpt1
PDATA = (PEEK(&H409) * 256) + PEEK(&H408)
DEF SEG
PSTATUS = PDATA + 1
    PRINTER PORT
PCONTROL = PDATA + 2
    `REGISTERS
PRINT HEX$(PDATA)
OUT PCONTROL, &H3
    disIRQ 0, SLCTINP 0,lower nibble,
    sel dig i/p port. 0000 0011
    ie printer deselected
```

```
d = INP(PDATA)
    'wait for ctrl lines to settle
DO OUT PCONTROL, &H1
    `dis IRQ,0,lower nibble.
    sel ADC(&startconv),0000 0001
    wait for conv to finish
FOR dloop = 1 TO 10
    do nothing
NEXT
advalue = INP(PSTATUS) AND &HFO
        get lower nibble of ADC byte
advalue = advalue / 16
    shift lower nibble to correct posn
PRINT "ADC lower nibble is ", advalue
OUT PCONTROL,&H5
    dis IRQ,sel iface brd,upper nibble.
    sel ADC,0000 0101
d = INP(PDATA)
        'wait for ctrl lines to settle
uppernibble = INP(PSTATUS) AND &HFO
    'get ADC uppernible&setlower4bitstozero
PRINT "ADC upper nibble is ", uppernibble
advalue = advalue OR uppernibble
    'combine up & low nibs to give byte
advaiue = advalue XOR &H88
```


When Performance is more important than size:two new re-programmable BASIC Stamp Computers.

up to 100 program lines

2,000 lines/sec
Comms to 2400 baud
E20 single price

Comms to 9600 baud
E49 single price

Programming package £66
Milford Instruments Tel 01977683665 Fax 01977681465

DID YOU RNOWY

More than half the world's PCs wake up to our BIOS!
And we're doing pretty well with hardware products too!
Motherboards:
TITAN - $2 \times$ P5 EISAIPCI ATLAS-P5 ISA/PCI
APOLLO-P5 Triton ISA/PCI ATLAS LPX - P5 Triton ISA/PCI
Peripherals:
MegaRAID" - PCI/SCSIIRAID
And more...Call us for more information! PLUS - Coming soon PC-CARE ${ }^{\text {M }}$ (AMIDiag for Windows) Watch this space!

OEM enquiries welcome on all products, Hardware / Software and BIOS.

American Megatrends Intl. Limited Unit C5, Worth Corner, Pound Hill, CRAWLEY, w.Sx. RH10 7SL Tel 01293882288 - Fax 01293886550

American Megatrends

SYNTHESISED SIGNAL SOURCE

an innovative design from an established 'Off-Air' Company

- Custom designed chip set
- Sinewave output 0 dBm into 50Ω
- Can be run independently or genlocked to external source
- dc to 16 MHz in 0.1 Hz steps, with option 0.0001 Hz steps
- Freestanding rack mounting, or OEM options available
- Increased resolution and increased stability options available Models available October, contact us for prices
‘OFF-AIR' FREQUENCY STANDARD
CIRCLENO. 127

Variants from £249 +raat

* Provides $10 \mathrm{MHz}, 5 \mathrm{MHz} \& 1 \mathrm{MHz}$
- Use it for calibrating equipment that relies on quartz crystals.

TCXOs, VXCOs, oven crystals

- Phase locks to DROITWICH (rubidium controlled and
traceable to N PL)
- For ADDED VALUE also phase locks to ALLOUIS (cesium
- Controlled and traceable to OP - French eq to NPL)
* Bntish designed and British manutactured

Output trequencies $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$
Short term stability - better outputs and 13

TEST EQUIPMENT ClRcteno.rzs

We are well known for our quality, new and used Test Equipment. Our list is extensive, ranging through most disciplines. Call for details and a complete list
HALCYON ELECTRONICS vSA
423, KINGSTON ROAD, WIMBLEDON CHASE, LONDON SW20 8JR SHOP HOURS 9-5.30 MON-SAT. TEL 0181-542 6383. FAX 0181-542 0340

CIRCUIT IDEAS

Do you have an original circuit idea for publication? We are giving $£ 100$ cash for the month's top design. Additional authors will receive $£ 25$ cash for each circuit idea published. We are looking for ingenuity in the use of modern components.

Static noise limiter

Noise limiters usually rely on either low-pass filtering or companding methods. Both of these methods have disadvantages in either cost or performance.
This alternative uses a peak detector. The signal diagrams on the right show an ideal principle, in which the noise superimposed on the sine wave is averaged to leave just the signal - shown by the heavy line.
Since I have not found a way to do this, the alternative adopted is to detect the noise-plus-signal peaks to produce an approximation of the
original signal, bottom right. In the circuit shown, the input opamp buffers the signal, which is applied to the bases of the peakdetecting transistors through C_{1}. Bias is provided by $V R_{1}$ and R_{2}. On a positive signal, C_{2} charges via R_{3} and C_{2} holds positive peaks; when signal goes negative, negativegoing peaks are held on C_{2}, which now charges through R_{4}. An output buffer completes the circuit.
The amount of limiting is set by $V R_{1}$ and the dead zone is adjustable by $V R_{2}$ over a wide range. Some distortion is caused by the transistor
switching, but in many circuits is less troublesome than noise.
I Macaulay
Chichester, Noise superimposed on Sussex. the sine wave is averaged to leave the signal.

YOU COULD BE USING A 1GHz SPECTRUM ANALYSER ADAPTOR!

Got a good idea? Then this Thurlby-Thandar Instruments TSA1000 spectrum analyser adaptor could be yours.
Covering the frequency range 400 kHz to over 1 GHz with a logarithmic display range of $70 \mathrm{~dB} \pm 1.5 \mathrm{~dB}$, it turns a basic oscilloscope into a precision spectrum analyser with digital readout calibration.
Recognising the importance of good design, TTI will be giving away one of these excellent instruments every six months to the best circuit idea published in the preceding period until further notice. This incentive will be in addition to our $£ 100$ monthly star author's fee, together with $£ 25$ for all other ideas published.
Our judging criteria are ingenuity and originality in the use of modern components - with simplicity particularly valued.

SMALL SELECTION ONLY LISTED - EXPORT TRADE AND QUANTITY DISCOUNTS - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

HP New Colour Spectrum Analysers
HP141T+8552B IF $+8553 \mathrm{BRF}-1 \mathrm{KHz}-110 \mathrm{Mc} / \mathrm{s}-£ 700$
HP141T+8552BIF $+8554 \mathrm{BRF}-100 \mathrm{KHz}-1250 \mathrm{Mc} / \mathrm{s}-£ 900$.
Special Offer just in from MOD Oty 40 HP 8555 A RF Units $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GHzS}$.
HP141T+8552B IF + 8555A $10 \mathrm{Mc} / \mathrm{s}-18 \mathrm{GH} 2 \mathrm{~S}-\mathrm{E}^{1} 200$.
HP ANZ Units Available separately - New Colours - Tested
HP 141 Mainframe - E 350 .
HP8552B IF - $\ddagger 300$.
HP8553B RF 1 KHz to $110 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 200$.
HP8554B RF 100 KHz to $1250 \mathrm{Mc} / \mathrm{s}-\mathrm{f} 500$.
HP8555A RF $10 \mathrm{Mc} / \mathrm{s}$ to $18 \mathrm{GHzS}-\mathrm{f} 800$.
HP8556A RF 20 Hz to $300 \mathrm{KHzS}-£ 250$.
HP8443A Tracking Generator Counter 100KHz-110Mc/s - £300.
HP84458 Tracking Preselector DC to 18GHz- $£ 350$.
HP3580A $5 \mathrm{~Hz}-50 \mathrm{KHz}$ ANZ - $£ 750-£ 1000$.
HP3582A . 02 Hz to $25.6 \mathrm{KHz}-£ 2 \mathrm{k}$.
HP8568A $100 \mathrm{~Hz}-1500 \mathrm{Mc} / \mathrm{s}$ ANZ- $£ 6 \mathrm{k}$
HP8569B $10 \mathrm{Mc} / \mathrm{s}-22 \mathrm{GHz}$ ANZ - $£ 6 \mathrm{k}$.
HP8569B $10 \mathrm{Mc} / \mathrm{s}-22 \mathrm{GHz}$ ANZ - 66 k .
HP Mixers are available for the above ANZ's to 40 GHz
TEK $492-50 \mathrm{KHz}-18 \mathrm{GHz}$ Opt $1+2-£ 4 \mathrm{k}-\mathrm{f} 4.2 \mathrm{k}$.
TEK $492-50 \mathrm{KHz}_{2}-18 \mathrm{GHzOpt} 1+2+3-£ 4.5 \mathrm{k}$.
TEK $492 \mathrm{P}-50 \mathrm{KHz}-21 \mathrm{GHzOpt} 1+2+3-$ E5k.
TEK 494AP $1 \mathrm{KC} / \mathrm{S}-21 \mathrm{GHz}-£ 7 \mathrm{k}$.
TEK $496 \mathrm{P} 1 \mathrm{KHz}-1.8 \mathrm{GHz}-\mathbf{£ 4 k}$.
TEK $5 \mathrm{~L} 4 \mathrm{~N} 0-100 \mathrm{KHz}-\mathrm{f} 400$.
TEK 5L4N O-100KHz - £400.
TEK 7L5 + L1-20Hz-5Mc/s - $£ 700$.
TEK $7 \mathrm{LS}+\mathrm{L3}$ - Opt 25 Tracking Gen
TEK 7L5 + L3-Opt 25 Tracking Gen - $£ 900$.
TEK 7L12-100KHz-1800Mc/s $-£ 1000$.
TEK 7L12-100KH2-1800M C/s-
TEK 7L18-1.5-60GHzs- $\mathbf{E 1 5 0 0}$.
TEK $49110 \mathrm{Mc} / \mathrm{s}-12.4 \mathrm{GHzs}-40 \mathrm{GHzs}-£ 750$. $12.4 \mathrm{Ghzs}-40 \mathrm{Ghzs}$ with Mixers.
Tektronix Mixers are available for above ANZ to 60 GHzs
Systron Donner 763 Spectrum ANZ + 4745B Preselector .01-18GHz + Two Mixers 18-40GHz in Transit Case - E3k.
HP86730
HP8673D Signal Generator. $05-26.5 \mathrm{GHz}$ - £20k.
Systron Donner 1618 B Microwave AM FM Synthesizer $50 \mathrm{Mc} / \mathrm{s} 2-18 \mathrm{GHzs}, ~$
R\&S SWP Sweep Generator Synthesizer AMFM
ADRET 3310 A FX Synthesizer $300 \mathrm{~Hz}-60 \mathrm{Mc} / \mathrm{s}-£ 600$ - $2500 \mathrm{Mc} / \mathrm{s}-£ 3.5 \mathrm{k}$.
HP8640A Signal Generators - $1024 \mathrm{Mc} / \mathrm{s}$ - AM FM - $£ 800$.
HP8640A Signal Generators - 1024MC/s - AM FM -
HP3717A 70Mc/s Modulator - Demodulator - E 500 .
HP8651A RF Oscillator $22 \mathrm{KC} / \mathrm{S}-22 \mathrm{Mc} / \mathrm{s}$.
HP5316B Universal Counter A+B.
HP6002A Power Unit 0-5V 0-10A 200W.
HP6825A Bipolar Power Supply Amplifier
HP461A-465A-467A Amplifiers.
HP81519A Optical Receiver DC-400 Mc/s.
HP Plotters 7470A
HP3770A Amplitude Delay Distortion ANZ.
HP37708 Telephone Line Analyser.
HP59401A Data Analyser.
HP59401A Bus System Analyser.
HP6260B Power Unit 0-10V 0-100 Amps.
HP3782A Error Detector.
HP3781A Pattern Generator.
HP3730A + 3737A Down Convertor Oscillator $3.5-6.5 \mathrm{GHz}$.
HP Microwave Amps 491-492-493-494-495-1GHz-12.4GHz - £250.
HP 1058 Quartz Oscillator - $£ 400$.
HP5087A Distribution Amplifier.
HP6034A System Power Supply 0-60V 0-10A-200W - £500.
MP6131C Digital Voltage Source $+-100 \mathrm{~V} 1 / 2 \mathrm{Amp}$.
HP4275A Multi Frequency L.C. R. Metar.
HP3779A Primary Multiplex Analyser.
HP3779C Primary Multiplex Analyser.
HP8150A Optical Signal So
HP1630G Logic Analyser.
HP5335A Universal Counter $A+B+C$.
HP595018 Isolated Power Supply Programmer.
HP8901A Modulation Meter AM - FM - also 8901B.
HP5370A Universal Time Interval Counter.
Marconi TF2370-30Hz-110Mc/s 750 HM O
Marconi TF2370-30Hz-110Mc/s 750 HM Output (2 BNC Sockets + Resistor for 500 HM MOD with
Marconi MOD Sheet supplied - $£ 650$.
Marconi TF2370 30Hz-110 Mc/s 50 ohm Output - $£ 750$
Marconi TF2370 as above but late type - $£ 850$.
Marconi TF2370 as above but late type Brown Case- $£ 1000$.
Marconi TF2374 Zero Loss Probe - E200.
Marconi TF2440 Microwave Counter - 20 GHz - $£ 1500$.
Marconi TF2442 Microwave Counter - 26.5GHz - $£ 2 \mathrm{k}$.
Marconi TF2305 Modulation Meter - $£ 2.3 \mathrm{k}$.
Racal/Dana 2101 Microwave Counter $-10 \mathrm{~Hz}-20 \mathrm{GHz}-£ 2 \mathrm{k}$.
Racal/Dana 1250-1261 Universal Switch Controller + 200Mc/s PI Cards'
Racal/Dana 9303 True RMS Levelmeter+Head - $£ 450$. IFFE - $£ 500$
TEK 1240 Logic Analyser - $£ 400$.
TEK FG5010 Programmable Function Generator 20Mc/s - $£ 600$.
TEK $2465 A 350 \mathrm{Mc} / \mathrm{s}$ Oscifloscope $-£ 2 \mathrm{k}+\mathrm{meot}$
TEK2465A 350Mc/s Oscilloscope - $£ 2.5 \mathrm{k}+$ probes - $£ 150$ each.
TEK CT. 5 High Current Transformer Probe- $£ 250$.
TEK J16 Digital Photometer + J6523-2 Luminance Probe - f300.
TEK J16 Digital Photometer + J6503 Luminance Probe - $£ 250$.
ROTEK 320 Calibrator +350 High Current Adaptor AC-DC - $£ 500$.
FLUKE 5102 A AC-DC Calibrator - £ 4k.
FLUKE 1120 A IEEE - 488 Translator - $£ 250$.
Tinsley Standard Cell Battery $56448-£ 500$.
Tinsley Trans portable Voltage Reference - $£ 500$.
FLUKE Y5020 Current Shunt- E 150 .
HP745A+ 746 A AC Calibrator - $£ 600$.
HP745A+746A AC Calibrator- $£ 600$.
HP8080A MF +8091 A 1 GHz Rate Ge
HP8080A MF + 8091A 1GHz Rate Generator + 8092A Delay Generator + Two 8093A 1GHz Amps MP54200A Digitizing
MP54200A Digitizing Oscilloscope.
HP117298 Carrier Noise Test Set .01-18GHz - LEF - $£ 2000$.
HP3311A Function Generator - $£ 300$.
Marconi TF2008 - AM-FM signal generator - also sweeper - $10 \mathrm{Kc} / \mathrm{s}$ - $510 \mathrm{Mc} / \mathrm{s}$ - from E 250 tested to $£ 400$ as new with manual - probe kit in wooden carrying box. MP Frequency comb generator type 8406 - f 400 .
HP Vector Voltmeter type 8405A - £400 new colour.
 HP Network Analyzer type $8407 \mathrm{~A}+8412 \mathrm{~A}+8501 \mathrm{~A}-100 \mathrm{Kc} / \mathrm{s}-110 \mathrm{M}$
HP Amplifier type $8447 \mathrm{~A}-1-400 \mathrm{Mc} / \mathrm{s} \mathrm{f} 200-\mathrm{HP8447A}$ Dual -f 300 .
HP Frequency Counter type 5340 A - 18 GHz £ 1000 - rear output f 800 .
HP $8410-\mathrm{A}-\mathrm{B}$ - C Network Analyzer $110 \mathrm{Mc} / \mathrm{s}$ to 12 GHz or 18 GHz - plus most other units and
displays used in this set-up-8411a-8412-8413-8414-8418-8740-8741-8742-8743-8746-8650. From £1000.
Racal/Dana 9301A-9302 RF Millivolt meter-1.5-2GHz- $\mathrm{E} 250-\mathrm{E} 400$.
Racal/Dana Modulation Meter type $9009-8 \mathrm{Mc} / \mathrm{s}-1.5 \mathrm{GHz}-£ 250$.
Marconi RCL Bridge type TF2700- $£ 150$.
type - 6058B - 6070A - 6055A - 6059A - 6057A - 6056 -M250-£350. $400 \mathrm{Mc} / \mathrm{s}$ to 18 GHz .
Marconi T1245 Circuit Magnification meter +1246 \& 1247 Oscillators - $£ 100-£ 300$.

Marconi distortion meter type TF2331 - $£ 250$.
ITEMS BOUGHT FROM HM GOVERNMENT BEING SURPLUS. PRICE IS EX WORKS. SAE FOR ENOUIRIES. PHONE FOR APPOINTMENT OR FOR DEMONSTRATION OF ANY ITEMS, AVAILABILTY OR PRICE CHANGE. VAT ANO CARRIAGE EXTRA ITEMS MARKED TESTED HAVE 30 DAY WARRANTY. WANTED: TEST EOUIPMENT-VALVES-PLUGS AND SOCKETS-SYNCROS-TRANSMITTING AND RECEIVING EOUIPMENT ETC.
Johns Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradiord BD112ER. Tel. No: (01214|1684007. Fax: 651160

Fast-logic isolator avoids ground problems

Two circuits, working at clock frequencies up to 100 MHz , isolate the ground currents between two instruments to prevent the transmission of noise currents. Both circuits use twisted-pair lines. Eclttl and eci-ecl logic types are both catered for.
Opto-isolators do, of course, perform this function, but not at this frequency; their bandwidth is limited to around 40 kHz . Therefore, a transformer is needed, the type

used here having low capacitive inter-winding coupling with good inductive coupling at the frequencies of interest. Since the transformer cannot couple signals of less than 100 kHz , with puise widths of more than a few microseconds, a pre-biasing circuit is needed to define the output during steady-
state periods by means of jumper settings.
10 KH ecl devices, rather than comparators, provide either ecl or tt output because both cost and space occupied is less.

Richard Payne

Wimbledon
London

This jumper function diagram applies to both the t tl and ecl-output isolators.
ECL Gnd loop isolator

Circuits to isolate or break the path between instrumerits and host computer to avoid ground currents interfering with analogue equipment.

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

Hant Audio Kits and factory assembled units use the unique combination of dircuit designs by the renowned John Linsley Hood, the very glve you unbeatable pertiormance and unbelievable value for money. We have always led the fietd for easy home construction to protesslonal standards, even in the sxities we were using easily assembled printed circuits when Hearhkti in America were still using tagboards!. Many years of experience and innovation, going back to the early Dinsdale and Bailey classics gives us incomparable design background in the needs of the home constructor. This simply means that builing a Hart kiris a real pleasure, resulting in a piece of equil nat not only saves you ar your be to interested in to see how easy it is to buid your own enurpen are HART way. The FULL cost can be credited against your subsequent kif purchase.
K1100 AUDIO DESIGN 80 WATT POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerthouse for your ultimate hifi system. This kit is your way to get uk performance at bargain basement pnces. Unique design features such as fully FET stablised power supplies give this amplifier World Class performance with starting of components and ease of construction
of componenis and ease sentren
Useful options and swithed inputs, with meter and a versatile passive front end giving switched inputs, with ALPS precision Blue Velvet
low-noise volume and balance controls. Construction is very simple and enjoyable with all the difficult work done for you, even the wiring is preterminated, ready for Instant uset. All versions are available with Standard components or specially selected Super Audiophile components at £29.60 extra per channel, plus u2.40 if you want to include Gold Plated speaker terminals. 1100B Complete STANDARD Amplifier Kit, A1100B Factory Assembled. k1100SC Complete SLAVE Amplifier Kit A1100SC Factory Assembled. A1100M Factory Assen RLH11 Reprints of latest Amplifier articles K1100CM Construction Manual with

$\Sigma 395.21$

 4499.21 $\begin{array}{r}\text { £333.62 } \\ \text { E422.62 } \\ \hline\end{array}$ ع 422.62$\mathbf{~} 261.20$ £261.20
£329.20 . $\mathbf{E 1} 1.80$ $\begin{array}{r}\text {. } 11.80 \\ . ~ \\ \hline 5.50\end{array}$
"CHIARA" SINGLE ENDED CLASS "A" HEADPHONE AMPLIFIER.

This unit provides a high quality headphone output for "stand alone" use or to supplement those many power amplifiers that do not have a headphone faclity. Easily installed with special link-through feature ear torcidal supoly. Housed in the neat, black finished, Hart minibox it features the wide frequency response, low-distortion and 'musicality' that one associates with designs from the renowned John Linsley Hood. Pre-terminated interconnecting leads and PCB mounted sockets prevent supply polanity reversal and on-board diagnostics provide visual indication of supply line integnity. Volume and balance controis are Alps "Blue Velvet" components. Very easily built, even by beginners, since all components fit directly on the single printed circuit board. The kit has very detaled instructions, and even comes with a complementary roll of Hatt audiograde silver solder. It can also be supplied factory assembled and tested. Selling for less than the total represents incredible value for money and makes an represents incredible value for money and
attractive and harmonious addition to any hifi systern.
K2100 Complete Kit
£109.50
K2100SA Series Aud
components
. 1112.46
K3565 "Andante" Power Supoly Kit to sury Assembled. A3565 Power Supply Factory Assit to suit "Chara" CM2 100 Construction Manual.
SPECIAL OFFER. Both units Factory Assembled and Tested.
"Andante" SERIES 20VA AUDIOPHILE POWER SUPPLIES
Specially designed for exacting audio use requinng absolute minimum noise, low hum field and total freedom from mechanical noise this
series.
Utilising linear technology throughout for smoothness and musicality makes it the perrect partner for any module requiring fully stabillse $\pm 15 \mathrm{v}$ süpplies.
Two versions are avalabie. K3550 has $2 \pm 15 \mathrm{v}$ suppiles and a single 15 v for relays etc. and can be used with our K1400 preamp and ou K1450 RIAA pickup preamp, as well as other useful modules soon to be introduced. The K3565 is identical in appearance but only has the amplifier or "Chiara" headphone amplifier. K3550 Full Supply with all outputs. K3565 Power Supply for K 1450 \& K2 100
. $£ 93.75$
. $£ 85.42$

ALPS "Blue Velvet" PRECISION AUDIO CONTROLS.

Now you can liow ou hose noisy il-mats canon pors and replace with the famous Hart exclusive ALPS 'Blue Velvet' rang components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is increcible giving berter tonal balance between channels a
solid image stability. Motorised versions have 5 DC motor. MANUAL POTENTIOMETERS
2-Gang 100 K Lin.
2-Gang 10K, 50 K or 100 K Log
. 515.67
. 16.40
Gang 10K Special Balance, zero crosstalk and zero
. 17.48
MOTORISED POTENTIOMETERS
2-Gang 10K RD Special Balance, zero crosstalk and less than 10% loss in centre positlon..E26.9

TECHNICAL BOOKSHELF

 NES" Another Classic by John Linsiey Hood. AUDF ELECTRON Electronics" the latest oftering is the all-new edition of "Audio Electronics" the latest offering is the all-new edition of "Audio Electronics", now entirely re-written by the master himself Underlying audio techniques and equipment is a world of elactronics that determines the quality of sound. For anyone involved in designing. adapting or using digital or analogue aucio equipment undersound The subjects covered inclucte tape recording, tuners, power output stages, digital audio test instruments and budspeaker crossover systems. John's lifetime of experience and personal innovation in this field allow him to apply his gith of being so familiar with his subject that he can write clearly about tt and make it both interesting and comprehenslble to the reader. Contalning 240 pages and over 250 line illustrations this new book represents great value fo money at only
"THE ART OF LINEAR
 ELECTRONICS."

The definitive linear electronics and audio book by John Linsley

 Hood. This $300+$ page book will give you an unparalleled insight into the workings of all types of audio circults. Learn how to read circu give the best sound. The virtues and vices of passive and active components are examined and there are separate sections covenn power supplies and the sources of noise and hum. As one would expect from this wnter the history and derivation of aucio amplifier circuitry have an entre chapter, as does test and measurement equip ment. Copiously illustrated this book is incredible value for the amount of information it contains on the much neglected field of linear, as opposed to aigital, electronics. Indeed it must be destned to become the standard reference for all who work, or are interested in, this field. Latest reprinted edition with extended index. 1994344Pages. $247 \times 190.1 \mathrm{Kg}$. $0-7506-0868-4$.
"dIgital audio and compact disc technology"
 NTRODUCING DIGITAL AUDIO CD, DAT 1870775228
$\begin{array}{r}53.95 \\ \hline\end{array}$
"TOWERS' INTERNATIONAL TRANSISTOR SELECTOR"

0 572-01062

Wilson. BP111
audi rawison. bp1119.9
"HOW TO USE OSCILLOSCOPES \& OTHER TEST EQUIPMENT"

ELECTROSTATIC LOUDSPEAKER DESIGN AND CONSTRUC ION Ronald Wagner BKT68.9. "AN INTRODUCTION TO LOUDSPEAKERS \& ENCLOSURE DESIGN" V. Capel. BP256 LOUDSPEAKERS FOR MUSICIANS" BP297 THE HART PRINTED CIRCUIT BOARD CONSTRUCTION GUIDE."

VALVE \& EARLY CLASSIC BOOKS

THE VTL Book David Manley BKVT1 117.95 ION G 88.95 MULLARD TUBE CIRCUITS FOR AUDIO AMPLIFIERS BKAA27

THE WILLIAMSON AMPLIFIER." 0-9624-1918-4. AN APPROACH TO AUDIO FREQUENCY AMPLIFIER DESIGN. GEC 1957, 1-882580-05-2 18.95 AUDIO ANTHOLOGIES, articles from Audio Engineering. Six voumes covering the days when audio wasyoung and vaives were king! KAA3/1 to 6 . Al . A SIMPLE CLASS A AMPLIFIER" J.L.Linsley Hood M.I.E.E. 1969. RLH12. Postage on all books, unless starred, is only ú1. 50 per book, maxicosting. 22.50 to send costing
SPECIAL OFFER. All book orders over £15 will receive a FREE John insley Hood monograph entitled "Digital versus Analogue. Black Dlsks or Silver?"

SPECIAL OFFER

PRECISION Triple Purpose TEST CASSETTE TC1D.

Are you sure your tape recorder is set up to give its bast? Our latést nple purpose test cassette checks thethree most important tape parameters without test equipment. Ldeal when fitting new heads. can athord. Test Cassette TC1D. Our price only. £9.99.

HC80 Replacement Stereo Cassette Head.

e excellent performance of modern cassette recorders depends thaly on the quality of the R/P head. Even the slightest amount of wear can impair the frequency response and distorion levels. Our cso is atop quality head from one of the foremost manufacturers in nd easiy lited to most standard stereo recorders (except Sony) wirnstorm the periormance over a wom head. Only the fact mazing price of only $£ 41.70$ each of 2 for $£ 17.60$
Walso stock a range of other heads, including '" reel-to-reel stereo heads.

SOLDERING

The size of modern components makes the right soldering equipment ssential for good results. Everything we offer we actually use in our wh workshops!. See our Lists for the full range. 845-820 XS240 NTEX 240v 25 w Soldering lron. This is the ideal Multi-purpose iron as the bit is designed to totally surna is means that although it is mal ande. This excel for modern components its heating capacity is better than larger irons of conventional construction. Excellent Value.
$845-080$ ST4 Lightweight Soldering Iron Stand. This has provision for

HART SUPER AUDIOGRADE SILVER SOLDER.

Har: Super Audiograde Silver Soider has been specially formulated for he serious audiophile. Not only does it give beautitul easy-to-make avoiding the possibility of thermal damage to components of the need or special high temperature irons. A very low residue flux makes perect joints easy but eliminates the need for board cleaning after assembly.

445-007 3mtrs 22SWG in Hart Minl Tube
$345-008100 \mathrm{~g}$. Reel Special Valve Grade, 20swg
$345-009100 \mathrm{~g}$. Precision PCB Grade, 22swg
15-110 1009. Precision PCB Grade, 22 swg 12.90
45-110 100g Reel Supertine 24 swg for ultra precise cont... 14.75
easy working
ces

Video transmission on vhf

Only two transistors are needed to transmit audio and video to a tv capable of receiving channel 4 on vhf.
Transistor $T r_{1}$ is a channel 4 oscillator and mixer. The second transistor is simply a 5.5 MHz oscillator.
The coils are critical. Inductor L_{1} is eight turns of 24 SWG copper

Only two transistors are needed to transmit both audio and video on vhf channel 4.
wound on a 1 cm air-cored former. Coil L_{3} is a ready-made and readily available SW1 oscillator coil. Five turns of 36 SWG , wound around L_{3}, form L_{2}. Capacitor and resistor leads should be kept as short as possible.
To calibrate the transmitter, first set L_{1} by stretching or compressing its coils until it is tuned to channel 4. The screen will blank when tuning is correct. Next set the 5.5 MHz oscillator using either a frequency meter or a short-wave radio. Using a short-wave radio tuned to 5.5 MHz , rotate variable-capacitor C_{11} and, if necessary the core of L_{3}, gently until you hear a hiss on the radio. The circuit is now ready to operate. Finally, with video and audio sources connected and with a tv tuned to channel 4 , adjust R_{3} for best results.
Raj K Gorkhali
Kathmandu
Nepal

Capacitorless solid-state relay

In this solid-state relay, there are Ino capacitors, hence no time dependencies. This, and the fact that the circuit can be made small, make the design suitable for implementing as a monolithic or hybrid IC.

Bridge D_{1-4} with the zener diode clamp the voltage, providing the opto-isolator with a supply lower than its breakdown voltage.
The isolator and its associated transistor act as a load for diode bridge D_{5-8}. They change the equivalent ac resistance across the input of the bridge. Because of this, the firing pulses always have the same polarity as the anode voltage and they appear every half wave to ensure a symmetrical output waveform. In this way, any load specified for ac will not be damaged by rectified mains voltage.
Zero-crossing circuitry, comprising two discrete transistors, reduces interference, increases reliability and provides soft starting. When the zener diode turns off, the transistors shut down
the corresponding part of bridge D_{5-8}. Current is limited by R_{3}. In the case of an inductive load, voltage at the anode of the triac is displaced by 90°. Because of this, the supply for the opto-isolator is taken from the anode and not from the line, to ensure correct phase of the firing pulses.
T. Manov
(address not supplied)

Using a short-wave coil for the 5.5 MHz oscillator greatly simplifies the transmitter's design.

M \& B RADIO (LEEDS)
 THE NORTH'S LEADING USED TEST EQUIPMENT DEALER

ALL PRICES PLUS VAT AND CARRIAGE • ALL EQUIPMENT SUPPLIED WITH 30 DAYS WARRANTY
86 Bishopgate Street, Leeds LS I 4BB Tel: (0 | | 3) 2435649 Fax: (0 | | 3) 242688 I

CIRCLE VO. I:31 ON REPI) (ARI)

Hewlett Packard 8683D

Solid State Microwave Signal Generators 2.3-13 GHz Freq' Range Wideband FM for satellite AM/FM \& pulse modulation Built in pulse generator Options 001/003 fitted

Supplied fully tested in as new condition. With 30 days parts \& labour warranty.

NEW STOCK

Prom and logic array in harmony Due to an editorial error the last line in this piece should have read " of the prom on the address line A14". Our apologies if this was misleading.

Simpler, but linear, pwm generator

Since the width of an exponential rise and fall varies linearly with voltage, it can be used to replace a linear sawtooth in some applications. Here, it replaces the sawtooth in a pulse-width modulator, shown in the smaller diagram, where the sawtooth is taken to one input of a comparator and a direct voltage to the other. Mark:space ratio of the resulting constant-frequency square wave varies linearly with the direct voltage level.
In the second diagram, the exponential waveform across the capacitor of a standard op-amp relaxation oscillator is used for the same purpose; linearity with control voltage over the full range of zero to unity is within 0.5%. In this way, the circuit is cheaper than the sawtooth variety, since an
accurate sawtooth generator in its simplest form consists of an integrator and comparator in a feedback loop.
At frequencies of less than a few kilohertz, an LF353 dual op-amp is adequate, giving an economical design. For higher frequencies, a high slew-rate op-amp such as the LM531 is needed and an LM311

fast comparator will provide steep edges on the output.

D K Hamilton

Department of Engineering
Science
University of Oxford

Replacing an integrator and comparator sawtooth generator with a simple relaxation oscillator still provides a linear relationship between control and output square-wave width in this cheaper pulse-width modulator.

Programmed bandpass filter

Clock frequency applied to a switched-capacitor filter determines the -3 dB frequency, which means that such filters are programmable. It also means that, if two filters have slightly differing clock frequencies, a bandpass filter can be made.
If the output of one filter is made to be 180° out of phase with the other, by inverting in an op-amp, and the two outputs added, circuit output is low at low frequencies because the two outputs cancel. At high frequencies, output is again low because the filters have a lowpass configuration; and in the band between the two corner frequencies output is high since they do not cancel, one being too low in amplitude.
Here, the MAX292 eighth-order, low-pass Bessel filter, which contains an uncommitted op-amp, exhibits a corner frequency of $f_{\text {clk }} / 100$, two 4017 counters IC ${ }_{1}$ and IC_{2} dividing the clock input by 9 and 10 respectively.
Input goes to both filters, the output of IC_{4} being inverted by the internal op-amp and added to the
output of IC_{3} by the device's opamp, the resulting output having the characteristics described above. The table shows what happens; the curve is steeper above the centre point than below, due to the behaviour of the eighth-order
filters. Frequency of the centre-
point depends solely on the clock
frequency.
Yongping Xia
Peak frequency of this switched-capacitor bandpass filter is determined only by the clock frequency.

Programming Solutions

Universal Programmer

- Uses standard pc printer port works with notebook and handbook pc's
- Pin driver expansion can drive up to 256 pins.
- Pupports over 2000 IC's - 3 and 5 volt devices. EPROMs, E2PROMs, Bipolars, Flash, Serial EPROMs over 150 microcontrollers, WSI/Philips PSDs, PLDs, EPLDs, PEELs, PALs, GALs, FPGAs including MACH, MAX, MAPL \& Xilinx parts
- Universal DIL (up to 48 pins), PLCC and gang PACs
- Powerful full colour menu driven software.
- Approved by AMD, TI, NatSemi, etc.
- Tests TTL, CMOS and SRAM devices (including SIMMS)

Eprom Programmer

EPROMs, E2PROMs, Flash and 8748/51 micros. Fast programming algorithms. Simple colour menu operation.
EMULATORS • SIMULATORS • COMPILERS • ASSEMBLERS
PROGRAMMERS • $8051 \quad 8085$ Z8 $68020 \quad 77$ C82 $80 C 552$
$320 C 25 \quad 68 H C 1163016502$ 87C751 $65816 \quad 7806809$
PIC 7720 MIPS etc. including MACH, MAX, MAPL \& Xinx parts

Multi-Device Programmer

- EPROMs, E2PROMs, Flash EPROMs, Serial E2PROMs, PLDs, GALs, PEELs, EPLDs, MACHs \& WSI PSDs Micros - Intel, Microchip, Motorola, Zilog
- Fast programming algorithms.
- Connects direct to pc printer port.
- Simple full colour software.
- No expensive adapters.

Prices exclude VAT \& Delivery

2 Field End • Arkley • Barnet • Herts • EN5 3EZ • England Telephone $+44(0) 1814413890$ Fax $+44(0) 1814411843$

PORTABLEPROGRAMMER \& EMULATOR PROGRAMS
EPROMS/FLASH TO 40 PINS WITHOUT ADAPTORS EMULATES 8 \& 16 BIT SYSTEMS

- 2 M ram , expandable to 8 M - avoids multiple downloads and progranming in blocks.

its an easy touch for anyone

Ideal for R\&D or small volume production. ISO 9002 manufacture and strict use of manufacturers algorithms guarantees reliable programming.

Lloyd Research Ltd.

7 \& 7a Brook Lane, Warsash, Southampton, Hampshire SO31 9FH, England.
Tel: +44 (0)1489574040.
Fax: +44 (0)1489885853
emulation for 16 bit systems.

- Tactile membrane
with individual heys for all major functions.
- Supports sector protecl/ unprotect feature on 2sF010040.
- Fasi download. 15 seconds for 1 M bit intel file.
vas v/SA

Power modules

for quasi-resonance

Relative to both monolithic and discrete technologies, power multi-chip modules provide an excellent compromise for quasiresonant switch-mode power conversion. Paul Greenland, M. Ueki and M. J. Lee explain.

This article describes a new power multichip module - pmcm - which has evolved from consumer electronics applications and has considerable potential in general switch-mode power-supply designs.
Design of the module involves a complete systems discipline which has until now not been addressed by power device manufacturers. A single-ended, quasi-resonant flyback approach is described, along with an applica-tion-specific pmem solution.

Successful power multi-chip module design is a 'holistic' procedure involving power-circuit, thermal and mechanical design. Until recently, non-monolithic approaches to powercircuit integration have been relatively unsuc-
cessful. This is because traditional 'hardswitched' pulse-width modulated, pwm, power stages do not lend themselves to integrated packaging. The main reason for this is the high-frequency harmonic content of the characteristic current and voltage waveforms found in pwm circuits.
One principal reason that monolithic power integrated-circuit design is so difficult is that parasitic effects are omni-present, and must be considered at all stages of the design process. Fortunately, several conventional power topologies can be modified to reduce harmonic content without compromise on efficiency and component count. Furthermore, in most cases, savings elsewhere in the system

Fig. 1. Within the power multi-chip module packaging, a common copper heat sink carries the power switch and an alumina substrate with the control circuitry.

[^2]

Fig. 4. Block schematic of the Allegro Microsystems STR-S6700 quasi-resonant off-line flyback convertor.
may be significant - particularly when powersupply ripple rejection of the load system is questionable.

Power module packaging

Originally developed for consumer electronics applications and used in areas such as tv sets, the $3 G R$ series package incorporates the control and power switching elements of a singleended quasi-resonant flyback convertor. The package, Fig. 1, includes an internal plated copper heatsink carrying the switching power device - a bipolar transistor, mosfet or igbt.
The power device exhibits a thermal resistance to the mounting surface equivalent to what it would show in an over-moulded TO-247 package - typically no greater than $2^{\circ} \mathrm{C} / \mathrm{W}$. The copper heatsink also carries the control circuit on an alumina substrate with laser-trimmed thick-film resistors, discrete small-signal and driver devices, and local decoupling and timing capacitors. All active devices on the substrate - including the monolithic control IC - use 'flip-chip' interconnections.
Flip-chip interconnection reduces bond-wire count, and allows the monolithic control IC designer to optimise layout. Bond-wire para-
sitics are also eliminated. A drawback of flipchip interconnect is that the active surface of the control IC is capacitively coupled to the collector or drain on the back side of the power device, which is subject to high $\mathrm{d} V / \mathrm{d} t$ in conventional single-ended pwm topologies.
This effect can be reduced significantly by including an rf 'catcher' plate in the substrate. This will lower control-node impedances and includes blanking or switched attenuator circuits that reduce node sensitivity during the commutation interval.
These solutions, however, raise costs and reduce reliability. A better way is to introduce quasi-resonant techniques which make the switching transitions resonant, cut high-frequency harmonic content and reduce switching losses - applicable if fixed-frequency operation can be sacrificed. Moreover, these techniques make positive use of parasitic elements which can never be totally eliminated.

Parasitic elements

Figure 2 shows a flyback power stage with its major parasitic elements - leakage inductance L_{l} and primary capacitance C_{p}. In this circuit, L_{m} is the primary magnetising inductance, N_{p} and N_{s} are the numbers of primary and sec-
ondary turns, and V_{d} is the forward drop of the secondary rectifier.
The leakage inductance is a result of imperfect coupling between the primary and secondary windings. It may be as high as 5% of the value of L_{m} in a typical off-line power supply with a primary/secondary isolation of 3750 V rms and a 4 mm winding margin. The main effect of leakage inductance is to delay transfer of energy stored in the primary inductance during the 'on' time to the secondary during the 'off' time. During this delay, there is a voltage overshoot at either the collector or drain of the power switch, and the energy resonates between L_{1} and C_{p} with a frequency f_{1} given by the equation,

$$
f_{1}=\frac{1}{2 \pi \sqrt{L_{1} C_{p}}}
$$

After the energy stored in the leakage inductance is exceeded, the voltage on the switch settles to the referred value V_{fb}, given by the equation,

$$
V_{f b}=V_{i n}+\left[\left(V_{o}+V_{d}\right) \frac{N_{p}}{N_{s}}\right]
$$

The peak overshoot voltage is given by the sum of V_{fb} and $V_{\text {ring }}$,

COMPONENTS

$$
\begin{aligned}
V_{p k} & =V_{f b}+V_{\text {ring }} \\
& =V_{f b}+\hat{I} \sqrt{\frac{L_{l}}{C_{p}}}
\end{aligned}
$$

Once the energy has been transferred to the secondary and the secondary rectifier ceases to conduct, residual energy resonates between L_{m} and C_{p} with a frequency f_{2}, setling to $V_{\text {in }}$ before the next conduction time,

$$
f_{2}=\frac{1}{2 \pi \sqrt{L_{n i} C_{n}}}
$$

The primary capacitance is the sum of the capacitance of the power switch, the transformer's intra-winding capacitance and any stray capacitance. It is discharged at the beginning of power-switch conduction, and dissipates energy at turn-on.
Each parasitic element poses a problem in

VCE: $200 \mathrm{k} / \mathrm{div}$
lc: $1.0 \mathrm{~d} / \mathrm{div}$
$\mathrm{lB}: 0.5 \mathrm{~A} / \mathrm{div}$
t: $5.0 \mu \mathrm{sec} / \mathrm{div}$

Fig. 6. Proportional drive waveforms together with collector voltage and current.
conventional pwm flyback converters - leakage inductance causes overvoltage, and primary capacitance causes overcurrent.

Making use of parasitics

Quasi-resonance makes use of these undesirable parasitic elements. The primary voltage and current waveforms are shown in Fig. 3. The point of lowest potential on C_{p} occurs one half-cycle after the core has unloaded its energy and the secondary rectifier has ceased to conduct. If conduction time commences at this point, turn-on loss will be at a minimum. Similarly, as turn-off loss occurs during the overlap of voltage and current at the end of conduction time, reducing the $d V / d t$ with a pri-

mary capacitor at turn-off is beneficial.
In order to achieve these ends, independent control of 'on' and 'off' time is essential. In the pmem, Fig. 4, 'on' time is controlled to a preset maximum by the voltage feedback loop. 'Off' time is controlled to a preset maximum by detecting the point at which the core has unloaded energy. This is achieved by monitoring the auxiliary winding referred to the primary, and then applying a half-cycle delay. Using this technique, all benefits of quasi-resonance can be realised in a manner which is predictable in high-volume manufacture.

Power module realisation

Figure 4 is the block diagram for the STRS6700 power modules. These use the physical construction of Fig. 1. In this device the control circuit is subject to an undervoltage lockout, with hysteresis, which allows low-power startup from energy stored in the auxiliary capacitor fed by a high-value start-up resistor. Start-up current is not greater than $200 \mu \mathrm{~A}$.
Comprehensive protection is ensured by temperature-compensated cycle-by-cycle current limiting, latching overvoltage shutdown and thermal shutdown - which acts to protect the controller and the power switch. Latching functions are subject to a predetermined delay to prevent nuisance tripping. The oscillator has predetermined maximum on and off times.
Inclusion of a triple-diffused npn switching transistor rather than a mosfet may seem a retrograde step. This is not the case however, as the use of a proportional drive technique ensures the device is well matched to the application, and a $V_{\text {ce(sat) }}$ of 400 mV gives low conduction loss.
Casual inspection of the primary current waveform reveals that it starts from zero neglecting the leading-edge spike caused by discharging C_{p}. Fast switching at this point is undesirable, as this leads to excessive auxiliary current and high electro-magnetic interference. Furthermore, it is useful to have some proportionality between base and collector current for the leading portion of the primary conduction time to cater for a wide load range. Turn-off should be rapid to minimise switching loss, and a reverse bias should be applied
to the base during turn-off voltage overshoot for reliable operation.
Figure 5 shows the proportional drive circuit and its associated waveforms. At switchon, capacitor C_{3} charges up, ramping the base current to a maximum set by R_{D}. At the end of the primary conduction time, current ceases to flow through pin 5 , and the transistor drawing current from pin 4 switches on. This reverses polarity on the drive capacitor C_{d}, which has charged to a level set by D_{5} in anti-parallel with the base/emitter junction of Tr_{1}.
Figure 6 shows the proportional drive waveforms, together with the collector voltage and current. Switching characteristics and low conduction loss of the bipolar switching device are matched to its application.
One of the main reasons that bipolar transistors have gained a poor record for reliability in switch-mode power-supply applications is the drive technique for the ringing-choke convertor used in early pcs. This can be seen from the drive waveforms in Fig. 7, which exhibit a large current at switch-on, creating a large switch-on current pulse as C_{p} is discharged.
During primary conduction, there is no proportional element, resulting in overdrive at light loads and excessive storage time. The turn-off is slow, resulting in large switching loss, and the reverse bias during the voltage overshoot on the collector is small. It is therefore hardly surprising that the major cause of failure in many ringing-choke converters is the bipolar power transistor.

Making energy transfer complete

Detection of demagnetisation, known as 'complete energy transfer', is a crucial element in establishing quasi-resonance.
In Fig. 8, the auxiliary winding has a sampling network connected ahead of the auxiliary rectifier. The sampling network applies a voltage to the inhibit pin, pin 8 , during the auxiliary/secondary conduction time. Once this voltage exceeds V_{TH} the drive to the power switch is suspended, and as it exceeds $V_{\mathrm{TH} 2}$ the 'off' time is pre-terminated.
Once the core has unloaded its energy, the voltage at the inhibit pin, $V_{\text {INH }}$, drops, delayed by $C_{\text {INH }}$. As $V_{\text {INH }}$ falls below $V_{\mathrm{TH} 2}$, the 'off' time capacitor and the proportional drive capacitor are re-initialised. Once $V_{\text {INH }}$ falls below $V_{\mathrm{TH} 1}$, the drive to the power switch is enabled and primary conduction commences. Figure 9 shows the complete timing sequence.
This technique allows quasi-resonance to be established, with the consequent benefits of lower switching loss, lower electromagnetic interference than with conventional ringingchoke converters Fig. 10, and utilisation of hitherto undesirable parasitics.
The negative aspects of quasi-resonance are a slight increase in conduction loss, a higher fundamental frequency component in the conducted harmonics, and a small increase in high-frequency ac loss in the transformer. The latter can be virtually eliminated by use of high-frequency transformer winding techniques - Litz, multifilar bundling and inter-

Fig. 7. Conventional ringing-choke convertor drive circuit with waveforms.

leaving - to reduce ac losses.
Primary magnetising inductance is modified from the conventional value calculated in the classic ringing-choke converter transformer design procedure, as shown by the equation,

$$
L_{p}=\frac{\left(V_{i n} D\right)^{2}}{\left[\sqrt{\frac{2 p_{\text {tuf }} f_{o}}{\eta}}+V_{\text {in }} \pi f_{o} D \sqrt{C_{p}}\right]^{2}}
$$

where L_{p} is primary inductance adjusted for quasi-resonance, $P_{\text {out }}$ is the output and auxillary power in watts, f_{0} is the minimum switching frequency, η is efficiency, D is the duty cycle at minimum ac line potential and $V_{\text {in }}$ is the minimum dc input voltage.

Isolated voltage feedback and regulation are achieved by augmenting the current charging $C_{\text {Ton }}$ with opto-coupler current proportional to the error signal generated at the secondary.

Fig. 10. Comparison of conducted EMI - ringing choke versus quasi-resonant techniques.

Thus, as the secondary load decreases or the applied line voltage increases, the slope of the voltage ramp on $C_{\text {Ton }}$ increases, reducing primary conduction time. In most cases, simple integrator compensation around the secondary error amplifier will suffice. However, if more control-loop agility is required, pole/zero
compensation and primary high-frequency bypass may be employed.
A useful feature of the $S T R$-S6700 series is standby operation. Originally intended for tv applications, the standby feature minimises the incremental power drawn by the convertor during light load operation. This feature is a
by-product of the oscillator design and the quasi-resonant timing technique employed refer to Fig. 11.
In standby mode, current normally drawn through R_{11} and D_{9} is diverted into the base of $T r_{3}$, turning it on. As current flows through R_{12} and D_{10} and T_{2} is switched on, output and auxiliary voltages fall, and stabilise when $S_{1}{ }^{\text {' reaches }} V_{\mathrm{s}}$, where $V_{\mathrm{s}}=V_{\mathrm{R} 11}+V_{\mathrm{D} 10}+V_{\mathrm{BEQ} 3}$. At this time, standby power is supplied by C_{11} charging from the collector of Tr_{2}. As voltage on the auxiliary windings d_{1} and d_{2} tracks the secondaries, auxiliary power is supplied from the linear regulator transistor $\boldsymbol{T r}_{1}$ on d_{2}. In addition, as $V_{\text {INH }}$ drops below $V_{\mathrm{TH} 1}$ during the off time, the oscillator defaults to its maximum off time of typically $50 \mu \mathrm{~s}$.
In standby mode, the power supply operates with pulse ratio control, in which the 'on' time varies and the off time is held constant. This keeps the incremental power consumed by the power supply to an absolute minimum. This principle can be applied to save energy in printers or copiers which switch to standby mode if the system is inactive for a period.
A variant of the device without the standby mode is shown in Fig. 12. The STR-S5700 Series is intended for indirect feedback applications using a primary referred sense winding, and component count is reduced at the expense of regulation,

Conclusion

This article has shown that integration of the primary power switch and control elements of

an off-line switching power supply is viable once a true systems approach is adopted. Quasi-resonance can also be employed in offline flyback converters to good effect. Furthermore, this technique brings the 'lowly' flyback convertor to the forefront of off-line power-conversion applications below 200W. It can be shown that reduction in high-fre-
quency harmonics, offsets many disadvantages of variable-frequency operation.
The quasi-resonant technique can also be adapted to current-mode control through a dual-purpose current limit which reduces pin count and is competitive with implementations using conventional controllers plus discrete components.

Fig. 12. Block schematic of Allegro Microsystems STR-S5700 converter.

PERRYBEE (UK) LTD

We offer a comprehensive service designed to assist the OEM in the procurement of components and the search for new export markets.
\star With our own office in Germany, we offer access to all types of German products.
\star Component sourcing for actives and passives.
\star Market research service.
Export documentation and consolidation service.
\star Prompt and professional response guaranteed.

Perrybee (UK) Ltd,

 Maple House, 8 Keveral Gardens, Seaton, Torpoint, Cornwall PL11 3JHTel: 01503250354
Fax: 01503250657

Finally an upgradeable PCB CAD system to suit any budget ...

Board Capture

BoardCapture - Schematic Capture
Direct netlist link to BoardMaker2
Forward annotation with part values
Full undo/redo facility (50 operations)
Single-sheet, multi-paged and hierarchical designs
Smooth scrolling
intelligent wires (automatic junctions)
Dynamic connectivity information
Automatic on-line annotation
Integrated on-the-fly library editor
Context sensitive editing
Extensive component-based power control
Back annotation from BoardMaker2

$E 395$

Board Maker

BoardMaker1 - Entry level

PCB and schematic drafting
Easy and Intuitive to use
Surface mount support
90, 45 and curved track comers
Ground plane fill
Copper highlight and clearance checking
BoardMaker2 - Advanced level
All the features of BoardMaker1 plus
Full netlist support - OrCad, Schema, Tango, CadStar
Full Design Rule Checking' - mechanical \& electrical
Top down modification from the schematic
Component renumber with back annotation
Report generator - Database ASCII, BOM
Thermal power plane support with full DRC
Board Roater
BoardRouter - Gridless autorouter
Simultaneous multi-layer routing
SMD and analogue support
Full interrupt, resume, pan and zoom while routing
Output drivers - Included as standard
Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript

- Penplotters - HP, Graphtec, Roland \& Houston

Photoplotters - All Gerber 3×00 and 4×00
Excellon NC Drill / Annotated drill drawings (BM2)

Contact Tsien for further information on
Tel 01354695959
Fax 01354695957

tsien

Mathcad PLUS 6.0

New Mathcad PLUS 6.0 has the intuitive, interactive visual interface that Mathcad is famous for Plus it now has the power and flexibility to elegantly handle an even wider range of tougher problems. Over half a million people worldwide - engineers, scientists and mathematicians - already use Mathcad as their preferred calculation tool because it's interactive visual user interface is easy to learn and intuitive to use.
Mathcad PLUS 6.0 builds on its usefulness in three key areas:

- USABILITY

Mathcad PLUS 6.0 has an updated look and feel. New Quicksheets help new users to learn Mathcad PLUS 6.0 and provide shortcuts for frequently used mathematics.

- POWER

Mathcad PLUS 6.0 has a new set of procedural operators integrated into Mathcad's user interface to give you a robust way of solving sophisticated problems. Other new power capabilities include user defined notation, animation, enhanced visualisation and expanded statistical functionality.

- COLLABORATION \& COMMUNICATION

Mathcad PLUS $\mathbf{6 . 0}$ is Email enabled, so you can share your Mathcad worksheets over the Internet; Lotus Notes enabled so you can build and manage Notes databases of projectspecific Mathcad documents; Web aware so you can publish and interact with live technical information over the World Wide Web.

Adept Scientific plc 6 Business Centre West, Avenue One, Letchworth, Hertiordshire, SG6 2HB Tel: (01462) 480055 Fax: (01462) 480213

> Building on August's article describing a GPS receiver, Nigel Gardner presents a low-cost read-out interface for Rockwell's MicroTracker system.

Interfacing the GPS receiver

Ichose the PIC microcontroller as the basis of this MicroTracker interface because of its ease of use and low development cost. It will handle all serial comms, sorting out and formatting of information, and display driving functions, needing a minimal number of external components to function.
The MicroTracker $L P$ has two data output modes - binary and NMEA. This design is based on the NMEA format at 4800bit/s and interfaced to a PIC16C74. If data manipulation is required on the GPS information, then the binary format is the better option as there is a software overhead converting to and from the NMEA ASCII format. However, if the interface is only used to display and store data, the NMEA format is easier to work with.
This application is intended purely to display information, with no calculation done on information received.

Hardware design

The heart of the design is the PICI6C74 microcontroller running at 4 MHz , Fig. 1. An RS-232 link interfaces to the GPS serial interface module featured in the August 1995 issue and uses a MAX232A driver chip to level shift to the PIC.
Other items needed for the PIC are a 78L05 regulator, a 4 MHz resonator and a few passive components for decoupling and reset. Power is drawn from the GPS serial interface board via a connection to the active antenna supply and is in the region of 15 mA at 12 V . This breaks down into 12 mA for the MAX $232 \mathrm{~A}, 2 \mathrm{~mA}$ for the Icd display, and 1 mA for the PIC16C74. If the RS-232 interface is removed to give ttl connections between the MicroTracker and the PIC, a saving can be made on both current

Tips for enhancing
 the software

The current version of software does not look for a fix before starting to display information on the display. A modification could be made to examine data from the MicroTracker, looking for the valid signal character before passing it to the sign on message stage. Information received from the MicroTracker could be examined for a '. ' symbol in addition to the "' to truncate data displayed at the decimal thus reducing information presented to the end user.
Additional messages could be enabled and stored in alternative locations for extracting information not found in a specific message.
and components.
A reset switch is added to the PIC to assist in software development, but it could be eliminated. If the GPS serial interface module is used in conjunction with this design, then set the dip switches on the board to $1-5$ on, 6 8 off. This sets NMEA mode at $4800 \mathrm{bit} / \mathrm{s}$ on power up.
The lcd module is the Hitachi $L M 041 L$ or LM044L. These have four lines of 16 or 20

Fig. 1. Display controller for the MicroTracker is based on a PIC microcontroller and incorporates a liquidcrystal display

characters respectively and are interfaced in the 8 -bit mode with full handshaking. This method of interfacing provides the fastest display update times but uses eleven i / o lines. If this design is transported to a 28 -pin I6C73 then the 4 bit write only approach can be taken with the display using only six i/o lines.

Software requirements

The flowchart for this program, Fig. 2, shows the basic operation. Source code is available from the TDC bulletin board for those wishing to evaluate the program and modify to their
own requirements.
Following initalisation of the ports and other registers, the display is cleared and a sign on message sent. For this application, the default message formats of 'gga' and 'vtg' are turned off and 'rmc' turned on. The 'rmc' message format includes latitude, longitude, time, date, speed, heading, magnetic variation and magnetic heading. Other message formats can be enabled easily and relevant information extracted from the data string.
The 'rmc' message contains the following data - start field, 'utc' time, data valid,
latitude, latitude direction, longitude, longitude direction, speed, heading, date, magnetic variation, magnetic direction, checksum $<\mathrm{CR}><\mathrm{LF}>$. Each field is comma delimited and will typically look like:
\$GPRMC,234215.24,A,3339.686,N,11751.66 7,W,0.620,293.8, 180595,14.0,E*79

Other message formats include information on altitude, number of satellites in use, track made good and ground speed. It can also be enabled and set to broadcast at increments of a

PIC object software for the GPS receiver display module.

:08000000E328820020342034C3 :0800080042346C347534653498 :08001000623469347234643477 :08001800203447345034533406 :080020002034203400344C347C :0800280061347434203400340B :080030004C346F346E342034AF :0800380000346E342034DF3483 :080040000034543469346D34BE :08004800653420340034243437 :08005000503452345734493496 :080058004C344F3447342C34C2 :0800600052344D3443342C34BA :0800680041342C3431340D3415 :080070000A340034243450343A :080078005234573449344C3472 :080080004F3447342C3447349F :08008800473441342C34563496 :080090002C340D340A34003455 :08009800243450345234573473 :0800A00049344C344F3447345D :0800A8002C3456345434473463
:0800B0002C3456342C340D34BD :0800B8000A34003403140C307B :0800C00023020318FF282308A6 :0800C800820700001D291 B291D :0800D00028291B2933291B29F3 :0800D8003E2947291B291B29Cl :0800E000|B29FF2889010130F2 :0800E8008600B0209A200800F8 :0800F0000530A000A00B7A28E6 :0800F800080089013830860080 :08010000B0209A2008008901DB :080108000C308600B0209A20A3 :08011000080089010630860099 :0801 1800B0209A2008008901C3 :080120008600B0209A200800BF :08012800890109158600B020D1 :080130009A2008008316FF303D :080138008600831209118914ED :0801400000914782006080910DB :08014800A100A11B9A288316F7 :080150008601831208007220F1 :080158007D20832089200800AE
:08016000782009147820091031 :08016800080082308F2008001E :0801700080308F200800C03030 :080178008F20080090308F2059 :080180000800D0308F200800B8 :08018800A40024080120A500D9 :08019000003A031900342508B0 :080198009420A40AC528A4006C :0801A00024080120A500003A2B :0801A80003 19E02880309800E3 :0801 B0002508990083 1698 1C34 :0801B800DB288312A40AD02801 :0801C000903098000034860124 :0801C8008901831602309F003B :0801D0008030870089018601DF :0801D8000C3099002030980062 :0801E000831290309800AB205F :080|E8007220B8200230C4208F :0801F0002730CF203A30CF2068 :0801F8004C30CF201A088CIEC8 :08020000FF281A08243A031D2F :08020800FF28A301303084003F
.080210008CIE08291A080D3AA2 :0802 1800031912291 A088000E5 :08022000840A08297220303025 :08022800840000082C3A03IDBC :080230001B29A30A5E28840ACI :080238001529B8202130C42073 :08024000840A00082C3A03199E :08024800192900089420202967 :08025000BB201330C420840A16 :0802580000082C3A03191929D2 :08026000000894202B29BE20A8 :080268001830C420840A0008CC :080270002C3A031919290008BA :0802780094203629C120840AFC :0802800000082C3A03191929AA :08028800000894203F29ID30FD :08029000C420840A00082C3A86 :08029800031919290008942044 :0202A0004929EA
:0000000 IFF

INTERFACING

second. See the designer's guide on the MicroTracker LP for full specification and programming information.
Character input from the RS-232 port is examined to look for the 24 hour ' $\$$ ' symbol, signifying the start of the message string. On receipt of the ' $\$$ ' symbol, the characters are stored in the PIC's ram. On receipt of an end
of message character - ie carriage return, $0 \mathrm{D}_{16}$ - the software branches into display mode. Information from the MicroTracker arrives at a minimum of 1 s intervals providing enough time for the display to be updated.
The display section of the program looks at the characters in memory and when a comma,

$2 \mathrm{C}_{16}$ is identified - field delimiter, the message type is then determined from a lookup table and sent to the liquid-crystal display. Additional text messages are sent prior to the received information to clarify to the user what is being displayed.
At the end of the information processing, the program jumps back to look for the next '\$' symbol.
Bit rate calculation for the PIC serial comms port is straightforward. After transposing the formula in the data sheet, for low rates it is,
Divide ratio $=\left\{\frac{\text { clock frequency }}{\text { baud } \times 64}\right\}^{-1}$
This works out for $4800 \mathrm{bit} / \mathrm{s}$ and a 4 MHz clock at 12. This value is loaded into the SPBRG register and is common for both transmit and receive.

Designing a board

The prototype was built using a standard PICI6C64174 development board - Farnell order code 630-639 - with the display bolted on. This enables full access to all PIC pins and reduces development time and cost.
Laying out a board for the circuit in Fig. 1 should not present problems, but care should be taken in placing the resonator and 100 nF capacitor as close to the PIC as possible.

Where next?

If an external electrically erasable prom is added to the PIC and connected via the inbuilt $I^{2} C$ interface, data could be logged in the eeprom upon closure of a switch providing a positional logging and ident system. Using an external eeprom, the MicroTracker $L P$ can be updated on power up with the last positional information - speeding up the time to first fix.
As the $16 C 74$ has eight analogue inputs, one could be used for monitoring battery voltage via a potential divider. This will alert the user to the time remaining before total loss of supply.
If cost is an issue, the MicroTracker LP can be connected directly to the PIC, bypassing the 'logic to RS-232 to logic' conversion circuitry and interface board. This brings component cost down to the MicroTracker $L P$, antenna, PIC, display and power supply.

Technical support

Rockwell MicroTracker LP Designer's Guide, contact Telecom Design Communications BBS. Phone 01256332800 for connection details.
Beginners Guide to the Microchip PIC, Rev 2, ring 01628777960 for details.
Microchip Databook 1994, Farnel//RS/Maplin.
The author runs Bluebird Electronics, 01380 725110 providing PIC training and support. This article is based on his forthcoming book 'PIC Cookbook - Vol 1'.

LETTERS

Letters to "Electronics World" Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

PhoneDay fiasco

At last, the dawn of realisation has broken over Oftel. As suspected, the new telephone number scheme introduced in April is what most of us who have to phone the USA have suspected - a great big waste of money.
I do not know how many telephones there are in the UK, but in the USA, with a population five times the size of ours, they have a simple and therefore easy to remember, three-digit area code, three-digit exchange code and fourdigit number system.
There are far more phones per head of population there than here, and they even have the luxury of an exchange code for film and tv programme makers (555) to stop the nuts dialling the number on the tv.
Can any one explain why we couldn't have adopted such a simple scheme for our
telephone numbering system? I don't want to appear too cynical by
suggesting "not invented here"
Nic Houslip
Birmingham

Field hazards?
 Proof please

Your correspondent Roger Coghill May 1995 - has suggested that the IEE Working Party's conclusion that there is no proven harmful effect due to low-level, low-frequency electromagnetic fields is the result of power-utility bias in its membership.
As IEE Chief Executive, Dr.
Williams, has pointed out -
$E W+W W$ August 1995 - that accusation is demonstrably untrue. What is true is that Mr. Coghill's own business has been concemed with advertising devices to 'reduce' the effects of power frequency magnetic fields. It might be thought to be in his commercial interest if any biological effect could be demonstrated. It is perhaps disingenuous of him not to mention this.
Bernard Jones - Oct 1995 - is "confident that magnetic fields produce brain cancer etc." although he gives no evidence to support his view. I hope that Mr. Jones understands that in science it is impossible to prove that something does nor exist - there may always be some statistically insignificant effect that is masked by other sources. It is possible to show that an effect does exist when an effect that is
statistically significant can be measured consistently.
Whatever your correspondents may say there is very little evidence that we have reached this stage. If they know otherwise perhaps they will refer your readers to the evidence.
Meanwhile, as an active, but independently minded, member of the IEE let me assure Messrs Coghill and Jones that whenever real significant evidence is available to support the hypothesis that low-level electric or magnetic power-
frequency fields have a significant effect upon our health then I - along with many of our members - will work to ensure that the IEE gives it the widest possible publicity. Until then it will be in the public interest to stick to known facts rather than creating unnecessary concern.
Colin W. Davidson
Edinburgh

Is EMC approval necessary?

The recent EEC directive on emc requires all electrical equipment to be tested for radiation levels.
There are solid theoretical grounds for declaring that all equipment below a certain power automatically meets the requirements. This is because the radiated power cannot exceed the total power absorbed. The standard does not make such an exemption. If an exemption were made, and the power levels turned out to be reasonable ones, then the savings for electronics companies could be huge.
A piece of equipment only uses so much power. If all that power were converted into radiated electromagnetism, you could calculate from theory the maximum possible field strength according to distance from the device. So, for example, a device that absorbs only 2 W could only ever radiate 2 W of power as a maximum. In fact, it is hard to make a transmitter with 50% efficiency so it is reasonable to assume that only half the total power could possibly be radiated as electromagnetic radiation. Often, heat dissipation of the equipment is known and so you can subtract the heat power from the possible radiated power.
This would permit the radiation limit to be calculated purely from theory, based on the total power
absorbed. For many items, that use very little power and so could never possibly radiate too much, such a calculation could avoid costly tests which would otherwise be necessary.
One might argue that the radiation field could be shaped in such a way that a tightly focused beam is emitted, so that the field in one direction might be very much higher than a theoretical average. To argue thus seems to me perverse, given that the equipment is not designed to generate focused beams and the difficulty of generating a focused beam. Also, if the equipment involved is small while the measurement distance is relatively large -10 m is the European standard - then you might argue that the field would be relatively uniform at this distance from the object. Similarly, the physical size of the equipment would have an effect equipment that is small compared with the wavelength could not possibly generate a focused beam.
European standards make no allowance for such a theoretical calculation. I would be interested to know if such a calculation would be reasonable so that one can argue for a change in the standard or an automatic exemption - thus saving companies a lot of money.
I am not enough of an rf engineer to make the relevant calculations. However from my university text book on electromagnetic theory, it seems that if the equipment were a perfect dipole radiator then anything under 2 W could not possibly exceed the emc limits. As a result, it would not need testing.
It would be interesting for
someone with some expertise on this field to make the calculations.

Chris Bore

Bores signal processing

Sallen \& Key distorted

Mr Ryder's conclusion that the Sallen and Key filter configuration is'not generally usable for hi-fi' would be worrying if it were true - especially in view of the fact that I used this circuit repeatedly in the LA100 Audio Analyser. This unit probably features more than any other, worldwide, in the automated checking of distortion and quality on the broadcast and studio equipment that originates his 'hi-fi'.

The truth is that the Sallen and Key filter has much to commend it, including low component count and unity gain - precise unity gain; for ever. These features are regardless of component values or temperature. This is especially valuable in multistage measuring equipment accurate to a hundredth of a decibel, but it is also useful in maintaining accurate gain and channel balance in multistage audio equipment without trimming.

The second-harmonic distortion problem he has discovered is not a direct function of resistance values, but is caused by a varying common mode capacitance which shunts his 470 pF input capacitor. This causes signal-dependent modulation of its value which probably originates in reverse biased substrate-isolation or protection diodes in the op-amps.
These behave as varicaps.
The effect can be puzzling because it only occurs near the cutoff frequency. At this point, the capacitors are working hardest. The effect arises mostly as a result of amplitude-dependant modulation of the filter phase shift.

Mr Ryder's choice of a high Q emphasises the problem in two ways: by requiring a large capacitance ratio, and hence a low value input capacitor, and by generating a large phase shift. His choice of values is far from optimal. Changing the $110 \mathrm{k} \Omega$ resistors to $3.3 \mathrm{k} \Omega$, with a corresponding increase in capacitor values, will swamp the effect and produce very acceptable figures without loading the op-amp output too much.
In most applications, where a capacitor ratio of three or four to one is more common, the TL072 works well. For critical applications, the NE5532 performs much better in this respect, at the cost of higher power consumption.
Peter / Skirrow
Lindos Developments Suffolk

Re-inventing the wheel

After reading the article 'maximising power in class-C' I must conclude that each generation of radio engineers is intent on re-inventing the wheel.
I was surprised to find that there was no reference to W.L. Everitt's book 'Communication Engineering'
the second edition of which was published in 1937. In it he gives a complete mathematical treatment for maximum power output from classB and class-C amplifiers. I cannot say if the same analysis appeared in the first edition of I931.

S F Brown

Oswestry
Shropshire

Modulating misguidedly?

I have just read 'Modulating linearly' by Ian Hickman in your July I995 edition. While presenting an interesting method of reducing the intermodulation products at the modulator, I believe that the effort is misplaced. It is out of band products from ssb transmissions that are offensive and cause adjacent channel interference.
Most ssb transmitters employing dsb suppressed carrier modulators pass the signal through an ssb filter This removes the unwanted sideband, frequencies outside the required modulating bandwidth, and incidentally out of band intermodulation products generated by the modulator. The offending out of band intermodulation products are usually generated at the power amplifier final stage where tradeoffs between linearity efficiency cost and distortion are made.
Surprising though it may seem, in-band intermodulation products may be of advantage in voice ssb transmission improving modulation efficiency and transmitted power. By way of expiation of my statement it is speech processing incorporated in many ssb transmitters that proves this point. The peak to average form factor of the voice waveform is high which leads to low average transmitted power. Voiced sounds consist of harmonics of the vocal chord vibrations amplified and frequency shaped by resonant cavities in the vocal tract, head and chest. This results in a multi-tone spectrum of which a few tones are dominant in the mid-audio band of similar frequency to those used by Hickman in his article i.e. lkHz and 1.2 kHz . If one applied these tones of equal level after ssb filtering to an ssb transmitter with auto level control so that peak to peak amplitude were the same as for a single tone, transmitter average power would be 50% that of a single tone.
Speech processing is often accomplished by clipping the ssb signal in the intermediate frequency after a stage of ssb filtering and removing the out of band products in a second stage of ssb filtering. Were the tones applied to a circuit of this type with 20 dB of clipping then the transmitted power would be about 80% of that of a single tone.

In this instance a high degree of in band intermodulation is produced and it is in the intermodulation products that the additional transmitted power is contained.

These intermodulation products are not unrelated to the frequencies present in the original modulation and the brain interprets them as though the resonant cavities of the
vocal tract were of lower Q and thus correlating the frequencies to produce additional intelligibility in poor signal to noise conditions John West.

Audio power - is current feedback the solution?

John Watkinson's letter in the October issue highlights the trend of designing ever-more complex audio amplifiers while the loudspeaker system remains the largest source of distortion.
Admittedly some amplifiers can handle the complex and variable impedances of various speaker systems better than others, but none seems to overcome the basic problems caused by the conventional moving coil speaker. Several manufacturers have attempted to improve speaker performance by using motional feedback or an active cross-over with separate amplifiers. However, this requires careful matching of both electronics and hardware.
The main purpose of an audio amplifier is to push current through the voice coil in order to move the cone. Traditional amplifiers use voltage feedback to ensure that the voltage applied to the speaker is controlled accurately while hoping that its impedance remains reasonably constant. Obviously any variation of impedance, either with frequency or cone excursion will cause some non-linearity in the current thus causing distortion. A look at the impedance curve of any good quality speaker will show surprising variations.
One possible solution that does not appear to have been considered is the use of current feedback rather than the more common voltage feedback.
A similar problem arose in the design of television
receivers, where the vertical deflection coils are driven with a 50 or 100 Hz waveform. Any linearity or amplitude errors are easily visible on the screen
Early designs used a conventional voltage amplifier often very similar to the audio amplifier - however the current amplitude and thus picture size usually varied as heating of the deflection coil caused its resistance to change. Thermistors were often added to try to compensate for temperature effects. However, the modern solution is to use current feedback which overcomes the problem of any change in load impedance: refer to circuit diagram
Using current feedback should, in theory, null the effects of resistance changes caused by voice coil heating or by using different lengths or sizes of speaker leads. An additional advantage should be good short circuit protection without the clipping or distortion of a conventional protection system.
The current sensing resistor will cause some power loss, but in an $80 \mathrm{~W} 8 \Omega$ system this would amount to less than IW with a 0.1Ω resistor.
It would be interesting to hear if anyone has tried this approach and if it produced any improvement in the overall performance
J.R Allison

Bradford
Yorkshire

Square-law rules - OK

Ian Hegglun is to be congratulated - not only for the content and design performance achieved but also, for actually quoting power output stage open loop performance measurements supported by waveform traces.
Prior to reading 'Square-law rules' in the September issue, the existence of an ongoing controversy and the absence of any reasonably comprehensive or explicit open-loop performance data had lead me to the conclusion that, as currently used, neither bjts or mosfets were the ideal audio power output stage device and that I would have to design my own avoiding current design conventions.
My own approach to a linear power output stage - ie not worse than 1% thd - was to investigate a fully differential solution using a self balancing active bridge configuration. An experimental prototype output module using power Darlington bjts has been tried. Provisional results with this output stage configuration have shown that nearly constant open-loop unity gain, ie $\cdot V_{\text {out }} / V_{\text {in }}>0.99$, is achievable. This is subject to gain/symmetry trimming, for a voltage swing of $\pm 18 \mathrm{~V}$ into a 15Ω resistive load.
Open loop frequency response is flat to at least 200 kHz , output resistance was 0.5Ω, and input impedance around 600-800 2 . Quiescent power consumption was low, at 6 to 8 W , from a single 25 V dc supply. This reflects an optimum stable bias setting. Normal Class B/AB or A preconceptions do not apply to this circuit.

Listening tests confirmed measured expectations. These were effected by terminating one channel of my existing stereo amplifier (thd 0.2% at 1 kHz and 10 W) using the module as a relay amplifier to drive the righthand speaker. This was a vintage 15Ω Goodmans Maxim.
Performance of this module is such that only a relatively modest amount of global feedback at a
maximum of 36 dB need be applied to the preceding voltage/impedance transformation stage. The level of 36 db is also the maximum theoretical global feedback that will maintain a critically damped response in a single dominant pole design.
Thus for a cost effective solution I consider the answer to lie more in matching circuit to device and in designing the system to meet the needs of the application. This includes matching speaker ratings to amplifier ratings and speaker system to auditorium.

E / Chadderton

Brokenhurst,
Hampshire.

Considering a valve design?

For readers considering a valve design, I would mention that an ultralinear connection enables a pair of EL34s to deliver up to 30 W with less than 1% thd rather than 4% thd without feedback. This also compares with 14W max from triode connected EL34s at less than 1% thd.
A suitable push-pull output transformer for this connection, Gardners Type AS 7034, might still be obtainable from Gardners Radio, Christchurch. This had both 20% and 43% screen grid tappings.

I had also used the ultralinear connection to very good effect, many years ago, in a two valve 3.5 W EF86IEL84 single-ended Class A design for mono but regrettably replaced this with a pair of 10 W
Toby/Dinsdale when stereo was introduced E/C

Hot audio power

Jeff Macaulay's article 'Hot audio power' in the October issue contained two errors in the components list. Grid resistors $R_{6,9}$ should be $560 \mathrm{k} \Omega$, not $60 \mathrm{k} \Omega$ and R_{11} is 680 , not 6k8. Apologies.

Advances in digital video

Reg Miles discusses developments highlighted at the broadcast and professional exhibition - Vision '95.

The first camcorder to use hard disks instead of tape is here. Developed by Avid and Ikegami for news gathering, its advantage lies in its facility to randomly access any part of the disk. This enables recorded clips to be viewed, modified and edited into sequences in the field for transmission by microwave or satellite link to the studio - as well as providing all normal functions.
Called CamCutter, the recorder itself has no moving parts. These are confined to a removable, sealed and shock-proof pack containing two I.2Gbyte disks. These provide up to 20 minutes of storage.
Video is recorded in component form, compressed at $7: 1$. Four 48 kHz 16 bit audio channels are available although fewer can be used to increase recording time. An optional unit accepts up to three disk packs for editing and broadcasting in the studio.

Digital editor with pc interface

Hi Tech Systems' Altus Digital Disk Recorder is a rack mount/desk system, designed to be a cost effective alternative to the video tape recorder. As with CamCutter there is random access to the recorded material so that frames and clips are instantly available, allowing a variety of playback functions. In addition, there are all usual functions. Configuration and set-up is simply achieved using 'soft' keys - including adjustment of the compression ratio.
Connecting the recorder to a pc provides further controls over monitoring, playback and recording, using a suite of Windows programs. There is a choice of $2.1,4.3$ or 9.1Gbyte disks, recording approximately 10,20 or 40 minutes depending on file size and image complexity. An SCSI bus connector is provided to connect an external RAID (redundant array of inexpensive disk drives) system.

Material from CamCutter can be broadcast immediately, brought back to the studio for editing, or stored on a central media server for enterprise-wide access.

 also offers potential for expansion via a pc interface or SCSI.

VIDEO PLAYBACK

DIRECTORY OF

Recordings are stored as clips in a directory and can be played in any sequence of frames according to play lists.

First digital video tape for domestic use
The first digital tape format for the consumer market is Digital Video Cassette, created by a consortium of manufacturers. It is intended to be all-encompassing, with four variations. The Standard Definition version records analogue tv broadcasts and camcorder uses, including professional acquisition. The High Definition version covers applications of the standard, plus industrial and medical applications. The two remaining versions are for directly recording compressed digital broadcasts from the American ATV high definition system and the European DVB system.
With this breadth of usage in mainly cost conscious markets, tape was the obvious choice due to its high storage capacity and low cost.
Specifications for ATV and DVB have yet to be finalised. Those for the SD version include a newly developed double layer metal evaporated tape, 6.35 mm wide, in small and large cassettes giving up to 1 and 4.5 hours; component recording with 5:1 compression; a 2 head drum rotating at $9000 \mathrm{rev} / \mathrm{min}$ recording 12 tracks per frame in PAL (10 in NTSC), with a track pitch of $10 \mu \mathrm{~m}$; 16 and 12 bit PCM audio modes; and a Copy Management System.

$D V C P R O$ differs in using more robust metal particle tape, which is run at double speed to increase track pitch to $18 \mu \mathrm{~m}$, and the addition of a control track and cue channel. The $H D$ version uses metal-evaporated ME tape run at double speed to record twenty $10 \mu \mathrm{~m}$ tracks per frame. Horizontal resolution is about 500 lines for SD - 25\% greater than Hi8/S-VHS - and 600 lines for HD, with double the vertical resolution.

Developments in video editing

Tape based video editing is a laborious process requiring scenes to be copied from player(s) to a recorder in realtime. Each scene has to be found by winding the tapes. This is linear editing. Recently non-linear editing has been developed to exploit the random access facility of hard disks.
In non-linear editing, the video and audio is digitised, usually compressed, and transferred to disk. Each scene is represented on-screen by a still, and these scenes can be instantly accessed in any order, rearranged, trimmed, the audio edited, and effects and captions added. If it is not right it can be returned to a previous 'undo' level - instead of starting again as with tape. And systems can be networked for several editors to work at once.
The completed programme can then be output to tape, disk or to air. Alternatively, the computer can generate an edit decision list which tape machines can use for automatic linear editing. Some systems are linear/non-
linear hybrids, capable of editing with video recorders and hard disk.
Non-linear editors are available as either plug-in boards and software or a complete computer system. A new trend is systems packaged for specific uses. One of the main focuses is on news, with systems from Avid, Lightworks and Quantel.
Sony's new system is intended for live broadcasts: two channels of hard disk storage provide quick replay and editing of highlight scenes while the live video continues to be recorded. An endless recording capability enables recording until the disk is full and then re-recording from the beginning. It can store up to one hour of video with 160 kB per frame, 6:1 JPEG compression. The JPEG file size are selectable from 60:1-6:1. Additional drives can be installed to expand capacity to five hours.
JPEG is a popular method of compression, but it does rely on large, fast hard disks to function at speed. Eidos' new system takes a different approach, employing removable 1.3Gbyte magneto-optical discs, as well as hard disks. This change is made possible by Eidos' proprietary compression engine, Optimizer, which is more efficient than JPEG and thus compensates for the lower performance of MO discs. This can be swapped as easily as tape cassettes.

Non-linear editing began in the broadcast field and is working its way down through professional applications to consumers - with their lower quality requirement.

Typical use of non-linear editing systems for news productions, with Quantel Newsbox edit suites networked with a clipbox server to all other facilities.

On the surface, matching a circuit's output to the next one's input appears straightforward, but as Ian Hickman shows, this important technique can be a source of loads of problems.

Matching a load to a source or vice versa ensures that the maximum possible power will be transferred, as stated by the well known Maximum Power Theorem.
In electronic signal processing, the matched condition is usually preferred, but this is not necessarily so in other applications. For instance, internal resistance - 'source resistance' - of a new 1.5 V cell is around the 1Ω level, whereas the resistance of a 1.5 V 300 mA lens-end flashlight bulb is 5Ω when lit. This ensures that five sixths of energy supplied by the cell finishes up where it is wanted, producing light. In the matched case, a 1Ω bulb might produce more light, but 50% of the energy would be wasted simply warming up the battery. If you want extra light, it makes more sense to use more cells in series and a higher bulb voltage, which still only draws 300 mA .
In other cases, a source is, by design, simply incapable of supplying a matched load, a good example being a 660 MW turbo-alternator.

Binomial theorem

If R_{L} in Fig. 1a) increases by 1% to 1.01Ω, then total circuit resistance $-R_{\mathrm{S}}$ being $1 \Omega-$ increases by 0.5%. Thus current decreases by 0.5%. Power P dissipated in R_{L} is given by $P=i^{2} R_{\mathrm{L}}$. If i decreases by 0.5%, then i^{2} decreases by 1%. But R_{L} has increased by 1%, so the product is - virtually to a first order - unchanged. This is a result of the Binomial Theorem, but can equally be verified by working out $i^{2} R_{\mathrm{L}}=(2 /(1+1.01))^{2} \times 1.01$ on a pocket calculator.

Some results from the Binomial theorem:

$$
\begin{array}{ll}
(1+\delta)^{2}=1+2 \delta & (1-\delta)^{2}=1-2 \delta \\
(1+\delta)^{-1}=1-\delta & (1-\delta)^{-1}=1+\delta \\
(1+\delta)^{n}=1+n \delta & (1-\delta)^{n}=1-n \delta \\
(1+\delta)^{-n}=1-n \delta & (1-\delta)^{-n}=1+n \delta
\end{array}
$$

Note that these results only apply if $\delta \ll 1$ and n is smallish, so that second order and higher terms are insignificant.

With this, the design minimum value of the load is about 30 or more times the internal resistance - overload protection devices would trip long before the matched load condition were met.

Matching standards

In the design phase of electronic modules where matching is important, such as tv camera signal processing chains, telephony cable repeaters, radio receivers and a variety of transmitters, extensive use is made of test equipment such as signal generators, spectrum analysers etc.
Sources are designed to produce an accurately known output level, such as -10 dBm , into a matched load. A -10dBm level is a level of -10 dB relative to a power of ImW delivered to a matched load, or $100 \mu \mathrm{~W}$. In telephony, where a 600Ω impedance system is common, ImW corresponds to 0.775 Vrms .
Telephone engineers often define 0 dBm as meaning 1 mW in 600Ω. But the more common usage is to define it as lmW in whatever the system design impedance is. This corresponds to 225 mV in a 50Ω system, common in rf equipment, 273 mV in 75Ω, common in tv baseband signal working, or 387 mV in 150Ω, in twisted pairs in underground cables.
In radio-frequency testing, a module's input port is commonly driven by a signal generator with a purely resistive output impedance of 50Ω, and its output port is terminated in the 50Ω resistive input impedance of a spectrum analyser. In the case of the module's input, power delivered to it will be very close to that delivered to a 50Ω resistor. This occurs even if the module's input impedance departs fairly markedly from 50Ω resistive.
This is illustrated in Fig. 1a) and b), where things have been normalised to unity, i.e. a generator with a 1Ω source delivering IW to a
nominal 1Ω load. For reasons explained in the panel, provided $R_{\mathbf{S}}=1 \Omega$, the power in the load is close to IW even if R_{L} varies. If R_{L} is one third of an ohm, or 3Ω, power in the load is 750 mW , or only -1.25 dB for a voltage standing wave ratio of $3: 1$. However, although power in the load is not very sensitive to variations in R_{L}, power dissipated internally in the source, and hence total power supplied by the 2 V ideal generator, varies markedly. Figure 1 b) shows that total power supplied by the 2 V generator varies from 4 W for a short circuited load, down to zero when R_{L} equals infinity.

Figures la) and b) show the situation at OHz , or dc, where the effect of any incidental reactive terms in R_{S} and R_{L} can be ignored. The maximum power theorem applies equally at ac, but with the added complication that in general we are dealing with impedances rather than pure resistances. This is shown in Fig 1 c), where inductive and capacitive components are shown in R_{S} and R_{L} respectively: However, it could equally well be the other way round, or both reactances could be of the

Fig. 1a). Normalised source and load, illustrating the maximum power theorem.

Fig. 1b). Power in the load resistor R_{1} as a function of its value, when R_{s} equals the design system impedance of 1Ω (curve) and total power supplied by the generator (sloping line).

Fig. 1c). In the ac case, source and load reactance must be taken into account. Source to the left of the dotted line, load to the right.
same sign - positive for inductances and negative for reactances.

Conjugate matching

Using Fig. Ic), assume that reactance of inductive component L_{S} of the source equals that of the capacitive component C_{L} of the load at the frequency of the sinewave source $E_{\text {SOURCE }}$. In this case the two cancel each other out, power in the load being determined purely by the values of R_{S} and R_{L}. This is known as the conjugate matched condition and can only occur at the one frequency - conjugate matching is inherently narrow band. For this reason, signal generators are designed such that Z_{S} is as nearly as possible purely resistive, any L_{S} or C_{S} being ideally zero. A similar comment applies to the input impedance of measuring instruments, such as power meters and rf spectrum analysers.
If Z_{S} in Fig Ic) is purely resistive and equal to the system design impedance, power in the load is relatively independent of its exact value. But what if the dotted line in Fig. Ic) had been drawn horizontally? This makes what is now Z_{S} the load (exactly 1Ω, say) and variable Z_{L} is now the source resistance.
Considering the dc case, power in a fixed load of 1Ω as R_{S} varies from zero to infinity is now given by the vertical distance between the curve and the sloping line of Fig. 1b). If R_{S} varies, power in the load varies wildly, even if the load is a pure resistance equal to the system design impedance. Is this important? The following cautionary tale shows that it is.

Is matching input to output enough?

Some years ago, the company I worked for was developing modules for an advanced allband surveillance receiver. One engineer designed the front-end half-octave filter module, another the rf amplifier and first mixer module, another the first IF and so on through the second and third mixers an IFs.

The design aim was that during servicing, replacing any or all of the modules should leave the overall performance within specification. To this end, a voltage standing wave ratio tolerance was placed on the input and output impedance of each module.

As development progressed, insertion loss or gain of each module was checked using a signal generator and spectrum analyser, or a network analyser, as available. The analyser was also used to check port impedances. Thus module inputs were driven from a respectable 50Ω source, and their output checked with a faultless 50Ω load. Nevertheless, complete receivers exhibited a range of performance which was outside the specification limits.
Unlike the situation on test where each module port is connected to a 50Ω interface - at the interface between modules in use - both port impedances could be different from 50Ω.
Graphs documenting this effect have appeared in an issue of the Marconi house magazine but I have failed to unearth it. So I worked it out again for the simplified case where both R_{S} and R_{L} vary, but both are resistive. Figure 2 shows how power in the load
R_{L} varies with the value of R_{L} for a series of different values of R_{S} from $0.25-2 \Omega$. Source emf behind R_{S} is 2 V as in Fig. 1a) - call this Case I.

When R_{S} is 1Ω, maximum power naturally results in a matched 1Ω load. This curve is the same as in Fig. 1b). In accordance with the maximum power theorem, when R_{S} equals 0.25Ω - top curve - maximum power of 4 W occurs in the load when its value is also 0.25Ω. To a nominal 1Ω load, an R_{S} of 0.25Ω delivers 2.56 W or +4 . IdB. Significantly, the power changes rapidly for small deviations of R_{L} from unity. Likewise, when R_{S} is 2Ω, maximum power of 0.5 W occurs in a 2Ω load, while when R_{L} is 1Ω, output is -3.5 dBW .
Case I applies where source emf is what it should be - twice the voltage across a matched load - but source resistance R_{S} is incorrect. This corresponds to the case of a signal generator where the output impedance defining resistor is damaged. The instrument is otherwise unchanged from new, perhaps a rather unusual case, or perhaps due to the inadvertent application of rf power to the signal generator's output.

Where output impedance is poor

A different set of circumstances arises in Case II. A module with a poor output impedance has been set up to deliver its rated output to a resistive load equal to the system design impedance, for example 50Ω. In this case, internal emf $E_{\text {SOURCE }}$ will have been effectively adjusted - in terms of the normalised circuit of Fig. 1 - to something other than 2 V , so as to deliver IW into a 1Ω load. Thus if R_{S} is lower than $1 \Omega, E_{\text {SOURCE }}$ will have been set to less than 2 V , and to more than 2 V if higher. Power delivered to the load R_{L}, as a function of the value of R_{L} for various values of R_{S}, is shown in Fig. 3.
Since $E_{\text {SOURCE }}$ has been adjusted to deliver IW into 1Ω, whatever the value of R_{S} happens to be, all curves pass through IW when R_{L} is 1Ω. But only in the case where R_{S} equals 1Ω is the curve horizontal for R_{L} of 1Ω. This gives the relative independence of load power versus R_{L} that obtains when the value of R_{S} is correctly set at the nominal system impedance. Nevertheless, the variations of power delivered with variation of both R_{S} and R_{L} are much less in this case than Case I, permitting the results for Case II to be plotted in Fig. 3 with a vertical scale twice that of Fig. 2.

Matching in filter designs

Correct matching is particularly important where filters are concerned, as the following illustrates. Some time in the ' 80 s , my then boss had a crisis with the company's new hf receiver - which was already over budget and overdue. The $20-30 \mathrm{MHz}$ sub-octave filter was far too narrow, and excessively lossy to boot. "It's got to be fixed, but don't spend more than a week on it, even if the conclusion is that we have to relax the specs."

Having spent the rest of the morning getting the necessary test equipment together, I was

Fig. 2. Power in load resistor R_{L} as a function of its value, showing curves for several different values of R_{s}. Source emf EsOURCE is as in Fig. 1a).

Fig. 3. Power in the load resistor R_{l} as a function of its value, showing curves for several different values of R_{s}. Source emf $E_{\text {SOURCE }}$ adjusted to give 1 W into a 1Ω load resistor R_{L} for each value of R_{s}.
able to report half way through the afternoon that the filter was now working fine. So it should, for it was a seven pole elliptic design straight out of the reference.
Checking the values on the circuit diagram confirmed that the engineer who had designed it had done his denormalising sums right. Capacitors on the board were also all correct, and the coils all capable of being tuned by means of their slugs to the correct inductance.
Output of the filter module was normally connected to the rf/first mixer module, which
presented a good low voltage-standing-wave ratio input. But before getting there, output of the $20-30 \mathrm{MHz}$ filter, when selected, had to pass through a number of band-select relays and board tracking - which looked distinctly capacitive. As far as the filter was concerned, this capacitance was part of the load, which should have been purely resistive but wasn't. Reducing the value of the final shunt capacitor in the filter effected an improvement, and further reduction made it better still. In the end, it turned out that no capacitor was need-
ed at all, the circuit strays equalling the design value of the filter's final shunt capacitor. But in the end I settled for 1.8 pF , to avoid C_{99} on the circuit diagram being shown as 0 pF .
The final capacitor in the $15-20 \mathrm{MHz}$ was also reduced in value some what, the lower frequency filters being in spec. due to the much larger values of their final capacitors.

Reference

Geffe, P R., ‘Simplified Modern Filter Design’ Iliffe Books Ltd, London 1964.

JOHN MORRISON HARDWARE \& SOFTWARE

PIC ICE II

PIC PROGRAMMER

In Circuit Emulator for PIC16C54-55-56-57-71 \& 84 Replaces all 18 or 28 pin PIC's. All ports Bidirectional OSC2 output, RTCC Input, on board AD converter for PIC18C71. Supplied with PICDEV software suite, user manual, connecting leads and headers asrn, user sample files and hardware circuit projects.

£159.95

MEGAPROM EPROM PROGRAMMER

EPROMS, E² PROMS \& FLASH memories from 2 Kb to 8 Mb

INC. MICROCHIP 24L series.
Operates via host IBM PC and centronics port. uses standard printer cable, on board production quality ZIF socket.

£99.95

SMARTCARD/PIC CHIP PROGRAMMER

ON BOARD ISO 7816 INTERFACE, software runs on host IBM PC allowing the user to program SmartCards or PIC16C84's on a SmartCard emulator, also Programs PIC16C84 on a target board via an on board header. The perfect SmantCard development tool. Supplied with a full suite of software.
£79.95
Please add $£ 1.75$ for $P \& P$ to UK mainland
CROWNHILL ASSOCIATES LIMITED, PO BOX 845
WATERBEACH, CAMBRIDGE, CB5 9JS
BBS: 0956700018
FAX: 01223441645

LEN COOKE ENTERPRISES

UNIT 5, SOUTHALL ENTERPRISE CENTRE, BRIDGEROAD, SOUTHALL, MIDDLESEX UB2 4AE, ENGLAND
TEL: 01818139946 FAX: 01815742339
We Buy, Sell, Service \& Export Used Test Instruments
HP 3580A Spectrum Analyser .
1,250 Philips PM 3267 Scope 100 Mhz $£ 285$ Tektronix $7623 A / 7 \mathrm{~L} 13$ 1kHz to 1.8 Ghz $£ 2,200$ Philips PM 3265 Scope 60 Hhz .$£ 285$
.$£ 240$ Tektronix 7623A/7L18 1.5Ghz to 18Ghz £3,500 Philips 3217 Scope 50Mhz $£ 325$ Tektronix TR502 Tracking Generator £1,200 Hameg 203-6 Scope 20Mhz $£ 220$ HP 8443B Tracking Generator Tek Callbrator TM503/PG506/SG503/ TG501
 ….... $\mathbf{£ 4 5 0}$ Gould OS4000 Digital Storage Scope HP 2148 Pulse Generator …................... $\mathbf{£ 1 , 2 0 0}$ Time 2003N DC Voltage Source HP 1630G Lse Generator500 Time 2003S DC Voltage Calibrator Thurlby LA160B Logic Analyser HP 3478A Multimeter $£ 750$ Philios PM6674 Frequency Counter Beckman 350 Bench Multimeter Beckron 1051 Bench Multimeter Datron 1051 Bench Multimeter Datron 1061A Bench Multimeter Philips PM2521 Bench Multimeter Thurlby 1905 a intelligent DMM Thurlby 1503 Bench Multimeter Fluke 8050A Bench Multimeter. Marconi 2018 AM/FM Sig. Generator Racal 9082 AM/FM Sig. Generator $\mathbf{5 5 0}$ Tektronix 834/835 Comms. Tester $£ 350$ Jupiter 500 Function Generator 4 Mhz £195 Microtek Mice-11S In-Circuit Emulator with
 HP 3311 A Function Generator HP 3311 A Function Generator Farnel LFM4 Generato
Farnel LF1 Generator
Philips PM5167 Fun. Gen. 1 Mhz to 10 Mhz
HP 204D Oscillator Gould J3B Oscillator …............... $\mathbf{£ 2 0 0}$ Farnell DC Power Supply TSV70 35V/10A $£ 260$ Tektronix 465 Scope $100 \mathrm{Mhz} .5385$ Thurlby DC Power Supply PL320 30V/2A Tektronix 465 B Scope 100Mhz $£ 450$ Dual .. $£ 165$ HP 1740A Scope 100MHz $£ 375$ HP 6291A DC Power Supply 40V/5A $£ 200$

CIRCLE NO. IHI ON REPL Y CARD

LAYAN - Affordable Electromagnetic Simulation

Affordable Electronics CAD

LAYAN: Electro-magnetic layout Simulator. Include board parasitics in your Analogue simulations.	$\mathbf{\$ 9 5 0 . 0 0}$	$\mathbf{£ 4 9 5 . 0 0}$
EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	$\mathbf{\$ 3 7 5 . 0 0}$	$\mathbf{£ 1 9 5 . 0 0}$
PULSAR: Digital Circuit Simulator 1500 gate capacity.	$\mathbf{\$ 1 9 5 . 0 0}$	$\mathbf{£ 9 8 . 0 0}$
ANALYSER III: Linear Analogue Circuit Simulator ~ 130 node capability	$\mathbf{\$ 1 9 5 . 0 0}$	$\mathbf{£ 9 8 . 0 0}$
Z-MATCH for Windows: Windows based Smith-Chart program for RF Engineers.	$\mathbf{\$ 4 7 5 . 0 0}$	$\mathbf{£ 2 4 5 . 0 0}$
FILTECH: Active and Passive Filter Design	$\mathbf{\$ 2 7 5 . 0 0}$	$\mathbf{£ 1 4 5 . 0 0}$
EASY-PC: Entry level PCB and Sch. CAD.	$\mathbf{\$ 1 9 5 . 0 0}$	$\mathbf{£ 9 8 . 0 0}$
We operate a no penalty upgrade policy. Technical support is FREE FOR LIFE. Special prices for Education	US\$prices include Post and Packing	Stening Prices exclude P\&P and VAT.

Number One Systems

Ref: WW, Harding Way, St. Ives, Huntingdon, Cambs. PE17 4WR, UK. For Full Information Please Write, Phone or Fax. Tel: +44 (0) 1480461778 Fax: +44(0) 1480494042
 \title{
Electronic Designs Right First Time?
}
 \title{
Electronic Designs Right First Time?
}

For less than $£ 1000$!

GRANDATA LTD
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126 OPEN Monday to Saturday.
Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00
Please send $£ 1$ P\&P and VAT at 17.5%. Govt, Colleges, etc. Orders accepted. Please allow 7 days for delivery. Prices quoted are subject to stock availability and may be changed without notice. TV and video parts sold are replacement parts. Access \& Visa Card accepted
WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND
TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.

TRANSISTORS

NEW PRODUCTS CLASSIFED

Please quote "Electronics World + Wireless World" when seeking further information

Arrays

5Mgate asics. Up to five million gates and 10 Mbyte of memory, or nearly 50 million transistors can be shoe-horned into the G10 series of asics from LSI Logic; to point these figures up, LSI say that such a density is equivalent to more than eight Intel P6s. Gate delays are down to 50 ps. There is a library of complex elements such as three-transistor memory structures and mixed-signal circuitry providing 12-bit and 270 MHz data conversion LSI Logic Europe plc. Tel., 01344 426544; fax, 01344481039.

Fpgas. Xilinx offers the XC8100 family of field-programmable cmos gate arrays using the company's MicroVia antifuse technlque and sea-of-gates architecture to provide virtually 100% of 1000-9000 usable gates. Logic cells are configurable to carry out synchronous, combinationa and three-state logic functions. Supply is 5 V and 3.3 V . Xilinx Ltd Tel., 01932 349401; fax, 01932 349499.

Microprocessors and controllers

PICs with voltage comparators Microchip's PIC16C622 eprom-based PIC has two analogue comparators, a programmable voltage reference and the first 4 V low-voltage protection to be offered. It uses the risc-like architecture common to the series, although here, the program and data

[^3]are in different memories, so that separate buses are used to fetch and execute in one cycle. There is $2 \mathrm{~K} / 14$ on-chip programmable memory. Polar Electronics. Tel., 01525 377093; fax, 01525378367.

Graphics accelerator. Advance Logic introduces the ALG2046 drambased, 64-bit PCI graphics accelerator, which contains graphics engine, d -to-a converter, clocks and BIOS in the one 208-pin package; with two $256 \mathrm{~K} / 16$ drams, the accelerator forms a complete graphics sub-system that can be upgraded by simply increasing memory to 2Mbyte. Silicon Concepts Ltd. Tel., 01428751617 ; fax, 01428751603.

Graphics controller. CL-GD5436 is the fastest of Cirrus's dram-based graphics controllers, having a 64-bit graphics engine and enhanced bitBLT capability with larger, doublebuffered registers for faster performance with Windows, NT and $\mathrm{OS} / 2$, in 24 -bit colour. Features include a direct, glueless interface to the PClbus and the device supports extended burst cycles on the bus. It can be used with PowerPC and other PCl -based systems as well as PCs. Graphics modes up to $1024 / 768$ in true colour and 1280/1024 in 256 colours. Cirrus Logic Inc. Tel., 01727 872424; fax, 01727875919.

486 embedded processor. A family of 486 processors intended for use in equipment other than pcs is announced by National Semiconductor. The NS486 has a three-stage pipeline, against the $p c$ version with five, and has no coprocessor. It does have extra peripherals, including a dram controller, programmable interrupt controller, Icd controller, PCMCIA controller, etc, and the device gives a compatible 486 instruction set, a 32bit core, 25 MHz working and 12 mips performance. Power-saving modes are provided. National Semiconductor GmbH. Tel., 00491805327832

16-bit microcontrollers. Hitachi has the H 8 S series of 16 -bit devices, which achieve 10Dhrystone mips at 5 V with a 20 MHz clock, a multiply or multiply-and-accumulate instruction taking 200 ns , and provides $67 \mathrm{mips} / \mathrm{W}$ at 2.7 V (48 at 5 V). Power savings have been obtained by making some of the internal clock-driven functions into event-driven logic circuits, not needing a constant clock input Benefits are lower switching frequencies, giving lower power consumption, and lower emi; power dissipation is 75 mW at 10 MHz Peripherals provided include a 1 MHz 10 -bit a-to-d converter, a 32 -bit data transfer controller needing no cpu intervention or dma controller and an enhanced memory interface capable of accessing fast page-mode dram

Passive components

Silver mica capacitors. ACL's D-15 range of high-voltage, precision silver mica capacitors are in resinous and/or clear epoxy and come in 100 Vdc , 300 Vdc and 500 Vdc ratings, in values in the $1-500 \mathrm{pF}, 1-820 \mathrm{pF}$ and $1-510 \mathrm{pF}$ ranges respectively. Temperature coefficient is 'low' and tolerance is 0.25 pF and 0.5%. Four operating classes are available, from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. Europa Components \& Equipment plc. Tel., 0181-953 2379; fax, 0181-207 6646.

Connectors and cabling

Optical-fibre distribution. Molex pre-terminated distribution panels for optical fibres provide high-density connections and versatility and avoid the need for splicing on site. Each panel takes 144 fibres and is mounted in a 19 in or 23in relay rack; a selection of adaptor interfaces provides flexibility in configuring the system. Molex Electronics Ltd. Tel., 01420477070 ; fax, 01420478185.

Displays

Better Icd. Crystaloid has improved the readability of liquid-crystal displays. In earlier types, the indium/tin oxide electrodes carrying current in the display have a tendency to reflect light, making inactive segments of the display appear active. Crystaloid has a new indexmatching technique in which a coating is applied over all the areas to match the reflections, so that contrast in the reflections is virtually zero. The technique also eliminates short circuits caused by "dc plating", since the coating avoids migration between

NEW PRODUCTS CLASSIFIED

Please quote "Electronics World + Wireless World" when seeking further information
electrodes. Ginsbury (UK) Ltd. Tel., 01634 290903; fax, 01634290904.

Touch screens. Lucas Control announce a range of Duralith touch screens, in six sizes to fit most Icds. A reduced layer allows a high degree of light transmission and the screens can be easily modified to take overlays, bezels, shielding and filters for emi/rti and esd protection. Layers of both analogue or matrix form are available, in matt or semi-gloss surface finish. Lucas Control Systems Products. Tel., 01535 661144; tax, 01535661174.
5.5 In colour Icd. NEC's 5.5 in colour Icd operates over the $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range and is meant for use in vehicles and in industry for navigation displays and process monitors. Drive circuitry for the Icd and for rgb processing is built-in and an edge light gives luminance of $300 \mathrm{~cd} / \mathrm{m}^{2}$. Resolution is $320 / 240$ pixels. NEC Electronics (UK) Ltd. Tel., 01908691133 ; fax, 01908 670290.

Hardware

Rack with keyboard tray. To avoid trailing leads and the difficulty of seeing the screen on an enclosed computer when the keyboard is remote, Optima has modified its 600 sloped rack to take a keyboard tray. It has a sunken area to take the keyboard, whose leads go through a hole at the back, the operator having a clear view of the screen through the panel of the 10 U monitor section, which is sloped at 20°. Optima Enclosures Ltd. Tel., 01875 610747; fax, 01875612486

Instrumentation

Power analyser. Voltech's PM100 power analyser measures V, I, power, VA, reactive power, power factor, peak current, crest factor current and voltage in waveforms from OHz to 250 kHz . It also handles frequency and inrush current and harmonic analysis to the 50th. A feature is the fact that V and I are directly connected to floating inputs, eliminating external current transformers. Thurlby Thandar Instruments Ltd. Tel., 01480 412451; fax, 01480450409.

Coating thickness meter. Tor Technologies offers the PosiTector 100 , which is a hand-held coating thickness gauge that uses ultrasonics to measure coatings on concrete, lacquer, varnish, paint, ceramic glazing, etc. Operation is by two buttons, since there is no need to select coating or substrate and the instrument is auto-calibrating, also providing audible and visual alarms and switched imperial/metric readings. Optional statistical and memory capabilities allow the storage of up to 1500 readings in 99 groups, with maxima, minima, tolerances, average and standard deviation appearing on the display. There is an RS232 port and infrared connection to the HP-IR printer. Tor Applied Technologies Ltd. Tel., 01455 844114; fax, 01455844116.

Analogue/digital oscilloscope. OX8620/8627 from Metrix are combined 100 MHz analogue and 40Msample/s digital instruments. Front panels are familiar, since the microprocessor interface allows the use of rotary knobs and touch buttons with leds to confirm selection. Autosetup is provided, setups being stored at switch-off. They are both dualchannel, dual-timebase instruments, capturing and recording up to four waveforms, each having 8000 points; OX8627 also has glitch capture down to 50 ns . Stored data can be processed in various ways in both analogue and digital modes, and there is RS232 (OX8620) and IEEE

Tv aerial measuring receiver.
ME 900 is an addition to Grundig's range of measuring receivers and is provided with a 5.8 in colour display. It is designed for use in the 44.75859.25 MHz range, handling all well-known television standards and having a 200-programme memory. Operation is by soft key, or the analyser function can be cursor-driven, when frequency-related values from the range analyser are read and compared from the colour display. A clock and video decoder are provided. A satellite section covers 910 2050 MHz . Grundig AG. Tel., 0049 911/703 86 29; fax, 0049 911/70 9687.

488-2 (OX8627) communication for control or output. Metrix UK Ltd. Tel., 01256 311877; fax, 0125623659.

Waveform analyser: Nicolet's new 2580 waveform analyser is a complete system for multichannel transient recording and analysis; it has a 486 processor, a large colour display and Windows-based software. It takes the form of a mainframe with plug-ins for up to 24 channels with a number of input capabilities. Sampling rates are up to 10Msample/s and memory length up to 8Msample/channel. In the X direction, there is split timebase and several trigger modes to cope with
complicated waveforms and a highspeed data transfer system allows the display of waveforms within fractions of a second after acquisition. Complete experiments, including the use of external programs, are supported. Nicolet Technologies Ltd. Tel., 01908 679903; fax, 01908 677331 .

Interfaces

PCMCIA Interface. CardWize announce the Card Genie, an interface unit connected by cable to a serial or parallel PC port to allow the use of flash or sram PCMCIA cards with a desk-top PC. It behaves as a standard dos drive, accepting the normal commands, and provides simple data swapping between portables and desk-tops, or data logging, in which it can replace printers in some applications. Supplied software allows direct access to the card from the dos prompt, which allows non-dos data to be read, a range of C library files eases the incorporation of the interface into embedded applications. CardWize Data Solutions. Tel.; 01635 524477; fax, 01635524488.

Eight-channel measurement. For connecting up to eight sensors of various types to a computer, IMS produces the ADAM-4017 interface module, which can be supervised by the host computer via an RS-232/485 link. It has an on-board processor to monitor sensors and either report readings or interrupt under alarm conditions; the eight differential analogue inputs go to a 16 -bit a-to-d converter. Integrated Measurement Systems Ltd. Tel., 01703 771143; fax, 01703704301.

Literature

Network testing. Bisset offers the Electrodata catalogue of test and support equipment for data networks, which describes hand-held instruments such as line monitors, digital transmission testers, TI and EI analysers and interface test sets. Prominent is the E1-Watcher, a lowcost tester that monitors $2 \mathrm{Mb} / \mathrm{s}$ data links used for Megastream, primary rate ISDN and 12-channel pcm. Bisset Communications Ltd. Tel., 01582792637 ; fax, 01582792648.

Inertia sensors. Inertia/impact sensors using reed-switch techniques are described in a publication from

Filters

Inlet filters. Capable of being
fitted to existing equipment,
BLP's SF1020 inlet filter is a general-purpose type meeting IEC 320 and measuring 39.4 mm in length. Space is further saved by placing the connectors on top of the body, so that the filters occupy about the same area as a non-filtered type. Versions available handle $1 A, 3 A$ or $6 A$ at up to 250 Vac . BLP Components Ltd. Tel., 01638 665161; fax, 01638660718.

Gentech. Inrush current of the sensor is 5 A at 20 Vdc for 15 ms and sensing range is up to 15 g . They are boardmounted devices and contacts are in Form A, B or C. Gentech International Ltd. Tel., 01465 713581; fax, 01465 714974.

Electromechanical components.
Rendar has published its 1995/6 catalogue of connectors, cordsets, fans, switches, etc. New this time are 10A IEC320 power inlets, an extended Stripbloc range and a chip fan for Pentium processors. Rendar Ltd. Tel., 01243 866741; fax, 01243 841486.

Materials

Degreaser. From MMCC(UK) comes Biosane T212, which is a fast, coldprocess degreasing agent that is environmentally and biologically safe. Its surface tension is 50% lower than that of 1.1.1 Trichlorethane and it dries quickly at room temperature. A further advantage is its high settling power, which means that debris sinks to the bottom of the tank so that components do not have to go through it, eliminating the vapour rinse normally needed. It also possesses a 99% recycling capability. MMCC(UK) Ltd. Tel., 01707 336282; fax, 01707336290.

Metal-substrate pcbs. IMS is a printed board on an insulated meta substrate, produced by the French company CIRE. The material dissipates heat and provides
insulation between circuitry and metal, consisting of a single-sided pcb with aluminium (or copper), thermally conductive electrical insulator, circuit copper and a solder mask, the aluminium being open to the air for cooling. Double-sided boards can be produced. Insulation depends on the material used and its thickness, but it can be up to 4.8 kV . CIRE/BREE. Tel., 0033383053 62; fax, 0033383021 30.

Production equipment

Solder paste inspection. Automatic solder paste inspection system, DEK Inspector 2 by Dek Printing Machines, has a set of new features to improve its versatility without adversely affecting speed. It lifts boards off the belt-feed transport rails, other boards continuing to travel forwards while the selected one is inspected by a combination of pattern recognition and laser scanning, as many areas of the board being inspected as possible until it is needed further along the line. It then replaces the board, picks another up and continues with next Inspection area, adding to the original inspection database in each case. Programming is effected by means of a graphical/menu-driven screen and a library of patterns, the user setting the areas to be examined and tolerances to observe. Flash lighting freezes residual motion and special lighting differentiates between paste and pads, a laser measuring paste height. Dek Printing Machines Ltd. Tel. 01305760760 ; fax, 01305760123.

Air nozzles. New company Meech ARTX is to manufacture air nozzles for swarf removal or cooling air, a new design saving up to 90% of the compressed air normally used and providing an air flow 25 times that given by a normal design. There is also a range of compressed-air powered vortex tubes to handle heat loads of 10000Btu/h and spot refrigeration to -40°, hot air

Mighty mouse. Interlink Electronics announces that DuraPoint, a fully sealed, stainless steel, resistive pointing device for desk-top use, is now available in Europe. It is impervious to fluids, other contamination, vibration and human beings, has no moving parts or mechanical assemblies and therefore does not become clogged up with filth from the mouse mat. It uses the company's VersaPoint technique, in which a touch on a button or joystick is transferred to a force-sensitive resistor. Consequently, direction of cursor movement is determined by direction of the applied force on the button and speed of cursor movement by the amount of force applied. Steadlands International Marketing, tel 01670528200 , fax 528212.
exhausting from one end and cold air at the other. Meech-ARTX Ltd. Tel., 01993706700 ; fax, 01993776977.

Power supplies

High-voltage. Farnell Hivolt has the first of the PSM10 Series of highvoltage supplies for applications needing a precise source. Current and voltage monitoring is provided and there is an output inhibit. Outputs are 2,5,10 and 15 kV and the PSM10/202 and / $/ 53$ provide positive or negative output of $10 \mathrm{~V}-2 \mathrm{kV}$ at 5 mA and 150 V 15 kV at $666 \mu \mathrm{~A}$. Ripple is less than $20 \mathrm{mVpk}-\mathrm{pk}$ at 2 kV and under 1.5 Vpk pk at 15 kV , with drift at under $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. For a $\pm 2 \mathrm{~V}$ change in the 24 V input, regulation is 0.1 V at 2 kV and 0.75 V at 15 kV . Farnell Hivolt Ltd. Tel., 01234841888 ; fax, 01234 824698.

S-m regulator. With the aid of only four external components, the Sanken SAl-01 surface-mounted power regulator ic forms a complete switched-mode power supply. It gives an output current of 0.5 A at 5 V from $7-33 \mathrm{~V}$, with 80 mV stabilisation and 30 mV regulation. Switching frequency is 60 kHz . Allegro MicroSystems Inc. Tel., 01932 253355; fax, 01932 246622.

High-current switcher. Having an output rated at 1.25 A and switching at 40 kHz , Cherry's CS-3972 is meant for use in both computers and car systems, in which it serves as the pulse-width control element in any of the standard forms of switching regulator. Input range is $3-60 \mathrm{~V}$ and output up to 60 V at 1.25 A at a 50% duty cycle. Undervoltage, thermal and current-limit protection is included. Cherry Semiconductor. Tel., 001401 885-3600; fax, 001401 885-5786. Internet info@cherry-semi.com.

Frugal regulator. ZR78L05 is a 5 V voltage regulator having a quiescent current of $350 \mu \mathrm{~A}$, which is about onefifth that of standard 78L types, also providing regulation and stabilisation to 200 mA , an increase of 100% over standard. No external components are needed and the device is packaged in SOT23 or low-profile TO92. Thermal overload shuts it down, operation continuing after it has cooled. Zetex plc. Tel., 0161-627 5105; fax, 0161 6275467.

Radio communications products

Radio-controlled clock. Model RM913 alarm clock from Oregon Scientific is radio controlled by the 60 kHz signal from MSF Rugby, which itself is referred to a caesium standard at the National Physical Laboratory. Data carried by the transmission automatically sets time and date and copes with 30/31-day months, summer time and leap years. The alarm brings on a backlight to the Icd and a separate alarm is useful for reminders during the day and there is a second time zone. The clock is battery-powered. Oregon Scientific. Tel., 0181903 2886; fax, 0181903 2328.

Satellite terminal. Magnavox has added to its range of satellite systems the MX4042, a desk-top Inmarsat terminal providing voice, $2400 \mathrm{~b} / \mathrm{s}$ fax and data. It consists of a remote antenna (up to 250 ft of cable) and two-wire dtmf desk set with handset, signal strength bar graph, keypad and large Icd. Installed software helps to find the satellite by means of a map display on the Icd and synthesised voice prompts operation in English and six other languages. Magnavox Electronic Systems Co. Tel., 001310 6181200.

Transducers and

sensors
Annunciators. Appello
programmable voice annunciators have been improved to provide better sound reproduction, more facilities and easier message creation and storage. Three versions give 16 s messages, two of 8 s with alarm tones and four of 64 s in total. Options such as pause length and number of repetitions are defined by the user and an external microphone input is provided for improved recording of speech. Analogue inputs are stored directly in non-volatile memory, with no a-to-d conversion, a technique that provides better quality and wider bandwidth than often found in conventional equipment, as well as being cheaper and quicker. European Safety Systems Ltd. Tel., 0181743 8880; fax, 01817404200.

Optical sensor. Omron claims its $E E$ SX1101 slotted optosensor to be the smallest transmissive type available, being contained in a housing measuring $4.3 / 4 / 5 \mathrm{~mm}$, with a 2 mm wide slot. For increased sensitivity and reliability, a Fresnel lens focuses more light at the detector, which is either a phototransistor or photo-ic for faster switching. The ic type has a photo diode, amplifier, voltage regulator, Schmitt trigger and n-p-n output transistor. Both through-hole and surface-mounted versions are produced. Omron Electronics Lid. Tel., 0181450 4646; fax, 0181450 8087.

Switches and relays

Modular switches. Designed for mounting on pc boards, the Secme Cosmos switches measure 12.3 mm square, leads being on a 2.54 mm pitch for side-by-side mounting. Covers are removable and come in a range of colours and with numerous types of legend. These switches withstand wave soldering and immersion cleaning, and the bases are fully sealed. EAO-Highland Electronics Ltd. Tel., 01444 236000; fax, 01444236641.

Current sensor. The Lem-Heme LA125-P current sensor is for nominal currents of 125 mA and is pcbmounted, providing 3 kV isolation while measuring direct, alternating or complex currents in the 0 to $\pm 200 \mathrm{~A}$ range to within 0.6% of nominal. Bandwidth is $0-100 \mathrm{kHz}$ and the device will follow waveforms changing at $200 \mathrm{~A} / \mu \mathrm{s}$. The primary current-carrying conductor is passed through a 17 mm by 11 mm hole in the housing. Lem Heme Ltd. Tel., 01695 20535; fax, 0169550279.

Tilt sensors. Absolute-encoded tilt inclinometers in the A-ID by Control Transducers give an output of 4096 mV in 1 mV steps over a 360° arc while turning continuously. Encoders are of the optical absolute type, needing no zero reference or resetting and use a pendulum for gravity reference. Control Transducers. Tel., 01234217704 ; fax, 01234217083.

Vision systems

Video conferencing. Nokia offers an integrated monitor, camera, microphone and speakers for video communication. MediaStation includes the NVC-100 software codec for video and audio telephony and is designed for both local and wide-area

Please quote "Electronics World + Wireless World" when seeking further information
networks. The codec is a pc board with a coding system to ITU-T H. 320 standard. Nokia Consumer
Electronics AB. Tel., 0046 87938430; fax, 004687938441.

COMPUTER

Computer board-level products

110 MHz single-board computer. SE5-110 from Sun SPARC is a new
68060 . 40 modules. 8 VM
sinnounces the
GYMEดOUOMAOSO Self:
eomained motules based on
$68060 / 40$ sintlo-Datid
computers, These combirt
the computer boards with up
to tomity y of fixish ent
32minte of draniy a $3 . \sin 2$ or
4Whyto floppy ditive and SCSi
elpris Iram 260whbyte to
4Gbyte, and 512 K of 32 -bit
by 12HP miodule, orily pewer
bing needred frem the
yhebus backplane, Two
thdustrypiek sites provide ito
End hwo serialpotls with
theld-chastigeathle touticy
mbotres suppen RS-202, AS-
429 or his-a85, and $8=-6 i l$
Centronlos parallel forn also
bethg thioludear ByM Ltd. Tel.,
780144,
member of the SPARCengine 5 family, this one having the 100 MHz version of the MicroSPARC II processor, running at 140Dhrystone 1.1 mips for networking, telecomms and imaging. Interíaces for fast SCSI, floppies and $10 \mathrm{MB} /$ s Ethernet, serial and parallel data are built-in. A local 64-bit bus allows fast data transfer from memory to video for graphics, effectively a fourfold increase in data transfer speeds. Sun Microsystems Ltd. Tel., $01276451440 ;$ fax, 01276 451287.

Computers

Industrial computer. AMC's ErgoTouch Computer HL is certified to Class 1 Division 2 and rated to NEMA 4X on all surfaces and needs no air supply or purging/pressurisation enclosure; it is a complete PC contained in a 4.5 in -deep housing, has a touch panel and can be mounted anywhere - wall, panel, boom or desk. Advanced Modular Computers Ltd. Tel., 01753 580660; fax, 01753580653.

Data communications

Data/fax modems. Rockwell has the SMV288ACW, V.34, a new member of the SocketModem family of oem units. Performance is increased to a data handling throughput of $115 \mathrm{~kb} / \mathrm{s}$ for data and $14.4 \mathrm{~kb} / \mathrm{s}$ for fax send and receive. Voice mode options include adpom companding and efficient voice and sound-bite storage; the units fit into sockets. Features include automatic line-speed selection in V. 34 and V.32/V.32bis, tone, pulse and

adaptive dialling and full diagnostics. Typical power taken is 885 mW from 5V. Telecom Design Communications Ltd. Tel., 01256 332800; fax, 01256 332810.

Radio link. Link-up is a synthesised uhf transceiver module approved to the licence-free MPT1329, delivering 0.5 W in the $458.5-458.95 \mathrm{MHz}$ band, carrying data at 9600 baud. Its control processor allows simple interfacing to third-party equipment and to a more powerful asynchronous serial digital comms port to handle channel changing, status reporting and mode changes. It measures $93 / 60 / 17 \mathrm{~mm}$ and is suitable for mounting on mother boards in oem applications. A\&R Electronic Developments Ltd. Tel., 01889 574980; fax, 01889 574975.

Data logging

Quality-control. C9000 by the French company Ati-Topquali is a data logger for work in quality control, working with manufacturers' own machines. It acquires all types of data and can measure dimensions, electrical variables and physical quantities such as weight, speed, movement, etc., as well as providing good/bad Indication. The loggers, which consist of the logger and monitor units, are modular, having between 4 and 24 channels connected to inductive sensors and can be equipped with digital sensors to give up to 64 data channels. Gesmes VA04 software is provided for management and statistical data processing. Ati-Topquali. Tel., 0033 35804199; fax, 003335804591

Mass storage systems

Flash eproms. Flash eprom 'disks' from M-Systems come in a wide variety, from 1 to 900 Mbyte and in formats including PBbus and PC/104 cards, PCMCIA modules and SCSI-HI drives. All have 'plug-and-go' software and file-management compatibility with the $p c$ to emulate hard disks and other media. Allbite Technology Ltd. Tel., 01604 491717; fax, 01604 491323.

32Mbyte dram cards. Mitsubishi has 4, 8, 16 and 32Mbye dram MelCard memory card for upgrades in Toshiba, IBM, Compaq and other notebook computers. They use 930 mW , work from 3.3 V or 5 V supplies, have an access time of 70 or 80 ns and are JEIDA/JEDEC-compatible. There is protection against incorrect supply voltage and incorrect insertion. Mitsubishi Electric UK Ltd. Tel., 01707 276100; fax, 01707278692.

Programming hardware

Gang programming simms. From MQP Electronics announces an increase in the number of devices supported by its S2200 and S2400 range of production programmers, a full range of microcontrollers from Motorola and SGS-Thomson now being handled, typically eight at a time. Now, for the first time, gang programming of flash simm and PCMCIA modules, up to 128 Mb , is
offered. Provision of a universa programming module in the $\mathbf{S} 2000$ means that this one programmer will meet all requirements. MQP
Electronics. tel., 01666 825146; fax, 01666825141.

Philips's XA programming. Data I/O announces programming support for the XA 16-bit controller by Philips, including the 2900 and 3900 programming systems - UniSite universal programmer and ProMaster automated handling system. The programming systems and universal programmer have sockets to take virtually every device package currently on the market. Philips Semiconductors (Eindhoven). Tel., 00 3140722091 ; fax, 003140724825.

Software

Raster-to-vector translator. //Vector 3.2 is a fast 32 -bit translator that converts scanned raster images to vector. DXF files with no need for a cad operator, recognising circles, arcs, symbols, ocr text at any angle, line styles, hatching, arrows and area outlines, all functions being usercontrolled. Translated results can be viewed overlaid on the original raster display for verification. Included is an editor to clean, up-date, de-skew and de-speckle the image and a region editor assigns different parameters to different areas of drawings, so that redundant features such as borders may be omitted. A layer manager sorts features into appropriate layers. Raster formats accepted Include RLC, TIFF Group 4, RLE and PCX and the program runs under Windows 3.3, 95, NT or UNIX/Motif. Ideal Scanners. Tel., 001301468 0123; fax, 001301 2300813; Internet
http:/www.ideal.com
Visual design. Integrated Systems announces that Matrix x_{1} a family of visual design and development tools, is to be available for Windows 95 .
Matrix ${ }^{\text {is }}$ an integrated
hardware/sottware system allowing engineers to design dynamic systems, test them and bring them to prototype stage, code and documentation being generated automatically. Included in this family is Xmath, the objectoriented mathematical analysis and visualisation tool and AutoCode, an automatic code generator. There are also Documentit for automatic documentation and prototyping and RealSim prototyping computers. Integrated Systems Inc. Ltd. Tel., 01438751651 ; fax, 01438312311

FFT analyser. Using any Windowscompatible sound card, Spectra Plus 3.0 by Strategic Test provides fast Fourier analysis, its features including FFT to 16 K block size, $1 / 30$ ctave measurement with flav/A/B/C weighting, thd and transfer function display and amplitude calibration and microphone compensation. Digital filtering is available as a postprocessing feature. Display optlons include time series, phase, spectrum, spectrogram and 3D surface plot. Sampling rate supported is a maximum of 44.1 kHz . Strategic Test and Measurement Systems Ltd. Tel., 01734795950 ; fax, 01734795951.

seetrax cae RAlyGer pcb design WITH COOPER \& CHYAN AUTOROUTER

RANGER3 - DOS	$£ 2500$	
	- Windows $\backslash \mathrm{NT}$	$£ 2900$

Hierarchical or flat schematic linked to artwork. Unlimited design size, 1 micron resolution Any shaped pad, definable outline library 1, gate \& outline swapping - auto back annotation Split power planes, switchable on - line DRC

COOPER \& CHYAY SPECCTRA

autorouter (SP2)
Inputs: OrCAD, Cadstar,
PCAD, AutoCAD DXF
Outputs: Postscript, Windows bit map
R2 \& R3 Outputs: 8/9 \& 24 pin printers, HP Desk \& Laser Jet, Cannon Bubble Jet,

HP-GL, Gerber,

Upto 8 pages of schematic linked to artwork Gate \& pin swapping-automatic back annotation Copper flood fill, Power planes, Track necking, Curved tracks, Clearance checking, Simultaneous multi-layer auto-router

RANGER2 UTILITIES £250

COOPER \& CHYAN SPECCTRA auto-router (SPI)
Gerber-in viewer, AutoCAD DXF in \& out

UPGRADE YOUR PCB PACKAGE TO RANGER2 $\lesssim 60$

NC Drillw AutoCAD DXF

TRADE IN YOUR EXISTING PACKAGE TODAY

eetrax CAE, Hinton Daubnay House, Broadway Lane, Lovedean, Hants, PO8 OSG Call 01705591037 or Fax 01705599036

+ VAT \& P.P
+ VAT \& P.P All Trademarks Acknowledged
CIRCIE NO. It 5 ON REPII CARD

TELNET

Do you know Foster-Seeley?

> Amazed at the widespread misunderstanding of how the Foster-Seeley discriminator works, Richard Brice sets the record straight.

But, how can any phase-shift exist between the primary and secondary of a transformer if the flux closely couples both coils? The answer is - in the Foster-Seeley circuit it does not.
Circuit action relies on there being a very loose coupling between primary and secondary windings of the intermediate-frequency transformer. The diagram botom left, and the associated working presents a more rigorous analysis ${ }^{4}$. Analysis also shows that when coupling between a transformer primary and secondary is perfect equal to 1 - no phase shift exists between primary and secondary voltages. This is regardless of whether the windings resonate with parallel capacitances or not.
M. G. Scroggie in Foundations of Wireless appears to be one of the few writers who deemed it necessary to bother the reader with this crucial aspect of the discriminator's operation,
"...because both windings are tuned exactly to the carrier wave and coupled only very loosely, voltages across them are 90° out of phase."
Some authors, perhaps sensing murky waters but being unsure as how to clear them, simply eschew explanation altogether. A recent, and widely set textbook ${ }^{6}$ describes the Foster-Seeley discriminator thus,
"The Foster-Seely (sic) detector, or its variant, the 'ratio detector' luses] a single tuned circuit in a fiendishly clever diode arrangement to give a linear curve of amplitude output versus frequency over the IF bandpass."

This explanation is unlikely to leave today's students crystal clear as to the operation of the circuit. Its author appears to use words as did Lewis Carroll's Humpty Dumpty who argued, "when I use a word... it means just what I choose it to mean - neither more nor less"7

References

1. Santel, B., 'Detection and Automatic Volume Control', Radio Designer's Handbook, 4th edn, Wireless Press, Sydney, 1952. 2. King, G., 'Radio Circuits Explained’, Newnes Technical Books, London, 1977.
2. Maurice R.D.A., 'Television Engineering', Pentech Press, London, 1985.
3. Privale correspondence with my friend Brian Pethers. 5. Scroggie, M.G., 'Foundations of Wireless', 8th edn, Butterworth \& Co., London, 1971.
4. Horowitz, P. and Hill, W. 'The Art of Electronics', Ist edn, Cambridge University Press, Cambridge, 1980.
5. Carroll, L., 'Through the Looking Glass'.

Foster-Seeley

 discriminator - it is still common to see descriptions of this referring to a 90° phaseshift between the primary and secondary of the tuned transformer.
Data Acquisition for your PC

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.
Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional 'plug in' data acquisition cards, they simply plug into the PC's PicoLog parallel or serial port, making them ideal for use with portable PC's. Gall for your Guide on 'Virtual Instrumentation'.

Advanced data
logging
software.

S $4 A-16 / 5 \wedge A-32$ Logic Analysers Pocket sized 16 Channel Logic Analyser

- Connects to PC serial port
- Up to 50 MHz Sampling - Internal \& external clock modes 8K Trace Buffer S.4-16 £219 SLA-32 £349 with software, power supply and cables

ADC-100 Virtual Instrument

Dual Channel 12 bit resolution

- Digital Storage Scope - Spectrum Analyser - Frequency Meter - Chart Recorder - Data Logger - Voltmeter

The ADC-100 offers both a high sampling rate $(100 \mathrm{kHz})$ and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. ADe-100 with PicoScope $£ 199$ with PicoScope \& PicoLog $£ 219$

ADC-10
Gives your computer a single channel of analog input. Prices from $£ 49$.

ANCHOR SURPLUS Ltd The Cattle Market Depot Nottingham NG2 3GY. UK
 Tele: +44 (0115) 986 4902/
 +44 (0115) 9864041 24hr answerphone Fax: +44 (0115) 9864667

RADIO EQUIPMENT

REDIFON DU500 Transmitter Drive Unit c/w PU200 Power Supply . LA200 HF Power Amplifier . . . \& Controller . . . Matching Transmitter for the R500 HF Receiver. Excellent Condition . . . Complete $£ 995$

PLESSEY PR1553 HF Receivers . . . Limited Quantity of these excellent Receivers available now Ex-Stock for Only $£ 495$

RACAL RA1792 HF Receivers . . . Complete with all Filters (5 off). Fully Aligned and Tested . . . Excellent Condition . . . Available Ex-Stock at Only $\mathbf{£ 8 4 5}$

RACAL MA1720 Synthesised HF Transmitters . . . HF Coverage . . . Numeric Switch selection Remoteable . . . Few available Ex-Stock Only £245

HP Coaxial Frequency Meters

HPX 532B 8.2Ghz-12.4Ghz . . . New and Boxed Only £85 HP 536A 0.94Ghz-4.20Ghz Only £85 HP 537A 3.7Ghz-12.4Ghz Only £85

BIRD RF EQUIPMENT
BIRD 8325 TENULINE 50 Ohm Attenuators 30db 500W Only £95 BIRD 6154 TERMALINE 25Mhz-1000Mhz 0-150W 50 Ohm Only $£ 75$ BIRD $43 \mathrm{c} / \mathrm{w}$ Case and 6 Sensors ($100 \mathrm{H}, 250 \mathrm{H}, 1000 \mathrm{H}, 5 \mathrm{D}, 25 \mathrm{C}, 25 \mathrm{D}$) Only $£ 195$

BIRD 43c/w Case and 3 Sensors (100H, 250H, 1000H) Only $£ 175$
LORAL-NARDA 8841C-01 RF DETECTORS
1-18Ghz . . . Sensitive to levels $>1 \mathrm{~mW} / \mathrm{cm} 2 \ldots$. Belt Mounted . . . Audio/Visual Alarm Incl. Case and Earpiece Only $£ 75$

SOLARTRON 7150 SYSTEMS DMMS
6.5 Digit . . . IEEE fitted . . . LCD Display . . . 100n V-750VAC . . . 1UA-2ADC . . . 10uA-2AAC (true rms) 10 mR -20Mr ($2 / 4$ wire) Fully Programmable . . . Only $£ 145$

TEK 2210 Digital Storage Oscilloscopes
DC-50Mhz Non-Storage bandwidth . . . 20MS/sec per ch Storage Rate Dual Trace . . . Reference Traces . . . Excellent Condition . . . Fitted Rack Kit Limited Quantity Special Offer for One Month Only £625

FLUKE 27/FM LCD DMM's with 80K-6 (6000V Probe)
3.5 Digit Analog/Digital . . . Min/Max Readings . . . Relative Mode Including Case and Manuals . . . One Month Special Offer . . . As New Only $£ 175$

OPEN SEVEN DAYS A WEEK
Mon-Fri 9am-6pm Sat 8am-4pm Sun 10am-4pm NO APPOINTMENTS NEEDED. CALLERS ALWAYS WELCOME

All Prices are Ex VAT \& Carriage
All items are Fully Tested with Verified Calibration and carry our Unique 30 Day Un-Conditional Warranty

Analysis of ac is mainly concerned with the effects of frequency on the operation of a circuit. This article looks at the way that the Micro-Cap IV simulator handles analyses in the ac group.
Operating under dos, Micro-Cap IV is a well-established implementation of Spice2. It accepts netlists in conventional Spice format, but it is also able to work from a schematic using a very comprehensive schematic editor. Nodes are numbered automatically - they can also be given names if preferred - with the ground node being node zero. In Micro-Cap IV or MC4, wires that cross are taken to be connected, so jumpers are used where crossing lines are not joined.

Analysing op-amps

Figure 1 shows a low-pass active filter with Chebyshev response. Component values were calculated on paper using the conventional capacitor-ratio tables for a 10 kHz Chebyshev filter with 1 dB ripple in the pass-band.
The purpose of the simulation is to confirm the behaviour of the filter, and to investigate the effects of using different types of op-amp. The user has the option of allocating each component a name, or simply specifying its value.
In Fig. 1, most components are specified by their values, but the voltage source and op-amp are given names. The MODEL statements for these appear below the schematic. If necessary, these can be edited when parameters need to be changed.
Parameters in the sine-wave voltage source specify in order - a frequency of 1 MHz , amplitude of 1 V , dc offset zero, and phase shift zero. Note that Spice does not distinguish cases. Both ' m ' and ' M ' mean 'milli'. For 'mega', Spice uses 'meg' or 'MEG'. Other parameters may be specified but their default values are satisfactory in this example.
Note that parameter symbols used here are not standard Spice symbols for these parameters. The operational amplifier model is specified by its model name, LF355, model type, OPA, and some relevant parameters. The term LEVEL=3 indicates that the most complex opamp model should be used while TYPE 3 specifies nchannel junction-fet inputs.

Other parameters specified are open loop gain, 2×10^{5}, positive and negative slew rates, $5 \mathrm{~V} / \mathrm{\mu s}$, and gain bandwidth, 2.5 MHz .

Performing ac analysis

The netlist also issues commands for the ac analysis. The second term in the .AC command determines frequency points for which the results are calculated.
There are three options. The term DEC stands for 'decade' meaning the frequency range is to be divided into decades. The total range is 100 Hz to 1 MHz divided into four decades -100 Hz to $1 \mathrm{kHz}, 1 \mathrm{kHz}$ to 10 kHz , 10 kHz to 100 kHz and 100 kHz to 1 MHz . The number of frequencies within each decade is specified by the number following DEC, in this case 20 .
These points are automatically located on a logarithmic scale. Instead of DEC, I could have stipulated LIN to

Spice commands

These Spice statements are available for ac analysis.
.AC initiates an ac analysis, with an ac frequency sweep. Small-signal response of the circuit is calculated for each point on a specified range of frequencies, assuming that the circuit is linear.
Spice begins the analysis by computing the dc operating point - refer to 'Analysing dc via Spice,' EW+WW Oct 1995 - and uses the results of this to provide the voltage levels with reference to which all non-linear components are linearised.
.NOISE calculates noise response for input and output.
.PZ performs a pole-zero analysis - available only in Spice3.
.DISTO analyses distortion caused by non-linearities in semiconductor devices.
.PRINT AC calls for the results of the analysis to be printed as a set of tables - not in Spice3.
.PLOT AC calls for the results of the analysis to be plotted as a graph - not in Spice3.

Fig. 1. Typical schematic drawn with Micro-Cap IV includes definitions of models and optional command statements for the analysis.

Fig. 2. The ac analysis dialogue box allows analyses to proceed interactively.

Fig. 3. AC response of the circuit of fig. 1 shows the typical response of Chebyshev low-pass filter.

Fig. 4. The upper graph shows real and imaginary components of the output of the filter of fig. 1. The lower graph shows phase response.

Netlists in Micro-Cap IV

Micro-Cap $I V$ is able to use a standard Spice netlist, which may be typed on the Editing screen, then saved as a CKT file. Alternatively, it will import a Spice netlist from another simulator or typed on a word-processor, provided that it is saved as an ascii file without special headers.
The most convenient technique is to draw the schematic, add MODEL and other statements, then work with this combined schematic-netlist, using the interactive Limits boxes, of which there is one each for dc, ac, Fig. 2, and transient analyses.
On request, MC4 prints out a netlist but this is not a Spice netlist and can not be used to run a simulation. It is a compact statement of the circuit and parameters, excluding command statements.
Under the statement line .OPTIONS, it lists the values of a number of parameters currently being used by Spice. These include GMIN, the minimum conductance value used in calculations, and RELTOL, a tolerance level used to determine when Spice has performed sufficient iterations.
These and other parameters have default values which it is not normally necessary to alter.
have the frequency range divided on a linear scale. Spice also has a OCT option, not available in MC4, in which the range is divided into octaves, the end of each sub-range having twice the frequency of its beginning.
Command statements shown on the netlist are optional, as MC4 has an 'ac analysis limits' dialogue box which allows the analysis to be set up and modified interactively. If command statements have been entered on the netlist, they appear in the dialogue box and can be used as the basis for an analysis.
Otherwise, and more usually, analyses are controlled from the box, Fig. 2. To reach this from the schematic screen, select the Run menu, then item 2:AC Analysis. The upper panel holds run parameters, beginning with the frequency range and listing the final and starting frequencies. The default number of steps is 51 , giving 50 equal intervals throughout the range, and overrides the Spice command given on the netlist.
The lower part of the box controls graphical output. Enter details of the curve or curves to be plotted. Checking in column N gives a numeric printout. Its format - number of places before and after the decimal point - is set by the numbers in the 'fmt' column. The X and Y columns specify logarithmic scales if checked or linear scales if unchecked. Expression X is usually frequency, F , in ac analyses. Expression Y has a variety of forms.
In Fig. 2, the first line states that the y-variable is to be the magnitude, MAG, of the voltage, V , at node 6 , plotted on a decibel scale. The second line calls for the imaginary component of the voltage at node 6 , plotted on a decibel scale. The third line asks for the phase of the voltage at node 6. Click on 'Limits' and select 1:Default all, to enter 'auto' in the X range and Y range columns. The software now calculates suitable limits for the graphs.
To plot only the magnitude-frequency graph, select the table's first row by typing ' 1 ' in the plot column, P, Fig. 2. Click on the square in the Limit box top left corner and select 6:Close. The ac analysis screen is revealed. Click on AC
and select 1 :Run. This gives Fig. 3.
The magnitude scale is a little difficult to interpret. This is because the second grid line down is at -3.6 dB , but the pass-band shows an output of 0 dB from 100 Hz up to about 9 kHz . There is one large ripple between about 1.5 kHz and 7 kHz . The -3 dB frequency is 10 kHz , as required. Roll-off is from -3 dB at 10 kHz to about -66 dB at 80 kHz , or about $-21 \mathrm{~dB} /$ octave.

Fig. 5. Output noise analysis of the filter of Fig 1 shows a strong peak at 10 kHz .

Fig. 6. Nodal routines are used for calculating noise parameters of circuits such as the attenuator network of Fig. 7.

Figure 4 shows the result of returning to the 'analysis limits box', and making a few amendments. Edit the Y expression in the first line to $\mathrm{dB}(\operatorname{RE}(\mathrm{V}(6)))$, to plot only the real component of the output voltage. Type ' 1 ' into the P column of the first two lines, so that both real and imaginary components are plot-

Fig. 7. A π-network is the subject of the noise analysis reported in Table 2.

Fig. 8. A three-dimensional plot of the noise figure of the attenuator helps the engineer to see how noise is related to source resistance and impedance.

Spice output variables

Syntax used by MC4 is not applicable to other Spice simulators. Standard Spice variable names for output voltages at a given node are,

VM Magnitude of complex voltage
VR Real part of complex voltage
VI Imaginary part of complex voltage
VP Phase of complex voltage
VDB Magnitude of complex voltage, in dB .
The corresponding variable for output current begins with 1 instead of V. Variable name of an output voltage is followed by the node number, in brackets. If two nodes are quoted in brackets, the variable refers to the difference in voltage between the two nodes.
The variable name of an output current is followed in brackets by the name of the voltage source through which the current is to be found. This may be a dummy source - refer to 'Deeper into dc analysis,' EW+WW Nov 1995.
ted on the same graph. Type ' 2 ' in the P column of the third line to obtain a separate graph of the phase. The result is Fig. 4.
There are some interesting changes of amplitude between 6 kHz and 10 kHz , when the phase lag is rapidly swinging from -90° to -180°. The phase curve follows a 'wavy' line, typical of a Chebyshev filter.
For more precise values than can be read from the graphs, return to the ac analysis Limits box and check the N column of the appropriate graphs. The graphical display is then accompanied by a numerical printout. Table 1 shows part of the results of printout of the curve of Fig. 3, locating the -3 dB point at 9.85 kHz , which is reasonably close to the designed value.
The earlier part of the printout shows a local minimum $(-0.863 \mathrm{~dB})$ at 4.57 kHz , and a local maximum $(+0.207 \mathrm{~dB})$ in the pass-band, confirming the expected 1 dB ripple.

Component substitutions

Once the schematic/netlist has been prepared, it takes only a few minutes to investigate the effects of substituting different components. Replace the LF355 with a bjt-input op-amp, the LM301A, which costs only half as much. On the schematic, click on 'Select' at the bottom of the screen, then double-click on the MODEL line. A text box opens near the top of the screen, containing the current model definition. Edit this to,

.MODEL LM301A OPA (LEVEL=3
 TYPE $=1 \quad \mathrm{~A}=16 \mathrm{E}+04 \mathrm{SRP}=5 \mathrm{E}+005$
 SRN $=5 \mathrm{E}+005 \mathrm{GBW}=1 \mathrm{E}+006$)

The new op-amp is type 1, i.e. with a bipolar transistor input. It has lower open-loop gain, a much slower slew rate and a narrower, though still adequate bandwidth. Running ac analysis produces curves of much the same shape as before, but the -3 dB point is now at 9.45 kHz , and the roll-off above that point is about $22 \mathrm{~dB} /$ octave. There would appear to be no advantage in using the LF355.
The original calculations specified capacitors to a high degree of precision. Edit the schematic to replace the capacitors with E12 values. Replace 40.9 nF with 39 nF , 258 nF with 270 nF and leave the 1 nF capacitor unchanged. The analysis printout shows the -3 dB point at 9.25 kHz with roll-off still at $22 \mathrm{~dB} /$ octave. There is little need to use precision capacitors.

Simulating noise

Spice is able to simulate noise generated by resistors and active components. Thermal, shot and flicker noise are represented by appropriate voltage sources in the component models. Their total effect at the circuit output is obtained by using the command line,

.ONOISE V(N) Vname n

Here, N is the output node number, vname is the name of the input voltage source (this can also be Iname, for a current source), and n is the number of points in the frequency range

Table 1. Part of the printout of the ac analysis locates the $-3 d B$ point.

F	$d B(\operatorname{mag}(V(6)))$	
(kHz)	(V)	
9.690	-2.632	
9.770	-2.857	
9.850	-3.088	-3 dB at approx 9.85 kHz
9.930	-3.322	
10.010	-3.560	
10.170	-4.044	

Table 2. Results of using NoiseParameters to analyse the attenuator circuit of Fig. 7.
Fmin $\rightarrow 25$.
NFmin $\rightarrow 13.9794$
$\mathrm{Rn} \rightarrow 312$
Yopt $\rightarrow 0.02$
Gammaopt $\rightarrow 0$

Fig. 9. Poles and zeros of this band-pass filter are analysed by a Nodal routine in Fig. 10.

Fig. 10. NodalNetwork function is used to assign the symbol net to the circuit of Fig. 9. Then the net is analysed to locate its poles and zeros.
for which a noise report is required. Noise reports for output and input noise are called up by the command statement,

.PRINT NOISE ONOISE INOISE

By default, ONOISE and INOISE are expressed as voltages. But if ONOISE and/or INOISE are followed by (DB), the values are in decibels.
At each point, the analysis lists the thermal noise contributed by each resistor. It also lists noise generated in semiconductor devices thermal noise from resistances, shot noise
from currents across junctions and flicker noise. These noise levels are expressed as mean squares ($\mathrm{e}^{2} / \mathrm{Hz}$). Their total is calculated, and the square root of this is also printed, to give rms values.
Finally, the transfer function of the circuit is evaluated and the equivalent noise at the input, INOISE, is obtained by dividing the rms output noise by the transfer function. All of this is repeated at each frequency point, so a complete noise analysis extends to several pages of

Fig. 11. In a three-dimensional plot such as this, peaks in the surface correspond to poles and depression to zero level corresponds to a zero. Plots of this type are useful for visualising the poles and zeros of a circuit.

Fig. 12. Changing two parameters produces a plot with two imaginary poles instead of the two real ones of Fig. 11.

Fig. 13. The netlist of fig. 9, with the pole-zero analysis seen in the Output file. The circuit has two complex poles, q and ω_{0} having been given the values that produced Fig. 12.
printout. A detailed analysis such as this is useful for identifying the major sources of noise, with a view to reducing their effect. For a more overall view, the .PLOT command produces a graphical printout of mss values for each point.
A graphical display is obtained in MC4 by completing the two 'noise' entries in the 'ac analysis limits' box of Fig. 2. Enter 'VIN' as the noise input source and ' 6 ' as the noise output node. In the curve table, enter ' 1 ' under P, ' F ' under X expression, and 'ONOISE' under Y expression. Select default limits. In the ac analysis window, select Run
Graph Fig. 5 shows the noise level peaking at $270 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 10 kHz . Run an analysis for INOISE in the same way. This results in a similar peaked curve, reaching its maximum of $85 \mu \mathrm{~V}$ at 105 kHz .
To investigate the effects of temperature on noise, return to the 'Limits' box and alter the temperature setting - in a regular Spice netlist, this is done by a TEMP statement. Increasing the temperature from the standard $27^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ raises the peak of the ONOISE plot from 270 nV to 280 nV . Decreasing the temperature to $0^{\circ} \mathrm{C}$ reduces it to 257 nV .
Reset temperature to $27^{\circ} \mathrm{C}$, then substitute an $L T 1028 A M$ op-amp, described as an ultralow noise op-amp, for the LF355 and run an ONOISE analysis. The peak comes at 10 kHz as before, but now the noise level is only $160 \mathrm{nV} / \mathrm{Hzz}$, confirming that the description of the op-amp is appropriate.

Measuring generated noise

A widely used measure of the noise generated in a circuit is noise figure. Spice does not provide a direct calculation of noise figure, but it can be found via Mathematica. Last month I demonstrated a routine from the Electrical Engineering Pack.
An even more extensive collection of Mathematica functions and utilities is published by Macallan Consulting under the title Nodal. Figure 6 shows a Mathematica Notebook which demonstrates two of the several Nodal functions associated with noise calculations. Run Mathematica, load the notebook then click on the first line followed by the Evaluate button, to load Nodal.
One of the most frequently used Nodal functions is NodalNetwork. Just as in a Spice netlist, a circuit is described in NodalNetwork by listing its components and the nodes to which it is connected. As in Spice, node 0 is the ground node.
A netlist can be quoted in full in any functions in which it is used or, to save typing and possible errors, it may be assigned to a variable name once and for all. In Fig. 6 a simple attenuator network, Fig. 7, with input and output impedance 50Ω and an attenuation factor of 5 , is assigned to the variable 'atten'. Using this variable in Nodal's NoiseParameters function provides the results listed in Table 2.
Parameters listed are Fmin, the minimum noise figure, NFmin, the minimum noise figure in decibels, Rn the network resistance, Yopt the optimum source admittance, and

Gammaopt the optimum source conductance
One of the advantages of Mathematica is that it allows three-dimensional plots. This makes it is possible to visualise the effects of two parameters simultaneously. Figure 8 shows a decibel plot of the noise figure of the attenuator against source resistance and source impedance. The minimum noise figure is found when source resistance is 50Ω and source impedance is zero.

Pole-zero analysis

Pole-zero analysis is available only in Spice3, and certain high-level Spice implementations At present, of the simulators I am looking at, only the full version of IsSpice has this feature. The command statement for the bandpass filter of Fig. 9 is,

.PZ0 102 VOL PZ

The numerals specify input and output nodes respectively, VOL indicates that the input is a voltage - use CUR for a current - and PZ calls for both poles and zeros to be calculated. For poles only use POL, or for zeros only, use ZER.
Nodal provides a routine for visualising the poles and zeros of a transfer function. In Fig. 10, the circuit of Fig. 9 is described by the netlist net. In this example, components are not given specific values but symbolic names: $r l, c l$ and $h l$. The ability of Mathematica and Nodal to work with symbols as well as, or instead of, numeric values is one of their strengths.
The network is analysed, using the 'NodalAnalyse' function, to find the transfer function, which is the ratio V_{2} / V_{1}. The 'Simplify' function simplifies the result of the analysis and it is displayed as,

$$
\frac{h 1 \times s}{r l+h l \times s+c l \times h 1 \times s^{2}}
$$

This formula can be used for calculating the transfer function, given values of $r l, c l$ and h1.

Analysis continues by eliminating the component symbols, using well-known relationships; replace $h / c I$ with $1 / \omega_{0}{ }^{2}$ and $r I$ with $\omega_{0} h / / q$, where ω_{0} is the resonant frequency and q is the quality factor of the filter. After simplifying, the transfer function is,

$$
s^{2}+q s \omega_{0}+\omega_{0}^{2}
$$

Simplification is required after certain calculations because Mathematica does not always reduce an expression to its simplest possible form. In the example above, it omits to cancel out hl throughout the expression when 'Simplify' is not used. Simplify tells it to try harder.
To find the zeros, look for values of the variables to make the expression equal to zero. Values that make it equal to zero are values which make the numerator equal to zero. Zeros can usually be found by inspecting the expression. Quality factor and ω_{0} can not be zero, but the expression evaluates to zero
when s is zero. This is one of the zeros of the function. Making s infinitely large also makes the expression equal to zero, so a second zero is at infinity.

To find the poles, look for variable values which make the expression take an infinite value. These are those which make the denominator equal to zero, and the next step in the routine is to find them.

The expression above is actually part of a list, though this is not displayed on the screen. The 'Normal' function picks out the expression and allocates it to symbol $t f$. Solve the equation for s when the denominator is put equal to zero. This gives two values for s. It is obvious that the standard formula for solving quadratic equations has been used,

$$
s=\frac{-q \omega_{0} \pm \sqrt{\left(q^{2} \omega_{0}^{2}-4 \omega_{0}^{2}\right)}}{2}
$$

This equation can be used directly to calculate the position of the poles on the s axis, by substituting actual values of q and ω_{0}. For example, if q is 3 and ω_{0} is 5 , then s is -1.91 or -13.09 . The number of poles equals the number of zeros, as required by theory.

A clearer picture of the distribution of poles
and zeros is obtained by plotting the transfer function for a range of values of s and ω in three dimensions. Define another transfer function in which $s l$ is a complex variable, and replace s in the original transfer function.
For the sake of comparison with the numerical example above, make $q=3$ and $\omega_{0}=5$. Any other reasonable values could be used, with different results. The three dimensional plot is shown in Fig. 11. The shallow depression in the surface at $(s=0, \omega=0)$ is one of the zeros. The surface slopes down in all directions around the plot, indicating the other zero at $(s= \pm \infty, \omega= \pm \infty)$.
The poles show up clearly as two peaks on the negative s-axis, where $s=-1.91$ and $s=-13.09$. The appearance of the plot is changed if different values of q and ω_{0} are used. In Fig. 12 the plot with $q=1.5$ and $\omega_{0}=4$ shows two complex poles, the zeros being located where they were before.
Nodal calculates the transfer function in symbolic form but all Spice programs require component values to be specified. In Fig. 13 the IsSpice netlist of the filter of Fig. 9, set up for $q=1.5$ and $\omega_{0}=4$. It identifies the input between nodes 0 and 1 - the voltage source -
and the output between nodes 0 and 2 . Both poles and zeros are to be found. In the 'Actions' menu, click on 'Simulate'.
The analysis takes only a fraction of a second, then select 'Edit' in the 'Actions' menu, and click on the OUT button to display the output file. This shows that the circuit has complex poles at the points $s=-3+\mathrm{j} 2.65$ and $\mathrm{s}=-3-\mathrm{j} 2.26$, as has been demonstrated by Nodal in Fig. 12. There is one zero, which is at the origin.

Reference

Riddle, Alfred, and Dick, Samuel, 'Applied Electronic Engineering with Mathematica', Addison-Wesley Publishing Company 1995. Includes a demonstration version of Nodal on diskette.

SuperFILTER synthesizes Active, Passive and Digital FIRUIIR filters and ports to SpiceAge for Windows ${ }^{\text {TM }}$ for a complete analysis.

Super FILTER Version 3 for Windows provides the following features.

1. Choice of specifying parameters for desired response includes gain \& phase coordinates, graphical (mouse tracing response), poles and zeroes in S and Z planes and Laplace transfer function coordinates.
2. No order limits of cascaded filters - applies to digital, active and passive types.
3. Types available include Butterworth, Chebyshev, Elliptic, Bessel, Realpole, Gaussian, Linear phase, Inverse Chebyshev, Digital Hilbert FIR, Differentiator, Raised cosine, Squared root raised cosine of LPF, HPF, BPF, APF, Notch filters.
4. Minimum specification of suitable op amps for achieving active filter performance.
5. Analysis of components' sensitivity using Monte Carlo method for analogue filters.
6. Analysis of effect of register characteristics on digital filters and D to A converters.

7. Analysis of inductor losses for passive filters.
8. Defining digital FIR filters by gain using the Remez Exchange algorithm.
9. Supports behavioural modelling within SpiceAge for Windows synthesizing more than 150 topologies
10. Graphic display of the realized versus the ideal filter with best fit options taken from a comprehensive (and user controllable) library of preferred component values.
"This is a stunning program that will save and save again."
For further details and demonstation disk, contact Those Engineers Ltd, 31 Birkbeck Road, LONDON NW7 4BP. Tel 0181-906 0155, FAX 0181-906 0969, CompuServe 100550, 2455.

CIRCLENO. 147 ON REPLY CARD

PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machlne!
Ellective device, X-ray sealed assemblies. can be used for Ellective device, X -ray sealed assemblies. can be used for
experimental purposes. Not a toy or for minors! $66 / \mathrm{set}$. Ref FIXP1. TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no known apparent means or cause. Uses no electrical or mechanical connections, no special glmmicks yetproducesposive motion and effect Excellent for scienceprojects, magic shows, party demonstrations or serious research E4/set Ref FTKKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your control. Induded is a full volume reference text and several construction plans that when assembled can produce highly efrective sömuil. This material mus by those experienced in its use. £15/set. Ref F/EH2.
GRAVITY GENERATOR PLANS This unique plan GRAVITY GENERATOR PLANS This unique plan
demonstrates a simple electrical phenomena that produces an antidemonstrates a simple electrical phenomena that produces an ant
gravity efiect. You can actually bull a small mock spaceship out of gravity effect, You can actually build a small mock spaceship out of
simple materials and without any visible means-cause it to levitate. simple materials and
E10/set Ref F/GRA1.
WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 voits of dischange, experiment with extraordinary HV effects, "Plasma in a jar, St Elmo's fire, Corona, excellent science project or conversation plece. $£ 5 /$ set Rel F/BTCing5.
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectral quality similar to Argon laser but easier and less costly to build yet far more efficient. This particulardesign was developed at the Atomic EnergyCommision of NEGEV In Israel. £10/set Ref F/CVL 1.
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into Indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party listening and bugging. $£ 6 /$ set Ref FNS9.
PULSED TV JOKER PLANS Little hand held device utilises pulse techniques that will completely disnupt TV picture and sound works on FM too! DISCRETION ADVISED. £8/set Ref FIJJ5. BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living enforcement, research and development. etc. Excellem security device or very Interesting science project. $£ 8 /$ set Ref F/BHT1. BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of burning and melting materials ove a considerable distance. This laser is one of the most efficient, converting 10\% inputpowerinio use heutpul. Notonly is this device is also a likely candidate as an effective directed energy beam is also a likely candidate as an effective directed energy beam
weapon against missiles, aircraf, ground-to-ground, etc. Partide weapon against missiles, aircraft, ground-to-ground, etc. Partide
beams may very well utilize a laser of this type to blast a channel in beams may very well utilize a laser of this type to blast a channel in
the atmosphere for a high energy stream of neutrons or other the atmosphere for a high energy stream of neutrons or other
particles. The device is easily applicable to burning and etching particles. The device is easily applicable to burning
wood, cutting, plastics, textiles etc $£ 12$ set Ref $\mathrm{F} / \mathrm{LC} 7$.
wood, cutting, plastics, textiles etc £12/set Ref F/LC7.
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept. Objects float in air and move to the touch. Defies gravity amazing gif, conversation piece, magic trick or science project. £6 set Ref F/ANT1K
ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'coid' steam, atomize
liquides. Many cleaning uses for PC boards, jewllery, coins, small parts etc. £6/set Ref FNLB1.
ULTRAHIGHGAIN AMP/STETHOSCOPIC MIKEISOUND AND VIBRATION DETECTOR PLANS Ultrasensitive device enables one to hear a whole new wond of sounds. Listen through walls, windows, noors etc. Many applications shown, from law enforcement, nature listening, medical heartbeat. to mechanical
devices $£ 6 /$ set Ref $\mathrm{F} / \mathrm{HGA7}$ devices $£ 6 /$ set Ref F/HGA7
ANTI DOG FORCE FIELD PLANS Highly effective circult produces time variable puises of accoustical energy that dogs cannot tolerate $£ 6 /$ set Ref $F / D O G 2$
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. £12/set Ref F/LLIST1
CRAWLING INSECT ROASTER PLANS Harmless high frequency energy pulses destroy pests as they crawl into the energy fieldl $£ 4 /$ set Ref F/RCR1
LASER LIGHT SHOW PLANS Do it yourself plans show three methods. $£ 6$ Ref F LLLS 1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with extemai controls. £6/set Ref F/PSP4
INFINTTY TRANSMITTER PLANS Telephone line grabber/ room monitor. The utimatein home/ofice secuitty and safety! simple
to use! Call your home or office phone, push a secret tone on your to use! Call your home or office phone, push a secret tone on your
telephone to access either. A) On premises sound and voices or B) telephone to access either:A) On premises sound and voices or B)
Existing conversation with break-in capability for emergency Existing conversation with break-
messages. £7 Ref FTTELEGRAB.
messages. £7 Ref FTTELE GRAB.
BUG DETECTOR PLANS Is that someone getting the goods on you? Easy to construct device locates any hidden source of radlo energyl Sniffs out and finds bugs and other sources of bothersome interference. Detects low, high and UHF frequencres. $£ 5 /$ set Ref F / BD1.
ELECT ROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision $£ 5$ ref F FEML2.
ELECTRIC MAN PLANS, SHOCK PEOPLE WTH THE TOUCH OF YOUR HAND! £5/set Ref F/EMA1.
PARABOLIC DISH MICROPHONE PLANS Listen todistant sounds and voices, open windows, sound sources in 'hard to get' or hostile premises. Uses satelite technology to gather distant sounds and focus them to our ultra sensitive electronics. Plans also show an optlonal wireless link system. £8/set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATORPLANS Operat

WOKMFRHAMPTOY BFANCH
 NOW OHEN AT WORCESTHR ST WTH MPION IGI 0190222039

MINI FM TRANSMTTER KT Very high galn preamp, supplied complete with FET electret microphone. Designed to cover 88-108 complete with FET electref microphone. Designed to cover 88 -108
Mhz Dut easily changed to cover 63 - 130 Mhz . Works with a common Mhz Dut easily changed to cover 63 . 1301
gV (PP3) battery. 0.2W RF. 87 Ret 1001 .
ELECTRONIC SIREN KT Impressive 5 watt power ouput Ideal or cardike alarm etc. $6-12 \mathrm{~V}$ dc max current $1 \mathrm{~A}, 1.2 \mathrm{khz} £ 6$ Ref 1003. 3-30V POWER SUPPLY KT Variable, stabilized power supply for lab use. Shor circuitp protected, suitable for profesional or amate ur
use 24 v 3A transformeris needed to complete the kit. £14 Ref 1007 1 WATT FM TRA NSMITTER KTT Supplied with piezo electric microphone 8 -30vdc. At $25-30$ you will get nearly 2 watts! $£ 12$ ret 1009.

FM/AM SCANNERKTT Well not quite, you have to turn the knob your sef but you will hear things on this radio that you would not hear on an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on Doth AM and FM. Bulit in 5 watf amplifier, inc speaker. $£ 15$ ref 1013
MOSQUTO REPELLER KT Modern way to keep midges a bayl Runs for about a month on one 1.5 v battery. $£ 7$ Ref 1015 .
3 CHANNEL SOUND TO LIGHT KTT Wireless system, mains operated, separate sensitivity adjustment for each channel, $1,200 \mathrm{w}$ power handling, microphone included. $£ 14$ Ref 1014.
MOTORBIKE/CYCLE TREMBLER ALARM KTT Adjustable sensitivity, preset ala m bime, auto reset. Could be connected to horn etc. $£ 12$ Ref 1011
0-5 MINUTE T MER KTT adjustable, will switch up to 2 A mains. Peffect for alarms, photography, etc. $\varepsilon 7$ Rel 1020.
4 WATT FM TRANSMITTER KT Small but powerful FM 4 WATT FM TRANSMITER KT Small but powerful FM transmitter, 3 R
E20 Ref 1028.
STROBE LIGHT KT Adjustable from $1-60 \mathrm{hz}$ (a lot faster than conventional strobes). Mains operated. $£ 16$ Ref 1037.
ULTRASONIC RADAR KIT Ideal as a movement detector with a range of about 10 metres, automate your cat flapt 12 dc . $£ 15$ Ret 1049.

LIQUID LEVEL DETECTOR KTU Usefulfortanks, ponds, baths, rain alarm, leak detector etc. Will switch 2A mains. $£ 5$ Ref 1081. COM BINA TION LOCK KT 9 Key, programmable, complete with keypad, will switch 2A mains. 9v dc operation $£ 10$ ret 1114. PHONE BUG DETECTOR KTT This device will warn you il somebody is eavesdropping on your line. $£ 6$ ref 1130.
ROBOT VOICE KTI Interesting circuit that distorts your voicet adjustable, answer the phone with a different voice! $12 \mathrm{vdc} £ 9$ ref 1131 TELEPHONE BUG KTT Small bug powered by the 'phone line, starts transmitining as soon as the phone is picked up! $£ 8$ Ref 1135 . FUNCTION GENERATOR KT Produces sinusoidal, saw tooth and square waves from $20-20 \mathrm{khz}$, separate level controls for each 3 shape. Will proc
3 CHANNEL LIGHT CHASER KIT 800 watts per channel, speed and direction controlssupplied with 12 LEDS (you can fit tracs instead to make kit mains, not supplied) $9-12 \mathrm{Vdc} £ 17$ ref 1026. 12 FLOURESCENT LAMP DRNER KTLIGhtup 4 foot tubes room your car battery! $9 v$ 2a transformer also required $£ 8$ ref 1069 VOX SWITCH KTT Sound activated switchideal formaking bugging tape recorders etc, adjustable sensitivity. $£ 8$ fef 1073
INCAR SOUNDTO LIGHT KTT Putsome atmosphere in yourcar with this mini 3 channel sound tollght. Each channel has 6 led's. $£ 10$ ef 1086
TW HI FI AMPLIFIER KTT Useful, powerfil, ideal for audio systems. intercoms etc. 12-18vdc $£ 7$ ref 1025 .
PHONE CALL RELAY KTT Useful device that operates a relay LEAD ACID CHARGER KIT Two automatic charging rates, visual indication of battery state, Ideal for alamm systems etc, 100 mA 12vde £12 ref 1095.
CAR ALARM KTT Works on voltage drop and vibration, entry/exit delays, adjustable alam duration. Ideal caravans etc $£ 12$ ref 1019. PORTABLEALARM KTTBased onmercury switch, almm coninues PORTABLEALARM KIT Based onmercury switch, aln
to sound unbil reset by owner. Buzzer inc. $£ 11$ ret 1150 .
PREAMP MIXER KT 3 input mono mixer, sep bass and treble controls plus individual level controls, 18 vdc , input sens $100 \mathrm{~mA} . £ 15$ ef 1052
METAL DETECTOR KT Range $15-20 \mathrm{~cm}$, complete with case, وvdc. £8 ref 1022.
SINGLE CHANNEL SOUNDTOLIGHT KIT Malns operated, add rythum to your party for only $£ 8$ ref 1006 .
SOUND EFFECTS GENERATOR KTP Produces sounds ranging from brd chips to sirens. Complete with speaker, add sound elfects to your projects for Just $£ 9$ ref 1045.
GUTAR PRRAMP KT Completewith tone controts, small enoug to fit in any gultar, based on TLOB2 IC. 9-12Vdc £8 Ref 1091. 15 WATT FM TRANSMITTER (BUILT) 4 stage high power, preamp required $12-18 \mathrm{vdc}$, can use ground plane, yagi or open dipole. £69 ref 1021.
TELEPHONE AMPLIFIER KTT Very sensilve amplifter which uses aptck up coil (supplied) will let youfoilow a conversation with out holding the 'phone. £11 ref 1059.
*SOME OF OUR PRODUCTS MAT BE UNLICENSABLE IN THE UK
BULL ELECTRICAI

He
1 WH. O12 273 203500
IANOK23. 32007%

HUMIDTY METER KTT Builds into a precislon LCD humidity meter, 9 lc design, pcb , lcd display and all components included. £49 PC TMER KT Four channel output controlled by your PC, will switch high current mains with relays (supplied). Software supplied so you can program the channels to do what you san. wheneryou want. Minimum system conigeration is 286 . VGA, 4.1,640k, senal
port, hard dnve with min 100 k free. $£ 24.99$
DNINING RODS Expensive technology cannot challenge the fool proot art of waterdivining. passed dow nfrom generation to generation. Seeing is believing. Use in the home, garden, countryside or desen, it's divinely simplel $£ 4.99$ a pair ref E ES.
HUGE BUBBLE MAKING KT You'll be amazed at the the size of the bubbles you can acheive with this bubble making kit. Once you have got the knackitis possible to make bubbles of up to 40 feetlong. $\$ 11.99$ ref E/9.
FMCORDLESS M ICROPH ON E This unitis an FMbroadcasting station In minature, 3 transistor transmitter with electret condenser mcc+et amp design resultin maximum sens itivity andbroadfrequency response. $90-105 \mathrm{mhz}, 50-1500 \mathrm{hz}, 500$ foot range in open countryl PP3 battery required. $£ 15.00$ ref 15P42A.
MAGNETC MARBLES They have been around for a number of years but still give ise to curiosity and amazement. A pack of 12 is just £3.99 ref GIR20
STET HOSCOPES A fully functioning stethoscope for all those Intricate prolects. Enables you to ilsten to motors. pipes, heartbeats. walls, insects etc. $£ 6$ ret MAR6P6.
NICKEL PLATING KTT Proffesional electroplating kit that will transform rusting parts into showpleces in 3 hours! Will plate onto steel, I ron, bronze. gunmetal, copper, welded, siversoidered orbrazed joints. Kit Includes enough toplate 1,000 sqinches. You will also need a 12 v supply, a container and 2 12v light bulbs. $£ 39.99$ ref NIK 39 . SHOP WOBBLERSISmall assemblies designed to take D size batteries and 'wobble' signs about In shops! £3.99 Rei SEP4P2. OMRON ELECTRONIC IN TERVAL TMERS.

"NEW LOW PRICES TO CLEARII!"

Minature adjustable timers, 4 pole c/o output 3 A 240 v HY1230S, 12vDC adjustable from 0-30 secs. $£ 4.99$ HY1210M, $12 v D C$ adjustable from 0-10 mins. $£ 4.99$ HY1260M, 12vDC adjustable from 0-60 mins. $£ 4.99$ HY2460M, 24vAC adjustable from $0-60$ mins. $£ 2.99$ HY243H. 24vaC adjustable from 0-3 hours. $£ 2.99$ HY2401S. 240 V adjustable from $0-1$ secs. $£ 4.99$ HY2405S. 240 V adjustable from $0-5$ secs. $£ 4.99$ HY24060m, 240 V adjustable from $0-60$ mins. $£ 6.99$ DRINKING BIRD Remember these? hook onto wine glass (supplied) and they drink, standup.drink.standup ETC! £4 each Rel EF1 SOLAR POWER LAB SPECLALYou get TWO $6^{\circ} \times 6^{\circ} 6 \mathrm{v} 130 \mathrm{~mA}$ solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Supert 688
BUGGING TAPE RECORDER Small voice activated recorder, uses micro cassette complete with headphones. $£ 28.99$ refMAR29P1 PLUG IN ACORN PSU 19V AC 14w, £2.99 REF MAG3P 10 POWER SUPPLY fully cased with mains and op leads $17 v$ DC 900 mA output. Bargain pnce $£ 5.99$ ref MAG6P9
9v DC POWER SUPPLY Standard plug intype 150 ma 9 V DC with lead and $D C$ power plug. price for two is $£ 2.99$ ret AUG3P4.
13.8 V 1.9 A psu cased with leads. Just $£ 9.99$ REF MAG10P3

INFRA RED REMOTE CONTROLLERS Onginally made for hi spec satellite equipment but perfect for all sorts of remote control projects. Our dearance price ls just $£ 2$ REF: MAG2
MAINSCABLE Precut black 2 core 2 metre lengths ideal for repairs, projects etc. 50 metres for $£ 1.99$ ref AUG2P7.
COMPOSTE VIDEO KIT. Converts composite video into sepa rate H sync, V sync, and videc. $12 v \mathrm{DC}$. $£ 8.00$ REF: MAG8P2. UNNERSAL PC POWER SUPPLY complete with nyeads swith, fan etc. 200 w at $£ 20$ REF: MAG2OP3 ($265 \times 155 \times 125 \mathrm{~mm}$) GYROSCOPE About 3 " high and an excellent educational foy for all ages! Price with instruction booket £6 Ref EF15.
FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$ 4 dive connectors 1 mother boand connector: 150 watt, 12 V fan, lec Inlet and on/orl switch. £12 Ref EF6.
VENUS FLYTRAP KTT Grow your own carnivorousplantwith this simple kit $£ 3$ ref EF34
TWEETERS $2^{\prime \prime}$ diameter good quality tweeter 140 R (ok with the above speaker) 2 for $£ 2$ REF: MAG2P5 or 4 for $£ 3$ REF: MAG3P4 6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain pice Just $£ 5.99$ ea REF MAG6P12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ ref MAGSP 13 Ideal for expertmenters' 30 m for $£ 12.99$ ref MAG13P1 ROCK LIG HTS Unusual things these, two pieces of rock that glow when rubbed togethen belived to cause raini£3 a pair Ref EF29. 3 ' by 1' AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA} 10$ watts, alumintum frame, screw terminals, £44.95 ret MAC45.
ELECTRONIC ACCUPUNCTURE KT Builds intoan electronic version instead of needlesi good to experiment with. $£ 7$ ref 7 P30 SHOCKIN G COIL KT Build this litte battery operated device into all sorts of things, also gets worms out of the ground! $£ 7$ ref 7P36. FLYING PARROTS Easily assembled kit that bullds a parrot that actually fiaps its wings and fies 50 m range $£ 6$ ref EF 2 .
HIGH POWER CATAPULTS Hinged am brace for stability, tempered steel yoke, super strength latex power bands. Departure speed of ammunition is in excess of 200 miles per hourl Range ofover 200 metres $!~ ¢ 7.99$ ref R/S.
BALLON MANUFACTURING KTT Bntish made, small blob blows into alarge, longlasting balloon, hours offun|£3.99 rel'I/E99R

WE BUY SURPLUS STOCK FOR CASH FREE CATALOGUE

100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE ON REGUEST WITH ORDER.

SURVEILLANCE TELESCOPE SuperD Russlan 200 m telescope adjustable from $15 \times 1060 \times 1$ complete with metal tipod
(imposible to use without this on the higher settings) 66 mm lense. leather carrying case $£ 149$ ref BARE
RADIATION DETECTOR SYSTEM Designed to be wall mounted and connected into a PC, ideal for remote monitoning, whole building coverage
WIRELESS VIDEO BUG KTT Transmits video and audlo signals from a minature CCTV camera (included) to any standard television! All the components including a PP3 battery will fit into a cigarette packet with the lens requiring a hoie about 3 mm diameter. Supplied with telescopic aenial but a plece of wire about 44° long will still give a range of up to 100 metres. A single PP3 will probably give less than 1 hours use E99 REF EP79. (probably not licensable!) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}$, 30 grams. 12 v 100 mA auto electronic shutter, 3.6 mm F2 lens, CCIR. 512×492 $p \mid x e l s$, video output is 1v $\rho-\rho$ (75 ohm). Works directy Into a
video input on a N or video. IR senstive. E 79.95 ref EF 137 .
IR LAMP KTT Suitable for the above camera enables the camera to be used in total darknessl E5. 99 ref EF 138 .
TANDATA TD1400 VIEWDATA Complete system comprising modem, infra red remote keyboard, pSu, UHF and RGB outu
phone lead, RS232 output. composite ouput. $£ 9.95$ ref BAR33. MAGNETIC CARD READERS (Swipes) $£ 9.95$ Cased nyleads, designed to read standard credit cards! they have 3 wires coming out of the head so they may write as well? complete with control elctronics PCB. Just 59.95 ret BAR31
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm fim . Use in honizontal orvertical mode Complete with strap $£ 7.99$ ret BAR1
COIN OPERATED TIMER KT Complete with coinsiot mechanism, adjustable time delay, relay output, put a colnsiot on anything you likel TV.s, videos, fridges, drinks cupboards. HIFI. takes 50 's and $£ 1$ coins. DC operated, price just $£ 7.99$ ref BAR27.
ZENTH $900 \times$ MAG NIFICATION MICROSCOPE Zoom. metal construction, builh in light, shnimp farm, group viewing screen lots of accessories. E29 ret ANAYLT.
LUBTEL 166U Twin lens Russian 2 1/4" sq reflex camera supplied with two free rolls of colour fim, filp up magnifer, 3 element 14.5 lens. $£ 19.99$ ref BAR36.

AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 PLASMA SCREENS $\mathbf{2 2 2 \times 3 1 0 \mathrm { mm } \text { , no data hence E4.99 ref }}$ barbi
NIG HTSIGHTS Model TZS4 with infra red illuminator, views up to 75 metres in full darkness in infrared mode. 150 m range, 45 mm lens, required. 950 g weight. $£ 210$ rel BAR61. 1 years warranty
FILIN-1 150 m range, 15 deg angle of vew, focusing 10 m -infinity, £179 ref BAR62. A separate infra red light is available at $£ 30$ ref WHTE NIGHT SIGHTS Excellent professional night sight, small hand held with camollaged carying case £325. 1 years warranty. MEGA AIR MOVERS 375 cubic feet per minl. 240v 200 watt 2.800 pm , reversable, $7^{*} \times 7^{*}$ UK made, new, Auminium, current list price about $£ 180$ ours? $£ 29.95$ ref BAR35.
LIQUID CRYSTAL DISPLAYS Bargain prices, 16 character 2 line, $65 \times 14 \mathrm{~mm} £ 1.99$ ref SM1612A 16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL-1 110 MM NEWTONIAN REFLECTOR TELESCOPE Russian. Supert astronomical 'scope, eventhing you need or some serious star gazingl up to 169x magnification. Send or fax for further details $\mathrm{E}_{249 \text { ref TAL-1 }}$
GOT AN EXP ENSIVE BIKE? Youneed one of ourbotte alarms, they look like a standard water bottle, but open the top, insert a key to activale a movien sensor alamm built inside. FIts all slandars bote
carmiers. supplied with two keys. SALE PRICE ET. 99 REF SA 32 . GOT AN EXPENSNE ANYTHING? You need one of our cased vibration alams, keyswitch operated, fully cased Just fit it to anything from videos to caravans, provides a years protection from 1 PP3 battery, UK made. SALE PRICE E4.99 REF SA33.
DAMAGED ANSWER PHONES These are probably Deyond repair so just EA. 99 each. BT response 200 machines. REF SA 30 .
COMMODORE GAMES CONSOLES Just a lew of the to dear at $£ 5$ ref SA31. Condlition unknown.
COMPUTERDISCCLEAROUT We are ief with a lot of sontware packs that need clearing sowe are selillng atd Isc value only 50 dilso
for $E 4$, thats just $8 p$ each! (our chocice of discs) $E 4$ ref EP66 IBM PS2 MODEL 160 Z CASE AND POWER SUPPLY DELL PC POWER SUPPLIES 145 watt $+5,5,+12,-12$, $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, flyleads and IEC socket.
SALE PRICE E9.99 ref EP55
1.44 DISC DRNES Standard PC 3.50 dives but retums so they will need attention SALE PRICE $E 4.99$ ref EP68
1.2 DISC DRIVES Standard 5.25° ditives but fetums so they will need attention SALE PRICE $£ 4.99$ ref EPE9
PP3 NICADS Unused but some storage marks. $£ 4.99$ ref EP52 DELL PC POWER SUPPLIES (Customer retums) Standard PC psu's complete with fly leads, case and fan, pack. of two psus
SALE PRICE ES FOR TWOII ref EP61 SALE PRICE E5 FOR TWOI! ref EP61
GAS HOBS ANDOVENS Brand new gas applliances, perfect tor small fats elc. Basic 3 burner hob SALE PRICE $£ 24.99$ rel EP72. Basic small built in oven SALE PRICE E79 ref EP73
BITS AND BOBS We have a quantity of cased modems.
multiplexers etc diferent specs butideal strippers. E4 each ref EPG3 RED EYE SECURTTY PROTECTOR 1.000 watl outdoor PIR switch SALE PRICE E9. 99 rel EP57
ENERGY BANK KTT $1006^{\circ} \times 6^{\circ}$ 6r 100 mA panels, 100 diodes. connection details etc. £69.95 ref EF 112.
PASTEL ACCOUNTS SOFTWARE, does everything for all sizes of businesses. Includes wordprocessor. report writer,
windowing, networkabie up to 10 stations, multiple cash books etc. 200 page comprehensive manual. 90 days free technical suppon ($0345-326009$ try before you buyl) Current retail price is E 129 SALE PRICE $£ 9.95$ ref SA12. SAVE $£ 120!!!$

WOL Y ERHAMPTON BRANCH NOW OPEN AT WORCRETLER ST WHAMPTON TE1. 01902.22039

MINIMICRO FANS 12 V 1.5 Sq SALE PRICE $£ 2$ Ref SA 13

 REUSEABLE HEAT PACKS Ideal for fishemen, ourdoo enthusiasts elderly or infim, warming food, drinks etc, defrost ng pipes etc. reuseable up to 10 times, lasts for up to 8 hours per go 2,000wh energy, gets up to 90 degC. SALE PRICE E9.95 REF SA2912V2AMP LAPTOP psu's $110 \times 55 \times 40 \mathrm{~mm}$ (Includes standardIEC 12V2AMP LAPTOP Psu's $110 \times 55 \times 40 \mathrm{~mm}$ (includes standara
socket) and 2 m lead with plug. $100-240 \mathrm{~V}$ IP. E6.99 REF SA 15 . PC CONTROLLED 4 CHANNEL TIMER Control (ordoft times etc) up to 4 Hems ($8 A 240 v$ each) wint this kit. Complete with Sottware, relays, PCB etc. $£ 25.99$ Ref 95/26
COMPLETE PC 300 WATT UPS SYSTEM Top of the range UPS system providing protection for your computer system and valuable software against mains power fluctuations and cuts. New and boxed, UK Kade Provides up to 5 mins running tme in the event of complete power fallure to allow
correcty. SALE PRICE
just $E 89.00$.
SOLAR PATH LIGHTS Low energy walkights powered by the sunl built in PIR so they work whenyou walk past. Induces solarpane ENCE 19.95 REF EP5
BIG BROTHER PSUCased PSU. 6v 2 A oupul, 2 mop lead, 1.5 m Input lead, UK made, 220 . SALE PRICE $£ 4.99$ REF EP7 WANTTOMAKESOMEMONEY STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your leisure using the text editor on your PC. Also included is a certificate enabling you to reproduce the manuals as much as you like! SALE PRICE E14 REF EPT4
RACAL MODEM BON ANZA! 1 Racal MPS 1223120075 modem telephone lead, mains lead, manual and comms sofware, the cheapest way onto the netl all this for just $£ 13$ ref DEC13.
4.6 mw LASER POINTER. BRAND N EW MODEL NOW IN STOCKI, supplied in fully built form (looks like a nice pen) complete with handy pocket olip (which also acts as the on/off switch.) About 50 metres rangel Runs on 2 AAA batteries. Produces thin red beam ideal for levels, gun sights, experiments etc. Just $£ 39.96$ ref DEC49 TRADE PRICE 28 MIN 10 PIECES

BULL TENS UNTT Fully bullt and rested TENS (Transcutaneous Electrical Nerve Stimulation) unit, complete with electrodes and fuil instructions. TENS is used for the rellef of pain etc in up to 70\% of sufferers. Drug free pain rellef, safe and easy to
COMPUTER RS232 TERMINALS. (LIBERTY)Excellent quality modern units, (like wyse 50.s) 2xRS232, 20 function keys, 50 thro to 38,400 baud, menu driven port, screen, cursor, and keyboard selup menus (18 menu's). £29 REF NOV4
RUSSIAN MONOCULARS Amazing 20 times magnification coated lenses, carrying case and shoulderstrap. $£ 29.95$ REF BAR73 PC PAL VGA TO TV CONVERTER Converts a colour TVinto a basic VGA screen. Complete with builtin psu, lead and s/ware.. Ideal for laptoos or a cheap upgrade. Supplied in kit form for home assembly SALE PRICE E25 REF SA34
EMERGENCY LIGHTING UNIT Complete unit with 2 double bulb floodiights, builtin charger and auto switch. Fully cased. 6v 8AK lead acid req'd. (secondhand) $£ 4$ ref MAG4P 11 SWINGFIRE GUIDED MISSILE WIRE, 4.200 metre reel of uttra thin 4 core insulated cable, 281bs breaking strain, less than 1 mm thickl Ideal alams, Intercoms, dolls house's etc. E13.99 ref EP51 ELECTRIC CAR WINDOW DE-ICERS Complete with cable, plug etc SALE PRJCE JUST E4.99 REF SA28
ASTEC SWITCHED MODE PSU BM4 1012 Gives t5 e 3.75A +12@1.5A, -12@.4A. 230/110, cased. BM41012. E5.99 ref AUG6P3 AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solarpanel with diode and 3 metre lead fitted with a cigar plug. 12v 2watt. E8.99 REF SA25. TOP QUALIT CENTRIFUGAL MAINS MOTORS SALE PRICE2 FOR JUST £2.60 REF SA38
ECLATRON FLASH TUBE As used in pollce car flashing lights etc. full spec supplied, $60-100$ flashes a min. $\mathbf{E 6 . 9 9}$ REF SA 15 . 24v AC 96WATT Cased power supply. New. $£ 9.99$ REF SA40 MILTARY SPEC GEIG ER COUNTERS Unused anstraightfom Her majesty's forces. SAL E PRICE 444 REF SA16
MICRODRNE STRIPPERS Small cased tape drives ideal for stripping, lots of useful goodies including a smari case, and lots SOLAR POWER LAB SPECIAL You get TWO $6^{\circ} \times 6^{\circ} 6 \mathrm{v} 130 \mathrm{~m}$ solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor.Supent SALE PRICE JUST E4,0日 REF SA27
RGB/CGA/EGATTL COLOUR MONTTORS 12° in good condition. Back anodised metal case. SALE PRICE E49 REF SA1
PLUG IN ACORN PSU 19v AC 14w , £299 REF MAG3P 10 POWER SUPPLY fully cased with mains and op leads 17 v DC 900 mA output. Bargain price $£ 5.99$ ref MAG6P9 ACORN ARCH MEDES PSU +5 V © 4.4A on/ofl sw uncased selectable mains input $145 \times 100 \times 45 \mathrm{~mm}$ E3.99 REF MAG7P2

25O PORTH ND ROAD HOVE. SLSSEX

THI: 01273 203560
FAX 0127312307%
13.8V 1.9A PSU cased with leads. Just £9.99 REF MAG10P3 200 WATT INVERTER Converts $10-15 \mathrm{~V}$ DC into either 110 v 240 V AC. Fully cased $115 \times 36 \times 156 \mathrm{~mm}$, complete with heavy dutypowerlead, cigarplug. AC outlet socket Auto overioad shuidow auto short circuit shut down, auto input over vollage shuidown, auto input under voltage shut dow n(with audible alam), auto temp control
unit shuts down if overheated and sounds auditle alam. Fused reversed polarity protected. ouput frequency within 2%, voltage reversed polarity protected. Output frequency within 2%, Voltage
withln 10%. A well bulit unitat ankeen price. Just $£ 64.99$ ret AUG65. with'ln 10%. A well built unit at an keen price. Just $£ 64.99$ ret AUG65
UNNERSAL SPEED CONTROLLER KTT Designed by us to he C5 motor but ok for any 12 V motor up to 30 A . Complete with PCB etc. A heat sink may be required. $£ 17.00$ REF: MAG17
COM PUTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable clips. 2 line drivers with RS232 interfaces and all connectors etc. ldeal iow cost metrod of com unicatng between PC's over a long distance. Complete kit $£ 8.99$
VIEWDATA SYSTEMS made by Phillips, complete with intemal 120075 modem, keyboard, psu etc RGB and composite outputs, menu diven, autodialler etc. SALE PRICE $£ 12.99$ REF SA 18
AIR RIFLES. 22 As used by the Chinese amy fortrainingpuposes, A there is a lot aboull $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF8 PLUG IN POWER SUPPLY SALE FROM $£ 1.60$ Plugs in 13A socket with outputtead. three types available, 9 vdc 150 m A $£ 1.50$ VIDEO SENDER UNT. Transmits both audio and video signals rom either a videocamera, video recorder. TV orComputer etc to any standard TV set in a 100 'rangel (tune TV to a spare channel') 12 VDC Op. Price is $£ 15$ REF: MAG15 $12 v$ PSu is $£ 5$ extra REF: MAG5P2 FM CORDLESS MICROPHONE Small hand ReI THer 500 'rangel 2 transmit power levels. Reqs PP3 9v battery. Tuneable
0 any FM receiver. Price is $£ 15$ REF: MAG 15P1 MINATURE RADIOTRANSCENERSA
MINATURE RADIO TRANSCEIVERS A pair of walkie talkies itha range up lo 2 km in open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$ nduding cases andear'ces. $2 \times$ PP3 req'd. $£ 30.00$ pr.REF: MAG3 -FM TRANSMITER KT housed in a standard working $13 A$ adapter!! the bug runs directly off the malns solasts forever! why pa
$£ 700$ or price is $£ 15$ REF: EF52 (kit) Transmits to any FM radio. FM BUG BUILT ANDTESTED superior design to kt. Supplie odelective agencies. 9V battery req d. ह14 REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WTH COINSLOT M ECHANISMS orginally made to retall at£ 79 each these units are designed to convert an ordinary phone into payphone. The units have the locks missing and sometimes broke inges. However they can be adapted for theiro iginal use or used for something else?? SALE PRICE JUST $£ 2.50$ REF SA23
GAT AIR PISTOL PACK Complete with pistol, darts and pellets $£ 12.95$ Ref EF 828 extra pellets (500) $£ 4.50$ ref EF 80 .
6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{~V} 155 \times 310 \mathrm{~mm}$ 13OMA. SALE PRICE E4.99 REF SA24
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.99$ MDED GOODIES BOX OF
MIXED COMPONENTS WEIGHING 2 KILOS YOURS FOR JUST $£ 6.99$
4X28 TELESCOPIC SIGHTS Suitable for all air nines, ground lenses, good light gathering properties. $£ 19.95$ ref $R \pi$.
RATTLE BACKS Interesting things these, small piece of solid perspex like matenal that it you try to spin it on the desk it only spins one way! in fact if you spin it the 'wrong' way it stops of its own sccord and go's back the other way! $£ 1.99$ rel Gl/J01
GYROSCOPES Rememberthese? well we have found acompany hat still manufactures these popular scientific toys, perfect gift or for ducational use etc. $£ 6$ ref EP70
HYPOTHERMLA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminised oil Dlanket, refiects more than 90% of body heat. Also suitabie for the construction at two way mirrors! $£ 3.99$ each ref OLO41.
LENSTATIC RANGER COMPASS oil filled capsule. strong metai case, large luminous points. Sight line with magnifying viewe 50 mm dia, 86 gm . £ 10.99 ref OK 604
RECHARGE ORDINARY BATTERIES UP TO 10 TMES With the Battery Wizard Uses the latest pulse wave charge system With the Battery Wizard Uses the latest pulse wave charge system
to charge all popular brands of ordinary batterles $A A A, A A, C, D$, four to charge ail popular brands of ordinary batterles AAA, A, C, D, four
atatimel Led system shows whenbatterles arecharged, automatically ejects unsuitable cells, complete with manss adaptor. BS approved. rejectis unsuitable cells,
Pince is $£ 21.95$ ref EP31.
TALKING WATCH Yes. It actually tells you the time at the press of buttion. Also features a voice alam that wakes you up and tells yo hat the time is Lithium cell induded. $£ 7.99$ ref EP26

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The new multiband 2000 radar detector can prevent even the mostresponsible of divers from losing theirficence Adustable audible alamm with 8 flashing leds gives instant warning of adar zones. Detects X, K, and K a bands, 3 mile range, 'over the hil round bends' and 'rear trap facilities. micro size just $4.25^{\circ} \times 2.5^{\prime \prime} \times .75$ Can pay for tiself in just one day! $£ 79.95$ ref EP3.
SANYO NICAD PACKS 120 mmx 14 mm 4.8 V 270 maH suitable for cordiess phones etc. Pack of 2 just E 5 rel EP78,
3" DISC3 As used on older Amstrad machines, Spectrum plus3's RAR40
STEREO MICROSOPES BACK IN STOCK Russian, $200 x$ omplete winh lenses, ignts, fiters elc elc very compronensive microscope that would normally be around the $£ 700$ mark, our price just $£ 299$ (full money back guarantee) full details in catalogue. Ret 95300.

SOLAR POWERED CAR VENTILATOR Simply fits along the lop. of the glass in a side window and provides a constant supply of resh air in hot sunny conditons keeps your car cool in summer. £19.95 rel sivent

WE BUY SURPLUS STOCK FOR CASH
 FREE CATALOGUE

100 PAGE CATALOGUE NOW AVAILABLE, 45P STAMP OR FREE WITH ORDER.

CLASSIFIED

ARTICLES WANTED

WE WANT TO BUY!!
 IN VIEW OF THE EXTREMELY
 RAPID CHANGE TAKING PLACE
 IN THE ELECTRONICS
 INDUSTRY, LARGE QUANTITIES
 OF COMPONENTS BECOME
 REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
 R. HENSON LTD. 21 Lodge Lane, N.Finchley, London N12 8JG. 5 Mins, from Tally Ho Corner. TELEPHONE 0181-445-2713/0749 FAX 0181-445-5702

$\star \star$ WANTED $\star \star$

Test equipment, Electronic Scrap, Valves, Transmitters/Receivers, Factory \& Warehouse Clearance. Confidentiality Assured.
TELFORD ELECTRONICS Phone: 01952605451 Fax: 01952677978

ELECTRONICS VALVES \& SEMICONDUCTORS

Phone for a most courteous quotation

We are one of the largest stockists of valves etc, in the U.K.

COLOMOR ELECTRONICS LTD

170 Goldhawk Road, London W12 8HJ England.
Tel: 01817430899
Fax: 01817493934

STATIC INVERTORS

Ferranti type F.1.45E A/C type 24/28v DC I/P rated O/P $115 \mathrm{v} 400 \mathrm{c} / \mathrm{s} 1$ phase 150 watt cont sine wave, or 225 watt 10 Min . with connec \& mt hardware. $£ 220$ each inclusive. A.H. SUPPLIES

Unit 12, Bankside Works Darnall Road, Sheffield S9 5HA
Tel: 01142444278

ARTICLES FOR SALE

WIRELESS WORLD and television magazines. 1976 to date. For list write to: S. Jacovides, 20 Cheverton Road, London N19 3AY. Tel: 0171-272 7139.

FOR SALE. Marconi 2018 synthesised AM/FM Sie Gen $£ 600$. Philips oscilloscope PM 3065100 Mhz D.T.B. $£ 400$. Lab closing down, can fax list of equipment available. Call 01252871048 .

ARIICLES WANTED

WANTED Operating manual for Boonton Radio 260A Q-Meter. De Brabandere Ommegangstr 14, 9690 Kluisbergen, Belgium 00-32-55-388968.
WANTED: Suit case radio sets, "SpySct", Crypto equipment for museum. Rae' Otterstad, P.O. Box 73, LJAN, N-1113, Oslo, Norway.

VALVES, and CRTs FOR SALE

ONE MILLION VALVES stocked for Audio, Receiving, Transmitting \& RF Heating. Rare brands such as Mullard \& GEC available. Also MAGNETRONS, KLYSTRONS, CRTs and SOCKETS. Large stocks of Russian 8 Sovtek items.
Please ask for our free catalogues of valves or CRTs.

VALVES, etc. WANTED

All types considered but especially KT88 (£48) PX4/PX25 (£50), KT66 (£35), KT77 (£15) EL34/EL37 (£9), ECC83 (£2.50). Valves must be UK manufacture to achieve prices mentioned.
All VALVE-ERA EQUIPMENT such QUAD, LEAK, GARRARD 301. If possible, send a written list for a prompt decision.
BILLINGTON EXPORT LTD., Billingshurst, Sussex RH14 9EZ. Tel: 01403784961 Fax: 01403783519
VISITORS STRICTLY BY APPOINTMENT.
MINIMUM ORDER $£ 50$ plus VAT

W A N T E D ! !

Top prices paid for your test equipment made by HEWLETT-PACKARD, MARCONI, FLUKE, TEKTRONIX, BOONTON, ROHDE \& SCHWARZ etc. From Europe's No. 1 Test Equipment Leader ROSENKRANZ-ELEKTRONIK, AXEL ROSENKRANZ GROSS GERAUER WEG 55, 64295 DARMSTADT/GERMANY Phone: 0049-6151-3998-0 Fax: 0049-6151-3998-18

CONTACT US NOW!

You are looking for test equipment? More than 10,000 units in stock for immediate delivery. Call or fax for our new 100 page catalogue today
** WHAT WE DON'T HAVE YOU DON'T NEED **

PURCHASE FOR CASH

SURPLUS - OBSOLETE - REDUNDANT - EXCESS stocks of electronic, electrical components/accessories, part processed and/or finished products. Plese submit preliminary information or lists for immediate response to:
K.B. COMPONENTS, 21 Playle Chase, Gt Totham, Maldon, Essex CM9 8UT
Telephone 01621.893204. Facsimile 01621-893180.

ADVERTISERS PLEASE NOTE

For all your future enquiries on advertising rates

Please contact Malcolm Wells on

$$
\begin{aligned}
& \text { Tel: 0181-6523620 } \\
& \text { Fax: 0181-652 } 8956
\end{aligned}
$$

CLASSIFIED

ARTICLES FOR SALE

 SUPPLIER OF QUALITY USED TEST INSTRUMENTS

CONTACT

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex, PO22 OEB
Tel: (+44)01243545111/2 Fax: (+44)01243542457

INDEX TO ADVERTISERS

	$P A G E$
AMI	1049
Anchor Surplus Ltd	1086
Bamber Electronics Ltd	1005
BK Electronics	1064
Bull Electrical	1092,1093
CMS	1064
Cooke International	1014
Cricklewood Electronics	1022
Crownhill Associates	1076
Danmere	OBC
Display Electronics	1044
Equinox Technologies	IFC
Field Electric Ltd	1005
Flight Electronics	IBC
Grandata Ltd	1078
Halcyon Electronics	1049

Halcyon Electronics

PAGE

1049
1086
1005
1064

1064
1014
1022
1076
OBC
1044
IFC
1005
IBC
1078
1049

Hart Electronic Kits Ltd HSPS Ltd
ICE Technology Ltd
Interconnections Iosis
Johns Radio
JPG Electronics
Kanda Systems
Kestrel Electronic
Components Ltd
Keytronics
Labcenter Electronics
Labcenter Electronics
LCE
Lloyd Research Ltd M\&B Radio (Leeds)
Milford Instruments
Number One Systems Ltd

PAGE

1053
Perrybee 1063
1022 Pico Technology 1085
1007
1002
1002
1051
1032
1032
1032
1043
1005
1011
1077
1057
1055
1077
1077

Quickroute Systems
Ralfe Electronics 1095
Research Communications 1020
Robinson Marshal (Europe) Ltd
Seetrax Ltd 1083
Smart Communications Ltd 1057
Stag Programmers 1063
Stewart of Reading 1032
Surrey Electronics Ltd 1057
Telford Electronics 1049
Telnet 1083
Those Engineers Ltd 1091
Tsien Ltd 106
Ultimate Technology 1039

1002

1033
PAGE95

IFRMODEL A-7550 16 Hz portable HP144T 1.25 GHz 5 system (85528,85548) HP141T 18GHz system (85528, 8555A) HP 3580 A 5 Hz -50 KHz audiofrequency spectrum analyser HP3582A audio trequency fit analyser dual-channel HP8568A high-specification $\mathbf{1 . 5 G H z}$ spectrum analyser MARCON 2386100 Hz -26.5GHz (in 1 Hz steps!) TEKTRONIX 496P 1.8 GHz spectrum analyser, GPIS programmable
MARCONI INSTRUMENTS BRUEL \& KLAER 2511 vibration meleer (field sel
BRUEL KJAER 2317 portable level recorder BRUEL \& KJAER 2635 charge amplifier BRUEL \& KJAER 2609 measuring amplifier BRUEL \& KIAER 2308 analogue X. Y pen recorder BRUEL KJAER 2639 proamplifier CHASE LFR1000 interierence measuring receiver $9 k H z-150 \mathrm{KHz}$ DATRON 106181061 A-vanous, dqyala mulimeter a 1065 -cal

2019A synthesized AMFM Signal generator 80KHz1040 MHz
£2000
2305 modulation analyser $50 \mathrm{KHz}-2.3 \mathrm{GHz}$ 2828A2829 digital simulatorfanalyser 386 spectrum 2926 TV generatoo a insenter (NTSC variant)
64606421 power meter \& sensor 10MHz-12.4GHz 6500 amplitude analyserciw 2 c 6514 waveguide detectors 6960 microwave power meter with 6910 power sensor 10 MHz 20 GHz
OA2805A pcm regenerator test set
TF29t044 non-Inear distortion (videof) lest set

ralfe electronics ope excusively

SEND FOR LATEST STOCK LIST. WE FAX LISTS AND SHIP WORLDWIDE. ALL FULLY LAB-TESTED AND NO-QUIBBLE GUARANTEED

ISO9002 ACCREDITED STOCKIST CEAT: 95013 MEASUREMENT\& TEST EQUIPMENT CERT:. 851013

山INSTRUMENTS CR6002-channel pen recorder KIKUSUU 8520 tequency response analy yer $20 \mathrm{H}-200 \mathrm{KHz}$ PHILIPS PM8272 X-Y \& Y-t dual-channel pen recorder RACAL-DANA 1992 trequency counter 1.3 GHz IEEE oplion
 TEKTRONX AA501/SG505 dstorion analyser (comolele wit TM503)
 WAVETEK 2520 symithesized signal generator 200 KHz -2700MHz

CIRCLE NO. 152 ON REPLI CARD

ELECTRONIC UPDATE

Contact Malcolm Wells on 0181-652 3620

I DON'T BELIEVE IT!

This new 264 page Guide to SMDs now includes 64 pages of SM Connector Systems from AMP, JAE, Molex, Hirose, Oxley, Cinch and Sumitomo and mainly from stock as well. Not only that but it's bulging with new SMDs from over 30 franchises which now include Panasonic. What an incredibly useful publication.

> I had better ring

01530510333 for my copy
before they run out!
CIRCLE NO. 1.33 ON REPLY CARD

NEW Feedback T\&M Catalogue

The latest edition of the Feedback Test \& Measurement catalogue is now available. Over 60 pages packed with more than 800 products divided into over 20 sections. The catalogue is indexed for both product and manufacturer and is fully illustrated. Whether you are looking for an individual product, a com plete workstation, or a solution to a particular Test \& Measurement need the NEW Feedback catalogue will sove your problems, send for a copy Now!

CIRCLENO. $1.5+$ ON REPLYCARD

A regular advertising feature enabling readers to obtain more information on companies' products or services.

1995 MASTER PRODUCT CATALOGUE NOW OUT!
Test and instrument control solutions 48 pages of full description and technical data on our own range of solutions to your PC and PS2 interfacing problems: IEEE488 (GPIB) * DIO * Timer/Counters * RS232 * RS422/485 * ADD * D/A * plus Opto Isolated versions. New Parallel/Seria RS232, Opto Dual RS232, Motion Control Converter and Repeater for 1995! ISO 9001 Quality guarantee UK design and manufacture 36 month no-quibble warranty Telephone hotline support \downarrow Competitive pricing on the page Intelligent solutions 8 frlendly service BRAIN BOXES
Unif 3f Wavertree Boulevard South
Wavertree Technology Park
Tel: 01512202500 Fax: 01512520446 CIRCIE NO. 1.56 ON REPI Y CARD

THE PAL TRAINER

Until now, introducing students and engineers to the world of Programmable Logic Devices has been fraught with problems.
Not only has the necessary hardware to be laboriously assembled in bits and pieces, but suitable software and - equally important - supporting documentation has been, if anything, harder to source.
With the launch of THE PAL TRAINER system from Flight Electronics International, the entire problem has been neatly solved in one comprehensive hardware/software/documentation package,
..providing everything that the engineer and student needs for a thorough introduction to PLD's at a very realistic price.

COMPLETE \& COMPREHENSIVE

One of the main advantages of THE PAL TRAINER is its completeness. The board and accessory kit consists of:

- The MPLDT-10 main unit - a sturdy metal-cased PCB containing both a GAL programmer and a test unit. There is also a separate demo area for use with the demonstration section of the manual.
- A PCPET interface card, which plugs into a free PC expansion slot, and connects to the main unit via a supplied API-37 cable. This allows rapid programming of the PLD, and greater flexibility than a serial link can deliver.
- A 360 kb system diskette containing the board driver files.

■ An external power line for use with the experiment section.

- Various connection lines and block jumpers
- The comprehensive PAL TRAINER User's Manual. This has been written in precise, easy-to-understand English,
and takes the student right from unpacking and setting up the system, through a short demonstration program which runs without the need to do into PALASM and then, in a gentle step-by-step sequence, through 23 separate experiments.
The complete PALASM software package, whose separate manual also contains a number of example programs.

SIMPLE, FAST, FRIENDLY

The design parameters of THE PAL TRAINER were that it should:

- run on IBM XT, AT or compatibles - with no need for ANY other hardware.
- provide a complete training course, from initial logic design, to PC simulation, device programming \& testing.
E be enjoyable, readily-understandable, but fully applicable to 'reai-world' situations.
- include a top programming language - in this case AMD's PALASM Version 4, widely regarded as the PLD standard. Version 4, incidentally, can be linked to other schematic packages such as OrCad.

> 14 UNIQUE ADVANTAGES! \square Superb Manual \checkmark Everything in one box \square Save time \& money Demo area provided - 23 worked experiments
> \checkmark Menu drive for fast learning Includes PALASM $\checkmark 3$ simultaneous PLD's \square Jumper wire linkage \square Supports GAL16V8 \& GAL20V8 $\square 3$ input, 4 output areas No tied up ports $\checkmark 4$ FREE GAL's $\checkmark 12$ month guarantee

USING THE SYSTEM

The two main parts of the PAL TRAINER are the programmer and the applications sections. Using the programmer section, up to 3 GAL devices are placed in ZIF sockets, and programmed from the PC using the supplied software. This lets you choose a particular PAL to emulate, loads a JEDEC file into memory (either generated from the PAL TRAINER's own software or any other appropriate software package), downloads the JEDEC file to the GAL, and even lets you 'view' the GAL once it has been programmed.

We accept

Flight House Ascupart Street Southampton S014 1WP U.K.

Telephone: 01703227721 Facsimile: 01703330039 @tight demon.co.uk

Flight

ELECTRONTCS INTERNATIONAL LIMITED

Flight
ELECTRONIC\& MICROPROCESSOR TRAINING EQUIPMENT TEST \& MEASUREMENT EQUIPMENT also make

If you have never lost a file,
never ran out of disk space or
love re-installing software,
don't read any further.
Backer® ${ }^{\circledR}$ is a high performance back-up system designed specifically for the home user. For less than the price of most PC games, you can store up to 1.5 Gbytes of data on a single VHS video tape, the equivalent of 3 CD-ROMs. Backer ${ }^{\oplus}$ utilises your existing video recorder to transfer data from your hard disk at up to 9 Mbytes per minute, faster than many of the significantly more expensive tape streamers.

- Free up extra disk space by archiving less frequently used files
- Protect important files by keeping back-up copies
- Transfer data between PCs, copy hundreds of Megabytes quickly and easily
- Runs under Windows ${ }^{\circledR}$ in the background, allowing you to continue working with other applications
- Uses low cost standard video tapes
- Comprises of an expansion card and easy-to-use software
- State of the art sophisticated error correction ensures reliable operation
- Back-up selected files or the whole hard disk

Order now by ringing 0160644244 quoting your Access or Visa number or by sending your cheque or postal order for $£ 37.45$ ($£ 34.95$ inc. VAT + P\&P $£ 2.50$) to Danmere Technologies Ltd., Darland House, 44 Winnington Hill, Northwich, Cheshire CW8 1AU.

Distributor enquiries weliome.

Danmere
Backer
The PC hard disk back-up system CIRCIENO. 103 ON REPLYCARD:

[^0]: Electronics World + Wireless World is published monthly. By post, current issue $£ 2.25$, back issues (if available) $£ 2.50$. Orders, payments and general correspondence to L333, Electronics World + Wireless World, Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS. T|x:892984 REED BP G.
 Cheques should be made payable to Reed Business Publishing Group Newstrade: Distributed by Marketforce (UK) Ltd,
 247 Tottenham Court Road London WIP OAU 0171 261-5108.
 Subscriptions: Quadrant Subscription Services, Oakfield House,
 Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 01444445566 . Please notify change of address. Subscription rates 1 year (normal rate) £30 UK and £43 outside UK.
 USA: $\$ 52.00$ airmail. Reed Business Publishing (USA), Subscriptions office, 205 E. 42nd Street, NY 10117.

[^1]: TO ALL SMALL BUSINESSES AND COMPANIES. WE WOULD LIKE TO BUY

[^2]: * Paul Greenland, Allegro MicroSystems, Inc. M.Ueki and M.J.Lee, Sanken Electric Co.

[^3]: Audio processor. Philips offers the TDA1548T single-chip audio processor, which includes Bitstream filters for digital deemphasis, volume and tone control, Bitstream d-to-a converters and headphone amplifiers, providing all audio functions needed for CD, MD and DC personal stereo players. It is compatible with $I^{2} S$ or LSBjustified serial input data and provides 1.7 V pk-pk audio into 32Ω. Low voltage and the avoidance of the processing needs of purely digital volume and tone controls reduces power requirements from the 3 V battery pack. Two external components capacitors for analogue post filtering - a further decoupling capacitor and three potentiometers are needed for a full stereo output. Philips Semiconductors (Eindhoven) Tel., 003140 722091; fax, 0031 40724825.

